
Quantum Dynamics in Condensed Phases:

Carrier Mobility, Decoherence, and Excitation
Energy Transfer

by

Yuan-Chung Cheng

B.S., National Taiwan University, Taiwan (1995)
M.S., National Taiwan University, Taiwan (1997)

Submitted to the Department of Chemistry
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2006

() Massachusetts Institute of Technology 2006.

Author .........

Certified by......

All rights reserved.

...... ......... 0 ............ ...............
: UDepartment of nChemistry

,1% I January 26, 2006

D e n- o-f S c i e n c e & . .. .o o C h e m i s t ry.. . . . . .

. 1/ VRobert J. Silbey
Dean of Science & Class of '42 Professor of Chemistry

Thesis Supervisor
A 

Accepted by .......... i .................................................
Robert W. Field

Chairman, Department Committee on Graduate Students

A PCH1VMS

MASSACHUS.I ItiE
OF TECHNOLOGY

APR 0 ) 2006

LIBRARIES
_

Charge

) 



This doctoral thesis has been examined by a Committee of the Depart-

ment of Chemistry as follows:

A r

Professor Jianshu Cao........
.. _ .. Chairm an...................

Chairman

I

Professor Robert J. Silbey .... .. .-.... 0 .;. . ..........
T ess Supervisor

Professor Robert W. Field ........ ?..... -. ..

2



Quantum Dynamics in Condensed Phases: Charge Carrier

Mobility, Decoherence, and Excitation Energy Transfer

by

Yuan-Chung Cheng

Submitted to the Department of Chemistry
on January 26, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
In this thesis, we develop analytical models for quantum systems and perform the-
oretical investigations on several dynamical processes in condensed phases. First,
we study charge-carrier mobilities in organic molecular crystals, and develop a mi-
croscopic theory that describes both the coherent band-like and incoherent hopping
transport observed in organic crystals. We investigate the structures of polaron states
using a variational scheme, and calculate both band-like and hopping mobilities at a
broad range of parameters. Our mobility calculations in 1-D nearest-neighbor systems
predict universal band-like to hopping transitions, in agreement with experiments.
Second, motivated by recent developments in quantum computing with solid-state
systems, we propose an effective Hamiltonian approach to describe quantum dissi-
pation and decoherence. We then applied this method to study the effect of noise
in a number of quantum algorithms and calculate noise threshold for fault-tolerant
quantum error corrections (QEC). In addition, we perform a systematic investigation
on several variables that can affect the efficiency of the fault-tolerant QEC scheme,
aiming to generate a generic picture on how to search for optimal circuit design for
real physical implementations. Third, we investigate the quantum coherence in the
B800 ring of of the purple bacterium Rps. acidophila and how it affects the dynamics
of excitation energy transfer in a single LH2 complex. Our calculations suggest that
the coherence in the B800 ring plays a significant role in both spectral and dynamical
properties. Finally, we discussed the validity of Markovian master equations, and
propose a concatenation scheme for applying Markovian master equations that ab-
sorbs the non-Markovian effects at short times in a natural manner. Applications of
the concatenation scheme on the spin-boson problem show excellent agreements with
the results obtained from the non-Markovian master equation at all parameter range
studied.

Thesis Supervisor: Robert J. Silbey
Title: Dean of Science & Class of '42 Professor of Chemistry
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Chapter 1

Prologue

1.1 Introduction

Quantum dynamics in condensed-phase systems are difficult to deal with theoreti-

cally. In contrast to gas-phase systems that can usually be modeled adequately as

isolated systems with well defined Hamiltonians and a limited number of degrees

of freedom, a quantum system in condensed phases is inevitably coupled to a vast

number of degrees of freedom in its surroundings; consequently, a dynamical process

in condensed phases typically involves a large number of degrees of freedom, and

a complete theoretical description of the process requires the inclusion of the com-

plex condensed-phase environment as well, which makes the theoretical description

of quantum dynamics in condensed-phase systems a formidable task.

In principle, it is possible to build an approximate model for a condensed-phase

system by truncating the size of the full system. By considering an increasing number

of molecules in the model, the properties of the truncated model will eventually

approach the bulk properties. In fact, recent advancements in computing power has

motivated much interest along this direction. Methods based on density functional

theories and molecular-orbital theories have been developed for ab initio molecular

dynamics simulations of many-body systems, and these numerical simulations have

been proved useful in the understanding of ground state properties and dynamics

in condensed phases. However, despite ever increasing computing power, the size of
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systems and time scales tractable by computer simulations are still restricted, and to

include all physically relevant degrees of freedom quantum mechanically in simulations

is still prohibitive. Note that even if a complete atomistic simulation of quantum

dynamics in condensed phases is possible, it is usually difficult to critically access key

aspects of the dynamics from the results of numerical simulations. Therefore, it is

desirable to develop analytical models that describe quantum dynamics in condensed-

phase systems.

In most physical applications, one is only interested in properties that are deter-

mined by a subsystem with only a few relevant degrees of freedom. This allows one

to partition the global system into a relevant part (system) and an irrelevant part

(bath), and concern only on the dynamics of the system part. The system-plus-bath

model has become the standard theoretical framework for condensed phase dynamics.

After averaging out the bath degrees of freedoms by a coarse-graining procedure, one

obtains the reduced description of the dynamics. The reduced dynamics description

allows one to study dynamical processes in condensed phases.

The quantum master equation approach is a well known technique based on the

system-plus-bath model. By using projection operator or cumulant expansion tech-

niques, one can reformulate the exact quantum Liouville equation and perform a

mathematically rigorous expansion in the limit of weak system-bath coupling to de-

rive a quantum master equation for the reduced dynamics of the system. Moreover,

Markovian approximation that assumes short bath relaxation time is often applied.

The resulting equation, usually called the Redfield equation, has found broad applica-

tions in chemical physics. Adequate results for quantum dynamics can be obtained in

the weak system-bath coupling regime, although such conditions are usually difficult

to verify for generally systems.

It is also possible to avoid treating the bath degrees of freedom explicitly and still

yield adequate descriptions for dynamical processes in condensed phase systems. By

including stochastic fluctuations in the effective Hamiltonian of the system, one can

mimic the influence of the bath for a system embedded in condensed-phase environ-

ments. This kind of approach usually leads to a stochastic Liouville equation, and the
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statistical average of the stochastic processes results in decoherence and relaxation

of the system. If applicable, the effective Hamiltonian approach provides an efficient

method to describe condensed phase dynamics. However, extra care must be taken

to justify the applicability of these models.

Quantum dynamical processes in condensed phases are often governed by the in-

terplay of the couplings between quantum states in the system (coherence) and the

system-bath couplings between the system and the environment (fluctuations). When

the couplings in the system dominate the interactions, the dynamics is characterized

by coherence evolution within the system states; in contrast, when the system-bath

couplings dominate the interactions, the dynamics is characterized by incoherent re-

laxation towards the thermal equilibrium. The intermediate regime in which the

strengths of different types of interactions are comparable usually presents a greater

difficulty for theoretical descriptions. Furthermore, the condensed phase dynamics

is also influenced by the time scales of the bath dynamics. Generally speaking, ad-

equate and consistent descriptions of condensed phase dynamics can be obtained in

some limiting cases, but a general theory is difficult to formulate.

1.2 Motivation

Recent developments in preparing novel materials and manufacturing nanoscale de-

vices operating according to quantum mechanical principles have not only allowed us

to achieve new technologies, but also revealed interesting physics regarding the dy-

namical properties of condensed-phase systems. These new experiments also necessi-

tate the developments of theoretical models that can capture the underlying physical

principles of the observed phenomena. In particular, the theoretical work presented

ill this thesis was motivated by recent advancements in the applications of organic

materials in electronic devices, solid-state implementations of quantum computers,

and single-molecule measurements on optical properties of nanoscale molecular ag-

gregates.

Recently, advancements in preparing ultra-pure single crystals of organic molec-
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ular materials have opened a whole new research area for material scientists. Novel

electronic devices based on organic materials, such as organic light-emitting diodes,

organic solar cells, and organic field-effect transistors, have been realized and proved

to offer as potential substitutes for their inorganic counterparts 1, 2, 3. Crystals or

thin films of some organic compounds might just be the keys to the revolution toward

the next generation of electronic devices. In addition, these new experimental results

have renewed the interest in developing theoretical models to better understand the

intrinsic charge transport mechanisms in organic molecular crystals. The tempera-

ture dependence of charge-carrier mobilities in organic molecular crystals universally

exhibits a power-law behavior (resembling the band transport found in conventional

silicon-based semiconductors) at low temperatures, and an almost temperature in-

dependent or slightly thermal activated behavior (resembling the hopping transport

found in disordered materials) at high temperatures. The universal crossover from

band-like to hopping transport in the intrinsic mobilities of ultrapure organic aro-

matic molecular crystals occurs at about room temperature [4, 5, 6, 7, 2, 8]. Because

having high mobilities is essential for the efficiencies and fast response times of elec-

tronic devices, finding organic materials with high intrinsic charge mobilities at room

temperature has been the focus of recent developments in optimizing the performance

of organic-based devices. In order to describe the experimental temperature depen-

dence of charge mobilities and devise design rules that facilitate the development of

organic electron devices, a theoretical model that describes both the band-like regime

and the hopping regime of charge mobilities in organic crystals is essential.

We are also interested by recent developments in quantum information processing.

Since the discovery of the quantum factoring algorithm by Peter Shor in 1994 91,

quantum information theory has rapidly grown into an active interdisciplinary field

involving physics, computer science, and mathematics 10, 11, 12]. In principle, a

quantum computer can outperform its classical counterpart and provide efficient ways

to solve many important problems. In fact, the most early motivation to exploit the

principle of quantum mechanics to achieve a greater computing power is to simulate

many-body quantum systems. In a seminal work titled "Simulating physics with
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computers", Richard Feynman first mentioned about building a quantum computer

in 1982 131:

"[..] the full description of quantum mechanics for large systems with R

particles [...] has too many variables, it cannot be simulated with a normal

computer with a number of elements proportional to R [...] how can we

simulate the quantum mechanics? /.. Let the computer itself be built of

quantum mechanical elements which obey the quantum mechanical laws."

- Richard P. Feynman, 1982.

Recent realizations of quantum algorithms using nuclear magnetic resonance (NMR)

[14, 15, 16, 1.71 and ion-trap [18] techniques have clearly demonstrated that quantum

computing is realizable in principle; however, it is also clear that NMR and ion-trap

techniques are limited in their applications, because the number of spins that can

be implemented in these systems is restricted. As a result, more recent efforts for

building quantum computers have focused on techniques based on solid-state devices

that are considered to be more scalable. However, the extra degrees of freedom and

the inherent system-bath interactions in a solid-state system pose a great challenge

for quantum computing with such devices. The inevitable interactions between the

solid-state device and its surroundings introduce noise into the quantum system, re-

sulting in the degradation of the quantum superposition state (decoherence). As

such, the decoherence problem is the main obstacle towards the realization of a scal-

able quantum computer. Because the ability to compute and predict the behavior of

a quantum computer under the influence of noise is crucial, a theoretical framework

that describes decoherence according to realistic device conditions could be extremely

useful in the study of quantum error-correcting and error-preventing schemes, as well

as provide informative guidelines for the design of quantum computers [19, 20, 21, 221.

In another area, the developments in ultrafast laser spectroscopy and single molecule

spectroscopy have allowed us to reveal detailed information of optical processes in

nanoscale molecular aggregate systems, which have drawn considerable attention due

to their important role in biological processes and synthetic molecular devices. The
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photo-synthetic unit of purple bacteria is certainly one of the most studied molecu-

lar assemblies 23, 24, 25]. Recent spectroscopic studies, especially single molecule

experiments, have significantly advanced our knowledge about the processes of ex-

citation energy transfer in the bacterio photo-synthetic unit; however, a detailed

understanding is still not at hand, mainly due to the difficulty of characterizing the

quasi-static disorder due to the slow fluctuations of local protein environments and

pigment structures. Dynamical processes in these systems are complicated by the

competition between electronic coherence and quasi-static disorder in the system.

Thus, in order to describe experimental results in a consistent framework, a theoret-

ical model that treats electronic coherence and static disorder in the same footing is

required. A molecular-level description for the dynamics of excitation energy transfer

in the photo-synthetic unit may also prove useful for understanding other nanoscale

molecular assemblies and designing efficient nanoscale optical devices.

A sound microscopic molecular-level description for each of the system mentioned

above will answer many long-standing questions and may also help developing novel

materials and new devices.

1.3 Overview

In response to questions raised by new experiments mentioned in the previous section,

we develop theoretical models and perform investigations on the dynamical processes

regarding the charge-carrier mobilities in organic molecular crystals (Chapter 2 and

3), effect of quantum decoherence in quantum computations (Chapter 4 and 5), and

excitation energy transfer in the light-harvesting system of purple bacteria (Chapter

6). Note that each of the system presents a distinct challenge to a sound theoretical

description. In the following, we present an overview of the chapters in this thesis.

In Chapter 2, quantum-chemical calculations coupled with a tight binding model

are used to examine the applicability of the wide-band theory on the charge carrier

mobilities in oligoacene crystals. In particular, the transfer integrals for all non-

zero interactions in four crystalline oligoacenes (naphthalene, anthracene, tetracene
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and pentacene) are calculated, and then used to construct the excess electron and

hole band structures of all four oligoacene crystals in the tight binding approxima-

tion. From these band structures, thermal-averaged velocity-velocity tensors in the

constant-free-time and the constant-free-path approximations for all four materials

are calculated at temperatures ranging from 2-500 K. Comparison of the thermal-

averaged velocity-velocity tensors with the experimental mobility data indicates that

the simple band model is applicable for temperatures only up to about 150 K.

To characterize the crossover from band-like transport to hopping transport in

molecular crystals, we study a microscopic model that treats electron-phonon inter-

actions explicitly in Chapter 3. In order to describe the intermediate electron-phonon

coupling regime that is relevant for charge-carrier mobilities in organic crystals, we de-

velop a finite-temperature variational method combining Merrifield's transformation

with Bogoliubov's theorem to obtain the optimal basis for an interacting electron-

phonon system, and then based on the optimal basis to calculate the band-like and

hopping mobilities for charge-carriers. Our calculations on the 1-D Holstein model

at T-OK and finite temperatures suggest that the variational-perturbation method

gives results that compared favorably to other analytical methods. We also study

the structures of polaron states at a broad range of parameters including different

temperatures. In addition, we calculate the band-like and hopping mobilities of the

1-D Holstein model in different parameters and showed that our theory predicts uni-

versal power-law decay at low temperatures and an almost temperature independent

behavior at higher temperatures, in agreement with experimental observations. Our

result also indicates that the self-trapping transition studied in conventional polaron

theories does not necessary correspond to the crossover from band-like to hopping

transport in the transport properties in organic crystals. A comparison of our 1-D

results with experiments on ultrapure naphthalene crystals suggests that our method

can describe the charge-carrier mobilities quantitatively across the whole experimen-

tal temperature range. Thus, we develop a unified theory that describes both coherent

and incoherent transport in the Holstein Hamiltonian and can quantitatively describe

the temperature dependence of the charge-carrier mobilities in organic molecular crys-
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tals.

In Chapter 4, we propose a model based on a generalized effective Hamiltonian

for studying the effect of noise in quantum computations. The system-environment

interactions are taken into account by including stochastic fluctuating terms in the

system Hamiltonian. Treating these fluctuations as Gaussian Markov processes with

zero mean and delta function correlation times, we derive an exact equation of motion

describing the dissipative dynamics for a system of n two-level systems (qubits). The

limitations and possible extensions of this stochastic noise model is also discussed.

In Chapter 5, we then apply this model to study the effect of noise on a number of

quantum algorithms. We first investigate the effect of noise in the quantum channels

on the quantum teleportation and derive analytical equations for the fidelity of tele-

portation. The effect of collective decoherence is also studied for different two-qubit

entangled states. We then study the effect of noise on a set of one- and two-qubit

quantum gates, and show that the results can be assembled together to investigate

the quality of a quantum controlled-NOT gate operation. We compute the averaged

gate fidelity and gate purity for the quantum controlled-NOT gate, and investigate

phase, bit-flip, and flip-flop errors during the gate operation. The effects of direct

inter-qubit coupling and fluctuations on the control fields are also studied. We find

that the quality of the controlled-NOT gate operation is sensitive to the strengths of

the control fields and the strengths of the noise, and the effect of noise is additive

regardless of its origin.

In addition, quantum circuits implementing fault-tolerant quantum error correc-

tion (QEC) for the three qubit bit-flip code and five-qubit code are studied using

the generalized effective Hamiltonian approach. We investigate the effect of noise in

QEC circuits under realistic device conditions and avoid strong assumptions such as

maximal parallelism and weak storage errors. Noise thresholds of the QEC codes

are calculated. In addition, the effects of imprecision in projective measurements,

collective bath, fault-tolerant repetition protocols, and level of parallelism in circuit

constructions on the threshold values are also studied with emphasis on determining

the optimal design for the fault-tolerant QEC circuit. These results provide insights
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into the fault-tolerant QEC process as well as useful information for designing the

optimal fault-tolerant QEC circuit for particular physical implementation of quantum

computer.

In Chapter 6, we study the quantum coherence in the B800 ring of the light-

harvesting system form purple bacteria and how the coherence affects the dynamics

of excitation. energy transfer in photosynthetic light-harvesting systems. To include

the effect of slow fluctuations in the environment, we consider static disorder described

by Gaussian random variables and employ Monte-Carlo simulations to perform sam-

pling and calculate ensemble properties for the system. From an analysis of the

ensemble absorption spectrum, we determine the disorder parameters for the B800

ring and show that the relatively weak electronic coupling between B800 pigments

subtly changes the dynamics of excitation energy transfer and improves the unifor-

mity and rolb)ustness of B800---B850 excitation energy transfer at room temperature,

an example of how a multi-chromophoric assembly can exploit coherence to optimize

the efficiency of photosynthesis.

Finally, we discuss an issue that has been left out in all previous chapters, namely

the validity of the Markovian approximation in the Markovian master equations (Red-

field equations). We argue that for a bath described by a spectral function J(w) that

is dense and smoothly spread out over a wide frequency range, a bath relaxation time

Tb can be defined; for times t > b, the Markovian approximation is applicable. In

addition, if J(w) decays to zero reasonably fast in both w --* 0 and w -* oc limit,

then the bath relaxation time is determined by the width of the spectral function,

and is only weakly dependent on the temperature of the bath. Based on this crite-

rion of Tb, a scheme to incorporate transient memory effects in the Markovian master

equation is suggested. We propose a concatenation scheme that uses the second order

perturbation theory for short time dynamics and the Markovian master equation at

long times. Application of this concatenation scheme to the spin-boson model shows

that it reproduces the reduced dynamics obtained from the non-Markovian master

equation for all parameters studied.
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Chapter 2

Band Structure and Band-Like

Mobility in Oligoacene Single

Crystals

Part of the content in this chapter has been published in the following paper:

Y.C. Cheng, R.J. Silbey, D.A. da Silva Filho, J.P. Calbert, J. Cornil, and J.L. Br6-

das. Three-Dimensional Band Structure and Band-Like Mobility in Oligoacene Single

Crystals: A Theoretical Investigation. Journal of Chemical Physics, 118:3764-3774,

2003.

2.1 Introduction

The study of charge-carrier mobilities in organic molecular crystals has continued

for more then 30 years [1, 2, 3, but the problem of the best way to describe the

motion of charge carriers in the crystal has still not been fully resolved [4, 5, 6].

Recently, the realization of electronic devices based on crystalline organic materials

has renewed the interest in developing new theoretical models to better understand

this problem [6, 7, 8, and new techniques developed for preparing ultra-pure single

crystals of these organic materials have enabled the study of intrinsic charge transport

mechanisms [9, 10, 11, 121. Because the mobility is an important factor for potential
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electronic applications, it is of importance that we develop a theoretical model capable

of describing the charge transport mechanism in organic molecular crystals.

The measured intrinsic mobilities of oligoacene single crystals show a band to

hopping transition occurs at about room temperature [13, 14, 5], which enables us to

characterize the charge-transport mechanism in two different regimes, band-like mech-

anism at low temperature, and hopping mechanism at high temperature. Although it

is widely accepted that this transition occurs because of the effect of electron-phonon

coupling and the polaron model has been applied to earlier studies on naphthalene

with some success 13, 15, 16, 171, a quantitative theory that can describe the charge-

carrier behavior in both regimes is still missing, especially for the wider band ma-

terials, tetracene and pentacene. In this chapter, we will focus on the study of the

band-like mobilities of oligoacene crystals. A microscopic theory that describes the

temperature dependent transition from band-like regime to hopping regime will be

presented in the next chapter.

The charge transport in the band-like regime of oligoacene crystals is of particular

interest, because relatively high charge carrier mobilities, ranging from 1-10 cm2 /V · s

at room temperature to more than 102 cm2 /V s at low temperature, have been

achieved in well ordered materials [9, 18, 11, 7. In addition, the measured mobil-

ities follow the power law temperature dependence ,u T- n with n 1.5- 3.0

in a broad temperature range. This power law dependence suggests a wide-band

theory may be applicable in highly purified aromatic molecular single crystals, but

so far all theoretical calculations have failed to provide the correct magnitudes and

temperature dependences of the charge-carrier mobilities in organic molecular crystal

systems [19, 3, 5]. Karl et al. have used a standard wide-band theory to describe

the high, field-dependent hole mobilities observed in naphthalene at low temperature,

and obtained a reasonable fit to their field-dependent results [9]. They concluded that

a classical band-type transport model with combined acoustic- and optical-phonon

scattering in nonparabolic bands is suitable for describing the mobilities in naph-

thalene at low temperature. However, because of the lack of reliable information on

the band structure of the system, an important problem about the consistency of
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the band picture was left unanswered in their paper. Due to the advances of mod-

ern quantum-chemical techniques, it is now possible to compute the band structure

and examine the wide-band model theoretically. Therefore, an investigation based on

purely theoretical parameters and modeling is essential to interpret new experimental

developments and better understand the underlying transport mechanism.

In this chapter, a band model coupled with quantum-chemistry calculations is

used to study the charge carrier mobilities in oligoacene crystals. Recently, Cornil et

al. developed a semi-empirical Hartree-Fock INDO (Intermediate Neglect of Differ-

ential Overlap) method which can be used to obtain good estimates of the transfer

integrals in van der Waals bonded crystals [20, 21, 22]. Here we adopt this method to

calculate transfer integrals for all non-zero interactions in naphthalene, anthracene,

tetracene and pentacene crystals, and then use these parameters to obtain the band

structures and the mobility tensors for these crystals. A tight binding method is used

to construct the band structure of these oligoacene crystals, and the velocity-velocity

tensor products averaging over the Boltzmann distribution among the energy bands

are used to estimate the value of band-like mobilities. In addition, in order to account

for the effect of electron-phonon coupling under the framework of a basic band model,

we discuss the polaron band theory and its applicability. Throughout this work, we

focus on the behavior of charge carriers in the low temperature band-like regime,

and neglect the hopping regime. The goal of this investigation is to re-examine the

standard wide-band description of the mobility in oligoacene compounds based on

the new parameters, and provide information about the applicability of the simple

wide-band model. A unified theory that describes the band-like to hopping transition

will be presented in the next chapter.
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2.2 Method

2.2.1 Theoretical Background

The model adopted here for calculating the band structure and the mobility tensors

for organic molecular crystals was first proposed by LeBlanc 2] and then extended

by Katz et al. [23] in the early 1960s. Note that since all the compounds investigated

here have a crystal structure containing two molecules (say, type oa and type 3)

in a unit cell, there are two bands arising from the symmetric and antisymmetric

combinations of molecular wavefunctions in a cell for both excess-electron and excess-

hole. Assuming the concentration of charge carriers is very small so that one-particle

formalism is applicable, and the excess electron or hole does not significantly change

the wavefunction of the molecule, the lowest unoccupied molecular orbital (LUMO) of

a molecule can be used as a basis for crystal electron wavefunctions, and the highest

occupied orbital (HOMO) can be used for hole wavefunctions. In the tight binding

approximation, the energies of the two excess-electron (excess-hole) bands, E+ (k) and

E_(k), can be expressed in terms of the transfer integrals between molecular LUMOs

(HOMOs) 231:

E±(k)= (T a ± ("2 =3) + V(k)2. (2.1)

For crystals with inversion symmetry:

T = E, - 2 t. cos(k ri), (2.2)
i

T = E -2 t~3 cos(k ri), (2.3)
i

V(k) = -2 Ztif - cos(k r3), (2.4)
i

where k is the wavevector; T, and To represent the interactions between translation-

ally equivalent molecules, E, and El are the corresponding molecular orbital energy
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on monomer type a and 3, respectively; the summation in Ta (TO ) is taken over all

interacting translationally equivalent molecules; t (t 3) is the intermolecular transfer

integral between the central type a (3 ) molecule and the type (3 ) molecule at

the i-th unit cell. For crystals with a unit cell containing two equivalent molecules,

Es = EF and t -ti; ra (r/) is the vector from the center type a (3) molecule to the

type (3 ) molecule at the i-th unit cell; V(k) represents the interaction between

type and 3 molecules, and the summation is over all interacting translationally

inequivalent molecules; t is the intermolecular transfer integral between the central

molecule and the translationally inequivalent molecule at the i-th unit cell, and rn

is the vector connecting these two molecules.

Eq. 2.1 to Eq. 2.4 are the necessary analytical equations for constructing the

energy band structure for an excess electron or an excess hole in a crystal with two

molecules in a unit cell, regardless of the details of crystal structure and intermolecular

interactions. In addition, the velocity of charge carriers can be calculated from the

band structure. In a standard band-theory model, the group velocity v(k) of the

delocalized electron waves or hole waves is given by the gradient of the band energy

in k-space:

v(k) = (1/h)- VkE(k). (2.5)

Although it is not possible to directly calculate the value of the mobility tensor

using a band model, we can use two simplified models for the relaxation time to

evaluate important parameters related to the mobility tensors [2, 23, 24]. Given a

constant isotropic relaxation time T0 (constant-free-time approximation) or a constant

isotropic free path A (constant-free-path) for the motion of the charge carriers in the

crystal, the components of the mobility tensor are

Aij = eo(vivj) /kT, (2.6)

and
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(2.7)

in the constant-free-time and constant-free-path approximations, respectively. Here

vi is the i-th component of the group velocity, v(k), and the bracket in the equation

means an average over the Boltzmann distribution of a charge carrier in the energy

bands:

Ok, ake + 3E+(k) + aE_ OEe_-E_(k)}dk
aki kj e - 9 k ki(ViVj) _ _ _ k f{ k (2.8)

VVJ / - h 2 f {e-E+(k) + e-OE-(k)}dk ' .

where E+(k) is the energy of the upper band, and E_(k) is the energy of the lower

band, as described in Eq. 2.1. Integrals in Eq. 2.8 can be evaluated numerically

to obtain the values of thermal-averaged velocity-velocity tensor products (vivj) and

(vjvj/jv(k)l). The two terms, (vivj) and (vivj/jv(k)l), are the main quantities of

concern here, because they can serve as estimates of the values of the real mobility

tensors under the constant-free-time or constant-free-path approximations.

2.2.2 Models and Numerical Calculations

Values of important parameters in the band equations (Eq. 2.1 to Eq. 2.4) can be

evaluated using numerical methods. In this investigation, the values of site energy and

transfer integrals were calculated using the INDO semi-empirical quantum-chemical

method 125, 21, 22]. Four oligoacene compounds, namely naphthalene, anthracene,

tetracene, and pentacene, are studied. Figure 2-1 shows the molecular structure of

these model compounds. Using crystal structures taken from the Cambridge database,

parameters for these model compounds (naphthalene 26], anthracene 27], tetracene,

and pentacene [28]) were calculated by performing ZINDO [20, 29] calculations on all

molecular dimers within the third nearest-neighbor shells for each crystal. The crystal

data used in our calculations are listed in Table 2.1. Because it is highly unlikely that

molecules located outside the third shell will interact with the central molecule, we

expect that all non-zero interactions are included in our calculations. Note that

special attention needs to be paid to the phase of the macromolecule wavefunctions
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Naphthalene

Anthracene

Pentacene

Tetracene

Figure 2-1: Molecular structures of the four oligoacenes studied in this work.

Table 2.1: Crystal constants

Naphthalene

Crystal Constants Monoclinic
aa 8.0980
b 5.9530
c 8.6520

b ~ 90.000

3 124.400

aly ~ 90.000

and structures of oligoacenes

Anthracene Tetracene Pentacene

Monoclinic
8.4144
5.9903
11.0953
90.000
125.293
90.000

Triclinic
6.057
7.838

13.010
77.13
72.12
85.79

Triclinic
6.275
7.714
14.442

76.75
88.01
84.52

a : units: A. b : units: degree

to determine the correct signs of the transfer integrals. Once we have the site energy

and transfer integrals, analytical expressions of the energy bands as a function of

the wavevector, k, can be obtained using Eq. 2.1 to Eq. 2.4. In addition, the 3-D

total density of states (DOS) can be calculated by performing a primitive histogram

calculation inside the first Brillouin zone.

The group velocity across the band can be obtained using Eq. 2.4. Note that

because the unit cell vectors a, b and c are not orthogonal to each other for the

crystals investigated here, a new Cartesian coordinate system was used to perform

the group velocity calculations. The new coordinate system is chosen as follows: the

new x-axis is parallel to the a direction, the y-axis is in the ab plane and points to the

positive b direction, and the new z-axis is parallel to the interlayer c' direction which
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is perpendicular to the ab plane. The group velocity of charge carriers in the energy

band was calculated in the new coordinate system, and projected back to each unit

cell direction to evaluate the velocity vector in the real space. The thermal-averaged

integral (Eq. 2.8) was evaluated numerically by applying an adaptive Gaussian inte-

gration method using a 51-point Gauss-Kronrod rule over the first Brillouin zone with

more than 102x102x102 points. The estimated absolute error is less than 10-6 in all

numerical integrations performed. Values of the thermal-averaged velocity-velocity

tensor products were calculated at temperatures ranging from 1.7 K to 500 K.

2.3 Results and Discussion

2.3.1 Transfer Integrals

The calculated site energies and transfer integrals for all four oligoacenes are listed in

Table 2.2. The calculated site energies for type a and type /3 molecules in naphthalene

and anthracene crystals are the same because of their monoclinic P21/a symmetry.

However, in tetracene and pentacene crystals, which have a triclinic P1/2 symmetry,

an energy difference is found between type oa and type 3 molecules. This energy

difference is due to a slight geometry difference between type a and type 3 molecules,

and leads to a significant difference in the band structures, as we will see in the next

section.

For all compounds investigated here, calculated intra-layer interactions are signifi-

cantly larger than inter-layer interactions. The important in-plane interactions found

are those along the nearest-neighbor directions, d (1/2, 1/2, and 0 along the a, b,

and c directions) and d2 (-1/2, 1/2, and 0 along the a, b, and c directions), and short

crystal axis (b for naphthalene and anthracene, a for tetracene and pentacene); these

results are in agreement with previous calculations for oligoacene crystals [22, 24, 30]

and mobility measurements pointing to two-dimensional transport in oligoacene crys-

tals [31, 32, 121.

The evolution of the size of transfer integrals with respect to the size of oligoacene
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Table 2.2: Calculated site energy and transfer integrals (units: meV)

Naphthalene Anthracene
HOMO LUMO HOMO LUMO HOMO LUMO HOMO LUMO

AE a 0 0 0 0 48 -52 0.0 -2
ab b c

1 0 0 0.00 0.00 0.00 0.00 -29.25 33.33 49.93 48.30
0 1 0 38.50 11.15 48.30 29.93 0.00 0.00 0.00 0.00

-1/2 1/2 0 36.59 -41.49 -47.89 -56.05 -68.88 -70.80 -97.82 -81.08
1/2 1 2 0 36.59 -41.49 -47.89 -56.05 -61.92 -47.42 -72.65 -81.62

-3/2 12 0 0.00 0.00 0.00 0.00 0.00 15.88 -4.61 -5.74
3/2 1/2 0 0.00 0.00 0.00 0.00 -14.56 0.0 -4.75 -3.22
-1/2 3/2 0 -2.99 -2.99 -3.40 -3.26 0.00 0.00 0.00 0.00
1/2 3/2 0 -2.99 -2.99 -3.40 -3.26 0.00 0.00 0.00 0.00
0 -1 1 -1.49 -4.08 0.0 -2.31 1.08 -3.53 3.12 0.0

1/2 1/2 1 -13.60 -4.21 -13.87 -3.80 0.00 0.00 0.00 0.00
1/2 -1/2 1 -13.60 -4.21 -13.74 -3.80 6.82 0.00 -2.43 0.00

-1/2 -1/2 1 0.00 0.00 0.00 0.00 -12.63 0.0 -2.29 -5.33
-1/2 -3/2 1 0.00 0.00 0.00 0.00 0.00 -7.58 0.00 -1.21
1/2 -3/2 1 -1.22 1.08 1.22 -1.22 0.00 0.00 0.00 -2.04
1/2 3/2 1 -1.22 1.08 1.22 -1.22 0.00 0.00 0.00 0.00

-3/2 -1/2 1 0.00 0.00 0.00 0.00 0.00 -9.33 0.0 -1.72
3/2 -1/2 1 1.63 1.63 1.63 1.49 0.00 0.00 0.00 0.00
3/2 3/2 1 1.63 1.63 1.63 1.49 0.00 0.00 0.00 0.00
-3/2 -3/2 1 0.00 0.00 0.00 0.00 -5.13 0.00 0.00 0.00
a Relative on-site energy, E - Ea.
b Unit vectors being the lattice vectors.
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molecules, from two rings in naphthalene to five rings in pentacene, indicates that the

size of the conjugated 7r system and the structure of the crystal are both important

factors determining the strength of the interactions [33]. We find that as the size

of the molecule increases, the calculated interactions for both holes and electrons

along d1 and d2 increase; this contrasts with the situation observed in cofacial dimers

(where the HOMO splitting decrease with increasing chain size), thus pointing to

the subtle interplay between crystal packing and calculated transfer integrals [33].

Interestingly, interactions between molecules located in adjacent layers (along the c

direction) decrease as the size of the molecule increases. This result can be attributed

to the longer distance between layers in larger molecules. As the distances between

the adjacent layers increase, the weak 7r-7r interactions along the c direction decrease.

2.3.2 Band Structure and Density of States

The DOS spectra and band structures along different unit cell vectors are displayed

in Figs. 2-2 to 2-5 for naphthalene, anthracene, tetracene and pentacene, respectively.

Shapes of LUMO and HOMO bands along the ka , kb, k , kdl and kd2 directions are

plotted. Note that the values of the k vectors are scaled such that the value at the

first Brillouin zone edge is unity. The band structures of tetracene and pentacene are

slightly different from those of naphthalene and anthracene, which can be ascribed

to the different crystal structures and the significant energy differences between type

a and type Q molecules in the tetracene crystal. For monoclinic naphthalene and

anthracene crystals, the degeneracy at the Brillouin zone edge on the ab plane due to

the crystal P1 /2 symmetry can be clearly seen in the graph, as well as the Van Hove

singularities around the band edges. Because no such symmetry exists in triclinic

crystals, there is no degeneracy at the zone edge in the results for tetracene and

pentacene crystals. The largest contribution to the energy splitting at the zone edge

is from the difference between ca - site energies, so that the size of the splitting is

approximately twice the size of the site energy difference. In all cases, the dispersion

along the c direction is much smaller than those along the other directions, and a

large gap is found between upper and lower bands along the c direction. This is
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clearly due o smaller interactions between molecules located in adjacent layers, and

is a well known result for this kind of herringbone packing material 23, 24, 22]. As

a result, we expect the charge carrier mobilities along the c direction to be smaller

than those along other directions.

The bandwidth values for all oligoacenes are summarized in Table 2.3. Bandwidths

along the a, b, c, di, d2 directions and the 3-D total bandwidths calculated from the

widths of the continuous region in the DOS spectrum are listed in Table 2.3, as well

as values of the gaps between the upper and lower bands in each direction. All four

compounds investigated here have a continuous band with widths from 400 meV to 700

meV, in agreement with recent experimental and theoretical results [9, 12, 22, 341.

In addition, comparing the total bandwidth for different oligoacenes, we find that

the bandwidth increases when the size of the molecule increases, as we expect for

herringbone structures [331.

When the thermal populations of the charge carriers are taken into account, a

parameter other than total bandwidth should be adopted for comparing intrinsic

transport properties. For all the compounds investigated here, the bandwidths are

significantly larger than the thermal energy, i.e. W > kT. This result implies that

a wide band limit can be used to describe the transport of excess holes or excess

electrons, and at normal temperatures, only the states around the energy minima of

the band are populated. Note that due to the nature of the excess charge carriers,

the energy of an excess electron is measured upward from the bottom of the lower

band, while the energy of an excess hole is measured downward from the top of the

upper band. That is, within this two-band model, the motion of the excess electrons

ill the crystal are governed by the lower LUMO band, while the motion of the excess

holes are governed by the upper HOMO band.

Previous theoretical investigations have often used total bandwidths as criteria for

comparing intrinsic excess electron and excess hole mobilities, but comparing values

of total bandwidths can be misleading. For example, in a pentacene crystal, the

total bandwidths of HOMO and LUMO bands along the d direction (which is the

direction with the strongest interaction) are approximately the same (738 meV and
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Table 2.3: Widths of excess electron and hole bands (units: meV)

Naphthalene
HOMO

75.65

87.62

0.00

163.27

235.65

103.11

0.00

266.38

111.57

99.59

163.27

374.43

229.67

66.40

0.00

229.67

229.67

66.40

0.00

229.67

409.00

LUMO
183.95

183.95

0.00

367.90

228.58

139.32

0.00

367.90

4.35

28.30

339.60

372.25

228.58

139.32

0.00

367.90

228.58

139.32

0.00

367.90

372.30

Anthracene
HOMO

249.26

249.26

0.00

498.52

442.46

67.43

0.00

509.89

88.17

88.17

322.19

498.52

442.46

56.06

0.00

498.52

442.46

56.06

0.00

498.52

509.40

LUMO
251.44

251.44

0.00

502.87

371.17

131.70

0.00

502.87

19.05

37.55

446.27
502.87

371.17

131.70

0.00

502.87

371.17

131.70

0.00

502.87

508.30

Tetracene
HOMO
207.71

306.76

111.02

625.49

305.13

300.77

19.59

625.49

45.89

41.54

538.06

625.49

216.50

307.19

101.79

625.49

205.12

306.43

101.79

625.49

625.50

LUMO
275.22

113.59

89.53

478.34

225.15

245.83

6.26

477.24

57.38

78.06

341.80

477.24

208.50

93.08

175.66

477.24

271.79

93.08

175.66

477.24

502.70

Pentacene
HOMO LUMO

560.89 548.77

173.40 172.16

4.08 7.08

738.37 728.00

377.76 362.64

355.44 362.64

5.17 2.72

738.37 728.00

30.09 41.27

7.78 41.27

700.50 645.47

738.37 728.00

523.09 539.88

113.28 183.12

102.00 5.00

738.37 728.00

542.88 536.89

191.58 160.28

3.91 30.82

738.37 728.00

738.40 728.00

a Widths of the upper bands. b Widths of the lower bands. c Widths of the gaps between

the upper and lower bands. d Total bandwidth along this direction. e 3-D total bandwidths

are calculated from the widths of the continuous region in the DOS spectrum.
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728 meV, respectively); this could easily lead to the conclusion that the electrons

can be as mobile as holes in pentacene crystals. However, if we consider the thermal

population and compare mobilities according to the width of the upper HOMO band

for excess hole and the lower LUMO band for excess electron (523 meV and 183

meV, respectively), the intrinsic excess hole mobility is predicted to be significantly

larger than the intrinsic excess electron mobility in a pentacene crystal. Therefore,

the width of the upper HOMO band appears to be a better parameter for estimating

excess hole mobility, and the width of the lower LUMO band is a better parameter

for estimating excess electron mobility. According to these two criteria, we predict

all oligoacenes investigated here to have higher excess hole mobilities, in agreement

with experimental results [31, 121.

2.3.3 Thermal Averaged Velocity-Velocity Tensor

The calculated thermal-averaged velocity-velocity tensor products in constant-free-

time and constant-free-path approximations for naphthalene in the temperature range

from 1.7 K t-o 300 K are presented in Fig. 2-6. Data for all other oligoacene crystals

have a similar temperature dependence and are therefore not presented here. For

all four crystals studied here, the components (VaVa) and (VbVb) show a linear tem-

perature dependence at temperatures higher than 10 K, which can be ascribed to

the increasing thermal population of higher energy states. The component (Vc, V,)

behaves differently and saturates quickly at about 100 K, which can be easily under-

stood by considering the small bandwidth (- 30 meV) and the band gap along the c'

direction. Because of the small bandwidth along this direction, charge carriers quickly

populate the nonparabolic part of the band as temperature increases, resulting in the

saturation of the group velocity of charge carriers. To test the result, we calculated

values of the other two diagonal components at higher temperatures, no saturation

behavior can be observed in (VaVa) and (VbVb) up to 1000 K, in agreement with the

larger values of bandwidths along these directions.

The amplitude of (V,V,) at low temperatures is comparable to or even larger than

the components along the a and b directions. This result seems to be contrary to the
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general belief that the in-plane mobilities are significant higher than the perpendicular

ones in oligoacene single crystals, and the result that the transfer integral along the

c' direction is much smaller than transfer integrals on the plane. However, on closer

inspection, the unexpected large value of (V,V,) can be explained by considering the

thermal population of the electronic states. The states at the bottom of the band

have zero velocities. Therefore, in order to obtain any non-zero velocity, states with

higher energy have to be populated. If the band is narrow, states with higher velocity

can be populated at lower temperature; if the band is broad, then only states with

low velocity are populated at low temperature. As a result, the value of (V2 ) is a

trade-off between the width of the band and the population of states with higher

velocity (which is easier to achieve for narrower bands).

Table 2.4 lists values of six tensor components for all four oligoacene crystals at

50 K. Note that for crystals with monoclinic unit cells, such as naphthalene and an-

thracene, the b direction is one of the three principal axes, so that there are only four

nonzero mobility components. However, the orientations of the three principal axes

for the triclinic unit cells are not unique, and in general all six mobility tensor com-

ponents for tetracene and pentacene crystals are nonzero. Given the approximations

in our model, these velocity-velocity tensor products contain the contribution to the

charge carrier mobility from the potential energy field applied to the charge carrier.

Therefore, diagonal components of these products can be seen as the theoretical upper

bound of the charge carrier mobilities when scattering processes are omitted. Values

of these tensor components again suggest that the excess hole mobility is higher than

the excess electron mobility in oligoacene crystals, and that the mobilities increase

with chain length in agreement with the previous considerations. Furthermore, great

variations between values of components along different directions indicate highly

anisotropic crystal environments in these crystals.

2.3.4 Self-Consistency Check on the Band Model

The use of a band representation to describe the motion of the charge carriers in the

crystal can be justified only when both the mean free path exceeds many intermolec-
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Table 2.4: Components of thermal averaged velocity-velocity tensor
constant-free-time and constant-free-path approximations at 50 K.

product in

Naphthalene
Hole Elec.

191.19 261.19

380.04 131.95

199.08 52.88

-57.40 -64.92

0 0

0 0

Anthracene
Hole Elec.

376.12 435.62

618.32 122.26

351.97 158.08

-111.80 -58.62

0 0

0 0

Tetracene
Hole Elec.

358.76 556.63

537.92 365.56

312.27 416.25

-140.79 -95.96

197.94 -48.06

-134.86 -160.37

Pentacene
Hole Elec.

852.48 137.47

532.15 528.47

251.48 355.19

0.98 -75.27

72.68 46.81

-32.92 -79.35

(v2/I Vl)b

(V2/I VI)b

(VaVc/I vI)b

(VbV,/I VI)b

6.75

11.81

6.72

-1.74

0

10.21

6.20

2.61

-2.46

0

0 0

9.85

14.57

9.38

-2.31

0

13.32

4.96

6.25

-1.46

0

0 0

9.56

13.49

8.82

-3.22

4.29

13.12

9.54

10.76

-2.07

-0.80

-2.81 -3.53

17.82

12.30

6.93

0.01

1.55

4.72

13.99

10.60

-1.99

1.18

-0.69 -1.79
a Constant free-time
b Constant free-path

approximation;
approximation;

units:
units:

10 10 cm 2 . sec-2

105 cm sec - 1 .

ular distances and the uncertainty

exceed the bandwidth:

in the energy of the scattered carriers does not

A ao

W > h/To.

For the crystals studied here ao 5 A and W m 0.5 eV, therefore the criteria

for band theory to be applicable are A longer than 5 A and T0 larger than 10-15

s. To examine the applicability of the band model used in our calculations, the

temperature dependent mean free time and mean free path were calculated by fitting

the available experimental mobility data 119, 121 to our theoretical thermal-averaged

velocity-velocity tensor products using Eq. 2.6 and Eq. 2.7. The results in the

temperature range from 30 K to 300 K for excess hole in naphthalene crystal are

presented in Fig. 2-7.

From Fig. 2-7, it can be clearly seen that the above criteria are fulfilled only
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at temperature lower than 150 K, and any application of this simple band model

to temperatures higher than 150 K is open to criticism. In addition, the calculated

results along different directions are significantly different, which implies that the

scattering processes are highly anisotropic.

Because of possible highly anisotropic scattering processes, the use of constant-

free-path or constant-free-time approximations should be treated with care, and a

better approach would be to consider the free time or free path as a temperature

dependent tensor property of the crystal. Basically, the present model keeps the mo-

bility anisotropy originating from the energy band structure in the averaged velocity-

velocity tensor, and puts dynamic effects related to the scattering processes into the

constant-free-path or constant-free-time terms. Using only averaged free time or free

path to describe the scattering processes can only be justified when the following con-

ditions are all fulfilled: (i) The scattering processes along the three different crystal

directions are the same. (ii) Coupling between charge carriers and crystal phonons is

small. (iii) Molecular motions have only a small effect on the electronic structure of

the crystal. Note that the constant-free-time and constant-free-path approximations

are very crude especially for organic molecular crystal systems, because the highly

anisotropic crystal environments and somewhat small (compared to traditional inor-

ganic semiconductors) intermolecular interactions contradict the basic assumptions

behind these approximations. Early investigations related to band-like mobility calcu-

lations tried to compare the predicted mobility anisotropy to the experimental data in

order to verify the theory 2, 23, 24]; this should be taken with much caution because

of the possible differences of scattering processes along different crystal directions,

and considering the band structure effect alone is unlikely to account for the real

anisotropy in mobilities.

2.4 Polaronic Effects

In order to understand the temperature dependence of the mobilities, one should

include the possibility of the formation of polaron bands 17]. Especially, in the case
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of the oligoacene crystals where low frequency optical modes exist, excitation of these

optical modes can renormalize the transfer matrix elements significantly, because the

transfer matrix elements are strongly dependent on orbital overlap in these systems

133]. In addition, there are low lying librational modes in the oligoacene crystals,

these modes will be moderately to strongly coupled to the transfer matrix elements

[35, 361. A theoretical description of the effect of a strongly coupled optical mode on

the diffusion or mobility of an electron or hole in a molecular crystal was first given

by Holstein [37, 38] and discussed further by many other authors [39, 40, 41, 171.

Here we will only use the results of these theoretical investigations.

We assume that at least one optical mode is coupled moderately or strongly to the

transfer matrix elements and that the band width of this mode is much smaller than

its frequency, so that we can approximate the optical mode as a local mode. We also

assume that the coupling constant of that local mode to the transfer matrix elements

is approximately independent of the sites involved in the transfer matrix element.

Finally we assume that the coupling is not strong enough to localize the electron

or hole, so that the correct description of the transport is that of a polaron band

model (i.e. that hopping transport, although described by the same Hamiltonian, is

a small term in the temperature range of interest). Under these circumstances, the

effect of the electron-optical phonon coupling is to renormalize the effective transfer

matrix elements and make the effective bandwidth temperature dependent. As the

temperature increases, the effective bandwidth decreases.

In the small polaron theory, the standard form to describe the temperature de-

pendence of the effective transfer matrix elements is

teff = texp(-g 2 coth(w/2)), (2.9)

where g is the electron-optical phonon coupling constant, is the optical phonon

frequency, and 3 is 1/kbT . As a simple test, we use Eq. 2.9 to calculate the effective

transfer matrix elements at different temperatures, and then use the results to con-

struct the polaron band structure and calculate velocity-velocity tensors according to
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the procedure described in section 2.2. Several different values of both g and w are

used to perform the calculation, and we found that only a large w and small g can

produce a reasonable fit to the experimental power law results. However, the expo-

nential band-narrowing effect described in Eq. 2.9 results in a exponential decrease of

mobility when kbT > w, contradicting the power law results observed in experiments.

Therefore, a full-dressed small polaron band theory is inadequate for describing the

charge-carrier mobilities in oligoacene single crystals. Similar results appear to have

been obtained by Giuggioli et al. independently to the present work [42]. Given that

in organic crystals, the electron-phonon coupling constant is believed to be small to

intermediate in value and the bare bandwidth is large, it is possible that the polaron

band narrowing effect does not obey a simple exponential form as in Eq. 2.9. A

polaron-band theory that includes the correct band narrowing effect is necessary to

adequately describe charge-carrier mobilities in the band-like regime.

The complicated anisotropic environment as well as the subtle interplay between

crystal packing and transfer integrals make the charge-carrier transport in molecular

crystals a complicated phenomena. The phonon modes in molecular crystals have dif-

ferent frequency and bandwidth, and also couple to the electronic states with different

mechanism and strength. Kenkre et al. have used a band model with both acoustic

and optical phonon scattering to obtain a reasonable fit to the pentacene experimen-

tal data in the band-transportation regime 431. Their study suggests that in order

to describe the experimental data using a polaron band theory, at least two-phonon

modes, one moderately to strongly coupled and the other weakly coupled to the elec-

tron, are necessary. The strongly coupled mode (most likely an intermolecular optical

mode) dresses the carrier and produces a polaron band, and the weakly coupled mode

(most likely an acoustic mode) does the scattering among the polaron band states.

As a result, the temperature dependence of mobilities is due to both the temperature

dependent polaron bandwidth and the temperature dependent scattering rate.
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2.5 Conclusion

In this chapter, transfer integrals for four oligoacene single crystals are calculated us-

ing the INDO semi-empirical method, and then used to construct the excess electron

and hole band structures in the tight-binding approximation. The band structure

results suggest that a two-band model is necessary to understand the trend of mobil-

ities in different oligoacene crystals, and the width of the upper HOMO band or the

width of the lower LUMO band is a better parameter for estimating the mobility for

excess holes or electrons, respectively. Our theoretical model can be used to explain

the experimental results that the hole mobility is higher than the electron mobility in

oligoacene single crystals and that compounds with a longer conjugation length tend

to have higher mobility values.

From these band structures, thermal-averaged velocity-velocity tensors are eval-

uated using a standard semiconductor mobility theory. We have compared these

tensors to recent experimental data. We conclude that a simple band model is unable

to explain the temperature dependence of the charge carrier mobility in oligoacene

crystal systems for temperatures higher than 150 K, and that the approximations

that constanrt-free-time and constant-free-path are isotropic are open to criticism.

In conclusion, a simple wide-band theory is insufficient for describing charge-carrier

mobilities of oligoacene single crystals even in the band-like regime.

A closer study of the polaron effect using the standard small polaron narrowing

model shows that a fully-dressed small polaron band theory is also inadequate for de-

scribing the charge-carrier mobilities in oligoacene single crystals. This result suggests

that the next step beyond the simple band model will be to develop a model that can

explicitly include the polaronic effects. The key issue is to obtain the correct form for

the polaron band narrowing effect. By means of a microscopic model Hamiltonian

and a variational-perturbational technique, we will develop a unified theory in the

next chapter of this Thesis that considers explicitly the electron-phonon interactions

and describes the polaron band-narrowing effect.
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Chapter 3

A Unified Theory for Charge

Transport in Molecular Crystals

3.1 Introduction

In the previous chapter, we have calculated electronic structures for 3-D polyacene

crystals, and showed that simple wide-band model is insufficient for the description

of experimental charge-carrier mobilities. We also argued that the polaronic effect

is important for a sound description of the charge-carrier mobilities in these systems

[1, 2. In this chapter, we study a microscopic model that treats electron-phonon

interactions explicitly, and focus on the problem regarding the coherent band-like

versus incoherent hopping transport in molecular crystals. Despite numerous studies

concerning the puzzling band-like to hopping transition, a quantitative theory that

can describe the charge-carrier behavior in both regimes is still not at hand. Our

work in this chapter aims at filling this gap.

It is well known that electron-phonon interactions play a central role in the in-

trinsic transport properties of organic molecular crystals (OMC). however, the large

number of parameters governing the system makes the problem extremely compli-

cated. To name a few, the exciton and charge-carrier transport in OMC is governed

by: (1) the width of the electronic band (A, determined by resonance transfer inte-

grals between electronic states), (2) the mechanisms and strength of electron-phonon
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couplings (), (3) the characteristics of the phonon bands (e.g. phonon frequency w0

and widths of phonon bands), and (4) temperature (T). In addition, the complex-

ity of the vibrations and the absence of any clear ordering of the parameters make

the description of charge-carrier transport in OMC a formidable problem. The sit-

uation is more complex for wide-band materials because the effective bandwidth A

of the charge-carriers can crossover from A >> w0 at low temperatures to A < wo

at high temperatures due to the polaronic band narrowing effect. The development

of wide-band materials have necessitated the development of a unified theory that is

applicable in all parameter regimes.

Theories constructed for a particular picture of transport have been successful in

specific regimes of electron-phonon coupling strengths; however, a general description

that is applicable in all parameter regimes is still unavailable. Early phenomenological

transport theories, including band theory [31, stochastic Liouville equation model

[4, 5, 6, 7, and polaron effective mass model 21, have been successfully applied to

many related problems, but all of them were restricted in scope and failed to provide a

complete description in the light of the recent discoveries in experiments on ultrapure

crystals [8, 9, 2].

Microscopic models that explicitly include the electron-phonon interactions in the

Hamiltonian seem to offer more promising results. In particular, a microscopic model

first given by Holstein [10] has been used to study the effect of a moderately to

strongly coupled optical mode on the diffusion or mobility of an electron or hole in a

molecular crystal. The Holstein Hamiltonian has been examined extensively by many

authors to describe charge-carrier and exciton transport 111, 12, 13, 14, 15], and to

consider energy transfer between molecules embedded in a lattice [161. These models

are capable of reproducing both weak-coupling and strong-coupling results, but their

applicability in the intermediate coupling regime is still not clear. Generally speaking,

all theoretical calculations have so far failed to provide the correct magnitudes and

temperature dependences of the charge-carrier mobilities in organic molecular crystal

systems [17, 18, 2].

Yarkony and Silbey's variational approach 19, 121 to exciton transport in molec-
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ular crystals offered a promising direction to the solution of the problem, because

in principle the variational method can provide the optimal partition between the

zeroth-order Hamiltonian and the perturbation, hence making the perturbation ex-

pansion in the intermediate coupling regime justified. Recently, Parris and Kenkere

have extended Yarkony and Silbey's variational method to treat two phonon bands in

three spatial dimensions [201. They argued that two phonon bands, one that narrows

the band while the other scatters the electron, are required to describe the tempera-

ture dependence of charge-carrier mobilities in OMC. However, the variational ansatz

used by Yarkony and Silbey contains only one variational variable, and is known to

suffer from a lack of flexibility 211. Therefore, a more flexible ansatz is necessary to

obtain the correct temperature dependence of mobilities.

In this chapter, we develop a microscopic model that describes quantitatively the

crossover from the coherent band-like regime to the incoherent hopping regime in a

single unified theory. In Section 3.2, we will describe the finite-temperature varia-

tional method and the model Hamiltonian used in this study, and derive expressions

that are necessary for calculating the charge-carrier mobilities in OMC. In essence,

our variational approach extends the scope of applicability of Yarkony's method by

using a more flexible ansatz. To demonstrate the improvement that a variational

basis provides, in Section 3.3, we will employ a simplified version of the variational

method and time-independent second-order perturbation theory to study the polaron

problem at zero K in one dimension, and compare our results to results from previous

studies by other groups. In Section 3.4, we will apply the variational approach to a

one dimension interacting electron-phonon system to examine the nature of polaron

states in different parameter regimes and study the temperature dependence of both

band-like and hopping transport. Most importantly, we will show that when the

temperature increases, the hopping transport can become dominate even before the

polaron state changes its character. Thus, our result indicates that the self-trapping

transition studied in conventional polaron theories does not necessary correspond to

the band-like to hopping transition in the transport properties in OMC. Then, in

Section 3.5, we compare our results to experiments on the temperature dependent
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charge-carrier mobilities in ultrapure naphthalene crystals to show that our theoreti-

cal description provides quantitative agreement for both hole and electron mobilities

in naphthalene crystals. Finally, in Section 3.6 we briefly summarize our conclusions

and remarks.

3.2 Theoretical Models

In this section, we present the theoretical model that is developed to describe the

charge transport in molecular crystals. We first show that the Bogoliubov's theo-

rem on the upper bound on the free-energy of a quantum system can be used as the

foundation of a variational method, and describe the Holstein Hamiltonian and Mer-

rifield's transformation that we used to model an excess charge-carrier in molecular

crystals. We then combine the Bogoliubov's Bound and Merrifield's transformation to

derive a finite-temperature variational method that can be used to obtain the optimal

polaronic state for an interacting electron-phonon system. In the end of this section,

we consider a formula for charge-carrier mobilities that describes both band-like and

hopping transport, and derive expressions that can be used to compute mobilities

based on the optimal polaronic state obtained from the variational method.

3.2.1 Bogoliubov's Bound on the Free Energy

We first describe our formulation for an upper bound on the free energy of a general

electron-phonon system. The Helmholtz free energy A for a system defined by a

Hamiltonian H at temperature T is given by

AH = -/3 - 1 in Tre . (3.1)

where / = kBT. For general interacting electron-phonon systems, explicit calculation

of the free energy is a formidable task. Fortunately, the following inequality exists as

a consequence of the convexity of the exponential function:

Bogoliubov's theorem: If H and H' are two self-adjoint operators with the prop-
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erty that the traces Tr{exp(-/3H)} and Tr{exp(-/3H')} are finite for all /3> 0,

then one has, for all > 0,

f-1 lnTIrefdH < /-31 lnTre- diH' -(H - A(H)

where the bracket (...)H' denotes average according to the trial Hamiltonian H'

Tr{ (H - ')e- ~"'}
(H - H' =Tr(H - H)eH'Tre-OH'

Bogoliubov's theorem provides us with a convenient method to calculate an upper

bound AB(]i') on the free energy using a trial Hamiltonian H'. Generally, we can

partition the full Hamiltonian H into a zeroth order Hamiltonian H0 whose eigenstates

are well defined, and a perturbation part V, so that H = H0 + V. Using H0 as the

trial Hamiltonian enables us to evaluate a upper bound on the free energy. Note

that the Bogoliubov's theorem is equivalent to saying that first-order thermodynamic

perturbation theory always yields an upper bound. In addition, we can use a trial

Hamiltonian that contains adjustable variational parameters, and by minimizing the

Bogoliubov's bound with respect to these variational parameters, we can obtain the

optimal choice for the partition of the Hamiltonian into a zeroth order part and a

perturbation part. Thus, based on the Bogoliubov's theorem, we can construct a

finite-temperature variational theory that provides temperature dependent optimal

zeroth order Hamiltonian for the general electron-phonon system.

Since the free energy is invariant under unitary transformations, a systematic way

to introduce the trial Hamilton is to apply a unitary transformation that contains

variational parameters on the Hamiltonian, and use part of the transformed Hamilto-

nian as the trial Hamiltonian to calculate the Bogoliubov's bound. Suppose a unitary

transformation U (UtU = 1) is applied on H so that

H = UtHU
-Ho +V,
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where H0 is the zeroth order part whose exponential e- Ho° can be evaluated, the

Bogoliubov's bound becomes

AB(H0 ) = - - 1 In Tre - 3 ° + (V). (3.2)

In the following, this expression will be used to compute the upper bound on the free

energy of an interacting electron-phonon system.

3.2.2 The Hamiltonian and Merrifield's Transformation

We investigate the Holstein molecular crystal model (Eq. 3.3) using a variational

approach. The Holstein model [10, 221 is widely used to describe the transport prop-

erties of organic molecular crystals, and believed to contain the essential interactions

that determine the behaviors of charge-carriers. The Hamiltonian includes a band

of electronic excitation (electron or hole) in a perfect crystal coupled linearly to the

coordinate of harmonic oscillators located at each site. For simplicity, we consider

one molecule per unit cell and a narrow phonon band, i.e. Einstein's model of disper-

sionless phonons, which is a good description for the optical intramolecular modes in

molecular crystals. The second quantized form of the Hamiltonian in the direct space

representation (site representation) is given by (h = 1)

H = He + Hph + Hint (3.3)

where

He = En,m Jnmat a,
Hnh = wo~b~b~, (3.4)

Hph = oO E btnbn,

and

Hint = 9gwo0 E aan . (bt + bn). (3.5)
n
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Here at (a,) is the creation (annihilation) operator of the electronic excitation (elec-

tron or hole) at site n, wo is the phonon frequency, and b (b,) is the creation (anni-

hilation) operator of the localized phonon state at site n. Throughout this work, we

assume the position n and wavevectors are measured relative to the lattice constants,

therefore the lattice constant and lattice structure of the crystal do not appear ex-

plicitly in our formulas. Hereafter we will call the electronic excitation as "electron",

but it is actually general and can be readily translate to other charge-carriers or

excitons. In addition, we assume the concentration of charge-carriers are small, so

that we can work exclusively in the one particle subspace. The quantity Jnm is the

transfer integral between localized electronic states at site n and site m. Because of

the translational symmetry, Jnm is a function of n- m only, i.e. Jnm -= Jn-m. The

last term [Eq. (3.5)] is the electron-phonon coupling term, of magnitude determined

by the dimensionless electron-phonon coupling constant g. Note that we assume the

electron interacts linearly and locally to the phonon states. The Holstein Hamilto-

nian captures the interplay between the electronic couplings and the electron-phonon

coupling, which is a repeating theme in quantum dynamics.

The electron-phonon Hamiltonian in Eqs. (3.3)-(3.5) has well-known exact solu-

tions in two limiting cases. When the strength of electron-phonon coupling is set to

zero, g = 0, H is diagonal in the k-space of the lattice; using the delocalized basis

1/N-2 5-~7 -ikn 1t qat = N-1 2 Z- eiknat and bt = N- 1 2 n e-iqnbt, the Hamiltonian at g = 0 can be

diagonalized,

H Z E(k)a ak + wob bq
k q

with band energy given by

E(k) = E Jn,eikn'.

This representation corresponds to the free electron state, and is a good zeroth order

basis in the weak-coupling regime in which the electronic couplings are stronger than
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electron-phonon couplings (IJI > g2wo). Therefore, when g is small, a perturbation

expansion in terms of g in the k-representation is justified; this kind of approach is

usually called a weak-coupling perturbation theory (WCPT), and has been widely

used to describe covalent bonded or ionic solid-state systems in which electronic in-

teractions are strong. The wide-band model we applied in the previous chapter is an

example of such a WCPT approach.

In the other limit where the resonance transfer integrals are set to zero (J = 0),

the Hamiltonian can be diagonalized by the small polaron transformation:

US' -- ~1 E'geiqnat an (bt--bq)Us = V n q n -- q

Applying Us onto the bare electronic operator yields a dressed "small polaron state":

A = Usa Ust = aneg(bnb ).

The operator At now not only creates an electron at site n, but also displaces the

phonon mode at site n. The electron is now "dressed" because of the phonon cloud

associated with it, and it is called the small polaron because the displacement of the

phonon field is local. Applying Us onto the Holstein Hamiltonian with J = 0, we

obtain

Us HUt -g2wo aan + o J bbq
n q

The result is a transformed Hamiltonian diagonalized in the site representation; i.e.

the Hamiltonian with J = 0 is diagonal in the small polaron basis. Therefore, the

small polaron basis is a good zeroth-order representation when the electron-phonon

coupling is stronger than the resonance transfer integrals of the electronic states

(IJj << g2 Wo). This representation is referred to as the small polaron representation

and is widely applied to study the electron-phonon Hamiltonian in the strong-coupling

regime, in which a perturbation expansion in terms of renormalized J in the small
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polaron representation is justified. This kind of approach is usually called a strong-

coupling perturbation theory (SCPT).

Thus, well justified perturbation theories in both the weak-coupling and strong-

coupling regimes are available and accurate. However, for intermediate coupling

regime, there is no clear small parameters on which we can perform a perturbation

expansion. It has been argued by many authors that in the intermediate coupling

regime, a variational approach is required in order to provide adequate zero-order

description of the electron-phonon system. To obtain a reasonable zeroth order rep-

resentation in the intermediate coupling regime, we apply Merrifield's transformation

[23, 24]:

{ fat anAd f(b.,,m-bf +m)}
U = e n m (3.6)

where {fm} are real parameters to be determined variationally. Note that m labels

the relative lattice site, and f m is the amplitude of the displacement to the equilibrium

oscillator position at site n + m. For crystal structures with inverse symmetry, fm =

f- m . The optimal transformation defined by {f m} may be temperature dependent

because of the variational procedure. Note that when fm = m. f, the transformation

is local and we recover Yarkony and Silbey's one-parameter unitary transformation

ansatz. When fm = m g, we recover Holstein's small polaron transformation, and

the well know small polaron results. Therefore, Merrifield's transformation can be

regarded as generalization of the small polaron transformation to include nonlocal

displacement of the phonon modes around the electronic excitation.

Merrifield's transformation takes a localized electron operator to a partially dressed

state that includes a phonon cloud (deformation of lattice) surrounding the electron

At = Utat U

-Zfm(bn+m-bt+m)
= ate m

This transformed basis can be seen as dressed states which contain electrons and
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their tightly bound phonon cloud. Physically, Merrifield's transformation contains

non-local displacement of the lattice surrounding the electron and the values of fm

correspond to the amplitude of displacement from the equilibrium phonon position.

Thus, the set of variational parameters {fm} represents the degree of dressing. For

the boson operators, we obtain

Bt = Utb U

Bn = Ut bn U

= b - Zfnm atam,
m

bn- fn-ma*am-
m

Substitution of these

Hamiltonian:

expressions into the Holstein Hamiltonian gives the transformed

H= Ut HU= Ho + V'.

The zeroth-order Hamiltonian H0 is diagonal in the k-representation

Ho = E [o (Ef2 - 2fo) h] akak + wobbq _- He + Hph, (3.7)
k m q

where the energy band Jk is given by renormalized resonance transfer integrals:

Jk = Znm eik(n-m) Jnm ( rnm) 

with the renormalization factors at finite temperatures given by

(Kt0n1 )O= e 2Zm!(fem-mr'n) 2'coth(3wo/2)

The transformed interacting term V' has a complicated form
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V' kZ Ze a-iklneik2m Jnm (OtOm - (OtOm)()atlak2
kl,k 2 n,7n (3.8)

+ WOE,(g-f) at+qak (bq + bq),VN_ - kfq)* 

k,q

where the angle brackets (...)0 denotes thermal average over phonon states, and we

have defined fq = O,eiq n eE mfl-nm(bm-b). Note that we have partitioned

the transformed Hamiltonian into a pure electronic part H, a pure phonon part Hph,

and the perturbation part 1'. In addition, we have intentionally included the Jk term

in the zeroth-order Hamiltonian to make the average of the interactions identically

zero, (V')o == 0.

By construction (V')0 = 0, therefore the Bogoliubov's bound is simply A 

-3Trexp(--QHo) = Ao. Since the zeroth order Hamiltonian Ho = + Hph is

diagonal, the Bogoliubov's bound is readily available

Ao = -,3-1 in Tre - H °

= _3 -1 n Tre - OHe - 03-1 in Tre-^Hh.

We can further ignore the non-interesting phonon part and focus on the contribution

from the dressed electronic states

A' = -3 - 1 in Tre- He = 3- 1 in e -/k (3.9)
k

where the electronic band energy is given by

Ek = W (fm - 2gfo) + Jk (3.10)
m

Note that the energy band of the dressed particle is temperature dependent. The

temperature dependence comes into play through the temperature dependent varia-

tional parameters {fm} and the average effective transfer integral factor (OtOm)o, and

can be very complicated. For a system defined by a given set of parameters (Jo, Wo,

q, T), minimizing the quantity Ae defined in Eq. (3.9) by adjusting {f m} enables us

to find the optimal set of the dressing coefficients {fm} that describes the system,
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i.e. the optimal partially-dressed polaron state. In addition, it is easy to check that

minimizing A' reproduces strong-coupling result ( e- 2 coth(13/2)) and weak-coupling

result at finite temperature in large g and small g limits, respectively.

Note that we minimize the free energy contributed by the electronic subsystem,

while in Yarkony and Silbey's original treatment, the free energy of a subsystem with

total (electron plus phonon) crystal wavevector K was minimized. Compared to their

treatment, our approach is more straightforward and our expression in Eq. (3.9) is

easier to evaluate. In addition, at non-zero temperatures, the quantity minimized

in Yarkony and Silbey's treatment is swamped by phonon free energies. Because

uninteresting phonon free energy overwhelms the electronic free energy, it is difficult

to implement a numerical scheme that minimizes the free energy functional accurately

in Yarkony and Silbey's theory. Generally speaking, we have extended Yarkony and

Silbey's approach by using a more general variational ansatz and providing a more

straightforward variational scheme that results in clean partition of the electronic free

energy and phonon free energy.

3.2.3 Mobility

In the late 70s, Yarkony and Silbey derived a general expression for exciton mobilities

in molecular crystals that describes both band-like and hopping transport [12, 14].

We use their expression to perform mobility calculations. In the following, we will

summarize their deviation and the resulting mobility formula when the transformed

Hamiltonian in Eq. (3.7)-(3.8) is used.

Yarkony and Silbey considered a general electron-phonon Hamiltonian

H = He + Hph+V
= ZEkaak + jwqbqbq + aklak 2 Vklk2 , (3.11)

k q k ,k2

where Vk 1 k2 are operators that act on phonon degrees of freedom. Using a quan-

tum master equation approach in a approximation equivalent to second-order time-

dependent perturbation theory in the exciton-phonon coupling V, they find the equa-
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tion of motion for the reduced density matrix of the exciton'

akk'(t) i(Ek - Ek,)O7kk,(t) - Fkk'kkI(t) + E4Wkk;qs-qs(T), (3.12)
q,s

where Ek. is the energy of the state k, the relaxation tensor Wkk' ;qq' is defined using

phonon correlation functions

/0Wkk' qq' dT { (VqkVkq (T)) C- i(EqI- Ek1)T + (q, k(T)Vkq)Oe-i(Ek-Eq)T}, (3.13)

and the quantities Fkk, is given by

I
rkk' = 2 E (Wqqkk + Wqq;k'k') 

q

Note that the diffusion coefficient D of a non-equilibrium distribution of electronic

states can be related to the mean-square displacement of a particle (R2 (t)) using the

following expression

1 d 2
D = - lim - (R2 (t)),

2d t-00 dt

where d is the dimensionality of the system (assuming an isotropic system). The

mean-square displacement of a particle is related to the diagonal density matrix

elements of the system in the site-representation, (R2 (t)) = n2 o.(t). In the

k-representation, the diffusion coefficient is given by

I v21im3-14uD =2d lim VK(kk+K(t)l K=O (3.14)
k

Substitution of the quantum master equation in Eq. (3.12) into this equation in the

limit of t -- o yields a complicated equation that gives the diffusion coefficient of

the electron. After neglecting small terms, an approximate formula for the mobility

1Equation (3.12) can be derived using the projection operator technique. The procedure used to
derive the quantum master equation will be described in detail in Chapter 7.
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of the electron that consists of a band-like term and a hopping term is obtained

A = eD = B + H, (3.15)

where the band-like mobility is given by

V2eq Vk
/B = e3Zukk *+ Fkk (3.16)

k

where e is the electron charge, 0,eq = eEk/ q e-/ 3Eq is the thermal population

of state k, Vk = VkEk is the electron group velocity in state k, kk is the rate of

scattering out of state k,

rkk E Wqq;kk,

q

and ryo is an extra term inserted to represent the contribution to the scattering rate

from mechanisms not considered in the Hamiltonian (e.g. scattering due to quadratic

electron-phonon couplings and impurities). Notice that Eq. (3.16) is the expression

that we have used in the previous chapter to calculate the mobility of excess charge-

carriers in a wide-band theory using the mean-scattering-time approximation.

The hopping term is given by

eq
H = e/3 U akk 'kk, (3.17)

k

where kk is a complicated function defined using the relaxation tensor W

d2Wqq+K;k,k+K d2kk
kk -Re q dK 2 2 dk2 (3.18)

q / 4=o 2 dk 2

Equations (3.15)-(3.18) are the main results derived by Yarkony and Silbey. We

will adopt their expression to calculate the mobility of a partially dressed electron

governed by the transformed Hamiltonian in Eq. (3.7).

We first evaluate the phonon correlation functions (Vqk/Vkq(T))o. Reorganizing the

interaction term of the transformed Hamiltonian in Eq. (3.8) and comparing the result
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to Eq. (3.11), we obtain the corresponding phonon operators for the Hamiltonian after

Merrifield's transformation,

Vkl k2
- 1 Ve-iklnik2mn. Jn,m (n - (O)t O) )N< nm *O Onm \n mO

n,m.

q-$O(g - fk-k 2) (bkl-k 2 + bk2-kl ),

(3.19)

This expression for phonon operators is used to compute the phonon correlation func-

tions (1q'k',VfIq(T))o. Due to the complex form of Vklk 2, the expression for (Vq'k'Vkq(r))o

is quite involved; to avoid confusion, the result is given in Appendix 3.A.

Our mobility calculations depend on the evaluation of the following relaxation

tensor elements

TWq,q+K;k,k+K

00
d-T { (Vk+K,q+KVqk (T) )o-(Ek+K-Eq+K)

+ (Vk+K,q+K(T) Vqk)Oe - i (Eq- E k)- }

In order to evaluate the integral over T while avoiding singularities introduced by 

functions, we assume a phonon bandwidth (inverse relaxation time of phonons) and

treat integral of the form f dreiF as

0oo dTeiFr .e-ar __dTeiFT eo -+ F
&2 + F2 '

The result for Wq,q+K;k,k+K is

/'qq+K;k,k+K nowo(g 2 fk2 q) I
I 2

a
+ (q -Ek- 0) 2

a
(q+K - k+K

+(n + k)O9 -q_) | e + 22](+ g fkq) a2- + (q - k + wo)2 0a2 + (q+K - Ck+K + WO)2
1 o n AmBn- m+_ Y ~ -ik(nl-m2) -iq(n2-ml)J J x yn j!2-N Y, e eXllnm m!(n -m)!

nl,mil n2,m2 n=l m=0O

{a + [eq -+ (2m -),]0
a [Eq- Ek + (2,m n2
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a )(3.20)
a2 + [Eq+K - k+K + (2m - n)Wo]2 (3.20)

where we have defined thermal population number of phonon modes no = 1/(e - °

1), phonon renormalized resonance transfer integrals Jnm = Jnm(OtOm)o, and func-

tions

-1 E /nim xn2m2 (no + 1),
2 q q

q1

B = -1 X:m1X,2m2 .n,
2 q' ~q

q'

with Xq = fq(eiqm- eiqn) and Xq = Wf q*(e-e- iqn). Note that for narrowq v"fNei- mq -PJk in) otIht o nro
phonon bands, the value for ashould be small (0 < a << 1), and when a - 0 we

obtain functions in the expression.

The three terms in Eq. (3.20) have simple physical interpretations. In Eq. (3.20),

the first term represents a process in which an electron absorbs one phonon and is

scattered upward to a higher energy state, the second term is a process that emits

a phonon and scatters the electron downward to a lower energy state, and the third

term represents multi-phonon processes in which multiple phonons are exchanged. For

very narrow-band materials whose electronic bandwidth is smaller than the phonon

frequency w0 , only the multi-phonon term contributes to the scattering of electrons.

In addition, for systems with strong electron-phonon coupling g, it is possible that at

high temperatures, the polaronic narrowing effect will result in a narrow polaron band

such that J << , and again the single phonon processes (the first and second terms)

do not contribute. Note that at low temperatures (no < 1) or when the electron is

only weakly dressed (f < 1), the prefactor Am Bn -m < 1, and the multi-phonon

processes are negligible. On the other hand, when temperature increases, the thermal

population of phonon modes no as well as the dressing coefficients {fm} increase, and

the contribution of the multi-phonon term would increase. Eventually, multi-phonon

term dominates the scattering of electrons at high temperatures.
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The expression for Wq,q+K;k,k+K in Eq. (3.20) can be used to calculate the band-

like mobility I'B and the hopping mobility /H. The calculation of the band-like

contribution to the electron mobility [Eq. (3.16)] is more straightforward. The group

velocity Vk --= VtAck and the equilibrium density matrix (rkk = e-36k/ q e- 3 q can be

easily obtained by recalling the formula for Sk:

zk~~i = 2~(g1'E fo) + g eifk(n-m) Jnm e - Em'(fm'-m-fm'-n) 2 coth(3Lwo/2)

rn nm

The rate of scattering out of state k can be calculated from Wq,q+K;k,k+K using

Fkk S E Wqq+K;kk+KIK=O 0a 0 .
q

Note that because of the functions in the limit of a - 0, the summation over q

can be replaced by summing Wq,q;k,k over q points that satisfy the energy conserva-

tion conditions required by the functions. In general, when the energy band k

is obtained, the quantities kk can be evaluated and the band-like mobility can be

calculated according to Eq. (3.16).

In contrast, the hopping contribution to the electron mobility [Eq. (3.17)-(3.18) is

extremely difficult to evaluate. An analytical expression for Ykk is unavailable even for

the simplest one dimensional system. Nevertheless, with finite but small a (0 < a <

1), the expression for the second derivative of Wq,q+K;k,kK, Wqq+Kkk+K ,= can

be obtained using a computational algebraic software such as Maple or Mathematica,

and the result can be numerically integrated to obtain the hopping mobility according

to Eq. (3.17') and (3.18).

The expressions for the upper bound on the electronic free energy Ae in Eq. (3.9)

and the relaxation tensor Wq,q+K;k,k+K in Eq. (3.20) are the main results of the present

work. Minimizing Ae with respect to the dressing coefficients {fm,} gives the optimal

polaron state, and the optimal set of {fm} can then be used to compute Wq,q+K;k,k+K

and electron mobilities according to Equations (3.15)-(3.18). To demonstrate our

variational-perturbation approach, we will apply this method to study the properties
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of a simple electron-phonon system in one spatial dimension in the following sections.

3.3 Polaron States at OK

In this section, we examine the properties of polaron states at zero K. We use a vari-

ation method to obtain the optimal dressed state, and apply standard second-order

time-independent perturbation theory to calculate the ground state energy and the

polaron effective mass of the Holstein model at zero K. Numerous variational meth-

ods have been applied to study the Holstein Hamiltonian in the context of polaron

problem [23, 25, 26, 27, 28]. In particular, Lindenberg et al. have performed exten-

sive investigations on several variational ansatzs and found that variational methods

can produce results comparable to computationally much more demanding methods

such as quantum Monte Carlo (QMC) 29, 301, density-matrix renormalization group

(DMRG), and cluster diagonalization methods [31]. Although variational treatments

of the Holstein Hamiltonian have been carried out extensively, most existing works are

restricted in the ground state and focused on problems such as polaron localization

and spectra properties. Treatments of the Holstein Hamilton at finite-temperature

or regarding dynamical properties are limited [32, 33, 34]. Therefore, before we pro-

ceed to study the dynamics of the Holstein Hamilton at finite temperatures, we first

examine the variation method at zero temperature and compare our calculations to

previous results in the polaron theory. The objective is to test the applicability of

our method. We will show that our variational approach combined with second-order

perturbation theory produce results that are in good agreement with calculations

employing more complicated methods.

We consider a 1-D system with only nearest-neighbor resonance transfer integrals

described by the following Hamiltonian

H - Jo Z(atnan+l + an+lan) +- wo E btnbn + gwo E atan' (bt + bn)
n n n

To further simplify the problem, we use Merrifield's transformation [Eq. (3.6)1 with
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a single dressing coefficient fm = f m, i.e. we consider only one variation parameter

f. Applying the simplified unitary transformation to the 1-D Hamiltonian, we obtain

the transformed Hamiltonian H = Hfo + V' where

Ho [o (f2 - 2gf) - 2J cos k] a[ak + WoEbtbq,
k q

and

vZ:N _e ikln+ik2m 6lInm [e-f(bn-b )ef(bm-bt -f2 a akN E Y'e- ~~ JO q1, n-mak 2

k1 ,k2 n,m

+ Wo(g-f) at+qak(bq + bt q).
k,q

Therefore, the zeroth-order band structure of the 1-D system can be written as

E(°)(k) = woo (f 2 - 2gf)- 2Joe- f 2 cos k. (3.21)

At T=OK, the Bogoliubov's bound in Eq. (3.30) is an upper bound on the energy

of the ground state. For the 1-D nearest-neighbor coupling system at T=OK, the

optimal f satisfies

df E(°) (k = 0) =0,
df ff=fopt

and we have the following self-consistent equation for the optimal f

gwo
fopt + 2Jfopt (3.22)f2

Cwo + 2Joe- opt

Given g, JO, and wo, the optimal fopt can be obtained by solving Eq. (3.22) iteratively.

Note that the ground state energy E(°)(k = 0) as a function of f can have more than

one minima, therefore, when an iterative scheme is used to calculate fopt, multiple

initial guesses must be applied and then the resulting energy values compared to

locate the true optimal fpt.
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We now calculate the second-order energy correction to the energy band structure

based on the partially dressed basis defined by fpt. In the k; i) basis set, where k

denotes the k state of the electron and the vector denotes the states of all phonon

modes in the system, the energy band structure calculated from second-order time-

independent perturbation theory is

E(k) = E(°)(k) + E(2) (k)

= wo (f2pt-2gfopt)- 2Joe - f° Pt cos k (3.23)
Zz I k'; ?fiI'kOI

Ek-k/-nlTWO
nT>O k'

where nT = 0,1, 2, ..., oc is the total number of phonon quanta, nii is a vector repre-

senting the distribution of nT phonon quanta in all phonon modes, and the summa-

tion over i means summing over all phonon configurations that contains totally nT

quanta of phonons. The E(2)(k) term can be evaluated analytically, and the explicit

expression is given in Appendix 3.B. In the following we will calculate ground state

energy and polaron effective mass using Eq. (3.21) and Eq. (3.23), and compare

the results to other methodologies in the literatures to measure the adequacy of the

variational-perturbation method.

3.3.0.1 Ground state energy

The groundstate properties of the 1-D Holstein Hamiltonian have been investigated

extensively, and accurate results regarding the ground state energy of the 1-D Hol-

stein Hamiltonian are available 31]. Therefore, we first compare our result to these

calculations at zero temperature. In Table 3.1, we compare the ground state energy

from our method to a number of previous calculations for a set of system parameters

in the intermediate coupling regime (Jo/wo = and = 1). The zeroth-order ground

state energy E(°)(0) [Eq. (3.21)] and the second-order result E(0) = E(°)(0) +E( 2)(0)

[3.231 are listed along with results from several other methods. Among the method-

ologies listed in Table 3.1, the E(°)(0), Merrifield 123, 24], Toyozawa [25, 351, and

Global-Local 26] methods are variational methods, therefore, these numbers are up-
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'Table 3.1: A comparison of ground state energy from different methods

J0/w0 = 1, = 1

Value Method Reference
-2.3473 E (0 (0) This work, Eq. (3.21)
-2.4472 2nd-order WCPT This work, Eq. (3.24)
-2'.4561 Merrifield variation Ref. [23, 24]
-2.4687 Toyozawa variation Ref. [25, 35]
-2.4693 Global-Local variation Ref. 26]
-2.4697 DMRG N = 32 Ref. 136]

Exact value
-2.471 Cluster diag. N = 6 Ref. [37, 331
-2.4826 E(0) This work, Eq. (3.23)
-2.5679 GS 2nd-order SCPT This work, Eq. (3.25)
-3.0896 Marsiglio's 2nd-order SCPT Ref. [38, 391, Eq. (3.26)

per bounds to the true ground state energy. Note that the true bulk ground state

energy is believed to lie between the N = 32 DMRG [36] and the N = 6 cluster diag-

onalization [37, 331 values, both of them are computationally demanding numerical

methods. At; this particular set of parameters, the value given by E(°)(0) (Yarkony

and Silbey's ansatz) significantly overestimates the ground state energy, while the

other three variational methods give values that are within 1% range of the exact

value. The less satisfactory result given by E(°)(0) is clearly due to the restricted

form containing only one variational parameter in the variational ansatz, and the

inclusion of nonlocal deformation of the lattice in Merrifield's method significantly

improves the value for ground state energy. While the second-order correction is ap-

plied, the variational-perturbation result E(0) gives a value that is within 1% range

of the exact value at Jo/wo = 1 and g = 1. This significantly improvement compared

to E(°)(0) indicates that the perturbation expansion based on the optimal polaron

basis is justified in the intermediate coupling regime.

To compare our variational-perturbation method to other analytical theories, some

approximate perturbation results are also listed in Table 3.1. The second-order weak-

coupling perturbation theory (WCPT) based on the free electron states is a limiting
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case of our method. By setting f = 0 in Eq. (3.23), the band structure from the

second-order WCPT is obtained

EWCPT(k) = -2Jo cos k - g2 o 2o 1
N k' 2JO cos -2JO cos k-o

Near the bottom of the band where k - 0 and cos k 1, the integral over k' can be

evaluated explicitly to give

E w c P T x 3.4 22 ~~1EkPT(k) = -2Jo cos k - X (3.24)2Jo V/(cos k + o/2J) 2 - 1

The Grover and Silbey's second-order strong-coupling perturbation theory (GS SCPT)

is the formalism first used by Grover and Silbey to study exciton transport in OMC

[40, 411. The present method also contains the GS SCPT theory in the limit of f = g,

and the resulting band structure around the bottom of the band is

EG o(k = _g 2 o - 2Joe- 92cos k--~~~0 -- 2J --CO
-2JOe-92 2T A A2 -A B + B VA2 - A 2 -C25)

-2J06~~~~~~~~ x (~~~~~.25)
nT! vA 2 - 1

nT=l TT

A = cos k + nTwo0/2Joe - 29 ,

1
B = _ [2(-1)nT + (-2) T]cs k,

C = 2 [2T + cos 2k- 1]
2

Finally, the result from a second-order strong-coupling perturbation theory due to

Marsiglio (Marsiglio SCPT) is also listed 381. Similar to Grover and Silbey's ap-

proach, Marsiglio's theory is also based on the small polaron transformation and

treats the renormalized electronic coupling term as the perturbation. However, Mar-

siglio used the transformed coupling term directly and did not absorb the first order

correction into the zeroth-order Hamiltonian. Thus, the first-order energy correc-

tion is nonzero in Marsiglio's theory, i.e. V)0 -~ 0. The band structure up to the

second-order in J0 from Marsiglio's SCPT is given by
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EI(k) = _O2o- 2Joe- 2 cos k - 2h(g2) cos(2k) - 2h(2g2), (3.26)

h (x) - 2 eJ2-2g2

o

where Ei(x) is the exponential integral, and y is Euler's constant. The Marsiglio's

theory is widely used in studies of the Holstein polaron problem.

From Table 3.1, we clearly see that all these simple perturbation theories fail

badly in the intermediate coupling regime. In contrast, the present method using

perturbation expansion based on a variational zeroth-order Hamiltonian successfully

reproduces the ground state energy of the 1-D Holstein model within a reasonable

error range. Note that Table 3.1 aims at demonstrating the improvement gained

by using a variational zeroth-order Hamiltonian in the intermediate coupling regime;

because we only compare the results in a single point of J0/wo = and g = 1, the

trend shown in Table 3.1 is in no means representative for the quality of results from

different theories.

3.3.0.2 Polaron effective mass

In addition to the ground state energies, we also compare polaron effective masses

calculated from a number of different methods. The effective mass of a polaron band

m* can be calculated using the following formula:

m* 2J0

mo 9
2 E(k)
Ok2 ko

Note that for the convenience of comparison, we scale the polaron effective mass

by the effective mass of a free electron band m0 = 2J0 . In Fig. 3-1, we show

the inverse effective mass as a function of electron-phonon coupling constant g at

J0/wo = 1/2. Curve calculated from the present variational-perturbation method

are shown along with results from three other second-order perturbation theories. In

addition, values calculated numerically using Toyozawa's variational method are also
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displayed. Toyozawa's method is known to produce fairly accurate results in this

parameter regime [35], therefore, values from Toyozawa's method can serve as the

guideline for our comparison. More details about Toyozawa's method can be found in

Appendix 3.C. Our variational-perturbation method gives results that are in excellent

agreement to Toyozawa's variational method for this system. In the small coupling

(g) regime, the effective mass of the polaron state resembles that of a free electron,

m*/mo 1; as the strength of the electron-phonon coupling increases, the polaron

effective mass grows monotonically, and eventually follows the e- 92 behavior predicted

by SCPT theories at strong couplings (g > 1). Note that in the intermediate coupling

regime, the effective mass grows rapidly, indicating a change in the character of the

polaron state from a weakly dressed state to a fully dressed state. We will discuss

about this transition in more details later, and focus solely on the comparison of

different theoretical methods in this subsection.

The applicability of the second-order WCPT and Marsiglio's second-order SCPT

methods are clearly restricted to the weak-coupling and strong-coupling regimes, re-

spectively; in particular, both of them fail badly in the intermediate coupling regime.

Note that at small g, Marsiglio's strong-coupling theory results in effective masses

that are smaller than m0 , m*_sCPT < m0 , which is unphysical. In contrast to Mar-

siglio's theory, Grover and Silbey's second-order strong-coupling perturbation theory

(GS-SCPT) describes both strong- and weak-coupling limits adequately and does not

suffer the problem of giving unphysical results. In the intermediate regime, the GS-

SCPT method gives correct trend, but overestimates the effective mass. A distinct

feature in Grover and Silbey's theory (and the present variational-perturbation the-

ory too) is that the average matrix elements of the perturbation term is included in

the zeroth order Hamiltonian so that the first order correction is zero. Note that our

comparison in Fig. (3-1) clearly indicates the importance of including the first-order

correction in the zeroth-order Hamiltonian.

In contrast to all other simple perturbation theories, the present variational-

perturbation method is in excellent agreement with Toyozawa's method at Jo/wo =

1/2 in all electron-phonon coupling strengths. In Fig. (3-2), we compare our variational-
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Figure 3-1: Inverse effective mass at T=OK for the 1-D Holstein model at Jo/wo = 1/2
as a function of the electron-phonon coupling g. We show results calculated from five
different theories: the variational method using Toyozawa's Ansatz (open circles),
the variational-perturbation theory described in this work, a second-order strong-
coupling perturbation theory based on Grover and Silbey's formulation (GS-SCPT),
the second-order strong-coupling perturbation theory due to Marsiglio (M-SCPT),
and second-order weak-coupling perturbation theory (WCPT). Our variational-
perturbation method gives result that is in excellent agreement to Toyozawa's varia-
tional results.
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Figure 3-2: Inverse effective mass at T=OK for the 1-D Holstein model as a function
of the electron-phonon coupling g. Curves calculated using the present variational-
perturbation theory at Jo/wo =1/2, 1, and 2 are shown along with results from
Toyozawa's variational method. At smaller J, our variational-perturbation method is
in excellent agreement to Toyozawa's variational results. At larger JO, our variational-
perturbation method starts to deviate from Toyozawa's method at intermediate to
large g.

perturbation method to Toyozawa's method at Jo/wo =1/2, 1, and 2. At smaller

Jo/wo, the agreement is excellent, while at larger Jo/wo, the agreement is less satis-

factory and the variational-perturbation method starts to deviate from Toyozawa's

method at intermediate to large g. Nevertheless, the present model describes the

effective mass of the 1-D Holstein model quantitatively at smaller Jo/wo and semi-

quantitatively at Jo/wo > 1. Note that the present method is less favorable at large

Jo/wo; we believe it is due to the restricted form of the one-parameter ansatz. For ex-

ample, at large Jo/wo, nonlocal lattice deformation, which is included in more general

Merrifield's transformation but not in the current one-parameter ansatz, is expected

to be important for a description of the polaron state.

Evidently, the present variational-perturbation method gives favorable results

compared to other simple perturbation theories, and is capable of describing the
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1-D Holstein model at T=OK in the intermediate coupling regime. Considering that

at T=OK, the present analytical method with only one variational parameter is able

to give results that are in agreement with much more complicated numerical methods,

we believe applying perturbation theory based on a variational optimal basis at finite

temperature would also give significantly improved results.

3.4 Interacting Exciton-phonon System in 1-D

In this section, we apply the theoretical methods we developed in Section 3.2 to a

simple 1-D system and discuss the implications of the results regarding the mobilities

of charge-carriers in organic molecular crystals. We investigate a simplified mode

with one spatial dimension and contains only nearest-neighbor transfer integrals:

Jnm = J0 n,mnl, (3.27)

where Jo is the bare resonance transfer integral between two nearest-neighbor sites.

The phonon-renormalized band structure under Merrifield's transformation is given

by

ek = o o. (f2m - 2gfo) + Jk = w (Zfm - 2gfo) - 2 Jeff cos k, (3.28)
m m

where we have defined the effective transfer integral renormalized by the dressing of

the phonons

Jeff = JOe- Em(fm-fmfm+l) coth(O3wo/2) (3.29)

Note that Jff is temperature dependent, and the temperature dependence of Jeff

comes into play through the temperature dependent parameters {fm} and the coth(3wo/2)

factor; as a result, the temperature dependence is different from ordinary small pola-
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ronic band narrowing factor e -92 coth(3wo/2)

The Bogoliubov's bound for the 1-D system is easily obtained from Eq. (3.28):

A<A = /3- l n E e - 0 k
k

- -/ in {e-3wo(Emfm-2gfo) e2Jeff3c°ssk}

k

For a bulk system, we can convert the sum over k into a integral and obtain

Ae = 0-1 ln N +w0(w/( f- 2gfo) - -1 In {Io(2 3 Jeff)}, (3.30)
m

where N is the size of the system, and Io(x) is the Bessel function of the first kind.

The extreme values of Ae can be found at points where equality &Ae/Ofm = 0 is

satisfied for all f. As a result, we obtain a system of coupled equations

fm- 96m + Jeff x I(2/3Jeff) x (2fm - f+l - f-i) coth(3wo/2) = (3.31)
W0 Io(23 Jeff)

Equation (3.31) is used to calculate the optimal set of {fm} that minimizes the Bo-

goliubov's bound on free energy. Note that the effective transfer integral Jeff also

depends on {fr}, therefore, the system of equations must be solved self-consistently.

Again, A' as a function of {fr} can have more than one minima, therefore, multiple

initial guesses must be applied and then the resulting A' values compared to locate

the true optimal set of dressing coefficients. Nevertheless, for given g, W0,/3, and Jo,

it is trivial to obtain accurate solutions and select the optimal solution on a personal

computer.

We now check the strong-coupling and the weak-coupling limits in Eq. (3.31). In

the limit that g2W0 > Jo, we can neglect the last term in the right-hand side of Eq.

(3.31) and obtain fm = g6m. The transformation is the small polaron transformation

and we recover the conventional strong-coupling results. On the other hand, when
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J0 > g2w, the first two terms in Eq. (3.31) can be neglected, and the solution to

the equation is fm = (fm+l + f,-)/ 2 Because of the symmetry and boundary

conditions required for the 1-D crystal, fm = f-m and lim , fm= 0, the only

physically admissible solution to {fm} is f m = 0. Thus, we also recover the weak-

coupling results from Eq. (3.31).

In order to compute the band-like and hopping mobilities using the results in

Section 3.2.3, we need to calculate the equilibrium density matrix aq the group

velocity Vk, and the relaxation tensor elements Wq,q+K;k,k+K for the 1-D system. Both

7eq and k can be evaluated easily from the band structure in Eq. (3.28) to yield
Okk

eq 1 C2/
3Jeff cosk

grkk -- X
kk N lo(2/03Jeff)'

k= dk - 2Jeff sink.Vk= dk

To compute the relaxation tensor elements Wq,q+K;k,k+K for the 1-D system, we insert

Jnm- Jo 6 ,,m±i into the expression for Wq,q+K;k,k+K [Eq. (3.20)1 to obtain

1 q,q+K;k,k+K noWo(g -fk2-q) [a2 + (Eq -Ek -WO) 2 + + (q+K k+K - WO)2]

+(no + 1)wo( - f-q) Oa2 + (q - k + wo)2 O2 + (q+K -k+K + W0)2

+ n °f AmBn- m

+2Je,'fnf x1 E m!(n -m)! {cos[k + q + K + (k - q)z] + (-1)' cos[K + (k - q)z]}
n=1 m=0 z=-Do

a
Lao2 + q- k + (2m - n)wo]2

+ a 2 (3.32)
a 2 + [Eq+K - Ek+K + (2m -n)Wo]

where the functions

Az -+ [ f+z - ffi+z-l-if+z+],
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Bz = -no E [2 fifl+z - fifl+z-1 - fif+z+1].

Once the optimal set of dressing coefficients is obtained, Equation (3.32) is used to

evaluate the relaxation tensor elements for the 1-D system, and the result is then

integrated numerically according to Eq. (3.16) and Eq. (3.17) to calculate the band-

like and hopping mobilities, respectively. In our numerical calculations, we use a

constant phonon relaxation rate ca = 0.01w0 . In all parameter range we studied,

the result is insensitive to the value of given that a good numerical algorithm

and enough numerical points are applied to evaluate the integrals. In addition, an

extra constant scattering rate yo = 0.001wo is employed in our calculations for band-

like mobilities [Eq. (3.16)]. The additional scattering term %o is used to mimic

the scattering channel due to impurities in the crystal, which is known to dominate

the band-like transport at low temperature. The amplitude of %yo only affects the

mobility at extremely low temperature, therefore adding the o term does not alter

the crossover from band-like to hopping transport. In the following, we first study

the small polaron transition using the finite-temperature variation method, and then

present our results of mobility calculations for the 1-D system.

3.4.1 Small Polaron Transition

In this subsection, we examine the optimal polaron state, defined by the optimal set of

{fm }, from the finite-temperature Merrifield variational method for the 1-D nearest-

neighbor system. The dressing coefficients {fm} in Merrifield's ansatz represent the

deformation of the lattice around the electron, and the extend of the deformation

characterizes the nature of the polaron state. When the lattice deformation is ex-

tended over many lattice sites, the state is usually called a "large polaron" state; on

the other hand, when the deformation is restricted to a single site, a "small polaron"

state occurs. It is well known that at T=OK, the Holstein Hamiltonian exhibits large

polaron states at weak electron-phonon couplings (small g) and small polaron states

at strong couplings (large g). The transition from large polaron state to small polaron

state, also called the self-trapping transition, is the focus of many theoretical investi-
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gations 42, 43, 44, 45, 46, 47]. Our finite-temperature variational method allows us

to examine this transition at finite temperatures.

3.4.1.1 Lattice deformation

We first show the structure of polaron states represented by the optimal set of dressing

coefficients {fm} at different strengths of electron-phonon couplings (g). In Fig. 3-3,

we show the relative amplitude of lattice deformations (fm/g) surrounding an electron

at low temperature (/3w0 = 10) for a system with reduced nearest-neighbor transfer

integral J/o = 1/2 at different g. At weak-couplings, the deformation of lattice

(polaron profile) is extended over many lattice sites and the relative amplitudes of

deformations are small, therefore, the polaron state is only weakly dressed and of the

character of a large polaron state. Note that the ansatz used by Yarkony and Silbey

contains only a single variational parameter, as a result, their ansatz can not describe

these large polaron states adequately. As the strength of electron-phonon coupling

g increases, the lattice deformation gradually becomes more localized. At > 1.5,

the deformation is complete localized on a single lattice site and fo/g 1, therefore,

the polaron state is a fully dressed small polaron state. We emphasize that the

"localization" is only relative to the position of an electron in the site-representation,

and in no means indicates a localized polaron. The polaron profile shown in Fig. 3-3

should be interpreted as correlations between the position of the electron and the

lattice deformation; the eigenstates of the zeroth-order Hamiltonian after Merrifield's

transformation are momentum states delocalized over the whole crystal, i.e. the

eigenstates form a polaron band.

To also show the effect of varying temperatures, we present polaron profiles for

a -D system with Jo/wo = 1/2 and g = 1/2 at different temperatures in Fig. 3-4.

Clearly, the temperature of the system plays a role resembling that of the electron-

phonon coupling g. As temperature increases, the deformation of lattice becomes

increasingly localized. Thus, increasing temperature also drives the transition from a

large polaron state to a small polaron state.
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Figure 3-3: Polaron profiles at Owo = 10 for a 1-D nearest-neighbor system with
Jo/wo = 1/2 at different strengths of electron-phonon couplings g. As g increases,
the polaron profile becomes more localized.
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Figure 3-4: Polaron profiles for a 1-D nearest-neighbor system with Jo/wo = 1/2 and
= 1/2 at different temperatures. The polaron profile becomes more localized at

higher temperatures.
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3.4.1.2 Polaronic band-narrowing effect

To further characterize the structure of the polaron states and the polaronic band

narrowing effect for the 1-D system, we study the effective transfer integrals Jeff [Eq.

(3.29)] for optimal polaron states in a broad range of parameters. Note that for the

1-D nearest-neighbor system, the bare bandwidth is 4J and the polaronic narrowed

effective bandwidth is 4 Jeff. Hence, Jeff is a direct measure of the effective bandwidth

of the electrons. In Fig. 3-5, we show relative effective transfer integral Jeff/Jo as

a function of electron-phonon coupling g at a low temperature (3wo = 10) for 1-D

systems with different bare transfer integrals. The transition from a weakly dressed

large polaron state at small g (Jeff/JO ~ 1) to a strongly dressed small polaron state

at large g (Jeff/Jo < 1) can be clearly seen. A rapid decrease in Jeff occurs in

the intermediate coupling regime, signaling the small polaron transition. Note that

at small Jo/wo, the transition is smooth; however, for systems with sufficiently large

Jo/wo, the effective bandwidth changes abruptly. The abrupt change is due to the

existence of two minima in the free energy functional with respect to the dressing

coefficients. When a crossover of the free energies of the two minima occurs, the

optimal set of variational parameters abruptly shifted from one minima to the other,

resulting in a discontinuous change in the optimal polaron structure. Exact theorems

on the ground state of the 1-D Holstein model state that the ground state energy and

effective mass are analytical functions of the strength of electron-phonon coupling g

[11, 48, 49, 50], and while the character of the polaron state can change sharply in a

narrow g range, there is no true phase transition in this system. The abrupt change

is considered to be unphysical and an artifact of the variational method 21, 11]. A

series of studies by Lindenberg et al. comparing a number of variational methods

also clearly show that the abrupt change is due to the insufficient flexibility in the

variational ansatz 24, 35, 26, 31].

Figure 3-5 also shows that the critical coupling strength where the small polaron

transition occurs depends on the reduced bare transfer integral Jo(/wo. For a narrow-

band system whose Jo/wo is small, the small polaron transition occurs at a smaller g,
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Figure 3-5: Effective transfer integrals as a function of electron-phonon couplings g for
systems with different bare transfer integrals Jo/wo at low temperature (w 0 = 10).

in contrast to wide-band systems with large Jo/wo. This trend is the consequence of

the competition between electronic coupling Jo and electron-phonon coupling 9. Note

that different Jo/wo can also be seen as different w0 . Given the same Jo and electron-

phonon coupling strength g, our theory predicts that higher frequency phonon modes

tend to localize the electron, while the low frequency modes could only dress the

electron weakly.

Our finite-temperature variational method allows us to study the temperature de-

pendence of the small polaron transition. To study the effect of varying temperatures,

in Fig. 3-6, we compare curves of the relative effective transfer integrals Jff/J at

different temperatures for a system with Jo/wo = 0.8. While the asymptotic behav-

iors of Jeff at small g < and large g >> are not temperature dependent, the

transition point where Jeff sharply decreases depends on the temperature. At higher

temperatures, the small polaron transition occurs at smaller g, and the abrupt change

is more pronounced. In addition, Fig. 3-6 also indicates the polaronic band narrowing

effect at high temperatures.
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Figure 3-6: Effective transfer integrals as a function of electron-phonon couplings g
for a system with Jo/wo = 0.8 at different temperatures.

Figure 3-7 shows the relative effective transfer integrals Jeff/Jo as a function of

the reduced temperature 1//30wo for systems with g = 1 and different bare transfer

integrals. Clearly, the small polaron band narrowing factor e- 92coth(o/2) does not

describe the temperature dependence in these intermediate coupling systems. The

effective transfer integral Jeff is a complicated function of temperature because of

the variational parameters {fm} are also temperature dependent. Note that again

a system with a larger bare transfer integral exhibits small polaron transition at

a higher temperature. In the temperature range that we have shown in Fig. 3-

7, the small polaron transition occurs smoothly at low temperatures for narrow-

band materials whose reduced bare transfer integrals Jo/wo are small. For a system

with intermediate Jo/wo = 1, Jeff varies slowly at low temperature, and then drops

suddenly at 1//3wo - 1.4, indicating the appearance of an abrupt small polaron

transition. For wide-bane materials with large Jo/wo, the effective transfer integrals

Jeff are relatively temperature independent in the temperature range shown in Fig.

3-7; the abrupt transition to small polaron states for systems with Jo/wo > 1.5 occur
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Figure 3-7: Effective transfer integrals as a function of temperature for systems with
g = 1 and different bare transfer integrals. The small polaron transition signaled by
a drop in Jff is more dramatic for wide-band materials.

at higher temperatures not shown in the figure.

3.4.1.3 Phase diagrams

We summarize our findings about the characters of polaron states in the 1-D Holstein

model at different parameters in phase diagrams shown in Fig. 3-8. These phase

diagrams map the character of the polaron state as a function of electron-phonon

coupling constant g and reduced electronic transfer integral Jo/o at different tem-

peratures. Regions of different polaron characters are labeled as L, L', S, S': L labels

the region of large polaron states, S labels the region of small polaron states, L' labels

the region where the free energy functional A' [Eq. (3.30)] exhibits spurious double

minima with the lower A' giving by the large polaron state, and S' labels the region

where spurious double minima exist and the small polaron state gives the lower A8O.

In these phase diagrams, the wedge-shaped region includes states that exhibit double

minima, and abrupt changes occur across the small polaron transition line separating
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the L' region and the S' region. For comparison, we also plotted an empirical self-

trapping line that separates the small polaron region and the large polaron region of

the 1-D Holstein model at zero temperature [51]:

9ST = 1 + J

The self-trapping line is obtained by comparing the ground state energy from second-

order WCPT and SCPT theories, and is known to reproduce the critical points pre-

dicted by more accurate numerical methods. The excellent agreement between ST

and the transition line predicted by our variational method at low temperatures in-

dicates that our variational approach gives reasonable semi-quantitative results at

low temperatures. Although the abrupt transition due to spurious double minima is

an artifact of the variational ansatz, it captures the point where the small polaron

transition occurs.

Our finite-temperature variational method enables us to study the small polaron

transition at finite temperatures and construct phase diagrams at different temper-

atures (Fig. 3-8). As the temperature increases, the wedge-shaped region expands

and the small polaron transition line marking the abrupt transition is shifted towards

smaller 9, indicating that the transition to small polaron states is assisted by thermal

population of the phonon modes.

3.4.2 Band-like and Hopping Mobilities

Figure 3-9 shows the results of our mobility calculations for a 1-D nearest-neighbor

system with reduced transfer integral Jo/wo = 1 and different electron-phonon cou-

pling constants. In addition, the results for systems with Jo/wo = 2 and 4 are shown

in Fig. 3-10 and Fig. 3-11, respectively. Figure 3-9 to 3-11 display the tempera-

ture dependence of mobilities for systems with a broad range of electronic couplings

(Jo/wo) and electron-phonon couplings (g). Our theoretical results presented in these

figures clearly show universal band to hopping transitions in the mobilities, as ob-
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Figure 3-8: Polaron phase diagram determined using the finite-temperature varia-
tional method with Merrifield's ansatz at different temperatures. The dotted line is
the empirical self-trapping line given by 9ST = 1 + vJO/O.
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served in experiments. All theoretical curves exhibit a universal trend. The total

mobility is temperature independent in extremely low temperatures because the mo-

bility is determined by the additional scattering channel represented by %o. As the

temperature increases, the mobility starts to decrease in a power-law fashion. The

steep power-law decrease continues over a wide temperature range, during which the

mobility decreases by several orders of magnitudes. At intermediate to high temper-

atures, the mobility cease to decrease and depends only weakly on the temperature.

Eventually, an abrupt change in the mobility occurs at a high temperature, which

corresponds to the abrupt transition to the small polaron state. Note that beyond

this transition point, the polaron state is fully dressed and the polaron bandwidth is

narrowed by an exponentially small factor, resulting in very different transport be-

havior after the transition. As we have mentioned, the abrupt change is unphysical

and is an artifact of the Merrifield's ansatz, therefore, mobility results around the

discontinuity are questionable. Since the high temperature range in which the abrupt

change occurs is usually not accessible in experiments, we disregard mobility points

after the small polaron transition, and focus on the transport properties of partially

dressed states in this work.

In Fig. 3-9 to 3-11, we also show the band-like contribution to the mobility as

well as the hopping contribution. The total mobility is dominated by the band-like

term in low temperatures and by the hopping term in high temperatures. At low

to intermediate temperatures, the band-like term decreases monotonically, while the

hopping term grows as temperature increases. At sufficiently high temperature, the

hopping term becomes dominate the mobility even when the electron is only weakly

coupled to the phonons. The crossover of the band-like and hopping terms results in

the almost temperature independent mobility at the intermediate to high temperature

regime. Note that the crossover temperature T, where the crossover from band-like

to hopping transport occurs depends on Jo/wo and g. In general, a weak-coupling

(small g) or wide-band (large Jo/wo) system has higher Tc.

In a number of previous studies, the small polaron transition in a variational

treatment is considered to correspond to the crossover from the band-like to hop-
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Figure 3-9: Mobilities for a 1-D Holstein system with Jo/wo = 1 at different electron-
coupling constant g. We show the total mobility (solid lines), band-like contribution
to the mobility (thin dashed lines), and hopping contribution to the mobility (thick
dashed lines). = 0.01wo and yo = 0.001wo are employed for these calculations. The
unit of the y-axis is to = ear/h, where e is the charge of an electron, a0 is the lattice
constant, and h is Planck's constant.
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Figure 3-10: Mobilities for a 1-D Holstein system with Jo/wo = 2 at different electron-
coupling constant g. We show the total mobility (solid lines), band-like contribution
to the mobility (thin dashed lines), and hopping contribution to the mobility (thick
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ping transport [19, 20]. However, our results suggest that the two phenomena are

not directly correlated. The smooth crossover in the transport mechanisms does not

correspond to the transition in the structure of the polaron state; in contrast, the

crossover from the band-like mechanism to the hopping mechanism occurs at a lower

temperature compared to the small polaron transition (the abrupt change in the mo-

bilities). Our results indicate that partially dressed state can give rise to a significant

hopping term in a broad parameter range, which may be responsible for the band-like

to hopping transition observed in experiments

We summarize key qualitative results that are exhibited by our partially dressed

theory: (1) a steep power-law decrease of the mobility exists in the band-like regime,

and the n > 1.5 behavior can be explained by the contribution from the multi-phonon

scattering in the band-like term; (2) all theoretical curves predict smooth band-like

to hopping transition in the temperature dependence of charge-carrier mobilities;

however, the change in transport mechanism does not correspond to the small polaron

transition; (3) almost temperature independent behavior over a wide temperature

range exists in some parameter regime; (4) significant thermal-activated mobility at

high temperature is not observed in all parameter regimes that we have studied;

however, for sufficiently strong electron-phonon couplings, a slightly increase in the

mobility can occur after the crossover from the band-like to hopping transport.

To study how the strength of electron-phonon coupling g affects the mobility,

we compare the band-like and hopping mobilities for a 1-D Holstein system with

Jo/wo = 2 at different electron-coupling constants (Fig. 3-12). The comparison

shows that varying the strength of electron-phonon coupling has different effects on

the band-like term and the hopping term. Because an increase in g results in more

scattering of the polaron state, the hopping mobility (high-T) is enhanced by strong

electron-phonon couplings, while the band-like mobility (low-T) is inhibited. Notice

that varying g could result in a change of mobility by an amount of several orders

of magnitudes. Thus, our results suggest that selecting a material with proper g

value is important for optimizing charge-carrier mobilities at different temperatures;

given the same reduced transfer integral Jo/wo, small g materials are favorable at
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low temperatures (higher band-like mobility), while large g materials are favorable at

high temperatures (higher hopping mobility).

3.5 Temperature Dependence on the Charge Mobil-

ities in Naphthalene

In this section we compare our mobility calculations to experimental measurements

of excess charge-carrier mobilities on the naphthalene crystals. In Fig. 3-13, we

compare two theoretical curves from the 1-D model presented in the previous section

to excess electron and hole mobilities measured in parallel to the crystalline b direction

of the naphthalene crystals 52, 18|. The curves with (g, J0, w0) =(0.4, 20 meV, 200

cm -1 ) and (0.5, 13 meV, 150 cm -1) are in agreement with experimental excess hole

and electron mobilities, respectively. The fitting parameters indicate weak electron-

phonon couplings, and are consistent with other spectroscopic experiments[53, 54, 55,

56, 57] and theoretical calculations[58, 59, 60] on naphthalene crystals.

Our simplified 1-D model is hardly adequate for the description of the mobility

in naphthalene crystal because of the highly anisotropic and non-cubic structure of

the crystal. Using the theoretical model presented in Section 3.2, it is possible to

construct a 3-D description that takes into account the real crystal structure; how-

ever, such complete simulation would be too demanding and beyond the scope of this

work. Figure 3-13 is not meant to provide a fit to the experimental data. Never-

theless, it demonstrates that our approach does capture the temperature dependence

of the mobilities, and can provide a quantitative description that covers the whole

experimental temperature range and different types of materials in a unified theory.

3.6 Concluding Remarks

In this chapter, we have developed a unified theory that describes both coherent and

incoherent transport in the Holstein Hamiltonian and can quantitatively describe the

temperature dependence of the charge-carrier mobilities in OMC. Our formalism uses
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a finite-temperature variational method combining Merrifield's transformation with

Bogoliubov's theorem to obtain the optimal basis for an interacting electron-phonon

system, and then based on the optimal basis to calculate the band-like and hop-

ping mobilities for charge-carriers. Because we use Bogoliubov's theorem to obtain

the optimal thermal mean-field description for the interacting electron-phonon sys-

tem, a time-dependent perturbation expansion based on the variational zeroth-order

Hamiltonian is justified in the intermediate coupling regime. Our calculations on the

1-D Holstein model at T=OK and finite temperatures indicate that the variational-

perturbation method gives results that are compared favorable to other analytical

methods.

We have applied the unified theory to the 1-D Holstein model at finite-temperatures.

We studied the structures of polaron states at a broad range of parameters including

different temperatures. Our method yields phase diagrams that are in agreement with

predictions of more accurate numerical methods at low temperatures. Therefore, the

finite-temperature Merrifield's variational method, although contains unphysical dou-

ble minima on the free energy potential surface, gives reasonable semi-quantitative

results for the polaron transition. We also calculated the band-like and hopping

mobilities of the 1-D model in different parameters and showed that the tempera-

ture dependence of the total mobility predicted by our theory exhibits power-law

decay at a wide temperature range, and a almost temperature independent behav-

ior at higher temperatures before an abrupt change occurs. We found that as the

temperature increases, the hopping transport can become dominate even before the

polaron state changes its characters. Thus, our result indicates that the self-trapping

transition studied in conventional polaron theories does not necessary correspond

to the crossover from band-like to hopping transport in the transport properties in

OMC. Comparing our 1-D results with experiments on ultrapure naphthalene crystals

suggests that our method can describe the charge-carrier mobilities in OMC quanti-

tatively across the whole experimental temperature range.

Although our variational method correctly predicts the small polaron transition

line at low temperatures, the abrupt transition makes it difficult to access regions
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close to or after the transition quantitatively. A more generalized ansatz, such as

Toyozawa's ansatz, can greatly improve the applicable range of the current theory.

Note that our results suggest that the crossover from bank-like to hopping transport

occurs before the self-trapping transition, thus, the deficiency does not affect our main

results regarding the charge-carrier mobilities in OMC.

Finally, we note that the mobility expression from Yarkony and Silbey Eq. (3.15)

- Eq. (3.18)j is a approximated expression in which small terms have been dropped.

Since we have used numerical integration to evaluate the mobilities, it is straightfor-

ward to numerically propagate the reduced density matrix of the system according to

the master equation in Eq. (3.12), and then calculate the mobility using Eq. (3.14).

The direct propagation scheme is favorable when simulating real 3-D systems because

numerical integration of 3-D functions are not efficient. In addition, static disorders

and non-equilibrium effect can be easily incorporated into such a numerical scheme,

making the approach favorable when modeling disorder materials.

Appendix 3.A Phonon Correlation Functions

The phonon correlation function (Vqk'Vkq(T))o for a narrow phonon band with phonon

frequency w0 is given by

(Vq'kfVkq(T))O = 1 v v¢e -iq'n leik'ml -ikn2 qm2J JN z z ,M n2M2
nj,ml n2 ,m2

x{ e [Xnlmlxn2m2(no+l)ei' or+x1 ml Xn2 -2n io ]_ 1}

wO ( ) , -iq'n ik'mj Jn~ n O _T (O+1 
±H( -fk-q) en ~m [nloei - wor- + ( 0 + 1)e ]-¢~(g--fk-q) e k-iqnim q -nnr

n,m
woJJ°(9 fqZ-k) * n i +o k

mjnmJ~qn k-W ( fq'-k') ~36ke q'm-kl~ noeiwT (no + 1ewT
n m

+Wo2(g - fq'-k') 2 [noe- i'w° + (no + 1)eiOO°] · (q' - k' + k - q),

where we have defined Jnm Jnm(OtOm)0, Xqm - -fq(eiqmeiqn), Xqnm = f*(e-iqm_

e-iqn), and no = 1/(e - WO - 1). Note that using the symmetry property of quan-
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turn correlation functions, we can easily calculate the other correlation function

(Vq'k (T)Vkq)o:

(Vqk(T)Vkq)o = (Vq'k'Vkq(T))O.

Appendix 3.B 2,d-order Correction on the Energy

Band at T-OK

The second-order energy correction to the energy band of the polaron state in Eq.

(3.23) assumes the following form:

E(2) (k) = -2ofo,,t(g- fop-t)
1 1

- 2(g f2" 
20k O xptJ Nk 2J cos k - 2Jo cos k - o

42nT
-2 jO2_l Jop

nT=l nT!
1 2nT +cos2k + cos2k' + 2 (-)nT cos(k'-k) + (-2)nT cos(k' + k)

N k2j cos - 2Jo cos k - nTWO

where we have defined Jo = Joe-fL t. Around the bottom of the band where k 0

and cos k - 1, the integral over k' can be evaluated explicitly to give

= -2Wofot(g- fopt

_o2 (g2- f2pt) x

oo00 f
2

nT

-_2Jo Jopt 
_ 7 nT!

)
1

2JoV (cos k + wo/2Jo)2- 1

AA 2 - AB + BA 2
(3.33)

-1-A 2 _ -C
vA 2 - 1

where the auxiliary functions are defined as

A = cos k + nTWo/2Jo,

1B = - [2(-1)T + (-2)n] cos k,
2
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C = [2T + cos2k- 1].

The expression for E(2)(k) is used to calculated the effective mass of the polaron

state at T=OK.

Appendix 3.C Toyozawa Method at OK

Toyozawa's ansatz can be written as the translationally invariant superposition of

localized soliton states. The expression for the trial state with total crystal momentum

K is

= 1
(K)) e = E ei4nn), (3.34)

where I) is the ansatz state localized at site n, and can be written as a direct

product of the electron and phonon wavefunctions:

qn) S 0,am+,,l)ex ( exp[-I- f (eiq(Rn+Rm)bq - e-iq(Rn-Rm)bt )]10)ph
m m,q

Here 10)ex and O1)ph denote the electron vacuum state and the phonon vacuum state,

respectively. Coefficients {aO} and {fm} are variational variables that must satisfy

the symmetry constrain, = -m and fm = fKm. In addition, {o'} must satisfy

the normalization condition of a single excitation, Em OK = 1. Toyozawa's ansatz

j4n) has a direct physical interpretation. The set {(} represents a pulse-shaped

distribution of electron probability amplitudes centered around site n, and {f m} rep-

resents a lattice deformation around site n. Compared to Merrifield's ansatz used in

this chapter, Toyozawa's ansatz can be considered as an extension that adds electronic

dispersion to the ansatz state. Note that because of the translational symmetry of the

crystal, the final trial state is a Bloch state of these localized states. The trial states

Il(N)) are eigenfunctions of the total crystal momentum operator and orthogonal

for different . Therefore, variational variables for different subspace are indepen-
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dent, this independence enables us to carry out the variational minimization for each

distinct N subspace.

At zero temperature, the variational upper bound of the ground state polaron

energy band can be computed by minimizing the energy function

E( ) =(,) H I()) (3.35)

with respect to the variational parameters, OK { } and {fm}, under the constrains

mentioned above. The polaron band structure and the optimized wave function in

different total crystal momentum can be obtained by performing the variational cal-

culation with different value. In addition, properties of the polaron state can be

evaluated using the optimized wave functions. For example, the polaron effective

mass, m*, often used as an indicator to the polaron structure, can be computed

based on the formula

meff 2J
m0 02 2E(n) 

On2 l=0

using a parabolic fit to the band around the bottom of the band. In our numerical

calculations, we construct the energy band by employing a 31-site lattice with periodic

boundary condition. The total number of independent variational parameters are 32.

An iterative scheme is adapted to minimize the energy functional and compute the

optimal set of { ,'} and {fm}. We have also compared our results with calculations

using a larger ansatz lattice, and the differences are negligible.
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Chapter 4

A Stochastic Liouville Equation

Approach for Quantum Dissipation

and Decoherence

4.1 Introduction

In Chapter 3, a microscopic model that describes interacting electron-phonon systems

was developed to study the temperature dependence of the charge-carrier mobilities

in organic molecular crystals. Similar microscopic models that explicitly introduce

terms in the Hamiltonian to represent the phonon bath and the couplings can be

applied to study the dissipation and decoherence of quantum systems [1, 2, 3, 4, 5].

However, due to the complexity caused by including extra bath degrees of freedom

in the model, applications of these microscopic methods are usually limited on small

systems with only a few quantum states. In this chapter, we will show a stochastic

Liouville equation approach that can be solved efficiently to describe the dissipative

dynamics of a multi-spin system. The motivation is to develop a theoretical model

that can be used to describe the effect of noise in a quantum computer.

The Redfield theory has become the standard relaxation theory for quantum dy-

namics in condensed phases 61. The Redfield equations that describe the dynamics
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of a quantum system are a set of coupled linear differential equations for the reduced

density matrix of the system; the dissipative dynamics of the system is governed by

relaxation coefficients that are constructed from bath correlation functions. When

the bath is treated explicitly, the evaluation of these relaxation coefficients is a chal-

lenging problem. As a result, the application of the Redfield theory with explicit bath

is limited to systems with at most a few spins. In order to study the dynamics of a

multi-level quantum system, it is usually necessary to adopt phenomenological meth-

ods that do not include the bath degree of freedom explicitly. Moreover, the Redfield

formalism is also known to violate the complete positivity of the reduced density

operator at short times [7, 8, 9]. For some initial conditions, the Redfield equation

produces density matrices with negative eigenvalues at short times, which is unphys-

ical. This problem has caused difficulties in applications. For example, to apply the

Redfield formalism to study the dissipative dynamics of a quantum computer, non-

physical additional time intervals have to be inserted between the switching events

[10, 11]. These extra time periods will result in the over-estimation of the degradation

of the quantum computer.

It is also possible to totally neglect the bath and use phenomenological relax-

ation and decoherence rates as the relaxation tensor elements in the Redfield theory.

The phenomenological Bloch-Redfield formalism is generally used in studies on NMR

spin-dynamics [12, 6, 13], and has been applied to study the dynamics of many-spin

systems. However, this formalism, while suitable in NMR systems, is not always ap-

plicable in general quantum systems. In addition, the use of simple rate expressions

in the eigen-basis of the quantum system is not well justified, and the physical origins

of the phenomenological relaxation and decoherence rates are usually not clear. Thus,

generally speaking, an efficient method that can be used to calculate the dissipative

dynamics of a multi-spin quantum system based on the microscopic parameters of

the system is still not available.

In this chapter, we purpose a stochastic Liouville equation approach to describe

dissipation and decoherence of quantum systems. The stochastic Liouville equation

approach has been widely used to describe the dissipative dynamics of quantum sys-
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terns [14, 15]. We follow the approach that originates from the Haken-Strobl-Reineker

(HSR) model first proposed by Haken and Strobl and later extended by Reineker in

the 1970s to describe charge and energy transfer in organic crystals[16, 17, 18]. It

is known that the HSR model captures both the coherent and incoherent dynamics

of quantum systems. In the HSR model, the system-bath interactions are taken into

account by allowing the site energies and the off-diagonal matrix elements of the sys-

tem to fluctuate over time. We generalize the idea of Haken and Strobl to describe a

system composed of n two-level systems (spins1). The resulting stochastic Liouville

equation is then solved to obtain the generalized HSR equation of motion, which is a

set of linear differential equations describing the dynamics of a general n spin system.

We then discuss the limitations and possible extensions of this model. Furthermore,

in Appendix 4.A we describe the condition for which the evolution generated by the

generalized HSR equation of motion is positive. Thus, the generalized HSR equation

of motion, a construction of the Redfield formalism, avoids the positivity problem

and is applicable to the study of dissipation and decoherence of multi-spin quantum

systems.

4.2 The Stochastic Liouville Equation Approach

Previous work on the study of the population relaxation and decoherence of quantum

systems is usually based on the spin-boson Hamiltonian, in which the two-level sys-

tems are coupled linearly to the bath degrees of freedom (the environment), and the

bath is treated explicitly as a system of harmonic oscillators [3, 19, 20]. Due to the

difficulty of applying the spin-boson model to multi-spin systems, we take another

approach. Instead of treating the bath explicitly, we substitute the bath with a set of

external stochastic noises. Following the stochastic Liouville equation approach of the

HSR model, we consider an effective Hamiltonian that treats the effect of the bath as

a set of classical fluctuating fields acting on the system [16, 17, 18]. To describe the

dynamics of an array of spins under the influence of environmental noise, we consider

'In this chapter, the term "spin" refers to a spin-1/2 system, i.e. a two-level system.
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a system of n spins (2n states), and start from a Hamiltonian with time independent

and time dependent parts. The general Hamiltonian of the system can be written as

H(t) Ho + h(t)
2'-12n"l - (4.1)

= E[Hij + hij (t)] citCj,
i,j=o

where c and ci are the creation and annihilation operators for the i-th state of the

2' basis set. The time independent part H0 describes the energies and interactions

in the spin system, while the time dependent part h(t) describes the fluctuations of

the energies and interactions due to the presence of the system-bath couplings.

The time dependent part of the Hamiltonian describes the stochastic noise due to

the fluctuations of the bath. This term may include fluctuations from many different

origins, such as the fluctuations of imperfect control fields, the fluctuations induced

by nuclear vibrations on the spin excitation energy, the off-diagonal matrix element,

and the inter-spin interactions. Following Haken and Strobl 116], we approximate the

fluctuations as random Gaussian Markov processes with zero mean and -function

correlation times:

(hij (t)) = 0, (4.2)

(hij(t)hkl(t')) = Rij;kl ' 6(t - t').

Here the brackets () represents the thermal average over all bath degrees of freedom,

and the time independent correlation matrix element Rij;kl is a real number describing

the correlations between hij(t) and hkl(t'). All Rij;kl elements form a 22,-dimensional

correlation matrix R. Since we treat the time dependent part of the Hamiltonian

h(t) as classical fields, the matrix elements of R are classical correlation functions.

Therefore, we have the following symmetry properties for R:

Rij;kl = Rji;kl = Rij;lk = Rji;lk = Rkl;ij (4.3)

The value of Rij;kI depends on the strength of the coupling to the environment; there-

fore, it is a measure of the noisiness of the environment. The 6-function correlation in
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time corresponds to the limit of fast bath modulations, which assumes that the cor-

relation time of the bath is much smaller than the characteristic time of the system.

Therefore, this model should be valid at the high temperature limit. Also note that

although the effect of the temperature can be included by considering temperature

dependent correlation matrix elements, there is no explicit temperature dependence in

this model. We will discuss the consequences of this assumption and the applicability

of this model in more detail in Section 4.4.

The dynamics of the n-spin system is governed by the time independent part

of the Hamiltonian H0 and the correlation matrix R. The values of Ho and R

depend on the setup of the physical system, the various types of noise considered,

and the nature of the bath. Note that in the HSR model, the system is limited to

the one exciton subspace, and the correlation matrix R can be obtained directly.

However, in our n-spin system, all 2 states must be considered, and Ho and R have

to be determined according to the physical conditions of the quantum system. In

the following section, we provide explicit examples of H0 and R for a single spin.

Generalization of the procedure to determine H0 and R for a general n-spin system

should be straightforward. Throughout this section we will only use the generic forms

of H0 and R to derive the equation of motion that describes the time evolution of

the n-spin system under the influence of noise.

The Hamiltonian in Eq. (4.1) leads to a stochastic Liouville equation (h = 1)

p(t) =-i[H(t),p(t)],

where p(t) is the density matrix of the system at time t. Using the statistical prop-

erties of h(t) Eq. (4.2)] and the symmetry property of the correlation functions [Eq.

(4.3)], we can compute the exact equation of motion for the averaged density matrix

elements of the system by applying the second order generalized cumulant expansion

method to average over all fluctuations. The result we obtain is in a simple form:
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tPo = -ZHaj Z + ijH0
j2~~~~ ~ ~~jo~~ ~ ~(4.4)-1ERlk_ - RIk;kJ + ER1;kPkI,

k,l kl k,l

where all the summations are over all 2 state indices. In addition, we have defined

the averaged density matrix of the system, p(t) = p(t)). We call Eq. (4.4) the

generalized HSR equation of motion, and it is the main result of this chapter. In Eq.

(4.4), the dynamics of the averaged density matrix can be separated into a coherent

part, due to H0 , and a incoherent part, due to R. The dissipation of the system is

governed by incoherent dynamics, and is related to the elements of the fluctuation

correlation matrix R. Note that the equation of motion described in Eq. (4.4) is exact

and does not depend on the perturbation expansion of a small parameter. Because of

the 6-function correlations, all cumulants higher than the second order are identically

zero. The form of Eq. (4.4) is similar to the form of the widely used Redfield equation,

with the relaxation matrix elements given by the corresponding Rij;kl terms in the

equation [6]. Nevertheless, Eq. (4.4) provides a convenient starting point to study

the dissipative dynamics of a n-spin system, and is derived in an flexible working

basis representation, in contrast to the Redfield equation that is usually derived in

the eigen-basis representation of the Ho.

Eq. (4.4) forms a system of 22n linear ordinary differential equations (ODE).

Given the values of Hij and Rij;kl, the ODE system can be solved efficiently to yield

the time dependent averaged density matrix 5(t). In fact, in most one spin and two

spin systems, the equations can be solved analytically, and the analytical formula for

f5(t) can be obtained. In general, we can calculate H0 and R from the Hamiltonian of

the system and the correlations between fluctuations introduced by the environment.

Once we have Ho and R, the time evolution of the spin system can be obtained by

numerically propagating the density matrix of the system 5(t) using the equations of

motion in Eq. (4.4). This procedure is straightforward, and can be used to study the

effect of noise in quantum systems with multiple spins. Note that the construction of

H0 and R depends on the microscopic properties of the quantum system, therefore,
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realistic physical conditions of the device can be included in the generalized HSR

model. Thus, we provide an efficient and flexible method for the description of the

dissipative dynamics of general quantum multi-spin systems. In the next chapter, we

will demonstrate the applications of this model to study the effect of noise in quantum

computations.

4.3 Relaxation and Decoherence in a Two-level Sys-

ten
To demonstrate the stochastic Liouville equation approach, we apply Eq. (4.4) to

study the dissipative dynamics of a two-level system in this section; for a single spin,

the model is exactly the same to the two-site HSR model, and is presented here mostly

for an illustrative purpose. Applications to multi-spin system, which is the objective

for the development of the generalized HSR equation of motion, will be presented in

the next chapter.

The HSR. model was first proposed by Haken and Strobl and later Reineker in the

60s to describe the charge transport and energy transfer in organic crystals [16, 17, 21].

In this model, the effect of the system-bath interactions is taken into account by

allowing the site energy and the hopping matrix element to fluctuate in time. Consider

a two-level system with states I1)and 12), the Hamiltonian of the system in the form

of Eq. (4.1) is

H(t) = Ho + h(t)

Eo Jo 1l [ 5e 1 (t) 5J(t) 1 (4.5)

Jo - o 5J(t) 6E 2 (t) 

where 2o is the energy splitting of the two-level system, J is the average hopping

matrix element, J(t) is the fluctuating part of the hopping matrix element, and

6En(t) is the fluctuating part of the site-energies. Following Eq. (4.2), we consider

the fluctuations 6En(t) and 6J(t) as randomly Gaussian Markov processes with zero

mean and -function correlation times:
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(lin(t)) = (6J(t)) -= 0

(& E (t)5(t)) = %.YO 5"mS(t- t') (46)

(6J(t)6J(t')) = 7Y. 6(t - t')

(En(t)6J(t')) = 0

Here the strengths of diagonal site energy and off-diagonal hopping matrix element

fluctuations are described by yo and Yl, respectively. In addition, we assume the

energy fluctuations on different sites are not correlated, (&n(t)Sm(t')) = 0 for n m.

If we define X(t) = [p12(t)- p 21(t)], Y(t) = -[p 12(t)- p 21(t)], and Z(t) =
- 2~

'[pIl(t) - p22 (t)], using the properties in Eq.(4.6), we can derive the HSR equation of

motion for X, Yand Z from Eq. (4.4):

X(t) = -2soY(t) - OX(t),

Y(t) = 2EoX(t) - 2JZ(t)- (o + 2y71)Y(t), (4.7)

Z(t) = 2JoY(t) - 2'yZ(t),

and the density matrix of the two-level system at time t is

p (t)t) P12(t)

P2 1 (t) 2 2 (t) j

+ Z(t) X(t) + Y(t)
x(t) - iY(t) 2-z(t)

In general, when Eo #~ 0 and Jo # 0, the exact analytical expression for p(t) is not

available. Nevertheless, the equation of motion in Eq. (4.7) can be solved numerically

to obtain the dynamics of the two-level system. In the following, we will study the

solutions of Eq. (4.7) in the limit of o = Jo = 0 and Co = 0, Jo ~ 0 to demonstrate

the physics embedded in the simple HSR model.
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4.3.1 The E0 = JO= 0 limit

In the limit that the two states of the system are degenerate and non-interacting

(C = J = 0), the equation of motion can be solved exactly, and we can clearly

understand the physical interpretation for the strengths of the fluctuations (o and

"i). For a system initially at the state 0o) = cli1) + c212) at time t = 0, we obtain

the density matrix p(t) at time t > 0 from Eq. (4.7):

I + (IC 2 iIc|-cl at ClC2+ClC2 e-'yt + ClC*-CC2 -(o+2)t
_ - J(122 2. 22 1 . e

L 2 2 2 2CL --1C;2 . -ot +_ clc2-cl ~ . C--(ffo+2"/1)t 1 1 ¢(c|-cl). -2fflt 
(4.8)

This result describes the decoherence and population relaxation in the two-level

system. Note that the dynamics follows strict exponential decay, and the strengths

of the fluctuations (o and 'Yx) are related to the decay rates. Thus, the dynamics of

the population transfer is described by incoherent motion in this limit. In addition,

according to Eq.(4.8), the decay of the real part of the coherence depends on the

diagonal fluctuations, while the population relaxation depends on the off-diagonal

fluctuations. This is because the diagonal fluctuations den(t) introduce phase shifts

that only affect the coherence of the two-level system, and the off-diagonal fluctuations

5J(t) introduce coupling between the two states that results in population transfer.

Note that the imaginary part of the coherence decays according to both diagonal

and off-diagonal fluctuations. In the terminology of quantum computing, phase-shift

errors (change in the oz component) are caused by the site-energy fluctuations, bit-

flip errors (change in the ax component) are caused by the hopping matrix element

fluctuations, and the change in the cry component are due to both types of fluctuations

[22]. Also note that the HSR model predicts different decay rate for the real part and

the imaginary part of the coherence, which is different from the results of previous

study.
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4.3.2 The E0 0, Jo 0 limit

For interacting degenerate two-level systems (o = 0, J0 7 0), the analytical solution

to Eq. (4.7) is also available. In this limit, we show that the dynamics of the two-level

system exhibits both coherent and incoherent motions, and the transition from the

coherent regime to the incoherent regime is controlled by the strength of the diagonal

fluctuations.

Consider a system initially at the I1) state at time t = 0, the density matrix

elements at time t > 0 can be calculated easily from Eq. (4.7):

p(t) = 2 + 1* e-½(7o+471)t cosh (1 /702-16Jo2 t) /%2 _16Jo t)Pl, (t -- s 2 16Y2 -tsn 6
2 2 2 ~~~~ ~ ~~~~~~~~~~~1 /T02 16Jo'

p22 (t) = P11 - (t),

p12(t) -= -( .- +4j)t * sinh j VYo2 - 16J * t)
pl2(t) v/Vo216jo 0

p21(t) 2iJo . e(o+4yl)t sinh ( /y2 - 16Jo2 t)
- 16jo2 

The result shows that when Jo y$ 0, the effect of diagonal fluctuations can no longer

be clearly distinguished from the effect of off-diagonal fluctuations, both population

relaxations and decoherence depend on 7yo and 1y. The HSR model takes into account

the effects of both types of fluctuations at the same time, which is different from most

dissipation models used previously; previous models usually treat only either one of

the diagonal or off-diagonal system-bath interactions [20, 23, 241.

To study the the dynamics of population transfer from ]1) 2), we investigate

the difference of the population in the two states:

PA(t) = p1(t)-p22(t)

- e- (o+4v')t [cosh J t + inh (. t)1 
Clearly, Pa (t) exhibits both coherent and incoherent motions depending on the strength

of the diagonal fluctuations 7yo. In the regime where -yo < 4JoI, the factor /0 2 - 16Jo
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is imaginary and results in oscillatory PA(t); this indicates that in this regime, the

fluctuations are not strong enough to fully destroy the oscillatory nature of the sys-

tem, and the the dynamics of the population transfer is still coherent. In contrast,

in the regime where yo > 4Jol, PA(t) decays monotonically, and the dynamics of

population transfer is described by incoherent hopping from 1) -- 2). Thus, the

simple HSR model contains both the coherent and the incoherent limits. The inter-

play between the coherence in the quantum system (J0 ) and the fluctuations due to

system-bath couplings (0o) is a major issue regarding the dynamics of a open quantum

system. The two-site HSR model describes the crossover from the coherent regime at

weak fluctuations to the incoherent regime at strong fluctuations. A generalization

of the model presented in this section has been successfully applied to describe the

dynamics of charge and energy transport in organic molecular crystals, including the

transition from band-like regime to hopping regime that we studied in the previous

section using a microscopic model with explicit electron-phonon interactions [18].

4.4 Limitations and Possible Extensions

We have shown that the generalized HSR model is efficient and flexible, and can de-

scribe both coherent and incoherent motion in the dissipative dynamics of a quantum

system. In this section, we will briefly discuss the limitations and possible extensions

of this stochastic Liouville equation approach.

A key step in the HSR model is to replace the microscopic system-bath interactions

by stochastic processes. This procedure has permitted a full description of the dissi-

pative dynamics of the quantum system and their response to the external fields. At

the same time, we introduce phenomenological parameters to describe the strengths

of fluctuations (o and -y1 in our model). These parameters have to be determined

experimentally or computed using a separate microscopic model 117, 25, 26]. Gener-

ally, 'to and Al should depend on temperature and increase as temperature increases.

However, our model lacks explicit temperature dependence for these parameters, thus

cannot be used to study the temperature dependence of the quantum dynamics. For-
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tunately, these parameters are directly related to physically measurable quantities,

and can be easily determined by experiments. In our model, yo and -yj correspond

to the decoherence rate and population relaxation rate, respectively; both of them

can be measured by experiments in the limit that that the two states of the system

are degenerate and non-interacting. In addition, recent theoretical studies on the

temperature dependence of the quality of quantum gate operations suggest that the

temperature dependence of the gate performance is weak [11, 271, which is reasonable

in the weak coupling regime and the temperature range relevant to implementations

of solid-state quantum computers.

The assumption of the fast modulation of the bath might be a more serious prob-

lem for the HSR model. The -function correlation time corresponds to an infinite

fast decay of the bath correlations, which leads to incorrect short time dynamics and

long time equilibrium populations. Palma et al. have studied the decoherence of a

two-level system and shown that the dynamics exhibits a "quiet" and a "quantum"

regime at short times, and a "thermal" regime at long times 201. The HSR model

assumes that the bath relaxes infinitely fast, thus neglects the dynamics of the system

before bath relaxation takes place. Although the HSR model cannot predict the short

time dynamics correctly, we expect the physics for longer times important for many

applications are reasonably well captured. The 6-function correlation can be replaced

by an exponential function in time, and the extended model for a dichotomic process

has been solved exactly without further assumptions [28, 29, 30, 311.

The white noise assumption in the HSR model also corresponds to a bath with

infinite temperature, therefore, the resulting equation of motion does not satisfy de-

tailed balance at finite temperatures. As a consequence, the system always relaxes to

equal populations regardless of the energy differences between the states. Extensions

of the HSR model to solve this problem has been proposed in Ref. 261. Note that

the motivation to develop the generalized HSR model in this chapter is to study the

decoherence problem in quantum computing. In quantum computing, we are mainly

concerned about the dynamics of an unbiased quantum system, and even when a bias

field is applied to the system to perform gate operations, the time period has to be
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short to avoid any population relaxation. Since we will only operate the quantum

computer in the time scale that the population relaxation is negligible, we expect

the violation of the detailed balance condition will not cause serious problems for

applications related to quantum computing.

The stochastic representation for the dynamics of a quantum two-level system

has been investigated in Refs. [32] and [33]. The correspondence between the phe-

nomenological parameters describing the stochastic field ( and al in this work)

and the two-level system microscopic quantities are also studied. The stochastic ap-

proximation is found to be able to reproduce the results by Leggett et al. for the

spin-boson model [3]. Our results presented confirm this observation. In general,

the stochastic Liouville equation approach presented in this work is applicable in the

weak system-bath interaction limit relevant to quantum computations.

4.5 Conclusion

In this Chapter, we have presented a stochastic Liouville equation approach that

provides a simple yet flexible way to calculate the dissipative dynamics of quantum

systems with multiple spins. This approach is generalized from the HSR model.

Using an effective system Hamiltonian that includes the system-bath interactions as

stochastic fluctuating terms with zero mean and delta function correlation times,

we derived the exact generalized HSR equation of motion [Eq. (4.4)] that describes

the dissipative dynamics for a system of n spins. This generalized HSR equation of

motion is similar to the form of the widely used Redfield equation, with the relaxation

matrix elements given by the corresponding correlation matrix elements, which can be

constructed straightforwardly from the realistic physical conditions of the quantum

system.

To demonstrate the use of Eq. (4.4), we have applied the HSR model to study

the dissipative dynamics of a two-level system. We showed that the decay rates of

the density matrix elements are related to the strengths of fluctuations (0 and -Yl),

and the quantum dynamics calculated from the HSR model exhibits coherent regime
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in the weak-fluctuation limit and incoherent regime in the strong-fluctuation limit.

We have also discussed the limitations of the HSR type approach. The conse-

quences due to the procedure of replacing the system-bath interactions by classical

fluctuating fields and the assumption of the white noise were considered, and the

possible extensions were noted. Generally, the application of HSR type model in the

weak coupling regime that is relevant to quantum computing is justified.

In conclusion, we have developed an efficient and flexible method that describes

the quantum dissipation and decoherence in multi-spin systems. In the next chapter,

we will apply the generalized HSR equation of motion [Eq. (4.4)] to study the effect

of noise in quantum computations.

Appendix 4.A Positivity of the generalized HSR equa-

tion of motion

Because of the product state initial condition implicitly assumed in the Redfield equa-

tion, the bath is highly non-equilibrium at the initial time. As a result, a transient

time in which the bath relaxes to a new equilibrium exists, and the Markovian ap-

proximation is inapplicable within this time scale. The Markovian Redfield equation

does not preserve the positivity of the reduced density matrix of the system at short

times. The source and a possible slippage scheme to solve this problem has been

studied in detail by Suarez, Silbey, and Oppenheim [8]. A closer examination reveals

that the violation of positivity condition is due to the Markovian approximation; if

a non-Markovian memory kernel is considered, the positivity of the dynamics is al-

ways preserved. The positivity problem is due to using improper parameters, naming

Markovian memory kernel, to describe the short time dynamics of a reduced quantum

system[34, 351. In Chapter 7, we will discuss the positivity problem of the Markovian

Redfield equation in a more detailed fashion.

In Section 4.2, we have generalized the Haken-Strobl-Reineker (HSR) model for a

system of n spins, and derived a generalized HSR equation of motion that describes
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the dissipative dynamics of the n-spin system Eq. (4.4)]. Furthermore, we stated

that because of the -function correlation time assumed in the model, the resulting

propagator satisfies complete positivity, unlike methods based on the Bloch-Redfield

formalism. This property is important for the range of applicability of the generalized

HSR model., however, we did not provide a proof in Section 4.2. In this Appendix, we

show that the generalized HSR equation of motion indeed satisfy the positive condi-

tion by transforming it into the Lindblad form of a generator of quantum dynamical

semigroups [36].

Recall that in the derivation of the generalized HSR equation of motion, we con-

sider the N-dimensional Hilbert space representing a system of n spins (N = 2),

and start from an effective Hamiltonian with time independent and time dependent

parts:

H(t) = H + h(t)
N

E [Hij + hij(t)] c(cj
i,j=l (4.9)

N

H o + hij (t) cici + 5hij(t) [ccj + ctcz]
i=1 i<j

where ct and ci are the creation and annihilation operators for the i-th state of the

basis set. Notice that in the last line of Eq. (4.9), there are totally N(N + 1)/2 time

dependent terms; we can renumber these terms and case the Hamiltonian into the

following form:

N(N+1)/2

H(t) = H0 + E f, (t) V, (4.10)
a=1

where f(t) are the time dependent matrix elements, and V, are corresponding system

operators. Also notice that by definition, V, are Hermitian operators. Following

Haken and Strobl, we consider the time dependent f, (t) as random Gaussian Markov

processes with zero mean and -function correlation times:
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(f()) 0(4.11)

Y. M fo W)) C= .p 6 (t - t')

Here the brackets () represents the thermal average over all bath degrees of freedom,

and the time independent correlation matrix element Cods is a real number describing

the correlations between f(t) and f(t'). All Cab elements form a N(N + 1)/2-

dimensional correlation matrix C. Because we assume -function correlation time and

classical nature of the correlation functions, C is a real symmetric matrix. In addition,

the correlation matrix C is positive semidefinite. It is easy to check the positive

semidefiniteness; for any N(N+1)/2-dimensional real vector z = (zI, Z2 , --..., ZN(N+1)/2),

we have

N(N+1)/2

zCz t = E3 zC,3z
a,=1

= (I fa (t) E Zft))

= (Z f (t) >_ .

The positive semidefiniteness of the correlation matrix is an important property that is

required for the generalized HSR equation of motion to satisfy the positivity condition.

The dynamics of the system is described by the stochastic Liouville equation

(h= 1)

/(t) = -i[H(t), p(t)],

where p(t) is the density matrix of the system at time t. Using the operator form

of the Hamiltonian [Eq. (4.10)], and applying the second order generalized cumulant

expansion method, the exact equation of motion for the averaged density matrix of

the system can be written as:

138



-4[H0, p] + EC [.Wot - (VVQ3 + pVV)] (4.12)
O" 0

where we have used the statistical properties of fo(t) [Eq. (4.11)], the property that

C is a real symmetric matrix, and the property that V, matrices are Hermitian. Since

the correlation matrix C is real and symmetric, we can diagonalize it with a unitary

transformation S, and define a diagonal matrix F = SCS t . We then introduce a new

set of operators Ak using

Va = E SkAk. (4.13)
k

Rewrite Eq. (4.12) in terms of Ak, we obtain

dt = -i[Ho, p] + Erk [AkfAt- 2'(At Ak + iAtAk) (4.14)Lkvk 2 \kkU VA~k], (4.14)Tp =-[0/]+-Fkntnk - (kt +
k

where Fk is the k-th eigenvalue of the correlation matrix C. Recall that the correlation

matrix C is positive semidefinite, hence, all matrix elements k are nonnegative,

rk > 0. Equation (4.14) is clearly of the Lindblad form, thus, it preserves the

complete positivity of the dynamics [361. In a finite-dimensional Hilbert space, the

Lindblad form is the most general form for the generator of Markovian quantum

dynamics that preserves the complete positivity and trace of the density matrix [36].

Therefore, we prove that the generalized HSR equation of motion in Eq. (4.4) does

respect the positivity of the dynamics.

Gaspard and Nagaoka have shown that the Redfield master equation for 6-correlated

bath, a equivalent condition to our generalized HSR equation of motion, reduces to

a equation of motion with the Lindblad form [9]. However, they did not prove the

positivity of their D matrix (equivalent to the correlation matrix C here). Therefore,

their proof is incomplete. Note that we use the property that C is a real symmetric

matrix to transform the equation of motion into the Lindblad form. This property

is a consequence of the -function correlation time assumption, and is not true for

general finite-temperature correlation matrices.
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Chapter 5

The Effect of Noise in Quantum

Computations

Part of the content in this chapter has been published in the following papers:

Y.C. Cheng and R.J. Silbey. Stochastic Liouville equation approach for the effect of

noise in quantum computations. Physical Review A, 69:052325, 2004.

Y.C. Cheng and R.J. Silbey. Microscopic quantum dynamics study on the noise

threshold of fault-tolerant quantum error correction. Physical Review A, 72:012320,

2005.

5.1 Introduction

In Chapter 4, we derived a generalized HSR equation of motion from a stochastic

Liouville equation approach that is capable of describing the relaxation and decoher-

ence of multi-spin quantum systems. Starting from a effective system Hamiltonian

that incorporates stochastic fluctuating terms to describe the effect of system-bath

interactions, this model describes the dissipative dynamics of a many-spin system

using realistic device conditions. In this chapter, the generalized HSR equation of

motion is applied to study the effect of noise in quantum computations.

Quantum information processing is of much current interest 1, 2, 3, 4, 5, 6, 7, 8].

Since the discovery of the quantum factoring algorithm by Peter Shor in 1994 [9],
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quantum computing, or more broadly, quantum information theory, has grown into

an active interdisciplinary field involving physics, computer science, and mathematics.

Given the rapid advancement in quantum computation, it is impossible to present an

adequate overview of the subject here. Therefore, interested readers should consult

recent review papers 11, 2, 3, 4, 51 and textbooks 6, 7, 8] for an overview of quantum

computation.

In this chapter, we focus on modeling the dissipative dynamics of a quantum com-

puter. A quantum computer can be modeled as an array of two-level systems (qubits)1

evolving according to a sequence of prescribed unitary operations (also called quan-

tum gate operations) that is designed to achieve the desired outcome state; these

sequences of quantum operations are often called quantum algorithms. The realiza-

tion of quantum algorithms using nuclear magnetic resonance (NMR) 10, 11, 12, 13]

and ion-trap [14] techniques has shown that quantum computing is realizable in prin-

ciple. More recent efforts for building quantum computers have focused on techniques

based on solid-state devices that are believed to be more scalable 15, 16, 171. How-

ever, such solid-state devices usually require sophisticated manufacturing techniques,

and the inevitable interactions between a qubit and its surrounding environment

("bath") introduce noise into the quantum system, resulting in the degradation of

the quantum superposition state. A quantum algorithm usually requires applications

of a long series of quantum gate operations sequentially. For example, factorizing a

130 digit number (430 bits) 2 using Shor's algorithm would require 2200 qubits

and of order 109 quantum gate operations [18]. To obtain the correct outcome,

all these operations need to be performed precisely, and at the same time the quan-

tum superposition state of all qubits has to be preserved. Thus, the extra degrees

of freedom of a solid-state system and the inherent system-bath interactions pose a

1Deriving from "bits" used in classical computations, qubit is a term coined by the quantum
computing community to represent a quantum two-level system. A qubit can be an intrinsic two-level
system such as a spin-1/2 particle, or an effective two-level system such as a double-well tunneling
system. Throughout this thesis, we will use the two terms, "qubit" and "quantum two-level system",
interchangeably.

2Factoring a number of this size would take several months on a current computer cluster using
the best known classical algorithm. The size of this problem is considered as the boundary where
the quantum factoring algorithm would start to outperform all classical algorithms.
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great challenge for quantum computing with such devices. The decoherence problem

is the main obstacle towards the realization of a universal quantum computer, and

a sound theoretical framework for the description of the decoherence and population

relaxation of qubit systems is necessary [19, 20, 5, 211.

Because the ability to compute and predict the behavior of a quantum computer

under the influence of noise is crucial, a model that can describe errors from the

system-bath interactions could be extremely useful. Such a model will also be useful in

the study of quantum error-correcting and error-preventing schemes, as well as provide

informative guidelines for the design of quantum computers. However, describing the

non-equilibrium decoherence and population relaxation of a many-qubit system is

non-trivial. No general model exists for this purpose. Classical noise models and

microscopic noise models have yielded some success, but these formulations do not

provide a general solution framework for a many-qubit system. Axiomatic approaches

based on the semigroup Lindblad formalism has been successful in phenomenological

descriptions of the dissipative dynamics of qubit systems [22, 211. However, the

Lindblad dissipation operators required in the Lindblad equation are not constructed

from microscopic properties of the system, hence, for general physical systems how to

realistically include the physical properties of the system in the Lindblad formalism

is not always clear.

Microscopic noise models based on the spin-boson Hamiltonian that explicitly

include the linear couplings between the system and the bath degrees of freedom

have provided valuable insights about decoherence effects [23, 19, 20]. Recently, the

decoherence and gate performance of a quantum controlled-NOT gate operation for

several different physical realizations has been studied based on such spin-boson type

Hamiltonians [24, 25, 26, 27]. A number of different techniques has been developed to

solve dynamics of microscopic Hamiltonians [281. However, these methods are often

complicated, and difficult to generalize for systems with more than two qubits. In

addition, in many cases the exact form of the system-bath interactions is unknown,

or the parameters are difficult to obtain experimentally, thus the microscopic models

are difficult to use in these cases.
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The generalized HSR equation of motion derived in Chapter 4 provides an effi-

ciently way to simulate a quantum computer and obtain full dynamics of the qubit

system. Since a quantum computer always operates in the weak system-bath coupling

regime and its state is never close to the thermal equilibrium, the shortcomings of

the white noise assumption in the model are avoided (see Section 4.4). Therefore, the

applicability of the generalized HSR equation of motion to the decoherence problem

in quantum computing is well justified.

In this chapter, we will study the effect of noise on quantum teleportation and a

generic controlled-NOT gate operation, and then compare our results with previous

work by other group. We show that the generalized HSR model can reproduce the

main results obtained previously by using microscopic model Hamiltonians. Finally,

we apply the noise model to study the most important quantum algorithm, namely,

the algorithm for fault-tolerant quantum computation, and evaluate the noise thresh-

old of fault-tolerant quantum computing using the generalized HSR equation of mo-

tion. We will also study how the efficiency of fault-tolerant quantum error-correction

depends on the physical conditions of the quantum computer.

5.2 Dissipation in Quantum Teleportation

By exploiting the entangled nature of an Einstein-Podolsky-Rosen (EPR) pair, the

quantum teleportation protocol enables a sender to transmit the quantum state of

a qubit to a receiver, without physically transferring the qubit through space [291.

Quantum teleportation is the backbone of all quantum communication techniques

[3, 301, and can be used to implement efficient quantum gates [311. A more detailed

discussion of the quantum teleportation protocol is given in Appendix 5.A. In this

section, we focus on the study of the effect of noise on quantum teleportation using

the stochastic Liouville equation approach.
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5.2.1 Quantum teleportation

We consider the scenario of teleporting one qubit from Alice to Bob. Suppose Alice

and Bob share a EPR pair, labeled as qubit a and b, emitted from an EPR pair source,

and Alice wants to teleport qubit c in state ) colO) + c1) to Bob. The EPR

pair source emits two entangled qubits in one of the four Bell states [see Eq.(5.3)]

at time t = 0, and then the two qubits are sent through separate quantum channels

,a and Cb to Alice and Bob, respectively. After receiving qubit a, Alice performs

a Bell-state measurement on her qubits (a and c), and sends the outcome of her

measurement to Bob through a classical channel. Alice's measurement projects qubit

b onto one of the four corresponding states, i.e. I. (o0)b+c11)b), z- (co0)b+C1J1)b),

crx (Co00)b -- c11)b), and i (0)b + c1l1)b). Bob then applies the corresponding

inverse transformation (I, az, or, and -iury, respectively) to recover his qubit in the

state 0).

In practice, errors can happen during the quantum teleportation from several

origins: (1) the degradation of qubit c after the preparation, (2) the noise in the

quantum channels Ca and Cb, (3) the imperfect Bell-state measurement performed by

Alice, (4) the further degradation of qubit b when transmitting the result of Bell-state

measurement through the classical channel, (5) the imperfect unitary transformations

performed by Bob. Here, we only consider situation (2) where channel Ca and Cb are

noisy, and focus on the errors due to the degradation of entanglement. We assume all

other operations are done perfectly. This means that result obtained in the following

represents a lower bound on the errors in the quantum teleportation.

5.2.2 Effect of noise on a pair of entangled qubits

To apply the generalized HSR equation of motion, we first define the zeroth order

Hamiltonian of the system and the correlation functions that describe the source of

noises. To this end, we consider the following effective Hamiltonian for two uncorre-

lated qubits a and b:
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H Ha + Hb

= - d£(t). 7(n) + Jn (t) (5.1)(E, z X ~~~~~~~~~~~~(5.1)
n=a,b n=a,b

= Z [n n(t)] [ + Jn (t)] * (n)
n=a,b n=a,b

where az and ) n = a, b are Pauli spin operators on qubit a and b 2Ca (2gb) is

the averaged energy splitting between the 10) and 1) states of qubit a (b); Ja (Jb) is

the averaged off-diagonal matrix element for qubit a (b); 6Ea(t) (b(t)) is the time-

dependent fluctuating part of the diagonal energy for qubit a (b); 6Ja(t) (6Jb(t)) is

the time-dependent fluctuating part of the off-diagonal matrix element for qubit a (b).

Following the assumption made in Section 4.2, we regard kn(t) and 6Jn(t), n = a, b

as Gaussian Markov processes fully described by their first two moments:

(n (t)) = (6Jn(t)) = 0,

(6En(t)6m(t')) = "3n ' nm6(t - t'), (52)
0 ~~~~~~~~~(5.2)

(6Jn(t)6Jm(t')) = 7 nm6(t -t)

(6En(t)6Jm(t')) = 0,

where -y (/yb ) describes the strength of the diagonal energy fluctuations of qubit a

(b); ?y (yb ) describes the strength of the off-diagonal matrix element fluctuations of

qubit a (b). Clearly, -ya and yb are related to the system-bath interactions involving

a, system operators, and _ya and 7b are related to the interactions involving rx system

operators. These phenomenological parameters can be estimated experimentally [32,

331. Notice that we treat the correlation between qubit a and b independently, because

in quantum teleportation, the two EPR qubits are sent through different channels to

two distantly separated places, thus the two qubits are coupled to distinct baths. In

addition, we assume the diagonal and off-diagonal fluctuations are not correlated.

To simplify our computations, we choose to study the dynamics of the system in

the Bell-state basis. The four Bell states are defined as
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JB1 ) = I (O)a.O)b + 1)all)b),

IB2) = I (O)aO)b- 1)a 1)b), (53)x/-2- ~~~~~~~~~~(5.3)

lB3 ) = I (JO)aJ1)b + 11)a O)b),

B 4) = I (O)a1)b- 1)a10)b),

where subscript a, b labels the state of different qubits. For convenience, hereafter we

will use the notation that use the first digit to denote the state of qubit a, and the

second digit to denote the state of qubit b, i.e. I1)a1)b 11 ). Note that these states

are fully entangled states, meaning that they are not representable by a product state

of the two qubits. In addition, the four Bell states form a complete basis for the two-

qubit Hilbert space. The Hamiltonian for the two qubit system [Eq. (5.1)] in the

Bell-state basis is

0 a + b + h2(t) Ja + Jb + h 3(t) 0

E + Eb + h2l (t) 0 0 Jb-Ja + h24(t)

Ja + Jb + h3l(t) 0 0 Ea - b + h34(t)

0 Jb-Ja + h42(t) Ea - b + h43(t) 0
(5.4)

where the nonzero transformed time-dependent matrix elements are:

h12 (t) = h 21(t) = 6Ea(t) + 6 Eb(t),

h13 (t) = h31 (t) = 6Ja(t) + 6Jb(t), (5.5)

h24 (t) = h42 (t) = Jb(t) - Ja(t),

h34(t) = h43(t) = 6Ea(t) - 6 Eb(t).

From Eq. (5.2) and Eq. (5.5), we can easily compute the correlation matrix R

of the system [Eq. (4.2)]. In this case, R has only 32 nonzero elements that can be

represented by the following 6 irreducible elements:
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R12;12 -- + b

R12;34 = X-T-o,

R13;13 = Y1 ', (5.6)

R13;23 = -1,

= a ± + 1R24;24 = I + ,

R34;34 f ) + fib
Other nonzero elements of R can be obtained using the symmetry property of R [Eq.

(4.3)]. Plugging the correlation matrix elements [Eq. (5.4)] and the time-independent

Hamiltonian matrix elements [Eq. (5.6)] into the generalized HSR equation [Eq.

(4.4)], we obtain the equation of motion for the averaged density matrix of the system,

15(t).

In the limit of zero averaged Hamiltonian matrix elements, E = J = 0, the

equation of motion for the diagonal density matrix elements are decoupled from those

for the off-diagonal density matrix elements. Therefore, the dynamics of a system

initially in one of the four Bell states (i.e. the initial density matrix has only non-zero

diagonal elements) can be fully described by the equations for the diagonal density

matrix elements:

dPil(t) = FO [P22(t) - Pill(t)] +- F1l [3 3 (t) - ll(t)],
d-t p22 (t) = FO- [fPll(t) - 522(t)] + Fl. [fi44(t) - 22 (t)], (5
d-d p3(t) -= rO [p44(t) -p 33(t)] + Frl [pl11(t) - 33(t)],
d~t P44(t) = r0- [ 33(t)- 44(t)] + Fr [p22 (t) - 44(t)],

where we have defined ro = ( + yb), and Frl = ( + Yb). These equations have

the form of a system of kinetic equations involving four states, and, clearly, ro and

F1 have the meaning of the degradation rate constants. The symmetric form of Eq.

(5.7) suggests that all four states are equivalent dynamically, hence we expect the

degradation rates of the systems initially in any of the four Bell states are equal. In

this limit, the results of the teleportation based on different Bell-state channels are

the same. Later we will show that this is only true when e, = J = 0 and the two
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qubits are coupled to distinct baths.

Eq. (5.7) also shows that a system of two qubits initially in one of the maximumly

entangled states degrades into a statistical mixture of the four Bell states. Assuming

that the system is initially in the state B1 ) and stays in the noisy quantum channels

for a time period t, the density matrix for the entangled qubits Alice and Bob obtained

can be represented as the statistical mixture

/3(t) = pl-() [B1)(Bl +22(t) · B2)(B2 +333(t) B3)(B3 +944(t) ]B4)(B4[. (5.8)

The populations can be obtained by solving Eq. (5.7) with the initial condition

Po = B)(Bi :

11(t) = 4 + 4e-2Fot + I 4e-2Ft + e-2(Fo+Fl)t

/22 (t) - -2t + 4 C2rt-1 2(Fo+rl)t
4- 4 T 4 4 (59)

33(t) = 4 + 4 e-2For - e-2Ft -_ 1 e-2(Fo+F1)t
/233 (t) 4 4 

1 1-2Fot _ e-2F1t + l-2(Fo+F1)t/944 (t) I-- 4 4 -- e -i 

From Eq. (5.9), the fidelity of the entangled pair, defined as the overlap between

the initial density matrix Po and the density matrix at time t, can be calculated:

I le_ 2rot + le2rt +_I - 2(Fo+rl)tFe(t) = Trpo(t) = t + -2 t + e2(o)t (5.10)
~~~~~~~4 4 e 

Eq. (5.10) shows that when F0 and F1 are both non-zero, the fidelity Fe(XO) =4 in the

long time limit. When either FO or F1 is zero, Fe(oo) = .This result indicates that

if we can somehow transform the system and minimize either the diagonal energy

fluctuations or the off-diagonal matrix element fluctuations, the original quantum

state can be better preserved. In addition, Eq. (5.10) can be used to compute a

critical time scale beyond which the degraded entanglement can not be purified by

any entanglement purification method 341. The fidelity required by a successful

entanglement purification process, Fe(t) > 0.5, corresponds to a critical time t where

F,(t,) = . For any high-fidelity quantum teleportation to be possible, the EPR pair

should not be allowed to stay in the noisy channels for a time period longer than tc.
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t, also defines the critical distance for possible high-fidelity quantum teleportation,

given the noise of the channels described by the parameters Fo and Fl.

5.2.3 Outcome of teleportation

Now we can use the result in the previous section to study the outcome of teleporting

a qubit c in state 1I = co0O) + cl1) from Alice to Bob. We assume the traveling

time that the EPR pair spends in the noisy channels is t, and the averaged energy En

and off-diagonal matrix elements J for both qubits are very small so that the limit

of E = J = 0, n = a, b can be applied. After receiving the degraded EPR pair

described by Eq. (5.8), Alice and Bob then perform the Bell-state measurement and

corresponding unitary transformation to complete the teleportation. Assuming that

all measurements and unitary transformations are carried out perfectly and do not

introduce more error, the teleportation outcome that Bob obtains is

1 =+(Ico2-l[2).e-2rlt cc~+c;Cl e-2rot + cOc-ccl. e- 2(r o+r l )t]
= [ ~ i-- ~~co~2 - C, 2) e-2 Flt Coc*+C~C1 . e2-~+CO~C

coc+c 2rot + CC1iC0Ct. e-2(Fo±l)t 2 + (fc - col2 ) e 2F1t
2 2 2 2

(5.11)

This result is similar to the result for the dissipation of a two level system in the

HSR model (Section 4.3) 32, 33]. Notice that the decoherence depends on the total

diagonal fluctuations, Fo = yOa + Yo, and the population relaxation depends on the

total off-diagonal fluctuations, I = a + Yb. Clearly, noise in both channels affect the

teleportation outcome additively. In fact, the outcome is exactly the same as if the

teleported qubit is transfered physically from Alice to Bob through the noisy channel

Ca and Cb, although the qubit Bob receives has never traveled through channel Ca

physically.

The fidelity of teleportation as a function of the traveling time t is
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1 1 , 2 1 1Feet=2- (c*c1 + COC* )2e-t + 2C1 ( _ 1-IcI 12)2e_2rt 1 )2 2 12 2 1
(5.12)

The fidelity of teleportation decreases monotonically from 1 to 2 as the traveling2

time t increases. At the long time limit, the fidelity approaches , which means the

result of the quantum teleportation is a half-half mixture of 10) and 11) states, i.e.

information about 4V) is totally lost. This result is in agreement with recent studies

on the effect of noise on quantum teleportation 35].

Eq. (5.12) provides a simple interpretation for the phenomenological parameter

F0 and FlI: oF0 is the total decay rate for the real part of the coherence, and F is

the total population relaxation rate. Recall that yon, n = a, b is defined using the

second moment of the diagonal energy fluctuation 6kn(t), n = a, b (coupling involving

a ) and ,n n = a, b is defined using the second moment of the off-diagonal matrix

element fluctuation 6Jn(t), n = a,b (coupling involving ). We see clearly the

effects of different types of noise: the diagonal fluctuations introduce phase shifts

that only affect the coherence of the qubit; the off-diagonal fluctuations introduce

coupling between the two states and result in population transfer. Note that the

decay of the imaginary part of the coherence depends on both diagonal and off-

diagonal fluctuations. In the terminology of quantum computing, phase-shift errors

are caused by the diagonal energy fluctuations, bit-flip errors are caused by the off-

diagonal matrix element fluctuations, and the change in the ay component are due

to both types of fluctuations. Previous studies on the dissipation of qubits using

spin-boson types of Hamiltonian give similar results for the effects of different types

of system-bath interactions 23, 19, 20]. Our model gives direct relationships between

the phenomenological parameters describing the strength of the fluctuations and the

dissipation rates. In addition, our model can take into account the effects of both

types of fluctuations simultaneously, which is different from most error models used

previously.
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5.2.4 Nonzero averaged matrix elements

When the time-independent part of the Hamiltonian contains nonzero matrix ele-

ments, i.e. 0 or J 7- 0, n = a, b, the exact analytical expression for p(t) is not

generally available. In addition, the effect of diagonal energy fluctuations no longer

can be clearly distinguished from the effect of off-diagonal matrix element fluctua-

tions, both population relaxation and decoherence depend on 'yJ and 'y, n = a, b

More importantly, the four Bell states no longer decay at the same rate, and we can

see the effect of the coherent dynamics depending on the value of the averaged energy

and off-diagonal matrix elements. In the weakly-damped regime where the averaged

Hamiltonian matrix elements are larger than the strength of the noise, the dynamics

of a pair of entangled qubits exhibits coherent oscillating behavior. These oscillations

can lead to errors of the quantum teleportation. Figure 5-1 shows the fidelity of

the four Bell states as a function of traveling time at a = b = 1, Ja = Jb = 0.5,

-Oa = b= 0.1, and fya = yb = 0.1. The different oscillating behavior of the Bell states

can be understood by considering the time-independent part of the Hamiltonian.

From Eq. (5.1), all the nonzero time-independent matrix elements are

(BllHoIB 2) = (B2 1HojB1 ) = a + b,

(B1lHolB3) = (B31HolB1) = Ja + Jb,

(B2jHo0B4) = (B4lH0oB 2 ) = Jb - Ja,

(B3 JHojB4 ) = (B4IHoIB 3 ) = Ea-ob

These matrix elements govern the coherent transition between the Bell states, and

result in the oscillating behavior of the dynamics. In Fig. 5-1, the fidelity of the B4)

state decays monotonically as t increases, because both matrix elements couple this

state to the other states, Jb- Ja and ea - b, are zero for the parameters used. This

also explains why the fidelity of the B4) state provides an upper bound on the fidelity

of other Bell states in Fig. 5-1. The state that is coupled most weakly to other states

decay most slowly.

In the regime where the averaged Hamiltonian matrix elements are smaller than
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Figure 5-1: Fidelity as a function of the traveling time for the Bell states in the
coherent regime: a = b = 1, Ja = Jb = 0.5, 78 = b 0.1, and -y = ~ = 0.1. The
characteristic time scale T0 = 1/a.

the strength of the noise, the system is overdamped and no oscillating behavior can

be observed. Figure 5-2 shows the fidelity of the four Bell states at a = b = 0.1,

Ja = Jb = 0.05, 7y = y0b = 0.1, and -al = yb = 0.1. In this regime, all Bell states

degrade monotonically as the traveling time increases.

The fidelity of the EPR pair used in the quantum teleportation is directly related

to the fidelity of teleportation. Therefore, the above discussion can be directly applied

to the fidelity of teleportation performed using different Bell states. When E $ 0 or

Jn ¢ 0, n = a, b, the fidelity of the teleportation behaves differently when different

Bell states are used. To achieve the best result for the teleportation, we have to choose

the Bell state that is coupled most weakly to other states. In general, En > 0, n = a, b

and Ja and Jb have the same sign, thus B4) state will have the weakest coupling.

The singlet B4) state is the preferred EPR state for the quantum teleportation.
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Figure 5-2: Fidelity as a function of the traveling time for the Bell states in the over-
damped regime: a = C = 0.1, Ja = Jb = 0.05, -' = yb = 0.1, and -y = yb = 0.1.
The characteristic time scale To = 0.1/a.

5.2.5 Effect of collective bath

We have studied the dissipation of two entangled qubits each coupled to a distinct

bath, which is the typical situation relevant for the quantum teleportation. Another

interesting case is when the two qubits are coupled to a common bath. In this case,

we use the Hamiltonian of Eq. (5.1); the difference in the state of the bath is reflected

by different correlation functions for the stochastic processes. When the two qubits

are coupled to a common bath, the first two moments can be represented as

(0 (t)) Jl() = 0,

(6En(t)E.m(t')) = Y 6(t - t), (5.13)

(6Jn(t)6Jm(t')) = 1 6(t - t'),

(K6n(t)6Jm(t')) = 0,

where yo describes the strength of the diagonal fluctuations; 'y1 describes the strength

of the off-diagonal fluctuations. Note that because the qubits are coupled to a common
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bath, the fluctuations on different qubits are correlated. From Eq. (5.5) and Eq.

(5.13), we can derive the correlation matrix R for the system in the Bell-state basis.

In this collective bath limit, R has only 8 nonzero elements that can be represented

by the following 2 irreducible elements:

R 12;12 47o, (5.14)

R13 ;13 4"y1

Using Eq. (5.14), we can derive the equation of motion for the dynamics of two

qubits coupled to a common bath. In the limit of zero averaged Hamiltonian matrix

elements ( = = 0, n = a, b), we obtain a simple result for the populations in the

four Bell states:

dWpl(t) = 4 "/o [p22 (t) - 1 1(t)] + 4yi [3 3 (t) -/l1(t)
d

dtPt52 2 (t) = 4 "Yo [fill(t) - ,522 (t)], (5.15)

dtp533(t) = 4/1 [l I(t) -/33(t)

d (t) = 

Eq. (5.15) describes the dynamics for a system of two qubits coupled to a common

bath in the Bell-state basis. Interestingly, the symmetry that exists in the distinct

bath case [Eq. (5.7)] no longer holds, and the population in the B4 ) state, t544 (t), is

invariant in time. In addition, when only diagonal energy fluctuations exist (1 = 0),

the population in the B3) state is also invariant; when only off-diagonal matrix

element fluctuations exist ( = 0), the population in the B2 ) state is invariant.

Compared to the result of two qubits coupled to distinct baths [see Eq.(5.7)], Eq.

(5.15) shows that the fluctuations interfere constructively for the B1 ) state leading to

a faster decay rate, but destructively for the B4) state. This result can be understood

easily in our stochastic model. In our model, the effect of environment on the system

is represented by a fluctuating field, and the interaction Hamiltonian for the two

qubits is Hnt a) Va(t) + (b) Vb(t) (i = , ; a and b are labels for different

qubits). When the two qubits are coupled to a common bath, Va(t) = Vb(t), we can

factorize the interaction into the form Hint = (a) + a(b) Va(t). Therefore, any= Ci + i ) t.Teeoe n
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state 1S) that satisfies (qj (a) + Ub) = 0 does not interact with the fluctuating

field, and is invariant to the noise. We can see that (B3 1ora) + ab) B 3) = 0 and

(B4 za + u(b) B4 ) = 0, thus both the B3) and B4 ) states are not affected by phase-

shifting noise; (B2 xa) + (b) B2 ) = 0 and (B4 Ia) + C(b) B 4 ) = 0, thus both the B2)

and B4) states are not affected by bit-flipping noise.

The effect of the collective bath has been verified experimentally [36], and studied

in theoretical works related to the ideas of "quantum error-avoiding codes" [37, 38] and

"decoherence-free subspaces" [39, 40]. Duan and Guo have shown similar result using

a Hamiltonian that explicitly includes the linear coupling terms between the system

and the boson bath [41, 38]. The agreement indicates that our simple stochastic

model can handle both the independent and the collective bath properly.

Recently, Kumar and Pandey have studied the effect of noise on quantum telepor-

tation [35]. They applied two different models, a stochastic model and a spin-boson

type model, to this problem, and studied the relative teleportation efficiencies of the

Bell states. Their main result is that for the simple stochastic model, the four Bell

states are equivalent, but for the second model in which the effect of environment is

considered explicitly, the B4) state is least affected by the noise. We obtain a similar

conclusion using the stochastic Liouville equation approach. Based on our result, we

understand that the B4) state is the least affected state because of the assumption

of a collective bath, not because the effect of bath is considered microscopically. Like

spin-boson type models, a simple stochastic model when treated correctly can provide

the same result, and gives a simple picture for the effect of a collective bath versus a

localized bath.

5.3 Errors in a Quantum controlled-NOT Gate

Qubits and quantum gates are the basic elements of quantum computing. A quantum

circuit3 that performs a particular quantum operation can be expressed as a network

3Quantum algorithms are usually described schematically by a quantum circuit, in which a hor-
izontal line represents a qubit, and blocks that shown above represent quantum gate operations.
The computation is done by applying corresponding quantum gates from left to right sequentially.
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of elementary quantum gates [42, 43]. In fact, quantum circuits can be constructed

using one- and two-qubit gates as basic building blocks. For example, the quantum

controlled-NOT gate together with all one-qubit quantum gates form such a set of

universal quantum gates 42, 441. In reality, quantum computations are performed

by subjecting an array of qubits under a sequence of control fields that control the

Hamiltonian of the qubit system and result in specific quantum gate operations.

Therefore, we consider the process of quantum computation as preparing the qubit

system in the initial state, then performing programmed control fields on the qubits

in a sequence of time steps, and finally measuring the output in the working basis.

To understand the effect of noise on general quantum computations and help the

implementation of quantum computers, we need a model that can be used to describe

the decoherence and population relaxation for a system of qubits subjected to external

control fields. The decoherence and gate performance of a controlled-NOT gate on

various types of physical realizations have been studied in Refs. 24, 25, 27, 26, 45].

In particular, Thorwart and Hinggi investigated the decoherence and dissipation for

a generic controlled-NOT gate operation using the numerical ab initio technique of

the quasiadiabatic-propagator path integral (QUAPI). They demonstrated that this

numerical method is capable of describing the full time-resolved dynamics of the two-

qubit system in the presence of noise. To our knowledge, so far, the QUAPI method is

the most sophisticated method that has been applied to study the decoherence during

a controlled-NOT gate operation. In this section, we apply the stochastic Liouville

equation approach to study the same generic controlled-NOT operation investigated

by Thorwart and Hinggi, and show that our model yields similar results. In general,

our model is easier to extend to many qubit systems than the QUAPI method, and

can incorporate the effects of noise from different sources at the same time.

Usually, the measurement in the working basis is performed in the end of computation to read the
outcome. We will see examples of quantum circuits later in this chapter (for example, see Fig. 5-10).
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5.3.1 A generic model for 2-qubit quantum gates

In a physical implementation of a quantum computer, a quantum gate can be ex-

pressed by a Hamiltonian with terms representing the control fields that result in the

gate operation. Consider a elementary step in a quantum gate operation where the

control Hamiltonian is switched on, a generic Hamiltonian describing the constant

external fields and the time-dependent fluctuations (noise) for a two-qubit system

can be written as

H(t) = E [Er. + 6bE(t)] * in) + >3 [J, + 5Jn(t)] ¢x
n=a,b n=a,b

-i-[g + 6g(t)]. (O'(a )o(b) + (a) 0(b ) (5.16)

H0 + h(t)

where the two qubits are labeled as qubit a and qubit b; the first two terms comprise

the Hamiltonian for two non-interacting qubits considered in Eq. (5.1); the last

term represents the inter-qubit interaction with r(n) = (C T r(n) ), n = a, b; g and

6g(t) are the time-independent and time-dependent fluctuating part of the inter-qubit

coupling. The controllable fields are represented by the values of En, Jn, n = a, b,

and g. Quantum gates can be implemented by switching these fields on and off

in a controlled manner. For simplicity, we assume throughout this work that the

external control fields are switched on and off instantaneously, and the interactions

introduced by the external control fields are constant in time; this corresponds to a

rectangular pulse. More realistic pulse shapes can be incorporated into our treatment

without too much additional work, and considering only constant external control

fields does not affect the generality of this model. In addition, a sequence of different

rectangular pulses can be divided into time periods with a constant external field

in each of them, and then treated separately using a different time independent H0

for each time period. Note that because the generalized HSR equation of motion

satisfies the positivity condition required for the dynamics of physically admissible

density matrices, propagators computed for simple one- and two-qubit gates can be

directly assembled to study the dissipative dynamics of more complicated quantum
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circuits. This property is important for the application of the generalized HSR model

to simulate quantum circuits.

The XY type of coupling is adopted in our model Hamiltonian. This interaction is

just an illustrative example, and does not account for all the possible interactions in a

specific realization of solid-state devices. The real form of the inter-qubit interaction

term depends on the controllable interactions available for each individual physical

implementation. Nevertheless, our model can handle the other types of interactions

as well, and we expect that the model Hamiltonian we use here can reproduce the

same general physical behavior as other two-qubit Hamiltonians.

From Eq. (5.16), we can write down the time-independent part of the Hamiltonian

in the standard basis {100), 101), 10),111)}:

Ea + Eb

Jb

Ja

0

and the time-dependent part of the

Jb Ja

a -Eb 9

g Eb - a

Ja Jb

Hamiltonian is

66a (t) + 6Eb(t)

6AJb(t)

6Ja (t)

0

6 Jb(t)

6Ea(t) - 6 Eb(t)

6g(t)

5Ja (t)

6Ja (t)

6g(t)

b(t - 6a(t)

6AJb (t)

0

Ja(t)

AJb (t)

-6ea(t) - 6 b(t)

Furthermore, we assume the two qubits are close to each other in space, therefore,

we consider the correlation functions suitable for two qubits coupled to a common

bath. Again, we assume the fluctuations have zero mean and 6-function correlation

times. The nonzero second moments are
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0

Ja

Jb-£ - (5.17)

h(t) =

(5.18)

Ho =



n(t)6m(t' = )) - c(t -t'),

(KJn(t)dJm(t')) 7= iY '(t - t'), (5.19)

(6g(t)6g(t')) = 2 (t - t),

where -yo0 describes the strength of the diagonal energy fluctuations; Y1 describes the

strength of the off-diagonal matrix element fluctuations; 72 describes the strength of

the fluctuations of the inter-qubit interactions. As we have shown in the previous

section, these phenomenological parameters are related to the kinetic rate of each

separate dissipative process, and can be easily measured experimentally. Also note

that we directly include the inter-qubit coupling fluctuations, which corresponds to

two-qubit flip-flop errors that are difficult to treat in the microscopic spin-boson type

Hamiltonians.

Eq. (5.19) can be used to compute the elements of the correlation matrix R.

Using R together with the averaged Hamiltonian matrix elements in Eq. (5.17), we

can obtain the equation of motion describing the dynamics of the two-qubit system

subjected to arbitrary one- and two-qubit control fields. As a result, we can study

the dissipative dynamics of the qubit system during arbitrary gate operations. Al-

though we only consider an operation done by a set of constant external fields, the

behavior of more complicated gates that involve more than one step can be studied

by combining the result for each elementary operations. In our model, the results

for a set of universal quantum gates can be assembled to compute the results for a

general quantum circuit.

5.3.2 The quantum controlled-NOT gate

The quantum controlled-NOT gate plays a central role in the quantum computation,

because, as we noted above, the set of all one-qubit gates together with the controlled-

NOT gate is universal [441. In the standard basis {100), 101), 10),11)}, the ideal

controlled-NOT gate is represented as
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ideal
UCNOT -

1 000
0 1 0 0

0 0 1

001 0

where we have used the first qubit as the control qubit. This gate operates on two

qubits, and inverts the state of the second qubit (i.e. perform logical NOT operation

on the second qubit) if the first qubit is in the state 1), thus the name "controlled-

NOT'. The controlled-NOT gate cannot be constructed in one step using our model

Hamiltonian. Instead, we must construct the controlled-NOT gate using multiple

elementary one- and two-qubit gates.

To begin with, we define the following one-qubit rotations on qubit a and b:

Un (a) = e 2 a ), n = a,b,

Unx~~~~, ,(n)e
U (a) = n = a, b,

and the two-qubit operation:

iOfer(a)a(b)+- (a)a(b))Uj(a) = e + -

All these operations can be easily implemented using our model Hamiltonian [Eq.

(5.16)] (with all control fields set to zero initially): U(a), n = a, b, can be done by

switching on n =-Eo Sign(a) for a time period of = 2o; Un,(a), n = a, b, can be

done by switching on Jn =-Jo Sign(a) for a time period of = 2-; Uj(a) can be

done by switching on g = -go Sign(a) for a time period of r = -; where the sign

function Sign(o) returns -1 when ao < 0, and when a > 0. Using the corresponding

averaged Hamiltonian H0 for each operations and the correlation matrix presented
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in the previous section, the equation of motion describing the dynamics of the two-

qubit system subjected to any of these operations can be easily obtained. Actually,

for arbitrary initial conditions, the analytical solution for the time-dependent two-

qubit density matrix p(t) during Un(a), Unz(a), n = a, b, and Uj(a) operations are

available in the Laplace domain, and can be used to study arbitrary quantum circuits

composed by these three elementary operations.

The controlled-NOT gate can be expressed by the following sequence of one- and

two-qubit gate operations 17]:

UCNOT = Ubx()Ubz( )Ub(-)Uj( )Uax( 2)Uj(i)Ubz(W2)Uaz(2 ). (5.20)
2 2 2 2 2 22

Table 5.1 lists the required control fields and time span to implement each step using

our model Hamiltonian. In Table 5.1, we use 0, Jo, and go to denote the strength

of the controllable single-qubit bias, intra-qubit coupling, and inter-qubit XY inter-

action, respectively. In addition, we assume that the controllable field strengths and

noise (defined by parameters yo, y, and Y2 as mentioned in the previous section) for

the two qubits are identical. The value of these parameters should depend on the

specific physical realization of the qubit systems. The total time required to perform

the controlled-NOT gate is Tcnot = 7r/2o + 7r/Jo + r/g0 . For a typical energy scale

of 1 meV (suitable for quantum dot qubits), the operation time is on the picosecond

time scale.

Using the parameters listed in Table 5.1, we can calculate the time-dependent

two-qubit density matrix p(t) during controlled-NOT operations under different noise

conditions defined by yo, Yi, and 'Y2. Figure 5-3 shows the time-resolved controlled-

NOT operation for two qubits initially in the 111) state. We set the strengths of

the control fields equal to 1, i.e. os0 = J = g0 = 1. The ideal operation (solid line)

starts at population 1 in the 11) state, and ends its total population in the 110) state,

showing a successful controlled-NOT operation. Three different noisy operations are

shown in Fig. 5-3: (1) operation with the strength of the diagonal energy fluctuations
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Table 5.1: Parameters of the model Hamiltonians used to perform the controlled-
NOT gate in 7 steps. The required control fields and time span for each step are
listed. Note that we only list the nonzero field parameters.

No. Operation Control Fields Time
1 Ubz(2)Uaz( 2) ga = , _b 1 4Eo

2 %(2) 9 = -o T: = + 7o
3 Uax( 2) Ja = J0 T372+
4 gUj(--T) 9 = 90 - 4 - 3 + 0 o2

7
5 Ubx(-7) Jb J T 5 T4 2Jo

6 Ubz() b = o 6 = T 5 + 

7 Ub ( ) Jb = -Jo 7 = T6 + j

y70 = 0.05 (dashed line), (2) operation with the strength of the off-diagonal matrix

element fluctuations 'y = 0.05 (dash-dotted line), (3) operation with the strength

of the inter-qubit coupling fluctuations 7'2 = 0.05 (dotted line). The effect of noise

on the controlled-NOT operation can be clearly seen. In previous work, Thorwart

and Hnggi derived the same time-resolved controlled-NOT operation result [25].

Our result is very close to their numerical ab initio QUAPI result. The agreement

between our time-resolved result to the QUAPI result gives us confidence that our

model captures the correct physics.

5.3.3 Dependence on the noise strength

We use gate fidelity and gate purity to characterize the performance of the controlled-

NOT gate. Other gate quantifiers including the quantum degree and entanglement

capability are also calculated [46], but we do not show the results here because

they follow the same trend as the gate fidelity and gate purity. In our formalism,

the density matrix for the two qubits after the noisy controlled-NOT operation,

P(Tcnot)-UCNOTPOUtcNOT, can be calculated for any initial density matrix P0. Fol-

lowing Thorwart and Hinggi , we average the gate fidelity and gate purity over 16

initial states to account for the general performance of the controlled-NOT gate. The

16 unentangled input states /J), i,j = 1,2,3,4 are defined as I V) = i)a ( Oj)b
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Figure 5-3: Time-resolved controlled-NOT gate operation on the 11) input state.
Shown are the populations in the four basis states Pij(t) = (ijjp(t) ij) as a function of
time. The strengths of all the fields are set to 1 in the calculation, i.e. £0 = Jo = go =
1, and the corresponding time steps are defined in Table (5.1). We show the results for
four different controlled-NOT gate operations: (1) ideal operation without any noise
(solid line), (2) operation with the strength of the diagonal fluctuations Y70 = 0.05
(dashed line), (3) operation with the strength of the off-diagonal fluctuations 'Y, =
0.05 (dash-dotted line), (4) operation with the strength of the inter-qubit coupling
fluctuations 2 = 0.05 (dotted line).
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with 01) = 10), 1 2) = 1), 3) = () + 11))/v2, 1 3) = (0) + 11))/v, 14)

(10) + i l))/ 2, and a, b denoting the state for different qubits. These states span the

Hilbert space for the two-qubit operations, and should give a reasonable result for

the averaged effect 46, 251.

The gate fidelity is defined as the overlap between the ideal output and the output

of the real gate operation. Using the 16 initial states, the averaged fidelity can be

written as

4

F =6ZE (\outI PCNOT 'ou/t) 
i,j=l

where we have defined the ideal controlled-NOT output 1KUt) = UbM4T10/i), and the

output of the real controlled-NOT operation PiCNOT=UCNOT o ) (0j i jUCgNOT. The

gate fidelity is a measure of how close the real operation is compared to the ideal

operation. For a perfect gate operation, the gate fidelity should be 1.

Similarly, the averaged gate purity is defined as

i 4
P_ S_ Tr((PCNOT))

i,j=l

The gate purity quantifies the effect of decoherence. For a perfect gate operation, the

gate purity should be 1.

The results of the averaged gate fidelity and gate purity as a function of the

strength of each individual type of noise are shown in Fig. 5-4. For our generic study,

we again set the strengths of all the control fields to 1, i.e. eo = Jo = go = 1. Clearly,

different types of noise cause different amount of errors. However, they all follow the

same trend. The deviations of the gate fidelity and gate purity from the ideal values,

i.e. - F and 1 - P, are sensitive to the strength of the noise, and saturate to 0.75

in the strong noise limit; the value 0.75 corresponds to a fully mixed state. In the

weak noise regime, both - F and 1 - P depend linearly on the noise strength, as

expected 25, 261. The proportionality constant in this case is 10. In fact, the

proportionality constant depends on the strengths of the control fields, and reflects
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the total operation time required to complete the controlled-NOT gate operation.

As the strength of the control field increases, the total operation time decreases,

and the qubits have less time to undergo the dissipative processes, resulting in less

degradation. To minimize the effect of noise, we need to reduce the proportionality

constant, therefore, we will want to operate the device at the highest control fields

possible. However, the situation will be different if increasing the strengths of the

control fields will also introduce more noise. We will explicitly discuss the effect of

the control-field strength in the next subsection.

From our results for Eo = J = go = 1, to achieve the threshold accuracy of the

0.999 99 level needed for arbitrary long quantum computations [47, 48, 49], one needs

to keep the noise strength below the 10-6 level. Assuming a characteristic energy

scale of 1 meV, this value corresponds to a decoherence time y-' in the /us scale,

which provides a serious challenge for experimentalists working on the realization of

solid-state quantum computers.

The linear dependence of 1-F and 1- P on the noise strengths also indicates that

the effect of the same type of noise is additive in the weak noise regime. To study the

additivity of different types of noise, we calculate the averaged controlled-NOT gate

fidelity when different types of noise coexist at the same time. We define the total

error of the controlled-NOT gate operation E as the deviation of the gate fidelity

from the ideal value:

E(yo, Y1, Y2) = - F(o, 'y1, 2 ), (5.21)

where we have explicitly expressed the total error E as a function of the three different

types of noise strengths:?yo, 7Y, and Y2 In Fig. 5-5, we show the errors of the

controlled-NOT gate operation where the different types of noise coexist, and compare

them to the total errors obtained by adding up the errors caused by the individual

type of noise. Clearly, for all four situations considered, these two lines collapse in

the weak noise regime. The results indicate that errors caused by different types of

noise are additive in the small noise regime. In other words, the following identity
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Figure 5-4: Dependence of the errors in the controlled-NOT gate operation on the
noise strength. The deviations of the gate fidelity (upper panel) and gate purity (lower
panel) from the ideal values are shown, i.e. 1- F and 1- P. The effects of three types
of noise are shown in both plots: (1) diagonal fluctuations represented by yo (solid
line), (2) off-diagonal fluctuations represented by -Y1 (dashed line), (3) inter-qubit
fluctuations represented by Y2 (dash-dotted line). The control-field strengths are set
to E = Jo ::= g = 1. The unit of noise strength is set to 1/To, with characteristic
time scale To = 1/o.
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Figure 5-5: We show the error functions E(o, T71, 7T2) of the controlled-NOT gate
operation in situations where the different types of noise coexist (solid lines).
For each case, the corresponding total errors obtained by adding up the errors
caused by the individual types of noise is also shown (dotted lines). Four dif-
ferent combinations are compared: upper-left: E(F, F, 0) vs. E(F, 0, 0)+E(0, F, 0)
('To and yl); upper-right: E(0, F, F) vs. E(O, F, 0)+E(0,0, F) ( and 'T2); lower-
left: E(F, 0, F) vs. E(F,0,0)+E(0, 0, F) ( and 2); lower-right: E(F,F, F) vs.
E(F, 0, 0)+E(0, F, 0)+E(0, 0, F) (all types of noise). The strengths of all the con-
trol fields are set to 1, i.e. Eo = Jo = go = 1. The characteristic time scale To = 1/o.
We can clearly see that errors caused by different types of noise are additive in the
small noise regime.

holds in the small noise regime:

E('0o, T1, '2) = E('To, 0, 0) -+ E(0, 'Y1, 0) +- E(0, 0, 2)(5.22)

Eq. (5.22) justifies previous studies where different types of system-bath interactions

are treated independently [25, 261.
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5.3.4 Dependence on the strength of the inter-qubit coupling

The time required to finish a quantum gate operation is inverse proportional to the

strength of the control field used, and longer operation time results in more errors.

Therefore, the quality of gate operations also depend on the strength of the control

field. In this subsection, we analyze the dependence of the quality of the quantum

controlled-NOT gate operation on the strength of the inter-qubit coupling go0.

If the strength of the inter-qubit coupling go can be increased without introduc-

ing any extra disturbance on the system, then we expect operating the device in

the strongest g0 achievable will give the best result. However, physically, applying a

stronger field also means introducing stronger noise due to the imperfectness of the

field. In our model, this means stronger fluctuations on the inter-qubit XY interac-

tion. The extra noise can be expressed in the value of the Y2 term. To incorporate

this effect, we allow 72 to depend on the strength of the inter-qubit coupling go. Fig-

ure 5-6 shows the errors of the controlled-NOT gate operation as a function of go at

/o = 0.001, "y1 = 0.001, o 1, and J = 1. Three different noise strength depen-

dences are shown: (1) constant 72 = 0.001 (solid curve), (2) linear "Y2 = 0.001.- (1 +90go)

(dashed curve), and (3) quadratic "Y2 = 0.001. (1 + 902) (dash-dotted curve). The three

curves show the same behavior in the small go regime, in which the operation takes

too much time and the system is fully degraded. As the strength of the coupling go

increases, the errors decrease due to the shorter operation time. When the strength

of the coupling go approaches the strengths of other control fields (E0 = Jo = in this

case), the three curves start to show different behavior. For both constant and linear

'2, the errors generated by other operations (Unz(a) and Un(a)) dominate the errors

of the controlled-NOT gate operation, therefore, increasing go gains nothing and the

curve saturates. Our result for the constant '72 case is in agreement with the result

obtained previously using the QUAPI method 251. The situation is different when

the strength of the noise depends on go quadratically. For this case, the errors start

to increase after 9g > 1, because increasing the inter-qubit coupling go introduces

stronger noise that cannot be compensated by shorter operation times. Therefore, in
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Figure 5-6: Dependence of the errors in the controlled-NOT gate operation on the
strength of the inter-qubit coupling go. Shown are the deviations of the gate fidelity
from the ideal value for three types of 7Y2 : (i) constant 7Y2 = 0.001 (solid curve), (ii)
linear 72 = 0001 (1 + go) (dashed curve), and (iii) quadratic 72 = 0.001 . (1 + g0)
(dash-dotted curve). Other parameters are set to y70 = 0.001, 1-y = 0.001, E0 = 1, and
J0o = 1.

the quadratic case, there exists an optimal go for the gate operation.

Finally, we emphasize that the noise model presented in this work can be used

to study the dissipative dynamics of a many-qubit system with direct inter-qubit

coupling, imperfectness of the control field, and other many-qubit effects. In addi-

tion, because of the 6-function correlation time assumed in the model, the resulting

propagator satisfies complete positivity, therefore no additional time period has to

be inserted between switching events, as will be necessary for methods based on the

Bloch-Redfield formalism. As a result, propagators computed for simple one- and

two-qubit gates can be directly assembled to study the dissipative dynamics of more

complicated quantum circuits. We expect this method to be applied to evaluate the

quality of quantum circuits under realistic device conditions. Such theoretical studies

will be useful for the design and implementation of quantum computers.
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5.4 Noise Threshold of Fault-tolerant Quantum Er-

ror Correction

Recent developments in the theory of quantum computation have generated signifi-

cant interest in utilizing quantum mechanics to achieve new computational capability

[6]. However, the intrinsic sensitivity of a quantum superposition state to imperfect

operations and interactions with its surrounding environment prohibits the realization

of a scalable quantum computer. To combat the inevitable errors and decoherence of

quantum states during the process of computation, quantum error correction (QEC)

and fault-tolerant methods of quantum computation have to be applied in the con-

struction of large-scale quantum computers. It has become clear that the future of

robustly storing and manipulating quantum information relies upon the success of

fault-tolerant quantum error correction [50, 51, 521.

Fault-tolerant methods combined with concatenated coding yield the threshold

result, that states if the noise level per elementary operation is below a threshold

value, then arbitrarily long quantum computation can be achieved using faulty com-

ponents [53., 47, 48, 49, 54]. Using a t-error correcting code, fault-tolerant circuits

constructed from faulty gates with error rate can achieve a logical error rate of

O(et +1) per logical gate. This fact together with the concept of concatenated coding

provides a method for possible large-scale quantum computation, and can lead to

the realization of a scalable quantum computer. Therefore, it is important to study

fault-tolerant methods and estimate the noise threshold values. In addition, the noise

threshold indicates the tolerable noise level in a certain quantum circuit, and provides

a benchmark for the efficiency of QEC circuits.

A number of theoretical estimates of noise threshold and improvements for the

efficiency of QEC circuits have been proposed 53, 47, 48, 49, 55, 56, 57]. In general,

these analyses all based on the following standard assumptions in QEC: (1) uncorre-

lated and stochastic errors, (2) depolarizing noise channel, (3) maximal parallelism,

(4) low noise level in storing qubits, (5) no leakage errors, (6) fresh supply of ancilla

qubits, (7) no overhead for performing gates acting on distant pair of qubits. Realis-
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tically, these assumptions are not usually applicable, and the power of fault-tolerant

QEC under realistic physical conditions is still unclear (see Ref. [49] for a through

examination on these assumptions). In particular, assumptions 3 and 4 are unlikely

to be fulfilled in real physical systems, and these ad-hoc classical stochastic noise

models all neglect device details. Classical noise models that describe the decoher-

ence and population relaxation as exponential decays of the off-diagonal and diagonal

components of the density matrix are widely used for the estimate of the error rates

during quantum computation [58, 20], but generally these models lack quantum fea-

tures that are important for quantum computing, such as the quantum interference

effect. We emphasize that noise threshold values are of little use if limitations of the

physical implementation and realistic noise sources are not considered in the estima-

tion. Therefore, it is of importance to study fault-tolerant QEC circuits using a noise

model that reflects realistic device conditions.

In this section, the generalized HSR equation of motion is applied to investi-

gate the performance of fault-tolerant QEC circuits implementing three qubit bit-flip

code and five-qubit code. Relatively small codes are studied because we perform a

systematic investigation on several variables that can affect the performance of fault-

tolerant QEC circuits. In section 5.4.1 we first present the model Hamiltonian we

used to implement quantum gates, and briefly review the noise model we proposed.

The stochastic Liouville equation approach we used allows us to use a more realistic

noise model and avoid standard assumptions 2, 3, and 4. We then introduce the fault-

tolerant QEC circuits studied in this work in section 5.4.3, and show our estimates of

noise threshold in section 5.4.4. Finally, we go beyond standard QEC and perform a

systematic study on how factors like imperfect measurement, collective bath, repeti-

tion protocol, and level of parallelism affect the performance of fault-tolerant QEC in

section 5.4.5. This theoretical study will be useful for the design and implementation

of fault-tolerant QEC circuits.
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5.4.1 Interactions and Noise Model

We study the performance of fault-tolerant QEC circuits using the stochastic Liouville

equation described in Chapter 4 [59]. In this model, a n-qubit system is described

by a Hamiltonian with a controlled part and a time dependent stochastic part. The

general Hamiltonian of the qubit system can be written as (h = 1)

H(t) = Ho(t) + h(t), (5.23)

where the controlled Hamiltonian H0 (t) describes the interactions between qubits,

and the stochastic part h(t) describes the fluctuations of the interactions due to the

coupling to the environment. During the process of quantum computation, Ho(t) is

controlled to implement gate operations, whereas h(t) is stochastic and results in the

decoherence of the quantum system.

We choose to simulate fault-tolerant QEC circuits using a model control Hamil-

tonian with single-qubit X, Z and two-qubit ZZ interactions:

n n n

Ho(t) = E (t)Zi+ Ji(t)Xi A 9ij(t)Ziz&, (5.24)
i=1 i=1 i=l,j<i

where Zi and Xi are Pauli operators acting on the i-th qubit, and Ei(t), J(t), and

gij(t) are controllable parameters that can be turned on and off to implement desired

gate operations. For simplicity, all gate operations are simulated using step function

pulses with field strengths set to (uniform field strengths), and the "on-time" of

each pulses are controlled to obtain the desired unitary transformations. Note that

by doing so we adopt a dimensionless system in which a unit time scale At is defined

by the field strength , i.e. At = 1/E. We consider fault-tolerant QEC circuits

composed of single-qubit bit-flip (X), phase-flip (Z), Hadamard (H) gates, two-qubit

controlled-Z and controlled-NOT gates, plus measurement of a single qubit in the

computational basis. All these operations can be easily implemented using the model

Hamiltonianri in Eq. (5.24). Figure 5-7 shows the gate symbols and corresponding

unitary transformations used in our simulations. More complicated transformations

177



= Measurement

H J= exp{-i (X+Z)}

- j = exp{i -Z}

= exp{-i 7r Z1Z2 }
-4

Figure 5-7: Quantum gate symbols used to denote unitary transformations imple-
mented with single-qubit X, Z and two-qubit ZZ interactions. Here, physical qubits
are depicted by horizontal solid lines, and quantum gates are represented by boxes.

such as controlled-Z and controlled-NOT gates can be trivially constructed using

these elementary gates, see Figure 5-8.

Note that the set of quantum gates we use is not sufficient for universal quantum

computation. To address the noise threshold of universal quantum computation,

implementations of more complicated quantum gates such as the logical Toffoli gate

(controlled-controlled-NOT) or the logical r/8 gate (7r/4 rotation about the Z-axis)

have to be considered 152, 31]. However, quantum circuits implementing these non-

trivial gates are more complicated and do not directly relate to QEC. In addition,

analysis on the noise threshold of the fault-tolerant Toffoli gate has shown that with

proper arrangement of QEC blocks, the presence of Toffoli gates only causes minor

reduction in the threshold value [54]. Therefore, to demonstrate our methodology

and the effect of fault-tolerant QEC, we will focus on quantum circuits performing

fault-tolerant QEC and calculate the noise threshold for quantum memory and logical

X gate in this paper. All the fault-tolerant QEC circuits studied in this section can

be implemented using the set of quantum gates shown in Figure 5-7.
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IIa=
Figure 5-8: Constructions used to implement controlled-Z (upper one) and controlled-
NOT (bottom one) gates. The definitions of elementary gates are shown in Figure
5-7.

We adopt the ZZ type two-qubit coupling in our model Hamiltonian for an illus-

trative purpose. Although, Hamiltonian in this form can be implemented in many

solid-state systems [15, 17], the real form of the inter-qubit interaction depends on

the controllable interactions available for each individual physical implementations.

Nevertheless, our model can handle the other types of interactions as well, and we ex-

pect that the model Hamiltonian we use here can reproduce the same general physical

behavior as other two-qubit Hamiltonians.

The dissipative dynamics of the system is governed by the stochastic part h(t).

We consider the fluctuations as random Gaussian Markov processes with zero mean

and -function correlation times:

(hij (t)) = 0, (5.25)

(hij(t)hkl(t')) = Rij;kl .6(t -t'),
where bracket () means averaging over the stochastic variables, and the time indepen-

dent correlation matrix element Rij;kl describes the correlations between hij(t) and

hkl(t'). In this section, we consider the following form of fluctuations:

h(t) = 5i(t)Zi+ 6Ji (t)Xi, (5.26)
i i
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where 6Ei(t) and Ji(t) describe the time-dependent diagonal and off-diagonal fluc-

tuations on the i-th qubit, respectively. This corresponds to stochastic single-qubit

phase (Z) and bit-flip (X) errors on each individual qubit. In addition, we consider

the fluctuations described by the following set of equations:

(*i(t)) = ((Wi(t)) = 0,

(6i(t)&6j(t')) = %o 6ij(t - t'), (5.27)

(6Ji(t)6Jj(t')) = Vl 'ijS(t - t'),

(&i(t)SJj(t')) = 0,

where yo and "y1 describe the strength of the diagonal energy fluctuations and off-

diagonal matrix element fluctuations, respectively. For a free single-qubit system

( = J = 0), yo and -/ are well-defined physical quantities, i.e. 70yo and Yi are

population relaxation rate and pure dephasing rate, respectively 591. Note that

noise strengths yo and '-yl should be interpreted as the error rate per unit time scale

At = 1/c, where is the strength of the control fields. Also notice that we treat

the correlation between different qubits independently, which means each qubit in

the system is coupled to a distinct environment (bath). Later we will remove this

constraint and examine the effect of a collective bath on the noise threshold value. We

also assume that the diagonal and off-diagonal fluctuations are not correlated. Using

the generalized HSR equation [Eq. (4.4)], the time evolution of the qubit system can

be obtained by numerically propagating the density matrix of the system using the

equations of motion. In our numerical simulation, the density matrix of a system with

up to twelve qubits can be easily propagated (bound by the size of physical memory on

a personal computer). This method provides an efficiently way to simulate quantum

circuits and obtain full dynamics of the qubit system.

For simplicity, we assume that the noise strengths are uniform, i.e. %YO and 'y are

constants. The noise strength is set to be the same on all qubits at all times, therefore,

we do not distinguish storage and gate errors. By assuming that the storage and gate

errors are at the same level, the uniform noise assumption overestimates the errors

in the system. At the same time it also avoids the weak storage noise assumption
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usually made in standard QEC. This uniform noise assumption also partly addresses

the standard QEC assumption of no overhead for gates acting on distant pair of qubits.

Realistically, to perform a quantum gate between two distant qubits in a large-scale

quantum circuit, multiple quantum swap gates must be employed to shuffle quantum

states around 160]. Our uniform noise assumption reflects the physical condition in

this scenario. Note that the assumption of uniform noise strengths is not required

in our model; more complex setups, in which control field and noise strengths are

different for each individual qubits, can be studied with exactly the same method.

Although our noise model also assumes uncorrelated and stochastic fluctuations,

it is different from classical noise models usually used in standard QEC analyses. The

generalized HSR equation treats coherent evolution and incoherent dynamics at the

same time, thus includes interference effect between different noise channels and the

controlled Hamiltonian Ho(t). These effects do not exist in classical noise models

applied in standard QEC analyses. In addition, our numerical simulation propagates

the full density matrix of the system in time, hence the effect of noise is naturally

followed by studying the continuous time evolution of the system. Therefore, our

method takes into account the state dependent dissipation and dephasing rates as

well as correct propagation of errors in quantum circuits. In standard QEC analyses,

state dependent properties are usually ignored, and the propagation of errors is usually

included using calculations that requires additional approximations 53, 47, 48, 49,

55, 56, 57]. As a result, our noise model not only provides a greater flexibility for

including device conditions, but is also a more realistic description than classical noise

models.

5.4.2 Quantum Error-correcting Codes

The discovery of quantum error-correcting codes enables us to protect quantum in-

formation by encoding [61, 62, 63, 54]. We choose to investigate fault-tolerant QEC

circuits implementing the three qubit bit-flip code and five qubit code, because they

are relatively small and allow us to perform systematic studies. Previous studies on

the fault-tolerant QEC have been mainly focused on Calderbank-Shor-Steane (CSS)
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codes, especially the CSS [[7,1,3]] code 62, 63, 551. Because fault-tolerant encoded

operations on CSS codes are easy to implement, CSS codes are expected to be more

useful for quantum computation than the three qubit bit-flip code and five qubit code.

Nevertheless, since we focus on variables affecting the performance of fault-tolerant

QEC circuits, we expect that results gained in our study can be applied to more

general codes. We first introduce these two quantum error-correcting codes in this

subsection.

5.4.2.1 Three qubit bit-flip code

The three qubit bit-flip code encodes a logical qubit in three physical qubits using

the following logical states:

1OL) = 1000),

IL) = 111).

This code is a stabilizer code with two stabilizer operators 9g = ZZI and 92 = IZZ.

It is easy to verify that any encoded state lO) = cOOL) + c111L) is an eigenstate of

both gl and 2 with +1 eigenvalue, i.e. go4) = ). The OL) and IlL) basis span

the encoding subspace, and the two stabilizers can be used to check whether a state

is in the encoding subspace or not.

The three qubit bit-flip code corrects single bit-flip error on any of the three

encoding qubits. This code does not correct phase errors, therefore it is only useful

when the degradation of the quantum state is dominated by bit-flip errors. However,

we believe insights gained by studying this code can be applied to more general

quantum error-correcting codes.

Figure 5-9 shows a quantum error-correcting circuit for the three qubit bit-flip

code. In this circuit, physical qubits are represented by horizontal solid lines, and

quantum gates are represented by boxes. The first three qubits from the bottom are

data qubits that take a encoded state as the input, and the fourth and fifth qubits are

ancilla qubits that are used to measure the syndromes. The circuit can be divided into

a syndrome detection part and a recovery part. The syndrome detection part uses
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Figure 5-9: A quantum error-correcting circuit for the three qubit bit-flip code. The
codewords are OL) = 000) and IlL) = 1111). Two stabilizer operators are gl = ZZI
and g2 = IZZ.

several controlled-stabilizer gates to transfer the information about the errors to the

ancilla qubits: the first two controlled-Z gates implement a controlled-gl gate, and

the following two controlled-Z gates implement a controlled-g 2 gate. The controlled-

stabilizer gates effectively perform parity check on the data qubits, and measurements

M1 and M2 reveal the parity check results against the stabilizer gland 92, respectively.

The outcome of M1 and M2 indicates the error syndrome on the data qubits, and the

recovery part can then apply the corresponding action to correct the error. Table 5.2

lists the syndrome and the corresponding recovery actions for the three qubit bit-flip

code.

5.4.2.2 The five-qubit code

The five-qubit code is the smallest quantum code that corrects all single-qubit errors

164, 651. This code encodes a logical qubit in five physical qubits using the following

logical states:
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Table 5.2: Measurement results and the corresponding actions required to correct the
error in the data qubit for the three qubit bit-flip code.

Syndrome Actiona
M 1 M2 UR

0 0 I

0 1 X3

1 0 X1

1 1 X2

aThe subscript denotes the qubit to be corrected.

IOL) = {100000) + 110010) + 01001) + 110100)

+101010) - 111011) - 100110) - 111000)

-111101)- 00011)- 11110)- 01111)

-110001) - 101100) - 10111) + 00101)},

11L) = {[11111) + 01101) + 10110) + 01011)

+110101) - 100100) - 11001) - 100111)

-100010)- 111100)- 100001)- 110000)

-101110) - 110011) - 101000)+ 111010)}.

The four stabilizers of the five qubit code is listed in Table 5.3 along with the logical

bit-flip (X) and phase () gates. It is easy to verify that the logical X operator

flips the logical state, XIOL) = L), and the logical Z operator changes the phase of

IlL) while leaving IOL) intact. The QEC circuit for the five-qubit code can be easily

constructed from the stabilizers 61. Table 5.4 shows the syndromes and recovery

actions for the five qubit code.
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Table 5.3: Stabilizers and logical bit-flip (X) and phase () operators for the five
qubit code

Name Operators
91 XZZXI

92 IXZZX
g3 XIXZZ
94 ZXIXZ

logical X XXXXX
logical Z ZZZZZ

Table 5.4: Syndromes and the corresponding actions required to correct the error in
the data qulb)it for the five qubit code.

Syndrome
91 g2 g30 0 0
0 0 0
0 0 1

0 0 1

0 1 0

0 1 0

0 1 1

0 1 1

1 0 0

1 0 0

1 0 1

1 0 1

1 1 0

1 1 0

1 1 1

1 1 1

94

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Action

UR
I

X 1

z 3

X5

z 5

Z 2

X4

y 5

X 2

z4
Z1

Y1

X 3

Y2

y3

y4
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5.4.3 Fault-Tolerant QEC Circuit

Although quantum error-correcting codes can correct errors that occur during the

storage of qubits, they are unable to protect against errors due to faulty quantum

gate operations because multiple-qubit gates can propagate errors and result in un-

correctable erroneous states. For example, imagine that an error happens in the

first ancilla qubit in Fig. 5-9 before the ancilla qubit interacts with the data qubits.

Because the same ancilla is used twice, the error will propagate to two data qubits

through the controlled-Z gates, and render both data qubits erroneous. As a result,

a single qubit error, which is correctable under the QEC code, propagates and gener-

ates uncorrectable multiple qubit errors. Simple quantum error-correction is helpless

against errors in quantum computation.

A significant achievement in the theory of quantum computation is the discovery

of fault-tolerant methods [51]. In the framework of fault-tolerant quantum computa-

tion, a quantum error-correcting code is used to encode the quantum information in

its logical states (data qubits), and quantum computation is performed directly on

the encoded level without decoding. In addition, quantum gates have to be imple-

mented fault-tolerantly, meaning that a single error happening during a fault-tolerant

operation will not lead to more than one error in the outgoing data qubits. There-

fore, with high probability errors due to faulty gate operations can be corrected in the

subsequent QEC step. By constantly applying fault-tolerant QEC to the data qubits,

the accumulation of errors can be decreased. A good introduction to the principle of

fault-tolerant QEC can be found in Ref. 491 and 154]. In this subsection, we present

the general scheme and the constructions of the quantum circuit that we apply to

perform fault-tolerant QEC. For readers from outside the field, a discussion about

the idea of fault-tolerance is given in the Appendix 5.B.
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5.4.3.1 Fault-tolerant QEC scheme

We adopt the fault-tolerant QEC scheme proposed by DiVincenzo and Shor [51].

Their protocol utilizes cat states 4 and transversal controlled-X/Z gates to detect er-

ror syndromes and achieve fault-tolerance. The use of cat states and transversal gates

ensures that the same physical ancilla qubit is never used twice, thus the propagation

of uncorrectable errors can be controlled. The fault-tolerant QEC procedure is di-

vided into three different stage: (1) ancilla preparation and verification, (2) syndrome

detection, and (3) recovery.

Entangled states are required to detect syndrome fault-tolerantly. To ensure fault-

tolerance, ancilla cat states are used to perform transversal controlled-X/Z operations

to transfer information about the errors from the data qubits to the ancilla qubits.

After decoding the ancilla state, projective measurement is then applied to obtain

error syndromes. Because there are more gates in the circuits than the number of

measurements, it is reasonable to assume that measurement has smaller effect on the

threshold result. Therefore, we assume perfect measurement at first. Later we will

study the effect of imperfect measurements.

To ensure that we do not accept a wrong syndrome and mistakenly apply bit-flip

or phase-flip gates on the data qubits, we must repeat syndrome detection and take a

majority vote. Following Shor's protocol 151], the following repetition scheme is used:

4 The cat states are maximally entangled states with the form 1[) = (1 00...0) + 11...1)).
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Repetition Protocol A (three majority vote):

1. Perform the syndrome detection twice. If the same measurement results

are obtained, the syndrome is accepted and data qubits are corrected.

2. Otherwise, perform one more syndrome detection. If any two of the

three measurement results are the same, the syndrome is accepted and

data qubits are corrected.

3. If all three measurement results are different, no further action is taken.

This protocol is basically a simple majority vote in three trials. Note that the

choice of the repetition protocol is not unique. In fact, later we will compare protocol

A to another protocol, and show that we can improve the repetition protocol to

increase the efficiency of the fault-tolerant QEC procedure. After a syndrome is

detected and confirmed by the repetition protocol, a final recovery operation is carried

out to correct the detected error in the data qubit. This completes a fault-tolerant

QEC step.

The DiVincenzo-Shor protocol ensures that a single error during the fault-tolerant

procedure only leads to a single-qubit error in the outgoing data qubits. As a result,

all multiple-qubit errors in the outgoing data qubits must be due to multiple error

events during the QEC procedure; these multiple error events are less possible to

happen. For example, if the fault-tolerant circuit is constructed from faulty gates

with error probability , the probability of generating a two-qubit error, i.e. a two-

error event, is of order 62. In fault-tolerant quantum computation, we constantly

perform the fault-tolerant QEC on the data qubits. As a consequence, single-qubit

errors in earlier computation and QEC steps will be corrected in later QEC steps

with high probability (suppose a single-error correcting code is used). Therefore,

single-qubit errors would not accumulate during the process of computation; only

multiple-qubit errors will accumulate at a rate of 0(2). In consequences, we can

achieve longer computation when e is small.
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Ancilla Preparation Syndrome Detection Recovery

Figure 5-10: The fault-tolerant circuit for a QEC step using the three qubit bit-flip
code. Note that to ensure the fault-tolerant condition, the syndrome detection have
to be repeated for several times, and then take the result of a majority vote. Also
notice that the ancilla preparation and verification of the ancilla states can be done
off-line.

5.4.3.2 Three qubit bit-flip code

Figure 5-10 shows the fault-tolerant QEC circuit for the three qubit bit-flip code.

Compared to the circuit in Fig. 5-9, the fault-tolerant version utilizes entangled

ancilla states and transversal gate operations to achieve fault-tolerance. The quantum

circuit includes two pairs of ancilla qubits that will be prepared in the Bell state

v (100 + 111)) and used to measure the syndromes. Note that the Bell state is

invariant under correlated bit-flip errors (i.e. XX), therefore no ancilla verification

step is needed.

Figure 5--11 shows the syndrome detection circuit in detail. We want to point out

that only limited ability to perform operations in parallel is assumed in constructing

this circuit. In addition, by arranging two-qubit ZZ gate in front of single-qubit

Rz gate, the circuit minimizes error propagation from the ancilla qubits to the data

qubits. At the end of the circuit, two measurements, M1 and M2, are performed
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Figure 5-11: A circuit implementing the fault-tolerant syndrome detection for the
three qubit bit-flip code.

to obtain the error syndrome. After the syndrome is confirmed according to the

repetition protocol A, we then apply the corresponding recovery action to correct the

detected error according to Table 5.2.

Because the three qubit bit-flip code only corrects bit-flip errors, we only consider

off-diagonal fluctuations on each qubit when dealing with this code (o = 0). Note

that the circuit does not protect against Z errors, nor can it prevent the generation

of Z errors. To access its performance on controlling X errors on the data qubits, we

study the fault-tolerant QEC procedure only when the data qubits are initially in the

logical OL) state. In our model, using the logical L) state as the initial state will

give the same result. This selection of initial state is unrealistic, but it allows us to

avoid uncorrectable Z errors that will ruin the QEC procedure.

5.4.3.3 The five-qubit code

A scheme for fault-tolerant quantum computation using five-qubit code is presented by

Gottesman in Ref. 521. In this work, we adopt the representation and fault-tolerant

QEC circuit presented by DiVincenzo and Shor in Ref. [51]. Their implementation

uses a nine-qubit system with five data qubits and four ancilla qubits, which uti-

lizes four-qubit cat state X (10000) + 1111)) for syndrome detection. Moreover, four

syndromes are detected by operator-measuring the four stabilizers sequentially. It is
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straightforward to simulate the syndrome detection circuit presented in their paper

using our choice of model Hamiltonian (Eq. 5.23-5.27). More details about the fault-

tolerant quantum circuit we used to prepare the four-qubit cat state is presented in

Appendix 5.C.

Ideally, multiple input states have to be studied to obtain averaged performance

of the QEC procedure. To avoid such tedious computations, we use a logical qubit

initially in the following pure state density matrix (in the {OL), L)} basis):

x 1y 1 1P=- (I + IX + + z).2 /3 3 f3

This state provides an averaged measure for all possible logical states, thus should

give us a reasonable estimate of the averaged circuit performance.

The quantum circuit implementing the decoding, error-correction, and decoding of

the five-qubit code has been studied experimentally using a NMR quantum computer

with five qubits [66]. Note that our setup simulates a minimal circuit for the fault-

tolerant QEC using five-qubit code with limited physical resources. We expect such

nine-qubit system can be realized on a liquid-state NMR quantum computer using

available technologies. An experimental study on such minimal fault-tolerant QEC

circuit will be an excellent test for our noise model, and can also provide us invaluable

information that is essential for the design of large-scale quantum computers.

5.4.4 Estimate of Noise Threshold

To estimate the noise threshold for a logical operation, we simulate a computation

in which fault-tolerant QEC is performed after each logical operation on the encoded

qubits, and compare the magnitude of logical errors to the magnitude of errors gen-

erated by the same operation on a bare physical qubit without QEC. We use the

crash probability P to describe the amount of logical errors in an encoded state [56].

The crash probability is defined as the probability of having an uncorrectable error

in the data qubits, and can be obtained from the fidelity of the state after a perfect

QEC process. For the single-error correcting codes used in this section, the crash
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probability Pc equals to the probability of having more than one error in the data

qubits.

We define a computational step as a logical gate followed by a fault-tolerant QEC

step. If the same computational step is applied repeatedly on the data qubits n times,

we can describe the crash probability as a function of n, i.e. P = Pc(n). In general,

PC(n) satisfies an exponential form:

P (n) = -( -e2n ) (5.28)
2

We can perform simulation and compute crash probability at each step, Pc(n). By

fitting our simulation result to the functional form in Eq. (5.28), we obtain the crash

rate constant per computational step n = dP(n) n.In addition, we also define the
dn =0Inadtowalo dfn h

crash rate constant per unit time Ft = dP(t) = n/T, where r is the time period
dt =

required to complete a computational step. Note again that the unit time scale At is

defined by the strength of control fields , At = 1/i.

We compute noise threshold for a quantum memory, where repeated fault-tolerant

QEC is applied on the data qubits to stabilize quantum information; and logical X

gate, where a logical X gate followed by a fault-tolerant QEC step are applied on

the data qubits. Figure 5-12 shows the crash rate constants as a function of noise

strength for the three qubit bit-flip code, as well as the results for the five-qubit code.

In Fig. 5-12, we clearly see that in the weak noise regime, the crash rate constant

is proportional to the square of the noise strength. This is the standard result of

fault-tolerant QEC using single-error correcting codes, and reflects the power of the

fault-tolerant QEC procedures. The noise threshold can be obtained from the critical

value at which the crash rate constant for encoded computation crosses over with the

error rate of a bare physical qubit. At noise strength below the threshold value, the

errors in the encoded state accumulated slower than for the bare physical qubit. At

noise strength above the threshold value, the fault-tolerant QEC provides no benefit.

For the three qubit bit-flip code, the noise threshold is about 2 x 10-2 for quantum

memory, and about 1 x 10- a for the logical X gate.
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Figure 5-12: Crash rate constants as a function of the noise strength. We show crash
rate constants for a quantum memory using the three qubit bit-flip code (upper-left)
and five-qubit code (upper-right), and for a logical X gate on the three qubit bit-flip
code (bottom-left) and on the five-qubit code (bottom-right). For the five-qubit code
circuits, curves for different types of noise are presented. To show the threshold result,
we also present curves for the error rate of a single physical qubit (dotted line). The
noise threshold values are summarized in Table 5.5.
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We also perform calculations on five-qubit code. Table 5.5 summarizes threshold

values for three qubit bit-flip code and five-qubit code. The five-qubit code corrects

all single-qubit errors, so we can compute the threshold for different types of noise.

Clearly, there exist minor differences between noise thresholds for different types of

noise. This result indicates that correcting different types of errors requires different

amount of resources, and suggests that by choosing different computational basis,

one can minimize the effect of noise and the required amount of resources for error-

correcting.

In addition, the noise threshold of a quantum memory is about an order of mag-

nitude higher than the threshold of a logical X gate. A closer look indicates that

the difference is mainly due to the different basis of comparison. For the quantum

memory, we must compare crash rate constant per unit time Ft to the decay rate

of a free physical qubit; however, for the X gate, we need to use the crash rate

constant per computational step Fr. The extra logical X operation has little effect

on the crash rate per computational step because the fault-tolerant QEC circuit is

much larger than the circuit for the logical X gate. This observation suggests that

other encoded single-qubit operations and transversal encoded two-qubit operations

should have similar threshold values. Note that noise thresholds of quantum memory

and logical X gate calculated in this section is only an upper bound to the noise

threshold of universal quantum computations, which is probably determined by the

implementations of non-trivial gates.

For the five-qubit code, our estimate of the noise threshold is about 4 x 10 - 5

for the logical X gate. Previous threshold calculations have all adopted CSS codes.

For comparison, we have followed Gottesman's analysis in Ref. [54] and calculated

thresholds of the three qubit bit-flip code and the five-qubit code. Following Gottes-

man's model, we estimated for the five-qubit code a threshold of 10- 3 when storage

errors are negligible, and 2 x 10
- 4 when the strength of storage errors are equal to

gate errors. These values cannot be compared directly to our threshold estimates

because the definitions of unit time and error rates are different. Nevertheless, we

can draw useful observations from the comparison. Clearly, the limited parallelism
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in the circuits and the uniform noise assumption that treats gate errors and storage

errors on the same footing are responsible for the significantly lower threshold we have

obtained for the five-qubit code. Previous calculations have indicated that including

storage errors would decrease the threshold value by almost an order of magnitude.

Our result implies that without maximal parallelism, there is an order of magnitude

reduction on the threshold.

We summarize the assumptions we made for these calculations: (1) stochastic and

uncorrelated X and Z noises, (2) each qubit coupled to a distinct bath, (3) uniform

noise strength, (4) perfect physical 1)0 states as initial states, (5) no leakage errors,

(6) no overhead for performing gates acting on distant pair of qubits, (7) perfect

instantaneous projective measurement. Compared to the standard assumptions in

QEC, we do not assume maximal parallelism and weak storage errors. In addition,

our calculations include real construction of quantum gates. Note that up to this

point we have basically reproduced the standard results of fault-tolerant QEC using

a more realistic noise model. In the next section we will study factors that are

usually overlooked in standard QEC analyses, and examine how these factors affect

the performance of fault-tolerant QEC.

5.4.5 Efficiency of Fault-tolerant QEC Circuits

In this subsection, we study several variables that can affect the efficiency of the fault-

tolerant QEC scheme. The effects of these variables are usually overlooked in standard

noise threshold analyses. We perform a systematic investigation on the performance

of quantum memories stabilized by fault-tolerant QEC and aim to generate a generic

picture on how these variables quantitatively change the efficiency of fault-tolerant

QEC circuits. Because our noise model can provide a quantitative description of

the efficiency of fault-tolerant QEC circuits including realistic device conditions, the

method applied here can be used to benchmark different quantum circuits and search

for optimal circuit design for real physical implementations.
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5.4.5.1 Effect of imperfect measurement

Previous studies on the noise threshold of fault-tolerant QEC typically treat the

measurements as simple one qubit operations [53, 48, 49, 55]. Recently, Steane has

studied the effect of measurement time and found that long measurement time can

significantly reduce the noise threshold 156]. Here we test another type of errors due to

measurement, namely projecting to an incorrect state due to imperfect measurement.

We assume the measurement is instantaneous, and use the following POVM (positive

operator-valued measure) to describe an imperfect projective measurement on a single

qubit:

Mo = (1-W)1)(01 + 1l)(l,

M1 = (1-)|1)(11 + 10)(01,

where M ( 1) describes events in which basis state 10) (1)) is measured, and is

the probability of measurement error, i.e. a projection onto the wrong basis state.

Figure 5-13 shows curves for the crash rate constant per unit time Ft at different

probabilities of measurement errors for a quantum memory implementing the three

qubit bit-flip code. Clearly, Ft is insensitive to the measurement errors even when

the probability of measurement errors is significantly higher than the noise strength

71. The probability of the measurement error as high as 5% has only minor effect on

the threshold value. This result suggests that a short and less accurate measurement

is preferable to a long one.

5.4.5.2 Effect of a collective bath

A distinct feature of our noise model is the ability to describe the effect of a collective

bath, in which all qubits are coupled to the same environment. Such an environment is

relevant in physical implementations such as trapped-ion quantum computers, where

qubits are coupled to the same collective phonon modes [67, 68]. The effect of a

collective bath on the fault-tolerant QEC is an interesting topic. Because a collec-

tive bath seems to contradict the idea of uncorrelated and stochastic errors that is
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Figure 5-13: Ft as a function of noise strength for the fault-tolerant QEC circuit using
three qubit bit-flip code at different level of measurement errors. The error rate of
a single physical qubit is also shown (dotted line). The measurement error has little
effect on the threshold value.

the foundation of fault-tolerant QEC, several authors have suggested that collective

decoherence has to be avoided for fault-tolerant quantum computing [49, 69]. Also,

in a collective bath the effects of noise on different qubits add coherently; as a result,

superdecoherence states exist, and might affect the efficiency of fault-tolerant QEC

[201.

To address this question, we simulate the fault-tolerant QEC circuit for the three

qubit bit-flip code using a noise model in which all qubits are coupled to a common

bath. The following forms of correlation functions for the stochastic process are used:

(i(t)) = (6Ji(t)) = 0,

(6 (t) Ej (t )) = YO . (t - t'), (5.29)

(6Ji(t)Jj(t')) = Yi 6(t - t'),

i(t)6j ()) = 0,

Notice that in Eq. (5.29), fluctuations on different qubits are fully correlated; this
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Figure 5-14: The crash rate per computational step [F for the three qubit bit-flip
code as a function of the noise strength. Curves for the distinct bath system (solid
line) and collective bath system (dotted line) are shown. The result for the collective
bath is close to the result for localized baths. This result suggests that collective bath
has minor effect on the efficiency of fault-tolerant QEC.

reflects the result of coupling to a common bath. Figure 5-14 shows the crash rate

constant Fn for quantum memories using the three qubit bit-flip code with two dif-

ferent types of baths. The crash rate curve for the collective bath case is only slightly

higher than the curve for the localized bath, and there is no significant difference

between these two lines. This result suggests that a collective Markovian bath, which

exhibits spatial but not temporal correlation, has little effect on the efficiency of fault-

tolerant QEC. Although superdecoherence states do exist when the system is coupled

to a collective bath, they have little effect on the dynamics of the system, because

those states represent only a small fraction in the whole Hilbert space. The fault-

tolerant QEC circuit using the five-qubit code was also studied, and similar results

were obtained.

Fault-tolerant QEC methods might not be the best way to deal with collective

decoherence in quantum computation. In a collective bath setup, there exist states
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that are robust against collective decoherence. These states form a subspace called

decoherence-free subspace (DFS) [39, 40]. The existence of DFSs has been verified

experimentally [36, 70, 71, 72]. In addition, by encoding quantum information in

the DFSs and performing quantum gates that are strictly inside the DFSs, universal

fault-tolerant quantum computation can be achieved without the extensive space and

time overheads required for QEC [73, 74, 75]. Other proposals that utilize the prop-

erties of a collective bath include concatenation of DFS and quantum error-correcting

codes [76] and supercoherent qubits 77]. These passive error preventing schemes are

preferable for fault-tolerant quantum computation in collectively decoherent environ-

ments. Although our focus in this section is on QEC methods, it is worth noting

that our stochastic Liouville equation approach can be used to study these collective

decoherence models. In fact, in Section 5.2.1 we have theoretically demonstrated a

decoherence-free state in a two-qubit system using the same approach. Moreover, in

a realistic physical device such as solid state qubits, the correlation between noise

on different qubits is likely to be a function of the distance between the qubits. For

example, the correlations of the diagonal fluctuations might exponentially decay in

space:

(ai(t)aEj(t')) = yOe i-iI/L . (t t').

where L is a characteristic coherence length of the system. Our stochastic Liou-

ville equation approach can easily model such partially collective baths, and it will

be interesting to apply our approach to study DFS methods in these realistic bath

conditions.

5.4.5.3 Repetition protocol

Our simulation propagates the density matrix of the system in the process of com-

putation, therefore, we obtain the full information about the time evolution of the

system. The ability to obtain the full trajectory of the qubit system is another impor-

tant advantage of our simulation method. By examining the trajectory of the system
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during the fault-tolerant QEC process, we find the following repetition protocol yields

the best performance:

Repetition Protocol B (conditional generation):

1. Perform the syndrome detection once. If this syndrome is zero, do

nothing.

2. Otherwise, perform the syndrome detection again. If the same syn-

drome is obtained, accept the syndrome and correct data qubits ac-

cordingly.

3. Otherwise, no further action is taken.

Figure 5-15 shows the crash rate constant En for quantum memories implementing

three qubit bit-flip code using different repetition protocols. Because the majority of

the measured syndromes will be zero in the weak noise regime, protocol B reduces

the amount of time required for a fault-tolerant QEC step by a factor of two. As a

result, the crash rate constant per computational step Fn decreases by a factor of two

when protocol B is used. Similar improvements on the fault-tolerant QEC protocol

have been suggested by other groups 78, 56, 57]. The idea behind protocol B is

that the syndrome detection circuit is complicated and generates extra errors on the

data qubits, therefore minimizing the number of syndrome detection and accepting a

syndrome only when two consecutive detections agree on the same syndrome improve

the efficiency of the fault-tolerant QEC procedure.

5.4.5.4 Level of parallelism

An important factor related to the efficiency of a QEC circuit is the level of parallelism

ill the circuit. The level of parallelism available is determined by the computing

device, but previous threshold calculations typically ignore this issue. The syndrome

detection circuit shown in Fig. 5-11 assumes a restricted level of parallelism. In fact,

for a reasonable physical implementation, gate operations on different qubits might
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Figure 5-15: The crash rate constant per step Fn as a function of the noise strength
for the two different repetition protocols for a quantum memory using three qubit
bit-flip code. Using protocol B reduces the crash rate constant by a factor of two.

actually be operated in parallel to reduce the operation time. For example, a quantum

computer implementing Kane architecture is capable of performing controlled-Z gates

in parallel on different pairs of qubits [15]. Figure 5-16 shows a compressed version

of the syndrome detection circuit that has increased level of parallelism.

Furthermore, because the interactions used to implement the controlled-Z gate

commute with each other (Zi and Z 1Z2 commute), in principle the controlled-Z gate

can be made in one step:

controlled- Z = e-i7rZl Z2/4ei7r(Zl+Z2)/4 = e-i7r(Z1Z2-Z1-Z2)/4

This makes it possible to perform a controlled-Z operation in a single pulse. This

maximal parallelism design is a theoretical model used to benchmark the maximal

gain available from the increase of parallelism. This design does not correspond to

any physical implementation, and is a special case for our choice of model interactions

(ZZ coupling).
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Figure 5-16: A circuit implementing the fault-tolerant syndrome detection for the
three qubit bit-flip code. In this circuit, we assume the quantum computer can
perform quantum gates on different qubits in parallel.

Figure 5-17 shows the crash rate constant per unit time Ft for quantum memo-

ries implementing the three qubit bit-flip code. Results for three syndrome detection

circuits with different levels of parallelism are shown. The noise thresholds for the

original circuit (Fig. 5-11), increased parallelism circuit (5-16), and maximal paral-

lelism circuit are approximately 1.5 x 10- 2, 2.3 x 10-2, and 4.6 x 10- 2 , respectively.

The results indicate that by increasing the level of parallelism, the noise threshold

can be significantly improved. Note that the reduction of the operation time in higher

level of parallelism cannot account for all of the improvement on the threshold values;

because the crash rate constant per unit time It has been scaled by the amount of

time needed to complete a fault-tolerant QEC step (Ft = F/T), any difference in Ft

is from sources other than difference in T. The improvement on the threshold value

is because when the level of parallelism is increased, the number of pathways that

generate uncorrectable errors decreases. Finally, we emphasize that our method can

access the real threshold value reflecting the limitations of an individual computing

device.
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Figure 5-17: The crash rate constant per unit time Ft as a function of the noise
strength for quantum memories using three qubit bit-flip code. Curves for three syn-
drome detection circuits different in the level of parallelism are shown. The solid
line is for the circuit shown in Fig. 5-11, the dashed line is the increased parallelism
circuit shown in Fig. 5-16, and the dash-dotted line is the maximal parallelism circuit
that finishes all controlled-Z operations in a single pulse. We see dramatic improve-
ment on the noise threshold values when the level of parallelism is increased. The
result indicates that by increasing the level of parallelism, the threshold value can be
significantly improved.
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5.5 Conclusion

In this chapter, we have applied the stochastic Liouville equation approach described

in Chapter 4 to study the effect of noise in systems that are relevant to quantum

computations. The model includes realistic physical interactions for the implemen-

tations of quantum gates, and describes the effect of system-bath interactions by

including stochastic fluctuating terms in the system Hamiltonian. As a noise model

for quantum. computers, our approach provides a great flexibility for including device

conditions and a realistic description that takes into account the state dependent

dissipation and dephasing rates as well as correct propagation of errors in quantum

circuits. Thus, we have presented a noise model that can simulate quantum circuits

inl a reasonable size under realistic physical conditions and gives us a full description

of the dissipative dynamics of the quantum computer.

We have applied the noise model to study the dissipative dynamics of a system of

two independent qubits that mimics the EPR pair used in the quantum teleportation,

and showed that the phenomenological parameters used in our model, i.e. 7Y0 and

1, correspond to the decoherence and population relaxation rate, respectively. To

study the effect of noise on quantum teleportation, we have calculated the fidelity

of quantum teleportation. We found the effect of noise in the quantum channels are

additive, and the teleportation fidelity depends on the state of the teleported qubit.

When the two EPR qubits are degenerate and have no intra-qubit coupling, the

relative efficiencies of teleportation for the four Bell states are the same; otherwise,

the singlet state B4 ) is the most efficient one. When the two qubits are coupled to

the same bath (collective decoherence case), the B1 ) state is superdecoherent, while

the B4) state is decoherence-free.

Furthermore, we have studied a generic two-qubit Hamiltonian containing XY

type inter-qubit interaction. The dissipative dynamics of a set of one- and two-qubit

quantum gates were studied, and the results were then combined to calculate the av-

eraged gate fidelity and gate purity for the quantum controlled-NOT gate operation.

The dependence of the quality of the quantum controlled-NOT gate operation on
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the noise strength and the strength of the inter-qubit coupling were investigated. We

found that the quality of the controlled-NOT gate operation is sensitive to the noise

strength and the strengths of the control fields. In addition, the effect of noise is

additive regardless of its origin. We compared our results to Thorwart and H/nggi's

results obtained by the numerical ab initio QUAPI technique. In general, our results

are in good agreement with those obtained by the numerical QUAPI method.

Finally, we have applied the noise model to study the effect of noise on the per-

formance of fault-tolerant QEC circuits. Fault-tolerant QEC circuits implementing

either the three qubit bit-flip code or the five-qubit code were investigated, and the

noise threshold for quantum memory and logical X gate were calculated by comparing

the logical crash rate to the error rate of a bare physical qubit. The noise threshold

of quantum memories using the three qubit bit-flip code and five qubit code is about

2 x 10-2 and 5 x 10 - 4 , respectively. The noise threshold of logical X gates using the

three qubit bit-flip code and five qubit code is about x 10 - 3 and 4 x 10- 5, respec-

tively. Note that in our dimensionless system, these noise strength values should be

interpreted as the error rate per unit time scale At = 1/e, where E is the strength of

the control fields. These threshold values are obtained from an uniform noise model

where magnitudes of storage errors and gate errors are the same. This result indicates

that fault-tolerant quantum computing is possible in systems with strong storage er-

rors. A possible scenario for such system is the linear nearest-neighbor architecture,

where only nearest-neighbor interactions are available for two-qubit gates, and excess

amount of quantum swap gates have to be added to the circuit to perform two-qubit

gates between qubits distant in space.

We have also carried out a systematic study on several variables that can affect

the performance of the fault-tolerant QEC procedure for the three qubit bit-flip code.

Our results show that both collective bath and imperfect projective measurement have

minor effects on the threshold value. However, changing the repetition protocol and

level of parallelism can significantly change the performance of the fault-tolerant QEC

procedure. Our density matrix results indicate that accepting a syndrome only when

two consecutive syndrome detections agree (protocol B), which reduces the number of
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required syndrome detection steps, is the optimal repetition protocol. Compared to

the simple majority vote algorithm (protocol A), protocol B increases the efficiency

of fault-tolerant QEC at least by a factor of two. Regarding the level of parallelism

ill the syndrome detection circuit, in general, a higher level of parallelism results

in a more efficient fault-tolerant QEC circuit. The improvement can not be fully

explained by the shorter operational time for a more parallelized circuit; we suggest

the major contribution for the improvement comes from the reduction of possible

pathways for error propagation. Since the level of parallelism is actually limited by

available physical resources in reality, it will be interesting to examine and simulate

this factor according to a specific physical implementation of quantum computer (such

as ion-trap or NMR).

Finally, we emphasize that without specifying the specific noise model and physical

device conditions, noise threshold values are of little use. Our noise model is based

on well defined parameters that reflect realistic device conditions, and provides a

full description for the dissipative dynamics of the quantum computer. As a result,

this noise model enables us to access the real performance of fault-tolerant QEC for

individual physical implementations. We believe that such information can be useful

for the design and optimization of quantum computers.
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Figure 5-18: A schematic representation for the quantum teleportation protocol.

Appendix 5.A Bennett's Quantum Teleportation Pro-

tocol

Since first proposed by Bennett et al. in 1993 [29], the concept of "quantum tele-

portation" has received much attention. In addition, using quantum teleportation to

securely exchange keys has potentially important impact on quantum communication

and cryptography. Recently, the experimental realization of long-distance teleporta-

tion of qubits [79, 80, 81, 821 and entanglement purification [83] has provided clear

evidence for the applicability of the quantum teleportation idea. The goal of quan-

tum teleportation is to transfer the exact quantum state of a system over space to

another location, without either moving the system physically nor knowing the exact

state of the system (which is impossible in quantum mechanics). One can achieve

such operation by exploiting the entangled nature of Einstein-Podolsky-Rosen (EPR)

pairs.

Consider the teleportation scheme shown in Fig. 5-18, where we have a sender,

a receiver, and an entangled particle generator that generates EPR pairs. Following
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the tradition in information theory, we will call the sender Alice and the receiver Bob

hereafter. Consider the scenario of teleporting one qubit from Alice to Bob. Alice has

a qubit in state [k) = 10)a + 3l1)a, where the subscript a denotes that the qubit

belongs to Alice, and she wants to transfer the information about the state to Bob

(i.e. and 3). In addition, the EPR pair source emits two entangled qubits, one to

Alice and one to Bob, in the following maximal entangled state:

1,~ 0>°) 0>) + II~a 1)

Note that we use the subscript a to denote qubits owned by Alice, and use b to denote

qubits owned by Bob. The total state of the three qubits is the tensor product of

4')a and EPR state:

1
(o10)a + /311)a) 0 a (i0)aJO)b + 1l)aJ1)b) (5.30)

After the two EPR qubits have been received by Alice and Bob, respectively, Alice

holds two qubits, and Bob holds one qubit. We can rewrite the two qubits at Alice's

hands in the Bell-state representation, and obtain four different possible entanglement

of the system. The total three qubits system can be represented as

' [(10)a O)a + 1)a[1)a) (at|0)b + 31)b)

+(1o)alo)a - 1)all)a). (a0O)b- 01)b) (5.31)

+(1)alO)a + O)all)a) . (/3)b + oal)b)

+(11)a)a - O)all)a) (010)b- ll)b)]

It is trivial to expand the tensor product and confirm that Eq. (5.30) and Eq. (5.31)

are the same. Also, notice that the part involve Bob's qubit can actually be written

using a Pauli matrix representation (I, o, ory and iy, respectively).

In Eq. (5.31), the left column are qubits owned by Alice, therefore Alice can

perform Bell-state measurement on these two qubits, and project the partial system

onto one of the four Bell eigenstates [one of the lines in (5.31)1. The consequence

of this measurement is that the qubit at Bob's place will also be projected onto

209



corresponding states, i.e. I ( [O)b + 3 1)b), - (aJO)b + 01)b), ()b + 31)b),

and iy (oO10)b+ /311)b), respectively. Now, if Bob can know the result of Alice's

measurement, he can apply the corresponding inverse transformation (I, rz, ax, and

-icry) to recover his qubit to the original state I). However, since Alice can not

know the result of her measurement before she has performed the measurement, an

additional channel is required to transmit this information to Bob. Therefore, two bits

containing the result of the measurement have to be transmitted to Bob classically,

then Bob can perform the encoded unitary transformation to recover his qubit to

the state aI0)b + 11)b. Note that in the quantum teleportation protocol, a classical

channel is required to transfer two bits of classical information. As a result, the

transmission of information is not faster than the speed of light.

The end result is using a shared EPR pair and two classical bits to transmit one

quantum qubit, without even knowing the state of the qubit (knowledge about a, and

/3 never appears in this protocol), from Alice to Bob. Note that energy and matter can

not be teleported in this manner, only the quantum state (i.e. quantum information)

is transmitted. In addition, although a continuous qubit (infinite degree of freedom)

is transmitted using two classical bits (four degree of freedom), this process can not

be used to increase the capacity of classical channel. Holevo's theorem states that

one qubit can only be used to transport at most one classical bit. There is another

protocol called "quantum superdense coding", where we reverse the protocol to use

one shared EPR pair and one qubit to encode two classical bits [84, 85, 86]. Another

side-effect of the teleportation protocol is that while the two bits sent through the

classical channel can be intercepted by a third party, the information is totally useless

without Bob's entangled copy of the qubit. Therefore, this is an absolutely secure

way to transmit information, and has been suggested as an ideal way for crypt key

distribution, i.e. quantum cryptography 1301.
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Appendix 5.B The Idea of Fault-tolerance

In this appendix, we use the fault-tolerant QEC circuit for the three qubit bit-flip

code shown in Fig. 5-10 to elaborate the main ideas behind fault-tolerant quantum

error-correction. In essence, the fault-tolerant method is a procedure that controls

the propagation of errors in quantum circuits. Figure 5-10 shows the fault-tolerant

QEC circuit for the three qubit bit-flip code. The fault-tolerant circuit implements

several main elements: (1) entangled ancilla states, (2) transversal gate operations,

(3) repetition.

Entanglement is an indispensable resource for quantum computing. Entangled

states are required to detect error syndrome fault-tolerantly, therefore, ancilla qubits

have to be prepared in appropriate entangled states. In addition, the prepared ancilla

qubits must be verified to ensure that the possibility of having correlated multi-qubit

errors, which are uncorrectable errors, is low. Sometimes ancilla qubits need to go

through multiple verification steps to ensure that uncorrectable error in the entangled

state is small (see also Appendix 5.C). Because the ancilla qubits cab be prepared

off-line, we can generate multiple copies of the entangled states and only use the

genuine ones that pass multiple verification steps. If the probability of error in a gate

operation is e, we can ensure that probability of multi-qubit error in the prepared

ancilla states is of order 2 by only accepting states that pass the verification step.

Transversal gate operations are required in a fault-tolerant quantum circuit in

order to ensure that errors do not propagate in an uncontrolled manner. Notice that

in Fig. 5-10, any ancilla qubits interacts only once with a data qubit, therefore any

error in an ancilla qubit does not infect multiple data qubits, and error in a data

qubit does not propagate to other data qubits. Requirement for transversal gates is

the reason that we need many ancilla qubits and entangled ancilla states.

In addition, repetition is required to ensure that we detect the correct error syn-

drome. An error during the syndrome detection can result in a wrong syndrome,

hence an incorrect recovery action that causes further damage in the data. There-

fore, the whole syndrome detection in Fig. 5-10 has to be repeated for several times
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and take a majority vote. For example, if we repeat the syndrome detection for three

times and accept the syndrome only when two of the three outcomes indicate the same

syndrome, then we can assure that the probability of detecting a wrong syndrome is

of order c2 .

Combining all these elements, namely using verification to ensure the quality

of input states, interacting each ancilla qubit strictly with only one data qubit to

control the propagation of errors, and utilizing repetition to reduce the possibility

of making errors, we can ensure that the probability of generating a two-qubit error

is of order 62, and avoid the catastrophic propagation of uncorrectable errors. In a

quantum computation using a single error correcting code such as the three qubit bit-

flip code and the five qubit code, we can perform the fault-tolerant QEC after each

gate operations. In consequence, single-qubit errors generated in earlier computation

and QEC steps will be corrected in later QEC steps. Therefore, only two-qubit

errors will be accumulated in a rate of order 2. As a result, we can achieve longer

computation when is small. Note that the sample principle can be applied to general

quantum error-correcting code. Using a t-error correcting code, with high probability

all errors that involve no more than t-qubits would be corrected, provided that the

errors occur in ancilla preparation and syndrome detection are small.

Appendix 5.C Fault-tolerant Preparation of Ancilla

States

To fault-tolerantly detect error syndrome, we need ancilla qubits to be prepared in

maximally entangled cat states and go through multiple verification steps to en-

sure that magnitudes of correlated multiple-qubit errors are small. This procedure

requires many quantum resources, and could be time-consuming. Fortunately, the

ancilla states can be prepared off-line, and efficient methods for ancilla preparation

and verification do exist [87]. In practice, ancilla preparation requires large amount of

physical resources, and might be the bottleneck for the scale-up of implementations
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of quantum computers. Nevertheless, because high-quality ancilla qubits can be pre-

pared off-line, the difficulty of ancilla preparation does not affect the threshold result

as long as we can have an ancilla factory that prepares high-quality ancilla states in

parallel.

Entangled states are required to detect syndrome fault-tolerantly, therefore, ancilla

qubits have to be prepared in appropriate entangled states. For example, the four-

qubit cat state ~(10000) + 1111)) is necessary for the fault-tolerant QEC of the

five-qubit code. Figure 5-19 shows the circuit we used to prepare and verify four-

qubit cat states [49]. An extra qubit is used to detect correlated X errors in the cat

state; after the measurement, only states with measurement result equals to zero are

accepted. This verification step ensures that a single error in the circuit causes at most

a single-qubit error in the final cat state, therefore the circuit fulfills the fault-tolerant

condition. Compared to other fault-tolerant cat state preparation circuits [6, 871, an

important feature in the circuit in Fig. 5-19 is that only a projective measurement is

required to verify the cat state fault-tolerantly. This is possible because the circuit

takes into account the error propagation pattern in the preparation step. General n-

qubit cat states can be generated using a quantum circuit with similar construction.
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Figure 5-19: The fault-tolerant circuit for the preparation and verification of the
four-qubit cat state. Note that the final result is conditioned by the outcome of the
measurement at the end of the circuit. If the measurement outcome is zero, we accept
the state; otherwise, the state is discarded and the circuit is started over again. The
verification step ensures that a single error in the circuit causes at most a single-qubit
error in the outcome.
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Chapter 6

Coherence Effect and the Dynamics

of Excitation Energy Transfer in a

Single LH2 Complex

Part of the content in this chapter has been published in the following paper:

Y.C. Cheng and R.J. Silbey. Coherence in the B800 ring of purple bacteria LH2.

Physical Review Letters, 96:028103, 2006.

6.1 Introduction

In the previous chapters, we have studied the dynamics of a quantum system under

the influence of an external bath in the limit that the fluctuations induced by the

system-bath interactions are much faster than the time scale of interest, which is

a reasonable assumption for ultra-pure molecular crystals and models for quantum

computers. owever, in many interesting systems, such as in molecular aggregates,

slow fluctuations that results in energetic disorders in the system can have dominat-

ing effect on the dynamics of the system. In this chapter, we study the nature of

the excitations and the dynamics of excitation energy transfer (EET) in this "static

disorder" limit.

The optical properties of nanoscale molecular aggregates have drawn consider-
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able attention both experimentally and theoretically due to their important role

in biological processes and synthetic molecular devices. One of the most studied

molecular assemblies is the photo-synthetic unit of purple bacteria [1, 2, 3, in which

light-harvesting antenna systems capture solar energy and transfer the excitation

energy to the reaction center (RC) to drive the photosynthetic reaction. These light-

harvesting complexes store and transfer excitation energy with astonishingly high

efficiency (above 95%); thus, understanding the underlying design principles of photo-

synthetic light-harvesting systems can lead to improvements of the design of synthetic

antenna devices.

Most purple bacteria contain two types of light-harvesting complexes in their pho-

tosynthetic unit. The light-harvesting complex 1 (LH1) is known to directly surround

the RC, and the light-harvesting complex 2 (LH2) is arranged around the LH1 com-

plexes. LH2 complexes is not in direct contact with the RC, they transfer energy to

RC via LH1 complexes. The high-resolution X-ray structures of the LH2 complexes of

purple bacteria revealed remarkable symmetry in the arrangement of bacteriochloro-

phylls (BChls) in the pigment-protein complexes and have motivated extensive studies

on those systems 4, 5]. For example, the LH2 complex of Rhodopseudomonas aci-

dophila carries a cyclic 9-mer of a-polypeptide heterodimers; each structural unit

consists of two transmembrane polypeptides called the and /3 units, one or two

carotenoids, and three BChl a molecules. The 27 BChl a molecules form two highly

symmetric rings (C9 symmetry); 9 of them form the so called B800 ring which absorbs

maximally at 800 nm, and the other 18 form the B850 ring which absorbs maximally

at 850 nm. The B850 ring contains nine heterodimers whose two monomers are in-

equivalent BChl a molecules. In Fig. 6-1, we show the geometrical arrangement of the

27 BChl a molecules. The Mg-Mg distance between adjacent B800 BChl a molecules

is 21 A, which results in weak nearest-neighbor electronic couplings (- -25 cm-1 ) in

the B800 ring [6, 7. The Mg-Mg distance between the nearest BChl a pigments in a

B850 BChl a heterodimer is 9.6 A, and the nearest Mg-Mg distance between adjacent

B850 heterodimers is 8.9 A. The short BChl a-BChl a distance in the B850 ring leads

to strong nearest-neighbor coupling of - -300 cm -1 [8]. In addition, the nearest-
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Figure 6-1: Arrangement of the pigments in the LH2 complex of Rps. acidophila.
This is a top view showing the 9 B800 BChl a molecules (the outer ring) and the 18
B850 BChl a molecules (the inner ring). The X-ray data have been taken from the
RCSB Protein Data Bank (PDB ID: lkzu).

neighbor distance between B800 and B850 rings is 17.6 A, results in a B800-B850

coupling of about 30 cm-1.

In order to understand the nature of excitations and dynamics of excitation energy

transfer (EET) in the LH2 complexes of purple bacteria, a molecular-level descrip-

tion is essential. Spectroscopic studies, especially recent single-molecule (SM) exper-

iments, have significantly advanced our knowledge about these processes; however, a

detailed understanding is still not at hand, mainly due to the difficulty of characteriz-

ing the quasi-static disorder due to the slow fluctuations of local protein environments

and pigment structures in LH2. These fluctuations can lead to disorder in the exci-

tation energies of the BChl molecules in a single LH2 complex (intra-complex energy

disorder). In addition, both ensemble[91 and SM[10] spectroscopy show that there is

also inter-complex disorder that changes the average excitation energy in each LH2
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complexes.

The magnitude of energetic disorders characterize the energy transfer dynamics

and spectroscopic properties of the LH2 complex; for example, the extent to which

the excitations are delocalized depends on the relative magnitude of the spread in site

energies disorders (A) to the electronic coupling (J). It has been clearly established

that quantum coherence in the B850 ring of LH2 plays a crucial role in light-energy

harvesting, storage, and transfer [11, 12, 13]. Because the electronic coupling be-

tween B850 BChls is sufficiently large [1, 14, 3], a delocalized Frenkel exciton descrip-

tion is required for B850 excited states. In contrast, for the B800 ring, excitations

are usually considered to be localized on individual pigments because the couplings

between B800 BChls are smaller than the energetic inhomogeneities in the system

110, 9. Although SM studies using polarization-dependent spectroscopic techniques

have provided strong evidence that excitations in the B800 band are delocalized on

two or three pigments [15, 161, the effect of the B800 coherence is usually not consid-

ered. In this chapter, we focus on the B800 ring of Rps. acidophila and demonstrate

that, contrary to conventional wisdom, quantum coherence in the B800 ring cannot

be neglected. We show that the type and degree of disorder in the B800 ring can be

extracted from the ensemble spectrum, and that the effect of coherence in the B800

ring subtly changes both the spectrum and EET dynamics in the LH2.

6.2 Theoretical Methods

To describe excitations on a B800 ring, we consider a system of N pigments arranged

in a circular geometry and described by the following exciton Hamiltonian:

N

H = ZEln)(nI + Z JmIn)(mI, (6.1)
n=l n:Am

where n) denotes a BChl Qy excited state localized at site n, En is the excitation en-

ergy of n), and Jnm is the electronic coupling between n) and Im). For the B800 ring,
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the couplings between the next-nearest-neighbor BChl molecules are weak, therefore

we consider only the nearest-neighbor couplings J,nl± (note that for the ring struc-

ture, n = N + 1 denotes the n = 1 site). A reasonable model for B800 excitations

should include intercomplex energy disorder and intracomplex energy disorder (di-

agonal disorder). In addition, due to slow fluctuations of pigment orientations and

positions, disorder in the nearest-neighbor couplings (off-diagonal disorder) must be

considered too. Therefore, to model static disorder, we treat En and Jn,n+l as having

random components:

En = E(O) + E, + aED(n),

Jn,n+l = J(O) + 6J(n). (6.2)

where E(0) and J(O) are ensemble average values of the site-energy and the electronic

coupling, respectively; E, is the intercomplex energy disorder for the ring, 6ED(n) is

the intracomplex disorder (diagonal disorder) at site n, and 5J(n) is the off-diagonal

disorder between nearest-neighbor sites n and n + 1. For simplicity, we assume a

phenomenological disorder model and treat EI, ED(n), and J(n) as independent

Gaussian random variables with zero mean and standard deviations OI, D, and oj,

respectively. Figure 6-2 illustrates the different types of disorders.

Sampling over the distribution of static disorders is done by performing Monte

Carlo simulations. Given oi, D, and j, we numerically generate and diagonalize H

to obtain eigenstates,

Hf qa) = sajqXc),

where E, is the excitation energy of the the c-th exciton state, and the eigenfunction

) can be written as a superposition of the site-localized states:

k0)> = Ec In).
n
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Figure 6-2: A schematic representation of different types of static disorders. In this
work, we consider static disorder as Gaussian random variables with zero mean. The
degrees of intercomplex energy disorder, intracomplex energy disorder (diagonal dis-
order), and disorder in the nearest-neighbor couplings (off-diagonal disorder) are rep-
resented by standard deviations o,, UD, and Uj, respectively.

If the transition-dipole moment of n) is denoted as fln, the transition-dipole moment

of the a-th exciton state Mo is

M= EZCnn
n

Therefore, the ensemble absorption spectral lineshape due to inhomogeneous broad-

ening can be represented as a sum of sticks,

I(w) = (I M 26(w- 6)), (6.3)

where the bracket ( . ) represents the ensemble average over static disorders. Monte

Carlo simulations are carried out to sample disorders and compute transition-dipole

moments Mo and ensemble absorption spectrum I(w). Typically, a simulation av-

erages over 100,000 realizations of disordered Hamiltonian, each with a randomly

generated site energies and couplings according to Eq. (6.2). Note that we only

consider static disorder at this stage; electron-phonon coupling and other dynamical

effects are neglected. Because the B800 BChls are weakly coupled to phonon modes

and the observed homogeneous linewidth is much smaller than the inhomogeneities

in the B800 band, at low temperatures static disorder dominates the lineshape and
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Figure 6-3: Root-mean-square deviation (RMSD) map for simulated ensemble B800
absorption spectra. The contour maps show the RMSD values obtained by comparing
the simulated spectrum using a particular set of disorder parameters ( 1 , UD, and aj)
to a low-temperature ensemble spectrum of Rps. acidophila from the K6hler group.

dynamical effects are negligible 15, 17].

6.3 B800 Absorption Spectrum

We examine the B800 ring of Rps. acidophila for which N = 9 and J(0) = -27

cm -1 [71. I addition, we assume fl = /io with dipole orientations taken from

the B800 Bhl NB to ND directions in the X-ray data [4]. Spectra with a broad

range of r7i, (TD, and oj are simulated and compared to a low-temperature ensemble

spectrum of Rps. acidophila. The B800-only spectrum is obtained by subtracting a

simulated B850 spectrum from an LH2 absorption spectrum at 6K from the K6hler

group. The 13850 spectrum is generated using the lineshape theory developed in Ref.

[181. To fit the B850 part of the LH2 spectrum, we chose for B850 BChl molecules a

Gaussian energy disorder and dipole orientation disorder with a equals to 220 cm -1
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and 10°, respectively. More details about our model of the B850 ring is described in

the Appendix.

Our model enables us to extract detailed information regarding the degree of

static disorder (I, OUD, and aJ) from the ensemble spectrum. In Fig. 6-3, we show

contour maps of the root-mean-square deviation (RMSD) calculated by comparing

the simulated spectrum to the low-temperature ensemble spectrum. Note that a

smaller RMSD value indicates a better fit to the experimental spectrum. We find

reasonable fits located at cxr = 10 ± 5 cm-1, aD = 60 10 cm-1 , and aj = 15 ± 5

cm 1 . From these RMSD maps, we conclude that for the B800 ring of Rps. acidophila

at low temperature, the inter-complex inhomogeneity is minor (I < 20 cm-1 ), the

diagonal disorder aD is around 60 cm -1 , and the off-diagonal disorder aj is around 15

cm-1 . Note that no region with small RMSD value can be found around the aj = 0

line, thus, our fit also indicates that the off-diagonal disorder cannot be ignored. In

addition, our estimate of UD is in excellent agreement with SM experiments 101,

providing an independent confirmation to the interpretation of the SM experiments,

and demonstrating the possibility of extracting the degree of disorder and coherence

from ensemble measurements.

Figure 6-4(a) shows the simulated density of states and the spectral lineshape for

an ensemble of B800 rings with aI = 10 cm -1, AD = 60 cm -1 , and caj = 15 cm 1.

While the density of states is a symmetric function, the spectral lineshape is asymmet-

ric. The maximum of the spectral lineshape is red-shifted from the average energy,

and a pronounced tail in the blue side of the band can be clearly seen. The blue

tail agrees with ensemble measurements. In Fig. 6-4(b), we compare the simulated

spectrum to the low-temperature B800-only ensemble spectrum. The excellent agree-

ment indicates that although the B800 lineshape is dominated by inhomogeneous line

broadening, as expected, the effect of coherence exists and results in the blue tail.

Since the absorption spectrum is modeled as the density of states weighted by

the transition dipole strength M, 2 [Eq. (6.3)1, the asymmetric lineshape indicates

an asymmetric distribution in transition dipole strengths. Figure 6-4(c) shows the

distribution of transition dipole moments for 100 realizations of B800 rings and the
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Figure 6-4: Simulation results for an ensemble of the B800 rings from Rps. acidophila
using oir = 10 cm- 1, aD = 60 cm-1 , and cj = 15 cm 1 . (a) the simulated density
of states (solid line) and the inhomogeneous spectral lineshape (dashed line). (b)
a comparison of the simulated spectrum (solid line) with the ensemble absorption
spectrum (open circle). The small discrepancy close to the blue edge of the band can
be explained by vibrational origins. A Gaussian fit to the red side of the simulated
spectrum (dashed line) is also presented to emphasize the long tail at the blue side of
the band. (c) scatter plot of participation ratio and (d) amplitude of dipole moment
as a function of excitation energy for exciton states in the B800 ring. The solid lines
are average values as a function of the excitation energies.

233

.0

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

1

0.8

._

0
E 0.6

Na,

E 0.4
o

0.2

4 o n -

4



average dipole moment as a function of the excitation energies. Clearly, the distribu-

tion exhibits an anti-correlated behavior around the center of the band; the states in

the red side of the band has stronger dipole strengths than the states in the blue side

of the band. For excitations in both edges of the band, the transition dipole moment

is close to 1. The redistribution of dipole moments in the B800 band indicates that

the B800 excitations are coherently delocalized to some extent.

To characterize the nature of the B800 excitations, we compute the participation

ratio P0 = En ccfl4 [19] for the B800 exciton states. The participation ratio comes in

as the fourth power because it measures the spatial overlap of the probability densities

of the exciton state. Note that the inverse of P, is a measure of the delocalization

length for the excited state. Figure 6-4(d) shows the distribution of the participation

ratio. The average participation ratio ranges from 0.4 in the center to about 0.9 in

both edges of the band, indicating that exciton states at the edges of the band are more

localized, as expected. In addition, we see a broad distribution for the participation

ratios across the band, and a majority of the states have participation ratio in a range

from 0.25 to 0.6, corresponding to delocalized excitons on 2-4 pigments.

For the set of disorder parameters that reproduces the low-temperature ensemble

spectrum of the B800 ring of Rps. acidophila, our calculation clearly shows that the

coherence in the B800 ring cannot be neglected, and the blue tail in the ensemble

spectrum is actually a signature of the quantum coherence. In Ref. [20], Matsuzaki

et al. studied an LH2 complex of Rps. acidophila containing only one B800 BChl

molecule, with no possible coherence. The B800-deficient absorption spectrum they

measured clearly shows a more Gaussian-like profile, a strong evidence supporting

our results. Note that a pronounced blue tail is also observed in the B800 absorption

spectrum at room temperatures, suggesting that the dynamical localization effect at

room temperatures does not fully destroy the coherence in the B800 ring.

Since the average participation ratio is close to 0.5 in a broad range of the B800

band, a reasonable zeroth-order description for the B800 excited states is a coher-

ent excitation delocalized on nearest-neighbor dimers. We have simulated the B800

spectrum using a dimer Hamiltonian with diagonal and off-diagonal static disorder,
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and the result successfully captures the important spectral signatures. In the follow-

ing, we will apply the dimer picture to examine the effect of B800 coherence on the

dynamics of B800 intra-band and B800-B850 inter-band EET.

6.4 Effect of Coherence on the Dynamics of EET in

Single LH2

6.4.1 Dynamics of B800 intraband transfer

Spectroscopic experiments have identified a fast decay channel with wavelength de-

pendent rates in the blue side of the B800 band [21, 22, 10, 231. This extra decay chan-

nel has been attributed to B800 intraband EET 123, 241, and its dynamics has been

described either as incoherent hopping of excitations between monomers [9, 24, 25] or

coherent relaxation in the exciton manifold [10]. However, so far no theoretical model

can quantitatively explain the wavelength dependent rates measured in hole-burning

experiments.

In this section, we apply a simplified dimer exciton-bath to describe the B800

intraband transfer. Based on Eq. (6.1) and (6.2), we consider a disordered exciton

Hamiltonian for a pair of B800 BChl molecules. The total Hamiltonian including

baths is H = Ho + Hb + V, where H0 is the dimer exciton Hamiltonian, Hb is the bath

Hamiltonian, and V describes the system-bath interactions. Based on Eq. (6.1), we

consider a disordered dimer exciton Hamiltonian

Ho = ElI1)(1l + E212)(21 + J12 (I1)(21 + 2)(11),

where the site energies El and E2 and electronic coupling J12 are treated as random

variables according to Eq. (6.2). The two exciton states of Ho will be denoted as

¢+) and l--), which satisfy

Hol) = E:±),
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where the exciton energies E+ = (E1 + E 2 )/2 ± (E1 - E 2 )2/4 + J2. For Hb and V,

we consider independent harmonic baths (h= 1)

Hb= E awn(b bn + 1/2),
n

and a general linear coupling term

V = B11)(1 + B2 12)(21) + Bj(I1)(21 + 2)(11),

where B = n gn,(b t + b,) for a = 1, 2, j. Note that B1 and B2 represent diagonal

linear coupling to phonon modes that modulate site-energies of pigment 1 and 2,

respectively; and Bj represents off-diagonal linear coupling to phonon modes that

modulate electronic couplings between these two pigments. The electron-phonon

coupling term in the excitonic basis (+) basis) reads

-(B + B2)(I0+)(O+I + 1-)(O-I)

+I[IJI (B1 - B2) - 2EIJ B3] (10+)(X-1 + 1X)(X+1)

+ 2J [E. (B1- B2) + J Bj ( )(+1- I-)(0- ),
-2 VE2 jj

where we have defined E = (El - E2)/2, and J = J12. To calculate the downward

(X+) - )) relaxation rates, we assume the initial condition of the total system is

p(O) -= 1+)(+1 Pq,

where

eq exp(-Hb)
Pb -Trb{exp(-3Hb)}'

and Trb means "trace over the bath degrees of freedom". For weak electron-phonon

couplings appropriate for BChl molecules, we neglect the back reaction (justified at

low temperature) and apply the first-order time-dependent perturbation theory to
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calculate the probability of finding the excitation at the -) state at time t:

P_(t) = Trb {(-lP(t)l0-)}

dtl dt2 (Ax(tl)Ax(t 2))eq. e2iE+(t - t2) 6.4)
o o

where the bath operator

Ax (T) = {J IJ [Bi(T)-B2(T)]-2EI Bj(T) ,

and (...)eq means thermal average of over the equilibrium bath states. Taking the

derivative of Eq. (6.4) and applying the equilibrium property of the correlation func-

tion, we obtain the non-equilibrium downward transition rate

dP- (t) 
k(t) dP=(t) = 2Re dT(Ax(T)Ax)eq (6.5)

dt

For simplicity, we assume a short relaxation time for the bath, therefore, the steady-

state rate k(oo) can be used. In addition, we assume that B1, B2, and Bj are not

correlated, i.e. [B,, BO] = 0 for a, 3 = 1, 2, j. Therefore, the bath correlation function

factorizes and the rate k(oo) can be divided into contributions from the diagonal and

off-diagonal electron-phonon couplings, k(oo) = Fd + Fj, where

Pd- [~P00

Fd = 2(E2 2)Re ei(E+-E-)T[Cl(T) + C2 (T)]dT, (6.6)
2E2 J2E 2 roo

ri = 2(E2 + J 2)Re ei(E+-E-) Cj(T)dT, (6.7)

IF, and Fj are relaxation rates due to diagonal and off-diagonal electron-phonon cou-

plings, respectively. In Eq. (6.6) and (6.7), we have defined auto-correlation functions

C0 (T) = (Bo,(T)Ba(0))eq. The correlation functions can be calculated from a spec-

tral function characterizing the bath. For simplicity, we use the following spectral

function:
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02
Da(U) = 3 ( - wn) --(0.5 + 0.58-)/wc, (6.8)

n

where y represents relative coupling strengths to the phonon modes, and Wc is a cut-

off frequency. wc, - 100 cm- 1 is used in our calculations. The algebraic-exponential

form of the spectral function is justified because it reproduces the BChl absorption

spectrum 26, 181. To calculate the homogeneous linewidth of B800 excitations, we

assume the lifetime of B800 excitations is determined exclusively by the B800 down-

ward relaxation and B800-B850 EET, as shown in Fig. 6-5. At low temperatures,

the back reactions can be neglected and the homogeneously broaden lineshape for

each B800 exciton state is a Lorentzian. The linewidths for the blue state and red

state are B = o + d + Fj, and PR = Fo, respectively, where we have assumed a

constant B800-+B850 rate F0 .

Using the degrees of disorders that reproduces the B800 ensemble spectrum, acI =

10 cm -1 , D = 60 cm-1 , and aj = 15 cm - , we calculate the average linewidth across

the B800 band at zero-temperature. The contributions due to the diagonal and

off-diagonal coupling are treated separately, and the low-temperature B800-*B850

transfer rate Fo = 1.7 cm - 1 is used 10, 27]. In Fig. 6-6, we show two theoretical

curves, one with only diagonal electron-phonon coupling (d-only) and the other with

only off-diagonal electron-phonon coupling (Fj-only), and compare them with the

homogeneous linewidths measured in low-temperature SM experiments 101. For the
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rj-only case., we use -yj = 0.04 to obtain the best fit to the experiment. For the Pd-only

case, 'Y1 = t2 = 0.1 is used. Both models give reasonable e-ph coupling strengths

and are in qualitative agreement with experiment. Note that the Fj-only model

describes the wavelength dependence and the activation of the relaxation channel

semi-quantitatively, and is also consistent with hole-burning experiments [21, 241.

In conclusion, the dimer model captures the activation of the B800 intraband

transfer and the trend that the EET rate increases towards the blue side of the band.

Our result suggests that B800 intraband EET is due to phonon induced relaxation in

the exciton manifold, and that the phonon induced fluctuations in J play a major role

in the process. A similar notion has been proposed to explain B800 intraband EET

[10, 24, 28]; our analysis is the first quantitative model that explains the wavelength

dependence and the activation of the relaxation channel. Note that our dimer model

includes hopping between nearest-neighbor sites in the E > J limit, in which the two

exciton states are highly localized.
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6.4.2 Dynamics of the B800-*B850 transfer

Much effort has been focused on the calculation of the B800-B850 EET rate within

a single LH2 [11, 12, 29, 28, 131. However, while the coherence in the B850 ring

has been proved to be crucial for the efficient B800-B850 EET, the B800 coherence

was generally neglected. To study the effect of the B800 coherence on the dynamics

of B800-B850 EET, we consider theoretical B800--B850 rates for two simplified

models for the B800 ring: a B800 BChl monomer, and a B800 BChl dimer. Note that

while the monomer model neglects coherence effect in the B800 ring, the dimer model

includes the coherence between nearest-neighbor pigments. Therefore, by comparing

the theoretical results calculated from these two models, we can access how quantum

coherence in the B800 ring alters the dynamics of B800-B850 EET.

To describe the B800 BChls, we use an effective Hamilton with independent har-

monic baths and linear diagonal electron-phonon coupling. The average excitation

energy of B800 BChls is set to be 515 cm-1 higher than that of B850 BChls, and the

spectral function in Eq. (6.8) with 'y = 0.7 is employed for the B800 BChl molecules.

For the B800 dimer model, the nearest-neighbor coupling is -27 cm -1 . To compute

the B800-*B850 EET rate, we also need a model for the B850 excitations. For the

B850 ring, we assume the B850 effective Hamiltonian in Ref. [8] and the e-ph cou-

pling in Ref. [18]. The interactions between B800 and B850 BChls in Ref. [7] are

employed. We also consider energetic disorder that reproduce the ensemble spectrum

of the LH2 from Rps. acidophila. For the static disorder of the B800 ring, Gaussian

energetic disorders with the standard deviations 10 cm- 1 and 65 cm -1 are employed

for the intercomplex disorder and diagonal disorder, respectively. For the B850 ring,

Gaussian energetic disorders with the standard deviations 50 cm - 1 and 200 cm- 1 are

used for the intercomplex disorder and diagonal disorder, respectively. More than

100000 realizations of disorder are used for the ensemble average. A more detailed

account for the model for the B850 ring is presented in Appendix 6.A.

B800-4B850 EET rates at kBT - 10 cm- ' are calculated using Jang, Newton,

and Silbey's multichromophoric F6rster resonance energy transfer (MC-FRET) theory
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Figure 6-7: The distribution of the B800-4B850 EET time at kBT = 10 cm -1 calcu-
lated from the MC-FRET theory.

[13]. We calculated B800-B850 EET times for the monomer model (M), and for the

lower levels (-L) and the upper levels (u) of the dimer model. Figure 6-7 shows the

distributions of the theoretical B800---+B850 EET times. The ensemble average values

of TM, TL, and -TU are 1.3 ps, 1.6 ps, and 1.2 ps, respectively. At low temperatures,

the equilibrium B800-*B850 rate is given by TL. The theoretical value of 1.6 ps is in

agreement with experimental transfer time of 1.6 ± 0.2 ps determined by femtosecond

pump-probe spectroscopy [22]. The distributions in Fig. 6-7 shows that most upper

levels have faster B800-*B850 EET rates than the lower levels. This difference is due

to the B800 coherence.

In Fig. 6-7, we show the average rate as a function of the B800 excitation energy

for both monomer and dimer models. The monomer model gives a relatively weak

energy dependence for the B800-4B850 EET rate, a result that is consistent with the

measurement made on B800-deficient LH2 [20]. The weak energy dependence can

be attributed to the strong site-energy disorder of the B850 BChl molecules, which

results in a broad B850 band and almost uniform spectral overlaps between the B800
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Figure 6-8: The average B800-+B850 rate as a function of the energy relative to the
average B800 excitation energy.

and upper B850 levels. The dimer model, however, gives a more dramatic energy

dependence for the B800-*B850 EET rate; the rate is higher in the blue side of the

band and lower in the red side of the band. This trend is contrary to the prediction

of simple F6rster theory, which would give faster rate for states in the red side of

the band because of their stronger dipole strengths [see Fig. 6-4(c)]. Our results

demonstrate the importance of the B800 coherence and multichromophoric effects for

the light-harvesting in LH2.

With this particular B850 model Hamiltonian, our calculations suggest that the

B800 coherence reduces the B800-+B850 EET rate at low temperatures. At room

temperature, however, the rapid B800 intraband EET allows the upper levels to

dominate the B800-B850 dynamics, because both upper and lower levels can now

transfer energy to the B850 ring. Thus the efficient B800 intraband EET, due to the

B800 coherence, is likely to assist the B800-*B850 EET at room temperature. To

demonstrate the effect, we calculate the B800--B850 EET time for the dimer model

at high T, TE = 2TLTU/(L + TU). In Fig. 6-9, the distribution of TE is significantly
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Figure 6-9: A comparison of the distribution of the average dimer B800-+B850 EET
time TE to the distribution of the monomer B800--B850 EET time TM. The theoret-
ical B800-+B850 EET time is calculated from the MC-FRET theory.

narrower then the distribution of TM, indicating that the B800 coherence makes the

B800-*B850 EET process more uniform and hence more robust.

We have also performed similar calculations using other B850 model Hamiltonians,

and found that while the values and profiles in Fig. 6-7 are sensitive to the electronic

couplings between B850 BChls, the distribution of TE is narrow regardless of the

B850 Hamiltonians used. Thus, the coherence in the B800 ring creates more uniform

pathways for B800-+B850 EET, and increases the rate of EET at room temperature.

Finally, we point out that compared to the SM measurements shown in Fig. 6-

6, our theoretical result overestimates the B800-+B850 rate in the red side of the

band by about a factor of 2. While this disagreement does not alter our conclusion

about the B800 intraband EET because the absolute value is small compared to

the B800 intraband EET rate, we believe it indicates that the B850 Hamiltonian

needs improvement. Methods presented in this chapter can be applied to characterize

B850 electronic couplings and provide a consistent theoretical model that consistently

describes the whole LH2 complex.
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6.5 Conclusion

In this chapter, we have demonstrated that the coherence in the B800 ring of the

purple bacterium Rps. acidophila cannot be neglected, and the long blue tail observed

in the B800 band is a signature of the B800 coherence. Our calculation suggests that

the B800 intraband transfer is described by energy relaxation in the exciton manifold,

and the B800 coherence significantly changes the dynamics of the B800-*B850 EET.

The results are applicable to light-harvesting complexes from other species and other

molecular aggregates. We have largely neglected temperature effects and focused on

low temperature data; at finite temperatures, the ideal lineshape theory of Jang and

Silbey can be used to incorporate the effect of quasi-static and dynamical disorders

[30, 181. Additional calculations on Rs. Molischianum indicate that B800 coherence

also plays a similar role in that structure.
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Figure 6-10: A graphical illustration showing the arrangement and labeling of pig-
ments in the LH2 complex of Rps. acidophila. The outer ring represents the B800
unit, and the inner ring represents the B850 unit.

Appendix 6.A A Model for the B850 System

To study the B800-B850 EET, we need a model Hamiltonian that describes the

B850 excitations. In addition, we need to obtain the disorder parameters for the

B850 ring at low temperatures. In this appendix, we describe the model Hamiltonian

and the lineshape theory that we used to compute the ensemble spectrum of the B850

ring in the LH2 complex from Rps. acidophila. We then fit the simulated spectrum

to the B850 part of a low-temperature LH2 ensemble spectrum to obtain the suitable

disorder parameters. As a result, we obtain a model for the B850 system that includes

both electronic couplings and static disorders, and reproduces the observed ensemble

spectrum at low temperatures.

The B850 ring of Rps. acidophila consists of 9 ao3 heterodimer of BChl a molecules

(see Fig. 6-10). Similar to the B800 ring, the Qy excitations in the B850 ring can be

described by the disordered exciton Hamiltonian shown in Eq. (6.1) and Eq. (6.2).
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However, the couplings between B850 BChl molecules are stronger than the B800

couplings, therefore, including only nearest-neighbor interactions is insufficient, and

a complete effective Hamiltonian for B850 interactions is required. Over the past few

years, several effective Hamiltonian for the B850 ring of Rps. acidophila have been

purposed [8, 29, 14, 3, 28]. In this work, we adopted the nearest-neighbor and next-

nearest-neighbor interactions from the parameterization of Scholes et al. [8], because

their effective Hamiltonian is known to produce results that are in good agreement

with nonlinear spectroscopic experiments [12]. To calculate electronic couplings, they

applied a super-molecule approach similar to the one we used to calculate the transfer

integrals of polyacene crystals in Chapter 1 [31, 32]. Their ab initio molecular or-

bital calculations employed Hartree-Fock theory with single-excitation configuration-

interaction (HF-CIS) to describe the Qy excited states using the 3-21G* basis set. For

the B00-B850 inter-ring couplings, we used the values calculated in Ref. [12]. The

B850 model Hamiltonian and the B800-B850 couplings used in this work are listed

in Table 6.1. Note that all other interactions not listed in Table 6.1 can be obtained

by applying the 9-fold rotational symmetry of the LH2 complex,

We use the following Hamiltonian to describe B850 excitations:

Ho = -g g)(gl + EnIn)(n + JnmIn)(ml
n n7?m

- -gg)(gI +He

where g) denotes the groundstate of the B850 system, In) denotes a BChl Qy excited

state localized at site n, E9 is the average gap between the groundstate and the BChl

Qy excited state, En is the excitation energy of In), and Jnm is the electronic coupling

between n) and Im). Note that the average matrix elements for He are listed in

Table 6.1. To include static disorder, we consider intercomplex energy disorder and

diagonal disorder for the site-energies En = Eo(n) + 6Ei + 6ED(n) [see Eq.(6.2)].

Similar to the exciton-bath Hamiltonian adopted for the B800 BChls in Section

6.4.1, we consider a total Hamiltonian including B850 electronic states and baths H =
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H0 + Hb + V. We consider independent harmonic baths (h = 1) Hb Z= w,(btbo +

1/2), and a diagonal linear coupling term

V g,9 rIn) (nI (bt + ba).
n~a

In contrast to the B800 spectrum, the homogeneous line broadening in the B850

absorption spectrum is not negligible even at low temperatures, because of the strong

electronic couplings in the B850 ring. Therefore, a lineshape theory that describes the

homogeneous broadening is needed. Assuming an isotropic electromagnetic field, we

apply the expression derived by Jang and Silbey [301 for the single molecule lineshape

of a multichromophoric system:

1 fn,m 7
n 7r n)KmTn 71( - + (g - He) + () ' (6.9)

where TrIe{...} means "trace over the electronic degrees of freedom", C(W) is the dis-

sipation kernel, and fln is the transition-dipole moment of n), which we use the

orientations taken from the B800 BChl NB to ND directions in the X-ray data [4].

The dissipation kernel IC(w) is calculated using an expression which is valid up to the

second order of the electron-phonon coupling V:

1 C(S) j dteiwtTrb {eiH"btVe- iHbte-iHUtVpeq} (6.10)

Here, we compute the dissipation kernel C(w) in Eq. (6.10) using the spectral function

in Eq. (6.8) with y = 1.

Equation 6.9 enables us to calculate the "ideal lineshape" of a single B850 system.

To obtain the ensemble spectrum, we use Monte-Carlo simulations to sample and

average over static disorder. Figure 6-11 shows a simulated spectrum that includes

intercomplex energy disorder with c = 50 cm - ' and diagonal disorder with CD = 200

cm - . The excellent fit in the B850 part of the spectrum justifies the model B850

Hamiltonian and disorder parameters that we adopted in this chapter.
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Figure 6-11: A comparison of the simulated B850 absorption spectrum using aI = 50
cm- 1 and as = 200 cm-1 (solid line) with a ensemble spectrum of the LH2 from Rps.
acidophila at 6K from the K6hler group (dashed line). The agreement in the B850
part of the spectrum justifies the disorder parameters and spectral function used in
this chapter.
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Chapter 7

Markovian Approximation in the

Relaxation of Quantum Open

Systems

Part of the content in this chapter has been published in the following paper:

Y.C. Cheng and R.J. Silbey. Markovian Approximation in the Relaxation of Open

Quantum Systems. The Journal of Physical Chemistry B, 109:21399-21405, 2005.

7.1 Introduction

Dissipative dynamics of a quantum system embedded in a complex environment has

been of great interest in recent years. Because of its important role in physics and

chemistry, numerous works have been devoted to theoretical models for open quantum

systems[1, 21. However, in contrast to classical dissipative processes, that can be

satisfactorily described by classical Langevin or Fokker-Planck equations [31, a general

theory for quantum dissipation is still considered an unsolved issue.

Despite the difficulty of formulating a general theory, adequate results can be

obtained in many limiting cases. We have shown successful applications dealing with

electron-phonon coupling and decoherence in quantum computing in this Thesis. As

a general theoretical framework, the celebrated reduced dynamics description derived
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from projection operator or cumulant expansion techniques has generated promising

results over the past few decades. By partitioning the total system into a "system"

part and a "bath" part, one can reformulate the exact quantum Liouville equation

and perform a mathematically rigorous expansion in the weak-coupling limit. As a

result, time-convolution or time-convolutionless quantum master equations describing

the dynamics of the reduced system can be derived by following either a chronological

ordering prescription (COP) or partial ordering prescription (POP), respectively 4,

5, 6]. These equations are usually non-Markovian and difficult to treat analytically.

Therefore, a separation of time scales is usually postulated and the memory effects

in the dynamics are then neglected for times greater than the bath relaxation time

Tb. This approximation allows us to derive Markovian master equations (Redfield

equations [7]) for the reduced dynamics of the quantum system. All applications

covered in the previous chapters of this Thesis are based on dynamical equations

of the Markovian nature, i.e. the dynamics of the system does not depend on its

memory of the previous history of the trajectory. In this chapter, we will study the

applicability of the Markovian approximation in condensed phases.

The applicability of the Markovian approximation has long been criticized in the

literature 8, 9. In addition to the assumption of the short bath relaxation time, it is

well known that the Markovian master equations do not always preserve the positivity

of the reduced density matrix of the system, thus resulting in physically inconsistent

outcomes. Suarez et al. have shown that the problem of non-positivity is due to the

transient memory effects in a short time scale, and can be repaired by a modification

of the initial conditions (slippage) [10]. Gaspard and Nagaoka adopted the slippage

idea and developed a slippage superoperator method that can determine the slippage

of initial conditions in a consistent way, but the range of applicability of their slippage

superoperator has not been fully tested [11. Despite these stringent conditions and

obvious inconsistencies, Markovian master equations have been applied successfully

to a broad range of physical and chemical problems. Although non-Markovian ap-

proaches have grown in interest recently, Markovian approaches are favored due to

their simplicity and computational efficiency 112, 131. Therefore, a scheme that can
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ensure the positivity of the reduced system dynamics in the framework of quantum

Markovian equations is desirable.

In this chapter, we examine two problems concerning the applicability of the

Markovian approximation, and propose a simple scheme for applying Markovian mas-

ter equations that is capable of reproducing results from the non-Markovian master

equations over a wide range of parameters. In Section 7.2 we shall briefly review the

derivation of the Markovian master equation. In Section 7.3 the physical require-

ments for the Markovian approximation will be examined in detail, and the factors

defining the time scale for the non-Markovian dynamics will be clarified. In Section

7.4, we will then formulate a concatenation scheme that avoids using slippage initial

conditions and absorbs the transient memory effects in a natural manner. In ad-

dition, we show that Gaspard and Nagaoka's slippage superoperator method is not

successful of preserving positivity in all cases. Finally, in Section 7.5 we will examine

the concatenation scheme by applying it to study the spin-boson problem.

7.2 The Quantum Master Equation

Consider a system S governed by the system Hamiltonian Hs and coupled to a bath

B of harmonic oscillators through an interaction linear in the oscillator coordinates

(h= 1) 13, 14]:

H = Hs+HB+AHsB

= Hs + wat a,+ AS. -,g(at + a),

where at and a, are the creation and annihilation operators of the a-th bath mode, w,

is the mode frequency, S is an operator referring to the system degrees of freedom only,

and g is the coupling constant. The dynamics of the total system can be described

by a time-dependent density matrix p(t), and follows the Liouville equation

/(t) = -i[H, p(t)].
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To obtain the reduced description for the system, we define the following projection

operator 79:

eq
PP=Pb TrBp, (7.1)

where

eq = exp(-HB) (7.2)
TrB{exp(-HB)} '

and TrB means "trace over the bath degrees of freedom". The choice of projection

operator corresponds to a factorized initial condition for the total system,

P(0) = (0) P~q, (7.3)

where a(0) is an arbitrary state for the system. The reduced density matrix for the

system is then defined as

C(t) = TrBp(t).

Following the standard projection operator technique and neglecting all terms of

higher order than A2,[151 we obtain the differential-integral equation for the reduced

density matrix for the system,

a(t) = -i[Hs, u(t)] + i 2 Fi(T) [S, [So(-T), a(t)]+]dT
t ° (7.4)

-A2 r,(T) [S, [So(-T), c(t)]]dT,

where [...]+ denotes the anticommutator, So(T) = eiHSTSe-iHsT, and memory kernels

Fr(r) and Fi(r) are the real part and imaginary part of the bath correlation func-

tion, respectively (see details in Appendix 7.A). In this linear coupling model, these

memory kernels can be explicitly written as
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Fr (T) = Eg 2 cos(wT) coth(3w,/2),

Fi (T) = E g2 sin(w-T).

Equation (7.4) is the quantum master equation that describes the dynamics of the

reduced quantum system. To derive this equation, we have assumed that the system-

bath coupling is small, so that we can neglect terms of higher order than A2 and

replace the evolution kernel in the integrals by the zeroth-order one. Note that in Eq.

(7.4) we have adopted the POP approximation and derive the time-convolutionless

form of the master equation by replacing a(t- r) with eiHsT r (t) e -iHs; in the weak-

coupling limit, the COP and POP approximations are equivalent. A formal derivation

of Eq. (7.4) using the projection operator technique is given in Appendix 7.A.

Equation (7.4) is not yet a Markovian master equation because the integrals still

refer to the initial time. If the bath correlation functions Fr(r) and Fi(T) decay to

zero within a finite bath relaxation time Tb, then for long times t >> Tb, we can extend

the integrations over r to infinity and obtain the Markovian master equation:

a(t) = -i[Hs, u(t)] + iA2j ri(T) [S, [So(-T), u(t)]+]dT
00 o(7.5)

-A2 rr(T) [S, [So(-T), a(t)]]dT.

This step is the Markovian approximation. The resulting Markovian master equa-

tion (Redfield equation) has been studied in innumerable papers in the literature.

However, to the best of our knowledge, concrete criteria for the applicability of the

Markovian approximation are still unclear. In the next two sections, we will study

the applicability of the Markovian approximation, and provide a simple scheme that

absorbs the transient memory effects in a straightforward manner.
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7.3 The Markovian Approximation

It is convenient to define a spectral strength function for the bath, J(w) = g 6(w,-

w), and rewrite memory kernels Fr(T) and Fi(T) as integrals:

Frr(T) = fo J(w) cos(WT) coth(/3w/2)dw, (76)

Fi (T) = fo J() sin(wT)dw.

To avoid infrared and ultraviolet divergences in Fr(T) and Fi(T), we assume that J(w)

has the form ws with s > 0 at small w, and decays to zero faster than - 1 in the limit

of - coc. In addition, we assume that J(w) does not depend on the temperature.

These conditions are reasonable assumptions for many physical problems.116] Also

note that if the low frequency behavior of J(w) is subohmic (of the form ws with

0 < s < at small w), the memory kernel Fr(T) would never decay to zero within

a finite time scale. In this case, the low frequency modes of the bath dominate the

dissipative processes, and Markovian dynamics is inapplicable.

At long times, the integrand in i(T) is rapidly oscillating due to the sin(WT)

term. Therefore, if the spectral function J(w) can be treated as a continuous and

fairly smooth function, then a time scale Tb exists due to the cancellation of the

rapidly oscillating integrand at large t. This means that the number of bath degrees

of freedom must be large, the distribution of bath frequencies has to be dense and

spread out, and the coupling strength must vary uniformly with frequency. For J(w)

with these properties, Fi(T) decays to zero within a Tb defined by the width of the

spectral function J(w). If the width of the spectral function is wd, then at times

t > 1/wd the oscillating integrand cancels out and the integral tends to zero, i.e.

Tb 1/Wd.

The real part seems more difficult because of the temperature dependence, but we

found the temperature has only a minor effect on the bath relaxation time Tb, provided

our assumptions on the properties of the bath are correct. Notice that coth(/w/2)

is a smooth function that peaks at w ; 0, and behaves like 2/3cw in a range from

w = 0 to w = 2/3. At low temperatures, this range is small and has little effect
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on the shape of the integrand because of the ws factor in the spectral function. At

high temperatures, this range can be broad, and the hyperbolic cotangent function

can be replaced with 2/3w. Therefore, the bath relaxation time at high temperature

is determined by the width of the function J(w)//3w. Since we assume the spectral

function decays to zero faster than 1/w, the extra 1/w frequency dependence has little

effect on the width of the function. We argue that Tb is only weakly dependent on the

temperature of the bath, and is largely determined by the properties of the spectral

function.

Figure 7-1 shows the normalized memory kernel Fr(T)/Fr(O) for several form of

spectral functions at different temperatures. The time Tb at which Fr(r) decays

to zero depends strongly on the form of the spectral function, but only weakly on

the temperature. For the Gaussian bath case, the function Fr(T)/Fr(O) is almost

temperature independent. We emphasize that such a weak dependence in temperature

is in contrast to the widely accepted notion that the relaxation time of a general bath

decreases when temperature increases. Figure 7-1 indicates that care must be taken

when assuming the bath relaxation time is short at high temperatures. Note that the

widths of spectral functions used in Fig. 7-1 are set to one; as a result, all memory

kernels shown decay within a time scale of order - 1.

To summarize, if the spectral function J(w) is fairly dense and smooth, and decays

to zero reasonably fast in both w - 0 and w - oc limit, then a time-scale Tb --

1/wd exists. For times t > Tb, the memory kernels tends to zero and the Markovian

approximation is applicable. In addition, for the present model, the bath relaxation

time Tb is solely determined by the properties of the spectral function, and is only

weakly dependent on the temperature of the bath.

7.4 Positivity

It is well known that the Markovian master equations derived from the projection op-

erator or cumulant expansion techniques destroy the general positivity of the reduced

dynamics. This has been a major problem for the application of the Markovian master
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equations. Suarez, Silbey, and Oppenheim have argued that the Markovian master

equation is in fact correct, and the source of the inconsistency is due to transient

memory effects in a short time scale. In this section, we will present a prescrip-

tion that quantitatively incorporates the short time memory effects in the Markovian

evolution.

The slippage scheme proposed by Suarez, Silbey, and Oppenheim (SSO slippage

scheme) aligns the trajectories given by the Markovian evolution and second order

perturbation theory (known to be correct at short times), and then extrapolates the

Markovian evolution back to zero time to find a set of slipped initial condition. Using

the slipped initial condition together with the Markovian master equation correctly

produces the long time dynamics of the system, and solves the non-positivity problem.

However, the amount of the slippage depends on the particular initial condition and

can not be predicted quantitatively. This makes the slippage scheme difficult to

implement.

As we pointed out above, Gaspard and Nagaoka suggested a slippage superopera-

tor that can generate slipped initial conditions in a consistent way.ll1 Based on the

assumption that the dynamics of the Markovian master equation with slipped initial

conditions can be approximately equal to that of the direct second-order perturbation

theory for intermediate times t >> Tb, they integrated the Markovian master equation

up to second order in A and compared the outcome to the result from second-order

perturbation theory to obtain the slippage superoperator. Their formal result [Eq.

(25) in Ref. 10] is rather complicated and difficult to apply to real systems, therefore

they suggested using a short-time expansion to compute the simplified slippage super-

operator. They also demonstrated that the simplified slippage superoperator indeed

solved the non-positivity problem for a spin-boson system with Debye-like spectral

function and gave excellent results. However, the applicability of their method for

more general systems has not been tested. In fact, we find that their slippage superop-

erator does riot always give results that satisfy the positivity condition. For example,

if we replace the Debye-like spectral function of the spin-boson system studied in Ref.

10 with a Ohlimic-like spectral function J(w) = we-w/wc, the slippage superoperator
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Figure 7-2: Violation of the positivity condition in the slippage superoperator method.
We show the determinant of the slipped initial conditions for a spin-boson model with
Ohmic-like bath as a function of y(0), where y(0) defines different non-slipped initial
density matrix ps(O) = [I + V/1 - y(O)2Ux + y(O)oy]. The results are calculated using
Eq. (43)-(47) in Ref. 10 and an Ohmic-like spectral function J(w) -= we/c. The
parameters used are A = 0.1, A = 0.1, wc = 1, and temperature T = 0. All notations
used here are the same as defined in Ref. 10. The negative values of the determinant
for -0.55 < y(0) < 0.55 indicate violations of the positivity condition.

gives nonpositive initial conditions in a broad range of parameters. Figure 7-2 shows

the determinant of the slipped initial conditions calculated using Eq. (43)-(47) in

Ref. 10 and spectral function J(w) = we - /c. The negative determinant values

shown in Fig. 7-2 clearly indicate that the slippage superoperator breaks down for

the spin-boson model with Ohmic-like bath. Therefore, we conclude that the slippage

superoperator method in its simplified form [Eq. (26) in Ref. 101 does not always

give physically admissible slipped initial conditions. The applicability of the slippage

superoperator in its formal form, which does not require the short-time expansion, is

still untested.

We now turn to an extension of the SSO slippage scheme in order to increase

its range of applicability. A natural and simple modification of the SSO slippage
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scheme is to concatenate the second order perturbation theory with the Markovian

master equation. The idea is to use second order perturbation theory to propagate

the reduced dynamics at short times, and switch to using Markovian master equation

at long times. We define a transient time Tt at which the Markovian master equations

are applied with the initial condition given by the second order perturbation theory

at time t. To this end, t must be in the regime where both the second order

perturbation theory and Markovian master equation are valid, i.e. the memory kernels

already decay to zero and the second order perturbation theory is still correct. As

we have mentioned in the previous section, the Markovian master equation is valid

after times t > Tb 1/wad- In addition, for the second order perturbation theory to

be correct, we need the temperature weighted parameter J(wo)coth(3wo/2)Tt < 1,

where w0o is the averaged frequency for modes that contribute strongly in the spectral

function J(cw). Therefore we obtain the range of rt for the concatenation scheme to

be valid:

1 1<< << (7.7)
Td J(wo) coth(3wo/2) (77)

For simplicity, we choose Tt as the midpoint between the upper-bound and lower-

bound in the log scale:

Wd

Tt J(0wo) coth(,3wo/2)' (7.8)

Note that the expression of Tt in Eq. (7.8) is just a convenient choice. Any choice of Tt

that satisfies Eq. (7.7) should be valid. When second order perturbation theory and

Markovian master equation are both valid during intermediate times, the resulting

dynamics will not be sensitive to the choice of -t and w0 . Therefore, the requirement

of specifying Tt is not a weak point of the the concatenation scheme. In contrary,

the choice of Tt and Eq. (7.7) provide a measure for the quality of the concatenated

dynamics.

There is a fundamental difference between the SSO slippage scheme and the con-

catenation scheme described here. The slippage scheme implicitly assumes that the
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Markovian trajectory generated from an invalid initial condition is parallel to the

trajectories from slipped initial conditions, while the concatenation scheme assumes

that the new initial condition given by the second order perturbation at the time Tt

correctly absorbs the memory effects. In the next section, we will show that at high

temperatures the SSO slippage scheme breaks down, while the concatenation scheme

still gives correct description of the long time dynamics.

7.5 The Spin-boson Model

To illustrate the concatenation scheme, we study the spin-boson model in this section.

Consider a nondegenerate two-level system coupled to its environment through the

system ax operator:

A (79H =-2 z + Z wBaaaa, + ax* g,(ata + a). (7.9)
a 

The model chosen for the bath is a Debye-like bath of independent harmonic oscilla-

tors described by the following spectral function:

J(w) = (W3 /W)e-,/c (7.10)

where T1 is a dimensionless friction constant of order A2 , and wc is an appropriate cutoff

frequency for the bath (for example, the Debye frequency of the crystal). Hereafter

we will set w = 1, effectively using wc as the the unit for energy and 1/c as the unit

for time. It is convenient to adopt the Bloch representation and describe the density

matrix for the two-level system using a Bloch vector:

15(t)= -[I+ +(t) .+y(t) a+z(t) .Oz].
2

Using equations (7.4)-(7.6), we can easily obtain the non-Markovian master equa-

tions for the spin-boson model in the Bloch representation:
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x(t) = Ay(t),

(t) = -[A + 4f(t)]x(t) - 4g(t)y(t), (7.11)

%(t) = -4g(t)z(t) + 4h(t),

where we have defined the following time-dependent functions

f(t) = f Fr(T)sin(AT)dT,
g(t) jf Fr(T)cos(/AT)dT, (7.12)

h(t) = f Fi(T) sin(AT)d-.

The non-Markovian master equations Eq. (7.11)- Eq. (7.12) can not be solved ana-

lytically, therefore we propagate the solutions numerically using a 4-th order Runge-

Kutta method. On the other hand, the Markovian master equations can be solved

analytically., yielding

x(t) {x(0) cosh(it) - sink(vt) [y(0) + 'X(0)] et,V~~ ,
y(t) {y(0)cosh(ut) - sinh(vt) [y(0) + Ax(0) + 4f(oc)x(0)]} e- 7t, (7.13)

z(t) Zeq + [Z(O) - Zeq] e 2 ft,

where we have used y = 2g(oo), Zeq = h(oo)/g(oo), and v = -/
2 2 - 4Af(oc).

Figure 7-3 shows the non-Markovian [Eq. (7.11)] and Markovian [Eq. (7.13)]

evolution of the determinant of the reduced density matrix, with initial condition

x(0) = 0, y(O) = v3/2, and z(0) = 0.5. The parameters used are A = 0.1 and

7 = 0.01, and 3 = 0.5. We observe that although the Markovian evolution reaches

correct thermal equilibrium at long times, and it is negative during a short time

period at the beginning, indicating at least one of the two eigenvalues are outside

the [0,1] range. Note that at this high temperature regime, the amount by which the

positivity is broken can be greater than r, because of the thermal population of the

phonon modes. In contrast to the Markovian evolution, the non-Markovian evolution

preserves the positivity of the reduced dynamics at all times. This result confirms that

the source of the non-positivity problem is the short time memory effects. Numerical
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Figure 7-3: Non-Markovian (solid line) and Markovian (dashed-dotted line) dynamics
of det[a(t)]. The Debye-like spectral function in Eq. (7.10) is used. The parameters
used are A = 0.1 and = 0.01, and /3 = 0.5; the initial condition is x(0) = 0,
y(O) = V/3/2, and z(0) = 0.5.

studies on non-Markovian quantum master equations have indicated that they provide

reasonable results in a wide parameter range.[17, 18, 19, 20] In this weak-coupling

case, the non-Markovian master equation correctly describes the dynamics of the open

system at all times.

At short times, the second order perturbation theory can provide correct dynamics.

The results are

xp(t) = [cos(At)- I(t)] x(0)+ [sin(At)- 2(t)] y(0),

yp(t) = [cos(At)-1 3(t)] y()-[sin(At)- I2(t)] x(0), (7.14)

zp(t) = - 14(t)] z(0) + 15 (t),

where we use subscript p to denote the results obtained from the second order per-

turbation theory; the integrals In(t) are
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I1(t) = 2 fO Fr(T) {(t - T) co[Z(t - T)] - sin[A(t - T)]} dT,

12 (t) = 2 f0 F (T) (t - T) sin[\(t - T)]dT,

13(t) = 2 fo'F,(T) {(t-T) cos[A (t-T)] + '±sin[A(t-T)]} dT, (7.15)

I4(t) = 4 ft Fr(T)(t - T) cos(AT)dT,

Is (t) = 4 Jot Fj (T) (t - ) sin (T) dT.

Figure 7-4 compares the short time dynamics obtained from the non-Markovian

master equation. second order perturbation theory [Eq. (7.14)], and Markovian mas-

ter equation at three different temperatures. The same parameters and initial con-

dition as in Fig. 7-3 are used. In order to compare the dynamics, the Markovian

evolution shown in Fig. 7-4 has been shifted to be aligned with the second order

perturbation result. Notice that the amount of slippage and violation of positivity

in the Markovian dynamics increases as the temperature increases, and so does the

deviation between the second order perturbation theory and the non-Markovian mas-

ter equation. These trends can be explained by the temperature dependence of the

phonon-mode thermal populations. As the temperature increases, the population in

phonon modes increases, and the effective system-bath interaction also increases. As

a result, the range that the second order perturbation theory is applicable reduces

when the temperature increases. Also note that at high temperatures the Markovian

dynamics is totally off and can not be aligned with the results calculated from the

second order perturbation theory. This indicates that the Markovian dynamics is not

necessarily parallel to the correct dynamics of the reduced system (can be seen clearer

in Fig. 7-3), especially at high temperatures. In the high temperature regime the

SSO slipped initial condition is not well defined and the SSO slippage scheme will be

difficult to apply.

We also applied the concatenation scheme to this problem. The temperature

dependent transient time Tt can be estimated from the cutoff frequency w, yielding

Wc

Tt ~ J(c) coth(w/2)'
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Figure 7-4: Short time dynamics of det[u(t)] at different temperatures (from bottom
to top: 3 = 10, /3 = 1, and 3 = 0.5). Dynamics obtained from the non-Markovian
master equation (solid lines), second order perturbation theory (dashed lines), and
Markovian master equation (dashed-dotted lines) are shown for each temperatures.
The Debye-like spectral function in Eq. (7.10) is used. The parameters used are
A = 0.1 and = 0.01, and the initial condition is x(0) = 0, y(0) = V'/2, and
z(0) = 0.5.
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For t < Tt, the second-order perturbation theory [Eq. (7.14)] is used. For t > Tt, the

second-order perturbation theory to compute the initial condition at t = Tt for the

Markovian dynamics. Using Eq. (7.13)-(7.15), we obtain the concatenation result for

t > Tt explicitly:

x(t) = {Xp(Tt) cosh[v(t -t) ] - sinh(t-V)] [Ayp(Tt) + Xp(t)} -(t)

y(t) {Yp(Tt) cosh[v(t- Tt)] - sinh[(t-rt)] [<yp(Tt) + Axp(Tt) + 4f(oo)xp(Tt)]} e--Y(t-Tt)

z(t) Zcq + [Zp(Tt) - Zeq] e 2-y(t-Tt)

(7.16)

Note that there is no adjustable parameters in this scheme. Comparing to Eq. (7.13),

we can see that simple slipped initial conditions in the Markovian master equation

cannot reproduce the concatenation result in Eq. (7.16). This indicates the funda-

mental difference between the SSO slippage scheme and the concatenation scheme

proposed here. Figure 7-5 shows the short time dynamics obtained form the con-

catenation scheme together with the dynamics from non-Markovian master equation.

The same dynamics at a longer time period is shown in Fig. 7-6. Compared to the

Markovian dynamics shown in Fig. 7-3, the simple concatenation scheme gives dra-

matic improvement. Clearly, the concatenation scheme adequately reproduces the

correct dynamics at both short and long times. At high temperatures, small devi-

ations from the non-Markovian results exist at short times. The deviations can be

ascribed to the errors in the second order perturbation theory, and do not change

the long time dynamics. In fact, Fig. 7-6 shows that the concatenation scheme gives

results that are in excellent agreement with the non-Markovian master equation even

at high temperatures.

We have also applied the concatenation scheme to a similar spin-boson model

with an Ohmic-like spectral function J(w) = we- /wc. In this case, the concatena-

tion scheme produces results that satisfy the positivity condition at all times in all

parameter and initial condition range examined. Given the simplicity and the clear

background o(f the concatenation scheme, we expect that it is generally applicable in
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Figure 7-5: Short time dynamics of det[c(t)] at different temperatures (from bottom
to top: d = 10, = 1, and 3 = 0.5). Dynamics obtained from the non-Markovian
master equation (solid lines) and the concatenation scheme (dashed lines) are shown
for each temperatures. The Debye-like spectral function in Eq. (7.10) is used. The
parameters used are A = 0.1 and 7q = 0.01, and the initial condition is x(0) = 0,
y(0) = V/2, and z(0) = 0.5.
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Figure 7-6: Dynamics of det[u(t)] at a longer time period at three different temper-
atures (from bottom to top: = 10, 3 = 1, and 3 = 0.5). Dynamics obtained
from the non-Markovian master equation (solid lines) and the concatenation scheme
(dlashed lines) are shown for each temperatures. Damping of the oscillations at high
temperatures can be clearly seen. The Debye-like spectral function in Eq. (7.10) is
used. The parameters used are A = 0.1 and 71 = 0.01, and the initial condition is
x(0) = 0, y()) = V'3/2, and z(0) = 0.5.
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systems with weak system-bath couplings.

7.6 Conclusion

In this chapter, we have examined the validity of the Markovian approximation based

on a generic model with system-bath interaction linear in the oscillator coordinates.

We argued that if the spectral function J(w) of the bath is fairly dense and smoothly

spread out, then a time-scale Tb exists for bath relaxations. For times t > Tb, the

memory kernels tends to zero and the Markovian approximation is applicable. In

addition, if J(w) decays to zero reasonably fast in both the w -> 0 and - oc limit,

the bath relaxation time Tb is determined by the width of the spectral function, Tb 

1/wd, and is only weakly dependent on the temperature of the bath. We emphasize

that in this context the width of the spectral function should be determined by the

physical conditions of the system, and can not be choose arbitrarily by an imposed

cutoff frequency. Although all our discussions are based on the linear form of the

coupling, we believe that the random phase argument is generic and can be applied

to other forms of interactions.

Moreover, we have proposed a concatenation scheme that absorbs the transient

memory effects in a natural manner and fixes the non-positivity problem. The con-

catenation scheme applies second-order perturbation theory at short times and uses

Markovian master equations for long time dynamics, therefore it in fact describes both

the short-time and long-time dynamics. Applications of the concatenation scheme on

the spin-boson problem show excellent agreements with the results obtained from the

non-Markovian master equation at all temperature range studied. Our results indi-

cate that with proper adjustments, the Markovian master equations are applicable in

the weak-coupling limit. Although we have only studied the concatenation scheme on

the simple spin-boson model, we expect it can be easily applied to multilevel systems.

It will be interesting to study the performance of the concatenation scheme on more

complicated multilevel problems. Because of its simplicity, the concatenation scheme

can provide an efficient way to apply multilevel Markovian master equations, while
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avoiding the non-positivity problem.

All our results in this chapter are based on the assumption that the system-bath

interactions are weak and neglecting higher order terms in the memory kernels is

valid. This weak-coupling condition seems to be a stringent limitation for quantum

master equations Eq. (7.4)-(7.5). However, in many physical scenarios the system is

strongly coupled to only a few bath modes. Therefore, the system-bath boundary can

be redefined to include strongly coupled modes into the system, and the weak coupling

approximation can still be adequate. In addition, sometimes a similarity transforma-

tion that transforms the total Hamiltonian and recovers the weak-coupling regime can

be found [21, 221. In these systems, the similarity transformation creates a new set

of "dressed" states that are only weakly coupled to the bath, thus the weak-coupling

approximation is still applicable. Our unified theory for exciton transportation pre-

sented in Chapter 3, where the Merrifield transformation is applied to the Holstein

model to generate partially-dressed polaron states, is a demonstration of such an

approach.
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Appendix 7.A Derivation of the Quantum Master

Equation

It is instructive to formally derive the quantum master equation [Eq. (7.4)] and

see how the irreversible dynamics of the reduced system emerges from the reversible

dynamics generated by the Hamiltonian of a macroscopic total system. In this ap-

pendix, we provide such a derivation and explicitly show the approximations involved

in deriving the quantum master equation.

We start from the quantum Liouville equation (h= 1) that describes the density

matrix p(t) of a total system with Hamiltonian H

p(t) = -i[H, p(t)]

= -iLp(t), (7.17)

where we have defined the Liouville superoperator as the commutator of the Hamil-

tonian with an arbitrary operator (9, L(9 = [H, 0]. In the Laplace space (t -- s), the

Liouville equation is

s5(s) = p(O) - iL5(s), (7.18)

where p5(s) is the Laplace transform of p(t), and p(O) is the initial condition of the

total system. Equation (7.18) provides the formal solution of the Liouville equation

in the Laplace space, p5(s) = 1iP(O). Note that 1 is a superoperator and should

be interpreted as the inverse of (s + i).

In most physical applications, we are only interested in properties that are deter-

mined by states in a subspace of the total Hilbert space. Using a projection operator

'P, we divide the density matrix of the total system into a relevant part Pi (t) = Pp(t),

and an irrelevant part p2(t) = (1 -P)p(t) _ Qp(t), so that p(t) = pl (t) -+ p2(t). Note
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that by definition, projectors P and Q must satisfy PP... P = P, QQ... Q = ,

and PQ = QP = 0. Applying P and Q to both sides of Eq. (7.18), we obtain two

coupled linear equations:

5I () -P1 (0) = -iPL[/ 1 (s) + /2(S)],

Sp2 (s) - P2 (O) -i QC [l (s) + /2 (S)]

These equations can be solved to obtain the formal solution for the relevant part of

the density matrix in the Laplace space,

1 1
si5,(s) - (O) -iP)5f(s) - iP£+ Qzb(O) - PLC QfS(s)]. (7.19)5+i s +i

The inverse Laplace transform of Eq. (7.19) yields the following differential-integral

equation that describes the time evolution of P1(t):

t

,1 (t) =-ie-iQtp2(0 ) -i-PLpl (t)- dTk(T)pl (t - T), (7.20)

where we have defined the memory kernel

IC(T) =P -QL Q. (7.21)

The first term in the right hand side of Eq. (7.20) explicitly depends on the initial

condition of the irrelevant part of the total system P2(0). However, by choosing an

initial condition so that Pp(O) = p(O), we can make P2(0) = 0, and the P2(0) term will

vanish identically. For example, the projection operator defined in Eq. (7.1) and the

product state initial condition defined in Eq. (7.3) satisfy the this condition. Hence,

by selecting a proper combination of projector and initial conditions, Eq. (7.20) can

be simplified to
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(t)=-iPLp(t) - dTr(T)pl(t - T). (7.22)

Equation (7.22) has a non-Markovian memory kernel, and is in the form of a gener-

alized Fokker-Planck equation. The first term in Eq. (7.22) represents the unitary

evolution governed by the Hamiltonian of the system, and the second term represents

the dissipative dynamics of the relevant part of the total system. Note that total

system still undergoes unitary evolution Eq. (7.17)], it is the reduced system degrees

of freedom (after tracing out the environment degrees of freedom) that have to be

described by a non-unitary evolution. Clearly, the non-unitary evolution is a result

of the separation of the total system into the system part and the bath part.

To derive the dynamics of a reduced system, we separate the total Hamiltonian

H into the system part Hs, the bath part HB, and the system-bath interaction part

AHSB. We also require that Hs and HB operate in two different Hilbert spaces, so

that their commutator vanishes, [Hs, HB] = 0. The corresponding Liouville operator

can be decomposed accordingly:

L = LS + LB + ALSB. (7.23)

In addition, we also define the projection operators P and Q = - P using

PP = Pb qTrBp. (7.24)

Note that the projector in Eq. (7.24) not only defines the relevant part of the total

system by tracing out the irrelevant part, it also provides a definition for the tem-

perature of the system. Eq. (7.24) is a convenient choice of projector, but this form

is not required. Other projection operators can be chosen 23, 24]. With the defini-

tion in Eq. (7.24), the projector P and the Liouville operators satisfy the equalities

LBP = PLB = , PLs2Q = (LSP = 0, and PISBP = O. The last equality is true

if the thermal average of HSB over the equilibrium bath states is zero, (HSB)eq = 0
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(where (...)q denotes TrB{...pbq}). Note that for any Hamiltonian with (HsB)eq # 0,

we can always absorb the average into Hs and obtain a new interaction term with

vanishing average, HSB = HSB- (HB)Cq, therefore, the condition to establish the

equality PZLsBP = 0 can always be achieved. For simplicity, we assume (HsB)eq = 0

hereafter. Plugging Eq. (7.23) into Eq. (7.22) and applying the equalities, we obtain

the equation of motion for the reduced system after tracing out the irrelevant bath

degrees of freedom:

a(t) = TrBjl(t)
2 t P~q~ 0,(t _,T)(7.25)

= -iL (t) - 2j dTTrB SBeiQQsBpBq} (t- 7).

Equation (7.25) describes the dynamics of the reduced system under the initial condi-

tion p(O) = T(()) p q, and is often called the "generalized master equation" [3]. Note

that Eq. (7.22) is still exact, provided that the proper projectors and equilibrium

bath initial conditions are used. In fact, up to this point we did nothing but refor-

mulating the Liouville equation. Equation (7.25) is of little use because solving the

propagator ( -
iQo in the memory kernel is as difficult as solving the original Liouville

equation, but this equation is a convenient starting point for the derivations of many

useful quantum master equations.

To derive Eq. (7.4), we need to apply two approximations. The first one is to

replace the full propagator e -
iQ

c
T in the memory kernel with the zeroth order propa-

gator e-iQ(;;+B)r, which effectively neglects terms beyond second order in A in C(T).

This approximation is similar to the Born approximation usually used in the scatter-

ing theory. he second one is to replace U(t- ) in the integral with eiHsTu(t)e - iHST,

which makes the integral time-convolutionless and is effectively the partial ordering

prescription (POP) used in the generalized cumulant expansion methods [5, 6. If

the second approximation is not made, then the integral retains the time-convolution

p(t-T) term, which is sometimes called the chronological ordering prescription (COP)

[4, 6. Note that the two approximations both assume weak system-bath interactions,
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i.e. A << 1. In the A << 1 limit, both approximations are valid and we obtain from

Eq. (7.25)

-(t) = -i[Hs, u(t)] - A2
t

0
dTB { [HSB, [HSB(-T), a (t) 0 pq]] } .

To explicitly evaluate the trace over the bath degrees of freedoms, we consider a

generic product form for HSB:

HsB = B Sn B,
no

where Sn are an system operators, and B, are bath operators, so that [Sn, B.] = 0.

Substitution of HSB in Eq. (7.26) yields

cr(t) = -i[Hs, a(t)]

-4A2j dT E { [(Ba/(-T)Ba)eq + (BoBo/(-T))eq] [Sn, [eiHSTSneiHST,u(t)]}
n,n ,o,

-[(B,' (-T)B)eq - (BB(-))eq] [Sn, [e-iHsTSneiHs ,cr(t)]+]}. (7.27)

where [...]+ denotes the anticommutator.

Finally, we define bath correlation functions

C.,c(T) = (Bc,(T)B)eq = r a'() + ir t'a(T) (7.28)

where FT'(r)and Fr' (T) are real functions representing the real part and the imagi-

nary part of the correlation functions, respectively. Using the definitions in Eq. (7.28)

and the symmetry properties of quantum correlation functions,

(B, B., (T))eq = (t,(T)o)eq = ra' (T)- ir', ()e,= 

we obtain
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t

(t) = -i[Hs, (t)] -> /jdT E3 - [eiHSTSneiHsT, a(t)]]
n n',a,a'

-ijJ (- T) [Sr, [e-iHsTSn,eiHsT, (t)]+] } (7.29)

which is the non-Markovian quantum master equation shown in Eq. (7.4). This is

an equation for u(t) along, and the influence of the bath on the system is formulated

through the bath correlation functions. The bath correlation functions, which are

equilibrium properties of the bath, determine the non-equilibrium dynamics of the

system. Note that no fast bath relaxation time has been assumed yet; the only

assumptions made in deriving Eq. (7.4) are the equilibrium bath at the initial time

and the weak system-bath interaction.
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