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Abstract

Humans are surprisingly good at judging the reflectance of complex surfaces even
when the surfaces are viewed in isolation, contrary to the Gelb effect. We argue that
textural cues are important for this task. Traditional machine vision systems, on
the other hand, are incapable of recognizing reflectance properties. Estimating the
reflectance of a complex surface under unknown illumination from a single image is a
hard problem. Recent work in reflectance recognition has shown that certain statis-
tics measured on an image of a surface are diagnostic of reflectance.

We consider opaque surfaces with medium scale structure and spatially homoge-
nous reflectance properties. For such surfaces, we find that statistics of intensity
histograms and histograms of filtered outputs are indicative of the diffuse surface
reflectance. We compare the performance of a learning algorithm that employs these
image statistics to human performance in two psychophysical experiments. In the
first experiment, observers classify images of complex surfaces according to the per-
ceived reflectance. We find that the learning algorithm rivals human performance
at the classification task. In the second experiment, we manipulate the statistics of
images and ask observers to provide reflectance ratings. In this case, the learning
algorithm performs similarly to human observers. These findings lead us to conclude
that the image statistics capture perceptually relevant information.

Thesis Supervisor: Edward H. Adelson
Title: Professor of Vision Science
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Chapter 1

Introduction

Humans are remarkably adept at recognizing the reflective properties of surfaces. We

find it easy to distinguish a shiny plastic spoon from a matte wooden spoon or a

lustrous stainless steel spoon. This ability, known as material perception, is striking

because the appearance of a surface varies greatly as a function of its environment.

For example a stainless steel spoon reflects its surroundings, therefore images of the

spoon when placed indoors on a kitchen table or outdoors on a patio table, will differ

widely in a pixelwise sense. Moreover, images of a shiny plastic spoon and a steel

spoon in the same environment may be more similar pixelwise than the images of

each spoon in different environments.

Material recognition is different from object recognition. Object recognition in-

volves distinguishing between different classes of objects e.g. spoons from forks or

knives. Object recognition is a well studied problem while material recognition has

received less attention. Template matching, commonly used to solve object recogni-

tion tasks, is not directly applicable to material recognition, as different objects may

have identical material properties. Current machine vision systems lack the ability

to discriminate material properties like reflectance, translucency, glossiness, wetness

etc. For many vision applications such material recognition capabilities are desirable.

For example a domestic robot may need to distinguish between woollen and cotton

clothes while sorting soiled laundry.
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Dror et al [14, 15, 16] made an important contribution to the problem of material

recognition. They built a machine vision system that can identify the reflective prop-

erties of a sphere under unknown complex illumination from a single monochrome

image. Their system learns the relationship between the statistics of an image and

the reflective properties of a surface. By measuring relevant image statistics, the

system classifies surfaces as shiny, matte, white, gray, chrome etc. For surfaces of

spatially homogenous reflective properties and known geometry, their system rivals

human performance.

In this thesis, like Dror et al we identify image statistics that are diagnostic of

the reflective properties of a surface. We consider opaque materials of homogenous

reflective properties under simple artificial illumination. We allow our materials to

possess three dimensional medium scale structure or surface mesostructure [29]. We

assume that a single monochrome image of a flat, planar sample of the material is

available. Image statistics measured on this image allow us to estimate reflectance

attributes of the material. We compare the performance of our statistics with that

of human observers in two experiments. In the first experiment, we asked observers

to classify images of materials into two categories - light(white) or dark(black). In

the second experiment, observers compare images of materials to a set of standard

surfaces. The observers then indicate the standard surface whose reflectance proper-

ties are closest to those of the material. In both experiments, we find that a learning

algorithm trained on our selection of image statistics performs as well as a human

observer.

The work in this thesis differs from Dror et al's in that we make a different set of

assumptions about the same problem. Dror et al assume that material samples are

smooth spheres with no surface mesostructure. They allow complex unknown illumi-

nation as long as it is representative of the real world illumination. We assume that

material samples are flat, planar patches. We allow surface mesostructure, however
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we assume simple artificial lighting. We only consider opaque materials, while Dror

et al permit translucency. Therefore the class of images that can be handled by Dror

et al's algorithm is distinct from the class we consider in this work.

The reflective properties of a real world surface can be specified by the bidirec-

tional reflectance distribution function or BRDF. Knowledge of the BRDF allows us

to predict the appearance of the surface under any arbitrary lighting condition. The

BRDF of an ideal diffuse or Lambertian surface is a constant. This constant known

as the albedo or diffuse surface reflectance, is the fraction of incident light that is

reflected by the surface. Real world surfaces like matte paint can be approximated

as Lanbertian surfaces. In this thesis we will use the term reflectance in the sense of

albedo, even though most of our materials are not Lambertian. Note that we are not

assuming Lambertian surfaces; we choose to quantify only the Lambertian component

of the reflectance phenomena.

1.1 Motivation

Estimating the reflective properties of an isolated surface is an underconstrained prob-

lem. The luminance at a point on the surface is a function of the surface reflectance

and the incident illumination. The luminance can be measured by our eyes (or by a

camera) and assumed a given, however if the illumination is unknown it is not possi-

ble to solve for the reflectance. A compelling demonstration of this fact is the classic

Gelb effect (Figure 1-1). A smooth white paper disc and a smooth black paper disc

are suspended in a dark room and illuminated by hidden projectors. The illumination

on the two discs is adjusted independently so that the luminance of the two discs is

the same. A human observer who is unaware of the difference in illumination, views

the discs. The observer perceives the discs to have the same reflectance, even though

one of the discs is white and the other is black.
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The Gelb effect is an example of the failure of lightness constancy - the human

ability to estimate the reflectance of surfaces across a vast range of illumination and

surround conditions. Perceived reflectance is known as lightness. The setup in Figure

1-1 is special and uncommon in our daily visual experience. By enforcing smooth

surfaces, absence of background and equal luminance, a minimal stimulus is created

which can fool the human visual system. However, we typically encounter richer vi-

sual stimuli and we do reasonably well at judging lightness in such cases. Consider

the following modification to the Gelb experiment - replace the smooth discs with tex-

tured surfaces like stucco (Figure 1-2). The illumination is adjusted so that the stucco

surfaces have the same mean luminance. A human observer will now perceive that the

surfaces differ distinctly in their lightness. Thus the Gelb effect fails, indicating that

textural cues are important for lightness judgements. Though the illumination is not

known explicitly, textural cues provide sufficient constraints to make the reflectance

estimation problem feasible. In this work, we want to quantify such textural cues in

the form of image based measurements.

The perception of lightness involves low, middle and high level visual processing

[1, 23]. There is evidence that image features like contours, junctions and brightness

distributions are used by mid level vision mechanisms to deduce lightness. Adelson

[1] has proposed a statistical estimation framework for lightness perception. The vi-

sual system knows (or learns) the mapping from the reflectance of a surface to the

luminance distributions produced when it is placed under various lighting conditions.

Given the mapping, the visual system can optimally estimate the reflectance of a

new, previously unseen surface. Thus examining the role of image based statistics in

reflectance estimation contributes to our understanding of the perceptual mechanisms

of lightness perception.

The main application of our work is building machine vision systems that can

recognize materials. Domestic or industrial robots require material recognition ca-

pabilities for many tasks. For example a domestic robot may need to tell a metallic
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BLACK WtUTfL

Fig. 12. Concealed illumination experiment. The person who does not
know about the spotlight will judge the black and the white discs to have
equal brightness. A small piece of paper thrust into the light beam,
however, makes it obvious that the left disc is black.

Figure 1-1: The Gelb effect - reproduced from [56]

plate from a non-metallic plate in order to heat food in the microwave. An industrial

robot that performs product inspection may have to recognize the correct material in

order to judge a finished product.

Understanding the interaction of surface reflectance, geometry, illumination and

the resulting image, can enhance machine vision algorithms like motion estimation,

or shape estimation. Such an understanding would also aid computer graphics appli-

cations such as recovering the geometry of a real world scenes from their photographs.

1.2 Thesis Outline

In next chapter, we discuss background material and previous work in the computer

graphics, vision and human vision communities. We define BRDFs and describe im-
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(a) White Stucco

Figure 1-2: The stucco samples are normalized to have the same mean luminance,
yet it is easy to tell the white stucco from black.

age based techniques for measuring them. We relate our work to existing research in

image based reflectance estimation and lightness perception.

In Chapter 3, we begin by describing how we obtain our data set of images of

materials and the ground truth for the diffuse reflectance. Next, we discuss image

based measures like moment and percentile statistics of luminance histograms and

histograms of filtered outputs. We observe that these statistics are diagnostic of the

diffuse reflectance of our materials.

In Chapter 4, we manipulate such diagnostic image statistics to produce changes

in perceived reflectance of materials. We discuss prior work in texture analysis and

synthesis. We introduce a modification to the Heeger-Bergen texture synthesis algo-

rithm to synthesize material appearance.

In Chapter 5, we compare the performance of our image statistics at estimating

reflectance with human observers in two experiments. In the first experiment, a two

alternative forced choice (2AFC) design, observers are asked to classify images of ma-

terials as light or dark. In the second experiment, a rating task, observers compare

images of materials to a set of standard Munsell patches. The observers indicate the

patch whose reflectance properties are closest to those of the material. In both exper-
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iments, we find that a learning algorithm trained on our selection of image statistics

performs comparably to a human observer.

In Chapter 6, we summarize the contributions of our work and outline directions

for further research.
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Chapter 2

Previous Work

2.1 Background

The reflectance properties of a surface are defined by its bidirectional reflectance dis-

tribution function or BRDF. The BRDF specifies what proportion of the light incident

on an infinitesimal surface patch in any direction is reflected in any other direction.

It is a function of four variables - (6, Ob) and (0,, 0,) - the spherical coordinates of

the direction of incident and reflected light respectively. The BR.DF is defined for an

infinitesimal patch so it can vary from point to point on a surface. Materials with

homogenous reflectance properties have spatially uniform BRDFs. The reflectance

properties of a surface also depend on the wavelength of light. The wavelengths of

the incident and reflected light can be incorporated into the BRDF by two additional

variables - Ai and A, For most materials Ai is the same as A, so we only need one

additional variable A. However, some materials exhibit fluorescence, a phenomena

where Ai is distinct from Ar. In this work, we will ignore fluorescence effects.

The BRDF formulation assumes an opaque surface. It is possible to extend this

formulation to include the effect of translucency. Translucent materials like skin, wax,

soap etc. scatter light in addition to reflecting it. The light incident at a point of

the surface undergoes sub-surface scattering and emerges at another point close-by.

The bidirectional scattering-surface reflectance distribution function or the BSSRDF
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captures this effect. An extension of the BRDF, it depends on eight variables - the

incident as well as exitant locations and directions of light.

At this point, it is useful to clarify the relationship between surface reflectance

and surface texture. Texture may result from variations in reflectance properties

(wallpaper type) or from variations in fine-scale surface geometry (3D type) [40]. A

surface may be described as a 3D texture at a scale where the surface roughness can

resolved visually or by a camera. The appearance of a texture especially the 3D type,

alters dramatically with change of lighting and viewing position. These variations are

captured by the bidirectional texture function or BTF [10]. For all combinations of

lighting and viewing direction, the BTF specifies the two-dimensional image (photo-

graph) of the visible texture. The materials we use in this work may be classified as

3D textures with spatially uniform reflectance properties.

2.2 Computer Graphics and Vision Approaches

The BRDF and its variants are of tremendous importance in the field of computer

graphics. Knowledge of the full BRDF permits realistic renderings of materials and

objects in synthetic scenes. As the BRDF is a function of four or more variables, the

space of all physically realizable BRDFs is vast. BRDFs have been approximated by

parametric models to allow efficient rendering algorithms [39, 24, 54]. Such models

are derived from the optics of surface reflection or are fitted to observed BRDF data.

Most models distinguish between two aspects of the reflectance phenomenon - the

diffuse and specular reflectance.

An ideal diffuse or a Lambertian surface reflects light uniformly in all directions

regardless of the direction of incident light. Therefore the appearance of a diffuse sur-

face is independent of the viewing direction. Diffuse reflection is caused when light

undergoes multiple scattering within a surface and emerges in a random direction.
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The BRDF of a Lambertian surface equals a constant known as the albedo. The

albedo is the fraction of incident light energy that is reflected by the diffuse surface.

Real world diffuse surfaces such as matte paint, paper, plaster etc. depart from

ideal diffuse behavior. The net direction of reflected light is sensitive to the surface

geometry and number of inter-reflections therefore exhibits a directional dependence.

Several authors [36, 28] have analyzed such non-Lambertian diffuse surfaces and de-

veloped BRDF formulations that lead to visually pleasing renderings of many real

world diffuse surfaces.

Specular reflection is observed in smooth surfaces such as mirrors, polished metal

etc. A collimated beam of light incident at point of an ideal specular surface is re-

flected in a direction determined by the laws of reflection, producing a sharply defined

reflected beam. Therefore the appearance a specular surface depends greatly on the

viewing direction. Real world specular surfaces however are never perfectly smooth,

thus the reflected beam is not collimated but has an angular spread about the ideal

direction of reflection. Both ideal specular and diffuse behaviors are extremes of a

continuum of reflection modes. Most real world materials display both specular and

diffuse reflection properties.

While parameterized models represent the reflectance properties of several com-

mon materials effectively, they fail to capture a range of real world reflectance phe-

nomena. For such cases, empirically measured BRDFs can be used instead of param-

eterized models. Traditionally BRDFs are measured by a gonioreflectometer, a device

where a surface sample is illuminated by a movable point light source and the reflected

light is measured at all viewing angles. BRDF acquisition by a gonioreflectometer is

usually a time consuming process. As an alternative a number of image based BRDF

estimation techniques have been developed [44, 58, 30, 57, 52, 11, 5, 35, 42, 12]. These

techniques estimate the BRDF from photographs of a surface.
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To understand the image based BRDF estimation problem better, consider the

following example by Marschner et al [30]. Say we want to recover the BRDF of an

isotropic material i.e. a material where the reflectance depends only on the relative

direction of the incident and exitant light rays. In that case the BRDF is function

of A0 = 0, - #4 rather than of both #i and #,. Let us ignore the dependence of the

BRDF on the wavelength A for now. The BRDF we wish to estimate is a function of

three variables (6 , 0,,zA#). To recover the BRDF completely we must satisfy three

degrees of freedom. A gonioreflectometer setup comprises a flat surface sample, a

movable light source and a detector. By allowing all relative positions of the source

and the detector, the three degrees of freedom are fulfilled and the BRDF can be

measured entirely.

An equivalent solution is obtained by fixing the light source, rotating the surface

sample along two orthogonal axes and moving the detector along a curve. Thus the

total degrees of freedom is still three and all configurations of the light source, detec-

tor and sample can be achieved. One image based solution to the BRDF estimation

problem proposed by Marschner et al [30] is as follows - the flat surface sample is

replaced by a curved surface and the detector is replaced by a camera. The light

source is fixed and the camera moves along a curve (one dof) taking images of the

surface sample. Each two dimensional image of the curved space contributes two de-

grees of freedom and one acquires the same measurements as the previous solutions.

By replacing a flat surface by a curved surface one avoids the physical rotation of

the sample. Moreover, by using the camera, two degrees of freedom are sampled in

parallel reducing the time complexity of the BRDF measurement.

To summarize, arbitrary BRDFs are functions of four or more variables. In or-

der to measure a BRDF completely, the appropriate degrees of freedom must be

satisfied by any measurement technique. Image based techniques accelerate BRDF

measurement but since an image only contributes two degrees of freedom, additional

information or equipment is required to achieve the total degrees of freedom. For
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the Marschner et al technique described above, this implies sufficient curvature of the

sample and multiple images. Image based techniques differ in how they resolve the

extra degrees of freedom. Some require additional equipment such as a laser range

scanner or a light stage, or human interaction or prior knowledge of the geometry or

illumination.

Our formulation of the reflectance estimation problem - using a single image un-

der unknown but simple illumination and arbitrary surface mesostructure is severely

underconstrained for full BRDF estimation. Several combinations of geometry, illu-

mination and reflectance can explain the given image. However, one interpretation of

the image is more likely to occur in the real world than others. Humans when placed

in similar conditions (isolated viewing of a surface under unknown illumination) ex-

tract such an interpretation unconsciously. This suggests that our problem is not as

underconstrained as it appears at first glance.

The reflectance estimation problem can be viewed in a probabilistic framework.

The most likely interpretation of an image may be obtained by integrating the poste-

rior probability of each reflectance function over all possible illuminations [21]. Such

a Bayesian formulation requires the specification of the prior probability distribu-

tion. While real world illuminations exhibit statistical regularities [15] an explicit

probability distribution over all illuminations is hard to specify. Nevertheless, it is

possible to decompose an image into intrinsic "illumination" and "reflectance" im-

ages [55, 49, 50]. Weiss [55] decomposed a sequences of images into intrinsic images

by assuming a prior that illumination images result in sparse filter outputs. Tappen

et al [49, 50] use local information from the color and intensity patterns in an im-

age to separate a single color image into intrinsic "shading" and "reflectance" images.

To sum up, estimating the BRDF of a surface from a single image under unknown

illumination seems impossible. However since humans can estimate the reflective

properties of a surface under similar conditions, we believe that there is sufficient
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information in the image to allow accurate reflectance estimation. Such image infor-

mation may be quantified as statistics of intensity distributions or distributions of

filter outputs. In this work, we do not attempt to estimate an arbitrary BRDF. We

simplify our problem by considering opaque materials with spatially uniform BRDFs.

Furthermore we allow our materials to be non-Lambertian but we focus mainly on

the diffuse reflectance.

Like Dror et al [16, 14] we do not estimate the illumination or the surface struc-

ture explicitly. Instead we search for image statistics that are diagnostic of diffuse

reflectance across variations in illumination and surface mesostructure. We can build

a reflectance estimator using machine learning techniques that can learn the rela-

tionship between diagnostic statistics and diffuse reflectance. As we noted earlier in

Chapter 1, our work differs from Dror et al's in that the class of images handled by

their algorithm is distinct from the class of images we consider.

2.3 Reflectance Estimation in Human Vision

As mentioned in Section 1.1, lightness constancy forms the main motivation for this

research. Humans can estimate some of the reflectance properties of complex surfaces,

even in a single isolated viewing. This ability is impressive given the underconstrained

nature of the reflectance estimation problem. Lightness constancy is a well-studied

problem in the field of lightness perception.

Historically there have been two approaches to lightness constancy - the low

level and high level approaches. Hering [27] proposed that low level physiological

mechanisms like adaptation and local interactions are critical for lightness constancy.

Helmholtz [26] on the other hand, proposed a high level vision approach whereby

our visual system, based on past experience, infers the most probable estimate of

lightness. Recent psychophysical studies have found evidence for mid level vision
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mechanisms based on image features like contours, junctions and local brightness dis-

tributions [1, 48, 51, 59, 23].

Most work on lightness perception has focused on diffuse reflection from flat Lam-

bertian surface patches under artificial illumination. Such conditions are uncommon

in our daily visual experience; we normally encounter non-Lambertian surfaces under

complex real world illumination. Recently a number of studies have focused on stim-

uli that incorporate some of the complexity of real world conditions.

Nishida and Shinya [34] conducted psychophysical experiments to measure the

accuracy of human surface reflectance estimation. They found that observers fail to

estimate the reflectance of surfaces of arbitrary shape under point source illumina-

tion. They showed that the observers' matches correlate strongly with the luminance

histograms of the images. Fleming et al [19] showed that observers can estimate

the reflectance of a surface accurately when the illumination is representative of that

found in the natural world scenes. This suggests that humans implicitly use statistics

of real world illumination to estimate reflectance.

There have been a number of studies on the non-Lambertian aspects of reflectance

perception such as gloss. Beck and Prazdny [4] demonstrated that the perception

of surface gloss may involve low and mid level visual cues. Pellacini et al [37]

reparametrized the space spanned by the Ward reflection model to create a percep-

tually uniform gloss space. Robilloto and Zaidi [43] measured the limits of lightness

identification for real objects in a 3D setup under natural viewing conditions. They

found that observers seem to use brightness dissimilarity to judge lightness.

Recent work in our group [2, 3, 45] and by Motoyoshi et al [32, 31, 33] demonstrates

that simple image based statistics are indicative of surface reflectance. Motoyoshi et

al have shown that moment statistics of the luminance histogram and subband his-

tograms of images of real world textured surfaces are correlated with the perceived
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reflectance and gloss of a surface.

In this work, we conduct psychophysical studies to explore the accuracy of light-

ness identification for images of real world surfaces. We display the images on an

LCD display and normalize them to have the same mean luminance. We find that

the Gelb effect fails and that observers can, to some extent, estimate the reflectance

in the absence of mean luminance information. We find that the performance of a

learning algorithm that uses informative image statistics is comparable to an average

human observer.

2.4 Summary

Real world surfaces display a range of reflectance properties that can be specified by

the bidirectional reflectance distribution function and its variants. Recently a number

of image based BRDF estimation techniques have been developed in the computer

graphics community. These techniques assume known illumination or geometry or

multiple photographs. Estimating the reflectance properties of real world surface

from a single image under unknown illumination is underconstrained problem. How-

ever, humans seem to solve this problem under similar conditions in the real world.

Therefore, we believe there is sufficient information in a single image to make the

reflectance estimation problem feasible. In the next chapter, we quantify this image

information in the form of statistics of image intensity distributions and distributions

of filtered outputs.
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Chapter 3

The Role of Image Statistics

We are influenced by the work of Fleming, Dror and Adelson [16, 19] on real world

illumination statistics and lightness perception. The authors argue against the high

level or the inverse optics approach to lightness constancy. According to this ap-

proach, the visual system can recover the reflectance of a surface by forming a precise

estimate of the illumination and thereby discount the illuminant. In order to achieve

such precise discounting, the visual system must know something about real world

optics. Thus when confronted with incomplete information, such as a single image,

the system can still make reasonable inferences.

Fleming et al [19, 20] advocate an alternate measurement approach. They pro-

pose that the visual system makes image measurements that are diagnostic of ma-

terial properties but are invariant to changes in illumination. Therefore the visual

system need only measure such invariant properties of an image to estimate say the

reflectance. It does not have to explicitly estimate the illumination or perform inverse

optics. Such image measurements, argue the authors, may be accomplished by mid

level vision mechanisms.

Dror et al [15, 16] offer a quantitative form for these image measurements. They

observe that real world illuminations exhibit a statistical structure similar to that of

natural images. This structure can be specified in terms of statistical measures like
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pixel histograms, power spectra or wavelet coefficients of illumination maps. Dror

et al demonstrate the robustness of such measures to changes in illumination. They

then consider images of smooth shiny spheres rendered under various real world illu-

mination maps. The authors observe that the same statistical measures computed on

the images of the sphere are diagnostic of reflectance in addition to being invariant

to illumination changes. Thus certain image features or statistics may be correlated

with illumination invariant material properties. It is conceivable that our visual sys-

tem uses similar image based measures to deduce material properties like reflectance,

gloss, translucency etc.

We want to find statistics that are diagnostic of reflectance of real world materi-

als. We restrict ourselves to materials that are opaque and have spatially homogenous

reflectance properties. We assume our materials samples are flat, planar patches how-

ever we allow surface mesostructure.

3.1 Image Data Set

We built an image data set of real world materials. We photographed several com-

monly encountered materials such as paper, candies, cloth and several hand made

surfaces such as stucco (see Figure 3-1). Our data set contains 30 materials in three

different lighting conditions. The images were acquired in a RAW 12-bit format by

a Canon EOS 10D camera. The RAW images were linearized using Dave Coffin's

dcraw [91 software. In this work we are primarily concerned with lightness perception

and not color therefore we convert our color image data to gray scale.

The three lighting conditions will be referred to as Light 1, 2 and 3. Light 1 was an

overhead fluorescent light (Kino Flo Diva Lite 200). Light 2 was a halogen spotlight

(LTM Pepper 300 W Quartz-Fresnel Light). Light 3 was a diffuse soft light source

(Lowel Rifa Lite 66, 750 W Tungsten Halogen lamp). Figure 3-2 shows photographs
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of materials under the different lights.

We photographed several black, white, orange, red and yellow materials. We

chose orange (and red and yellow) materials because the red channel of an orange

object looks like a white or light gray material and the blue channel like that of a

dark gray or black material (see Figure 3-3). Thus for each material we can obtain a

black-white or light-dark pair of images, allowing us to study the effect of reflectance

independently of the geometry or illumination. It is easy to achieve such a separation

with synthesized images using computer graphics packages, however for real world

photography it is hard to do so even in a controlled laboratory setting.

Many of our materials such as the shiny TicTacs (refer Figure 3-1) have strong

specular highlights. In order to capture such materials with a limited dynamic range

camera, we used the technique of multiple exposure imaging. The multiple exposures

are combined using HDRShop software (Version 2) [13] to produce a single high dy-

namic range image.

The range of reflectance phenomena observed in real world materials is fairly

daunting (Figure 3-4). We chose to limit the samples in our data set to opaque

materials with spatially uniform reflectance. We do so for two reasons. One, our

formulation of the reflectance problem is acutely underconstrained, hence we would

like to restrict the solution space of reflectance functions. Two, we intend to conduct

psychophysical experiments with our image data. It is hard for subjects to make

judgements about the reflectance of materials like feathers or translucent materials

like jelly beans in Figure 3-4.
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Figure 3-1: Materials in Data Set
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(a) (b) (c)

(d) (e) (f)

Figure 3-2: Three different lighting conditions were used. (a), (d) Overhead fluorescent

light (b), (e) Focused Halogen Spotlight (c),(f) Diffuse Halogen Light

(a) (b) (c) (d)

Figure 3-3: Each color channel of an orange material has a distinct reflectance (a)

Orange image (b) R channel (c) G channel (d) B channel

(a) (b) (c) (d)

Figure 3-4: Examples of challenging materials
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Figure 3-5: Multiple Exposure Imaging

3.2 Mean luminance normalization

In this work, we focus on recovering the reflectance from single images of materials.

As the context of these images is not known, it is impossible to separate the overall

level of illumination from the reflectance. The Gelb effect, described in Chapter 1, is

an example of such an ambiguity. We compensate for this ambiguity by normalizing

the mean luminance of all our images.

Mean luminance is an important cue for lightness perception, especially when there

is contextual information. However in the absence of context, as in the anti-Gelb ex-

periment (Figure 1-2), humans might use other cues such as texture to estimate the

lightness. Therefore, by analyzing the statistics of mean normalized images we hope

to quantify such textural cues.
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(a) (b)

(c) (d)

Figure 3-6: Examples of mean normalized images

3.3 Obtaining Ground Truth

In order to conduct meaningful psychophysical tasks with this data set it is essen-

tial to acquire the ground truth for reflectance. We obtained the ground truth for

our materials by the following procedure - a smooth flat sample (i.e. without sur-

face mesostructure) of the material was positioned next to a standard white surface

(Gretag-MacBeth Color Checker Chart). The material and the standard surface were

illuminated by two lamps (SunWave Full Spectrum 5500 K fluorescent bulbs). The

luminance at all points on the sample and the surface was measured with lightmeters

(Sekonic L-608 and Minolta CS-100 Chromameter) to ensure uniform illumination.

The material sample was then photographed at multiple exposures. The image data

was linearized using the workflow described in Section 3.1. Next, for each exposure

the ratio between the mean luminance of a region containing the material sample

and a region containing the standard surface was calculated (Figure 3-7). As the

reflectance of the standard surface is known, the ratio of mean luminances allowed us

to estimate the reflectance of the material sample by the following formula.
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(a) (b)

Figure 3-7: Acquiring Ground Truth (a) Uniformly illuminated material sample
and standard white surface (b) R channel of image in (a). User clicks two regions,
one on the material sample and one on the standard surface. Ratio of means of the
regions is used to calculate the reflectance of the material in the R channel.

MeantLuminaceMaterial
Ref lectanceMaterial = * Ref lectancestandard (3.1)

MeanLuminancestandard

For this formula to be applicable it is essential that the images be linear and that

the material and standard surface receive the same illumination. It is important for

the material sample and the standard surface to have the same geometry. In our

case, both the sample and the standard surfaces were completely flat and planar.

The reflectance estimate thus obtained was averaged across multiple exposures. We

found that reflectance estimates do not vary too much across exposures (see Tables

3.1,3.2,3.3 and 3.4). For orange materials, the calculation described above, was re-

peated for each of the channels - R,G and B. In the final averaging step a different set

of exposures is chosen for each channel as it is hard to acquire a single image where

all three color channels are well exposed.

3.4 Statistics of Intensity Histograms

Motivated by Nishida and Shinya's [34] and Dror et al's [14] findings, we examined

the pixel intensity histograms of our materials. We find that intensity histograms
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Material Mean Estimate Std. Deviation 95% CI
Upper Limit Lower Limit

1 0.6786 0.0022 0.6768 0.6804
2 0.7479 0.0016 0.7466 0.7492
3 0.7690 0.0031 0.7665 0.7714
4 0.4684 0.0041 0.4652 0.4717
5 0.6094 0.0013 0.6084 0.6105
6 0.6532 0.0043 0.6498 0.6566
7 0.7054 0.0038 0.7024 0.7084
8 0.6236 0.0024 0.6217 0.6255
9 0.6652 0.0008 0.6645 0.6658

10 0.6729 0.0012 0.6719 0.6739
11 0.4186 0.0014 0.4174 0.4197
12 0.6972 0.0008 0.6965 0.6978
15 0.5061 0.0015 0.5049 0.5073
17 0.6094 0.0013 0.6084 0.6105
37 0.6844 0.0013 0.6833 0.6854
38 0.4801 0.0008 0.4795 0.4808

Table 3.1: Reflectance Estimate for R channel of orange materials

Material Mean Estimate Std. Deviation 95% CI
Upper Limit Lower Limit

1 0.2018 0.0019 0.2003 0.2033
2 0.3180 0.0015 0.3168 0.3192
3 0.4152 0.0016 0.4139 0.4165
4 0.1144 0.0009 0.1136 0.1151
5 0.2549 0.0012 0.2539 0.2559
6 0.1816 0.0041 0.1783 0.1848
7 0.2939 0.0008 0.2932 0.2945
8 0.2076 0.0016 0.2063 0.2089
9 0.3599 0.0018 0.3584 0.3613

10 0.1711 0.0037 0.1681 0.1740
11 0.1204 0.0010 0.1197 0.1212
12 0.2542 0.0040 0.2510 0.2574
15 0.1867 0.0030 0.1843 0.1891
17 0.2549 0.0012 0.2539 0.2559
37 0.2292 0.0011 0.2284 0.2301
38 0.1698 0.0007 0.1692 0.1704

Table 3.2: Reflectance Estimate for C channel of orange materials
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Material Mean Estimate Std. Deviation 95% CI
Upper Limit Lower Limit

1 0.0545 0.0018 0.0525 0.0566
2 0.1666 0.0009 0.1657 0.1676
3 0.1558 0.0010 0.1546 0.1569
4 0.0822 0.0018 0.0802 0.0842
5 0.0962 0.0009 0.0952 0.0972
6 0.0788 0.0007 0.0780 0.0795
7 0.0994 0.0011 0.0981 0.1007
8 0.0870 0.0027 0.0840 0.0900
9 0.2318 0.0020 0.2295 0.2341
10 0.0574 0.0003 0.0571 0.0577
11 0.0854 0.0029 0.0821 0.0886
12 0.0921 0.0005 0.0914 0.0927
15 0.1123 0.0016 0.1105 0.1141
17 0.0962 0.0009 0.0952 0.0972
37 0.0889 0.0024 0.0862 0.0917
38 0.0843 0.0003 0.0841 0.0846

Table 3.3: Reflectance Estimate for B channel of orange materials

Material Mean Estimate Std. Deviation 95% CI
Upper Limit Lower Limit

2 0.0514 0.0004 0.0510 0.0518
3 0.8266 0.0001 0.8264 0.8267
4 0.0494 0.0014 0.0479 0.0510
5 0.8602 0.0012 0.8588 0.8615
6 0.8813 0.0011 0.8800 0.8825
7 0.0408 0.0005 0.0402 0.0414

31 0.0517 0.0010 0.0506 0.0528
32 0.8434 0.0011 0.8422 0.8447
33 0.0517 0.0010 0.0506 0.0528
34 0.7570 0.0020 0.7547 0.7592

Table 3.4: Reflectance Estimate for white and black materials
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Figure 3-8: Intensity histograms of light and dark materials exhibit systematic dif-
ferences

of light and dark materials show systematic differences. Consider the materials and

their histograms in Figure 3-8. The histograms of the dark materials tend to have

higher standard deviations and are usually positively skewed. This observation can

be explained thus - materials of higher reflectance (light) have more inter-reflections

hence light bounces around filling up the shadows, leading to lower local contrast

as opposed to materials with lower reflectance (dark). A lower contrast translates

to a lower standard deviation of the intensity histogram since the images have been

normalized to equate the means.

Both light and dark materials have the same amount of specular reflection, how-

ever the contrast is higher in darker materials hence specularities are more visible,

leading to longer tails and positive skew in the intensity histograms. In addition

to moment statistics like standard deviation and skew, we observe that percentile

statistics like 1 0 th or 9 0 th percentile or the median are useful for discriminating light

materials from dark ones.
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Figure 3-9 plots the reflectance estimate of our materials versus the standard de-

viation, skew and the (9 0th - 10th) percentiles of the log pixel intensity. Figure 3-10

demonstrates how to interpret scatter plots. If the standard deviation of log lumi-

nance is used to estimate reflectance, the bounds of the quadratic fit are very loose.

This is clearly seen at a standard deviation of 0.2, materials with reflectance in the

range (0.1, 0.9) may have a standard deviation of 0.2. Thus this statistic is not very

useful for estimation. If we divide out data set into two categories Black (reflectance

< 0.2) and White (> 0.6) i.e. ignore the green points on the scatter plot, then the

statistic does a reasonable job at classification.

Figures 3-10(b) and 3-16(a) demonstrates the utility of statistics of luminance

histograms in the form of ROC curves. Individual statistics by themselves achieve

classification rates of 70 - 80% on our data set of mean normalized materials. This

is performance is certainly above chance and contrary to the Gelb effect, however it

is not perfect. Figure 3-17 shows examples of misclassified images.

3.5 Statistics of Filtered Images

Next, like Dror et al [16], we examined the statistics of filtered images. Motivated by

the filtering mechanisms in our visual system we consider the output of multi scale

filtering on our images. Center surround and edge detection filters were used in a

multi scale decomposition (Figure 3-12). Figure 3-13(a) and (b) show examples of

such filtering. We examine the pixel intensity histograms for each subband image

(the filtered image at each scale). The histograms of the subbands for light and dark

material display typical differences (Figure 3-13(c)).

The histograms of dark materials tend to have higher standard deviation, heavier

tails and for the case of center surround filtered images, are also skewed. The filters
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Figure 3-10: Interpreting Scatter Plots (a) Reflectance vs Standard Deviation of
log(Luminance) for Light 1 - the best quadratic fit to the data is plotted with error
bounds. If errors in fitting are independent and normally distributed with constant
variance, the error bounds contain at least 50% of the data. (b) If we divide our
image data into two sets BLACK (reflectance < 0.2) and WHITE (reflectance > 0.6),
then standard deviation of log(Luminance) is a good feature for binary classification.
The area under the ROC curve is 0.87.
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Figure 3-12: Center Surround Filtering: The mean normalized intensity image is
compressed via a log transformation, then blurred by a gaussian filter (a = 1, spatial
support 5 x 5 pixels). The blurred image is subtracted from original to yield the
center surround filtered image. This process is repeated at multiple scales.
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Figure 3-13: The statistics of filtered outputs are diagnostic of reflectance (a) Mean
normalized B channel image (b) Gaussian center surround filtered B (c) Vertical Sobel
filtered B (d) Mean normalized R channel image (e) Gaussian center surround filtered
R (f) Vertical Sobel filtered R (g) Pixel Histogram of (b) and (e) (h) Pixel Histogram
of (c) and (f). Typically the histograms for the B channel (black) have higher standard
deviation, longer tails and for the center surround case, are also skewed.
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Figure 3-14: Reflectance vs Std. Deviation of filter output in Light 1 (top) Gaussian
Center Surround (bottom) Vertical Sobel. For both plots, the filter was applied to
the log(mean normalized pixel intensity) image at full resolution.
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Figure 3-16: ROC Curves for (a) statistics of the intensity histogram and (b) statistics
of the histogram of filtered intensities. For this plot a gaussian center surround filter
was used at the finest resolution.

56

11



(a) (b)

(c) (d)

Figure 3-17: Examples of misclassified materials
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pick up on the deep shadows, higher local contrast and brighter specularities of dark

materials thus resulting in these typical characteristics.

The moment and percentile statistics of intensity histograms of subband im-

ages capture these characteristics and ROC analysis reveals their significance for

reflectance classification (Figure 3-16(b)). Individual statistics by themselves achieve

classification rates of greater than 85% on our data set. The performance is way

above chance and is very encouraging. However there are mistakes in classification

(Figure 3-17). On examining the errors made by the statistics, we find that for many

images in Figure 3-17 it is hard to make perceptual judgments about their albedo.

We explore this observation further with psychophysical tests in Chapter 5.

3.6 Interdependence of the statistics

The ROC curves and the classification rates mentioned in the previous sections refer

to the performance of a single statistic like the standard deviation or the skew. Given

that each statistic performs significantly above chance, we investigated if we could

combine the statistics to build a feature that betters the performance of individual

statistics. We find however that all our statistics are correlated with each other. Mu-

tual information values and chi-square independence tests confirmed this observation

(Figure 3-18, Table 3.5).

This dependence may be because the chosen statistics are inter-dependent in all

natural images. To test this hypothesis we measured the same statistics on some

images of natural scenes. We find that the statistics were not correlated, had lower

values of mutual information and passed the chi-square independence test. These

results negate our hypothesis, so we must search for other causes for the dependence.

The reason for the dependence in our statistics is most likely an artifact of our
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Figure 3-18: Standard Deviation of log(Luminance) vs (90th - 10th) Percentile of
gaussian center surround filtered image (finest resolution) for Light 1. Combining

two statistics is not significantly better than using a single statistic to predict the

reflectance of a material. For the plot above, r = 0.6732 (p < 0.05).

materials data set. The materials with lower reflectance have higher local contrast as

well as high frequency structure. Therefore, the statistics that measure local contrast

(standard deviation of intensity histograms or of histograms of center surround fil-

ter outputs) are dependent on the statistics that measure energy in high frequencies

(( 9 0th - 10th) percentile of histograms of filter outputs at finest resolution).

To conclude, our statistics are not independent of each other, yet from Table 3.5

we observe that they are not completely correlated. It would be interesting to explore

how much information they share and the smallest subset of statistics that optimizes

the information shared by its members. In practice, we find that optimal performance

at reflectance classification or estimation is achieved using any three of the statistics

listed in Table 3.5.
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Feature Feature Correlation Mutual Chi Square Independence
Index Index Coefficient Information c = 26.2962

r p (bits) T T < c
1 1.0000 0 2.4665 672.0060 0
2 0.4132 0 0.2461 55.8360 0

1 3 0.8869 0 1.2045 209.6778 0
4 0.5859 0 0.3955 70.5536 0
5 0.3779 0 0.2084 36.1627 0
6 0.5883 0 0.3251 82.4198 0
2 1.0000 0 1.8467 672.0060 0
3 0.7085 0 0.4590 142.8867 0

2 4 0.3658 0 0.2235 42.3649 0
5 0.7779 0 0.5200 123.0237 0
6 0.6904 0 0.4014 114.7801 0
3 1.0000 0 2.0186 672.0060 0

3 4 0.5861 0 0.3355 64.2640 0
5 0.5882 0 0.2845 54.9790 0
6 0.8021 0 0.4582 165.9946 0
4 1.0000 0 2.0184 672.0060 0

4 5 0.2879 2 x 10-4 0.2440 19.3077 1
6 0.8065 0 0.7424 151.9679 0

5 5 1.0000 0 1.5595 672.0060 0
6 0.5165 0 0.3145 46.1386 0

6 6 1.0000 0 1.3909 672.0060 0

Table 3.5:
percentile

Dependence amongst statistics Feature index is 1 = (9oth - 1oth)
of log(Luminance), 2 = skew of log(Luminance), 3 = standard deviation

of log(Luminance) and similarly 4 = (9 oth - loth) percentile, 5 = skew and 6 =
standard deviation of gaussian center surround filtered image (finest resolution). The

correlation coefficient for every pair of features is significant (p < 0.05) and quite high.

The value of mutual information for any pair cannot be ignored. Finally, except for

feature pair (4, 5) all other pairs fail the Chi Square test of independence.

60



Chapter 4

Synthesizing material appearance

In the previous chapter we observed that image statistics like moments and percentiles

of image intensities or of filtered image intensities, are useful for predicting the re-

flectance of a material. Changing the material (and therefore its physical reflectance)

leads to changes in image statistics of its photographs. It would be nice to know if

the reverse is true i.e. do changes in image statistics correspond to a change in the

perceived reflectance of the material?

It is possible to manipulate an individual statistic (moment or percentile) of an

image. However, as all our statistics are interdependent (Section 3.6) it is hard, if

not impossible, to manipulate them independently of each other, in a way that the

resulting image looks like a photograph of a real world material. This sort of im-

age manipulation is related to the problem of texture synthesis-by-analysis. Texture

analysis is the problem of identifying a texture metric. A texture metric operates on

two images and defines the distance between them in the perceptual texture space.

A texture metric could be a set of image features or statistics. Texture synthesis is

the problem of generating a new sample of a texture, given an exemplar. The power

of a texture metric is revealed when performing texture synthesis. The synthesized

texture image and original exemplar image, must satisfy two conditions - first, the

texture metric must recognize both images as belonging to the same texture class and

second, to humans the images should look like they correspond to the same texture
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class. Texture synthesis-by-analysis proceeds by manipulating an image so that the

distance (as defined by the texture metric) between the manipulated image and the

exemplar texture is minimized. Our situation is analogous, we have a set of image

statistics that are diagnostic of reflectance and given an example material image, we

want to synthesize a new image of a surface that has the same image statistics and

is perceived to be of the same reflectance as the example.

There is a large body of work in texture analysis and synthesis [25, 60, 18, 41].

The work that influences us the most is that of Heeger & Bergen [25].

4.1 Previous Work

The Heeger-Bergen algorithm [25] takes as input an example "target" texture. The

goal of the algorithm is to synthesize an image that visually appears to be a new

sample of the target texture. The authors are influenced by recent work in human

texture perception. Theories of texture discrimination state that two textures ap-

pear similar when they produce similar distributions of responses in a bank of linear,

spatial frequency selective filters. Therefore, the texture metric in the Heeger-Bergen

algorithm is defined as the distance between intensity histograms and histograms of

filter bank outputs.

The synthesized image is initialized to a random noise texture. The algorithm pro-

ceeds by iteratively matching the intensity histogram and the subband histograms of

a steerable pyramid decomposition of the noise texture to those of the target texture.

The algorithm converges in about five iterations though there is no formal proof for

convergence. The pseudo code is reproduced from the original paper in Figure 4-1.

Histogram matching is a generalization of the histogram equalization procedure. The

source histogram is matched to the target histogram by constructing the cumula-

tive distribution function of the source image and the inverse cumulative distribution
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function of the target image. The pseudo code for the histogram matching procedure

is shown in Figure 4-2.

Match- texture(noise,texture)
Match-Histogram (noise,texture)
analysis-pyr = Make-Pyramid (texture)
Loop for several iterations do

synthesis-pyr = Make-Pyramid (noise)
Loop for a-band in subbands of analysis-pyr

for s-band in subbands of synthesis-pyr
do
Match-Histogram (s-band,a-band)

noise = Collapse-Pyramid (synthesis-pyr) 10
Match-Histogram (noise,texture)

Figure 4-1: Pseudo Code for Heeger-Bergen reproduced from [25]

Match-histogram (imi,im2)
iml-cdf = Make-cdf(iml)
im2-cdf = Make-cdf(im2)
inv-im2-cdf = Make-inverse-lookup-table(im2-cdf)
Loop for each pixel do

im1[pixel] = Lookup(inv-im2-cdf,Lookup(iml-cdf,iml [pixel]))

Figure 4-2: Pseudo Code for Match-Histogram procedure in Figure 4-1 (reproduced
from [25])

The Heeger-Bergen texture synthesis work is considered seminal because it com-

bines ideas from texture analysis, statistics and psychophysics in a remarkably simple

algorithm. The algorithm produces good results for stochastic textures but fails for

structured textures. The success or failure of the Heeger-Bergen algorithm may be

attributed to two factors - the choice of texture metric and the search procedure for

obtaining the final synthesized texture. We find that the search procedure of the

Heeger-Bergen algorithm (iterative histogram matching) succeeds for most images

(Figure 4-6). Therefore, the failures of the algorithm may be attributed to the choice

of texture metric. The failures illustrate that distance between intensity histograms
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and subband histograms is an inadequate texture metric.

Zhu et al [60] and Portilla and Simoncelli [41] expand the Heeger-Bergen texture

metric to include non-linear filters and joint distributions of subband coefficients re-

spectively. The search procedures for these algorithms are mathematically involved

but both achieve significantly better results than Heeger-Bergen.

There is a whole class of non-parametric texture synthesis techniques [18, 17] that

achieve impressive results. However non-parametric techniques are not useful for

us because the texture metric in these techniques is not explicitly defined. Therefore

it is hard to cast our problem of synthesizing material appearance in their framework.

4.2 Luminance Histogram Equalization

In Chapter 3 we observed that moment and percentile statistics of the luminance (or

log luminance) histogram are useful features for predicting reflectance. To synthesize

a new material image given target and source images, a first thought is to equalize

the luminance histograms. Figures 4-3 and 4-4 show examples of such a procedure.

Given a source image (say R channel of an orange material) and a target image (say

B channel of same material), if the statistics of the luminance histogram are what

determine the perceived reflectance, then matching the histogram of the source to the

target, should produce an image perceptually identical to the target. However, this

is not the case.

In Figure 4-4 we observe that B2R and R2B images are still perceptually dis-

tinguishable from target R and B images respectively. Therefore, statistics of the

luminance histogram are sufficient reflectance descriptors for some materials, but not

all.
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Figure 4-3: More successful example of histogram equalization (Top left)
Original B channel image and its luminance histogram in black to its left (Top Right)
Original R channel image and its luminance histogram in red to its right (Bottom
Left) R2B : Histogram of R image is forced to be the same as B histogram. The
histogram of the result R2B is indicated in blue to the left (Bottom Right) B2R :
Histogram of B image is forced to be the same as R histogram. The histogram of
the result B2R is indicated in magenta to the left. The histogram of B and R2B are
very similar. The Chi Square distance between them is x2 (hB, hp2B) = 0 (P = 0).
Histogram of R and B2R are also close, x 2(hR, hB2R) = 0.0026 (p = 0).
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Figure 4-4: Less successful example of histogram equalization (Top left) Orig-
inal B channel image and its luminance histogram in black to its left (Top Right)
Original R channel image and its luminance histogram in red to its right (Bottom
Left) R2B : Histogram of R image is forced to be the same as B histogram. The
histogram of the result R2B is indicated in blue to the left (Bottom Right) B2R :
Histogram of B image is forced to be the same as R histogram. The histogram of the
result B2R is indicated in magenta to the left. The histogram of B and R2B are very
similar. The Chi Square distance between them is X2 (hB, hR2B) = 0.0062 (p = 0)
Histogram of R and B2R are also close, x 2 (hR, hB2R) = 0.0126 (p = 0).
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4.3 Heeger-Bergen applied to material images

As the statistics of the luminance histograms do not capture everything, the next

thought is to use the Heeger-Bergen algorithm directly. In addition to the luminance

histogram, Heeger-Bergen enforces the histograms of subbands of the source image

to match the histograms of subbands of the target image. As discussed in Section

4.1, this is accomplished by an iterative procedure that converges, in practice, in a

few iterations to the desired target image. A subsampled steerable image pyramid

representation [47] is used to analyze the frequency content of the image.

We know that the statistics of histograms of filtered outputs are diagnostic of

reflectance. By enforcing the source and target image to have to the same luminance

histogram and the same subband histograms, we expect the synthesized image to

be closer in reflectance to the target than source image. In fact, one would expect

the synthesized image to be perceptually closer than what plain luminance histogram

equalization would get us. Figure 4-5 shows the result of running Heeger-Bergen on

Material 1. Both the results B2R and R2B look pretty bad. While these results

are not atypical of the Heeger-Bergen algorithm, these images do not suffice for our

purposes. They do not look like natural images and it is unfair to ask observers to

judge the reflectance of such images.

Figure 4-6 illustrates that the failure in Figure 4-5 R2B image is not because the

algorithm fails to match the subband histograms or the luminance histogram, rather

there is a problem in our formulation of using Heeger-Bergen in its original form on

material images. Figure 4-7 is an example of moderate success with direct Heeger-

Bergen on a different material.

The artifacts observed in Figures 4-5 and 4-7 are because histogram matching ap-

plies a pointwise non-linear gain to the values in a subband which may lead to local

distortions (refer 4.4 for details). Moreover, when histograms at each scale are ma-
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nipulated independently of each other, there is no guarantee that the contributions at

any point in the synthesized image from the different subbands agree with each other.

Solutions for reducing the observed artifacts include using a rotationally symmet-

ric transform, such as a Laplacian pyramid and avoiding subsampling in the pyramid.

A rotationally symmetric transform has no orientation dependent subbands hence the

need for agreement between orientation subbands at each scale is eliminated. Image

pyramids [7, 46, 22] are downsampled by a factor of two at each scale for computa-

tional efficiency. By avoiding subsampling and introducing more redundancy in the

representation, we can avoid some aliasing artifacts.

Figures 4-8 and 4-9 show results of using a subsampled Laplacian pyramid in-

stead of subsampled steerable pyramid in the Heeger-Bergen procedure. The results

are markedly better. In the next section we propose an improvement that produces

further improvements. It is important to note that we use a simple non-oriented

pyramid (Laplacian pyramid) and simple image statistics (moments and percentiles)

in the Heeger-Bergen framework because we do not synthesize an image from scratch

(e.g. starting with random noise). We assume an image of a material is provided

to us and we want to preserve the structure of the image and only manipulate the

appearance of the material.
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(c) (d)

Figure 4-5: An Example of Failure with Heeger Bergen Original Heeger Bergen
with subsampled steerable pyramid (Scales = 4, Orientations = 4)(a) B image (b) R
image (c) R2B : R image is the initial texture and B image is the target texture (d)
B2R : B image is the initial texture and R image is the target texture.
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Figure 4-6: Direct Heeger Bergen search succeeds (a) Pixel histogram of B image
(Figure 4-5a) (b) Pixel histogram of R2B image (Figure 4-5c) (c) Pixel histogram of an
oriented subband of B image (finest scale, diagonal orientation) (d) Pixel histogram
of an oriented subband of R2B image (finest scale, diagonal orientation). The pixel
histograms of B and R2B image are well matched x 2 (hB, hR2B) = 0.0117 (p = 0) and
so are the subband histograms X2(h' , h' 2B) = 0.0048 (p = 0).
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(a) (b)

(c) (d)

Figure 4-7: Example of success with Heeger Bergen Original Heeger Bergen
with subsampled steerable pyramid (Scales = 4, Orientations = 4)(a) B image (b) R
image (c) R2B : R image is the initial texture and B image is the target texture (d)
B2R : B image is the initial texture and R image is the target texture.

(a) (b)

Figure 4-8: Heeger Bergen with subsampled Laplacian pyramid (Scales =

4) (a) R2B : R image is the initial texture and B image is the target texture (b) B2R
: B image is the initial texture and R image is the target texture.
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Figure 4-9: Another example of Heeger Bergen with subsampled Laplacian
pyramid (Scales = 4) (a) R2B : R image is the initial texture and B image is the
target texture (b) B2R : B image is the initial texture and R image is the target
texture.
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4.4 Activity Map based Heeger-Bergen

The histogram matching procedure in the Heeger-Bergen algorithm (Figure 4-2) in-

volves applying a non-linear pointwise gain, i.e. each pixel value in an image is mapped

to a new value, independent of other pixels. A pointwise gain is not desirable because

if the value of a pixel is manipulated independently of its neighbors local distortions

can occur. We propose the following solution - instead of matching histograms of

the source and target subbands directly, we will modify the source histograms by

manipulating activity maps. Let us define an activity map as the result obtained by

taking the absolute value of a subband and then blurring it with a gaussian kernel

(Figure 4-10).

The combination of absolute value and blurring transforms the subband image

into a local energy map. If we match the histograms of the activity maps of the

target and source images, then a pointwise gain is applied to the source activity map.

As the activity map may be thought of as a local energy map, a pointwise gain on

the source activity map is effectively a local gain on the original subband. Let the

original source activity map be Aig and the histogram matched source activity map

be Amodified. Then, the gainmap G is calculated as

G Amodified (4.1)
Aorig

G is multiplied to the original source subband to obtain the modified subband.

Therefore, matching the histograms of the activity maps, allows us to apply a spa-

tially local gain which results in fewer image artifacts and smoother looking pictures.

The local gain modifies the value at a pixel depending on the values of its neighbors,

therefore locally the distortions introduced by histogram matching are reduced.

Figures 4-11 and 4-12 show one iteration of activity map based Heeger-Bergen

using an oversampled Laplacian pyramid. Figure 4-13 plots the Kulback-Leibler dis-
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Figure 4-10: Activity Map Based Heeger-Bergen

tance between the histograms of the synthesized and target images as a function of

the number of iterations. The results of this approach are compared with the ap-

proaches described earlier in Figures 4-14, 4-15. As with the regular Heeger-Bergen,

the choice of image pyramids can be varied and subsampling avoided to obtain more

pleasing results. Figures 4-16 through 4-20 show additional results.

Note that in Figures 4-16 through 4-20, we map the R channel of a material to its

B channel or vice versa. If we apply our technique to the case where the source and

the target images are of different materials, we get mixed results. (Figure 4-21).

74

1)



(a) (b) (c)

A4

(d) (e) (f)

(g) (h) (i)

Figure 4-11: One Iteration of Activity Map based Heeger-Bergen (a) Initial R Image
(b) Target B Image (c) Synthesized Image after one iteration. All images in (d)-(i) are
derived from the third finest subband of the oversampled Laplacian image pyramid.
(d) Subband of R (e) Subband of B (f) Subband of synthesized image (g) Activity
map of R (h) Activity map of B (i) Activity map of synthesized image
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Figure 4-12: One Iteration of Heeger-Bergen (a) Luminance histograms (b) Activity
map histograms (c) -Subband histograms
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(a) (b) (c

(d) (e) (f)

(g) (h) (i)

Figure 4-14: Comparison of methods (a) Initial R image (b) Target B image
(c) Luminance histogram equalization (d) Heeger-Bergen steerable subsampled (e)
Heeger-Bergen Laplacian subsampled (f) Heeger-Bergen Laplacian oversampled (g)
Activity map based Heeger-Bergen Steerable subsampled (h) Activity map Laplacian
subsampled (i) Activity map Laplacian oversampled

78

(c)



(a) (b) (c)

(d)

(g)

(e) (f)

(h) (i)

Figure 4-15: Comparison of methods (Blowup) (a) Initial R image (b) Target
B image (c) Luminance histogram equalization (d) Heeger-Bergen steerable subsam-
pled (e) Heeger-Bergen Laplacian subsampled (f) Heeger-Bergen Laplacian oversam-
pled (g) Activity map based Heeger-Bergen Steerable subsampled (h) Activity map
Laplacian subsampled (i) Activity map Laplacian oversampled. The intensity scale
here is different from Figure 4-14
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(a) (b)

(c) (d)

Figure 4-16: Material 2,
B2R)

Activity Map based Heeger-Bergen (a) B (b) R (c) R2B (d
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(a) (b)

(c) (d)

Figure 4-17: Material 3, Activity Map based Heeger-Bergen (a) B
B2R)

(b) R (c) R2B (d
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(a) (b

(c) (d)

Figure 4-18: Material 5, Activity Map based Heeger-Bergen (a) B (b) R (c) R2B (d
B2R)
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(a) (b)

(c) (d)

Figure 4-19: Material 9, Activity
B2R)

Map based Heeger-Bergen (a) B (b) R (c) R2B (d
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(a) (b

(c) (d)

Figure 4-20: Material 14, Activity Map based Heeger-Bergen (a) B (b) R (c) R2B (d
B2R)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4-21: Material 1 and 10 cross, Activity map based Heeger Bergen using an
oversampled Laplacian pyramid (a) Material 1 R (b) Material 1 B (c) Material 10 R
(d) Material 10 B (e) Source 1 R, Target 10 B (f) Source 1 B, Target 10 R (g) Source
10 R, Target 1 B (h) Source 10 B, Target 1 R
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Chapter 5

Comparison of Image Statistics

with Human Performance

On examining the cases where image statistics fail to predict the reflectance (Figure

5-1), we observe that our lightness judgements about such "failures" tend to agree

with the statistics than the ground truth. For example, the black foamboard in Figure

5-la, would be categorized as a middle gray rather than black by the image statistics.

Perceptually, the image does not look particularly black or dark. Figure 5-1b is the B

channel of Material 3 (cut-up orange balloons). The statistics consider the reflectance

of the underlying material in this image to be middle gray. If we look at the image

we find that, once again, our perception parallels the image statistics.

Encouraged by this agreement between a human observer and image statistics,

we want to explore how the statistics perform, compared to humans, at the task of

estimating the reflectance of materials. From the anti-Gelb experiments in Chapter 1,

we know that humans can distinguish materials of distinct reflectance in the absence

of mean luminance information. Therefore it is meaningful to ask human observers

to judge the reflectance of a material, by showing them a single mean luminance

normalized image in isolation. We formulate two psychophysical experiments, the

first, a 2AFC (two-alternative forced choice) classification task (Experiment I) and

the second, a ratings task (Experiment II). In both experiments, we find that humans
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(a) (b

(c) (d)

Figure 5-1: Examples of failure of image statistics (a) Gray material 2 (black

foam board) does not look particularly black (b) Orange material 3 B channel (cut-up

balloon) looks middle or dark gray, but not a convincing black (c) Orange material 4

R channel (foam board) and (d) Orange material 12 R channel (stucco) looks middle

gray but not convincing white.
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are not perfectly lightness constant. However the Gelb effect clearly fails for all our

observers on our chosen material stimuli. Thus, human performance is somewhere

between perfect constancy and no constancy. We compared the reflectance judge-

ments of a learning algorithm that uses our image statistics, to human judgements

and we find that the statistics and humans perform similarly and they succeed and

fail on the same images.

5.1 Observers

Adult human observers with normal or corrected to normal vision participated in

both experiments. All observers had experience participating in psychophysical ex-

periments. Twenty-nine observers participated in the Experiment I and eighteen

participated in Experiment II. Nine observers (BB, CT, KA, LS, PK, RH, SV, YL,

ZC) participated in both experiments. Only two observers, LS and YL, were non-

naive subjects who were aware of the purpose of the experiments. All studies were

conducted in the Perceptual Science Laboratory at Massachusetts Institute of Tech-

nology.

5.2 Apparatus

All stimuli were viewed on a Dell 20.1 inch Flat Panel LCD monitor. The moni-

tor had 1280 x 1024 resolution, 75 Hz frame rate and 70 cd/m 2 mean luminance.

Observers indicated their responses by pressing appropriate keys on a keyboard. In

Experiment I, they viewed the LCD in a completely dark room. In Experiment II

(Figure 5-2) they could also view a box enclosing two light sources and a Munsell

chart with standard reflectance chips.

A photograph of the box with the Munsell chart is shown in Figure 5-3a. The

89



box was constructed from white foamboard panels and covered with dark gray craft

paper on the outside. One side of the box was left open to allow the observers to

see the Munsell chart. There are two small openings at the back and the side of the

box (refer Figure 5-21)) for the light sources. Compact fluorescent light bulbs of color

temperature 5500 K (Sunwave Full Spectrum CFL bulbs) were used to illuminate the

chart. The light sources were positioned to provide approximately uniform illumina-

tion across the chart. The light sources were shaded by attaching white paper to the

front of the box.

The Munsell chart (Figure 5-3b) comprised eight gray squares, numbered 1 to 8,

on a random-noise-like background. The gray squares were matched to the Munsell

standard reflectances N2, N3, ... N9. The squares were printed on Epson enhanced

matte paper by an Epson Stylus Photo R800 printer. Each square was matched

by eye to the corresponding Munsell reflectance (Gretag-MacBeth 31-step Neutral

Value Scale, matte) under the Sunwave bulbs. The random-noise background was

also printed on the same paper with the Epson printer. The random-noise pattern

was chosen to provide a well articulated framework [23] for the gray squares.

5.3 Stimuli

The stimuli consisted of images of materials (refer Sections 3.1, 3.2 for image data

acquisition and processing). Fifteen orange materials and eleven gray materials under

three lighting conditions were used. The color channels of each orange material were

viewed separately. Therefore, the observer always viewed a grayscale image. Figure

5-4 is an example screen shot of the stimuli the observers viewed. The images were

viewed one at a time, against a constant gray background. Images were displayed

so because we wanted observers to concentrate on each image independently of other

images.
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Figure 5-2: Setup for Experiment II
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Figure 5-3: Munsell scale box setup
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Figure 5-4: What the subjects viewed

Ideally we would like the image of a material to convey as much information as a

real world 3-D viewing of the material. Scenes in the real world have a high dynamic

range (ratio of highest luminance to lowest luminance). Displaying our high dynamic

range (HDR) image data on a low dynamic range (LDR) device such a CRT or a

LCD is a issue. Many of our materials especially the shiny ones and those with lower

reflectance, have sharp specular highlights and deep shadows. In order to display

images of such materials on our LDR devices, our first thought was to use HDR

compression (or tonemapping) algorithms that transform HDR images to visually

pleasing LDR images. Most such algorithms, however, treat each image uniquely. In

other words, there is no fixed function that maps the input HDR image to the output

LDR image. This is a concern for us.

We want to study the statistics that are computable directly from image inten-

sities, because similar statistics might be employed by the visual system on the real

world luminances. By using an input-dependent HDR compression scheme we lose

access to the original intensities in the image. Moreover, if humans view tonemapped

images and image statistics are calculated directly from the image intensities then a

comparison of human performance with that of statistics is meaningless. If statistics
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are not perfectly lightness constant. However the Gelb effect clearly fails for all our

observers on our chosen material stimuli. Thus, human performance is somewhere

between perfect constancy and no constancy. We compared the reflectance judge-

ments of a learning algorithm that uses our image statistics, to human judgements

and we find that the statistics and humans perform similarly and they succeed and

fail on the same images.

5.1 Observers

Adult human observers with normal or corrected to normal vision participated in

both experiments. All observers had experience participating in psychophysical ex-

periments. Twenty-nine observers participated in the Experiment I and eighteen

participated in Experiment II. Nine observers (BB, CT, KA, LS, PK, RH, SV, YL,

ZC) participated in both experiments. Only two observers, LS and YL, were non-

naive subjects who were aware of the purpose of the experiments. All studies were

conducted in the Perceptual Science Laboratory at Massachusetts Institute of Tech-

nology.

5.2 Apparatus

All stimuli were viewed on a Dell 20.1 inch Flat Panel LCD monitor. The moni-

tor had 1280 x 1024 resolution, 75 Hz frame rate and 70 cd/m 2 mean luminance.

Observers indicated their responses by pressing appropriate keys on a keyboard. In

Experiment I, they viewed the LCD in a completely dark room. In Experiment II

(Figure 5-2) they could also view a box enclosing two light sources and a Munsell

chart with standard reflectance chips.

A photograph of the box with the Munsell chart is shown in Figure 5-3a. The
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humans are assumed to be trained and indicate the reflectance by comparing to a

standard scale.

In both experiments, observers viewed grayscale images of materials against a

middle gray background on an LCD display. All images were normalized to have the

same mean luminance and were displayed one at a time. Observers could take as long

as they wanted to judge the reflectance of an image. The inter stimulus interval was

fixed at 0.5 seconds. For the first experiment, observers sat in a dark room, where the

only object they could view was the LCD screen. Observers indicated the category of

the material by pressing appropriate keys on the keyboard. In the second experiment,

observers could look back and forth between the LCD and the Munsell chart with

standard reflectance squares. Observers were asked to provide a number between 1

and 8 to indicate the square on the chart they believed to be closest in reflectance

to the material on screen. Fractional ratings like 4.5 were permitted. This allowed

observers to express their confidence about the rating.

For both experiments, observers were instructed to judge the lightness and not

the overall brightness of an image. Observers were presented a practice trial before

they proceeded to the main experiment.

5.5 Experiment I

5.5.1 Motivation

We formulate the first experiment as a two alternative forced choice (2AFC) classifi-

cation task. Images are divided into two categories - light and dark. We assume that

observers are not familiar with our stimuli hence they have to undergo training. In

the training phase observers learn the relationship between the category labels and

the training images. Once they move to the test phase, they can classify test images
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with ease. This experiment was designed to allow a fair comparison of humans with

a learning algorithm that uses images statistics as features. Both the learning algo-

rithm and observers treat each image independently of others, and undergo a training

and a test phase.

5.5.2 Procedure

Observers viewed images of mean normalized materials on an LCD display in a dark

room. The images were divided in two categories - A, where the ground truth for

reflectance is > 0.5 (light gray to white) and B, reflectance < 0.2 (dark gray to black).

The images were displayed against a gray background of intensity = 0.33 where 1 is

the maximum intensity of the display (Figure 5-4). Observers started with a train-

ing phase, where they viewed each image one at a time, for as long as they wanted

till they labelled the image as Category A or B. For each training image, observers

were provided immediate feedback on their performance. On completing the training

phase they moved to the test phase. The test phase is identical to the training phase

except that there is no feedback.

In the training phase, observers viewed 10 materials (6 orange) under three il-

lumination conditions and in the test phase they viewed 20 materials (13 orange)

under three illumination conditions. The training and test set materials were dis-

joint. The experiment was run with 29 subjects. Observers were divided into three

groups (Group 1, 10 observers, Group 2, 9 observers and Group 3, 10 observers). Each

group viewed different training-test set pairs. For each observer and each material,

2 repetitions were run per illumination condition. For orange materials, there were

2 repetitions per condition for each channel (R or B). The order of the images was

randomized.
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5.5.3 Results

The results of experiment I are demonstrated in a bar plot in Figure 5-5 in blue. Data

is pooled across all observers and all lighting conditions. The percentage of images

correctly classified by observers is plotted for each group both for the training phase

and the test phase. Error bars indicate the 95% confidence intervals of the mean.

Percentage correctly classified is calculated as follows - each image (a combination of

material and light and if applicable channel) is counted if it was correctly classified

both times it was viewed by an observer.

The individual performance of each observer is recorded in Table 5.1. Both from

the table and the bar plot we observe that most subjects perform with an accuracy

of 75% - 85% both on the training set and the test set. This performance is way

above chance (50%) and indicates that the classification task is meaningful and that

observers can do it easily. The performance of all three groups is similar, this may

be because the materials were divided in groups carefully. Some materials are harder

to judge than others but about the same number of hard materials were included in

each group.

To compare this performance with image statistics, we choose a simple linear re-

gression classifier and train it with three image statistics - ( 9 0th - 10th) percentile of

the gaussian center surround filter output at the finest level, skew of the intensity

values, 9 9 th percentile of the Sobel filter output at the finest level. The classifier is

trained on the same training images as humans for each group, and then tested on the

same test set. The classifier performance is illustrated in the bar plot (Figure 5-5) in

green. The performance of the classifier is comparable to that of the observers, both

on the training and the test sets. This is an encouraging and somewhat unexpected

result given the simplicity of the learning technique and the fact that only three image

statistics were chosen.
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A problem with the design of this experiment is that in order to classify images,

observers may not be judging reflectance at all, but some other attribute that dis-

tinguishes the stimuli of the two categories. Moreover we used both channels R and

B for each orange material and each channel belongs to a different category. Once

the observers figure this out, they can classify the B channel correctly once they

have seen the R and vice-versa. The reason for including both the R and B chan-

nels of the same material in each group was to ensure the type of material does not

affect the observer's judgments (e.g. stuccos are category A and TicTacs category B).

Given that, the observers and the classifier perform equally well at the classifica-

tion task, it is interesting to ask if they make the same mistakes? Are the 20-odd

percent images that both get wrong the same? Figure 5-6 shows examples of the

errors made by subjects and the classifiers. There is clearly an overlap in the errors

(69% of all the images that both get wrong). However the classifier does make mis-

takes that observers do not (Figure 5-6e,f) and these mistakes are highly sensitive to

the features that are used by the classifier. Finally, we find that the lighting condition

does not affect the classification performance. If observers label a material correctly,

they do so for all the three lights.
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Group Subject % Correct Train % Correct Test
KA 81.25 82.83
MF 70.83 74.75
CZ 87.50 91.92
AC 72.92 79.80

1 MM 81.25 78.79
BC 72.92 83.84
PK 85.42 81.82
XM 81.25 77.78
YS 77.08 81.82

JCH 66.67 71.72
BHS 85.42 88.89
JC 83.33 81.82
RH 83.33 90.91

ACH 85.42 79.80
2 SV 66.67 74.75

JA 77.08 87.88
MG 64.58 76.77
SS 83.33 95.96
SL 62.50 94.95

VM 84.31 77.08
DA 86.27 85.42
MH 72.55 83.33

DAP 78.43 76.04

3 DS 84.31 88.54
BB 88.24 84.38
XH 70.59 77.08
ZC 76.47 63.54
JT 78.43 82.29
NS 78.43 84.38

Table 5.1: Experiment I results Percentage correctly classified for each subject for
training and test phases
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Figure 5-5: Performance of observers and a linear regression classifier based on image
statistics on the classification task. The error bars are the 95% confidence intervals
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(b) A classified as B

(c) B classified as A

(e) B classified as A

(d) A classified as B

(f) B classified as A

Figure 5-6: Errors by observers and classifier on Experiment I (a)-(b) Errors only
made by observers (c)-(d) Errors made by both observers and classifier (e)-(f) Errors
only made by the classifier
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5.6 Experiment IIA

5.6.1 Motivation

In experiment I, the images were displayed against a fixed middle gray background

and all images were normalized to have the same mean luminance. We want to in-

vestigate the effect of the background and mean image luminance on the perceived

reflectance. Clearly the background has no effect on the statistics of the image being

displayed, however it is known that humans use contextual cues in lightness judge-

ments. Wallach [53] formulated a ratio rule. According to this rule, the visual system

measures ratios of the luminance of spatially adjacent surfaces to estimate lightness.

Because the ratios are invariant to the absolute illumination level, the visual system

achieves lightness constancy. However, the ratio rule is not sufficient to explain the

perception of lightness.

The ratios can tell us the relative lightness values of the surfaces however we do

not know the absolute lightness values (e.g. is the surface with the higher luminance

perceived as white or middle gray?) This problem is known as the anchoring problem.

Gilchrist et al [23] have proposed some anchoring rules. The highest luminance rule

says that the brightest region in the visual field will be perceived as white. Another

rule, the area rule states that the largest area in the visual field will be perceived as

white. Sometimes these rules are in conflict and what we perceive is a compromise

between the predictions of the two rules.

To explore contextual effects further, we separate Experiment II into IIA, IB and

IIC. In Experiment IIA, we study the effect of the luminance of the gray background,

mean luminance of the image and their ratio on the perceived reflectance of the ma-

terial.
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5.6.2 Procedure

Observers viewed one particular orange material (all channels R,G, and B) under three

lights for different conditions of background luminance, mean image luminance and

ratio of image to background luminance. The experiment was divided into three sec-

tions. In the first section, the luminance of the gray background was varied through

[0.11, 0.17, 0.33, 0.67, 1] where 1 was the maximum luminance of the display. The

mean luminance of the image was held fixed at 0.33. For each channel (R,G or B) 2

repetitions were run per lighting condition for each level of background luminance. In

the second section, the background luminance was held fixed at 0.33 while the mean

luminance of the image was varied through [0.1, 0.2, 0.3, 0.35, 0.4]. As in the first sec-

tion, for each channel (R,G or B) 2 repetitions were run per lighting condition for each

level of image luminance. In the third section, the luminance ratio of the background

and the image was held fixed at 1 and the mean luminance of the image/background

was varied through [0.1, 0.2, 0.3, 0.35, 0.4]. As before, for each channel (R,G or B) 2

repetitions were run per lighting condition for each level of screen luminance. The

order of images was randomized within each section.

Eight observers participated in this experiment. Observers were divided into two

groups, four in each. Observers in Group 1 viewed images of orange Material 5 and

those in Group 2 viewed orange Material 10 (Figure 5-7). This experiment lasted

about 40 minutes.

5.6.3 Results

Section 1

In this section, observers viewed images of Material 5 (orange modelling clay) or 10

(orange stucco) in three lights and five different conditions of the background lumi-

nance. The mean image luminance was held fixed at 0.33. If observers are perfectly

lightness constant, their responses would be the same for all conditions of the back-
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(a) (b) (c

(d) (e) (f)

Figure 5-7: Stimuli for Experiment IIA
R,G, B channels of Material 10

(a)-(c) R,G, B channels of Material 5, (d)-(f)
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ground luminance. If observers display no constancy and follow the ratio rule [53]

in conjunction with an anchoring rule [23] then their responses should be a function

of the background luminance. Figure 5-8 plots the perceived reflectance versus the

background luminance on a log-log scale for each observer for R channel of Material

10. We find that for all observers the perceived reflectance lies somewhere between

perfect constancy and no constancy. As the luminance of the background increases,

the perceived reflectance decreases as a non-linear function of the background lumi-

nance. The lighting condition has a slight effect on the responses but not too much.

The same observations hold for the G channel of Material 10 (Figure A-2) and all

channels of Material 5 (Figures A-4 through A-6). However for the B channel of

Material 10 (Figure 5-9) for all observers except KA, the background luminance does

not affect the perceived reflectance. This does not mean that observers are perfectly

lightness constant as all three of them overestimate the true reflectance of the mate-

rial. Thus, the results in this section lead us to conclude that the luminance of the

background influences the lightness judgements.
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Figure 5-8: Logio(Perceived reflectance) vs Logio(Background luminance)
(Material 10, R channel). Luminance of material image is held fixed at 0.33 while
the luminance of the background changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log background luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio rule, the responses would lie along a line parallel
to the cyan line with slope = -1 . The magenta line is the linear regression fit to
each observer's data. The slope of the line and p value are indicated in each plot. For
all observers the slope of the fit is significantly different from 0 and --1.
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Figure 5-9: Logio(Perceived reflectance) vs Logio (Background luminance)
(Material 10, B channel). Luminance of material image is held fixed at 0.33 while
the luminance of the background changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log background luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio rule, the responses would lie along a line parallel
to the cyan line with slope = -1 . The magenta line is the linear regression fit to
each observer's data. The slope of the line and p value are indicated in each plot. For
all observers, except KA, the slope of the fit is not significantly different from 0.
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Section 2

In this section, the background luminance was held fixed at 0.33 while the mean

luminance of the image was varied. As before, if observers are perfectly lightness

constant their responses will be the same for all five conditions of the mean lumi-

nance. If they exhibit zero constancy and follow the ratio rule their responses will

be a function of the mean image luminance. Figures 5-10 and A-8 through A-12 plot

the perceived reflectance versus mean image luminance on a log-log scale. For nearly

all observers and all channels of Materials 5 and 10, the responses lie between perfect

constancy and zero constancy. As the mean luminance of the image increases, the

perceived reflectance increases as a non-linear function. For some cases, the responses

of the observers align with the no constancy line and in general the slopes of the fit

to observers' responses are closer to 1 (no constancy) in this section, as compared to

the previous section. This suggests that the mean image luminance is important for

lightness judgements and perhaps more so than the luminance of the background.
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Figure 5-10: Logio(Perceived reflectance) vs Logio(Mean Image luminance)
(Material 10, R channel). Luminance of background is held fixed at 0.33 while the
mean luminance of the material image changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log mean image luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio rule, the responses would lie along a line parallel
to the cyan line with slope = 1 . The orange line is the linear regression fit to each
observer's data. The slope of the line and p value are indicated in each plot. For all
observers, except PK, the slope of the fit is significantly different from 0 and 1.
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Section 3

In this section, the ratio of the mean image luminance to background luminance was

held fixed at 1 while the mean image/background luminance was varied. As before,

if observers are perfectly lightness constant their responses will be the same for all

five conditions of the screen luminance. If they exhibit zero constancy and follow the

ratio rule (and anchor to something outside the LCD framework) their responses will

be a function of the screen luminance. Figures 5-11 and A-14 through A-18 plot the

perceived reflectance versus screen luminance on a log-log scale. For all observers and

all channels of Materials 5 and 10, the responses lie between perfect constancy and

zero constancy. As the screen luminance increases, the perceived reflectance increases

as a non-linear function. These results suggest both the mean image luminance and

the background luminance affect the perceived reflectance however their interaction

is more complex than a simple ratio. If only the ratio mattered, then the responses

would not be a function of the screen luminance.

To analyze the effect of the luminance ratio on perceived reflectance, data was

pooled across sections 1,2 and 3. Figures 5-12 and A-20 through A-24 plot perceived

reflectance versus luminance ratio. For all observers and both materials, it is the

case that the luminance ratio has a significant effect on the perceived luminance.

This supports the conclusion that both the mean luminance and the background lu-

minance affect the perception of reflectance, however it is not clear how these two

factors interact.
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rial 10, R channel). The ratio of the luminance of background to that of the image
is held fixed at 1 while the mean luminances of the material image and background
change. The mean log responses for each light condition (Red = Light 1, Green =
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The gray line is the linear regression fit to each observer's data. The slope of the
line and p value are indicated in each plot. For all observers the slope of the fit is
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terial 10, R channel). The mean log responses for each light condition (Red =
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The results of Section 1,2 and 3 demonstrate that the mean image luminance and

the background luminance affect the perceived reflectance of a material. It makes

sense to ask if these findings negate the anti-Gelb observations we made earlier.

The answer is no. While the mean image luminance and the background affect the

perceived reflectance of a material in non-linear way, they preserve any ordering of

reflectance. Consider Figure 5-13. The perceived reflectance is plotted against chang-

ing variable for all observers for Material 10. Note how the perceived reflectance for

the R channel is always higher than that for the G channel which in turn is higher

than the B channel. This is true for all conditions and all observers. The error bars

indicate the 95% confidence intervals. Figure 5-14 shows a similar plot for Material 5.

In this case as well, the ratings are in the order R > G > B however they are not as

differentiated as Material 10. These plots demonstrate that for identical conditions,

the three channels of orange materials are consistently rated in the correct order of

reflectance. Does this extend to the case where the different channels of different

materials are viewed under identical conditions? This question is answered in Exper-

iment IIC.
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Figure 5-13: Material 10 Perceived reflectance is plotted against background lumi-
nance (keeping mean image luminance constant) in column 1, against mean luminance
(keeping background luminance constant) in column 2 and against the screen lumi-
nance (keeping the ratio of image to background constant) in column 3. Each row
corresponds to each of the 4 observers (KA, LS, PK and YL) who participated in
these tasks. In each plot, the R channel is denoted by red, the G channel by green
and B channel by blue. For each channel, the data is pooled across the 3 lighting
conditions. The errorbars are the 95% confidence intervals. While the observers do
not display perfect lightness constancy, they can nevertheless differentiate between
the R, G and B channels for identical experimental conditions. They consistently
rate the channels in the order R > G > B or as in the plot red > green > blue.
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Figure 5-14: Material 5 Similar plot to Figure 5-13, except that observers viewed
Material 5 instead of Material 10.
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5.7 Experiment IIB

5.7.1 Motivation

In Experiment IIA we found that for black materials viewed in isolation (Figure 5-9)

humans display some constancy; this contradicts the ratio rule. For white materi-

als (Figure 5-8) our observers display more constancy than what is predicted by the

ratio rule. We want to relate these results to previous work in lightness perception.

In our experiments we use complex visual stimuli like images of real world surfaces.

Traditionally most studies in lightness perception (including those of Wallach's [53]

and Gilchrist et al's [23]) have used flat Lambertian surface patches. Perhaps, the

results of Experiment IIA do not conform to the ratio rule because we used complex

visual stimuli. In order to test this hypothesis, we decided to repeat Experiment IIA

but with simple visual stimuli similar to those used in previous studies.

5.7.2 Procedure

The setup for Experiment IIB was identical to that of Experiment IIA except that

observers viewed blank gray patches on the LCD instead of photographs of materials.

This experiment serves as a control for Experiment IIA. In the absence of any tex-

tural cues, we expected observers to follow the ratio rule [53] in conjunction with an

anchoring rule [23]. Observers were instructed to match the gray level of the square

in the center to one of the eight standard patches.

Experiment IIB had four sections. In the first section, the luminance of the back-

ground was varied through [0.11, 0.17,0.33, 0.67, 1] while the image in the center was

a gray square of luminance 0.33. Two repetitions were run for each background

luminance level. In the second section, the luminance of the gray square in the

center was varied through [0.11, 0.17, 0.33, 0.67, 1] while the luminance of the gray

background was held fixed at 0.33. Two repetitions were run for each image lumi-
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nance level. In the third section, the ratio of the gray square in the center and the

gray background was held fixed at 0.5 and the square luminance was varied through

[0.11, 0.17, 0.33, 0.67, 1]. Two repetitions were run for each luminance level. In the

fourth section, the ratio of the square luminance to background luminance was held

fixed at 2 and the background luminance was varied through [0.11, 0.17,0.33,0.67, 1].

Two repetitions were run for each luminance level. Ten observers participated in this

experiment. This experiment lasted 7 minutes on average.

5.7.3 Results

Blank gray patches offer no textural cues; therefore we expect observers to display

zero constancy and follow the ratio rule in conjunction with an anchoring rule. Fig-

ures 5-15 and 5-16 plot the pooled responses of observers against the luminance ratio

of the patch and the background (magenta). For comparison, the data from Experi-

ment IIA are also plotted (R channel is red, G channel is green, B channel is blue).

If the observers follow the ratio rule while judging lightness, their responses would

lie along the black line with slope = 1. In Figure 5-15 the slope of the magenta line

is statistically different from 1. For low values of the background luminance (high

values of patch to background luminance ratio) the perceived reflectance levels off.

In Figure 5-16 the slope of the magenta line is close to 1 though it is still significantly

different from 1.

In Figure 5-17 the luminance ratio of the patch and the background is fixed. If

observers follow the ratio rule, then the perceived reflectance should not change as the

absolute luminance of the patch increases or decreases i.e. the observations should

lie along the horizontal black line. The magenta lines in Figure 5-17 have a slope

statistically different from 0. From Figures 5-15 to 5-17, we make two observations

- observers' ratings for the simple stimuli like gray patches are not qualitatively dif-

ferent from those for complex stimuli like the white materials (R channel of orange

materials). Second the black materials (B channel) display more constancy other
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kinds of materials. Moreover the complex visual stimuli are rated in the order of the

true reflectances (R > G > B).

We can make sense of these findings by appealing to Gilchrist et al's [23] notion

of a framework. A framework comprises a set of surfaces that belong to the same

region of illumination. For our experimental setup (Figure 5-2) the observers views

two distinct frameworks - the Munsell box and the LCD. The brightest region in each

framework provides an anchor for a surface in the framework (by the highest lumi-

nance rule).This is known as local anchoring. Similarly the brightest region in the

entire visual field provides the global anchor. The perceived reflectance of any surface

in the room will be a compromise between what is predicted by local anchoring and

global anchoring.

The perceived reflectance of the gray patch as predicted by the local anchoring

(if the observers only viewed the LCD) would depend only on the luminance ratio.

The reflectance predicted by the global anchor (the brightest region in the room, in

our case the white standard patch in the Munsell box, Figure 5-3) depends on the

patch luminance. The results in Figures 5-15 to 5-17 are somewhere in between these

two predictions. In Figure 5-17 the reflectance ratings change when the luminance

ratio is fixed, because the global anchor is important. For Figures 5-15 and 5-15 local

anchoring seems to dominate so the reflectance ratings for the patch have a slope

close to 1.

For complex visual stimuli like our material images we believe that in addition to

local and global anchoring effects, there is a tendency to self-anchor. A complex black

surface looks dark no matter how much we increase the illumination on the surface.

A complex white surface look white even when we reduce the illumination on it. We

made similar observations in Chapter 1, in our anti-Gelb experiments. The results in

Figures 5-15 to 5-17 indicate self-anchoring is more pronounced for black materials

than for the white materials.
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Thus, our results with gray patches conform with the existing accounts of light-

ness perception. They differ from our results with complex stimuli (Experiment IIA)

in that observers display greater lightness constancy for images of real world mate-

rials. The differences seem to be because real world surfaces have texture and the

visual system might use textural cues to judge lightness in addition to cues like mean

luminance, surround luminance etc.
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Figure 5-16: Logio(Perceived reflectance) vs Log1 (Patch Lumi-
nance/Background Luminance), background luminance is constant
(a) Comparison with results from Experiment IIA for Material 5 and (b) for Material
10. If observers follow the ratio rule all observations would lie on a line parallel to
the black line. The data is pooled across all observers and all lights.
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5.8 Experiment IIC

5.8.1 Motivation

In experiment IIA we observed that the background luminance and the mean image

luminance affect the perceived reflectance of the material images. However, we also

noted that for a given material, the observers consistently rated the R channel higher

than the G and G higher than the B. This would suggest that while observers are not

perfectly lightness constant, for identical conditions, they can distinguish materials

of distinct reflectance values. To test this hypothesis, in this experiment we kept

the background and mean image luminance constant and showed observers images of

different materials. All channels (RG, and B) of orange materials and the grayscale

images of the non-orange materials were used. We wanted to know if observers rated

the images in the order of physical reflectance and how close their reflectance esti-

mates were to the ground truth.

5.8.2 Procedure

Observers viewed images of materials, and indicated ratings for reflectance. The mean

luminance of the image and the luminance of the background were both held fixed

at 0.33. Twelve observers participated in this experiment. They were divided into

three groups, four observers in each. Observers in each group viewed a different set of

materials. Four orange materials and three black-white materials under three lights

were used for Groups 1 and 3. Three orange materials and four black-white materials

under three lights were used in Group 2. For each material, 3 repetitions were run for

each lighting condition. For orange materials, 3 repetitions were run per lighting con-

dition per channel. The order of images was randomized. The experiment lasted 30

minutes. In addition to the usual channels R, G and B, for each orange material, the

R2B and B2R images for each lighting condition were also included in the experiment.
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5.8.3 Results

In this experiment, mean image luminance and the background luminance are both

held fixed at 0.33. Subjects view the images of various materials - orange, white and

black - under three lighting conditions. For orange materials, the manipulated images

R2B and B2R are also included. We do so to test if manipulating statistics leads to a

change in perception. Figures 5-18, 5-19 and 5-20 plot the perceived reflectance ver-

sus ground truth for each observer in each group. If observers were perfectly lightness

constant, their responses would lie along the line with slope 1. If observers display

zero constancy their responses would be the same for all materials. The plots show

that our observers lie somewhere between these two extremes.

To analyze the performance of the observers further in Figure 5-21 we plot the

absolute value of the difference between perceived reflectance and ground truth for

each (material, channel, light, observer) combination for each group. In Figure 5-19

one can easily see how observers' responses deviate from the ground truth for each

material. For Groups 1 and 3 (Figure 5-23) observers agree with each other and

make similar mistakes on the same materials. For Group 2 (Figure 5-22) however,

observers display individual differences in their errors. Interestingly, we find that the

error depends on the material i.e. some materials are harder to judge than others.

Figure 5-21 through 5-23 show the analysis for Light 1. More plots for Light 2 and 3

are in Appendix B.

In Figure 5-24 the absolute error is plotted against the reflectance of the material

for each light and each group. From the plots, we observe that the error does not

seem to be related to the reflectance of the material.In other words, the deviation of

perceived reflectance from the ground truth, does not depend on the actual reflectance

(ground truth) of the material.

Finally, we examine the effect of manipulating image statistics. In Figures 5-26
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and 5-28, the mean response for each version (R,B2R,G,R2B,B) for each orange ma-

terial is graphed as a bar plot for each group in each light. These plots allows us to

examine the success of image statistics at changing the perception of a material. Fig-

ures 5-25 and 5-27 show example stimuli. Image R and B2R have identical histograms

and filter output histograms. Therefore according to our chosen set of statistics they

are indistinguishable. If these statistics capture anything of perceptual relevance then

images R and B2R should be rated identically by all observers. The same reasoning

holds for the B and R2B images. From the plots (more plots in Appendix B) we

find that for nearly all materials and under all lights, both the (R,B2R) and (B,R2B)

mean response pairs are within 2 standard error bars of each other. This is a very

satisfying result as it confirms that our chosen statistics capture perceptually relevant

image information.
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Figure 5-18: Perceived reflectance vs Ground Truth (Group 1). The mean
responses (pooled over all lighting conditions) are plotted against the ground truth
for each observer. Errorbars indicate the 95% confidence intervals. The responses of
a veridical observer would lie along the black line with slope = 1 . The blue line is
the linear regression fit to each observer's data. The slope of the line and p value are
indicated in each plot. For all observers the slope of the fit is significantly different
from 0 and 1.
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Figure 5-19: Perceived reflectance vs Ground Truth (Group 2). The mean
responses (pooled over all lighting conditions) are plotted against the ground truth
for each observer. Errorbars indicate the 95% confidence intervals. The responses of
a veridical observer would lie along the black line with slope = 1 . The blue line is
the linear regression fit to each observer's data. The slope of the line and p value are
indicated in each plot. For all observers the slope of the fit is significantly different
from 0 and 1.
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Figure 5-20: Perceived reflectance vs Ground Truth (Group 3). The mean
responses (pooled over all lighting conditions) are plotted against the ground truth
for each observer. Errorbars indicate the 95% confidence intervals. The responses
of a veridical observer would lie along the black line with slope = 1 . The blue
line is the linear regression fit to each observer's data. The slope of the line and p
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Figure 5-21: JPerceived reflectance - Ground Truth vs Material Index

(Group 1, Light 1). The mean absolute difference between ground truth and

perceived reflectance is plotted against the material for each observer. Errorbars in-

dicate the range. Each row corresponds to a different observer and each column to

the R (cyan), G (magenta) or B (yellow) channels for each material. Note how most

observers agree with each other and how some materials are harder to judge than

others.
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Figure 5-25: Stimuli for Experiment IIC, Group 1 (Light 1) : The columns are the R,
R2B, B2R and B images of all materials in Group 1. (Top row) Material 1 (Second
row) Material 6 (Third row) Material 10 (Fourth row) Material 12
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Figure 5-26: Perceived Reflectance vs Channel Index (Group 1, Light 1) The
mean response pooled across subjects is plotted against the channel index for each
material. Error bars indicated 95% confidence intervals. The success of manipulated
images R2B and B2R varies depending on the material.
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Figure 5-27: Stimuli for Experiment IIC, Group 2 : The columns are the R, R2B,
B2R and B images of all materials in Group 2. (Top row) Material 3 (Second row)
Material 7 (Third row) Material 11
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Figure 5-28: Perceived Reflectance vs Channel Index (Group 2) The mean
response pooled across subjects is plotted against the channel index for each material.
Error bars indicated 95% confidence intervals. The success of manipulated images
R2B and B2R varies depending on the material.
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5.9 Comparison of Experiment lIc responses with

Statistics

The results of experiments IIC, particularly the result that manipulated images R2B

and B2R were rated nearly the same as the B and R images respectively, suggest

that our choice of image statistics is a good one. The statistics agree to a great ex-

tent with perceptual judgments of reflectance. In Section 5.5.3 we observed that the

performance of a simple linear regression classifier using three image statistics could

rival human performance. We would like to compare the performance of a learning

method that uses image statistics to that of the observers in Experiment IIC. We

want to investigate how good the statistics are at estimating reflectance as opposed

to classifying reflectance.

Unlike Experiment I, where the observers had a training phase, the comparison

between a learning method that employs image statistics and humans is unequal in

this case because the observers have no access to ground truth. For any learning

algorithm to succeed, training data is necessary. Hence, we will do the following - we

train an estimator based on image statistics on images in Group X (X = 1,2 or 3)

with ground truth. Then we test the estimator on the remaining groups and compare

the performance and errors with observers.

An epsilon Support Vector Regression technique is used with a linear kernel [8].

The estimator uses four statistics - the standard deviation and (9 01t - 10th) percentile

of the gaussian center surround filter output and Sobel filter output at the finest scale.

The parameter c is set to 0.1 and the penalty parameter C is chosen by a five-fold

cross validation on the training set. The performance on the training set (Group 1)

is shown in Figure 5-29. We see that the even though the estimator is trained on the

ground truth, the performance is far from perfect. Comparing the errors made by

the estimator on the training set with those made by observers is more illustrative

(refer Figure 5-30, error bars for observers are the 95% confidence intervals, the error
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bar for the estimator is the range, x axis is the material index). We observe that the

errors made by the estimator and the observers are indistinguishable. This is inter-

esting because the estimator trains on the ground truth and has no clue how humans

perform the same task. From Figure 5-30 we see that it is impossible to tell apart

the performance of the machine and an average human observer in this experiment.

The performance of the estimator on test sets (Group 2 and Group 3) is plot-

ted in Figures 5-31 and 5-32. The overlaps in errors of the estimator and observers

for Group 2 and Group 3 is significant but not perfect. Figures 5-33 through 5-36

graph the performance for the case when the estimator is trained on Group 2 images

and tested on Groups 3 and 1. Figures 5-37 through 5-40 graph the performance

for the case when the estimator is trained on Group 3 images and tested on Groups

1 and 2. Using non-linear kernels like polynomial or radial basis function with the

e-SVR technique either leads to performance identical to the linear case or overfitting.

Thus, even with four features and a reasonably simple learning method, the learn-

ing algorithm rivals human performance at estimating reflectance. Moreover, they

make the same mistakes as the observers. This leads us to conclude that simple

image statistics like moments and percentiles of image intensities and filter outputs

capture perceptually relevant image information.
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Figure 5-29: Training Performance c-SVR, Linear Kernel, Set 1 statistics 1,

train set Group 1 - standard Deviation and ( 9 0th - 10th) percentile of histograms of

gaussian center surround and Sobel filtered images. Group 1 images form the training

set. Penalty parameter C is chosen by a five-fold cross validation on the training set.

c is set to 0.1.

'Set 1 statistics are the standard deviation and (9 0th - 10th) percentile of the gaussian center
surround filter output and Sobel filter output at the finest scale.
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Figure 5-30: Comparison of c-SVR with linear kernel, Set 1 statistics with averaged
subject performance for training set Group 1
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Figure 5-32: Comparison of c-SVR with linear kernel, Set 1 statistics with averaged
subject performance for test sets - Group 2 (left column) and Group 3(right column).
Each row corresponds to the R, G and B channels of the materials.
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Figure 5-33: Training Performance -SVR, Linear Kernel, Set 1 statistics,
train set Group 2 - standard Deviation and (9 0th - 10th) percentile of histograms of
gaussian center surround and Sobel filtered images. Group 2 images form the training
set. Penalty parameter C is chosen by a five-fold cross validation on the training set.
E is set to 0.1.
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Figure 5-34: Test Performance c-SVR, Linear Kernel, Set 1 statistics, train
set Group 2 The predicted output is plotted versus ground truth for test groups 3
and 1.
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Figure 5-35: Comparison of c-SVR with linear kernel, Set 1 statistics with averaged
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Figure 5-36: Comparison of c-SVR with linear kernel, Set 1 statistics with averaged
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Figure 5-38: Test Performance c-SVR, Linear Kernel, Set 1 statistics, train
set Group 3 The predicted output is plotted versus ground truth for test groups 1
and 2.
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Chapter 6

Summary

In this thesis we contribute to progress in the material recognition problem, specif-

ically in surface reflectance recognition. Dror et al [16, 14, 15] formulated the re-

flectance recognition problem in a statistical framework. They showed statistical

regularities in real world illumination lead to informative relationships between the

reflectance of a surface and certain statistics measured on an image of the surface.

In this work, we cast the reflectance recognition problem in the same framework.

We restrict our reflectance space to opaque materials of spatially uniform reflectance

properties. We allow materials to possess surface mesostructure. We find that for

such materials certain image statistics are diagnostic of the diffuse surface reflectance.

We compare the performance of a learning algorithm that uses such statistics as fea-

tures to human observers in two psychophysical experiments. We find that learning

algorithms that employ such image statistics perform similarly to an average human

observer.

In Section 6.1 we discuss our contributions in detail and in section 6.2 we outline

directions for further research.
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6.1 Thesis Contributions

6.1.1 Shadows, Interreflections and Surface Mesostructure

One of the important contributions of this work is that we consider surfaces with

mesostructure (medium scale structure that can be resolved by the eye). Interac-

tion of light with such surfaces leads to shadows and interreflections. Estimating the

reflectance of such surfaces from a single image under unknown lighting is consid-

erably harder than for smooth surfaces of known geometry. Image based reflection

estimation techniques [58, 57, 5, 35, 42, 12] consider similar surfaces, however all of

them require additional information in the form of prior knowledge of illumination or

geometry or multiple photographs or human interaction.

In contrast Dror et al [16] assume their surfaces are smooth spheres and thereby

avoid shadows and interreflections. However they handle complex real world illumi-

nation while we assume simple artificial illumination. Also, Dror et al consider both

the specular as well as the diffuse components of reflectance while we focus only on

the diffuse component.

6.1.2 Image Statistics and Reflectance Estimation

Like Dror et al, we find that moment and percentile statistics of image intensity his-

tograms and histograms of filtered images are diagnostic of surface reflectance. The

statistics are not perfectly correlated with the (diffuse) surface reflectance. However

they can be combined by a regression algorithm to predict the reflectance of a surface

given a single image with unknown surface geometry and illumination. We find that

even with a few features (three to four) and a relatively simple learning algorithm,

we can estimate the surface reflectance as well as humans.

Clearly our methods in their current form cannot be applied to estimate the ground
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truth for reflectance i.e. full BRDF estimation is impossible. However our findings il-

lustrate that even in a severely underconstrained case (single image, complex surface,

unknown lighting) it is possible to estimate the reflectance properties just as well as

human observers.

6.1.3 Psychophysics with Complex Stimuli

We conducted psychophysical experiments with images of real world surfaces, in con-

trast to most of the prior work on lightness perception where the stimuli are flat,

Lambertian surface patches. Recently some authors [43, 19, 20, 32] have used com-

plex stimuli in their studies. We believe that using stimuli representative of real world

conditions aids understanding the workings of the human visual system. Our visual

system excels at interpreting natural world scenes. Therefore, it is plausible that the

visual system would perform sub-optimally for stimuli that are not representative of

the real world.

In our experiments we find that the classic Gelb effect fails for images of real world

textured surfaces. Observers can estimate the reflectance of surfaces in the absence

of mean luminance information and context. However, observers are not veridical.

Our findings suggest that humans use textural cues in addition to mean luminance

information and contextual cues in order to make lightness judgements.

6.2 Future Work

6.2.1 Relaxing constraints on illumination and reflectance

In our work, we assume simple artificial illumination and surfaces with spatially uni-

form reflectance properties. It should be possible to relax these constraints to include

real world complex illumination and more challenging surfaces. We know from our
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daily visual experience, that humans can estimate reflectance properties under such

conditions. Therefore, it is conceivable that there exist informative image statistics

that make reflectance estimation under such challenging conditions feasible. Recent

work in texture analysis [60, 413 suggests that joint statistics of subband coefficients

and outputs of non-linear filters capture perceptually relevant characteristics of tex-

tures. As the distinction between arbitrary surfaces and textures is hazy, it is likely

that similar statistics are correlated with reflectance.

6.2.2 Synthesizing material appearance

A direction for immediate future research is the problem of synthesizing material ap-

pearance. In Chapter 4 we saw that modifying the Heeger Bergen texture synthesis

algorithm gave us reasonably good results. In Chapter 5 in our reflectance perception

experiments we found that the synthesized material images were rated identically to

the real images.

If we analyze the results in Figure 4-14 we observe that there is considerable

room for improvement. The problem of synthesizing material appearance can be

summarized thus - given an image of a surface of some material, a material synthesis

algorithm should produce an output image of the same surface but with altered ma-

terial properties. For example given an image of matte crumpled paper, we want to

synthesizes images of glossy crumpled paper or wet crumpled paper. The folds of the

paper and the illumination on the paper should appear to be the same.

Such an image manipulation is easy in the forward rendering framework of com-

puter graphics where the model for surface reflectance can be tweaked. However for

material synthesis, reflectance parameters of the surface have be estimated explicitly

or implicitly and then manipulated.

Material synthesis can be considered a special case of the more general texture
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synthesis problem. As we saw in Chapter 4, texture synthesis algorithms cannot be

applied directly and need modifications. In fact using a more sophisticated texture

synthesis algorithm than Heeger-Bergen, leads to poorer results. This happens be-

cause textures are stochastic and two samples of the same texture (if they are 3D)

need not have the same surface structure. Therefore algorithms tailored for general

texture synthesis cannot be applied directly to this problem.
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Appendix A

Experiment II results

The detailed results of Experiments IIA, IIB and IIC are presented here.
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Figure A-1: Logio(Perceived reflectance) vs Logio (Background luminance)
(Material 10, R channel). Luminance of material image is held fixed at 0.33 while
the luminance of the background changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log background luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio hypothesis, the responses would lie along a line
parallel to the cyan line with slope = -1 . The magenta line is the linear regression
fit to each observer's data. The slope of the line and p value are indicated in each
plot. For all observers the slope of the fit is significantly different from 0 and -1.
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Figure A-2: Logio(Perceived reflectance) vs Logio(Background luminance)
(Material 10, G channel). Luminance of material image is held fixed at 0.33 while
the luminance of the background changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log background luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio hypothesis, the responses would lie along a line
parallel to the cyan line with slope = -1 . The magenta line is the linear regression
fit to each observer's data. The slope of the line and p value are indicated in each
plot. For all observers, except PK, the slope of the fit is significantly different from 0
and -1.
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Figure A-3: Logio(Perceived reflectance) vs Logio(Background luminance)
(Material 10, B channel). Luminance of material image is held fixed at 0.33 while
the luminance of the background changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log background luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio hypothesis, the responses would lie along a line
parallel to the cyan line with slope = -1 . The magenta line is the linear regression
fit to each observer's data. The slope of the line and p value are indicated in each
plot. For all observers, except KA, the slope of the fit is not significantly different
from 0.
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Figure A-4: Logio(Perceived reflectance) vs Logio(Background luminance)
(Material 5, R channel). Luminance of material image is held fixed at 0.33 while
the luminance of the background changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log background luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio hypothesis, the responses would lie along a line
parallel to the cyan line with slope = -1 . The magenta line is the linear regression
fit to each observer's data. The slope of the line and p value are indicated in each
plot. For all observers, except RK, the slope of the fit is significantly different from
0 and -1.
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Figure A-5: Logio(Perceived reflectance) vs Logio(Background luminance)
(Material 5, G channel). Luminance of material image is held fixed at 0.33 while
the luminance of the background changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log background luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio hypothesis, the responses would lie along a line
parallel to the cyan line with slope = -1 . The magenta line is the linear regression
fit to each observer's data. The slope of the line and p value are indicated in each
plot. For all observers the slope of the fit is significantly different from 0 and -1.
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Figure A-6: Logio(Perceived reflectance) vs Logio(Background luminance)
(Material 5, B channel). Luminance of material image is held fixed at 0.33 while
the luminance of the background changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log background luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio hypothesis, the responses would lie along a line
parallel to the cyan line with slope = -1 . The magenta line is the linear regression
fit to each observer's data. The slope of the line and p value are indicated in each
plot. For all observers, except TL, the slope of the fit is significantly different from 0
and -1.
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Figure A-7: Logio(Perceived reflectance) vs Logio(Mean Image luminance)
(Material 10, R channel). Luminance of background is held fixed at 0.33 while the
mean luminance of the material image changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log mean image luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio hypothesis, the responses would lie along a line
parallel to the cyan line with slope = 1 . The orange line is the linear regression fit
to each observer's data. The slope of the line and p value are indicated in each plot.
For all observers, except PK, the slope of the fit is significantly different from 0 and
1.
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Figure A-8: Logio(Perceived reflectance) vs Logio(Mean Image luminance)
(Material 10, G channel). Luminance of background is held fixed at 0.33 while
the mean luminance of the material image changes. The mean log responses for each
light condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against
the log mean image luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio hypothesis, the responses would lie along a line
parallel to the cyan line with slope = 1 . The orange line is the linear regression fit
to each observer's data. The slope of the line and p value are indicated in each plot.
For all observers, except KA, the slope of the fit is significantly different from 0 and
1.
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Figure A-9: Logio(Perceived reflectance) vs Logio(Mean Image luminance)
(Material 10, B channel). Luminance of background is held fixed at 0.33 while the
mean luminance of the material image changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log mean image luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio hypothesis, the responses would lie along a line
parallel to the cyan line with slope = 1 . The orange line is the linear regression fit
to each observer's data. The slope of the line and p value are indicated in each plot.
For all observers the slope of the fit is significantly different from 0 and 1.
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Figure A-10: Logio(Perceived reflectance) vs Logio(Mean Image luminance)
(Material 5, R channel). Luminance of background is held fixed at 0.33 while the
mean luminance of the material image changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log mean image luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio hypothesis, the responses would lie along a line
parallel to the cyan line with slope = 1 . The orange line is the linear regression fit
to each observer's data. The slope of the line and p value are indicated in each plot.
For two observers, RK and TL, the slope of the fit is significantly close to 1 but for
the other observers, the slope is significantly different from 0 or 1.
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Figure A-11: Logio(Perceived reflectance) vs Logio(Mean Image luminance)
(Material 5, G channel). Luminance of background is held fixed at 0.33 while the
mean luminance of the material image changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log mean image luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio hypothesis, the responses would lie along a line

parallel to the cyan line with slope = 1 . The orange line is the linear regression fit

to each observer's data. The slope of the line and p value are indicated in each plot.
For all observers, except CT, the slope of the fit is significantly close to 1.
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Figure A-12: Logio(Perceived reflectance) vs Logio(Mean Image luminance)
(Material 5, B channel). Luminance of background is held fixed at 0.33 while the
mean luminance of the material image changes. The mean log responses for each light
condition (Red = Light 1, Green = Light 2, Blue = Light 3) are plotted against the
log mean image luminance for each observer. The responses of a veridical observer
would lie along the horizontal ground truth line (black). If an observer demonstrates
zero constancy and follows the ratio hypothesis, the responses would lie along a line
parallel to the cyan line with slope = 1 . The orange line is the linear regression fit
to each observer's data. The slope of the line and p value are indicated in each plot.
For all observers, except TL. the slope of the fit is significantly different from 0 and
1.
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ground change. The mean log responses for each light condition (Red = Light 1,
Green = Light 2, Blue = Light 3) are plotted against the log screen luminance for
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ground truth line (black). If an observer demonstrates zero constancy and follows the
ratio hypothesis, the responses would lie along a line parallel to the cyan line with
slope = 1 . The gray line is the linear regression fit to each observer's data. The
slope of the line and p value are indicated in each plot. For all observers the slope of
the fit is significantly different from 0 and 1.
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Figure A-14: Logio(Perceived reflectance) vs Logio(Screen luminance) (Ma-

terial 10, G channel). The ratio of the luminance of background to that of the
image is held fixed at 1 while the mean luminances of the material image and back-
ground change. The mean log responses for each light condition (Red = Light 1,
Green = Light 2, Blue = Light 3) are plotted against the log screen luminance for
each observer. The responses of a veridical observer would lie along the horizontal
ground truth line (black). If an observer demonstrates zero constancy and follows the
ratio hypothesis, the responses would lie along a line parallel to the cyan line with
slope = 1 . The gray line is the linear regression fit to each observer's data. The
slope of the line and p value are indicated in each plot. For all observers, except YL,
the slope of the fit is significantly different from 0 and 1.
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Figure A-15: Logio(Perceived reflectance) vs Logio(Screen luminance) (Ma-
terial 10, B channel). The ratio of the luminance of background to that of the
image is held fixed at 1 while the mean luminances of the material image and back-
ground change. The mean log responses for each light condition (Red = Light 1,
Green = Light 2, Blue = Light 3) are plotted against the log screen luminance for
each observer. The responses of a veridical observer would lie along the horizontal
ground truth line (black). If an observer demonstrates zero constancy and follows the
ratio hypothesis, the responses would lie along a line parallel to the cyan line with
slope = 1 . The gray line is the linear regression fit to each observer's data. The
slope of the line and p value are indicated in each plot. For all observers, except KA,
the slope of the fit is significantly different from 0 and 1.
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Figure A-16: Logio(Perceived reflectance) vs Logio(Screen luminance) (Ma-
terial 5, R channel). The ratio of the luminance of background to that of the image
is held fixed at 1 while the mean luminances of the material image and background
change. The mean log responses for each light condition (Red = Light 1, Green =
Light 2, Blue = Light 3) are plotted against the log screen luminance for each ob-
server. The responses of a veridical observer would lie along the horizontal ground
truth line (black). If an observer demonstrates zero constancy and follows the ratio
hypothesis, the responses would lie along a line parallel to the cyan line with slope
= 1 . The gray line is the linear regression fit to each observer's data. The slope of
the line and p value are indicated in each plot. For all observers the slope of the fit
is significantly different from 0 and 1.
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Figure A-17: Logio(Perceived reflectance) vs Logio(Screen luminance) (Ma-
terial 5, G channel). The ratio of the luminance of background to that of the image
is held fixed at 1 while the mean luminances of the material image and background
change. The mean log responses for each light condition (Red = Light 1, Green =
Light 2, Blue = Light 3) are plotted against the log screen luminance for each ob-
server. The responses of a veridical observer would lie along the horizontal ground
truth line (black). If an observer demonstrates zero constancy and follows the ratio
hypothesis, the responses would lie along a line parallel to the cyan line with slope
= 1 . The gray line is the linear regression fit to each observer's data. The slope
of the line and p value are indicated in each plot. For all observers, except RK, the
slope of the fit is significantly different from 0 and 1.
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Figure A-18: Logio(Perceived reflectance) vs Logio(Screen luminance) (Ma-
terial 5, B channel). The ratio of the luminance of background to that of the image
is held fixed at 1 while the mean luminances of the material image and background
change. The mean log responses for each light condition (Red = Light 1, Green =
Light 2, Blue = Light 3) are plotted against the log screen luminance for each ob-
server. The responses of a veridical observer would lie along the horizontal ground
truth line (black). If an observer demonstrates zero constancy and follows the ratio
hypothesis, the responses would lie along a line parallel to the cyan line with slope
= 1 . The gray line is the linear regression fit to each observer's data. The slope of
the line and p value are indicated in each plot. For two observers, JC and TL, the
slope of the fit is significantly different from 0 and 1. For the other observers, the
slope is not significant.
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Figure A-19: Logio(Perceived reflectance) vs Logio(Luminance Ratio) (Ma-

terial 10, R channel). The mean log responses for each light condition (Red =

Light 1, Green = Light 2, Blue = Light 3) are plotted against the log of the ratio

of image luminance to background luminance for each observer. The responses of

a veridical observer would lie along the horizontal ground truth line (black). If an

observer demonstrates zero constancy and follows the ratio hypothesis, the responses

would lie along a line parallel to the cyan line with slope = 1 . The purple line is

the linear regression fit to each observer's data. The slope of the line and p value are

indicated in each plot. For all observers, the slope of the fit is significantly different

from 0 and 1.
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Figure A-20: Loglo(Perceived reflectance) vs Logio(Luminance Ratio) (Ma-
terial 10, G channel). The mean log responses for each light condition (Red =
Light 1, Green = Light 2, Blue = Light 3) are plotted against the log of the ratio
of image luminance to background luminance for each observer. The responses of
a veridical observer would lie along the horizontal ground truth line (black). If an
observer demonstrates zero constancy and follows the ratio hypothesis, the responses
would lie along a line parallel to the cyan line with slope = 1 . The purple line is
the linear regression fit to each observer's data. The slope of the line and p value are
indicated in each plot. For all observers, the slope of the fit is significantly different
from 0 and 1.
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Figure A-21: Logio(Perceived reflectance) vs Logio(Luminance Ratio) (Ma-

terial 10, B channel). The mean log responses for each light condition (Red =

Light 1, Green = Light 2, Blue = Light 3) are plotted against the log of the ratio

of image luminance to background luminance for each observer. The responses of

a veridical observer would lie along the horizontal ground truth line (black). If an

observer demonstrates zero constancy and follows the ratio hypothesis, the responses

would lie along a line parallel to the cyan line with slope = 1 . The purple line is

the linear regression fit to each observer's data. The slope of the line and p value are

indicated in each plot. For all observers, the slope of the fit is significantly different

from 0 and 1.
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Figure A-22: Logio(Perceived reflectance) vs Logio(Luminance Ratio) (Ma-
terial 5, R channel). The mean log responses for each light condition (Red = Light
1, Green = Light 2, Blue = Light 3) are plotted against the log of the ratio of image
luminance to background luminance for each observer. The responses of a veridi-
cal observer would lie along the horizontal ground truth line (black). If an observer
demonstrates zero constancy and follows the ratio hypothesis, the responses would
lie along a line parallel to the cyan line with slope = 1 . The purple line is the linear
regression fit to each observer's data. The slope of the line and p value are indicated
in each plot. For all observers, the slope of the fit is significantly different from 0 and
1.
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Figure A-23: Logio(Perceived reflectance) vs Logio(Luminance Ratio) (Ma-
terial 5, G channel). The mean log responses for each light condition (Red =
Light 1, Green = Light 2, Blue = Light 3) are plotted against the log of the ratio
of image luminance to background luminance for each observer. The responses of
a veridical observer would lie along the horizontal ground truth line (black). If an
observer demonstrates zero constancy and follows the ratio hypothesis, the responses
would lie along a line parallel to the cyan line with slope = 1 . The purple line is
the linear regression fit to each observer's data. The slope of the line and p value are
indicated in each plot. For all observers, the slope of the fit is significantly different
from 0 and 1.
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Figure A-24: Logio(Perceived reflectance) vs Logio(Luminance Ratio) (Ma-
terial 5, B channel). The mean log responses for each light condition (Red = Light
1, Green = Light 2, Blue = Light 3) are plotted against the log of the ratio of image
luminance to background luminance for each observer. The responses of a veridi-
cal observer would lie along the horizontal ground truth line (black). If an observer
demonstrates zero constancy and follows the ratio hypothesis, the responses would
lie along a line parallel to the cyan line with slope = 1 . The purple line is the linear
regression fit to each observer's data. The slope of the line and p value are indicated
in each plot. For all observers, the slope of the fit is significantly different from 0 and
1.
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Figure A-25: Material 10 Perceived reflectance is plotted against background lumi-
nance (keeping mean image luminance constant) in column 1, against mean luminance
(keeping background luminance constant) in column 2 and against the screen lumi-
nance (keeping the ratio of image to background constant) in column 3. Each row
corresponds to each of the 4 observers (KA, LS, PK and YL) who participated in
these tasks. In each plot, the R channel is denoted by red, the G channel by green
and B channel by blue. For each channel, the data is pooled across the 3 lighting
conditions. The errorbars are the 95% confidence intervals. While the observers do
not display perfect lightness constancy, they can nevertheless differentiate between
the R, G and B channels for identical experimental conditions. They consistently
rate the channels in the order R > G > B or as in the plot red > green > blue.
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Figure A-26: Material 5 Similar plot to Figure 5-13, except that observers viewed
Material 5 instead of Material 10.
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Figure A-27: Logio(Perceived reflectance) vs Logio(Patch Lumi-
nance/Background Luminance), patch luminance is constant (a) Comparison
with results from Experiment IIA for Material 5 and (b) for Material 10. If observers
follow the ratio rule all observations would lie on a line parallel to the black line.
The data is pooled across all observers and all lights.
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Figure A-28: Logio(Perceived reflectance) vs Logio(Patch Lumi-
nance/Background Luminance), background luminance is constant
(a) Comparison with results from Experiment IIA for Material 5 and (b) for Material
10. If observers follow the ratio rule all observations would lie on a line parallel to
the black line. The data is pooled across all observers and all lights.
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Figure A-30: Perceived reflectance vs Ground Truth (Group 1). The mean
responses (pooled over all lighting conditions) are plotted against the ground truth
for each observer. Errorbars indicate the 95% confidence intervals. The responses of
a veridical observer would lie along the black line with slope = 1 . The blue line is
the linear regression fit to each observer's data. The slope of the line and p value are
indicated in each plot. For all observers the slope of the fit is significantly different
from 0 and 1.
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Figure A-31: Perceived reflectance vs Ground Truth (Group 2). The mean
responses (pooled over all lighting conditions) are plotted against the ground truth
for each observer. Errorbars indicate the 95% confidence intervals. The responses of
a veridical observer would lie along the black line with slope = 1 . The blue line is
the linear regression fit to each observer's data. The slope of the line and p value are
indicated in each plot. For all observers the slope of the fit is significantly different
from 0 and 1.
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Figure A-32: Perceived reflectance vs Ground Truth (Group 3). The mean
responses (pooled over all lighting conditions) are plotted against the ground truth
for each observer. Errorbars indicate the 95% confidence intervals. The responses
of a veridical observer would lie along the black line with slope = 1 . The blue
line is the linear regression fit to each observer's data. The slope of the line and p
value are indicated in each plot. For two observers, RH and KA, the slope of the
fit is significantly different from 0 and 1. For observers BB and SV, the slope is not
significant.
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Appendix B

Analysis of Experiment II

B.1 Experiment HA

In Appendix A, we saw graphical plots of the responses of observers against factors

like the mean image luminance and background luminance. We can analyze our data

further with ANOVA techniques. Analysis of variance tells us the effect of several fac-

tors (in our case observers, lighting, reflectance of material, mean image luminance,

background luminance) and their interactions on the measured variable (perceived

reflectance). ANOVA assumes a normal distribution and homogeneity of variance if

the null hypothesis (factors have no influence on measured variable) is true. ANOVA

has been demonstrated to be robust to violations of these assumptions. We perform

within-subjects ANOVA for our data. A within subjects design implies that all sub-

jects (observers) view the same stimuli. This is true of all subjects within a group

but not across groups. In this analysis, we will not consider across subject factors.

Figures B-1 and B-2 show a three factor within subjects analysis for sections 1,2

and 3 of Experiment IIA. To interpret the ANOVA tables, for each row we consider

the value in the last column (Prob > F), if it is less than 0.05, then the factor in

the first column has an effect on the perceived reflectance. For example for Figure

B-la we observe that all the factors Subject, Lighting, Reflectance and Background

Luminance have an effect on the responses of observers in Section 1. Therefore, the
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observers do not agree too much with each. Observer responses are affected by the

lighting conditions. The responses vary with the reflectance of the material (eg R

channel has higher rating than B channel). Background luminance has an effect on

the responses. Thus, the ANOVA confirms our observations from Appendix A.

A drawback of ANOVA is that is that it is hard to tell which effect is more signif-

icant than others. For example, by running more observers we may reduce the effect

of the individual differences between observers. Nevertheless we expect the ANOVA

to reflect all the big effects that we observe from graphical plotting of data.

ANOVA tables for Experiment IIA (Figures B-1 through B-3) demonstrate that

the mean image luminance, background luminance and the reflectance of the material

affect the perceived reflectance of observers. Observers display individual differences

and are affected by the lighting conditions.
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Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.0554 3 0.01846 3.14 0.0266
Lighting 0.2558 2 0.12788 21.76 0
Reflectance 8.7931 2 4.39655 748.05 0
Bkgnd Lu 1.4239 4 0.35598 60.57 0
Subject*Lighting 0.0326 6 0.00544 0.92 0.4784
Subject*Reflectance 0.0586 6 0.00977 1.66 0.1326
Subject*Bkgnd Lu 0.1537 12 0.01281 2.18 0.0144
Lighting*Reflectance 0.082 4 0.0205 3.49 0.009
Lighting*Bkgnd Lu 0.0939 8 0.01174 2 0.0491
Reflectance*Bkgnd Lu 1.2625 8 0.15781 26.85 0
Subject*Lighting*Reflectance 0.049 12 0.00408 0.69 0.7558
Subject*Lighting*Bkgnd Lu 0.1507 24 0.00628 1.07 0.3843
Subject*Reflectance*Bkgnd Lu 0.2124 24 0.00885 1.51 0.07
Lighting*Reflectance*Bkgnd Lu 0.1459 16 0.00912 1.55 0.0864
Subject*lighting*Reflectance*Bkgnd Lu 0,2355 48 0.00491 0.83 0.7662
Error 1.0579 180 0.00588
Total 14.0629 359

Constrained (Type 111) sums of squares.

(a) Image Luminance fixed

Analysis of Variance
Source Sum Sq. d.f. Mean Sq. F Prob>F

Subject 0.0651 3 0.02172 3.89 0.01
Lighting 0.0839 2 0.04195 7.52 0.0007
Reflectance 7.9332 2 3.96658 710.77 0
Mean Lu 1.781 4 0.44525 79.78 0
Subject*Lighting 0.0141 6 0.00235 0.42 0.8647
Subject*Reflectance 0.2422 6 0.04036 7.23 0
Subject*Mean Lu 0.0939 12 0.00783 1.4 0.1681
lighting*Reflectance 0.0368 4 0.0092 1.65 0.1641
lighting*Mean Lu 0.027 8 0.00338 0.61 0.7727
Reflectance*Mean Lu 0.7186 8 0.08983 16.1 0
Subject*Lighting*Reflectance 0.1445 12 0.01204 2.16 0.0155
Subject*Lighting*Mean Lu 0.1229 24 0.00512 0.92 0.5778
Subject*Reflectance*Mean Lu 0.3337 24 0.01391 2.49 0.0003
Lighting*Reflectance*Mean Lu 0.0996 16 0.00623 1.12 0.3433
Subject*Lighting*Reflectance*Mean Lu 0.3049 48 0.00635 1.14 0.2698
Error 1.0045 180 0.00558
Total 13.0061 359

Constrained (Type 111) sums of squares.

(b) Background Luminance fixed

Analysis of Variance
Sun Sq. d. f .

Subject
Lighting
Reflectance
Mean Lun
Subject*Lighting
Subject*Reflectance
Subject*Mean Lun
Lighting*Reflectance
Lighting*Mean Lun
Reflectance*Mean Lun
Subject*Lighting*Reflectance
Subject*Lighting*Mean Lun
Subject*Reflectance*Mean Lun
Lighting*Reflectance*Mean Lun
Subject*LightingsReflectance*Mean Lun
Error
Total

0.0651
0.0839
7.9332
1.781
0.0141
0.2422
0.0939
0.0368
0.027
0.7186
0.1445
0.1229
0.3337
0.0996
0.3049
1.0045

13.0061

Mean Sq. F Prob>F

3 0.02172
2 0.04195
2 3.96658
4 0.44525
6 0.00235
6 0.04036

12 0.00783
4 0.0092
8 0.00338
8 0.08983

12 0.01204
24 0.00512
24 0.01391
16 0.00623
48 0.00635

180 0.00558
359

3.89
7.52

710.77
79.78
0.42
7.23
1.4
1.65
0.61

16.1
2.16
0.92
2.49
1.12
1.14

0.01
0.0007
0
0
0.8647
0
0.1681
0.1641
0.7727
0
0.0155
0.5778
0.0003
0.3433
0.2698

Constrained (Type lit] sums of squares.

(c) Ratio of image to background luminance fixed

Figure B-1: Three Factor Within Subjects ANOVA for Material 10
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Analysis of Variance
Source Sum Sq. d.f. Mean Sq. F Prob>F

Subject 0.96976 3 0.32326 37.76 0
Lighting 0.18195 2 0.09098 10.63 0
Reflectance 1.15304 2 0.57652 67.34 0
Bkgnd Lu 1.68097 4 0.42024 49.09 0
Subject-Lighting 0.06733 6 0.01122 1.31 0.2545
Subject*Reflectance 0.06645 6 0.01108 1.29 0.2622
Subject*Bkgnd Lu 0.61157 12 0.05096 5.95 0
Lighting-Reflectance 0.00715 4 0.00179 0.21 0.9333
Lighting*Bkgnd Lu 0.16041 8 0.02005 2.34 0.0204
Reflectance*Bkgnd Lu 0.4029 8 0.05036 5.88 0
Subject*Lighting*Reflectance 0.1066 12 0.00888 1.04 0.4164
Subject*lighting*Bkgnd lu 0.25944 24 0.01081 1.26 0.1957
Subject*Reflectance-Bkgnd Lu 0.25838 24 0.01077 1.26 0,1996
lighting*Reflectance*Bkgnd Lu 0.17605 16 0.011 1.29 0.2106
Subject*Lighting*Reflectance*Bkgnd Lu 0.47225 48 0.00984 1.15 0.2559
Error 1.54101 180 0.00856
Total 8.11525 359

Constrained (Type 111) sums of squares.

(a) Image Luminance fixed

Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 1.34259 3 0.44753 81.12 0
Lighting 0.20538 2 0.10269 18.61 0
Reflectance 0.97684 2 0.48842 88.54 0
Mean Lu 2.84947 4 0.71237 129.13 0
Subject*Lighting 0.03374 6 0.00562 1.02 0.4142
Subject-Reflectance 0.08101 6 0.0135 2.45 0.0267
Subject-Mean Lu 0.45528 12 0.03794 6.88 0
Lighting*Reflectance 0.0218 4 0.00545 0.99 0.4156
Lighting*Mean Lu 0.09297 8 0.01162 2.11 0.0373
Reflectance*Mean Lu 0.29624 8 0.03703 6.71 0
Subject-lighting-Reflectance 0.11036 12 0.0092 1.67 0.0774
Subject*lighting*Mean Lu 0.17522 24 0.0073 1.32 0.154
Subject*Reflectance*Mean Lu 0.17749 24 0.0074 1.34 0.1436
Lighting*Reflectance*Mean Lu 0.0274 16 0.00171 0.31 0 9953
Subject*lighting*Reflectance*Mean Lu 0.14881 48 0.0031 0.56 0. 9897
Error 0.993 180 0.00552
Total 7.9876 359

Consrained (Type 11I) sums of squares

(b) Background Luminance fixed

Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 1.34259 3 0.44753 81.12 0
Lighting 0.20538 2 0.10269 18.61 0
Reflectance 0.97684 2 0.48842 88.54 0
Mean Lu 2.84947 4 0.71237 129.13 0
Subject*Lighting 0.03374 6 0.00562 1.02 0.4142
Subject*Reflectance 0.08101 6 0.0135 2.45 0.0267
Subject*Mean Lu 0.45528 12 0.03794 6.88 0
Lighting-Reflectance 0.0218 4 0.00545 0.99 0.4156
Lighting*Mean Lu 0.09297 8 0.01162 2.11 0.0373
Reflectance*Mean Lu 0.29624 8 0.03703 6.71 0
Subject*lighting*Reflectance 0.11036 12 0.0092 1.67 0.0774
Subject*Lighting*Mean lu 0.17522 24 0.0073 1.32 0.154
Subject*Reflectance*Mean Lu 0.17749 24 0.0074 1.34 0.1436
Lighting*Reflectance-Mean Lu 0.0274 16 0.00171 0.31 0.9953
Subject*Lighting*Reflectance*Mean Lu 0.14881 48 0.0031 0.56 0.9897
Error 0.993 180 0.00552
Total 7.9876 359

Constrained (Type I1) sums of squares.

(c) Ratio of image to background luminance fixed

Figure B-2: Three Factor Within Subjects ANOVA for Material 5
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Analysis of Variance
Source Sum Sq. d.f. Mean Sq. F Prob>F

Subject 3.4274 3 1.14247 125.95 0
Lighting 0.5922 2 0.2961 32.64 0
Reflectance 3.0943 2 1.54717 170.57 0
Mean Lum 2.9388 5 0.58776 64.8 0
Bkgnd Lum 1.681 9 0.18677 20.59 0
Error 9.5966 1058 0.00907
Total 24.1719 1079

Constrained (Type 111) sums of squares.

(a) Material 5

Analysis of Variance
Source Sum Sq. d.f. Mean Sq. F Prob>F

Subject 0.1607 3 0.0536 5.73 0.0007
Lighting 0.389 2 0.1945 20.8 0
Reflectance 24.6445 2 12.3222 1317.53 0
Mean Lum 1.7951 5 0.359 38.39 0
Bkgnd Lum 1.4239 9 0.1582 16.92 0
Error 9.895 1058 0.0094
Total 40.0797 1079

Constrained (Type II1) sums of squares.

(b) Material 10

Figure B-3: Four Factor Within Subjects ANOVA for Materials 5 and 10
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B.2 Experiment IIC

ANOVA tables for this task (Figure B-4) indicate that observers display individual

differences and that lightness judgements are affected by the reflectance of the mate-

rial. Except for Group 1, the lighting condition affects observer responses.

To analyze the performance of the observers in this experiment further, Figures B-

5 through B-13 plot the absolute value of the difference between perceived reflectance

and ground truth for each (material, channel, light, observer) combination for each

group. Such a visualization allows one to see how much and on which materials

observers deviate from the ground truth. It also facilitates a comparison between

observers. For Groups 1 and 3 observers agree with each other and make similar

mistakes on the same materials (ANOVA tests confirm this observation). For Group

2 however, observers display individual differences in their errors. The second ob-

servation we make from these plots is that error depends on the material i.e. some

materials are harder to judge than others (ANOVA tests confirm this observation).

In Figures B-14, B-15 and B-16, the absolute error is plotted against the reflectance

of the material for each light and each group. From the plots, we observe the error

does not seem to be related to the reflectance of the material. In other words the

absolute deviation from ground truth does not depend on the ground truth. ANOVA

tests however differ from this observation.

Finally, we examine the effect of manipulating image statistics. In Figures B-17

through B-23, the mean response for each version (R,B2R,G,R2B,B) for each orange

material is graphed as a bar plot for each group in each light. These plots allows us

to examine the success of image statistics at changing the perception of a material.

Image R and B2R have identical histograms and filter output histograms. Therefore

according to our chosen set of statistics they are indistinguishable. If these statistics

capture anything of perceptual relevance then images R and B2R should be rated
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identically by all observers. The same reasoning holds for the B and R2B images.

From the plots we find that for nearly all materials and under all lights, both the

(R,B2R) and (B,R2B) mean response pairs are within 2 standard error bars of each

other. This is a very satisfying result as it confirms that our chosen statistics capture

perceptually relevant image information.
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Analysis of Variance
Source Sum Sq. d.f. Mean Sq. F Prob>F

Subject 0.7286 3 0.24288 27.28 0
Lighting 0.0315 2 0.01575 1.77 0.1721
Reflectance 16.079 13 1.23685 138.91 0
Subject*Lighting 0.0581 6 0.00969 1.09 0.3689
Subject*Reflectance 0.9675 39 0.02481 2.79 0
Lighting*Reflectance 0.2295 26 0.00883 0.99 0.4789
Subject*Lighting*Reflectance 0.7684 78 0.00985 1.11 0.2706
Error 2.9917 336 0.0089
Total 21.8544 503

Constrained (Type I1) sums of squares.

(a) Group 1

Analysis of Variance
Source Sum Sq. d.f. Mean Sq. F Prob>F

Subject 1.1212 3 0.37374 64.27 0
Lighting 0.3158 2 0.15789 27.15 0
Reflectance 11.9302 12 0.99418 170.95 0
Subject*Lighting 0.0578 6 0.00964 1.66 0.1311
Subject*Reflectance 1.4842 36 0.04123 7.09 0
Lighting*Reflectance 0.8097 24 0.03374 5.8 0
Subject*Lighting*Reflectance 0.7914 72 0.01099 1.89 0.0001
Error 1.8145 312 0.00582
Total 18.3247 467

Constrained (Type 1II) sums of squares.

(b) Group 2

Analysis of Variance
Source Sum Sq. d.f. Mean Sq. F Prob>F

Subject 0.1381 3 0.04603 2.76 0.0418
Lighting 0.7493 2 0.37465 22.5 0
Reflectance 13.1613 10 1.31613 79.03 0
Subject*Lighting 0.5497 6 0.09162 5.5 0
Subject*Reflectance 0.7116 30 0.02372 1.42 0.0723
Lighting*Reflectance 0.9166 20 0.04583 2.75 0.0001
Subject*Lighting*Reflectance 0.8517 60 0.0142 0.85 0.7725
Error 6.1948 372 0.01665
Total 23.2363 503

Constrained (Type III) sums of squares.

(c) Group 3

Figure B-4: Two Factor Within Subjects ANOVA, Keeping Background and Image
Luminance Fixed
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(a)

An ceis of Variance
Source Su Sq. d.f. Mean Sq. F ProbF

Subject 0.04408 3 0.01469 1.11 0.3466
paterial 0.19897 5 0.03977 3.01 0.013
Subjectmaterial 0.26719 1 w 0.01781 1.35 0.1819
Error 1.90411 144 0.01322
Total 2.44375 167

Constained (Twe 111) suns of sques.

(b)

Figure B-5: (a) JPerceived reflectance - Ground Truthj vs, Material Index
(Group 1, Light 1). The mean absolute difference between ground truth and
perceived reflectance is plotted against the material for each observer. Errorbars
indicate the range. Each row corresponds to a different observer and each column
to the R (cyan), G (magenta) or B (yellow) channels for each material. Note how
most observers agree with each other and how some materials are harder to judge than
others. (b) One Factor Within Subjects ANOVA, (Image and Background Luminance
are fixed) confirms these observations.
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Analysis of Variance
Source Sua Sq. d.f. Mean Sq. F Prob>F

Subject 0.02162 3 0.00721 0.45 0.7154
Material 0.16473 5 0.03295 2.07 0.0723
Subject*Material 0.15755 15 0.0105 0.66 0.8193
Error 2.28994 144 0.0159
Total 2.62707 167

Constrained (Type II1) sums of squares.

(b)

Figure B-6: (a) JPerceived reflectance - Ground Truth vs Material Index
(Group 1, Light 2) (b) One Factor Within Subjects ANOVA (Image and Back-
ground Luminance are fixed)
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(a)

Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.04533 3 0.01511 1.21 0.3081
material 0.1073 5 0.02115 1.69 0.1396
SubjecteHaterial 0,173S 15 0.01157 0.93 0.5362
Error 1.79723 144 0.01248
Total 2.12003 167

Constrained (Type I1) sums of squares.

(b)

Figure B-7: (a) JPerceived reflectance - Ground Truth vs Material Index
(Group 1, Light 3) (b) One Factor Within Subjects ANOVA (Image and Back-
ground Luminance are fixed)
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(a)

Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.1199 3 0.03997 3.44 0.0199
Material 0.34957 6 0.05826 5.01 0.0001
Subject*Material 0.43136 18 0.02396 2.06 0.0107

IError 1.4872 128 0.01162
Total 2.34137 155

Constained (Type li) sums of squmes.

(b)

Figure B-8: (a) JPerceived reflectance - Ground Truth vs Material Index
(Group 2, Light 1) (b) One Factor Within Subjects ANOVA (Image and Back-
ground Luminance are fixed)
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Analysis of Variance
Source Sua Sq. d.f. Mean Sq. F Prob>F

Subject 0.17391 3 0.05797 4.39 0.0056
IMaterial 0.73502 6 0.1225 9.28 0
Subject*Material 0.47107 18 0.02617 1.98 0.015

IError 1.68998 128 0.0132
Total 2.98716 155

Constrained (Type 111) sums of squares.

(b)

Figure B-9: (a) |Perceived reflectance - Ground Truth vs Material Index

(Group 2, Light 2) (b) One Factor Within Subjects ANOVA (Image and Back-
ground Luminance are fixed)
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(a)

Analysis of Vaniance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.22286 3 0.07429 6.88 0.0002
Material 0.97852 6 0.16309 15.1 0
Subject*Material 0.30319 18 0.01684 1.56 0.0805
Error 1.38243 128 0.0108
Total 2.88354 155

Constrained (Type I1) sums of squares.

(b)

Figure B-10: (a) JPerceived reflectance - Ground Truth vs Material Index
(Group 2, Light 3) (b) One Factor Within Subjects ANOVA (Image and Back-
ground Luminance are fixed)
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Anajysis of Variance
Source Sua Sq. d.f. Mean Sq. F Prob>F

Subject 0.00815 3 0.00272 0.25 0.8602
Material 2.10655 5 0.42131 39.01 0
Subject*Material 0.16328 15 0.01089 1.01 0.4505
Error 1.55528 144 0.0108
Total 3.83299 167

Constrained [Type 111) sums of squares.

(b)

Figure B-11: (a) JPerceived reflectance - Ground Truthl vs Material Index
(Group 3, Light 1) (b) One Factor Within Subjects ANOVA (Image and Back-
ground Luminance are fixed)
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Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.02998 3 0.00999 0.72 0.5403
baterial 3.06341 5 0.61268 44.28 0

Subjecteliaterial 0.36845 15 0.024S6 1.78 0.0435
IError 1.99264 144 0.01384
Total 5.4543 167

Constrained (Type 111) sums of squaes.

(b)

Figure B-12: (a) JPerceived reflectance - Ground Truth vs Material Index
(Group 3, Light 2) (b) One Factor Within Subjects ANOVA (Image and Back-
ground Luminance are fixed)
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Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.0303 3 0.0101 0.7 0.5535
Material 1.90162 5 0.38032 26.36 0
SubjecteMaterial 0.25814 15 0.01721 1.19 0.2837
Error 2.07767 144 0.01443
Total 4.2494 167

Constrained (Type 111) sums of squares.

(b)

Figure B-13: (a) JPerceived reflectance - Ground Truth vs Material Index

(Group 3, Light 3) (b) One Factor Within Subjects ANOVA (Image and Back-

ground Luminance are fixed)
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C

0.2

C.)

C

0)
Vs
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0 0.5 1
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0.6

0.4
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0
1 0

Light 3 (p = 0.4028)

- Slope = 0.0593

T4Er
0.5 1

Ground Truth for Reflectance

(a)

Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.07359 3 0.02453 3.57 0.0163
Reflectance 0.89476 13 0.06883 10.02 0
Subject*Reflectance 0.70627 39 0.01811 2.64 0
Error 0.76914 112 0.00687
Total 2.44375 167

Constrained (Type li) sums of squares.

(b)

Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.01495 3 0.00495 0.66 0.5798
Reflectance 1.3226 13 0.10174 13.52 0
Subject*Reflectance 0.44682 39 0.01146 1.52 0.0459
Error 0.8428 112 0.00753
Total 2.62707 167

Constrained (Type I1) sums of squares.

(c)

Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.04357 3 0.01452 1.97 0.1227
Reflectance 0.76969 13 0.05921 8.03 0
Subject*Reflectance 0.48083 39 0.01233 1.67 0.0195
Error 0.82594 112 0.00737
Total 2.12003 167

Constrained (Type 11) sums of squares.

(d)

Figure B-14: (a) JPerceived reflectance - Ground Truth| vs Ground Truth
(Group 1) (b) One Factor Within Subjects ANOVA (Image and Background Lumi-
nance are fixed) Light 1 (c) Light 2 (d) Light 3
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0.6
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0. 2

0
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0.6

0.4

0.2

0
C

Light 2 (p = 0.4548)

- Slope = -0.0728J

0.5 1

0.6

0.4

0.2

0
0

Light 3 (p = 0.0332)

- Slope = -0.1854

0.5

Ground Truth for Reflectance

(a)

Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.07323 3 0.02441 4.22 0.0074
Reflectance 0.77159 12 0.0643 11.12 0
Subject*Reflectance 0.8951 36 0.02486 4.3 0
Error 0.60145 104 0.00578
Total 2.34137 155

Constrained (Type 111) sums of squares.

(b)

Analysis of Variance
Source Sua Sq. d.f. Mean Sq. F Prob>F

Subject 0.09108 3 0.03036 6.42 0.0005
Reflectance 1.48067 12 0.12339 26.09 0
Subject*Reflectance 0.92357 36 0.02565 5.42 0
Error 0.49184 104 0.00473
Total 2.98716 155

Constrained (Type I1) sums of squares.

(c)

Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.21941 3 0.07314 13.96 0
Reflectance 1.41917 12 0.11826 22.58 0
SubjecteReflectance 0.70021 36 0.01945 3.71 0
Error 0.54474 104 0.00524
Total 2.88354 155

Constrained (Type f1]) sums of squares.

(d)

Figure B-15: (a) |Perceived reflectance - Ground Truth vs Ground Truth
(Group 2) (b) One Factor Within Subjects ANOVA (Image and Background Lumi-
nance are fixed) Light 1 (c) Light 2 (d) Light 3
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Light 1 (p = 0.329)
0,

0.4

S0.2

0
a) 0

Light 2 (p = 0.108)

0. Slope = 0.2715

0.4

0.2

0.5
0'

1 0

0.6

0.4

0.2

0 0.5 10.5

Light 3 (p = 0.9822)

- Slope = -0.0035

f' + 'F

1

Ground Truth for Reflectance

(a)

Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.00377 3 0.00126 0.13 0.9422
Reflectance 2.11537 10 0.21154 21.84 0
SubjectoReflectance 0.5087 30 0.01696 1.75 0.0177
Error 1.20104 124 0.00969
Total 3.83299 167

Constrained (Type 1II) sums of squares.

(b)

Analysis of Variance
Source Sun Sq. d.f. Mean Sq. F Prob>F

Subject 0.03279 3 0.01093 0.85 0.4679
Reflectance 3.25293 10 0.32529 25.37 0
Subject*Reflectance 0.58139 30 0.01938 1.51 0.061
Error 1.59018 124 0.01282
Total 5.4543 167

Constrained (Type 1II) sums of squares.

(c)

Analysis of Variance
Source Sus Sq. d.f. Mean Sq. F Prob>F

Subject 0.00675 3 0.00225 0.15 0.9292
Reflectance 1.99361 10 0.19936 13.33 0
Subject*Reflectance 0.38907 30 0.01297 0.87 0.6656
Error 1.85474 124 0.01496
Total 4.2494 167

Constrained (Type 111) sums of squares.

(d)

Figure B-16: (a) JPerceived reflectance - Ground Truth vs Ground Truth
(Group 3) (b) One Factor Within Subjects ANOVA (Image and Background Lumi-
nance are fixed) Light 1 (c) Light 2 (d) Light 3
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Figure B-17: Perceived Reflectance vs Channel Index (Group 1, Light 1) The
mean response pooled across subjects is plotted against the channel index for each
material. Error bars indicated 95% confidence intervals. The success of manipulated
images R2B and B2R varies depending on the material.
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Figure B-18: Perceived Reflectance vs Channel Index (Group 1, Light 2)

210

Mat 1

R B2R G R2B B

Mat 10

R B2R G R2B B
Channel Index



Mat 1

1

0.81

0.6,

0.4
C

t0.2

(D
a) n 0

a)

(D

0.

0.8-

0.2

0-
R B2R G R2B B

Channel Index

1

0.8 Mat 6

0.6

0.4

0.8 Mat 12

0.6,

0.4

0.2

0
R B2R G R2B B

Figure B-19: Perceived Reflectance vs Channel Index (Group 1, Light 3)
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Figure B-20: Perceived Reflectance vs Channel Index (Group 2) The mean
response pooled across subjects is plotted against the channel index for each material.
Error bars indicated 95% confidence intervals. The success of manipulated images
R2B and B2R varies depending on the material.
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Figure B-21: Perceived Reflectance vs Channel Index (Group 3, Light 1) The
mean response pooled across subjects is plotted against the channel index for each
material. Error bars indicated 95% confidence intervals. The success of manipulated
images R2B and B2R varies depending on the material.
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Figure B-22: Perceived Reflectance vs Channel Index (Group 3, Light 2)
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Figure B-23: Perceived Reflectance vs Channel Index (Group 3, Light 3)
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