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Abstract
Solid state Nuclear Magnetic Resonance (NMR) allows us to explore a large coherent
spin system and provides an ideal test-bed for studying strongly interacting multiple-
spin system in a large Hilbert space.

In this thesis, we experimentally investigate the spin dynamics in a rigid lattice of
dipolarly coupled nuclear spins using multiple quantum NMR spectroscopy. Encod-
ing multiple quantum coherences (MQC) in an arbitrary quantizing axis is developed.
We utilized this method to encode coherence numbers in an orthogonal basis to Zee-
man basis and showed that the dipolar-ordered state is a two spin correlated state,
and confirmed the presence of the I+Ij7 +I I+ (flip-flop) terms in the experimentally
prepared dipolar-ordered state. A new experimental investigation of the problem of
the NM:R free induction decay (FID) in a lattice of spin 1/2 nuclei is presented to
verify the multi-spin nature of the FID and the dominant role of the geometrical
arrangement of the spins in the development of higher order correlations under the
dipolar evolution. To study the dynamics and the controllability of these multiple
spin correlations, effective decay times of individual coherence orders are measured
under the dipolar interaction and under the control sequence that suppresses the
dipolar evolution. It is seen that the decay time of each coherence order becomes
shorter and more uniform among different coherence orders as the spin correlation
size grows larger in both cases.

Additional work has been done in this thesis, toward creating a pure state in
solid state nuclear spins by transferring polarization from electron spins, i.e Dynamic
Nuclear Polarization (DNP). A new cryogenic DNP probe was developed enabling
multiple pulse irradiations at low temperature with enhanced polarization.

Thesis Supervisor: David G. Cory
Title: Professor

3



Acknowledgments

I have been privileged to work with many wonderful people during my thesis work

at MIT. Professor David G. Cory invited me to join his group when I was not sure

what to do and guided me through this work with patience and thoughtful insight

throughout my time in his Lab. I still remember the one night in the Lab when

he showed me how to strip off a coaxial cable. It is a great pleasure to thank Dr.

Chandrasekhar Ramanathan not only for his help on every single aspect of my work

but also for his warm support when things are not working well. His support and

advice pushed me through many hurdles to reach here. I am thankful for Dr. Timothy

Havel for making me challenge myself starting from first principles. I cannot thank

enough Greg Boutis for a wonderful time we spent in the Lab together for my initial

two years in Cory Lab and his solid friendship. He generously passed me on his

valuable skills, which he learned from trials and errors.

Of my lab-mates, I enjoyed working with Paola Cappellaro, Daniel Greenbaum

and Suddhasattwa Sinha on solid state NMR work. I believe we had constructive

interferences with each other. I shared mind-clearing break at the back of NW14

building with Nicolas Boulant, and regret that we didn't share any research experience

together.

I also would like to thank Debra Chen and Yaakov Weinstein for going through

NUKE qualifiers together, it was a rewarding experience to work out lists of problem

sets with them. I am thankful for Jamie Yang and Michael Henry taking over magnet

cryogen maintenance work.

My lab mates and friends, Joseph Emerson, Dmitry Pushin, Tirthahalli Mahesh,

Jonathan Hodges, Tatjana Atanasijevic, Gabriela Leu, Ruopeng Wang, Yong Xiao

and Yun liu were always there when I needed them. I will look back fondly on many

aspects of activities we shared together at MIT.

Outside MIT, I had trustworthy relationships with my roommates, Hyunkyu Kim,

Kyujin Cho, and Sangyoon Min. They were great people to be around. We shared

valuable moment of our lives and hope our friendships last our lifetime. I also want

4



to thank Unnam Park and Kyungjin Lee for inviting me to Redsox Nations and their

hospitalities.

Back in Korea, a group of my friends (DON1974) provided me with warm relief

of not being alone while I am away from my home town. I had to pay a price of not

being able to attend any single of my friends' weddings for completing my work here,

and I will miss those precious moments slipped by.

My parents, my brother and sister in law have been a huge moral support to me.

They made me think that I am doing one of the most valuable things in the world.

Without them, I would not be here today.

Finally, I would like to thank Eunmi Choi, my fiance, for being there. She lights

up my life. S.D.G.

5



For my parents;

Chungnam Cho

and

Youngho Choi.

6



Contents

1 Introduction 17

2 Encoding multiple quantum coherences in non-commuting bases 21

2.1 Multiple Quantum Coherences (MQC) in solid state NMR ..... . 21

2.2 Encoding MQC along non-commuting quantizing axes ......... 27

2.3 Experimental results ........................... 31

2.3.1 Z and X basis encoding ................... .. 31

2.3.2 X basis encoding for different initial states ........... 34

2.3.3 Two dimensional correlation experiment between Z and X bases 35

2.4 Conclusion ................................. 37

3 Spin counting experiment in dipolar-ordered state 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . ...... 39

3.2 Theory ................................... 41

3.3 Creation of dipolar-ordered state . .................... 42

3.3.1 Adiabatic demagnetization in rotating frame .......... 42

3.3.2 Jeener -Broekaert two pulse method ........... . 43

3.4 Experimental results ........................... 43

3.4.1 State estimation of the dipolar-ordered state .......... 44

3.4.2 Zeeman contamination in T1D measurement .......... 46

3.4.3 Initial transient for Jeener-Broekaert sequence ......... 50

3.5 Conclusion ................................. 53

7



4 Multi-spin dynamics in solid state NMR free induction decay

4.1 Characterization of FID using multiple quantum coherences .....

4.2 Experimental results.

4.2.1 FID in a cubic lattice of spins ( 9F in Calcium Fluoride) . . .

4.2.2 FID in a linear spin chain ( 9F in Fluorapatite) ........

4.2.3 Onset time measurements of coherence orders .........

4.3 Discussion .................................

4.4 Conclusion . ................................

5 Experimental investigation of decay of the multiple spin correlations 81

5.1 Introduction.

5.2 Method ..................................

5.3 Decay of multiple spin correlations under the secular dipolar Hamiltonian

5.4 Decay of multiple spin correlations under a time suspension sequence

5.5 Discussion .................................

6 Toward state purification in solid state nuclear spins

6.1 Theory of Dynamic Nuclear Polarization (DNP) ........

6.2 Design and fabrication of low temperature DNP probe ....

6.2.1 Low temperature NMR probe ..............

6.2.2 HFSS simulation with microwave cavity using horns . .

6.2.3 Microwave source.

6.3 Experimental results (thermal mixing: TEMPO and solid effect

6.4 Discussion .............................

99

... . 100

.... 102

.... 102

.... 105

... . 111
: BDPA)114

... . 114

7 Conclusion

Bibliography

8

55

58

60

61

72

73

73

78

81

82

85

93

96

117

119



List of Figures

2-1 The general form of a two dimensional MQ experiment ........ 25

2-2 A Fourier transformed multiple quantum spectra in a single crystal of

CaF 2 .................................... 26

2-3 Pulse sequences for encoding multiple quantum coherences in non-

commuting bases ............................. 30

2-4 Z and X bases coherence number encoding experiments for 1 - 5 loops

of 16-pulse double quantum cycles. Clear odd and even selectivity in

coherence number distribution is shown. ................ 32

2-5 X basis coherence number distribution as a function of evolution time

under the double quantum Hamiltonian. Data show clear even and

odd selectivity depending on initial state preparation .......... 33

2-6 Estimated spin cluster sizes (< N >) for different initial states, Zeeman

and dipolar-ordered state. Solid lines are fits to Eq. (2.26) ....... 35

2-7 The result of 2D correlation experiments. The width in z basis coher-

ence number distribution appears to be broader than that of x basis. 36

3-1 Pulse sequences for z and x bases encoding of the dipolar-ordered state.

(a) Jeener-Broekaert and 450 pulse readout for simultaneous z and x

basis encoding. (b) ADRF creation and ARRF readout for x basis

encoding. (c) JB creation and ARRF readout for x basis encoding. The

48-pulse sequence was used to suppress the evolution of the internal

Hamiltonian between the two 7r/2 pulses. We assume that relaxation

effects are negligible during one cycle of this sequence .......... 43

9



3-2 Results of the correlated 2D experiment that simultaneously encodes

z and x bases coherence for the dipolar-ordered state. The dipolar-

ordered state is observed to contain only zero quantum in the z basis,

and both zero and double quantum coherences in the x basis ...... 45

3-3 Ratio between x basis double and zero quantum signals as a function

of tl. As the dipolar-ordered state decays, the intensity of the double

and zero quantum orders decay. However, the ratio is maintained at

, 1.5. The errors were estimated from the variance of the noise in

a signal free region of the spectrum. The increase in the error with

longer evolution time is due to the deteriorating signal to noise ratio

as the signal decays. ............................ 47

3-4 A pulse sequence in Fig. 3-1 was used to encode the x basis coherences

(a) on resonance, and (b) 21 kHz off resonance. t was set to 5 ms in

both experiment. ............................. 48

3-5 Decay of x basis double and zero quantum signals in the (a) ADRF and

(b) JB experiments. The measured decay constant was 255 ± 3.1 ms

and 254 ± 3.1 ms for the zero and double quantum terms, respectively,

in the ADRF experiment, and 254 + 2.9 ms for both zero and double

in the JB experiments. ......................... 49

3-6 Results of the 2D correlated x and z bases coherence number measure-

ments illustrating the dynamical evolution of the spin system following

a JB pulse pair, and the approach of the system to the dipolar-ordered

state when the crystal is aligned along [110] direction .......... 51

10



3-7 (a) FID measured when the crystal is aligned along the [100] direc-

tion and (b) [110] direction. (c) Evolution of the z basis coherences

obtained by projecting the two-dimensional data onto the appropriate

axis for the [100] and (d) [110] directions. (e) Evolution of the x ba-

sis coherences obtained by projecting the two dimensional data onto

the appropriate axis for [100] and (f) [110] directions. As the data

shown is the sum of the absolute values of the different coherences, the

nonequilibrium curves do not go to zero. ................ 52

4-1 Projection of Liouville space onto the two dimensional plane K - n

showing the dynamics of the FID in (a) the Zeeman eigenbasis, and

(b) the x basis. The arrows show the allowed paths in each case. ... . 59

4-2 The pulse sequence used in this experiment. t is the evolution time

under the secular dipolar Hamiltonian. The 48-pulse sequence was

used to suppress the evolution of the internal Hamiltonian during the

x basis encoding step. A magic-echo sequence was used to reverse the

dipolar evolution. A delay (=10 us) was inserted before the magic

echo to push the echo out to minimize any pulse transient and dead

time effects in the receiver. tflock = t + 26 + 3lps ............ . 61

4-3 X basis coherence order distribution at various time points under the

evolution of the secular dipolar Hamiltonian in CaF 2. The peak inten-

sity has been re-normalized to put the zero quantum intensity to one

in each case ................................. 62

4-4 The growth of multiple spin correlations during the FID, showing sig-

moidal fit to the initial growth data of each x basis coherence order

(n > 4). Inset figure shows dynamics of 0 and 2 coherence orders.

Along -[110] direction in CaF2 ................... .. 64

4-5 Total spectral intensity (n Sn) measured for various evolution time

(t) under the evolution of dipolar Hamiltonian ............. 65

11



4-6 The growth of multiple spin correlations (normalized with respect to

the total signal for that evolution time to compensate for imperfect

refocusing) during the FID, showing sigmoidal fit to the initial growth

data of each x basis coherence order (n > 4). Inset figure shows dy-

namics of 0 and 2 coherence orders. Along [110] direction in CaF 2 . 66

4-7 The normalized growth of multiple spin correlations during the FID

along [111] direction in CaF2 ...................... 67

4-8 The normalized growth of multiple spin correlations during the FID

along [100] direction in CaF2 ...................... 68

4-9 The values of an's for different orientations in CaF 2. Left inset shows

the ratio a[loo]/a[111](*) and a,[ll0]//a[lll](+). The ratio of Ej (IDlj Nj )

for [100]/[111] (solid line) and [110]/[111] (dotted line) are also shown.

The right inset figure shows the values of Cn's for different orientation

in CaF 2. ................................... 71

4-10 The growth of multiple spin correlations during the FID with quasi 1-

dimensional a single crystal of fluorapatite, showing sigmoidal fit to

the initial growth data of each x basis coherence order (n > 3). Inset

figure shows dynamics of 0 and 2 coherence orders. .......... 72

4-11 Onset time of multiple spin correlations along different orientations in

CaF2. Inset shows onset times for the FAP sample. (Odd coherence

orders for the FAP sample are obtained by y basis encoding on same

initial state.) The continuous lines represent the best fits of Eq. (4.30)

to the data, assuming that the same equation is valid for coherence

number as well ............................... 77

4-12 Onset time of multiple spin correlations along different orientations in

CaF2. Inset shows onset times for the FAP sample. (Odd coherence

orders for the FAP sample are obtained by y basis encoding on same

initial state.) The continuous lines represent the best fits of Eq. (4.34)

and Eq. (4.33) to the data, assuming that the same equation is valid

for coherence number as well. ...................... 79

12



5-1 The pulse sequence used in this experiment. T is total evolution time

under double quantum Hamiltonian. t is the evolution time under the

secular dipolar Hamiltonian, and 6 is the cycle time of 48-pulse sequence. 84

5-2 Coherence order distribution with t=O, T=303.8 s .......... 85

5-3 Decay of intensity for each coherence orders when r=130.3 Ps. Solid

lines are Gaussian fits to the data. Inset figure shows decays of coher-

ence orders when T=303.8 us. ...................... 86

5-4 Effective decay times of various coherence orders at different evolution

time under the double quantum Hamiltonian (r) ............ 87

5-5 A K - n Liouville space diagram. Dots represent possible multiple

quantum states under the evolution of the double quantum Hamil-

tonian. Arrow refers to the hopping to the nearest neighbor multiple

quantum states under the dipolar evolution, and Wrate denotes its rate. 89

5-6 Theoretical decay times of multiple quantum states based on Eq. (5.11).

The values are re-normalized for comparison with experimental data

shown in Fig. 5-4 .............................. 91

5-7 Effective decay times for correlated x and z bases coherence orders

under the double quantum Hamiltonian () ............. 92

5-8 Decay of intensity for each coherence order as a function of cycle time

of 48-pulse sequence when T=130.3 us. Solid lines are Gaussian fits to

the data. Inset figure shows decay of coherence orders when -=303.8 ts. 93

5-9 Effective decay times of various coherence orders at different evolution

time under the 48-pulse sequence ................... . 94

5-10 Effective decay times for correlated x and z bases coherence orders

under the 48-pulse time suspension sequence .............. 95

5-11 Ratio of decay time under the 48-pulse sequence to decay time under

the dipolar evolution ......................... 96

6-1 A schematic diagram of piston capacitor assembly .......... . 104

6-2 A schematic diagram of conical seal and vacuum can wall ....... 105

13



6-3 Reflected power measurements for various geometry of horn cavities.

It should be noted that the micrometer reading and the location of

the shorting plug inside the neck of the horn is not calibrated with

respect to each other for horn-horn system, and needs to be calibrated

for future references. . . . . . . . . . . . . . . . . . ........ 106

6-4 The B field profile in horn geometry .................. 108

6-5 The B field profile in horn-mirror geometry ............... 109

6-6 The B field profile in horn-horn geometry ............... 110

6-7 A schematic diagram of two horns arrangement ............ 111

6-8 A CAD drawing for low temperature DNP probe .......... . 112

6-9 A schematic drawing for experimental setup including microwave sourcell3

6-10 DNP enhancements of 40 mM TEMPO as a function of microwave

frequency ................................. 115

6-11 DNP enhancements of BDPA as a function of microwave frequency . 116

14



List of Tables

2.1 MQ experiments in z and x bases ................... 29

3.1 Coherence numbers of the secular dipolar Hamiltonian in the z and x

bases ................... ................. 41

15



16



Chapter 1

Introduction

The availability of coherent control methods, a well-known internal Hamiltonian, and

a relatively long decoherence time of nuclear spins in Nuclear Magnetic Resonance

(NMR) have collectively made NMR one of the most ideal test-beds for Quantum In-

formation Processing (QIP). Liquid state NMR allowed us to implement key quantum

algorithms and to develop coherent control methods in small quantum systems with

pseudo-pure initial state preparation followed by ensemble measurement on identical

molecules [1, 2]. Even if liquid state NMR is currently by far the leading technology

for QIP among various experimental modalities, these studies have been limited up

to 10 qubits, mainly because creating the pseudo-pure state from highly mixed states

at room temperature requires exponential costs either in the signal strength or the

number of experiments involved.

Dipolarly coupled nuclear spins in solid state NMR hold potential promise in the

approach of designing and implementing scalable quantum information processors.

Key advantages of solid state NMR are that we can achieve a nearly pure state with

existing methods, and that stronger dipolar interaction (typically on the order of

tens of kHz in dielectric crystal) can be used to achieve faster operation times within

coherent regime. Moreover, spatial addressing of the spins using gradient field might

possibly overcome control issues arising from the chemistry addressing method, which

is mainly used in liquid state NMR to address the qubits. There have been various

proposals for scalable solid state NMR-QIP utilizing the above advantages of dipolarly
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coupled spins.

1. Cory et al. proposed to use ensemble solid state NMR quantum information

processor, using large number of n-qubit fixed in a lattice. The lattice is deuterated,

and paramagnetic impurities are used to dynamically polarize the deuterium spins

and this enhanced polarization is transferred to QIP molecules [3].

2. Kane as well as other researchers brought silicon into the picture, which can

potentially take advantage of the existing infrastructure of the semiconductor indus-

try. Kane proposed to use phosphorus atoms 20 nanometers apart in a silicon grid at

low temperature followed by single nuclear spin measurement [4]. Ladd et al. pro-

posed to use an all silicon quantum computer, in which qubits are addressed using

the magnetic field gradient of microfabricated ferromagnets and measurements are

performed via magnetic resonance force microscopy (MRFM) [5].

3. Suter and Lim proposed to use a solid state spin based quantum computer

that uses endohedral fullerenes, which can be positioned on the silicon surface. In

this approach, each local qubit is stored in nuclear and electron spins, and qubits are

addressed using magnetic field gradients [6].

Whichever architectures we decide to pursue, it is essential that we understand

the dynamics of spins in a large Hilbert space under the action of many-body Hamil-

tonians, as well as develop the ability to accurately perform desired unitary transfor-

mations in this space.

The nuclear spins in a dielectric solid such as calcium fluoride are excellent test-

beds to investigate large-scale spin dynamics and control issues in a large Hilbert

space under dipolar interactions because they have very long spin-lattice relaxation

times (ranging from minutes to days depending on the concentration of paramagnetic

impurities in the crystal) and nuclear spins are completely isolated from the environ-

ment. It is therefore possible to investigate the dynamical behavior of coherent spins

in a large Hilbert space under the action of their mutual couplings and applied ra-

diofrequency perturbations, while they are essentially isolated from their environment

[7].

In this thesis, we focus on experimental investigation of spin dynamics under a
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relatively short (t 5T2) time regime of dipolar evolution using Multiple Quantum

NMR (MQ-NMR). The long time regime of dipolar evolution (t - T1) has recently

been probed via direct spin diffusion measurements [8, 9]. It should be noted that

new experimental methods and theoretical understandings to study the spin dynam-

ics in intermediate time regime is also necessary to verify how microscopic quantum

mechanical properties manifest themselves in a corresponding dynamics at the macro-

scopic level.

In the next chapter, we briefly introduce the notion of Multiple Quantum Coher-

ence (M QC) in solid state NMR followed by a newly developed experimental technique

to encode MQC in non-commuting bases [10]. Chapter 3 of this thesis describes the

direct reconstruction of the density matrix of the dipolar-ordered state from correlated

2D MQC encoding experiments [12], and chapter 4 shows the first direct observation

of multi-spin dynamics during the Free Induction Decay (FID) in a single crystal of

CaF 2 [13]. In chapter 5, experimental investigations of the decay of multi-spin states

under the dipolar interaction and under the 48-pulse time suspension sequence is pre-

sented. A design and construction of low temperature Dynamic Nuclear Polarization

(DNP) probe for solid state NMR application is described in the last chapter, which

is an effort toward state purification in solid state NMR.
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Chapter 2

Encoding multiple quantum

coherences in non-commuting bases

2.1 Multiple Quantum Coherences (MQC) in solid

state NMR

1 At thermal equilibrium in a high magnetic field, the density matrix of the spin

system in a rigid lattice of nuclear spins can be given as

e-PH
(o)= z (2.1)

where Z is the partition function and = 1/kT. The Hamiltonian of spin system is

given as H = Hz + HD. H is Zeeman interaction, which is

and HD is the secular dipolar interaction.

HD = E Djk {Iizikz - (Ij+Ik-

j<k
+ Iik+)}.

1This chapter was drawn from sections of [10] with major contribution from Dr. Chandrasekhar
Ramanathan

21
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The dipolar coupling constant Djk between spins j and k is given as

Djk = 3 (1 - 3cos 2 jk), (2.4)
rjk

where y is the gyromagnetic ratio, rjk is the distance between spins j and k, and jk

is the angle between the external magnetic field and internuclear vector rjk.

All the spins in a rigid lattice of nuclear spins are coupled through dipolar in-

teraction. Therefore in principle, the size of the Hilbert space of the spin system is

determined by the total number of the spins in the system. However, in a high temper-

ature (hw << 1) limit (typically valid when T>1 K) and a high field (IHDI < IHzI)

approximation, the equilibrium density matrix becomes

I (1 -hwZ Ij) = E ij = -P (2.5)Z z Z z

where 1 is the identity. Since identity does not evolve under any interaction, it is

sufficient to describe the spin system in terms of 6p. At thermal equilibrium in a

high temperature limit and a high field approximation, the dipolarly coupled spin

system in a rigid lattice of nuclear spins can be treated as an ensemble of weakly

coupled subsystems, in which effectively one spin out of 106 is pointing up at room

temperature in a high magnetic field.

In a strong magnetic field (Bo0 ), an interacting N-spin 1/2 system has 2N sta-

tionary states. These can be classified according to the magnetic (Zeeman) quantum

number,

M = E mzj = (N(+1/2) - N(-1/2))/2, (2.6)

where mzj = +1/2 is the individual eigenvalue of the jth spin in the system, N(+1/2) -

N(_1/ 2) represents the difference in the number of spins pointing up and down along

a background magnetic field, and the energy eigenvalue corresponding to Mz is E" =

--yhBoM. For non-degenerate stationary states, there are on the order of 2 2N-1

possible transitions between any two levels. The difference in M, values between the

two levels is referred to as the coherence number. This definition of coherence is
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useful since Zeeman states are also eigenstates of any secular internal Hamiltonian,

such as the secular dipolar Hamiltonian.

While these coherences refer to transition between levels, it is useful to discuss

multiple quantum coherences for states of a system. When the state is expressed in

the eigenbasis of the system, the presence of a nonzero matrix element < zilpjz; >,

indicates the presence of an n-quantum coherence, where n = Mz(zj) - Mz(zi), the

difference of the magnetic quantum numbers.

Since each of the N interacting nuclei retains its own Zeeman quantum number

for weakly coupled systems, a particular Zeeman state can be expressed as a product

of N-spin 1/2 eigenstates, given as

IMz >= mzl > Imz2 > .. ImzN >, (2.7)

where Mz and mzj are defined in Eq. (2.6).

Now the 22N basis operators are needed to form a density operator for spin-1/2

N interacting spin system, and these basis operators can be expressed as products of

basis operators for each of the separate spins-1/2,

p = ImZlmz2...mzN >< mzN...mz2mZll = Imzl >< mZlflmz2 >< mz2...lmzN >< mZN.

(2.8)

Meanwhile, it is useful to introduce the Pauli matrices for easier manipulation of

the density operators. The relationships between the Pauli matrices and the basis

operators for each spin can be given as [22]

1
rxj = 2(I >< I + I ><T ), (2.9)

2

j = >< >< (2.10)
2

Izj = -(I ><T I - I><& 1). (2.11)
2

With these single-spin operators as building blocks, N-spin density operators can now
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be expressed as the tensor products of above single spin operators, yielding

= j ) lk ....Id &al 1 Ip ) In +..., (2.12)
N-K K

where N - K is the number of non-interacting spins, and K is the total number

of interacting spins in the N-spin system. K is usually defined as the size of the

coherent spin cluster (spin number) in the system of interest. e, 3, and y denote x, y

or z. Additionally, the x and y components of the operator can be expressed as the

spherical operators with the relationships below

Ij = Ixj Iyj. (2.13)

For example, states such as I+jI+k are called two spin double quantum coherence,

and I+jIzk is called two spin single quantum coherence. Consequently, the size of a

coherent spin cluster (spin number) of a thermal initial state ( p(O) = Ej Izj ) can be

considered as one.

From the experimental perspective, unfortunately a spin number is not an ob-

servable quantity. On the other hand, since a coherence number is a good quantum

number, we can use a collective rotation about the axis of the quantization, Ei I, to

characterize coherence numbers:

< zilexp(-i b I)pexp(-iq5 IIlzj >= exp(in) < lplzj > (2.14)
i i

This coherence number information of quantum spin states can be recorded to the

phase factor and this phase factor can be easily extracted using a method which will

be explained in the next section of this chapter. To make the above explanation more

concrete, Fig. 2-2 shows a Fourier transform multiple quantum spectra obtained in a

single crystal of CaF2.

Historically, the advent of Multiple Quantum (MQ) Nuclear Magnetic Resonance

(NMR) techniques opened up a new possibility of describing dynamical aspects of
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Preparation Evolution Mixing Detection

1i ti 12 t2

Figure 2-1: The general form of a two dimensional MQ experiment

multi-spin processes beyond thermodynamic descriptions by studying emerging mul-

tiple quantum coherences. MQ-NMR techniques in solids have generally been used

to study the size and the dimensionality of localized spin clusters as well as to probe

the many-body dynamics of a solid state spin system. We briefly describe previous

experimental efforts and success in probing forbidden degrees of freedom in a collec-

tion of nuclear spins (1/2 spins), that is, MQ-NMR. A complementary review can be

found elsewhere [19, 20, 21, 23].

The general form of a two-dimensional MQ experiment is shown in Fig. 2-1. Since

the inductive measurement of NMR signal must be carried out by measuring single

quantum magnetization, the periods of preparation and evolution of multiple quantum

coherences are followed by a mixing period (existing multiple quantum coherences are

transformed to observable single quantum during this period). In the final detection

period, single quantum transverse magnetization is observed and the corresponding

data are Fourier transformed to extract coherence number information. Based on this

scheme, several pulse sequences are developed to create and detect multiple quantum

coherences. Before the development of the time-reversed version of preparation and

mixing periods, MQ-NMR spectroscopy had been generally applied to systems with

a small urnumber of spins due to the inefficiency in refocusing higher order coherences

to observable magnetization [14, 15, 16, 17, 18, 19, 20]. Selective excitation scheme

was also introduced to compensate for this low signal in higher order coherences by

channeling the signal only to desired coherence orders [24, 25]. Utilization of time-

reversal scheme enhanced the overall intensity of MQ-NMR experiment otherwise

lost by refocusing dipolar interaction, [26, 27, 28] and expanded the application of

MQ-NMR to strongly coupled network of spins.

The selective excitation and transformation of multiple quantum coherences led
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to a new picture of many-body spin dynamics in a dipolar coupled solids [29, 30, 31,

32, 33]. These techniques also have been widely used to probe spatial relationships

between. spins in large macromolecules, polymers, and crystalline systems, includ-

ing determining the dimensionality and the size of localized, weakly interacting spin

clusters. [20, 23, 34, 36, 35]

In this chapter, we introduce a new experimental method and measurements that

extend our knowledge of the multiple quantum state by encoding the coherences in

two non-commuting bases which are related by similarity transformation.

2.2 Encoding MQC along non-commuting quan-

tizing axes

While the coherences have a physical meaning in the eigenbasis of the system (usually

the Zeeman basis), a generalized coherence number reports on the response of the

system to any collective rotation of the spins. This is equivalent to expressing the

state of the spins in a basis where the apparent axis of quantization is given by the axis

of rotation, and can be obtained from the eigenbasis via a similarity transformation.

For example, the similarity transform P connects the density matrices of the system

in the two representations (the z and the x bases, for instance).

[P] = P-[pz]P, (2.15)

where the elements of the matrices are

[pX] =< xilplxj >, (2.16)

[PZ] =< zilPiZj >, (2.17)
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and xi and zi are complete sets of basis operators. Under a collective rotation about

the x axis, we obtain,

< xilexp(-i( I.)pexp(-i 0 I)lIxj >= exp(inx0) < xilplxj >, (2.18)
i i

where nx is the x basis coherence number.

Measurements in non-commuting basis are a central task of quantum state tomog-

raphy. Suter and Pearson previously used a variable flip angle pulse to encode for

coherences in the y basis as well as the z basis [37]. In this chapter, we demonstrate an

improved technique for the encoding of coherences in the x basis as well as encoding

coherences simultaneously in the x and z basis. While the measurement of coherence

number in an orthogonal basis does provide more information about the state, it does

not yield a direct measure of the spin number, since there is a mixing of coherence

orders from different spin states. But measuring multiple quantum coherences in a

basis other than the usual z basis is particulary important to study the dynamics of

the spin system under a Hamiltonian that conserves z basis coherence number, such

as the secular dipolar Hamiltonian.

Table. 2.1 shows the initial state, Hamiltonian, and selection rules for the standard

MQ experiment (using double quantum (DQ) Hamiltonian) in both the standard z

basis and the x basis using transformation of z basis operators to x basis operator

[38],

Iz = ( -)) (2.19)
2

l + I (I++ I-), (2.20)2

I 2= I ( - (I+ + I;), (2.21)2

Thus, starting from the initial Zeeman state, we see that under double quantum

evolution we obtain even order coherences in the z basis and only odd order coherences

in the x basis.

The pulse sequence shown in Fig. 2-3 allows us to encode coherences in the two

bases under essentially identical conditions. Fig. 2-3 (a) is a z basis encoding ex-
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z basis x basis
Initial state Iz 2 - I

MQ Hamiltonian Ei<j dij{Ii+I+ + II~-} Ei<j dij[{2IxIzx

Spin number selection rule i+1 +1
Coherence number selection rule +2 0,:2

Table 2.1: MQ experiments in z and x bases

periment and Fig. 2-3 (b) is an x basis encoding experiment. Fig. 2-3 (c) shows the

16-pulse cycle double quantum sequence used. This improved sequence was used to

eliminate pulse imperfections and resonance offsets by placing two cycles of standard

MQ sequence, phase shifted by 7r with respect to each other. The two (7r/2) pulses

and Cory 48-time suspension sequence are not required for z basis encoding experi-

ment, but they were inserted to perform the two experiments in identical conditions.

In the x basis experiments, the two (7r/2) pulses perform the basis transformation

and the phase encoding of the coherences by progressively incrementing the phase of

the first (r/2) pulse. A Cory 48-pulse sequence was placed to prevent any unwanted

switching transients when (7r/2) pulses are put back to back, and the Cory 48-pulse

sequence prevents evolution under the secular dipolar Hamiltonian between two (7r/2)

pulses [40]. The operator corresponding to the observable signal is I. The measured

signal for experiments in Fig. 2-3 (a) corresponds to < I >,= Tr[pfIz], where the

final density matrix is given by

f = UDQRy (-7r/2)R (1r/2)UDQpiUtQRy(-r/2)Ry(7r/2)UDQ

= UtQR(-q)UDQIUtQRZ(O)UDQ, (2.22)

where we defined Ra() = e(ilIa). If we define Ps = UDQIzUtQ, then the measured

signal in z basis experiment becomes

< I >,= Tr[pfI,] = Tr[R(-c)psR(q)ps]. (2.23)

29



(H DQ) , 48 pulse sequence - HDQ

T (7c/2) (x12).y T

T (2t/2/2 (rdc2) y

A) y (H DQ 48 pulse sequence HDQ (ARRF) y

/21 (C2)p+1/2 (/2)y A

( A/2 A AL \14 l Al Al1 Al Al Al14 hII h4 

tc

Figure 2-3: Pulse sequences for encoding multiple quantum coherences in non-
commuting bases
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For the experiment in Fig. 2-3 (b), it can be shown that the final density matrix is

given by,

Pf = Ut QRY Z(-)R )Ry(w/2)UDQpUtDQRy(-7r/2)RZ ()Ry(T7/2)UDQ

= UtQR(-O)UIZUtR (O)U. (2.24)

Accordingly, observed magnetization in the x basis experiment is similarly

< I >0= Tr[pfl] = Tr[Rx(-q)p8sRx(q)ps]. (2.25)

In both cases, 0 is uniformly sampled out to a multiple of 27r and resulting data are

Fourier transformed with respect to q to obtain a coherence number distribution.

2.3 Experimental results

The experiments were performed at room temperature at 2.35 T (94.2 MHz, 19F),

using a BRUKER Avance spectrometer and home built probe. The samples used

were a 1 mm 3 single crystal of CaF 2 with T 1 - 7 s. A 0.51 as 7r/2 was used, and the

pulse spacing A in the double quantum sequence was set to 1.3 s. The cycle time

was determined to be 43.4 s. The pulse spacing in the 48-pulse sequence was set to

1.5 us.

2.3.1 Z and X basis encoding

Fig. 2-4 shows the experimental results obtained for z and x basis encoding experi-

ment, using the pulse sequence depicted by Fig. 2-3 (a) and Fig. 2-3 (b) respectively.

The phase () was incremented from 0 to 87r with AO5 = to encode up to 32 quan-

tum coherences for every experiment. A fixed time point corresponding to maximum

intensity signal was sampled for each 0 value and Fourier transformed with respect to

q to obtain the coherence order distribution at the given double quantum evolution

time, which is . Clear even and odd selectivity was obtained, which was described
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Figure 2-5: X basis coherence number distribution as a function of evolution time
under the double quantum Hamiltonian. Data show clear even and odd selectivity
depending on initial state preparation.

in the previous sections, and higher order coherences are created as double quantum

evolution time (T) increases as the number of loops of 16-pulse double quantum cycle

increases.

Narrower distribution of x basis coherence number distribution can be understood

from the selection rules of double quantum Hamiltonian in two different bases. In

the z basis, the coherence number is forced to change by +2, while in the x basis,

existence of zero quantum terms can slow down the coherence number growth.
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2.3.2 X basis encoding for different initial states

The study of the evolution of different initial states under the secular dipolar Hamil-

tonian has been a subject of interest as it provides a well-posed problem in many-body

dynamics with the well-known system Hamiltonian. Recently spin diffusion measure-

ments of both initial states have been performed showing unexpected fast diffusion

constants for dipolar-ordered state [8, 9]. The Zeeman order state contains only sin-

gle spin population term, while dipolar ordered state consists of correlated two spin

states, and it is suggested that this fast diffusion constant of the dipolar-ordered state

was a consequence of constructive quantum interference effect [9].

Fig. 2-5 shows the development of higher order coherences under double quantum

Hamiltonian for two different initial states, Zeeman order and dipolar-ordered states.

We used the x basis encoding technique to monitor the evolution of the spin system

for both initial states under double quantum Hamiltonian. Clear even and odd se-

lectivity was maintained up to experimentally probed time scales, which is the result

of coherence number selection rule originating from different initial states under the

evolution of the same Hamiltonian. Fig. 2-6 shows the effective spin cluster size, esti-

mated using conventional Gaussian fit method for both Zeeman and dipolar-ordered

state under the double quantum evolution [27]. Effective cluster sizes (< N >) are

seen to follow t3 curve and were fit using Eq. (2.26).

< N >= At3 + B. (2.26)

It is observed that the rate of growth of the dipolar-ordered state is faster than that

of the Zeeman state under the double quantum evolution with Gaussian estimation

(Adipolar/Azeeman 1.64). This experiment does not provide unique information re-

garding the dynamics of spin diffusion processes, but demonstrates the fact that the

initial state information is kept in the coherent evolution of the spin system under

dipolar interaction in a rigid lattice of nuclear spins. Additionally, the growth rate

of spin cluster size are seen to depend on the initial state preparation, which might

provide useful information for understanding unexpectedly fast spin diffusion process
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Figure 2-6: Estimated spin cluster sizes (< N >) for different initial states, Zeeman
and dipolar-ordered state. Solid lines are fits to Eq. (2.26).

for dipolar-ordered state.

2.3.3 Two dimensional correlation experiment between Z and

X bases

The correlation between x and z basis coherence numbers can be experimentally

probed by using 2D experiment. The 2D experiment can be performed by progres-

sively incrementing the phases of refocusing double quantum Hamiltonian (Ut Q) by

C independent of . The measured data in the 2D experiment is given by,

< I >= Tr[Rz(-Rx)R(-q)psRx()Rz(()pps]. (2.27)
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Figure 2-7: The result of 2D correlation experiments. The width in z basis coherence
number distribution appears to be broader than that of x basis.

The phases of and are independently incremented to sample a rectangular grid

and a 2D Fourier transformation is performed to obtain coherence distribution along

x and z bases at the same time.

Fig. 2-7 shows 2D correlation experiments. We used r = 130.3 s corresponding

to 3 loops of 16-pulse cycles, and AO5 and A( were set to 2r/28 to encode up to 14

coherence orders in each bases. The phases were incremented up to 2r along each

axis, resulting in a 28x28 grid, and this grid was 2D Fourier transformed to yield

Fig. 2-7. The width of the z basis coherence number distribution was seen to be

larger than that of the x basis.
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2.4 Conclusion

We have shown that by encoding MQ coherences in the non-commuting bases, it is

possible to extract additional information about the spin system. It will be shown in

the following chapters that the x basis encoding method can be used to estimate the

state of the spin system where z basis encoding does not provide any information.
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Chapter 3

Spin counting experiment in

dipolar-ordered state

3.1 Introduction

1 Dipolar-ordered states are eigenstates of spin Hamiltonian, and hence are constants

of the motion. In the strong magnetic field, Zeeman and dipolar-ordered states are

independently conserved quantities and decay on a time scale of T1 and T1D respec-

tively as the spin system interacts with the external environment or lattice. The

dipolar-ordered state can be prepared from a state of Zeeman equilibrium at high

field by adiabatically removing the Zeeman field [41, 42]. It is also possible to pro-

duce the dipolar- ordered state in the rotating frame using two well known methods:

adiabatic demagnetization in the rotating frame (ADRF) and the Jeener-Broekaert

(JB) sequence [44]. While the spin system is in the dipolar-ordered state at the end

of ADRF process (by definition), following a JB pulse pair the spin system is in a

transit state, and only evolves into the dipolar-ordered state on a time scale of the

order of T2. Emid et al. have shown that the spin system contains multiple quantum

coherences immediately after the second pulse [46, 47, 48].

Recently, direct measurement and comparison of spin diffusion rates of the Zee-

'This chapter was drawn from sections of [12] with contribution from Dr. Chandrasekhar Ra-
manathan.
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man and the dipolar-ordered states have been made available by NMR incoherent

scattering method using strong gradient fields [8, 9]. The diffusion constant for the

Zeeman ordered state is shown to agree well with existing theories and simulation

results, while experimental measurement of spin diffusion rate for the dipolar-ordered

state shows a large discrepancy with existing theories. The Zeeman ordered state con-

sists of single-spin population terms only, while the dipolar-ordered state (p Hd)

is expected to contain correlated two spin terms because dipolar Hamiltonian con-

tains bilinear interactions. It is suggested that the constructive interference in the

transport of the two-spin state is responsible for this enhancement in spin diffusion

rate of the dipolar-ordered state. Further analysis of above problem requires exact

knowledge on the nature of dipolar-ordered state that is experimentally created either

in ADRF or JB methods.

In this chapter, we utilize coherence number encoding technique explained in the

previous chapter to experimentally investigate the nature of the dipolar-ordered state

prepared using these two methods. We also explore the transient response of the spin

system following a JB pulse pair and its evolution into the dipolar-ordered state.

Conventional Multiple Quantum (MQ) Nuclear Magnetic Resonance (NMR) tech-

niques in solids have been generally used to study the size of the localized spin clusters

as well as to explore many body dynamics of solid state nuclear spins. However, these

standard techniques are of limited utility in the study of the dipolar-ordered state, as

the state is not encoded by usual MQ techniques. We measure the coherence numbers

of the dipolar-ordered state in both the x and z bases, by observing the response of

the system to a collective rotation of the spins about the appropriate axis, and use

this information to reconstruct the dipolar-ordered state [10].
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Secular Dipolar Hamiltonian Coherence number

z basis E3<k Djk{Izjizk - (Izj+Izk- + Izj-Izk+)} 
x basis -2 Ej<k Dk{ 4 (Ixj+Ixk- + IjJxk+)} 0, 2

8-ir Ejk Djkflj+lxk+ + xj-lk-)l

Table 3.1: Coherence numbers of the secular dipolar Hamiltonian in the z and x bases

3.2 Theory

In the dipolar-ordered state the density operator of the spin system should correspond

to the dipolar Hamiltonian. In the high temperature approximation,

exp(-HD/kT) 1( 1 HD (3.1)
P Z Z 1(3.1)

Z = Tr{exp(-HD/kT)}, (3.2)

where

HD = Djk {IjzIkz -(ij+Ik- + ijk+), (3.3)
j<k4

Djk= (1 - 3 os 2 jk). (3.4)

HD is secular dipolar Hamiltonian, T, is the spin temperature, y is the gyromagnetic

ratio, rk is the distance between spins j and k, and jk is the angle between the

external magnetic field and internuclear vector r3k. As the dipolar-ordered state only

contains population and zero quantum terms in the z basis, its structure cannot be

revealed by z basis encoding.

While z basis encoding is not useful, x basis encoding technique developed in the

previous chapter can be used to yield Table. 3.1 showing the structure of secular

dipolar Hamiltonian in both z and x bases and coherence numbers in each basis.

The presence of both zero and double quantum terms in the x basis representation

provides additional observable information about the state of the spin system.
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3.3 Creation of dipolar-ordered state

3.3.1 Adiabatic demagnetization in rotating frame

Experimental methods for creating the dipolar-ordered state using adiabatic demag-

netizing fields in the rotating frame were shown by Slichter and Holton, and Anderson

and Hartmann extending Redfield's concept of spin temperature to the spin system

in a rotating reference frame [41, 42, 43]. Adiabatic process represents the slowness

of change in time in such a way that the changes are reversible, and the entropy of

the system remains constant during the process.

In the ADRF experiment, a r/2 pulse is applied onto the spin system in thermal

equilibrium under static Zeeman field, followed by a phase shifted adiabatically de-

creasing RF field whose initial intensity is larger than that of the local dipolar fields.

The density matrix of the spin system in the rotating reference frame with respect to

Zeeman field during the RF irradiation can be written as

e-(Hf +HD )/kTs

~~~~P = z~ ,Z~ ~(3.5)

where T is the spin temperature and can be given by

T8 T

(Brf + Bd2) (Bo2 + Bd) (3.6)

assuming that the changes in the RF field are made so slowly that the total entropy

of the system remains constant. Brf is the RF field strength, Bo is the strength of

the Zeeman field and Bd is the strength of local dipolar fields. When the RF field

is made zero, then spin temperature becomes T8 = TBd/Bo (Bo >> Bd) and the

resulting density matrix can be given by

e-(HD)/kT,
H= Z (3.7)

which is the dipolar-ordered state.
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Figure 3-1: Pulse sequences for z and x bases encoding of the dipolar-ordered state.
(a) Jeener-Broekaert and 450 pulse readout for simultaneous z and x basis encoding.
(b) ADRF creation and ARRF readout for x basis encoding. (c) JB creation and
ARRF readout for x basis encoding. The 48-pulse sequence was used to suppress the
evolution of the internal Hamiltonian between the two 7r/2 pulses. We assume that
relaxation effects are negligible during one cycle of this sequence.

3.3.2 Jeener -Broekaert two pulse method

A two pulse method creating the dipolar-ordered state is introduced by Jeener and

Broekaert [44, 45]. Even though it's efficiency is lower than that of adiabatic de-

magnetization, this method is practically suitable for the study of fast phenomena,

such as the very fast relaxation of dipolar energy, or the dynamical evolution of spin

system to the dipolar order.

3.4 Experimental results

The pulse sequence used in the various experiments are shown in Figs. 3-1 (a)- 3-1

(c). The phases () were incremented from zero to 47r with AO = 7r/8 to encode up

to 8 quantum coherences in every experiment. A fixed time point, corresponding to a

maximum intensity signal in the echo, was sampled for each value of ¢ and the data

was Fourier transformed with respect to to create the coherence numbers.
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3.4.1 State estimation of the dipolar-ordered state

In order to estimate the state of the system, the two dimensional coherence encoding

experiment shown in Fig. 3-1 (a) was performed. By incrementing the phases X and

r independently, it is possible to simultaneously encode the system in both the z and

x bases, and observe correlations between them. The pulse spacing (r) in the JB

sequence was set to 13 Us, and t was set to 1 ms. It is assumed that all transients

have decayed away by this time. The 48-pulse sequence is used to suppress evolution

of the internal Hamiltonian between the r/2 pulses in the x basis experiment. The

spacing between the pulses in the sequence was set to 1.5 ,as. The delay 6 was set to

20 ps. Fig. 3-2 shows the coherences observed for the dipolar-ordered state in a 2D

experiment where the coherences in the two bases are correlated. The dipolar-ordered

state is observed to contain zero quantum coherence terms in the z basis, and zero

and double quantum terms in the x basis. The highest coherence order observed was

+2 in the x basis experiment. The absence of single quantum order in the x basis

data illustrates the symmetry of the state under exchange of two spins. Given the

axial symmetry of the secular dipolar Hamiltonian, a generic two spin zero quantum

state is

p = E {aijII j (II + ( - I+) }. (3.8)
i<j

Transforming this state to the x basis yields

1
p= { (-)-ai ) b +(a 2bo )(II xI + IIx + +)}

i<j{
(3.9)

We expect the +2 and -2 coherences to have the same intensity, and the ratio of the

double quantum coherence to the zero quantum coherence to be

R = -a°i + 2b3j (3.10)
6bij + 2a-j

We performed one dimensional x basis encoding experiments in order to measure

the ratio between the zero and double quantum terms, following the ADRF and JB
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and x bases coherence for the dipolar-ordered state. The dipolar-ordered state is
observed to contain only zero quantum in the z basis, and both zero and double
quantum coherences in the x basis.
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sequences. The pulse sequences for this experiment are shown in Figs. 3-1 (b) and

3-1 (c). Adiabatic remagnetization in the rotating frame (ARRF) was used to refocus

the state in both cases in these experiments, in order to ensure that the full dipolar

state was refocused.

The pulse spacing () in the JB sequence was set to 13 as, and tl varied from 1 ms

to 5 s. A 3 ms long hyperbolic secant pulse, corresponding to an adiabatic half passage

of the amplitude, was used for both the ADRF (decreasing amplitude) and ARRF

(increasing amplitude). A delay of 20 us was inserted before the ARRF to minimize

transient effects. Fig. 3-3 shows the experimentally obtained ratio using both JB and

ADRF sequences as a function of tl. While the dipolar-ordered state decays with

time constant of T1D, the ratio between the two coherences remains constant at 1.5

in both cases. When this is set equal to R, we get aij = -4bij, indicating that the

state measured is

p = aij I (I +1i - + Ii+)(3.11)
i<j nation in TD measurement

3.4.2 Zeeman contamination in T1D measurement

T1D measurements are done exclusively on resonance in order to avoid possible conta-

mination of the data by encoded Zeeman magnetization. However, it can be difficult

to be simultaneously on the exact resonance condition in strongly coupled dipolar

solids such as single crystal CaF 2, and impossible to be simultaneously on resonance

everywhere in powder sample. Emid et al. designed an offset-independent method to

measure dipolar relaxation times, by summing the results of two experiments using

7r/4 and a -37r/4 pulse to convert dipolar order back to Zeeman order [46, 47]. The

difference in pulse lengths can be a problem in strongly coupled dipolar systems, as

the evolution under a long pulse becomes non-negligible. In the x basis measurements

presented here, the Zeeman term (i I,) is encoded into single quantum coherence

while the dipolar-ordered state is encoded into zero and double quantum coherence.

Fig. 3-4 shows the x basis coherences measured following a JB pulse pair (Fig. 3-2

(c)) when the experiment is performed on and off resonance by 21 kHz.

This clean separation of the two terms allows very accurate T1D measurement,
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Figure 3-4: A pulse sequence in Fig. 3-1 was used to encode the x basis coherences (a)
on resonance, and (b) 21 kHz off resonance. t was set to 5 ms in both experiment.

48

8

.' 1.

.

CiOZ0.

',

.EE

C

C



0.,

.co _

a)
N

O
C

c -1 ..

(a)

0 Zero
5 Double

5

2
0 50 100 150 200 250 300 350 400 45

tI (ms)

(b)

JB

O Zero

5 Double

1

5

3) 

.cCO
a

o
a)
N
c-

0

C

0 50 100 150 200 250 300 350 400
t (ms)

Figure 3-5: Decay of x basis double and zero quantum signals in the (a) ADRF and
(b) JB experiments. The measured decay constant was 255 t 3.1 ms and 254 ± 3.1
ms for the zero and double quantum terms, respectively, in the ADRF experiment,
and 254 + 2.9 ms for both zero and double in the JB experiments.

without any T1 contamination. Fig. 3-5 shows the relaxation data for dipolar-ordered

state created by JB and ADRF methods. The measured TID was essentially identical

for the zero and double quantum x basis coherences in both sets of experiments

(255 ± 3.1 ms and 254 i 3.1 ms for the zero and double quantum terms, respectively,

in the ADRF experiment, and 254 + 2.9 ms for both zero and double in the JB

experiment) as expected, as dipolar relaxation should not depend on the method

used to create the state. The pulse sequences in Figs. 3-1 (b)- 3-1 (c) were used. The

7r/2 pulse was 1.5 us and a 4 ms hyperbolic secant pulse was used for the ADRF and

ARRF (decaying and growing respectively).
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3.4.3 Initial transient for Jeener-Broekaert sequence

Emid et al. have previously shown that multiple quantum coherences are contained in

the transverse magnetization following the JB sequence [46, 47, 48]. By performing

the JB experiment off-resonance they were able to detect the presence of single,

double, and triple quantum coherences during the initial transient regime following

the 7r/4 pulse. Using a combination of JB experiments with different phases, they were

also able to selectively observe the even and odd coherences in this initial transient

regime as well as in a sample of 1-alanine powder. Their experimental data showed

that the evolution of the transients die out about 60 s.

We used the pulse sequence in Fig. 3-1 (a) to study the transient response of the

spin system following a JB pulse pair, and the evolution of the system to a state of

dipolar order. Fig. 3-6 shows the transient response of the spin system following a

JB sequence, for a single crystal of calcium fluoride oriented along the [110] direction

with respect to the external field (the crystal was actually between [110] and [111]

directions). Immediately after the r/4 pulse, the largest intensity is present in the

z = 0, x = i2 term, but zero, single, and double quantum z basis terms correlated to

zero, single, double, and even a few triple quantum x basis contributions are observed.

As the spin system evolves under the secular dipolar Hamiltonian, the coherence

distribution appears to expand in the x basis and contract in the z basis. This is

expected as the Hamiltonian is zero quantum selective in the z basis, and contains

both zero and double quantum selective in the x basis. The intensity of the triple

quantum grows, indicating the presence of three spin terms. The presence of four spin

terms have also been observed albeit at low intensity. These coherences then decay

and around 100 s, the system appears to have reached the dipolar-ordered state in

the JB experiment.

Figs. 3-7 (a) and 3-7 (b) show the FIDs measured for a single crystal of calcium

fluoride at two orientations, (a) the [100] direction and (b) the [110] direction. Figs. 3-

7 (c) and 3-7 (d) show the projection of the measured 2D data onto the z axis for the

two orientations, and Figs. 3-7 (e) and 3-7 (f) show the corresponding projection in
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pair, and the approach of the system to the dipolar-ordered state when the crystal is
aligned along [110] direction.
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the x axis. When the crystal is aligned along the [110] direction, the dipolar couplings

between the nearest-neighbor fluorine spins become small. In the z basis, the double

quantum term is seen to decay while the single quantum term initially grows, reaches

a maximum around 30 s and then decays. The intensity of the zero quantum term

is seen to peak around 20 us and the triple quantum term to peak around 45 us,

while the zero and double quantum terms are seen to oscillate before settling down to

constant values. The dipolar-ordered state appears to be created after approximately

100 is. When the crystal is oriented along the [100] direction the transient signals

decay much faster as expected, as the dipolar coupling between the nearest neighbor

spins is the strongest. The dipolar-ordered state appears to be established within

approximately 60 Mis.

3.5 Conclusion

We have been able to illustrate the nature of the dipolar-ordered state by simultane-

ously encoding the state in the x and z bases. We have also been able to show the

dynamical evolution of the spin system to the state of the dipolar-ordered state, fol-

lowing the application of a Jeener-Broekaert pulse pair. Such techniques open up the

possibility of experimentally investigating the details of spin dynamics in a strongly

dipolar coupled spin system.
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Chapter 4

Multi-spin dynamics in solid state

NMR free induction decay

1 In this work, we experimentally investigate the many-spin dynamics of the NMR free

induction decay. This is a classic problem in spin dynamics and has been well-studied

since the early days of NMR [7, 49, 50, 51, 52, 53, 54, 55, 56].

The free induction decay (FID) is the response of the spin system following a r/2

pulse. In a solid lattice of spin-1/2 nuclei in a strong magnetic field, this evolution is

dominated by the secular dipolar Hamiltonian.

In the high temperature and high field approximation, the density matrix imme-

diately following a 7r/2 pulse is

o(0) = - Ij~. (4.1)

The system evolves under the secular dipolar Hamiltonian

fint = Djk{ ikz- - (j+Ik_ + iik+)}, (4.2)
j<k4

1This chapter was drawn from sections of [13] with contributions from Dr. Thaddeus Ladd, Dr.
Jonathan Baugh, and Dr. Chadrasekhar Ramanathan.
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where the dipolar coupling constant Djk between spins j and k is given by

Djk = 3 (1 -3cos 2 jk). (4.3)

y is the gyromagnetic ratio, rjk is the distance between spins j and k, and jk is

the angle between the external magnetic field and internuclear vector rjk. Now the

density matrix of the spin system at time t following the pulse can be expressed as,

p(t) = e- Hinttii (O)e Hin "tt. (4.4)

The above equation is not analytically solvable, but can be expanded in a power series

to examine the short time behavior of the system:

/(t) = /(0) + -t[(0), Hint]- - [[(0), Hint], Hint] +...

Evaluating the commutators, we get

(t ( + + it Djk(-Ijk+ + Ijzlk-)

-4tP E DokDjk(ijzj1zJk+ I + *jJ1J-) + (4 5)
jkl

In an inductively detected NMR experiment (in which a coil is used to measure

the average magnetization), the observed signal is given by

S(t) = Npins,,Y < i+ >= Npins YhTr{I+ (t)} (4.6)

The only terms in p(t) that contribute to the observed signal are the single spin,

single quantum coherence terms. Substituting Eq. (4.5) into Eq. (4.6), it can be seen

that the observable magnetization decays during the evolution under int because

single spin, single quantum coherence terms are transformed to unobservable multiple

spin, single quantum coherence terms by the higher order nested commutators. The

nth term in the expansion from Eq. (4.5) has n-spin correlations. The secular dipolar
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Hamiltonian conserves coherence order in the Zeeman basis.

There have been a number of theoretical attempts to predict the shape of the FID

in calcium fluoride (CaF 2) [7, 49, 50, 51, 52, 53, 54]. Calcium fluoride is a standard

test system for spin dynamics as the 19F (spin 1/2) nuclei are 100% abundant and

form a simple cubic lattice. The main goal has been to reproduce the decay and beat

pattern of the observed time domain NMR signal. For example, Engelsberg and Lowe

[56] measured up to 14 moments of the FID in CaF 2, and these were found to be in

good agreement with theoretically calculated values for the 2nd to 8th moments. The

odd moments of the FID are zero, and the even moments are given by [7]

M(2n)= (-1)nTr{[Hint, [int, [..., [int, ] ... ]] I}/Tr{I2}. (4.7)

2n times

Evaluating the nested commutators becomes increasingly challenging and the higher

order moments are difficult to calculate. However, it is these higher moments that

characterize the many spin correlations of the spin system. It can be seen that 2 nth

moment arises from the (2 n+l)th term in the expansion in Eq. (4.5), which creates

up to (2n+-1) correlated spins. The main weakness of the moment method lies in the

fact that the most important contribution to the value of the higher moments comes

from the tails of the FID, which are acquired with the lowest signal to noise ratio

(SNR) in typical FID measurements [7].

In this chapter, we present a new experimental investigation of the problem of

the NMR free induction decay (FID) in a lattice of spin 1/2 nuclei. Following a 7r/2

pulse, evolution under the secular dipolar Hamiltonian preserves coherence number in

the Zeeman basis, but changes the number of correlated spins in the state. To probe

multiple spin dynamics during the FID, we measured the growth of coherence orders

in a basis other than the usual Zeeman basis [10]. This measurement provides the first

direct experimental observation of the growth of coherent multiple spin correlations

during the FID.
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4.1 Characterization of FID using multiple quan-

tumrn coherences

Usual MQ-NMR techniques [26, 23, 27, 62] encode coherence orders in the Zeeman or

z basis, but coherence numbers are conserved under the secular dipolar Hamiltonian

in this basis. In our experiment we encode MQ coherences in the x basis. The dipolar

Hamiltonian in the x basis is

Hint -2 E Djk {I Ik (j+ ik_ + ij_-+ )}

-- E Djk f2+Ik+ + i3 ikb (4.8)
j<k

and is seen to generate both 0 and ±2 coherences. The coherence orders are encoded

by a collective rotation about the x axis (which is the effective quantizing axis in this

basis). Transforming the density matrix shown in Eq. (4.5) into the x basis yields,

3
p(t) = - E - 4itE Djk(I+Ik+ + k- - I^ k)

i jk

+ t E DlkDjk(+I - +~IIkz I;_l+k -+ iIjI_) + , (4.9)jkl

where I refers to the spin angular momentum operator of spin j in the x basis. From

Eq. (4.9), it can be seen that even order multiple quantum coherences are created

in the x basis (Odd order coherences can be created using a y basis encoding for

the same initial state). Since there is a mixing of coherence orders from different

spin states, a coherence number (n) in x basis does not solely arise from n-spin

correlation. However, the advent of a n quantum coherence guarantees the existence

of n-spin correlations.

It is useful to consider the dipolar evolution of this highly mixed state using

Liouville space formulation for multiple quantum dynamics suggested previously [61].
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Figure 4-1: Projection of Liouville space onto the two dimensional plane K - n
showing the dynamics of the FID in (a) the Zeeman eigenbasis, and (b) the x basis.
The arrows show the allowed paths in each case.

The density operator is now a vector in Liouville space and can be represented as

N K

Ip(t))= E E EgKnp(t)lKnp),
K=O n=-K P

(4.10)

where the Liouville space ket IKnp) represents a basis operator which is a product

of the K single-spin angular momentum operator, n is the coherence order of the

operator, and p is a label that identifies a particular configuration of spins having the

same K and n. The selection rules for the dipolar Hamiltonian in the Zeeman basis

are given by

AK = 1,

An = 0. (4.11)

A projection of Liouville space onto the two dimensional plane K - n is shown in

Fig. 4-1 (a)

Following a r/2 pulse, the trajectory in the Zeeman basis is indicated by the

arrows (only positive coherences are shown here-the evolution is perfectly symmetric

for negative n). Increasing numbers of spins are correlated following evolution under

the dipolar Hamiltonian, but the coherence number does not change. Fig. 4-1 (b)
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also shows the same evolution in the x basis where the selection rules are

AK = 1,

An = 0, ±2. (4.12)

Starting from an initial I state (K = 1, n = 0), only even order coherences are

observed.

4.2 Experimental results

The pulse sequence used in this experiment is shown in Fig. 4-2. After an initial

7r/2 pulse, multiple spin, single quantum states in the Zeeman basis are created

during evolution under the secular dipolar Hamiltonian as described in Eq. (4.5).

A I_, rotation encodes coherence orders in the x basis, and a magic-echo sequence

[59] is used to refocus the multiple spin terms back to observable single spin, single

quantum coherence terms. The OqI rotation is obtained by applying two 7r/2 pulses,

with phases y + q and y, which results in the propagator exp(iiz)exp(ifix). The

initial r/2 excitation pulse is also phase shifted by q to cancel out the rotation about

Iz. Since it is difficult to apply back to back r/2 pulses without a delay between

them(without introducing phase transients or allowing some dipolar evolution during

the pulses). and evolution suspension sequence needs to be used in between the two

7r/2 pulses. In this experiment, we use a previously described 48-pulse evolution

suspension sequence. [40]

The experiments were performed at room temperature at 2.35 T (94.2 MHz, 19F),

using a BRUKER Avance spectrometer and home built probe. The samples used

were a 1 mm3 single crystal of CaF2 with T 1 - 7 s, and a crystal of fluorapatite

(FAP) with T1 200 ms. All experiments were conducted on resonance. A 1.5 /as

7r/2 was used during the magic echo sequence to minimize the effect of phase transient

errors. High power 0.5 us 7r/2 pulses were used for the 48-pulse evolution suspension
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Figure 4-2: The pulse sequence used in this experiment. t is the evolution time under
the secular dipolar Hamiltonian. The 48-pulse sequence was used to suppress the
evolution of the internal Hamiltonian during the x basis encoding step. A magic-echo
sequence was used to reverse the dipolar evolution. A delay (=10 us) was inserted
before the magic echo to push the echo out to minimize any pulse transient and dead
time effects in the receiver. tflock = t + 26 + 31S

sequence [40]. The phase () was incremented from 0 to 41r with AO = 3 to encode

up to 32 quantum coherences for every experiment. A fixed time point corresponding

to maximum intensity signal was sampled for each value and Fourier transformed

with respect to to obtain the coherence order distribution at each dipolar evolution

time (t)..

4.2.1 FID in a cubic lattice of spins (19F in Calcium Fluoride)

Fig. 4-3 shows the coherence order distribution observed for CaF 2 at various time

points during the FID. At short times, the maximum coherence order (nmax) corre-

sponds to the maximum number of correlated spins (Nmax). At longer times, the

maximum coherence order observed in the experiment sets the lower-limit of the size

of the spin correlation, since the SNR of higher order coherences might be too low to

be observed.

Fig. 4-4 shows the growth of the various coherence orders in CaF 2 during the FID

along [110] direction. In order to remove the decay due to imperfect refocusing

of the dipolar evolution, the intensity for each coherence order is normalized with

respect to the total signal measured for that evolution time. Fig. 4-5 shows the decay

patterns of measured total spectral intensity (summation over the intensities of all the

coherence order, En Sn for time (t)) with the pulse sequence used in the experiment as

the function of the dipolar evolution time (t) for various crystal orientations. Initial
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Figure 4-3: X basis coherence order distribution at various time points under the
evolution of the secular dipolar Hamiltonian in CaF 2. The peak intensity has been
re-normalized to put the zero quantum intensity to one in each case.
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sharp decay curves are seen to be dependent on the strength of dipolar couplings and

followed by flat regions and somewhat linearly decaying regimes, which are observed

to be less dependent on crystal orientations. Fig. 4-6 shows the normalized growth of

the various coherence orders in CaF 2 during the FID along [110], Fig. 4-7 and Fig. 4-

8 for along [111] and [100] respectively . The inset figures show the initial oscillation

between the zero and double quantum coherences at short times (which corresponds

to single and two spin correlations respectively) due to the resolved nearest neighbor

coupling at the [100] and [110] directions. This oscillation can be understood if we

consider the dipolar evolution of two spins. For two spins, initial density matrix and

dipolar Hamiltonian can be given by

p(O) = I1 + I2, (4.13)

and

H2 = D12 {Iz1z2 - (I+1I_2 + I_1I+2)}. (4.14)

There exist; an analytical solution of Eq. (4.4) for two spin case, and the solution is

1 1
p(t) = -cos(3Dl2t/4)(Ixl + I2) + -sin(3D12t/4)(IyiIz2 + I1zIy2), (4.15)

2 2

which shows the oscillation between the single and double spin terms in the density

matrix. In the x basis representation, Eq. 4.15 transforms to

p(t) = -cos(3D12t/4)(I1 + I2) + 1 sin(3D12t/4)(I1x+I2+ + I1_I2x), (4.16)
2 4

which explains the oscillation between zero and double quantum coherences in the x

basis experiment. In an extended spin system, this oscillation is rapidly damped as

higher order spin correlations develop.

The higher order coherences (n >4) are seen to follow a sigmoidal growth curve.
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moidal fit to the initial growth data of each x basis coherence order (n > 4). Inset
figure shows dynamics of 0 and 2 coherence orders. Along -[110] direction in CaF 2

We have fit the initial growth data to the following sigmoidal function

Cn
(t) 1 + e-an(t-t"')' (4.17)

A sigmoidal growth curve is typical of dynamical situations where a mass-action

law appears to hold, for example chemical reactions or population growth subject to

resource constraints. If we restrict ourselves to two coherence orders (S1 and S2) in

the system and represent the increase in the signal of specific coherence order (S2) at

the expense of S1 with o being a rate at which this transformation is driven, we can
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Figure 4-6: The growth of multiple spin correlations (normalized with respect to the
total signal for that evolution time to compensate for imperfect refocusing) during
the FID, showing sigmoidal fit to the initial growth data of each x basis coherence
order (n > 4). Inset figure shows dynamics of 0 and 2 coherence orders. Along -[110]
direction in CaF 2
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express this transformation as

S1 + S2 , (1 + )S2, (4.18)

where is the increase in the signal of specific coherence order. With the transfor-

mation given in Eq. 4.18, we can simply obtain coupled differential equations based

on mass action law [60]

dS1 - aS1S2,dt
dS 2

= aeS 1S2. (4.19)dt

Eq. 4.19 leads to the so-called logistic equation with K = S2(0) + ES (0).

dS2 S2d= a(l - )S2, (4.20)

where a is the net rate of growth of intensity of each coherence order and K is an

asymptotic limit of S2, called carrying capacity. An analytical solution of Eq. 4.20

is a sigmoidal curve (Eq. 4.17), which is used to fit the initial growth curve of each

coherence order in the experiment as shown in Fig. 4-6

For further analysis, we extend the system to include a third coherence order (S3)

and add a transfer of signal of S2 to S3 with 3 being a rate at which this transfer is

driven. We can write

S1 + S2 (1+ )S2,

S2 > S3, (4.21)

where is the increase in the signal of S2 as before. With the transformations

given in Eq. 4.21, we can similarly obtain coupled differential equations based on

mass action law [60] to get
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dS 1dS - -aS1S2,
dt

dS2 aS 1S2- PS2 . (4.22)dt

A numerical integration of Eq. 4.22 gives rise to a very similar increase and decay

pattern of S2 to the growth curve of fourth quantum order in Fig. 4-6, which shows

an initial sigmoidal growth and a somewhat linearly decaying pattern at later times.

While the total polarization of the spin system is conserved, and the higher order

correlations progressively develop at the expense of lower order correlations, it is

not clear why a mass action behavior should be manifest in this unitary quantum

mechanical processes.

In Fig. 4-9, we plot the variation of a and Cn as a function of coherence order

n. The parameter an represents the underlying rate at which the different coherence

orders are created, and should be dominated by the strength of the dipolar couplings

involved. It is seen that an does not vary with n, suggesting that the near neighbor

interactions dominate the dynamics here. As the mean dipolar coupling strength

depends on the crystal orientation, we examined the variation in an with the crystal

oriented along the [111],'[110] and [100] directions with respect to the external mag-

netic field. The calculated ratio of Ej (IDljlN) for neighbor spins (lattice sum of 26

neighbor spins including the body diagonal in the cubic lattice) for different crystal

orientations with respect to the external field (in a simple cubic lattice) is 1:1.45:1.87

for [111], [110] and [100], which is in good agreement with the ratios of an shown in

the Fig. 4-9. The values of Cn are seen to decrease as the coherence number increases,

independently of crystal orientation.

While a first glance at Eq. (4.5) would seem to suggest that higher order correla-

tions should develop as tn, it is the geometry of the spin system (the values of Dij)

which ultimately determines the rate at that the spin correlations grow.
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Figure 4-10: The growth of multiple spin correlations during the FID with quasi 1-
dimensional a single crystal of fluorapatite, showing sigmoidal fit to the initial growth
data of each x basis coherence order (n > 3). Inset figure shows dynamics of 0 and 2
coherence orders.

4.2.2 FID in a linear spin chain (19F in Fluorapatite)

To verify the effect of the geometrical arrangement of spins on the development of

multiple spin correlations during FID, we performed the same experiment using a

quasi 1-dimensional spin chain (single crystal of Fluorapatite, shown in Fig. 4-10).

Similar oscillation between single and double spin terms is also observed, and the

higher order coherences (n >3) are fit to sigmoidal curves to extract the onset time

of each coherence order in a 1- dimensional spin chain. Odd coherence orders are

obtained by y basis encoding on the same initial state.
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4.2.3 Onset time measurements of coherence orders

Fig. 4-11 shows the onset time (tnet) of each of the x-basis coherences for different

orientations of the crystal. Physically, the onset time corresponds to the time required

for a specific coherence order to become observable in the experiment. The onset times

depend on the rate at which the correlations are spreading through the spin system,

which in turn depends on the values of dipolar couplings. Thus the rate is expected

to be fastest (shorter onset time) with the crystal orientation along the [100] direction

and slowest (longer onset time) for the crystal oriented along the [111] direction. The

variation of onset times with coherence order is sub-linear in the cubic CaF 2 system

and displays an approximate n2/3 dependence. The inset in Fig. 4-11 shows that the

onset times obtained for FAP, the quasi 1-dimensional spin system, vary linearly with

coherence number, in marked contrast to the results from CaF 2.

4.3 Discussion

A variety of models have been proposed to describe the dynamics under a multiple

quantum Hamiltonian. The most commonly used model involves a random walk

among the components of the Liouville space basis set Knp), subject to the selection

rules of the multiple quantum Hamiltonian [61]. This model replaces the Liouville von

Neumann equation with a set of coupled rate equations with exponential solutions

dg = Rg, (4.23)

where the vector g contains the coefficients gKnp. All coherences are assumed to be

of equal magnitude, and that resulting growth of the spin system is described by

a hopping procedure between the allowed points on the lattice (shown in Fig. 4-1).

Under this assumption, the hopping rates are solely determined by the degeneracies of

the coupled states. The model thus eliminates any oscillatory solutions and precludes

the possibility of quantum interference effects playing a role in the evolution. All

spin systems display a universal growth kinetics, as long as the dynamics is scaled
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by a lattice parameter S that represents the mean dipolar coupling strength of the

system, which is similar to the parameter a~ obtained above. A numerical solution

of the coupled equations for the multiple quantum evolution was observed to yield

sigmoidal growth curves for the various coherence orders. Limitations to this model

have been discussed [63].

Munowitz and Mehring used this model to numerically simulate the growth of the

multi-spin dynamics of the free induction decay in a 21 spin system [57]. In order

to track the development of correlations among the spins, they defined an induction

time tK over which a particular K-spin coherence reaches half of their maximum

values. This parameter is very similar to the experimentally measured inset times of

the different coherence orders described here. Fig. 7 of [56] shows the variation of

induction times with the number of correlated spins. The numerical results show that

the variation of the induction time is sub-linear for small numbers of correlated spins

(<10), in agreement with the experimental data. For larger numbers of correlated

spins, however, there is a marked deviation from sub-linear behavior, as the effects of

the finite system size (21 spins) begin to manifest themselves in the simulations. The

number of correlated spins would have to approach the number of spins in the sample

(- 1021) before such effects would be observed experimentally. While providing some

insight into the growth dynamics for the cubic spin system, it is seen that the model

fails to describe the 1-dimensional spin system completely. It is in this situation that

the spin geometry plays a dominant role.

Gleason and co-workers have proposed an alternate model to describe the growth

of spin correlations that emphasizes the geometrical ordering of spins [64]. The density

matrix p is expressed as a sum of terms with spin number K and coefficient CK,

N

p(t) = E CK(t)PK. (4.24)
K=O

Essentially this model assumes a single effective K-spin operator that incorporates

all the possible spin and spatial configurations of the K spins. The resulting model

for spin propagation through a lattice yields a differential equation for the coefficients
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gK(t) of the form

d
dt9 K = -i(WK-1K-1 + Wk+K+1) (4.25)

where the rate constants Wf and Wr correspond to the forward and reverse rates

respectively. Under the assumption that the spatial grouping of the K spins is con-

tinuous, and that only the nearest neighbor couplings are important, the forward rate

(and equivalently the reverse rate) can be expressed as

Wf - Dnn,, (4.26)

where L) is the strength of the nearest neighbor coupling, n, is the number of spins on

the surface of the spatial grouping, and nn is the number of neighbor spins coupled to

each spin. New spins are added on the surface of the correlated spin cluster. While

n, is a constant, the term n would differ significantly for spin systems of different

dimensionalities, and can be expressed as

n = K -l /d, (4.27)

where d is the dimensionality of the spin system. For a linear spin chain, d = 1 and n,

is independent of K, while for a cubic spin system, d = 3 and n, - K2/3 . While this

model does not discuss coherence order, the dimensional dependence does agree with

the experimental results, if the onset time characterizes the effective rate constant.

In the limit of large K, the coefficients gK(t) are given approximately as

gK(t) (i)K-l [tanh(tK -1)]K, (4.28)

where e = 1- l/d and /3 is a constant proportional to the mean dipolar coupling. With

appropriate normalization, the magnitude of gK(t) resembles the sigmoidal growth

characteristics of the normalized multiple quantum coherence intensities shown in
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Fig. 4-6. An onset time can be obtained from this equation by setting

(tanh(PtKe-l) 2 K (4.29)
2'

which yields

tl/2 = K1/darctanh(2-1/2K), (4.30)

where iq is a constant scaling factor. Fig. 4-11 shows the best fit of Eq. (4.30) to

the experimental data, assuming that the model holds true for coherence number as

well. It is seen that there is excellent agreement at larger values of n. The values

of r/3 obtained from the fits are 37.47 in the [111] direction, 31.13 in the [110]

direction and 21.22 in the [001] direction. Their inverses are in the ratio 1:1.46:1.76

for [111]:[110]:[100] which is in excellent agreement with the theoretically calculated

values shown earlier. Eq. (4.30) shows a super-linear behavior for 1-dimensional

case (d = 1), which is shown in inset of Fig. 4-11. Apparently, experimental onset

time measurements shows a linear behavior of onset times in 1-dimensional case, and

the approximations used in deriving an analytical solution (Eq. (4.28)) are not fully

capturing this feature for 1-dimensional case for low K values. Subsequently, the fit

for FAP sample in Fig. 4-11 is not as good as (Eq. (4.28)) is weakly superlinear with

respect to low K for 1-dimensional case (d=l). However, it is seen that Eq. (4.28)

becomes more linear for large K when d=l.

Alternatively, onset time dependence on geometrical arrangements of spins can be

understood by considering that the time to increase the number of spins from K to

K + 1 is 1/Wf, which is also the difference between the onset times (T) of the K + 1

and K spin correlations

T(K + 1) - T(K) = (4.31)

where I = 1/Dnn. Applying this equation recursively we get

K

T(K + 1) = jl/d - 1 H(ll/d), (4.32)
j=1
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is valid for coherence number as well.
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where we have set T(O) = 0 and H(j- l/d) is the Harmonic Number of order 1 - 1/d.

For a linear spin system such as FAP, n8 = 2, the spins at the ends of the chain,

and W f is independent of K. This yields

T(K + 1) = K(, (4.33)

which shows a linear dependence of onset times on the spin number.

For a 3-dimensional spin system, such as CaF 2, Eq. (4.32) yields

T(K + 1) = (H(2/3) (4.34)

Assuming that the same equation is valid for coherence number as well, the best

fits of Eq. (4.34) and Eq. (4.33) are shown in Fig. 4-12. The values of ( obtained from

the fits are 34.93 in the [111] direction, 29.03 in the [110] direction and 19.64 in the

[001] direction. Their inverses are in the ratio 1:1.25:1.79 for [111]:[110]:[100] which

is in excellent agreement with the theoretically calculated values shown earlier also.

The constancy of Oa, in the sigmoidal plots in Fig. 4-9 and the good agreement

observed between the observed onset times and Eq. (4.30) indicate that the spin

dynamics are dominated by the nearest neighbor interactions in this regime. This

is not surprising, as we are still operating in the short time regime. Higher order

spin processes, if significant, would be expected to manifest themselves at later times,

leading to a deviation from the simple model described above.

4.4 Conclusion

We have presented a new experimental method to characterize multi-spin dynamics

in solid state NMR free induction decay. The initial creation of coherences were

observed to follow a sigmoidal growth curve, with the onset times characterizing the

dynamics of the spin system. These dynamics in turn were critically dependent on

the geometrical arrangement of the spins as expected.
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Chapter 5

Experimental investigation of

decay of the multiple spin

correlations

5.1 Introduction

Extensive knowledge of the dynamics and the fragility of coherent quantum states is

essential for implementing a reliable quantum information processor. To be a scalable

quantum information processor, the ratio of coherence time of qubits to gate operation

time should remain at a reasonable value even for highly correlated quantum states.

In this chapter, we measure the effective T2 decay times, and test the efficiency of our

control sequence for highly correlated spin states in a solid lattice of spins. Solid state

NMR provides a ideal test-bed for this study, since highly correlated spin states can

be easily generated using its natural dipolar Hamiltonian. The T 2 decay in a well-

defined lattice of spins is a coherent evolution of the spin system under the dipolar

interaction as shown previously [13], so the measurements of T 2 decay times do not

directly represent decoherence rates for highly correlated spin states, but provide

detailed information of the dynamics of multi-spin states under the secular dipolar

Hamiltonian. To probe the sensitivity of multi-spin states for arbitrary error sources,
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we applied a control sequence that suppresses the evolution under dipolar Hamiltonian

with certain errors (such as higher order terms in Magnus expansion, pulse width,

and phase transients errors), and measured the efficiency of this sequence for different

spin correlation size .

Controlling dipolar coupled spins has a long history, since the advent of Average

Hamiltonian Theory (AHT) [66], and it has been extensively shown that control

sequences using coherent averaging in spin space can be designed to achieve desirable

accuracy [70, 67, 68, 69, 71, 72, 73, 77] . But usually this technique was shown to

work effectively for relatively small number of spin correlations [74, 75, 76, 78]. (i.e.,

short cycling time for multiple pulse sequences). In this chapter, we are interested in

studying the dynamics of multi-spin states under the evolution of internal Hamiltonian

and in verifying our ability to control highly correlated spin states, which is to probe

the fragility of these states under our imperfect control sequence.

A conventional multiple quantum sequence in solid state NMR can be used to

correlate a large number of 19F spins in a rigid lattice of single crystal calcium fluoride.

A single crystal of CaF 2 was examined for this study. A CaF2 crystal is well suited

for this study for the following reasons. First, spin 1/2 19F is 100% abundant, and

only an isotope of calcium that has non zero spin is Ca49 and is 0.13% abundant.

Additionally, 19F forms a simple cubic lattice and has a high Debye temperature

which allows us not to consider any lattice vibrations. The inter-nuclear spin-spin

interaction Hamiltonian is well known, and spins are almost completely isolated from

other microscopic parameters that might complicate relaxation mechanisms. For the

above reasons, a single crystal of CaF2 has been widely used for various solid state

NMR experiments and theory developments.

5.2 Method

In a high temperature and a high field approximation, the density matrix in thermal

equilibrium is

(0) E Ijz. (5.1)
J
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The system evolves under the double quantum Hamiltonian

HDQ = - E Dk{Ij+i + I Ij} (5.2)
j<k

The dipolar coupling constant Djk between spins j and k is given as

Dk = 3 (1 -3cos Ojk), (5.3)
rj k

where 7- is the gyromagnetic ratio, rjk is the distance between spins j and k, and j3k

is the angle between the external magnetic field and inter-nuclear vector jk. Now

the density matrix of the spin system at time r following the pulses can be expressed

as

(-r) = e- iDDQT(0)e (5.4HD

The above equation is not analytically solvable, but can be expanded in a power series

to examine the short time behavior of the system:

2

)(T) = (0) + T[P(O), DQ]- 2 2 [[(), DQ], HDQI+ ... (5.5)

Nested commutators give rise to multiple quantum states with selection rules of N±1

(spin number) and n+2 (coherence number).

After this step, we let spin system evolve either under the dipolar interaction or

the 48-pulse time suspension sequence. The dipolar Hamiltonian is

dip = Djk { z Ikz -4 (IJ+Ik- + IjJIk+)}, (5.6)
j<k

and the Hamiltonian for the time suspension sequence can be approximated by ne-

glecting arbitrary errors in experimental implementation,

Htime.sp , 0. (5.7)

Since an inductive NMR experiment is only sensitive to single quantum, single spin
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(HDQ)'

Dipolar

evolution

t

Figure 5-1: The pulse sequence used in this experiment. r is total evolution time
under double quantum Hamiltonian. t is the evolution time under the secular dipolar
Hamiltonian, and 6 is the cycle time of 48-pulse sequence.

terms in the density matrix, the spin system is run backward with -HDQ to become

observable magnetization at the end of the pulse sequence. An entire sequence can

be summarized as

1(t) = eHDTe hte z e DQ()ehf eh eTDQr (5.8)

where H' is either Hdip or Htimesp -

The change in amplitude for each coherence order under the evolution of H' can

be measured separately by phase encoding with collective Iz rotation.

The pulse sequence for this experiment is shown in Fig. 5-1 (a). The experiments

were performed at room temperature at 2.35 T (94.2 MHz, 19F), using a BRUKER

Avance spectrometer and home built probe. The sample used was a 1 mm3 single

crystal of CaF 2 with T1 - 7s. High power 0.5 /s 7r/2 pulses were used. The phase ()

was incremented from 0 to 4r with AO = to encode up to 32 quantum coherences

for every experiment. A fixed-time point corresponding to the maximum intensity

signal was sampled for each value, and then was Fourier transformed with respect

to b to obtain the coherence order distribution for each dipolar evolution time (t).

Subsequently, changes in intensity of each coherence order as a function of dipolar

evolution time (t) were measured.

Highly correlated multiple quantum states were prepared using the double quan-

84

(a)

(b)

-HDQo
d)



2.5

2

. 1.5
.)

c'
C

1

0.5

A

x 105
I I I I I I

-_ - o 0 ..

IJ
2 10 20 30

Coherence number

Figure 5-2: Coherence order distribution with t=O, =303.8 s

turn Hamiltonian as shown in Fig. 5-2. Up to 30 coherence orders were prepared in

CaF 2

5.3 Decay of multiple spin correlations under the

secular dipolar Hamiltonian

Fig. 5-3 shows the intensities of various coherence orders as a function of dipolar

evolution time (t) in CaF 2 for two different evolution times () under the double

quantum Hamiltonian. Decay curves are seen to follow Gaussian decay, and we have

fit the data to the Gaussian curves to extract effective decay times for each coherence

order under the dipolar interaction as a function of evolution times under the double
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r=303.8 ,Is.

quantum Hamiltonian ().

Fig. 5-4 shows effective decay times of various coherence orders for different evo-

lution times () under the double quantum Hamiltonian, obtained by Gaussian fit. It

shows that decay times of the identical coherence orders gradually become smaller as

evolution times () become longer (along the y axis in Fig. 5-4), and the decay times

of different coherence orders (along the x axis in Fig. 5-4) for the same T time appear

to become uniform as the evolution time under the double quantum Hamiltonian is

made longer.

As pointed out earlier, the T 2 decay in a well-defined lattice of spins is a coherent

evolution of the spin system under the dipolar interaction, and therefore the measure-

ments of T2 decay times do not directly represent the decoherence rates or fragilities
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Figure 5-4: Effective decay times of various coherence orders at different evolution
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of individual coherence orders. The intensities of coherences are decreasing under

dipolar evolution because spins are getting correlated with neighbor spins, but this

evolution is not refocused to observable magnetization. Qualitatively speaking, decay

times of multiple spin correlations should be dominated by the coupling strength and

the number of possible pathways selected by the governing Hamiltonian, not by the

fragility of large spin correlations.

A full understanding of experimental decay behavior of multiple-spin, multiple-

quantum states in this system is a challenging task, since it involves a lot of strongly

interacting multiple spins in the process. However, we can try to study the feature of

the embedded physical process by counting the number of possible transition pathways

under the dipolar evolution. This approach relies on the fact that the decay of the
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multiple quantum state is dominated by the unitary evolution under the dipolar

interaction, which is not refocused to the observable magnetization. As pointed out

in the earlier chapter, the selection rule of spin and coherence number of dipolar

Hamiltonian is given as

AK = +l,

An = 0, (5.9)

where K is the number of correlated spins and n is the coherence number. Above

selection rules restricts the possible transition pathways of multiple quantum states

under the dipolar evolution. This process can be visualized with the help of the K - n

Liouville space diagram [61]. In this diagram, Fig. 5-5, the possible multiple quantum

states are represented as dots on the K - n plane, and these dots can move only

horizontally under the dipolar evolution. Without refocusing these hopping events

on the K - n plane, the signal of multiple quantum states are decaying, and this

decay of multiple quantum state is experimentally observed with the pulse sequence

depicted in Fig. 5-1 (a).

The emergence of higher order coherences with increasing excitation time under

the double quantum Hamiltonian indicates that the effective size of correlated spin

clusters also increases. This growing spin cluster size is often estimated using the

Gaussian distribution model of coherence numbers [27, 28]. Usually, the spin cluster

size of this statistical approach has been used to estimate the maximum spin cor-

relation size in the cluster. However, this approach does not provide any detailed

knowledge of the distribution of spin cluster size for various excitation times, which

is necessary to further understand the spin dynamics. At any time, a distribution of

cluster size is expected to contribute to the spin dynamics. Munowitz and Mehring

[57] performed a interesting simulation based on a random walk model in the K - n

Liouville space. They simulated the distribution of the cluster size under the double

quantum Hamiltonian as a function of excitation times with 21 spins, which shows

a broad distribution of spin cluster size centered at K, and this K value is seen to
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increase as the evolution time under the double quantum Hamiltonian becomes long.

With the knowledge of the distribution of spin cluster size under the double quan-

tum evolution and the restriction, which is imposed by the selection rules under the

dipolar interaction, in the possible transition pathways on the K - n plane, we can

set up a simple model to quantitatively study the decay patterns of multiple quantum

states under the dipolar Hamiltonian.

First, we assume a binomial distribution of spin cluster size centered at K, and

assume that the value of K increases as the excitation times under the double quantum

Hamiltonian increases. This assumption is not exact, but captures the correct physics

and can be justified by the simulation results in [57]. Next, we initially focus on the

hopping of multiple quantum state to the nearest neighbor state on the K - n plane,

that is a hopping of a dot from (K, n) to either (K - 1, n) or (K + 1, n) on the plane,

and assume that this nearest neighbor hopping on the K-n plane is dominant process

determining the decay rates of multiple quantum states under the dipolar interaction.

For coherence orders n =L 0, the total number of possible degenerate configurations

in K spin n coherence order can be given as [63]

Z. K K 2K (5,10)~ Z ~ K/2n M) K/2 + M) K-n) (5.10)

Therefore, with a binomial distribution of spin cluster size centered at K as a initial

condition of multiple quantum states created by the double quantum evolution, and

the nearest neighbor hopping on the K- n plane as rate limiting dynamics under the

dipolar evolution, we can approximate the decay times of multiple quantum states as

C(K,) (5.11)

n<Ki Wrate(Ki-n)

where TD(K) denotes the decay time of n coherence order with a binomial distribution

(D(K)) of spin cluster size centered at K, C(Ki) is the binomial coefficient of Ki

(n < Ki < K) spin term within the D(K) distribution, and Wrate denotes the a

hopping rate of multiple quantum state to its nearest point on the K-n plane. (Ki-n)
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Figure 5-6: Theoretical decay times of multiple quantum states based on Eq. (5.11).
The values are re-normalized for comparison with experimental data shown in Fig. 5-
4.

represents the number of possible transition pathways for Ki-spin n-coherence, which

is the number of degenerate states in a dot on the K - n plane. It is assumed that

Wrate remains constant for the every nearest neighbor hopping event on the K - n

plane, and also a identical binomial distribution ((K)) is used for different K values.

The result of Eq. (5.11) are shown in Fig. 5-6, and this result contains very similar

features we obtained for experimental decay time measurement under the dipolar

evolution shown in Fig. 5-4.

Fig. 5-7 shows effective decay times for correlated X and Z bases coherence orders

under the dipolar evolution, which provides more information about the dynamics of

the spin system (Method described in section 2.3.3).
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Figure 5-7: Effective decay times for correlated x and z bases coherence orders under

the double quantum Hamiltonian (T)
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Figure 5-8: Decay of intensity for each coherence order as a function of cycle time of
48-pulse sequence when r=130.3 is. Solid lines are Gaussian fits to the data. Inset
figure shows decay of coherence orders when r=303.8 us.

5.4 Decay of multiple spin correlations under a

time suspension sequence

The ability to suppress all the internal Hamiltonians in a large Hilbert space is a key

example of a precise control over solid state nuclear spins. We replaced the dipolar

evolution during t with the 48-pulse time suspension sequence, which is suppressing

the dipolar evolution to test the efficiency of this control sequence on highly correlated

spin states. The pulse sequence of this experiment is shown in Fig. 5-1 (b). A cycle

time of 48-pulse sequence was 132.48 /is (6), and the change of intensity of each

coherence order as a function of loop of 48-pulse sequences (n6) was measured.

Fig. 5-8 shows intensities of several coherence orders as a function of loop of 48-
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Figure 5-9: Effective decay times of various coherence orders at different evolution
time under the 48-pulse sequence

pulse sequence (nS) in CaF 2. Decay curves are also seen to follow Gaussian decay,

and we have fit the data to the Gaussian curves to extract effective decay time for

each coherence order.

Fig. 5-9 shows effective decay times of coherence orders obtained by fitting the de-

cay of coherence order intensities under the evolution of 48-pulse sequence to Gaussian

curve. It shows very similar behavior to the decay time measurements under the dipo-

lar evolution.

Fig. 5-10 shows effective decay time for correlated X and Z basis coherence order

under 48-pulse time suspension sequence (Method described in section 2.3.3), and it

also shows very similar behavior to Fig. 5-7.

Fig. 5-11 shows the ratio of decay time of multiple quantum coherences under
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Figure 5-11: Ratio of decay time under the 48-pulse sequence to decay time under
the dipolar evolution

48-pulse sequence to decay time under dipolar evolution to see the efficiency of 48-

pulse sequence over various size of spin correlations. The efficiency of our control

sequence appears to be maintained around 70 regardless of the size of spin correlations

experimentally created in CaF 2 sample.

5.5 Discussion

We measured the effective T2 decay time of highly correlated spin states in a sin-

gle crystal CaF 2, and tested the efficiency of our control sequence on these states.

Effective T2 decay times are observed to be faster for larger spin correlations and

to become uniform among different coherence orders as the evolution time under the

double quantum Hamiltonian gets longer in a single crystal CaF 2. A theoretical decay
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times are estimated based on the number of possible transition pathways on the K- n

Liouville space, and are seen to reproduce the features of experimental decay time

measurements under the dipolar evolution. Additionally, it is seen that the efficiency

of our control sequence, which is the ratios of the effective T 2 decay times of vari-

ous coherence orders to decay times under of our control sequence remain unchanged

regardless of the size of spin correlations experimentally probed.
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Chapter 6

Toward state purification in solid

state nuclear spins

Liquid state NMR allowed us to implement key quantum algorithms and to develop

control methods in small quantum systems. These studies have been limited up to

10 qubits, primarily because creating pseudo-pure state from highly mixed states

at room temperature requires exponential costs either in the signal strength or the

number of experiments involved.

In the solid state, the nuclear spins can be highly polarized using technique such

as Dynamic Nuclear Polarization (DNP) by polarization transfer from electron spins.

DNP can significantly increase the nuclear polarization in a coupled electron-nuclear

spin system by irradiating near Electron Spin Resonance (ESR) frequency [7]. In

theory, signal enhancement on the order of y,,/y is obtainable.

Efficiency of DNP enhancement primarily depends on the microwave power and

the length of spin-lattice relaxation time of both nuclear and electron spins. With

limited available high power microwave source at a specific frequency range, most

DNP experiments have been performed at low temperatures to maximize the efficiency

of polarization transfer process.

In this chapter, we describe the design and the fabrication of low temperature DNP

probe which enables multiple pulse irradiations at low temperature environments and

microwave irradiation with horn system. Our design approach will be presented to
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achieve highly efficient rf circuitry as well as good thermal contact and anchoring

of samples while maintaining a high vacuum to prevent rf breakdown at gaseous

He cooled environments. A mode structure inside the microwave horn-mirror cavity

is studied using HFSS (High Frequency Structure Simulator, Ansoft) simulations,

and preliminary DNP results are presented with signal enhancement in TEMPO and

BDPA samples. Proposed modification of microwave cavity for enhanced efficiency

will be discussed.

6.1 Theory of Dynamic Nuclear Polarization (DNP)

In solids, containing magnetic nuclei and unpaired electron, polarization transfer

between electron and nuclear spin systems can be obtained. This enhancement in

nuclear polarization is called Dynamic Nuclear Polarization (DNP). There are several

mechanisms that explain the transfer processes of electron polarization to nuclear

polarization. Extensive reviews of DNP have been documented elsewhere [7, 80, 81].

In this chapter, we will give a brief introduction of the different DNP mechanisms:

which are Overhauser effect, solid state effect and thermal mixing effect.

In general, the Hamiltonian of an interacting electron and nuclear spin system in

an external magnetic field can be given as

H = -weS - w.Iz + Hee + He,. + Hnn, (6.1)

where the first two terms represent Zeeman interaction of electron and nuclear spin.

He, H.., and H,,en represent spin-spin interaction between electron-electron, nuclei-

nuclei, and nuclei-electron respectively. H,,en is also called hyperfine interaction and is

the most important term for DNP enhancement. Hyperfine interaction between nuclei

and electron give rise to simultaneous electron-nuclei transition when the electrons

are irradiated at electron Larmor frequency, which is the key requirements for DNP.

Generally, the scalar interaction term H,, and the dipolar interaction term Hdn are

two parts of hyperfine interaction.
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Historically, Overhauser first proposed that the NMR signal in metals can be

enhanced by saturating the resonance line of conducting electrons [79]. This is called

Overhauser effect, which occurs when Hen is time-dependent on a time scale of the

order /llw,. Then H,,en(t) can induce relaxation transitions between the electron-nuclei

energy levels, resulting in a change in nuclear polarization when the spin system is

irradiated at the electron Larmor frequency. This required time dependence condition

can be met; in conductors or semiconductors, where conducting electrons move very

fast. The enhancement factor of the Overhauser effect is given by

(P)Overhauser = 1 - W We WOV_ - (6.2)
W + We W0 + W yn,

where W =: ry2B2g(- _) is the induced transition probability driven by irradiation

near electron Larmor frequency (g(w-w,) refers to the normalized line-shape function

of the ESC line and B 1 is the magnitude of the microwave magnetic field), W,

W, and W a correspond to the relaxation rate of the electron-nuclear system, the

electron Zeeman relaxation rate, and the nuclear autorelaxation, respectively [82].

Enhancement is maximal when w = ,, and becomes 1 - yeYn when W >> W, and

Wo >> W.

Solid state effect can be induced in solids with fixed paramagnetic centers and

with electron-nuclear interactions that are time independent. This time independent

hyperfine interaction leads to a mixture of electron-nuclear states from the second

order perturbation theory. The energy level of electron-nuclear system (Imnme, >) is

modified due to this mixture as follows,

1-+> I-+>+ql++>

1++> I++>-q*l-+>

1--> - I++>-ql+->
1+-> - I + - > +q*l - - >, (6.3)

where q Y,-n/Wn is a mixture constant.
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Since eigenstates are mixed, a small nonzero transition element such as q < + -

Hrf I + + > give rise to what is called forbidden transitions. (Wi)

W ' = 21q2 irB,2B2g(we - W Won). (6.4)

With forbidden transitions driven by microwave irradiations, the enhancement factor

of solid state effect is given by

(P)solideffect = 1 + W (- 1), (6.5)
W++Wn yN

where WnO corresponds to the nuclear relaxation rate [82].

Thermal mixing effect has features similar to those of the solid state effect, and

occurs primarily when the concentration of unpaired electrons is so large that the

ESC line has a homogeneously broadened line. More details of thermal mixing effect

can be found elsewhere [84].

6.2 Design and fabrication of low temperature DNP

probe

6.2.1 Low temperature NMR probe

As pointed out in the earlier section of this chapter, it is important to design and

fabricate robust NMR probe enabling low temperature operations to achieve highly

efficient transfers of electron polarization to nuclear polarization in DNP experiments.

Obviously, no single design is suitable for all low temperature NMR experiments, and

the choice of the cryogenic apparatus poses substantial constraints on the NMR probe.

We used a top-loading continuous flow cryostat, called spectrostatCF from Oxford

Instruments which are fitted in the bore of a superconducting magnet. Our design

specifications for low temperature NMR probe are meant to comply with dimensional

and functional aspect of this cryostat, but should be general enough for any other

cryostats that are being used in low temperature NMR applications.
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Major issues in designing NMR probes for low temperature applications in solid

state NMR have two goals. One is to maintain efficient rf circuitry so that high power

rf pulses can be applied for good manipulation of spins as at room temperature appli-

cations, while enabling adjustable tuning and matching ability of resonant frequency.

The other is to prevent a rf breakdown under multiple pulse irradiations.

The simplest approach for tunable rf circuitry for low temperature applications

is to keep the tuning and matching elements of circuit outside the cryostat at room

temperature inside a shielding can. This design is very simple and easy to build, but

the long transmission line becomes the part of a LC resonant circuit so that power

efficiency of this circuit is poor, because typically a transmission line is much longer

than the coil wire itself. An alternative approach that needs no tuning parts at low

temperatures is design by McKay [87]. In his approach, he used a very large coax-

ial line to simply reduce the losses in the transmission line. The drawback to this

approach is that this design will take up too much space. Our approach is to keep

the tuning and matching capacitor close to the coil to maintain high efficiency of the

circuit; this is critical for high power multiple pulse solid state NMR applications.

We used copper plated sapphire tube (7.8 mm OD, 4.8 mm ID, 14 mm in length) and

piston mechanism to obtain 1-12 pF tunability capacitors which can be tuned at low

temperatures. Thickness of copper plating was 50 micron taking into consideration

that the skin depth of copper at 100 MHz is -7 micron. Piston design using beryl-

lium copper bellow (part number: BC-159-60-125 from Mini-flex Corporation) was

designed to enable vertical motion of a inner conductor (copper rod) inside a copper

plated sapphire tube to achieve the tunability of capacitance while maintaining a high

vacuum seal around rf circuitry and the sample area.

Fig. 6-1 shows a schematic diagram of this custom made piston capacitor assembly.

A housing ring (HO31 from Rotor Clip, Inc) that was mounted inside the adapter on

top of the bellow was used to keep a screw in place so that the bellow can be either

extended or contracted with rotational motions provided by the screw. Unfortunately,

very little electric power leads to rf breakdown in gaseous He environment at low

temperatures. There might be no need to worry about this breakdown for a one-
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Figure 6-1: A schematic diagram of piston capacitor assembly

pulse experiment, but long spin locking irradiations or multiple pulses cannot avoid

rf breakdown. To prevent rf breakdown, we put the tuning circuits and rf coil inside

a custom made vacuum can ( - 1x10- 5 Torr at 4 K). Obviously, cooling down the

sample by thermal contact is a critical issue with vacuum can approach. We initially

used conflat flange from Varian, Inc on the bottom of our probe so that we can open

up this conflat flange to gain access to the rf coil area, and mounted our sample on the

end of the sapphire tube and thermally anchored this sapphire onto the side of the can

wall using low temperature grease. This scheme gave us successful low temperature

measurements but changing and orienting samples was too cumbersome. To improve

sample preparation, we tested copper tapered conical and greased seal (Dow Corning

silicon grease was effective below 4 K), which also works as a sample mount. The

advantage of using this approach is that one can easily change the samples without

opening the entire vacuum can, and the sample (when it is crystal) orientation can

be systematically varied by rotating conical seal with respect to the vacuum can wall.

Fig. 6-2 shows a picture of this conical seal and a dial on the vacuum can wall. The
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Conical seal (sample mount)

Top view Side view

ample mount

G rease seal

Vacuum can wall

Figure 6-2: A schematic diagram of conical seal and vacuum can wall

sapphire rod attached to this copper conical seal is extended into the center of coil and

the sample is mounted on the end of this sapphire rod for thermal contact. (Sapphire

is used since it is the most effective in thermal conduction at low temperatures among

non-conducting materials).

6.2.2 HFSS simulation with microwave cavity using horns

For continuous microwave irradiations of samples for DNP experiments, we used a

horn-mirror cavity system [85, 86]. A horn-mirror system does not have a good quality

factor (Q10), but provides spacious areas to accommodate other components such

as rf and gradient coils, and is easier for impedance matching. Fig. 6-3 shows reflected

power versus the relative distance of the mirror from the horn at 66 GHz microwave

frequency, as well as same data for a horn-horn geometry (gap between the two horns
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Figure 6-3: Reflected
should be noted that
inside the neck of the
system, and needs to

power measurements for various geometry of horn cavities. It
the micrometer reading and the location of the shorting plug
horn is not calibrated with respect to each other for horn-horn
be calibrated for future references.

is set to 4.5 mm, a wavelength at 66 GHz) as a function of a sliding shorting plug that

is placed within the neck of one horn. The distance between the two horns are set

equal to a wavelength of microwave source to make the 3A/4 point (shown in Fig. 6-7)

be the minimum E field region to minimize the distortion of the wave profiles due to

the hole for rf line. In a horn-mirror geometry, a loss in microwave power is observed

as the gap between the horn and the mirror increases. A double-horn scheme is seen

to compensate this power loss with enhanced quality factor (Q-100).

Inside the standard rectangular waveguide (a=3.76 mm and b=1.88 mm, a = 2b),
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a cutoff frequency of continuous microwave can be given by [83]

CTcutff
fcutoff = 2rcutff (6.6)

27

where r,:-utff is
2 n 2

2 2(_ +rcutOff = a + ). b2(6.7)

Integers m and n denote the modes of TEmn wave.

A cutoff frequency is 40 GHz for TElo mode; therefore it is apparent that the

TE1o wave is dominant inside the waveguide, and H field profiles of TE1o wave inside

the waveguide are shown below [83]

H = Hocos(r-)eikz-iwt,
a

ika 'kz
Hx = -- Hosin( )eiiwt (6.8)

7r a

where z is the direction of the wave propagation and x is the orthogonal direction to

z.

To effectively see the B field profile in the horn-mirror system, we performed HFSS

(High Frequency Structure Simulator, AnSoft) simulation with various configurations.

Fig. 6-4 shows simulation results for B field profiles with horn, Fig. 6-5 with horn-

mirror, and Fig. 6-6 with horn-horn arrangements with a 66 GHz microwave source.

It is seen that horn-mirror and horn-horn configurations have 4.5 dB and 7 dB gains,

respectively, in B field strength over a single horn arrangement.

Fig. 6-8 shows a CAD drawing of final probe, incorporating all the issues arising

from low temperature application and microwave irradiations using a horn-mirror

microwave cavity. Based on the reflected power measurement and HFSS simulation

results (Fig. 6-3 and Fig. 6-6), a horn-horn microwave cavity is also designed to

enhance the efficiency of microwave delivery into the sample for future applications.

Fig. 6-7 shows two horn arrangements.
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Figure 6-4: The B field profile in horn geometry
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Figure 6-5: The B field profile in horn-mirror geometry
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6.2.3 Microwave source

We used backshort tuned Gunn oscillator (GDM-15-4016HIR, from Millitech, LLC)

with an attached isolator for our microwave source. Its center frequency is 66.2 GHz +:

0.1 GHz with mechanical tuning ability of +2.0 GHz. Available output power of this

Gunn oscillator is 40-65 mW. (Quinstar Technology, Inc can provide 1 W IMPATT

oscillator with +250 MHz tuning capability at 66 GHz, which has higher power but

limited tuning range at the same frequency). To connect the probe assembly and

microwave source while maintaining vacuum inside the probe assembly, we used a

bulkhead flange unit (1662, from Aerowave, Inc) as a vacuum window on the top

of low temperature NMR probe with mica and rubber O-ring seals. A mica window

serves as a vacuum feed-through for microwave and has low insertion losses. To reduce

the microwave loss while maintaining thermal isolation between the sample area and

the waveguide, a 4 inch section of stainless steel waveguide was brazed into a 40 inch

long coin-silver waveguide that has a smaller attenuation factor but poor thermal

isolation. Fig. 6-9 describes a schematic diagram of microwave components layout for

continuous irradiations with insertion loss across various components. Total loss of

microwave line was r-10.6 dB, resulting in -5 mW output microwave power on the

end of the waveguide.
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Figure 6-8: A CAD drawing for low temperature DNP probe
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Figure 6-9: A schematic drawing for experimental setup including microwave source
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6.3 Experimental results (thermal mixing: TEMPO

and solid effect: BDPA)

DNP experiments are performed at 4 K at 2.35 T (94.2 MHz, 19F), using a BRUKER

Avance spectrometer and home built low temperature DNP probe. The samples

used were a 2 mm3 40 mM 4-amino-TEMPO (4-Amino-2,2,6,6-tetramethylpiperidine

1-Oxyl), and powder of BDPA (a,-y-Bisdiphenylene-/-phenylallyl, C39H29). 40 mM

TEMPO is prepared by dissolving 0.05 g of 4-amino TEMPO with 4.38 ml of glycerol

and 2.92 ml of water solution. BDPA is prepared by dissolving 1 mg of BDPA and

50 mg of polystyrene (Mw 50,000) with chloroform solvent. A free induction signal

was taken at 4 K with and without continuous DNP irradiation, and the ratio of

total intensity of signal is plotted as a function of microwave frequency for TEMPO

in Fig. 6-10 and for BDPA in Fig. 6-11.

6.4 Discussion

We showed the design and the construction of a low temperature DNP probe with

preliminary experimental DNP enhancements using TEMPO and BDPA samples.

This probe enables multiple pulse irradiations at low temperature with enhanced

nuclear polarization. To increase the efficiency of microwave delivery to the sample,

a double horn cavity that has better quality factor and less loss is designed and

fabricated for next generation low temperature DNP probe.
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Chapter 7

Conclusion

In this thesis, we provided a new experimental methods and findings, with which

we can start to understand the dynamics of spins in a large Hilbert space under the

action of many-body Hamiltonian.

Encoding multiple quantum coherences (MQC) in an arbitrary quantizing axis is

developed, which provides new experimental tools to study the multi-spin dynamics

in a dipolarly coupled spin system. We utilized this method to encode coherence

numbers in an orthogonal basis to Zeeman basis and showed that the dipolar-ordered

state is a two spin correlated state, and confirmed the presence of the I + I - + I7jI+

(flip-flop) terms in the experimentally prepared dipolar-ordered state. A new exper-

imental investigation of the problem of the NMR free induction decay (FID) in a

lattice of spin 1/2 nuclei is presented to verify the multi-spin nature of the FID and

the dominant role of the geometrical arrangement of the spins in the development

of higher order correlations under the dipolar evolution. This measurement provided

the first direct experimental observation of the growth of coherent multiple spin cor-

relations during the FID. Experiments were performed with a cubic lattice of spins

(19 F in calcium fluoride) and a linear spin chain (19F in fluorapatite) and the results

are discussed in light of existing theoretical models. To study the dynamics and the

controllability of these multiple spin correlations, effective decay times of individual

coherence orders are measured under the dipolar interaction and under the control

sequence that suppresses the dipolar evolution. It is seen that the decay time of each
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coherence order becomes shorter and more uniform among different coherence orders

as the spin correlation size grows larger in both cases.

Additional work has been done in this thesis, toward creating a pure state in

solid state nuclear spins by transferring polarization from electron spins, i.e Dynamic

Nuclear Polarization (DNP). A new cryogenic DNP probe was developed enabling

multiple pulse irradiations at low temperature with enhanced polarization using horn-

mirror cavity. To increase the efficiency of microwave delivery to the sample, a double

horn cavity that has better quality factor and less loss is designed and fabricated for

next generation low temperature DNP probe.
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