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Abstract 

This thesis a,nalyzes and improves Tajima's (2004) nearshore hydrodynamic model. 
Ta.jimals simple model accurately predicts long-shore sediment transport along long, 
straight beaches, while cross-shore transport predictions differ from observations. A 
better prediction of cross-shore transport requires improvement of the hydrodynamic 
model. 

We first; contrast Tajima's model with other hydrodynamic models. To improve 
the ~haract~erization of incident waves, we examine a number of joint probability dis- 
tributions of wave heights and periods. These distributions are then used to  develop 
a proba1:)ilistic wave-by-wave hydrodynamic description based on Tajima's monochro- 
matic wave model. We derive the model governing equations for the unsteady case 
and detail their numerical implementation. This unsteady model is applied to study 
the effect of a wave beat normally incident on a plane sloping beach. We use this 
case to  illustrate the relevance of the unsteady generalization to  sediment transport 
calculations. 

Thesis Supervisor: Ole S. Madsen 
Title: Pi:ofessor, Department of Civil and Environmental Engineering 





Acknowledgments 

I would first like to express my deepest gratitude to my advisor, Professor Ole S. 

Madsen, for his patience, guidance, and for the numerous enlightening discussions 

tha.t took place throughout this work. Prof. Madsen's kindness and hospitality have 

made me feel in Boston like at  home. 

I gratefully acknowledge the financial support over two years of my Master's study 

by FundacGn Pedro Barrie' de la Maza in La Coruiia, Spain. Their generous scholar- 

ship program has made it possible for me to study a t  MIT. I am also thankful to Mrs. 

Sandra L. Cervera, from the Institute of International Education, for administering 

my scholarship with great efficiency and fondness. 

One of my best experiences as a graduate student has been to attend Professor 

Chiang C. Mei's insightful lectures in Mathematical Modeling, Fluid Dynamics, and 

Wave P1:opagation. I have truly enjoyed them. 

This th.esis arises from previous work by Dr. Yoshimitsu Tajima, who kindly 

providecl me with numerical codes and experimental data sets. I would like to thank 

Yukie Tanino for proofreading a draft of the thesis. I also thank my friends at  MIT 

for the enjoyable times we have spent together. 

I dedicate this thesis to my parents, Maria Jos6 and Ventura. 





Contents 

1 Introduction 17 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 Motivation 17 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2 Tlnesis outline 18 

Steady one-dimensional hydrodynamic model 21 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 Wave model 21 

. . . . . . . . . . . . . . . . . . . . . . .  2.l.1 Tajima's wave model 22 

. . . . . . . . . . . . . . . .  2.l.2 Battjes and Janssen's wave model 25 

. . . . . . . . . . . . . . . .  2.1.3 Thornton and Guza's wave model 27 

. . . . . . . . . . . . . . . . . . . . . . . .  2.1.4 Model comparison 29 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2 Surface roller model 36 

. . . . . . . . . . . . . . . . . . . . . . . . . .  2.2.1 Tajima's model 36 

. . . . . . . . . . . . . . . . . . .  2.2.2 Stive and De Vriend's model 38 

. . . . . . . . . . . . . . . . . . . . . . . .  2.2.3 Model comparison 39 

. . . . . . . . . . . . . . . . . . . . . . . . .  2.3 Nearshore current model 43 

3 Validation of the hydrodynamic model for random wave conditions 47 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 Random wave models 48 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 .. 1 Cavanik et a1 48 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 .. 2 Lindgren et a1 48 

. . . . . . . . . . . . . . . . . . . . .  .. 3.1 3 Longuet-Higgins (1975) 49 

. . . . . . . . . . . . . . . . . . . . . .  3.1. . 4 Longuet-Higgins (1983) 50 

3.2 Comparison of probabilistic and spectral descriptions . . . . . . . . .  52 



. . . . . . . . . . . . . .  3.3 Validation of Tajima's random wave model 56 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.4 Conclusion 67 

4 Unsteady one-dimensional hydrodynamic model 69 

. . . . . . . . . . . . . . . . . .  4.1 Derivation of the governing equations 69 

. . . . . . . . . . . . . . . . . . . . . . . .  4.2 Numerical implementation 74 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2.1 Model input 74 

. . . . . . . . . . . . . . . . . . . . . . . .  4.2.2 Model initialization 78 

. . . . . . . . . . . . . . . . . . . . . . . . .  4.2.3 Numerical scheme 79 

. . . . . . . . . . . . . . . . . . . . . . .  4.2.4 Boundary conditions 80 

. . . . . . . . . . . . . . . . . . .  4.3 Application of the unsteady model 84 

4.3.1 Comparison between a wave beat and a constant wave . . . .  84 

. . . . . . . . . . . .  4.3.2 Wave beat propagating on a plane beach 85 

5 Concluding remarks 103 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 Conclusions 103 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 Future work 105 

A Integrability of the energy flux integral 107 

. . . . . . . . . . . . . . . . . .  A.l Longuet-Higgins's (1983) distribution 107 

. . . . . . . . . . . . . . . . . .  A.2 Longuet-Higgins's (1975) distribution 109 

B Derivation of expressions for trough and bottom shear stresses 111 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B . 1 Velocity field 111 

. . . . . . . . . . . . . . . . . .  B.2 Time dependency of the velocity field 112 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B.3 Pressure force 114 

. . . . . . . . . . . . . . . . . . .  B.4 Order of magnitude simplifications 115 

. . . . . . . . . . . . . . . . . . . .  B.5 Mean pressure at  the trough level 116 

. . . . . . . . . . . . . . .  B.6 Mean pressure force above the trough level 117 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  B.7 Trough shear stress 117 

. . . . . . . . . . . . . . .  B.8 Momentum forces due to the surface roller 119 

. . . . . . . . . . .  B.9 Mean vertical momentum flux a t  the trough level 120 



. . . . . . . . . . . . . . . . . . . . . . . . .  B.10 hlean trough shear stress 122 

. . . . . . . . . . . . . . . . . . . . . . . .  B . 11 Me:tn bottom shear stress 122 

B.12 Simplifications in the depth-integrated momentum equations . . . . .  124 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B . 13 IV1:ass conservation 124 

C Offshore radiation condition 





List of Figures 

2-1 Comparison of measured and predicted significant wave heights, Okayasu 

and Katayama (1992), case 2. . . . . . . . . . . . . . . . . . . . . . . 

2-2 Comparison of measured and predicted significant wave heights; Okayasu 

and Katayama (1992), case 2. Sensitivity to model parameters. . . . . 

2-3 Comparison of measured and predicted significant wave heights; Okayasu 

and Katayama (1992), case 3. . . . . . . . . . . . . . . . . . . . . . . 

2-4 Comparison of measured and predicted significant wave heights; Wang 

et al. (2002), plunging breaker case. . . . . . . . . . . . . . . . . . . . 

2-5 Comparison of measured (Hamilton and Ebersole, 2001, case 6N, mono- 

chromatic wave) and predicted mean water level and undertow. . . . 

2-6 Comparison of measured (Hamilton and Ebersole, 20011 case 8E, spec- 

tral wave) and predicted mean water level and undertow. . . . . . . . 

3-1 Comparison of wave height predictions between Tajima's spectral model 

and Longuet-Higgins's (1983) distribution in the 1:50 plane beach case. 

3-2 Comparison of wave height predictions between Longuet-Higgins's 1975 

and 1983 distributions in the 1:50 plane beach case. . . . . . . . . . . 

3-3 Comparison of radiation stress gradients and surface roller stress gra- 

dients between Tajima's spectral model and Longuet-Higgins's (1983) 

distribution in the 1:50 plane beach ca.se. Different wave period dura- 

tions are not accounted for when a~era~ging. . . . . . . . . . . . . . . 



Comparison of radiation stress gradients and surface roller stress gradi- 

ents between Tajima's spectral model and Longuet-Higgins's 1975 and 

1983 distributions in the 1:50 plane beach case. Different wave period 

durations are not accounted for when averaging. . . . . . . . . . . . .  62 

Comparison of wave set-up and return current velocities between Tajima's 

spectral model and Longuet-Higgins's (1983) distribution in the 1:50 

plane beach case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

Comparison of wave height predictions between Tajima's spectral model 

and Longuet-Higgins7s (1983) distribution in the barred beach case. . 65 

Comparison of radiation stress gradients and surface roller stress gra- 

dients between Tajima's spectral model and Longuet-Higgins's (1983) 

distribution in the barred beach case. Different wave period durations 

are not accounted for when averaging. . . . . . . . . . . . . . . . . . .  66 

Time evolution of water elevation in a wave beat. (a) Superposition 

of two waves of identical amplitude. (b) Superposition of two waves 

of different amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

Input wave height at  the offshore boundary: Incident beat and smoothed 

input for the numerical scheme. . . . . . . . . . . . . . . . . . . . . .  77 

Onshore boundary condition for the current flux in x-direction. . . . .  83 

Evolution of the mean wave set-up and undertow at  x = -0.8 m. . .  85 

Comparison between the beat averaged results of the unsteady hydro- 

dynamic model and Tajima's monochromatic model results. . . . . .  86 

Mean wave set-up evolution over the wave beat in plane beaches with 

different values of the slope, tan p. . . . . . . . . . . . . . . . . . . . .  88 

Mean wave set-up evolution over the wave beat in plane beaches of 

steep slope at  specific cross-shore locations. . . . . . . . . . . . . . . .  89 

Mean wave set-up evolution over the wave beat in a plane beach of 

intermediate slope, t a n P  = 0.025, a t  specific cross-shore locations. . .  90 



4-9 Mean wave set-up evolution over the wave beat in a plane beach of 

mild slope, tan P = 0.01, at specific cross-shore locations. . . . . . . . 92 

4-10 Wave bottom orbital velocity, undertow, and estimation of sediment 

transport gradient for a plane beach of slope tan P = 0.1. . . . . . . . 94 

4- 1 1 brave bottom orbit a1 velocity, undertow, and estimation of sediment 

transport for a plane beach of slope t a n p  = 0.1 at  x = -0.75 m. . . . 96 

4-12 Wave bottom orbital velocity, undertow, and estimation of sediment 

t ransportgradientforaplanebeachofs lopetan~=0.025.  . . . . . . 97 

4-13 Wave bottom orbital velocity, undertow, and estimation of sediment 

transport for plane beaches of slopes tan P = 0.025 and tan P = 0.01, 

at specific cross-shore locations. . . . . . . . . . . . . . . . . . . . . . 99 

4- 14 Wave bottom orbit a1 velocity, undertow, and estimatio~i of sediment 

transport gradient for a plane beach of slope t anP  = 0.01. . . . . . . 100 

4-15 Wave bottom orbital velocity, undertow, and estimation of sediment 

transport gradient for a plane beach of slope tan P = 0.005. . . . . . . 101 

B-1 Geometrical variables of the wave motion. . . . . . . . . . . . . . . . 113 





List of Tables 

2.1 Average relative errors of the three models with respect to  measure- 

ments for the three experimental cases analyzed in this section. . . .  36 

2.2 Average absolute errors (in mm) in the mean water level predictions 

of the surface roller models with respect to  measurenient,~. . . . . . .  43 

2.3 Average relative errors in the undertow predictions of the surface roller 

models with respect to measurements. . . . . . . . . . . . . . . . . .  43 

3.1 Energy fluxes of Longuet-Higgins's 1975 and 1983 probability distribu- 

tions for different wa,ter depths, relative to  JONSWAP spectrum. . .  54 

3.2 Summary of the integrability of energy flux and radiation stress in the 

probabilistic approach . . . . . . . . . . . . . . . . . . . . . . . . . .  56 





Chapter 1 

Introduction 

1.1 Motivation 

Evolution of beach morphology and, more specifically, erosion processes are major 

concerns in coastal engineering. These changes in beach morphology are caused 

by the local imbalance of sediment transport. Tajima (2004) developed a hydro- 

dynamic. model whose ultimate purpose was to forecast sediment transport in the 

surf zone. This hydrodynamic model is based on linear wave theory and therefore 

involves smaller computational effort than other recent models based on the Boussi- 

nesq equations (e.g., Madsen et al., 1997a,b; Kirby et al., 1998; Chen et al., 2000). 

Moreov~r, Tajima's model is able to  compute non-linear wave characteristics by es- 

tablishil~g an equivalence between linear and non-linear waves. This makes Tajima's 

approach useful to predict sediment transport in a computationally inexpensive way. 

Applying his hydrodynamic model, Tajima (2004) succeeded in forecasting long- 

shore sediment transport on a long, straight beach, but his prediction of cross-shore 

transpol t differed significantly from experimental observations. Net cross-shore sedi- 

ment tritnsport is the small  difference between two large quantities, on- and off-shore 

transports. Therefore, to obtain a reasonable prediction of the net cross-shore trans- 

port, both on- and off-shore transport rates need to be very accurately calculated. To 

this end all relevant processes affecting sediment transport must be accounted for. 

Several aspects of Tajima's hydrodynamic model can be improved. The n~odel 



describes the propagation of monochromatic or narrow-banded spectral waves into 

the surf zone. However, real waves in the nearshore region follow more complicated 

distributions than the simple one assumed by Tajima (2004). Moreover, Tajima 

defines the incident waves in terms of their long-term average characteristics, thus 

neglecting all unsteady effects originated by the slow modulation in wave parameters 

from one wave to  the next. 

The first purpose of this thesis is to compare Tajima's hydrodynamic model with 

other previously existing simple linear models, t o  show the suitability of Tajima's 

hydrodynamic model for performing sediment transport calculations. Second, we 

are interested in confronting it with more detailed descriptions of random waves, to 

decide whether Tajima's simple model provides an accurate enough description of 

real waves. Third, we will generalize Tajima's hydrodynamic model formulation to 

account for unsteadiness, which will provide the necessary basis to  refine sediment 

transport calculations. 

1.2 Thesis outline 

In Chapter 2 we present Tajima's hydrodynamic model, whose analysis and improve- 

ment are the goals of this thesis. This hydrodynamic model consists of a wave model, 

a surface roller model, and a nearshore current model. First, we summarize the for- 

mulation of Tajima's wave model, and compare it with the linear wave models by 

Battjes and Janssen (1978) and Thornton and Guza (1983). We test the three wave 

models in plane and barred beach cases and compare their accuracy with experimen- 

tal measurements. Then, we introduce Tajima's surface roller model and compare it 

with the model by Stive and De Vriend (1994). Finally, we present Tajima's nearshore 

current model. 

In Chapter 3 we examine a number of statistical models that describe incident 

waves through the use of joint probability distributions of wave heights and periods. 

We introduce a probabilistic wave-by-wave approach, based on Tajima's monochro- 

matic model, to  propagake incident waves characterized by a probability distribution. 



Using Longuet-Higgins's 1975 and 1983 distributions, which are shown to  be consis- 

tent with the JONSWAP spectrum, this detailed wave-by-wave approach is applied 

to test cases and compared with Tajima's simpler random wave model. 

In Chapter 4 we derive the governing equations for the unsteady case. We also 

present the details for its numerical implementamtion. Then, we apply the unsteady 

model to test cases. We compare the time-averaged results of the unsteady model 

with those of Tajima's monochromatic steady model. We study the effect of a wave 

beat acting on a plane sloping beach, and use this case to  illustrate the relevance of 

the unsteady generalization t o  sediment transport calculations. 

In C1:lapter 5 we summarize our conclusions and present directions for future work. 





Chapter 2 

Steady one-dimensional 

hydrodynamic model 

In this chapter, we summarize the main characteristics of the hydrodynamic model 

presented by Tajima (2004), whose analysis and further developnient is the purpose 

of this thesis. We compare Tajima's model with previous models that were developed 

to  compute similar hydrodynamic characteristics. First, we introduce Tajima's wave 

model, and compare it with the models by Battjes and Janssen (1978) and by Thorn- 

to11 and Guza (1983). Then, we present Tajima's surface roller model, and compare 

it with tihe niodel by Stive and De Vriend (1994). Finally, we summarize Tajima's 

nearshore current model. 

2.1 Wave model 

Here, we present Tajima's (2004) wave propagation model, as well as the models 

developed by Battjes and Janssen (1978) and by Thornton and Guza (1983). We 

want to confirm the convenience of keeping Tajima's wave model in our fornlulation, 

instead c.)f replacing it by one of these alternatives. We first summarize the theoretical 

bassis of each of these three models. Then, we compare the accuracy of their respective 

predictions in a number of test cases. 



2.1.1 Tajima's wave model 

A hydrodynamic model developed to compute nearshore sediment transport needs to 

take into account non-linear wave characteristics. Non-linear effects, such as skewness 

and asymmetry of the near-bottom wave orbital velocity, may have significant effects 

on sediment transport. Most of the recently developed wave propagation models use 

the Boussinesq equations, first derived by Peregrine (1967) and later improved by 

Nwogu (1993), to compute non-linear wave characteristics. However, since Boussi- 

nesq equations are based on the assumption of weak non-linearity, Nwogu's modified 

Boussinesq equations fail in yielding accurate predictions in the vicinity of the break- 

point, where non-linear effects are strong. As pointed out by Wei et al. (1995) and 

Madsen et al. (1996), use of fully non-linear Boussinesq equations is necessary to 

make reliable predictions in this region. This approach, although accurate, turns out 

to be expensive from a computational standpoint. 

Tajima's (2004) approach starts from establishing a correspondence between linear 

and non-linear wave characteristics. This makes it possible to  use linear wave theory 

to  propagate the waves and then obtain non-linear wave characteristics from the 

linear results. This model, based on linear theory, is computationally very efficient, 

and therefore suitable when extensive iterative calculations are necessary, as is the 

case for predicting sediment transport and coastal morphodynamics. 

Non-linear wave model 

Tajima (2004) defines the equivalent linear wave as the wave that has the same energy 

flux as the actual non-linear wave. It is interesting to  note that ,  since non-linear effects 

nearly vanish in deep water, the non-linear wave and the equivalent linear wave have 

the same deep-water characteristics, such as wavelength Lo and wave height Ho. 

To determine the relationship between non-linear and equivalent linear waves, 

Tajima conducts a series of numerical experiments. These consist of propagating a 

given wave, of deep water wave height Ho, on a plane beach, first using linear theory 

and then using Nwogu's (1993) modified Boussinesq equations. In this latter case, 



incident wave profiles are obtained from 5th order Stokes wave theory (Isobe. 1979) or 

stream funct,ion theory with 19 terms (Dean, 1965). At each depth, both linear and 

non-linear waves are equivalent in the aforementioned sense, since they have the same 

energy flux. By carrying out these numerical experiments for different plane slopes, 

Tajima obtains relationships between non-linear wave characteristics and equivalent 

linear ones, as a function of non-dimensional depth (h/Lo), non-dimensional deep 

water wave height (Ho/Lo) and bottom slope. The non-linear wave characteristics of 

interest are: Wave height, near-bottom wave orbital velocity, and its asymmetry and 

skewness. All these relationships are detailed in Tajima (2004, 52.1.3). 

Once these relationships are established, the model uses linear wave theory to 

propagate waves until the breakpoint. After breaking, a broken wave dissipation term 

is introduced in the energy flux balance equation. The procedure for determining the 

breakpoint and the formulation for broken waves are summarized in the following 

paragraphs. 

Breaking wave model 

Since linear theory is used to propagate the waves, the breaking wave criterion is 

developed in terms of equivalent linear wave heights. Following Watanabe et al. 

(1984), Tajinia formulates the breaking criterion in terms of u,/C, the ratio between 

the water pa(rtic1e velocity at the wave crest and the phase velocity. The breaking 

wave height is determined as a function of the non-dimensional depth, hb/Lo, and the 

slope, Pi,, in the following way: 

where kt, = 271-/Lb is the wave number and the subscript b makes reference to breaking 

conditions. 

The function f is required to satisfy Michell's (1893) breaking criterion in deep 

water, 



where the * refers to  non-linear wave characteristics. In terms of linear wave charac- 

teristics, Michell's criterion reads 

The function f is determined by fitting different sets of experimental data, which are 

detailed in Tajima (2004). As a result of the fitting, the breaking criterion, in terms 

of linear wave characteristics, is defined as 

ICbHb = 1.07 - 0.59exp 
tanh kbhb 

2 . 5 9  tan exp (- 15.1 (2) 15) 

Broken waves 

Tajima's formulation for broken wave energy dissipation follows Dally et al's (1985)) 

where E = pgH2/8 is the linear wave energy, Cg is the linear wave group velocity, 

Er = pgHF/8 is the wave energy based on the recovery wave height, Hr = yrh (which 

is the eventual wave height if the wave were to continue propagating in the depth 

h), and K b  is a dissipation factor. Unlike Dally et al., who take Kb as constant, 

Tajima makes it depend on the slope. It is an empirical fact that broken waves on a 

plane beach, well inside the surf zone, have a wave height proportional t o  the depth, 

H = y,h. From this observation, and applying linear theory, Tajima concludes that 

where t a n p  = dhldx = 6' (ho + f j )  16's is the slope of the mean water depth. From 

experimental data fitting, the values of yr and y, are determined as 

y, = 0.3 

y, = 0 . 3 t - 4 t a n p  



Random waves 

While the previous theory was developed assuming monochromatic waves, Tajima 

presents a simple formulation to  extend his model to a random incident wave case. 

He assumes a narrow-banded spectrum, characterized by its peak frequency, and a 

Rayleigh distributed wave height. After breaking starts, wave heights remain Rayleigh 

distributed. The breaking criterion, (2.4)' separates the broken waves from the un- 

broken ones. Only broken waves yield energy dissipation, following Tajima7s energy 

dissipation law, (2.5). Under these assumptions, and after averaging (2.5) for the 

different wave heights, Tajima's energy balance equation for random waves reads 

where E = p g ~ ~ , , / 8 ,  Er = pg (y,h)2 18, with y, determined from (2.7)' and Fb = 

Hs/HT,,s, with Hb determined from the breaking criterion, (2.4). 

2.1.2 Battjes and Janssen's wave model 

The two other wave models we introduce in this chapter are linear and do not calcu- 

late non-linear wave characteristics. However, we are interested in comparing their 

predictions with Tajima's linear results. Like Tajima's (2004) random wave model, 

Battjes and Janssen7s (1978) wave model also assumes a narrow-banded spectrum, 

and applies conservation of energy flux according to  linear theory, allowing for an 

energy loss associated with wave breaking. The evolution of wave height is therefore 

determined by the following equation: 

a(ECg cos 0) 
= -D 

dx 

where E = pgH:m,/8 is the linear wave energy, Cg is the group velocity, 0 is the angle 

between the wave fronts and the bathymetry, and D is the energy dissipation rate, 

which will be defined below. 

Like Tajirna, Battjes and Janssen assume a. Rayleigh distributed wave height be- 



fore breaking. After wave breaking starts, they assume a truncated Rayleigh distri- 

bution, where no waves larger than the breaking wave height are allowed. The model 

determines the local breaking wave height, Hm, by using a breaking criterion based 

on Miche (1951). In shallow water, Miche's criterion establishes that the breaking 

wave height, H,, is proportional to the water depth, h, according to the expression 

where Miche suggests the value y = 0.88 for the proportionality constant. In Battjes 

and Janssen's model, y is left as an adjustable parameter, to account for the effects 

of beach slope. The breaking criterion they adopt is 

Hm = 0.88k-' tanh (g ) 
They recommend using the value y = 0.8 (Battjes and Janssen, 1978). 

Once the breaking wave height is determined, Battjes and Janssen truncate the 

Rayleigh distribution for unbroken waves, by assuming all broken waves to  have the 

local breaking wave height, Hm. The unbroken waves remain Rayleigh distributed. 

The corresponding cumulative distribution function for all waves is 

where H is the modal wave height. The root mean square wave height is computed 

The fraction of waves that are broken at a given location is 

Qb = Prob(H = Hm) = exp -- ( 2z) 



Using (2.12), Qb can be calculated from (2.13) as 

which leads to  

H : ~ ~  = lHTrL exp (- g) d ~  + H:,Q~ 

The energy dissipation rate due to wave breaking is calculated by simulating it to  

be that of a bore of corresponding height. The bore energy dissipation per unit area 

where f is the mean frequency. This expression is simplified by assuming that H l h  = 

O(1). Piom this analogy, the energy dissipation rate is 

where I f m  is the breaking wave height and a is a constant, which is introduced as 

a factor of proportionality between the bore dissipation rate and the actual wave 

breaking dissipation rate. The value of a should be of the order of 1, according to 

the authors. The factor Qb is introduced since only the broken waves contribute to  

energy ciissipation. 

2.1.3 Thornton and Guza's wave model 

Thornton and Guza's (1983) wave model is based on similar assumptions to the ones 

in the taro previously discussed models: (i) narrow-banded spectrum; (ii) conservation 

of energv flux according to linear theory; (iii) Rayleigh distributed wave height before 

breaking. The basic energy balance equation is similar to those of the previous models, 

and reacis 
a(EC, cos 0) 

dx = - ( f b )  - (ef) 

where ( c h )  and ( t f )  are energy dissipation rates related to wave breaking and bottom 



friction, respectively. As pointed out by the authors, the frictional dissipation rate, 

(ef), is negligible when compared with the wave breaking dissipation rate, (eb). 

In comparison with Battjes and Janssen's model, Thornton and Guza's description 

of the broken wave height distribution represents observations more accurately. First, 

similarly to Tajima's model, Thornton and Guza treat the total distribution for all 

waves, p(H) ,  as Rayleigh, even after the waves start to break. Their experimental 

results support this assumption. Second, instead of calculating a breaking wave height 

for each depth, they assume that, at  every depth, waves of all heights are breaking. 

Third, they assume that the fraction of broken waves for each wave height is 

where, from observations, they set n = 2 and suggest y = 0.42. However, y remains 

as an adjustable parameter of the model, similar to  y in Battjes and Janssen's model. 

Note that ,  for a given depth h, the larger the wave height, H, the bigger the fraction 

of broken waves, W(H) .  The distribution of breaking wave heights is therefore 

with p(H),  the total distribution for all waves, being a Rayleigh distribution. 

In comparison, Tajima's model assumes a unique breaking wave height for each 

depth. However, Tajima's description of wave breaking can be refined by prescrib- 

ing the incident wave in terms of a probabilistic distribution of heights and peri- 

ods, p (H,T) .  Each wave component, of H and T, is propagated using Tajima's 

monochroniatic model. The final result is the average of all components weighted 

by the prescribed probability density function (This procedure is detailed in Chapter 

3).  In this case, the breaking wave height becomes no longer constant for each depth 

and, for a broad range of wave heights, there will be a fraction of broken waves. 

The resulting characterization of wave breaking is similar to Thornton and Guza's. 

However, the probabilistic description based on Tajima's monochromatic model uses 



well-established probability distributions. Therefore, it does not need to assume an 

expression for the fraction of broken waves, W ( H ) ,  and no fitting parameter is in- 

volved. 

Thornton and Guza's approach to compute the dissipation rate is similar to  Battjes 

and Janssen's. They also simulate the wave breaking energy dissipation to  be that 

of a bore, (2.17). According to their statistical description, in which they allow for 

broken waves of different heights, they calculate an average rate of' energy dissipation, 

(Q) .  This average rate is calculated by multiplying the energy dissipation rate for 

each wave height, H ,  by its probability of wave breaking, pb(H),  and integrating for 

all values of H: 

with pb(H) defined by (2.21). The result of this integral is 

where E3 is a constant of order 1, similar to  a in Battjes and Janssen (1978). The 

authors state that B3 should be calibrated for the particular area of study, since the 

model is notably sensitive to this parameter. 

2.1.4 Model comparison 

Here, we compare the three spectral wave models presented above. We note that 

Battjes and Janssen's and Thornton and Guza's models do not allow representing 

nionochl-ornatic incident waves defined by a single wave height and period. These 

models are developed for narrow spectral incident waves, with wave heights defined 

by a Rayleigh distribution. Tajima's model allows not only for spectral incident 

wa,ves. I:)ut also for purely monochromatic waves, of given H and T. This makes 

Tajima's model valid to simulate statistically defined wave conditions, where we need 

to propagate wave components, of H and T, and average the results according t o  a 

probability distribution. This approach will be used in Chapter 3. 



Unlike Tajima, Battjes and Janssen's and Thornton and Guza's models include 

parameters that are supposed to be calibrated for each particular location. In Battjes 

and Janssen (1978). these parameters are y and a ,  whose suggested values are 0.8 

and 1, respectively. In Thornton and Guza (1983), they are y ,  whose suggested 

value is 0.42, and B, which they expect to be of the order of 1. However, to  fit the 

experimental results in their paper, Thornton and Guza vary the value of B from 0.8 

to 1.72 depending on the case they analyze. They finally suggest the value B = 0.8 for 

laboratory conditions and B = 1.5 for field conditions to fit their results. Note that 

this parameter appears as B3 in the expression of Thornton and Guza's dissipation 

rate, ( E ~ )  Therefore, the difference between the suggested values yields a factor of 

(1.510.8)~ - 7 in the value of ( E ~ ) .  

Since our goal is to develop a fully predictive hydrodynamic model, we must define 

model parameters a priori. We will therefore use the parameter values the authors 

suggest when comparing Battjes and Janssen's and Thornton and Guza's models 

with Tajima's. We will also analyze the sensitivity of these models to  changes in the 

parameter values. Note that Tajima's model is already fully predictive, and does not 

require any parameter to be calibrated. 

Figure 2-1 shows a comparison between different model results for an incident 

wave propagating over a plane bottom, according to  the experimental set-up reported 

by Okayasu and Katayama (1992). In case 2 of their experiments, Okayasu and 

Katayama propagated a random wave, characterized by a Bretschneider-Mitsuyasu 

spectrum (Mitsuyasu, 1970), with a significant incident wave height Hi = 8.28 cm and 

a peak period Tpeak = 1.26 s. In the figure, results by Tajima, Battjes and Janssen, 

and Thornton and Guza are compared with average measured wave heights. The 

experimental values shown in the figure are significant wave heights obtained from 

spectral analysis based on linear theory. Therefore, these results must be directly 

compared with linear wave height results. Note that the inputs and outputs of the 

three discussed models are rms values, while the results presented in the figure are 

significant values; the conversion has been done by assuming Hs = 1.4H,,, . The val- 

ues of the parameters recommended by the authors are used in the models by Battjes 
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Figure 2-1: Comparison of measured and predicted significant wave heights, Okayasu 
and Kat.ayama (1992), case 2. Measurements (circles), Tajima's predicted linear wave 
heights (solid line), Battjes and Janssen's predictions (dashed line), and Thornton and 
Guza's predictions (dashed-dotted line). As a general convention for bottom profile 
graphs, x increases in the direction of wave propagation and is 0 at  the still water 
shoreline; 2: = 0 corresponds to the still water level. 

and Janssen (a  = 1, y = 0.8) and by Thornton and Guza (B = 0.8, y = 0.42). Recall 

that because all parameters in Tajima's model are fixed, further calibrations are not 

necessary. Tajima's linear wave heights give a good agreement with measurements. 

Ba,ttjes sncl Janssen's and Thornton and Guza's results in the surf zone are similar to 

Tajima's linear values, so their linear wave models seem to be of comparable accuracy 

to Tajin-la's in this case. In the intermediate depth zone, Tajima's and Battjes and 

Janssen's linear wave heights slightly underpredict the experimental results. Overall, 

average relative errors of the three models are conzparable, and of' the order of 10%. 

Figui-e 2-2 refers again to the plane bottom case. and shows the effect of varying 

the energy dissipation para'meter (B in Thornton and Guza's model a.nd a in Battjes 
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Figure 2-2: Comparison of measured and predicted significant wave heights; Okayasu 
and Katayama (1992), case 2. Measurements (circles), Tajima's predicted linear wave 
heights (solid line). Upper plot: Thornton and Guza's predictions for B = 0.5 (dotted 
line), B = 0.8 (dashed-dotted line), and B = 1.5 (dashed line). Center plot: Battjes 
and Janssen7s predictions for a = 0.5 (dotted line), a = 1 (dashed-dotted line), and 
a = 1.5 (dashed line). 
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and Janssen's). In their paper, Thornton and Guza (1983) use values for B between 

0.8 and 1.72 to  get best fits to  their experimental results. B = 0.8 is the recommended 

value for laboratory conditions. Indeed, the figure shows that a.ny further increase 

of the parameter beyond the value B = 0.8 results in a greater underprediction of 

the wave height. The value B = 1.5, recomn~ended for field conditions, yields an 

underpredjction of as much as 35% relative to measurements. On the other hand, 

a value of B = 0.5, smaller than the recommended one, yields overpredictions of 

the wave height in the surf zone, where the accuracy of the results is most crucial. 

Battjes and Janssen's model exhibits a smaller sensitivity on the parameter a. This 

was expected, since the parameter a is replaced by B3 in Thornton and Guza's 

formulatioi~, notably increasing the influence of the parameter value on the model 

results. From further numerical tests, it is seen that the sensitivity of Battjes and 

Janssen'ls and Thornton and Guza's model to the other parameter, y,  is smaller. 

Figure 2-3 shows a comparison for a barred beach set-up, according to  case 3 in 

Okayasu and Katayama's (1992) experiments. The bottom has positive and negative 

slopes of 1:20. The incident wave is random, defined by a Bretschneider-Mitsayasu 

spectrum with an incident significant wave height of Hi = 5.67 cm and Tpeak = 0.945 s. 

Ta,jima's model and Battjes and Janssen's model with suggested parameter values 

(a  = 1. y = 0.8) give very good agreement with measurements. Thornton and 

Guza's model, using suggested parameter values for laboratory conditions (B = 0.8, 

y = 0.42), gives about a 10% underprediction while, if the parameter field values are 

used (B = 1.5, y = 0.42)' the underprediction is about 40% relative to  measurements. 

Finally, Figure 2-4 shows a comparison for a barred beach, following the exper- 

iments of Wang et al. (2002). The experimental results shown here correspond to 

the plunging breaker case cited in the aforementioned paper. The incident significant 

wave helght is Hz = 0.23 m and the peak wave period is Tpeak == 3.0 S. The angle 

of incidence is 10". Tajima's model prediction agrees very well with the experimen- 

tal values, while Battjes and Janssen's and Thornton and Guza's models overpredict 

them. Thornton and Guza's results have an average error of about 10%) while Battjes 

and Janssen's niodel leads to maximum overpredictions of 30%) with respect to the 
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Figure 2-3: Comparison of measured and predicted significant wave heights; Okayasu 
and Katayama (1992)' case 3. Measurements (circles), Tajima's predicted linear wave 
heights (solid line). Upper plot: Battjes and Janssen's predictions (dashed line). 
Center plot: Thornton and Guza's predictions for B = 0.8 (dashed line) and B = 1.5 
(dashed-dotted line). 
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Figure 2-4: Comparison of measured and predicted significant wave heights; Wang 
et al. (2002)) plunging breaker case. Measurements (circles), Tajima's predicted linear 
wave heights (thick solid line), Battjes and Janssen's predictions (thin solid line), 
Thornton and Guza's predictions for B=0.8 (dashed line) and B=1.5 (dotted line). 

observed values in the surf zone. Note that Thornton and GuzaJ7s model, with the 

energy clissipat ion parameter value suggested for field conditions. B = 1.5, strongly 

underpredicts the observed results 

In conclusion, Tajima's model yields the most accurate predictions of the ex- 

periments in the three analyzed cases. Average relative errors of the three models 

are sum.marized in Table 2.1, supporting this conclusion. In addition, Battjes and 

Janssen's and Thornton and Guza's models have the drawback of introducing ad- 

justable parameters, which significantly affect model results. The authors claim that 

paramet'er 'adjustment can be used as a tool for improving the accuracy of the model 

results. However. these parameters need to  be calibrated for the location of study, 

and this contradicts the concept of a fully-predicting hydrodynarnic model, such as 



Table 2.1: Average relative errors of the three models with respect to  measurements 
for the three experimental cases analyzed in this section. Battjes and Janssen's and 
Thornton and Guza's results correspond to the recommended parameter values for 
laboratory conditions. 

2.2 Surface roller model 

r 
Experiment 

Okayasu and Takayama (case 2) 
Okayasu and Takayama (case 3) 

Wang et al. (plunging case) 

The concept of a surface roller was first introduced by Svendsen (1984) to  explain the 

Tajima Battjes Thornton 
9% 9% 13% 
3% 4% 9% 
6% 17% 11% 

increase of the return current observed inside the surf zone with respect to  existing 

theoretical predictions. The surface roller acts as a reservoir of wave energy dissipated 

by wave breaking. Only part of this energy is immediately transferred to turbulent 

energy, while the rest is temporarily stored in the surface roller. The surface roller 

introduces a new forcing term that accounts for the observed increase in return flow 

velocity. 

Svendsen's surface roller model, however, tends to overpredict the return current. 

Improved models have therefore been developed. Here, we present Tajima's (2004) 

model, which is based on Dally and Brown's (1995), as well as the model introduced 

by Nairn et al. (1990) and later improved by Deigaard (1993) and Stive and De Vriend 

(1994). We compare these two approaches and conclude that they yield similar results. 

2.2.1 Tajima's model 

Tajima (2004) follows Dally and Brown (1995)' and assumes the surface roller energy, 

E,,, to be proportional to the roller cross-sectional area, Ss,, and to the wave phase 

velocity, C ,  according to  

E S T  = 
pSs,C2 12 

L 



where L is the wavelength. The volume flux due to  the surface roller, which causes 

an increase in the return current, is 

The surface roller also introduces contributions to  the momentum balance equations. 

The mome.ntum flux terms due to the surface roller play a similar role to  those of the 

wave radiation stress tensor components (see Section 4.1 for details) and modify the 

value of the mean water elevation, 7. 

As mentioned before, the energy of the surface roller comes from wave breaking 

a,nd is eventually dissipated into turbulent energy. Following Dally and Brown (1995), 

Ta.jima izssumes the energy balance equation for the surface roller to  be of the form 

where a: is the fraction of the broken wave energy that goes into the surface roller 

and K,, is a proportionality constant. While Dally and Brown assume that all the 

broken wave energy goes into the surface roller, and therefore take a = 1, Tajima 

assumes that only the potential broken wave energy goes into the surface roller. This 

is based on the consideration that most of the potential wave energy is concentrated 

near the surface, where the roller develops, while the kinetic energy is distributed 

over the entire depth and is more unlikely t o  be supplied to  the surface roller. Due to 

the equipartition between potential and kinetic energy, Tajima assumes u = 112. To 

determirle the value of Ks,, Tajima observes the analogy between wave and surface 

roller dissipation energy models, and takes Ksr = Kb, with Kb defined in (2.6). 

Introducing (2.5) into (2.26) and applying the previous c~nsiderat~ions, the complete 

energy balance equation for the roller reads 

Tajinla also presents a,n extension of the roller model for the random wave case, 



parallel to the extension of his wave model to random conditions. The energy balance 

equation for the random wave case is similar to (2.27), but replacing the wave energy 

dissipation term (the first term in the right hand side of (2.27)) by its equivalent 

in the random wave case (one half times the right hand side in (2.8)). The energy 

balance equation then reads 

2.2.2 Stive and De Vriend's model 

Nairn et al. (1990) introduce a surface roller model based on similar principles as 

Tajima's. Equations (2.24) and (2.25)) as well as the roller momentum flux contribu- 

tion, still hold. Nairn et al.'s energy balance equation for the roller reads 

where, unlike Tajima, Nairn et al. assume that all the broken wave energy goes into 

the roller. To compute the right-hand side of (2.29)) they follow Deigaard and Fredsoe 

(1989) and consider that the roller energy dissipation is due to  the work done by the 

shear stress acting between the roller and the fluid below, r,. Therefore, the energy 

dissipation rate, which has been called 2 0  here for the purpose of making a later 

analogy to  Tajima, is 

From balance of forces on the roller, the shear stress is 

pg S,, sin a 
7, = 

L 

where sin cu would correspond to  the wave-front slope, which is usually assumed to be 

0.1 or less (Ruessink et al., 2001). 

Stive and De Vriend (1994) deduce the energy balance equation from momentum 

conservation and reach a discrepancy with equation (2.29)) since they obtain a factor 



of 2 multiplying the roller energy term. From the results of Deigaard (1993), they 

show that the discrepancy comes from the fact that Nairn et al.'s formulation is 

missing a tern1 in the energy balance equation. Since the volume of water in the 

roller is changing, there is an exchange of water between the roller and the organized 

wave motion, leading to  momentum transfer and a corresponding energy dissipation 

term, omitted by Nairn et al. After introducing this extra term, the energy balance 

equation for the roller, (2.29), takes the form 

which is similar to  Tajima's, (2.26) 

2.2.3 Model comparison 

The formulation of the surface roller models by Tajima (2004) and Stive and De Vriend 

(1094) is very similar. For comparison, we model the wave energy dissipation term 

in the way suggested by Tajima, the validity of which was shown in Section 2.1: 

K G g  D (EC,n') = ---- (E - E,) 
h 

Then, the roller energy balance equation both for Tajima's and Stive and De Vriend's 

models can be written in the form 

where the models only differ in the expression for D. In Tajima (2004), 

while, in St,ive and De Vriend (1994), 

Es, D = g sin a- = sin aE,, 
C 



where we have assumed shallow water, so that C = m. Both dissipation rates differ 

only by a factor of proportionality, Kb/ sin a ,  which depends on the beach slope. For 

a beach slope of 1:30, and assuming sin a = 0.1, the ratio between Tajima's and Stive 

and De Vriend's dissipation rates is Kb/ sin a = 1.6. Therefore, we expect similar 

results from the two surface roller models. 

Figure 2-5 shows mean water level and undertow predictions for case 6N in the 

experiments conducted by Hamilton and Ebersole (2001). In this experimental case, 

a monochromatic wave with period T=2.5 s was propagated on a 1 :30 concrete beach, 

from a depth of 0.667 m, where the wave height is 0.182 m and its angle of incidence 

is 10". The experimental results are compared with three runs of Tajima's hydrody- 

namic model: (i) without accounting for a surface roller; (ii) with its own (Tajima, 

2004) surface roller model; (iii) with Stive and De Vriend's (1994) surface roller model, 

assuming sin a = 0.1. Results from both surface roller models are quite similar and, 

in both cases, the inclusion of the roller improves the fit of the experimental results. 

Figure 2-6 shows mean water level and undertow predictions for case 8E in Hamil- 

ton and Ebersole (2001). The experimental conditions are similar to case 6N cited 

above, but the wave is now irregular, following a TMA spectrum (Bouws et al., 

1985). The spectral characteristics were chosen so that the significant wave height is 

the same as the wave height in the monochromatic case, case 6N. The peak period 

is again Tp = 2.5s. As shown in the figure, both models yield accurate predictions of 

the mean water elevation, with an average error of about 2 mm, while the mean water 

elevation is of the order of 1 cm. However, when predicting the undertow, Tajima pro- 

vides better results, with an average relative error of 29%, while Stive and De Vriend 

consistently overpredict it, yielding an average relative error of 56%. Since the ra- 

tio between Tajima's and Stive and De Vriend's dissipation rates is 1.6 in this case, 

Tajima's surface roller dissipates energy more quickly, and therefore yields a milder 

increase of the undertow. This is usually the case, since the dissipation rates ratio, 

Kb/ sin a,  is greater than one but for very mild slopes. Note that, in this case, the 

average predictions without considering the roller are globally the most accurate in 

magnitude (average relative error of 20%), a,lthough they underpredict the undertow 
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Figure 2-5: Comparison of measured (Hamilton and Ebersole, 2001, case 6N, 
monochromatic wave) and predicted mean water level and undertow. Measurements 
(circles), predictions without surface roller (dotted lines), predictions with Tajima's 
surface roller (thick solid line), and predictions with Stive and De Vriend's surface 
roller (thin solid line). 
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Figure 2-6: Comparison of measured (Hamilton and Ebersole, 2001, case 8E, spectral 
wave) and predicted mean water level and undertow. Measurements (circles), pre- 
dictions without surface roller (dotted lines), predictions with Tajima's surface roller 
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in the crucial nearshore region, where Tajima's predictions yield the best fit. 

The average errors of the models' predictions are summarized in Tables 2.2 (Errors 

in mean water elevation) and 2.3 (Errors in the undertow). These tests show that 

Tajima's surface roller model's accuracy is comparable or greater than Stive and 

De Vriend's, supporting the choice of the former in our formulation. 

Table 2.2: Average absolute errors (in mm) in the mean water level ( f j )  predictions 
of the surface roller models with respect to  measurements. 

I Hamilton and Ebersole (case BE) 1 2.6 mm 2.3 mm 2.1 mm I 

Experiment 
Hamilton and Ebersole (case 6N) t 

Table 2.3: Average relative errors in the undertow (u) predictions of the surface roller 

No roller Tajima Stive 
4.9 mm 2.4 rnm 2.3 mm 

models with respect to measurements. 

1 Hamilton and Ebersole (case 8E) 1 20% 29% 56% I 
Experiment 

Hamilton and Ebersole (case 6N) 

2.3 Nearshore current model 

No roller Tajima Stive 
44% 30% 34% 

In this section, we summarize the formulation of the nearshore current model pre- 

sented by Tajima (2004), which will also be used in this thesis, as part of the gener- 

alized h~~droclynamic model for unsteady conditions. 

Tajinia's nearshore current model is a quasi-three dimensional model. Vertically, 

it divides the whole depth into two layers. One layer extends from the beach bottom 

to the wave t>rough, while the other comprises the region above the trough level. In 

each of these layers, he applies the two-dimensional horizontal, vertically integrated, 

and time-averaged momentum equations. The model accounts for current-current and 

wave-current interactions. Boundary conditions are applied using a modified version 

of the bt-)ttorn boundary layer model introduced by hladsen (1994). 



Here, we show the more general quasi-t hree dimensional formulation. In Chapter 

4, we will restrict the model to  normally incident waves and neglect alongshore (y) 

variation. 

Governing equation 

In the model by Tajima (2004)) the nearshore mean current velocity below the trough 

level is given by 

where the current shear stress is assumed to  vary linearly in depth. Here, vt is the 

turbulent eddy viscosity, 6 is the mean current shear stress vector, Cb and 6, are 

respectively the bottom and trough shear stress vectors, htr = ho +q - 5 is the trough 

water depth, and x is the elevation above the bottom. Above the trough level, the 

mean current velocity is assumed constant and equal to the current velocity at  the 

trough level. 

Turbulent eddy viscosity 

Close to  the bottom, shear stress can be considered constant, and the turbulent eddy 

viscosity is assumed to vary linearly with depth. At larger distances from the bottom, 

shear stress increases due to the effect of broken waves, and the rate of increase of 

the turbulent eddy viscosity must be faster than the previous linear law. Based on 

this consideration, the turbulent eddy viscosity is defined in the following way: 

where K = 0.4 is Von K&rm&n's constant; u,, = JlTCbllp is the shear stress velocity 

at  the bottom; u,, = 1 l p  + u : ~  is the shear stress velocity a t  the surface, with 

u2 * B  = M (g)'l3 being the characteristic turbulent velocity due to the breaking wave 

energy dissipation, where M is taken as M = K = 0.4; z, = ht,uZc/u~, is the depth 

where the two eddy viscosity profiles match; and 6 is the wave bottom boundary layer 

thickness, determined from Madsen's (1994) model. 

44 



Bottom boundary condition 

Madsen's (1994) modified wave-current bottom boundary layer model is used in 

Tajima (2004) to provide the bottom boundary condition for the current model. The 

mean current velocity at  the outer edge of the boundary layer, x = 6, is 

where zo = kN/30. kN is the equivalent Nikuradse (1933) rough~iess of the bottom. 

The maximum combined wave-current bottom shear velocity, u,,, is defined by 

with 

Here, $,, is the angle between waves and currents. The boundary layer thickness, 6, 

is given by 

where 
-0.071 

A = exp [ 2.96 ("trn) - 1.45 I 
a,nd Abnl = ?.Lbm/w is the amplitude of the near-bottom wave orbital velocity, ub,, 

whose value is provided by Tajima's non-linear wave model. According to Madsen 

(1994), f,,, can be approximated as a function of the dimensionless parameter X = 

CpAbm/kN in the following way 



Solution for mean current profile 

The mean current profile is obtained by solving (2.37), with v, given by (2.38) and the 

bottom boundary condition given by (2.39). The vertical profile of the mean current 

can be expressed as 

with 

-+ -+ + 

where Us, U,, and Us are the current velocity vectors at  z = 6, z = x, and z = htr, 

so that the mean current profile is continuous. 

Integrated mass and momentum conservation equations 

The unknown variables in the previous formulation are the bottom shear stress, 

Fcb = (rcbX, rcby), the trough shear stress, TC, = (rcSx, T,,,), and the mean water el- 

evation, fj, which is needed to  calculate the shear stresses. These five unknowns are 

determined from the following set of equations: Depth-integrated continuity equa- 

tion, dept h-integrat ed moment um equations above the trough level (in x- and y- 

directions), and depth-integrated momentum equations over the entire depth (in x- 

and y-directions). In Tajima (2004, $4.4.5 and Appendix A), these equations are 

derived for the steady case. The more general unsteady equations, which govern the 

unsteady model developed in this thesis, are presented in Chapter 4. 



Chapter 3 

Validat ion of the hydrodynamic 

model for random wave conditions 

In his hydrodynamic model for uniform, long straight beaches, Tajima (2004) con- 

siders two possible kinds of incident waves: Periodic or random. Periodic waves are 

just monochromatic waves defined by a single wave height and period. Tajima's 

ra,ndom wave model assumes a narrow-banded spectrum which is represented by a 

constant wave period, corresponding t o  the spectral peak, and Rayleigh distributed 

wave heights. 

The purpose of this chapter is to check the validity of Tajima's random model 

by comparing it with a more realistic representation of random waves. For this 

comparison, we will use the description afforded by the joint probability distributions 

for wave heights and periods proposed by Longuet-Higgins (1975, 1983). 

In the following sections, we first present some relevant joint probability distribu- 

tions for wave heights and periods. Then, we compare the probabilistic descriptions 

by Longuet-Higgins (1975, 1983) with the JONSWAP spectral model. These prob- 

abilistic descriptions are used to  determine the validity of Tajirna's random wave 

model? through numerical experiments for plane and barred beach topographies. The 

results of this vadidation are sumniarized in the conclusion. 



3.1 Random wave models 

A number of probability models have been suggested to describe the joint distribution 

of wave heights and periods. Among the most relevant ones are the models proposed 

by Longuet-Higgins (1975, 1983), Cavanik et al. (1976) and Lindgren (1972) and 

Lindgren and Rychlik (1982). An insightful comparison between these models can be 

found in Srokosz and Challenor (1987). 

3.1.1 Cavanih et al. 

Cavanik et al. (1976) assume a sinusoidal profile for each wave in the random series. 

Under this assumption, which is reasonable for narrow banded spectra, they obtain 

a joint distribution for wave heights and periods defined by wave positive maxima. 

According to Srokosz and Challenor (1987), CavaniG et al.'s distribution provides a 

good agreement with experimental observations for narrow banded spectra and suc- 

cesfully accounts for the asymmetry in the wave period distribution that observations 

show. Its main disadvantage, as pointed out by Longuet-Higgins (1983), is that it 

characterizes the spectral width by using a width parameter, E ,  defined as 

This parameter involves the fourth moment of the spectral density, m4. For practical 

purposes, the use of this fourth moment is inadequate, since its value is quite sensitive 

to the behavior of the spectrum at  high frequencies, where experimental noise may 

introduce critical disturbances. 

3.1.2 Lindgren et al. 

Lindgren (1972) and Lindgren and Rychlik's (1982) approach assumes Gaussian waves 

and defines a stochastic model process to evaluate the probability distribution. The 

model process describes the surface elevation next to a crest, and is therefore used to 

estimate the joint distribution of wave heights and periods near the crest, conditioned 



on the value of the wave height a t  the crest. The unconditional joint distribution 

is then obtained by integrating this conditional distribution over all possible wave 

heights. Therefore, in contrast with Cavani6 et al. 's and Longuet-Higgins's models, 

Lindgren's probability distribution does not have a closed-form analytical expression, 

but it is defined through a model process approach, and requires a huge amount 

of coml:)utation for its evaluation. This makes it inconvenient for most practical 

applications, where a simpler procedure for evaluating the probability distribution 

would be preferable. 

3.1.3 Longuet-Higgins (1975) 

In 1975, Longuet-Higgins introduced a joint probability distribution for wave heights 

and periods (Longuet-Higgins, 1975) that he would revise in a later paper (Longuet- 

Higgins, 1983). The 1975 model was derived from the statistical analysis of the 

wave en:velope, under the hypothesis of a Gaussian sea surface and a narrow-banded 

spectrum. The joint probability density function reads 

where J and T are the non-dimensional wave height and period, defined as 

7 =  
T 

Tau e 

H and T are the wave height and period, H,,, is the root mean square wave height, 
and T,,, is the average wave period, which can be expressed as 

where in, denotes the nth moment of the spectral density, S(w), 



w = 2x/T is the wave radian frequency. v is a spectral width parameter defined 

(Longuet-Higgins, 1983) as 

The original notation of the 1975 paper has been modified here, for consistency with 

the notation used in the rest of this chapter. 

The marginal density function of the non-dimensional wave height, f t ,  is Rayleigh, 

which is consistent with observations. The marginal density of the non-dimensional 

wave period, f,, is a symmetric bell-shaped function, although not Gaussian. The 

conditional density of 7- for a given J is Gaussian. 

In this formulation, Longuet-Higgins allows for negative values of T ,  which are 

unrealistic. To avoid this, we will adopt a truncated version of Longuet-Higgins's 

1975 distribution, defined as follows: 

where 

and 

3.1.4 Longuet-Higgins (1983) 

While Longuet-Higgins's 1975 distribution gives a good fit to narrow spectrum data, 

it does not account for the asymmetry in the distribution of the wave period, T, 

that is observed for broader spectra. In a later contribution, Longuet-Higgins (1983) 

refined his theoretical formulation and succeeded in accounting for this asymmetry. 



His 1983 density function reads 

where E. ,  r. v and L were defined in equations (3.3), (3.6), and (3.8). 

This distribution is still based on the assumption of narrow-banded spectrum. 

Longuet-Higgins states that  the distribution accurately represents observations pro- 

vided that  v < 0.6; other authors (Srokosz and Challenor, 1987) have suggested that 

for a good fit with empirical results we must require v 5 0.4. 

The marginal density of the wave height, fc, is 

where 

Therefore, f F  is almost Rayleigh, but for the correction factor L(v) F(J/v).  For large 

J,  this correction factor approaches L(v) in an exponential fashion, which is in turn 

close to unity. However, the correction is significant for values of J close to 0. 

The masginal distribution of r is 

This function captures the asymmetry of the wave period distribution, in a way that is 

coiisiste~~t with observations. Note that ,  for large values of T ,  the distribution behaves 

like 1/75 Therefore, the mean period is infinite. This fact is related to convergence 

issues discussed in the next section. 

As Srokosz and Challenor (1987) point out, for obtaining a good fit with experi- 



mental data, Longuet-Higgins's (1983) distribution must be compared with statistical 

values of zero-upcrossing height and period, respectively defined as the maximum ver- 

tical distance between two consecutive zero-upcrossings and the time elapsed between 

consecutive zero-upcrossings. This results from the manner in which the distribution 

was derived. 

3.2 Comparison of probabilistic and spectral de- 

script ions 

In this section we are interested in comparing Longuet-Higgins's probability distri- 

butions (1975 and 1983) with the spectral description of sea waves provided by the 

JONSWAP spectrum (Hasselmann et al., 1973). The JONSWAP spectrum was for- 

mulated for a developing fetch-limited wind sea, and therefore it allows for narrower 

and more peaked spectral shapes than a fully-developed sea spectrum. The JON- 

SWAP spectral density is given by 

where fp is the peak frequency, and a,  0, and y are shape parameters. The usual 

values of a are 

y is of the order of 3.3, and the value of a depends on the stage of development of 

the wind sea. 

We will compare the energy flux obtained from the JONSWAP spectrum and 

from Longuet-Higginsls probability distributions at  various depths, neglecting dis- 

sipation due to bottom friction or wave breaking. The wave energy flux, Ef, of a 

monochromatic wave of height H is given by 



where E is the wave energy density, averaged over a wave period; C, is the group 

velocity; and p is the water density. 

The energy flux of a spectral wave characterized by a JONSWAP spectrum of 

spectral density S( f ) ,  at  a given water depth h, is calculated integrating the energy 

flux contributions over the whole frequency range: 

Ef!h) = pg Jm o S(f )Cg ( f ,  h)df (3.16) 

The procedure for calculating the energy flux of a wave characterized by one of 

Longuet-Higgins's probability distributions is similar. In this case, the energy flux 

contributions for individual waves are averaged with respect to the probability density 

function, fc, : 

where E~ is the energy flux of the monochromatic wave with non-dimensional height 

and period of 5 and T, respectively. In practice, the integral above is computed by 

taking a finite number of individual wave components, of H and T, and averaging 

their contributions. We will refer to  this procedure as the probabilistic wave-by-wave 

approach. It consists on calculating the magnitude of interest for a large representative 

set. of monochromatic wave components, of H and T, and then weighting the results 

using a probability distribution t o  obtain an average value. 

In the previous expression, (3.17), we did not account for the fact that different 

individual wave components have different periods. In the probabilistic description, 

we regard the incident random wave as a series of individual monochromatic waves, 

acting sequentially. Each individual component acts for a time equal to  its wave 

period, which is different for each component. According to this, individual wave 

components should also be weighted by their period durations, i.e., 

where T ( r )  = T,,,,T. However, it is not clear that this conceptual model of a se- 



quence of monochromatic waves represents accurately the real sea. Therefore, we 

will calculate two different averages, according to (3.17) and (3.18), and analyze both 

results 

Next, we present results of the energy flux comparison for a particular case, defined 

by normal incident waves with Hms = 1 m and T,,, = 5 s. The corresponding values 

of the spectral density moments are mo = 0.125 m2 and ml = 0.15708 m2/s. We 

further assume a spectral width parameter value of v = 0.4. To satisfy these moment 

values, we take cu = 5.363 y = 2.55 and f, = 0.164 s-' as the values of the 

JONSWAP spectrum parameters. The results, at  different depths, are summarized 

in Table 3.1 

Table 3.1: Energy fluxes of the probability distributions for different water depths, 
relative to JONSWAP spectrum energy fluxes. The probability distributions are 
Longuet-Higgins (1975) and Longuet-Higgins (1983), without period weighting (see 
equation 3.17) or with period weighting (see equation 3.18). Wave breaking and 
bottom friction are neglected. 

Depth (m) 
100 
50 
20 
10 
5 
2 
1 

LH75 (No T)  
0.9472 
0.9478 
0.9260 
0.9281 
0.9667 
1.0673 
1.0764 

LH75 ( T  weights) LH83(No T)  LH83 (T  weights) 
1.1038 1.0034 1.3062 
1.1066 1.0086 1.3178 
1.0899 0.9786 1.2693 
1.0869 0.9604 1.2119 
1.1099 0.9895 1.2045 
1.1976 1.0796 1.2744 
1.1960 1.0838 1.2651 

To calculate the probabilistic approach results in Table 3.1, we considered 8927 

individual components, of H and T, representing a 96.4% of the total probability for 

the 1975 distribution and a 97.7% for the 1983 distribution. The maximum individual 

component wave period was 23.4 s. 

From the results in Table 3.1, we observe a good agreement between the prob- 

abilistic models and the JONSWAP spectrum when the formulation without period 

weighting, (3.17)) is used. When different period durations are accounted for, (3.18), 

energy flux is overestimated with respect to the JONSWAP spectrum. This overpre- 



diction is, however, of the same order of magnitude for different depths. Therefore, 

from this numerical test, we conclude that the probabilistic approach and the JON- 

SWAP spectrum description yield consistent results. 

However, not all the energy flux values recorded in Table 3.1 are meaningful. Some 

of the probabilistic approach results are sensitive to the period cut-off we adopt (23.4 

seconds in this case), and would unboundedly increase if we allowed for larger and 

larger wave periods. The problem lies in the way the energy flux is calculated, from 

(3.17) or (3.18). In these expressions, the wave energy density, E, is proportional to 

t2, while the group velocity, C,, is proportional to T in deep water and constant in 

shallow water. Therefore, the energy flux integrals are of the form 

but for a constant factor. Here, fc, is the density function (either the 1975 or the 1983 

distribution), r = 2, and t is a constant whose value ranges from 0 to  2, depending 

on whet)hel- the computation corresponds to  shallow or deep water, and whether an 

extra T term accounting for different period durations is introduced or not. As 

shown im Appendix A, I is integrable for t < 4 for the 1975 distribution, but only 

for t < 1 for the 1983 distribution. This causes the 1983 distribution to  yield non- 

convergent predictions of the energy flux in most cases. The 1975 distribution shows 

a better convergence behavior, but different authors (Longuet-Higgins, 1983; Srokosz 

ajnd Ch;:lllenor, 1987) claim that it represents observations less accurately than the 

1983 distribution. 

In the momentum equations of the hydrodynamic model, to be introduced in 

Chapter 4, we are not explicitly interested in the energy flux, but in the radiation 

stress terms, such as S,, and S,, (defined in (4.2) and (4.3)), which are proportional 

to E2 and independent of 7 ,  both in deep and shallow water. This makes the integral 

coiiverg~~nt, even with the 1983 density function, provided that period weighting is 

not implemented. In Section 3.3, we will show that period weighting does not signifi- 

cantly affect radiation stress predictions. Since the 1983 distribution affords a better 



representation of observations, we will adopt the 1983 distribution without period 

weighting to characterize the incident waves, as justified in the following sections. 

The considerations about integrability presented in this section are summarized 

in Table 3.2. 

Table 3.2: Summary of the integrability of energy flux and radiation stress in the 
probabilistic approach 

3.3 Validation of Tajima's random wave model 

Distribution, formulation 
LH75, without T weighting 
LH75, with T weighting 
LH83, without T weighting 
LH83, with T weighting 

In the previous section, we showed the consistency of the probabilistic wave-by-wave 

approach with the JONSWAP spectral model. In this section, we compare different 

probabilistic descriptions and use them to show the validity of Tajima's (2004) random 

wave model. 

We use Longuet-Higgins's (1975, 1983) probability distributions to  model inci- 

dent random waves more realistically than Tajima's (2004) very narrow distribution, 

defined by H,,, and Tpeak. Longuet-Higgins's distributions allow us to examine the 

effects of the spectral width, assumed 0 by Tajima. The probabilistic wave by wave 

approach is used: Individual wave components, of H and T, are propagated using 

Tajima's linear monochromatic model. Then, mean wave characteristics are calcu- 

lated, at  various positions in- and outside the surf zone, by averaging the results 

for all individual components, according to the probability density function. The 

results we are specifically interested in are: Wave heights, radiation stress gradients 

(dSxx/dx, see (4.2)) and surface roller stress gradients (dR,,/dx, see (4.5)). These 

two latter stress gradients play a role in the momentum conservation equations, and 

therefore influence the values of wave set-up and undertow. When calculating stress 

Integrability of.. . 

Ef 
Yes 
Yes 

Only in shallow water 
No 

Rad. stresses 
Yes 
Yes 
Yes 
No 



 gradient,^, the average of individual wave results may be computed with or without 

accounting for the effect of different period durations. In the case of wave heights, 

different; periods play no role in the average. As explained in the previous section, 

due to  integrability considerations, averaging with period weighting is only possible 

for the 1,onguet-Higgins's (1975) distribution, but not for the later 1983 distribution. 

Figures 3-1 to 3-5 show a, comparison between Tajima's spectral model and the 

probabilistic wave-by-wave approach on a plane beach of slope 1:50. The incident 

wave is characterized by H,,, = 1 m and Tau, = 5 s in deep water (h = 200 m). The 

corresponding peak period is Tpeak = 6.10 S, according t o  the JONSWAP spectrum. 

The spectral width parameter ranges from v = 0.1 to  v = 0.6 in the probabilistic 

approach. Tajima's spectral model assumes an infinitely narrow spectrum, corre- 

sponding to  v = 0, and is characterized by a single period. We consider two choices 

for the characteristic period: The average period, Tau,, and the peak period, Tpeak. 

Tajima (2004) suggests the latter. However, as shown in the figures, the former yields 

better a.greement with the probabilistic description. 

Figure 3-1 compares the wave heights predicted by Tajima's spectral model and by 

the wave-by-wave approach using Longuet-Higgins's (1983) distribution. The choice 

of Tau, in Tajima's spectral model yields wave heights coincident with the narrow 

spectrul-n probabilistic description (v = 0.1)) while the choice of Tpeak introduces 

discrepancies. In the off-shore region, x < -150 m, the average relative error of 

Ta,jima's results based on T,, , with respect to  Longuet-Higgins's (1983) with v = 0.1, 

is 0.1%) while the average error of the results based on Tpeak is 2%. In the nearshore 

region, :I; > -150 m, the discrepancies between Tajima's model and the probabilistic 

wa,ve-by.-wave approach become large, as shown in the middle plot of Figure 3-1. The 

wa,ve height predicted by Tajima is as large as 3 times the value obtained by applying 

Longuet.-Higgins's description. In the plot, only the ratio with respect to v = 0.1 is 

shown; the ratio with respect to v = 0.6 yields similar values in the nearshore region, 

where the wave-by-wave approach results are insensitive to  the value of v. Due to 

this ovel-prediction of the wave height, Tajima's model yields a larger undertow in 

the nearshore region, as shown in Figure 3-5.  
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Figure 3-1: Conlparison of wave height predictions in the plane beach case. Upper 
plot: Tajima's spectral model for H,,, and Tau, (solid line), Tajima's spectral model 
for H,,, and Tpeak (thick dotted line), and Longuet-Higgins's (1983) distribution, for 
v = 0.1 (dashed line) and v = 0.6 (thin dotted line). Middle plot: Ratio between wave 
heights from Tajima's spectral model and from Longuet-Higgins's (1983) distribution 
for v = 0.1. 
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Figure 3-2: Comparison of wave height predictions in the plane beach case. Upper 
plot: Longuet-Higgins's 1983 distribution, for v = 0.1 (thin dashed line) and v = 0.6 
(thick dashed line) and Longuet-Higgin's 1975 distribution, for v = 0.1 (thick dotted 
line) and 11 = 0.6 (thin dotted line). Middle plot: Ratios bet,ween the previous 
magnitude:;. 
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Figure 3-2 shows a comparison between the predicted wave heights obtained by 

the probabilistic wave-by-wave approach using Longuet-Higgins's 1975 and 1983 dis- 

tributions. For ease of comparison, ratios between magnitudes have been represented 

in the middle plot. For v = 0.1, both distributions yield almost the same results, 

with an average difference of 0.08%. For v = 0.6, the average difference is 0.8%, still 

small, and it remains small in the nearshore region. Furthermore, the average differ- 

ence between the results for v = 0.1 and v = 0.6 for the same distribution (1983) is 

1.5%, bigger than the difference between different distributions for a given value of v. 

Therefore we conclude that the wave height predictions afforded by the two Longuet- 

Higgins's distributions are similar. Note that this statement is particularly accurate 

in the nearshore region, where the results are notably insensitive to the distribution 

choice and to  the value of v. 

In Figure 3-3, we compare the radiation and surface roller stress gradients pre- 

dicted by Tajima's spectral model, based on Tau, and on Tpeak, with the wave-by-wave 

approach predictions using Longuet-Higgins's (1983). Both realizations of Tajima's 

spectral model yield results displaced seaward with respect to  the probabilistic de- 

scription, but this disagreement is more pronounced for the Tpeak choice. Since the 

peak period is larger than the average period, it leads to  a larger wavelength. Conse- 

quently, the peak period wave feels the bottom earlier than the average period wave, 

and the difference with respect to  the probabilistic results is more pronounced. Note 

that ,  surprisingly, Tajima's predictions are closer to  the probabilistic approach re- 

sults for wider spectra (v = 0.6). Tajima's model corresponds to v = 0, and therefore 

we expected its results to  be closer to the probabilistic results for narrower spectra 

(v = 0.1). 

Stress gradient predictions using the 1975 and 1983 distributions are compared in 

Figure 3-4. According to the integrability considerations discussed in Section 3.2 and 

summarized in Table 3.2, radiation and surface roller stresses can only be calculated 

without period weighting for the 1983 distribution, while the 1975 distribution allows 

period weighting. All the probabilistic descriptions (1983 distribution without period 

weighting; 1975 distribution without and with period weighting) yield coincidental 
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Figure 3-3: C;omparison of radiation stress gradients and surface roller stress gradients 
in the plane beach case. Tajima's spectral model for H,,, and Tau, (solid line), 
Tajima's spectral model for H,,, and Tpeak (thick dotted line), and Longuet-Higgins's 
(1983) distribution, for v = 0.1 (dashed line) and v = 0.6 (thin dot,ted line). Different 
wave period durations are not accounted for when averaging. 
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Figure 3-4: Comparison of radiation stress gradients and surface roller stress gradients 
in the plane beach case. The models compared are: Tajima's spectral model for 
Hrms and Tau,, Longuet-Higgins's (1983) distribution, for v = 0.1 and v = 0.6, and 
Longuet-Higgins's (1975) distribution, for u = 0.1 and u = 0.6. Results accounting 
for and not accounting for wave period durations are shown for Longuet-Higgins's 
(1975) distribution. 
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results for narrow spectra (v = 0.1). For wider spectra (v = 0.6), the results from the 

1983 distribution are closer to Tajinia's predictions than the results from the 1975 

distribution. Note that period averaging does not have significant influence on the 

1975 distribution results for any value of v = 0.1. 

For t,he same plane beach case, Figure 3-5 compares wave set-up and undertow re- 

sults afforded by Tajima's spectral model and by Longuet-Higgins's 1983 probabilistic 

description.. Longuet-Higgins's 1975 distribution results, not shown in the figure, are 

sirnilar to  the 1983 distribution results. The wave set-up, 17, is given by 

where the bottom current shear stress, r C b x ,  has been neglected because of its generally 

negligible effect compared to the stress gradients, as shown by Tajima (2004). The 

undertow, Uo, is obtained from mass conservation as 

where q,(,,, and q,,, are the volume fluxes due to waves and surface roller, respectively, 

as defined in (4.1) and (4.4). Figure 3-5 shows very good agreement between dif- 

ferent predictions of the wave set-up, while we observe some discrepancies between 

undertow predictions. Tajima's spectral model predicts a variation of the undertow 

of similar shape as the probabilistic models. However, Tajima underpredicts the 

maximum magnitude of the undertow after the breakpoint, and it overpredicts the 

undertow values near the shore. This latter overprediction is related to  the larger 

wave height computed by Tajima's model in the nearshore region, as shown in Figure 

3-1, and may have a significant influence in sediment transport calculations. Again, 

the agreement with the probabilistic descriptions is better when Tajima's model is 

ba,sed on the average period, T,,,, than on the peak period, Tpeak; particularly around 

the brea,kpoint . 

Figures 3-6 and 3-7 show the same comparison on a barred beach topography, 

which corresponds to the experiments by Wang et al. (2002). Only the probabilistic 
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Figure 3-5: Comparison of wave set-up and return current velocities in the plane beach 
case. Tajima's spectral model for H,,, and Tau, (solid line), Tajima's spectral model 
for H,,, and Tpeak (thick dotted line), and Longuet-Higgins's (1983) distribution, for 
v = 0.1 (dashed line) and v = 0.6 (thin dotted line). Upper plot: Wave set-up. 
Middle plot: Return current velocity. 
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Figure 3-6: Comparison of wave height predictions in the barred beach case. Tajima's 
spectral model (solid line) and Longuet-Higgins's (1983) distribution, for v = 0.1 
(dashed line) and v = 0.6 (dotted line). 
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in the barred beach case. Tajima's spectral model (solid line) and Longuet-Higgins's 
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results corresponding to Longuet-Higgins's (1983) distribution are presented here; 

the 1975 results are essentially similar. For this topography, the bar acts as a strong 

conditioning for model results, and good agreement is found between Tajima's spectral 

model and the probabilistic wave-by-wave approach, better than in the plane beach 

case. 

3.4 Conclusion 

We have developed a probabilistic wave-by-wave approach that  yields a more detailed 

prediction of nearshore hydrodynamics than Tajima's (2004) simple spectral model. 

To characterize the incident waves, we have tested Longuet-Higgins's 1975 and 1983 

probability distributions, which have been shown to give a good description of real 

sea waves, in agreement with JONSWAP spectrum. Since only the 1983 distribution 

accounts for the asymmetry of wave periods, which is observed in broad spectra, it 

is preferred to the 1975 distribution. However, in our probabilistic wave-by-wave for- 

mulation, it appears conceptually appropriate to introduce a T factor when averaging 

individual wave component results, which is only possible by using the 1975 distri- 

bution, due t,o integrability considerations discussed in Section 3.2. Nevertheless, the 

numerical experiments for plane and barred beaches show that this extra T factor 

has negligible influence on the results yielded by the 1975 distribution. Therefore, it 

is accurate enough to disregard the effect of the wave period averaging and to use 

Longue1:-Higgins's 1983 distribution without including the T factor. 

The probabilistic wave-by-wave approach was compared to  Tajima's (2004) spec- 

tral model. Some discrepancies between Tajima's spectral model and the more de- 

tailed probabilistic description have been found. The agreement is improved when 

Tajima's very narrow spectral model is characterized by Hrms and Tau, = 2rrmo/ml, 

instead of H,,,, and Tpeak as originally suggested by Tajima. However, for either 

choice of the representative period, predictions of wave heights and undertow near 

the shore are significantly different from those afforded by the wave-by-wave approach. 





Chapter 4 

Unsteady one-dimensional 

hydrodynamic model 

Tajima's (2004) hydrodynamic model, whose main features were summarized in Chap- 

ter 2, assumes steady conditions. Real sea conditions, however, are usually unsteady 

and vary over a longer scale than the wave period. Changes in this longer scale may 

significantly affect sediment transport, and therefore they must be taken into account. 

In this chapter, we extend Tajima's hydrodynamic model to unsteady conditions. 

First, we present a generalization of the governing equations to the unsteady case. 

Then, we detail the numerical implementation of these generalized equations. Finally, 

we apply the unsteady hydrodynamic model to test cases and show the relevance of 

the unsteady generalization to sediment transport calculations. 

4.1 Derivation of the governing equations 

Volume fluxes and momentum forcings 

In this section, we present the governing equations for the unsteady case. The wave, 

surface roller and current models stay the same as Tajima7s. Their formulations were 

summarized in Chapter 2,  Sections 2.1.1, 2.2.1 and 2.3, respectivr:ly. 

Volume fluxes and momentum forcings due to  waves and surface rollers play an im- 



portant role in the governing equations. According to Tajima (2004), the components 

of the wave volume flux above the trough level are 

U 

(qwx, qwy) = Jh-H;2 ( 6 , G ) d ~  = - (COS 0, sin 0) 
PC 

where (G, 6) are the wave orbital velocity components in x- and y-directions, respec- 

tively, the overline represents time-average over a wave period, E is the wave energy 

density, and 0 is the angle of wave incidence. 

Wave radiation stresses, Sx, and Sxy, are given by (e.g., Mei, 1989, p. 466) 

According to (2.25), the volume fluxes in x- and y-directions due to the surface 

roller are 
Ssr 2Esr 

(qsrx, qsry) = - (COS 0, sin 0) = - (cos 0, sin 0) T PC 

where Ssr and E,, are the surface area and energy of the roller, respectively, as defined 

in Section 2.2.1. 

Averaged momentum fluxes due to  the surface roller, R,, and Rxy, are expressed 

as (Tajima, 2004) 

pSsrC2 cos2 0 
Rxz = L 

= 2Esr cos2 0 

pS,,C2 cos 0 sin 0 
RX, = L 

= Esr sin(20) 

Relationships between stresses and current velocities 

The main variables that define the model are set-up, f j ,  total flux due to  currents, 

(qcx , qcy ) , surface velocities, (Us, V,) , bottom shear stresses, ('TcbX, T ~ ~ ~ ) ,  and trough 

shear stresses, (rC,,, rCsy). The first five are the independent variables in our formula- 

tion. The bottom and trough shear stresses are related to the independent variables 



through our nearshore current model. According to  (2.46). 

where 

Integrating the velocity profile, (2.46), from z = 20 to  = h + 7, we get 

where 

The system of equations (4.7) and (4.10) yields 

Analogously, 



Governing equations 

Equations (4.13) through (4.16) allow us to  compute the shear stresses from the 

independent variables. The five independent variables, 7, qcx, qc,, Us, and V,, are 

obtained from the governing equations: Depth-integrated mass conservation equation, 

dept h-integrated momentum conservation equations above the trough level (in x- and 

y- directions), and depth-integrated momentum conservation equations over the whole 

depth (in x- and y-directions). The derivation of these equations for the unsteady 

case and the notation are detailed in Appendix B. Here, we summarize the resulting 

equations under the long, straight beach assumption, i.e., d/ay = 0. Integration of 

the mass conservation equation along the whole depth, (B.59), yields 

where to is the slow time variation, and qwx and qsrx are the fluxes due to waves and 

roller, respectively (see Appendix B for details). In our time-advancing numerical 

scheme, we will use this equation to  compute fj ,  since this is the only independent 

variable involved in a time-derivative in this equation (double-underlined term). 

The momentum equations integrated above the trough level yield expressions for 

the trough shear stresses. In the cross-shore (x) direction, 

where Fshpx, Fswx, Fsrx, and Fscx are forces due to hydrostatic pressure, waves, roller, 

and current and current-associat ed interactions, respectively. Neglecting atmospheric 

pressure and wind shear stress contributions, (B.33) yields 



Note that Us (double-underlined term) and f j  are the independent variables involved 

in time-derivatives in equation (4.18). df j /d to  can be expressed in terms of spatial 

derivatives by means of (4.17). Therefore, in our numerical scheme, we will use 

equation (4.18) to  compute Us. 

Similarly, in the alongshore direction (y),  we have 

where 

Fsry = 
a R x y  aqsr, 

d x  P- 
at ,  

and F,,, is a turbulent viscous force, and vt, is the turbulent eddy viscosity at the 

trough level, defined in (2.38). Equation (4.23) will be used to  compute V,. 

The integrated momentum equations over the entire depth yield expressions for 

the bott80ni shear stresses, as obtained in (B.49). In x-direction, 

where, 1-leglecting atmospheric pressure and wind shear stress contributions, 



where qb, = q,, - Us& is the volume flux under the trough level due to  currents, and 

Uo denotes the x-component of the vertically-averaged wave-induced current velocity 

under trough level. Equation (4.28) will be used to compute q,,. 

Similarly, in y-direction, 

where 

where uto is the averaged value of the turbulent eddy viscosity under the trough level, 

which can be calculated from (2.38). Equation (4.32) will be used to  compute q,,. 

4.2 Numerical implementat ion 

4.2.1 Model input 

The input for the hydrodynamic model consists of the bathymetry and the charac- 

teristics of the incident wave. Like Tajima (2004), we require the bathymetry to be 

parallel to  the shoreline, according to the assumption of a long straight beach. The 

incident wave characteristics are the wave height, period, and angle of incidence. We 

are interested in modeling a wave beat, in which the wave height varies slowly in time. 

We further assume a narrow-banded spectrum, characterized by a single period, and 

therefore treat the waves as monochromatic. The angle of incidence is represented by 

a single value. 

The time scale over which the wave height changes, the beat period, is by defi- 

nition significantly longer than the time scale of the wave motion, the wave period. 



Wave beats often arise in real seas. A wave beat can be regarded as the result of 

the superposition of two simple harmonic waves of slightly different wave frequency. 

Consider two such wa,ves, 

a 
7'1 = - cos cpl 2 

a 
72 = - cos $02 2 

where 

PI = ( k x  + bkx)  a: + ( k ,  + bk,) y - ( w  + bw) t 

~2 = ( k x  - blc,) a: + ( k ,  - b/c,) y - ( w  - bw) t 

such that bw << w. The superposition of these two waves yields 

q =  ql +qz  = iicoscp 

with 

Here, tl-~e superposition of the two monochromatic waves results in a wave beat whose 

amplitude varies from 0 to  a ,  as represented in Figure 4- l (a ) .  

Suppose now that the two incident waves, and q2, have different amplitudes: 

71 = a1 cos cpl 

112 = a2 cos p2 

with pl and 9 2  defined by (4.38) and (4.39), respectively. The resulting wave is 



time 
(a) 

time 
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Figure 4-1: Time evolution of water elevation in a wave beat. (a) Superposition of 
two waves of identical amplitude. The dashed line represents the wave amplitude of 
the resulting beat. Note that the minimum beat amplitude is 0. (b) Superposition 
of two waves of different amplitude. The minimum amplitude of the resulting wave 
beat is greater than 0. 

where 

ii = Jay + a: + 2ala2 cos 12 (bk,x + bk,y - bw t ) ]  (4.46) 

+ = arccos 
(a1 + a2) cos (bk, x + blc, y - bw t )  

a (4.47) 

In this case, the beat amplitude is always strictly bigger than 0, as represented in 

Figure 4- 1 (b) . 

We will model the incident wave height variation similarly to  the latter case. We 

will assume a slow and small time-variation of the wave height around its mean value. 

In our examples, the variation will be modeled as sinusoidal, although the numerical 

code we have developed allows for any other kind of variation. 

The incident wave is defined in the model as a series of individual monochromatic 



waves, each one of slightly different wave height from the precedent one and all of 

them with the same wave period. Each wave component has a duration of a wave 

period, and the series of wave components define the beat period. 

This definition of the incident wave introduces step changes in the wave height 

from one cornponent to  another, which are inadequate for numerical purposes. For 

this reason, the wave height input is smoothed into a second order polynomial varia- 

t,ion. For every wave period, we interpolate a second order polynomial time-varying 

wave height, according to  the following requirements: i) Continuity of the wave height, 

ii) C~nt~inui ty  of the first derivative, iii) Conservation of total wave energy in each 

wave period. 

Figu.re 4-2 shows how the smoothed incident wave looks for the numerical ex- 

periments presented in Section 4.3. In this case, the wave beat consists of 12 wave 

periods. Observe that, in the example, the variation of the incident wave height is 

only f 0. lli,.,,; due to  this fact, Ha,, and H,,, have similar values. 

Figure 4-2: Input wave height at  the offshore boundary: Incident beat and smoothed 
input for the numerical scheme. This input corresponds to the numerical experiments 
presented in Section 4.3. T stands for the wave period. 



4.2.2 Model initialization 

We adopt a solution scheme in which we advance in time. Therefore, we need to 

define initial values of the unknowns. These are obtained by running Tajima's (2004) 

monochromatic model for the mean wave height. Tajima's monochromatic model 

provides the initial values of wave set-up, current velocities and fluxes, and trough 

and bottom shear stresses. 

Next, we need to determine the value of the wave height, H ,  (or equivalently 

the wave energy, E) and the surface roller energy, EST, at  every location x and time 

t. The values of H ,  E, and E,, are variable in time since they change in the slow 

time of the wave beat. Note that the wave and surface roller energy determine the 

values of the momentum fluxes, Sxx , Sx, , Rxx and Rxy. For the calculation of H (x, t ) , 

E ( x ,  t ) ,  and E,,(x, t ) ,  we make the assumption that the values of the initial set-up 

provided by Tajima's monochromatic model for the root mean square wave height, 

H,,,, are representative of the set-up values for all time. Assuming these set-up 

values to  hold, we propagate the input components of H ( x  = 0, t ) ,  for different t ,  

using again Tajima's monochromatic wave model. We assume that each single wave 

component propagates at  the local wave group velocity, C,(x). We note that real 

individual waves propagate at  a speed C > C,, and they move relatively to the wave 

envelope. Our model's individual wave components do not correspond to these real 

waves, but to a discretization of the wave envelope. The wave envelope and the wave 

energy both propagate a t  speed C,. Since we are interested in the propagation of wave 

energy, we must impose that the model's individual wave components, of a given H ,  

propagate at  speed 6,. Therefore, H ( x  = 2 ,  t = i) is obtained by propagating the 

input component 

from x = 0 to x = 2,  using Tajima's monochromatic model. Thus, we compute 

H ( x ,  t ) ,  E ( x ,  t ) ,  and E,,(x, t) .  



4.2.3 Numerical scheme 

The time-advancing numerical scheme we use is a, predictor-corrector method. We 

have implemented an Adanis-Bashforth predictor scheme of 3rd order and an Adanis- 

Moulton corrector scheme of 4th order (e.g., Ferziger and PeriC, 2002). 

The predictor-corrector method is defined in the following way. Suppose we want 

to solve the time-dependent implicit differential equation in q5 

We disc1:etize the time domain in time intervals of equal length, At. Suppose we know 

{$I, 42, . . . , 4,)) i.e., the solution until time t,, and we want to calculate i.e., 

the solution for time tn+l = t, +At .  We obtain a first approximation, @+I, applying 

the 3rd order predictor scheme: 

Then, we refine the approximation using the 4th order corrector scheme: 

At 
4"" = 4" + , [9f (tn+l, 4:") + l9f ( i n r  4") - 5f (tn-1) P - l )  + f (tn-2, 4n-2)] 

(4.51) 

In our hydrodynamic model, we apply this predictor-corrector method t o  a set of 

five coupled equations (4.17, 4.18, 4.23, 4.28, 4.32) with five unkmwns (17,  q,, qcy, 

Us,  V , ) .  Note that the numerical domain is therefore discretized both in space and 

time. 

To summarize, the numerical procedure of the present model can be outlined as 

follows: 

1. With the root mean square wave height, H,,, , compute initial cross-shore values 

of the independent variables and the shear stresses from Tajima's monochro- 

nlilttic model. 

2. With the initial set-up value, and using Tajima's monochromatic model, com- 



pute H (x, t)  , E (x, t )  , EST (x, t )  . The volume fluxes and momentum fluxes in the 

governing equations remain thereafter determined for every x and t. 

3. Apply the predictor algorithm (4.50) to the governing equations (4.17, 4.18, 

4.23, 4.28, and 4.32), to  obtain first estimates of the values of the independent 

variables (7, q,, , q,,, Us ,  and 1/,) at the next time step, t + At. 

4. Apply the corrector algorithm (4.51) to refine the previous estimates. 

5. Impose the boundary conditions (see Section 4.2.4) to evaluate the unknowns 

at  the boundaries. 

6. Compute the trough and bottom shear stresses at  time t + At using equations 

(4.13) through (4.16). 

7. Return to step 3 and repeat steps 3 to 6 until the solution for the whole time 

domain has been computed. 

4.2.4 Boundary conditions 

To complete the numerical formulation, we need to  specify the boundary conditions. 

Since we are computing five independent variables, we require five boundary condi- 

tions at  each of the two boundaries: Five at the offshore boundary and five at the 

onshore boundary. 

Offshore boundary conditions 

The set-up, 7, is determined by the radiation boundary condition. The radiation 

boundary condition expresses the fact that the offshore boundary is non-reflecting, 

and no waves advancing in the possitive x-direction other than the prescribed incident 

wave are allowed. Therefore, any wave moving in the negative x-direction is allowed 

to leave the doma.in without reflecting at the boundary. We apply a Sommerfeld- 

type radiation condition, whose derivation is detailed in Appendix C. The resulting 



expression for 7)  at  the offshore boundary is 

where 

U(t) = qcx (t) + q,, (t) + q,,, (t) 
h 

and h is the still water depth. Note that, for the steady case, the net-flux in x-direction 

is zero and the right-hand side of (4.52) vanishes, yielding 

The depth-averaged velocity in x-direction, U(t), can be written as 

U(t) = (U) + U1(t) 

where (U) denotes the time-averaged value over the wave beat. In strict sense, the 

radiation condition only needs t o  be satisfied for (U), and we can allow for a zero- 

mean variation, U1(t). However, we do not know how to determine the value of U1(t). 

To avoid this problem, we impose the radiation condition for every time t ,  as stated 

by (4.52), which constitutes a more restrictive assumption. 

Following Tajima (2004), the cross-shore flux is determined by assuming unifor- 

mity in x-direction, a /dx  = 0, so that 

We also need a condition on the shore-parallel flux. This condition is of minor im- 

portance for the applications presented in this thesis, where we are mainly concerned 

with normal wave incidence. A possible boundary condition is obtained by assuming 



that the total flux has the direction of the incident wave, and therefore 

qcp = qm tan 0 0  

V, = Us tan Oo 

where 8 0  is the angle of offshore wave incidence. This boundary condition may need 

to be improved when computation of shore-parallel flux is relevant. 

Onshore boundary conditions 

In order to  avoid computational instabilities in very shallow water, Tajima's (2004) 

numerical code stops the computation a t  a node, i = iend, where the local trough 

depth, htr, becomes smaller than twice the local wave-current bottom boundary layer 

thickness, i.e., htr 5 26. We take this as a first approximation of our onshore boundary 

location. This first approximation is computed using Tajima's monochromatic model 

based on the rrns wave height. However, when the wave height becomes variable due 

to the beat effect, it is likely that ,  at  certain times, we obtain values of the set-up 

smaller than the initial one. This often causes a temporary negative total depth at  i = 

iend and therefore numerical problems. If this happens, we reset iendnew = iendoLd - 1 

and restart the computation from the initial conditions. Eventually, we will get a 

value of iend such that the total depth never becomes negative, and we are able to 

complete the calculations. 

To calculate the set-up a t  the onshore boundary, we simply assume a linear ex- 

trapolation from the neighboring values: 

The current flux in the x-direction, qcx, is computed imposing no flux beyond 

i = iend + 1. This no-flux condition is represented in Figure 4-3 by a fictitious 

impermeable wall. The wave set-up is assumed to be constant from i = iend and 
. . 

z = l end  + 1. Imposing conservation of mass in this small volume beyond the onshore 



boundary we get 

where A. is the fluid volume per unit width between i = iend and i = iend + 1, as shown 

in Figure 4-3. 

Figure 4--3: Onshore boundary condition for the current flux in x-direction. P is the 
bottom slope at  i = iend. 

To irnpose this no-flux condition a t  i = iend + 1 is numerically preferable to  impose 

it at  i =:= since the former provides a small buffer zone, A,  which smooths out 

sudden changes of the variables that may happen a t  early stages of the computation. 

The x-component of the current surface velocity near the onshore boundary is 

assumed. to  vary proportionally to the current flux, i.e., 

The y-components of the current flux and surface velocity a.re assumed to vary 
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proportionally to the total depth: 

4.3 Application of the unsteady model 

In this section, we illustrate the application of the unsteady model to  the propagation 

of a wave beat. First, we compare the set-up and undertow resulting from a wave beat 

propagating over a barred beach with the values corresponding to the constant mean 

wave height. Next, we study a wave beat propagating on a plane beach and analyze 

the effect of the beach slope on the set-up. We show the hydrodynamic variation over 

the wave beat and identify coupling effects that affect sediment transport calculations. 

4.3.1 Comparison between a wave beat and a constant wave 

In this test case, we run our unsteady hydrodynamic model over a barred bathymetry 

corresponding to the experimental case presented by Wang et al. (2002). The wave 

period is Twave = 3 s, the angle of incidence is Bo = 10' and the wave height varies 

sinusoidally around a mean value of Have = 0.162 m. The beat variation of the wave 

height is of f O.lHave over a wave beat Taeat = 12Twave = 36 s. We run a total of 

10 wave beats. After a time of 2 beats, the results have converged, in the sense that 

they become perfectly periodic, following the wave beats, as shown in Figure 4-4, 

at  location x = -0.8 m. This corresponds to the usual behavior of our unsteady 

model: After some initial oscillations, due to the approximate nature of the initial 

estimate provided by Tajima's monochromatic model, convergence, in the sense of 

beat periodicity, is achieved after a small number of beats. 

Figure 4-5 shows a comparison between the results of the unsteady model, aver- 

aged in time over the last computed beat (i.e., average from t = 324 s to t = 360 

s), and Tajima's monochromatic model results for the root mean square wave height, 
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Figure 4-4: Evolution of the mean wave set-up (77) and undertow (U) a t  x = -0.8 m. 
Periodicity is achieved quickly. 

H,,, . The agreement between the two is very good, showing that the time-averaged 

results of the unsteady approach are consistent with Tajima's mean value predictions. 

However., the unsteady model is expected to  capture hydrodynamic effects associated 

with the wave height variation, relevant to  sediment transport, that are ignored by 

Ta,jima. This will be examined in the following section. 

4.3.2 Wave beat propagating on a plane beach 

Here we stutly a wave beat propagating on a plane beach. The wave beat has a 

sinusoidslly varying wave height. It starts propagating from a deep water depth of 

hjo = 0.35 nl, where the average wave height value is H,,,, = 0.0828 m and its variation 

is f 0.  lIfa,,, . Note that, due to the small wave height variation, E-I,,,, and Hrms have 

virtualljr the same value. The wave period is constant, TWau, = 1.26 s. The beat 

period consists of 12 waves, Tkat = 12TtUave = 15.12 s. We consider different values 
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Figure 4-5: Comparison between the beat averaged results of the unsteady hydrody- 
namic model (referred as "beat") and Tajima's monochromatic model results (referred 
as i'constant wave"). Mean set-up (upper graph) and mean current velocities over 
the whole depth (middle graph). 
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of the beach slope, tan /3. 

Similar to the case studied in the previous section, it takes a small number of beat 

periods to achieve convergence. We present the results after a time equal to 10 wave 

beats, when convergence has already been reached and the hydrodynamic behavior 

of the system is periodic in the wave beat. 

Wave set-up 

Figure 4-6 shows the mean wave set-up a t  different times of a beat period, for different 

values of the slope, tan P. Specifically, we consider the times 10.OOTbeat = 151.20 s, 

10.25Tb,,,t I= 154.98 s, 10.50Tbeat = 158.76 s, and 10.75Tbeat = 162.54 s. As indicated 

before, the results for 1 l.OOTbeat would be equal to the results for 10.OOTbeat, due to  

periodicity. 

For the steep slope cases ( tan@ = 0.1 and t a n P  = 0.05), the onshore region - 

the region of the beach onshore of the breakpoint- is short when compared to the 

beat wavelength. Therefore, we expect a rapid response of the water body to the beat 

variation. In agreement with this, the water body oscillates following the beat, with a 

single node located next to  the breakpoint. The wave set-up variation with respect to  

time, over the eleventh beat of the simulation, is plotted for specific nodes inside the 

onshore region in Figure 4-7, for tan P = 0.1 (plots (a) and (b)) and for tan P = 0.05 

(plots (c) and (d)). The wave set-up follows an oscillatory behavior induced by the 

wave beat. Ebr each slope, two different locations are presented to show that, since 

t,he onshore region is short, the set-up variations are in phase. We observe that, in 

all selected cross-shore locations, the time-average set-up predicted by the unsteady 

model (solid horizontal line) is larger than Tajima's steady monochromatic model's 

solution for H,,, (dashed horizontal line). 

For t'he intermediate slope value ( t anP  = 0.025), the length of the onshore region 

is of the order of magnitude of half the beat wavelength. Since the beat has been 

assumed to propagate a t  the wave group velocity, C,, the beat half-wavelength is 

112 C,Tbeat. An average value of the wave group velocity in the orlshore region (from 

the breakpoint? around h = 0.13 m, to the shoreline) is C, = 0.68 m/s. This average 
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Figure 4-6: Mean wave set-up evolution over the wave beat in plane beaches with 
different values of the slope, tan P. 
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Figure 4-7: Mean wave set-up evolution over the wave beat in plane beaches of steep 
slope at  specific cross-shore locations: (a) tan /3 = 0.1, x = -0.75 m; (b) tan P = 0.1, 
x = -0.25 rn; (c) t a n P  = 0.05, x = -1.5 m; (d) t a n P  = 0.05, x = -0.5 m. The 
horizontal solid line represents the time-average value and the horizontal dashed line 
is 'Tajima's st;ea.dy monochroniatic niodel solution. 
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Figure 4-8: Mean wave set-up evolution over the wave beat in a plane beach of inter- 
mediate slope, tan P = 0.025, at  specific cross-shore locations: (a) x = -4.5 m; (b) 
x = -3 m; (c) x = -1 ni. The horizontal solid line represents the time-average value 
and the horizontal dashed line is Tajima's steady monochromatic model solution. 



value yields a beat half-wavelength of 5.2 m, which coincides with the onshore region 

length. For this reason, in this case, different stages of the wave beat variation are 

present i ~ t  different positions of the beach at  the same time. This can be seen in Figure 

4-8, which represents the wave set-up evolution for specific cross-shore locations over 

the elevent,h beat of the simulation. For time t = 6T, i.e., at the middle of this 

eleventh beat, the wave set-up is maximum at x = -4.5 m, average a t  x = -3 m, 

and minimum at x = -1 m, since the distance between these locations is ambout one 

quarter of the beat wavelength. The general picture along the beach is a water body 

oscillation with two nodes, one located in the offshore region and the other around 

x - -3 m (see Figure 4-8 (b)). 

For rnild slopes (tan P = 0.01 and tan P = 0.005), the length of the onshore region 

is significantly larger than the beat half-wavelength. Consequently, we observe a wavy 

profile of the set-up in the cross-shore direction, caused by the sequence of beats 

propagating shoreward. For a given cross-shore location, the set-up still exhibits 

a rather sinusoidal shape, as shown in Figure 4-9. The two cross-shore locations 

represented in Figure 4-9 are separated by a distance of 6 m, of the order of the beat 

half-wavelength (about 5.2 m); therefore, their respective wave set-up variations are 

out of phase. 

Here, we have analyzed the effect of the beach slope on the set-up profile. The 

influence of changing the wave period, Twaue7 or the beat period, Theat? is similar. 

Long wave periods or long beat periods make the water body response look fast in 

comparison. Therefore, longer wave or beat periods have similar influence as steeper 

slopes, aad vice versa. 

Estimate of sediment transport 

The ultimake goal of improving Tajima's hydrodynamic model is to  investigate the 

influence of the suggested model modifications on sediment transport predictions in 

the surf zone. Sediment transport gradients lead to  changes in beach bathymetry, as 
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Figure 4-9: Mean wave set-up evolution over the wave beat in a plane beach of mild 
slope, tan P = 0.01, a t  specific cross-shore locations: (a) x = - 10 m; (b) x = -4 m. 
The horizontal solid line represents the time-average value and the horizontal dashed 
line is Tajima's steady monochromatic model solution. 



expressed by the equation of conservation of sediment in the bottom, 

where [ is the bottom elevation, Qs is the volumetric rate of sediment transport per 

unit width, and n is the porosity of the bed. 

The sediment transport rate is calculated as 

where c, is the concentration of sediment and u is the horizontal fluid velocity. The 

integration is carried out over the entire water depth and the overbar denotes time- 

average over the wave beat. As a rough approximation, we assume c, to  account for 

both the suspended sediment and the bedload. cs is proportional to  the excess bottom 

shear st'ress, (T - T~,)  N T,  which is in turn proportional to  uim, the wave bottom 

orbital velocity squared. The horizontal fluid velocity carrying the sediment, u, can 

be represented by the depth-averaged undertow, Uo. Therefore, as a first estimate, 

the sediment transport rate can be considered proportional to u&Uo. Note that, in 

this estimate, c, is approximated by a depth-independent quantity, and no explicit 

depth integration is involved. The gradient of the sediment transport rate is then 

proportional t o  d(u&Uo)/dt. Due to conservation of sediment, (4.65), erosion occurs 

when the sediment transport gradient is positive, and deposition when it is negative. 

The maxima of the sediment transport gradient correspond to bottom troughs. and 

the minima to  bottom crests. 

Figures 4-10 to 4-15 show the influence of the wave beat on the magnitude uimUo, 

represeritative of sediment transport rate. The bathymetries correspond to four of 

the plalle beach cases presented in Figure 4-6. Figures 4-10, 4-12, 4-14, and 4-15 

represent rna.gnitudes across the beach profile. Upper plots in these figures show the 

beat variations of Uhm and Uo. Only the values corresponding to t = 10.25Tbeut and 

t == 1 0 . 7 5 ~ , , t  are plotted, since these approximately correspond to maximum and 

~liininiu~n values of sediment transport for the steeper beach cases. The estimate 
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Figure 4-10: Wadve bottom orbital velocity, undertow, and estimation of sediment 
transport gradient for a plane beach of slope t a n P  = 0.1. 
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of Q, oc uimUo is calculated as a time-averaged value over the wave beat. Changes 

in the beach profile are governed by the cross-shore gradient of sediment transport, 

aQ,/ax. which is represented in the middle plots of the aforementioned figures by 

- ( u J o ) / x .  The minus sign is introduced so that the plots resemble the pre- 

dicted bottom shape tendency. The wave beat results are compared with Tajima's 

monochi:omatic results for Hmsl referred in the figures as Tujirnu. Figures 4-11 and 

4-13 represent the magnitudes ua, and Uo (upper plots) and ui,Uo (lower plots) 

over the eleventh period of the simulation for specific cross-shore locations. In these 

two figures, the beat-averaged quantities (solid horizontal lines) are also compared to 

Ta,jima's steady monochromatic model solutions for HTms (dashed horizontal lines). 

In the steep beach case (Figures 4-10 and 4-11, tan P = 0.1), the water body 

responds rapidly to the wave beat. Therefore, larger wave heights (with larger ubm) 

cause an almost immediate increase of the undertow, Uo. For this reason, as seen 

in Figure 4-10, ub, and Uo are in phase (note the negative sign of Uo). This is 

shown in Figure 4-11 for x = -0.75 m, onshore of the breakpoint. The undertow is 

larger when ,uh is larger and there is more sediment in suspension. This coupling 

of effects provides a mechanism to  increase sediment transport, which would have 

been neglected if we had only calculated the average values of u h L  and Uo instead of 

accounting for their variation over the wave beat. Indeed, as shown by comparing 

the sediment transport rates of the beat and the constant wave case (Figures 4-10 

aad 4-11), this mechanism causes an increase of sediment transport in the onshore 

region. The magnitude of the increase of sediment transport gradient is small (under 

5%), since the beat wave height variation is also small ( lo%),  but it may become 

significant if the beat variation is larger. Note in Figure 4-10 that ,  near the shore, 

Tajima's sediment transport gradient prediction becomes larger than the beat result. 

This is consistent with the fact that Tajima's model overpredicts the wave height 

in the region closer to the shoreline, as discussed in Section 3.3 (see Figure 3-1). A 

major difference between the beat and the constant wave results is that the sediment 

transport gradient varies across the profile in a smoother way for the former (see 

Figure 4--10). This is due to  the fact that the constant wave has a constant breakpoint 
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Figure 4-11: Wave bottom orbital velocity, undertow, and estimation of sediment 
transport for a plane beach of slope t a n P  = 0.1 at x = -0.75 m. Horizontal solid 
lines represent time-average values and horizontal dashed lines are Tajima's steady 
monochromatic model solutions. 



Figure ~3;-1%: Wave bottom orbital velocity, undertow, and estiniation of sediment 
transport gradient for a plane beach of slope t a n p  = 0.025. 



location, which causes the sharp shape of the sediment transport gradient. In contrast, 

the wave beat has a variable breakpoint, since the wave height is variable, which yields 

a smooth beat-averaged sediment transport gradient. 

For intermediate slopes (Figures 4-12 and 4-13 (a),  tan P = 0.025), the water body 

response to  the beat is slower. Uo is now out of phase with u h  and the aforemen- 

tioned coupling process no longer happens. In Figure 4-12, the represented times 

approximately correspond to extreme values of Uo and sediment transport, but they 

yield intermediate values for ub, in the onshore region. For this reason, in Figure 

4-12, u h  appears to  be constant in the onshore region. This is not the case, as 

shown by the time evolution of u h  at  x = -1 m, represented in Figure 4-13 (a). 

Also note in Figure 4-12 how the locations of the predicted bar crest and bar trough 

(corresponding to  maximum and minimum values of - a ( ~ ~ ~ U ~ ) / a x ,  respectively) are 

very different from the steady case. The bar crest has migrated seaward and the bar 

trough shoreward with respect to the steady case. 

For mild slopes (Figures 4-14 and 4-13 (b), t a n P  = 0.01, and Figure 4-15, 

t a n P  = 0.005), the cross-shore variation of Uo shows undulations corresponding to 

different wave beats propagating towards the shore. The average value of these beats 

yields a sediment transport variation significantly smoother than in the constant wave 

case. Therefore, the sediment transport gradient is notably smaller, and we expect 

slower changes in the beach bathymetry. We observe again that the predicted posi- 

tions of the bar crest and trough have moved seaward and shoreward, respectively, 

with respect to the steady model results. The small bottom undulations predicted 

in Figure 4-15 (tan @ = 0.005) correspond to  variations within the length scale of 

the local wavelength. Since all results from the hydrodynamic model are averaged 

values over a wave period, these small undulations must be disregarded. We note 

that the average predicted sediment transport gradient inside the surf zone is similar 

to the constant wave case. However, the time variation predicted by the unsteady 

model is noticeable. Consider for instance the cross-shore location x = -6m in the 

tan p = 0.01 beach. The average sediment transport gradient is almost the same 

for the steady and unsteady cases (Figure 4-14). However, the time variation of the 
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Figure 4-13: Wave bottom orbital velocity, undertow, and estirnation of sediment 
tritnsport for plane beaches a t  specific cross-shore locations: ( a )  t an  j3 = 0.025, 
3: = -1 rn; (b) tan j3 = 0.01, x = -6 m. Horizontal solid lines represent time- 
average values and horizontal dashed lines are Ta,jima's steady monochromatic model 
solutions. 
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Figure 4-14: Wave bottom orbital velocity, undertow, and estimation of sediment 
transport gradient for a plane beach of slope tan /3 = 0.01. 
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Figure 4-15: Wave bottom orbital velocity, undertow, and estimation of sediment 
transport gradient for a plane beach of slope t an@ = 0.005. 



transport rate in the unsteady case is about six tinies larger than its average mag- 

nitude, yielding both onshore and offshore transports, as shown in Figure 4-13 (b), 

while the beat wave height variation is only 10%. In this test, the large unsteady 

deviations with respect to the steady mean transport compensate each other, but 

they suggest the potentiality of the unsteady model to yield significant corrections of 

the average transport predictions, when asymmetry and skewness of the waves are 

accounted for and the beat wave height variation is larger. 



Chapter 5 

Concluding remarks 

This thesis had a dual purpose. First, we wanted to assess the suitability of Tajima7s 

(2004) hydrodynamic model, by comparing it with previously existing models, as well 

as with a new accurate wave-by-wave approach based on well-established statistical 

wave descriptions. Second, we intended to  generalize Tajima's hydrodynamic model 

to  the unsteady case. This improved model will allow us to  account for unsteady 

hydrodynamic phenomena relevant for sediment transport, and thus improve cross- 

shore sediment transport predictions. 

In this chapter, we summarize the conclusions of this thesis and suggest directions 

for futuire improvement of the hydrodynamic and sediment transport model, which 

has as it,s ultimate objective to obtain accurate predictions of sediment transport in 

the nearshore region of long straight beaches. 

5.1 Conclusions 

Tajinla's linear wave model yields more accurate results than previously existing 

wa,ve models. In the test cases shown in Chapter 2, Tajima's average linear 

errors with respect to measurements are 3-9%, while Battjes and Janssen's 

(1!378) are 4-17% and Thornton and Guza's (1983) are 9-13%. In contrast to 

these older models, Tajima's wave model presents convenient features: It is fully 

predic-tjve and it does not require parameter fitting, which affects significantly 



the results of other models; it can be applied to monochromatic waves and 

therefore it can be used in conjunction with statistical descriptions of wave 

heights and periods, as shown in Chapter 3, and provide estimates of non-linear 

near-bottom wave orbital velocity, accounting for asymmetry and skewness, 

which may be important for sediment transport predictions. These calculations 

cannot be done using existing spectral models, such as  Battjes and Janssen's, 

Thornton and Guza's or Tajima's simple spectral model. 

Tajima's surface roller model, based on Dally and Brown (1995)) yields similar 

results to  Stive and De Vriend's (1994) formulation. This confirms the validity 

of the choice of Tajima's as our surface roller model. 

We have developed a methodology for using Tajima's hydrodynamic model with 

a wave characterized by a joint probability distribution of heights and peri- 

ods, which we referred to  as the probabilistic wave-by-wave approach. Specif- 

ically, we recommend Longuet-Higgins's 1983 distribution, without accounting 

for different period durations in the probabilistic average of individual wave 

results. We have compared the hydrodynamic results of Tajima's model based 

on Longuet-Higgins's 1975 and 1983 distributions with the results from his own 

ideally narrow-banded spectral distribution. The agreement is reasonably good, 

although Tajima's simple spectral model's predicted radiation stresses appear 

displaced seaward with respect to the results of the more accurate statistical 

description. As a result of this comparison, we recommend that Tajima's simple 

spectral model is characterized by the average wave period, T,,,, instead of the 

peak period, Tpeak, as originally suggested by Tajima. This allows to reasonably 

represent narrow banded spectra up to u = 0.6. However, for either choice of 

the representative period, Tajirna's model overpredicts near-shore wave heights 

and undertow with respect to the wave-by-wave approach. 

We have derived the governing equations for the generalized unsteady hydrody- 

namic model. We have also developed a numerical scheme for their implementa- 

tion. Examples of application of the unsteady model were shown in Chapter 4. 



a Using the unsteady hydrodynamic model. we have studied the effect of a wave 

beat propagating on a plane sloping bea,ch. For steep beaches (or, equivalently, 

long waves or long beats), we have identified how the rapid response of the wa,ter 

body to the beat induces a coupling of effects between the wave height and the 

undertow. We expect this mechanism to enhance suspended sediment transport, 

although its quantitative importance in the analyzed cases was small, since the 

variation of the wave height over the beat represented a small fraction (10%) of 

the mean height. The unsteady model predicts a smoother bottom shape than 

Tajima,'s steady monochromatic model, and locations of bar crests and troughs 

displaced seaward and shoreward, respectively, with respect to Tajima's model. 

5.2 Future work 

To achieve more accurate predictions of sediment transport, different aspects of 

Tajima's model need to be refined. This thesis focused on the improvement of 

Tajima's hydrodynamic model by generalizing it to the unsteady case. Further im- 

provements of the hydrodynamic model are still necessary. Even under the assump- 

tion of long straight beach, obliquely incident waves will cause inhomogeneity in the 

long-shore (y) direction if we allow for unsteadiness. Therefore, development of a two 

dimensional unsteady formulation and of the corresponding numerical scheme, based 

on the general 2D equations presented in Appendix B, is necessary. The main diffi- 

culty in developing a 2D model is the definition of the lateral boundary conditions. 

The simple radiation condition applied at  the offshore boundary in the present 1D 

model is not appropriate for the lateral boundaries, where the water depth varies from 

deep to shallow, and the direction of incidence of long wave disturbances is difficult 

to know a priori. 

The bottom shear stress model used by Tajima also needs to be refined. As it is 

shown in Tajima (2004), the cross-shore sediment transport is not only very sensitive 

to the nlagnitude of the bottom shear stress, but also to the formulation chosen to 



describe its variation in time. The bottoni sheas stress can be expressed as 

where fcw is the combined wave-current friction factor, and ub(t) is the near-bottom 

wave orbital velocity. An accurate description of how ub(t) changes in time requires 

to account for the asymmetry and skewness of the waves. In addition, we have 

to consider the time-variation of f,,. fcw is assumed constant by Tajima; in the 

unsteady model presented in this thesis, it is assumed to vary from wave to  wave. 

However, if we account for wave asymmetry, f ,  becomes dependent on time within 

each wave period. According to  (2.45), f ,  is a function of h /Abm,  where kn is the 

bottom roughness and Ah is the near-bottom orbital amplitude. For skewed and 

asymmetric waves, Ah is variable over the wave period and so is f,,. 

These refinements of the bottom shear stress formulation will allow the improve- 

ment of the sediment concentration distribution model. In Tajima (2004), the sedi- 

ment concentration distribution is defined as a function of a reference concentration, 

C,(t), at a certain depth z = 2,. This reference concentration is a function of the 

bottom shear stress and, therefore, it is time-dependent. However, in his calcula- 

tions, Tajima uses the time-averaged value of C,(t) to predict sediment concentra- 

tion. Future work needs to be conducted to  account for the time-dependency of 

C,, which will yield a temporal variation of the suspended sediment concentration, 

6, = C,(x, y,  r ,  t ) .  The importance of this time-dependency on the sediment trans- 

port rate needs to be investigated. We expect this refinement of the model to  improve 

its capability to predict cross-shore sediment transport in the nearshore region. 



Appendix A 

Integrability of the energy flux 

integral 

We want to  determine for which values of the constants r and t 

is integrable. Here, fcT is one of the Longuet-Higgins density functions (1975 or 1983), 

defined in sections 3.1.3 and 3.1.4. 

A. 1 Longuet-Higgins's (1983) distribution 

But for a constant factor, the integral (A.l)  reads 

Assume r 2 0, t 2 0 are integers. First, we will only consider the integral in [. It 

call be expressed as 

i(~) = c Lrn F'.+2e-Bf d< (A.  3) 

where B and C are functions of T onlyl and B > 0. Integrating by parts, the followirig 



recurrence relation is found: 

If r is an even integer, r = 2k, k 2 0, by applying recurrently the previous relation, 

we obtain 

- (2k+1) (2k-1) (2k-3) .  . .:3.1- (2k + 2)! 
I (r) = I(-2) = 

(2B)k+1 2k+l(k + I)! (2B)k+1 2 

(A.5) 

Analogously, if r is odd, r = 2k + 1, k 2 0, we obtain 

Therefore, the original integral I can be written as 

where A is a constant, and 

It can be easily shown that ,  for large values of T,  

Therefore, 

where p > 0. Thus, the integral I can be written as 

(A. 11) 

O0 I 
1 = A 1 - T ~ - ~ ~ T  Ba = A LO0 [(z)" v2 + 1 7-t-2 + 0 ( T ~ - ~ - ~ ) ]  d r  (A. 12) 



Conseql~ently, the integral (A. l )  with the Longuet-Higgins (1983) distribution is finite 

A. 2 Longuet-Higgins's (1975) distribution 

For the truncated Longuet-Higgins's (1975) distribution (see equation 3.7): the inte- 

gral (A. l )  reads 

but for a constant factor. Here, 

(A. 15) 

The integration in ( is similar to the previous case. The integral I can be written as 

where Ei' is a constant. For large T,  

where > 20. Therefore, the integrability of I is determined by the term 

(A. 16) 

(A. 17) 

which is integrable if t - 2 a  < -1 o t < 2 a  - 1, where a is defined by (A.9). 

Thus, the integrability condition is the following: If r is even, r = 2k 2 0, I is 

integrable if t < 2k + 2. If r is odd, r = 2k + 1 > 0, I is integrable if t < 2k + 3. For 

r == 2, I is integrable if t < 4. 





Appendix B 

Derivation of expressions for 

trough and bottom shear stresses 

Following Tajima (2004, appendix A), we derive the expressions that relate trough 

and bottom shear stress, at  bottom and trough levels, with wave and current forcings. 

These e:xpressions constitute the governing equations of the hydrodynamic model. 

Here, we present the unsteady generalization of Tajima's derivation. 

B. 1 Velocity field 

The fluid velocity field, (u, v, w), can be written as 

( u , ~ ,  w) = (U, V, W) + (G,  6 ,G)  (B.1) 

where (Li, 11, W) are the mean current components, and (G, G, G) are the deviations 

from the mean, due to the waves. Assume 

We further assume 



where L, is the horizontal length-scale for the wave variation and L, is the horizontal 

length-scale for the mean current variation. Continuity implies 

where h is the water depth. Therefore, O ( W )  << O ( 6 ) .  However, we note that W is 

not negligible with respect to  6 if we calculate time averages, since the time average 

of 6 is 0. 

B.2 Time dependency of the velocity field 

In the unsteady case, we model the incident wave as a wave beat. We assume the 

mean components of the velocity field to have a slow variation, in the long time scale 

of the wave beat, to. The wave velocities vary much faster, in the short time scale t l .  

We apply the multiple scales method to  write 

<< 1, since the wave period, Twaue, is much smaller than the beat where 

period, Tbeat The velocities depend on the time scales in the following way: 

where 6, G, and w are the amplitudes of the wave velocities, and cp is the phase. 

Similarly, the surface elevation with respect to  the still water level (SWL), q, can be 

written as 

 to, t l )  = q(t0) + &(to) cos cp(t1) (B.7) 

where is the mean set-up, and & is the amplitude of the wave motion. The geo- 
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Figure B-1: Geometrical variables of the wave motion. The origin of the z axis is 
the still water level (SWL). T,I is the surface elevation, il is the mean set-up, ztr is the 
elevation of the wave trough, and h is the still water depth. 

metrical variables involved in this derivation are represented in Figure B-1. These 

geometrica'l variables depend on the space and time scales in the following manner: 

where 

Note in Figure B-1 that the origin of the z-axis in all calculations in this appendix 

is the still water level. In our definition of the nearshore current model (Chapter 2))  

the origin of x-axis was the bottom. 

In application of the niultiple scales method, the rule of differentiation with respect 
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to time is 
dm dm a. - = - + e -  
at at ,  at, 

Average in time is represented by an overline, i.e., 

( B .  12) 

Note that the overline denotes the averaged value over a wave period, much shorter 

than the beat period. Therefore, time-averaged quantities can still vary over the 

time-scale of the wave beat. 

B.3 Pressure force 

The vertical momentum equation reads 

dw ~ ( u w )  ~ ( u w )  a w 2 )  - - -- dp - arzZ dry, a%Z 
p -+- 

( a t  ax +- PS + --&- +-+- ( B .  13) 
dy dx dx dy dx 

Integrating from ztr to  7, and applying the kinematic free surface boundary condition, 

this equation yields 

( B .  14) 

where subscripts 7 and t r  denote values at  the free surface and at  the trough level, 

respectively, and pa is the atmospheric pressure a t  the surface. The pressure at  the 

trough level, ptr , reads 

Ptr = pa + pg (7 - ; tT) 



(B. 15) 

B .4 Order of magnitude simplifications 

Some simplifications can be introduced by analyzing the order of magnitude of the 

viscous stresses: 

where U and W denote the velocity scales, h is the water depth, and L is a length 

scale, either related with the wave or the beat, but in any case much larger than h. 

We have applied continuity to  relate the orders of magnitude of U and W. For the 

vertical stress component, 

7,, = 2pv- = p v o  - " dx (3 (B. 17) 

We are interested in comparing the order of magnitude of different terms in (B.15). 

In particular, 

(B. 18) 

(B. 19) 

The factor is the Reynolds number based on the vertical velocity and we 

will assllrne it to be much larger than 1. Therefore, terms like (B.19, B.20) are 



much smaller than terms like (B.18). Consequently, the viscous stress terms can be 

neglected when calculating ptr . 

In the nea.r-surface region, z > ztr7 we assume that wave orbital velocities and 

horizontal mean current velocities can be accurately represented by their surface 

values, i.e., 

With these assumptions, (B. 15) can be rewritten as 

B.5 Mean pressure at the trough level 

From (B.6), the wave velocity components can be written as 

(B. 22) 

Introducing these expressions into (B.22) and time-averaging over a wave period, 

we obtain 



B.6 Mean pressure force above the trough level 

The time-averaged mean pressure force above the trough level is defined as 

Recall that the time-average is calculated in the short-time scale of the wave period. 

Therefore, Ps varies in the beat time scale. 

The pressure p is given by replacing t t r  by t in (B.22). Since = 2 = = 0, 

the last three terms in (B.22) now vanish. Introducing the expression for p into (B.25) 

we obtain, after integrating in z and time-averaging, 

8% P 6' + P-Gsb? - t t r )  + -- {(Us + Gs)Gs(q - ttr)2} 
a t 0  2 dx 

Introducing the expressions for the velocity components, (B.23), and time-averaging, 

the previous equation can be simplified to  

where E = pgii2/2. 

B.7 Trough shear stress 

The horizontal momentum equation reads 

all au2 a(uv) 
--- + - + - 
d t  dx dy 

(B. 28) 
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After integration from t = ztr to  z = TJI and application of the kinematic free surface 

boundary condition, the previous equation yields 

where Tax = rzX,' is the shear stress in the surface. Due to order of magnitude 

arguments, the term 

is negligible when compared with advective terms. 

Assuming as before vertical uniformity of the horizontal velocity components 

above the trough level, (B.21), and time-averaging over a wave period, the current 

shear stress at  the trough level, T,,,, can be written as 

The integrals are simplified by making use of the hypothesis introduced in (B.21). 

Using the results (B.24) and (B.27), the previous expression can be reduced to 



d dzt r 
-P- ( ( G s  + Us) ( G S  + V,)  (7 - Z t r ) )  - p-Us d y  a t ,  

( B .  32) 

Introducing (B.23),  we finally obtain 

7cs5  = 
2 d x  

aq pa(i is i i )  a 
- P P -  ------ ax 2 at, a t ,  ( u s  6 )  

d I d  
- p- (6iiSUS) - -p- (iiii;) 

d 
d x  2 d x  - Pz (w) 

1 d d 
- -p- [iisCsii + iisv,ii + UsCsii] - p- (iiUsV,) 

2 d y  d y  

A d7yx + putrwtr + a- Tax 
d y  

dqsrx 
- P- 

a t 0  
+ Tsrx ( B  .33) 

where the two last terms introduce the surface roller effect. The term involving qsrx 

represents the long-term variation of the flux due to  the surface roller. The term 

Tsrx accounts for the fraction of the trough shear stress acting over the roller. The 

evaluation of the latter is discussed in the following section. 

B.8 Momentum forces due to the surface roller 

Inside the surf zone, there is a shear force component acting on the surface roller, 

which is bajlanced by a trough level shear stress component affecting the underlying 

water column. Following Tajima (2004), we assume that the mean fluid velocities in 



the surface roller are affected by the mean current velocities near the surface, i.e., 

where C is the phase velocity and 19 is the angle of incidence of the waves. Time- 

averaged momentum flux components due t o  the surface roller are then determined 

where R, are the surface roller momentum flux components due to waves only, as 

defined in (4.5, 4.6), and qsrj are the volume fluxes of the roller, defined by 

cos I9 ( z : : )  =$ ( s i n Q )  

The shear stresses at the trough level due to  the roller are determined by 

where j stands for x or y. 

B.9 Mean vertical momentum flux at the trough 

level 

Continuity equation reads 
au av aw - + - + - = O  
dx dy dz 

We integrate this equation above the trough level, from 2 = ztr to z = 7. We assume 

that the horizontal velocity above the trough level is independent of z ,  according to  

(B.21). Taking into account the surface roller flux and applying Leibnitz rule, the 



integration yields 

d 
Wtr = 

d ( us'iz + qSrx) + % ( J ;  usdz + qsry ) 
aztr all 

+us-+us-+- 
dx dy dt 

(B. 39) 

after introducing the kinematic free surface boundary condition. hlultiplying by utr = 

us, the total fluid velocity in x-direction above the trough, and time-averaging, 

The mean wave volume flux above the trough level is 

The total mean volume flux above the trough level is 

Introducing (B.23) into (B.40), and making use of the definitions (B.41) and (B.42), 

we conclude that the mean vertical momentum flux a t  the trough level is 

(B. 43) 



where we have made use of the fact that, by continuity, 

B.10 Mean trough shear stress 

Substituting (B.37) and (B.43) into (B.33) we get, after some algebra, 

A dpa 
Tcsx = T,, -a- - pga- - - - - 

dx 

The mean trough shear stress in the y-direction, rcSy, is obtained by replacing in the 

previous equation x by y, (ii, U) by (6, V), and vice versa. 

B.11 Mean bottom shear stress 

Integrating the horizontal momentum equation (B.28) from the bottom ( z  = - h) to  

the trough level (z = ztr = f l -  6) and time-averaging over the wave period, we obtain 

where the subscript b refers to the bottom, z = -h. As before, we have neglected the 

contribution of rXx and applied the kinematic bottom boundary condition. Introduc- 



ing (B.31), the mean bottom shea,r stress, r C b x ,  results: 

By analogy with (B.24), 

Introducing (B.6), (B.27) and (B.48) into (B.47), and accounting for the surface roller 

contribution yield 

dqsrx aqwx d ~ a  1) 
T ~ b ~  = 

Tax + T s T , ~  - P- - P- - (1) + h) - - pg (1) + h) - dx a t  o dx dx 
asxx -ah d n  

p62- - p- / Udz - p- 
a 

dx dto -h dx J n  -h u2dz - pz (2qwxus) 

where, as Tajima (2004) points out, the term ~ 2 %  is negligible for a gently sloping 

bottom. S,,, S,, and S,, are the radiation stresses, defined as 

Again, the mean bottom shear stress in the y-direction, r c b y ,  is obtained by replacing 

x by y, (6, U) by (6, V), and vice versa, in (B.49). 



B. 12 Simplifications in the dept h-integrated mo- 

ment um equations 

We use the approach suggested by Tajima (2004) to introduce a simplification in 

(B.49). We write the mean current velocity under the trough level in the following 

way: 

(", v, = ( U ~ ,  V,) + (U' ,  v') ( B .  53) 

where (Uo, Vo) are the depth-averaged mean current velocities below the trough level, 

1 
(U, V ) d z  = --(qbx, qby)  

htr 

(qbx, qb) are the total fluxes below the trough level and htr = h + f j  - ti is the trough 

level depth. (U' ,  V ' )  are the current velocity departures with respect to  the mean. We 

assume that O ( U f )  << O(G) and therefore neglect terms of order U f 2 .  We also assume 

that O(Uo)  - O(Vo)  O(G) and therefore keep terms of order uo2.  Applying these 

considerations to  (B.49), the expression of rCbx is simplified to 

d ~ a  dfj  d d 
Tcbx = TUX - ( h  f q)  - ~ g ( ~  + f j ) -  - -Sxx - - R x x  

dx dx dx 
-aho 6' 

- pW:- - P- ((qsx + qwx) Us f qbxU0) dx dx 

where qx = qbx + U8& + qwx + qsrx is the total flux in x-direction, due to currents 

(below and above the trough level), waves, and surface roller. 

B. 13 Mass conservation 

To complete the formulation, we need to include an equation that guarantees mass 

conservation. Integrating (B.38) from x = - h to z = 7 ,  and taking into account 



surface roller effects, we obtain, after applying Leibnitz rule, 

where the subscript b refers t o  the bottom level, x = -h, and the subscript 11 refers 

to the surface, z = 11. The kinematic free surface and bottom boundary conditions 

respectively require 

Introducing (B.57) and (B .58)  into (B .56)  and time-averaging over a wave period 

yield 

d 
+ - d y  (q ,  + qw, + q,,,) = 0 





Appendix C 

Offshore radiation condition 

Here, we describe the radiation condition to be satisfied in the offshore boundary. We 

apply the classic Sommerfeld radiation condition (e.g . , Sundstrom and Elvius, 1979). 

Its purpose is to  "radiate" disturbances outside the computational domain, avoiding 

spurious reflection. 

Fronl the linearized depth-integrated equations of motion for long waves, and 

neglecting bottom friction, we have for water of constant depth, h, 

where u is the depth-averaged velocity and 77 is the surface elevation above the sea 

water level. Differentiating (C. 1) with respect to  time, t ,  and replacing 2 by use of 

(C.2), we obt,ain the governing equation in terms of u: 

Once (C.3) is solved, we obtain the surface elevation from (C.2). 

Since the governing equation is linear, we may, for a periodic motion, take 



which has the solution 
i k x  ii = u+e + u-e-ikx 

where the wave number k is 

We assume to be of the form 

Inserting (C.6) and (C.8) in (C.2) we obtain 

A progressive wave in the positive x-direction must obey the radiation condition 

(C.10), while a progressive wave in the negative x-direction must obey (C. 11). 
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