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Submitted to the Department of Electrical Engineering and Computer Science
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for the Degree of Doctor of Philosophy in Electrical Engineering

ABSTRACT

This thesis presents the modeling, design, and characterization of microfabricated, surface-wound,
permanent-magnet (PM) generators, and their power electronics, for use in Watt-level Power MEMS
applications such as a microscale gas turbine engine. The generators are three-phase, axial-flux,
synchronous machines, comprising a rotor with an annular PM and ferromagnetic core, and a stator with

multi-turn surface windings on a soft magnetic substrate. The fabrication of the PM generators, as well as

the development of their high-speed spinning rotor test stand, was carried out by collaborators at the

Georgia Institute of Technology.

The machines are modeled by analytically solving 2D magneto-quasistatic Maxwell's Equations as a

function of radius and then integrating the field solutions over the radial span of the machine to determine

the open-circuit voltage, torque and losses in the stator core. The model provides a computationally fast

method to determine power and efficiency of an axial-air-gap PM machine as a function of geometry,
speed and material properties.

Both passive and active power electronics have been built and tested. The passive power electronics

consist of a three-phase transformer and diode bridge rectifier. The active power electronics consist of a

switch-mode rectifier based on the boost semi-bridge topology which is used to convert the unregulated

AC generator voltages to a regulated 12 V DC without the need for rotor position/speed or stator terminal
current/voltage sensing.

At the rotational speed of 300,000 rpm, one generator converts 16.2 W of mechanical power to electrical

power. Coupled to the transformer and diode bridge rectifier, it delivers 8 W DC to a resistive load. This
is the highest output power ever delivered by a microscale electric generator to date. The corresponding
power and current densities of 57.8 MW/m3 and 6x 108 AiM 2, respectively, are much higher than those of
a macroscale electric generator. At the rotational speed of 300,000 rpm, the generator and switch-mode
rectifier delivered 5.5 W DC to a resistive load at a power density three times that of the passive
electronics. This Watt-scale electrical power generation demonstrates the viability of scaled PM machines
and power electronics for practical Power MEMS applications.

Thesis Supervisor: Jeffrey H. Lang
Title: Professor of Electrical Engineering and Computer Science
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1 Introduction

1.1 The Microengine Concept

Modem battery technologies have not kept pace with the rising demand for power by portable

electronic devices. This problem is most acute for today's soldiers who must carry several batteries to

power a host of portable electronic gear such as radios, laser range finders, GPS trackers and night vision

cameras. The typical battery employed in the army is the one-time use, LiSO2 BA5590 which provides

170 W-Hr of energy and weighs 2.7 lbs. The army purchases over 350,000 BA5590 at cost of about $100

per battery, which includes a $30 disposal fee [1]. Future soldiers will rely more heavily on electronic

gear for combat operations, increasing the demand for portable power. This has led to the need for

alternative power sources such as microelectromechanical system-based, or MEMS-based, electric

generators that can produce 10-100 W of electrical power. Suitable electric generators could be powered

by a variety of prime movers, including liquid flow, pressurized gas, or small combustion engines.

One potential system is a silicon micromachined gas turbine engine [2-5] coupled to an electric

generator as shown in Figure 1-1. This "microengine" power generation system has been under

development by a number of universities, led by the Massachusetts Institute of Technology (MIT), since

1995, and is one of many new devices in the growing field of Power MEMS. The microengine, no larger

than a stack of a few pennies, would be a light weight and refuelable source of energy. The use of silicon

micromachining techniques would allow for batch processing, greatly reducing the cost of the engine.

Such a device could eliminate the weight, life-cycle costs, and cumbersome logistics associated with

conventional batteries while providing high quality electric power.

The use of hydrocarbon fuels in a micro-gas turbine engine presents up to a factor of ten improvement

in energy and power density over the best military batteries. Modern batteries typically have energy

densities of 100-400 W-hr/kg while advanced fuel cells are targeting 400-700 W-hr/kg. Hydrocarbon

fuels, in comparison, have energy densities of 12,000-14,000 W-hr/kg. Even with a chemical-to-electrical

efficiency of only 5%, a micro-gas turbine engine would match the energy densities of even the best fuel
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cell technology and if they are able to achieve a 10% chemical-to-electrical efficiency then energy

densities of up to 1400 W-hr/kg are possible.

Turbine Engine Electrical Generator

Microengine System

Engine
Subsystem

USA 32

Figure 1-1: Microengine concept.

The micro-gas turbine engine shown in Figure 1-2 is a radial air flow machine and consists of a stack

of bonded silicon wafers. A composite, multilevel silicon disk acts as both the compressor and turbine for

the microengine, and is supported by gas lubricated air bearings. Micro-bearing rigs have demonstrated

the feasibility of stably spinning silicon disks to rotational speeds of 1+ Mrpm and serve as a test bed for

the compressor [6,7]. In addition, a microcombustor has been built to verify combustion performance at

the microscale [8-10]. Relevant materials research [11-13] and fabrication technology development [14-

17] have also been conducted.
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This thesis focuses on the modeling and design of microscale magnetic machines and power

electronics suitable for generating electric power from the microengine. In particular, induction and

permanent-magnet machines are compared in terms of their power density and efficiency within the

context of the microengine design constraints. It is found that within the microengine constraints, the

surface wound permanent-magnet machine has the highest power density and efficiency. Microscale

permanent-magnet machines and both passive and active power electronics have been built and tested

with our collaborators at the Georgia Institute of Technology that can generate and deliver 5+ Watts to a

load at speeds of 300,000 rpm.

Starting Compressor Electric
Air In Inlet Generator

SiC ExhauSt Turbine Combustor

Figure 1-2: Silicon-based, multi-wafer microengine.

1.2 Microscale Electric Generators

The electric generator for the microengine is used to convert the mechanical power of the turbine into

electrical energy and must be integrated into the multi-wafer silicon stack. The electric generator's rotor is

placed on top of the compressor blades while the generator stator components are integrated into the

layers of silicon above the rotor. This places several constraints on any suitable electric generator. First, it

must be a planar device with an axial air gap. Second, its fabrication process must be compatible and

integratable with the silicon micromachined gas turbine, including the constraint that it operates at high

temperatures (-300*C). Last, and most importantly, to achieve the desired output power levels (10-

100W), the electrical generator must support high rotor spin (-1 Mrpm) and tip (500 m/s) speeds.
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Initial electric generator concepts focused on induction machines. This was due to the initial operating

temperature requirement of -700'C which precluded the use of permanent magnets. Both electric [18-22]

and magnetic [23-31] induction machines have been investigated by the MIT Micro-Gas Turbine Engine

Project. Within the past year engine models have been developed that indicate that the microengine may

be able to maintain a generator operating environment of 300 'C. This meant that permanent magnet

(PM) machines using high temperature rare-earth PMs should now also be investigated as possible

electric generators. However, the effects of high temperature bonding of rare-earth PMs and the

possibility of repoling them must still be investigated.

1.2.1 Electric Induction Machines

The first generators for the Micro-Gas Turbine Engine Project were electric induction machines.

Though most macroscale electric generators are magnetic machines, electric induction machines become

attractive at the microscale scale where surface area effects dominate. The very small air gaps between

the rotor and stator allow higher breakdown electric fields on the order of 108 V/m, which drastically

increase output power capability. The electric induction generator, shown in Figure 1-3, consists of five

fusion bonded silicon wafers. The stator consists of a six phase set of platinum electrodes with 131 pole

pairs formed on a thick 20 pm recessed oxide base [18]. The rotor is a thin film of lightly doped

polysilicon also residing on a layer of oxide 10 pm thick. The machine has an outer diameter of 3.8 mm

and is approximately 1 mm thick. These machines are fabricated using standard CMOS IC processing

techniques which make them compatible with the silicon bulk micromachining used in the micro gas

turbine as well as the operating temperature requirement.

These machines have produced a peak torque of 0.22 iN-m with a 90 V, 300 kHz excitation as a

tethered motor [19]. As spinning motors, these machines demonstrated a peak torque of 3.5 iN-m (309

N-iM/M 3 ) at speeds in excess of 55 krpm, which corresponds to 20 mW (1.8 MW/m3 ) of power [20].

Finally, the electric induction machine was tested as a generator and produced 192 pW at 245krpm under

a driven excitation at 20 V [21,22]. It has also been able to self-excite and generate power without the
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need for external power electronics. At its rated voltage of 300 V and speed of 1 MRPM, the electric

induction machine has the potential to generate at most -1 W and is primarily limited by breakdown and

viscous drag in the narrow rotor/stator air gap.

Top layer for fluid
connections, support

Turbine main air feed

Turbine exhaust

Main air manifold
LI

Front thrust bearing

Turbine air plenum, stator

Turbine rotor
Rear thrust bearing

L4 Generator stator

L5 
Stator lead

Stator thick oxide

Figure 1-3: 3D section view of the electric induction generator device. The device consists of five silicon

layers, fusion bonded together. The electric generator is located in Layers 3 and 4. (Courtesy of Lodewyk

Steyn [21,22])

Laminated Rotor250pm
Core 5-75pm

10 mm

Figure 1-4: Conceptual drawing of an induction machine. (Courtesy of David Arnold, GIT [28])

1.2.2 Magnetic Induction Machines

Magnetic induction machines were developed in parallel with the electric induction machines.

Magnetic induction machines offer higher efficiencies as the size and power ratings go up (10 -+ 100 W).
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In addition, these machines can operate at much larger air gaps than their electric counterpart, which

greatly reduce windage loss. In fact without the large air gap, an overall engine chemical-to-electrical

efficiency of 5% would not be possible. They also operate at lower voltages (1-3 V) and higher currents

(2-10 A) and are therefore easier to couple to standard power electronics and loads. Drawbacks to the

magnetic induction machine include the use of low structural strength materials (copper, NiFe, CoFeNi)

in the rotor and the use of more complex fabrication techniques for integration into the micro-gas turbine

engine process flow. However, the challenges these drawbacks present must be overcome if the

microengine is to compete with battery and fuel cell technologies.

The planar magnetic induction machine consists of two-phase windings embedded in a slotted stator

and a rotor made up of a layer of copper (rotor conductor) and a layer of ferromagnetic material (rotor

back iron) as shown in Figure 1-4. Electromechanical energy conversion occurs through the interaction of

a traveling magnetic wave in the rotor-stator air gap and the eddy currents induced in the rotor by the

traveling wave. The traveling magnetic wave is established through currents in stator phase acting in

quadrature.

Initial magnetic induction machines used unlaminated stators [23] because laminated stators were too

difficult to fabricate at the time. The stators were fabricated using SU-8 micromolding and multi-level

electroplating [24,25]. These first-generation devices were operated as tethered motors and produced a

peak torque of 0.3 gN-m using a 6 Apk, 90 kHz excitation. The experimental torque values were an order

of magnitude smaller than predicted by analytical models made of the machine [23]. This was because the

analytical models assumed the stators were laminated and thus did not account for eddy currents in the

stator. This suggests that these eddy currents play a major role in reducing the amount of magnetic flux,

generated by the stator currents, coupling the rotor and stator, which was not a surprise. In the end a finite

difference time domain model (FDTD) incorporating eddy currents was needed to explain the data

[26,27].

The first generation of magnetic induction machines was not compatible with the silicon

micromachined gas turbine and could not operate at high temperatures due to the presence of the SU-8
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polymer, which melts at 200 'C. The second generation attempted to solve this issue, as well as the eddy

current problem, by using stators containing planar Cu coils placed in a three-dimensional, vertically-

laminated ferromagnetic core, all supported by a silicon frame [28]. The stator used two highly doped

fusion bonded silicon wafers to create the support structure. The silicon was then patterned with SiO 2 and

through etched. The laminations were produced by electroplating Ni8 oFe 2O or Co65Fe 8Ni17 directly on the

sides of etched side walls using the highly dope silicon as the seed layer. The core laminations form

onion-like concentric rings, where the lamination thickness is approximately one skin depth (-30 pm) to

limit eddy current losses. Compared to NiFe, the CoFeNi alloy has similar permeability and resistivity,

but has a much higher saturation flux density (higher output power) and higher Curie temperature (higher

operating temperature) at the expense of a slight increase in coercivity (larger hysteresis loss) [32].

Referring to Figure 1-4, the rotor is a 250 pm thick ferromagnetic annular ring (10 mm OD, 6mm ID)

with a 20 pm thick overlayer of Cu. The Cu extends beyond the magnetic region (12 mm OD, 4 mm ID)

to enhance eddy current generation in the rotor for maximum torque. These machines were tested as

tethered motors to verify their electromechanical performance and have demonstrated a peak torque of 2.5

pN-m using an 8 Apk, 35 kHz excitation [28]. These machines were never tested as generators.

1.2.3 Permanent Magnet Machines

The permanent-magnet (PM) machines consist of two key components, a rotor with a multi-poled PM

and a stator with appropriately designed windings. During operation, the rotating multi-poled PM rotor

creates a time-varying magnetic flux in the rotor-stator air gap, which induces AC voltages at the

terminals of the stator windings. The PM machines considered in this thesis use an annular permanent

magnet mounted on top of a ferromagnetic core. Interior PM machines are not evaluated due to the

difficulty of embedding magnets into an electroplated ferromagnetic core.

The PM machine could use the same slotted stator used in induction machines. However, with the

use of a suitably thick magnet (500 pim) and high-performance magnetic materials in the rotor and stator
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core, the air gap can be made very large (300-500 pm). This allows the stator windings to occupy space

in the air gap by placing them on the surface of a flat stator core as shown in Figure 1-5, rather than being

embedded in slots and closed over with hats, as in the case of the induction machines.

In a magnetic machine, power conversion occurs through the interaction of the stator currents and

rotor flux. In an induction machine, the stator currents also create the rotor flux. The maximum flux that

can be produced without saturating the rotor or stator back iron is proportional to the volume of the

machine. As the machine is scaled down to the micro level the rotor flux decreases rapidly. The net result

is very low electromechanical energy conversion.

Permanent-magnet (PM) synchronous machines offer several advantages over induction machines,

especially as the size is reduced [33]. First, the PM creates an independent source of rotor flux that is

much larger than what can be produced by an induction machine of the same size, leading to much higher

power densities. Second, PM machines are more efficient since there are no eddy currents induced in the

rotor, assuming conduction and eddy current losses in the stators are equal.

Stator
Stator Windings (a) (b)

Substrate Multi-Pole PM Rotor Back Iron

z Rotor Back Iron

xMulti-Pole PM z Stator Windings Stator Substrate

Figure 1-5: Conceptual drawing of a surface wound PM machine: (a) perspective view and (b) cross

section. (Courtesy of David Arnold, GIT, [49])
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1.2.4 Other Permanent-Magnet Machines in the Literature

Prior work has been done on planar MEMS PM machines. Several axial-air-gap PM motors have

been demonstrated [34-38]. Speeds of up to 200 krpm and torques of up to 7.5 pN-m have been achieved

[35,36]. Planar, three-phase, synchronous PM motors using magnetic thrust bearings have also been

demonstrated [37]. PM generators have also been investigated. One is a turbine generator using a NdFeB

PM that has produced 1.1 mW at 30,000 rpm with an air flow of 35 L/min. [39]. The composite

turbine/generator rotor was supported by conventional ball-race bearings and measured 1 mm in thickness

and 6 mm in diameter. Another has demonstrated high speed rotation (260,000 rpm) by using a

combination of air and magnetic bearings [40]. Using an 8 mm diameter SmCo5 rotor, 14.6 mW of power

were delivered to a wye-connected resistive load at 58,000 rpm. Using an air powered drill and an 8 mm

diameter NdFeB PM the same generator delivered 5 W into a wye-connected resistive load at 380,000

rpm.

The previous work on microscale PM machines for power generation focused solely on the device

that performs electromechanical power conversion. This thesis focuses on the complete electric power

train starting from the electric generator that does the electromechanical energy conversion to the power

electronics that process the power into a usable form for portable power applications as shown in Figure

1-6. In particular, the thesis will present high speed (300,000+ rpm) microscale PM machines and power

electronics capable of generating and delivering multi-Watt electric power to a load at a regulated DC

output voltage.

Gas Turbine Engine Electrical Generator Power Electronics Power

Chemical 4 Mechanical Mechanical 4 Electrical Unregulated AC + Regulated DC

Figure 1-6: Power conversion sequence. The components inside the dashed grey box represent the

integrated microengine while components inside the blue box represent the electric power train for the

microengine system.
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1.3 Thesis Overview and Contributions

This thesis analyzes the performance of planar magnetic induction and permanent-magnet machines

at the microscale. The output power capability and efficiency of the machines are compared to determine

which machine is the best candidate for power generation within the microengine. To do this, analytical

models of the machine are developed to compute open-circuit voltage, torque and various losses. It is

found from this comparison that induction machines have poor output power capability and efficiency due

to the small number of turns that can be wound on a microfabricated stator which limit the generation of a

strong rotor flux. The PM machines, on the other hand, can generate more power and at a higher

efficiency due to the independent source of rotor flux produced by the rotor magnet. Comparison is also

made between slotted stator and surface wound PM machines. The slotted stator is limited to having only

two phases which do not optimally link the flux from the rotor PM. This is due to fabrication constraints

of building a slotted magnetic structure from multiple silicon wafers. The surface wound machine can be

made with three phases that do optimally link the rotor PM flux and generate higher power at greater

efficiency than a PM machine with a slotted stator.

This thesis then presents the modeling, design, and characterization of microfabricated, surface

wound, PM generators and power electronics capable of generating Watt-level electric power for use in

power MEMS applications such as the micro-gas turbine engine. The generators are three-phase, axial-

flux, synchronous machines [41], comprising a rotor with an annular PM and ferromagnetic core and a

stator with multi-turn surface windings on a soft magnetic substrate (stator core), as shown in Figure 1-5.

Both passive and active power electronics have been built and tested. The passive power electronics

consist of a three-phase transformer and diode bridge. The active power electronics consist of a switch-

mode rectifier based on the boost semi-bridge topology which is used to convert the generators

unregulated AC voltage to a regulated DC voltage of 12 V.

The following chapters detail the scope of the thesis presented above. Chapter 2 discusses the

modeling of asynchronous (Induction) and synchronous (PM) magnetic machines with slotted and surface
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wound stators. Laminations in the stator and non idealities such as eddy current loss, hysteresis loss and

saturation effects are incorporated into the model. Ways of computing relevant machine parameters such

as torque, induced voltage, inductance and resistance are also presented. Finally, open-circuit voltage

predictions for the surface wound PM machines are verified using finite element analysis (FEA).

Chapter 3 uses the models developed in Chapter 2 to compare the slotted stator induction machine

(SLIM), slotted stator PM machine (SLPM) and surface wound PM machine (SWPM) in terms of output

power and efficiency as a function of speed, geometry, material properties and input excitation. Electrical

performance and fabrication trade offs between slotted and surface wound stators are also discussed. The

resulting comparison will show that in terms of power density, efficiency and fabrication simplicity the

SWPM is the best design choice for the microengine and will be the focus of the remainder this thesis.

Chapter 4 presents the design, fabrication and testing of the first generation SWPM generator and

power electronics. This chapter discusses the choice of dimensions, number of poles and materials

selection. The fabrication results of the first generation PM generators are shown along with a discussion

of how microfabrication affects generator design. It also presents the stator process flow and rotor

magnetization and assembly. The power electronics consists of a three-phase transformer and Schottky

diode bridge rectifier. The PM machines are characterized in terms of their phase resistance, inductance

and open-circuit voltage. Power generation tests, done in conjunction with colleagues at the Georgia

Institute of Technology, with the first generation power electronics are also presented. At a speed of

120,000 rpm, a 2-turn/pole machine demonstrated 2.5 W of mechanical-of-electrical power conversion

and delivered 1.1 W to a load resistor. This is the first ever demonstration of Watt level power generation

and delivery by a microscale electric machine.

Chapter 5 presents the design, fabrication and testing of the second generation SWPM generator and

power electronics. It discusses stator optimization of the number of poles and turns/pole in conjunction

with power electronics losses to increase output power capability of the power generation system as a

whole. A new stator with concentric windings is presented that has much lower resistance compared to

the full pitched windings of the first generation stators. This new stator is characterized in terms of its
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circuit parameters and power generation tests, using the first generation power electronics, are shown

demonstrating multi-Watt power delivery. One second generation stator, when connected to the

transformer and diode bridge, delivered 8 W to a load resistor at a speed of 305,000 rpm. This is the

highest output power ever delivered by a power MEMS device to date.

Several switch-mode rectifier topologies are looked at for the second generation power electronics.

Two topologies use a three-phase MOSFET bridge rectifier in conjunction with either a continuous-

conduction-mode (CCM) boost converter or a discontinuous-conduction-mode (DMC) boost rectifier.

Neither of these topologies is chosen because they require seven active devices and gate drives and have

large magnetic components. The switch-mode rectifier chosen uses a boost semi-bridge topology

operating in DCM. The rectifier is modeled and its losses calculated to predict its efficiency as a function

of operating conditions and load. The DCM boost rectifier is built and connected to a first generation

stator for initial characterization. Power generation tests with the new optimized stator and switch-mode

rectifier are also presented. At a speed of 303,000 rpm the switch-mode rectifier delivers 5.52 W at a

regulated output voltage of 12 V.

Finally, Chapter 6 summarizes the thesis, presents conclusions and outlines avenues for future work.

Microscale PM machines have been proven capable of spinning at high speeds (100,000+ rpm) and, when

connected to the switch-mode rectifier, delivering multi-Watt electric power to a load resistor at a

constant DC output voltage emulating the behavior of a battery.

Among the contributions of this thesis are the development of analytical models for axial-flux

magnetic machines with surface wound and slotted stators that can be used at any size scale. These

models incorporate the effects of saturation, hysteresis, eddy currents and laminations in the rotor and

stator core and provide a computationally fast method to determine machine parameters such as open-

circuit voltage, inductance and torque. These models have been used to compare induction and PM

machines at the microscale.

The fundamental engineering contribution of this thesis is the design and fabrication, in collaboration

with colleagues at Georgia Institute of Technology, of the first microscale PM machines to generate
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multi-Watt electrical power at rotational speeds in excess of 300,000 rpm. These PM machines are the

first to have multi-turn, multi-layer, interleaved coils fabricated using an electroplating process. The stator

coils have a total height 200 pm and a minimum feature size of 50 pm. They can operate at current

densities of 108 - 109 A/m 2 due to the use of flat conductors for the stator coils that are in intimate contact

with the surface of the stator core. These current densities are one to two orders of magnitude larger than

those found in macroscale PM machines and lead to power densities of up to 60 MW/m3 which is larger

than their macroscale counterparts.

Another important contribution is the design of a compact switch-mode rectifier that can efficiently

convert the PM machines' three-phase AC voltages into a regulated 12 V DC output voltage without the

need for direct rotor position/speed or stator current/voltage sensing. The rectifier's power stage takes up

the same surface area as the stator die, keeping the overall electric power system small. These results

demonstrate the viability of scaled PM generators and power electronics for portable power applications.

1.4 Collaboration

This thesis work has been performed in collaboration with David Arnold, lulica Zana, Jin-Woo Park,

Florian Herreault, Preston Galle and Professor Mark Allen at the Georgia Institute of Technology (GIT),

and Yeun-Ho Joung and Professor David Veazie at Clark Atlanta University (CAU). GIT was responsible

for the rotor PM magnetization process, stator fabrication and spinning rotor test stand assembly for the

PM machines. GIT and CAU were responsible for structural integrity analysis and characterization of the

PM rotor. The author of this thesis was responsible for the modeling and system level design of the PM

machines as well as the design and construction of both the passive and active power electronics. The

author was also responsible for the design of the stators for the 1 ' generation PM machines and took part

in the fabrication of the stators. Optimization of the 2nd generation machines was performed using the

author's models in conjunction with winding designs developed by GIT. Testing of the generator and

power electronics took place at GIT.
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2 Modeling

2.1 Overview

This chapter develops models for asynchronous (Induction) and synchronous (PM) planar magnetic

machines with slotted and surface wound stators. Surface wound machines are modeled with and without

laminations. Because the performance of unlaminated slotted stator machines is so poor [26] slotted stator

machines are only modeled with laminations. The machines are modeled analytically so that their

performance can be quickly determined as a function of speed, physical dimensions, material properties,

and input currents.

Since there are no complicated axial structures such as poles and teeth, the surface wound machines

can be modeled as a set of planar continuum layers [42] by solving Maxwell's equations in the Magneto-

quasi-static (MQS) domain. The magnetic field intensity, H, and magnetic flux density, B, in the machine

due to the rotor PM and stator currents are solved for as a function of radius and then integrated over the

radial span of the machine to determine relevant machine parameters such as open-circuit voltage,

inductance and torque. This is done in Section 2.2.

The model for the slotted stator magnetic machine consists of two parts. The first part models the

machine in the same manner as the surface wound machine to determine the fields due to the rotor

magnetization. The slotted stator is treated as two equivalent planar layers, one for the stator slots and one

for the base of the stator core. The second part models the rotor and air gap as continuum layers and the

stator as a lumped parameter magnetic reluctance circuit to determine the fields due to the stator currents.

The rotor continuum model uses the tangential H field at the surface of the stator as a boundary condition

to solve for the normal B field at the surface of the stator. The normal B field is integrated over the stator

surface to determine the flux over each stator pole. The stator reluctance circuit uses this flux and the

phase currents as inputs to determine the tangential H field at the surface of the stator. The full continuum

and hybrid continuum/lumped parameter models are combined to determine H and B fields in the
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machine as a function of radius. These field solutions are then integrated over the radial span of the

machine to determine relevant machine parameters. This is done is Section 2.3.

This general field theory approach is computationally very fast and has been used to model both

cylindrical and linear electric machines [43,44]. It can be used for a wide range of planar geometries and

is especially useful in determining the effects of air gaps that are on the same order of magnitude as the

wavelength of the rotor PM or larger. The field solutions are solved in the spatio-temporal frequency

domain, which allows for complicated winding patterns and rotor magnetization profiles to be modeled

by decomposing them into their respective Fourier components and then solving for fluxes, voltages,

currents, etc., for each harmonic component.

To ease the complexity of this analytical approach, ideal properties are often assumed for the

ferromagnetic magnetic materials used in the rotor and stator back irons (e.g. linear B-H relationship, zero

conductivity, and no saturation or hysteresis) or in some cases, the effects of the back irons are

completely ignored by assuming infinite permeabilities. These approximations are not suitable for the

design of high-performance microscale machines, because the effects of the back irons cannot be ignored.

The machine model must be able to determine how thin the back irons can be without becoming heavily

saturated and thus reducing the total flux. It should also be able to determine hysteresis and eddy current

losses in the back irons in order to predict machine efficiency as a function of speed, geometry, and

material properties. Thus, saturation, hysteresis, and back iron conductivity must all be accurately

accounted.

The models developed in this chapter include methods to accommodate these effects utilizing the full

nonlinear B-H relationship. First, an iterative algorithm is used to solve for effective permeabilities for

the rotor and stator back irons. Second, the field theory solutions are used to determine hysteresis loss

from the back iron's nonlinear B-H curve. The use of effective permeabilities in conjunction with the

general field theory approach enables the modeling of machines with nonlinear magnetic materials

without resorting to time-consuming numerical methods, while maintaining the computational speed of an

analytical model and taking advantage of frequency domain analysis.

32



This chapter also presents ways of computing relevant machine parameters. The Maxwell Stress

Tensor is used to find the pull-in force and torque on the rotor by computing the H fields at the surface of

the rotor and integrating the normal and shear stresses over the rotor surface. Use of the Maxwell Stress

Tensor also allows the calculation of eddy current losses without the need to calculate current densities or

evaluate volume integrals. The field solutions are also used to compute the inductance and open-circuit

voltage of a single phase of the machine. Along with a simple approximation for the winding resistance,

an equivalent circuit model for PM machines is given in Section 2.2.9.

Finally, verification of the models is presented in Section 2.4. The model for the slotted stator

induction machine was verified in [26 ] for a non-conductive stator. Since the purpose of the laminations

is to reduce eddy current effects so that the stators look non conductive, those FEA simulations [26] do

not need to be redone. To verify the accuracy of the surface wound machine model, the open-circuit

voltage predictions for a PM machine are compared to 3D finite-element analysis (FEA) simulations.

A =0

Air (po, c = 0) -o

' Uy

y

Air gap (po, a =0) Tag

Stator Windings (po, a = 0, Jx(y)) T1 z

x
y

Air (po, cy = 0) c-+oo

A = 0

Figure 2-1: The surface wound magnetic machine is modeled as a series of planar continuum layers. The

rotor moves in the y direction with velocity Uy. The Vector potential, Ax, is continuous across the

interfaces between the layers are designated (D - 6.
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2.2 Surface Wound Magnetic Machines

The surface wound magnetic machine can be modeled as a set of planar continuum layers since there

are no complicated axial structures such as poles and teeth as shown in Figure 2-1. The cylindrical

geometry (r, 0, z) of the machine is converted to a Cartesian geometry (x, y, z) by unwrapping the

machine and setting

r -+ x, rO -+ y, z -> z. (2-1)

The rotor-stator air gap, as well as the space above the rotor and below the stator, are modeled as layers

with permeability po and conductivity a = 0. The rotor and stator cores (back iron) are modeled as layers

with permeabilities pr and pk and conductivities ar and, as, respectively. The stator windings are modeled

as a layer with zero conductivity and permeability po, with an imposed current density distribution J,(y,t).

The effect of proximity eddy currents within the coil layer is modeled separately in section 2.2.10. The

rotor active layer has a spatially varying magnetization in the axial direction, Mz(y') as well as a

permeability pa and conductivity ya. It can be used to model a PM such as SmCo or NdFeB. The active

layer can also model a rotor conductor, such as copper, for induction machines by setting Mz(y') to zero.

A 2D Cartesian coordinate convection-diffusion equation for the magnetic vector potential, A,

derived from Maxwell's equations in the magneto-quasi-static domain, can be solved to find the H and B

fields due to the rotor active layer at some radius, r [26]. A planar layer moving uniformly with velocity v,

will have a vector potential with only one component, Ax. If no magnetization or independent current

sources exist in the layer then the convection-diffusion equation for Ax is

V2 AX = pa x + v aA . (2-2)
at 8y)

The normal B field and tangential H field can be computed from the vector potential as

HY = aA , (2-3)

pA
B = - aAX (2-4)

ay
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Equation (2-2) governs the behavior of the vector potential in the rotor core, stator core, air gap and

regions above the rotor and below the stator, where p, a and v will be different for each layer (v = Uy for

the rotor core and zero otherwise). Equation (2-2) also governs the vector potential in the rotor active

layer for an induction machine as well as an open circuited stator winding layer in the PM machine.

In the moving-coordinate frame of the rotor (x', y', z') (Figure 2-1) the magnetization profile can be

decomposed into its Fourier harmonics

Mz(y')=Re { Mzne-n'}. (2-5)

The time-varying field in the stationary coordinate frame is found by substituting y' = y - Uyt into (2-5)

Mz(y,t)=Re {ZMzne jnk1UY-Y) (2-6)

In addition, Uy can be replaced with the linear velocity at radius r, Uy = Qmr, where Lm is the angular

velocity of the rotor in rad/sec. The wave number k is simply P/r, where P is the number of pole pairs.

Defining om = POm, (2-6) can be rewritten as

MZ(y,t)=Re { mei"(*mtY). (2-7)

In addition, the current density in the stator winding layer, Jx, will be function of y and t. The windings on

the surface of the stator are arranged so that a traveling magnetic field is created by the winding currents.

J,, can be represented in terms of its Fourier harmonics

J(y,t)=Re {jnej( et,Y) (2-8)

where the current in windings is assumed to consist of a single electrical frequency, oe. Given the forms

of the stator current density distribution and rotor magnetization in Equations (2-7) and (2-8),

respectively, the vector potential in the machine will have the following form

A (y, z, t)= Re ZA (z)ej(mt"ny}. (2-9)
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For each spatial harmonic, the complex amplitudes of the normal B field and tangential H field are now

Bz =jnkA., (2-10)

I dA
H = " ,(2-11)

" p dz

where

Bz (y, z, t) = Re I A z(z)e"j(m(t-ny}, (2-12)

HY (y, z, t)= Re H wn(z)eJym)tY}. (2-13)

In Equations (2-9), (2-12) and (2-13) co = e and m = 1 for fields generated by stator currents while co

om and m = n for fields generated by the rotor magnetization.

2.2.1 Vector Potentials in Surface Wound Magnetic Machines

Using the continuum model developed in Section 2.2, the vector potential everywhere in the machine

can be found. Each layer in Figure 2-1 is the same except for the details of the material properties (p and

a) and speed. The solution to the convection-diffusion Equation (2-2) for a planar layer with permeability

p, conductivity a, moving at a constant velocity, v, with no magnetization or independent current density

will be examined first. By solving for the A, B and H fields in this planar layer, the field solution for the

entire machine can be found by splicing together the solutions of each layer using the appropriate

boundary conditions. This approach takes advantage of the fact A, the normal B field and tangential H

field are all continuous across the interface of two layers. The strategy will be to find the vector potential

at interface of the stator core and windings 0, stator windings and air gap 3, air gap and rotor core @

and the rotor core and permanent magnet e as functions of the vector potential at the bottom surface of

the stator core, A( and at the top surface of the rotor core, . After this has been done A( and

due to the magnetization in the rotor, with the stator currents set to zero, will be found and will be denoted
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as A(m) and . Next, A and due to the stator current distribution, with the rotor

magnetization set to zero, will be determined and will be denoted as A() and A %). Using the linear

superposition of the two separate solutions the vector potential and magnetic fields everywhere in the

machine can be found. These field solutions are iterated using different values for the permeability of the

rotor and stator cores until the correct effective permeabilities are found so that the B fields in the

machine lie on the B-H curves of the core materials used.

Substituting (2-9) into (2-2), the convection-diffusion equation for the magnetic vector potential

yields an ordinary differential equation for each harmonic

dA2" =72Ax, 
(2-14)

in a general layer where

y = n 2 k2 + ji(mo - nkv) . (2-15)

The solution to this equation is presented in terms of the complex vector potential amplitudes at the upper

(a) and lower (b) boundaries of the planar layer [42], as shown in Figure 2-2. It takes the form

(Z)= A (b) sinh (7 nZ) g(,) sinh (7. (A - z)) .(-6

x sinh(y7A) + ) sinh((A))

To simplify the analysis, transfer relations between the complex amplitudes of H, B and A at the

upper and lower surfaces of each layer are derived [42]. Figure 2-2 shows a layer of thickness A moving

in the y direction with constant velocity v and having permeability pi and conductivity a. The vector

potential and/or normal B fields at either the top or bottom surface can be computed from the tangential H

on both surfaces using

S [b) (b) coth(7nA) ()-
A n" B tsinh(nA) (2-17)

xn zn ~ sinh(y nA) I I
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K AB (b) (b)

z

0 X'®f(a)(a
Figure 2-2: Lossy magnetic media of thickness A moving in the y direction at a velocity v.

Conversely, the tangential H on either surface can be computed from the vector potential on both surfaces

using

-1-

[hb] cthfrnA) sinh(YnA)][A(2-1]
^H - ohy cohYA)

sinhfr(n) (2-18)

The transfer relation matrices (2-17) and (2-18) are used to find the vector potential and tangential H

at the interfaces of the stator core and windings 0, stator windings and air gap 3, air gap and rotor core

q@, and rotor core and PM S, as functions of the vector potential at the bottom surface of the stator

core, A(, and at the top surface of the rotor core, A (Figure 2-1). Referring to Figure 2-1, the vector

potential below the stator core at z = c -* ---o is 0, and can be written as

A 1) sinh(YO, (c + z)),(-9A sinh(yonc) (2-19)

where

Yon = n 2 k2  (2-20)

The tangential H field at the bottom surface of the stator core is

yn Axn [ coth(Yon, A n (2-21)o p
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A and H at the interface of the stator core and windings are

- coth(YsnTsc )42 - H ,40 (2-22)
L7s _ sinh(7sTsc )y

N( ="coth(ys Tsc)A - A . (2-23)
y s _c flhx sinh(7sTsc ) xnj

Substituting the latter into the former yields

() s s 2 ) coths T ) A() -_ ____"__ ,___ (2-24)
Ysn [g L - sinh( s1 Tsc) j_ sinh(ysnTsc)Y go

which simplifies into

A(2 = -s5 'I-n-sinh(ys5 Ts)+ cosh(ysnTc) A l. (2-25)
LYsn go

By substituting (2-25) into Equation (2-23), the tangential H field is found to be

xn =F- sinh(YbflTsc)+ coth(ysnT )i AM. (2-26)
1 s go

This procedure is repeated until the vector potential and tangential H at interfaces 3, ® and S are found

in terms ofA (.

The following transfer relation constants are defined for the different layers of the machine:

a g - ""n sinh(ysnTsc)+ cosh(ysnTsc ), a 2 = sinh(ysnTsc)+ 7" cosh(ysnTsc) (2-27a)
Ysn go gs go

=3n a2n sinh(7 On Tc1 )+ a1I cosh(y On Tc), a4 = Y" (in sinh(yOnTcI)+ a 2n cosh( On Tc) (2-27b)
Y on go

a 5 n = a4  sinh(y 1 Tag )+ aC11 cosh(7OnTag), a61 -On aC3 sinh(yanTag)+ac4 cosh(yOnTag) (2-27c)

yIa_ sinh(YTa ')+a5 cosh(p Ta a, an = nT)+a 6 . COS 4 vT'I (2-27d)
'Ian Pga
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Using these constants, the complex amplitudes of the vector potential and tangential H at the interfaces

Z, 3, T, and S can now be written in terms of A()

=aA2, =a(A) , (= a ( , A a7 A1 (2-28a)

1p)a 2 nA(, yn'=aA&, NQ asnAi, N - a 8 1A . (2-28b)

The next step is to find the vector potential and tangential H at the same four interfaces in terms of

X (6) . Referring to Figure 2-1, the vector potential above the rotor core at z = c -0 0 is 0, and can be

written as

(6) sinh(YOn (c - z)) (2-29)
A sinh(y70 c)

The tangential H field at the surface of the rotor core is

(n = -A O coth(y0 c)= 0 A(". (2-30)

A and H at the interface of the rotor core and rotor magnet are

A5= L sIn _ (6 ) - coth(7mTc)N- , (2-31)
xn 7. snh (YmrTrc)y y

-5) Ym j(6) ( (5) (2-32)
, Lsinh(ymTc) - cothkymTr (3

Substituting the latter into the former yields

A = .(6) -(6) r [coth(YmTc)A& coth2(T), (2-33)
7n _sinh(ymTc) po ) r L sinh(ymTc)

which simplifies into

A [ sinh(y1nTrc)+ cosh(yn)Trl A . (2-34)
LYm 1'o

By substituting (2-34) into Equation (2-32), tangential H field is found to be

1 - (5) ~ jm =On ( X(6)
Yn = m" sinh(7YTrc)+ " coth(y1 Trc)mA . (2-35)

pr pto
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This procedure is repeated until the vector potential and tangential H at interfaces 0, 3 and @ are found

in terms of .

The following transfer relation constants are defined for the different layers of the machine:

Pin =- 1-r-O-sinh(7mTc)+cosh(7mTrc), P2n = " sinh(mTrc)+ 70n cosh(y mTrc) (2-36a)
7m lo gr go

P3n a P2n sinh(7 )Yaal )+n C nT'), Nn = a" PIn sinh(7anT-)+p2n cosh(yanTa) (2-36b)
Yan Pa

P5n = P 4n sinh(y Tag)+ P3n Cosh(y7nTag), Pen - pOn sinh(7OnTag)+ 4n cosh(7OnTag ) (2-36c)

P7n = 6 sinh(7 On T5 Ic) + Pn cosh(y5oTni), 0n = P sinh (7on TCi)+ P 6n cosh(onTci) (2-36d)
70n go

Using these constants, the complex amplitudes of the vector potential and tangential H at interfaces 0, 0,

a), and S can now also be written as

=- P (6) ,4) =@ ), ) (3) (2) 6), 2=@ (6) (2-37a)

n= P P2nA , n = -P4n A , = -P 6n , Hn = -P 8n An (2-37b)

The constants aim, where lain > 1, describe the exponential decay in the vector potential and tangential

H at interface T due to some source of magnetic field in the layers above it. The constants pin, where Ipin I

> 1, describe the decay in the vector potential and tangential H at interface © due to some source of

magnetic field in some layer below. The field distributions in the active layer due to the PM and fields in

the coil layer due to the stator currents are governed by their own respective vector potential solutions

which are given Sections 2.2.2 - 2.2.5.

Note that for a given excitation source (rotor magnetization or stator current) the vector potential at

some interface is written in terms of an a or a P parameter and not both. In other words the two are

mutually exclusive. For example the fields due the rotor PM will decay spatially as they move further

away from the active layer. Referring to Figure 2-3(a) the fields will decay below the active layer as they

move to the air gap, coil layer, and stator core and therefore the a parameters are used for interfaces 0 -
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). Since the fields decay in the rotor core which is above the active layer the p parameters are used at

interface . The opposite is true for the fields due to the stator currents in the coil layer as shown in

Figure 2-3(b). Due to the symmetry of the machine about the air gap layer, the a parameters are used for

interface Z while the P parameters are used for interfaces 3 - . This summarized in Table 2-1.

Air Air

Air gap Air gap

Stator Windings (Jx(y) 0) HStator Windings (J(y))

Air Air
(a) (b)

Figure 2-3: Spatially decaying fields due to (a) the rotor PM and (b) the stator currents. When solving for

the fields due to one source, the other is set to zero.

Table 2-1: Vector potentials and tangential H at different interface layers
due to the rotor PM and stator currents using a and P parameters.

Interface Ax, Hy due to rotor PM Ax, Hy due to Stator currents

o A ( m) Yon mj() () Yon )
xn (m), Axn m) Axn(J), - n (J)

^ (m), - 2n (m) f5 A6), - ^26 (6)

^ (1) ^ (1) 13 (6) ~ -1 (6)

xn(m)' 6nA xn(m) 1 () xn(J)

p ((6)
D IlnAxui(m), -P 2nAn(M) flnAcn(J)9 102n xn(J)

^() YOn , (6) ^(6) 7 'Yo (6
Axn(m)' - 'xn (m) Axn (J) 9 - xn (J)

i-to lbo
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The values for -yN, ya, 7.i ysn will be different for induction and PM machines and are given in table 2-

2. In a synchronous machine, such as a PM machine, the electrical frequency of the stator currents, 0e,

equals the angular velocity, om. In an asynchronous machine, such as an induction machine, o, can be

larger than com (motoring mode) or less than o0 m (generating mode).

Table 2-2: Diffusion constants for different planar layers.

Diffusion Constant Synchronous Machine Asynchronous machine

70n n 2k 2  n 2 k2

Ya" n 2k 2 Vn 2k2 + j ta~a (Oe -noM)

n 2k 2  2'Y ik + m k + jpT (L

'Ysn Vn 2 k2 + j~tssncom n2 k 2 + j~tsaso)e

2.2.2 Vector Potentials due to the Rotor Magnetization

The vector potential in the machine due to the rotor permanent magnet can now be determined with

the aid of the transfer relation constants. For the rotor active layer with magnetization, Mz(y'), moving

uniformly with velocity Uy the convection-diffusion equation for Ax, derived in appendix A, is

aM ~ (A 8A ~(-8
V 2 AX+pia z =paa lx +Uy . (2-38)

ay ( t 0-Y

Substituting (2-7) and (2-9) into (2-38), the convection-diffusion equation for the magnetic vector

potential yields an ordinary differential equation for each harmonic

d2 A~ j

dZ2  Y - x +kjpankMzn. (2-39)

The particular solution for a PM annulus is

LankA xp-j 2 M = -jA m(m), (2-40)
xn _ an

since the magnetization only varies with y and not z. The vector potential in the PM layer is

(Z)= (b) sinh(Yan z) +(a) sinh(Y.(Tal - z))
xnsh(yan Tj ) x smh(yanTg) j'Axn(m) (2-41)
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-j 6 = (b 2nb _ ' 6
in x(m) Axn -jAn(m) yn =n xn(m)I

- z

®X5 Axnm 4a)Jxn (M) n 6 n Xchm):

Figure 2-4: Boundary conditions for the rotor PM layer.

The vector potential at the top of the PM can be written in terms Of ( while the vector potential at

the bottom can be written in terms of ()) (Figure 2-4) according to

pinAm(y=MAcn - JAxn(M) - n A 13 Ap () + jA.(), (2-42)

Cx5nA _ =(a) - )-+ A(a)a + j. . (2-43)
xn(m) - n x (nM) 5 n(m)+jA (2-43)

The subscript (m) has been added to denote that the two vector potentials are due to the PM. Similarly,

the tangent H field at the top and bottom surfaces of the PM can be expressed as

(b = k -- 6) (2-44)_y P 2n xn(m)',

f(a) a 'A () (2-45)yn 6n xn(m) (-5

Using transfer relation matrices (2-17) and (2-18), A x and A can be eliminated leaving the following

two equations for A(' and A (6)

XR X + (1 (6) = _j 7 an alh(7T xn(m)' (2-46)

4n xn -+ nh~v T)

Ys p, -Ta" sinh(Y anTa)A,2(). (2-47)
Pa

Solving (2-46) and (2-47), A)(m) and A in terms of A(m) are

_ji *Yan Nn 134n2n 1A xnm) =J -j"" sinh(YanTa)Axn(m) , (2-48)

A =-(-) j7an aX8 n -n sinh(YanTal)Axm). (2-49)
1 a _ Anp4n -a6nP2nI
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2.2.3 Rotor Magnetization Profile

Rotors using an annular PM as well as discrete PMs will be analyzed as shown in Figure 2-5. For an

annular PM the rotor magnetization, impressed using a magnetic poling process, does not abruptly

transition between north and south poles; instead, the magnetic remanence smoothly transitions between

+B, and -Br. Normally, in a macroscale machine, discrete PMs are used so this transition region is not

present. However, this effect is important because of the small dimensions of the microscale PM

machines. Therefore, the annular rotor PM is modeled with a trapezoidal magnetization profile with a

linear "transition region" of length cm, as shown in Figure 2-6. This linear transition is used as a first-

order approximation for computational simplicity.

Retaining
Ring

Permanent
Magnet

Spoke

Hub

(a) Annular PM (b) Discrete PM

Figure 2-5: Types of PMs used in magnetic machines (a) Annular PM, (b) Discrete PM.

Mz~y')

Br

pa

BY,

pa
cm Lm

Figure 2-6: Trapezoidal magnetization profile of annular PM. B, is the remanent flux density of the

magnet. cm is the transition region length.
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Due to the even symmetry of the profile shown in Figure 2-6, the Fourier harmonics of the rotor

magnetization in Equation (2-7) can be expressed as

Mz(y,t)=Re I .e" , (2-50)
n=l,oddJ

where

IM = fMz(y')e"" dy. (2-51)

Defining the length of region in which the magnetization is uniform, Lm, to be

A ur
Lm = -cm = c -cm, (2-52)

2 P

the magnitude of each magnetization harmonic is

=4 XBA B L_
cm 4 cos( nk L e jnfm. (2-53)n n 2 cem ta 2

At time = 0 the offset between the center axis of Phase A and the d-axis of the rotor is dm Omr, where 0 m

is the physical offset angle in radians (Figure 2-7). Since the coordinate transformation between the

stationary and rotating reference frames is y'= y - dm - Uyt, the harmonic components of Mz are shifted

by

.P
jnke ,r = n-POr r n~ j~e m e r ej'Pem ejflm . (2-54)

6M = PO, is commonly referred to as the torque angle [41]. Given the magnetization in (2-53) the

particular solution to Equation (2-40) is

8 Br ( L_~
A 8(m)= n r cos nk L' e jnm. (2-55)

Alternatively, the permanent magnet layer could be composed of discrete "pie" pieces as shown in

Figure 2-5. The magnitudes of the magnetization harmonics for this case is

4 B (L
M = 4 sin nk Lm e jn8,m. (2-56)

ntJ p 2)
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Similarly, the particular solution for a discrete PM rotor is

4 Br Lm jn
A (m) = n sin nk 2 m

nii nk 2)
(2-57)

Note that Lm can be a function of the radius as is shown in Figure 2-5. The angle spanned by a single pole

piece will be some fraction, X, of n/P. Redefining Lm to be

(2-58)L m = X , 3

the magnetization harmonics simplify to

4 Br s n x je"

n-n a 2 )

Air Gap

Phase B Phase A Phase C
,z| oz@z

dm

Phase B

mRotor Magnet

Phase A Phase C
I @I ]

y=0

Figure 2-7: PM machine at t = 0 showing an offset of y = dm between the center

center of a rotor North Pole.

Z Uy

x'

@t 0

x

axis of phase A and the

2.2.4 Vector Potentials due to the Current in the Stator windings

The vector potential in the machine due to the currents in the stator windings can be determined in the

same way they were determined from the rotor permanent magnet. For a planar layer with current density

distribution, Jx, the governing equation for the vector potential is [45]

V2 Ax = -poj J. (2-60)
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Following the same procedure in Section 2.2.2, (2-8) and (2-9) are substituted into (2-60) for the magnetic

vector potential yielding the following ordinary differential equation for each harmonic

dz 2  70n nx = xn 
(2-61)

The resulting particular solution to the vector potential for each harmonic in the stator winding layer is

xn(J) 2 J. (2-62)
7On

The vector potential in the stator current layer is

^ (z)=Q sinh(70nz) (a) sinh(y0 n (TCI - z)) +A
sinh(yon Tc1) sinh(yT) (2-63)

The vector potential at the top of the stator current layer can be written in terms of A(6) while the vector

potential at the bottom can be written in terms ofA .(j) according to

p 5 A J),) = + A( xn(J) - xn (J), (2-64)

XIn xn (J) x A xn (J) - A I ( AI (J). (2-65)

The subscript (J) has been added to denote that the two vector potentials are due to the currents in the

stator winding. Following the same procedure used for the rotor magnetization, A($) and (6)in terms
xn()a d xn(Ji) trm

ofA, (J) are

AJ) t" [ P XnP6 n 1 s T ) , (2-66)
- Po a4np1 3

8- a2 n 6 n

A(6) 70n 4" aC2n sinh(yOnTI1 (2-67)
-'0 a 4 fsn - 2 1f6.
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Figure 2-8: Current density distribution for a 1-turn/pole surface wound stator.

2.2.5 Stator current density profile

Like the rotor magnetization, the spatially varying current density in the stator windings can be

represented in terms of in Fourier harmonic components according to

(2-68)Jx(y,t)=Re Z xne ~"n .

For the 1-turn/pole stator winding shown in Figure 2-8 and where X = 2r/P, the complex magnitude of

each spatial harmonic is

-' 6 .(
XI sini

nit '
ni 1 ( -1)" A (t)e 2 + - (-i)n )B 6

For a balanced three-phase current excitation the amplitudes of the current density harmonics for the 1-

turn/pole machine simplify to

J =-sin
nx

37C Wru
X

Je
nJt
2 J 0 ,5for n =1,-5, 7,4l1, 13... (2-70)
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The current density in a single radial conductor for a machine with a single winding layer is

JO =_1 ,(2-71)

where We1 and Tc1 are the width and thickness of the stator winding, respectively. Note that We1 can be a

function of radius so that windings with variable widths can be modeled.

Machines with more than 1-turn/pole can also be modeled using this approach, where the multiple

turns can all reside on a single layer or be stacked onto multiple layers. Referring to Figure 2-9 harmonic

amplitudes for the current density of a single layer 2-turn/pole machine are

C6 w n5r i -" n7

J. = -sin nn W' e 12 + e 12 JO , for n = 1,-5, 7,-11, 13... (2-72)
nxc

For a machine with a double layer winding as depicted in Figure 2-10, the coils are treated as a single

conductor and Tc, in this case is the sum of the thicknesses of the top coil, bottom coil and via layers. The

harmonic amplitudes for this winding pattern is also given by Equation (2-70) where the current density is

2 1 (2-73)
0 WCITCI

In general, for a three-phase surface wound machine with P pole pairs, N-turns/pole and K winding layers

the harmonic amplitudes of the current density are

6W C 4N'-l nnc

J, =-sin nn J, I e 6', for n = 1,-5, 7,-i1, 13... (2-74)
n~c k v=2N'+1

step2

and

JO = , (2-75)
'W~Ci TC1

where N' = N/K and Tc1 is the total height of all K winding layers. For current density amplitudes given by

(2-74) the resulting particular solution to (2-62) is

6 pJ J Wcl 4N'-1 _j
A () = 2 2 sin n m i e 6N' (2-76)

nu n k K )v=2N'+1
step2
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Figure 2-9: Current density distribution for a 2-turn/pole surface wound stator.
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Figure 2-10: Current density distribution for a 4-turn/pole double layer winding.
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Figure 2-11: Laminated stator for surface wound magnetic machine.

2.2.6 Stator Laminations

The laminations are a series of thin concentric shells as shown in Figure 2-11. Adding these

laminations to the stator core creates a planar layer with non-uniform properties in the radial (x) direction

which can complicate the field analysis. Rather than solving Maxwell's equations in three dimensions for

a laminated stator core, a ID analysis will be used to determine an effective conductivity, asff , to be used

in the 2D continuum analysis. The cross section of the flux paths through the stator is long in the

azimuthal (y) and short in the radial direction (x). Thus the eddy currents generated in the laminations

flow mainly along the y direction. Figure 2-12 shows a lamination with permeability p, conductivity a,

thickness W and depth T into the page (T >> W). At x = ±W/2, a time varying magnetic field is applied

H(t)= Re 0et }. (2-77)

52

F, RPM



The magnetic field inside the lamination will be of the form

Hz (y, t)= ReHz (y)ei".

Hz(y,t) can be determined by solving the diffusion Equation [45]

y 2H at

which reduces to following ODE for Hz

d 2 =H poz-
dy2

Exploiting the even symmetry of the problem, the solution has the following form [46]

cosh(ay)
cosh a f

where, c-+ and = 2
6 pi(O

L

x = -v

is the skin depth for the diffusion of the magnetic field.

H(t) 0 H(t)

T

V/2 x =0 x =W/2

Figure 2-12: Eddy currents in a lamination

minimum flux penetration.

of thickness W. The lightly shaded region represents
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The total flux through this lamination is

c>= pTf z(y ATHdy = p W cosh(ay)dy= 2p TH anh c 2. (2-82)
/2 cosh a 2)

Equation (2-82) can be rewritten as

J 2pTH W W tanh(Q)G= 0tanh cc- x - = (pTW) x ,(2-83)
a2 W Q

where,

Q= +jW (2-84)
2 8

The first term in (2-83) is the flux through the lamination when no eddy currents are present

Do = pTW. (2-85)

The second term describes how induced eddy currents reduce the net flux through the lamination. Note

that the eddy currents not only decrease the magnitude of the flux but also create a phase lag between the

applied MMF and the flux through the lamination because the term is complex. The effective

conductivity, as,eff, for the laminated stator core is therefore defined as

Ts,eff = s t - Q . (2-86)

As W becomes much larger than the skin depth, 6, the term inside the parenthesis in (2-86) approaches 0

so that as,eff as and the solution in the stator core becomes that of an unlaminated stator. As W becomes

much smaller than 6, this term approaches unity and the effective conductivity goes to zero.

2.2.7 Saturation and Hysteresis Loss

Saturation effects in the machine are incorporated into the model by assigning effective permeabilities

to the rotor and stator so that the magnitudes of the B field in those parts lie on the core material's B-H

curve. The permeability is found iteratively, as shown in Figure 2-13. The procedure starts by assuming

an initial value for the permeability in the rotor and stator core, tji, where the i indexes the (r)otor or
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(s)tator. Using these values, the magnitudes of the B fields throughout the various parts of the machine

are determined using the continuum model (G) in Figure 2-13). Once the magnitudes of the B fields are

computed, the corresponding H fields are found using the current permeability (0 in Figure 2-13),

Bl
Hji = 'I , for i = r, s. (2-87)

Since ji1,jH,j does not lie on the core material's B-H curve, a new permeability is then computed for each

section of the machine (3 in Figure 2-13),

B(H1 1)
pti,2 = 'l - (2-88)

HOs

The new permeability, 4,2, is sent back to the machine model, and the B field is recalculated in every

section of the machine (@ in Figure 2-13). This process is repeated to find a new H field, Hi,2 , and a new

permeability, Ji, 3. Solving for the B fields, it is found for the case of Figure 2-13 that using 1,3, these

values lie on the B-H curve (1 and 6 in Figure 2-13). Therefore, p,3 = tirms would be used in the

machine model to compute torque and voltages in the machine. In this example convergence is found in

only three iterations but in practice it can take up to 20.

B

B(H ., Bi,2

110 = Pi,finai

H Hi,2

Figure 2-13: Nonlinear B-H curve and linearized approximations to the material permeability.
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Since the B fields in the rotor and stator cores vary spatially over one wavelength, a number of

different quantities can be sent to the permeability algorithm. The three quantities chosen are the mean,

RMS, and peak spatial magnitudes of the B field for each region,

Bi I B2(j010, (2-89)

1 2

B j 2I [B (0)f d0 (2-90)
27r

B =max(B(O)). (2-91)

In (2-89), (2-90) and (2-9 1), 0 = omt - nky and B2Q is the magnitude of the B field at some interface,

2-

B (j) (0 0Ajen + R 0 n
B (0)= yR " Let ZB ne}] (2-92)

Pf n=l,odd n=1,odd

B2') in the rotor and stator are computed at the bottom surface of the rotor core (j = 5) and top surface of

stator core (j = 2), respectively. Note that given the form of (2-92), the RMS of the B fields can be

calculated as

BI = (j 12 2 . (2-93)1
BJ pj f n=lodd (2-93)

For a stator consisting of laminations of thickness W and separated by dividers of thickness S (Figure

2-14) the B field in the stator core will be higher than in the unlaminated case. This is because the flux

from the rotor PM over a radial span of W+S will crowd into a lamination of radial span W since it is

much more permeable than the dividers which are non magnetic materials. To account for this effect, a

packing factor, pf, is introduced into Equation (2-92).The packing factor represents the fraction of the core

that is taken up by ferromagnetic material and defined to be

P = . (2-94)
W+S
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The rotor core is not laminated since it does not experiences any time varying magnetic fields from the

rotor PM and very small magnetic fields from higher order spatial harmonics of the stator currents.

Therefore, its packing factor is always 1.

For an unlaminated stator, the fields are evaluated at the middle radius 2(R - Ri). The laminated

stator on the other hand is no longer continuous over the radial span of the machine. The iteration

procedure is evaluated at the radius of each lamination to determine a permeability, u(rIn), for each

stator lamination, where rj.,j is the radius of the ith lamination. Since the field solutions are computed

over a continuous radial span, a permeability that varies smoothly with radius, u,(r), can be computed by

interpolating between permeabilities at successive laminations (i.e. between u(ri.,j) and us(rmi+1)).

The predicted open-circuit voltage obtained by using the three different quantities will be compared

to FEA simulations to determine which one produces the most accurate result. It will be shown that using

the RMS of the B field produces the most accurate results over the range of geometry, material properties

and speeds considered in this thesis.

Laminated Stator Core

Figure 2-14: Radial view of the laminated stator shows the non-unity packing factor for laminations of

thickness W and dividers of thickness S.
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Figure 2-15: B-H loop for Moly Permalloy. The shaded region
peak B field of B1 .

1000 1500 2000

is the energy dissipated in a cycle for a

The hysteresis loss in the stator core is calculated using the B-H curve of the core material. For

example, the B-H curve for the Moly Permalloy, measured using a vibrating sample magnetometer

(VSM), is shown in Figure 2-15. The core loss density is defined to be the energy dissipated traversing

the B-H loop. For material with a peak flux density B1 the core loss density is [47]

(2-95)PCOr(Bi)= I H(B)dB.
B I

The peak flux density at some depth in the stator core can be found by reconstructing Bm as a function of

z over one period,

where,

B1 (z) = ma B2(z,O)+B (z,O)J,

B~(zO) Re{PYsZ I h+B ' I xm

BY(z,6) R 0 p" sinh(Ysn (Tsc - Z)) + cnsinh( sn Z) A jne"",

) =R ,odd 9 sinh(ysTs) sinh(ysTs) )i =l oddSn SC

(2-96)

(2-97)
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Bz (z, 0) = R e{Z jn sinh(sn (TSC - z)) sinh(sz) AZ);V( " (2-98)
=1d sinh(7snTsc ) smnh(7snTsc n)~

For an unlaminated stator, (2-96) is evaluated at the middle radius of the machine. For a laminated stator,

(2-96) is computed for each lamination, rlaj-

The total core loss is the sum of the total energy dissipated in the stator core times the frequency at

which the B-H loop is traversed which for an unlimited stator is

Pcore P core (B 0) 2 = R' - R) f p core (B1 (z))dz . (2-99)

For a laminated stator core with NI.m laminations the hysteresis loss is

Pcore = Om W riam,if Pcore I rB(zrjr dz. (2-100)

2.2.8 Torque and Pull-In force

The Maxwell Stress Tensor [46] is used to find the pull-in force and torque on the rotor using the field

solutions found for the air gap in the continuum model. Figure 2-16 shows the surface over which the

stress tensor is computed. The time averaged force on surface 1 and 3 cancel each other. Surface 4 is

assumed to be far away from the surface of the rotor core so that the fields are zero. The time averaged

shear forces on the surfaces parallel to the page, which close the surface at the inner and outer radii of the

machine, are zero because the magnetic fields lie only on the y-z plane. Therefore, only surface 2

contributes to the time averaged pull-in force and torque. The time average normal and shear stresses at

surface 2 are

T,= Re Zn - n n Re z n -- pion }, (2101)

Tyz))= Re N4QfI(2 I ReB .QHQ}. (2-102)
2 n 2 ny
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Figure 2-16: Maxwell Stress surface for pull-in force and torque calculations.

The normal B field and tangential H field at the bottom surface of the rotor active layer are

2( = jnk(asfA (m) 3A () (2-103)

n 6n An(m) - N4 xn(J)- (2-104)

Substituting (2-103) and (2-104) into (2-102) gives the shear stress on the rotor due to the rotor

magnetization and stator winding currents. They are

fsa )- a(1 4 M) A )
aa* A( ~ BA~A AnJ

1Re jnk Y,(). ()2 (2-105)
( n~X )k{JI 6 ) 'k(- ni.*A(6) j}

I + x3nn*6 A(J) xn (m) - 3n4n xn (J)

The shear stress Equation (2-105) consists of three components. The first component captures the

interaction between the stator currents and the rotor PM,

\yz~~\(1)(xn m) x(J) A33 * (6)j x(Im) /*(-106)
(T Re ljnk(- aCsnP*4n m) Ax (J + P3na'*6A An m - (2-16

n

This is the component responsible for electromechanical energy conversion in both motoring and

generating modes and is proportional to -Brlosin(8m). The interaction only occurs if the frequency of the

stator currents, We, is equal to the frequency of the voltage induced by the rotor permanent magnet, om =

PQm, and is known as the synchronous torque. When the torque angle is positive, the machine acts as a
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generator and when the torque angle is negative, the machine acts as a motor. The peak torque occurs at

8m = */2. To understand why this is, assume that the Phase A current is Iocos( m t). If 5m = /2

(generating mode), then flux due to the rotor PM, m, which is proportional to Br, will lead the Phase A

current and will have the form -Xmsin(omt). The voltage induced on the terminal of phase A is the time

derivative of the PM flux or -omacos(omt) which is in phase with the Phase A current. The time

averaged power per phase will be -Momamlo.

The second component of Equation (2-105) represents the drag torque on the rotor due to eddy

currents in the stator induced by the spinning permanent magnet. This drag is

Tyz)= Rejnk 5nn)t*6J 1(m) 2 . (2-107)
n

This drag torque shows up as eddy current loss and stator core heating. It can be eliminated by using a

ferrite (non-conducting) or laminated core.

The final component of the shear stress is the torque due to eddy currents in the rotor induced by the

traveling magnetic flux wave generated by the stator currents,

yz = -~ RejnkP3n 4 n - (2-108)
n

This component is proportional to the square of the stator currents and is the mechanism that generates

torque in an induction machine. This torque is a function of the slip frequency of the rotor, soe, where the

slip is defined as

s = e ,m (2-109)
Ce

and is known as the asynchronous torque. In a synchronous (PM) machine this torque can be generated by

higher order spatial harmonics of the traveling magnetic wave generated by the stator currents but will be

zero for the fundamental spatial harmonic. In a surface wound machine, this torque is negligible due to

the large air gaps even for the fundamental spatial component of the air gap fields, which makes surface

wound induction machines a poor choice for electric power generation.
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The time averaged stresses are independent of y = rO so that the total pull-in force is just 271 times the

integral of the normal stress integrated over the radial span of the machine

=R

FI = -271 fV (0 )rdr. (2-110)
f=Ri

The total torque on the machine can be calculated in a similar matter. The time average torque will 271

times the integral of the radius times the shear stress integrated over the radial span of the machine

Torque = -27C f (T r2dr . (2-111)

Note that the minus sign in front of the integrals in (2-110) and (2-111) is due to the fact that integration

is performed over surface 2 which has a normal in the - i direction.

2.2.9 Equivalent Circuit Model

Using the Maxwell Stress Tensor to compute the torque, and hence the output power, of machine as a

function of stator currents and rotor magnetization is useful for comparing different machines in terms of

power density and efficiency. However, to design the complete electric power train it is much more useful

to have a circuit model of the generator. The equivalent circuit for a single phase of the balanced PM

machine is show in Figure 2-17. It consists of a back EMF source or open-circuit voltage, Vc, due the

spinning PM as well as an inductance, Ls, and resistance, Rs, due to the stator windings. The open-circuit

voltage and stator inductance can be found using the vector potential solutions to the machine due the

rotor magnetization and stator currents, respectively. The resistance is calculated based on the dimensions

of radial conductors, and the inner/outer end turns of the stator windings. Only equivalent circuits for PM

machines are considered here since induction machines will not be selected in Chapter 3 as the best

magnetic machine for electric power generation in the microengine.
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Figure 2-17: Equivalent circuit for a single phase of a PM machine consisting of an open-circuit voltage,

VOC, stator winding inductance, Ls, and resistance, Rs.

2.2.9.1 Open-circuit Voltage

The spinning multi-pole PM rotor creates a time-varying flux that induces a voltage, Vc, on each

phase of the stator windings governed by Faraday's Law,

V = d, (2-112)

where 4m is the total flux from the rotor PM linked by a single phase. In order to determine the open-

circuit voltage, the axial flux through a single phase of the stator windings must be found. This is

achieved by integrating the incremental flux at a given radius over the radial span of the machine. The

incremental flux from a single turn can be found by taking the difference between the vector potential

[44] of the two radial conductors in that turn (Figure 2-18). For instance, if the radial conductors of phase

A of a 1-turn/pole machine spans from y = yj to y = y2 then the incremental flux in that loop is

mzn,coii(m) = Bzcoii(m)e -'"'1' dy=Ax coil(m)(einky3 - ein"Y2, (2-113)

where A ,mcoil(m) is the vector potential evaluated at half the axial thickness of the stator winding layer,

Axncoil(m) = E (m)(XI + C3n )sinh(.5yonTei) . (2-114)

The incremental flux linked by a single phase is P times the flux/pole. From Figure 2-18, the incremental

flux/phase in phase A of a 1 -turn/pole machine is

0z,coil(m) = PA wooii(m) e -- e= c2PA oi1(m)e . (2-115)
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Figure 2-18: Voltage calculation diagram for a 1-turn/pole machine. Flux linked by phase A is equal to

the difference in the vector potential between y = %4 and y = -V4X evaluated at half the thickness of the

stator coils.
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(a) Full Pitch Windings
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(b) Concentric Windings

Figure 2-19: Voltage calculation diagram for 2-turn/pole machines with (a) full pitch windings and (b)
concentric windings. A and -A constitute a single turn while A' and -A' constitute the second turn.
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Figure 2-20: Voltage calculation diagram a 4-turn/pole machine with double layer windings. For a

machine with a double layer winding, Ts, is the sum of the thicknesses of the top and bottom coils.

Machines with more than 1-turn/pole can also be modeled using this approach, where the

contributions of each turn are summed to find the incremental flux/pole. The multiple turns can all reside

on a single layer or be stacked onto multiple layers [42]. A cross-section of a 2-turn/pole machine is

shown in Figure 2-19 for both full pitched and concentric windings. A full pitched winding is one that

spans 180 electrical degrees or a half wavelength [41]. Multi-turn concentric windings are made up of

long pitched and short pitched windings such as A,-A (long) and A', -A' (short) in Figure 2-19(b). The

conductors are in the same location for full-pitch and concentric windings and since the flux through the

windings is the net difference in vector potentials the incremental flux/phase is the same. Referring to

Figure 2-19 for a 2-turn/pole machine with either full-pitch or concentric windings, the incremental

flux/phase is

0ncoii(m) =PAxncoii(m) e -e + e 2 =2PAco) e12 + e12. (2-116)

This cross section can also be used to model a 4-turn/pole machine that uses two layers of coils with

each layer having the same phase sequence as the 2-turn/pole machine (A A' -C -C' ... ) as shown in

Figure 2-20. In the case of the 4-turn/pole double winding layer machine, the thickness of the stator

winding layer, Te1, is the sum of the thicknesses of the top and bottom coils. For a 4-turn/pole machine

using two winding layers, the incremental flux/phase is
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Ajn - jn -5

'Dzn,coii(m) = 4PAx ,coil(m) e 12 + e 12. (2-117)

In general, for a three-phase surface wound machine with P pole pairs, N-turns/pole, w winding layers and

N' = N/K, the incremental flux/phase is

4N'-1 . n

Dzn,coil(m) = 2KPAxncoi(m) Y3 e ' . (2-118)
v=2N'+1
step2

Integrating over the radial span of the machine, the total flux linked by a single phase for each harmonic

is

kn,coil(m) = £ ,coiI(M)dr (2-119)

The harmonic amplitudes of the open-circuit voltage induced by this flux is

Sd
Vo=dt ' n,coil(m). (2-120)

2.2.9.2 Stator Inductance

The stator inductance can be determined in the same manner as the open-circuit voltage. The total

flux generated by the stator currents and linked by a single phase of the machine is found by integrating

the incremental flux at a given radius over the radial span of the machine. The incremental flux linked by

a single phase is P times the flux/pole. Referring back to Figure 2-18, the incremental flux/phase in phase

A of a 1-turn/pole machine is

zn,coil(j) = PAn coi(j) e - e = 2PA coil(j)e . (2121)

where Ax 1col(j) is the vector potential due to the stator currents evaluated at half the thickness of the stator

winding layer,

A () )sinh(.5yOnTc) (2-122)
Axncol~) =(Cln^ X(J +P~nxn(J Isinh(70n Tel )
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For the general case of a three-phase surface wound machine with P pole pairs, N-turns/pole, K winding

layers and N' = N/K, the incremental flux/phase is

4N '--l n( 1
Dzn,coil(j) = 2KPA ,coil(j) I e 6N' (2-123)

v=2N'+1
step2

The stator currents, which have a single temporal frequency (ohe), generate magnetic fields with

multiple spatial harmonics. However, due to the large air gap, the higher order harmonic components are

much smaller than the fundamental. Therefore, the flux linked by a winding due to the stator currents is

composed of essentially the fundamental component of magnetic field in the air gap. Integrating over the

radial span of the machine, the flux linked by a single phase is

coii(j) = .. = Dzlcoil(J)dr. (2-124)

Note that this is the flux linkage generated by the sum of the three phase currents. The resulting

inductance, Ld, is known as the synchronous inductance [41] and is given by

Ld = Re{icol(J) . (2-125)
10

Phase B and C currents produce a flux linked by phase A that is proportional to the cos(+%t)= -A. Since

ib + i, - -ia, the sum of the fluxes produced by phase B and C equals half the flux produced by phase A.

Phase A will see 1.5 times the flux produced by currents in only phase A. Therefore, the stator phase

inductance, LS, in the single phase model will be

L = Re{ coil(J) . (2-126)

2.2.9.3 Stator Resistance

For a surface wound machine the radial conductors of all three phases will occupy the same winding

layer. The radial conductors in the same phase are connected by end turns that cross over end turns of the
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other phases as depicted in Figure 2-21. The first generation of surface wound stators uses full pitched

windings while the second generation stators uses concentric windings.

Figure 2-21: Winding pattern for a 2-turn/pole, 8-pole machine. The radial

and connected by cross overs.

(b)

Wa1(r)

conductors are unlaminated

Figure 2-22: Radial Conductors in a single slot (a) unlaminated and (b) laminated.
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The radial conductor in each slot can be unlaminated as shown in Figure 2-22(a) or laminated as

shown in Figure 2-22(b). Laminated radial conductors can be used to reduce proximity eddy current

losses which is discussed in the next section. There are 2PN radial conductors per phase so that the

maximum angular span or slot angle for each conductor is

0 = = t -27 (2-127)
6PN 3PN

If there are C1. laminations per radial conductor than the width of the laminated conductors is given by

Wc1 (r)= - gr - gl a.(2-128)
3PNC1 m

where &I is the minimum distance between adjacent conductors imposed by fabrication constraints. The

resistance of a radial conductor is

R conductor dr 3PNC lnI W R (2-129)
oduTor~c Tcl i Wei(r) n7a(c~ T ( Wcl(Ri))

where Tcl is the height of the radial conductor and ac is the conductivity of copper. Consequently the

resistance of all the radial conductors in a single phase is

R - 6(PNC l)2 In I(2-130)
' nacTcl Wcl(Ri) )

For full pitched windings, like the one shown in Figure 2-23, the length of all the end turns are the

same. The end turns are made of straight conductors that each span 1.5N,I5 t radians (3 0s1t radians for the

2-turn/pole machine as shown in Figure 2-23). The length of the outer end turn conductors can be

approximated as the hypotenuse of a right triangle,

L outer = NOietR +(Rol - R o)2 = +(Rol - R0 )2 . (2-131)
(2N~itO~ 2P
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Figure 2-23: End turn connections for a 2-turn/pole full pitched winding.

Since there are two conductors per end turn and NP end turns per phase, the resistance of the outer end

turns is

R oe 2NPLouter
ou Cter = "t ,

GeTe We0
(2-132)

where Teo and We0 are the height and width of the outer end turns, respectively.

The inner end turns are handled in a similar manner. The length of the inner end turn conductors is

L -ner = i 2 + (Ri - Ril) 2

2P
(2-133)

The corresponding resistance of the inner end turn is

2NPL.
R inner = G ""*e

eci ci
(2-134)

where Tc; and Wei are the height and width of the outer end turns, respectively. The total resistance per

phase is Rradiai + Rinner + Router.
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Figure 2-24: End turn connections for a 2-turn/pole concentric winding.

Figure 2-24 shows a 2-turn/pole stator with concentric windings. Each outer end turn has a width Weo

and is separated from adjacent conductors by a width gel. The short-pitched and long-pitched outer end

turns span angles of 5 0s1ot and 7 0sIot, respectively. The resistances of these end turns are

Router = (2-135)
3PNaCTCOWC'

77rR
Router2 o2 (2-136)

3PNa T 0OWC'

where

w
Ro =Ro + 4 +g 1 , (2-137)

2

3W 0
R o2=R + + 2gclr. (2-138)

2

The resistance per phase of the outer end turns is P times the resistance of the individual end turns

Router = 71 5R01 +7Ro 2  (2-139)
"" Tceo WCO( 6
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Similarly, the inner end turns are computed in the same manner. The resistances of the inner end turns are

Rinner = 5nR il (2-140)
3PNc Ti Wci

R 2 7= R i2  (2-141)
nner2 3PNac Tci We

where

Ri = R 1  - gci , (2-142)
2

3W
R l2 R i - c' - 2gcl, (2-143)

2

and the total resistance per phase of the inner end turn is

R. = 5Ril +7Ri2. (2-144)
G c Tc0 Wc 0  6 )

This method can be extended to the general case of an N-turn/pole concentric wounding. If N is even,

then will be N/2 short-pitched windings and N/2 long-pitched windings. If N is odd, their will be one full

pitched windings, (N-1)/2 short-pitched windings and (N-1)/2 long-pitched windings. The arcs spanned

by the nt inner and outer end turns are, respectively,

Linnem [2(N + n)- ItRin (2-145)
3PN

L outem= [2(N + n)- R" (2-146)
3PN

where the radii of the arcs are

Rinnem =Ri - 2n -1 Wci - ng coil, (2-147)

2-

R outem R 0 + 2 n - Wco + n g coil . (2-148)
2
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The total resistance of the inner and outer end turns is then

R ne N L inem 7 N [2(N + n) - 11R n
R -eP inTW L , "e" , (2-149)

n= CTO WWi (YcTciwci W =1 3N

R = L outem N [2(N + n)- 1]R outem
outer. N L W TW 3N (2-150)

n=1 aCc o COCO C CO co n=1 3

The total resistance per phase is Rradial + Rinner + Router.

2.2.10 Proximity Eddy Current Losses in the Coil Layer

The continuum model of the surface wound machine does not model the stator windings as a layer

with conductivity ac because it is made up of discrete conductors. There are 6N radial conductors per

wavelength of the rotor magnetization and the width of each of these conductors is much smaller than that

wavelength. Instead the coil layer is treated as a layer with zero conductivity and impose current density

J,(y,t) in the continuum model. The fields in the machine, due to the stator currents, are computed by

solving for the vector potential due to this current distribution.

However, eddy currents within each radial conductor will be present as shown in Figure 2-25(a).

These eddy currents are driven by the magnetic fields from the rotor PM and the resulting losses are

modeled separately using the field solutions from the continuum model as inputs. The B field from the

rotor magnetization is used to compute the induced electric field using Faradays Law. The power

dissipation in the radial conductor can then be calculated by integrating the conduction loss density over

the volume of the radial conductor. If the losses due these eddy currents are too large, they can be reduced

by laminating the radial conductors as shown in Figure 2-25(b). The eddy currents in the conductors will

produce their own magnetic fields which retard the flux generated by the rotor magnetization. Ampere's

Law is used to compute this retarding B field. So long as this B field is much smaller than the B field due

to the rotor PM than the assumption that the conductivity of the coil layer can be ignored in the

continuum model will remain valid.
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(b)

WeI(r)

Bz

0

x =r

y

y =0

Figure 2-25: Proximity eddy currents in radial conductors (a) unlaminated and (b) laminated.

The induced electric field within a radial conductor can be found using Faradays Law,

JE -di = - JB -dA. (2-151)
at

The contour for the electric field is assumed to be rectangular and is mainly in the x direction as shown in

Figure 2-25. The path lengths in the y direction at the inner and outer radii are assumed to be small with

respect to the radial path and are ignored in this analysis. Therefore Equation (2-151), for each harmonic

component of the induce electric field, becomes

2xExm =-jnomBncol(m)xy, (2-152)

where Bzcoil(m) is defined in (2-113). The induced electric field is

E, =--0.5jnomBzncoil(m)y. (2-153)
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The time averaged power loss density in the radial conductor is

\OcE,(t) 2 4 = n 2 )2 (2-154)

The loss density increases with the square of the distance from the center of the radial conductor. The

power dissipated in the radial conductor for each harmonic component of the B field due to the rotor PM

is

Pradn= 2Tcj L 2 (-Inom)2 An,col(m) 2 2dy dr. (2-155)

Evaluating (2-155) gives

Pradn = (nom) Bzncol(m) 2(3PNC1m Te1(We1(R0 )4 -4w71(R )). (2-156)

There are 6PN radial conductors in a surface wound stator. If each of these conductors has C1.

laminations then the total loss due to proximity eddy currents is

pIOX = 3a42" (PNC1am)2 TC1 [Wc1 (R ) - WC. (R)4 n 2  zncoil(m) 2, (2-157)
647t ,n1,dd

To better understand how this power dissipation scales, assume that width of the radial conductors is

taken to be at r = %2(R 0 - Ri) = Rm and is constant over the radial span of the conductor and that gI is zero.

Substituting POm for om and revaluating (2-155), the proximity loss will be

Pprox = (6NCam) T - Rm C' -nm) Rmcoil(m)2 , (2-158)
6am n=1,odd

The proximity effect loss increases with the square of the speed and flux density. However, they scale

as the inverse square of the number of turns/pole and number of coil laminations. Increasing N and C1 .

increases the number of radial conductors but reduces the width of each radial conductor. The power

dissipated in each conductor is reduced faster than the increase in the number of total radial conductors

because its dissipation scales as the cube of the width while the number of conductors is only linear with

N and Cla. Notice, however, that the proximity loss is independent of the number of pole pairs, P.
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In order for the zero conductivity assumption for the coil layer used in the continuum model to be

valid, the B field generated by these proximity eddy currents should be much smaller than the B fields

due to the rotor PM. To find this proximity effect B field, the current through half a radial conductor is

computed due the fundamental harmonic of the rotor PM flux. This current is at a maximum at the outer

radius where the conductor is widest. Integrating the electric field over half the width of a radial

conductor the proximity effect current is

We (R.) c T(

Iprox = OC TCi 2 Etxdy=-j 16 m TcWcl(R B)zCOOM), (2-159)

Figure 2-26 shows how the proximity effect currents are distributed in the windings of phase A. The

return path of phase A, denoted as -A, has the opposite proximity current distribution. The peak

proximity effect B field can be computed, via Ampere's Law, using the contour in Figure 2-26 and is

given by

_ prox0 1prox (2-160)
Ta +Tag + To(1'

The ratio of the proximity B fields to the fundamental of the rotor PM B field is equal to

Bprox _ m0 comTCiWc (Ro)2 <<1. (2-161)
Bzcofl(m) 16 (T + Tag + TI

Equation (2-161) should be no more that 0.05 in order for the continuum model to be valid.

Figure 2-26: Proximity eddy current distribution in a single phase and contour for computing the B field

due to these currents.
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2.3 Slotted Stator Magnetic Machines

For the slotted stator magnetic machine, one source of magnetic field resides in the rotor active layer.

The other source of magnetic field resides in slots covered over with hats. Because of the distinct location

of each of these sources the slotted stator magnetic machine consists of two models (Figure 2-27). One

model is used for determining the fields in the machine due to the rotor magnetization and a separated

model is used to determine the fields due to the stator currents. To model the slotted stator PM machine

both models are needed but for the induction machine, the rotor magnetization is zero so only the model

that determines the fields due to the stator currents is needed.

To determine the fields due to the rotor magnetization, the continuum model from the surface wound

machine is used. The slotted stator is divided into two equivalent layers. The first layer, composed of the

stator poles, hats and buried windings, is called the slot layer and replaces the coil layer in the continuum

model. This layer has permeability, p., and conductivity, op. The second layer is made up of the stator

base and has a permeability, gb, and conductivity, Gb. It replaces the stator core layer in the continuum

model. The normal B field at the surface of the stator is used to determine the flux through the pole and

base. These fluxes are sent to the iterative algorithm for saturation to determine an effective permeability

for the pole, pp, and base, pb. The stator lamination model for the surface wound machine is used to

determine the effective conductivities for the stator layers.

To determine the fields in the machine due to the stator currents the air gap and rotor use the same

continuum analysis of the surface wound machine but the stator is modeled as a lumped parameter

magnetic reluctance circuit due to its complex slotted structure. This hybrid continuum/lumped parameter

model is the same approach used in [26] to model magnetic induction machines. The model used here

builds on [26] by incorporating the effects of laminations, saturation, eddy current loss in the stator and

hysteresis loss. The rotor continuum model uses the tangential H field at the surface of the stator produced

by currents in stator slots as a boundary condition to solve for the normal B field at the surface of the

stator. The normal B field is integrated over the stator surface to determine the flux over each stator pole.
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The stator reluctance circuit uses this flux and the phase currents as inputs to determine the tangential H

field at the surface of the stator. The rotor and stator models are combined to determine H and B fields in

the machine as a function of stator currents.

Ax = 0

Air (io, a=) Z

x

y

Continuum model for both
rotor magnetization and

stator currents z
Air gap (po, c 0) Tag

Lgap

x

Continuum model of rotor y

magnetization LI IZ Phase A

LI@ iZ |Phase B

Lumped parameter model
for stator currents

Air (po, c = 0) c-->OO

Ax= 0

Figure 2-27: The slotted stator magnetic machine model consists of a continuum model for the rotor and

air gap and a lumped parameter model for the stator.

2.3.1 Continuum Model for Rotor Magnetization

The slotted stator is divided into two equivalent layers as shown in Figure 2-28. The first layer

consists of the stator pole, hat and the buried windings and is will be represented by the stator slot layer.

This layer has permeability, p, and conductivity, a. The stator base is treated as a separate layer with

permeability, pb, and conductivity, ab. The P parameters (2-36a) - (2-36c) remain the same but the a

parameters, (2-27a) - (2-27b) are modified as follows,

ctln - Jtb Yon sinh(ybn Tb, )+ cosh(yb Tb), a2n = sim(ybTb )+ on cosh(y bnTb) (2-162a)
Ybn LO b

O3n = a 2 sinh(y , T,1 ) aI cosh(, 1 T,1), a4 n =1 pna 1 In sinh(7pTsI)+ a 2 cosh( TTsI) (2-162b)

The diffusion constants for the stator are also modified and are shown in Table 2-3.

78



Air (po, Y = 0) C-+OO

AX = 0

Stator Slots TI

Air (go, a = 0) C+OO

A,, 0

Figure 2-28: The slotted stator is divided into two equivalent layers, one for the slots and one for the

stator base.

Table 2-3: Diffusion Constants for Different Planar Layers.

Diffusion Constant Synchronous Machine Asynchronous machine

YOn n 2 k2  n 2 k2

Yan n2 k2  jn2k2+jp a(e -nom)

7m Vn 2 k 2  n2k 2 +jpla,(D, -nwm)

pn n 2k 2 +jgopnom n 2k 2 +jLpapo)e

Ybn n 2k2 + jpbabnom 2 2 +jLbyba e

The rotor flux, Or, normal to the surface of each pole is used to determine the flux through the stator

pole and base. The complex amplitude of the normal B field at the surface of the stator is

S= jnkAx = jnka3n x(M). (2-163)

From Figure 2-29, the rotor flux into a stator pole is the integral of BzQ over a quarter wavelength

r(Dm)= ABeJ"dy=-j2sinr 3nA0()- (2-164)
8() Bn-Yy -~i ) n (l)m
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Figure 2-30: Flux paths for rotor flux through stator.

2.3.2 Rotor/Air gap Continuum Model for Stator Currents

The stator currents will produce a tangential H field at the surface of the stator whose

harmonics, H n), are inputs to the rotor model. Making use of the P parameters from Section 2.2.1 the

vector potential at interface © due to the stator currents is

^ (6) 1 p(3)
-x J ynJ). (2-167)

The vector potential at the surface of the stator is

A ^(3) f (6) 05 f3)~3
A )=P=xn(j) - yn(j). (2-168)

Referring back to Figure 2-29, the total flux incident on the surface of a pole due to the stator currents

Dr(J)= XIDm(j) = j2 sin j~<) P5n H(). (2-169)
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Figure 2-30: Flux paths for rotor flux through stator.

2.3.2 Rotor/Air gap Continuum Model for Stator Currents

The stator currents will produce a tangential H field at the surface of the stator whose

harmonics, H g), are inputs to the rotor model. Making use of the P parameters from Section 2.2.1 the

vector potential at interface @ due to the stator currents is

A, H) = 1 n . (2-167)
J) 06n

The vector potential at the surface of the stator is

Ax2 (J) =3 A5n(J A - yN (j). (2-168)
f36n j

Referring back to Figure 2-29, the total flux incident on the surface of a pole due to the stator currents

Dr(J) =I Dm(j) = j2 sin - yn(J). (2-169)
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2.3.3 Lumped Parameter Stator Model

The stator is modeled as a magnetic reluctance circuit. It uses the normal flux over each pole,

computed from the continuum model, and the current through the winding as inputs to determine the

leakage flux through the stator teeth gaps. This leakage flux is divided by the area of the teeth to

determine the H field through the teeth gaps. The reluctance circuit is simpler than the one used in [26].

There is only one flux source over a rotor pole instead of three and the curvature of the flux paths around

a stator slot is ignored. In contrast to [26], however, the effects of eddy currents in the stator laminations

are included here.

Figure 2-31 shows the distribution of currents in the stator slots over one wavelength. Each slot

contains a coil from phase A and a coil from phase B. Phase A is driven with current Icos(ot) while

phase B has is driven with current Iosin(e)t). The current in slot 1 is

- lI 0 cos ot - = Re{F - Ie 4 ejt } = Re{Ie 1"O . (2-170)

The current in slot 1 is designated to be in the -x direction so that the tangential H at the teeth gap above

the slot is in the +y direction. The currents in slots 2, 3 and 4 have the same magnitude but are shifted in

phase by a/2, 7t, and 37r/2, respectively. The 7t/2 symmetry between successive slots will be exploited

when analyzing the stator reluctance circuit.

Since the reluctance of each tooth gap is much larger than the reluctance of the hat, pole and base,

most of the MMF drop around the leakage flux path will be dropped across the gap. Therefore, the flux

across the teeth gap will be proportional to and in phase with the current in the slot beneath it. The current

distribution in the slots leads to the tangential H field distribution shown in Figure 2-31. The tangential H

field peaks in the region of the teeth gaps and can be represented in the following form

H )(y,t)= Reo(y)et}. (2-171)
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Figure 2-31: Current distribution in the stator slots and corresponding tangential H field at the surface of

the stator.

This spatial distribution H()(y) can be decomposed into its spatial harmonic components

H1(Y)= )1-e1"4 . (2-172)

The complex magnitude of each spatial harmonic is [26]

n7t

4l( 3) 4--s i 4 fP3) on 135n) sin nt e )for n = ,-3, 5,-7, 9... (2-173)

2.3.3.1 Laminated Stator Reluctances

The laminations for the slotted stator are a series of thin concentric shells just as in the case for the

surface wound machine. The cross section of the flux paths through the stator are long in the azimuthal

(That, Thase) and axial direction (Tpie) but short in the radial direction (W). Thus the eddy currents

generated in the laminations flow mainly in a single direction along That, Tpoie and Tba. The analysis of

Section 2.2.6 will be used to determine the complex reluctance of the laminated stator.
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Figure 2-32: Eddy currents in a lamination of thickness W. The lightly shaded region represents

minimum flux penetration.

Figure 2-32 shows a lamination of length L, width W and height H, with a permeability of and a

conductivity of u. Equation (2-82) describes the flux through such a lamination as a function of the

applied H field, H(t). Equation (2-82) can be rewritten as

S2p'THO Wn (L T 2 )tn(xW)(D - tanh - x -L x(HOL)xl tanh c --. (2-174)
C 2)WL L aWy 2

The first term in (2-174) is the DC permeance of the lamination

P=R- =TW (2-175)
L

The second term is the MMF drop across the lamination,

(Ni)=H0 L. (2-176)

The third term describes how induced eddy currents affect the reluctance of the lamination. Note that the

eddy currents not only increase the magnitude of the reluctance but also create a phase lag between the

applied MMF and the flux through the lamination because the reluctance is complex.
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A new function F(Q) is defined to represent the eddy current effects on the reluctance

F(Q)= , (2-177)
tanh(Q)

where the parameter Q, defined in (2-84) of Section 2.2.6, is

(2-178)
2 6

The complex reluctance, R, of a lamination is then

R = L F(Q). (2-179)
[tTW

Note that the rotor is continuous over its entirety. The rotor continuum model determines the H and B

fields in the air gap over an incremental radial span, dr. These incremental fields are integrated over the

radial span of the machine to find the flux, torque, voltage, etc... The stator on the other hand consists of

a finite number of laminations and, therefore, a finite number of reluctance circuits. In order to couple the

stator's finite number of laminations to the continuous model of the rotor an incremental reluctance

circuit for the laminated stator is needed so that the field solutions will be a continuous function of radius.

As shown previously in Figure 2-14 of Section 2.2.7, the flux from the rotor over a radial span of

W+S will flow into a lamination of radial span W, where S is the width of the insulation layer between

laminations. From the standpoint of the rotor, the reluctances in the stator will be proportional to

L
R oc , (2-180)

pfp (W + S),

where the packing factor, pf, is defined to be

p = W (2-181)
w+S

The equivalent reluctance over an incremental radial span A is then proportional to

R c L (2-182)
gTpf A
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The stator teeth gap, pole and base are each modeled by a separate reluctance: Rg, R, and Rb,

respectively. The incremental reluctances for the hat, pole and base are

RP = L P F(QP), (2-183)
gTppfA

Rb = Y F(Qb), (2-184)
jIbTsbpf A

1
where Qi oc for i = p or b. The flux through the teeth gap is not constrained to a lamination width

but will instead flow through the entire radial span of the teeth gap. From Figure 2-33, the width of the

path for the flux through the teeth gap for each lamination is W+S. The incremental reluctance of the

teeth gap is

L
Rg= g (2-185)

toThA

S

Flux through
Stator Teeth Gaps

Figure 2-33: Flux through the stator teeth gaps are not constrained to flow through a lamination width,

W, but will instead diverge into the space between laminations.

86



TPoe 1

.3 7r

2 (e ~r(J)

.37r

Figure 2-34: Stator magnetic reluctance circuit.

2.3.3.2 Stator Reluctance Circuit

The stator circuit consists of a network of reluctances driven by MMF and flux sources as shown in

Figure 2-34. The MMF sources represent the current enclosed in a slot, while the flux sources represent

the flux from the rotor above a given stator pole due to the stator currents. The goal is to determine the

magnitude of the H field through the teeth gap as a function of the applied current. This analysis will

make use of Kirchoff's Current Law (KCL) and Kirchoff's Voltage Law (KVL) for the reluctance circuit.

Using KCL and summing the fluxes at node A in Figure 2-34, the flux through a pole is

( s) ::- (Dr(j) + ( -1 SO),

while, summing the fluxes at node B, the flux through the stator base is

Db(J) -(- JIb(J) + (- jk,(J) + (I + ji'(J).

Rearranging the terms in (2-187), the flux through the stator base is

S(() - D r(J) +(D,(J).1
j -1

(2-186)

(2-187)

(2-188)
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The next step is to determine flux through the teeth gap, s(j), in terms of I and (D r(J). This can be done

using KVL around the Slot 1. The MMF drop across Slot 1 is

+ (3)

. (2-189)

= [Rg +2R + Rb }s(J) -

The equivalent reluctances seen by the leakage flux, cFs(J), and rotor flux, r(J)), respectively, are

RS =R9 +2RP +Rb,

R =I (+ j)RP +( jRb .

Equation (2-189) can now be written as

Rd,(J) r r(J) =1.

The flux through a tooth gap is

$s(J) = J)ThatIyPJ),

while the rotor flux over one stator pole, derived in the rotor modeling section, is

Sr(J)= j2j sin
4 )6n .(

(2-190)

(2-191)

(2-192)

(2-193)

(2-194)

Substituting Equation (2-173) for H into (2-194) gives

[ nc {f 5n L ")jnni 1
(r() = j2 Isinc 6 sin nit e 4N( %).

(2-195)

By substituting (2-193) and (2-195) into (2-192) the complex amplitude of the magnetic field through the

teeth gap as a function of the current through a slot can be found

iOThat RS NJ) - j2 sinc 4 j n sin ni e ]RrH(3) = - . (2-196)

Defining an equivalent "teeth gap" length to be
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Leq = pO ThatRs - j2 1 sinc( n ( J sin nir e 4 Rr, (2-197)

the complex amplitude of the tangential H field at the surface of the stator slot is

H =(2-198)
Y ) eq

The equivalent teeth gap length is proportional to the stator reluctances and is therefore inversely

proportional to the incremental radial span A. Since Leq is in the denominator of (2-198), the tangential H

field at the surface of the stator is proportional to A. The tangential H field can be integrated over the

radial span of the machine by letting A -- dr.

2.3.4 Saturation and Hysteresis loss

Saturation effects in the slotted machine are handled using the same iterative approach used in the

surface wound machine. A permeability is assigned to the stator pole, stator base and rotor core so that the

magnitudes of the B fields in those parts lie on the core material's B-H curve. The magnitudes of the peak

B fields in the stator pole and base are

Bmp = (2-199)
F(Qp polePf

Bma = - (2-200)
F(Qb Tbasepf

The RMS value for the B field at the bottom surface of the rotor core is used

BBr)= B +B ,5) (2-201)

Note that the flux through the pole, base and rotor core is the sum of the fluxes generated by the rotor PM

and the stator currents (i.e. (p = ()) + Dp(j)). The output of the iteration procedure will determine 1, p1

pb to determine the a and P parameters for the rotor continuum model. The effective permeabilities can
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then be used to determine the effective conductivity of the stator pole and base using Equation (2-86) in

Section 2.2.6. The effective conductivity of the stator pole and base are defined as

p= s I _ ;(Q)j, (2-202)
s QP

ab s tanh( Q j (2-203)

The hysteresis loss in the laminated stator core is determined by calculating the core loss in the hat,

pole and base at the radius of each lamination

Pcoreh = WTh (Lsb,i - Lg core Bmah i (2-204)
27c i=1 lamj

0)Nian

P IOM= WLpe Z1Tp. B ,m(2-205)
Pcorep 27c pe T oe(mx ~lmi

(0Niam(
Pcoreb = WTb L pbP (Bmaxb ). (2-206)

For Equation (2-204) the peak B field in the hat is given by

Bmaxh - Bmaxp (2-207)
Lbase Lgap

The total core loss for the stator is

Pcore,s = 2PN(Pcore,h +Pcorep +Pcore,b) (2-208)

In the case of an induction machine where the frequency of the stator currents is not synchronous with

the machine speed, the rotor will experience a time varying field. This will produce hysteresis loss in the

rotor core given by

P core = 1R -( R 2 ' pcore (B, (z))dz . (2-209)

Notice that the core loss depends only on the magnitude of the slip. The peak B field, as function of z, in

the rotor core is given by
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Bi(z)=ma( B,(z,O)+B(z,O)J, (

where,

By (z,O)= R Y sinh(ymz)

n 9t sinh(7mTrc)

sinh(y .m(Tr -Z)) A 6 )" j nO
sinh(mTc) )e

B (z,0)= R{0 sinh(mz)
z n=,,0d1 sinh(ymTrc)

(2-211)

(2-212)
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Figure 2-35: Winding diagram for phase A. The flux through Pole 4
and contributes to the open-circuit voltage.

is linked by the two outer end turns

2.3.5 Equivalent Circuit Model

2.3.5.1 Open-Circuit Voltage

The spinning multi-pole PM rotor creates a time-varying flux that induces a voltage, V., on each

phase of the stator windings governed by Faraday's Law,

Ve d , (2-213)
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where m is the total flux from the rotor PM linked by a single phase. In order to determine the open-

circuit voltage, the flux through the poles linked by a single phase of the stator windings must be found.

Figure 2-35 shows the winding pattern for a 2-turn pole winding. The two outer end turns link the flux

through Pole 4 twice for each pole pair, P, of the machine. On the other hand, the flux through Pole 1 and

3 are 1800 out of phase with each other and therefore cancel while the flux through Pole 2 is not link by

any of the outer end turns. The harmonic components of the incremental flux through Pole 4, due to the

rotor PM, are

.3nit nit

(pn(4) =:m(m)e 2 m(m)e 2 (2-214)

where

Dn(m) = -j2<sin A3n '(m). (2-215)

Note that this flux is oriented in the -z direction. The incremental flux, in the positive z direction, linked

by a single phase is

0zm,coi(m) = -PNDm(m)e 2 = j2PN sin( 4 ) X 3n A(m)eX . (2-216)

The sin(nir/4) term in (2-216) comes from the fact that the two outer end turns in Figure 2-35 both link

flux over a quarter wavelength. The outer end turn that loops around Pole 4 is short-pitched by design

while the other outer end turn is effectively short-pitched because the flux through Poles 1 and 3 cancel.

Integrating over the radial span of the machine, the flux linked by a single phase for each harmonic is

=ReXn,coil(m) = .(=I zn,coil(m)dr. (2-217)

The harmonic amplitudes of the open-circuit voltage induced by this flux is

d
Vocn = -i n 'coil(m) = jncom n,coii(m). (2-218)
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Figure 2-36: Winding diagram for phase A. The flux through Pole 4 is linked by the two outer end turns

and contributes to the stator inductance.

2.3.5.2 Stator Inductance

The stator inductance can be computed by finding the total flux generated by the stator currents and

linked by a single phase of the machine. This flux is found by integrating the incremental flux through the

stator poles linked by a single phase over the radial span of the machine. Figure 2-35 is redrawn in Figure

2-36 showing the -n/2 symmetry for all spatial harmonics of the stator currents. Referring to the stator

reluctance circuit in Figure 2-34, the flux through Pole I is

Sp(j) = (r(j) +(0 - s1)(J). (2-219)

Just as in the case for the open-circuit voltage calculation, the stator winding links the flux through Pole 4

NP times. The incremental flux, in the positive z direction, linked by a single phase is then

Dco(j) = -jPN(tr(j) + (j - 1)(CS). (2-220)

Integrating over the radial span of the machine, the total flux linked by a single phase is

=Ricns = 0o(Jd (2-221)xol) :: =Ri cil~~
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Unlike in the three-phase case for the surface wound machines, the windings of the two phase machine do

not link flux produced by the other phase. Therefore, the stator phase inductance, L, will be

LS = Reoi(J) . (2-222)
IO

Figure 2-37: Winding pattern for 2-turn/pole concentric wound slotted stator.

2.3.5.3 Stator Resistance

There are only two phases in a slotted stator machine. Each phase is on a separate layer and fills each

slot of the stator. This is due to fabrication constraints. The slotted stators have concentric windings as

shown in Figure 2-37. There are 2PN conductors in a single phase. The angle spanned by a single slot is

0 sl 2P N- - - P n
2PN PN

(2-223)
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Figure 2-38: Radial conductors are buried in a slot and isolated from the stator core by a silicon frame of
thickness of Wh.

The pole spans some fraction (1 - a) of a slot,

0 poe =( -a) P (2-224)
PN

where a is the fraction left over for the conductors in the slot. The machines considered here have

laminations embedded in a silicon frame. The silicon frame imposes constraints on the width and spacing

of the windings in the slot. Figure 2-38 shows a radial conductor in a slot. The width of the winding in a

slot is

Wci(r)= ,r g, - Wh, (2-225)
PN

where g, is the spacing between the conductor and the silicon side wall and Wh is the thickness of the side

wall. The corresponding resistance of the radial conductor is

Rconductor = PN ln (2-226)
MaG To ( Wci (R i)2

while the total resistance of all the radial conductors in a single phase is

R aPN) =mi .1(R)I (2-227)
anucTC1 (WC1(Rj))
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Figure 2-39: End turn connections for a 2-turn pole concentric wound slotted stator.

The end turns for the slotted stator are handled in the same manner as in the concentric surface wound

stator. Figure 2-39 shows a 2-turn/pole winding. The short pitched winding spans an angle of a/PN (0,1.t)

while the long pitched winding spans 37/PN (3 0sIot). The resistance of the outer end turn for each phase is

Router 7 Rol +3R 0 2 , (2-228)
CYTCOWCO 2 )

where

w
Rl :=R 0 + C +gCo0 i, (2-229)

2

R02 =R0 + 3W + 2gcofl . (2-230)
2

Similarly the resistance of the inner end turn is

7 ( R.i +3Ri2R uIe, (2-231)
cYCTC1WCIi 2

96



where

Ri1 = Ri "i g coi, (2-232)
2

R3i2 - - 2g coi (2-233)
2

For the general case of an N-turns/pole concentric winding, the arc lengths of the nh inner and outer end

turns are

L. = (2n -1),R i" (2-234)
'"PN

Lon = (2n -1) 0R" (2-235)
PN

where

Rmi = R1 - 2n2 Wei - ng coi , (2-236)
2

RWo = R + 2n - WCO + ngcol. (2-237)
2

The resulting resistances of the inner and outer end turns are

R Ni P L (2n -1)Ri, (2-238)
n=l CTTei Wei aCCNTci Wei l

L o (2n-1)R (2-239)
n=1 P C CO CO acNTcoW L -n ~C Wco n=1
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Figure 2-40: Winding pattern for slotted machine (a) mask layout and (b) placement of windings in

laminated stator (Phase A in blue, Phase B in red). (Courtesy of David Arnold, GIT [28]).

The previous calculation for the outer end turn resistance assumed that the end turns for each pole

pair is the same. However, for a concentric winding in which the entire coil occupies a single layer, the

end turns around the connection pads will be different from the others as shown in Figure 2-40. The end

turn around the connection pad has longer radial conductors, Rp, and a longer outer end turn path length,

LOP. However, the resistance due to this one longer end turn is about the same as the resistance due to the

sum of the two end turns for the other pole pairs so that Equation (2-239) for outer end turn resistance can

still be used.
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2.4 Model verification with FEA Analysis

To verify that the analytical model can accurately predict open-circuit voltages, 3D FEA simulations

of a prototype surface wound PM machine are done using FEMLAB (version 3.1) by collaborators at

GIT. The rotor consists of an annular PM and back iron with an outer diameter of 9.525 mm, inner

diameter 5.525 mm and each with a thickness of 500 pm. The rotor is suspended 300 gm above the stator

core, which is modeled as a large disk that extends well beyond the outer radius of the rotor. This is done

because initial PM machines will be fabricated on ferromagnetic wafers. The 300 pm gap between the

rotor and stator emulates the 100 im physical air gap and 200 pm thick surface windings.

In the model, the rotor-stator assembly is surrounded by air, and periodic boundary conditions are

imposed. Due to the symmetry of the system, only 1/2P of the assembly is modeled, as shown in Figure

2-41(a). Hiperco 50 is used as the rotor back iron material and Moly Permalloy is used as the stator core

material. The annular PM has an ideal square wave magnetization profile with B, set to 1 T and a

permeability of po to simulate a SmCo magnet.

Using the nonlinear B-H curves for both the Moly Permalloy and Hiperco 50, a 3D, magneto-static

FEA model is used as input into a nonlinear solver, and the magnetic fields in the machine for a stationary

rotor are calculated. The resulting axial (z-direction) B field distribution 100 [im above the stator core

(half the height of the stator windings) is then extracted, as shown in Figure 2-41(b) for an 8-pole

machine. The z-directed B field is then input into a MATLAB script. The script solves for the voltage

induced on a winding of arbitrary shape by solving for the time-derivative of the flux through a

predefined contour as the magnetic field pattern is rotated at the synchronous speed.

The contour over which the B field is integrated is varied in order to simulate various winding

patterns. For instance, the winding can have the same radial span as the rotor PM or it can extend beyond

the inner and outer radii of the PM by some distance in order to capture the fringing flux, and thus

maximize the voltage. Figure 2-42 shows the variation in the open-circuit voltage as a function of the

radial extension beyond the PM annulus. A contour that is concentric with the PM (i.e. same radial span)
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encloses 86% of the flux that can be obtained if all the fringing flux is linked. Therefore, there is very

little radial fringing in the magnetic fields even with an air gap as large as 300 pm. For a winding

extending only 0.25 mm beyond both the inner and outer radii, 96.7% of the maximum flux is captured,

whereas a winding extending 1 mm is assumed to capture all of the fringing flux. Thus, the 1 mm

extension is used for comparison to the 2D analytical model, because the 2D model does not capture

radial fringing flux.

(a)

1/

&

Figure 2-41: 8-pole axial magnetic flux density 100

perspective view and (b) top view.
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Figure 2-42: Open-circuit voltage for different radial spans of the magnetic flux integration contour.
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The stator core is not an annulus but instead a large wafer as discussed in Chapter 4, the flux from the

rotor PM will have more area to flow horizontally through the stator. This will lead to a smaller flux

density in the stator than if it were only an annulus of ferromagnetic material. From the 3D FEA analysis,

a stator winding that has a radial span 1.25 times that of the rotor captures 96.7% of the maximum flux

possible. Therefore, the "effective" radial span of the stator will be 1.25 times the radial span of the rotor

so that the average B field in the stator is taken to be 80% of the value calculated by (2-92).

Open-circuit voltage over one period
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........ ... ..... .. .....-
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Figure 2-43: Open-circuit voltage over one period for the 4-, 8- and 12-pole machines.

Figure 2-43 shows a comparison of open-circuit voltage waveforms predicted by the analytical model

to the FEA results for machines with different number of poles, all with 2-turns/pole and with the rotor

spinning at 100 krpm. Notice that for a 4-pole machine, using Bmean to determine the relative

permeabilities of the rotor and stator core leads to an over prediction of the open-circuit voltage while

using Bma,, under predicts the open-circuit voltage. Using Bms also over predicts the open-circuit voltage
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but the error is much smaller. For an 8-pole machine, the rotor and stator cores are less saturated and the

open-circuit voltage predicted using Bmean and Brms converge to the same answer while the open circuit

voltage predicted by using Bmax is still smaller then the FEA result. With a 12-pole machine, the B fields

in the rotor and stator cores are far from the saturation limit and all three B field values converge to the

same open-circuit voltage. This makes sense since Bmean will give an optimistic value for the relative

permeability while Bmax will give a conservative estimate. Since Brms is always larger then Bmean but less

then Bmax, using the RMS of the B field will predict an open-circuit voltage in between the values

predicted by using the other two metrics and so is likely the best choice in all cases.

The RMS voltage as a function of pole count is shown in Figure 2-44. For a 2-pole machine the errors

in open-circuit voltages between the FEA and analytical results using Bmean, Brms and Bmax are 18%, 7%

and -37 %, respectively. For a 4-pole machine, the errors are 7%, 2.5% and -28% while an 8-pole

machine the errors are 1%, 1% and -13%. For higher pole counts, using any the B field values matches

the FEA result. From Figure 2-44 it can be seen that using Br-ms to compute the effective permeabilities for

the rotor and stator core give the most accurate result over the widest range of machine poles.

Notice that for a small number of poles (2-8), the increase in voltage is somewhat linear while for

larger pole counts (12+), there are diminishing returns. To understand why the voltage does not increase

linearly with pole number in Figure 2-44, recall that the magnetic fields in the air gap decay away from

the rotor PM with an exponential rate proportional to P, the number of pole pairs. For small P, the decay

rate is small, and therefore the magnetic fields produced by the rotor PM are not significantly diminished

as they reach the stator surface. For large values of P, the decay rate is large enough that magnetic fields

at the stator surface are greatly reduced. From a physical standpoint, as the number of poles increases, the

width of each pole decreases since the circumference of the PM annulus is constant. When the poles

become tightly packed the flux lines between adjacent north and south poles are short enough that they

connect to each other without passing through the stator core. Thus the flux linked by the stator windings

decreases.
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Figure 2-44: Open circuit voltage vs. number of poles.

Figure 2-45 shows open-circuit voltage waveforms for an 8 pole machine at 100 krpm with 2-, 4- and

6-turn/pole stators. The analytical model uses Brms, resulting in a good match between the FEA and

analytical results. Figure 2-46 shows the RMS voltage vs. turn/pole. The open-circuit voltages obtained

by using Bmean and Bnms produce the same results so the two curves lie on top of one another. Notice that

the analytical model shows a relatively linear slope, which means that the spatial offset in adjacent turns

of a multiple turn/pole machine have a small effect on the open-circuit voltage.

Figure 2-47 shows open-circuit voltage as a function of air gap for an 8-pole, 2-turn/pole machine at

100 krpm. The voltage decreases exponentially with air gap, as expected. Using Bmax under predicts the

open-circuit voltage at an air gap of 100 pm. As the air gap increases the flux density in the rotor and

stator cores decrease and the cores become unsaturated. This leads to a convergence of the analytical

model using the three different B field values. The analytical predictions agree extremely well with the

FEA results.
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Figure 2-45: Open-circuit voltage over one period for 2-, 4- and 6-turn/pole machines. Solid lines
represent FEA; dotted lines represent analytical model using Brms to compute effective permeabilities.
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Figure 2-46: Open-circuit voltage vs. turns/pole.
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Open-circuit voltage vs. air gap
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Figure 2-47: Open-circuit voltage vs. air gap.

Open circuit voltage vs. number of poles and air gap

- -'' - = lxlO6
=xS

8T 141 20 26

2 8 14 20 26
Poles

2

200 300 400 500 600
Air gap (jim)

700 800 900 1000

Figure 2-48: Open-circuit voltage vs. poles and air gap for conductive and non-conductive stators.
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Note that the FEMLAB simulations solve a static problem. The resulting magnetic field solutions do

not incorporate the effects of eddy currents in the stator that would be present due to a spinning PM rotor.

In the analytical model, there is only a small discrepancy between the open-circuit voltages predicted

from machines with conducting and non-conducting stators (Figure 2-48). The eddy currents generated in

the conductive stator, due to the spinning PM, create their own magnetic fields that try to prevent the PM

flux from coupling to the stator. However, due to the large air gap, the magnetic fields generated are very

small and have negligible effects on the open-circuit voltage.

Using Brms to compute the relative permeabilities in the rotor and stator cores and setting a7 = 1.6x 106

S for a Moly Permalloy stator, an 8-pole machine has a 4.7% difference in the open-circuit voltages

between conductive and non-conductive stators. As the number of poles decrease the two curves converge

because the stator core begins to saturate and the induced eddy currents become smaller. At higher pole

counts, the permeability of the stator core is so high that the reduced reluctance in the stator core due to

the presence of eddy currents produces a negligible effect on the open-circuit voltage.

The discrepancy between the open-circuit voltage of conductive and non-conductive stators also

decreases with air gap (Figure 2-48). The eddy currents increase the flux density in the stator core by

constraining the flux to flow with the penetration depth -s. This results in a lower permeability for the

stator and therefore a lower RMS voltage. As the air gap increases, the reluctance of the air gap increases

which reduces the impact of the lower permeability in the stator and makes the RMS voltages for the

conducting and non-conducting converge.

2.5 Summary

Analytical models of magnetic machines with surface wound and slotted stators have been developed

in this chapter. These models can be used to model both synchronous (PM) and asynchronous (induction)

machines. The surface wound machine model is presented first and consists of a continuum field analysis

of planar layers. The 3D field solutions for the machine were constructed by integrating 2D Cartesian

106



coordinated solutions over the radial span of the machine. The main continuum model consists of

Equations (2-27), (2-28), (2-36), (2-37) and Tables 2-1 and 2-2. The vector potential solutions due to the

rotor active layer and stator currents consist of Equations (2-48), (2-49), (2-55), (2-57), (2-66), (2-67), (2-

75) and (2-76).

The effects of eddy currents/laminations and saturation are incorporated into the model through the

use of effective conductivities (2-84), (2-86) and permeabilities, (2-87), (2-88), (2-93) and (2-94),

respectively. Equations (2-95) - (2-100) are used to compute hysteresis loss using the BH curve of the

core material while electromechanical torque and eddy current losses are computed using the Maxwell

Stress Tensor in Equations (2-105) - (2-111).

An equivalent per-phase circuit model is then derived from the field solutions. It consists of an open-

circuit voltage (2-114), (2-118) - (2-120); stator inductance (2-122) - (2-126) and resistance (2-128) - (2-

134) and (2-145) - (2-150). Proximity eddy current losses in the stator windings can be computed using

(2-157) and (2-160) - (2-162).

These same calculations were the repeated for the slotted stator magnetic machine. The slotted

machines used a combination of a full continuum analysis for the rotor magnetization and a hybrid

continuum/lumped parameter model for the stator currents. The continuum model for the PM consists of

(2-162), (2-165), (2-166) and Table 2-3, in addition to the main continuum model for the surface wound

stator. The rotor continuum model for the stator currents consist of (2-167) - (2-169).

The stator lumped parameter model consists of (2-170) - (2-173), (2-186), (2-188), (2-190), (2-191),

(2-197) and (2-198). The complex reluctances for the lumped parameter model are given in (2-177), (2-

178), (2-183) - (2-185). Saturation and hysteresis loss can be computed using (2-199) - (2-203) and (2-

204) - (2-212), respectively.

The per-phase equivalent circuit for the slotted stator machine is computed using (2-216) - (2-218)

for the open-circuit voltage, (2-219) - (2-222) for the phase inductance and (2-227), (2-234) - (2-239) for

the phase resistance.
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The model for the surface wound PM machine is compared to FEA analysis and agrees extremely

well with the numerical results over a wide variation in the number of poles, turns/pole and air gap. It was

found that using the RMS values for the B fields in the rotor and stator core to compute relative

permeabilities provided the most accurate results over the widest range of machine dimensions and should

be used in most cases.

Chapter 3 builds on the models to determine power and efficiency of the various machines as function

of speed, material properties, dimensions, and input excitation. In particular this chapter makes use of

equations for computing output power, torque, eddy current loss, hysteresis loss, proximity loss and stator

conduction loss. Chapters 4 and 5 make use of the equivalent circuit model for the surface wound

machine so that the generator can be coupled to the power electronics models for power generation

system simulation and design.
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3 Machine Comparisons

Initial investigations into magnetic machines suitable for generator applications in the microengine

focused on induction machines [26] due to the operating temperature requirement of 700 *C. The

induction machines consisted of a slotted stator with two-phase 2-turn/pole concentric windings.

Induction machines with laminated stators incorporated into two fusion bonded silicon wafers were

reported in [28]. With the reduction in the operating temperature to 300 'C, PM machines were

considered as possible magnetic generators. Certain rare earth PMs such as SmCo and CoPt have Curie

temperatures above 300 'C and therefore can operate inside the revised microengine.

This chapter compares the slotted stator induction machine (SLIM), slotted stator PM machine

(SLPM) and surface wound PM machine (SWPM) within the context of the microengine. The constraints

posed by the microengine will be presented first in Section 3.1, followed by a discussion of the design

parameters over which the three machines will be compared in Section 3.2. The scripts used to obtain the

results in this chapter are given in Appendix B. Since the induction machine used a slotted stator, the

SLIM and SLPM will be compare against each other first in Section 3.3. The comparison will show that

the SLPM can produce more power at a higher efficiency than the SLIM for a given input current,

number of poles, and surface area. This is because the PM produces much more magnetic flux in the air

gap than do the stator currents in the induction machine.

Once induction machines are eliminated, PM machines with slotted and surface wound stators are

compared in Section 3.4. The resulting comparison will show that the SWPM produces more power at a

higher efficiency than the SLPM for a give input current, number of poles, and surface area. This is

because the SLPM uses a two-phase concentric wound stator that does not link all the flux from the rotor

PM (Section 2.3.5). The use of such a stator is imposed by fabrication constraints that require an entire

phase winding to occupy a single coil layer. The SWPM machine on the other hand uses a three-phase

winding that does link all the flux. The three-phase windings occupy two coil layers using end turns that

cross over one another.
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The initial comparison between the three machines in Sections 3.3 and 3.4 are done at room

temperature because, at the time of the comparison, the focus was on low temperature air powered turbine

generators which would be used a stepping stone to high temperature generators in the future and because

data on the high temperature performance of the materials used was not available. Section 3.5 compares

the three machines using recently available data on the remanence of the PM and stator winding

resistance vs. temperature. The results of the high temperature comparison reinforce the conclusion

arrived at in Sections 3.3 and 3.4.

Note that surface wound induction machines (SWIM) can be simulated using the models developed in

Chapter 2. However, induction machines rely on small air gaps to create strong magnetic fields that

couple the rotor and stator to produce torque. The air gaps of surface wound machines are too large for

the stator currents to produce magnetic fields strong enough to produce significant torque. Therefore the

surface wound induction machine will not be considered here.
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Figure 3-1: Conceptual drawing of (a) induction and (b) permanent-magnet generators integrated into a

multi-wafer Si microengine (Courtesy of David Arnold, GIT [49]).
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3.1 Microengine Constraints

The microengine consists of a multi-wafer Si stack with the thicknesses of the wafers varying

between 500 pm (4" wafer) and 650 pm (6" wafer). Figure 3-1 depicts how both induction and PM

generators could be incorporated into the microengine. The rotor is placed in a shroud which sits on top of

the compressor blades. The stator is housed in the two wafer layers above the shroud wafer. The rotor

core and PM of magnetic generator in Figure 3-1 (b) is shown placed on a shroud consisting of a single

wafer. However, 2-wafer thick shrouds are possible allowing the rotor core and PM to be hundreds of

microns thick.

The operating tip speed of the microengine is 500 m/s and is comparable to that of high performance

gas turbines at the macroscale. The MIT Micro-Gas Turbine Engine Project is considering compressors

with diameters of 8, 10 and 12 mm. For a 12 mm rotor, the rotational velocity at a 500 m/s tip speed is

800,000 rpm. The shroud includes a retaining ring to prevent the magnetic core of the rotor from

breaking apart at high speeds. The thickness of this retaining ring is 1 mm. The outer diameter of the air

inlet hole is 4 mm. The inner end turns are given 1 mm of radial space so that the inner diameter of the

machine is 6 mm. Thus compressors with 10 - 12 mm diameters (magnetic core outer diameters of 8 - 10

mm) are considered. The comparisons between the three generator candidates are performed at room

temperature (25 C) in Sections 3.3 and 3.4 and at high temperature (300 'C) in Section 3.5.

3.2 Comparison Parameters

For comparison, the three machines will be comprised of four bonded Si wafers. Each wafer is 550

pm thick which is a standard thickness for 4" Si wafers available at GIT. Referring to Figure 3-2 (a) for

the slotted stator machines, the rotor consists of a single wafer where the sum of the active layer and rotor

core thicknesses is no more than 500 pm. The air gap, hats, poles and part of the base make up two

wafers. The fourth wafer is use to add extra thickness to the stator base to prevent it from saturating. This

is important for a planar machine where the surface area of the machine is much wider than the stator

112



base thickness. To keep the overall machine thickness the same, the SWPM machine also uses four

wafers. Referring to Figure 3-2 (b) the rotor comprises two wafers, allowing for both the rotor core and

active layer (i.e. PM) to be hundreds of microns thick. However, the practical limitation to the thickness

of either the rotor core or active layer is 500 pm. The outer end turns are 500 pm wide and width of the

inner end turns is dictated by how much of the 1 mm radial space is taken up by the silicon sidewall, Wh,

trench gap, gtr, and coil spacing gd. Table 3-1 summarizes the constraints placed on the dimensions shown

in Figure 3-2.

(a)

(b)

Tag

7fTeiWafer 3

Figure 3-2: 4-wafer Si stack for (a) slotted stator and (b) surface wound stator.
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Table 3-1: Surface wound and slotted stator dimension constraints.

Coil Parameters: Description Value

Tt, Thickness of Si trench <150 ttm

gtr Gap between trench sidewall and coil > (ttrench /3)

Wei Width of coils in a slot > ttrench

Tc1  Thickness of coil in a slot 5 (ttrench - 25 pm)

gci Gap between two adjacent coils (ttrench / 5)

W6 Width of inner end turn coil V (1 mm - (Wh+2gtrc))

Tci Thickness of inner end turn coil Tc,

Wee Width of outer end turn coil 500 sm
Tco Thickness of outer end turn coil Tc1

Structural Parameters:

Wh Width of horizontal Si structural dividers 100 im

WV Width of vertical Si structural dividers 100 jm

Core Parameters:
Twafer Thickness of Si wafer 550 jim

Tpole Thickness of CoFe pole = 2(Ttr + Wv)

That Thickness of CoFe hat Twafer - Ttr - Wv - Tag
Tbase Thickness of CoFe base 2 Twafer - Ttr - Wv

a Fraction of slot take up by coil and Si dividers 0.2 - 0.8
Ro Outer radius of rotor CoFe core 4 - 5 mm

Ri Inner radius of rotor CoFe core 3 mm

Lamination Parameters:
W Width of CoFe lamination > 20 gm

S Width of CoFe lamination dividers > 20 m

2

1.5

1

0.5

rn 0

-1

-1.5

-2-2

B-H curve for electroplated CoFe

-1.5 -1 -0.5 0
H (A/m)

0.5 1 1.5 2

x 10

Figure 3-3: B-H curve for electroplated CoFe (Courtesy of GIT).
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An annular rotor PM with an approximate square wave magnetization (cm = 1 pm) and a remanence

of 1 T (SmCo) is used for both the SLPM and SWPM. Electroplate CoFe, developed by GIT, is used for

the rotor and stator core. It has a conductivity of 5 x 106 Siemens, saturation flux density, Bt, of 1.72 T

and a coercivity, H of 437.7 A/m. The B-H curve for CoFe is shown in Figure 3-3. Electroplated CoFe

laminations, as thin as 20 pm, can be made with Si divider thicknesses of 20 pm [28]. Thicker laminations

can be used for increased packing density and lower core loss but will lead to higher eddy current losses.

Figure 3-4 shows the power flow for all three generators. The converted power out, Peiect, is the

electromechanical power converted across the air gap of the machine. In a PM machine it is equal to

Peiect = 1.5VOc, I0 . (3-1)

The output power, Pst, from the machine is the converted power out minus the conduction loss, Pcond,

Pout = Pelect - Pcond . (3-2)

The hysteresis, Physteresis, and eddy current, Peddy, losses in the stator and rotor core are upstream of the

converted power. The proximity eddy current loss, Pprox, in the stator windings is only present in the

surface wound machines. These losses do not affect output power but do decrease efficiency because

mechanical torque must be provided by the microengine to overcome these losses. The efficiency is

defined as

Efficiency = Pout (3-3)
Pout + Pcod + Peddy + Physteresis + Pprox

Converted
Power out

Pec Pout Output Power

~PrM PeIdy Phywtmeis M

Proximity Eddy Eddy Current Hysteresis Stator Winding
Current Loss in Loss in Loss in Stator Conduction Loss
Stator Windings Stator Core Core
(surface wound

stator only) Core Loss

Figure 3-4: Power flow diagram for magnetic machine.
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(a) (b)

Figure 3-5: Renderings of (a) induction and (b) permanent-magnet machines used for comparison. Note

the axial direction has been elongated for clarity.

3.3 Induction Machines vs. PM machines

The layout for the SLIM and SLPM is shown in Figure 3-5. The induction machine is optimized over

the stator dimensions, air gap, active layer and rotor core thicknesses, slip, number of poles and input

current to determine the most efficient machine that can generate at least 10 W of power. The air gap is

varied between 25 - 75 pm, which is the range used in [26], and the rotor active layer of the induction

machine is swept between 10 - 100 pm, keeping T, + Tr, = 500 pm. The slip was varied between 0 and -

0.2, the number of poles between 4 - 16 and phase current, L, between 5 - 30A. The most efficient SLIM

that delivers 10 W has 10 Poles, 20 pm active layer thickness and has a slip of -0.1. The fraction of the

slot taken up by the coils and silicon sidewall, a, is 0.65 to widen the coils and the thickness of the trench

is 150 pm to maximize the coil height and minimize resistance. The laminations are 30 pm wide and the

dividers are 20 pm to minimize stator eddy current loss. At a 17 Apk current through each phase, the

machine can generate 10.26 W at 47.3% efficiency. Table 3-2 summarizes the parameters over which

optimization was done as well as the optimum parameters.

Figures 3-6 and 3-7 show how output power and efficiency vary with slip and active layer thickness

at 17 Apk phase current. The output power and efficiency peak at Ta = 20 Pm. As the active layer

thickness increases distance between the rotor and stator cores increase, reducing the strength of the
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magnetic fields in the air gap generated by the stator currents. The power and efficiency increase as slip

increases, reaching a maximum around s = -0.1. They then decrease with increasing slip as the induced

eddy currents in the active layer begin to prevent flux generated by the stator currents from linking the

rotor.

Table 3-2: Induction machine optimization parameters.

Parameter Range Optimum Value

Ttr 50 - 150 m 150 pm
Ta 10 - 100 Pm 20 pm
Tag 25 - 75 pm 25 pm
Slip 0--0.2 -0.1

Poles 4-16 10
10 5-30A 17 A

a 0.2-0.8 0.65
W 20-50pm 30_pm
Ro 4-5mm 5 mm

Net output power vs. active layer thickness and slip
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Figure 3-6: Output power vs. active layer thickness and slip

current.

for the induction machine at 17 A phase
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Efficiency vs. active layer thickness and slip
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Figure 3-7: Efficiency vs. active layer thickness and slip for the induction machine at 17 A phase current.

Output power vs. a and phase current
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Figure 3-8: Output power vs. a and phase current for the induction machine at s = -0.1 and Tai = 20 pm.
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Efficiency vs. a and phase current
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Figure 3-9: Efficiency vs. a and phase current for the induction machine at s = -0.1 and Tw = 20 pm.

Figures 3-8 and 3-9 show how output power and efficiency vary with phase current and a. Power

increases as the square of the input current until the machine saturates. Once this occurs, torque increases

linearly while conduction loss continues to grow as current squared. A further increase in current leads to

a net decrease in the output power. Note that the current at which the output power begins to fall

decreases with increasing a. For small a, the coils take up a small percentage of the slot. As the a

increases, the coils become wider, making the stator poles narrow and saturate at lower phase currents.

For comparison, a 10-Pole, 2-turn/pole SLPM machine is used to keep the number of turns equal. The

rotor has a 50 pm thick active layer and 50 pm thick air gap. Decreasing the air gap or increasing the

active layer thickness would cause the stator base to saturate. The fraction of the slot taken up the coils

and silicon dividers is 0.5 to keep the stator poles wide enough to prevent saturation yet still keep the

resistance of the radial conductors to a minimum. The other stator dimensions are same as the induction

machine.
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Figure 3-10 compares the output power and efficiency of the two machines as a function of phase

current. The torque in an induction machine goes as the current squared, so for a fixed speed, power

varies quadratically with the current. The torque in the SLPM machine is proportional to the rotor PM

flux times the current and therefore the power varies linearly with current for a fixed speed. Notice the

huge discrepancy between the induction and PM machines. Whereas it takes 17 A for the induction

machine to generate 10 W, the PM machine require only 1.85 A. At 17 A, the PM machine has the

potential to generate 83 W of power at 83% efficiency. In fact over most of the current range the PM

machine is approximately 35% more efficient than the induction machine. The efficiency of the PM

machine increases with phase current. This is because most of the frequency dependent losses (Hysteresis,

eddy current) are due to the spinning rotor PM and remain constant at a fixed speed. By increasing the

phase current the output power increases while the frequency dependent losses remain the same,

increasing efficiency. This is true until the conduction loss, which rises quadraticaly with current, begins

to dominate and starts to decrease overall efficiency. This occurs around 18 A.

Output power and efficiency vs. phase current
1001 1 1 1 1 11 1

- Induction machine -
-7- PM machine..75 ---

5 50
0
a.25-

0
2 4 6 8 10 12 14 16 18 20

1 (A)

100

----------- --- - -

25--

50

2 4 6 8 10 12 14 16 18 20
1 (A)

Figure 3-10: Output power and efficiency vs. phase current for the induction and PM machines.
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Output power and efficiency vs. number of poles
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Figure 3-11: Output power and efficiency vs. number of poles for the induction and PM machines.

Figure 3-11 compares the induction and PM machines as function of pole count at a fixed input phase

current. Again, the PM machine outperforms the induction machine by a considerable margin. Between 4

and 10 poles, the induction machine power and efficiency rise because the eddy currents induced in the

rotor active layer increase with increasing slip frequency which is proportional to the number of poles.

The conduction loss, which dominates, also increases as the increasing number of poles increases the

resistance. The resistance of the radial conductors rises faster than P2 because of the minimum values for

Wh and gt which remain fixed. At 12 poles, the induced currents in the active layer begin to prevent flux

from linking the rotor. The output power increases but not as fast as the conduction loss, so that efficiency

begins to drop. At 14 poles, the width of the stator poles is so thin that they saturate, especially near the

inner radius. This limits the output power further while the conduction loss continues to increase.

The increase in power of PM machine is approximately linear, because the voltage goes linearly with

the number of poles. The hysteresis loss does not quite go linearly with the number of poles. At low pole

121



count the base is saturated and since it makes up the bulk of the slotted stator by volume, the core loss

density within the machine is at its maximum. As the number of poles increases, the stator electrical

frequency increases but the peak flux density in the stator base decreases so that the net increase is less

than linear. At 4 poles, the core loss is 2 W, at 8 poles it is 3.42 W while at 12 poles it is only 4 W. The

eddy current loss, on the other hand, grows slightly faster than the number of poles squared. The eddy

current loss is only 0.33 W for a 4-pole machine because the base is saturated, which leads to a small

effective permeability and a large skin depth. At 10 poles, the eddy current loss is 3.8 Watts since, not

only has the frequency increased, but the stator base is no longer saturated. The conduction loss also rises

rapidly but at 4 A, the loss is below a Watt until a 14 pole machine. The net result is that the efficiency

stays more or less constant around 72% over the pole range with a minimum at 68% for a 4-pole machine

and a maximum of 73% for a 12 pole machine.

The performance of the two machines is compared as function of rotor core outer radius in Figure 3-

12 at a fixed phase current of 17 A for the induction machine and 4 a for the PM machine. The torque for

both machines is proportional to the square of the area. However, as the radius decreases the angular

velocity increase to keep the tip speed constant at 500 m/s. Therefore, output power for both machines

increases linearly with the outer radius due to the fixed tip speed constraint. The efficiency drops in the

induction machine because the resistance of the windings does not decrease as fast as the surface area. A

4 mm outer radius reduces the radial conductor length by 20% but decreases the active area of the

machine by 56%. The conduction loss for a machine with a 5 mm outer radius is 7.7 W. A machine with

an outer radius of 4 mm has 44% of the surface area but 77% of the conduction loss (5.9 W).

For the PM machine, the hysteresis loss is proportional to frequency and surface area (for a fixed

stator thickness) just like the output power and thus should grow linearly with radius. However, as the

outer radius increases, the width of the rotor PM pole increases while the thickness of the stator base

remains the same. Consequently, the flux density in the stator base increases with radius and hysteresis

loss grows slightly faster than the output power. The eddy current loss in the stator is also proportional to

the surface area (for a fixed stator thickness) but goes as frequency squared. At an outer radius of 5 mm,
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the eddy current loss and hysteresis loss are about 17% (3.8 W) of the output power (-22 W) while at a

radius of 4 mm, the eddy current loss grows to 19.4% of output power while the hysteresis loss falls to

15.8%. The increase in eddy current loss more than offsets the decrease in hysteresis loss and the result is

a decreasing efficiency with decreasing outer radius for a fixed tip speed. Note that even at less than / the

current, the PM machine can generate more power and at a higher efficiency than the induction machine

over wide range of pole count and outer radii.

Output power and efficiency vs. outer radius of rotor core
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Figure 3-12: Output power and efficiency vs. outer radius of rotor core for the induction and PM

machines.

To understand the difference in performance between the induction and PM machines, Table 3-3 lists

the loss break down and operating parameters. Notice that the voltage, eddy current and core loss are all

much larger in the PM machine. This is because the PM produces a rotor flux that is much larger than

what can be produced by stator currents through the mutual inductance in the induction machine. The

total flux linked by a phase in the PM machine is 13.2 gWb where as the flux linked by a phase in the
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induction machine is 5 )Wb at a stator current of 17 A and at half the air gap. The efficiency of the

induction machine is greatly reduced by the large conduction loss which is an order of magnitude larger

than PM machine considered here.

The flux linked by a phase in the PM machine is proportional to the turns/pole, N, but in an induction

machine it is proportional to N2 . In a macroscale machine, N may be as large as 20 but in a microscale

machine N is limited to 2 - 4 due to fabrication constraints as be will discussed in Chapter 4. If the

microscale slotted stator had 20-turns/pole, the flux linked in the PM machine would increase to 132 p.Wb

but would increase to 500 gWb in the induction machine. It would take only 4.5 A to produce 132 pWb

with such a stator at a 25 pm air gap. This would reduce the conduction loss to about 1/16 its current

value. It is primarily the limitation in the number of turns in a phase winding that limits the performance

of the induction machine as the scale is reduced. The conclusion is that for high power and high

efficiency operation PM machines are a much better choice than induction machines at the microscale

given current and likely future fabrication limitations.

Table 3-3: Power Breakdown and operating parameters for the induction and PM machines.

Parameter Induction Machine PM Machine
P 5 5
I0 17 A 4 A

Efficiency 47.3% 72.6%
Polt 10.26 W 21.43 W

Pcond 7.69 W 0.54 W

Physteresis 1.72 W 3.76 W

Peddy 0.23 W 3.8 W
VOCI 1.9 V 5.49 V

fe 60 kHz 66.3 kHz
Flux linkage 5 gWb 13.2 p.Wb

3.4 Surface Wound vs. Slotted Stator PM Machines

Now that induction machines have been eliminated, the type of PM machine to build must be

analyzed. Macroscale PM machines come in two different varieties of stator types, slotted stators and

surface wound stators as shown in Figure 3-13. With a suitably thick magnet, the rotor-stator air gap can
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be made large (250+ [im) to reduce windage loss while maintaining high magnetic flux in the air gap.

Thus, the stator windings can be designed to occupy space in the air gap on the surface of the stator

substrate rather than being embedded in slots and closed over with hats.

Surface wound stators offer several design advantages over slotted stators. First, fabrication of

windings on the flat stator surface is much simpler. In fact, the absence of slots allows the fabrication of

three-phase windings that produce significantly more output power than the two phase windings in the

slotted stator. The slotted stator structure is formed by etching trenches into two silicon wafers. The coils

are electroplated in these trenches and then the two wafers are fusion bonded [49]. Due to the difficulty of

making a phase winding that partially resides on both wafers, an entire phase winding must occupy a

single wafer. This limits the slotted stator to two phases with concentric windings. Since the surface

wound stator has no slots, a three-phase winding can be constructed using two coil layers and cross over

conductors on the outer end turns shown in Figure 3-13(b). Also, there is more surface area for the

windings, which can reduce conduction loss. Furthermore, cogging, where the poles of the PM tend to

align themselves with the gaps between the stator hats, producing torque pulsations and associated loss, is

avoided. There are also no pole face eddy current losses in the surface wound stator either.

Finally, when the generator is connected to a load, its AC voltages will produce AC currents through

the stator windings. The currents will produce their own magnetic fields (armature reaction) in the air gap.

These magnetic fields will have higher order spatial harmonics that interact asynchronously with the rotor

PM producing eddy currents. These rotor eddy currents reduce the overall efficiency, and in some cases,

the heat produced can demagnetize the rotor PM [48]. Due to the large air gap in a surface wound stator,

the magnetic fields produced by the stator currents are very weak, making the eddy current losses in the

rotor PM negligible.
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(a) (b)

Figure 3-13: Renderings of (a) slotted stator and (b) surface wound stator with 8-poles, 2-turns/pole.
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Figure 3-14: Output power and efficiency for the slotted stator PM machine vs. phase current for

different number of poles.
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For the comparison, a 12-Pole, 2-turn/pole slotted stator machine is used with the same rotor and

stator dimensions used in the previous section. This machine produces higher output power than an 8- or

10-pole machine while achieving the same over efficiency over a 1 - 10 A current range as shown in

Figure 3-14. The surface wound machine will be a three-phase 8-pole, 3-turn/pole machine with full

pitched coils. This is done to keep the number of turns per phase constant between the machines.

An 8-pole, 3-turn/pole stator is chosen over a 12-pole, 2-turn/pole stator because the former has much

lower frequency dependent losses and is more efficient. In addition, the radial conductors have two

laminations each (Clam = 2) and gc is set to 75 pm to minimize the sum of the conduction loss and

proximity eddy current losses in the windings. The inner end turns are 200 Pm thick and extend 1 mm

inward (Rij) from the inner radius of the stator core while the outer end turns are 500 pm thick and extend

1.5 mm ( 1 ) outward from the outer radius of the stator core. Since the trenches are no longer present,

the surface wound coils can be made up to 200 pm thick. An air gap of 50 pm is used for both machines.

To keep the rotor flux generated by the PM the same in both cases the active layer of the surface wound

machine is 250 pm thick and is backed by a 500 pm thick rotor core. This also keeps the overall

thicknesses of the SWPM and SLPM equal.

Figure 3-15 compares the surface wound and slotted stator PM machines as a function of phase

current. The surface wound stator produces about twice as much power as the slotted stator machine with

efficiencies varying from 60% at I = 1 A to 84% at 1. = 6 A with an efficiency of 83% at 1 = 10 A. The

slotted stator achieves efficiencies of 44% at 1 A, and up to 82% at 10 A. Efficiency for a given output

power is compared in Figure 3-16. The two machines have comparable efficiencies at the lower power

levels but the surface wound machine becomes more efficient over an output power range of 40 - 100 W.

Comparison between the two stators as function of pole count, at 5 A input phase current, is shown

in Figure 3-17. The output power of the surface wound machine is about double that of slotted stator

machine. The peak efficiency for the surface wound machine is at 8 poles while the peak efficiency for

the slotted stator machine is at 12 poles.
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Output power and efficiency vs. phase current

-- 8-pole, 3-turn/pole surface wound PM machine
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Figure 3-15: Output power and
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Figure 3-16: Efficiency vs. output power for the surface wound and slotted stator PM machines.
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Output power and efficiency vs. number of poles

8-pole, 3-turn/pole surface wound PM machine
--- 12-pole, 2-turn/pole slotted stator PM machine
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Output power and efficiency vs. pole count for the surface wound and slotted stator PM
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Output power and efficiency vs. outer radius of rotor core

- 8-pole, 3-turn/pole surface wound PM machine
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Figure 3-18: Output power and efficiency vs. outer radius of the rotor core for the surface wound and

slotted stator PM machines at 5 A phase current.
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Comparison between the two PM machines as a function of the outer radius of the rotor core is shown

in Figure 3-18. The decrease in output power is linear with radius for fixed tip speed as explained in

Section 3-2. The output power for a surface wound machine with an outer radius of 4 mm has about half

the output power (34 W) of a machine with an outer radius of 5 mm (65 W) while the efficiency is only

4.4% lower (79.2% vs. 83.6%). This is because the proximity eddy current losses in the surface windings

have decreased from 3.91 W at R = 5 mm to 1 W at R& = 4 mm. This drastic reduction is due to the fact

that the width of the radial conductors increases with radius and the proximity eddy current losses go as

width cubed. The reduction in core loss and conduction loss by 46% and 33%, respectively, at R = 4 mm

also keeps the efficiency high. The surface wound stator is 9.4% more efficient than the slotted stator at

R, = 4 mm, and is 6.8% more efficient at R. = 5 mm.

To get a better understanding of the performance differences between slotted and surface wound

stators Table 3-5 lists the power breakdown and relevant machine parameters for the two machines at a

phase current of 5 A. Notice that for the same PM flux, the surface wound machine has only 20% of the

eddy current loss of the slotted stator machine. This is due to both the increased volume of the slotted

stator and the fact that the electrical frequency is much higher (80 kHz vs. 53 kHz). However, the

reduced eddy current loss in the stator core of the surface wound machine is more than made up by the

proximity eddy current loss in the stator windings so that the total loss in the stator due to eddy currents is

about the same (4.91 W for the surface wound stator, 4.79 W for the slotted stator).

The dominant losses for the surface wound stator are conduction loss and proximity eddy current loss

in the windings. In the surface wound stator, the radial conductors of all three phases occupy the same

coil layer and the radial conductors have been laminated to reduce proximity eddy current losses. The

resistance of each phase of the surface wound PM machine is 105.9 mK while the phase resistance for the

slotted stator is only 49.3 mn. The slotted machine has less resistance not only because its radial

conductors are unlaminated but each winding occupies its own layer. Even with the space taken up by the

poles of the stator core and the silicon structural dividers, the overall phase resistance of the slotted stator

is less.
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Table 3-4: Power Breakdown and operating parameters for the surface wound and slotted stator
PM machines.

Parameter Surface Wound PM Machine Slotted Stator PM Machine

P 4 6
N 3 2

10 5 A 5 A
Efficiency 83.6% 76.3%

Pout 65.2 W 32.4 W

Pcond 3.97 W 1.23 W

Physteresis 3.93 W 4.03 W

Peddy 1 W 4.79 W
Pprox 3.91 W -

VOCI 9.22 V 6.72 V

fe 53 kHz 80 kHz
Flux linkage 27.7 gWb 13.4 gWb

There is also a discrepancy between the voltages produced by the two machines. Both machines have

24 turns per phase. However, the slotted stator has a concentric winding that links the flux over a single

pole twice. This essentially creates two short pitched windings that link flux over a quarter wavelength

rather than over a half wavelength in the full pitched windings of the surface wound machine. The

harmonic components of the open-circuit voltage for a quarter wavelength short pitched coil are sin(R/4)

= 0.7071 times that of a full pitched coil. This accounts for the smaller open-circuit voltage. The three-

phase surface wound machine power is 1.5V,,1L3 while the two-phase slotted stator power is V,,,1 0. Since

the open circuit voltage of the slotted stator is 0.7071 that of the surface wound machine, it produces

0.7071 x 2/3 V2 the power. As a result the surface wound machine can generate more power for given

input phase current at a higher efficiency than the slotted stator machine.

The total loss in the two different types of stators is about the same (12.81 W in the surface wound

stator and 10.05 w in the slotted stator). It is the ability to fabricate three-phase, full pitched windings that

give the surface wound stator a higher output power and efficiency than a slotted stator for the same rotor

PM flux. Thus the surface wound machines are the better candidate for electromechanical energy

conversion within the microengine.

131



3.5 High Temperature Comparison

As the operating temperature increases two key factors in the performance of the machines must be

taken into account. The first is the increasing resistance of the stator windings as well as the resistance of

the rotor conductor in the induction machine. Figure 3-19 plots the stator resistance versus temperature

normalized to the stator resistance at room temperature (25 *C) which was done by colleagues at GIT. A

surface wound stator is heated up to 225 'C on a hotplate and the resistance is measured using a four-

point probe measurement system. The theoretical plot corresponds to the following temperature

dependence of copper,

Rs (T)= Rs(25 C)[ - 0.0039(T - 25)], (3-4)

The experimental data is somewhat higher then the predicted resistance. Using a least-squares curve fit

the extrapolated increase in temperature at 300 'C is 2.14 times its room temperature value while the

theory predicts an increase by a factor of 2.07.

Normalized stator resistance vs. temperature
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Figure 3-19: Temperature dependence of the resistance of a surface wound stator normalized to its value

at room temperature. (Courtesy of Florian Herreault, GIT)
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Figure 3-20: Temperature dependence of the remanence of a SmCo PM normalized to its value at room
temperature. (Courtesy of lulica Zana, GIT)

The second key factor is the reduction in the remanence of the rotor PM with temperature. The

remanence versus temperature, normalized to room temperature, is shown in Figure 3-20 for the Sm 2Co17

PMs that are used in the PM machines. These experiments were conducted using a vibrating sample

magnetometer up to a maximum temperature of 250 *C by colleagues at GIT. Using the curve fit the

remanence of the SmCo PM at 300 *C is predicted to be 87% of its room temperature value.

The induction machine was simulated at 300 'C with the same parameter sweeps used in Section 3.3.

It was found that the induction machine does not produce any net power over the range of the parameters

considered. The increased resistance of the rotor conductor at high temperature reduces the amount of

torque produced for a given stator current. In addition, the conduction loss at 300 'C is more than double

its room temperature value for the same stator current. These two effects degrade the performance of the

induction machine to the point that it can no longer produce any net power so that, not only do induction

machines scale poorly as the size is reduced, they scale poorly as the operating temperature increases.

133



Output power and efficiency vs. phase current
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Figure 3-22: Efficiency vs. output power for the surface wound and slotted stator PM machines.
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The slotted stator and surface wound PM machines were also simulated at 300 'C. Figure 3-21 plots

the output power and efficiency as function of phase current. The surface wound PM machine still

provides twice the output power of the slotted stator PM machine but becomes less efficient at phase

currents above 7 A. However, from the standpoint of efficiency at a given output power, the surface

wound stator still outperforms the slotted stator as shown in Figure 3-22. In fact, the difference in

performance is larger at 300 'C than at room temperature.

The power breakdown and relevant machine parameters are listed in Table 3-5 for the surface wound

and slotted stator PM machines with 5 A per phase at both high temperature and room temperature. The

surface wound stator still delivers twice the output power of the slotted stator and at a higher efficiency.

Note that while the conduction loss of both machines doubles, the proximity eddy current losses in the

stator windings significantly decrease. This is due to both the reduced remanence of the rotor PM as well

as the increased resistivity of the stator windings. In fact, it is the reduction in proximity eddy current

losses at high temperature, which is mainly due to the increased stator resistance, that leads to a larger

difference in the relative performance of the surface wound and slotted stators in Figure 3-22. Therefore,

not only are surface wound stators better than slotted stators for low temperature generators, they are still

the best choice for high temperature power generation within the microengine.

Table 3-5: Power Breakdown and operating parameters for the surface wound and slotted stator
PM machines.

Surface Wound PM Machine Slotted Stator PM Machine
Parameter (25 *C 1 300 C) (25 0C 1 300 OC)

P 4 6
N 3 2
10 5 A 5 A

Efficiency 83.6% 77.5% 76.3% 73%

Pout 65.2 W 52 W 32.4 W 29.2 W
Pcond 3.97 W 8.49 W 1.23 W 2.63 W

Physteresis 3.93 W 3.87 W 4.03 W 3.47 W

Peddy 1 W 1.31 W 4.79 W 3.69 W
Pprox 3.91 W 1.39 W - -

VOCI 9.22 V 8.05 V 6.72 V 5.84 V

fe 53 kHz 53 kHz 80 kHz 80 kHz
Flux linkage 27.7 Wb 24.2 gWb 13.4 pWb 11.6 pWb
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3.6 Summary

This chapter provides a comparison of slotted stator induction, slotted stator PM and surface wound

PM machines within the dimensional constraints and operating speed and temperature of the microengine.

The induction and PM machines with slotted stators were compared first at room temperature. It was

found that most efficient induction machine had a 10-pole, 2-turn/pole stator and could generate 10.26 W

at 47.35% efficiency with 17 A through each phase. In contrast, the slotted stator PM machine could

generate 21.43 W at 72.6% efficiency with only 4 A per phase. This is with a 50 pm thick active layer

and 50 Im thick air gap. The PM machine generates more power at a higher efficiency than the induction

machine for a given phase current, pole count and outer radius of the rotor core. The PM produces a rotor

flux that is much larger than what can be produced by stator currents through the mutual inductance of an

induction machine. This inductance is insufficient to match the flux from the PM machine because of the

small number of turns/pole, N, used in the stator which is a fabrication limitation. Since the mutual

inductance is proportional to N2, the power capability of the induction machine decreases significantly at

the microscale.

Given the superior performance of the PM machine over the induction machine, Section 3.4

compared PM machines with slotted and surface wound stators at room temperature. A 12-pole, 2-

turn/pole slotted stator PM machine was compared to an 8-pole, 3-turn/pole surface wound machine. The

surface wound stator had 200 pm thick coils, a 50 pm thick air gap and a 250 pm thick active layer (PM)

to keep the flux density in the air gap the same as in the slotted stator machine.

The surface wound machine was found to be more efficient over a wide range of phase currents, pole

counts and outer radii of the rotor core. For a given output power, the surface wound machine was found

to be more efficient. With a phase current of 5 A, the surface wound machine can generate 65.2 W at

83.6% efficiency while the slotted stator machine could only generate 32.4 W at 76.3% efficiency. The

difference in performance was because the surface wound machine consisted of three-phase, full pitched
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windings that maximized flux linkage. The slotted stator, on the other hand, had only two phases that

linked 50% of the maximum flux.

The slotted stator is limited to two phases due to its fabrication process. A single phase winding is

electroplated inside the trenches of each of the two silicon wafers that are fusion bonded to create the slots

for the slotted stator. The entire winding is forced to occupy a single wafer due to the difficulty of making

a phase winding that partially resides on both wafers. Since no cross over conductors are allowed, the

slotted stator must have concentric windings which do not link the maximum amount of flux. These

fabrication limitations for the slotted stator are very challenging to overcome and therefore, it is unlikely

that in the future a three-phase microscale slotted stator PM machine could be built using two silicon

wafers.

Interestingly enough it was found that the phase resistance of the windings in the slotted stator was

less than half of the surface wound stator. This is because the radial conductors of all three phases occupy

the same coil layer in the surface wound stator and are laminated to reduce proximity eddy current loss.

The windings in the slotted stator machine occupy their own coil layer which more than makes up for the

reduced surface area due the stator core poles and silicon structural dividers.

The three machines were compared at 300 'C using recently available data on the temperature

dependence of the stator windings and rotor PM remanence. At high temperature, it was found that the

induction machine is unable to generate any output power due to the combination of increase stator

resistance and reduced rotor conductivity. The surface wound PM machine still outperformed the slotted

stator PM machine. With a phase current of 5 A, the surface wound machine can generate 52 W at 77.5%

efficiency while the slotted stator machine can only generate 29.2 W at 73% efficiency. In terms of

efficiency versus output power the surface wound stator had a higher relative performance than the slotted

stator at high temperature than at low temperature. This is because, while the conduction loss of both

stators increases with temperature, the proximity eddy current loss in the windings of the surface wound

stator decreases due to the increased resistivity of the copper windings and the reduced remanence of the

rotor PM.
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The surface wound PM machine generates the most power and at the highest efficiency among the

three types of magnetic machines considered here at both room temperature and high temperature. It is

therefore the most suited for power generation within the microengine. The following chapters of this

thesis will focus on the design, fabrication and testing of surface wound PM machines, and their

associated power electronics, capable of generating and delivering multi-Watt DC power to a load.
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4 First Generation Surface Wound PM Generators

Surface wound PM machines were chosen as the best candidate for efficient, high power generation

in the microengine. This chapter focuses on the design of surface wound, microscale PM machines

capable of generating and delivering Watt-level power at speeds of approximately 100,000 rpm. The

emphasis will be on DC power generation via power electronics that rectify the AC voltages of the

generators. Since integration issues are not dealt with at this stage, silicon wafers and electroplated core

materials will not be used. Instead, a ferromagnetic wafer will be used as the stator core. Since this wafer

will not be laminated, eddy current losses will degrade efficiency but will not affect output power

provided that the turbine that spins the rotor provides sufficient mechanical power to overcome the added

losses (which it does).

Section 4.1 will discuss important scaling laws used to optimize the dimensions of the PM machine.

A simplified model of the PM machine, derived from the continuum model in Section 2.2 will be

presented and used to derive the scaling laws. Section 4.2 presents the design of the first generation PM

generators. Section 4.3 will discuss the fabrication of the PM machines with emphasis on the rotor

magnetization process, rotor assembly and stator winding fabrication process. The spinning rotor test

stand (SRTS) used to spin the rotors at high speeds (100,000+ rpm) is discussed in Section 4.4 while the

design of the first generation power electronics for DC power generation is discussed in Section 4.5. This

Chapter concludes with the test results of the first generation PM machines in Section 4.6. Electrical

characterization of the machines in terms of its circuit parameters is presented first followed by power

generation tests.

The PM machines described in this chapter were built and tested in collaboration with colleagues at

GIT who were responsible for the rotor magnetization process, stator fabrication process and spinning

rotor test stand assembly. For more information on these topics the reader is referred to [49]. The author

of this thesis was responsible for the system level design of the PM machines, the design and actual

139



fabrication of the stator windings as well as the design and construction of the power electronics. Testing

and characterization of the PM machines was a group effort.

4.1 Simplified model and scaling laws

The continuum model in Section 2.2 is very fast and accurate, but to derive some analytical insight

into how various parameters affect the open-circuit voltage, the continuum model can be simplified. To

do so, let the magnetization profile approache an ideal square wave (cm -+ 0). Also, assume that the rotor

and stator cores and rotor active layer (PM) are ideal: pIr and p -+ oo and ar, as, and Oa = 0. In addition,

assume that the wavelength is much larger than the thicknesses of the air gap, stator windings, rotor PM

and rotor and stator cores: ynTj << I (for i = sc, rc, al, cl, and ag). This last approximation means that the

exponential decay of the fields in the machine can be ignored. In addition, the B and H fields are assumed

to be independent of radius. The period of the rotor PM is also independent of the radius and the wave

number, k, is evaluated at the mean radius

k= P- 2P (4-1)
Rm R 0 +Ri

Given these approximations, the vector potential due to the rotor PM, using Equation (2-57), is

4 Br nr- 2B, (R0 +R) in n(
A xn(m) = nsi - si -2 (4-2)

nac nk 2 n2

A() simplifies to

A''() =J -Ia4n snh(aT)A(m) = -A T(m) (4-3)
p'a Lan04n - n p2n _ T7 Ta + Tag

The vector potential evaluated at half the thickness of the stator winding layer now becomes

A xncoi)(m) = ) =Ri Tai B 2 sin - .) (4-4)xn(m) = -J P (Td + T + Tag n 27 2
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To simplify things further, the spatial offset in the multiple turns of an N-turn/pole stator is ignored and so

the incremental flux/phase reduces to

nn 4
zn,coi(m) = 2PNAxn c(m)e 2 =Re + R TaI Br N 2 (4-5)

Tal +Tci +Tag n 7C

Since (4-5) is independent of the radius, the flux linked by a phase becomes

Xn,coii(m) =(R 0 - R)IFznco(m) = (R - R +TC +Tag Br N , 2 (4-6)
T'a + Ti + ag n at

while the harmonic amplitudes of the open-circuit voltage are

=R2 TR B2 TNPm ± (4-7)jon Xn~col(M)jo J iR -R Tal +Tci +Tag ) nit

The voltage harmonics can be added to generate the total open-circuit voltage

r 0

Vo t=Re YV c n(omt = VO -- sin(.m t), (-8)
n=1,odd n=1,odd

where

V0 =(RO - RjT +T+ Tag Br JNPOm. (4-9)

The term inside the summation of (4-8) is the Fourier components of a square wave. Therefore the

open-circuit voltage due to a square wave magnetization is also a square wave with magnitude VO. The

first term in parentheses in (4-9) shows how the open-circuit voltage scales with the active area of the

machine. The second term in parentheses is the B field in the air gap and shows that the thickness of the

rotor PM should be larger than the thickness of the coil layer and physical air gap combined in order to

maximize the flux generated from the rotor PM. Lastly, the open-circuit voltage scales linearly with Br, N,

P and 0m.

From Section 2.2.9, the total resistance per phase is Rradiai + Rinner + Router. Utilizing Equations (2-130),

(2-132) and (2-134) for a full pitched winding, the total resistance per phase is equal to
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R = 6(PNC1,a )2 In w+(R0 ) 2NPLouter + 2NPLinner 0C 1 (4-10)
s n TCG Wc, (R ) (7c TcoWco CY Tcj Wci T,

The resistance is inversely proportional to the thickness of the radial conductors that make up the coil

layer. (4-10) assumes the thickness of the inner and outer end turns are some constant fraction of the coil

layer. The output power capability of a PM generator is approximately proportional to

V2 Tal )T1

Pout CR * C T (4-11)
RS Ta + Tag + To

Equation (4-11) contains important information about the relative thicknesses of the active layer, air gap

and coil layer in order to maximize output power. First, the air gap should be made as small as possible.

Second, for a given coil layer and air gap thickness, power is maximized as the term inside the

parentheses goes to unity. Finally, taking the derivative of (4-11) with respect to Tcl, the maximum output

power for a fixed air gap and active layer thickness is

T 1 = Ta + Ta. (4-12)
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Figure 4-1: Normalized power vs. PM and coil layer thicknesses.
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So for a fixed air gap and active layer thickness, the coil layer should equal the sum of the two. The

maximum thickness for the rotor PM is 500 gm, set by the microengine constraint. The maximum height

of the coil layer is 200 pm due to fabrication constraints. So for any given coil thickness the maximum

power is achieved by setting Tai to its maximum value, while for a given rotor PM thickness, the

maximum power is achieved by setting Tc1 to it maximum. Thus, the maximum power is achieved when

Ta is set to 500 im and Tc, is set to 200 pm as illustrated in Figure 4-1.

Stator

Stator Windings (a) (b)
Substrate Multi-Pole PM Rotor Back Iron

z Rotor Back Iron

xMulti-Pole PM Stator Windings Stator Substrate

Figure 4-2: Conceptual drawing of the PM generator: (a) perspective view and (b) cross-section.

(Courtesy of David Arnold, GIT [49])

4.2 PM Machine Design

The first generation generators are three-phase, 8-pole, axial-air-gap, synchronous machines [41].

Each machine consists of a rotor with an annular PM and ferromagnetic back iron and a stator with multi-

turn windings on the surface of a ferromagnetic substrate, which serves as the stator back iron, as shown

in Figure 4-2. During operation, the rotating multi-poled PM rotor creates a time-varying magnetic flux in

the rotor-stator air gap, which induces AC voltages at the terminals of the stator windings. The magnetic

flux generated by the PM can be concentrated in the rotor-stator air gap by using back irons with very

large permeabilities. By using rare earth PMs, which have large remanences (- T), strong magnetic

fluxes can be generated in the air gap. In fact, by using high-performance magnetic materials (PM, rotor
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and stator back iron) and a suitably thick magnet (-500 ptm), the actual rotor-stator air gap can be made

relatively large (300-500 pim) to reduce windage loss while maintaining high magnetic flux in the air gap.

Thus, the stator windings can be hundreds of microns thick and occupy space in the air gap on the surface

of the stator substrate.

4.2.1 Rotor Design

The rotor contains an 8-pole, annular, pressure-formed (sintered) Sm 2 Co1 7 PM and a ferromagnetic

Fe 4 9 Co 49V2 (Hiperco 50) back iron, as shown in Figure 4-3. The rotor components are mounted in a

poly(methyl methacrylate) (PMMA) adaptor for assembly onto a 1.6 mm diameter shaft for testing. Eight

poles were chosen because that has historically been the number of poles used in the magnetic generator

and because the only magnetizing heads available at the time for making the multi-pole PM had eight

poles. The PM and rotor back iron are 500 pim thick to be compatible with standard wafer thicknesses and

have an outer diameter (OD) of 9.525 mm and inner diameter (ID) of 3.175 mm. This outer diameter was

chosen because it was the closest match to the 10 mm OD of the microengine generator. To keep the

radial span the same as in the microengine generator an inner diameter of 5.525 mm was chosen.

However, at the time the stators were fabricated, PMs with an ID of 3.175 mm were used because

magnets of these dimensions were commercially available in small quantities, without the need for

custom (and costly) manufacturing.

SmCo was selected for its combination of high energy product (BHmax - 240 kJ/m 3 ) for high energy

conversion, and high operating temperatures (T... 300'C) [50]. Although NdFeB has a higher energy

product (BHmax ~ 400 kJ/m3), it does not provide the necessary operating temperatures (Tm. - 150'C) for

integration with the combustion-driven microengine [50]. However, it would be suitable for a low-

temperature turbine generator. Hiperco 50 was selected for the rotor back iron for its combination of a

reasonably high permeability (p,.> 3000), and for its high saturation flux density (B, - 2.4 T) to minimize

the thickness of the back irons while avoiding magnetic saturation [51]. Note the fields in the rotor back

iron are nearly time-invariant, so the coercivity of the rotor back iron is not a major concern.
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Figure 4-3: Schematic (a) perspective view and (b) cross-section of the PM machine rotors. Note that the

rotor is shown upside down. (Courtesy of David Arnold, GIT [49])

4.2.2 Stator Design

The stator uses interleaved, three-phase, multi-turn, full pitched electroplated Cu windings that are

dielectrically isolated from a 1-mm thick Ni80Fej5Mo5 (Moly Permalloy) substrate by a 3 jim spin-on-

glass layer and/or 5 gm polyimide layer. The active area of the stator has an OD of 9.525 mm and an ID

of 5.525 mm. NiFeMo is selected as the stator back iron (substrate) material for its combination of high

permeability (p,.> lx104), low coercivity (H, ~ 0.16 A/rn) to minimize hysteresis losses, and commercial

availability in sheets of suitable thickness [51].

The microfabricated coils, with small interconductor gaps, variable width geometries, and complex

interleaved structures, are a key enabling technology for achieving high power density in miniaturized

PM generators. The winding patterns are designed for minimal resistance to ensure optimal generator

performance. Increasing the number of turns results in higher induced voltages for better compatibility

with the associated power electronics. However, certain fabrication constraints (e.g. minimum feature

size, highest aspect ratio, etc.) limit the geometry and overall fabrication precision. The radial conductors

are unlaminated since the proximity eddy current loss in the windings at rotational speeds near 100,000

rpm is only 50 - 100 mW and is much smaller than the eddy current losses in the stator core.

To explore tradeoffs in output voltage and power versus fabrication complexity, three different

winding patterns were developed (1-, 2- and 4-turn/pole), as shown in Figures 4-4 and 4-5. By
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interleaving the coils, three distinct winding phases are possible using only two layers of metallization.

The radial conductors (located directly beneath the PM rotor) are connected using appropriately arranged

inner and outer end turns.

For the 1- and 2-turn/pole designs, the radial conductors reside only on the lower metallization layer,

and a mesh of lower and upper level "crossovers" is used to form the end turns. In contrast, the radial

conductors on the 4-turn/pole design occupy both the lower and upper metal layers and are connected by

more complicated end turns. In the case of the 4-turn/pole design, the pattern is a complete double-layer

winding, similar to what is used in macroscale machines [52].

For all three winding patterns, the radial conductors vary in width from 225 pm at the ID to 550 pm at

the OD, with a 130 pm gap between adjacent radial conductors. The end turns of the 1-and 2-turn/pole

machines have a minimum feature size of 100 pm and a minimum interconductor gap of 160 pm, while

the end turns of the 4-turn/pole machine have a minimum feature size of 40 pm and a minimum

interconductor gap of 40 pm. The number of vias is proportional to the number of turns, and the 1-, 2-,

and 4-turn/pole designs use 16, 32, and 64 vias per phase, respectively.

(a) (b) (c)

Figure 4-4: Renderings of the stator winding patterns for (a) 1-turn/pole, (b) 2-turn/pole, and (c) 4-

turn/pole designs. (Courtesy of David Arnold, GIT [49])
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4.3 Device Fabrication

MEMS fabrication technologies impose several design constraints for microscale rotating magnetic

machines not typically seen at the macroscale. The machines are typically limited to a planar geometry

due the constraints of surface/bulk micromachining techniques, whereas their macroscale counterparts

often employ a thee-dimensional cylindrical geometry. Macroscale permanent magnet (PM) machines use

discrete permanent magnets while microscale machines, such as the ones presented here, use a multi-

poled PM annulus. The annulus contains "transition regions" where the rotor magnetization smoothly

transitions between north and south poles. The size of these "transition regions" can be on the order of a

magnetic pole width, resulting in non-ideal magnetization patterns, and thus, reduced voltages induced in

the windings. In addition, incorporating hard or soft magnetic materials into the process flow requires

subsequent microfabrication steps to occur at low temperature.

The difficulty of using microfabrication to bury windings in slots and closing them over with hats, as

is typical in the stators of macroscale magnetic machines, makes surface wound stators preferable at the

microscale. PM machines with slotted stators and therefore small air gaps are also prone to demagnetizing

the rotor PM, which is not an issue with surface wound stators due to their small armature reactance.

Furthermore, macroscale machines typically have many turns/pole, (- 20-turns/pole). However, due to

space limitations, microscale machines will generally have only a few turns/pole (~ 2-4-turns/pole).

Increasing the number of turns/pole would significantly increase the resistance of the stator windings due

to minimum feature size constraints, and correspondingly reduce power output.

Microfabrication also limits the thickness of the windings due to constraints on the aspect ratio

between winding width and thickness. Inner and outer end turns make up a small percentage of the overall

size of macroscale machines. In microscale machines, these inner and outer end turns can take up

considerable area and typically account for a large proportion of the overall winding resistance. The space

required for the inner end turns of a planar machine limits the minimum radius of the active area, while

the space required for the outer end turns can double the surface area of the stator.
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In contrast to the associated design constraints, MEMS fabrication technologies can improve the

performance of microscale magnetic machines. The stator windings can be photolithographically defined

which permits optimized winding patterns with variable-width conductors. In addition, high-resolution

features can help reduce certain losses; skin effects can be reduced by using windings with small cross-

sections and eddy current losses in both the windings and magnetic core can be reduced by using

laminations of micron scale thicknesses.

The ratio of surface area to volume decreases as the length scale is reduced. Heat conduction is

proportional to surface area while heat production is proportional to volume. Microfabrication can be

used to create flat conductors which have a larger surface area to volume ratio than round conductors. By

placing these flat conductors in intimate contact to their substrate, cooling via thermal conduction greatly

improves. This allows for much higher current densities in the windings than possible in macroscale

machines. Current densities of up to 109 A/m 2 have been achieved in microscale magnetic machines while

their macroscale counterparts are limited to 1 07 A/m2 [23]. Microscale magnetic machines can also match

the linear tip speeds of their macroscale counterparts by spinning much faster, near 100,000 - 1,000,000

rpm. This, combined with the higher current densities allowable in the windings, enables microscale

machines with very high power densities.

4.3.1 Rotor Fabrication

The required eight-pole magnetization pattern for the SmCo is formed using a pulse magnetizer using

a two-step process. First, the rotor is uniformly magnetized in the axial direction to saturation using a

high intensity magnetic field pulse. Then, selected regions are magnetically reversed using a magnetizing

head, machined out of Fe4 9Co 49 V2 (Hiperco 50). As shown in Figure 4-6(a), the magnetizing head has

four pole pieces, which during the reversal step act to concentrate the fields across certain regions while

shielding other regions. The areas of the PM between the head pole pieces are thus reversed due to the

high magnetic fields, while the other areas experience some leakage flux but do not reverse.
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In practice, this method requires careful selection of the magnitude of the field reversal pulse. A very

small pulse will not overcome the coercivity of the already magnetized structure, resulting in little or no

reversal. Conversely, a very large pulse will reverse all areas of the magnet, presumably due to leakage

flux and/or saturation of the magnetizing head. These effects were not fully explored, but instead, the

magnetizing process was repeated until balanced north and south poles were achieved, as measured using

a Hall-effect Gauss probe. The resulting 8-pole rotor magnet is shown in Figure 4-6(b) using magnetic

viewing paper. The rotor back iron and mounting adaptor are conventionally milled from sheets of

Hiperco 50 and PMMA, respectively. The PM and rotor back iron are then glued into the mounting

adaptor, which is fit onto a 1.6 mm (1/16 in.) shaft for testing, as shown in Figure 4-6(c).

(a) (b) (c)

Figure 4-6: (a) Cutaway view of PM rotor in magnetizing head, (b) magnetic pole pattern using magnetic.

viewing paper, and (c) 500-jim thick PM rotor and back iron mounted onto shaft. (Courtesy of David

Arnold, GIT [491)

4.3.2 Stator Fabrication

The stators are fabricated using electroplated windings on 100-mm and 75-mm diameter magnetic

substrates cut from 1-mm thick sheets of Ni8oFe 15Mo5 . The complete winding fabrication process flow is

shown in Figure 4-7. First, to isolate the coils from the substrate, a dielectric layer is deposited (Figure 4-

7a). Initially, a spin-on-glass (SOG) process was used, where a 1 jim PECVD SiO2 adhesion layer was

150



deposited, followed by -2 pm of Accuglass T- 12 SOG, and finally, a 1 jm PECVD SiO 2 capping layer. It

was later found that this layer sometimes suffered from cracking and/or pin-hole defects, resulting in

shorts from the coils to the substrate, which reduced the yield. Therefore, this process is supplemented or

replaced by the deposition of -5 jm of PI-2611 polyimide.

The stator windings are constructed using a two-layer electroplating process [53,54], identical for the

three different winding patterns. First, a Ti/Cu seed layer is sputter deposited, and Futurrex NR9-8000P

negative photoresist is used to pattern a -100-jm thick mold for layer 1 (Figure 4-7b). Cu is then

electroplated up to the thickness of the mold (Figure 4-7c). Next, the resist is stripped using Futurrex

RR4 resist remover, and the seed layers are removed by wet etching. The Cu etching uses "blue etch"

(NH4OH saturated with CuSO 4), and the Ti etching uses diluted HF acid (Figure 4-7d). Then, SU-8 2025

photosensitive epoxy is used to pattern the via layer, encapsulating layer 1 except for the via openings

(Figure 4-7e). Then, a new Ti/Cu seed layer is sputter deposited, and layer 2 is patterned using NR9-

8000P photoresist (Figure 4-7f). Cu is plated to form layer 2, with the vias connecting to layer 1 (Figure

4-7g). Finally, the Futurrex resist is stripped, and the seed layers are etched as before (Figure 4-7h). The

remaining SU-8 provides additional mechanical support, but in the case of a high-temperature device for a

microturbine, the SU-8 could be removed using oxygen rich reactive ion etching (RIE), provided an

inorganic dielectric layer was used (e.g. SOG). For more details the reader is referred to [49].

Figure 4-8 shows examples of the three winding patterns after fabrication. Note that with an

increasing number of turns, the patterns, particularly the inner end turns, become quite complex, and

hence more difficult to fabricate. The thicknesses of the final windings were measured optically by

ablating some of the SU8 using an excimer laser system. Only the thickness of layer 1, T1, and the total

thickness, T,,, were measured, as shown in Figure 4-9.
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(a) Deposit 4-5 pm
spin-on-glass or
polyimide

(b) Deposit Ti/Cu
seed layer,
Pattern Layer 1
using Futurrex

(c) Plate Layer 1

(d) Strip Futurrex,
Etch Ti/Cu seed

(e) Pattern Via
using SU-8

(f) Deposit Ti/Cu
seed layer,

Pattern Layer 2

using Futurrex

(g) Plate Layer 2

(h) Strip Futurrex,
Etch Ti/Cu seed

(i) Strip SU-8
(optional)

I I

-- - -

1. I

II

Em - - ml

m - - m

El NiFeMo - Dielectric M Futurrex N Cu El SU-8

Figure 4-7: Stator winding fabrication process flow. (Courtesy of David Arnold, GIT [49])
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(a) (b) (c)

Figure 4-8: Fabricated stator windings: (a) 1-turn/pole, (b) 2-turn/pole and (c) 4-turn/pole machines.

Device T, Td

1-turn/pole -125 ~m -245 pm
2-turn/pole -100 ~m -190 m
2-turn/pole -80 m -170 m

Figure 4-9: Measured winding thicknesses for various PM machines.

4.4 Spinning Rotor Test Stand

For characterization, a test stand was developed to support spinning rotors in order to demonstrate

electrical power generation while avoiding the design and fabrication complexities of integrated high-

speed bearings. The test stand comprises a high-speed, air-driven spindle (High Speed Carving and

Engraving Products) to spin rotors with a controllable air gap over the surface of the stators, as depicted

in Figure 4-10. Powered by compressed nitrogen, the spindle provides rotational speeds in excess of

153



350,000 rpm. The rotor/shaft assembly is mounted in the spindle, and the rotation speed is measured with

an optical shaft encoder or, in the case of electrical machine tests, using the frequency of the generated

output.

The rotor shaft position encoder is implemented by marking half of the shaft black and using a

GP2L22 reflective photo-interrupter (Sharp Microelectronics). The alternating high and low reflectance

creates an output signal with frequency dependent on shaft speed, which is monitored using a spectrum

analyzer. This scheme minimizes the sensitivity to sensor range or position, which would cause a change

in signal amplitude, but not frequency.

One challenge with the spinning rotor system is the ability to precisely position the rotor over the

surface of the stator while maintaining a uniform air gap. This requires not only good registration

between the rotor and stator, but also fine control over the angle between the rotor and stator. In practice,

the stator is clamped to an xyz-micropositioner stage, having +5 pm resolution in all three directions.

Rotors are mounted to a shaft and inserted into the spindle, which is attached to an articulating arm

providing translation and rotation in all directions. For more details the reader is referred to [49].

Spindle Body

Bearing

Air Inlet -Turbine

Pinch Valve Outlet

,vL

Shaft
Rotor Mount -

Shaft Speed Sensor

Stator Rotor

Clamp Stator Windings

N N

ZT

X XYZ-Staqe

Figure 4-10: Spinning rotor test stand, depicting the air-powered spindle spinning a magnetic rotor over
the surface of the stator. (Courtesy of David Arnold, GIT [49])
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4.5 Power Electronics

To provide power to modem electronic devices that operate using a DC voltage, the AC generator

voltages are first stepped up using a three-phase A/wye-connected transformer (N1 :N 2 = 1:6 turns ratio)

and then converted to DC using a three-phase diode bridge rectifier. The circuit diagram is shown in

Figure 4-11. The bridge rectifier uses Schottky diodes, which are selected for their small forward voltage

drops (0.3 - 0.4 V). The generator windings are connected in a wye configuration and tied to the A-

connected primary side of the transformer. This gives an additional factor of three increase from the line-

to-neutral voltage of the machine (Vc) to the line-to-line voltage of the transformer secondary side for an

overall step-up ratio of 18, minimizing the effects of the diode voltage drops.

The generator and power electronics are modeled in PSpice to predict the output power as a function

of rotational speed and load. The generator model consists of a voltage source (Voc), stator resistance and

inductance. An additional ~30 mf2 of contact resistance between the machine windings, breadboard, and

transformer windings is added in series with the stator winding resistance. PSpice models for the B320A

Schottky diodes were obtained from Diodes Inc.

PM Generator Transformer
A Primary Secondary

Vb

RL

V ue

Figure 4-11: Three-phase rectification circuit for DC power generation tests.
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The transformer uses three stacked El cores (PC40EI16 from TDK), as shown in Figure 4-12. The

primary side consists of 10 turns of 22-gauge wire in single layer, while the secondary has 60 turns of 25-

gauge wire distributed over five winding layers. The completed transformer measures 43 mm long, 25

mm wide, and 11 mm thick. Figure 4-13 shows the fully constructed power electronic circuit.

Primary Winding Secondary Winding

*o00 I 0.00..0
000000 j0000,0O

000000 000

00000 1 _____ 1II
000*Q-m -00

0000 00000MOD III
06060m"t -00

Figure 4-12: Three-phase transformer core and phase windings.

Figure 4-13: Photograph of power electronics used for DC power generation with the PM generators.
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ip R Lip NI:N 2  Lis Rs is

........ +

VP Rc LP vs

LO

Figure 4-14: Circuit model of a single phase of the transformer.

The transformer model, shown in Figure 4-14, takes into account winding resistance (Rp, R), core

loss through an effective resistance (Re), leakage inductance (Lip, LI,), and magnetizing (L,) inductance.

Proximity and skin effects, which increase the resistance of the transformer windings, are also taken into

account [55]. The primary and secondary winding layers are converted to foils of thickness hi, where

hi= -Di. (4-13)
N4

The subscript i stands for either the (p)rimary or (s)econdary winding. The porosity factor, gi, for a

winding layer is the total height of the coils in a layer divided by the height of the winding window, l,

N ih

1 .(4-14)

The ratio of the effective foil thickness to skin depth, Qi, is given by

Q =q7 hL, (4-15)

where,

= 2 (4-16)
mto c

Defining Mi to be the number of coil layers (Mp = 1, Ms = 5), the AC resistance of the transformer

windings due to proximity effect is Kproxeffi times the DC resistance, Ri, where

K [+s+in(2 ) 2 -1)[ sinh(Q.sin(Q
sproxeffi 3 ( - sh(Q)+s(Qi) (4-17)

[coh(2i)-os(QJ 3 cosh(Qi )+cos(Q i)]
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The winding resistances, leakage inductances, and magnetizing inductances are found using an

impedance analyzer. The primary and secondary resistances increase by 1.1% and 7%, respectively, over

their DC values at a frequency of 6.67 kHz (corresponding to 100,000 rpm). The primary leakage is too

small to accurately measure, so an approximate value is used.

The core loss in the transformer is modeled as a resistor in parallel with the magnetizing inductance

[47]. In order to determine the value of this resistance, the flux density in the transformer is needed. The

flux linked by the transformer core approximately equals the first harmonic of the line-to-line voltage

divided by the electrical frequency,

kcore = NAcoreBcore = V " (4-18)

where Vcl is the first harmonic of V.c, N1 is the number of primary turns, Acore is the area of the core, and

Bcore is the flux density in the core. Note that this is the upper bound on the core flux linkage since the

voltage applied to the core will decrease as current flows through the stator windings, and a voltage drop

develops across the winding resistance. Rearranging (4-18) and using the fact that Voci = min We, Bore is

Bcore ; 1  XMi (4-19)
NAcore

Interestingly, the peak flux density in the core is independent of the speed of the generator. The core

loss density is determined from core material data sheet (PC40EI16 from TDK) using Beore. The total

core loss, Pcore, is the core loss density times the volume of the core. The core resistance is then

RC= ( Y * = fe (4-20)
2 Pore fe

Equation (4-20) shows that the core loss is approximately linear in frequency [47], so that the core

resistance can be easily recomputed for power generation tests at different speeds. The results of the

transformer parameter measurements and calculations are summarized in Table 4-1 using the open-circuit

voltage of the 2-turn/pole machine at 100,000 rpm. The mismatch in the magnetizing inductances occurs

because the "I" portions of the El cores for phases A and B are not used.
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Table 4-1: Transformer Parameters.

Property Primary Secondary

Num. turns 10 60

Wire gage 22 25
Rx @ DC 18 mQ 225 mn
Rx @ 6.67 kHz 18.3 m2 241 mf2
Magnetizing A: 56 gH A: 2.0 mH
Inductance, B: 67 pH B: 2.4 mH
Lg C: 114 pH C: 4.1 mH

Leakage A: ~0.01 pl A: 16 pH
Inductance, B: ~0.01 H B: 8.8 jH
L, C: -0.01pH C: 17 H
& @ 6.67 kHz 90n f] ___

LS RS

Figure 4-15: Per-phase equivalent circuit of PM machine.

Figure 4-16: Photograph of test setup for characterization of the PM generators.
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4.6 Test Results

The stators are first characterized in terms of their equivalent circuit parameters: phase resistance, Rs,

phase inductance, Ls, and open-circuit voltage, Vc (Figure 4-15). The machines are then connected to

power electronics for power generation tests, which are conducted at varying load resistances and speeds

with the rotor-stator air gap set to 100 pm. The test setup for these measurements is shown in Figure 4-16.

4.6.1 Electrical Characterization

The line-to-neutral resistances and inductances (at 100 pm rotor-stator air gap) for the stators are

summarized in Table 4-2. The resistance of the 2-turn/pole machine is about twice that of the 1-turn/pole

machine, which is expected since a winding in a 2-turn/pole machine is twice as long as that in a 1-

turn/pole machine yet has the same cross-sectional area. The 4-turn/pole machine has a much higher

resistance than the 2-turn/pole machine because the inner end turns have a much smaller cross-sectional

area due to limited space in the center region of the machine.

The measured values are more than twice the values predicted by the models in Section 2.2.9. The

increase resistance of the coils is attributed to the via connections between layers. The via layer is

approximately 40 pm high so the thickness of the top layer coils is thinner than the difference of Tej - T,

from Figure 4-9. The contact resistance between the vias and the two coil layers also contributes a higher

phase resistance. This problem gets worse as the number of vias increase with the number of turns/pole.

Minimizing the number of vias to decrease resistance is addressed in Chapter 5 where 2 generation

machines are designed and tested.

Table 4-2: Per-phase electrical parameters.

Device R. (model) R, (measured) Ls (model) L, (measured)
1-turn/pole 18 m2 41 mg 0.023 gH 0.18 H
2-turn/pole 36 mK2 98 mQ 0.093 pH 0.34 gH
4-turn/pole 240 mQ 690 mQ 0.371 H 1.0 H
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The phase inductance is also much larger than predicted by the analytical model. The radial span of

the rotor (R0 = 4.76 mm, Ri = 1.59 mm) is used for the integration bounds to compute the flux in Equation

(2-124). The continuum model does not take into account the leakage inductance from the inner or outer

end turns which become quite intricate as the number of turns/pole increases (Figure 4-8). The leakage

inductance of a macroscale machine is typically a small fraction of magnetizing inductance [41]. In

macroscale surface wound PM machines, the leakage can be on the same order of magnitude as the

magnetizing inductance. In the microscale surface wound PM machines presented here, however, the

leakage inductance dominates the over all stator inductance. In fact the surface area taken up by the outer

end turns is 61.5 mm 2 is about the same as the active area of the machine (R0 = 4.76 mm, Ri = 1.59 mm),

which is 63 mm 2 .

Open-circuit voltage vs. time for 2-turn/pole stator

Square Wave, Br = 1 T
0.8 - - - Square Wave, Br = 0.52 T

- Trapezoidal, B = 0.52 T

-- 6Experimental Data

0.4

0.2-

0-

-0.2-

-0.4-

-0.6-

-0.8-

-1
0 0.05 0.1 0.15

Time (ms)

Figure 4-17: Effects of smaller B, and 1 mm transition region on open-circuit voltage waveforms.

Experimental data is from an 8-pole, 2-turn/pole machine at 100 krpm.
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The open-circuit voltage, Voc, of each machine is measured as a function of speed with the air gap set

to 100 pm. A sample time waveform for the 2-turn/pole machine at a speed of 100 krpm is shown in

Figure 4-17, along with various theoretical curves, as predicted from the analytical continuum model from

Section 2.2. The ideal square wave magnetization with a B, of IT is seen to over predict the experimental

results. A closer fit is obtained if the remanence used in the analytical model is reduced to 0.52 T. Further

improvement, is made by introducing a 1 mm linear magnetization transition region between north and

south poles. This trapezoidal profile yields a more sinusoidal shape, and more likely represents the

physical magnetization pattern.

It is believed that the selective pulse magnetization process used to pattern the rotor does not fully

saturate the material, resulting in a reduced remanence. Also, transition regions between poles are

possible due to saturation of the magnetized heads at the edges of the magnetizer poles and the resulting

leakage flux. Nevertheless, using a Br of 0.52 T and a 1 mm transition region, the experimental

measurements of VO, agree well with the analytical model of the machines over a wide range of speeds,

turns/pole and air gaps.

Sample time waveforms for the 1-, 2- and 4-turn/pole machine at a speed of 100 krpm and an air gap

of 100 pm are shown in Figure 4-18, along with the theoretical predictions using a Br of 0.52 T and a 1

mm transition region in the analytical model. Note the sinusoidal shape and low harmonic content of VO,

which is a result of the large air gap. Figure 4-19 shows the RMS of Vc varying linearly with speed and

number of turns per pole as expected. The open-circuit voltage is also measured as a function of air gap.

Figure 4-20 shows the open-circuit voltage for the same three machines at a rotor speed of 100,000 rpm.

The open-circuit voltage is a decreasing function of air gap due to the exponential decay of rotor flux in

the air gap.
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Open-circuit voltage vs. time

0.2- 1-turn/pole

0-

-0.2-

0 0.2 Time (ms) 0.4 0.6

0.5 2-turn/pole

0-

-0.5 -
0 0.2 Time (ms) 0.4 0.6

4-turn/pole

0

-1-
0 0.2 Time (ms) 0.4 0.6

Figure 4-18: Open-circuit voltage vs. time for the 1-, 2- and 4-turn/pole machines at speed of 100 krpm

and an air gap of 100 pm. Dotted lines represent measurement; solid lines represent analytical model.

Open-circuit voltage vs. speed
I

U 4-turn/pole
0.9- 0 2-turn/pole

A 1-turn/pole

0.8-

0.7-

0.6-

S0.5 --
0

> 0.4-

0.3 -

0.1-

20 40 60 80 100 120
Speed (krpm)

Figure 4-19: Open-circuit RMS voltages vs. rotational speed for 100 pm air gap. Points represent

measurements; curves represent analytical model.
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1

400 600
Air gap (jim)

800 1000

Figure 4-20: Open-circuit RMS voltages vs. air gap at 100,000 rpm. Points represent

curves represent analytical model.

V for 500 pm thick SmCo magnet and 2-turn/pole stator

10

250 Q

8 L \
78 0

6

-o 5

4

measurements;

3 1o

2
T 1/f

0
0 0.5 1 1.5 2

Time (sec.) x 10-

Figure 4-21: Voltage across load resistor for different resistances for 2-turn/pole machine at 100 pm air

gap and 100,000 rpm. Solid lines represent measurements; dashed lines represent PSpice model.
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4.6.2 DC power generation

Using the power electronics described in Section 4.5, the rectified voltage measured across the load

resistor for the 2-turn/pole machine is shown in Figure 4-21 for different load resistances. The ripple

voltage is uneven because the magnetizing inductances, L,, of the three-phase transformer are all different

due to the core structure. This leads to different voltage divider ratios between the primary winding

resistance and L,, producing slightly unbalanced voltages in the transformer secondary windings.

1.4

1.2

I

n
0

a-

0.8

0.6

0.4

0.2

Output power vs. speed

* 2-turn/pole

-0

0e

0 L 1 1 1
20 40 60 80 100 120 140

Speed (krpm)

Figure 4-22: DC output power across the load resistor for 2-turn/pole machine at 100 Pm air gap vs.

rotational speed for 30 t load. Points represent measurements; curves represent PSpice model.

Figure 4-22 plots the DC output power for the 2-turn/pole machine as a function of speed for a fixed

load of 30 92 and confirms the expected quadratic dependence on speed up to 120,000 rpm. Figure 4-23

shows the DC power delivered to the load as a function of load resistance (10-250 n) from the 2-

turn/pole machine at 80,000, 100,000, and 120,000 rpm. At the three different rotation speeds, the
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generator delivers a maximum power of 0.46, 0.76 and 1.1 W, respectively. The machine shows the

expected power transfer characteristics, with output power maximized under a matched load condition of

R, ~ 25 n. It should be noted that even though the 4-turn/pole machine produces a higher voltage than

the 2-turn/pole machine, it delivers less power because of its much larger phase resistance.

1.
Output power vs. load resistance

4-

10 1 102

1

0
0-

0.8

0.6

0.4

0.2

0

Load resistance (0)

Figure 4-23: DC output power across the load resistor for 2-turn/pole machine at 100 Pm air gap vs. load

resistance at 80, 100, and 120 krpm. Points represent measurements; curves represent PSpice model.
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Figure 4-24: Power flow diagram for PM generator system.
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Machine efficiency is also an important consideration in the generator design. The power flow

diagram for the generator is shown in Figure 4-24. The total generator system efficiency, qg, and electrical

system efficiency, le, are defined as

Pou"out (4-21)
mech

Pou
e i -t (4-22)

Pelect

Direct experimental measurement of the total generator system efficiency is not possible because of the

difficulty in measuring the input mechanical power, Pmech. Instead, the total input mechanical power is

estimated by summing the proximity loss, core loss and converted power, Pmech Pprox + Pcore +Pelect. The

core loss, Pcore, and proximity loss, Pprox, are computed in Section 2.2.7-8 and 2.2.10 respectively. The

core loss consists of both eddy current and hysteresis losses. The converted power, Peiect, is power

available from the open-circuit voltage in the equivalent circuit model and is extracted from the PSpice

model. Pelect consists of stator winding conduction loss, Pcond, power electronics losses, Ppe, and power

delivered to the load, Pout.

The core and proximity losses in the stator are shown in Table 4-3. The proximity loss is small due to

the relatively slow rotational speeds (at least compared to microengine speeds) while the hysteresis loss is

small because of the low coercivity of the Moly Permalloy wafer used for the stator core. The eddy

current loss, on the other hand, is quite large (1.5-3 W), suggesting the need for stator laminations to

minimize this loss. Figure 4-25 shows the electrical and generator system efficiencies for the 2-turn/pole

machine as functions of load resistance and speed. The generator system efficiency is substantially lower

than the electrical system efficiency due to the large eddy current losses in the stator core.

Table 4-3: Hysteresis and eddy current losses in the stator.

Speed (rpm) Physteresis Peiad Pprox
80,000 0.097 W 1.57 W 0.047 W

100,000 0.120 W 2.24 W 0.073 W
120,000 0.144 W 3.00 W 0.104 W
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Efficiency vs. load resistance
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Figure 4-25: Electrical system efficiency, i1e, and generator system efficiency, qg,

machine at 100 pm air gap.
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Figure 4-26: Power breakdown for the 2-turn/pole PM machine as a function of load

120,000 rpm and 100 pm air gap.
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At the matched load condition of Ri ~ 25 0, the machine at 120,000 rpm shows an electrical system

efficiency of 43% and a generator system efficiency of 19%. Thus, it requires 5.75 W of mechanical

power, of which 2.5 W is converted by the machine to electrical power, to deliver the 1.1 W output

power. The electrical power breakdown of the generator, at 120,000 rpm, as function of load resistance is

shown in figure 4-26. The output power, conduction loss and power electronics losses all increase as load

resistance decreases, until the matched load condition is reached and maximum power is delivered to the

load. Decreasing the resistance further reduces output power but conduction and power electronics losses

increase as the current through the generator and power electronics continues to increase.

The efficiency of the power electronics, %pe, is shown in Figure 4-27, where

TIPep Pout (4-23)
out pe

The power electronics efficiency for the matched load condition (RI ~ 25 Q) at 120,000 rpm is 83% while

at 80,000 rpm, it is 78%. The efficiency decreases as the load resistance increases beyond 100 92 because

as the output power decreases, the core loss and diode capacitive losses stay constant. Similarly, the

efficiency decreases as the load resistance decreases beyond the matched load condition because the

output power drops while the conduction loss in the windings of the transformer continues to increase.

Note that both the electrical system and power electronics efficiencies are dependent on the speed. The

output power increases as speed squared but the hysteresis loss in the transformer core and the capacitive

loss in the Schottky diodes increase linearly with speed. The conduction loss in the stator and transformer

windings will increase with speed squared since the current through the machine is proportional to the

voltage. However, the diode conduction loss is proportional the current through the diode (proportional to

speed) times the diode forward drop, which is roughly constant. Therefore the diode loss only goes up

linearly with speed. Since some of the power electronics losses grow slower than speed squared, the

efficiency increases with speed.
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Power electronics efficiency vs. load resistance 
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Figure 4-27: Power electronics efficiency, llpe, for the 2-turn/pole machine at 100 J.UIl air gap. 

4.7 Summary 

This chapter presented the design, fabrication and testing of the first generation PM machines 

designed for Watt-level power generation. The generators are three-phase, 8-pole, axial-air-gap, 

synchronous machines. The rotor consists of a 500 Jlm SmCo PM and Hiperco 50 core. The stator 

consisted of 1-, 2- and 4-turn/pole windings placed on the surface of a 1 mm thick Moly Permalloy stator 

core. A simplified model of the machine was presented and used to show that the maximum power in the 

PM machine is achieved by making the PM as thick as possible and the coils equal to the sum of the air 

gap and PM thickness. If that coil thickness is not achievable due to fabrication limitations, maximum 

power is achieved by making the coils as thick as possible. The PM generators were designed and 

fabricated using a combination of micro fabrication and precision machining/assembly. 

The machines were then characterized using an air-driven spindle. The measured resistances were 

higher than those predicted by the analytical models due to via contact resistance. The measured 
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inductances where higher than predicted due to end turn leakage inductances, which was found to

dominate the overall inductance of microscale surface wound PM machines. The measured open-circuit

voltages deviated from a PM with an ideal square wave magnetization and 1 T remanence. In order to

match the experimental data, Br was set to 0.52 T and a 1 mm transition region between the rotor PM

poles was used in the analytical continuum model. Once this adjustment was made, the experimental and

theoretical values for the open-circuit voltage were well matched for various speeds, air gaps, and

turns/pole.

The PM machines were connected to power electronics for power generation tests. At 120,000 rpm,

the 2-turn/pole machine demonstrated 2.5 W of mechanical-to-electrical power conversion and delivered

1.1 W of DC power to a resistive load. The current in the stator windings when delivering 1.1 W to the

load is 2.83 Apk, which translates to a peak current density of ~2x 108 A/m 2 . This is one to two orders of

magnitude higher than the current density found in a macroscale machine. For an active machine volume

of 110 mm 3 (9.5 mm OD, 5.5 mm ID, 2.3 mm thick), the 1.1 W output power corresponds to a power

density of 10 MW/M3 . A typical 1000 MW turbine generator with an active volume of 60 m3 (8.4 m long,

3 m stator core outer diameter) has a power density of 17 MW/M3 . The power density of the microscale

PM machine is comparable to its macroscale counterpart due to its high rotation speeds and current

densities.

These results prove that Watt-level power generation and delivery is achievable using miniaturized

magnetic machines and demonstrates the viability of scaled PM generators for portable power

applications. However, despite the impressive performance of this power system, there is room for

improvement. The stator resistance is much larger than predicted due to the large number of vias and

cross-over conductors used in the end turns, which limits output power. In addition, the transformer and

diode bridge circuit is much larger than the generator and does not provide either a regulated DC output

voltage nor power factor correction. These issues will be addressed in the next chapter which presents the

design of improved generators and power electronics.
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5 Second Generation Surface Wound PM Generators and
Power Electronics

The first generation microscale PM machines reported here demonstrated the ability to generate and

deliver one Watt of power to a resistive load. The next step is to increase the performance of these

machines to enable multi-Watt delivery at a regulated DC output voltage. The goal is to design a PM

machine capable of delivering 10 W of power to a load.

To increase the output power, a number of things can be done. First, the machine can be spun faster to

increase the open-circuit voltage. Second, better PMs could be found to increase the flux density in the air

gap. Third, improvements in the stator windings and power electronics would lead to reduced losses.

Finally, increasing the area of the machine would increase the flux linked by a phase and increase power.

Table 5-1 summarizes these improvements and their benefits. Referring to Table 5-1, the biggest increase

comes from increasing the speed. Higher remanence in the PMs is difficult to create from the selective

poling process discussed in Section 4.3 and increasing the radial span of the machines makes them larger

than the proposed microengine compressor designs at this time. Therefore, the best path to increase output

power is to increase rotational speed while improving the stator winding design and power electronics.

Unloaded, the spindle used in the SRTS can spin up to 400,000 rpm. Using the PMMA retaining ring,

the rotor core/PM assembly can spin up to 230,000 RPM before breaking apart. Speeds of up to 325,000

rpm have been demonstrated by housing the rotor core and PM inside a Titanium retaining ring in high

speed rotor tests performed by colleagues at GIT and CAU [56]. This was achieved with a PM that had

the same active area as the stator (5.525 mm ID, 9.525 mm OD) and had recently become available.

Therefore, the decision is made to target 10 Watts of power generation at 300,000 rpm. Since increasing

the speed from 120,000 rpm to 300,000 rpm only increases the output power to about 6.8 W, an improved

PM machine is also needed. The necessary optimization and design of the second generation PM

machines is described in Sections 5.1.1 and 5.1.2. The optimization is performed using the open-circuit

voltage predictions from the models in Chapter 2 in conjunction with a new concentric winding design
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and resistance model developed by colleagues at GIT. The characterization of these machines is presented

in section 5.1.3. The design, construction and testing of switch-mode power electronics for delivering

power at a regulated output voltage is described in section 5.2 along with a comparison with the first

generation power electronics. The author of this thesis is solely responsible for design and construction of

the second generation power electronics. Again, testing of the new generators and power electronics is a

group effort.

Table 5-1: Power improvements for the PM generator.

Parameter Change Increase in power

Speed, 0, 120 krpm -+ 360 krpm 9x improvement

Better PM's Br: 0.5 T -+ IT 4x improvement
Optimize R, 20% reduction 1.25 x improvement

Reduce Ppe 10-20% 1.15 x improvement
Increase R0, Ri 150% 2.25 x improvement

5.1 Second Generation Surface-Wound PM Machines

5.1.1 Power and Efficiency Scaling

The amount of power that a PM generator can deliver is a function of its open-circuit voltage,

resistance and inductance and, the equivalent resistance and inductance of any power electronics that

connect the generator to its load. A simplified model of the generating system is shown in Figure 5-1,

where the generator is modeled with a voltage source, VOC, stator resistance, Rs, and inductance, L. The

power electronics is modeled, for simplicity, with an equivalent resistor and inductance Rpe and Lpe,

respectively. The resistance, Rpe, represents both the conduction and magnetic core losses in the power

electronics while the inductance could represent, for example, the leakage and magnetizing inductance of

a transformer as seen from the stator terminals. The generator is driving a load resistor, R.ad. R, and Rpe

are combined to form an equivalent source resistance, Rsource, and Ls and Lpe are combined to form an

equivalent source inductance, Lsource for the generator system. Rpe can be dependent on voltage, current

and/or frequency.
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Rsource Lsource

Rs  Rpe s pe

VOc % Road

Figure 5-1: Simplified equivalent circuit of the PM generator and power electronics driving a load

resistor.

Referring to Figure 5-1, the maximum power delivered to the load, P."t, is proportional to

V2
Pou 0C Vo , (5-1)

R 0UrCe + 1+(Omtsource J
which occurs when Road equals the magnitude of the source impedance, Zsouree,

R load =Z source = R source + ((mT source)2 , (5-2)

where

source L source (5-3)
source

The resistance of the radial conductors and end turns in Rs are both dependent on N and P,

R =6(PNClam )2 1n we(R 0) 2PNLouter 2PNLinner cck 1 (PN)2 +k 2 PN. (5-4)
s o CTo, I Wc, (R++ c cc iW k +

The radial conductors grow as PN squared while the end turns grow linearly with PN. Even though the

end turn resistance grows slower, it can make up a large fraction of the over all resistance.

The losses in the power electronics can be independent of frequency, such as conduction loss in the

on-state resistance of a power MOSFET, proportional to the square root of the frequency, such as skin

depth losses in the windings of high frequency transformers, or linear with frequency, such as in the

switching loss of a power MOSFET. The frequency dependent component is the most important because
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it scales with both the speed and number of pole pairs of the machine. R will be assumed to be

proportional to P9m, because the fastest growing frequency-dependent component scales linearly,

Rpe ~tk 3PM. (5-5)

Referring back to Equation (4-9), the open-circuit voltage is proportional to N, P and 2m. Equation

(5-1) can now be expressed in terms of N, P and nm,

Pot Oc "' 2 (5-6)
(k1 (PN)2 + k 2PN + k 3 PQmf + l + (PQm r source

By making N large, both the open-circuit voltage and stator resistance increase while dissipation in the

power electronics and the effect of source reactance remains the same leading to higher output power. In

addition, for large N, P,11k will be independent of both P and N, and scale with the square of the rotational

speed. In reality, the minimum feature size constraint will limit the gap between adjacent radial

conductors and a large number of turns/pole will lead to thin inner and outer end turns. Both effects make

Rstator increase slightly faster than N 2 . Therefore, to maximize output power, the number of turns/pole

should be maximized subject to stator fabrication and surface area limitations.

The total generator system efficiency can be expressed as

fl" Pp I out , (5-7)
out + Peore + Psource

where Pcore is the sum of the stator core eddy current and hysteresis losses. The eddy current loss is either

proportional to frequency squared (skin depth > core/lamination thickness) or linear with frequency (skin

depth < core/lamination thickness). The hysteresis loss is linear with frequency. In the worst case

scenario,

Pcore cc k 4 (pfm ) 2 + k5 Pfm- (5-8)

Generator system efficiency can be increased by making P small. However, doing so will make the rotor

PM poles wide. Consequently, the rotor and stator cores must be made thicker to prevent them from

saturating. The proximity skin effect losses are approximately independent of P (from the analysis carried

out in Section 2.2.10) and scale as speed squared. However, proximity losses decrease as N squared.
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Therefore, to maximize efficiency, the number of poles should be minimized subject to rotor and stator

core thickness limitations while the number of turns/pole should be maximized subject to stator

fabrication and surface area limitations.

5.1.2 Stator Optimization and Design

Figure 5-2 plots the output power as a function of P and N for different values of Rpe. The machine is

spinning at 100,000 rpm with an air gap of 100 pm. The open-circuit voltage is computed using the PM

used in the first generation PM generators. The white regions in Figure 5-2 denote combinations of N and

P that are too difficult to fabricate. Note that as Rpe increases, the maximum output power occurs at higher

values of N and/or P.

To choose an appropriate value for N and P, an estimate of the power electronics resistance at the

intended operating condition is needed. At 300,000 rpm, the stator electrical frequency is between 20 - 30

kHz for 8 to 12 pole machines. Since the switch-mode rectifier design had not yet been started at the time

of this optimization, the resistance of the transformer, from in Section 4.5, as seen from the stator terminal

is used. Recall that the secondary is connected in a wye configuration while the primary is configured in a

delta configuration. The reflected secondary resistance will be 3/n 2 smaller, where n is the turns ratio. The

stator windings are in a wye configuration and are connected to the delta configured primary. To get a

line-to-neutral, or wye equivalent, resistance both the primary and reflected secondary resistances are

divide by three (A-+Y transformation). Therefore the equivalent power electronics resistance will be,

R' ~z R R *n*a (5-9)
3 2

At 20 kHz, the primary and secondary resistances of the transformer are 20 mf2 and 360 mK,

respectively, while at 30 kHz, they are 22 mQ and 542 mi2, respectively. Note that the secondary

resistance increases faster with frequency because its 60 turns are distributed over five layers, which

increase the effects of proximity eddy currents in the transformer windings. RFp will be approximately 17

mL at 20 kHz and 22 mQ at 30 kHz. Looking at power out vs. P and N for Rye = 25 mn, the 12-pole, 2-
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turn/pole and 8-pole, 3-turn/pole machines achieve the highest output power for a minimum number of

total turns per phase. The minimum number of turns is used to increase the probability of fabricating a

working device on the first try. Given the discussion of power and efficiency scaling in the previous

section, the 8-pole, 3-turn/pole machine is chosen as the second generation device.
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Figure 5-2: PM machine output power as function of poles and turns/pole for different values of the

equivalent power electronics resistance, Rp.
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A 2nd generation 8-pole, 3-turn/pole stator is shown in Figure 5-3. These stators use a single layer for

the radial conductors that is 200 gm thick. The end turns occupy two layers and are each 80 pm thick.

There is a 40 pm thick SU8 insulation layer between the top and bottom end turns. The winding pattern

for these machines is shown in Figure 5-4. The stators use concentric windings in which a complete end

turn occupies a single layer. This eliminates the need for cross-over conductors like the ones used in the

1St generation stators. In fact, the only cross-over conductors needed are for connections to the pads. With

fewer crossovers the number of vias is drastically reduced. In addition, by using concentric windings, the

end turns can be made to be circular arcs. This makes much more efficient use of the surface area of the

inner and outer regions of the stator than the triangular end turns used in the 1 ' generation devices.

Furthermore, variable width coils are used with the gaps between adjacent radial conductors and end turns

equal to 50 pm rather than 130 pm. The combination of the reduced number of vias, better end turn

design and more aggressive fabrication leads to a predicted stator resistance of 100 mKI. This resistance is

about the same as that of a 1 ' generation 2-turn/pole machine. In fact, the predicted output power

capability is increased by a factor of 2.25 over the 2-turn/pole machines presented in Chapter 4 due to the

improved stator resistance.

9.5 m
23 mm-a

Figure 5-3: 8-pole, 3-turn/pole concentric wound stator.
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Figure 5-4: Winding diagram for the 3-turn/pole concentric wound stator. Solid lines represent end turns

on the top layer while dashed lines represent end turns on the bottom layer. The radial conductors, marked

with arrows, occupy both coil layers. Phase A is darkened for reference.

5.1.3 Stator Characterization

Figure 5-5 shows a fabricated 3-turn/pole stator. Three working stators have been built and tested.

The first stator, designated stator #1, has radial conductors with an average thickness of 205 pm. There is

a layer of SU8 over the coils to protect them and is approximately 16 pm thick. The measured phase

resistance is 136 mQ, which is only 36% higher than predicted. The measured phase inductance is 0.31

pH, which is more than double the 0.13 8 pH predicted by the continuum model. The second working 3-

turn/pole stator, stator #2, has 188 pm thick radial conductors and no SU8 layer. Its measured resistance

and inductance is 160 mQ and 0.3 pH, respectively. The most recent stator, stator #3, also has coils that

are 188 pm thick and has a -50 pm SU8 layer. Its resistance and inductance is 145 mQ and 0.34 pH,

respectively. The properties of the three stators are summarized in Table 5-2.

The magnets used for the 1' generation devices (3.175 mm ID, 9.525 mm OD) were no longer

available since all of them had been destroyed in the course of testing the generators. Instead, PMs

became available that had the same inner and outer diameter as the active area of the stator (5.525 mm ID,

9.525 mm OD). These "small" PMs have only 74.6% of the area of the ones used in the 1" generation

devices, which means the open-circuit voltage is reduced by 25.4% (assuming equal remanences) and

power is approximately cut in half. Stator #1 was only tested with a small PM before being destroyed

when the rotor crashed into the stator. Later, "large" PMs had been found that have an inner diameter of 5

180



mm and an outer diameter of 10 mm. These PMs produce 93% of the voltage of the PMs used in the 1st

generation devices (again assuming equal remanences) and 86.5% of the power. Stator #2 and #3 are

tested with the large PMs.

Figure 5-5: Fabricated 3-turn/pole concentric wound stator is shown along side a penny for size

comparison.

Table 5-2: Fabricated 3-turn/pole Stator Parameters.

Stator R, m) L5 ( Tsu8

#1 136 0.31 205 ~15
#2 160 0.30 188 0
#3 145 0.34 188 ~50

Figure 5-6 shows the open-circuit voltage waveforms for stator #1 with the small PM and stator #2

with the large PM at an air gap of 100 pm and a speed of 100 krpm. A remanence, Br, of 0.54 T and a

transition length, cm, of 1.5 mm is used to match the data for the small PM, while B, and cm for the large

PM are 0.52 T and 1.2 mm, respectively. Given the 20% variation in open-circuit B fields among the

various magnets measured by colleagues at GIT [49], the minor variations in the remanences of the two

PMs are not surprising.
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The open-circuit voltage as function of speed, at an air gap of 100 Pm, is shown in Figure 5-7 for both

stator #1 with the small PM and stator #2 with the large PM. The open-circuit voltages as function of air

gap for these two rotor/stator combinations is shown in Figure 5-8 for a speed of 100 krpm. The open-

circuit voltage for stator #3 with the large PM is shown as function of speed and air gap in Figures 5-9

and 5-10, respectively. The open-circuit voltage as function of speed is taken at an air gap of 100 pm and

250 im while the voltage vs. air gap is taken at 50, 100 and 150 krpm. For stator #1 and #3, the thickness

of the SU8 layer is added to the air gap thickness. Notice that, once Br and cm are set at a single speed and

air gap, the experimental data agree very well with the values predicted by the analytical continuum

model in Section 2.2 for both the small and large PMs with different stators.

Open-circuit voltage vs. time

0.5 Small PM

0 00

-0.5 -

0 0.05 0.1 0.15 0.2 0.25 0.3
Time (sec.)

1 - - -

0.5 - Large PM

0-

-0.5 -

-1
0 0.05 0.1 0.15 0.2 0.25 0.3

Time (sec.)

Figure 5-6: Open circuit voltage vs. time for stator #1 with a small PM and stator #2 with a large PM at a
100 pm air gap and a speed of 100 krpm Solid lines represent measurements; dashed lines represent
analytical model.
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Open-circuit voltage vs. speed

* Stator #2, large PM
* Stator #1, small PM

-

40 60 80 100 120
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Figure 5-7: Open-circuit voltages vs.
curves represent analytical model.
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Open-circuit voltage vs. air gap
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Figure 5-8: Open-circuit voltages vs. air gap at 100,000 rpm. Points represent measurements; curves
represent analytical model.
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Figure 5-9: Open-circuit voltages vs. rotational speed for stator #3

measurements; curves represent analytical model.
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Figure 5-10: Open-circuit voltages vs. air gap at different speeds for stator #3. Points represent

measurements; curves represent analytical model.

184

Open-circuit voltage vs. speed

* 100 pm air gap
00 250 pm air gap

0

0.5

0.4

0.3

0.2

0.1

F II I

1

0.9-

0 .8 -

0.7

E

U
0

0.6-

0.5-

0.4-

0.3-

0.2-

0.1-

0
0

2gimp- M4

0



The three stators are tested using the transformer and diode bridge rectifier from Section 4.5. Testing

focuses on delivering maximum power to the load resistor vs. speed. The matched load condition is set by

varying the load resistance at a speed of 100 krpm and an air gap of 100 pm. The resistor value that

achieves maximum power transfer is then used for power vs. speed measurements. Note that as the power

delivered is increased, the load resistor will begin to heat up. The resistance of the load resistor is

measured at each speed where power is measured to insure accuracy.

Stator #1 is tested with the small PM. At a speed of 180 krpm it delivered 2.45 W to a load resistance

of 35 Q as shown in Figure 5-11. The converted electrical power, computed from the PSpice model, is

5.15 W. The estimated electrical system efficiency, defined in Equation (4-22) in Section 4.6.2, is 47.6%.

At a speed of 185 krpm, the rotor shaft loosened itself from the spindle and crashed into the stator,

shorting the coils of two phases together.

Stator #2 is tested with the large PM and demonstrates 3.54 W of power delivered to a 35 92 load as

shown in Figure 5-11. This is achieved at a speed of 210 krpm. With an estimated converted electrical

power of 7.75 W, the electrical system efficiency of this machine is 45.7%. For stator #2, the air gap had

accidentally been set to 150 pm and thus produces about 12.5% less power than it would at a 100 pm air

gap. Tests at higher speeds could not be conducted because the rotor crashed into the stator in subsequent

testing.

Figure 5-11 also shows the predicted power to the load resistor that a Ist generation 2-turn/pole stator

would deliver with both the small and large PMs. The stator resistance is 100 mQ and the air gap is 100

pm. At a speed of 180 krpm, the 2-turn/pole stator would deliver 1.3 W to a 30 Q load with the small PM,

which is approximately the matched load power (Section 4.6). Stator #1 produces 88% more output

power than a comparable 2-turn/pole stator. Similarly, the 2-turn/pole stator can deliver 2.6 W at 210

krpm with the large PM. Stator #2 with the large PM produces only 36% more output power due to its

larger air gap (150 pm) and phase resistance (160 m9).
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Figure 5-11: DC output power across the load resistor for different machines at

rotational speed. Points represent measurements; curves represent PSpice model.
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100 pm air gap. Points represent measurements; curves represent PSpice model.
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Output power vs. speed for stator #3 is shown in Figure 5-12 for a 41 Q load. At 225 krpm, this stator

demonstrates 4.55 W of power delivery at an estimated electrical system efficiency of 50.6%. Due to the

50 pm SU8 layer, the effective air gap is the same as in the stator #2 power vs. speed tests. At 210 krpm,

stator #3 deliveres 4.1 W due to its smaller stator resistance, corresponding to a 58% improvement in

power delivery over a l't generation 2-turn/pole stator.

The output power vs. load resistance, at a speed of 100 krpm, is shown in Figure 5-13 and shows a

peak output power at approximately 37 Q. Stator #3 is tested again, this time with the 37 Q load. The

output power vs. speed is shown in Figure 5-14. This time the rotor is spun up to 305 krpm and delivers 8

W of DC power to the load resistor at an estimated electrical system efficiency of 49.2%. This

corresponds to 16.27 W of mechanical-to-electrical power conversion. There is 7.46 W dissipated in the

stator windings and 0.81 W dissipated in the transformer and diode bridge rectifier. The hysteresis loss in

the stator core and the proximity eddy current loss in the stator windings are 0.37 W and 0.92 W,

respectively, while the stator core eddy current loss is 12.56 W. The resulting generator system efficiency,

defined in Equation (4-21) in Section 4.6.2, is only 26.6%. The power breakdown for the 8 W test is

summarized in Table 5-3. For all three stators, the measured values correspond well with the PSpice

model of the generator and power electronics. As in the case of the I' generation machine testing, a

contact resistance of 30 mK is assumed in the breadboard used for the power electronics.

The predicted electrical, 11e, and generator, ag, system efficiencies are shown in Figure 5-15 as a

function of speed. The electrical system efficiency approaches the matched load value of 50% as the

speed increases because the transformer core loss and diode voltage drops become negligible with

increasing speed. The generator system efficiency is much smaller than the electrical system efficiency

due to the substantial eddy current loss in the stator core.
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Table 5-3: Power breakdown for stator #3 at 300 krpm and a 37 K load.

Stator #3

Pmech 30.12 W
Pprox 0.92 W

Peddy 12.56 W
Physteresis 0.37 W

Pelect 16.27 W

Peond 7.46 W

Ppe 0.81 W

Pout 8 W
e 49.2%

26.6%

Efficiency vs. speed
70

60

50

40-

30-

10-

0
50 100 150 200 250 300

Speed (krpm)

Figure 5-15: Electrical system efficiency, Ie, and generator system efficiency, rig, for stator #3 vs. speed

at a 100 pm air gap.

The power breakdown as function of load, at 300 krpm, is shown in Figure 5-16. Note that the sum of

the core and proximity effect losses are larger than the output power, conduction loss and power

electronics losses even at matched load conditions. Referring to Table 5-3, the dominant loss is the eddy

current loss in the stator core which can be reduced significantly by using a laminated stator. The
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proximity eddy current loss in the stator windings can be reduced by laminating the radial conductors.

However, since the conduction loss is eight times as large as the proximity loss, it is better to leave the

windings unlaminated to keep the winding resistance to a minimum.

The resulting electrical and generator system efficiencies from Figure 5-16 are plotted in Figure 5-17.

At large load resistance values the electrical system efficiency reaches 80%, while the overall generator

system efficiency falls due to the fixed core and proximity losses. Both le and ig converge for very small

values of the load resistance as conduction loss in the stator windings dominate all other losses.

At 305 krpm, stator #3 met the same fate as the other two 3-turn/pole stators. A piece of the rotor PM

broke off and ripped up the coils as shown in Figure 5-18(a). The rotor assembly with the broken PM is

shown in Figure 5-18(b).

Power vs. load
45-

- mech

40- cond

-~pe
P + P
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25 
-

(D

0 20-

10-

5--

0 ~ - ...
10 10 10 10

Load Resistance (Q)

Figure 5-16: Power Breakdown for stator #3 as a function of load resistance at 300 krpm for an air gap of

100 Pm.
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resistance at a 100 pim air gap and 300 krpm.
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Figure 5-18: Generator destruction at 300 krpm (a) stator #3 and (b) rotor PM.
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5.2 Second Generation Power Electronics

For the microengine to truly be a battery replacement it must provide a constant DC output voltage.

The magnetic generators presented in the previous section all produce a three-phase AC voltage. If the

microengine is to replace the BA5590, which has a 12 V DC output, then power electronics are needed to

rectify and boost the AC voltages from the generator and operate under closed loop control to provide a

regulated output voltage.

PM generators allow the use of both passive and active electronics to create a DC output voltage. One

possible solution is to use the transformer and diode bridge rectifier presented Section 4.5 to provide the

voltage step up and rectification followed by a linear regulator to provide a constant output voltage.

However, passive electronics tend to be large and bulky. Transformers designed for use in the stator

electrical frequency range of 10-20 kHz can be very large compared to the PM machine. The three-phase

transformer in Section 4.5 is 43 mm x 25 mm x 11 mm. A stator "die" is a 23 mm square that is at most

1.2 mm thick (with the stator coils) while the stator windings themselves have a 13 mm diameter with the

outer end turns included. The transformer has more than eight times the volume of the stator die. In

addition, the transformer/diode bridge combination cannot provide power factor correction. Power factor

correction is important at high speeds where the machine and transformer inductances will start to create a

phase lag in the machine current relative to the machine voltage, reducing output power capability. Figure

5-19 shows the generator system efficiency, power electronics efficiency and power factor as function of

speed for a PM machine connected to the transformer and diode bridge rectifier from Section 4.5. The PM

machine in Figure 5-19 uses a 1s generation PM rotor and an ideal 2 nd generation stator, with the

predicted resistance of 100 mn and an inductance of 0.3 pH, at an air gap of 100 Itm. At only 100 krpm

the power factor is 93.4%. The power electronics are 85.7% efficient and the generator system efficiency

is 46.8%. At 300 krpm, the power electronics and generator system efficiencies rise to 90.7% and 51.5%,

respectively. However the power factor drops to 90% while at 500 krpm the power factor is only 82.6%.

Clearly, as the speed rises, passive power electronics become a poor choice for power conversion.
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Figure 5-19: Generator system efficiency (g), power electronic efficiency (qp,) and power factor (Pf) vs.

speed for a 3-turn/pole stator connected to the transformer and diode bridge rectifier.

Additionally, using a linear regulator is a simple way to achieve output voltage regulation but they

tend to be inefficient. The efficiency of a linear regulator is approximately its output voltage divided by

its input voltage. To deliver maximum power the voltage across the diode bridge, at no load, needs to be

more than twice the desired output voltage of the linear regulator. This is because when maximum power

is being delivered, the voltage across the diode bridge will be half the no-load voltage and a linear

regulator typically requires at least a 0.5 - 1 V difference between its input and output voltage to operate

properly. At light loads, the linear regulator will be approximately 50% efficient. As the load increases,

the voltage into the linear regulator drops and its efficiency improves, but the generator system efficiency

decreases.

Switch-mode power electronics can eliminate the transformer, diode bridge and linear regulator and

provide all four functions (power factor correction, rectification, voltage step-up, and regulation) in a

much more compact and efficient way. Given their high rotational speed of 100,000+ rpm, microscale

magnetic machines operate at electrical frequencies one to two orders of magnitude larger than typical
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macroscale machines, typically in the kHz to tens of kHz range. The high operating electrical frequencies

lead to smaller passive filtering components in switch-mode power electronic circuits that drive them as

motors or generators. The small size of these PM machines also leads to low stator inductances. This

allows for both generators and motor drive systems with fast transient responses, but also requires very

high switching frequencies (hundreds of kHz to low MIz) in their associated power electronics.

Power electronics for macroscale PM machines often require speed and/or position sensing to

determine the position of the magnetic poles on the rotor. This information is used to keep the stator

currents in phase with the voltage to achieve maximum energy/power conversion. There are a number of

ways of determining the position of the rotor. A hall effect sensor is commonly used in macroscale PM

machines. However, these sensors are impractical to use in the microscale PM machines presented in this

thesis not only due the complexity involved in integrating the sensor into the machine but also due to the

operation temperatures (- 300 'C).

An alternate way is to use "sensor-less" techniques to estimate the rotor position from current and

terminal voltage measurements. These techniques are computationally intensive, often requiring the use

of high-performance microprocessors or digital signal processors (DSP). These techniques are used in

macroscale machines that spin much slower than 100,000 rpm and whose stator electrical frequencies are

in the tens to hundreds of Hz. The PWM signal generated by the microprocessor or DSP is typically no

higher than a few tens of kHz. Real time processing of current and voltage information to determine the

proper turn-on and turn-off times of the power transistors would be difficult achieve for the high speeds in

the microscale PM machines.

This section presents the design of a compact switch-mode rectifier that can provide a 12 V DC

output from the microscale PM machine with near unity power factor. The rectifier operates without the

need for any direct sensing of the rotor position/speed or terminal voltage/currents. The converter turns

the PM machine into a current source that can be controlled with a voltage control loop implemented

using an off-the-shelf pulse-width-modulated (PWM) control IC. Several topologies are first presented in

Section 5.2.1 followed by their comparison in Section 5.2.2. A switch-mode rectifier based on the boost
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semi-bridge topology is chosen because it is the most compact and efficient. Next, the modeling, design

and control of the boost rectifier are presented in Section 5.2.3 followed by component selection in

Section 5.2.4. Characterization of the switch-mode rectifier and PM generator is given in Section 5.2.5.

Finally, a comparison between the switch-mode rectifier and the transformer/diode bridge circuit of

Section 4.5 in terms of efficiency, power density and power factor is given in Section 5.2.6.

5.2.1 Switch-mode Rectifier Topology

Design of the rectifier is based on the following assumptions: the generator is an 8-pole, 3-turn/pole

stator using the same PM used in the 1" generation machines (3.175 mm ID, 9.525 mm OD) with a stator

resistance of 100 mQ and a inductance of 0.3 - 0.5 pH. The fundamental of the open-circuit voltage in the

machine is 2.5 Vpk at 20 kHz. The goal is to design a boost rectifier that can efficiently deliver 10 W to a

load with the PM machine spinning at 300,000 rpm. The surface area taken up by the power stage of the

rectifier should be no larger than 23 mm x 23 mm, which is the "die" area of the 2 nd generator stator.

Switch-mode power converters for macroscale PM machines operate in continuous-conduction-mode

(CCM) where the currents through the machine inductances are continuous sinusoids with small ripple at

the switching frequency of the converter. The switching frequency will be proportional to the applied DC

voltage, V., the duty ratio, D, of the PWM signal and inversely proportional to the stator inductance, Ls,

and desired ripple current, Iripple,pk.pk,

f Oc . (5-10)
L S ripple,pk-pk

The output voltage is 12 V, while the stator open-circuit voltage is much smaller and is ignored for the

purpose of this analysis. The machine inductance can vary from 0.3 - 0.5 gH. For a stator inductance of

0.5 pH, a duty ratio 0.5 and a desired ripple current of 1 Aprkpk, the switching frequency will be 12 MHz.

Such a high switching frequency is difficult to implement in PWM converters because of the small delays

needed in the control circuitry. In addition, gate drive, switching transition and output capacitive losses

become excessive large at these high switching frequencies.
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One way to provide active rectification and eliminate the transformer and diode bridge is to use a

MOSFET bridge. The output of the bridge can be connected to a CCM boost converter to provide step

and regulation of the rectified voltage as shown in Figure 5-20. The MOSFET bridge switches at the

stator electrical frequency. To properly gate the MOSFETs the position of the rotor is needed.

Alternatively, the terminal voltages and currents can be used. This is a "sensorless" technique that is not

computationally complex and requires only comparators and simple logic gates to implement. The

terminal currents can be measured by making the low-side switches (Q2, Q4, Q6) current sense

MOSFETs. Current sense MOSFETS, such as the Si4730EY from Vishay Siliconix (www.vishay.com),

use a current mirror to measure the current through the transistor.

The MOSFET bridge is controlled so that it mimics the behavior of an ideal diode bridge. Van, Vb,

and Vc1, are the line-to-neutral open-circuit voltages of phases A, B and C, respectively. When Van is

greater than zero and is greater than Vbl and Ven MOSTEFT Qi is on. When Vbf (>0) becomes larger than

Van and V, then MOSFET Q3 conducts. Only two phases have currents through them at any given time

and conduct for only 2/3 of every cycle.

This rectification strategy uses the terminal voltages and currents to determine when the MOSFETS

will be switched on and off. The line-to-neutral terminal voltages are Vat, Vbt, and Vet and include the

voltage drops due to phase resistance and inductance. Figure 5-21 illustrates a high-side switching

transition and a low side switching transition. In 5-21(a) phases A and C are conducting. At some point

Vbn will become larger than Va. When this occurs the current through the machine will be as shown in

Figure 5-21(b). The transition point can be determined from the terminal currents and voltages. Since

there is no current in phase B before the switching transition, Vbn = Vbt. The open-circuit voltage of phase

A can be computed from

Van =Vat - R2 +O L 2Ia 2=Vat + R +o L )IC. (5-11)

The next transition will be a low-side transition and occurs when Van becomes more negative than Vcn, at

which point current will flow through phases A and B. This is illustrated in 5-21(c). There is no current
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through phase A before the transition so Van equals Vat. The open-circuit voltage of phase C is computed

from

Vcn= - R2 +(o L2 IC (5-12)

The MOSFET rectifier acts like an ideal diode bridge which conducts only 2/3 of the cycle. Using the

current sensing MOSFETs can make the displacement factor close to unity. However, the partial

conduction of the rectifier MOSFETs leads to higher distortion factor and lower power factor. In addition,

the stator inductance creates commutation effects that create lag in the phase currents. This can negate the

benefits of using the current sense MOSFETs to determine the open-circuit voltages.

The 12 V output from the CCM boost converter can be used to power the MOSFET rectifier. Since

the output voltage, VO, is much larger than the rectified voltage, Vr, low side gate drives can be used for

all six MOSFETs. Current sensing of the boost current will be necessary for current-mode control of the

boost converter if good dynamic response is desired. Therefore, the boost MOSFET could also be a

current sensing MOSFET. This topology requires seven MOSFETs, seven gate drives and up to seven

Shottky diodes. While the switching frequency of the MOSFET rectifier is low (20 kHz), the switching

frequency of the boost FET must be high (~I MHz) to keep the size of boost inductor small.

MOSFET Rectifier Boost Converter

PM Generator L(cos

V R L,

C1 C. RL
Vr Q7

Vrc +

Rectifier PWM
Controller - Vat Vt Controller

Figure 5-20: MOSFET Rectifier and CCM boost converter.
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Figure 5-21: MOSFET rectifier switching sequence.
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An alternative way of providing rectification and voltage step up is to operate in discontinuous-

conduction-mode (DCM). In DCM, the inductor current will be discontinuous over a stator electrical

period. One possible topology is the three-phase DCM boost rectifier [57-59] shown in Figure 5-22. This

topology is typically used in 60 Hz line applications and provides near unity power factor and low

harmonic rectification without the need for large low-frequency passive magnetic components [57]. A

low-pass filter is used to attenuate the ripple current from the boost inductors so that the line voltage only

sees a sinusoidal current at the line frequency. Unlike the CCM boost converter, there are no turn-on gate

drive or diode reverse recovery losses. In addition the DCM converter can operate at lower switching

frequencies (-500 kHz) and while there are three inductors in the DCM converter, the total volume of the

magnetics is smaller. The DCM converter does have higher current stress in the switch than a CCM

converter [58], which limits it application at high power levels (1+ kW) but is perfectly suitable for low

power applications like the microscale PM generator where the currents are in the 2-5 A range.

Low Pass Filter DCM Boo

Vi, r Lr Lbuost

Vc

-- C.

T T T

st Rectifier

.C(

Co RL +

V0

PWM
Controller

Figure 5-22: Three-phase DCM boost rectifier.

The forward voltage drops in the diode bridge are negligible in line applications where the voltages

are 115 Vrm, - 270 V., [58,59] but are substantial compared to voltages produces by the microscale PM

machines. One way to overcome this is to use the MOSFET rectifier in place of the diode bridge as shown

in Figure 5-23. This topology also uses seven MOSFETs and seven gate drives. The MOSFET rectifier
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has partial conduction so that for 1/3 of the cycle, the phase currents conduct through the body diode or a

free wheeling Schottky diode, if that is used, which leads to higher losses.

MOSFET Rectifier Boost Converter

PM Generator

Va R, L, Lboost

C, RL +

1Q VV+

Low Pass Filter Rectifier
Q1 - Q6 Controller Va- Vc Contoller

Figure 5-23: DCM boost rectifier with the diode bridge replaced by a MOSFET bridge. The machine
inductance, Ls, and external capacitance, Cf, filter out switching ripple in the boost inductor currents.

The rectifier proposed for the microscale PM machine uses a variant based on the boost semi-bridge

topology [60] shown in Figure 5-24. The three power MOSFETs are driven from the same control signal

and are turned on/off at a constant switching frequency much higher than the stator electrical frequency.

Independent control of all three phases, as well as direct position, speed, current or voltage sensing is not

needed to align the stator currents with the line-to-neutral voltages due to DCM nature of circuit [60]. In

addition, using three switches instead of one reduces average current stress in each switch by 30% [60].

The DCM boost rectifier using the boost semi-bridge topology uses only three MOSFETs, three gate

drives and six Schottky diodes. The efficiency of this boost semi-bridge circuit can be improved by using

synchronous rectification shown in Figure 5-25. When current through the boost inductor is negative the

MOSFET is kept on, so that the low side free wheeling diode doesn't conduct. This can eliminate the

three low side free wheeling diodes. The diode conduction loss, turn-off switching transition loss and gate

drive losses are reduced by 50% because the MOSFETs are turning on and off at the switching frequency

half the time. Though synchronous rectification requires current sensing, only the direction of the current
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is needed. The boost MOSFETs need not be current sense MOSFETs. A small current sense resistor, level

shifting amplifier and a comparator could be used instead.

PM Generator DCM Boost Rectifier

V, R, L, Lboost

V +
CO RL V

V0

----------- --- Gate Gate Gate
Low Pass Filter Drive Drive Drive

PWM
Controller

Figure 5-24: DCM rectifier based on the boost semi-bridge topology.

PM Generator DCM Boost Rectifier

Va Rs Ls Lboost

V 0

VCC

Low Pass FilterGaeae Gt

Drive Drive Drv

PWM
Controiller -

Figure 5-25: DCM rectifier using the boost semi-bridge topology with synchronous rectification.

Figure 5-26 shows the currents through the DCM boost rectifier, of Figure 5-24, and PM machine

over a switching period. The voltage in phase A, Va, is positive while the voltage on phases B and C, Vb

and V,, respectively, are negative for illustration purposes. At the beginning of each switching period the

three MOSFETs are turned on and the currents through the boost inductors rise to a value proportional to

201



their respective open-circuit line-to-neutral voltages as shown Figure 5-26(a). The duty cycle determines

the fraction of the switching period that the switches remain on and consequently the peak current in the

boost inductor. When the MOSFETs are turned off the currents will flow through the diode bridge shown

in Figure 5-26(b). If the current through the boost inductor is positive (phase A), then current will flow

through the high side (or boost) diode. If currents are negative (phases B, C), they will flow through the

free wheeling diode in parallel with the MOSFET. The current in phase A will decrease according to

dIa 1 2
da = Va 2 3 , (5-13)
dt LbQ05t 3 )

while the currents in phases B and C will rise according to

db - 1 (V-Vb 1o, (5-14)
dt Lb005t 3

dI 1 1
d= _(VC + --Vo). (5-15)

dt Lb005t K 3

Equations (5-13) - (5-15) will hold until the current in one of the phases goes to zero, which is phase C in

this example. At this point only two diodes are conducting as shown in Figure 5-26(c). The current in

phase A during this portion of the switching period will decrease according to

d1a I (Va VS -V). (5-16)
dt 2Lboost

The current in phase B will rise at an equal and opposite rate of the current of phase A. In Figure 5-26(d)

the currents through phase A and B return to zero before the beginning of the next switching period.

To illustrate the operation of the rectifier the boost inductor currents in the rectifier over a few

switching periods are shown in Figure 5-27 while the currents in the MOSFETs and diodes are shown in

Figure 5-28. The rectifier has been simulated in PSIM for its ability to easily simulate switch-mode power

electronics. The currents flow from the drain to the source of the MOSFET is designated as positive while

the current through the diode flows from anode to cathode which is always positive.
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Figure 5-26: Currents through the PM machine and boost rectifier over a switching period: (a) at the
beginning of the period all thee MOSFETs turn on, (b) MOSFET turn off and currents flow through diode
bridge, (c) phase C current returns to zero and (d) all three phase current return to zero before the next
period begins. The current through phase A is positive while the current through phases B and C are
negative.
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The peak boost inductor current is proportional to the average value of the line-to-neutral voltage

during the on time of the MOSFET. This average value varies sinusoidally. Since the current in the boost

inductor returns to zero each period, the variation in the average value of the current over a switching

period will also be approximately sinusoidal and will be in phase with the open-circuit voltage. The boost

inductor currents have a component at the stator electrical frequency as well as a component near the

switching frequency [58]. For a DC output voltage much larger than the open-circuit voltage, such as in

the case for the microscale PM machines, the time it takes the boost inductor current to return to zero is

much shorter than the on time of the switch. Therefore the average current over a switching period is

almost independent of the output voltage leading to low harmonic distortion of the current waveform [60].

This is illustrated in Figure 5-29 which shows a PSIM simulation of the rectifier over two electrical

periods of the stator. The open-circuit voltage is sinusoidal with small 3 rd and 5h harmonic components.

The boost inductor current is in phase and its envelope varies with the open-circuit voltage. The filtered

current in the stator winding is mainly composed of the fundamental component of the boost inductor

current. It has no 3 rd harmonic component because the generator is a balanced three-phase machine.

The boost inductors are separate external inductors while the machine inductance and resistance,

along with an external capacitor, act as a damped low-pass LC filter. By using separate inductors, the high

frequency, high ripple currents are localized on the printed circuit board to minimize electromagnetic

interference (EMI). The LC filter reduces the high frequency ripple component of the boost inductor

current so that the currents through the stator windings are composed mainly of a fundamental harmonic

at the stator electrical frequency with a small ripple component at the switching frequency. Because the

ripple component is much smaller, the RMS of the stator currents is primarily due to the fundamental

harmonic. This leads to low harmonic distortion and reduced conduction loss is the stator windings. Even

though the RMS currents are larger in the boost inductor, its resistance is much smaller than the stator

resistance (by design) so the conduction loss in the inductor is a small fraction of the overall conduction

loss.
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Figure 5-29: PSIM simulation of the open-circuit voltage, boost inductor current and stator current of
phase A for two stator electrical periods.

In typical line applications the electrical frequency is only 60 Hz and the switching frequency is 20 -

40 kHz [57], which is thee orders of magnitude larger than the line frequency. This makes filtering the

high frequency ripple current easy. In this thesis, the PM machine electrical frequency is 10 - 20 kHz.

The switching frequency will be 500 - 600 kHz which is only one order of magnitude higher. This makes

filtering more challenging. However, significant attenuation of the ripple is not needed. High frequency

ripple currents in the stator windings produce negligible loss in the rotor and stator cores due to the large

air gap of the machine. The machine acts as a surface wound induction machine with very large slip due

to the huge difference between the machine speed and the switching frequencies. The ripple component

and the line component have approximately the same order of magnitude. Reducing the ripple component

by a factor of 5-10 means the RMS current is primarily due to the component at the stator electrical

frequency since the relative contributions go as the square of the magnitudes. The high frequency ripple

would only contribute 0.5 -2 % to the RMS current and 0.25% - 4% of the stator conduction loss.
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5.2.2 Topology Comparison

The four topologies considered in the last section are the MOSFET rectifier/CCM boost converter, the

DCM boost MOSFET-rectifier and the DCM boost semi-bridge rectifier with and without synchronous

rectification. These four topologies are simulated in PSIM which is used for its ease of implementing

switch-mode power electronics with various control strategies. They are compared in terms of their power

electronics efficiency, electrical system efficiency and power factor when connected to a second

generation stator and delivering 10 W of power to a load resistor. The rotor PM is the same as the one

used in the first generation machines since those were the only ones available at the time of this analysis.

However, the choice of the rotor PM does not make a big difference when comparing the relative

performance of the power electronics. The stator resistance and inductance is assumed to be 100 mQ and

0.3 lH, respectively. The rotor stator air gap is 100 pm and the rotational speed is 300 krpm. The details

of the components used and loss calculations for the rectifiers can be found in Appendix C.

For the MOSFET rectifier/CCM boost converter topology current sensing MOSFETs are used for the

boost switch and the low side switches on the rectifier. The high side switches use a normal power

MOSFET. The boost converter has a switching frequency of 1 MHz and uses a 1.5 pH D03316P-152

surface mount power inductor with a DC resistance of 10 mQ from Coilcraft. The inductor core is 8.4 mm

in diameter and is 5.2 mm tall for a volume of 287 mm 3 while the base is 13 mm by 9.4 mm. This

topology can deliver 10 W to load at a power electronics efficiency of 78% and electrical system

efficiency of 62%. The power factor for this topology is 92%. The stator current is shown in Figure 5-30.

The fact that the current only conducts for 2/3 of every cycle leads to distortion in the input current

waveform reducing power factor. In addition, the commutation effects of the stator inductance on the

MOSFET rectifier introduce a slight phase lag that further degrades power factor.

All three DCM rectifiers switch at 500 kHz and use three 0.33 pH D01813H-331 surface mount

power inductors from Coilcraft. The inductor core is 4.6 mm in diameter and is 5 mm tall while the base

is 8.8 mm by 6.1 mm. The total volume of all three inductors used in the DCM rectifiers is 249 mm 3
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which is smaller than the inductor used in the CCM boost converter. The DC resistance of these inductors

is only 4 mn but at 500 kHz the resistance is 38 mn. The DCM boost MOSFET rectifier uses the same

MOSFETs in the rectifier as the CCM converter but uses a normal power MOSFET as the boost switch.

The boost semi-bridge rectifier uses only normal power MOSFETs as the boost switches. For

synchronous rectification a 10 mK2 resistor is placed in series with the MOSFETs to sense the direction of

the current.

Figure 5-31 shows waveforms for the boost semi-bridge rectifier. The boost inductor current is at the

limit between DCM and CCM operation. The stator current and voltages are in phase as desired and the

output voltage is 12 V with 60 mV of peak-to-peak ripple. Figure 5-32 shows the harmonic components

of the boost inductor and stator currents. Both currents have a 20 kHz component of 4.5 A. The boost

inductor current has harmonic components at 480 kHz and 520 kHz with magnitudes of 2 A and 1.82 A,

respectively. The magnitudes of these harmonic components in the stator current waveforms are only 0.33

A and 0.25 A, respectively. The higher order harmonic components beyond 520 kHz in the boost inductor

current are almost completely filtered out by the stator input filter. Total harmonic distortion (THD) of the

stator currents is only 9.7% while the THD of the boost inductor current is 64%.

6.00

0 .00-- - - - -- -- - ---

A -2.00-----

-4.00

7.50 7.55 7.60 7.65 7.70 7.75 7.80
Time (ins)

Figure 5-30: Open-circuit voltage and stator current for the MOSFET Rectifier/CCM boost converter.
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Figure 5-32: Harmonic content of boost inductor and stator currents.
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As a final comparison the same 3-turn/pole generator, when connected to the transformer/diode

bridge circuit, can deliver 10 W at 71.6% efficiency with the power electronics efficiency at 94.7%. This,

however, is misleading. The passive circuit provides no output voltage regulation. Suppose the diode

bridge is connected to a DC/DC converter that can deliver 10 W of power at 85% efficiency. This means

that the power out from the diode bridge must be 11.76 W. This requires the PM machine to generate

18.318 W, of which 5.744 W is dissipated in the stator resistance. The transformer and diode bridge

dissipate 0.814 W. The electrical system efficiency is 55% while the power electronics efficiency

(transformer + diode bridge + DC/DC converter) is 80% efficient. In addition the power factor is only

89% while in the boost rectifier it is 99%. Table 5-4 summarizes the predicted performance of the

generator with different power electronics.

For the four topologies considered the power electronics and electrical system efficiencies are very

similar. The CCM boost converter uses a much larger inductor than the DCM converter and requires

seven MOSFETs and gate drives. The DCM boost MOSFET rectifier also requires seven MOSFETs and

gate drives. The boost semi-bridge rectifier requires only three MOSFETs and gate drives and with

synchronous rectification provides the highest overall electrical system efficiency in the most compact

size. At this point the two topologies using the MOSFET rectifier are no longer considered.

The breakdown of the loss in the DCM boost semi-bridge rectifier without synchronous rectification

is shown in Table 5-5. The largest contributor to the loss is the conduction loss in the boost inductors. The

boost inductor conduction loss is primarily due to skin effects in the thick wire used that makes the

resistance at 500 kHz 34 m92 larger than its DC value. The skin effect can be reduced by using Litz wire

instead of a single thick solid wire. Table 5-6 shows the estimated performance improvements in the

boost semi-bridge topology assuming the use of Litz wire were to increase the resistance by only 17 mK

at 500 kHz. The boost semi-bridge rectifier has both its power electronics and electrical system efficiency

increased by 4% to 77% and 64% respectively. With synchronous rectification the power electronics

become over 80% efficient while the electrical system efficiency approaches 70%.
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Table 5-4: Performance breakdown of generator system with different power electronics.

Property MOSFET DCM boost DCM boost DCM boost semi- Transformer/

rectifier/ MOSFET semi-bridge bridge rectifier diode bridge/
CCM boost rectifier rectifier with synch. rect. DC-DC

converter converter

Peiect 16.05 W 16.33 W 16.78 W 15.95 18.32 W

Pcond 3.17 W 2.91W 3.066 W 2.75 W 5.75 W

Ppe 2.88 W 3.42 W 3.714 W 3.2 W 2.57 W

Pout low low low low low

le 78% 75% 73% 76% 80%

Ipe 62% 61% 60% 63% 55%

Pf 92% 98% 99% 99% 89%

Table 5-5: Loss breakdown of boost rectifier.

Loss Component Power Loss

Boost inductor conduction loss 1.628 W

Boost inductor core loss 184 mW

MOSFET conduction loss 353 mW

MOSFET switching transition loss 198 mW

Diode conduction loss 855 mW

MOSFET & Diode capacitive losses 97 mW
Control IC & gate drives 399 mW

Total 3.714W

Table 5-6: Estimated performance of DCM boost semi-bridge rectifiers with Litz wire inductors.

DCM boost semi-bridge rectifier
Property DCM boost semi-bridge rectifier with synch. rect.

Pelect 15.54 W 14.74 W

Pcond 2.59 W 2.34 W

Ppe 2.95 W 2.4 W

Pout__ low loW
77% 81%

Epe 64% 68%

Pf 99% 99%

The DCM boost semi-bridge rectifier with synchronous rectification using boost inductors with Litz

wire would be the best choice terms of size and efficiency. However, the first switch-mode rectifier will

be a DCM boost semi-bridge rectifier without synchronous rectification because its control can be easily

implemented with an off-the-shelf voltage-mode PWM control IC. The implementation of the

synchronous rectification and the use of Litz wire inductors is left for future work. From now on the term

the DCM boost rectifier using the semi-bridge topology will be simply referred to as the boost rectifier.
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5.2.3 Modeling, Design and Control

Figure 5-33 shows a simplified model of the power generation system. The input side is shown on a

per-phase line-to-neutral basis. Assuming an ideal lossless converter, the power in will equal the output

power

3
-VIll = V 0 =P, (5-17)
2

where, V1 is the peak line-to-neutral voltage after the stator resistance and 1 is the peak fundamental

component of the current through a single boost inductor. The input power from the generator will be

- I=- R + P0 . (5-18)
2 2

Solving (5-18) for I, the required current in each phase to deliver PO to the output is

V (P
I= VO P- O (5-19)

2RS Pmax ,

where,

3V2

P Omax (5-20)
8R(

Pmax is the power the three phase generator can deliver to a matched resistive three phase load. The input

voltage to the power converter, on a line-to-neutral basis will be

V, =VOC - IS = V 1cI+ PO . (5-21)
2 Pmax

Boost Rectifier
Rs Ii

+ 
+ T

VOC1 V1  VO Co RL

Figure 5-33: Simplified model of the boost rectifier and PM generator. The input circuit is shown on a
per-phase line-to-neutral basis.
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In [61] the input and output currents as a function of input voltage, output voltage, duty ratio, boost

inductance and switching frequency were derived for the three-phase DCM boost rectifier. The terms in

[61] are modified using the voltage after the machine resistance, V 1, rather than the input voltage, Vc.

The average output current for the boost rectifier is

I =: 1.46 V1D 2  (5-22)
- 2Lostfs (Vo -1.67v 1 ) (5-22

The per-phase input current to the converter can be found using (5-17) and (5-22) and is equal to

0.973 V0 VID2 (5-23)
2LbowstfsW (v -1.67V 1 ) (

To deliver 10 W at an output voltage of 12 V, 1 must be 833 mA. Under the assumptions in Section

5.2 (V., = 2.5 V, Rs = 100 mQ) Pm.a equals 23.44 W. Using (5-2 1), Vi is 2.196 V. Equation (5-22) can be

used as guide to determine the desired boost inductor value and duty ratio. Rewriting (5-22),

Lboost _ 1.46 V1
2  

5-24)
D2  2I 0 fw, (V. -1.67V 1)(

A switching frequency of 500 kHz is chosen to minimize frequency dependent losses. Since the

output voltage is much larger than the input voltage, a large duty can be chosen and still keep the boost

inductor current discontinuous. A larger duty ratio typically leads to a smaller RMS value for the boost

current, minimizing conduction loss. However, since the converter is not lossless, any duty ratio set by (5-

24) will under predict the actual duty ratio. This is because the converter must draw extra power to

overcome its own losses which it does by increasing the inductor current. The duty ratio is set to 0.5

which corresponds to a boost inductor value of 0.36 pH. The closest standard value available is 0.33 pH

and the resulting nominal duty ratio is 0.57. Simulations of the boost rectifier confirm that the inductor

current remains discontinuous at maximum output power.

To design a control system for the boost rectifier, a small signal model of the converter is needed. A

small signal model based on the current injected equivalent circuit method was derived in [61] for the
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three-phase DCM boost rectifier. To determine the small signal model parameters, the currents, voltages

and duty ratio are broken into a large signal component and a small signal component,

V, =VO +V,

10 =10 + 1o

V, =V, + V .(5-25)

d1=1D + 10

The output parameters can be found by substituting small signal perturbations into the rearranged form of

(5-22),

(V. -1.67V 1 )I = 1.46 V,2 D2 .
2
L boos fsw

(5-26)

The small signal output current can be written as a function of the input and output voltage and duty ratio
[55]

(5-27)

where,

~ ~0
io = G2VI +Kod- .

2VO - 1.67VI I0
G2 =V0l I10.G2= VO - 1.67VI ) VI

K 2I~
K O = 20 .

D

Ro= Vj0 (1- .

(5-28)

(5-29)

(5-30)

Similarly the input parameters can be found by substituting the small signal perturbations into the

rearranged form of (5-23)

0.9732
(VO -1.67V 1 )11 = 9 VVD 2 .

2 Loost fS
(5-31)

The small signal input current can be written as a function of the input and output voltage and duty ratio

[55]
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=GIVO +Ki +o .(5-32)
R I

where,

Gl =I - 67 i (5-33)
0o - 1.67V1, VO

2I
K I = 1 . (5-34)

RI= 11 1 _ . (5-35)

The complete small signal model is shown in Figure 5-34.

The rectifier acts like a controlled current source. This is typical of switch-mode power converters

operating in discontinuous conduction mode [47]. The average output current is controlled by the duty

ratio. This current is proportional to the square of the duty ratio. The transfer functions between the input

voltage, duty ratio and load current can be found with the aid of the (5-27). The voltage on the output

capacitor, C, is the only state variable so the dynamics of the converter are first order. By summing the

currents at the output, the stator equation the capacitor current is the Laplace domain is

sCjV =G 2 VI +Kod - - vL (5-36)

Rearranging (5-36), the output voltage as function of input voltage, duty ratio and perturbations in the

load current is

G 2 Rq KoR ~ R
__(S)= 02Req V d - eqa_ . (5-37)
Tos+I Tos+1 Tes+1

where,
Req=Ro 1 RL, (5-38)

To=ReqCo. (5-39)
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Figure 5-34: Small signal model for DCM boost rectifier. Input circuit is on a per-phase line-to-neutral
basis.

V--- G2 +L

SrfG(S) K + + Req

+_ TOs+1

Figure 5-35: Control system block diagram for boost rectifier.

An outer voltage control loop is used to control the duty ratio to regulate the output voltage as shown

in Figure 5-35. The rectifier is placed in a feedback loop in which the difference between output voltage

and reference voltage is sent to a compensator Ge(s). The output of the compensator determines the duty

ratio of the converter. A proportional plus integral (PI) compensator is used

Gc(s)= K (s +l). (5-40)

The closed-loop transfer function from the reference to output voltage is

v (s)= M(s)= KCKOReq(Tcs+1) (5-41)
Vref TOS2 +(1+KCKOReqTj+ KCKORe

Equation (5-41) can be rearranged and put into the standard second order model form [62]

KCKo J(TcS +1) 2( 1)

M(s)= C 0_ 2 , (5-42)

s21+r K K T s + KcKO s 2 +2(os + (02

TO C CO

where
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o2= , (5-43)
( n C O ) ,

= +O . (5-44)
2 rO(On

The closed loop bandwidth of the converter can be found by calculating at what frequency the magnitude

of M(jo) is equal to 0.7071. After some algebraic manipulation the, closed loop bandwidth is

(Oh = (n 2 2I 4 +2 +4c 4 (5-45)

where,

U= 1+ (TCo )2. (5-46)

The following compensator is chosen to provide a closed loop bandwidth of 20 kHz with 83' of phase

margin,

GC(s)= 20000(4.4 x10- 5 s +1). (5-47)

The bode plots for the loop transmission, L(jo), defined as the open loop transfer function from Vref

to VO, and Mjoo), the closed loop transfer function from Vref to V., is shown in Figure 5-36. A 7.5 W - 10

W - 7.5 W load step is shown in Figure 5-37. The peak over/undershoot of the output voltage is -60 mV

with a settling time of 1.5 ms. The inductor current changes rapidly to bring the output voltage back to 12

V.
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Figure 5-36: Bode plot of open loop and closed loop transfer functions Ljoo) and Mow) from Vrf to V0.
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Figure 5-37: Transient response of the output voltage and boost inductor current during a 7.5 W - 10 W -

7.5 W load step.
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The interaction between the input filter and the closed loop converter can change the transient

response of the closed loop system and may even make the system unstable. The output impedance of the

input filter affects the control-to-output and line-to-output transfer functions. If the unity gain cross over

frequency of the loop transfer function is greater than or equal to the resonant frequency of the input filter

then instability can occur if the output impedance of the filter is larger than the input impedance of the

rectifier. To determine the effects of the input filter on the closed loop system, the Middlebrook Extra

Element Theorem is used [55]. The theorem determines how a transfer function is modified by the

addition of external impedances to a network without having to solve the system all over again.

The control-to-output transfer function without the input filter is

G, (s)= (s' = KoR , (5-48)
d =0  0 s+1

while the line-to-output transfer function is

s G2 R0q . (5-49)
1 1 0 +1

Using the Middlebrook Extra Element Theorem, the control-to-output transfer function with the input

filter present is [55]

1+z0

Gvd(s)= Gvd(s)z = 1. (5-50)

Z D

The term outside the parentheses is the control-to-output transfer function when there is no input filter

and is given in (5-48). ZO is the output impedance of the input filter. The small signal input circuit in

Figure 5-38 is on a line-to-neutral basis. The filter capacitors, Cf, are connected in a A configuration. The

equivalent line-to-neutral filter capacitance, C,, can be found by converting the A-connected capacitors

into their equivalent wye configuration values. The line to neutral capacitance C, will be 3Cf. The output

impedance of the input filter is then
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(5-51)Z.(s)= RS +Ls 2
1 + RSCas + LsCas

The converter input impedance under the condition that the perturbations in the duty cycle is zero, ZD, is

ZD (s) Zi (s O. (5-52)

Figure 5-39(a) shows the small signal model of the converter with the perturbations in the duty ratio

equal to zero. A test current is applied to the input circuit. The output current is

i0 =G 2 t. (5-53)

The output voltage will be

G 2 Req
VO (s) = G 2ZL t Ts + Vt. (5-54)

Rs Ls

VOC /-r CS 41VI

ZO(s)

+

V 0 CO RL4L

Figure 5-38: Small signal model of boost rectifier showing equivalent line-to-neutral
output impedance Z0(s).

(a) ,

v R, ()GIV C)GVt R, V 0 1TCo RL

Zd(s)

(b)

input filter with

io,

It Vt KId R, CDG 2 t tDKOa R,) Vo Co RL

- T

Figure 5-39: Small signal model of boost rectifier with (a) perturbations in duty cycle = 0 for calculating
ZD(s) and (b) perturbations in the output voltage -+ 0 for calculating ZN(s)-
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The test current will equal the sum of the current through the input resistor, R1, and the current source G 1,

tR+ GjG2ZLt .(5-55)

The resulting input impedance is

Z DR .(5-56)
it 1+GG 2ZLRI

After some algebraic manipulation (5-56) can be written as

ZD (s) = V (ts +1) (5-57)
11 (tis +1)

where,

R2

1 o1 C (5-58)
R1 +RO

The impedance, ZN, is the input impedance of the rectifier under the assumption that the perturbation in

the output voltage go to zero,

ZN(s)=Zi(s{O. (5-59)

This is impedance of the converter under perfect control in which the duty cycle is varied such that the

output voltage is held constant [55]. It can be found with the aid of Figure 5-39(b). A test current is again

applied to the input circuit of the boost rectifier. If the perturbation in the output voltage is zero then the

small signal output current must also go to zero. The current sourced by the duty ratio must exactly cancel

out the output current generated by the input voltage through G1. Under these conditions the duty ratio is

d=-G2 V . (5-60)
KO

The input current will equal the sum of the current through the input resistance and the current from the

duty ratio current source,

K G v

Th = _esu2tn + in. (5-6 1)

The resulting input impedance is
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KORI (5-62)
it KIRIG 2 -K 0

After extensive algebraic manipulation (5-62) can be written as

ZN(S) I . (5-63)
Ii

In order for the input filter to have a negligible effect on the system transfer functions, the magnitude

of Zo should be much smaller than the magnitudes of ZN and ZD. Figure 5-40 plot ZN, ZD and Z. from 100

Hz to 25 kHz. The stator (input filter) inductance is 0.3 pH. A filter capacitance of 0.83 F is chosen to

attenuate the boost inductor ripple current by a factor of six while keeping the resonant frequency of the

filter (184 kHz) high enough so that it introduces little phase shift at 20 kHz. The unity gain cross over

frequency of loop transmission L(s) = Gc(s)Gvd(s) is 19 kHz. Up to this frequency the impedance of the

input filter has negligible affect on the control-to-output and line-to-output transfer functions as desired.

Bode Diagram
0

-5----------------------------------------
ZDD-10 -- Z

N

-25

-30
180;1---

135

2 90

ca 45

.3.-------------------

-45
10 10 104

Frequency (Hz)

Figure 5-40: Bode plot of ZD, ZN and Z0.
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5.2.4 Component Selection

This section describes the components used in the DCM boost rectifier. The complete circuit

schematic of the rectifier is shown in Figure 5-41. The list of components used in the rectifier is shown in

Table 5-7. The control section of the rectifier is discussed first followed by the power stage component

selection. A standard off-the-shelf voltage-mode PWM control IC is used the boost rectifier. A simple

SPICE macro-model for the PWM controller has been found [63] so that the boost rectifier can be

modeled in PSpice. This is done because PSIM does not model switching or capacitive losses in the

MOSFET or diodes. For the rectifier comparison in Section 5.2.2 these losses were computed using

analytical models in Appendix C but required some iteration in the simulations. The iteration was

acceptable only because a single output power was simulated.
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B C3 JC4
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Figure 5-41: Circuit schematic of DCM boost rectifier.
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Table 5-7: Boost Rectifier Components.

Component Value Part Number Description

R1 91 k9 1/1OW 0.1% 0805 SMD
R2 24 kW 1/1oW 0.1% 0805 SMD
R3 8.87 kQ 1/8W 1% 0805 SMD
R4 7.87 kQ 1/8W 1% 0805 SMD
R5  3.9 kt2 1/8W 1% 0805 SMD
R6  10 2 1/8W 1% 0805 SMD
R7 152 _1/8W 1% 0805 SMD

C1, C 3, C5  0.68 F CERAMIC 10% 25V X5R 0805

C2 , C 4, C6  0.15 pF CERAMIC 10% 25V X7R 0805

C 7 - C 12  0.47 [tF CERAMIC 10% 25V X7R 0805

C13  1 F CERAMIC 10% 25V X5R 0805

C 14  0.1 F CERAMIC 10% 50V X7R 0805

C15  1200 pF CERAMIC 10% 50V X7R 0805

C16  2200 pF CERAMIC 10% 50V X7R 0805

C17  5600 pF CERAMIC 10% 50V X7R 0805

C18, C 19 , C 20  4.7 pF CERAMIC 10% 25V X5R 1206

C2 1, C22 , C23  2.2 IF CERAMIC 10% 25V X5R 1206

C 24  33 gF TANTALUM 16V 10% SMD
L1, L2, L3  0.33 pH D01813H-331 SMD Power Inductor, 10 A Isat, 7 A Irms
D1 - D6  DFLS130L 30V IA SCHOTTKY DIODE POWERDI123
D7, D8  B0520WS 20V 200MW SCHOTTKY DIODE SOD-323
D8  1N4743A 13V 1W ZENER DIODE 5% DO-41

Qi, Q2, Q3 IRF7413Z 30 V 13 A MOSFET SO-8

U 1, U2 , U3  LM5112 14.5 V 3A/7A GATE DRIVE LLP-6
U4 UCC28C40 PWM CONTROL IC 8-MSOP

5.2.4.1 Control Section

The control section of the boost rectifier is shown in Figure 5-42. It consists of one active circuit, the

UCC28C40 (U 4) and various passive components. The UCC28C40 (Texas Instruments) is a current mode

control IC that comes in a MSOP-8 package that is 3.05 mm x 3.05 mm (5 mm with pins) and is 1 mm

high. It is intended for high frequency power supplies for 12 V systems and has a maximum switching

frequency of 1 MHz. The maximum rated supply voltage for the control IC is 20 V. It can starts up from a

minimum supply voltage of 7 V and its under voltage lockout (UVLO) is 6.6 V, which means that once

the converter is running, the control IC shuts off when its supply voltage is at 6.6 V rather than at 7 V.
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Figure 5-42: Boost rectifier control section.

The UCC28C40's error amplifier has 90 dB of DC gain and a gain-bandwidth product (GBW) of 1.5

MHz (typical values). The FB pin is the inverting input to the error amplifier while the non-inverting

input is connected to a 2.5 V reference. The reference voltage is accurate to ±2% over its operating

temperature range of -40 'C to 105 *C. The Comp pin is the output of the error amplifier. The 12 V

output voltage is divided down to match the 2.5 V reference using R1 and R2, which are 91 kQ and 24 kW,

respectively, with a tolerance of 0.1%. The voltage across R2 is fed to the compensation network

consisting of R3, R4 and C17. R 3 and R 4 are 8.87 kO and 7.87 kQ, respectively, and have 1% tolerance. C17

is 5600 pF ceramic capacitor with 10% tolerance. The network implements the following P1 compensator

transfer function

GC(s)= 20000(4 .4 x 10-5s+1)
5

R5.

the

(5-64)

The Vref pin is a 5 V reference that is used to charge up a time capacitor through the timing resistor,

The timing capacitor charges up to 3 V at which point an internal current sink of 8.4 mA discharges

capacitor through the RT/CT pin. When the voltage drops down to 0.7 V, the current sink turns off
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and CT is charged up again. The CS pin is the current sense signal pin and is connected to the non-

inverting input of the PWM comparator. To use the UCC28C40 as a voltage-mode controller, a 0 - 1 V

saw tooth ramp needs to be fed into the CS pin [64]. This ramp voltage is compared to the output of the

error amplifier to determine the duty ratio of the output pulses. This ramp can be generated by using a

fraction of the CT ramp voltage. This is implemented by a capacitive voltage divider through timing

capacitors C15 and C16 which are 1200 pF and 2200 pF, respectively. C16 will have 35% of the total

voltage across the two capacitors and the peak ramp voltage will be 1.06 V. The equivalent timing

capacitance is 776 pF. From the UCC28C40 data sheet, to generate a 500 kHz switching frequency with a

timing capacitance of 776 pF, a 3.9 kM resistor is needed. This timing resistance is bypassed with a 0.1 pF

capacitor (C14) to ground.

The operating supply current at 500 kHz is 4 mA. At a supply voltage (VDD) of 12 V, the control IC

only consumes 48 mW of power, far below the maximum power dissipation rating of the MSOP-8

package of 350 mW. The IC's junction-to-ambient thermal resistance, Oja, is 269 'C/W, leading to a

modest 13 'C rise in the junction temperature above the ambient temperature at maximum power

dissipation.

The control IC (and gate drives) can be powered either from an external power supply through D7 or

from the output voltage through D8. To start up the converter, an external supply raises the VDD pin to 7

V, at which point the converter turns on and starts to bring up the output voltage. When the output voltage

becomes larger than the external supply voltage, the converter powers itself up to 12 V. D7 and D8 are 200

mW, 20 V B0520WS Schottky diodes from Diodes Inc. and provide an OR-ing function for the two

power sources. If self-sustained operation is not desired, then D8 can be removed and the external power

source can be set to 12 V. The sense resistor, R6, is used to measure the power consumed by the control

IC and gate drives and has a value of 10 n. A 1 F capacitor (C13 ) is used for supply bypassing of the

UCC28C40's VDD pin. D9 is a 13 V Zener diode and is used to clamp the supply voltage to protect the

gate drives, which are rated to 14 V, from over voltage transients.
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Figure 5-43: Boost rectifier power stage.

5.2.4.2 Power Stage

A single phase of the rectifier's power stage is shown in Figure 5-43. The only exception is the

damping leg composed of R 7 and C2 4 of which there is only one. The passive components (L, C, D) and

their losses, are discussed first. Next the gate drive (U1 - U3) selection is presented followed by the

selection and loss calculation of the power MOSFETs (Qi - Q3).

Boost Inductors

A 0.33 pH inductor was chosen in Section 5.2.3. Using the model derived in that section the peak

current in the boost inductor will be

V1DI V = = 7.6A . (5-65)
L boost fsw

The corresponding RMS current through the boost inductor is 3.8 A which is found from the simulation

model. The D01813H-331 from Coilcraft is a 0.33 p1 (±20% tolerance) surface mount power inductor

designed for high current applications. It is chosen as the boost inductor due to its high saturation (10 A)

and RMS (7 A) current ratings, small size and its easy availability. The inductor is essentially a small

ferrite core wrapped with a few turns of thick wire and has a self resonance frequency of 600 MHz. The

inductor is 5.84 mm by 6.1 mm and 5 mm high (8.89 mm with end connections).
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Figure 5-44: Equivalent circuit of boost inductor.

The equivalent circuit model for the inductor is shown in Figure 5-44. The SPICE model for the

D01813H-331 is available from www.Coilcraft.com. The DC resistance of the inductor, RDC, is only 4

mQ while the interwinding capacitance, Cfw, and the isolation resistance, R1s, are 14 pF and 50 kM,

respectively. The AC resistance, RAC, core resistance, RCR, and high frequency inductance (in pH), Lboost,

can be found using

RAC (fsw ) Kl , (5-66)

RCR(fsw)=K 2 j , (5-67)

L bost(fsw)= K3 - K 4 log(K 5fsw), (5-68)

where K = 4.85x10-, K2 = 0.146, K3 = 0.33, K4 = 7.96x0 and K5 = 1.02x10-5. At a switching

frequency of 500 kHz, RAC = 34 mQ, Rc = 104 Q and Lboost= 0.324 PH. The AC resistance of the inductor

windings is substantially larger than the DC resistance and contributes a significant amount of loss in the

inductor. This is expected due to the thickness of the wire used. In the future, the single thick wire can be

replaced by multiple thinner wires, or even Litz wire, to reduce skin effect.

Input/Output filter capacitors

The input filter capacitors are composed of a 0.68 pF capacitor (C1, C3 , C5 ) in parallel with a 0.15 pF

(C1, C3 , C5) for a total filter capacitance of 0.83 pF. This value is chosen because the filter attenuates the

boost inductor ripple current by a factor of six while keeping its resonant frequency (184 kHz) high

enough so that it introduces little phase shift at 20 kHz. The two capacitors come in EIA 0805 packages.
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In order to have no more than 100 mV of peak-to-peak ripple voltage on the output voltage at an

output power of 10 W, the output filter capacitance, C., needs to be at least 20 pF. Multilayer ceramic

capacitors are used for filtering and bypassing. The output filter capacitor is made up of multiple 0.47 F

(C10 - C12), 4.7 PF (C18 - C2 0) and 2.2 PF (C21 - C23) capacitors rather than a single 22 F capacitor

(closest standard value to 20 pF). This is to improve the high frequency behavior of the filter capacitance

by using multiple capacitors with a high self resonant frequency (SRF). The 2.2 and 4.7 VF capacitors

come in an EIA 1206 package with an equivalent series inductance (ESL) of 1.1 - 1.4 nH [65]. The SRF

of these capacitors is 2 - 3.2 MHz. The 0.47 F capacitors come in an EIA 0805 package with an ESL of

0.6 - 0.9 nH and a SRF of 7.7 - 9.5 MHz. Using multiple capacitors also allows them to be placed near

the three power stages of the boost rectifier. This is important because the power stage handles high

frequency switch currents which are sourced and sinked by the output filter capacitors.

Damping Leg

The compensator transfer function is designed using a small signal model of the rectifier assuming

maximum output power operating conditions. The load and operating conditions can wide vary. A smaller

load corresponds to a larger load resistance as well as a larger output resistance of the rectifier. This

moves the pole in the transfer function inward reducing phase margin and causes the transient response to

a load step to exhibit oscillatory behavior. To prevent this oscillatory response a damping leg, consisting

of a 15 Q resistor (R7) and a 33 F tantalum capacitor (C24), is used. From a transient point of view the

damping leg looks like a 17 K2 load (15 n + 2 2 capacitor ESR) but does not dissipate any DC power.

Diode Bridge

The diodes used in the bridge (D1 - D) are 30 V, 1 A DFLS13OL surface mount Schottky diode from

Diodes Inc. These diodes have very low forward voltages and junction capacitances. The forward voltage

is only 0.36 V with 1.5 A through the diode and the total capacitance is 70 pF at a reverse voltage of 12

V. Each comes in a PowerDil23 package that is 3 mm long, 2 mm wide, and 1 mm high and is capable of

dissipating 556 mW of power. The SPICE model for the DFLS13OL can be found at www.diodes.com.
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Gate Drives

The LM5112 gate driver IC from National semiconductor (U1 - U3) is used to drive the power

MOSFETS and comes in a leadless LLP-6 (SOT-23) package that is 3 mm x 3mm and 0.8 mm high. The

gate drive has both an inverting (INB) and non-inverting (IN) input. Since the inverting input is not

needed it is tied to ground. The LM5112 has two separate ground connections, one for the input (INREF)

and one for the output (VEE). This allows the input signal to be ground referenced while the gate drive can

be pulled down to a voltage below ground by making VEE negative. Since this feature is not necessary for

the boost rectifier, both INREFF and VEE are tied to ground.

The gate drive is capable of sourcing 3 A and sinking 7 A with a propagation delay of 25 ns. The

output resistance of the gate drive is 30 9 when sourcing current and 1.4 0 when sinking current.

Asymmetric current source/sink capability is desired. The gate drive for the MOSFET typically includes

an external resistor to limit the rise time of the gate-to-source voltage, Vgs. This is done to reduce EMI.

The external resistor also prevents oscillations in the MOSFET gate voltage due to interaction between

the input capacitance of the MOSFET and any parasitic trace inductance between the driver and the FET.

The external resistor adds extra dissipation in the gate drive circuit. It also increases the turn-on transition

time which increases the turn-on switching transition loss. However, because the rectifier operates in

discontinuous conduction mode, the boost inductor current starts at zero at the beginning of every cycle.

There is no turn-on transition loss so a slow turn-on of the MOSFET is not a problem. The high output

resistance of the gate drive when sourcing current eliminates the need for an external resistor, saving

board space. There will be a turn-off transition loss as the current in the boost inductor transitions from

the flowing through the power MOSFET to the high side diode. Reducing the turn-off transition time will

minimize this loss. The high current sink capability and low output resistance allows the MOSFET to turn

of quickly, minimizing the turn-off transition loss. Note that when the boost inductor current is negative,

current switches from the power MOSFET to the free wheeling diode. Since the drain to source voltage of

the MOSFET is equal to the forward voltage of the Schottky diode (~0.4 V), the turn-off transition loss is

much lower than when the current is positive.
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The gate drive can operate from a 3.5 - 14 V supply. A 0.47 pF multilayer ceramic capacitor (C7 -

C9) is used for supply bypassing due to its small ESR and ESL. The input supply current is 1 mA (2 mA

max). Gate drive loss is equal to the sum of the quiescent power lost, the power consumed charging and

discharging the gate of the MOSFET and the transient loss in the gate drive which occurs when the output

switches state,

Pgd = VgdIq + Vgd Q g fsw + O.
8 8 9 Q g sw* (5-69)

Vgd is the gate drive voltage (either the output voltage or 10 - 12 V from an external supply). Qg is the

total gate charge on the MOSFET when Vgs = Vgd. The total gate charge required to put a certain voltage

across the gate and source is usually specified because the input capacitance is nonlinear [66]. It is 14 nC

at Vgs = 10 V and 16.3 nC at Vgs = 12 V for the MOSFETs used.

Power MOSFET

The IRF7413Z (Q1 - Q3) from International Rectifier is a 30 V, 13 A power MOSFET intended for

notebook processor power applications. It comes in an SOIC-8 package that is 5 mm long, 4 mm wide (6

mm with pins) and 1.75 mm high. The maximum power dissipation is 2.5 W at 25 *C and 1.6 W at 70 'C.

The IRF7413Z has a maximum on-state resistance, R,,., of 10 mK at a gate-to-source voltage of 10 V at

25 'C. The on-state resistance will vary with temperature. From the IRF7413Z data sheet this dependence

is approximately

Rds~o (T) = Rdseon 25-C [I + 0.00385(T - 25)]. (5-70)

The maximum RMS current through the MOSFET will be 4 A at lOW. The junction-to-ambient thermal

resistivity, Oja, of the SOIC-8 package is 50 'C/W. At an ambient temperature of 40 'C, the junction

temperature of the MOSFET will be 48.8 *C the on state resistance will be 11 mn and the power

dissipation will be 176 mW. The gate drives will be powered from the 12 V output voltage. Since R&s,

decreases with increasing Vgs, the actual resistance of the MOSFET will be less than 11 mQ even at

maximum power dissipation. The SPICE model for the IRF7413Z is available at www.irf.com.
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5.2.5 Boost Rectifier Characterization

This section presents the characterization of the DCM boost rectifier with the components specified in

Section 5.2.4. The rectifier is shown in Figure 5-45 along with a 3-turn/pole stator for size comparison.

The rectifier power stage is 24 mm x 22.5 mm and has about the same surface area as the stator die. The

PCB is 1.6 mm thick and most of the components are 1.75 mm in height or less with the boost inductors

being 5 mm tall. The output filter capacitors and free wheeling diodes are placed on the bottom side of the

power stage. The control section is only 11 mm x 10 mm. The size of the control section could be made

smaller by using EIA 0603 size packages for all the passives. This is not done in the first pass due to the

difficulty of soldering such small components.

The boost rectifier is first tested with a 1' generation 2-turn/pole stator that has a phase resistance of

220 mK to verify its operation. The control section is powered from an external 12 V source. Figure 5-46

shows the boost inductor current, stator current and open-circuit voltage at a speed of 150 krpm. Both the

boost inductor and stator currents are in phase with the open-circuit voltage, verifying that the converter

works properly. The converter delivers 0.85 W to a load resistor. Figure 5-47 shows the boost inductor

current, Vds of Qi and the output voltage over a couple of switching periods. The ringing in the drain-to-

source voltage and the inductor current is due to the LC tank created by the boost inductor and the output

capacitance of Qi. The output voltage also exhibits ringing when the MOSFET turns on and off.

However, the magnitude is much smaller than the ringing on Vds due to the output filter capacitor, CO.

The next step in characterizing the boost rectifier is to check that the output voltage of the converter

can power the control electronics to produce self-sustained operation. The converter is loaded with a

series combination of 6 LEDs (2 blue, 2 white and 2 red). The generator is spun up to 150 krpm. A 9 V

battery is connected temporarily to the control power terminal block. The converter can power itself to 12

V almost instantaneously. The test setup for this demonstration is shown in Figure 5-48. Since the LEDS

have a small viewing angle, Figure 5-49 shows the test setup from the top to bettor show the brightness of

LEDs. The control section of the rectifier consumes 0.48 W of power. This is 20% larger than predicted
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but it not surprising. In computing the gate drive losses, typical values for gate charge from the data sheet

is used. If the maximum gate charge value is used then the gate drives alone would consume 0.52 W so

the measured control power is well within the range.

The converter is then connected to the second-generation stator #3, with the large PM, to first

characterize the power stage of boost rectifier in terms of its input stator current, efficiency and power

factor as function of speed and load. An external 12 V supply is used to power the control circuitry. After

the power stage is characterized the boost rectifier is spun at high speeds to deliver Watt-level power at a

regulated output voltage. A nitrogen tank that can provide more than 100 psi is used to spin the rotor to

speeds in excess of 300 krpm. All tests are done at an air gap of 100 pm.

Figure 5-45: Boost rectifier board shown with the 3-turn stator for size comparison.

233



2

1)

0
-D

cc
0)

-2-

-3
0 0.05 0.1 0.15 0.2

Time (ms)

Figure 5-46: Boost rectifier waveforms over two stator electrical periods at generator speed of 150 krpm.
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Figure 5-47: Boost rectifier waveforms over two switching periods.
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Figure 5-48: Test setup for self-sustained operation. Boost rectifier is powering six LEDs.

Figure 5-49: Boost rectifier powering six LEDs in series.
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To get an estimate of the actual efficiency of the converter the input current is measured using a

Tektronix TCP202 current probe in conjunction with a TDS3034B oscilloscope. The experimental input

power is found by multiply the RMS values of the measured open-circuit voltage and stator currents by

the power factor predicted by the PSpice model. This is done because the open-circuit voltage and stator

currents could not be measured at the same time to compute the measured input power. The output power

is measured in real time with a voltage probe across a load potentiometer, a current probe around a wire

connecting the potentiometer to the rectifier and using the channel math function on the oscilloscope.

Figure 5-50 shows the stator current needed to deliver 1, 2 and 3 W to the load as a function of speed.

For a 3 W load, the input current monotonically decreases as speed increases. This is expected since the

open-circuit voltage increases with speed. At a 2 W load the stator current begins to level off at speeds

above 240 krpm while for a 1 W load the input current actually increases as speed increases. The

electrical system and power electronics efficiencies as a function of speed for different fixed loads are

shown in Figure 5-51. For a 3 W load, both Ie and '9pe increase with speed and are 75.5% and 83.4% at

282 krpm respectively. For a 2 W load, il and 'p, increase until 240 krpm at which point they level off at

76% and 83%, respectively. At an output power of 1 W, 'e and TIpe increase up 75.8% and 81% at 220

krpm and then decreases 71.6% and 78.3% at 272 krpm, respectively.

Figure 5-52 shows the generator system efficiency as a function of speed for 1, 2, and 3 W loads. The

points are computed from the measured input power in conjunction with the analytical model of Section

2.2 to determine the proximity, eddy current and hysteresis losses in the stator. The curves are computed

from PSpice and analytical models. At a 3 W load, irg is 26.6% at 180 krpm and decreases to only 17% at

300 krpm. For a 2 W load qg is 24.2% at 180 krpm and only 12.4% at 300 krpm while for a 1 W load, ig

is 15% and 6.7% at 180 and 300 krpm, respectively. The proximity, hysteresis and eddy current losses in

the stator increase with speed so that for a fixed output power, the overall generator system efficiency

decreases as the speed increases. Note that 'g is significantly smaller than 1e and qpe. This is primarily due

to the significant eddy current loss in the stator core which is 4.7 W at 180 krpm and 12.2 W at 300 krpm.

For all three power levels, the measured data correspond well with the PSpice simulations.
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Figure 5-50: Stator current vs. speed for 1, 2 and 3 W loads. Points represent measurements; curves

represent PSpice model.
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Figure 5-51: Electrical system efficiency, 1e, and power electronics efficiency, i,, vs. speed for 1, 2 and

3 W loads. Points represent measurements; curves represent PSpice model.
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Generator system efficiency vs. speed
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Figure 5-52: Generator system efficiency vs. speed 1, 2 and 3 W loads. Points represent measurements

/analytical model; curves represent PSpice/analytical model.
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Figure 5-53: Power factor vs. speed for 1, 2 and 3 W loads.
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Waveforms under light load conditions

C
0D

-4

0

3

0.05
Time (ms)

0.1 0.15

Figure 5-54: Open-circuit voltage, stator current and boost inductor current under light load conditions.

Power factor as function of speed for a fixed output power is shown in Figure 5-53. At low speeds,

when a large input current is needed to provide the necessary output power, high power factor (>90%) is

achieved. As the speed increases the power factor decreases. For a 3 W load, the power factor is 99% for

speeds less 220 krpm and greater than 95% for speeds less than 270 krpm. For a 2 W load, the power

factor remains above 90% for speeds below 250 krpm but decreases to 76% at 300 krpm. At 1 W, the

power factor is greater than 80% for speeds below 225 krpm but reduces to only 49% at 300 krpm.

The increase in the stator current and the decrease in efficiency and power factor at high speeds and

light loads are due to the filter capacitors. From the stator terminals the filter capacitors look like a A-

connected load in parallel with the power stage of the boost rectifier. At high output power, the input

impedance of the boost rectifier's power stage is small compared to the filter capacitors. The generator is

essentially driving a resistive load with most of the stator current flowing through the boost rectifier. At

light loads, the input impedance of the rectifier is large compared to the impedance of the filter capacitor.
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The generator is essentially driving a capacitive load which leads to poor power factor. The impedance of

the filter capacitors decreases as the speed increases. This leads to higher stator currents when the output

power is low (1 - 2 W). As the speed further increases the stator current needed for a 3 W output will also

start to increase just like the 1 W curve in Figure 5-50. The filter capacitors also lead to a lower power

factor at light loads as more of the stator current flows through the filter capacitors. Figure 5-54 shows a

PSpice simulation of the open-circuit voltage, stator current and boost inductor current for a rectifier

delivering 1 W at 276 krpm. Note that while the boost inductor current is in phase with the open-circuit

voltage, the stator current actually leads the open-circuit voltage due to the current through the filter

capacitors.

The required stator current as a function of load power is shown in Figure 5-55 at a speed of 240

krpm. Notice that the stator current levels off at light load because of the current through the filter

capacitors. The power electronics, electrical system and generator system efficiencies as a function of

load power are shown in Figure 5-56. Both '9pe and Ie increase with decreasing load power as the

conduction losses in the stator windings, boost inductor windings, power MOSFETs and diodes decrease.

On the other hand, Ig increases as the output power increases because the proximity, hysteresis and eddy

current losses in the stator are fixed at a given speed and are independent of the load. The power stage is

75% - 82% efficiency over a 1 - 4.5 W load range while the electrical system efficiency is 59% - 75%

efficient. The generator system efficiency is 9.7% at 1 W and increases to 27% at 4.5W. The large

discrepancy between the '9, and ilg is due to the 8 W of eddy current loss in the stator core at 240 krpm.

The proximity and hysteresis losses are only 0.58 and 0.29 W respectively.

Below 1 W, ipe starts to decrease again as the output capacitive losses in the power MOSFETs and

diodes start to dominate the overall loss. The electrical system efficiency also decreases below 1 W

because, in addition to the reduced power electronics efficiency, the current through the stator is primarily

composed of the current through the filter capacitor which is independent of output power. The predicted

power factor as a function of load is shown in Figure 5-57. The power factor is 99% at 4.5 W and is more

than 98% down to 3 W. The power factor decreases to 90% at 1.7 W out and is only 49% at 0.5 W out.
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Stator current vs. output power
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Figure 5-55: Stator current vs. output power at 240 krpm. Points represent measurements; curve represent

PSpice model.
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Figure 5-56: Power electronics, ipe, electrical system, il, and generator system, qg, efficiencies vs. output

power at 240 krpm. For pe and Ie, points represent measurements; curves represent PSpice model. For rig,
points represent measurements/analytical model; curves represent PSpice/analytical model.
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Power factor vs. output power
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Figure 5-57: Predicted power factor vs. output power at 240 krpm.

Since the output voltage of the rectifier is fixed, maximum output power at a given speed could be

found by adjusting the potentiometer load resistance until the output voltage just starts to fall. However,

when the load resistance is being adjusted the speed changes, requiring the pressure supply from the

nitrogen tank to also be adjusted. The pressure knob on the tank allows only very coarse control of the

pressure so that adjusting both the tank pressure and load resistance is difficult. Alternatively, the load

resistance can be fixed to some value and the pressure from the nitrogen tank can be increased until the

output voltage reaches 12 V. If the speed is too low to provide a 12 V output at some load resistance then

the PWM chip operates in a duty cycle limited mode. The stator current and boost inductor current during

the duty cycle limited operation is shown in Figure 5-58. Note that the input stator current is less

sinusoidal than in Figure 5-46 due to the presence of additional harmonics. This phenomenon is not

observed in the PSpice model of the rectifier. Once there is sufficient pressure to provide a 12 V output,

the PWM chip gets out of its duty cycle limited operation at which point the speed would significantly

rise and the input stator current would decrease and have the same form shown in Figure 5-46. When the
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speed settles to its final value the output voltage would be at 12 V but the power delivered to the load is

not necessarily the maximum power achievable at that speed because the load is no longer matched.

Figure 5-59 shows output power at different speeds for both a self-sustaining converter and a

converter with a 12 V external control power supply. Note that this is not the maximum output power

achievable at these speeds but just what is achieved using the coarse pressure control knob on the nitrogen

tank. Also plotted in Figure 5-59 is the input stator current needed to achieve the output power at different

speeds. The externally powered boost rectifier demonstrates 5.47 W of power delivery at a speed of 298

krpm while the self-sustaining boost rectifier delivers 5.52 W at 303 krpm. These two data points were

achieved by fixing the load resistance and then increasing the pressure to achieve a 12 V output voltage.

When the pressure became sufficient for the rectifier to come out of duty cycle limited operation the rotor

suddenly sped up to -300 krpm. The measurements were then recorded and the pressure decreased to

slow down the rotor. Attempts were not made to adjust the load potentiometer to find the maximum

power due to concerns about rotor structural integrity at these speeds.

Duty cycle limited operation
2.5 1 1 I

2- Boost inductor current

1.5-
Stator current

C 0

-1-

-1.5-

-2-

-2.5
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Time (ms)

Figure 5-58: Measured stator and boost inductor current under duty cycle limited operation.
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Figure 5-59: Power and stator current vs. speed for the boost rectifier with and without external control

power. Points represent measurements; curves represent PSpice model.

The power electronics, electrical system and generator system efficiencies for the self-sustaining

boost rectifier are shown in Figure 5-60. The power electronics efficiency varies between 40% at low

speed/power to 70% at high speeds/power. This is because, as the as the speed increases, the output power

delivered increases making the fixed losses in the control IC and gate drives a smaller fraction of the input

power. At 303 krpm the self sustaining rectifier delivered 5.52 W at 69% power electronics efficiency

with an electrical system efficiency of 57%. Including the predicted core and proximity losses in the

stator core of 13.72 W, the overall generator system efficiency is 23.6%. The power electronics, electrical

system and generator system efficiencies for the externally powered boost rectifier are shown in Figure 5-

61. The externally powered rectifier achieved an 85% power electronics efficiency at 152 krpm when

delivering 1.62 W, while the self-sustaining rectifier delivered 0.61 W at a power electronics efficiency of

48%. At 298 krpm, the externally controlled rectifier delivered 5.47 W at a power electronics efficiency

of 79% and an electrical system efficiency of 67%, about 10% higher than the self-sustaining rectifier.
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The overall generator system efficiency is 25.5%. In fact the externally powered boost rectifier is able to

maintain a generator system efficiency of about 25% throughout the speed range because gate drive losses

are not counted while the self-sustaining rectifier has a generator system efficiency of only 11% at 150

krpm. The power factor for the output powers in Figure 5-59 is 98% - 99.5%.

The output voltage of the self-sustaining boost rectifier at 303 krpm is plotted in Figure 5-62. The

output voltage has a low frequency variation which is due to wobble in the rotor at high speeds. This

wobble leads to variation in the open-circuit voltage from period to period. This variation can also be seen

in the input stator current which is also plotted in Figure 5-62. This is the current through the stator when

the self-sustaining rectifier is delivering 5.52 W. The measured current matches well with the PSpice

prediction except for the variation in the amplitude of the current from period to period. The THD of the

current is 15%.
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Figure 5-60: Power electronics, Tp,, electrical system, le, and generator system, Ti, efficiencies vs. speed

for the self-sustaining boost rectifier. For ip, and T1e, points represent measurements; curves represent

PSpice model. For ig, points represent measurements/analytical model; curves represent PSpice/analytical

model.
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5.2.6 Comparison between the first and second generation power electronics

The passive and active power electronics were designed with different constraints and with different

objectives. The goal of the passive power electronics was to maximize output power by efficiently

stepping up and rectifying the generator's AC voltages with no constraints on the size of the circuit. In

addition, output voltage regulation and power factor correction were not needed for the low speed power

generation tests in Chapter 4. With no size constraint, a very large transformer was used to make the

passive electronics highly efficient. The boost rectifier, on the other hand, was designed with size being

an important consideration. Unlike the passive circuit, the boost rectifier provides power factor correction

and voltage regulation in addition to stepping up and rectifying the generator's AC voltages. The goal

was to efficiently deliver power at a regulated DC voltage with high power factor in a compact size. The

size of the boost rectifier's power stage is limited to the size of a stator die. The passive and active power

electronics are shown in Figure 5-63. The transformer in the passive circuit is much larger than the power

stage of the boost rectifier and the bridge rectifier in the passive circuit is larger than the control section of

the boost rectifier. The black terminal blocks in Figure 5-63 are used so that the generator can be easily

connected and disconnected to the power electronics.

Figure 5-63: Size comparison of the passive (left) and active (right) power electronics.
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Figure 5-64 compares the output power vs. speed for the second-generation stator #3 connected to the

passive and active power electronics. The boost rectifier data in Figure 5-64 is from the self-sustaining

converter. The generator with the passive circuit delivers more power to the load but remember that the

power vs. speed for the boost rectifier is not under matched load conditions. This is evident from the

electrical system efficiency vs. speed in Figure 5-65, which shows that the generator with the boost

rectifier is operating at efficiencies above 50%. The generator with the passive electronics, on the other

hand, has an electrical system efficiency of 46 - 49%.

The overall generator system efficiencies of the PM machine with the passive and active power

electronics is shown in Figure 5-66. The generator system efficiency of the PM machine with the passive

circuit is about 25% - 27% over a 160 - 320 krpm speed range while the PM machine with the boost

rectifier is 20% - 24% efficient. Note that, at the same speed, the core and proximity losses in the stator

are same for both machine/power electronics combinations. Since the boost rectifier provides less output

power at a given speed, its overall generator system efficiency is less than the PM machine with the

passive circuit. The curves in Figure 5-66 are generated using the PSpice model for the generator and

power electronics to determine the stator conduction and power electronics losses and the analytical

model from Section 2.2 to determine the proximity and core losses in the stator. The data points in Figure

5-65 are computed by using the measured open-circuit voltage and stator currents to determine the stator

conduction and power electronics losses and the analytical model to determine the proximity and core

losses in the stator.

The power electronics efficiency of the two circuits is shown in Figure 5-67. The passive circuit is

20-30% more efficient than boost rectifier because of its large transformer size which dwarfs the size of

the boost rectifier's power stage. In addition, the boost inductors chosen are not the most efficient

possible due to its thick solid wires. Finally, the boost rectifier has a fixed loss of 0.48 W in the control

section that the output of the boost rectifier must power in addition to the load. Since both circuits provide

voltage step-up and rectification, one can think of the 0.48 W of fixed loss as the cost of providing output

voltage regulation and power factor correction.
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Output power vs. speed
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Figure 5-64: Output power vs. speed for the transformer/diode bridge and boost rectifier. Points

represent measurements; curves represent PSpice model.
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Figure 5-65: Electrical system efficiency vs. speed for the transformer/diode bridge rectifier and boost

rectifier. Points represent measurements; curves represent PSpice model.
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Figure 5-66: Generator system efficiency vs. speed for the transformer/diode bridge rectifier and boost

rectifier. Points represent measurements/analytical model; curves represent PSpice/analytical model.
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Figure 5-67: Power electronics efficiency vs. speed for the transformer/diode bridge and boost rectifier.

Points represent measurements; curves represent PSpice model.
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Table 5-8: Performance breakdown of the second generation PM machine with first and second
generation power electronics.

Transformer/ Self-sustaining Self-sustaining
Property diode bridge boost rectifier boost rectifier

rectifier boostrectifier power stage

Speed 305 krpm 303 krpm 303 krpm
Pmech 30.12 W 23.4 W 23.4 W

Pprox 0.92 W 0.91 W 0.91 W

Peddy 12.56 W 12.45 W 12.45 W

Physteresis 0.37 W 0.36 W 0.36 W

Peect 16.27 W 9.68 W 9.68 W

Peond 7.46 W 1.71 W 1.71W

Ppe 0.81 W 2.46 W 1.98 W

Pout 8 W 5.52 W 6 W
90.8% 69% 78%

lie 49.2% 57% 62%
11g 26.6% 23.6% 25.6%

Power factor 89.2% 98.3% 98.3%
Volume 5017 mm 1190 mm3  1080 mm3

Power density 1.59 MW/m 3  4.64 MW/M3  5.56 MW/m3

Table 5-8 give a breakdown of the performance of the PM machine with the passive and active power

electronics. At 305 krpm, the PM machine with the transformer and diode bridge rectifier can deliver 8 W

at an electrical system efficiency of 49.2% and overall generator system efficiency of 26.6%. The passive

power electronics is 90.8% efficient but the generator has significant conduction loss (7.46 W) which is

an order of magnitude larger than the losses in the power electronics. The power factor for the passive

circuit is 89.2%. At 303 krpm, the PM machine with the boost rectifier can deliver 5.52 W at 57%

electrical system efficiency and 23.6% generator system efficiency. The power factor of 98.3% is very

close to unity. The boost rectifier is 69% efficient and the power lost in the circuit (2.46 W) is actually

larger than the stator conduction loss (1.71 W). In both cases, the 12+ W of eddy current loss in the stator

core leads to generator system efficiencies that are significantly lower than the electrical system

efficiencies.

A better performance comparison may be between the transformer/diode bridge rectifier and the

power stage of the boost rectifier. At 303 krpm, the power stage delivers 6 W out, of which 0.48 W is fed

back to power the control circuitry. The electrical system efficiency in this case is 62% and the power
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stage is 78% efficient. The generator system efficiency in this case is only 1% less than the PM machine

with the passive circuit.

Another important metric for the power electronics is power density. The frame of the transformer is

43 mm long, 25 mm wide and 3 mm thick. The windings are cylinders that extend 4 mm beyond the

thickness of the frame in each direction and are 10 mm long each. The volume of the transformer is 4833

mm 3 . The six diodes are 2.9 mm x 4.6 mm x 2.3 mm each for a bridge rectifier volume of 184 mm 3 . The

total volume of the passive power electronics is 5017 mm3 and the power density is 1.59 MW/M3 when

delivering 8 W to the load. The power stage of the boost rectifier is 24 mm x 22.5 mm. The tallest

components are the boost inductors which are 5 mm high. The other components are 1 - 1.75 mm in

height. The bypass and filter capacitors on the bottom side of the PCB can easily fit in the empty spaces

on the top side of power stage area. For a mean height of about 2 mm the volume of the power stage is

1080 mm 3. The control section is 11 mm x 10 mm and the average component height is 1 mm for a

volume of 110 mm 3 . The total power electronics volume is 1190 mm 3 . At an output power of 5.52 W the

boost rectifier has a power density of 4.64 MW/M3, which is nearly three times the power density of the

passive power electronics. Considering only the power stage of the boost rectifier, the power density is

5.56 M W/m3 for 5.52 W of output power (6 W from the power stage). This is more than three and a half

times larger than the passive power electronics.

The size of the power electronics could be further reduced by integrating the control IC, gate drives

and power MOSFETs onto a single chip. In fact, a large percentage of the volume of the MOSFET is

taken up by the SO-8 package. The semiconductor die of each of the three MOSFETS could probably fit

into a single SO-8 package. A fully integrated boost rectifier chip could be as small as 7 mm x 7 mm with

a height of only 0.75 mm. This would be similar in size to the 4-phase, 10 W fully integrated LTC3425

boost converter from Linear Technology (www.linear.com). With this amount of integration, the total

volume of the boost rectifier could be as small as half the size of the current power stage, or about 500

mm 3 , with little degradation in performance. This would increase the power density to six times that of

the passive power electronics.
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5.3 Summary

This chapter began by looking into ways of increasing output power beyond one Watt from the

microscale PM generators. The best way to achieve multi-Watt power delivery was to increase the

rotational speed and improve the design of the stators. From the scaling laws for the machine power and

efficiency, it was found that to increase both efficiency and power the number of turns/pole should be

maximized subject to minimum feature size constraints while the number of poles should be minimized

subject to maximum rotor/stator core thickness limitations. Optimization of the stator led to an 8-pole, 3-

turn/pole machine with concentric windings. Three of these 2 "d generation stators were built and tested

and one delivered 8 W of DC power to a load resistor at 305 krpm using the transformer and diode bridge

rectifier. The stator current was 5.36 A peak corresponding to a current density of -6x 108 A/nm2, which is

three time larger than what was achieved in the first generation stator and two orders of magnitude larger

than what is possible in a macroscale machine. For an active machine volume of 138.4 mm 3, (10 mm OD,

5 mm ID, 2.35 mm thick), the 8 W output power corresponds to a power density of 57.8 MW/M3, which

is more than three times the power density of a 1000 MW turbine generator.

The estimated electrical and generator system efficiencies are 49.2% and 26.6%, respectively, when

the generator is delivering 8 W to the load. The difference between the two efficiency metrics is due to

the eddy current loss in the stator core. In fact, the 12.56 W lost due to eddy currents in the stator core is

larger than either the output power or the sum of all the other losses in the system (9.56 W). This means

that laminating the stator will be necessary to increase the overall generator system efficiency. The

proximity eddy current loss in the stator windings could be reduced by laminating the stator. However,

because the conduction loss in the stator winding is substantially larger (7.46 W vs. 0.92 W) it is better to

use solid radial conductors to minimize the resistance of the stator.

The transformer/diode bridge rectifier used for power generation tests does not provide power at a

constant output voltage. In addition, it has lagging power factor at high speeds and is quite bulky

compared to the compact PM machines. The second part of this chapter focused on the design of a
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switch-mode rectifier that could deliver power at a constant output voltage of 12 V with near unity power

factor. Several topologies were looked at. Two topologies used a three-phase MOSFET bridge rectifier in

conjunction with either a continuous-conduction-mode boost converter or a discontinuous-conduction-

mode boost rectifier. Neither of these topologies were chose because they required seven active devices

and gate drives and had large magnetic components. The rectifier chosen used a boost semi-bridge

topology operating in discontinuous-conduction-mode. Synchronous rectification of the power stage and

the use of Litz wire inductors would improve the efficiency of the rectifier but was left for future work.

A boost rectifier without synchronous rectification and using commercially available inductors was

built and tested. The power stage of the rectifier takes up the same area as a stator die and is much more

compact than the transformer/diode bridge rectifier. The rectifier demonstrated the ability for self-

sustained operation by having the output voltage power the control circuitry while lighting up six LEDs.

When connected to a 2nd generation stator, the self-sustaining boost rectifier delivered 5.52 W to a load

resistor at a regulated output voltage of 12 V and at a speed of 303 krpm. The power electronics was 69%

efficient and had a power factor of 98.3%. The electrical and generator system efficiencies were 57% and

23.6%, respectively, with the discrepancy due to the large eddy current loss in the stator core.

The power density of the boost rectifier is 4.64 MW/M3, which is three times the power density of the

transformer/diode bridge, even though it is less efficient than the passive circuit. The power density of the

boost rectifier can be further increased by integrating the control IC, gate drives and power MOSFETs

into a single chip. Integration could lead to a switch-mode rectifier that is half the size of the discrete

design and have six times the power density of the transformer/diode bridge rectifier. These results

demonstrate the viability of compact electric power generation systems, consisting of a microscale PM

machine and a near unity power factor switch-mode rectifier, for delivering multi-Watt electric power to a

load at a regulated output voltage.

254



6 Concluding Remarks

6.1 Summary

This thesis presented the modeling, design, fabrication and testing of microscale PM machines and

power electronics capable of generating and delivering Watt-level DC power to a load. These machines

were also compared to microscale induction machines developed earlier in the MIT Micro-Engine

Program. Chapter 2 developed analytical models for asynchronous (Induction) and synchronous (PM)

planar magnetic machines with slotted and surface wound stators. The surface wound machines can be

modeled as a set of planar continuum layers by solving Maxwell's equations in the Magneto-quasi-static

(MQS) domain. For the slotted stator magnetic machine, a hybrid continuum/lumped parameter model

was used. The field solutions were solved in the spatio-temporal frequency domain, which allowed

complicated winding patterns and rotor magnetization profiles to be modeled by decomposing them into

their respective Fourier components and then solving for fluxes, voltages, currents, etc., for each

harmonic component. The effects of eddy currents, laminations and saturation were incorporated into the

model through the use of effective conductivities and permeabilities. Hysteresis and eddy current losses in

rotor and stator cores and proximity eddy current losses in the coils of the surface wound stator, as well as

torque and pull-in force on the rotor can be computed from the field solutions. In addition, the models

were used to derive a per-phase equivalent circuit for the PM machine consisting of an inductance and an

open-circuit voltage. This general field theory approach to machine modeling was computationally very

fast and agreed well with both FEA analysis of the surface wound PM machine as well as experimental

data from the first- and second-generation PM generators. These fast, accurate analytical models are an

important contribution to the modeling and design MEMS magnetic machines. In Chapter 4, a simplified

model of the PM machine was derived from the continuum model in Chapter 2 by assuming ideal

properties for the materials used. This model was used to gain insight into how speed, geometry and the

number of poles and turns/pole affect the output power capability of the machine.
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With an operating temperature of 300 'C, the four magnetic machine candidates for microengine

power generation were the slotted stator induction, slotted stator PM, surface wound induction and

surface wound PM machines. The surface wound induction machine generates negligible amounts of

power due to the large rotor-stator air gap and was readily dismissed as a viable candidate. The other

three machines were compared to one another in terms of output power capability and efficiency within

the dimensional constraints and operating speeds of the microengine in Chapter 3 at both room

temperature and at 300 'C. In Section 3.3, both PM machines were found to generate more power at a

higher efficiency than the induction machine over a wide range of input currents, pole counts and outer

radii of the rotor core at room temperature. This was because the rotor magnet in a PM machine produced

a rotor flux that was much larger than what could be produced by stator currents through the mutual

inductance in an induction machine at the microscale. This is an important result for MEMS designers.

High-density electromechanical power conversion is better achieved through the interaction between

currents and flux generated by permanent magnets rather than electromagnets. Further, it was also shown

in Section 3.4 that the surface wound PM machine could generate more output power at a higher

efficiency than a PM machine with a slotted stator. The difference in performance was because the

surface wound stator consisted of three phases with full pitched windings that maximized flux linkage.

The slotted stator was limited to two phases that link 50% of the maximum flux due to its fabrication

process, which required that an entire phase winding occupy a single wafer. This fabrication constraint is

not likely to be overcome in the near future. In Section 3.5 the three magnetic machines were compared at

300 'C using recently available high temperature data for the remanence of the SmCo PM and the stator

winding resistance. It was found that due to the increased resistivity of the stator windings and rotor

conductor the induction machine was incapable of generating net electrical power at high temperature.

The surface wound and slotted PM machines were able to generate power at high temperature with only a

small degradation in performance. The surface wound stator still outperformed the slotted stator in terms

of output power and efficiency at 300 'C. Therefore, the surface wound PM machine was the best

candidate for electric power generation within the microengine and was the focus of the rest of this thesis.
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Chapter 4 presented the design, fabrication and testing of the first-generation PM machines designed

for Watt-level power generation. The generators were three-phase, 8-pole, axial-air-gap, synchronous

machines. The rotor consisted of a 500 pm SmCo PM and Hiperco 50 core. The stator consisted of 1-, 2-

and 4-turn/pole windings placed on the surface of a 1 mm thick Moly Permalloy stator core. The PM

generators were designed and fabricated using a combination of microfabrication and precision

machining/assembly. The machines were then characterized using an air-driven spindle which, when

powered by compressed nitrogen, provided rotational speeds in excess of 350,000 rpm. The measured

open-circuit voltages deviated from a PM with an ideal square wave magnetization and 1 T remanence. It

is believed that the selective pulse magnetization process used to pattern the rotor did not fully saturate

the magnet, resulting in a reduced remanence. Also, transition regions between poles were possible due to

saturation of the magnetized heads at the edges of the magnetizer poles and the resulting leakage flux. In

order to match the experimental data, the remanence was set to 0.52 T and a 1-mm transition region

between poles was used in the analytical model developed in Chapter 2. Once this adjustment was made,

the experimental and theoretical values for the open-circuit voltage and output power were well matched

for various speeds, air gaps, and turns/pole, as seen in Figures 4-18 through 4-23 in Section 4.6.

To provide DC power to a load, the AC generator voltages were first stepped up using a three-phase

A/wye-connected transformer and then converted to DC using a three-phase diode bridge rectifier. At

120,000 rpm, the 2-turn/pole machine demonstrated 2.5 W of mechanical-to-electrical power conversion

and delivered 1.1 W of DC power to a resistive load. This was the first ever demonstration of Watt-level

power delivered by a power MEMS device and proved the viability of scaled PM machines for practical

power applications. The electrical system efficiency, defined as the output power divided the converted

power, is 43%. There was an additional 3.25 W lost in the stator due to eddy currents in the stator core

and windings and hysteresis the stator core. The input mechanical power is 5.75 W, making the overall

generator system efficiency 19%. Given its active machine volume of 110 mm 3 (9.5 mm OD, 5.5 mm ID,

2.3 mm thick), the 1.1 W of output power corresponded to a power density of 10 MW/M3 ; note that a

typical 1000 MW turbine generator with an active volume of 60 m 3 (8.4 m long, 3 m stator core outer
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diameter) has a power density of 17 MW/M3 . The currents in the stator windings when delivering 1.1 W

to the load were 2.83 Apk, which translated to a peak current density of-2x 108 A/nm2 . This was one to two

orders of magnitude higher than the current density found in a macroscale machine.

Despite these impressive results there was still room for improvement. The stator resistance was

much larger than predicted due to the large number of vias and cross-over conductors used in the end

turns which limits output power. In addition, the transformer and diode bridge circuit were much larger

than the generator and did not provide either a regulated DC output voltage nor power factor correction.

Improvements in the PM machines and power electronics were presented in Chapter 5. Using the power

and efficiency scaling laws derived in Section 5.1.1, it was found that to increase both efficiency and

power, the number of turns/pole should be maximized subject to minimum feature size constraints, while

the number of poles should be minimized subject to maximum rotor/stator core thickness limitations.

Optimization of the stator led to an 8-pole, 3-turn/pole machine with concentric windings. The end turns

of the concentric wound stator were circular arcs that occupied a single layer. This made more efficient

use of the inner and outer regions of the stator and eliminated the need for cross-over conductors like the

ones used in the I' generation stators. With fewer crossovers, the number of vias was drastically reduced

and, along with the better end turn design and more aggressive fabrication, it led to a stator that could

produce 58% - 88% more power than a 8-pole, 2-turn/pole 1 't generation stator, assuming the same rotor

PM was used.

One of these 2 nd generation PM machines, when connected to the transformer and diode bridge

rectifier, delivered 8 W of DC power to a load resistor at a speed of 305,000 rpm. This was the first

demonstration of multi-Watt power delivery, and is the highest power ever delivered by a power MEMS

device to date. The 8 Watts represents more than a 7x increase in power with only a 2.5x increase in the

speed from the first generation design. The estimated electrical system efficiency is 49.2% which

corresponds to 16.27 W of mechanical-to-electrical power conversion. The overall generator system

efficiency was 26.6% due to the additional 13.85 W dissipated in stator due to eddy currents and

hysteresis. For an active machine volume of 138.4 mm 3 , (10 mm OD, 5 mm ID, 2.35 mm thick) this
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corresponded to a power density of 57.8 MW/M3, which is more than three times larger than the 17

MW/M3 power density of a macroscale turbine generator. Again, this was due to the very high current

densities and high rotor tip speeds of the microscale generators.

Unlike most work on microscale generators, this thesis addressed the issue of not only power

generation but also power delivery. High output power from a generator is useless if it cannot be

efficiently converted into a form that the end-user requires. Towards that end, a switch-mode rectifier

based on the boost semi-bridge topology operating in discontinuous-conduction-mode was designed in

Section 5.2 to provide power at a regulated DC output voltage with near unity power factor. Power factor

correction is achieved without the need for direct rotor position/speed or stator current/voltage sensing.

The power stage of the rectifier took up the same area as a stator die and was much more compact than

the transformer/diode bridge rectifier. Switch-mode power electronics specifically designed for MEMS-

scaled magnetic machines is a unique contribution of this thesis. This switch-mode rectifier demonstrated

the ability for self-sustained operation by having its output voltage power its control circuitry while

lighting up six LEDs. When connected to a 2"d generation stator, the self-sustaining boost rectifier

delivered 5.52 W at a regulated output voltage of 12 V to a load resistor at 303,000 rpm. This was at a

power factor of 98.3%, electrical system efficiency of 57% and, an overall generator system efficiency of

23.6%.

6.2 Conclusions

The work presented in this thesis proves that microscale axial-flux PM machines and power

electronics are capable of generating and delivering multi-Watt DC power to a load and are a viable

compact power generation system for portable power applications. With the transformer and diode bridge

rectifier, a maximum of 8 W, at a generator system efficiency of 26.6%, was delivered to a resistive load

at 300,000 rpm. Also at 300,000 rpm, a maximum of 5.52 W was delivered with the switch-mode rectifier

at a generator system efficiency of 23.6% W and at a power density three times that of the passive circuit.
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From the comparison of axial-flux induction and PM machines in Chapter 3 it is found that a high

performance permanent magnet such as SmCo produces a rotor flux that is much larger than what can be

produced by stator currents through the mutual inductance. This inductance is insufficient to match the

flux from the PM machine because of the small number of turns/pole, N, used in the stator. Since the

mutual inductance is proportional to N2, the power capability of the induction machine decreases

significantly as the number of turns/pole decreases. Macroscale machines typically have many turns/pole

(-20-turns/pole). However, due to space limitations, microscale machines will generally have only a few

turns/pole (-2-4-turns/pole). Increasing the number of turns/pole would significantly increase the

resistance of the stator windings due to minimum feature size constraints. Thus, high power density is

better achieved through the interaction of stator currents with flux generated from a permanent magnet

rather than an electromagnet at the microscale.

In addition, the inner and outer end turns make up a small percentage of the overall size of macroscale

machines. In microscale machines, these inner and outer end turns can take up considerable area and

typically account for a large proportion of the overall winding resistance. The space required for the inner

end turns of a planar machine limits the minimum radius of the active area of the machine, while the

space required for the outer end turns can double the surface area of the stator. Furthermore, the leakage

inductance of the microscale surface wound PM machines presented here dominates the over all stator

inductance because the surface area taken up by the outer end turns is comparable to the active area of the

machine. However, despite the effects of the leakage inductance, the overall impendence of the PM

machines is resistance dominated. This is because the time constant of the magnetic machine, equal to the

stator inductance divided by the stator resistance, scales as length squared and becomes very small at the

microscale.

The difficulty of using microfabrication to bury windings in slots and closing the slots over with hats,

as is typical in the stators of macroscale magnetic machines, makes surface wound stators preferable at

the microscale. In fact, it is the absence of slots that allow for the fabrication of more complex interleaved

winding patterns of the surface wound PM machines which allow for higher flux linkage than in the

260



slotted stator PM machines. The stator windings can be photolithographically defined, which permits

optimized winding patterns with variable-width conductors. In addition, high-resolution features can help

reduce certain losses; eddy current losses in the windings can be reduced by using laminations of micron

scale thicknesses. Microfabrication can be used to create flat conductors which have a larger surface area

to volume ratio than round conductors. By placing these flat conductors in intimate contact to their

substrate, cooling via thermal conduction greatly improves. In fact it is the microfabricated coils, with

small interconductor gaps, variable width geometries, complex interleaved structures and enhanced heat

transfer capabilities, that are the key enabling technology for achieving high current density in

miniaturized PM generators. Current densities of ~10 9 A/m 2 have been achieved in the second generation

stators when delivering 8 W to a load and, along with the high rotational speeds, lead to power densities

that are three times that of a macroscale turbine generator.

The biggest loss in the PM machines is due to eddy currents in the conductive stator core. In fact, at

305,000 rpm the eddy current loss (12.56 W) is larger than either the output power (8 W) or the sum of all

the other losses (9.56 W). This means that the PM machines must have laminated stators in order to

improve their overall system efficiency. The proximity eddy current loss in the stator windings are on the

order of 1 W at 305,000 rpm. At higher speeds, this will increase significantly and it may be necessary to

laminate the radial conductors of the stator windings. However, because the PM machine is expected to

operate at 300 *C, conductivity of the stator windings will drop by more than a factor of two. The

resulting decrease in conductivity will partially offset the increased loss due to higher rotational speeds.

The increase in conduction loss due to higher temperatures may require that the radial conductors be

unlaminated to minimize the sum of the conduction and proximity losses.

PM machines allow the use of both passive and active power electronics to deliver DC power. Passive

electronics, particularly the transformers, are very large relative to the PM machine and do not provide

output voltage regulation. However, they can be made arbitrarily large so as to improve efficiency. A

regulated output voltage is necessary for powering most modem portable electronic equipment. In

addition, passive electronics do not provide power factor correction which is important at speeds of
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300,000 rpm and above. Active power electronics, such as the switch-mode boost rectifier can provide

both output voltage regulation and power factor correction in a much more compact form. In fact, the

power stage of the boost rectifier is about the same size as the stator die. The control IC and gate drives

and even the power MOSFETs can be integrated into a single package, further reducing the overall size of

the power electronics without degradation in efficiency. Integration could lead to active power electronics

with a total volume of ~500 M3 . This would be half the volume of the power stage of the discrete

implementation and over six times smaller than the transformer/diode bridge circuit.

Using active power electronics with high speed microscale PM machines requires that two important

issues be addressed. The first is that given their high rotational speed, these machines operate at electrical

frequencies one to two orders of magnitude larger than typical macroscale machines, typically in the kHz

to tens of kHz range. The high operating electrical frequencies lead to smaller passive filtering

components in switch-mode power electronic circuits. However, the small size of these PM machines also

leads to low stator inductances which can require very high switching frequencies. In fact, using the stator

inductance as the primary magnetic component in the switch-mode rectifier would require switching

frequencies of ~10 MHz if continuous-conduction-mode operation with small current ripple is desired.

This leads to very high switching losses and poor efficiency in the converter.

The second issue that must be addressed is that for active rectification to work, the position/speed of

the poles of the rotor PM must typically be known. This information is used to keep the stator currents in

phase with the voltage to achieve maximum energy/power conversion. It could be done by direct

measurement using a Hall sensor but that is not feasible due to the temperature constraints for the PM

machine. Alternatively, "sensorless" techniques could be used by measuring the terminal currents and

voltages of the machine. This solution is computationally intensive, often requiring the use of high-

performance microprocessors or digital signal processors (DSP). It is difficult to implement given the

high rotational speeds and switching frequencies required.

These issues are resolved in this thesis by using a switch-mode rectifier operating in discontinuous-

conduction-mode (DCM) with an external inductor as the primary magnetic energy storage element. The
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external inductors are operated in DCM with the stator inductance, along with an external capacitor,

acting as a filter so that the currents in the machine comprise mainly of the fundamental harmonic. This

DCM operation provides automatic power factor correction at a reduced switching frequency of 500 kHz

without the need for direct rotor position/speed or stator current/voltage sensing. In addition the DCM

operation of the rectifier turns the generator into a controlled current source so that only a single feedback

loop is necessary to regulate the output voltage.

To predict the performance of the surface wound PM machine within the microengine environment

assume that a 2 nd generation stator is used with a large PM (5 mm ID, 10 mm OD) at a 50 Pm air gap.

The stator resistance is assumed to be 136 m, which is the minimum achieved so far. The PM has a

remanence of 0.52 T and a 1.2 mm transition region, which are values used to fit the continuum model to

the measure data in Section 5.1.3. At 300 *C the remanence of SmCo will be 87% of its room temperature

value while the stator resistance will be 214% of its room temperature value. The stator resistance will

become 291 mQ and the fundamental of the open circuit voltage at 500,000 rpm is 3.4 V. That stator

consists of 50 pm thick lamination and 50 pm thick lamination dividers. The rotor and stator cores use the

electroplated CoFe from Chapter 3 and are 500 pm and 800 pm thick, respectively. Under these

conditions 10 W of output power is achievable with an overall generator system efficiency (ig) of 50%

assuming a switch-mode rectifier that is 80% (9p). The radial conductors of the stator windings are not

laminated because the conduction loss (3.5 A) is much higher than the proximity eddy current loss (1.37

W). The laminated stator core has only 0.78 W of eddy current loss. Without these laminations the eddy

current loss would be over 40 W. This is summarized in Table 6-1.

If the annular PM is replaced with discrete PMs that are fully magnetized to a remanence of 1 T at

room temperature, the fundamental of the open-circuit voltage becomes 6.78 V. 10 W can be delivered to

a load at an overall generator system efficiency of 56% for a switch-mode rectifier that is 80% efficient.

Due to the increase flux in the air gap, each radial conductor is composed of two laminations which

increase the stator resistance to 675 mK. The proximity eddy current loss is reduced to 0.68 W while the

conduction loss in the stator is 2.05 W. The eddy current loss is much smaller than in the case of the
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Annular PM because the higher remanence of the PM leads to heavier saturation in the stator core. This

leads to a lower effective permeability and a larger skin depth.

Using the same discrete PMs this generator is predicted to deliver 20 W of output power at a speed of

500,000 rpm with an overall generator system efficiency of 58.7% for a switch-mode rectifier that is 80%

efficient. It takes about twice as much current to generate 20 W than to generate 10 W. This means that

the conduction loss goes up by a factor of four. To make the generator system 58.7% efficient, the radial

conductors have been left unlaminated to minimize conduction loss. The interconductor gaps have been

increased from 50 Am to 100 pm to reduce proximity eddy current losses in the stator windings with a

minimal (8%) increase in the stator winding resistance.

Table 6-1: Predicted generator system performance at 300 *C and 500,000 rpm.

Property Annular PM Discrete PM Discrete PM

Pmech 20.04 W 17.89 W 34.15 W
Pprox 1.37 W 0.68 W 2.71 W

Peddy 0.78 W 0.24 W 0.27 W
Physteresis 1.89 W 2.42 W 2.42 W
Peiect 16 W 14.55 W 28.75 W
Pcond 3.5 W 2.05 W 3.75W
Ppe 2.5 W 2.5 W 2.5 W
Po___ low loW 20 W

50% 56% 58.7%

6.3 Recommendations for Future Work

The next logical step is to demonstrate the performance of the PM machines at high temperature. The

resistance of the stator windings is predicted to be 214% its room temperature value when heated to 300

'C. The remanence of SmCo at 300 0C is 87% of its room temperature value. Therefore the matched load

power is expected to drop to about 35% of what was achieved at room temperature. To maintain the

generator system efficiency at its room temperature value, the output power would have to be even lower.

The maximum speed attainable with a SmCo magnet is 325,000 rpm when housed in a titanium

retaining ring [56]. Further work must be done on the structural integrity of the rotor assembly to bring

the operating speed up to the 500,000 rpm - 1 Mrpm speeds of the microengine. This might require the
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use of discrete "pie piece" magnets in a spoke wheel rotor. The poling process used to create the multi-

pole PM annulus led to a suboptimal magnetization of~0.5 T. The use of discrete PM pieces with the full

remanence of 1 T would create a higher flux in the air gap and increase output power by a factor of four.

This would more than offset the reduced output power due to the higher stator resistance at 300 'C.

Along with high temperature characterization and structural improvements, integration of the PM

machines into the silicon microengine must be done. This involves carrying over the electroplating

process done on a ferromagnetic wafer over to a silicon wafer. In addition, laminations in the stator

windings and the stator core will be needed to limit eddy current losses in these parts of the machine.

Also, incorporating hard or soft magnetic materials into the process flow of the microengine will require

subsequent microfabrication steps to occur at low temperature. Furthermore, integration of the PM

machine will rely heavily on the design of high speed air bearings capable of supporting a much more

massive rotor than is currently supported. This may require a much more uniformly fabricated rotor PM

and rotor core to reduce imbalance and/or the use of active balancing techniques.

The biggest losses in the boost rectifier are the conduction losses in the boost inductors and diode

bridge. Improved inductors wound with Litz wire can reduce high frequency AC resistance and reduce

conduction loss in the inductors. Using synchronous rectification, in which the MOSFET is kept on

during half the stator electrical period when the voltage is negative, would reduce diode conduction loss

in half by not having to turn on the free-wheeling diodes. This would also cut switching losses in half

since the PWM switching of the MOSFET would occur only when stator line-to-neutral voltage is

positive. This would require sensing the MOSFET current or possibly the terminal voltage but note that

only the magnitude is needed to implement synchronous rectification. With synchronous rectification and

the use of Litz wire inductors, the boost rectifier is expected to be -80% efficient or roughly 10% more

efficient than the current design.

The final issue to be addressed is the startup of the boost rectifier. Currently an external power source

brings the VDD pin of the control IC up to 7 V at which point the IC turns on and brings the output voltage

up to 12 V. The output voltage then powers the IC and gate drives. When the machine is spinning, it
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creates a low (1 - 3 V) DC voltage across the diode bridge. This voltage can be boosted up using a charge

pump to 7 V to turn-on the control IC creating a self starting rectifier.
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Appendix A: Planar Layer with Magnetization

This appendix derives the convection-diffusion equation for a planar layer with a spatially varying

magnetization used to model the rotor permanent magnet in Chapter 2. Consider a medium with

magnetization M, permeability p, and conductivity a moving with constant velocity, V. The constitutive

relation for this medium is B = p(H+ M). Since the divergence of B is zero, it can written as the curl of

some vector

V -B=0 B B=V XA, (A-1)

where A is known as the magnetic vector potential. Ampere's law in this medium is

V x H = a(E + V x B). (A-2)

Multiplying both sides of Equation (A-2) by p and substituting in the constitutive law gives

V x (B - g-M)= pia(E + V x B). (A-3)

Taking the curl of both sides of (A-3) gives

V X V x (B - pM)= a(V x E+ V x V x B). (A-4)

The electric field can now be substituted with the B field using Faraday's law,

VxE- (A-5)
cat

Doing so reduces (A-4) to

V x V x (B - p-M)= ptaK C- + V x V x B . (A-6)
(_ t

Substituting (A-1) into equation (A-6) gives

V X V x (V x A - pM)=jpa -- V x +VxVxVx A). (A-7)

Equation (A-7) can be rewritten as
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x (V x A - pM)+ pa - v x V x A] = 0.

Using the identity V x V4 = 0 , the expression within the bracket in Equation (A-8) can be set equal

to the gradient of some scalar potential

VX(V x A - M)+ Ia - -vxVxA =-V , (A-9)

which further simplifies to

V(V -A)- V2A - V x JM + pa aA V x =-V# . (A-10)

Using the following gauge condition

V(V A + 0)=0, (A-11)

Equation (A-10) reduces to

V2A+VxpM+= art -VxVxAX. (A-12)
( t

For a planar layer with a magnetization Mz(y) moving uniformly with velocity Uy, as shown in Figure A-

1, will have a vector potential with only one component, Ax. For such a layer, Equation (A-12) becomes

8M
V2 AX + pt az

0"y

1A,

at ay
(A-13)

Uy

z

Fer x y

Figure A-i: Lossy magnetic media moving in the y direction with velocity Uy.
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Appendix B: Matlab code for Chapter 3

This appendix contains the Matlab scripts used in the comparison of the slotted stator induction

machine, slotted stator PM machine and surface wound PM machine in Chapter 3. For each machine there

is a script that contains all the parameters used; a script that computes the effective permeabilities and

hysteresis loss in the stator core; a script that computes the torque, open-circuit voltage and inductance; a

script that computes the stator resistance and a main script that runs all the other scripts. For the slotted

stator inducton machine there is an additional script that computes the hysteresis loss in the rotor core. For

the surface wound PM machine there is an additional script that computes the proximity eddy current loss

in the stator windings. For the high temperature comparison in Section 3.5, the rotor conductivity is

divided by 2.14 and the remenance of the rotor PM is reduced to 87% of its room temperature value.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/
%%%% SLotted stator Induction Machine system (SLIM system) calls the other SLIM_* %%%%
%%%% scripts to compute power and efficiency vs. speed, input current, pole pairs ... %%%%
%%%% SLIM_parameters is called first to initialize all the variables followed by %%%%
%%%% SLIM_ fields which computes the effective permiabilities of the machine. %%%%
%%%% SLIMpower, SLIM_hysteresis and SLIMresistance are then called to compute the %%%%
%%%% output power, efficiency and various losses in the slotted sator induction machine. %%%%
%%%%%%%%%%%%%%%%%%%%/0/%%%%%%%%%%%%%%%%%%%%%%0/%%%%/0%%

global T rc Tal T_ag Tcl gcl Lgap Lpole That T base R im Rom
global u_0 u-a sigmar sigma c sigma a v M P N we W S Nlam pf alpha

SLIMparameters

%%% To get output power, loss, efficiency at a single speed, current ... %%%

[U r U_p U_b R_mr Core_loss_s] = SLIM fields(w-m,I_oHrefBrefBaCoreloss density);
[Fp Torque V_o L_s] = SLIMpower(w m,I o,U-r,U_p,U_b,R_mr);
[Rs] = SLIMresistance(W ci,WcoTciT_co,g_tr,W-h);
[Coreloss r] = SLIM hysteresis(wm,I_o,U-r,U_p,U-b,R_mrBaCorelossdensity,s);
P_mech = Torque*Omega m;
P_elect = I o*real(V_o);
P_cond =R_s*I_o2;
P core = Corelosss + Coreloss-r;
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P_out = P_elect + P_cond;
Eff = (P elect + P cond)/(Pmech - Pcore);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Optimzation with respect to slip and active layer thickness %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

slip= -1*[0:.01:.2];
activelayer = [10:10:100];
P_omax 0;
Eff max 0;
for e = 1:length(slip)

s = slip(e)
w-e = w-m/(1-s);

for f= 1:length(active layer)
T_al = activelayer(f)* 1 e-6;
[U r U-p Ub Rmr Corelosss] = SLIM fields(w-m,I_oHrefBrefBaCoreloss density);
[Fp Torque V-o L s] = SLIMpower(w-m,I-,U-r,Up,U b,R-mr);
[Rs] = SLIMresistance(W ci,WcoT_ci,T-co,gtr,W-h);
[Coreloss r] = SLIMhysteresis(wim,I o,U-r,Up,U b,R_mrBaCorelossdensity,s);
P_mech = Torque*Omega-m;
P elect = I o*real(V o);
P cond =R_s*IOA2;
P core = Corelosss + Coreloss-r;
P out(e,f) = max(0,-(Pelect + Pcond));
Eff(e,f) = max(0,(P elect + Pcond)/(P mech - P core));

if Eff(e,f) > Effmax
Eff max = Eff(e,f);
P_omax = P-out(e,f);
slipmax = s;
al max = T al;

end

end

end

figure(1)
surf(active layer,slip,P out)
xlabel('Thickness of active layer (\mum)')
ylabel('Slip')
zlabel('Power (W)')
title('Net output power vs. active layer thickness and slip')

figure(2)
surf(active layer,slip,Eff* 100)
xlabel('Thickness of active layer (\mum)')
ylabel('Slip')
zlabel('Efficiency (%)')
title('Efficiency vs. active layer thickness and slip')
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Optimzation with respect to phase current and alpha %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

I_phase = [5:30];
alphaparameter = [0.4:.05:.8];
P_omax = 0;
Eff max= 0;

for e = 1:length(Iphase)
Io = Iphase(e)

for f= 1:length(alphaparameter)
alpha = alphaparameter(f);
[U r Up U b R_mr Core losss] = SLIMfields(w m,I o,HrefBrefBa,Core_loss_density);
[Fp Torque V-o Ls] = SLIMpower(wm,I_o,U-r,Up,Ub,R__mr);
[R-s] = SLIM resistance(WciW_coT_ciT_co,gtr,Wh);
[Core loss r] = SLIMhysteresis(w_m,I_oU_r,U_p,U b,R-mrBaCore_loss density,s);
P_mech = Torque*Omegam;
P_elect = Io*real(V o);
P cond= R s*I oA2;
P_core = Corelosss + Corelossr;
P_out(e,f) = max(0,-(P elect + Pcond));
Eff(e,f) = max(0,(Pelect + P cond)/(Pmech - Pcore));

if (Eff(e,f) > Eff max) & (P out(e,f) >= 10)
Effmax = Eff(e,f);
P_omax = P-out(e,f);
I_max =I_o;
a_max = alpha;

end

end

end

figure(3)
surf(alphaparameter,Iphase,P out)
xlabel('\alpha')
ylabel('Io (A)')
zlabel('Power (W)')
title('Output power vs. \alpha and phase current')

figure(4)
surf(alphaparameter,Iphase,Eff* 100)
xlabel('\alpha')
ylabel('Io (A)')
zlabel('Efficiency (%)')
title('Efficiency vs. \alpha and phase current')
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Output power and efficiency vs. # of pole pairs %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Polepairs = [2:8];
for e = 1:length(Pole_pairs)

P = Polepairs(e)
w-m = P*Omega-m; % angular velocity of rotor (rad/s)
s = -. 1; % slip

w e = w m/(I -s); % electrical angular frequency (rad/s)
[U r Up U b R mr Coreloss s] = SLIM fields(w m,I_oHrefBrefBa,Core lossdensity);
[Fp Torque Vo Ls] = SLIMpower(w-m,I_oU_r,U_p,U b,Rmr);
[R s] = SLIMresistance(W ciW_co,T_ci,T-co,gtr,W h);
[Core loss r] = SLIM hysteresis(w m,I o,U-r,Up,U_bR_mrBaCoreloss density,s);
P_mech Torque*Omega-m;
P_elect = I o*real(V o);
P_cond =R_s*I_oA2;
P_core = Corelosss + Core loss_r;
P-out(e) = max(O,-(P elect + P-cond));
Eff(e) = max(0,(P elect + Pcond)/(P mech - P core));

end

figure(5)
subplot(2, 1,1)
plot(2*Pole_pairs,P-out,'k')
xlabel('Poles')
ylabel('Power (W)')
title('Output power and efficiency vs. number of Poles')
hold on
subplot(2,1,2)
plot(2*Polepairs,Eff* 1 00,'k')
xlabel('Poles')
ylabel('Efficiency (%)')
hold on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Output power and efficiency vs. phase current %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

I_phase = [1:20];
for e = 1:length(Iphase)

I o = I_phase(e)
[U r Up U b R mr Core_loss s] = SLIM fields(w m,I_oHrefBrefBa,Corelossdensity);
[Fp Torque V o L s] = SLIMpower(w m,I_oU_r,U_p,Ub,R-mr);
[R s] = SLIMresistance(WciW_co,T _ci,T co,gtr,W h);
[Core loss r] = SLIM hysteresis(w m,I o,U r,Up,U_bR_mrBaCoreloss density,s);
P_mech = Torque*Omegam;
P_elect = I_o*real(V o);
P_cond= R s*I oA2;
P_core = Core losss + Coreloss_r;
P-out(e) = max(0,-(P elect + P cond));
Eff(e) = max(0,(P elect + Pcond)/(P mech - P core));

end
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figure(6)
subplot(2, 1,1)
plot(IphaseP_out,'b')
xlabel('Io (A)')
ylabel('Power (W)')
title('Output power and efficiency vs. Phase Current')
hold on
subplot(2,1,2)
plot(Iphase,Eff*1 00,'b')
xlabel('I-o (A)')
ylabel('Efficiency (%)')
hold on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%/0
%%% Output power and efficiency vs. outer radius of magnetic core %%%
%%%%%%%/%%%%%%%%%%%%%%%%%%%%%%%%%%00%%%

OuterRadius = [4:.1:5];
for e = 1:length(OuterRadius)

R_om = OuterRadius(e)* le-3
Omega m = 500/(R om+le-3);
w m = P*Omega-m; % angular velocity of rotor (rad/s)
s = -. 1; % slip
w e = w m/(1-s); % electrical angular frequency (rad/s)
[Ur Up U_b R_mr Core loss s] = SLIM_fields(w m,I o,HrefBrefBaCorelossdensity);
[Fp Torque Vo Ls]= SLIMpower(wm,Io,U-r,Up,Ub,R_mr);
[Rs] = SLIMresistance(W ci,W coT_ciT_co,gtr,W-h);
[Core lossr] = SLIMhysteresis(w_mI_oU_r,Up,U b,Rmr,Ba,Corelossdensity,s);
P-mech = Torque*Omegam;
P_elect = Io*real(V o);
P_cond =R_s*I_oA2;
P_core = Corelosss + Corelossr;
P-out(e) = max(O,-(P elect + Pcond));
Eff(e) = max(O,(P elect + P cond)/(Pmech - Pcore));

end

figure(7)
subplot(2,1,1)
plot(OuterRadius,P-out,'k')
xlabel('Outer Radius (mm)')
ylabel('Power (W)')
title('Output power and efficiency vs. outer radius of rotor core')
hold on
subplot(2,1,2)
plot(OuterRadiusEff*100,'k')
xlabel('Outer Radius (mm)')
ylabel('Efficiency (%)')
hold on
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% SLotted stator Induction Machine parameters (SLIM_parameters) initializes the %%%%
%%%% variables for the machine dimensions, material properties and electrical inputs %%%%
%%%% used in SLIMfields, SLIMjower, SLIM-hysteresis and SLIMresistance. (MKS units) %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global Trc Tal Tag Tcl gcl Lgap Lpole T-hat Tbase R-im R-om
global u_0 ua sigma r sigma c sigmaa v M P N we W S Nlam pf alpha

% Rotor Dimenstions (meters)

T_rc = 500e-6;
T_al = 20e-6;
Tag = 25e-6;

% thickness of rotor core
% thickness of rotor conductor
% air gap

% Stator Dimensions (meters)

T tr= 150e-6;
g__tr =T_tr/3;
T cl = T_tr - 25e-6;
T ci =T_cl;
T_co = T_cl;
alpha = 0.65;
g_cl= T_tr/5;
W-h OOe-6;
W-v = OOe-6;
W-ci = 0.5*(le-3 - (W-h+2*gtr+gcl));
W_co = 500e-6;
T_wafer = 550e-6;
Lgap = 50e-6;
T hat = T_wafer - T tr - Wv - Tag;
T_base = 2*Twafer - Ttr - W-v;
L_pole = 2*(Ttr + W-v);

R-im= 0.003;
R om= 0.005;

% thickness of Si trench
% gap between trench sidewall and coil
% thickness of Cu coil
% thickness of inner end turn
% thickness of outer end turn
% fraction of slot taken up by coil and Si dividers
% gap between two adjacent coils
% width of horizontal Si structural dividers
% width of vertical Si structural dividers
% width of inner end turn coils
% width of outer end turn coils
% thickness of Si wafer
% length of stator tooth gap
% thickness of stator hat
% thickness of stator base
% length of stator pole
% magnetic core inner radius
% magnetic core outer radius

% Material Properties

Temp = 300;
u_0 = 4*pi*Ie-7;
u_a= 1*u_0;
sigma-r = 5e6;
sigma-c = 5.8e7/(1+3.9e-3*(Temp-25));
sigma a = sigmac;
v = 2e-5;

load CoFedata.mat
Hrefl = max(Ho) + [3e6:-Ie4:Ie4];
Brefl = max(Bo) + (Hrefl -max(Ho))*u_0;
Href= [Ho Hrefl];
Bref = [Bo Brefl];

% temperature (degrees C)
% permeability of free space (henry/m)
% permeability of active layer (henry/m)
% conductivity of electroplated CoFe (siemens)
% conductivity of Cu (siemens)
% conductivity of rotor active layer (siemens)
% viscosity of air

% B-H data for CoFe from GIT
% extenstion of B-H curve
% using permeability u_0
% B-H curve used in SLIMfields

% Electrical Parameters

I_o = 20;
M= 1;

% Phase current (A)
% number of harmonics solved for
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Speed = 795774.7;
Omega_m = 500/(Rom+Ie-3);
P =5;
N =2;
w_m = P*Omega-m;
s = -. 1;
w-e = w_m/(1-s);

% speed (RPM)
% speed (rad/s)
% number of pole pairs
% number of turns/pole
% angular velocity of rotor (rad/s)
% slip
% electrical angular frequency (rad/s)

% Lamination Parameters

W = 30e-6;
S = 20e-6;
N_lam = round((R-om - R-im)/(W+S));
pf = W/(W+S);

% lamination thickness (m)
% insulation thickness (in)
% number of laminations
% packing factor

function [u r,u_p,u b,R_mr,Core loss s] = SLIMfields(w_m,Io,HrefBrefBaCoreloss density)

%%%%%%%%%%%%%%%%%%% 0 %%%%%% 0 0%%%%%%%%%%%%%%%%%%%00 0%%
%%%% SLotted stator Induction Machine fields (SLIM fields) computes the permeability of %%%%
%%%% the rotor core (ur), stator pole (up) and stator base (u b) using a nonlinear B-H %%%%
%%%% curve. The starting value for u_r, up and u b is 200*u_0. The script iteratively %%%%
%%%% solves for the peak B fields in the rotor & stator until u_r, up and u-b are found %%%%
%%%% such that the maximum B lies on the B-H curve. The script also computes the resulting %%%%
%%%% core loss in the stator. (MKS units) %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global T-rc T_al T_ag Tcl gcl Lgap Lpole That Tbase Rim Rom
global u_0 u-a sigmajr sigma c sigma a v M P N we W S Nlam pf alpha

Z =N_lam+1;
dr = (Rom - R-im)/(Z-1);
u-r = ones(1,Z)*200*u_0;
u_p = ones(l,Z)*200*u_0;
u b ones(,Z)*200*u_0;
B_maxr = ones(1,Z)*5;
B mr = ones(,Z)*2;
Bmaxp = ones(1,Z)*5;
Bmp = ones(1,Z)*2;
B_maxb = ones(l,Z)*5;
B-mb = ones(l,Z)*2;

% radial increment (in)
% initial rotor permeability (henry/m)
% initial stator pole permeability (henry/m)
% initial stator base permeability (henry/m)
% initial Bmaxr (T)
% initial B_mr on B_H curve (T)
% initial B maxp (T)
% initial Bmp on BH curve (T)
% initial Bmaxb (T)
% initial Bmb on B_H curve (T)

for k = 1:Z

r(k) = R im + (k-1)*dr;
lambda = 2*pi*r(k)/P;
L_base = lambda/4;
T_pole = (1-alpha)*Lbase;

Vpole = 2*P*N*Tpole*L_pole*W;
V base = 2*P*N*T base*L base*W;
V hat = 2*P*N*That*(L base-L_gap)*W;

sigmap = sigma-r;
sigma-b = sigmar;

% rotor radius (in)
% wave length (in)
% base length = 1/4 of a wavelength (in)
% thickness of stator pole (in)

% volume of all the stator poles at radius r (mA3)

% volume of all the stator bases at radius r (mA3)

% volume of all the stator hats at radius r (mA3)

% conductivity of the stator pole (siemens)
% conductivity of the stator base (siemens)
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delta-p = sqrt(2/(up(k)*sigmap*w-e));
Q_p =.5*(1+j)*W/deltap;
FQp = Qp/tanh(Qp);

deltab = sqrt(2/(u b(k)*sigmap*we));

Qb = .5*(1+j)*W/delta_b;
FQb = Qb/tanh(Qb);

Rg = Lgap/(uO*T hat);
Rp = FQp*Lpole/(u p(k)*Tpole*pf);
Rb = FQ-b*(L base-Tpole)/(u-b(k)*T-base*pf);

R-s = Rg + 2*Rp + Rb;
R-r = (1+j)*Rp + .5*(1+j)*Rb;

% magnetic skin depth of stator pole (m)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% magnetic skin depth of stator base (m)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% reluctance of teeth gap
% reluctance of stator pole
% reluctance of stator base

% reluctance seen by 1 stator tooth gap
% reluctance seen by 1 rotor flux source

while (abs(B maxb(k) - B-mb(k)) > le-4) (abs(B-maxp(k) - Bmp(k)) > le-4) I (abs(B-maxr(k) -
B-mr(k)) > le-4),

for m = t:M

n = (2*m - 1) * (-1)^(m-t);
k_n = n*P/r(k);

% harmonic number
% wave number (1/m)

gammaOn = abs(k-n); % magnitude of wave number (1/m)
gamma-an = sqrt((k-n)A2+i*ua*sigma a*(we - n*wm));

% rotor conductor diffusion constant (1/m)
gammarn = sqrt((k n)A2+i*u r(k)*sigma-r*(we - n*wm));

% rotor core diffusion constant (1/m)

%%% rotor transfer relation constants %%%

betaIn = (u-r(k)/gamma-rn) * gammaOn/u_0 * sinh(gammarn*T-rc) + 1* cosh(gamman*T_rc);
beta_2n = (gamma rn/u-r(k)) * 1 * sinh(gamma_rn*T_rc) + gammaOn/u_0 * cosh(gammarn*T-rc);

beta_3n = (ua/gamma an) * beta_2n * sinh(gamma an*T al) + betaIn * cosh(gamma-an*T-al);

beta_4n = (gamma an/u-a) * betaIn * sinh(gamma-an*T al) + beta_2n * cosh(gamma-an*T-al);

beta_5n = (u_0/gammaOn) * beta_4n * sinh(gammaOn*Tag) + beta_3n * cosh(gammaOn*T-ag);
beta_6n = (gammaOn/u 0) * beta_3n * sinh(gammaOn*Tag) + beta_4n * cosh(gammaOn*Tag);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Hyn3 = 4 * exp(j*n*pi/4)* sin(n*pi*Lgap/lambda) / (n*pi);
Axn6 = -Hyn3/beta_6n; % vector potential at surface of stator
G-beta(m) = sinc(n/4)*(beta_5n/beta_6n)*sin(n*pi*Lgap/lambda)*exp(j*n*pi/4);

Byn5(m)= -u-r(k)*beta_2n*Axn6; % harmonic components of tangential B at rotor core
Bzn5(m)= j*k n*beta_1n*Axn6; % harmonic components of normal B at rotor core

end

L-eq = L_gap - j*2*R r*sum(G beta);
Hy3 (1-j)*I_o/Leq;

Phi_s =u_O*That*H-y3;
Phi-r =j*2*sum(G-beta)*Hy3;

% effective length of stator teeth gap (m)
% tangential H at surface of stator (A/m)

% leakage flux through stator tooth (Wb)
% magentizing flux (Wb)
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Phip = Phi r + (-1)*Phis;
Phi-b = Phi s + Phi-r/(j-1);

% flux through stator pole (Wb)
% flux through stator base (Wb)

B_r = sqrt(O.5*sum(abs(Byn5).^2+abs(Bzn5).2))*abs(H_y3);

B_g = abs(uO*Hj3);
B_p = abs(Phip/Tpole);
B-b = abs(Phi b/T base);

B_maxr(k)= B r;
H_maxr(k) = Bmaxr(k)/u r(k);
B_mr(k) = interp l(HrefBref,H maxr(k));
u_r(k) = B-mr(k)/Hmaxr(k);

B_maxp(k) = Bp;
H_maxp(k) = B-maxp(k)/u p(k);

B_mp(k) = interpI(HrefBref,Hmaxp(k));
u_p(k) = Bmp(k)/Hmaxp(k);

B_maxb(k)= B_fb;
H_maxb(k) = B-maxb(k)/ub(k);
B mb(k) = interpI(HrefBrefH_maxb(k));
u b(k)= B-mb(k)/Hmaxb(k);

end

R_mr(k) = r(k);
B_h = Bp*Tpole/(L base-Lgap);

% magnitude of B through rotor core (T)
% magnitude of B through stator teeth (T)
% magnitude of B through stator pole (T)
% magnitude of B through stator base (T)

% update Bmaxr
% compute corresponding H maxr using current u
% update Bmr using nonlinear B-H curve
% update rotor permeability

% update Bmaxp
% compute corresponding H maxp using current u
% update Bmp using nonlinear B-H curve
% update stator pole permeability

% update Bmaxb
% compute corresponding Hmaxb using current u
% update Bmb using nonlinear B-H curve
% update stator base permeability

% rotor radius (m)
% magnitude of B through rotor core (T)

%%% Compute hysteresis loss in slotted stator lamination at radius r %%%

if Bh >= 1.72 % 0.7 T for Moly Permalloy (NiFeMo), 1.72 T for electroplated CoFeNi
clh = V hat*max(Core loss density);

else

end
clh = V hat*interpl(Ba,Corelossdensity,B-h);

if B_p >= 1.72 % 0.7 T for Moly Permalloy (NiFeMo), 1.72 T for electroplated CoFeNi
cl-p = Vpole*max(Core loss density);

else

end
cl-p = Vpole*interpI(Ba,Corelossdensity,Bp);

if Bb >= 1.72 % 0.7 T for Moly Permalloy (NiFeMo), 1.72 T for electroplated CoFeNi
cl b = V base*max(Core loss density);

else

end
clb = V base*interpl (Ba,Corelossdensity,B-b);

dCL s(k) = cl-h + cl_p + cl_b;

end

Coreloss-s = w e*sum(dCLs)/(2*pi); % Total hysteresis loss in stator (W)
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function [Fp,Torque,V o,L s] = SLIM_power(w m,I_oU_r,U p,U-b,R-mr)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% SLotted stator Induction Machine power (SLIMpower) computes the pull-in force, %%%%
%%%% torque, induced voltage and stator phase inductance for the slotted stator %%%%
%%%% induction machine using the effective permeability for the rotor core, stator pole %%%%
%%%% and stator base from SLIMfields. (MKS units) %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global Trc Tal Tag Tcl gcl Lgap Lpole T-hat Tbase Rim Rom
global u_0 u_a sigma r sigmac sigma_a v M P N we W S Nilam pf alpha

dr = (Rom-R-im)/500;

for x = 1:501

% incremental radiul distance (m)

r=R im + (x-1)*dr;
lambda = 2*pi*r/P;
L_base = lambda/4;
T_pole = (1-alpha)*Lbase;

ur =interpl (R mr,U r,r);
up = interpl(R mr,Up,r);
ub =interpl(Rmr,Ub,r);

sigmap = sigma-r;
sigma-b = sigma-r;

delta-p = sqrt(2/(up*sigmap*w-e));
Q_p = .5*(l+j)*W/deltap;
FQp = Qp/tanh(Qp);

deltab = sqrt(2/(u b*sigma-b*w-e));
Qb= .5*(1+j)*W/delta_b;
FQb = Q_ b/tanh(Qb);

Rg = Lgap/(uO*T-hat);
Rp = FQ_p*Lpole/(up*Tpole*pf);
Rb = FQb*(Lbase)/(ub*Tbase*pf);

R-s = Rg + 2*Rp + Rb;
R_r = (l+j)*Rp + .5*(1+j)*Rb;

% radius (m)
% wave length (m)
% base length = 1/4 of a wavelength (m)
% thickness of stator pole (m)

% rotor permeability (henry/m)
% stator pole permeability (henry/m)
% stator base permeability (henry/m)

% conductivity of the stator pole (siemens)
% conductivity of the stator base (siemens)

% magnetic skin depth of stator pole (m)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% magnetic skin depth of stator base (m)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% reluctance of teeth gap
% reluctance of stator pole
% reluctance of stator base

% reluctance seen by 1 stator tooth gap
% reluctance seen by rotor flux over stator tooth

for m = 1:M

n = (2*m - 1) * (-1)A(m-1);
k_n = n*P/r;

gammaOn = abs(k-n);

% harmonic number
% wave number (1/m)

% magnitude of wave number (1/m)
gamma an = sqrt((k n)A2+i*u a*sigma-a*(we - n*wm));

% rotor conductor diffusion constant (1/m)
gammam = sqrt((k n)A2+i*u r*sigma-r*(we - n*wm));

% rotor core diffusion constant (1/m)

%%% rotor transfer relation constants %%%
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beta In = (ur/gammam) * gamma_On/u_0 * sinh(gammarn*T-rc) + 1 * cosh(gamma-rn*Trc);
beta_2n = (gammarn/ur) * 1 * sinh(gammarn*Trc) + gammaOn/u_0 * cosh(gamma-m*Trc);

beta_3n = (u a/gamma an) * beta_2n * sinh(gamma_an*T al) + betaIn * cosh(gammaan*T-al);

beta_4n = (gamma an/ua) * beta-In * sinh(gammaan*T al) + beta_2n * cosh(gammaan*T-al);
beta_5n = (u_0/gamma_0n) * beta_4n * sinh(gammaOn*Tag) + beta_3n * cosh(gammaOn*Tag);
beta_6n = (gammaOn/u_0) * beta_3n * sinh(gammaOn*Tag) + beta_4n * cosh(gammaOn*Tag);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/

Hyn3 = 4 * exp(j*n*pi/4)* sin(n*pi*Lgap/lambda) / (n*pi);
Axn6 = -Hyn3/beta_6n; % vector potential at surface of stator
G_beta(m) = sinc(n/4)*(beta_5n/beta_6n)*sin(n*pi*Lgap/lambda)*exp(j*n*pi/4);

Hyn4 = -beta_4n*Axn6; % harmonic components of tangential H at the rotor conductor surface
Bzn4 = j*k n*beta_3n*Axn6;

% harmonic components of normal B at the rotor conductor surface

zetal(m) = 0.25*((abs(Bzn4))^2/u_0 + uO*(abs(Hyn4))A2);
% harmonic component of pull-in force

zeta2(m) = 0.5*real(Bzn4 * Hyn4'); % harmonic components of torque

end

Leq = Lgap - j*2*Rr*sum(Gbeta);
H_y3 (1-j)*I-o/L-eq;

Phis = u_O*That*Hy3;
Phir =j*2*sum(G-beta)*Hy3;
Phi_p = Phi_r + (j-)*Phi_s;

dFp(x) = sum(zetal) * dr * r * (abs(Hy3))A2;
dT(x) = sum(zeta2) * dr * r^2 * (abs(H_y3))A2;
dPhi m(x) = dr*(-j*Phi_r);
dPhi(x) = dr*(-j *Phip);

end

Fp = -2*uO*pi*sum(dFp);
Torque = -2*pi*sum(dT);
V o =j*w_e*P*N*sum(dPhi m);
L s = P*N*real(sum(dPhi))/I-o;

% effective length of stator teeth gap (in)
% tangential H at surface of stator (A/m)

% leakage flux through stator tooth (Wb)
% magentizing flux (Wb)
% flux through stator pole (Wb)

% pull-in force over region [r,r+dr] (N)
% total torque over region [r,r+dr] (N-m)
% magnetizing flux over region [r,r+dr] (Wb)
% total flux over region [r,r+dr] (Wb)

% pull-in force acting rotor (N)
% torque on rotor (N-m)
% induced voltage (V)
% stator inductance (H)

function [Core lossr] = SLIMhysteresis(w_mI_oU_r,Up,U b,RmrBaCorelossdensity,s)

%%%%%%%%%%%%/0/%%%%%%%%%%%%%%%%%%%%%%%%%%0/%%%/0%%
%%%% SLotted stator Induction Machine hysteresis (SLIM-hysteresis) computes the %%%%
%%%% hysteresis loss in the rotor core of the slotted stator induction machine %%%%
%%%% using the effective permeability for the rotor core, stator pole and stator %%%%
%%%% base from SLIMfields. (MKS units) %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%/0/%%%%%%%%%%%%%%%%%

global Trc Tal T_ag Tcl gcl Lgap Lpole That Tbase Rim Rom
global uO u-a sigma r sigmac sigmaa v M P N w_e W S Nlam pf alpha
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r = (Rom+R im)/2;

lambda = 2*pi*r/P;
L base = lambda/4;
T_pole = (1-alpha)*L base;

u r = interpi (Rmr,Ur,r);
u_p = interp I(Rmr,Up,r);
u_b = interpl(R-mr,U-b,r);

sigmap = sigma-r;
sigma-b = sigma r;

deltap = sqrt(2/(up*sigmap*w e));
Q_p = .5*(1+j)*W/deltap;
FQp = Qp/tanh(Qp);

delta b = sqrt(2/(u b*sigma b*we));
Q_b= .5*(i+j)*W/delta_b;
FQb = Q-b/tanh(Qb);

Rg = Lgap/(uO*T hat);
Rp = FQ_p*Lpole/(up*Tpole*pf);
Rb = FQb*(Lbase)/(u-b*T-base*pf);

R_s = Rg + 2*Rp + Rb;
Rr = (1+j)*Rp + .5*(1+j)*Rb;

% wave length (m)
% base length = 1/4 of a wavelength (m)
% thickness of stator pole (m)

% rotor permeability (henry/m)
% stator pole permeability (henry/m)
% stator base permeability (henry/m)

% conductivity of the stator pole (siemens)
% conductivity of the stator base (siemens)

% magnetic skin depth of stator pole (m)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% magnetic skin depth of stator base (m)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% reluctance of teeth gap
% reluctance of stator pole
% reluctance of stator base

% reluctance seen by 1 stator tooth gap
% reluctance seen by rotor flux over stator tooth

for m = 1:M

% harmonic number
% wave number (1/m)

n = (2*m - 1)
k-n = n*P/r;

gammaOn = abs(kn); % magnitude of wave number (1/m)
gamma-an = sqrt((k n)A2+i*u a*sigma-a*(we - n*w m)); % rotor conductor diffusion constant (1/m)
gammarn = sqrt((k-n)A2+i*u-r*sigma-r*(we - n*w m)); % rotor core diffusion constant (1/m)

%%% rotor transfer relation constants %%%

betaIn = (u r/gamma rn) * gammaOn/u 0 * sinh(gamma_rn*Trc) + 1 * cosh(gammarn*T rc);
beta_2n = (gammarn/ur) * 1 * sinh(gamma_rn*Trc) + gammaOn/u_0 * cosh(gainmarn*T-rc);
beta_3n = (u a/gamma an) * beta_2n * sinh(gamma an*T al) + betaIn * cosh(gamma-an*T-al);
beta_4n = (gamma an/ua) * betaIn * sinh(gamma an*T al) + beta_2n * cosh(gamma-an*T-al);
beta_5n = (u 0/gamma_0n) * beta_4n * sinh(gammaOn*T-ag) + beta_3n * cosh(gammaOn*Tag);
beta_6n = (gammaOn/u 0) * beta_3n * sinh(gammaOn*Tag) + beta_4n * cosh(gammaOn*Tag);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Hyn3 = 4 * exp(j*n*pi/4)* sin(n*pi*Lgap/lambda) / (n*pi);
Axn6 = -Hyn3/beta_6n; % vector potential at surface of stator
G beta(m) = sinc(n/4)*(beta_5n/beta_6n)*sin(n*pi*L_gap/lambda)*exp(j*n*pi/4);
B_yr(m)= -ur*Axn6*gammaOn/u_0; % harmonic components of tangential B at rotor core
Bya(m)= -ur*beta_2n*Axn6; % harmonic components of normal B at rotor core

end
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Leq = Lgap - j *2*Rr*sum(G beta);
H_y3 (1-j)*I_o/Leq;

% effective length of stator teeth gap (m)
% tangential H at surface of stator (A/m)

%%%% Compute hysteresis loss in rotor core %%%%

theta = [0:0.04:1]*2*pi;
V rotor = 2*pi*r*T rc*(R_om - R-im);

% wavelength in radians
% volume of rotor

fore = 1:100
z= .01*(e-.5)*T rc;
for m = 1:M

n = (2*m - 1) * (-1)A(m-1); % harmonic number
gammarn = sqrt((k n)A2+i*u r*sigmar*(we - n*wm)); % rotor core diffusion constant (1/m)

for q= 1:25
Byrot(m,q) = H_y3*(Byr(m)*sinh(gammanm*z)/sinh(gamma-*T-rc)+Bya(m)
*sinh(gamma-r*(Trc-z))/sinh(gamma-rn*T-rc))*exp(-j*n*theta(q));

end

end

if M == 1
B_rot(e) = max(real(Byrot));

else
B_rot(e) = max(real(sum(Byrot)));

end

if B-rot(e) >= 1.72 % 0.7 T for Moly Permalloy (NiFeMo), 1.72 T for electroplated CoFeNi
clr(e) = 0.005*V rotor*max(Core loss density);

else

end
clr(e) = 0.005*V-rotor*interpl(Ba,Corelossdensity,B-rot(e));

end

Coreloss-r = abs(s)*w e*sum(clr)/(2*pi); % total hysteresis loss in rotor core

function [R-s] = SLIMresistance(W ci,W-coT_ciT_co,gtr,Wh)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/
%%%% SLotted stator Induction Machine resistance (SLIMresistance) computes the %%
%%%% resistance of a single phase of the slotted stator induction machine. (MKS units) %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%00%%%%%%%%/0/%%%%%%%%%%%%%%

global T-rc Tal T_ag Tcl gcl Lgap Lpole That Tbase Rim Rom u_0 ua cm delta_m
global sigma r sigma c sigma a sigma-s B_rm v M P N we W S N lam pf alpha

%%% Resistance of radial conductors %%%

W clri = alpha*pi*R im/(P*N) - 2*(Wh + gtr);
W_clro = alpha*pi*R om/(P*N) - 2*(W_h + gtr);
R radial = (2*(P*N)A2/(alpha*pi*sigma c*T cl)) * log(Wcl-ro/W-clri);
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%%% Resistance of inner and outer end turns %%%

for n = 1:N
R-i(n) = R_im - 0.5*(2*n-1)*W ci - (n-l)*g_cl - (Wh + gtr);
R-o(n) = R_om + 0.5*(2*n-l)*W co + (n-1)*g_cl + (W-h + gtr);
L i(n) = (2*n-1)*pi*R i(n)/(P*N);
L-o(n) = (2*n-1)*pi*R-o(n)/(P*N);

end

R-inner = P*sum(Li)/(sigma c*T-ci*W ci);
R_outer = P*sum(Lo)/(sigmac*Tco*W-co);

%%% Total resistance of a single phase %%%

R_s = Rradial + Rinner + R-outer;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% SLotted stator PM machine system (SLPM system) calls the other SLPM_* scripts to %%%%
%%%% compute power and efficiency vs. speed, input current, pole pairs ... %%%%
%%%% SLPM_parameters is called first to initialize all the variables followed by %%%%
%%%% SLPM_fields which computes the effective permiabilities of the machine. %%%%
%%%% SLPMpower, SLPM hysteresis and SLIMresistance are then called to compute the %%%%
%%%% output power, efficiency and various losses in the PM machine. %%%%
%%%% NOTE: SLIMresistance is used for both the slotted stator inductiona and PM machine %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global Trc Tal T-ag T cl gcl Lgap Lpole T-hat Tbase Rim Rom u_0 ua cm delta_m
global sigma r sigma c sigma a sigma_s B_rm v M P N we W S Nlam pf alpha

SLPM_parameters

%%% To get output power, loss, efficiency at a single speed, current ... %%%

[Ur Up U b R_mr Coreloss] = SLPM fields(w m,I_oHrefBrefBa,Coreloss_density);
[Fp Torque V-o L-s] = SLPM_power(w_mI_oU_r,Up,U-b,R-mr);
[R s] = SLIM resistance(WciW_co,T-ci,T-co,gtr,W~h);
P_elect = Io*real(V-o(1));
P_mech = Io*real(V-o(l)) + sum(Torque*Omega-m);
P_cond =R_s*I_o^2;
P_core = Coreloss;
P_out = P_elect + P_cond;
Eff= (P elect + P cond)/(Pmech - Pcore);
sum(Torque*Omega-m);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Output power and efficiency vs. phase current %%%
%%%%%%%%%%%%%0/%%%%%%%%%%%%%%%%

Iphase = [1:10];

for e = 1:length(I_phase)
I o = Iphase(e)
[U r Up U_b R mr Corejloss] = SLPMfields(w m,I o,HrefBrefBaCore_lossdensity);
[Fp Torque V-o Ls] = SLPMpower(w m,Io,U r,U p,Ujb,Rmr);
[Rs]= SLIMresistance(W ci,W coT_ciT_co,gtr,W-h);
P_elect =I_o*real(V-o(1));
P_mech = P_elect + Torque(1)*Omega-m;
P cond R s*I oA2;
P_core = Coreloss;
P-out(e) = max(0,-(Pelect + Pcond));
Eff(e) = max(0,(Pelect + P cond)/(P_mech - P core));

end

figure(1)
subplot(2,1,1)
plot(I_phaseP_out,'k-.')
xlabel('Io (A)')
ylabel('Power (W)')
title('Output power and efficiency vs. phase current')
hold on
subplot(2,1,2)
plot(Iphase,Eff* 100,'k-.')
xlabel('Io (A)')
ylabel('Efficiency (%)')
hold on

figure(2)
plot(Pout,Eff* 100,'k:')
xlabel('Power (W)')
ylabel('Efficiency (%)')
title('Efficiency vs. output power')

%%%%%%%/%%%%%%%%%%%%%%%%%%%%00%%
%%% Output power and efficiency vs. # of pole pairs %%%
%%%%%%%/%%%%%%00%%%%%%%%%%%%%%%%

Pole_pairs = [2:8];
for e = 1:length(Polepairs)

P = Polepairs(e)
w_m = P*Omegam; % angular velocity of rotor (rad/s)
w e = w m; % electrical angular frequency (rad/s)
[Ur Ujp Ub Rmr Core-loss] = SLPMfields(w m,I o,HrefBrefBaCorelossdensity);
[Fp Torque V-o L-s] = SLPMpower(w_m,_o,U-r,Up,U-b,Rmr);
[Rs] = SLIMresistance(W ci,W coTciT_co,gtr,W-h);
P_elect = I_o*real(V-o(1));
P_mech = P_elect + Torque(1)*Omegam;
P cond Rs*IoA2;
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P_core = Coreloss;
P-out(e) = max(O,-(P elect + P cond));
Eff(e) = max(O,(Pelect + Pcond)/(P mech - P core));

end

figure(3)
subplot(2, 1,1)
plot(2*PolepairsP_out,'k-.')
xlabel('Poles')
ylabel('Power (W)')
title('Output power and efficiency vs. number of poles')
hold on
subplot(2,1,2)
plot(2*Polepairs,Eff* 1 00,'k-.')
xlabel('Poles')
ylabel('Efficiency (%)')
hold on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Output power and efficiency vs. outer radius of magnetic core %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

OuterRadius = [4:.1:5];
for e = 1:length(OuterRadius)

R_om = OuterRadius(e)* I e-3
Omegam = 500/(Rom+le-3);
w-m = P*Omega-m; % angular velocity of rotor (rad/s)
we = win; % electrical angular frequency (rad/s)

[U r U_p U b R mr Coreloss] = SLPM fields(wm, I_o,HrefBrefBa,Core loss density);
[Fp Torque V o Ls] = SLPMpower(w m, I_oU_r,U_p,U b,R mr);
[R s] = SLIMresistance(W ciW_coT_ci,T-co,gtr,W~h);
P_elect I_o*real(V-o(1));
P_mech = P_elect + Torque(1)*Omega-m;
P_cond =R_s*I_o^2;
P_core = Core-loss;
P-out(e)= max(O,-(P elect + P-cond));
Eff(e) = max(O,(P elect + Pcond)/(P mech - P core));

end

figure(4)
subplot(2, 1,1)
plot(OuterRadiusP_out,'k-.')
xlabel('R o (mm)')
ylabel('Power (W)')
title('Output power and efficiency vs. outer radius of rotor core')
hold on
subplot(2,1,2)
plot(OuterRadius,Eff* 1 00,'k-.')
xlabel('R-o (mm)')
ylabel('Efficiency (%)')
hold on
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%/0/%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/%%%%%%%0/
%%%% SLotted stator PM machine parameters (SLPM_parameters) initializes the variables %%%%

%%%% for the machine dimensions, material properties and electrical inputs used in %%%%
%%%% SLPM fields, SLPMpower, SLPMhysteresis and SLIMresistance. (MKS units) %%%%
%%%%%%%*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0%%%%%%%%%00%%%%%%0

global T rc Tal Tag Tcl gcl Lgap L pole That Tbase Rim Rom u_0 ua cm delta-m
global sigma r sigma c sigmaa sigmas Brm v M P N we W S N-lam pf alpha

% Rotor Dimenstions (meters)

T_rc = 450e-6;
T_al = 50e-6;
T_ag = 50e-6;
c-M = 0.000001;

% thickness of rotor core
% thickness of rotor conductor
% air gap
% transition region length

% Stator Dimensions (meters)

T tr = 150e-6;
g_tr = T tr/3;
T_cl T_tr - 25e-6;
T_ci = T_cl;
T co = T cl;
alpha = 0.5;
g_cl = T tr/5;
W h = OOe-6;
W-v = OOe-6;
W ci = 0.5*(1e-3 - (Wh+2*gtr+g_cl));
W co = 500e-6;
T_wafer = 550e-6;
Lgap = 50e-6;
T hat = T wafer - Ttr - W v - T-ag;
T_base = 2*Twafer - Ttr - Wv;
L_pole = 2*(Ttr + W-v);
R_im =0.003;
R om 0.005;

% thickness of Si trench
% gap between trench sidewall and coil
% thickness of Cu coil
% thickness of inner end turn
% thickness of outer end turn
% fraction of slot taken up by coil and Si dividers
% gap between two adjacent coils
% width of horizontal Si structural dividers
% width of vertical Si structural dividers
% width of inner end turn coils
% width of outer end turn coils
% thickness of Si wafer
% length of stator tooth gap
% thickness of Ni-Fe hat
% thickness of Ni-Fe base
% length of Ni-Fe pole
% magnetic core inner radius
% magnetic core outer radius

% Material Properties

Temp = 25;
u_0 = 4*pi*le-7;
u_a= I*u_0;
sigmar = 5e6;
sigmac = 5.8e7;
sigma-a = Ie7;
sigma s = 5e6;
B_rm = 1;
v = 2e-5;

load CoFedata.mat
Hrefl = max(Ho) + [5e6:-le4:Ie4];
Brefl = max(Bo) + (Hrefl -max(Ho))*u_0;
Href= [Ho Hrefl];
Bref= [Bo Brefi];

% temperature (degrees C)
% permeability of free space (henry/m)
% permeability of active layer (henry/m)
% conductivity of CoFe (siemens)
% conductivity of Cu (siemens)
% conductivity of rotor active layer (siemens)
% conductivity of CoFe (siemens)
% remanence of rotor PM (T)
% dynamic viscosity of air (N-s/m)

% B-H data for CoFe from GIT
% extension of B-H curve
% using permeability u_0
% B-H curve used in SLIMfields
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% Electrical Parameters

I_o = 5;
delta_m= pi/2;
M = 5;
P =6;
N =2;
Speed = 795774.7;
Omega m = 500/(Rom+le-3);
w-m = P*Omega-m;
w-e = w m;

% Phase current (A)
% Phase difference between rotor flux and stator current
% number of harmonics solved for in MIMF and MIMRP
% number of pole pairs
% number of turns/pole
% speed (RPM)
% speed (rad/s)
% angular velocity of rotor (rad/s)
% electrical angular frequency (rad/s)

% Lamination Parameters

W = 30e-6;
S = 20e-6;
N_lam = round((R-om - R-im)/(W+S));
pf= W/(W+S);

% lamination thickness (m)
% insulation thickness (m)
% number of laminations
% packing factor

function [u r,up,u b,R mrCoreloss_s] = SLPM fields(w mI o,HrefBrefBa,Core lossdensity)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% SLotted stator PM machine fields (SLPM fields) computes the permeability of the %%%%
%%%% rotor core (ur), stator pole (up) and stator base (u b) using a nonlinear B-H %%%%
%%%% curve. The starting value for u r, up and u b is 200*u_0. The script iteratively %%%%
%%%% solves for the peak B fields in the rotor & stator until u r, up and ub are found %%%%
%%%% such that the maximum B lies on the B-H curve. The script also computes the resulting %%%%
%%%% core loss in the stator. (MKS units) %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global T_rc T_al Tag Tcl gcl Lgap Lpole T-hat Tbase Rim Rom u_0 ua cm delta_m
global sigma r sigma c sigma a sigmas Brm v M P N w e W S Nlam pf alpha

Z =N_lam+1;
dr (R om - im)/(Z-1);
u_r ones(,Z)*200*u_0;
u_p = ones(l,Z)*200*u_0;
u b ones(,Z)*200*u_0;
B_maxr = ones(1,Z)*5;
B_mr = ones(1,Z)*2;
B_maxp = ones(1,Z)*5;
B_mp = ones(l,Z)*2;
B_maxb = ones(l,Z)*5;
Bmb = ones(l,Z)*2;

T_sl T_hat + L_pole;
T_sb =T_base;

% radial increment (in)
% initial rotor permeability (henry/m)
% initial stator pole permeability (henry/m)
% initial stator base permeability (henry/m)
% initial Bmaxr (T)
% initial B_mr on BH curve (T)
% initial Bmaxp (T)
% initial B_mp on BH curve (T)
% initial B _maxb (T)
% initial B mb on BH curve (T)

% thickness of slot layer (m)
% thickness of base layer (m)

for k = l:Z

r(k) = R im + (k-1)*dr;
lambda = 2*pi*r(k)/P;
L_base = lambda/4;

% rotor radius (in)
% wave length (m)
% base length = 1/4 of a wavelength (m)
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Tpole = (1-alpha)*Lbase;
Im = (pi*r(k)/P) - c m;
V-pole = 2*P*N*T-pole*L-pole*W;
V_base = 2*P*N*Tbase*Lbase*W;
V hat = 2*P*N*That*(L-base-L_gap)*W;

deltap = sqrt(2/(up(k)*sigma-s*w-e));
Q_p = .5*(1+j)*W/deltap;
FQp = Qp/tanh(Qp);

delta b = sqrt(2/(u b(k)*sigma s*we));

Qb = .5*(1 +j)*W/delta_b;
FQb = Qb/tanh(Qb);

Rg = Lgap/(uO*T hat);
Rp = FQp*Lpole/(up(k)*Tpole*pf);
Rb = FQ b*(Lbase-T_pole)/(u-b(k)*T-base*pf);

Rs = Rg + 2*Rp + Rb;
R-r = (I+j)*Rp + .5*(1+j)*Rb;

sigmap = sigma_s*(1-abs(/FQ_p));
sigmab = sigma_s*(1-abs(1/FQb));

% thickness of stator pole (m)
% length of region of constant remanence (m)
% volume of all the stator poles at radius r (mA3)

% volume of all the stator bases at radius r (mA3)

% volume of all the stator hats at radius r (mA3)

% magnetic skin depth of stator pole (m)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% magnetic skin depth of stator base (m)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% reluctance of teeth gap
% reluctance of stator pole
% reluctance of stator base

% reluctance seen by 1 stator tooth gap
% reluctance seen by 1 rotor flux source

% conductivity of the stator slot layer (siemens)
% conductivity of the stator base layer (siemens)

while (abs(B maxb(k) - B-mb(k)) > le-4) I (abs(B maxp(k) - Bmp(k)) > le-4) I (abs(B maxr(k) -
B_mr(k)) > e-4),

for m = t:M

n = (2*m - 1) *(-1)^(m-);
k-n = n*P/r(k);

% harmonic number for stator currents
% wave number (1/m)

gammaOn = abs(kn); % magnitude of wave number (1/m)
gamma-an = sqrt((k n)A2+i*u a*sigmaa*(w_e - n*w-m));

% rotor conductor diffusion constant (1/m)
gammarn = sqrt((k n)A2+i*ur(k)*sigmar*(w_e - n*w-m));

% rotor core diffusion constant (1/m)

%%% rotor transfer relation constants for stator currents %%%

beta In = (ur(k)/gamma-rn) * gammaOn/u_0 * sinh(gammam*Trc) + 1* cosh(gamma-rn*Trc);
beta_2n = (gamma rn/ur(k)) * 1 * sinh(gammarn*T-rc) + gammaOn/u_0 * cosh(gammarn*T-rc);

beta_3n = (ua/gamma-an) * beta_2n * sinh(gammaan*T al) + beta-In * cosh(gamma an*T al);

beta_4n = (gamma an/u a) * beta In * sinh(gammaan*T al) + beta_2n * cosh(gamma-an*T-al);

beta_5n = (u_0/gamma_0n) * beta_4n * sinh(gammaOn*Tag) + beta_3n * cosh(gammaOn*Tag);

beta_6n = (gammaOn/u_0) * beta_3n * sinh(gammaOn*Tag) + beta_4n * cosh(gammaOn*Tag);

%%%%%%%%%%%%%%%%/0/%%%%%0/%%%%%%%%%%%%%%%%%%%

Hyn3 =j*4 * exp(j*n*pi/4)* sin(n*pi*L gap/lambda) / (n*pi);
Axn6 = -Hyn3/beta_6n; % vector potential at surface of stator
G_beta(m) = sinc(n/4)*(beta_5n/beta_6n)*sin(n*pi*Lgap/lambda)*exp(j*n*pi/4);
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Byn5j(m) = -ur(k)*beta_2n*Axn6;
% harmonic components of tangential B at rotor core

B-zn5j(m) = j*k-n*betaln*Axn6;
% harmonic components of normal B at rotor core

end

L-eq = L_gap - j *2*R r*sum(G beta); % effective length of stator teeth gap (m)
H_y3 (1-j)*I_o/Leq; % tangential H at surface of stator (A/m)

for m =:M

n = (2*m - 1); % harmonic number for rotor magnetization
k_n = n*P/r(k); % wave number (I/m)

gammaOn = k_n; % magnitude of wave number (1/m)
gamma-an = kn; % rotor conductor diffusion constant (1/m)
gammarn = k_n; % rotor core diffusion constant (1/m)
gammapn = sqrt(k-n^2+j*up(k)*sigmap*n*w-m);

% stator slot diffusion constant (1/m)
gamma-bn = sqrt(k-nA2+j*u-b(k)*sigmap*n*w m);

% stator base diffusion constant (1/m)

%%% rotor transfer relation constants for rotor magnetization %%%

alphaln(m) = (u b(k)/gamma bn)*gammaOn/uO*sinh(gamma bn*T sb)+1*cosh(gammabn*T sb);
alpha_2n(m) = (gammabn/ub(k))* 1*sinh(gamma bn*T sb)+gamma_On/uO*cosh(gammabn*Tsb);

alpha_3n(m) = (up(k)/gamma_pn)*alpha_2n(m)*sinh(gamma_pn*T sl)+alpha-ln(m)*cosh(gammapn*T-sl);
alpha_4n(m) = (gammapn/up(k))*alpha ln(m)*sinh(gamma_pn*T sl)+alpha_2n(m)*cosh(gammajpn*T sl);

alpha_5n(m)= u0/gamma On)*alpha_4n(m)*sinh(gammaOn*Tag)+alpha 3n(m)*cosh(gammaOn*Tag);
alpha_6n(m)= (gamma On/uO)*alpha_3n(m)*sinh(gammaOn*Tag)+alpha_4n(m)* cosh(gammaOn*T-ag);

alpha_7n(m) = (u a/gamma_0n)*alpha_6n(m)*sinh(gammaOn*Tal)+alpha_5n(m)* cosh(gammaOn*T-al);
alpha_8n(m) = (gammaOn/u a)*alpha_5n(m)*sinh(gammaOn*Tal)+alpha_6n(m)* cosh(gammaOn*T-al);

beta ln(m) = (ur(k)/gamma m) * gammaOn/u 0 * sinh(gamma rn*T rc) + 1 * cosh(gammarn*Trc);
beta 2n(m) = (gamma rn/u r(k)) * 1 * sinh(gamma rn*T rc) + gammaOn/u_0 * cosh(gamma_rn*Trc);
beta 3n(m) = (ua/gamma an)*beta_2n(m)*sinh(gamma-an*T al)+beta ln(m) * cosh(gammaan*Tal);
beta 4n(m) = (gamma an/u a)*beta ln(m)*sinh(gamma an*T-al)+ beta_2n(m)* cosh(gammaan*Tal);
beta 5n(m) = (u_0/gamma_0n)*beta_4n(m)*sinh(gamma On*Tag)+beta_3n(m)* cosh(gammaOn*T-ag);
beta 6n(m) = (gamma On/u 0)*beta 3n(m)*sinh(gamma On*Tag)+beta_4n(m)* cosh(gammaOn*T ag);
beta 7n(m) = (up(k)/gamma_pn)*beta_6n(m)*sinh(gamma_pn*T sl)+beta_5n(m)*cosh(gamma_pn*T-sl);
beta_8n(m) = (gammapn/up(k))*beta 5n(m)*sinh(gamma pn*T sl)+beta_6n(m)*cosh(gammajpn*T Si);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B-m = (8/(n*pi))*(B rm/c m)*cos(.5*k n*lm)*exp(j*n*delta-m);
A xnm = B m/k_nA2; % vector potential due to rotor magnetization

cmb = (beta_4n(m) - beta_2n(m)) / (beta_4n(m)*alpha_8n(m) - beta_2n(m)*alpha 6n(m));
cmt = (alpha_8n(m) - alpha_6n(m)) / (beta_4n(m)*alpha_8n(m) - beta_2n(m)*alpha_6n(m));

%%% vector potential due to rotor PM %%%
A-xnm1 = -j*cmb*(gamma an/u a)*sinh(gamma an*T al)*Axnm;
A-xnm6 = -j*cmt*(gamma an/u a)*sinh(gamma an*T al)*Axnm;
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B_zn5m(m) =j*kn*betaln(m)*A-xnm6;
% harmonic components of tangential B at interface 5

B_yn5m(m) = -u-r(k)*(kn/uO)*A-xnm6;
% harmonic components of normal B at interface 5

Phirnim(m) = -j*2*sin(n*pi/4)*alpha_3n(m)*Ayxnml;
% rotor flux source from permenent magnet

end

Byn5 = Byn5m + Byn5j*Hy3;
B_zn5 = B_zn5m + Bzn5j*Hy3;

Phi s = uO*T hat*Hy3;
Phir =j*2*sum(G-beta)*H_y3;
Phip = Phi r + (j-1)*Phis+ sum(Phirnm)
Phi b = Phi s + Phi r/(j-1)+ sum(Phirn);

B_r = sqrt(0.5*sum(abs(Byn5).A2+abs(B_
B_g abs(uO*H_y3);
B_p = abs(Phip/T_pole);
B_b abs(Phib/T_base);

B_maxr(k) = B_r;
H_maxr(k) = B-maxr(k)/ur(k);
B_mr(k) = interpl(HrefBref,Hmaxr(k));
u r(k)= B-mr(k)/H-maxr(k);

B_maxp(k) = Bp;
H_maxp(k) = Bmaxp(k)/up(k);
B_mp(k) = interpl(HrefBref,Hmaxp(k));
u-p(k)= Bmp(k)/Hmaxp(k);

B_maxb(k) = B_b;
H_maxb(k) = B-maxb(k)/u-b(k);
B_mb(k) = interpI(HrefBrefH_maxb(k));
u_b(k) = B-mb(k)/Hmaxb(k);

end

R-mr(k) = r(k);
B_h = Bp*T_pole/(L base-Lgap);

% tangential B at interface 5 from I o and Brm
% normal B at interface 5 from I o and B rm

% leakage flux through stator tooth (Wb)
% magentizing flux (Wb)
% flux through stator pole (Wb)
% flux through stator base (Wb)

m5).^2));
% magnitude of B through stator teeth (T)
% magnitude of B through stator pole (T)
% magnitude of B through stator base (T)

% update B_maxr
% compute corresponding H maxr using current u

% update Bmr using nonlinear B-H curve
% update rotor permeability

% update B-maxp
% compute corresponding Hmaxp using current u

% update Bmp using nonlinear B-H curve
% update stator pole permeability

% update Bmaxb
% compute corresponding Hmaxb using current u

% update Bmb using nonlinear B-H curve
% update stator base permeability

% rotor radius (m)
% magnitude of B through rotor core (T)

if Bh >= 1.72 % 0.7 T for Moly Permalloy (NiFeMo), 1.72 T for electroplated CoFeNi
clh = V hat*max(Core loss density);

else

end
cl h = V hat*interpl(Ba,Corelossdensity,B-h);

if Bp >= 1.72 % 0.7 T for Moly Permalloy (NiFeMo), 1.72 T for electroplated CoFeNi
clp = Vpole*max(Core loss density);

else

end
clp = Vpole*interpl (BaCorelossdensity,Bp);

if B b >= 1.72 % 0.7 T for Moly Permalloy (NiFeMo), 1.72 T for electroplated CoFeNi
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cl-b = V-base*max(Corelossdensity);
else

end
clib = V-base*interpl (Ba,Core-loss-density,B-b);

dCL s(k) = cl-h + cljp + cl-b;

end

Core loss s = w-e*sum(dCLs)/(2*pi); % Total hysteresis loss in stator (W)

function [Fp,Torque,V oc,L s] = SLPMpower(w m,I o,U r,U_p,U b,R-mr)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% SLotted stator PM machine power (SLPMpower) computes the pull-in force, torque, %%%%
%%%% open-circuit voltage and stator phase inductance for the slotted stator PM %%%%
%%%% machine using the effective permeability for the rotor core, stator pole %%%%
%%%% and stator base from SLPM_fields. (MKS units) %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global Trc T al T ag T cl gcl Lgap Lpole T-hat Tbase Rim R om u_0 ua c m delta_m
global sigma r sigma c sigma a sigma_s B_rm v M P N we W S Nlam pf alpha

T_sl T_hat + L_pole;
T_sb =T_base;
dr = (R-om-R-im)/500;

% thickness of slot layer (m)
% thickness of base layer (m)
% incremental radiul distance (m)

for x = 1:501

r=R im + (x-1)*dr;
lambda = 2*pi*r/P;
L_base = lambda/4;
T_pole = (1-alpha)*Lbase;
Im = (pi*r/P) - c_m;
u_r interpl (Rmr,Ur,r);
u_p = interpl(R-mr,Up,r);
ub =interp I (Rmr,Ub,r);

deltap = sqrt(2/(up*sigmas*we));
Q_p = .5*(1+j)*W/deltap;
FQp = Qp/tanh(Qp);

deltab = sqrt(2/(u b*sigma s*w e));
Qb= .5*(1+j)*W/delta_b;
FQ b = Qb/tanh(Qb);

sigmap = sigma s*(1-abs(1/FQp));
sigma b = sigmas*(1-abs(1/FQb));

Rg = Lgap/(u_0*T hat);
Rp = FQp*Lpole/(up*Tpole*pf);
Rb = FQb*(Lbase)/(ub*Tbase*pf);

R-s = Rg + 2*Rp + Rb;

% radius (m)
% wave length (m)
% base length = 1/4 of a wavelength (m)
% thickness of stator pole (m)
% length of region of constant remanence
% rotor permeability (henry/m)
% stator pole permeability (henry/m)
% stator base permeability (henry/m)

% magnetic skin depth of stator pole (m)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% magnetic skin depth of stator base (m)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% conductivity of stator slot layer (siemens)
% conductivity of stator base layer (siemens)

% reluctance of teeth gap
% reluctance of stator pole
% reluctance of stator base

% reluctance seen by 1 stator tooth gap
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% reluctance seen by 1 rotor flux source

for m = l:M

n = (2*m - 1) *(1)^(m- 1);
k_n = n*P/r;

gammaOn = abs(kn);
gamma an = abs(kn);
gamma m = abs(k-n);

% harmonic number for rotor magetization
% wave number (1/m)

% magnitude of wave number (1/m)
% inverse of rotor conductor skin depth (m)
% inverse of rotor core skin depth (m)

%%% rotor transfer relation constants for stator currents%%%

beta In = (ur/gamma-m) * gammaOn/u_0 * sinh(gammarn*T-rc) + 1* cosh(gamma_rn*T-rc);
beta_2n = (gammarn/ur) * 1 * sinh(gamma m*T rc) + gammaOn/u_0 * cosh(gammarn*T-rc);
beta_3n = (ua/gamma an) * beta_2n * sinh(gammaan*T al) + beta-In * cosh(gammaan*T-al);
beta_4n = (gamma an/u-a) * beta-In * sinh(gammaan*T al) + beta_2n * cosh(gamma-an*T-al);
beta_5n = (u_0/gamma_0n) * beta_4n * sinh(gammaOn*T ag) + beta_3n * cosh(gammaOn*T-ag);
beta_6n = (gammaOn/u 0) * beta_3n * sinh(gammaOn*Tag) + beta_4n * cosh(gammaOn*T_ag);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%/%%%%%0%%%0/%%%%%

Hyn3 = j*4*exp(j*n*pi/4)*sin(n*pi*Lgap/lambda)/(n*pi);
Axn6 = -Hyn3/beta_6n; % vector potential at surface of stator
G_beta(m) = sinc(n/4)*(beta_5n/beta_6n)*sin(n*pi*Lgap/lambda)*exp(j*n*pi/4);

end

L-eq Lgap -j*2*Rr*sum(G beta);
Hy3 = (1-j)*I o/L eq;
Phis = u_O*That*Hy3;
Phir =j*2*sum(G-beta)*H_y3;
Phi_p =Phi_r + (j-1)*Phi_s;

% effective length of stator teeth gap (m)
% tangential H at surface of stator (A/m)
% leakage flux through stator tooth (Wb)
% magentizing flux (Wb)
% flux through stator pole (Wb)

for m = 1:M

n = (2*m - 1);
k_n = n*P/r;

gammaOn = kn;
gammaan = kn;
gamma_rn= kn;
gammapn = sqrt(knA2+j*up*sigma_p*n*wrm);
gamma-bn = sqrt(k-nA2+j*u-b*sigmap*n*w-m);

% harmonic number for rotor magnetization
% wave number (1/m)

% magnitude of wave number (1/m)
% rotor conductor diffusion constant (1/m)
% rotor core diffusion constant (1/m)
% stator slot diffusion constant (1/m)
% stator base diffusion constant (1/m)

%%% rotor transfer relation constants for rotor magnetization %%%

alpha-ln(m)= (u b/gamma bn) * gamma On/u_0 * sinh(gammabn*T sb) + 1 * cosh(gamma-bn*T-sb);
alpha_2n(m)= (gamma bn/u b) * 1 * sinh(gamma_bn*Tsb) + gammaOn/u_0 * cosh(gamma-bn*T sb);

alpha_3n(m) = (up/gamma_pn)*alpha_2n(m)*sinh(gamma_pn*T sl)+alphaln(m)*cosh(gammapn*Tsl);
alpha_4n(m) = (gammapn/uAp)*alpha _ln(m)*sinh(gammapn*T sl)+alpha_2n(m)*cosh(gammapn*T-sl);

alpha_5n(m) = (uo/gamma_0n)*alpha_4n(m)*sinh(gammaOn*Tag)+alpha_3n(m)*cosh(gammaOn*T-ag);
alpha_6n(m) = (gammaOn/uO)*alpha_3n(m)*sinh(gammaOn*T-ag)+alpha_4n(m)*cosh(gammaOn*Tag);

alpha_7n(m) = (u _a/gamma an)*alpha_6n(m)*sinh(gamma an*T al)+alpha 5n(m)*cosh(gammaan*Tal);
alpha_8n(m) = (gamma an/ua)*alpha_5n(m)*sinh(gamma-an*T-al)+alpha_6n(m)*cosh(gammaan*Tal);
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beta_ln(m) = (u r/gamma in) * gamma On/u_0 * sinh(gamma rn*T rc) + 1 * cosh(gammarn*Trc);
beta_2n(m) = (gammarn/ur) * 1* sinh(gammarn*T-rc) + gammaOn/u_0 * cosh(gamma_rn*Trc);
beta_3n(m) = (u_a/gamma an)*beta_2n(m)*sinh(gammaan*Tal)+beta ln(m)*cosh(gamma an*Tal);
beta_4n(m) = (gammaan/ua)*betaln(m)*sinh(gammaan*Tal)+beta_2n(m)*cosh(gamma an*T-al);
beta_5n(m) = (u_0/gamma On)*beta 4n(m)*sinh(gammaOn*T_ag)+beta_3n(m)*cosh(gammaOn*Tag);
beta_6n(m) = (gammaOn/uO)*beta_3n(m)*sinh(gammaOn*Tag)+beta_4n(m)*cosh(gamma_0n*Tag);
beta_7n(m) = (up/gammapn)*beta_6n(m)*sinh(gamma pn*T sl)+beta 5n(m) * cosh(gammapn*T sl);
beta_8n(m) = (gammapn/up)*beta_5n(m)*sinh(gammapn*T sl)+beta_6n(m) * cosh(gammapn*T sl);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B-m = (8/(n*pi))*(B rm/c m)*cos(.5*kn*lm)*exp(j*n*delta-m);
A xnm = Bm/k_nA2; % vector potential due to rotor magnetization

cmb = (beta 4n(m) - beta_2n(m)) / (beta_4n(m)*alpha_8n(m) - beta_2n(m)*alpha_6n(m));
cmt = (alpha_8n(m) - alpha_6n(m)) / (beta_4n(m)*alpha_8n(m) - beta_2n(m)*alpha_6n(m));

A_xnml = -j*cmb*(gammaan/u a)*sinh(gammaan*Tal)*A-xnm;
% vector potential at interface 1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% To get mechanicail input power set m == 1 %%%
%%% Ifjust the eddy current loss is desired, set m == -1, %%%
%%% mechanical input power = P eddy + Pelect. %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if m == -1
Axnj6 = 4*exp(-j*pi/4)*sin(pi*L gap/lambda)*Hy3/(beta 6n(1)*pi);

% vector potential at interface 6 due to rotor PM
else

Axnj6= 0;
end

Bzn4 = j*k n*(alpha_5n(m)*A xnml + beta 3n(m)*Axnj6);
% harmonic components of tangential H at the rotor conductor surface

H_yn4 = alpha 6n(m)*A xnml - beta 4n(m)*A xnj6;
% harmonic components of normal B at the rotor conductor surface

zetal(m) = 0.5*real(B zn4*Hyn4'); % harmonic components of torque
zeta2(m) = 0.25*((1/u_0) * (abs(B zn4))A2 - uO*(abs(Hyn4))A2);

% harmonic components of pull-in force

dPhi zncoilm(x,m) =j*2*P*N*sin(n*pi/4)*alpha_3n(m)*Axnml;

% flux from rotor PM over region [r,r+dr] (Wb)
dV(x,m) exp(j*n*pi/2)*n*w-m*dPhi zncoilm(x,m)*dr;

% incremental voltage from PM over region [r,r+dr] (V)
dT(x,m)= zetal (in) * dr * r^2; % total torque over region [r,r+dr] (N-m)

end

dFp(x) = sum(zeta2)* dr * r; % pull-in force over region [r,r+dr] (N)
dPhi(x)= dr*(-j*Phip); % flux from stator current over region [r,r+dr] (Wb)

end

Fp = -2*uO*pi*sum(dFp); % pull-in force acting rotor (N)
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Torque = -2*pi*sum(dT); % torque on rotor (N-m)
V_oc = sum(dV); % open-circuit voltage (V)
L-s = P*N*real(sum(dPhi))/Io; % stator phase inductance (H)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Surface Wound PM machine system (SWPM system) calls the other SWPM_* scripts to %%%%
%%%% compute power and efficiency vs. speed, input current, pole pairs ... %%%%
%%%% SWPMparameters is called first to initialize all the variables followed by %%%%
%%%% SWPMfields which computes the effective permiabilities of the machine. %%%%
%%%% SWPMpower, SWPMhysteresis and SWPMresistance are then called to compute the %%%%
%%%% output power, efficiency and various losses in the PM machine. %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/%%%%%%%%%%%%

global T rc T al T_ag T-sc T-cl gcl c m W S pf N lam T cl Hrefr Brefr Hrefs Brefs
global R-im R_om u_0 u-a sigma c sigma a sigma r sigma s Brm v M P N we delta_m

SWPM-parameters

%%% To get output power, loss, efficiency at a single speed, current ... %%%

[U r U s Rmr Brotor Bstator Core-loss] = SWPM-fields(w m,I_oBaCore lossdensity);
[Fp Torque V_o Ls B coil] = SWPMpower(w_m,Io,U_rU_sR_mr);
[Core-loss] = SWPMhysteresis(w im,I o,Ur,U_sR_mrBaCoreloss density);
[Rs] = SWPMresistance(W ciW_coT_ciT_coR_olR_il,winding,C lam);
[Pprox Beddy] = SWPM_proximity(C lam,B coil);
P_elect = 1.5*Io*real(V-o(1))
P_mech = sum(Torque)*Omega-m
P_core = Coreloss
P_cond= 1.5*R_s*I_oA2
P_prox
P_out = P_elect + P_cond
Eff= (P elect + Pcond)/(P-mech - Pcore - P_prox)

%%%%%%%%%%%%%%%%%%%%%%%%0/%%%%%
%%% Output power and efficiency vs. phase current %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

I_phase = [1:10];
for e = 1:length(Iphase)

Io = Iphase(e)
[Ur Us Rmr B_rotor Bstator Core-loss] = SWPM_fields(w_m,io,BaCoreloss density);
[Fp Torque V_o L_s B_coil]= SWPMpower(w_ml_oU_rU_s,R_mr);
[Coreloss]= SWPM_hysteresis(w_m,I_oU_rU_sR_mrBaCorelossdensity);
[R s] = SWPMresistance(W ci,WcoT_ciT_coR_ol,R-il,winding,Clam);
[Pprox B eddy] = SWPMproximity(Clam,B coil);
P_elect = 1.5*Io*real(Vo(l));
P_mech = sum(Torque)*Omega-m;
P_cond= 1.5*Rs*I_oA2;
P core = Coreloss;
P-out(e) = Pelect + Pcond;
Eff(e) = (Pelect + Pcond)/(P-mech - Pcore - P_prox);

end
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figure(1)
subplot(2, 1,1)
plot(Iphase,-P-out,'k--')
xlabel('Io (A)')
ylabel('Power (W)')
title('Output power and efficiency vs. phase current')
hold on
subplot(2,1,2)
plot(Iphase,Eff* 100,'k--')
xlabel('I o (A)')
ylabel('Efficiency (%)')
hold on

figure(2)
plot(-P out,Eff* 100,'k--')
hold on
xlabel('Power (W)')
ylabel('Efficiency (%)')
title('Efficiency vs. output power')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Output power and efficiency vs. # of pole pairs %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Pole_pairs = [2:8];
for e = 1:length(Pole_pairs)

P = Polepairs(e)
w-m = P*Omega-m; % angular velocity of rotor (rad/s)
w-e = wm; % electrical angular frequency (rad/s)
g_cl = 75e-6*4/P;
[U r Us Rmr Brotor Bstator Coreloss] = SWPM fields(w m,I_oBaCorelossdensity);
[Fp Torque Vo L s B coil] = SWPMpower(w m,IO,U_rU_s,R-mr);
[Coreloss]= SWPMhysteresis(w-m,Io,U_rU_sR_mrBaCorelossdensity);
[R s] = SWPMresistance(W_ciW_coT_ciT_coR_olR_iil,winding,C lam);
[Pprox B eddy] = SWPMproximity(Clam,B coil);
P_elect = 1.5*1_o*real(V o(1));
P_mech = sum(Torque)*Omega-m;
P_cond= 1.5*R s*I_oA2;
P_core = Coreloss;
P-out(e) = P elect + Pcond;
Eff(e) = (P elect + P cond)/(P_mech - Pcore - Pjprox);

end

figure(3)
subplot(2, 1,1)
plot(2*Polepairs,-Pout,'k')
xlabel('Poles')
ylabel('Power (W)')
title('Output power and effieciency vs. number of poles')
hold on
subplot(2,1,2)
plot(2*Polepairs,Eff*I1 00,'k')
xlabel('Poles')
ylabel('Efficiency (%)')
hold on
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%%%%%%%%%%%%%%%%%0/%%%%%%%%%%%%%%%%%%%
%%% Output power and efficiency vs. outer radius of magnetic core %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

OuterRadius = [4:.1:5];
for e = 1:length(OuterRadius)

R om = OuterRadius(e)* le-3
Omega m = 500/(R om+le-3);
w_m = P*Omega-m; % angular velocity of rotor (rad/s)
w e = w m; % electrical angular frequency (rad/s)
[Ur Us Rmr B rotor Bstator Core-loss] = SWPMfields(w m,Io,BaCoreloss_ density);
[Fp Torque V_o L_s B_coil]= SWPM power(w_mlo,U_r,U s,R_mr);
[Core loss]= SWPM_hysteresis(w_mI_oU_rU_sR_mrBaCorelossdensity);
[R-s]= SWPM resistance(W ci,Wco,TciT_coR_olR_il,winding,Clam);
[Pprox B eddy] = SWPMproximity(Clam,Bcoil);
P_elect = 1.5*Io*real(V-o(1));
P_mech = sum(Torque)*Omega _m;
P_cond 1.5*Rs*I_oA2;
Pcore = Core_loss;
P_out(e) = Pelect + Pcond;
Eff(e) = (P elect + Pcond)/(P mech - Pcore - Pprox);

end

figure(4)
subplot(2, 1,1)
plot(OuterRadius,-Pout,'k')
xlabel('R o (mm)')
ylabel('Power (W)')
title('Output power and efficiency vs. outer radius of rotor core')
hold on
subplot(2,1,2)
plot(OuterRadiusEff* 100,'k')
xlabel('Ro (mm)')
ylabel('Efficiency (%)')
hold on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Output power and efficiency vs. active and coil layer thickness %%%
%%%%%%%%%%%%0/%%%%%%%%%%%%%%%%%%%%%%%%%

Effmax= 0;
coil layer = [50:10:200];
activelayer = [100:25:500];
for e = 1:length(coil layer)

T_cl = coillayer(e)* 1 e-6
T_ci = T_cl/2;
T_co = T_cl/2;

for f= 1:length(active layer)
T_al = active_layer(f)* 1 e-6;
[U_r U_s Rmr Brotor Bstator Core-loss] = SWPM fields(w m,I o,BaCoreloss density);
[Fp Torque Vo Ls] = SWPM_power(w m,I o,U_rU_s,R_mr);
[Core loss] = SWPM hysteresis(wm,Io,U _rU_s,R mrBaCorelossdensity);
[Rs] = SWPMresistance(W_ci,WcoT_ciT_coR_olR_il,winding);
P_elect = 1.5*Io*real(Vo(l));
P_mech = sum(Torque)*Omega-m;
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P_cond= 1.5*R_s*I_oA2;
P_core = Coreloss;
P-out(e,f) = max(0,-(Pelect + P-cond));
Eff(e,f) = max(0,(P elect + P_cond)/(P mech - P core));

if (Eff(e,f) > Effmax) & (Pout(e,f) >= 10)
Eff max = Eff(e,f);
P_omax = Pout(e,f);
almax = T_al;
clmax = T ci;

end
end

end

figure(5)
surf(activelayer,coillayer,P out)
xlabel('Active layer thickness (\mum)')
ylabel('Coil layer thickness (\mum)')
zlabel('Power (W)')
title('Output power vs. active and coil layer thicknesses')

figure(6)
surf(active layer,coil-layer,Eff* 100)
xlabel('Active layer thickness (\mum)')
ylabel('Coil layer thickness (\mum)')
zlabel('Efficincy (%)')
title('Efficiency vs. active and coil layer thicknesses')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Surface Wound PM machine parameters (SWPMparameters) initializes the variables %%%%
%%%% for the machine dimensions, material properties and electrical inputs used in %%%%
%%%% SWPMfields, SWPM-power, SWPM-hysteresis and SWPMresistance. (MKS units) %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global Trc Tal T-ag T-sc T-cl gcl c-m W S pf Nlam T_cl Hrefr Brefr Hrefs B_refs
global Rim Rom u_0 ua sigma c sigmaa sigma r sigma-s B_rm v M P N we delta_m

% Rotor Dimenstions (meters)

T_rc = 500e-6; % thickness of rotor core
T al = 250e-6; % thickness of rotor magnets
T_ag = 50e-6; % air gap
c m = 0.000001; % transition region length

% Stator Dimensions (meters)

T_wafer = 550e-6; % thickness of Si wafer
winding = 'full pitched'; % winding type, either 'full pitched' or' concentric'
T cl = 200e-6; % thickness of Cu coil
T_sc = 2*Twafer - Tcl - T_ag; % thickness of stator core
T ci = Tcl/2; % thickness of inner end turn
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T_co = T_cl/2;
g_cl = 75e-6;
W_ci = 200e-6;
W_co =500e-6;
R_im =3e-3;
R_om =5e-3;
R_ol= R_om+1.5e-3;
Ril = 2e-3;

% Material Properties

Temp = 300;
u_0 = 4*pi*Ie-7;
u_a = I*u_0;
sigma c = 5.8e7;
sigma_a = 1e7;
sigma-r = 5e6;
sigma s = 5e6;
B_rm = 1;
v = 2e-5;

load CoFedata.mat
HI = max(Ho) + [2e6:-1e4:Ie4];
BI = max(Bo) + (H1n-max(Ho))*u_0;
Hrefr = [Ho HI];
B-refr = [Bo BI];
Hjrefs = [Ho HI];
B-refs = [Bo BI];

% thickness of outer end turn
% gap between two adjacent coils
% width of inner end turn coils
% width of outer end turn coils
% magnetic core inner radius
% magnetic core outer radius
% outer radius of outer end turn (full pitched coils only)
% inner radius of inner end turn (full pitched coils only)

% temperature (degrees C)
% permeability of free space (henry/m)
% permeability of active layer (henry/rn)
% conductivity of Cu (siemens)
% conductivity of rotor active layer (siemens)
% conductivity of CoFe (siemens)
% conductivity of CoFe (siemens)
% remanence of rotor PM (T)
% dynamic viscosity of air (N-s/m)

% B-H data for CoFe from GIT
% extension of B-H curve
% using permeability u_0
% B-H curve used in SLIMfields

% Electrical Parameters

Io = 5;
delta m = pi/2;
M = 5;
P =4;
N =3;
speed = 79577.47;
Omegamn = 500/(R om+Ie-3);
w_m = P*Omegarm;
w-e = w m;

% Phase current (A)
% Phase difference between rotor flux and stator current
% number of harmonics solved for
% number of pole pairs
% number of turns per pole
% angular velocity of rotor (RPM)
% angular velocity of rotor (rad/s)
% angular velocity of rotor (rad/s)
% electrical angular frequency (rad/s)

% Lamination Parameters

W = 30e-6;
S = 20e-6;
N_lam = round((R om - Riim)/(W+S));
pf= W/(W+S);
C_lam = 2;

% lamination thickness (in)
% insulation thickness (in)
% number of laminations
% packing factor
% number of coil laminations
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function [u r,u_s,R_mrB_rotorB_statorCoreloss] = SWPMfields(w-m,l_oBaCorelossdensity)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Surface Wound PM machine fields (SWPM fields) computes the permeability of the %%%%

%%%% rotor core (ur) and stator core (us) using a nonlinear B-H curve. The starting value for %%%%

%%%% u r and u-s is 200*u_0. The script iteratively solves for the RMS B fields in the %%%%

%%%% rotor & stator until ur and us are found such that the RMS B fields lie on the B-H %%%%

%%%% curve. The script also computes the resulting core loss in the stator. (MKS units) %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global T rc Tal T-ag T sc T-cl gcl c-m W S pf Nlam Tcl Hrefr B refr Hrefs B refs

global R im R-om u_0 ua sigma c sigma a sigma r sigma s Brm v M P N we delta_m

if N lam == 1
E = 1;
dr = (Rom - Rim);

else
E=N lam+l;
dr = (Rom - R_im)/(E-1);

end

u r = ones(,E)*200*u_0;
u s = ones(,E)*200*u_0;
B maxr = ones(l,E)*5;
B mr = ones(,E)*2;
B maxs = ones(1,E)*5;
B ms = ones(1,E)*2;

% radial increment for unlaminated stator (in)

% radial increment for laminated stator (m)

% initial rotor permeability (henry/m)
% initial stator pole permeability (henry/m)
% initial Bmaxr (T)
% initial B_mr on B_H curve (T)
% initial Bmaxs (T)
% initial B ms on BH curve (T)

fork= 1:E

if N lam ==1

else

end

r(k)= R-im + 0.5*dr;

r(k)= R-im + (k-1)*dr;

lm = (pi*r(k)/P) - c _m;
lambda = 2*pi*r(k)/P;
V_stator = 2*pi*r(k)*T-sc*W;

% rotor radius for unlaminated stator (m)

% rotor radius for laminated stator (in)

% length of region of constant remanence (m)
% wave length (m)
% incremental volume of the stator core (m^3)

ifw e==0
FQ-s = 1;

deltas = sqrt(2/(u s(k)*sigma-s*we));
Q s= .5*(I+j)*W/deltas;
FQs = Qs/tanh(Qs);

sigma seff= sigmas*(1-abs(1/FQs));
K = P/r(k);

% magnetic skin depth of stator core (m)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% effective conductivity of stator core (siemens)
% wave number of fundamental harmonic (1/m)

while (abs(B maxr(k) - B-mr(k)) > I e-4) I (abs(B maxs(k) - B-ms(k)) > 1 e-4),
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for m = 1:M

n = (2*m - 1); % harmonic number
k-n = n*P/r(k); % wave number (1/m)

gammaOn = k_n; % magnitude of wave number (1/m)
gammaan = k_n; % rotor activel layer diffusion constant (1/m)
gamma_rn = k_n; % rotor core diffusion constant (1/m)
gamma sn = sqrt(k_n^2+j*u s(k)*sigma seff*n*wM);

% stator core diffusion constant (1/m)

%%% rotor transfer relation constants %%%

alpha-ln(m) = (u_s(k)/gammasn)*gamma On/u 0 * sinh(gamma sn*T sc) + 1 * cosh(gamma sn*T sc);
alpha_2n(m) = (gammasn/u s(k))* 1* sinh(gammasn*T sc) + gammaOn/u_0 * cosh(gammasn*Tsc);

alpha_3n(m)= (u_/gamma_0n)*alpha_2n(m)*sinh(gammaOn*T-cl)+alpha-ln(m)*cosh(gammaOn*Tcl)
alpha_4n(m) = (gammaOn/u O)*alpha_ n(m)*sinh(gammaOn*T cl)+alpha 2n(m)*cosh(gammaOn*T_cl);

alpha_5n(m) = (uO/gammaOn)*alpha_4n(m)*sinh(gammaOn*T ag)+alpha_3n(m)*cosh(gammaOn*T ag);
alpha_6n(m) = (gamma_0n/u_0)*alpha_3n(m)*sinh(gamma_0n*Tag)+alpha_ 4n(m)*cosh(gamma_ n*T_ag);

alpha_7n(m) = (u a/gamma On)*alpha_6n(m)*sinh(gamma On*T al)+alpha_5n(m)*cosh(gammaOn*T_al);
alpha_8n(m) = (gamma On/u a)*alpha_5n(m)*sinh(gammaOn*T al)+alpha_6n(m)*cosh(gammaOn*Tal);

beta ln(m) = (u_r(k)/gammarn) * gammaOn/u 0 * sinh(gamma m*T rc) + 1* cosh(gamma_rn*Trc);
beta 2n(m) = (gamma rn/u_ r(k)) * 1 * sinh(gamma_rn*T_rc)+ gamma_On/u_0 * cosh(gammarn*Trc);
beta 3n(m) = (u _a/gamma an)*beta_2n(m)*sinh(gamma an*T al)+beta -n(m) * cosh(gamma _an*T al);
beta 4n(m) = (gamma an/ua)*betaln(m)*sinh(gamma an*T-al)+beta_2n(m) * cosh(gamma an*T-al);
beta_5n(m) = (u_0/gamma On)*beta_4n(m)*sinh(gamma On*Tag)+beta 3n(m)* cosh(gammaOn*Tag);
beta_6n(m) = (gammaOn/u_0)*beta_3n(m)*sinh(gammaOn*Tag)+beta_4n(m)*cosh(gammaOn*Tag);
beta_7n(m) = (u_0/gamma_0n)*beta_6n(m)*sinh(gammaOn*Tcl)+beta_5n(m) * cosh(gammaOn*Tcl);
beta_8n(m) = (gamma On/uO)*beta 5n(m)*sinh(gammaOn*T cl)+beta_6n(m) * cosh(gammaOn*Tcl);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B_M = (8/(n*pi))*(B rm/c m)*cos(.5*k-n*lm)*exp(j*n*deltaim);
A_xnm = B m/k n^2; % vector potential due to rotor magnetization

cmb = (beta 4n(m) - beta 2n(m)) / (beta 4n(m)*alpha 8n(m) - beta 2n(m)*alpha_6n(m));
cmt = (alpha_8n(m) - alpha_6n(m)) / (beta 4n(m)*alpha 8n(m) - beta 2n(m)*alpha 6n(m));
cjb (beta_8n(m) - beta_6n(m)) / (alpha 4n(m)*beta 8n(m) - alpha_2n(m)*beta_6n(m));
cjt = (alpha_4n(m) - alpha_2n(m)) / (alpha_4n(m)*beta_8n(m) - alpha_2n(m)*beta_6n(m));

%%% vector potentials due to rotor PM %%%
A_xnml = -j*cmb*(gamma an/u a)*sinh(gamma-an*Tal)*Axnm;
A_xnm6 = -j*cmt*(gamma-an/ua)*sinh(gamma-an*T-al)*A-xnm;

%%% harmonic components of tangential and normal B at interfaces 1, 2 and 5 %%%
B_ zn2(m) =j*kn*alpha-ln(m)*A-xnml;
B_znl(m)=j*kn*Axnml;
B_yn2(m) = us(k)*alpha_2n(m)*A xnml;
B_ynl (m)= us(k)*(kn/u_)*Axnml;
B_zn5(m) =j*kn*beta-ln(m)*A-xnm6;
B_yn5(m) = -ur(k)*(kn/uO)*A-xnm6;

end
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B s = sqrt(O.5*sum(abs(B_yn2).A2+abs(B zn2).A2));
B-r = sqrt(.5*sum(abs(Byn5).A2+abs(Bzn5).A2));

% RMS B field in stator core (T)
% RMS B field in rotor core (T)

B-maxr(k) = Br; % update B maxr
H maxr(k) = B maxr(k)/ur(k); % compute corresponding H maxr using current u
B-mr(k) = interpl(HrefrB_refr,H-maxr(k)); % update B-mr using nonlinear B-H curve
u-r(k)= Bmr(k)/Hmaxr(k); % update rotor permeability

B-maxs(k) = max(Bs);
H maxs(k) = B maxs(k)/u s(k);
B ms(k) = interp l(H_refsB_refs,H-maxs(k
u s(k)= B-ms(k)/H maxs(k);

end

B_rotor(k)= B r;
B_stator(k)= B-s/pf;
H_stator(k)= interpl(B refs,HrefsB_stator(k));
H_rotor(k) = interpl(B refr,HrefrB_rotor(k));
u-s(k) = Bstator(k)/Hstator(k);
u-r(k) = B-rotor(k)/Hrotor(k);

R-mr(k) = r(k);

% update B maxp
% compute corresponding H _maxp using current u

% update Bmp using nonlinear B-H curve
% update stator pole permeability

% RMS B through rotor core at radius r (T)
% RMS B through stator core at radius r (T)
% corresponding H in stator core (A/m)
% corresponding H in rotor core (A/m)
% effective permeability of the stator core (henry/m)
% effective permeability of the rotor core (henry/m)

% rotor radius (m)

%%%% Compute hysteresis loss in stator core %%%%

theta = [0:0.04:1]*2*pi; % wavelength in radians

for x= 1:50
z= .02*(x-.5)*Tsc;
for m= l:M

n = (2*m - 1); % harmonic number
k_n = n*P/r(k); % wave number (1/m)
gamma-sn = sqrt(k_n^2+j*u-s(k)*sigma-seff*n*wrm);

% stator core diffusion constant (in)

%%% Comput By and Bz in stator core %%%

for q= 1:25
Bystat(m,q) = Bjrn2(m)*sinh(gamma-sn*z)/sinh(gamma-sn*T-sc)+
Bynl(m)*sinh(gamma-sn* (T_sc-z))/sinh(gamma-sn*Tsc))
*exp(-j *n*theta(q));
Bzstat(m,q) = (B zn2(m)*sinh(gamma-sn*z)/sinh(gamma-sn*T-sc)+
B znl(m)*sinh(gamma-sn* (T_sc-z))/sinh(gamma-sn*T-sc))
*exp(-j*n*theta(q));

end

end

B_1(x) = (1/pf)*max(sqrt((real(sum(Bystat))).^2 + (real(sum(Bzstat))).A2));
% peak B field in the stator core (T)

if Bi(x) >= 0.7 % 0.7 T for Moly Permalloy (NiFeMo), 1.72 T for electroplated CoFeNi
cls(x) = 0.02*Vstator*max(Core loss density);
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else

end
cl-s(x) = 0.02*Vstator*interpl(Ba,Corelossdensity,B_1(x));

end
dCL s(k) = sum(cls);

end

Coreloss = sum(dCL s)*we/(2*pi);

% hysteresis loss in incremental strip at radius r (W)

% total hysteresis loss in rotor core (W)

function [Fp,Torque,Voc,Ls,B coil] = SWPMpower(w m,I o,U_r,Us,R_mr)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Surface Wound PM machine power (SWPMpower) computes the pull-in force, torque, %%%%
%%%% open-circuit voltage and stator phase inductance for the surface wound PM %%%%
%%%% machine using the effective permeability for the rotor core and stator core from %%%%
%%%% SWPM_ fields. It also computes the B field in the stator windings so that the %%%%
%%%% proximity eddy current loss can be found. (MKS units) %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global T rc Tal Tag T-sc Tcl gcl c-m W S pf N lam Tcl Hrefr Brefr Hrefs B_refs
global Rim Rom u_0 ua sigma_ c sigmaa sigma r sigma_s Brm v M P N we deltam

dr = (R-om-R-im)/500; % incremental radiul distance (in)

for x = 1:501

r = R im + (x-1)*dr;
lambda = 2*pi*r/P;
L_base = lambda/4;
Im = (pi*r/P) - c m;
W_cl = pi*r/(3*P*N) - gcl;

if N lam == 1
u_r = U_r;
u_s = U-s;

else

end

u_r = interp 1 (R-mr,U-r,r);
u-s = interpl(R-mr,Us,r);

% radius (in)
% wave length (in)
% base length = 1/4 of a wavelength (in)
% length of region of constant remanence (in)
% width of coil at radius r (in)

% permeability of rotor core (henry/m)
% permeability of stator core (henry/m)

% permeability of rotor core (henry/m)
% permeability of stator core (henry/m)

if w_e==0
FQ_s = 1;

else

end

delta s = sqrt(2/(us*sigma-s*we));
Qs = .5*(I+j)*W/delta_s;
FQs = Q s/tanh(Qs);

sigma seff= sigmas*(1-abs(1/FQs));

K = P/r;

% magnetic skin depth of stator base (in)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% effective conductivity of stator core (siemens)

% wave number of fundamental harmonic (1/m)
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% current density in coil (A/m^2)

%%% vector potential due to rotor magnetization %%%
% A_xj = (6/pi)*(uO*J_o/K2)*sin(pi*Wcl/lambda)*sum(exp(-j*pi*(2*N+1:2:4*N-1)/(6*N)));

Axj = 6*(u O*J o/K^2)*W cl/lambda*sum(exp(-j*pi*(2*N+1:2:4*N-1)/(6*N)));
% long wavelength approximation

form= 1:M

n = (2*m - 1);
k-n = n*P/r;

% harmonic number
% wave number (1/m)

gammaOn = k_n; % magnitude of wave number (1/m)
gamma-an = k_n; % rotor conductor diffusion constant (1/m)
gamma rn = kn; % rotor core diffusion constant (1/m)
gamma-sn = sqrt(k-nA2+j*u s*sigma-seff*n*wm); % stator core diffusion constant (1/m)

%%% rotor transfer relation constants %%%

alpha-ln(m)
alpha_2n(m)
alpha_3n(m)
alpha_4n(m)
alpha_5n(m)
alpha_6n(m)
alpha_7n(m)
alpha_8n(m)

(u-s/gamma-sn) * gammaOn/u_0 * sinh(gamma sn*Tsc) + 1 * cosh(gamma sn*T sc);
(gamma sn/u s) * 1 * sinh(gamma_sn*T_sc) + gammaOn/u_0 * cosh(gamma-sn*T-sc);
(uO/gamma_0n)*alpha_2n(m)*sinh(gammaOn*T_cl)+alpha ln(m)*cosh(gammaOn*T cl);
(gammaOn/uO)*alpha_ n(m)*sinh(gammaOn*Tcl)+alpha_2n(m)*cosh(gammaOn*T cl);
(uO/gammaOn)*alpha_4n(m)*sinh(gammaOn*T ag)+alpha_3n(m)*cosh(gammaOn*Tag);
(gammaOn/u_0)*alpha_3n(m)*sinh(gammaOn*Tag)+alpha_4n(m)*cosh(gammaOn*Tag);
(u_a/gamma-an)*alpha_6n(m)*sinh(gamma an*Tal) + alpha_5n(m) * cosh(gamma-an*Tal);
(gamma an/u-a)*alpha_5n(m)*sinh(gamma-an*T-al) + alpha_6n(m) * cosh(gamma-an*T al);

beta ln(m)= (ur/gammarn) * gammaOn/u_0 * sinh(gammarn*T rc) + I * cosh(gammarn*T rc);
beta 2n(m) = (gammarn/u r) * I * sinh(gamma_rn*Trc) + gamma On/u_0 * cosh(gammarn*T rc);
beta_3n(m) = (u a/gamma an) * beta_2n(m) * sinh(gamma an*T al) + betaln(m) * cosh(gammaan*T-al);
beta 4n(m) = (gamma-an/u a) * beta ln(m) * sinh(gamma an*T al) + beta_2n(m) * cosh(gammaan*T-al);
beta 5n(m) = (u_0/gammaOn) * beta_4n(m)* sinh(gammaOn*T ag) + beta_3n(m) * cosh(gammaOn*T-ag);
beta 6n(m) = (gammaOn/u 0) * beta_3n(m)* sinh(gammaOn*T ag) + beta_4n(m) * cosh(gammaOn*T-ag);
beta_7n(m) = (u_0/gamma On) * beta_6n(m) * sinh(gammaOn*T cl) + beta_5n(m) * cosh(gammaOn*T cl);
beta_8n(m) = (gammaOn/u_0) * beta_5n(m) * sinh(gammaOn*T cl) + beta_6n(m) * cosh(gammaOn*T cl);

%%%%%%%%%%%%%%%%0/%%%%%%%%%%%%%%%%%%%%%%%%

B-m = (8/(n*pi))*(B-rm/c-m)*cos(.5*k-n*lm)*exp(j*n*deltam);
A xnm = Bm/k_nA2; % vector potential due to rotor magnetization

cmb = (beta_4n(m) - beta_2n(m)) / (beta 4n(m)*alpha_8n(m) - beta_2n(m)*alpha_6n(m));
cmt = (alpha_8n(m) - alpha 6n(m)) / (beta_4n(m)*alpha_8n(m) - beta_2n(m)*alpha_6n(m));
cjb = (beta 8n(m) - beta_6n(m)) / (alpha 4n(m)*beta_8n(m) - alpha_2n(m)*beta_6n(m));
cjt = (alpha_4n(m) - alpha_2n(m)) / (alpha_4n(m)*beta_8n(m) - alpha_2n(m)*beta_6n(m));

%%% vector potentials due to rotor PM %%%
A_xnml = -j*cmb*(gammaan/ua)*sinh(gammaan*T-al)*A-xnm;
A xnm6 = -j*cmt*(gammaan/ua)*sinh(gammaan*Tal)*A-xnm;

%%% vector potentials due to stator current %%%
if m== 1

A xnjl = cjb*(gammaOn/u_0)*sinh(gammaOn*T-cl)*Axj;
A_xnj6 = cjt*(gamma On/uO)*sinh(gammaOn*T-cl)*Axj;

else
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Axnjl= 0;
A-xnj6 = 0;

end

B_zn4 =j*kn*(alpha_5n(m)*A xnml + beta_3n(m)*Axnj6);
% harmonic components of tangential H at the rotor PM surface

Hyn4 = alpha_6n(m)*Axnml - beta 4n(m)*Axnj6;
% harmonic components of normal B at the rotor PM surface

zetal(m) = 0.5*real(Bzn4*Hyn4'); % harmonic components of torque
zeta2(m) = 0.25*((l/u 0) * (abs(Bzn4))^2 - u O*(abs(Hyn4))^2);

% harmonic components of pull-in force

Axncoilm(m) = Axnnl *(alpha_3n(m) + lpha ln(m))*sinh(.5*gammaon*T-cl)/sinh(gammaOn*T-cl);
% vector potential at stator coil due to rotor PM

A_xncoilj(m)= (A xnj6*beta_5n(m)+Axnjl*alpha ln(m))*sinh(.5*gamma_On*Tcl)/sinh(gammaOn*Tcl);
% vector potential at stator coil 1 due to stator current

B_coihn(x,m) = j*kn*Axncoilm(m); % B field at stator coil due to rotor PM

dV(x,m)= j*n*w m*2*P*A xncoilm(m)*sum(exp(j*n*pi*(2*N+1:2:4*N-1)/(6*N)))*dr;
% voltage from PM over region [r,r+dr] (V)

dPhi(x,m) = 2*P*A_xncoilj(m)*sum(exp(j*n*pi*(2*N+1:2:4*N-1)/(6*N)))*dr;
% flux from stator current over region [r,r+dr] (Wb)

dT(x,m)= zetal(m) * dr * r^2; % total torque over region [r,r+dr] (N-m)

end

dFp(x)= sum(zeta2)* dr * r; % pull-in force over region [r,r+dr] (N)

end

Fp = -2*pi*sum(dFp); % pull-in force acting rotor (N)
Torque = -2*pi*sum(dT); % torque on rotor (N-m)
V_oc = sum(dV); % open-circuit voltage (V)
Flux = sum(dPhi); % total flux from stator currents (H)
Ls = (2/3)*real(sum(Flux))/Io; % stator phase inductance (H)
B_coil = mean(abs(B-coilm)); % average B at stator coil over radial span of the machine (T)

function [Core-loss] = SWPMhysteresis(w mI_o,U r,U_sR_mrBaCoreloss density)

%%%% Surface Wound PM machine hystersis (SWPM_ hysteresis) computes the hysteresis % %
%%%% loss in the rotor core of the slotted stator induction machine using the %%%%
%%%% effective permeability for the rotor core and stator core from SWPM_fields. %%%%
%%%% (MKS units) %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global T-rc Tal T_ag Tsc T cl g-cl c-m W S pf N lam Tcl Hrefr Brefr Hrefs Brefs
global R-im R_ om u_0 ua sigmac sigma _a sigma r sigma s B-rm v M P N we delta_m

if N_lam == I
E= 1;
dr = (Rom - R-im); % radial increment for unlaminated stator (m)

else
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E = Nlam+1;
dr = (R om - R-im)/(E-1); % radial increment for laminated stator (m)

end

fork= 1:E

if N lam ==1

else

end

r(k)= R-im + 0.5*dr;

r(k)= Rim + (k-l)*dr;

lm = (pi*r(k)/P) - c m;
lambda = 2*pi*r(k)/P;
Vstator = 2*pi*r(k)*T sc*W;

if N lam == 1
ur(k) = U_r;
us(k)= U_s;

else
u_r(k)= interp I(Rmr,U-r,r(k));
u-s(k)= interpl(Rmr,Us,r(k));

end

if w-e == 0
FQs = 1;

else
deltas = sqrt(2/(us(k)*sigma-s*w-e));
Q_s =.5*(+j)*W/delta_s;
FQ s = Qs/tanh(Qs);

end

sigma seff= sigma_s*(1-abs(1/FQs));
K = P/r(k);

% rotor radius for unlaminated stator (m)

% rotor radius for laminated stator (m)

% length of region of constant remanence (m)
% wave length (m)
% incremental volume of the stator core (mA3)

% permeability of rotor core (henry/m)
% permeability of stator core (henry/m)

% permeability of rotor core (henry/m)
% permeability of stator core (henry/m)

% magnetic skin depth of stator base (m)
% ratio of lamination thickness to skin depth
% eddy current reluctance factor

% effective conductivity of stator core (siemens)
% wave number of fundamental harmonic (1/m)

for m = 1:M

n = (2*m - 1);
k n = n*P/r(k);

% harmonic number
% wave number (1/m)

gammaOn = k_n; % magnitude of wave number (1/m)
gamma-an = k_n; % rotor conductor diffusion constant (1/m)
gamma-m = k_n; % rotor core diffusion constant (1/m)
gamma-sn = sqrt(k-nA2+j*u-s(k)*sigma-seff*n*wim);

% stator core diffusion constant (1/m)

%%% rotor transfer relation constants %%%

alpha-ln(m) =
alpha_2n(m) =
alpha_3n(m) =
alpha_4n(m) =

alpha_5n(m) =

alpha_6n(m)=
alpha_7n(m) =
alpha_8n(m) =

(u-s(k)/gamma sn) * gammaOn/u_0 * sinh(gamma sn*T sc) + 1 * cosh(gammasn*Tsc);
(gamma sn/u s(k)) * 1 * sinh(gamma sn*T sc) + gammaOn/u_0 * cosh(gamma_sn*Tsc);
(uO/gammaOn)*alpha_2n(m) *sinh(gammaOn*Tcl)+alpha ln(m) * cosh(gamnmaOn*T cl);
(gammaOn/u_0)*alphaln(m)* sinh(gammaOn*T_cl)+ alpha_2n(m)*cosh(gammaOn*T-cl);
(uO0/gammaOn)*alpha_4n(m)*sinh(gammaOn*T_ag)+alpha 3n(m)*cosh(gammaOn*T-ag);
(gamma On/u 0)*alpha 3n(m)*sinh(gamma_On*T_ag)+alpha 4n(m)* cosh(gammaOn*T ag);
(u a/gaman)*alpha6n(m)*sinh(gamma_On*Tal)+alpha 5n(m)*cosh(gamman*Tal);
(gamma On/u a)*alpha 5n(m)*sinh(gammaOn*Tal)+alpha_6n(m)*cosh(gammaOn*T al);
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beta ln(m) = (u r(k)/gammarn)*gammaOn/uO*sinh(gamma rn*T rc) + 1* cosh(gamma_ rn*T rc);
beta_2n(m)= (gamma_rn/u r(k)) * 1 * sinh(gamma rn*T rc) + gamma_On/u_0 * cosh(gammarn*T rc);
beta 3n(m) = (u a/gammaan)*beta_2n(m)* sinh(gamma an*T al) + beta ln(m) * cosh(gamma-an*T-al);
beta_4n(m) = (gammaan/u a) * beta ln(m) * sinh(gamma an*T al)+ beta_2n(m) * cosh(gammaan*Tal);
beta_5n(m)= (u_0/gamma_ On) * beta_4n(m) * sinh(gamma _n*T ag) + beta_3n(m)* cosh(gammaan*T-ag);
beta_6n(m) = (gamma_On/u 0) * beta 3n(m) * sinh(gamma On*T_ ag) + beta_4n(m)* cosh(gammaOn*Tag);
beta 7n(m) = (u 0/gamma_0n) * beta_6n(m) * sinh(gammaOn*T cl) + beta 5n(m) * cosh(gamma On*T cl);
beta_8n(m) = (gammaOn/u_0) * beta_5n(m) * sinh(gammaOn*T cl) + beta_6n(m) * cosh(gamma On*T cl);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B_m = (8/(n*pi))*(B-rm/c-m)*cos(.5*k-n*lm)*exp(j*n*delta m);
A_xnm = B m/k_nA2; % vector potential due to rotor magnetization

cmb = (beta 4n(m) - beta 2n(m)) / (beta_4n(m)*alpha_8n(m) - beta 2n(m)*alpha 6n(m));
cmt = (alpha_8n(m) - alpha_6n(m)) / (beta 4n(m)*alpha_8n(m) - beta_2n(m)*alpha_ 6n(m));
cjb = (beta_8n(m) - beta_6n(m)) / (alpha_4n(m)*beta_8n(m) - alpha_2n(m)*beta_6n(m));
cjt = (alpha_4n(m) - alpha_2n(m)) / (alpha_4n(m)*beta_8n(m) - alpha_2n(m)*beta_6n(m));

%%% vector potentials due to rotor PM %%%
A_xnml = -j *cmb*(gamma an/u a)*sinh(gamma an*T al)*Axnm;
A_xnm6 = -j*cmt*(gamma an/u a)*sinh(gamma-an*T-al)*A-xmn;

%%% harmonic components of tangential and normal B at interfaces 1, 2 and 5 %%%

B_zn2(m)= j*k n*alpha ln(m)*A-xnml;
B_znl(m)= j*kn*A_xnml;
B_yn2(m) = u s(k)*alpha_2n(m)*A _xnml;
B_ynl(m) = us(k)*(kn/uO)*Axnml;
B_zn5(m) =j*kn*betaln(m)*Axnm6;
B_yn5(m) = -u r(k)*(k n/uO)*Axnm6;

end

theta = [0:0.04: l]*2*pi; % wavelength in radians

for x = 1:50
z = .02*(x-.5)*T-sc;
for m = l:M

n = (2*m - 1); % harmonic number
kn = n*P/r(k); % wave number (1/m)
gamma sn = sqrt(k nA2+j*us(k)*sigma_seff*n*w_m);

% stator core diffusion constant (m)

%%% Comput By and Bz in stator core %%%

for q = 1:25
Bystat(m,q) = B_yn2(m)*sinh(gamma__sn*z)/sinh(gamma_sn*Tsc)+Bynl(m)
*sinh(gamma-sn* (T sc-z))/sinh(gamma_ sn*Tsc))*exp(-j*n*theta(q));
Bzstat(m,q) = (B zn2(m)*sinh(gammasn*z)/sinh(gammasn*Tsc)+B-znl(m)
*sinh(gamma-sn*(Tsc-z))/sinh(gammasn*T-sc))*exp(-j *n*theta(q));

end

end
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B_1(x) = (1/pf)*max(sqrt((real(sum(Bystat))).^2 + (real(sum(Bzstat))).^2));
% peak B field in the stator core (T)

if B_ (x) >= 0.7 % 0.7 T for Moly Permalloy (NiFeMo), 1.72 T for electroplated CoFeNi
cl-s(x) = 0.02*V stator*max(Core loss density);

cl-s(x) = 0.02*Vstator*interpl(Ba,Corelossdensity,B_1(x));

end
dCLs(k)= sum(cl-s);

end

Core-loss = sum(dCL s)*w-e/(2*pi);

% hysteresis loss in incremental strip at radius r (W)

% total hysteresis loss in rotor core (W)

function [P_prox,B eddy] = SWPMproximity(Clam,B coil)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Surface Wound PM machine proximity (SWPMproximity) computes the proximity %%%%
%%%% effect eddy current loss in the stator windigns of the surface wound PM machine %%%%
%%%% using the B field in the coils computed in SWPMpower. (MKS units) %%%%
%%%%%%%%%%%%%%%%%%%%%%00%%%0/%%%%%%%0/%%%%%%%%%%%%%%%%%

global Trc Tal T ag T-sc T-cl gcl c-m W S pf Nlam Tcl Hrefr Brefr Hrefs Brefs
global R im R om u_0 ua sigma c sigma a sigma r sigmas Brm v M P N we delta_m

W_clri = pi*R-im/(3*P*N*Clam) - g_cl;
W_clro = pi*R-om/(3*P*N*C_lam) - gcl;

% width of radial conductor at the inner radius (m)
% width of radial conductor at the outer radius (m)

harm = [1:2:(2*M-1)];

P_prox = 6*P*N*C lam*(sigma-c/96)*w_eA2*sum((harm.^2).*(B_coil.^2))*T-cl*
(0.75*P*N*C lam/pi)*(W-cl-roA4 - Wcl-ri^4);

Ieddy = 0.25*sigma-c*w-e*B-coil(1)*T-cl*(0.5*W-cl-ro)2;

B_eddy = u_0*I eddy/(T-al+Tag+Tcl);

% induced current (A)

% resulting B field due to I-eddy (T)

function [Rs] = SWPMresistance(W ciW_coT_ciT_coR_o1,R_ii,winding,C lam)

%%%%%%%%%%%/0/%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Surface Wound PM machine resistance (SWPMresistance) computes the resistance %%%%
%%%% of a single phase of the surface wound PM machine with either full pitched or %%%%
%%%% concenctric windings. (MKS units) %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global Trc Tal T ag Tsc T-cl gcl c-m W S pf Nlam Tcl Hrefr Brefr Hrefs Brefs
global R im R om u_0 ua sigmac sigma a sigma r sigma-s B_rn v M P N we delta_m
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%%% Resistance of radial conductors %%%
W_clri = pi*Rim/(3*P*N*Clam) - gcl;
W_clro = pi*R om/(3*P*N*Clam) - g-cl;
R_radial = (6*(P*N*Clam)^2/(pi*sigma c*T cl)) * log(W clro/W clri);

%%% Resistance of inner and outer end turns %%%
if winding =='full pitched'

L_inner = sqrt((.5*pi*R im/P)^2 + (R-im - R-il)A2);
L_outer = sqrt((.5*pi*Rom/P)^2 + (R ot - R-om)A2);
R_inner = 2*N*P*L inner/(pi*sigmac*Tci*W ci);
R outer = 2*N*P*L_outer/(pi*sigmac*Tco*W co);

elseif winding == 'concentric'
for n = I:N

R_i(n)= R im - 0.5*(2*n-l)*Wci - n*gcl;
R o(n) = Rom + 0.5*(2*n-l)*W co + n*g ci;
L_i(n) = (2*(N+n)-l)*pi*R i(n)/(3*P*N);
L_o(n) = (2*(N+n)-l)*pi*R-o(n)/(3*P*N);

end

R_inner = P*sum(L-i)/(sigma-c*T-ci*W-ci);
R_outer = P*sum(L-o)/(sigma-c*T-co*W-co);

end

%%% Total resistance of a single phase %%%
Rs = R radial + R inner + R_outer;
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Appendix C: PSIM Models and Loss Calculations for Chapter 5

This appendix describes the modeling and loss calculations used in comparing the different switch-

mode rectifier topologies in Section 5.2.2. The four topologies considered are the MOSFET

rectifier/CCM boost converter, the DCM boost MOSFET-rectifier and the DCM boost semi-bridge

rectifier with and without synchronous rectification. These four topologies are simulated in PSIM because

of the ease in which various control strategies can be implemented. However, PSIM models the MOSFET

as an ideal switch with a drain-to-source resistance and body diode. The diodes are modeled with only a

constant forward voltage. The gate drive, capacitive turn-off, and switching transition losses in the

MOSFET, as well as the capacitive losses in the diodes, are not accounted for in the PSIM model. To

accurately predict the efficiencies of the various topologies these losses must be accounted for.

In addition, the losses in the boost inductors must also be accurately modeled. An equivalent circuit is

used to model the high frequency winding resistance and core loss of the inductors. The values used in the

equivalent circuit are computed using the SPICE models of the inductors from Coilcraft.

C.1 MOSFET Losses

For the MOSFET rectifier/CCM boost converter topology current sensing MOSFETs are used for the

boost switch and the low side switches on the rectifier. The high side switches use a normal power

MOSFET. The DCM boost MOSFET rectifier uses the same MOSFETs in the rectifier as the CCM

converter but uses a normal power MOSFET as the boost switch. The boost semi-bridge rectifier uses

only normal power MOSFETs as the boost switches.

The Si4730EY, from Vishay Siliconix, is used for the current sense MOSFETs while all the other

MOSFETs are the IRF7413Z from International rectifier. For the DCM rectifiers, the LM5112 is used to

drive the gate of the IRF7413Z. It has a low-side output resistance of 1.4 Q while the gate resistance of

the IRF7413Z is 2.3 Q. For the CCM boost converter, the boost FET is the Si4730EY. No gate resistance

is specified in the data sheet. A generic gate driver is used and the sum of the gate resistance and the
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output resistance of the gate driver is assumed to be 5 2. The properties for the two power MOSFETs

with their respective gate drivers are shown in Table C-1.

The main losses in the MOSFET are conduction loss, gate drive loss, output capacitive loss and

switching transition loss. The maximum drain-to-source resistance, Rdson, of the power MOSFET at a

gate-to-source voltage of 10 V and at 40 *C ambient temperature is used for the on-state resistance in the

PSIM model. These values can be obtained from the MOSFET data sheet. For the Si4730EY, s,on is 20

mK2 and for the IRF7413Z, Rs,on is 10 m9.

The gate drive loss is the power consumed charging and discharging the gate of the MOSFET and is

given by

Pd = VgdQgfsw. (C-1)

Vgd is the gate drive voltage and is 12 V for all the topologies. Qg is the total gate charge on the

MOSFET when Vgs = Vgd. The total gate charge required to put a certain voltage across the gate and

source is usually specified because the input capacitance is nonlinear [66]. At a Vgd of 12 V, Qg is 41 nC

for the Si4730EY and 16.3 nC for the IRF7413Z.

Table C-1: MOSFET and gate drive parameters.

IRF7413Z Si4730EY

Rdsi. 0 (@ Vgs = 10 V) 10 mK2 20 mK

Qg (@ Vgs = 12 V) 16.3 nC 41 nC
Ciss Vds = 12 V) 1300 pF 2700 pF

Ciss (@Vs = 0 V) 1210 pF 2050 pF
Rg + Roh - 592

Rg +Roi 3.72 5 L2

The energy lost in the output capacitance of the MOSFET depends on the size of capacitance and the

maximum voltage applied. This capacitance is charged when the MOSFET turns off and is discharged

when it is turned on. Figure C-1 shows the output capacitance, Cos,, as a function of drain-to-source

voltage, Vds for the IRF7413Z. The data points have been fitted to the following analytical function

C S(Vds) 650pF . (C-2)ossd (1 + Vds)
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The energy dissipated charging and discharging the output capacitance over a switching cycle is equal to

the peak Vd, times the charge on the output capacitor at peak Vds.

E cot(Vs) = VQss(Vs ) = Vds Cos,(V)dV (C-3)

The corresponding output capacitive loss in the boost MOSFET for the CCM boost converter and DCM

boost MOSFET-rectifier is

Pcout = fsEcou(V)= fswV 0 £ Coss (Vs )dVd. (C-4)

Note that when the boost inductor current in the semi-bridge topology is positive, the current will flow

through the high side diode so that the peak value of Vds is Vo. Vds is much smaller than Vo when the

boost current is negative and the resulting energy loss is much smaller than when the current is positive

and can be ignored. Therefore, the power lost in the output capacitance of each power MOSFET is half of

that in Equation (C-4).

Output capacitance vs. VdS
700

* Value from data sheet
650 - Curve fit

600 -

550- -

500- -

450 -

400-

350-

300- -

250-

200
0 5 10 15 20

Vds V

Figure C-1: Output capacitance vs. drain-to-source voltage for the IRF7413Z power MOSFET. Points
represent data sheet values; curve represents analytical model.
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The switching transition losses are due to currents flowing through the MOSFET when their drain-to-

source voltage rises and falls [47]. The smaller the input capacitance the less charge it takes to reach the

turn-on gate voltage and the shorter the time in which there is current through the FET while a large

voltage is across the drain and source. The power dissipated in the switching transition loss depends on

frequency and current through the MOSFET. Note that only the CCM boost converter has both a turn-on

and turn-off switching transition loss while the DCM boost rectifiers have only a turn-off transition loss.

Figure C-2 shows the stages of the MOSFET turn-on sequence used to determine turn-on transition

time. A Vgs vs. Qg curve is shown in Figure C-2(a). When the MOSFET is about to turn on, the switch

current is zero and Vd, is equal to V, for the rectifier MOSFETs and Vo for the boost MOSFET. The gate

drive must charge the input capacitance, Cis, through the series combination of the gate resistor, Rg, and

gate drive source resistance, Roh as shown in Figure C-2(b). The time it takes for the gate voltage to go

form the threshold voltage to the Miller plateau voltage, Tf, can be computed from

T = rrILn Vd -V gt . (C-5)
Vg -- Vgs'm

where,

r]= Ciss (Vs -Vo)(Rg + R~h). (C-6)

During this period the MOSFET current rises.

Once the Miller plateau voltage is reached, the MOSFET gate acts like a constant voltage source

while the charge in the gate-to-drain capacitance, Qgd, is discharged (Figure C-2(c)). The drain-source

voltage falls to -OV during this period. The time it takes this charge to discharge is the time it takes for

Vds to rise from -0 to V0. This time is

Qgd(Rg +R oh)
Tr2 = (C-7)

Vgd -Vgs,m

Once Qgd is charged, the gate-to-source capacitance, Cgs, charges up as shown in Figure C-2(d). The

time it takes for Vgs to reach Vgd is
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(C-8)Tr3  .

tr3 = Css (Vds =Z0±XR h) + R '

gs

Miller (

Vgsm Plateau
VLh Q

2 4 6 8 1(

Roh + Rg

(C-9)

192012 14 16

Vgd + Ciss(Vd= V.)

- I
R~h + Rg

Vgd + + gs,rn

Roh + R9

Vgd + Ciss(Vds = 0)-0I

Figure C-2: MOSFET turn-on gate charging sequence and equivalent circuits.

The power dissipated in the turn-on transition loss for the CCM boost converter is [47]

Pswtr,on =0.5fsIds,pk V T. (C-10)
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The fall time, Tr, is equal to Ti + Tr2. T,3 does not contribute to the transition loss because the current

through the MOSFET is constant during that time. For the boost MOSFET Vds,,k will equal V0 while Ids,pk

can be found from the PSIM simulation.

The turn-off transition uses the reverse sequence in Figure C-2 and is shown in Figure C-3. When the

MOSFET is about to turn off, it switch current is at some peak value and Vds is ~0 V. The gate drive must

discharge the input capacitance, Cis, through the series combination of the gate resistor, Rg, and gate drive

sink resistance, Rd, as shown in Figure C-3(b). The time it takes for the gate voltage to drop to the Miller

plateau voltage, Tfl, can be computed from

Tf = Tf ILn jJ. (C-11)
Vgs~m

where,

Tf = Ciss (Vds = OXRg + R 1 ). (C-12)

Once the Miller plateau voltage is reached, the MOSFET gate acts like a constant voltage source while

the charge in the gate-to-drain capacitance, Qgd, is discharged (Figure C-3(c)). The time it takes this

charge to discharge is the time it takes for Vda to rise from -0 to V. This time is

Q gd(Rg +±R01 )
Tf2 - . (C-13)

Vgs'm

Once Qgd is discharged, the gate-to-source capacitance, Cgs, discharges as shown in Figure C-3(d). During

the period the MOSFET current falls until Vgs equals the threshold voltage, Vh. When Vgs equals Vth the

current is zero. The time it takes for this to happen is

g'
Tf3 = r f 3Ln V'm (C-14)

where,

f 3 Ciss (Vds --Vo)Rg + R 01). (C-15)
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6
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2

2 4 6 8 10 12 14 16-

Rg

CisS(Vds =0)

(b) R 0

Rg

Vgs.m

(c) R 0 -

R9

Cis,(Vd- Vo)

(d) Rf

Figure C-3: MOSFET turn-off gate charging sequence and equivalent circuits.

The energy dissipated in a single transition is

E,: =0.5 IdspkVdspkTf. (C-16)

The fall time, Tf, is equal to Tf + Tf3. Tf does not contribute to the transition loss because Vd, is still

zero during that time. For the boost MOSFET in the CCM converter and DCM boost MOSFET rectifier

Vds,,k will equal VO while Ids,pk can be found from the PSIM simulation. The switching transition loss will

be

Pswtroff = 0.5fs Is VOT. (C-17)
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When the boost inductor current in the semi-bridge rectifier is positive, Vds,pk will rise to V. + Vf +

RL4,pk. When the current is negative, Vds is equal to Vf + RfIds,pk of the free wheeling diode. The energy

dissipated a single transition when the currents are positive and negative, respectively, are

Eswtr =0. 5 Tf (v0 + Vf)I +Rf I'sp], (C-18)

ES =0.5Tf [VfIdspk ± pk +RI . (C-19)

The peak switch current in the MOSFET over a switching period, Ids,pk, will vary sinusoidally. This peak

switch current over stator electrical period can be approximated as

Idspk (k)~ Ipi sin(kk )k VOCIDTw sin(kok), (C-20)
Lboost

where Ipk is the peak switch current over a stator electrical period. The angle 0 k is equal to 2x/K, where K

is fsw/fe. Vci is the peak value of the fundamental component of the open-circuit voltage. The switching

transition energy over a stator electrical period will be

1 12( -1ESI = 2T, [(0.5V + V)Ipklsin(kok)+RfI2k sin2(kok)]. (C-21)
k=1

The turn-off switching transition power dissipated in a single MOSFET is

~st~f f IfSW Tf __ 1

PS,,r'= fe~ TE = E swtr IT. _ f + Vf pksin(kok)+±RfIk sin2(kok)1. (C-22)

Since the switching frequency is much larger than the stator electrical frequency, (C-22) can be

approximated as

Ps,,o, s,,(V 2Vf 2Ipk + RI .2 (C-23)
Pswtr,off 4 fSW Tf ± 2 VfjfR fIpkf(-3

4 x1~

The capacitive turn-off loss and gate drive loss are fixed losses. They can be modeled as a resistance

in parallel with the load resistor. The switching transition loss varies with the peak boost inductor current

which itself varies with output power. Since the comparison of the converter topologies is done at a fixed

output power of 10 W, the switching transition loss can also be modeled as a resistor in parallel with the
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load for simplicity. The switching transition loss can be found iteratively by simulating the circuit and

using the resulting Ipk in (C-10), (C-17) or (C-23). The loss can be added to the gate drive and output

capacitive loss to determine fixed resistance, Rfixed, in parallel with the load resistor,

Rfixed -V Vo (C-24)
Pgd + Pcout + Pswtr + Pct

P., in Equation (C-24) is the diode capacitive loss which is computed in the next section. The circuit can

simulated again to see if the peak transistor currents change significantly. If they do, then the new values

of the peak switch currents can be used to recalculate Rfixed until the peak transistor currents vary by less

then 1% from the previous iteration.

C.2 Diode Losses

The diodes used in the comparison are DFLS130L surface mount Schottky diode from Diodes Inc.

The diodes are modeled as a voltage source, Vf = 0.272 V, in series with resistor, Rf = 54.7 mn, using the

data sheet values of the forward voltage drop vs. forward current (Figure C-4).

The loss due to the junction capacitance is found by calculating the energy dissipated charging and

discharging the diode capacitance over a switching cycle. This will be equal to the peak reverse voltage,

Vr, across the diode times the charge on the diode capacitance at the peak Vr. The capacitance vs. reverse

voltage of the diode is shown in Figure C-5. It is difficult to fit this curve to an analytical expression so

interpolation is used to determine values between data points.

The power lost in the diode capacitance in the DCM rectifier is

PCt = fW Vr Ct(V,)dV, . (C-25)

The voltage across the diode changes from 0 to -V, only when the current through the boost inductor

is positive which occurs during half the electrical period of the stator. The total loss in all the diodes is

3P. The capacitive loss in the diodes of the MOSFET rectifier used with the CCM boost converter is

ignored because the reverse voltage is only a few volts and the switching frequency of the rectifier is only

20 kHz.
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Diode forward voltage drop vs. forward current

* Data sheet value
- Curve fit

2 4 6 8 10
If (A)

Figure C-4: Forward voltage vs. forward current for the DFLS13OL Schottky diode.

Diode total capacitance vs. reverse voltage
rzf~t _____ ____ - Value from data sheet

Interpolation

A

2 4 6
V(V)

8 10 12

Figure C-5: Total capacitance vs. reverse voltage for the DFLS130L Schottky diode.
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C.3 Boost Inductor Losses
RCR

RDC RAC Lboost

Figure C-6: Equivalent circuit of boost inductor.

Coil craft inductors are used in the topology comparisons. The inductors used in the DCM rectifiers

are the 0.33 H14 DO1813H-331 while the inductor used in the CCM boost converter is the 1.5 PH

D03316P-152. The equivalent circuit model for the inductors is shown in Figure C-6 and the SPICE

models are available from www.Coilcraft.com. The inductors are modeled with a DC resistance, RDC, AC

resistance, RAC, core resistance, RCR, and high frequency inductance (in pH), Lbo,),, which can be found

using

RAC(fsw)K I , (C-26)

RCR(fsw)=K 2 jw , (C-27)

L bost (fsw)= K 3 - K 4 log(K 5 fsw). (C-28)

The AC resistance of the inductor used in the CCM boost inductor is ignored since the RMS current

through the inductor is dominated by the DC current. The AC resistance for the boost inductors in the

DCM rectifiers will be substantial since its current is an AC waveform at the switching frequency and so

cannot be ignored. The values for the parameters in (C-26)-(C-28) are given in Table C-2 for both

inductors. At a switching frequency of 500 kHz, RAC = 34 mK, RCR = 104 Q and Lboot = 0.324 pH for the

D01813H-331. At a switching frequency of 1 MHz, RCR = 677 9 and Lboos, = 1.45 PH for the D03316P-

152.

Table C-2: Boost inductor SPICE model parameters.

K, K2 K3 K4 K 5  fSW RDC RAC RCR Lboost

D1813H- 4.8 0.146 0.33 7.96 1.02 500 kHz 4 mK 34 mg 104 Q 0.324pH

D03316P- 503 0.677 1.48 3.42 6.6 1 MHz 10 m2 - 677 Q 1.45 pH
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