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Abstract 

Thin-body MOSFET geometries such as fully-depleted SO1 and double-gate devices 
are attractive because they can offer superior scaling properties compared to bulk and 
thick-body SO1 devices. The electrostatics of a MOSFET limit how short of a gate 
length can be achieved before the gate loses control over the channel. In bulk-like 
devices, the device designer keeps the gate in control with gate oxide scaling and 
doping profile design. In thin-body geometries, silicon thickness is a new, powerful 
scaling parameter. Much like with gate oxide scaling, the electrostatics improve with 
thinner films. This means that the limits of scaling thin-body devices are closely tied 
with the limits of scaling silicon film thickness. 

Electrical transport appears to be one of the limiting factors for scaling body 
thickness. As the silicon film thickness is reduced into the ultra-thin regime, where 
the film is thinner than the bulk inversion layer thickness, quantum confinement 
effects begin to be observed. For the most part, these effects act to degrade mobility, 
reducing performance and making further scaling less rewarding. 

This work focuses on finding methods to maintain good mobility in ultra-thin 
silicon films. Thin and ultra-thin body relaxed SO1 and biaxially strained SO1 MOS- 
FETs were constructed and measured with and without the application of mechanical 
uniaxial strain to examine the interaction between strain and thin-film effects. The 
band splitting induced by the application of strain is found to at least partially mit- 
igate the mechanisms responsible for degrading electron mobility in ultra-thin films. 
Additionally, the enhancement seen with uniaxial strain is found to further enhance 
mobility in biaxially strained films. Finally, the effective mass change caused by uniax- 



ial strain is found to cause the mobility modulation to have a directional dependence, 
especially in already biaxially strained films. 

Thesis Supervisor: Dimitri A. Antoniadis 
Title: Ray and Maria Stata Professor of Electrical Engineering 
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Chapter 1 

Introduction 

When I started my graduate work at MIT, the computer I used in my office had a 233 

megahertz processor. The computer that I am now typing this thesis on has a 2.53 

gigahertz processor, and there are much faster systems currently available. This rapid 

advancement in computer performance that we have seen over the past few decades is 

due almost entirely to increasing the performance of the MOSFETs that serve as the 

switches used to perform the computations. We have been able to scale MOSFETs 

to smaller dimensions and higher performance at an exponential rate. However, as in 

all systems, an exponential growth rate cannot be sustained indefinitely. While many 

have predicted the immediate doom of MOSFET scaling only to be proven wrong, 

we all know it is coming. It is just more difficult to predict when that will be because 

many billions of dollars are invested in ensuring that it won't be soon. 

This thesis is one of many that looks at the ultimate limits of MOSFET scaling 

and what we can do to prolong it using unconventional means. Specifically, I have 

investigated the relationships between strain and film thickness to carrier transport 

in silicon. I have built long-channel thin and ultra-thin body MOSFETs on SO1 

and biaxially strained SO1 substrates. I then studied their response to mechanical 

uniaxial strain. Analyzing the results gave me a better understanding of the effects 

of strain, quantum confinement in ultra-thin films, and their interaction. Armed 

with this knowledge, I have made some comments on the scalability and transport 

characteristics of the materials I have studied. 



1.1 Overview of this Work 

Chapter 2 reviews background information on electrostatics and transport in strained 

and unstrained silicon MOSFETs. The electrostatics of thin-film devices are briefly 

reviewed as motivation for studying the physics of transport in sub-lo nm films. 

Transport theory for ultra-thin films and biaxially-strained films is reviewed, and the 

effects of uniaxial strain on carrier effective mass are described. 

Chapter 3 presents the experimental procedures used to fabricate and characterize 

the devices examined in this work. Local channel thinning, Kelvin MOSFETs, and 

the application of uniaxial strain by bending are covered. 

Chapter 4 presents device characteristics for thick body strained SO1 devices, 

confirming that mobility enhancement is maintained through device processing and 

that the strained silicon thickness is not as limited as in the strained silicon / silicon 

germanium system. 

Chapter 5 shows the effects of applying uniaxial strain to various Si material 

systems for both NMOS and PMOS devices. Mobility is measured in thin and ultra- 

thin SO1 and strained SO1 MOSFETs while uniaxial strain is applied either parallel 

or perpendicular to the direction of current flow. 

Chapter 6 concludes the thesis by examining the results of this work in the con- 

text of CMOS manufacturing. Film thickness scalability and carrier transport are 

commented upon. 



Chapter 2 

Theory 

This chapter provides background material and motivation for studying carrier trans- 

port in ultra-thin and strained silicon MOSFETs. A brief overview of the electrostatic 

advantages of thin-film devices is given. Then, the dependence of short-channel ef- 

fects on film thickness is presented to show t hat for deeply-scaled devices, ultra-t hin 

films are required. 

Next, carrier transport theory is reviewed. The mechanisms that degrade mobility 

in ultra-thin films are presented. This degradation of mobility motivates the study 

of techniques that improve mobility and their applicability to ultra-thin films. To 

alleviate the degraded mobility in ultra-thin films, the enhancement of mobility with 

biaxial and uniaxial strain is considered. The current theories for the mechanisms 

of strain enhancement of mobility are presented. These theories provide physical 

insights to the experimental results obtained in later chapters. 

2.1 Electrostatics 

Current commercial applications of MOSFET technology rely on bulk and thick-film 

SO1 devices. Transitioning from these types of devices to those based on ultra-thin 

silicon films would require significant investment in process technology and circuit 

design. However, it appears that the added scalability benefits may make such a 

transition desirable. This section compares and contrasts different MOSFET geome- 



tries to motivate study in ultra-thin silicon based devices. 

Types of MOSFETs 

There are currently four general approaches to MOSFET fabrication of logic CMOS. 

These approaches are: Bulk CMOS, partially-depleted (PD)SOI CMOS, fully-depleted 

(FD)SOI CMOS and double-gate CMOS. Other approaches are usually derivative of 

these main approaches. A schematic cross-section view of each type of device is given 

in Figure 2-1. 

I BOX I 

(b) PDSOI MOSFET (a) Bulk MOSFET 

BOX 

(c) FDSOI MOSFET (d) Double-gate MOSFET 

Figure 2-1: Cross-sectional schematics of different logic MOSFET geometries. 

Bulk and PDSOI devices scale in a similar manner. PDSOI has the advantages 

of isolation between the bodies of different devices and reduced parasitic capacitance 

at the expense of floating body effects. Both technologies are now widely used in 

industry, but further scaling of these devices is becoming difficult rapidly. 



FDSOI CMOS is similar to PDSOI CMOS, except the SO1 film thickness is re- 

duced to the point that the entire film is depleted. In this case, floating body effects 

are nearly eliminated [I]. However, FDSOI can have poorer scaling potential than 

bulk because of the lack of screening from the back of the channel unless the film 

is kept very thin [2]. Also, threshold voltage is strongly dependent on the SO1 film 

thickness which is too thin to be well controlled within the tolerances used to fabri- 

cate bulk and PDSOI devices. However, for studying transport in thin films, these 

are the simplest devices to fabricate and as such are the basis of the experimental 

results in this thesis. 

Double gate CMOS has shown the highest potential for scaling. The channel is 

controlled from either side, leading to increased electrostatic integrity and suppressed 

short-channel effects [3]. In fact, the lower vertical electric field in the channel further 

increases drive current by decreasing the degradation of mobility due to scattering at 

the gate oxide interface [4]. Additionally SO1 film thickness for double-gate can be 

approximately twice that of FDSOI due to the channel being controlled from either 

side. 

Similar to double gate devices are tri-gate [5] and surround-gate [6] devices. Their 

operation is similar to double gate, but they can tolerate a slightly greater film thick- 

ness. The channel thickness in a cylindrical surround-gate structure can be approx- 

imately 35% higher than that of double gate [7], while tri-gate devices fall between 

double-gate and surround gate. 

2.1.2 Electrostatics in Thin Film SO1 Structures 

One important similarity between the FDSOI structure and the double-gate structures 

is the reliance of electrostatics on silicon film thickness. By thinning the silicon film, 

the drain to channel junction capacitance is reduced, which improves short channel 

effects. The results of some simple simulations are provided here to illustrate the 

effects of scaling film thickness. 

VT roll-off is defined as the difference in threshold voltage between a long-channel 

device and a short-channel device. The effects of silicon film scaling on VT roll-off 



are shown in Figure 2-2. The VT roll-off has an approximately linear dependence on 

film thickness. 

Drain-induced barrier lowering (DIBL) is defined as the difference between the 

equilibrium threshold voltage of a short channel device and its threshold voltage at 

some high drain potential. DIBL is often given in units of mV/V where the VT 

shift is normalized by the drain potential applied. Since DIBL is often nonlinear, 

the normalization may be misleading, and DIBL is defined here as VT(VD=l.OV)- 

VT(VD=O.lV). The effects of silicon film scaling on DIBL are shown in Figure 2-3. 

DIBL has a strong dependence on film thickness, and for short gate lengths, small 

changes in channel thickness have a large impact on DIBL. 

The subthreshold swing of a device is a metric of how well it turns off. The 

subthreshold swing is defined as the inverse slope of the log(ID)-VG curve in the 

region below the threshold voltage and is given in units of mV/decade. The effects 

of silicon film scaling on subthreshold slope are shown in Figure 2-4. Like DIBL, 

subthreshold slope has a strong dependence on film thickness, but for sufficiently 

thin films subthreshold slope becomes less sensitive to the film thickness. 

DIBL appears to be the most demanding requirement on silicon film thickness. 

In these simulations, when a silicon film thickness is chosen such that DIBL is kept 

below the value specified by the ITRS (International Technology Roadmap for Semi- 

conductors) high-performance worksheet [B], subthreshold slope and VT roll-off meet 

or exceed ITRS requirements. 

From these plots it is clear that to have good electrostatics in very short devices 

it is necessary to scale the film very thin. For the FDSOI case presented in these 

simulations, the film thickness needs to be less than one third of the gate length. For 

a double-gate structure, the thickness can safely be increased to about one half of the 

gate length [I]. It is clear that maintaining electrostatic integrity in deeply scaled 

devices of this type requires very thin films. 
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2.2 Transport Theory 

While electrostatic concerns would suggests that it would be advantageous to use the 

thinnest film possible, mobility suffers as the film gets thinner. This tradeoff limits 

the performance benefits of further scaling gate length of ultra-thin silicon devices 

below the point at which the silicon of the required film thickness begins to exhibit 

lower mobility. 

This section reviews carrier transport theory. Electrons will be considered first, 

and the differences for holes will be summarized afterwards. Some introductory ma- 

terial is reviewed to explain mobility in a MOS inversion layer. Then, the current 

theories for the mobility degradation that occurs in ultra-thin silicon films are ex- 

plained. Finally, the mechanisms of mobility enhancement with biaxial and uniaxial 

strain are also covered because they are examined in later chapters as methods of 

improving mobility in ultra-thin films. 

2.2.1 Electron Mobility in Silicon 

Mobility is defined as / 5 1 ,  where q is the charge of the carrier, m* is the effective mass 

of the carrier in the direction of travel, and T is the mean time between scattering 

events for that carrier. The parameters that can be changed to influence mobility are 

effective mass and scattering rates. 

Electron Effective Mass 

Silicon is an indirect band-gap semiconductor with a band structure given in Figure 2- 

5. The conduction band minimum is offset from the r point in k-space, and appears 

parabolic for energies close to the minimum. This allows the constant energy surfaces 

of just above the conduction band edge to be modeled by six ellipsoids as shown 

in Figure 2-6. The pairs of ellipsoids (N) are characterized by Equation 2.1. Each 

ellipsoid is defined by three effective masses, m,, m,, m,, which are given by me = 

0.92mo in the longitudinal direction and mt = 0.19mo in the other two, where mo is 

the free electron mass (9.11 x kg). 



Figure 2-5: Band structure of silicon[9]. 

The effective mass of a carrier in a periodic crystal is inversely proportional to 

the curvature of the bands in the direction the carrier is traveling and is given by 

Equation 2.2. 

When we combine Equations 2.1 and 2.2, we can find the effective mass for each 

valley for travel in any direction. For example, the effective mass in the kx direction 

for the x valleys is me, while for the y and z valleys it is mt . To find the total effective 

mass, the reciprocal masses are weighted by their corresponding valley's fractional 

occupancy, added, and then the sum is inverted. Since there is equal occupancy in 

all valleys for the bulk case, we find that for travel in kx direction, the total effective 

mass is 

In fact, as long as the occupancy is equal, we can determine that the effective 

25 



Figure 2-6: K-space ellipsoids of constant energy of just above the conduction band 
edge. 

mass is isotropic in all directions and is always equal to 0.26mo. 

Scattering Rates 

In bulk silicon, the main scattering mechanisms are phonon scattering, and coulombic 

scattering by ionized impurities and other charge centers. The scattering rates are 

additive, meaning that the time between scattering events is given by 

where n indexes the different scattering mechanisms. 

Coulombic scattering is important for determining bulk mobility. Its contribution 

to inversion layer mobility is minimal for the lightly-doped structures discussed in 

this work due to screening. However, the same formulation is used for scattering by 

interface charges that becomes important to inversion layer mobility. 

The two types of phonons that occur in silicon are acoustic phonons and opti- 

cal phonons. Carriers interact with optical phonons when they are traveling at high 

velocity, for instance near the drain of a MOSFET biased in saturation. Interac- 



Figure 2-7: Diagram showing intravalley and intervalley scattering processes. Inter- 
valley scattering can occur between valleys along the different axes (f scattering) or 
the same axis (g scattering). 

tion with optical phonons is the mechanism that causes velocity saturation in this 

case. However, at low lateral field the carriers have negligible interaction with optical 

phonons. For this work, only low lateral field mobility is examined, so optical phonon 

scattering will not be considered. 

Acoustic phonon scattering is the dominant scattering mechanism of concern in 

this work. These scattering events can result in the carrier scattering within a val- 

ley (intravalley scattering) , or from one valley to another (intervalley scattering) as 

depicted in Figure 2-7. The formulation of these scattering rates will be done in the 

context of an inversion layer. 

2.2.2 Electron Mobility in an Inversion Layer 

Carriers in a MOS inversion layer are confined by the electric field applied by the 

gate. This confining field appears as a potential well to the carriers contained within 

it. The carriers become quantized in the well, with their energy and wave-functions 

determined by Schrodinger's equation. Since the location of the carriers is dependant 

on the shape of the well, and the shape of the well is dependent on the location of the 



Figure 2-8: Schematic representation of the confinement-induced split in energy levels 
between the A2 and A4 valleys. 

carriers through Poisson's equation, it is necessary to solve the system self-consistently 

in order to determine the carrier distribution. 

Effective Mass in an Inversion Layer 

Silicon MOS devices are typically built on wafers with a (100) orientation, so this 

section will discuss the inversion layer of a (100) surface. In this case, we define the 

direction of the electric field applied by the gate to be the z direction. The effective 

mass that is used when solving Schrodinger's equation is that in the direction of the 

confining electric field and is referred to as the quantization mass. Since the valleys 

that point in the k,  direction show a higher quantization mass (me) than the others 

(m,), they are quantized at more closely spaced energy levels. Then, the degeneracy 

of the carrier population in the bands is split into the twofold degeneracy of the k,  

valleys, referred to as the A2 valleys, and the fourfold degenerate ic, and ic, valleys, 

referred to as the A4 valleys. An illustration of the split in energy levels between 

the A2 and A4 valleys is given in Figure 2-8. The aggregate effective mass in the 

direction of current flow (conduction effective mass) of the carriers in the inversion 

layer becomes 



where NA2 and NA4 are the number of carriers present in each of the valleys as 

determined by simultaneously solving the Schrodinger and Poisson equations. As the 

electric field is increased, the energy difference between the energy levels of the A2 

and A4 valleys is increased so the proportion of carriers in the A2 valleys becomes 

higher. The conduction effective mass remains isotropic in the plane and becomes 

smaller due to the increased occupancy (from repopulation) of the A2 valleys. 

Scattering in an Inversion Layer 

The primary mechanisms of scattering considered here for a silicon inversion layer 

are phonon scattering and surface scattering caused by surface charge and surface 

roughness. 

Intravalley phonon scattering occurs when a carrier transitions between different 

subbands within the same valley. The equations for intravalley and intervalley scat- 

tering rates are taken from [lo], and are presented here in a more shorthand notation 

for clarity. For actual calculations please refer to the source reference. The intravalley 

scattering rates between the ith and j th  sub-band are given by 

where T is temperature, k is Boltzmann's constant, Dac is the acoustic deformation 

potential, p is the mass density of the crystal, and sl is the longitudinal sound velocity. 

Here, m d  is the density-of-states-effective-mass, given by JK for the A4 valleys 

and by Js for the A2 valleys. Ci is the wavefunction of carriers in the ith sub- 



band. The total scattering rate for an electron in the ith sub-band with energy E is 

given as 

U(x) = 1 (x 2 o), U(x) = 0 (x < 0) (2.10) 

where U(x) is the unit step function. From these equations, we see that the intravalley 

scattering rates are related to the density of states effective mass and the overlap 

between the wave functions of carriers occupying the different subbands. The factors 

that can affect intravalley scattering are effective mass and the confining potential. 

Changing the effective mass impacts both the density of states effective mass and the 

shape of the wavefunctions. Changing the shape of the well affects only the shape of 

the wavefunction. 

Intervalley phonon scattering occurs when a carrier transit ions to another valley. 

This scattering rate is given by 

where the f index accounts for the different scattering mechanisms ( A2 + A4 f- 

phonons, A4 + A2 f-phonons, A4 --+ A4 f-phonons, and A4 + A4 g-phonons) 

represented in Figure 2-7. From this equations we see that the intervalley scattering 

rates are related to the density of states effective mass, the overlap between the 

wavefunctions of the initial and final states, and the energy difference between the 

initial and final states. This is similar to the dependence of intravalley scattering, 

except there are more possible states to scatter to, and a relative change in energy 

between different valleys that does not affect the shape of the well will impact the 

f-phonon scattering rates. 

Surface roughness scattering occurs at the interface between the silicon and the 



gate dielectric. The scattering rates are given by Fischetti and Laux [ll] as 

where A is the RMS interface step height, and A is the autocorrelation of the step 

distance, and 6 is the polar angle of the scattering event. rij (q) relates the overlap of 

wavefunctions of the initial and final states with the interface. q(0) is the magnitude 

of the phonon wave vector. f i j (E) is a correction factor for the j th  sub-band that 

accounts for non-parabolicity of the bands. 

From these equations, we can see that the surface-roughness scattering rates de- 

pend on the roughness of the interface, defined through A and A, on effective mass, 

and on the shape of the carrier wavefunctions. Because surface roughness is in general 

a fixed parameter for the silicon/silicon dioxide interface, the parameters that affect 

surface roughness scattering are those that change effective mass and the carrier wave 

functions. 

An additional scattering mechanism that occurs at the silicon/oxide interface is 

coulombic scattering by fixed charge at the interface. This same formulation can 

be used to determine the coulombic scattering rates caused by doping in the chan- 

nel. While in the lightly-doped structures studied here, these rates are negligible, 

short-channel devices have highly-doped channels and therefor exhibit more coulom- 

bic scattering. The scattering rates are given by Fischetti and Laux as 



Hi7j ( 0 )  = j0 lo C (2)Ej (;')Iq (2, zi)ci (2) (2') dr'dr 

where for scattering by interface charges 

From this description, we can see that the number of charge centers (N) has a 

linear effect on the scattering rate. The form factor H ( q )  takes account of the overlap 

between the charge centers and the carriers. Coulombic scattering can be modulated 

by changing the number of charge centers (doping or interface quality concerns), 

or by changing the position of the carriers with respect to the charge centers. For 

instance, applying a high electric field moves the carriers closer to the surface where 

they interact more with the interface charge. 

Inversion Mobility in Strained Films 

For biaxially tensile strained (100) silicon, the A2 valleys are lowered in energy com- 

pared to the A4 valleys as pictured schematically in Figure 2-9. This leads to in- 

creased occupancy in the A2 valleys which yields two beneficial effects for mobility. 

The first is that the A2 valleys have a lower conduction effective mass, so increasing 

their fractional population leads to a lower aggregate conduction effective mass. The 

other beneficial effect is that the energy split between the A2 and A4 valleys leads to 

less f-phonon scattering between them. Because the effective mass and shape of the 

confining well remain the same, intravalley phonon scattering is not affected. 

However, increasing the population of the A2 valleys acts to move the average 

distance of the carriers closer to the silicon/oxide interface, which should increase the 

amount of interaction between the carriers and surface charges and surface roughness. 

This seems to indicate that biaxial strain should not be beneficial at high vertical 

fields, which does not agree with experimental evidence. This discrepancy has led to 

difficulty in modeling the enhanced mobility in biaxially strained silicon and remains 

a point of contention [12]. 



Strain 

Figure 2-9: Schematic represent at ion of the band-split ting that occurs with biaxial 
strain to the conduction band of silicon in an inversion layer. 

For (100) silicon with uniaxial tensile strain in the [loo] direction, the ic, valley 

is raised while the ic, and ic, valleys are lowered. This breaks the degeneracy of the 

A4 valleys. For electron travel in the [loo] direction, the aggregate effective mass 

is lowered due to the increased occupancy of the ic, and kz valleys which contribute 

m, to the effective mass. For travel in the [010] direction, the aggregate effective 

mass is higher than in the [loo] direction and can be higher than in the unstrained 

case (depending on strain and confining field) due to the higher occupancy in the icy 

valleys which contribute me in this direction. The aggregate effective mass of electrons 

traveling in the [I101 direction is relatively unaffected. As in the biaxial strain case, 

f-phonon scattering is reduced due to the split in the energy levels. 

Currently, the most relevant cry st a1 and strain orient at ion to examine is uniaxial 

[I101 tensile strain on (100) silicon wafers. MOSFETs are generally built on (100) 

silicon wafers where the direction of current flow is parallel to a [I101 equivalent 

direction. Process-induced strain is then used to apply uniaxial strain parallel to the 

direction of current flow. In this case, the net effect is to raise the A4 valleys and 

lower the A2 valleys, in a completely analogous fashion to biaxially strained silicon. 

However, the off-axis deformation of the crystal structure leads to deformation of the 

band structure that results in a change in the effective mass of electrons in the A2 

valleys. Figure 2-10(a) shows the anisotropic response of the effective mass to [I101 
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Figure 2-10: (a) cyclotront &soname effectivd f- VS. applied magnetic field angle 
for carriers in the Az valleys with and without an applied uniaxial compressive stress. 
Change in effective mass is fit by the curve Am*/rn = a + bcos4 [13]. (b) Projected 
view of the A valleys of silicon onto the (100) plane. Tensile strain in the [I101 
direction results in reduction of the effective mass in the [I101 direction, an increase 
in the effective mass in the [ l i O ]  direction, and relatively little change in the [loo] 
direction. The effective mass in the [OOl] direct ion (quantization effective mass) 
remains constant. 
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strain. For tensile strain, the result is that the effective mass is lower in the direction 

of applied strain, and higher perpendicular to it, as depicted in Figure 2-lO(b). The 

effects that this change in effective mass have on mobility are shown experimentally 

in Chapter 5. , +- . 

Electron Mobility in Ultra-Thin Films 
7 .  
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When an SO1 film is thinned below the equilibrium inversion layer depth, the carriers 

are confined by the thickness of the film rather than the electric field. This affects 

the wave-function and energy of the carriers. 

Because the A4 valleys have a lower quantization effective qlass, they h ~ y e , ~  lagger 

wave-function compared to carriers in the A2 valleys for-the %me confining well. As 

the potential well is made smaller by thinning the film, the carriers in the A4 valleys 

are affected first and more strongly, raising their e~ergy more quickly than the Az 

valleys, as shown in Figure 2-11. This leads to increased occupancy of the A2 valleys, 



Figure 2-11: Schematic representation of the confinement-induced split in energy 
levels between the A2 and A4 valleys caused by thinning in the film. The energy of 
the states in the A4 valleys will increase more with reduced film thickness than those 
in the A2 valleys. 

analogous to what occurs in biaxially strained silicon. However, because of the change 

in energy levels within the valleys unlike for the biaxial strain case where the energy 

levels within the valleys are relatively unaffected by the strain, intravalley phonon 

scattering is affected. Also, the confinement leads to more total phonon scattering. 

The confinement in real space leads to dispersion in k-space, which allows the carriers 

to interact with more phonons. 

The net result of the decreasing effective mass but increased phonon scattering is 

the phonon-limited mobility vs. silicon film thickness shown in Figure 2-12. Below 

about 15 nm, the mobility begins to drop. However, there is a range of thickness 

between 3-4 nm where the mobility is increased over bulk due to the transfer of 

carriers to the A2 valleys. Below this thickness, the A2 valleys become confined 

by the film, and the resulting increase in phonon scattering drastically reduces the 

mobility. 

A scattering mechanism that is unique to ultra-t hin films is "6TsoI scattering" [14]. 

These scattering events occur due to the local change in conduction and valence band 

energies caused by thickness variation. The difference in band energy between between 

thicker and thinner regions acts as a potential barrier that can scatter carriers. The 
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Figure 2-12: Phonon limited mobility vs. silicon film thickness [lo]. While quantum 
confinement acts to degrade mobility, for a range of thickness the energy splitting 
between the A2 and A4 ground state energies results in higher mobility. 

relationship is similar to the scattering that occurs in AlAsJGaAs quantum wells [15] 

where the scattering rates are 
~6 

well 
7 6 ~  - A2A2 

where TweZ1 is the thickness of the confining well and A and A characterize the interface 

roughness as defined earlier. For SOI, Twell is TsoI, meaning that the scattering rate 

increases very quickly as the silicon film is thinned. While phonon scattering typically 

overwhelms this effect, it does act to degrade room-temperature mobility and the Ti,, 

dependence can be observed at low temperature. 

Electron Mobility in Ultra-Thin Strained Films 

Because most of the mobility degradation seen in ultra-thin films occurs in the A4 

valleys first, applying strain to the system to re-populate carriers into the A2 valleys 

should be highly beneficial. If sufficient strain is applied to move the majority of 

the carriers into the A2 valleys, quantum size effects should not degrade electron 

mobility until the film is less than 3 nm because of the higher quantization mass in 

these valleys. One of the goals of this thesis is to experimental examine the impact 

of strain on carriers in ultra-thin films. 
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Figure 2-13: Valence band structure of silicon showing the warped nature of the 
bands [17]. 

Compared to electrons, the physics that governs hole transport is less intuitive. The 

following is a brief overview of the effects that govern hole mobility. 

The conduction band for silicon has two degenerate subbands at its maximum 

at the I' point, the "light hole" band (m* = 0.16mo), and the "heavy hole" band 

(m* = 0.49m0). Since the maximum is at the I' point, the surfaces of constant energy 

for holes are not split into six sub-bands like for electrons. However, energy surfaces 

for the light hole and heavy hole bands are "warped" by their degeneracy at k = 0. 

The shape of the constant energy surface of just below the valence band edge is 

shown in Figure 2-13. Because of this warping, more sophisticated theory such as 

k p perturbation must be used to determine the effective mass of holes [16]. 

Scattering rate calculations for holes have the same dependencies as for electrons. 

Changes in the density of states effective mass, the shape of the wavefunctions, and 

the split in energy between the initial and final states all effect the phonon scattering 

rates for holes. 

The application of strain affects hole mobility by deforming the band structure 
8 ,  . -.,l'll , 
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and lifting the degeneracy df &e light -and heavy hole bands. Like for electrons, the 



o 701 
ANGLE GF 4 fN DEGREES 1N fOOi) PLAHE FROM [rro] M I S  

Figure 2-14: Change in hole cyclotron resonance effective mass with 2270 kg/cm2 
stress applied parallel to the [I101 direction [16] 

application of [I101 uniaxial strain to a (100) oriented wafer leads to an anisotropic 

change in the effective mass, as shown in Figure 2-14. Thompson et al. have found the 

main contribution to increased hole mobility with compressive strain to be band de- 

formation (decreased effective mass) for uniaxial strain and band-splitting for biaxial 

strain [17]. 

Because the quantization mass of the light holes is lower than that of heavy holes, 

they become thickness-confined first as the film is thinned. This raises their energy 

level, which repopulates carriers into the heavy hole band. This results in a higher 

aggregate conduction effective mass for holes, in contrast with the advantageous band 

repopulation that occurs for electrons because of the favorable anisotropy of the A2 

valleys. The result is that holes suffer from thickness-induced mobility reduction 

in films thicker than that which effect electrons because of the lower quantization 

effective mass of the light holes. This also results in a monotonic decline in hole 

mobility with film thickness, as shown in Figure 2-15. 



Figure 2-15: Hole mobility vs. silicon film thickness [14]. Hole mobility declines 
monotonically with reducing film thickness. 





Chapter 3 

Experimental Procedures 

Various types of MOSFETs were fabricated to examine carrier transport in inversion 

layers. The effects of uniaxial strain and film thickness on mobility were then exam- 

ined. This chapter provides details of the techniques used to build and characterize 

the MOSFETs used to collect the results presented later in this thesis. 

3.1 FDSOI Device Fabrication 

A simple four-mask process was used to fabricated devices with channels thicker than 

about 8 nm. Under ideal conditions, a full MOSFET flow can be completed in under 

two weeks. Because of this fast turn-around time, this was the preferred process for 

examining relatively thick films. 

First, a new SO1 or SSDOI wafer is thinned to a desired starting thickness by 

thermally oxidizing the top silicon layer and then chemically etching the grown oxide. 

Since there are currently some not well understood mechanisms that impact the 

oxidation rate of extremely thin films, this oxidation is done in iterative steps to 

achieve the desired thickness. Starting wafers first undergo full RCA cleaning (of 

which the SC1 step removes some silicon), then oxidation at 800°C for two hours, 

growing 10 nm of oxide and consuming approximately 5 nm of the silicon film in the 

process. The wafers are then measured by spectrographic ellipsometry to determine 

exactly how much oxide was grown and how much silicon film was consumed. The 
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(a) LOCOS Isolation (b) Mesa Isolation 

Figure 3-1: Isolation methods used for FDSOI device fabrication. 

wafer is then cleaned in the SC1 step of the RCA, but since an oxide layer is still 

present the silicon film is protected from chemical etching. The oxide is then dipped 

off in 50:l H20:HF, and the wafer is cleaned in the SC2 step of the RCA clean. A 

new thermal oxide is then grown and the process is repeated until the film reaches 

the desired thickness. 

Once the SO1 film is thinned to the desired thickness, isolated device islands 

are defined. Both LOCOS (Figure 3-l(a)) and mesa (Figure 3-l(b)) isolation were 

used in these experiments. Wafers which received mesa isolation simply had the 

active area patterned by etching the silicon film to the buried oxide. Wafers which 

received LOCOS isolation had a thin stressrelief oxide (SRO) grown on them (the 

remaining oxide from the last thinning step was often used), a nitride film deposited 

and patterned, then a thermal oxide grown to the buried oxide in the region where 

the nitride was removed. The remaining nitride is then stripped in h ~ t  phosphoric 

acid. 

After isolation a gate oxide is grown and polysilicon is deposited and patterned. 

The wafers are RCA-cleaned and any remaining oxide . . . .  Qn the purface js st~ipped iq . - 

HF betweeqthe SC1 and SC2 steps. A new thermal oxide is then grown, usually at 

800°C in a dry oxygen ambient, with a target thickness of approximately 4 nm. In-situ 

phosphorus-doped polysilicon is then deposited as the gate material. Often, the gate 

material is deposited at 560° C and is initially amorphous rat her than polycryst alline. 

Photoresist is then patterned on the polysilicon, and the gate material is etched 

in a multi-step process in a magnetically-enhanced reactive ion etch (MERIE) system 



Table 3.1: Gate etch recipes. 

as summarized in Table 3.1. First, due to the high selectivity of subsequent etches 

to photoresist, a low-power high-pressure oxygen plasma "de-scum" step is used to 

remove any photoresist residue in the open areas of the pattern. Then, due to the 

high selectively of the subsequent etches to oxide, a low-power C2F4 plasma is used 

to remove any native oxide or oxide grown during the de-scum step ("de-ox"). Then 

a high-power C12+HBr plasma is used as a timed main etch to remove about 80% 

of the polysilicon. The main etch step has a high etch rate and provides a highly 

anisotropic etch, but its selectivity to oxide is not enough to allow it to stop on a thin 

gate oxide. A low-power HBr plasma is then used as a timed over-etch step to remove 

the remaining polysilicon and stop on the gate oxide. While the over-etch has a low 

etch rate and is fairly isotropic, it has a selectivity of polysilicon to oxide of >100:1. 

Over-etch 
75 
50 
100 
0 

40 
0 

Power (W) 
B Field (G) 
Pressure (mT) 
CF4 (sccm) 
HBr (sccm) 
C12 (sccm) 

The photoresist is then stripped in an oxygen plasma, and the wafers are cleaned in 

a modified RCA clean where the SC1 step is replaced with piranha (3: 1 H2S04:H202) 

and no HF dip is performed. Then, a 10-15 nm screen oxide is deposited by LPCVD, 

and the wafers are sent to an external vendor for ion implantation of the source and 

De-scum 
75 
50 
200 
0 
0 
0 

drain regions. Typical conditions for ion implantation are a dose of 5 x 1014 As ions 

at 35 keV. The thickness of the screen oxide was adjusted based on the underlying 

film thickness so that the peak of the implant could be located in the film using a 

reasonable implant energy. Otherwise, the implant time becomes very long, and a 

good deal of sputtering of the surface can occur. 

De-ox 
75 
50 
100 
20 
0 
0 

Once the wafers return from ion implantation, they are cleaned in two successively 

cleaner piranha baths and are then RCA cleaned. A thick (100-200 nm) LTO layer is 

then deposited, and the dopants are then activated in a rapid thermal anneal (RTA). 

Main Etch 
350 
50 
200 
0 
20 
20 



The RTA cycle has two stages in order to limit dopant degradation at the polysilicon 

grain boundaries. First, the temperature is ramped to 750°C and is held for 20 

seconds. During this time the amorphous silicon crystallizes into polysilicon. The 

temperature is then spiked to 1050°C for 5 seconds during which time the dopants 

are activated. 

The devices are then finished by metallization. First, via holes are patterned 

and etched. Then 100 nm Ti / 500 nm A1 are sputtered. It has been found that 

thinner Ti does not serve as a sufficient barrier to A1 diffusion during the subsequent 

sintering step. If the A1 comes in contact with the silicon it tends to laterally creep 

many microns and short the source/drains of the devices together. The Ti/A1 is then 

patterned by a dry plasma etch in C12 or in a wet PAN etch (Phosphoric acid, Acetic 

acid, Nitric acid) to remove aluminum followed by a dilute HF or BOE (Buffered 

Oxide Etch) mixture that removes the underlying Ti. The photoresist is then ashed 

and the devices are finished by sintering in forming gas. This sintering step must 

be performed at >45OoC for >30 minutes to remove interface states that degrade 

mobility and subthreshold slope. 

While the above process offers quick turn-around and simplicity, it was found that 

devices below about 8 nm could not be contacted. Others have reported contacting 

films this thin, so the problem appears technological rather than fundamental. One 

solution that was found was to use in-situ doped polysilicon for the contact material 

beneath the Ti/A1 stack. This may indicate that voids are formed during the silici- 

dation that occurs during the final forming gas anneal, although un-sintered devices 

also showed no contact to the channel. This seems to indicate that the silicon film 

is removed during the contact etch, and the enhanced filling ability of the polysil- 

icon deposition is responsible for the working contacts. Because the only in-situ 

doped polysilicon available was phosphorus dopes, this process was only employable 

on NMOS devices. 



, , Thermal Oxide ,-, 

1. Thick regions protected by Nitride 

3. Oxide is chemically stripped 

2. Thermal oxide is grown 
SourceIDrain Implant ' 1 

I 1 
4. Device is completed normally 

Figure 3-2: Process for locally thinning the channel while leaving the source/drains 
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3.2 Locally-Thinned Channel Fabrication 

While polysilicon-first met alizat ion allows contact to thin films, it was determined 

that since only the channel region needs to be thin, a process could be used which 

keeps the source/drains thick. This allows for less stringent control of certain process- 

ing steps and adds minimal complexity. In a short-channel device, other techniques 

like raised source/drains and self-aligned silicides would have to be employed to limit 

series resistance. However, for measuring mobility, long channel devices are used, so 

locally-thinning the channel was chosen as the preferred method. 

First, LOCOS is performed. In this case, an isolation implant (1 x 1014 boron at 

20 keV) is performed prior to the LOCOS oxidation in order to eliminate edge leakage 

that was observed in prior experiments. - . " ' ' I s  , 

Next, the channel is selectively thinned (Figure 3-2). This is analogous to a 

LOCOS process. The remaining SRO from LOCOS is left in place as a SRO for 

the thinning, and a nitride layer is deposited and patterned in a region of the active 

area. Within wafer splits are performed by removing the nitride over the entire active 

area to yield a fully-thinned device. Some active areas remain covered by nitride and 

receive no thinning. Repeated oxidation and oxide stripping are then used to thin 

the channel to the desired thickness. f n  . 



Table 3.2: Ellipsometry data indicating an improvement in SO1 film uniformity with 
thinning. All units are in nm. 

Mean 
Std. Dev. 
Range 

The device is then completed as before, with gate stack and patterning, screen 

oxide deposition, sourceldrain implantation, inter-layer dielectric (ILD) deposition, 

dopant activation, Ti/Al based metallization, and forming gas anneal. 

3.3 Self Limiting Oxidation 

It has been observed that during the successive oxidation and oxide stripping process, 

the SO1 film long-range uniformity across the wafer improves. An example showing 

the difference between st art ing uniformity and uniformity after thinning using dry 

oxidation performed at  800°C is given in Table 3.2. Since it is also observed that as 

the film becomes thinner, the oxidation rate goes down. For instance, an oxidation 

performed at 800°C for 120 minutes grew 9.6 nm of oxide on bulk wafers and SO1 

wafers with a 30 nm thick silicon layer, and grew 9.3 nm on an SO1 wafer with a 

15 nm thick silicon layer. From these observations, it is apparent that there is some 

self-limiting oxidation mechanism occurring in these thin films. 

Self-limited oxidation has previously been observed and used in the study of sili- 

con nano-wires [18]. In these experiments, cylindrical pillars are oxidized until a rod 

of silicon only a few atoms in diameter is left. This process is rather robust and re- 

peatable despite limitations in lithography and furnace control because the oxidation 

rate of the silicon decreases quickly as the pillar is oxidized. However, this appears 

to be due to 2D stress effects that one would not expect to  see in the oxidation of a 

planar film. 

Although this effect has been observed in planar films and patented [19], the 

physical mechanism responsible for the improvement in uniformity with thinning is 

Starting Wafer After Thinning 
Silicon 
28.7 
0.4 
1.8 

Silicon 
8.5 
0.2 
0.6 

BOX 
155 
1.0 
4.7 

BOX 
156 
1.0 
2.6 



still unknown. A possible explanation is that int erstit ials injected into the silicon 

during the oxidation process accumulate in the SO1 film and inhibit the oxidation 

rate. Since oxidizing the silicon surface requires silicon atoms to break bonds with 

their neighboring silicon atoms and for the bond to remain open until it reacts with an 

oxygen atom, a high concentration of interstitials would increase the likelihood that a 

bond will be formed with a free silicon atom rather than an oxygen atom, and hence 

decrease the oxidation rate. The thinner regions would have a higher concentration 

of interstitials and hence oxidize slower. The net effect would be to make the film 

more uniform during oxidation. 

A potential problem with this hypothesis is that it has been reported that at least 

under certain conditions, the buried oxide layer is transparent to interstit ials. Exper- 

iments were performed that use the growth of oxidation stacking faults as a metric 

for determining the interstitial concentration in an SO1 film [20]. An analytical model 

was developed to explain these results that indicates that silicon self-interstitials react 

at oxide interfaces to form SiO molecules that have a high diffusivity in SiOz [21]. 

However, the stacking fault experiments were performed at much different oxidation 

conditions than those of this work (950°C steam oxidation, 1040°C wet oxidation, and 

1100°C dry oxidation). Because the diffusivity of silicon atoms in SiOz is an order 

of magnitude lower than that of SiO molecules, if the formation of SiO molecules is 

suppressed at lower temperature, the buried oxide will no longer appear as a sink 

for the interstitials. Because of the importance that film thickness uniformity plays 

in the manufacturability of thin silicon devices, further research should be done to 

investigate the mechanism responsible for improved global uniformity during SO1 

thinning . 

3.4 Oxidative Smoothing 

For a device with a thin channel to function, the local roughness of both top and bot- 

tom surfaces of the film must be much smaller than the film thickness or the channel 

will not be continuous. The top surface of the SO1 wafers is usually very smooth. 



The SIMOX wafers used for the initial ultra-thin SO1 experiments presented in this 

thesis had a starting top surface roughness of <0.3 nm according to the manufac- 

turer. However, the interface between the silicon and the buried oxide layer did not 

have a surface roughness specification, and was expected to be rougher than the top 

interface due to the wafer fabricat ion met hod. 

In order to  examine the surface roughness of the wafers, atomic force microscopy 

(AFM) was used. To examine the top surface, AFM was performed on a piece without 

any preparation, and one that had the native oxide stripped in dilute HF. In both 

cases the surface was found to have an RMS roughness of about 0.3 nm, which is 

close to the specification from the manufacturer. To examine the bottom interface, 

a sample had the native oxide stripped and the silicon layer removed in tetramethyl 

ammonium hydroxide (TMAH). This procedure exposes the top surface of the buried 

oxide for AFM. On the SIMOX wafer examined here, the bottom interface roughness 

was found to  be almost 8 nm as pictured in Figure 3-3(a). 

With a bottom surface roughness of over 8 nm, devices with a channel thickness 

of less than 10 nm would be rather impractical to study since the thickness variation 

is a significant proportion of the total device thickness and the channel would not be 

a continuous film. However, it is known that oxidation smoothes silicon surfaces [22], 

and that oxidation can occur at the interface between the silicon and the buried oxide 

[23]. During the thinning process, oxidation occurs at both interfaces, smoothing 

them. After thinning, the RMS roughness of the buried oxide interface was found 

to be around 0.5 nm as pictured in Figure 3-3(b), close to the roughness of the top 

interface, while the top surface roughness stayed approximately the same. While a 

perfectly smooth interface would be ideal, the smoothing of the back interface during 

the thinning process brings the thickness uniformity of the silicon to a level at which 

studying ultra-thin films is practical. 



(a) Buried oxide interface before thinning. (b) Buried oxide interface after thinning. 

Figure 3-3: AFM images of the top surface of the buried oxide layer of a SIMOX SO1 
wafer before (8.0 nm RMS roughness) and after thinning (0.5 nm RMS roughness) 
by oxidation of the top surface. 91: a: 7 (2 ;  : : i  :-I i-<r,a ! j r  -1 - , q l  

3.5 Dealing with Series Resistance I ' d  
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While an effort was made to minimize series resistance in the ultra-thin SO1 devices, 

the final series resistance was still large enough to cause substantial problems for mo- . .. . . . 
. I  . ' ,  ..!' '. - 7  r ' !  ::.,,; ..,, ,, 

bility extraction. An effective solution, to this problem was to perform measurements 
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on a specially designed MOSFET designed to negate series resistance effect's [24]. 
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Figure 3-4 provides a plan-view schematic of such a device. By measuring the voltage 
t I I  - 1  

1 .  , , - A  
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at two points &ngathe channel, the effective VDs along the channel is inferred as 

The mobility is then extracted using the effective VI,, as , 



Figure 3-4: MOSFET structure allowing Kelvin measurements. 

3.6 Film Thickness Extraction 

Film thickness was extracted by matching CV measurements with different back- 

biases to 1D Poisson-Schrodinger simulations using the "Schred" simulator [25]. At 
I '  

sufficiently low front-gate bias, a high bias on the substrate can induce an inversion 

layer at the back interface. In this case, the capacitance between the front-gate and 

the inversion layer is the series combination of the oxide capacitance and the silicon 

depletion capacitance as shown in Figure 3-5(b). When the film is relatively thick, 

a plateau in the CV forms for a range of front-gate biases (Figure 3-6(a)), and the 

silicon film thickness can be extracted analytically using the difference between the 

maximum capacitance and the plateau and the ratio of the dielectric constants of 

silicon and oxide. When the film becomes thinner, the plateau shrinks and eventually 

disappears as the film thickness approaches the inversion layer depth (Figure 3-6(b)). 

Once this occurs, the threshold voltage shift with back-bias becomes a strong function 

of film thickness due to electrostatic and quant um confinement effects. 

By employing Schred simulations that the electrostatic and quantum confinement 

effects of thin films into account, gate oxide thickness, silicon thickness, and buried ox- 

ide thickness were extracted. An optimizer for Schred was in the Python [26] scripting 

language to expedite the extraction process. Gate oxide thickness was extracted from 



(a) No applied back-gate bias. (b) High back-gate bias. 

Figure 3-5: Location of the inversion layer with and without applied back-gate bias. 

the maximum capacitance, while silicon thickness and buried oxide thickness were 

solved self-consistently while optimizing the threshold volt age and threshold volt age 
. . 

shift with back bias. Exadples of simulations matched to the measured data data are 

shown in Figure 3-6(a) for a thick SO1 device and in Figure 3-6(b) for and ultra-thin 

SO1 device. Because the threshold voltage shift with back-bias is a strong function of 

film thickness as shown in Figure 3-8, this technique gives an accurate estimation of 

the film thickness. The electrically extracted values for film thickness closely match 

the values expected from ellipsometric measurements made during device processing. 

A cross-section TEM of,&~,4evjce measured in Figure 3-6(b) is shown in Figure 3- 
E.3 $ ,.,., F ~ ~ - , ~ * - ~ = i $ $  

7, showing that the ~ t u  hickness of a device af r processing matches very 
1 

closely with the value extracted electrically. The 

the siliconlgate oxide and silicon/buried oxide interfacer 

I .  

lrity in  smoothness between 

1 also apparent. 

3.7 Applying Uniaxial Strain 
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Uniaxial strain was applied in a four-point bending apparatus schematically pictured 

in Figure 3-9. The wafer was cut into strips in order to be bent. The procedure used 

was to coat the wafers in photoresist to protect the surf'e f r ~ m  massive particle 
7;!. + :, .!a ,$ , -  ',; ;{;p a . .. # ,  , 

contamination, then strips were cut out using a die saw. The resist w& then removed 

in a solvent rinse that removes most of the particles created during the sawing process. 

The strips are then bent by displacing the center points of the bending apparatus 
. , - .  
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Figure 3-6: CV characteristics with and without applied back-gate bias with corre- 
sponding Schred simulations. 

Figure 3-7: XTEM image of an ultra-thin SO1 device. The electrically extracted 
values for film thickness match quite well with the value extracted by XTEM. The 
film varies in thickness by around 0.1 nm. 
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Figure 3-8: Threshold voltage shift with back bias vs. channel thickness calculated 
with Schred. Errors in the estimation of the threshold voltage shift are on the order 
of millivolts, so the error in film thickness estimation using this technique is less than 
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Figure 3-9: Schematic drawing of the four-point bending apparatus used to apply 
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using a micropositioner. An initial zero point is determined by raising the sample on 

the moving points until the sample is in contact with all four points. Any initial strain 

in the system caused by inaccurate initial positioning can fortunately be neglected due 

to the linear response to strain shown in Chapter 5. If there was a nonlinear response, 

the zero point would have to be more carefully chosen. The radius of curvature of 

the bend can be calculated geometrically from the amount of displacement between 

the inner and outer points using the position of three of the points to define a circle. 

The strain is then calculated as 

where T is the sample thickness and R is the radius of curvature calculated geomet- 

rically from the displacement of the moving points. The rotation of the sample was 

checked by optically aligning points 2 cm apart to  an accuracy of better than 50 

pm, giving a possible rotational error of less than 0.15". Errors in strain estimation 

could arise from inaccurate estimation of the radius of curvature and uncertainty in 

the sample thickness. The moving points are self leveling, so the uncertainty of the 

displacement of the points is only due to experimental error in the positioning of 

the dial of the micropositioner which is on the order of 5%. Since for small values 

of displacement the strain is linearly related to  the point displacement, this leads to 

an uncertainty of 5% in the strain. The sample thickness was determined to  within 

25 pm, so for the thinnest samples (575 pm) the possible error in sample thickness 

estimation is around 4%. The total error in the amount of strain estimate is on 

the order of 10%. More accurate results could be obtained by using an optical flex 

measurement system such as the KLA-Tencor FLX series [27]. However, the bending 

apparatus used for these experiments was not geometrically compatible with such a 

system. 

It is important to note that the application of strain in one direction induces 

Poisson strain in the other two. The relationship between the applied strain and the 

induced strain is the constant known as Poisson's ratio. Fortunately, for this work 



where [I101 strain is applied to the (100) plane, Poisson's ratio is about 0.04 [28], so 

the Poisson strain is negligible. However, for other strain directions, Poisson's ratio 

can be as high as 0.28, at which point the Poisson strain should be considered. 





Chapter 4 

Strained Silicon Directly on 

Insulator 

As seen in Chapter 2, ultra-thin silicon films have reduced carrier mobility due to 

quantum confinement effects. It would be advantageous to use an alternate channel 

material that has higher mobility to regain this lost mobility. Biaxially strained 

silicon pseudomorphically grown on lattice mismatched silicon germanium substrates 

is known to demonstrate higher mobility than unstrained silicon. At the time of this 

work, it had just been demonstrated that a strained silicon film could be transfered 

from a silicon germanium substrate to a handle wafer, creating a Strained Silicon 

Directly on Insulator (SSDOI) wafer. 

This chapter presents some of the early device work done on SSDOI wafers that 

demonstrated that the material is suitable for building MOSFET devices and that 

the mobility enhancement over bulk is maintained after SSDOI substrate fabrication 

and a full MOSFET process. In addition, the film thickness and thermal budget 

constraints seen in bulk strained silicon/silicon germanium substrates seem to be 

alleviated in an SSDOI system. 



4.1 SSDOI Substrate Fabrication 

SSDOI substrates were provided by AmberWave Systems Inc. The "20%" SSDOI 

substrates were fabricated by direct transfer of a 50 nm strained silicon film from a 

relaxed Sio.8Geo.z graded buffer to a handle wafer as shown in Figure 4-1 [29]. Similar 

approaches have also been demonstrated by other groups [30, 31, 321. Strained sili- 

con films were epitaxially grown on a relaxed silicon germanium virtual substrate that 

had been planarized by chemical mechanical planarization (CMP) [33]. Wafers were 

implanted with hydrogen and wafer-bonded to an oxidized bulk silicon handle wafer. 

The bonded pair was annealed and the strained silicon/relaxed silicon germanium 

film released onto the handle wafer. A bond-strengthening anneal was performed at 

800 "C for one hour. The solid-state germanium diffusion is negligible during this 

process, with a characteristic diffusion length of 0.4 nm and minimal strained sil- 

icon film relaxation. The remaining relaxed silicon germanium was removed by a 

combination of low temperature (< 800°C) steam oxidation and wet etching. The 

final strained silicon film thickness for a typical wafer was measured by ellipsometry 

to be 43.3 nm with a standard deviation of 2% across the wafer. The top surface 

roughness was measured by atomic force microscopy (AFM) to be 0.44 nm RMS on 

a 10 x 10 pm scale (Figure 4-2). No crosshatch was observed on the final SSDOI 

wafer surface due to  the superior planarity of the polished silicon germanium virtual 

substrate. The tensile strain level of the SSDOI substrates is robust and fully main- 

tained even after annealing at  1100 O C  for 80 minutes as confirmed by UV-Raman 

measurements [34]. High thermal budget anneals of this type are not possible in bulk 

strained silicon/silicon germanium systems due to  germanium diffusion. 

4.2 Processing Conditions 

Fully-Depleted n-MOSFETs were fabricated on the SSDOI substrates to  investigate 

carrier transport and SSDOI film quality. As described in Chapter 3, the devices were 

built using a simple four mask process utilizing mesa isolation. The sourceldrain 
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Figure 4- 1: Fabrication process for SSDOI substrates. 

areas were implanted with arsenic and activated by RTA for 5 s at 1080 "C. The 

gate oxide thickness was 9.4 nm and the remaining strained silicon film thickness 

after processing was 25-35 nm, both measured by ellipsometry. A cross-section TEM 

image of a completed device is shown in Figure 4 3 .  The gate oxide and film thickness 

as measured by TEM are in agreement with the ellipsometry data. 

4.3 Device Results 
, 8 " -  . +  . . - 8 .  , . 

,. - ; ' 8  ' . .  a .  
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Completed MOSFETs were measured and found to have good devices results. Trans- 

fer characteristics of a long-channel device a e  showamin Figure 4-4. The 66 mV/decade 

subthreshold slope is indicative of a fully-depleted device with good interface quality. 

Capacitance vs. voltage characteristics (Figure 4-5) show an effective oxide thickness 

(EOT) of 9.4 nm that matches the value given by ellipsometry and no visible poly 
- - - - - - - - -  - - .  

depletion, indicated good dopant activation. 

Figure 46(a) shows mobility vs. inversion layer density for 20% SSDOI compared 

to 20and control bulk silicon devices. SSDOI shows 112% enhancement over bulk 

silicon at Ni, = 1 x 1013 C ~ I - ~ .  Some enhancement is observed over bulk straihed 

silicon/silicon germanium due to the lower effective field in SSDOI for equivalent 

inversion layer charge density. Figure 46(b) shows mobility versus effective field for 



RMS = 0.44 nm 

Figure 4-2: AFM image of the SSDOI wafer surface. RMS roughness is less than 
0.5 nm. 

SSDOI devices compared to bulk st rained silicon/silicon germanium devices, control 

bulk silicon devices, and the universal curve for electrons iq silicon . I  [35]. Effective 

field was determined by E, = (Qb + 0.5Qi)/~Si where Qb is the depletion charge. 

20% SSDOI devices show the same enhancement over bulk silicon as bulk strained 

silicon/silicon germanium once effective field is taken into account, indicating that the 

biaxial tensile strain of the film has been fully maintained through device processing. 

4.4 Misfit Dislocations 

Figure 4 7  shows transfer characteristics of submicron length n-MOSFETs on three 

different substrates: 20% bulk strained silicon/silicon germanium below the critical 

thickness, 20% bulk strained silicon/silicon germanium above critical thickness, and 

20% SSDOI with strained silicon far above critical thickness, with as-grown strained 

silicon film thicknesses of 12.5 nm, 20 nm, and 50 nm respectively. Plan-view trans- 



100 nrn. 

Figure 4 3 :  Cross-section TEM of an SSDOI device after processine. The gate oxide 
thickness is 9 nrn and the silicon film thickness is 25 nm. 
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Figure 4-5: CosD ror a 5Ox50pm WDOI n-MOSFET. EOT is 9.4nm, matching 
ellipsometry and indicating low poly -spletion and good dopant activation. 

" t '  " - / - .  . 
. ~-w..i.,+m .-i ym'K$. 

t I;t mission electron microscopy examihhtion confirmed that the subcritical thickness bulk 

strained silicon/silicon germanium films were misfit-free, while the supercritical thick- 

ness bulk strained silicon/silicon germanium and SSDOI films had misfit dislocation 

spacings of several microns [37]. While supercrit ical thickness bulk strained sili- 

con/silicon germanium devices suffer from high subthreshold leakage, supercritical 

thickness SSDOI devices show no such leakage. 

To study this result further, Photon Emission Microscopy (PEM) was used to 

study leakage current paths in the different devices. In PEM, a long exposure micro- 

graph of an electrically biased device is taken with a camera with a cooled, low noise 

CCD imager. Carriers accelerated by the electric field scatter and +d give off energy 

in the form of photons with a broad energy spectrum (1.2-2.4 e ~ )  that are collected 

by the camera [38]. As seen in Figure 48(c), light emission is highly localized for 

the supercritical thickness bulk strained silic~n/silicdh~~~rrnani~in~device, indicating 

misfit dislocation-induced leakage. However, the off-current distribution is uniform 

along the channel width for the subcrit ical thickness bulk strained silicon/silicon ger- 

manium devices in Figure 4-8(b) and the supercritical thickness SSDOI devices in 
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Figure 46: Electron mobility for 50 x 50 pm bulk, 20% bulk strained silicon/silicon 
germanium (Tsi=12.5 nm), and 20% SSDOI devices (Ts3=50 nm). SSDOI displays 
enhancement over both bulk silicon and and bulk strained silicon/silicon germanium 
vs. inversion layer charge density (a), but similar enhancement vs. effective field (b), 
indicating that the tensile strain of the SSDOI film was maintained through device 
processing [36]. 
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Figure 4-7: ~ b m ~ a i i i o n  6~ i r a n i r & s  for bulk strained si -. onjs ... 2on 
germanium devices below the critical thickness (12.5 nm) , above the critical thickness 
(20.0 nm), and SSDOI above the critical thickness (50.0 nm). Excess leakage is only 
observed in strained silicon/silicon germanium devices above the critical thickness. 
Layer thicknesses are as-grown and all films have 20% germanium equivalent strain. 
Bias conditions corresponding to Fig. 4-8 are marked 1 

The apparent immunity of SSDOI to n 

on each curve [36]. 

Figure 48(d), indicating normal subtnresnou :onduction. 
. . 

t dislocation uced lei tge current can 

be understood by considc 'ng the position of misfit dislocations in the silicon/sili~h 

germanium stru~ture (Figure 49(a)). It has recently been shown that the leakage ,' 

mechanism in supercritical thickness bulk strained silicon/silicon germanium devices ' . . 

is localized enhanced diffusion along misfit dislocation cores found at the strained sil- 

icon/silicon germanium interface [37], a theory reinforced by the fact that dislocation 

cores are known to serve as rapid diffusion paths [39]. It appears that SSDOI devices 

. lare . .  not , Gected , by misfit induced leakage because the misfit dislocation cores at the . . . . \-. --y; 

straihed sili&n/silicon ger-znium interface and the associitea %hanced diffusion 

paths are el 
' 

ed dl ing ' SSDOI a ' fabrication process leaving or ' thread- 

ing dislocation segm - --.ts (Figure 49(b)). While the remaining threading dislocation 

segments may have an impact on device yield or reliability and should be studied 

further, we have seen no detrimental effects thus far. 
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4.5 Conclusions 

Prior to this work, it was unknown whether well behaved MOSFETs could be fab- 

ricated on SSDOI substrates. It was found that not only c 
' L  S% 

that showed the improved mobility expected from strained silicon, but that SSDOI 
T 2  

has superior thermal stability and is not as limited in strained silicon film thickness 
7 > 

as itfained silicon/silicon germanium is. ' This revelation hinted at the ability to make 

SSDOI wafers with films thick enough to fabricate the partially-depleted MOSFETs 

that are currently used in production. In f a d ,  recent results indicate that partially 

depleted devices can be built on SSDOI, and that nontrivial circuits benefit from this 



Chapter 5 

Applying Uniaxial Strain 

Process-induced uniaxial strain has become an important method of increasing MOS- 

FET performance in recent years. By using techniques such as stressor films [41] and 

replacement source/drains [42] it is possible to increase on-current by means other 

than traditional scaling. Because of the importance of this technique, the impact of 

uniaxial strain on new material systems must be examined when considering their 

possible implement at ion. 

SO1 and SSDOI NMOS and PMOS devices with relatively thick and ultra-thin 

channels were studied. Kelvin-structure MOSFETs were measured with different 

levels of uniaxial strain mechanically applied using the bending apparatus described 

in Chapter 3. By applying mechanical uniaxial strain rather than process-induced 

strain, it is possible to directly study the effects of the strain separate from the effects 

of processing, and it is possible to vary the magnitude of tensile and compressive 

strain on the same device. Uniaxial strain can also be applied perpendicular to the 

direction of current in the device, something that is impractical with current methods 

used to produce process-induced strain. 

5.1 NMOS Device Results 

Electron mobility vs. charge density for devices without any applied uniaxial strain 

is shown in Figure 5-1. The curves for bulk and thick SO1 overlay each other as 



expected since they have undoped channels and were co-processed. Thick SSDOI 

shows enhanced mobility over bulk and thick unstrained SOI. The ultra-thin SO1 and 

SSDOI devices experience mobility degradation from quantum confinement effects. 

Figure 5-2(a) shows change in electron mobility vs. inversion layer density for 

a bulk NMOS device with multiple values of uniaxial strain applied parallel to the 

channel direction (longitudinal strain), while Figure 5-2(b) shows the effects of uniax- 

ial strain applied perpendicular to  the channel (transverse strain). The enhancement 

with longitudinal strain is relatively constant with inversion layer density. However, 

for transverse strain, the level of enhancement is less and it falls off with increasing 

inversion layer density. The same characteristics are shown in Figure 5-3 for SSDOI. 

SSDOI devices exhibit less enhancement with longitudinal strain than bulk devices, 

but the level of enhancement is still relatively constant with inversion layer density. 

For transverse strain, the mobility is actually reduced, and gets increasingly worse 

with increasing inversion layer density. 

Electron mobility modulation vs. strain for NMOS bulk, thick and thin SOI, and 

thick and thin SSDOI are summarized in Figure 5-4 for longitudinal strain and in 

Figure 5-5 for transverse strain respectively. Bulk and thick SO1 devices show very 

similar characteristics as expected. Thin SO1 devices exhibit the highest sensitivity 

to  uniaxial strain. All devices exhibit markedly different response to longitudinal and 

transverse strain. This anisotropy of the mobility modulation is most apparent in the 

SSDOI devices where longitudinal tensile strain enhances mobility while transverse 

tensile strain degrades mobility. 

5.1.1 Electrons in Ultra-Thin SO1 

The dependence of mobility enhancement on film thickness may be explained by 

examining mechanism of mobility degradation in thin films in detail. Figure 5-6 shows 

the wave functions of electrons in the A2 and A4 valleys for bulk and a 5 nm thick film. 

The wave function of the electrons in A4 valleys of the bulk device is broader than 

the thickness of the 5 nm film. This leads to  thickness-induced confinement of the 

carriers in the SO1 device that degrades mobility through increased phonon scattering 
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Figure 5-1: Electron mobility vs. inversion layer density with no applied strain. Thin 
devices exhibit lower mobility due to surface roughness and quantum confinement 
effects. 
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Figure 5-2: Percent change in electron mobility vs. inversion layer density for in- 
creasing levels of (a) longitudinal and (b) transverse tensile strain applied to a bulk 
NMOSFET. Band splitting arguments cannot explain the difference between (a) and 
(b). Longitudinal strain yields a relatively constant enhancement vs. inversion layer 
density, while transverse strain loses enhancement at high inversion layer density. 
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Figure 5-3: Percent change in electron mobility vs. inversion layer density for in- 
creasing levels of (a) longitudinal and (b) transverse tensile strain applied to a thick 
SSDOI NMOSFET. While longitudinal strain enhances mobility, transverse strain 
degrades it. 
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Figure 5-4: Percent change in electron mobility vs. level of applied longitudinal 
strain. Thin SO1 devices show the most sensitivity to strain. SSDOI devices do 
receive enhancement from additional tensile strain. 
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Figure 5-5: Percent change in electron m6'l;ility vs. level of applied transverse strain. 
SSDOI mobility is enhanced by transverse compressive strain. 
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and increased interaction with thd buried oxide interface. However, the electrons in 

the A, valleys have a narrower wave function due to their higher quantization mass 

and are nearly unaffected by the thickness of the +film. The application of strain - ' 4  - 1  ' A . . . t i e  . .,,>. 

splits the enerw levels of the valleys further, resulting in lower occupation of the 
. f . I  . 3 , ;  r .  

degraded A4 valleys. Therefore,. strain enhances mobility in thin films not only by 

transferring carriers to valleys with lower effective mass, but also transferring carriers 
8 - 8 ;  . - ,  

out of valleys suffering from thickness-induced confinement. 

5.1.2 Anisotropic Electron Mobility Modulation 

For (100) silicon with strain applied in the [I101 direction, electron repopulation due 

to band-splitting does help explain electron mobility modulation [44], but it cannot 

explain its anisotropy. All the the A4 valleys should..b ;affected equally by strain in 
e - Y f ? * '  ,!2, 

the [I101 direction. Irie et al. observed this effect and found that it was independent 

of temperature, thus eliminating anisotropic phonon scattering as the cause [45]. The 

remaining explanation is a ahisotropic change in effectije mans. 

Early work on uni&id straSh in bulk sili&n mi& 'cyclotron resonanw character- 



Figure 5-6: Schred simulation of the wavefunctions of electrons in the Az valleys 
(Qll) and A4 (Q12) valleys of a bulk and ultra-thin SO1 device for Ni = 1 x 10 l3 /n2 .  
Carriers in the A4 valleys suffer frog-op+egp~t while qgriers in the . A2 . valleys are 
relatively unaffected [43]. I 

I , . L a  

ized the change' in effective niass with [I101 strain f& electrons [13]. The A4 valleys 

see little effect, while the A2 valleys see an angular dependent change in effective 

mass as shown in Figure 2-10. Since there is little band distortion from the biaxial 

strain, the distortion caused by uniaxial strain on SSDOI is likely to be similar to the 

bulk case. Because of the already pronounced band-splitting in the SSDOI devices, 

a larger proportion of the carriers are populated in the A2 valleys and experience 

the effective mass ghapge, qxplpiagg why? SSRQI, shwa t4e greatestm~sotropy . in , Y  

electron mobility. 

5.2 PMOS Device Results " - . '  

. - ! . 3 -  

Hole mobility vs. charge density for devices without any applied strain is shown in 

Figure 5-7. The thick SSDOI devices show enhanced mobility over the thick SO1 

devices, while the ultra-thin SO1 and SSDOI suffer from quantum confinement. 
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Figure 5-7: Hole mobility vs. inversion layer density with no applied strain. Thin 
device ,mobility is iegraded by quantum confinement and surface roughness. 
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SSDOI in Figure 5-9 for longitudinal strain and in Figure 5-10 for transverse strain. 

The PMOS SSDOI devices exhibit similar levels of enhancement with applied tensile 
. . 

uniaxial strain regardless of strain direction or film thickness. 
.t 3 3' . $.. .:*, 

- = J  x. 

The insensitivity of the uniaxial strain dependence of hole mobility modulation to 

film thickiiek is *mia;rkedly different from thea€o&%~$bnding dependence for electrons. 

The majority of the mobility enhancement that holes experience from uniaxial strain 

is from the effective mass change rather than sub-band repopulation. This means 

the sub-band re population caused by t hickness-induced confinement has little impact 

on the response of the mobility to strain. Unlike the case of electrons in ultraithin 

silicon films where the strain-induced repopulation * .  kips &set the It&i~kness-inQuced 
. . .  

mobility degradation, the repopaation that mcqq for holes has a smaller impact on 
. _  . _  . , 

1 - .  . 
mobility than the effective mass change. ~herefbr, the dominant mobility modulation 

mechanism is the s h e  . . for thick and ultmthin films and they show a similar response. 
. . 

The different: -iesponge s&n in hole hb i l i ty  to uniaxial strain in SO1 and SSDOI is 

more difficult to predict. Compared to the conduction band, the valence band struc- 

ture of silicon experiences more distortion from both uniaxial and biaxial strain [17]. 
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Figure 5-8: Percent change in hole mobility vs. inversion layer density for different 
levels of (a) lateral and (b) transverse strain. 

Since low levels of biaxial strain degrades hole mobility while high levels enhance 

it, it is reasonable that while longitudinal uniaxial tensile strain degrades SO1 hole 

mobility, it enhances SSDOI hole mobility. 

5.3 Discussion 

Table 5.1 summarizes the gauge factor (defined here as % change in mobility / % ten- 

sile strain) for all of the devices measured at high inversion layer density. Also in- 

cluded is the gauge factor from Zhao et al. for partially-depleted SO1 devices [46]. 

The results here have a slightly larger gauge factor than the work of Zhao, most likely 

because Zhao makes no attempt to correct for series resistance. 

By converting stress to strain using a value of 170 GPa for Young's modulus 

for the [I101 direction on the (100) plane [28], the piezoresistance coefficients of bulk 

silicon (not an inversion layer) from the literature [47] can be compared to these gauge 

factors. The gauge factor for electrons in an inversion layer is higher than that of the 

bulk material and displays more anisotropy, most likely due to the higher population 

of the A, valleys in an inversion layer. For holes, the longitudinal gauge factor for 

bulk piezoresistivity and unstrained SO1 is similar, while the transverse gauge factors 
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Figure 5-9: Percent change in hole mobility vs. level of applied longitudinal strain. 
SSDOI devices mobility is enhanced by longitudinal tensile strain while SO1 device 
mobility is degraded. 
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Figure 5-10: Percent change in hole mobility vs. level of applied transverse strain. 
All PMOS device mobilities are enhanced by transverse tensile strain. 



Table 5.1: Mobility, piezoresistance, and effective mass gauge factors for strain applied 
lorigitudirial or transverse to  the channel. Positive nu~nbers indicate enhancement 
with tensile strain while negative numbers indicate enhancement with compressive 
strain. Mobility gauge factor (% change in mobility / % tensile strain) is given for 
high inversion layer density. Piezoresistance coefficients (% change in resistance / % 
tensile strain) and change in effective mass (% change in effective mass / % tensile 
strain) are included for reference. 

Bulk 
Zhao, PDSOI [46] 
Thick SO1 
Ultra-Thin SO1 
Thick SSDOI 
Ultra-Thin SSDOI 
Smith, piezoresist ance [47] 
Hensel, effective mass 113, 161 

differ. This may be due to  the difference in populations of the light hole and heavy 

hole bands between the bulk material and an inversion layer. 

Similarly, the change in effective mass of carriers in the A2 valleys found by 

Hensel et al. [13, 161 can be converted to  a gauge factor for comparison to  these 

results. The change in effective mass for electrons appears small compared to the 

change in mobility observed. However, it must be noted that while effective mass 

occurs explicitly in the equation for mobility ( p  = Iqnr'lr), it also occurs indirectly 

in r by appearing in all scattering rate calculations, leading to  a stronger than linear 

relationship (which is different for each scattering mechanism). It is interesting to note 

that for electrons in unstrained silicon, where the band splitting caused by uniaxial 

strain still results in considerable carrier repopulation, the gauge factor is positive 

in both the longitudinal and transverse directions. The gauge factor is lower in the 

transverse direction than the longitudinal direction, which is the manifestation of 

the increased effective mass in that direct ion competing with the increased mobility 

conferred by the lower scattering rates caused by the band splitting. In biaxially 

strained silicon, most of the electrons are already present in the A2 valleys, so the 

NMOS 
longitudinal 

93 
80 
91 
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62 
40 
53 
8 

PMOS 
transverse 

22 
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25 
31 
-28 
-36 
30 
-10 

longitudinal 

-110 
-115 
-116 
24 
24 

-122 
-55 

transverse 

62 
77 
73 
24 
28 
112 
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additional band-splitting from the application of uniaxial strain is less beneficial, 

leading to the mobility gauge factor showing the same sign dependence as the effective 

mass. For holes, the effective mass change has a similar magnitude in the longitudinal 

and transverse direct ions, much like the piezoresist ance coefficients. However, the 

split in degeneracy between the light hole and heavy hole bands in an inversion layer 

leads to a different dependence. For biaxially strained silicon, the starting band 

structure before the application of uniaxial strain is different than in bulk silicon, 

making the difference between the response of hole effective mass in unstrained silicon 

with uniaxial strain and the response of hole mobility in SSDOI to uniaxial strain 

unsurprising . 

5.4 Conclusions 

Since longitudinal uniaxial strain is the most common type of strain utilized for 

performance enhancement, it is interesting to note that while for unstrained films it 

is advantageous to apply tensile strain to NMOS and compressive strain to PMOS, 

both NMOS and PMOS SSDOI benefit from tensile strain, making uniaxial strain 

integration in SSDOI potentially simpler. 

In this work a large anisotropy in the electron mobility is observed when uniaxial 

strain is applied to NMOSFETs. This results from a change in effective electron 

mass with uniaxial strain. The anisotropy is most pronounced in biaxially strained 

silicon because the existing band splitting repopulates most of the carriers into the 

Az valleys that exhibit the mass anisotropy. 

For values of uniaxial and biaxial strain that give similar long channel electron 

mobility enhancement, the uniaxial case will have a lower effective mass and will 

therefore have greater improvement in short-channel current than the biaxial case. 

In addition, it is found that uniaxial tensile strain applied along the channel 

direction benefits both NMOS and PMOS SSDOI, making uniaxial strain integration 

potentially simpler in that technology. 





Chapter 6 

The data presented earlier in this these provide insight into some of the mechanisms 

that govern mobility in strained and thin films. This chapter looks deeper into some 

of the implications that these observations have on the prospects of ultra-thin film 

devices. 

6.1 Film Thickness Variation 

The characteristics of thin film devices are very dependent on film thickness. Short 

channel effects such as DIBL change dramatically for slightly different values of film 

thickness. Threshold voltage is also strongly dependent on film thickness, and as such 

small variations in film thickness lead to large fluctuations in threshold voltage. The 

concern addressed most directly by the work presented here is the strong dependence 

of mobility on film thickness. 

When so many important device characteristics are tied so closely to one param- 

eter, variations in the parameter can have a huge impact on the device. In this case, 

variations in film thickness will severely impact performance, repeatability, and yield. 

Thankfully, silicon has properties that seem compatible with maintaining good 

film uniformity. On a global level, thinning the film through oxidation results in 

improved uniformity. On a short-range level, oxidation smoothes the film on both 

the top and bottom interfaces. There does appear to be a minimum surface roughness 



that could limit the minimum practical silicon film thickness. Oxidat ion experiments 

on initially smooth and initially rough (100) silicon surfaces resulted in a convergence 

at a 0.3 nm surface roughness [48], hypothesized to be due to the random diffusion 

and reaction of oxygen at the silicon/oxide interface. 

It is encouraging to  note for electrons that the strong dependence on film thickness 

occurs when the carriers are confined by the film rather than the electric field. This 

means that the effects that we see in threshold voltage and mobility degradation can 

be postponed to thinner silicon films by the application of biaxial strain. If biaxial 

strain is used to re-populate carriers into the A2 valleys, the effective "size" of the 

electrons is much smaller than if they were in the A4 valleys. SSDOI should not 

suffer from strong shifts in threshold voltage and mobility at the same film thickness 

as SOI. The sensitivity of threshold voltage on film thickness (defined as z) versus 

film thickness for unstrained silicon, silicon with carriers only in the .A2 valleys and for 

silicon with carriers only in the A4 valleys, calculated using the Schrodinger-Poisson 

solver Schred [25], is given in Figure 6-1. The case with carriers only found in the 

.A4 valleys is the extreme case of biaxial compression. For reasonable values of strain, 

the response would fall between the extreme case and the unstrained silicon case. For 

biaxial compression, we see increased sensitivity to film thickness that would make 

process control in this thickness regime very difficult. The case with carriers only in 

the Az valleys is analogous to  using biaxially tensile strained silicon. In this case, we 

see an advantageous reduced sensitivity to film thickness variations in the range of 

4-10 nm thick films. 

6.2 Uniaxial Strain 

The observation that uniaxial stain impacts carrier mobility by different mechanisms 

than biaxially strain is important in that while both result in increased low lateral-field 

long-channel mobility, the impact on short channel performance should be expected 

to be different. 

Short-channel devices built on biaxially strained silicon wafers have significantly 
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Figure 6-1: Threshold voltage sensitivity vs. film thickness for electrons. The un- 
strained silicon case is straddled by the case where electrons are only allowed in the 
A, valleys (extreme biaxial tension case) and where electrons are only allowed in 
the A4 valleys (extreme biaxial compression case). Biaxially tensile strained silicon 
should show reduced sensitivity to film thickness variations than unstrained silicon 
for the range of 4-10 nm. # .  . . . - .  



less current enhancement over similar bulk devices than the enhancement in long- 

channel mobility would indicate [49]. Possible explanations for this are strain re- 

laxation during processing, the increased importance of coulombic scattering in the 

highly-doped channels of short-channel devices, and the effects of the ratio between 

gate length and mean-free-path leading to quasi-ballistic transport. 

When the carriers are transported from the source to the drain without scattering, 

the device is said to be ballistic and the current in the device is given by Assad et 

al. [50] as 

where uinj is the injection velocity given for the degenerate case as 

In this case, the drain current is independent of gate length and mobility. The 

reduced scattering rates that improve mobility in biaxially strained films become 

irrelevant in a device where no scattering occurs. The repopulation into the A2 

valleys will cause some improvement in current as the conduction mass (m,) in the 

Az valleys is lower and will hence somewhat increase the injection velocity. While 

silicon MOSFETs do not operate at  the ballistic limit, they do operate at  30-40% of 

the ballistic limit [5 11, making the injection velocity an important parameter. 

While the mobility enhancement from biaxial strain has not translated fully to  

current enhancement in short channel devices, improving performance by adding uni- 

axial strain to  these devices has been very successful. Process-induced strain is added 

towards the end of device processing so strain relaxation should be minimal. The 

change in effective mass caused by uniaxial strain enhances mobility regardless of the 

scattering mechanism. This is especially important when the channel is highly doped 

as it is in short-channel devices because of the importance of coulombic scattering. 

Also, the change in effective mass caused by uniaxial strain increases the injection 

velocity, so it directly increases current even in a fully ballistic MOSFET. 



6.3 Conclusions 

In conclusion, it appears that to scale thin-film based NMOS devices to their fullest 

potential, both biaxial strain and uniaxial strain should be employed together. Biaxial 

strain results in more electrons being populated in the A2 valleys. This allows less 

sensitivity to film thickness due to the reduced spatial extent of their wavefunct ion. 

Uniaxial strain further enhances the transport characteristics of the resulting film by 

modulating the electron effective mass. 

6.4 Contributions from this work 

Developed techniques for fabricating ultra-thin body MOSFETs. 

Demonstrated some of the first SSDOI MOSFETs. 

Confirmed enhanced mobility in SSDOI MOSFETs. 

Discovered apparent immunity of supercritical SSDOI to misfit defects. 

Developed methodology for electrically extracting SO1 film thickness from C- 

V characteristics taken using applied substrate bias and matching them with 

Schrodinger-Poisson simulations. 

Discovered that ultra-thin NMOSFETs exhibit more mobility enhancement 

from tensile uniaxial strain than bulk or thick SOI. 

Performed first study of the effects of uniaxial strain on thick SSDOI and ultra- 

thin SSDOI. 

Investigated in-plane mobility anisotropy caused by the application of uniaxial 

strain for electrons and holes. 

6.5 Suggestions for Future Work 

Investigate the limits of oxidative smoothing. Is 0.3 nm the limit? 
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Determine the mechanism responsible for the improvement of global SO1 thick- 

ness uniformity during oxidation. Determine the oxidation conditions that max- 

imizes this effect. 

Examine the response of mobility to higher values of uniaxial strain. 

Compare the mobility vs. SO1 thickness dependence of unstrained films with 

that of uniaxially and biaxially strained films. 

Calibrate electron mobility models that include uniaxial strain to the data pre- 

sented in Chapter 5. The mobility modulation is larger than the effective mass 

modulation is expected to be. When all of the scattering terms are accounted 

for in detail, does the change in effective mass fully explain the data? 

Model the band structure of holes with both biaxial and uniaxial strain applied 

at  the same time and compare with the data from Chapter 5. 
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