
AudioStreamer: Leveraging The Cocktail Party
Effect for Efficient Listening

by

Atty Thomas Mullins

B.A., Linguistics
Stanford University

Stanford, CA
1985

SUBMITTED TO THE PROGRAM IN MEDIA ARTS AND SCIENCES,
SCHOOL OF ARCHITECTURE AND PLANNING, IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN MEDIA TECHNOLOGY

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1996

@Massachusetts Institute of Technology 1996
All Rights Reserved

Signature of Author

V Program in Media Arts and Sciences
January 19, 1996

Certified by
Christopher M. Schmandt

Principal Research Scientist
MIT Media Laboratory

Accepted by

;ASAC -USEfTS IJST|TUTE
OF TECHNOLOGY

Stephen A. Benton
Chairperson

Departmental Commitee on Graduate Students
Program in Media Arts and Sciences

FEB 211996 4

LIBRARIES

AudioStreamer: Leveraging The Cocktail Party
Effect for Efficient Listening

by

Atty Thomas Mullins

SUBMITTED TO THE PROGRAM IN MEDIA ARTS AND SCIENCES,
SCHOOL OF ARCHITECTURE AND PLANNING, ON JANUARY 19, 1996 IN PARTIAL

FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN MEDIA TECHNOLOGY

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
FEBRUARY 1996

Abstract

The focus of this thesis is the design and implementation of a system for efficiently
browsing large audio databases. Although audio is rich and highly expressive, from a
retrieval standpoint its serial nature makes it inefficient for storing unstructured data.
AudioStreamer takes advantage of our ability to monitor multiple streams of audio
simultaneously by presenting a listener with three simultaneous streams of spatialized
audio. AudioStreamer enhances our ability to selectively attend to a single stream of audio
by allowing the listener to alternately bring each stream into "focus". AudioStreamer
attempts to increase the efficiency of browsing by cueing the listener to switch attention at
salient times. Issues of attention, non-visual interfaces, and "figure and ground" in audio
are also explored.

Thesis Supervisor: Christopher M. Schmandt
Title: Principal Research Scientist

This work was supported by the News in the Future consortium.

-. .-:g; --- gr, N--ara,.-----'hon-a-. v.e------.n..----r.:-:e-imm..s-n-ar.e.4-.,-- . y:-.,..-.e.::s..--.s..: a..,r r---ee.-....u- -. r-s.---..r .

Thesis Committee

Thesis Advisor
Christopher M. Schmandt

Principal Research Scientist
MIT Media Laboratory

Reader
Walter Bender

Associate Director for Information Technology
MIT Media Laboratory

Reader
Hiroshi Ishii

Associate Professor of Media Technology
Program in Media Arts and Sciences

- ,..r..-- i.e.--i. .s -;-~,we .-. 9 ,.99- :s men.-:.--a m;<-,. ., s.

Acknowledgments

I would like to thank the following people, without whom this thesis would not have been

possible:

My advisor Chris Schmandt for his encouragement, support, and friendship during the
writing of this thesis.

My readers, Walter Bender and Hiroshi Ishii for their time and comments.

Andy Wilson and the folks at Crystal River Engineering for loaning me the Beachtrons and
assisting in the implementation and debugging of the Sun client code.

Deb Roy, Chris Homer, Charla Lambert, and Jordan Slott for direct contributions to this
thesis.

Jeff Herman, Eric Ly, Lisa Stifelman, Barry Arons, Matt Marx for their insightful
comments and suggestions.

Minoru Kobayashi and Brenden Maher for providing feedback from users of
AudioStreamer.

Linda Peterson for her unwavering support and guidance.

My spouse Lida for her devotion and for keeping me sane while raising two wonderful
sons.

-e?-silr, a r,:-,: .',--- - ,,--- -- .,j.-s:---,--,----' Tr'''''-- ' '----''1' --- ,--' -i---i i--'''i" -i--r ,'1:Ri'l--,?"'-rfry:-;%T-f;,.s-py.e,71,g;:'.;-,-9:----..--,;:-.i-.u-e-.-.4.-t-+<e-:-.s/v--we.-3---..es.-g-. :.,-.sew- .

Contents

ABSTRACT 3

THESIS COMMITTEE 5

ACKNOWLEDGMENTS 7

CONTENTS 9

FIGURES 13

1. INTRODUCTION 15

1.1 The Utility of Speech 16

1.2 Research Challenges 16
1.2.1 Presentation 17
1.2.2 User Interface Design 17

1.3 Overview of Document 18

2. BROWSING AUDIO 19

2.1 Sources of Audio 19

2.2 Related Work 20
2.2.1 Unstructured Audio 21
2.2.2 Extracting Structure 22
2.2.3 Explicit Structure 23

2.3 Auditory Displays 24

2.4 Summary 25

3. APPROACH 27

3.1 What is AudioStreamer ? 27

3.2 "The Cocktail Party Effect" 29

3.3 Selective Attention 31

3.4 Localization 33

3.5 Peripheral Listening 36

3.6 Summary 38

4. INITIAL DESIGN 41

4.1 Hardware Platform 41

4.2 Spatializing Audio 43

4.3 Data Gathering 44

4.4 User Interface Design 46
4.4.1 Spatial Layout 46
4.4.2 Figure and Ground in Audio 47
4.4.3 Making Suggestions 48
4.4.4 Interacting with AudioStreamer 49

4.5 Summary 50

5. REFINING THE DESIGN 53

5.1 Redefining "Focus" 53

5.2 Making Suggestions - Part 2 56

5.3 Non-Speech Audio Feedback 57

5.4 User Input 59
5.4.1 Head Pointing 59
5.4.2 Gesture -- The Smart Chair 61

5.5 Summary 62

6. CONCLUSION 63

6.1 Browsing within Segments 63
6.1.1 Closed-Captions and Filtering 63
6.1.2 Emphasis Detection 64

6.2 Applications 65
6.2.1 Browsing Voice Mail 65
6.2.2 Parallel Fast-Forward 66
6.2.3 Browsing Video 66
6.2.4 Navigating Audio-Only Hypermedia 66

6.3 Further Research 67
6.3.1 Time Scaling and Parallel Presentation 67
6.3.2 Training Effects 67
6.3.3 Language and Content 68

6.4 Summary 68

Contents 11

A. SOFTWARE DOCUMENTATION 69

B. SCRIPTS AND UTILITIES 79

C. FILE FORMATS 85

REFERENCES 89

13

Figures

FIGURE 2-1 SOURCES OF AUDIO. 20
FIGURE 3-1 INTERAURAL TIME DIFFERENCES. 34
FIGURE 3-2 INTERAURAL INTENSITY DIFFERENCES. 34
FIGURE 3-3 CONE OF CONFUSION. 35
FIGURE 4-1 AUDIOSTREAMER INITIAL HARDWARE CONFIGURATION. 41
FIGURE 4-2 SPATIALIZATION PROCESSING ON THE BEACHTRON. 43
FIGURE 4-3 A DIAGRAM OF TELEVISION NEWS PROCESSING. 44
FIGURE 4-4 THE STRUCTURE OF TELEVISION NEWS BROADCASTS. 45
FIGURE 4-5 SPATIAL LAYOUT OF SOUND SOURCES IN AUDIOSTREAMER 46
FIGURE 5-1 LINEAR DECAY OF GAIN (REPRESENTING FOCUS) WITH TIME. 54
FIGURE 5-2 THE INTERACTION OF FOCUS LEVELS AND GAIN. 55
FIGURE 5-3 SYSTEM PRODUCED GAIN INCREASES AT SEGMENT BOUNDARIES. 57
FIGURE 5-4 PARTITIONING OF THE AUDITORY INTERACTION SPACE. 60

1. Introduction

We thrive in information-thick worlds because
of our marvelous capacities to select, edit, single
out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish,
screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk,
average, approximate, cluster, aggregate,
outline, summarize, itemize, review, dip into,
flip through, browse, glance into, leaf through,
skim, refine, enumerate, glean, synopsize,
winnow the wheat from the chaff, and separate
the sheep from the goats.

(Tufte 1990)

Movie sound tracks, lectures, books on tape, voice mail, snippets of bird song -- the
wealth of audio information stored in digital form is truly astonishing. Driven by
technologies such as CD-ROM, DAT, and CD-AUDIO, the amount and variety of
published audio information available to the average consumer is enormous and
constantly increasing. In addition to published audio, our lives are filled with
"ubiquitous audio" of many sorts: meetings, conversations, the news broadcast playing
on the radio, phone calls, etc. According to current estimates, a year's worth of office
conversation requires approximately two Gigabytes of storage (Schmandt 1994). The

combination of writeable mass storage devices, efficient compression techniques, and
computers capable of manipulating audio make recording and storage of all of the
audio in one's environment a possibility.

Unfortunately, the largely unstructured and dynamic nature of this accumulation of
audio makes subsequent retrieval a tedious task. This thesis addresses that problem. In
short, the goal is the design of an application that allows a listener to browse through a
large database of recorded speech in search of the parts that are of interest.

We have all browsed through books and magazines, the racks of CDs at the local

music shop, or the shelves at the grocery store. In these examples browsing is a visual

activity; we take advantage of the abilities of our visual system to find things of
interest. By capitalizing on the perceptual abilities of our auditory system the

application demonstrated in this thesis attempts to bring some of the properties of

visual browsing (primarily simultaneous access) into the auditory domain. In the

16 Introduction

process, issues of the design of non-visual interfaces, the nature of listening, and our
ability to attend to simultaneous auditory events is explored.

1.1 The Utility of Speech

Speech is a rich and expressive medium (Chalfonte 1991). A transcript of a speech by
JFK, while moving, hardly conveys power of a recording of the actual event.
Transcripts are convenient for retrieval and storage, but fail to capture the emotion
encoded in speech by parameters such as pitch, amplitude, and rate. Millions of years
of evolution have given us the ability to convey the most subtle of ideas and emotions
with intonation, hesitation, and volume. In addition, local dialects, foreign accents, and
manner of speaking are indicators of our geographic origin and form the basis of the
social fabric that binds us all together.

From a pragmatic standpoint speech has many advantages as well. Audio is a
background channel. I can listen to the radio news on the subway, driving in my car,
jogging along the Charles River, or while reading a book. With some limitation I can
listen while my hands and eyes are busy. Speech is also easy to produce; most of us
learn to speak at an early age, and almost none of us have the ability to type at the
speed with which we speak. Finally, audio is accessible remotely by existing
technology such as telephones. At the time of this writing I have the ability to call
MIT from Arizona and listen to recorded news broadcasts, a synthesized voice
rendering of my email, my voice mail, my calendar, and my rolodex, all for the price of
a phone call (Schmandt 1993a).

Although speech as a datatype has many advantages, it also has significant liabilities
that necessitate a careful examination of potential voice based applications. Primary
among the liabilities is that speech is slow. A normal speaking rate is about 180 words
per minute, while some people can speak as quickly as 225 words per minute. In
contrast, reading rates are much higher; generally 350 to 500 words per minute and
some as high as 1000 words per minute. Speech is also serial, temporal, and bulky;
only a single word is transmitted at a time, once spoken it is gone, and a minute of
telephone-quality speech requires about 1/2 Megabyte of storage.

Most systems that successfully use voice as an information storage medium employ
sophisticated presentation techniques combined with carefully designed user interfaces.
Several of these presentation techniques place a high cognitive load on the listener.
The presentation technique discussed in this thesis is no exception and thought must be
given to ensure that it is properly situated with respect to a listener's needs.

1.2 Research Challenges

The two primary research contributions of this thesis are: 1) an efficient method for
browsing audio that is scaleable with respect to the amount of available structure in

Chapter 1 17

the audio; 2) a user interface that immerses the user in the listening process and

minimizes the need for interacting with the system.

1.2.1 Presentation

The efficient presentation of audio information for browsing is the foremost
contribution of this thesis. AudioStreamer is designed for use in real world situations

with actual audio recordings or live audio feeds. These sources of audio vary widely
with regard to the amount of explicit structure associated with them. AudioStreamer is

designed to take advantage of structure if it is available, but is still effective even in the

absence of any structure.

In its final form AudioStreamer presents three simultaneous audio streams (recordings
of news broadcasts) to a listener over conventional stereo headphones. The streams

are spatially separated using three dimensional audio processing hardware. By spatially

separating the streams AudioStreamer allows the listener to easily attend to one of the

streams while ignoring the others. The listener sits in a chair and switches attention
from one stream to another browsing for items of interest. Once the listener locates
something interesting he can attend to that stream until something interesting occurs

on another stream.

The efficiency of this simultaneous listening increases if structure is supplied to

AudioStreamer in the form of pointers to story boundaries and speaker change

boundaries within a news broadcast. At these potentially interesting points
AudioStreamer plays a tone and temporarily increases the gain of the corresponding
stream to elicit an attention shift on the part of the listener. The listener can choose to

continue to attend to that stream or switch attention to another stream if the item was

not of interest.

1.2.2 User Interface Design

Several different user interface designs were implemented during the development of

AudioStreamer. The presentation technique used in AudioStreamer places a high

cognitive load on the listener; as a result the interface required careful design so as not

to overload the user by requiring frequent interaction with the system. In order to

accomplish this, several assumptions about how the system would be used had to be

made. In addition, several input modalities were evaluated in order to find a

combination that was compatible with the cognitive requirements placed on the

listener.

AudioStreamer's user interface is also an experiment in the design of a non-visual

interface (an interface that doesn't rely on a visual display). Several initial designs were

implemented and refined. A non-visual interface was selected for two reasons. First,

non-visual interfaces eliminate the need for a keyboard or display. As a result the

18 Introduction

system can be implemented on a small and portable platform, allowing it to be used in
a variety of environments. Secondly, a non-visual interface allows the listener to
concentrate on listening, rather than diverting his attention by requiring him to look at
a screen and type on a keyboard.

The final version of the interface uses a Polhemus head tracking system to determine
the listener's head position in real-time. By simply looking in the direction of a stream
the listener "selects" it and AudioStreamer responds by temporarily increasing the gain
of that stream (similar to what occurs at story and speaker boundaries). Repeated
selection of a stream causes AudioStreamer to assume that the listener is very
interested in the information playing on that stream. This increased interest is reflected
by increasing the gain further and by extending the length of time during which that
stream is selected.

1.3 Overview of Document

The overall structure of this thesis flows from basic principles to the details of the
actual implementation. Wherever possible, visual analogies to auditory principles have
been used to aid the reader's understanding of the basic auditory concepts on which
AudioStreamer relies.

Chapter two discusses previous attempts at browsing audio of various types. The
parallel presentation technique used in AudioStreamer is outlined and put in context.

Chapter three discusses the basic approach taken by AudioStreamer and the underlying
perceptual and cognitive principles on which it is based. Emphasis is given to a
discussion of "The Cocktail Party Effect" and the nature of attention and memory.

Chapter four outlines the initial design and implementation of the AudioStreamer.

Chapter five discusses the refinements to the initial design based on feedback from
several users.

Finally, chapter six reviews the thesis and outlines further research possibilities.

The appendices include annotated code listing of the major software components of
AudioStreamer.

2. Browsing Audio

browse ... a) to skim through a
book reading at random passages
that catch the eye. b) to look over
or through an aggregate of things
casually esp. in search of
something of interest.

(Webster 1993)

This chapter presents a general taxonomy of audio, with particular emphasis on the
amount of structure that is available with various sources. An overview of
previous work related to browsing audio is also presented.

2.1 Sources of Audio

As mentioned in Chapter One there are many sources of audio available to today's
consumers. This section presents a partial ordering of those sources with respect
to how much structure they contain. A given piece of audio is said to be structured
if the content of the audio, in the form of a transcript, is available for processing.
Semi-structured audio indicates that some information about the audio is known,
the date and time of recording or the number of speakers for example, but the
actual content is unknown. Finally, unstructured audio has little or no explicit
information associated with it and the burden of extracting structure lies with the
system.

Structure is very important to the design of an efficient and widely applicable
browser. Ideally, a browser will be effective to some degree in the absence of any
structure at all, but will also be able to take advantage of structure when it is
available, with correspondingly better results. AudioStreamer falls into this
category.

Figure 2-1 arranges various audio sources according to how much explicit
structure they contain. In this depiction, recordings of conversations and meetings
fall on the least structured end of the scale, whereas transcribed audio and voice

notes make up the most structured audio. In between, there are a wide variety of
sources with varying amounts of structure. For a more comprehensive overview of

the sources of recorded audio see Arons 1994.

20 Browsing Audio

most time least time

most structure transcribed audio

voice notes
dictation

lectures
radio news

meetings
least structure conversations

Figure 2-1 Sources of audio arranged according to structure and the total amount of time
required to produce them.

These sources could also be ordered by the total amount of time that was required
to produce them. Transcribed audio requires a large amount of time, in addition to
producing the audio, someone actually had to listen to the entire presentation,
recorded or live, and transcribe it into text. On the other hand, spontaneous
conversation requires relatively little time on the part of the participants; the
content is generally free form and only conversational rules such as turn taking and
linguistic factors such as pausing and intonation are in effect.

The ideal situation, the "holy grail" so to speak, is to have automatic transcription
of meetings or conversations. Unfortunately, in practice this turns out to be very
difficult (Hindus 1994). One issue is that recognition of spontaneous natural
speech is not possible yet. Even the more constrained problem of keyword spotting
is difficult when applied to spontaneous speech. Other issues, such as associating
utterances with participants turns out to present a serious technological challenge
as well. In the meantime designers of audio browsers have to rely on efficient
presentation techniques that do not require structure, but that can make use of any
structure that is available.

2.2 Related Work

Many systems have been developed to browse and skim audio. This section gives
an overview of several noteworthy systems. Each subsection begins with a
discussion of general techniques and then presents some systems that make use of
those techniques. User interface design and implementation are also touched upon.

ift" - - -- -- lighli

Chapter 2 21

2.2.1 Unstructured Audio

One of the most useful techniques for efficiently presenting unstructured audio is

time-scaling or time-compression. Put simply, time-compression involves
presenting audio in faster than real-time. The idea is similar to playing a 33 rpm
record at 45 rpm, without the associated pitch shift. A large number of algorithms
have been developed for time-compressing speech while minimizing the loss of

intelligibility and comprehension. One example is silence removal or shortening
where silences in the speech signal are detected and shortened or removed
altogether. The most effective and efficient techniques tend to rely on removing
temporal redundancy in the speech signal (Arons 1992a). A good example is
selective sampling using the synchronized overlap add method (Roucus 1985),
where successive segments of the speech are overlapped and averaged, essentially
removing redundant pitch periods without altering the pitch and magnitude of the
signal.

It appears that a compression of 50% (twice normal speed) is the perceptual limit
on the maximum amount that a signal can be compressed without a significant
degradation in comprehension (Gerber 1974). However, for purposes of browsing
(where every word need not be understood or the material is familiar) much higher
compression ratios are possible. For example, the author has informally
experimented with a compression ratio of 2.8 with good success at locating phone
numbers in voice mail messages.

The Speech Research Group at the MIT Media Lab has developed a suite of audio
applications that make extensive use of time-compression (Schmandt 1993b). The
voice mail application allows a user to listen to and author voice messages at the
desktop. The application provides the user with interactive control of the rate of

compression, which can be increased or decreased in 25% increments by pressing a
button. The interface is primarily graphical and input is via button presses or
selection from the mouse.

A news based application has also been developed as part of the Phoneshell
telephone information system (Schmandt 1993a). A user can call into Phoneshell
over the telephone and select from a set of recent radio news broadcasts. The user

can adjust the speed of playback by pressing keys on the telephone keypad. This

application is interesting not only because it illustrates the utility of telephone
based information systems, but also because it involves browsing large pieces of

recorded audio. It points out some of the shortcomings of using time compression

with long audio documents, even at a compression ratio of two it still takes 15

minutes to listen to a 30 minute news broadcast. In many instances additional

listening efficiency is desirable, which leads to the next section.

22 Browsing Audio

2.2.2 Extracting Structure

Consider a 10 minute portion of the sound track of your favorite film. It almost
certainly contains music, environmental background noise (a car driving by,
footsteps, doors slamming, explosions), and voice based sounds (laughter, speech,
singing). Now let's assume you are very interested in action films and you are
writing a book, "Hollywood TNT: A History of Pyrotechnics in Theater and Film."
In order to be diligent in your research you would like to watch several hundred
explosions from a large sample of films. Obviously an explosion detector of some
kind would be quite useful (unless of course you are watching "Terminator 2"
where simply pressing "play" will do the job). An efficient detector will likely take
advantage of the soundtrack, extracting portions of audio where there are large
changes in amplitude accompanied by lots of high frequency energy.

This explosion detector can be said to segment the audio into two sets, segments
that contain explosions and those that do not. One can envision other segmenters
that might be useful for browsing audio. For example, a music segmenter can be
used to browse an audio soundtrack. In "Indiana Jones and the Last Crusade" of
the first 40 minutes only seven minutes do not contain music (Hawley 1993). It
turns out that these seven minutes contain set up dialog that is integral to the plot.
By simply skipping from non-music section to non-music section, a viewer could
get a good idea of what was about to happen.

For truly efficient browsing finer resolution is desirable. In addition to segmenting
the audio, an efficient browser also needs to characterize the segments. For
example, for a given segment of speech, we would like to know: Is a male or
female speaking? Is the speaker emphasizing a point? Who is speaking? Have we
heard the current speaker before? And finally, what is the speaker saying?
Algorithms have been developed for answering all of these questions with varying
results. Keyword spotting in particular has met with little success in browsing due
to its high false alarm rate. However, as is discussed below, several systems have
been developed that make use of pause, pitch, and speaker information to great
effect.

SpeechSkimmer is an audio-only user interface for interactively skimming recorded
speech (Arons 1993). The interface is designed to allow a listener to interactively
browse a pre-processed speech recording. The system makes use of relatively
simple speech processing techniques, pause and pitch detection, to find emphasized
portions of a recording such as a lecture. The input device is a touch pad that
allows the listener to move between several levels of detail once an interesting
segment of audio is found. SpeechSkimmer also seamlessly integrates time-
compression, allowing a listener to play back portions of audio at increased speed.

Another system developed in the Speech Research Group at MIT allows a listener
to browse recordings of the BBC World Service's daily news broadcasts (Roy

OWN." -

Chapter 2 23

1995). The system uses pause information to find story boundaries with surprising
success. Recently, the system has been augmented with speaker differentiation
software that can detect when the speaker changes (Roy 1995). Based on these
two sources of information, the system can segment the audio based on stories and
speakers. This allows the detection of "actualities", reports from on scene
correspondents, which often have very high information content. Again, time-
compression is used to present the segments of potential interest as rapidly as
possible.

Systems that are based on extracting structure have the great advantage of
working with audio "as is" -- some machine processing is involved, but human
intervention is minimal. However, given that the detection and characterization
algorithms are seldom error free, user interfaces to such systems must be carefully
designed to allow the listener to quickly weed out the errors and move on to the
next segment. Time-compression can almost always be used in conjunction with
these systems to improve their time-efficiency.

2.2.3 Explicit Structure

A segment of audio with explicit structure has additional structured information
associated with it. This structure is generally in the form of links, a transcription,
or some other datatype that can be manipulated by computer. For example, a
digital recording of the evening news broadcast might have an associated table of
pointers to the beginnings of stories. A more common example is the "index"
function on a hand-held tape recorder that can be used to mark the beginning of
each chunk of recorded audio by inserting a cue tone. The purpose of the structure
is to allow alternate principled ways of navigating through the audio, e.g., by story
or by speaker, rather than just from beginning to end.

The explicit structure is frequently authored by one or more persons and can be
quite labor intensive. For example, a transcript of a half hour evening news
program is about 10 pages long. Occasionally the author will be the consumer as
well. Increasingly, however, the information is published to be consumed by
others. For instance, more and more television shows are being closed captioned.
The closed captioning information can be subsequently parsed to build a structured
datatype that represents the content of the audio. This datatype can be used to
navigate through the audio.

Browsing explicitly structured audio can be extremely efficient, although it will
only be effective to the degree that the associated content is complete and
accurate. This places a great burden on the authoring process and makes it
practical only in limited domains. If the information is accurate and the system is
well designed, good results will follow. Below are outlined several systems that fall
into this category. Most of them are multi-layered, making use of explicit structure

24 Browsing Audio

as well as structure derived from processing, e.g., typed links combined with pause
based skipping.

HyperSpeech is a speech-only hypermedia system that was designed to be an
experiment in the design of non-visual interfaces (Arons 1991). In the system
recorded interviews were manually segmented by topic. Each segment or node was
logically connected to other nodes using a set of typed links. The user could follow
a name link to hear a comment by a particular speaker. Following a more link
causes a more in-depth segment on a particular topic to be played. A speech
recognizer accepts spoken input from the user and output consists of a
combination of recorded and synthesized speech. One of the primary lessons
learned from the implementation of HyperSpeech was that authoring hypermedia
networks is often the most difficult aspect of building hypermedia systems.

VoiceNotes is an application that allows a user to author and manage a database of
short spontaneous voice recordings (Stifelman 1993). The system itself is a hand-
held device that allows a user to manage lists of related audio segments. The user
interacts with the system using a combination of button and speech input and
output consists of recorded speech and non-speech audio feedback.

NewsTime explores issues of the design and implementation of a graphical
interface to recorded audio news programs (Homer 1993). The data for the system
consists of the audio portion of television news broadcasts. The recorded
broadcasts are segmented by story and speaker using closed captioning
information. In addition, segments of audio are classified by topics such as
weather, sports, and finance, using a keyword matching algorithm. The user can
navigate through the broadcast using a combination of mouse and keyboard input.
Time-compression and pause based skipping are also integrated.

2.3 Auditory Displays

The recent development of the capability to binaurally present three-dimensional
audio has stimulated a great deal of research into auditory displays (Foster 1991).
This research has been primarily geared towards virtual reality or
telecommunication applications (Fisher 1988, Wenzel 1990, Kendall 1990,
Koizumi 1992). AudioStreamer is not a virtual reality system, but it does make use
of a three-dimensional auditory display.

One system in particular has some relevance for the design of AudioStreamer.
Cohen built a system for managing three dimensional audio "windows" (Cohen
1991). The system, MAW (multidimensional audio windows), uses a gestural front
end based on the DataGlove and an auditory display based on the Convolvotron
(Foster 1988). A user of MAW can manually manipulate audio sources in three-
space using a gestural interface. Audio sources are modified usingfiltears, signal

Chapter 2 25

processing that superimposes information on audio signals, to indicate their current
status. Sources can be moved in three-space by "grabbing" them with the
DataGlove and placing them in a new position. For example, the user can grab an
audio source at which point it is muffled (low-pass filtered) to indicate that the
source has been grabbed. Using gestures, the user can then place the source at a
new location. The user can also point to an audio source, giving it the spotlight, at
which point it is made more perceptually prominent as a prelude to performing
some action. Finally, a source can be accented which is similar to giving it the
spotlight except that the accent is persistent.

AudioStreamer makes use of some of these enhancement techniques to indicate
auditory focus. In its final implementation AudioStreamer also uses head gestures
to interact with the audio streams.

2.4 Summary

This chapter described several approaches to browsing audio. The systems that were
outlined were differentiated based on whether they were designed to work with structured
or unstructured audio. Browsers designed for unstructured audio attempt to take
advantage of people's perceptual abilities in order to present audio in faster than real time.
Browsers designed for structured audio make use of the structure in order to present the
audio based on content. This chapter outlined the relative advantage of these approaches.
Unstructured browsing works with audio of many kinds and does not require special
processing of the audio. Structured browsing is generally more accurate and efficient than
unstructured browsing, but it requires extraction or authoring of the structure.

AudioStreamer takes a hybrid approach. The system can present unstructured audio in a
time efficient manner. However, when structure is available, such as speaker or story
boundaries, AudioStreamer uses this information to alert the listener that a potentially
interesting piece of information is about to be played. In this way, AudioStreamer
combines the advantages of both approaches while minimizing the disadvantages.
AudioStreamer is also an experiment in the design of an interface to an audio information
display. Previous uses of three-dimensional audio have focused primarily on virtual reality
systems. AudioStreamer, on the other hand, explores the use of three-dimensional audio to
improve the efficiency of browsing, resulting in a unique style of user interface.

... m oo ., ---.. .:.. .-.. <..---:.-:---v--.t"1.-.-- --ne -' *" " ''"'^1 = -a -N w -0 :

3. Approach

Of all the senses, hearing most
resembles a contraption some
ingenious plumber has put together
from spare parts.

(Ackerman 1990)

This chapter consists of an overview of the approach used in AudioStreamer with
particular emphasis on the parallel presentation method and the perceptual and
cognitive abilities that underlie it. The first section gives a brief overview of
AudioStreamer and how it differs from other audio browsing systems. The second
section discusses the cocktail party effect and outlines some early experiments. The
third section discusses selective attention and ways of enhancing it. The fourth
section gives an overview of how humans localize sounds in space. The fifth
section talks about the notion of peripheral listening; whether we can listen to
several things at once. The chapter concludes with a discussion of how the
limitations of peripheral listening influence the design of AudioStreamer.

3.1 What is AudioStreamer ?

AudioStreamer is an audio browser that makes use of a novel presentation
technique; multiple streams of audio are presented to a listener simultaneously. The
listener wears stereo headphones over which three spatially separated channels of
audio are played. The listener can interact with the individual streams of audio,
alternately bringing each into auditory focus as segments of interesting speech are
played on that stream. The goal of parallel presentation is to allow a listener to find
segments of audio that are of interest in a time-efficient manner. Once an
interesting piece of audio is found the user interface allows the listener to hear it in
detail. Eventually, the listener can again return to browsing in search of other
interesting segments of audio.

Listening to multiple simultaneous channels of audio is similar to channel surfing in
the visual domain -- alternating between several television channels, often in quick
succession, using a remote control. In the case of AudioStreamer we have multiple
channels of audio playing different material simultaneously and the ability to bring
one into focus relative to the others. The experience is very much like being in a

28 Approach

room full of talking people and having the ability to selectively eavesdrop on a
conversation at will.

Three channels of audio (as opposed to say five) was chosen for one reason. It
appears that the cognitive load of listening to simultaneous channels increases with
the number of channels. Stifelman did an experiment where she presented multiple
channels of audio to listeners (Stifelman 1994). The listeners performed two tasks
simultaneously, listening comprehension on a primary channel and target
monitoring on the non-primary channel or channels. Subjects were presented with
either one or two non-primary channels. In the experiment separation was achieved
by presenting one channel to the left ear, another channel to the right ear, and a
third channel to both ears at the same gain.

There was a clear decline in performance between the two channel and three
channel condition. Stifelman concludes that "... it seems that increasing the number
of channels beyond three would cause a further decrease in performance." She
goes on to say, "The question becomes, how do we go beyond two simultaneous
channels without seriously impairing performance?"

This thesis seeks to answer that question. In Stifelman's experiment listeners in the
three channel condition encountered difficulty in several areas. First, they had
difficulty in focusing on the primary passage. Secondly, once their attention
switched to a non-primary channel listeners had difficulty switching their attention
back to the primary channel. AudioStreamer uses certain "attentional
enhancements", such as true spatial separation, cue tones, and a "focus"
mechanism to improve the ability to attend to one channel and to allow listeners to
easily switch attention between several channels.

Data for AudioStreamer consists primarily of the audio portion of television news
broadcasts and radio news broadcasts. News was chosen because of its variable
content and because it was readily available. It should be noted that
AudioStreamer was designed to be data independent -- the system itself and the
presentation techniques that it employs work with many types of audio ranging
from voice mail to recorded lectures.

AudioStreamer does not attempt to make a priori judgments about what the
listener might be interested in hearing. The goal is to present all of the audio as
efficiently as possible and to allow the listener to decide the relative value of
listening to one stream as opposed to another. AudioStreamer attempts to avoid
one of the prominent shortcomings of browsers, in particular news browsers,
which rely on filtering of one form or another (Malone 1987). Due to excessive
filtering, items of potential interest are discarded and serendipity is lost. This is not
to say that AudioStreamer cannot take advantage of information regarding the
potential interest of a piece of audio to a listener, it is simply that the system does
not make those judgments.

Chapter 3 29

Parallel presentation is similar to time compression: both can operate on audio
with various levels of structure; both focus on making listening more time-efficient;
and both can be combined with other processing techniques. Although time
compression and parallel presentation are not mutually exclusive, both techniques
place a high cognitive load on the listener combining them requires careful
consideration.

AudioStreamer's user interface is designed to allow the user to be immersed in the
listening process. This is accomplished by minimizing the need for interaction with
the system and by making the method of interaction reinforce the listening process
(as will be explained later). The prevailing design theme was "devote cycles to
listening, not interacting." In order to minimize the need to interact, the system
design incorporates some assumptions about how it will be used. The primary goal
is to browse audio; switching attention between multiple streams as interesting
things are presented. As such, the system is biased towards browsing as opposed
to detailed listening. However, the listener does have the ability to listen to a
particular stream in detail, which requires more interaction with the system.

A highly evolved visual browser served as a model for the initial design of
AudioStreamer -- the front page of a newspaper. Newspaper front pages have all
of the properties that AudioStreamer strives to capture in the audio domain.
Newspapers rely on simultaneous presentation of information, allowing the reader
to quickly pick and choose among several articles. The articles themselves are
structured to have multiple levels of detail. Each article has a headline and is
written in a journalistic style -- most of the salient information is presented in the
first few lines or paragraphs and the detailed information is presented later in the
article. Finally, the articles are ordered by relative importance, which is indicated
by position on the page, size of the headline, and length of the article. Some of
these properties are present in AudioStreamer by virtue of using news broadcasts
as data. In particular, news broadcasts present stories in a specific order, where the
"top" stories are presented early in the broadcast. AudioStreamer goes farther and
presents these stories simultaneously and at multiple levels of detail.

3.2 "The Cocktail Party Effect"

Our auditory systems are amazingly effective and efficient at analyzing the
"auditory scene" that surrounds us. At any given time we have little difficulty in
determining how many sound sources there are, what their perceptual
characteristics are, and where they are located in space. All of this information is
determined from the effects of our vibrating ear drums on the hairs in a fluid filled
tube in our inner ear known as the cochlea. To gain a true appreciation for the
miraculous nature of this process consider the following analogy from "Auditory
Scene Analysis" (Bregman 1990).

30 Approach

The difficulties that are involved in scene analysis often escape our notice. This
example can make them more obvious. Imagine that you are at the edge of a
lake and a friend challenges you to play a game. The game is this: Your friend
digs two narrow channels up from the side of the lake. Each is a few feet long
and a few inches wide and they are spaced a few feet apart. Halfway up each
one, your friend stretches a handkerchief and fastens it to the sides of the
channel. As waves reach the side of the lake they travel up the channels and
cause the two handkerchiefs to go into motion. You are allowed to look only at
the handkerchiefs and from their motions to answer a series of questions: How
many boats are there on the lake and where are they ? Which is the most
powerful one ? Which one is closer ? Is the wind blowing ? Has any large object
been dropped suddenly into the lake ?

Solving this problem seems impossible, but it is a strict analogy to the problem
faced by our auditory systems. The lake represents the lake of air that surrounds
us. The two channels are our two ear canals, and the handkerchiefs are our
eardrums. The only information that the auditory system has available to it, or
ever will have is the vibrations of these two eardrums. Yet it seems able to
answer questions very like the ones that were asked by the side of the lake: How
many people are talking ? Which one is louder, or closer ? Is there a machine
humming in the background ? We are not surprised when our sense of hearing
succeeds in answering these questions any more than we are when our eye,
looking at the handkerchief, fails.

Parallel presentation of audio relies heavily on our ability to attend one speaker in
the presence of other speakers and of background noise. This phenomenon is
known as "the cocktail party effect" and was studied in detail by Colin Cherry in
the early 1950s (Cherry 1953, Cherry 1954). Cherry's experiments focus on the
ability of the auditory system to attend to one of several competing messages.
Cherry suggests several factors that contribute to this ability:

e Distinct spatial origins.
* Correlation with visual events: lip reading, gestures, etc.
" Different speaking voices, mean pitches, male female, etc.
* Differing accents.
* Transition probabilities: content and syntactic constraints.

All of these factors except the last can be eliminated by recording two messages
from the same speaker and mixing them on magnetic tape. In Cherry's initial set of
experiments two such messages were played to a group of subjects and they were
asked to "shadow" one of them; repeat words or phrases from the recording in
real-time. The subject matter of each message was distinct and both messages were
presented to both ears. The subjects could replay the tape repeatedly, the task
being to separate one of the messages. Subjects were able to carry out this task
with relatively few errors. However, the subjects reported that it was very difficult.
Cherry observed of one subject, "He would shut his eyes to assist concentration.
Some phrases were repeatedly played over by him, perhaps 10 to 20 times, but his
guess was right in the end."

Chapter 3 31

In a follow-up experiment pairs of inseparable messages were constructed. The
messages were composed by selecting clich6s from speeches in newspapers and
stringing them together. Cherry reports the following example (Cherry 1953):

I am happy to be here today to talk to the man in the street. Gentleman, the
time has come to stop beating about the bush - we are on the brink of ruin, and
the welfare of the workers and of the great majority of the people is imperiled

Subjects were observed to read out whole clich6s at a time in roughly equal
numbers from both messages. Message separation appeared impossible. To explain
this phenomenon Cherry proposed that listeners store sets of transition
probabilities in their memories that allows them to predict sequences of words. The
task of separating messages in the second experiment was much more difficult
because of the high predictability of the clich6s, recognition of one or two words
allowed the subject to predict the whole clich6, combined with the low probability
of one clich6 following another.

Cherry's second set of experiments concerned dichotic presentation of two
different messages to a listener. In dichotic presentation the listener wears
headphones. One message is played to the left ear and a different message is played
to the right ear. Dichotic presentation can be viewed as an extreme case of spatial
separation. In these experiments the subjects had no difficulty shadowing the target
message and rejecting the other message.

Cherry then asked what information, if any, was retained from the message played
to the "rejected" ear. A series of experiments was designed to determine the
answer. The conclusion of these experiments was that "the rejected signal has
certain statistical properties recognized, but the detailed aspects, such as the
language, individual words, or semantic content are unnoticed." Subjects were able
to determine that the signal played to the rejected ear was speech. A change of
voice, from male to female, was also almost always identified, as was playing a 400
Hz tone. Subjects were not able to identify any word or phrase heard in the
rejected ear, were not able to identify the language, and did not notice if the speech
was played backward.

3.3 Selective Attention

Cherry's experiments were designed to determine the extent of our ability to attend
to one speech signal in the presence of another speech signal. The question arises
of how to enhance this ability. Many experiments have been carried out to
determine what acoustic cues are important in stream segregation.

32 Approach

Cherry's initial experiment points to one of the strongest cues for stream
segregation -- spatial location. In the dichotic listening task subjects had little
difficulty in rejecting one message and attending to the other. Dichotic listening
can be thought of as an extreme case of spatial separation. Other experiments
investigate the effect of spatial location on stream segregation directly and lend
additional support for this conclusion (Spieth 1954, Webster 1954).

The effectiveness of spatial location as an acoustic cue for stream segregation can
be partially explained by the notion of the binaural masking level difference or
BMLD. According to Blauert (Blauert 1983), "... a desired signal S with a certain
direction of incidence is less effectively masked by an undesired noise N from a
different direction when the subjects listen binaurally." For example, in a typical
binaural masking experiment a tone and a noise is presented to a listener binaurally
over headphones. The intensity of the noise is increased until the tone can no
longer be heard. Now the tone in one ear is shifted 180 degrees out of phase with
respect to the tone in the other ear while leaving the gain of noise unchanged. The
tone will become audible again. The difference between the intensity of the noise
needed to mask the tone in the control condition and in the out of phase condition
is the BMLD.

In another example, a mixture of a tone and a noise is presented to a single ear.
Again the intensity of the noise is increased until the tone can no longer be heard.
Then only the noise is presented to the other ear. The tone once again becomes
audible. From these examples it can be concluded that masking is less effective
when the target signal and the masking signal are perceived to come from two
different locations.

If the auditory system groups sounds by their locations, then by the principle of
"psychophysical complementarity", the perceptual representation of spatial
location should map to the physical representation of spatial location (Shepard
1981). Several experiments by Rhodes confirm that auditory spatial information is
indeed represented analogically (Rhodes 1986). Unlike vision and touch, spatial
information is not mapped topographically at the auditory receptor surface. Rather
it is pitch that is mapped topographically. However, in Rhodes' experiments a
linear relationship between the spatial separation of sound sources and the time it
takes to switch attention among them was observed. From this Rhodes concludes,
"These results parallel those obtained for shifts of visual attention and are
consistent with the view that auditory spatial information, like visual spatial
information, may be represented topographically or analogically." Bregman has
pointed out that this result might be erroneous (Bregman 1990). He says that the
increase in time with distance between sound sources might be due to listeners
trying to determine the label for the sound source. In Rhodes' experiment, the
sound sources were labeled by numbers and the listeners might have counted their
way between sound sources. Bregman goes on to write, "The correct

Chapter 3 33

interpretation of this particular experiment is unclear, but there is indirect evidence
to support the theory behind it."

Another consideration is the minimum spatial separation that is needed to
discriminate between two sound sources. Early experiments found that localization
blur ranged from approximately 1.5-5 degrees for various types of sounds
presented sequentially (Blauert 1983). However, for simultaneous presentation, the
situation of interest, the minimum recommended distance is 60 degrees for
accurate localization (Divenyi 1989).

Several other cues for streaming are relevant to this thesis. Frequency and pitch
have been found to have an impact on stream segregation (Spieth 1954, Egan
1954, Brokx 1982). Differentially filtering two competing signals into separate
frequency bands, or introducing a pitch difference between them appears to
improve a listener's ability to attend to one of them. Finally, the relative intensities
of the signals can have an impact on the degree to which one signal masks the
other in both monaural and dichotic listening tasks (Egan 1954). For a general
overview of the acoustic cues involved in streaming and their potential for system
design see Arons 1992b.

From an ecological point of view our auditory systems have evolved so as not to
rely on any single cue for stream segregation. Rather it appears that all cues are
weighed and combined in an effort to create a coherent representation of reality.
According to Bregman (Bregman 1990):

... the human auditory system does not give overriding importance to the spatial
cues for belongingness but weighs these cues against all others. When the cues
all agree, the outcome is a clear perceptual organization, but when they do not,
we can have a number of outcomes.

As an example of a situation where spatial cues might be at odds with other cues,
such as frequency or pitch, consider a highly reverberant environment such as a
handball court. In this case spatial cues for streaming become unusable and instead
the auditory system relies on other cues to group sounds.

From a system design perspective it is clear that the palette of cues to chose from
is very rich. As will be seen in the next chapter, during the initial design of
AudioStreamer several different combinations of cues were experimented with in
order to achieve the desired effect.

3.4 Localization

Since spatial location is one of the most important determinants of stream
segregation, it is worth spending some time discussing how humans locate sounds
in space. Much of the research done on sound localization derives from the

4 N NO i - 1-11--%-, - ---

34 Approach

"duplex theory" (Rayleigh 1907). The duplex theory holds that there are two
primary localization cues: interaural time differences (ITDs) and interaural intensity
differences (IIDs). ITDs arise from the fact that sounds from sources located to
one side of a listener arrive at the closer ear sooner than at the far ear (see Figure
3-1). ITDs were thought to be responsible primarily for localization at low
frequencies due to phase ambiguities at higher frequencies. IIDs are the result of
head shadowing and were thought to be responsible for localization at high
frequencies (see Figure 3-2).

Figure 3-1 Interaural time differences. Figure 3-2 Interaural intensity differences.
Sounds from sources off to one side arrive Sources are louder in the closer ear due to
first at the closer ear. the shadowing effect of the head.

Several deficiencies with the duplex theory have been illuminated. First, people
are able to localize sounds on the vertical median plane. On this plane interaural
differences are minimal, yet localization is not difficult. Secondly, when sounds are
presented to listeners over headphones externalization is absent. The sounds
appear to come from within the listener's head even though appropriate interaural
cues are present.

As it turns out the main shortcoming of the duplex theory is that it fails to take into
account the spectral shaping caused by the outer ears or pinnae. The experiments
that lead to the development of the duplex theory were performed with pure sine
waves, which may explain why the frequency dependent filtering of the pinnae was
not discovered. Unlike pure sine waves, sounds with several frequency
components are differentially filtered by the pinnae depending on their location.
For example, for a complex sound at a given spatial location, frequency
component A might be more attenuated than frequency component B. If the sound
source is moved to a different location, just the opposite might be true, B is more
attenuated that A. This differential filtering allows the auditory system to
discriminate between sounds with different spatial origins.

low

Chapter 3 35

Figure 3-3 Cone of confusion. All sounds emanating from any location on the surface of a cone
originating at the center of the listener's head, result in identical interaural time, intensity, and
phase differences (assuming that the head is a perfect sphere).

Current theories of localization hold that IIDs, ITDs, and pinnae effects all
contribute to localization ability and accuracy. In particular, pinnae effects are
thought to be primarily responsible for front/back position, elevation , and
externalization of sounds (Wenzel 1992). In addition, it appears that head motion
is also important. According to Buser and Imbert (Buser 1991):

Sound localization with head movements eliminated scarcely corresponds to
any natural situation except perhaps the case of a transient sound arriving
unexpectedly with no chance of subsequent exploratory movements. In more
commonplace occurrences, the subject has time to carry out head movements
that help localize the source not only with respect to the median plane but also
within that plane (up/down) and to make front/back judgments with equal
precision.

A common localization error is the front-back reversal; a sound source in front of
the listener is perceived as coming from behind the listener. This error appears to
follow from the notion of "cones of confusion" (see Figure 3-3). A cone of
confusion illustrates that there are areas in space around the listener that result in
identical IIDs and ITDs for sources located in that area. Several experiments have
shown that allowing listeners to move their heads during localization substantially
reduced front-back reversals and improved localization accuracy (Thurlow 1967).

Sound localization is considered to be a primary source of selective pressure in the
evolution of mammalian hearing (Masterton 1969). The ability to determine the
origin of a sound is of obvious advantage to an animal. Our hearing and vision
have evolved in concert and can be said to be complementary. Once a sound is
localized, an alerting or orienting response tends to follow. We orient our eyes
such that the source of the sound can be seen. Similarly, we tend to become
habituated to continuous and uninformative sounds and relegate them to the
background (the humming of the hard drive in my laptop is an example). As will be

36 Approach

seen in the following sections, AudioStreamer makes use of both of these
properties.

3.5 Peripheral Listening

The idea of peripheral listening is analogous to that of peripheral vision, or to be
more precise peripheral seeing. Our visual system is structured such that only a
portion of the information that arrives at our retinas is seen in detail at any given
time. At the moment I am reading individual letters as I am typing them on my
laptop computer. If I stop typing and do not move my eyes, I can see the desk
lamp to my left and the letter box to my right, albeit with poor resolution. Even
though I do not have to shift my eyes, I do have to shift my attention slightly to see
the lamp and the box. The desk lamp and letter box are said to occur in my
peripheral vision.

The acuity of peripheral vision is far less than the acuity of primary vision. I see the
desk lamp and letter box because I am familiar with this room. In actuality, I am
only seeing the broad outlines and shapes of the objects in my peripheral vision. If
I was placed in an unfamiliar setting and asked to describe what was in my
peripheral vision I would only be able to respond with the general visual
characteristics of objects. Reading, for instance, in peripheral vision would be an
impossibility.

Certain events that occur in peripheral vision will elicit an automatic attention shift
on the part of the viewer. For example, motion or a dramatic and rapid change in
intensity, such as a light turning on, will cause an involuntarily, and often brief,
attention shift. In other words, discontinuities of sufficient magnitude are also
detected in peripheral vision.

The situation in peripheral listening appears to be similar to that of peripheral
seeing. Only the gross acoustical characteristics of nonattended auditory channels
are perceived and certain discontinuities on those channels cause involuntary
attention shifts. Detailed information from those channels is not available to the
listener. Cherry's initial shadowing experiments confirm this view. As mentioned
above, when asked about the message that was played to the rejected ear, subjects
were only able to recall general characteristics. More detailed information such as
the content of the message, or even the language, were not recalled.

Subsequent experiments by various researchers have both supported and
questioned some of Cherry's results. Most of these experiments were designed to
support one of two competing models of attention. The early selection model of
attention holds that selection among channels is based on the physical
characteristics of the information arriving at the sensors. Meaning is only extracted
from channels that have already been selected. On the other hand, the late

Chapter 3 37

selection model contends that some processing occurs on all channels, and that
selection is based on a combination of meaningful and physical properties

Moray, a proponent of early selection, performed a dichotic listening experiment
where a passage was played to one ear and a list of words was repeatedly played
to the other ear (Moray 1959). Subjects were instructed to shadow the passage
and to try to remember as much as possible from the other ear. As in Cherry's
experiments, subjects were not able to recall any of the words on the list. In a
second experiment, Moray did discover that commands prefixed with the subjects'
name that were played to the rejected ear were heard in about one third of the
trials.

Treisman and Geffen performed a dichotic listening experiment in which subjects
were required to shadow a primary message while attempting to detect target
words in the rejected message (Treisman 1967). As expected subjects performed
poorly. In a similar experiment, Lawson used tone bursts instead of words as
targets (Lawson 1966). She found that there was no difference between the
detection of a tone in the primary and in the rejected message. Subjects did well in
both cases. Citing these results Moray concludes (Moray 1970), "As we have seen
there has been agreement until now that [auditory] selection, however it may
occur, seems to block the processing of verbal ('complex') signals and leave
'simple' signals relatively undisturbed."

Norman, a proponent of late selection, criticizes Cherry's results on two grounds.
First, in Cherry's experiments, subjects were required to shadow the primary
message, which requires intense cognitive effort on the part of the subject.
According to Norman (Norman 1976), "... a simple tabulation of how accurately
the subject's spoken words agree with the presented material does not even begin
to tell how much attention is diverted to the task." He goes on to cite the subject's
lack of memory for the content of the primary message as farther proof of the
difficulty of shadowing.

Norman's second criticism centers on the time delay before asking subjects to
recall nonattended material. Both Cherry and Moray waited before asking their
subjects how much of the nonattended material they remembered. Norman
conducted an experiment in which subjects were asked to shadow English words
that were presented to one ear (Norman 1969). Two-digit numbers were presented
to the other ear and subjects were tested on their recall of the numbers. It was
found that if shadowing was interrupted within twenty seconds of the presentation
of a number, subjects did have some recall of the digits. Norman concludes, "...
verbal material presented on nonattended channels gets into short-term memory,
but is not transferred to long-term memory."

38 Approach

3.6 Summary

The previous three sections gave an overview of many experiments on the nature
of the cocktail party effect, audition, selective attention and the structure of
memory. The question is, what does all of this mean for the design of
AudioStreamer? While it is tempting to apply the results of these experiments
directly to the design of AudioStreamer, there are potential pitfalls in doing so.
The experiments reviewed were conducted under controlled laboratory conditions.
They were carefully designed to answer specific questions about the nature of
psychological processes. Any direct translation of the results into real world
situations could undermine the assumptions on which the results were based.

Despite this potential shortcoming, it seems clear that some of the results are
relevant to the design of AudioStreamer. First, under certain conditions, listeners
have the ability to attend to a single audio stream when several are playing
simultaneously. From an implementation perspective, this can be achieved by
spatially separating the streams, differentially filtering the streams into separate
frequency bands, modifying the pitch of the streams, or some combination of the
these. Furthermore, one stream can be made more prominent relative to the others,
brought into focus so to speak, by applying the above techniques, or by modifying
its relative intensity.

The issue of peripheral listening is more complicated. For practical purposes, only
the gross acoustical characteristics of nonattended streams are processed by the
listener. Highly salient information, such as a listener's name, does occasionally
attract a listener's attention. In addition, certain discontinuities in the gross
acoustical characteristics of nonattended streams, such as a speaker change or a
change in intensity, attract a listener's attention. As Norman pointed out, some
meaningful information is processed and stored in short-term memory. However,
this has little impact on the design of AudioStreamer, since listeners only recalled
the information if the listening task was interrupted.

As will be seen in the next chapter, the design of AudioStreamer takes advantage
of selective attention and peripheral listening to allow a listener to browse multiple
streams of audio. A listener's selective attention is enhanced by spatially separating
the three streams of audio using digital processing techniques. The user interface
provides the listener with the capability to alternately bring one stream into
auditory focus by increasing its relative gain and makes it easy for a listener to
switch attention between the streams.

The result is that the listener browses the three audio streams simultaneously,
leading to a time saving and a corresponding overall increase in efficiency. In a
study by Webster and Thomas on the ability of air control tower operators to
respond to two overlapping messages the authors write (Webster 1954), "Another
interesting point is that even under the worst possible encoding scheme, namely

Chapter 3 39

two simultaneous voice messages, an average of 60 percent of each of the two
message identifications was received, resulting in a greater total information intake
per unit time ..." They go on to say, "... this is only true for those parts of the

messages that have low informational content." In a summary of various selective
listening experiments, Broadbent writes (Broadbent 1958), "For the moment, we
may note that the statement 'one cannot do two tasks at once' must depend on
what is meant by the word 'task'." In the case of AudioStreamer 'task' means
'browse'. Since browsing does not imply detailed listening, one would expect that
listeners can browse several streams at once.

At a base level the user of AudioStreamer can switch attention between streams at
will. Sometimes the switch is the result of the listener losing interest in the stream
currently being attended to. At other times the switch occurs because the listener's
attention is attracted by something that's happening in the listener's peripheral
hearing (a speaker change, a bomb blast, a familiar name being spoken, etc.).
Furthermore, AudioStreamer can notify the listener about optimal times to switch
attention to another stream, if that information is supplied to the system, as is
discussed in the next chapter.

The bottom line is that listeners have a limited capacity to process information. A given
listener can only process a certain maximum quantity of audio per unit time. If more than
the maximum quantity is presented, some information is not processed. The great
advantage of AudioStreamer is that it provides the listener with an efficient means of
choosing which audio to process.

- --~ . 1k -1id rd r ' ' ~!- 1-' '-'- - o 1--f':--% :::1-~- -::--'- r -::'---N1+ e'i Y / a Nf'-d 1~- nk ir gy r aisy,...:m.: ---r:..s :... .. , -. :- -:,--.a.: -.--;.. -- --:---.r ---..-M-pIgg rig -

4. Initial Design

Many things difficult to design
prove easy to performance.

(Johnson 1988)

The last chapter gave an overview of the perceptual and cognitive experiments and
theories that influenced the design of AudioStreamer. It is clear from that
discussion that humans do have the ability to listen to several streams of audio at
once provided that detailed listening is not a requirement. AudioStreamer attempts
to take advantage of this fact while minimizing any liabilities of simultaneous
presentation (a high cognitive load for example).

This chapter gives an overview of the initial design and implementation of
AudioStreamer. The chapter begins with a discussion of the hardware platform.
The next section discusses the spatialization technology used by AudioStreamer.
The third section discusses data gathering and processing. The fourth section
presents a discussion of the user interface design including a section on the spatial
layout of the sound sources, how figure and ground are indicated, how the system
makes suggestions, and the two alternative input modalities used in the initial
design.

4.1 Hardware Platform

~ti~
LZiZ-~

Figure 4-1 AudioStreamer Initial Hardware Configuration.

0Spatialization
Server

42 Initial Design

Figure 4-1 displays an overview of the hardware configuration used in
AudioStreamer. The system consists of three primary parts: a controller, a Sun
SPARCstation that handles input from the user (both button and speech) and
serves as an audio server; a recognition server, a second SPARCstation that
handles speech recognition; and a spatialization server, a PC (Intel 486 33 MHz)
containing two BeachtronTM audio cards that perform audio spatialization. The
remainder of this section will discuss the function of each of these components in
greater detail.

The controlling SPARCstation plays several roles. It takes speech and keystroke
input from the listener, interprets it, and routes the commands to the spatialization
server via an RS-232 serial connection. Keystroke input is interpreted locally and
sent to the spatialization server via another RS-232 serial connection. Speech input
is sent to the recognition server for recognition via a TCP/IP connection. The
result of recognition is passed back to the controller for interpretation and
subsequent transfer to the spatialization server.

The controller also serves as the primary source of audio in the system. In addition
to passing speech input to the recognition server for recognition, the controller
sends audio to the spatialization server for presentation to the listener. In this role
the controller makes use of multiple processes running the SPARCstation based
audio server developed by the Speech Research Group at the MIT Media Lab
(Arons 1992c). The SPARCstation audio server is based on a distributed
architecture and allows multiple applications to share limited audio resources in an
asynchronous and event-driven environment.

Finally the controller plays a utility role. It opens and closes connections to the
recognition server and the spatialization server as needed. Error handling and
cleanup also take place on the controller.

The recognition server runs on a separate SPARCstation and communicates with
the controller over a TCP/IP connection. The recognition server is an
implementation of a client/server model developed in the Speech Research Group
at the Media Lab at MIT (Ly 1993). This model allows several distributed clients
to make asynchronous connections to a particular recognition engine. In the case
of AudioStreamer the recognition engine is from Texas Instruments (Wheatley
1992). The TI recognizer supports speaker-independent, connected-speech, large
vocabulary recognition. The controller passes a buffer of input speech to the
recognizer for recognition. The recognizer passes back a recognized utterance as
well as additional data such as a confidence value.

The spatialization server controls the spatial position, acoustic characteristics, and
presentation of the sound sources in AudioStreamer by relaying commands from
the controller to the spatialization hardware (see the next section). In addition, the
spatialization server maintains a model of the listener's head position and physical

I KNOMONOWN"I , _ - - I - --- - ---

Chapter 4 43

characteristics such as interaural separation. The controller sends interpreted
commands and three channels of audio to the spatialization server. The audio
channels are spatialized, mixed, and presented to the listener over conventional
stereo headphones. The server code was developed by Crystal River Engineering
for use with its line of three-dimensional audio products (CRE 1993). The client
code was also developed by Crystal River and modified by the author to run under
Sun-OS 4.1.3 on a SPARCstation.

4.2 Spatializing Audio

The last chapter outlined the three most salient acoustic cues for spatial location:
interaural time differences, interaural intensity differences, and pinnae effects. Interaural
time and intensity differences generally provide lateralization cues to the listener, while
pinnae effects are responsible for externalization. Several researchers at the NASA Ames
Research Center have developed a three-dimensional audio display based on the
Convolvotron signal processing hardware (Wenzel 1992). The Convolvotron takes into
account all three acoustic cues for localization and the results are surprisingly realistic.

AudioStreamer relies on the Beachtron signal processing hardware developed by Crystal
River Engineering to spatialize audio in real-time (CRE 1993). The Beachtron is a less
expensive variant of the Convolvotron. However it uses a similar synthesis technique
based on the head-related transfer function (HRTF): the direction-dependent, acoustic
effects imposed on an incoming signal by the outer ears. HRTFs are measured by placing
small probe microphones in a listener's ears near the eardrums. The listener is seated in an
anechoic chamber in the center of a spherical array of 74 loudspeakers arranged at equal
intervals. A 4 Hz train of 75 acoustic clicks is played from each of the speakers in turn
and the response of the probe microphones is recorded, averaged and digitized. The result
is 75 FIR filters represented in the time domain for both the left and right ears.

Ieft Filter

Source

Right Filter

Figure 4-2 Spatialization processing on the Beachtron.

To render sounds at specific spatial locations the filters are first combined into left ear and
right ear listener specific "location filters". At run time these location filters are
downloaded into the memory of the Beachtron. An incoming audio signal is first pre-
processed by a distance model that simulates atmospheric loss (see Figure 4-2). The

44 Initial Design

output is then convolved with the left and right filters. The resulting spatialized signal is
presented to the listener over stereo headphones.
Each Beachtron can simultaneously spatialize two sources. Both sources are processed as

described above and the results are mixed before presentation to the listener. In addition
the Beachtron supports external auxiliary inputs which are also mixed before presentation.
As a result up to eight Beachtrons can be used simultaneously, allowing 16 sources to be

spatialized. Two Beachtrons are installed in 16-bit ISA slots on the spatialization server.

4.3 Data Gathering

AudioStreamer presents three simultaneous recordings of news broadcasts to the listener.
The broadcasts are automatically collected and processed each evening. Currently, the
audio portions of the ABC Nightly News and CBS Evening News, and the evening
broadcast of the BBC World Service is used.

Figure 4-3 depicts how the evening television news broadcasts are recorded and
processed. A NeXT computer is connected to the audio output of a VCR with a cable
television feed. In addition, the NeXT computer is connected to the output of a video line
21 decoder that also gets its input from the VCR. The unblanked portion of video line 21
transmits an encoded composite data signal that carries the closed captions for the news
broadcast (Lentz 1980).

Cable VCR NeXT Sun

Audio and
4~ Audio Captions

Video Raw
Captions

Line 21 Decoder

Figure 4-3 A diagram of television news processing.

In addition to containing transcriptions of the audio portion of the news broadcasts, closed
captions also contain information about speaker changes and story boundaries. Speaker
changes are indicated by the presence of a '>>' in the captions and story boundaries are
marked with a '>>>'. A MACH process (getcaption) running on the NeXT collects the
captions and time stamps each story boundary and speaker change marker as it is
encountered. Another MACH process (recordtofile) digitally records the audio portion of

Chapter 4 45

the broadcast and stores it as an audio file. Since both processes are started simultaneously
the actual boundaries and the time-stamped markers are roughly synchronized.

More accurate synchronization is achieved once the audio file and caption file are
transferred to the Sun using an algorithm developed by Homer (Homer 1994). The
algorithm relies on the presence of the significant pauses that occur during speaker and
story changes. On the Sun the audio file is analyzed by a pause detection algorithm and
significant pauses are marked. The output is compared to the time-stamped markers. The
markers are adjusted to coincide with the preceding significant pause provided that the
pause and time-stamp occur within a pre-defined window of time. The result is the near
elimination of synchronization delay between the audio and captions.

Correspondent
B

Correspondent

A

Anchor
t T Tt T 7

Story Speaker Story Speaker Story Story

Figure 4-4 The structure of television news broadcasts.

A separate Perl script running on the Sun (sndnotejto_streamer) takes the output of the
synchronization process and converts into a form useable by AudioStreamer. Figure 4-4
shows a graphical representation of the final product. The audio signal is segmented by
story and speaker. Actualities (reports by a correspondent "on the scene") are often the
most interesting portion of a story. Actualities are generally indicated by the presence of a
speaker change within a story. As will be described below, AudioStreamer uses this
information to make suggestions to the listener about the presence of potentially
interesting material on a particular stream.

Radio news is collected and processed in a different way. The audio is automatically
recorded every evening on a Sun SPARCstation connected to a radio tuner. Since radio
news is not closed captioned other information is used to segment the signal into
interesting chunks. It is conceivable that future radio broadcasts will have text based
content information transmitted with them on a side-band. But for the moment structure
has to be extracted directly from the audio. Roy developed and implemented a speaker
indexing system that segments an incoming audio signal by speaker and assigns a unique
label to each speaker (Roy 1995). The recorded BBC radio broadcasts are processed by
the speaker indexing system and the results are converted to a form compatible with

_ ____ -- , *0 A, A OsMe ,-, - , , -__ _,- _ - -1. - I I I - - - - -

46 Initial Design

AudioStreamer. Although story boundaries are a more reliable indicator of when an
attention shift will be most fruitful, speaker changes are often associated with the
introduction of new and interesting information.

4.4 User Interface Design

This section gives an overview of the initial user interface design. Simplicity was the
overriding concern in the initial design. The implementation was guided by some of the
perceptual and cognitive theories presented in the last chapter. The resulting system is
"perceiver controllable" as defined by Tufte -- the user can interact with the system by
simply shifting attention, additional interaction is not necessary (Tufte 1990). The next
chapter will discuss the weaknesses of the initial design and how they were addressed.

4.4.1 Spatial Layout

Figure 0-5 shows the spatial layout of the sound sources in AudioStreamer. A total of
three streams of audio are playing simultaneously. The sound sources all appear to be 60
inches from the listener's head and are separated by 60 degrees. A 60 degree separation
was chosen to facilitate selective attention while minimizing the time to switch attention
between the streams (see chapter three for a more detailed discussion).

60'' 60 ,''

Figure 4-5 Spatial layout of sound sources in AudioStreamer

In the initial implementation the sound sources are not fixed in space, but move in unison
with the listener's head. As mentioned in the last chapter there is evidence to suggest that
front-back reversals are reduced if head motion relative to the sound sources is allowed.
Head motion relative to the sound sources implies that they are fixed in space. Front-back
reversals generally occur when discreet sounds are played to a listener. In the case of
AudioStreamer the sound sources are playing continuously and front-back reversals are of
little concern. Nonetheless, the subsequent iteration of the user interface supports head
tracking and the listener has the option of fixing the sound sources in space.

Chapter 4 47

The spatial layout of the sound sources is controlled by the Swindows software module
(see appendix). Swindows imports the metaphor of graphical windows into the audio
domain. Swindows supports up to N simultaneous sources, where N is hardware limited
(N = 4 in the current system). Sources can be placed anywhere in the perceptual three-
space of the listener. Sources can be opened - turned on; closed - turned off; reshaped -

made louder or quieter; moved; and destroyed. The module is written in ANSI C and was
designed to be portable to any system that supports Crystal River Engineering's Beachtron
Client Protocol.

4.4.2 Figure and Ground in Audio

AudioStreamer allows the listener to put one stream intofocus, making it more
acoustically prominent than the other streams. The goal of allowing the listener to select
an auditory focus is similar to allowing a viewer to select a visual focus in a graphical
system -- attending to focused items is easier than attending to unfocused ones. In a
graphical system, focus can be represented in various ways; color, brightness, opacity and
blur are examples. In the auditory domain the palette is different. During the design of
AudioStreamer several methods of indicating auditory focus was explored including:
pitch, spatial location, frequency, and gain. Each of these methods will be discussed in
turn.

Pitch shifting a stream to indicate focus was tested and eliminated for several reasons.
First, a pitch shift alone did not make the stream acoustically prominent enough relative to
the other streams. Second, the resulting signal sounded too artificial to listeners. Filtering
focused and unfocused streams into separate frequency bands (hi pass and low pass) was
tested and eliminated for similar reasons. Filtering did not provide enough separation
between the streams to make it easy for a listener to attend to one of them. In addition, the
filtered streams changed the quality of the voices (since some of the data was discarded
during filtering) in undesirable ways.

Changing the spatial location of the focused stream by moving it closer to and in front of
the listener had more promise than either pitch shifting or filtering because the focused
stream was far more prominent than the unfocused streams. However, the movement from
unfocused position to focused position was nearly instantaneous and the resulting
discontinuity disrupted the listening process and was confusing to listeners. One possible
solution was to move the source in small increments simulating a smooth trajectory from
unfocused to focused position. Unfortunately the resulting time delay could be perceived
as sluggish system response, so modifying the spatial location of the focused stream was

also eliminated.

Increasing the gain of the focused stream relative to the unfocused stream does not exhibit

any of the above shortcomings. The resulting signal is not distorted and is more prominent

that the other streams. Also, the listening process is not disrupted and system response is

instantaneous. As a result the initial design of AudioStreamer used an increase in gain

48 Initial Design

(specifically 10 dB) to indicate focus. As is described below, during audio presentation the
listener can put a stream into focus, switch the focus from one stream to another, or
remove the focus altogether.

4.4.3 Making Suggestions

During the data gathering process the recorded audio is augmented with additional
information. Television news is augmented with story boundary information derived from
closed captions and radio news is augmented with speaker change markers produced by
the speaker indexing system. At the end of the data gathering process this information is
converted to a format compatible with AudioStreamer. This format consists of a list of
pointers into the associated audio file. The pointers refer to the beginning of potentially
interesting segments. When AudioStreamer is started the audio file and the list of pointers
can be passed as arguments. At run time AudioStreamer uses this list to cue the listener to
shift attention at salient times.

To cue the listener AudioStreamer plays a 400 Hz tone on the stream whenever a new
segment begins playing. The tone is played at the same gain as the segment. A 400 Hz
tone was chosen because in target detection experiments during a dichotic listening task a
400 Hz tone was almost always detected when played to the non-attended ear (see last
chapter). During audio presentation the occurrence of these tones elicits an involuntary
attention shift to the stream that played the tone. The shift may be of short duration if the
material is of little interest to the listener. However, if the material has some import the
listener may choose to continue attending to that stream or even give it the focus.

It should be noted that this process is completely data driven. An audio file and an
optional list of pointers to interesting segments can be passed to AudioStreamer. The
pointers can come from any source; closed captions, speaker indexing, hand coding, etc.
Since the 400 Hz cue tone always leaks through the attention barrier, the listener has the
option of switching attention to another stream at the beginning of a segment. The result is
an increase in browsing efficiency.

In the absence of the list of pointers the listener can actively shift attention among the
streams in search of material. The listener's attention may also be attracted by
discontinuities in non-attended streams. Audio browsing is still accomplished, although it
is not as efficient as when pointers to segments are provided; assuming that the pointers
actually point to new information. In this sense AudioStreamer is scaleable -- as the
quality and quantity of information on the location of interesting material increases so too
does the efficiency of browsing. However, even in the absence of any collateral
information, parallel browsing is more efficient than linear browsing.

Chapter 4 49

4.4.4 Interacting with AudioStreamer

The listener interacts with the first iteration of AudioStreamer using speech commands,
keyboard commands, or a combination of both. During a typical listening session the
listener is seated in a chair wearing a pair of stereo headphones and an AKG head
mounted microphone. The listener starts AudioStreamer on the controlling Sun
SPARCstation in order to browse the previous evening's news broadcasts. All three
streams begin playing simultaneously from their respective spatial locations. The stream to
the left of the listener plays the CBS Evening News, the center stream plays the BBC
World Service, and the stream to the right plays the ABC Nightly News. Initially all three
streams have the same gain and no stream is in focus. At this point the listener can sit back
and shift attention from one stream to another without giving explicit commands to the
system. Alternatively, the listener can repeatedly cycle through the streams in turn giving
each one the focus until something is found. Once the listener finds something of interest
the corresponding stream can be put into focus for more detailed listening.

Speech Keyboard Function

"Start Listening" '1' Accept commands

"Stop Listening" 'o' Ignore commands

"Left" '1' Focus left stream

"Center" '2' Focus center stream

"Right" '3' Focus right stream

"Off Left" 'Fl' Turn off left stream

"Off Center" 'F2' Turn off center stream

"Off Right" 'F3' Turn off right stream

"Rotate" 'r' Rotate stream clockwise

"Unfocus" 'u' Remove focus

"Quit" 'q' Exit and clean up

Table 1 Speech commands and keyboard equivalents.

50 Initial Design

Periodically as segment boundaries are crossed the cue tone is played on one of the
streams. After the cue tone the listener can shift attention to that stream, give that stream
the focus, or ignore the tone completely. The listener has the option of putting a stream in
focus at any time. In addition, if very detailed listening is desired the listener can turn off
the other streams until the interesting segment is finished playing. This process continues
until all three streams are finished playing or the listener stops audio presentation.

Table 1 shows a list of speech commands and their keyboard equivalents. Speech
commands are recorded on the controlling Sun SPARCstation and are subsequently sent
to the recognition server for recognition. The results are sent back to the controller for
interpretation. A hybrid speech/keyboard approach was decided upon because in some
situations speech input is more appropriate and in others keyboard commands are more
efficient. For example, when cycling through the streams giving each one the focus
keyboard commands are more efficient; it is much easier to repeatedly type "1 2 3" than it
is to say "Left Center Right" over and over again. On the other hand, when the listener is
browsing by shifting attention only, he can sit back in a chair with eyes closed and
concentrate on the task. To select a stream by giving it the focus the listener only has to
say "left", "center", or "right". This is much less disruptive to the listening task than
looking at the keyboard and typing a key.

The user interface to the initial system is non-intuitive and crude. The primary focus of the
initial design was to evaluate the presentation mechanism to determine if it was possible
for a listener to easily focus on a single stream in the presence of others, and if it was
possible to switch attention between them without undue effort. It appears that this is the
case. User interface design issues were addressed in the redesign.

4.5 Summary

The initial design of AudioStreamer was a "proof of concept" exercise. Informal testing
with various researchers at the MIT Media Lab and with representatives of the News in
the Future consortium confirmed that people are indeed capable of browsing audio with
AudioStreamer. User reaction varied widely. Several people reported that they thought
the task was incredibly difficult. One person reported being "overwhelmed by too much
noise, I kept switching attention between streams but couldn't settle down on any one." In
contrast another user said, "That was great, at first I had difficulty, but once I made one
stream louder I had no problem concentrating on it." In general the reaction was split.
Some users had difficulty sorting out the auditory space, while others adapted relatively
quickly. One user provided an insight that proved extremely useful. After listening for
several minutes he reported, "it's hard but if I look in the direction of the source it's easier
to concentrate on." The redesign of AudioStreamer incorporated this insight into the
design of its user interface.

By spatially separating the streams and by providing a method of placing a stream in focus,
AudioStreamer allows the listener to easily monitor simultaneous streams of audio. The
next chapter outlines a modification of the presentation technique that makes use of the

Chapter 4 51

structure of radio and television news broadcasts. Based on this structure AudioStreamer
can predict when potentially interesting information will be played on a stream and can cue
the listener accordingly. As a result attention switches are much more productive.

In the next chapter the second iteration of the user interface is also presented. The updated
version makes use of the same building blocks, Swindows for instance, as the initial
version, but the user interface was modified based on feedback from several users. The
primary complaint among users of the initial version was that interacting with the system
detracted from listening. The version of the user interface discussed in the next section
seeks to solve this problem.

5. Refining the Design

The human ear offers not just
another hole in the body, but a hole
in the head.

(Kahn 1992)

Chapter Four outlines the initial design and implementation of AudioStreamer.
This chapter discusses refinements and changes that were made to the initial design
in response to suggestions by various users of the system. The first section outlines
how the notion of focus was redefined based on user feedback. Section two relays
how the manner in which suggestions are made by the system was modified in the
redesign. Section three talks about how non-speech audio feedback is incorporated
in the redesign. Finally, section four presents two new methods for obtaining user
input.

5.1 Redefining "Focus"

Listening to three simultaneous streams of audio requires a great deal of mental effort. For
optimal browsing results most of the listener's cognitive resources should be devoted to
the listening task. Unfortunately, most users of the initial version of AudioStreamer
operated in what can be called "interaction mode" -- cycling through the streams one at a
time, giving each the focus in turn. In cycle mode the listener invests a great deal of effort
in interacting with the system. Interaction mode can be contrasted with "listening mode"
where the listener switches attention from stream to stream without explicitly giving any
stream the focus until more detailed listening is desired. Listeners in interaction mode also
had a tendency to only give each stream the focus for a very short time, whereas in
listening mode the listener's attention tended to linger on a particular stream for a longer
period.

As was discussed in Chapter three, listening imposes a high cognitive load on the listener.
One often cited advantage of speech based systems is that they leave or hands and eyes
free for other purposes. Unfortunately, simultaneous presentation requires so much
concentration on listening task that little capacity remains for other activities. Stifelman
reports that, "... it seems there would be little cognitive capacity remaining for any

additional activity -- subjects' eyes were not open to look at other things, they were tightly
shut in deep concentration." The redesign of AudioStreamer seeks to maximize the

54 Refining the Design

cognitive resources devoted to listening by minimizing the amount of interaction that is

required of the listener. This goal manifests itself in several ways. First, the system is

biased towards browsing -- in the absence of user input the system automatically returns

to the browse state where all streams are playing and none is in focus. Second, the system
assumes that interaction with a stream is an indication of the listener's interest in the

current segment playing on that stream. In other words, since interaction requires effort,

the more the listener interacts with a stream, the more effort he has expended on listening
to that stream, and the system responds accordingly by giving that stream more
prominence relative to the other streams. The remainder of this section will give a detailed

account of the way in which the version two of AudioStreamer implements these ideas.

In the initial implementation of AudioStreamer the listener explicitly interacted with
system by giving a stream the focus, removing the focus, or switching the focus from
stream to stream. In the redesign the notion of auditory focus was reimplemented to
reflect the system's bias towards browsing. Instead of having the focus be either on or off,
version two allows the focus to vary with time. For example, when the listener gives the
focus to the left stream the system responds by immediately increasing the gain of that
stream by 10 dB. Thereafter the gain begins a smooth linear decay back to the background
level. The decay takes place over a period of approximately seven seconds giving the
listener an opportunity to decide if the current segment is of interest.

10 1Stream 1

T1 T2 T3 T4 T5 T6 T7 Seconds

Figure 5-1 Linear decay of gain (representing focus) with time.

Figure gives a graphic representation of the process. The vertical axis represents gain and
the horizontal axis represents time. At time T1 the listener gives stream one the focus. By
time T7 the stream is no longer in focus. By allowing the focus to decay in this manner the

listener is freed from having to explicitly remove the focus from a stream. Given that most

users operating in search mode only gave the focus to a stream for a short time this

represents a net gain in resources for listening. It should be noted that the listener is still

able to explicitly remove the focus at which point the gain immediately returns to

background level. Also the listener can switch focus to another stream and again the gain

is immediately reduced.

The implementation of focus in version two was also influenced by the idea that more

interaction with a stream implies greater interest in that stream. Rather than having a

single degree of focus, version two introduces the concept of levels offocus. Figure 5-2

Chapter 5 55

illustrates a sample interaction with a stream. At time T3 the listener gives the stream the
focus. The system responds by giving that stream focus level one indicated by a 10 dB
gain increase and approximately seven second decay time. At time T5 the listener selects
the stream before the gain has decayed to background level. This time the system responds
by setting the focus to level two, which has a higher initial gain and slower decay than
level one. If the listener had let the focus decay to background level the system would
have responded to the reselection by setting the focus to level one again. At time T8 the
listener selects the stream again giving it level three focus and at time T13 the stream is
selected once more giving it level four, the highest level, focus. Using system defaults,
level three focus has a higher initial gain than level two and an even slower decay. At level
four focus the initial gain is set high and does not decay at all. Instead the other two
streams are paused and the listener can concentrate solely on the selected stream. The
assumption is that level four focus indicates very strong interest in the segment playing on
that stream and the listener wishes to listen to it in detail.

2010g
0P Stream 1

T1 T3 T5 T7 T9 T11 T13 T15 Seconds

Figure 5-2 The interaction of focus levels and gain.

The user can set the initial gain and decay rate for all levels of focus at run-time by
specifying a configuration file in the appropriate format (see appendix). In addition the
user can specify whether unfocused streams should be paused at level four. Table 2 shows
the default values used by AudioStreamer. The values implement the notion that as the
listener moves up the levels of focus more detailed listening is desired at each step. It
should be noted that these values represent the authors listening preference and were not
derived experimentally. In practice each listener will want to choose their own values.

Several additional modifications were made to the way focus was implemented. First,
focus only lasts through the current segment playing on a stream. Since continuity among
adjacent segments is not ensured, focus level should be a property of the segment not the
stream, since there is no guarantee that a listener will be interested in the next segment.
Second, version two uses afocus window -- a period of time during which the current
focus level is persistent. For example, assume that the listener has the center stream in
focus at level three and something attracts his attention to the right stream (a familiar
voice for instance). At this point the listener gives the focus to the right stream only to
discover that the segment playing on the center stream is more interesting. Rather than
requiring the listener to reset the focus on the center stream to level three by going

56 Refining the Design

through level one and level two, AudioStreamer automatically returns to level three on the
center stream, provided that the listener switched the focus back to the center stream
within a predefined period of time (the default is five seconds). As with the initial gain and
rate of decay of the various focus levels, the listener can set the extent of the focus
window in a configuration file.

Focus Level Default

One Initial Gain = 10 dB

Decay time = 7 seconds

Two Initial Gain = 12.5 dB

Decay time = 15 seconds

Three Initial Gain = 15 dB

Decay time = 20 seconds

Four Initial Gain = 15 dB

No decay, other streams paused.

Table 2 Default focus parameters.

In version one all streams began playing simultaneously and users were observed to
immediately give the focus to all of the streams several times. When asked about this one
user remarked that he was overcome by "a wall of sound" and was cycling through the
streams "to sort things out." To eliminate the need for this initial flurry of activity version
two employs a staggered st'rt. The center stream begins playing first, followed by the right
stream five seconds later, and after an additional five seconds the left stream begins
playing. This allows the listener to gradually sort out the spatial layout of the sources and
to "lock on" to each stream at the beginning of the initial segment. While a staggered start
does not directly impact the implementation of focus it does appear to reduce the number
of times listeners set the focus at the beginning of audio presentation.

5.2 Making Suggestions - Part 2

The redesign of AudioStreamer augments the way in which suggestions are made to the
listener. The initial version of AudioStreamer played a 400 Hz tone at the beginning of
each segment to inform the listener of some potentially interesting information playing on
a stream. Version two takes this one step farther by increasing the gain and letting it decay
in addition to playing a cue tone.

There are two reasons for this change. First, without interacting with the system at all the
listener hears the beginning of each segment at a higher gain. Figure 5-3 illustrates this
phenomenon. As segment boundaries are crossed each stream plays the cue tone and

Chapter 5 57

increases the gain 10 dB by default. The gain decays over a period of seven seconds (the

default) just as if the listener had put that stream in focus. In practice simultaneous

segment boundaries on multiple streams rarely occur (AudioStreamer can be modified to

ensure that this never occurs) so the listener can concentrate on switching attention from

stream to stream at the beginning of each segment. Broadcast news stories are generally

written to quickly get the user's attention by presenting the theme of the story as soon as

possible. By making the beginning of a segment more prominent AudioStreamer
maximizes the chances of attracting the listener's attention at a time when decisions about

the potential interest of a story can be made very quickly.

1dBA

Stream3

Seconds

Figure 5-3 System produced gain increases at segment boundaries.

The second reason for using gain changes in conjunction with tones relates to levels of

focus. If the listener has a stream in focus at level three and a segment boundary is crossed

on another stream, background gain levels do not make the stream prominent enough,

relative to the focused stream, for the listener to easily switch attention to determine what

the new segment is about. By increasing the gain and allowing it to decay the listener can

attend to it long enough to decide if it is interesting without changing the focus.

It should be noted that the initial gain change and decay at segment boundaries is not

implemented as a focus level. If the listener changes the focus to a stream during the initial

gain change the system responds by setting the focus level to one, not two. To avoid

confusion, focus is solely controlled by the listener. The system can make suggestions

about when focus changes might be productive, but the final decision rests with the

listener.

5.3 Non-Speech Audio Feedback

AudioStreamer makes use of non-speech audio feedback in various places. Audio

feedback is used because AudioStreamer does not have a visual display. Feedback is

further limited to non-speech audio for several reasons. First, AudioStreamer's auditory

space is already filled to capacity with speech output. By using non-speech audio, relevant

58 Refining the Design

messages are passed to the listener without unnecessarily cluttering the auditory space.
Secondly, non-speech audio is generally more concise and compact than speech feedback.
Since the listener's cognitive capacity is at a premium, any time savings translate into a net
gain in efficiency. Feedback is kept to a minimum and is only used when the result of a
listener's actions is not apparent. Also, all feedback is inline. In other words, feedback
relating to a particular stream appears to emanate from the spatial location of that stream.

Type of Feedback Function

Gain Increase and Decay

Boundary Tones

Level Tones

Corresponds to changes in focus level.
Also marks the beginning of a segment.
Generated in response to listener commands
and automatically by AudioStreamer.

400 Hz tone at the beginning of a segment.
Designed to inform the listener of potentially
interesting material. Occurs in conjunction
with gain changes.

An auditory indication of focus level. Focus
level is indicated by playing short duration
tones of different pitch on a stream using
the Proteus synthesizer on the Beachtron.

Table 3 Types of non-speech audio feedback used in AudioStreamer.

Table 3 shows the three types of feedback employed by AudioStreamer. Increasing the
gain and letting it decay is used in AudioStreamer to temporarily make a stream more
prominent. Gain changes occur in two instances: the listener explicitly gives a stream the
focus; and the system automatically increases the gain at segment boundaries. Tone
feedback is used in two instances. AudioStreamer automatically generates a short duration
400 Hz tone at segment boundaries. In addition in version two of AudioStreamer tones
are generated in response to a change in focus level. Each Beachtron audio processor has
an on board Proteus 32-voice music synthesizer with a full MIDI interface (TBS 1992).
AudioStreamer uses the synthesizer to play a tone to the listener every time the focus level
is changed. The tones aid the listener in keeping track of the current focus level on a
particular stream (several listeners complained that they did not know the current focus
level after a selection). Table 4 shows the various focus levels and their corresponding
tones.

In response to a change in focus level, AudioStreamer generates the appropriate MIDI
sequence and passes it to the Beachtron via the serial connection. The tone itself is

Chapter 5 59

actually played on the fourth audio source -- two Beachtron cards support four spatialized
audio sources, three of them are used to present news broadcasts to the listener. Before
the tone is played the fourth audio source is moved to coincide with the spatial location of
the source on which the tone is to be played. From the listener's perspective the tone
appears to emanate from the selected source.

Focus Level Tone
Level one Middle C
Level two Middle C + 1 Octave
Level three Middle C + 2 Octaves
Level Four Middle C + 3 Octaves
Unfocus Middle C - 1 Octave.

Instrument #12: Vibraphone
Velocity: 63

Table 4 Focus levels and their corresponding tones.

5.4 User Input

A primary design goal for version two of AudioStreamer was to minimize the need for
user input. While this goal was achieved, the user still needs to periodically interact with
the system to effectively browse the audio. Ideally, the mode of interaction should
reinforce the listening process, not detract from it. Toward that end, version two supports
two new input methods: head pointing and gesture.

5.4.1 Head Pointing

Version two of AudioStreamer allows the listener to give the focus to a stream by turning
his head towards the direction of the stream. Head orientation is computed using a
Polhemus 3Space Isotrak head tracking system (Polhemus 1992). The Isotrak uses low-
frequency magnetic field technology to determine the position and orientation of a sensor
in relation to a magnetic source. The source is placed directly in front of the seated listener
and the sensor is mounted on top of the stereo headphones the listener wears during audio
presentation. Both the source and the sensor are connected to the Polhemus systems
electronics unit (SEU) which contains the hardware and software to compute the position
and orientation of the sensor with six degrees of freedom. The SEU is connected to a
serial port on the controlling Sun SPARCstation. Approximately 30 times per second the
SPARCstation polls the SEU to determine the current orientation of the listener's head.
AudioStreamer makes decisions about which stream is in focus based on the orientation of
the listener's head.

!, w1w , ., A -- - . - I I 1 1. -1 1 - 1--- 1-

60 Refining the Design

Figure 5-4 shows the layout of the auditory interaction space from the listener's point of
view. As in version one, each stream is placed six feet from the listener, horizontally
separated from the other streams by 60 degrees. In addition, in version two, the center
source is elevated 30 degrees with respect to the listener. By elevating his head 20 degrees
or more the listener gives the focus to the center stream. Similarly, by rotating his head to
the left or right by 20 degrees the focus is given to the left or right stream respectively.
The 20 degree cone in the center is the neutral area where no commands are interpreted.
Finally, if the listener tilts his head down 20 degrees the focus is removed. The listener is
not required to return his head position to the neutral area after command. For example, to
give the focus to the left stream and then the center stream, the listener rotates his head to
the left 20 degrees and the rotates up and towards the center stream to give it the focus.

Center
Focus

e Left NurlRight
Focus Nurl Focus

Unfocus

, = Sound Source

Figure 5-4 Partitioning of the auditory interaction space from the listener's point of view.

Using head pointing as opposed to speech or button input reinforces the listening process.
Several users reported that it was easier to attend to a stream by looking in its direction.
Since head-pointing does not require the listener to shift modes, as in switching from
listening to speaking, or typing, for example, his attention can remain concentrated on the
stream of interest in a natural way.

A useful by-product employing the Polhemus head tracking technology is that it allows
AudioStreamer to fix the sources in the auditory space. The Beachtron maintains a real-
time model of the listener's head. In addition to size and interaural separation, the model
also takes into consideration the position and orientation of the head. At runtime the

Chapter 5 61

listener can request that AudioStreamer update this model. In this mode AudioStreamer
continues to poll the SEU 30 times per second, but in addition to using head orientation to
make focus decisions, AudioStreamer passes this information to the Beachtron. The result
is a very realistic simulation of fixed audio sources in the listener's perceptual
environment.

5.4.2 Gesture -- The Smart Chair

A second interface to AudioStreamer was developed for version two as an example of an
experimental application of electric field (EF) sensing technology to human-computer
interfaces. A chair was outfitted with four EF receivers and a transmitter developed by the
Physics and Media Group at the MIT Media Laboratory (Zimmerman 1995). The sensors
are used to interpret gestures made by the user to determine which stream, if any, should
be in focus. An EF transmitter was mounted under the fabric in the seat of a standard
padded chair. The EF transmitter couples low-frequency energy into the listener making
him an EF emitter. Two sets of two receivers were placed in the head rest and arm rests of
the chair. These receivers measure relative head rotation and hand proximity. The listener
can give a stream the focus by using head rotation, hand motion, or a combination of both.
Hand signals are interpreted as follows. In the neutral position both hands are in contact
with the arm rests. Lifting the left hand gives the focus to the left stream. Lifting the right
hand puts the right stream in focus. The center stream is given the focus by simultaneously
lifting both hands. The focus can be removed by dropping both hands along the sides of
the chair.

Head gestures have a similar syntax as head pointing with the Isotrak. In the neutral
position the listener is facing forward without touching the headrest. The left stream is
given the focus by rotating the head to the left and the right stream is given the focus by
rotating the head to the right. The center stream is put in focus by touching the head to the
head rest, and the focus is removed by tilting the head down and away from the headrest.

Using EF technology has an advantage over traditional head tracking technology, such as
the Isotrak, in that it does not require that wires be connected to the user. Unfortunately,
for the purposes of AudioStreamer, it has one drawback -- only relative head position and
orientation is detected, not absolute orientation and position. This manifests itself in
requiring the listener to return to the neutral position after a command is issued. In a
preliminary version of the interface this was not a requirement and users frequently gave
inadvertent commands to the system while unwittingly moving their hands or heads a little
bit. The problem was minimized by requiring them to return to the neutral position after
each command. Unfortunately, the resulting interface restricted the user's movements too
severely.

Of the two methods of input just outlined, hand signals and head rotation, head rotation
appears to be most effective. Hand signals suffer from the same drawback as speech and

62 Refining the Design

button input by detracting from listening. On the other hand, like head pointing, head
rotation appears to reinforce the listener's ability to attend to the selected stream.

There are several drawbacks to the smart chair interface that warrant discussion. First, due
to the initial implementation of the EF sensing device the system had to be laboriously
recalibrated for each user. In effect the system had to be tuned based on a persons physical
dimensions. Secondly, the interface restricts a listener's movements far too much. Users
often erroneously put a stream in focus by moving their head small amounts or by
unconsciously lifting their arms slightly. In contrast, the head pointing interface does not
restrict a user's movements more than a conventional graphical interface would. A more
sophisticated redesign of the smart chair interface may achieve more favorable results.

5.5 Summary

User reaction to version two of AudioStreamer was mixed but generally more favorable
that for version one. In the initial version listeners tended to spend a large amount of time
sorting out the auditory space. A great deal of effort seemed to be expended on interacting
with the system. In version two listeners who made use of the head pointing interface
spent more time sitting in the chair with their eyes closed concentrating on the listening
task. One user remarked that "when the other channel beeped I couldn't help but listen to
it." Another remarked that he felt that he was in a "noisy ballroom" and preferred to listen
to the radio in a quiet setting. Finally one listener said, "that was hard, but I can imagine
how hard it would be if the sounds all came from the same place." Also several people
reported having difficulty in localizing the sounds. This last problem might be solved by
using more sophisticated spatialization hardware.

The redesign of AudioStreamer successfully addressed some of the problems presented by
the initial design. The goal of maximizing the amount of the user's cognitive resources that
are devoted to listening was achieved in two ways: by reducing the amount of interaction
to a minimum; and by implementing an input device that reinforces the listening process
(the head pointing interface). Also selective attention to streams of interest was increased
by the use of automatic gain increases at segment boundaries. Of the three interfaces that
were presented in this chapter head pointing was most well received. However, a more
elaborate implementation of the head rotation interface would probably achieve similar
results.

6. Conclusion

... no silence exists which is not
pregnant with sound.

(Cage 1961)

This final chapter presents some thoughts on areas for future research and discusses the

goals of parallel presentation of audio and how they are achieved. Section one discusses
ways in which AudioStreamer's browsing efficiency can be enhanced by extracting
structure from within segments. Section two discusses some potential applications for
AudioStreamer and spatial audio. Section three reviews some possible experiments on the
interaction of time-compression and parallel presentation as well as the extent of training
effects. The chapter concludes with a summary of the thesis and a recap of the goals of
AudioStreamer.

6.1 Browsing within Segments

AudioStreamer uses structure (story and speaker change boundaries) to inform the listener

of the occurrence of new and potentially interesting information. The granularity of this

information is at the segment level -- a new story is beginning or the speaker has changed.
Browsing within a segment is the responsibility of the listener and AudioStreamer does not

give any explicit hints as to what might be interesting. AudioStreamer can be enhanced in

several ways to enable more efficient intra-segment browsing. Two such enhancements are

outlined below.

6.1.1 Closed-Captions and Filtering

AudioStreamer only makes use of a small fraction of the information that is available in the

closed-captions of a television news broadcast. While the story and speaker boundary
markers are used to great advantage, the actual content of the audio, as a transcript, is

discarded.

Rather than throwing this information away, AudioStreamer can use it to modify the order

in which stories are presented to the listener based on a user profile. The content of a story

can be represented using a standard vector space model based on text from closed-

captions (Salton 1989). Story content is extracted by recognizing individual words in the

closed-captions, eliminating common words included on a stop list, and using the

remaining words to construct a weighted vector representing the content of the story.

64 Conclusion

Similarly, the listener profile is also represented as a weighted vector of words that is
constructed automatically and changes as the listener's interest changes (see below). To
order the stories for presentation a similarity measure between each story vector and the
profile vector is computed (using the cosine of the angle between the story vector and the
profile vector). The stories are rank ordered based on this similarity metric and are
presented to the listener in that order.

The listener profile vector is adjusted after each listening session using a form of relevance
feedback. In traditional relevance feedback a query vector is modified based on a user's
feedback relating to the relevance of a particular document vector to the query. In the case
of AudioStreamer the profile vector is modified based on how long a particular story was
in focus during audio presentation (by appropriately weighting the story vector and taking
the sum of the profile vector and weighted story vector). The computation is carried out
for each story that is presented to the listener. Relevance feedback of this form allows the
profile vector to track the changing interests of the listener. This is extremely important
for news presentation since new and interesting stories emerge repeatedly.

Serendipity -- finding a story of interest purely by chance -- is retained in the system in
two ways. First, the system only reorders the stories. It does not eliminate any. If the
listener chooses to listen to all of the stories in the broadcasts, interesting stories not
selected for by the listener profile are still heard. Secondly, genetic algorithms that
introduce a chance element into the filtering process can be incorporated in the design to
prevent over specialization of the listener profile. Sheth has developed such a system for
filtering network news groups with positive results (Sheth 1994).

The success of this system is based in large part on the accuracy of user modeling and is
subject to the same requirements. For example, a large thesaurus is essential since people
use various words to describe similar concepts. This is further aggravated by the fact that
news stories often import words from other languages that may not be in common usage
or make use of proper nouns that can be misinterpreted. For instance, people interested in
war would like to hear stories that contain the word "Jihad", but people interested in
organic gardening probably do'not care about stories that contain "Apple today
announced the shipment of a new line of Macintosh."

6.1.2 Emphasis Detection

In SpeechSkimmer, Arons developed a method of segmenting a speech recording based on
emphasis detection (Arons 1994). Emphasized portions of speech often signal the
presence of important material or indicate the introduction of new material. Arons'
algorithm divided a speech recording into a number of windows (100 1Oms frames). The
standard deviation and number of frames with an FO above a certain threshold are used as
indicators of emphasis.

Chapter 6 65

AudioStreamer can use this information to make suggestions to the listener with a story or
speaker segment. A list of emphasis points can be converted to a segment file (see
appendix) and subsequently passed to AudioStreamer. Making use of emphasis
information does not require any change to AudioStreamer since the design is data driven.

6.2 Applications

This section outlines some ideas on further applications for parallel presentation. Several
of the applications were implemented during the redesign of AudioStreamer.

6.2.1 Browsing Voice Mail

AudioStreamer is designed to browse databases of stored audio. One such database that
occurs naturally in an office environment is voice mail. Busy executives frequently find
themselves returning to the office to face the task of wading through a backlog of voice
mail. Time sensitive or important information that may be contained in some of the
messages generally requires prompt responses, especially given that time is in general
limited. Unfortunately, those messages are often buried in a collection of less important
messages. AudioStreamer can be used to browse through the collected voice mail
messages to determine who called and which messages need immediate responses.
Detailed listening to all of the messages can be done at the receiver's leisure.

As part of the redesign of AudioStreamer a configuration file tuned to voice mail was
developed (see appendix). Voice mail messages tend to be much shorter than news stories.
AudioStreamer's parameters needed to be modified to reflect this difference. The
configuration file (named vmail-config) implements shorter delay times in the staggered
start as well as a faster gain decay rate at all levels of focus. Since listeners generally do
not have time to reach the higher focus levels during short voice mail messages,
vmailconfig disables focus level three and four.

A Perl script was written to take a user's voice mail box and generate an appropriate
segment file for AudioStreamer. The script first sorts the messages by date (from most
recent to oldest). After sorting the messages, the script builds a segment file where each
piece of voice mail is treated as its own segment. During playback the listener first hears
the most recent messages in parallel followed by older messages. This process continues
until all messages are played back, or the listener stops the system. Listening to voice mail
in parallel is useful for people who receive lots of mail of varying priority. By listening to
several messages at once the listener can quickly sort out the messages that need an
immediate response. Also, the author observed that messages from important people
(one's spouse for example) tended to stand out because of the familiarity of the voice.

As a follow-up experiment the Perl script was generalized to build a segment file from any
directory of audio files. The user passes a directory path to the script and the script
generates a segment file and a configuration file. The segment file is built by treating all of
the audio files in the directory as segments. The configuration file is optimized to the

66 Conclusion

average length of the audio files in the directory. This average length is used to compute
appropriate decay rates for the various focus levels. In practice this optimization method is
simple and works quite well. However the results can be skewed by one or two
exceptionally long or short audio files -- a decay taking place over 30 seconds does not
make sense for a 20 second piece of audio. These problems can be overcome by
implementing a more sophisticated optimization heuristic.

6.2.2 Parallel Fast-Forward

Another application of parallel presentation involves browsing long audio files such as a
recorded lecture. Based on extracted structure, such as pauses, emphasis, or auxiliary
information such as when slides where changed, it is conceivable that a long recording can
be divided into cohesive units. A modified version of AudioStreamer can be used to
present the units in parallel. This has several advantages over traditional sequential fast-
forward. First, since time-compression is not used, the listener hears each unit in an
unaltered form -- the rhythm and emphasis of the speaker remains intact. Second, by
playing units in parallel the listener can compare the relative information content of each
unit as it is playing. This is useful in the case of a long lecture where the listener may only
be interested in portions of the recording.

6.2.3 Browsing Video

A significant amount of the content of a video tape, of a documentary for example, is
contained on its audio track. It follows that to effectively browse the content of a video
the audio must be browsed as well. Parallel presentation of audio can be combined with
simultaneous video presentation in the design of a very powerful browser. The browser
derives its power from the synergy of presenting information on two perceptual channels,
auditory and visual. Visual corroboration of auditory information and vice versa has the
potential to increase the overall information transmission rate.

As an example, the application might look like the following. The viewer is placed in front
of three video displays that are simultaneously playing three different segments of video.
The viewer listens to three parallel audio tracks spatially separated to coincide with the
placement of the video displays. By switching attention between the parallel audio and
video pairs the viewer browses the video in faster than real-time.

6.2.4 Navigating Audio-Only Hypermedia

One of the drawbacks of audio-only hypermedia is a lack of reference points for
navigation. Users of HyperSpeech, for example, have a tendency to become lost in the
network, repeatedly visiting nodes that have been heard before. One method of minimizing
this inefficiency is to use "audio bread crumbs" -- cue tones that indicate that a node was
visited before. Spatialized audio can also be used to increase the efficiency of exploring
the network. By assigning each node a unique position in the listener's three-dimensional
auditory space and by allowing the listener to move thorough the space, the system can

Chapter 6 67

leverage the users spatial memory. To reduce disorientation farther, several nodes can be
playing simultaneously allowing the listener to choose where to go next without
interacting with the system.

6.3 Further Research

This section briefly outlines two areas for further research: The interaction of time-scaling
and parallel presentation and how browsing efficiency under parallel presentation improves
with training.

6.3.1 Time Scaling and Parallel Presentation

As an experiment, version two of AudioStreamer was modified to incorporate time-
compression at focus level four. If the listener gives a stream focus level four the other
streams are paused as before. In addition, AudioStreamer gradually increases the time-
compression of the selected stream from 1.0 to 2.0 times real-time. Once the end of the
segment is reached the compression ration is reset to 1.0 and the other streams begin
playing again.

A more interesting area of research is to determine how time-scaling interacts with parallel
presentation when both techniques are used in unison. The assumption is that time-scaling
and parallel presentation are to some degree complementary cognitive activities. A
controlled experiment can be designed to ascertain the extent of this complementarity and
its effect on browsing efficiency. It would be interesting to determine if there is a time-
scaling factor where browsing efficiency dramatically increases or decreases. For example,
it is conceivable that when presenting three simultaneous streams of information-dense
audio, a scaling factor of 0.5 (half normal speed) will result in a net gain in time efficiency.
Three simultaneous streams at half speed is still faster than three streams in sequence.
Another possibility is that for news broadcasts a uniform scaling factor of 1.25 might be
appropriate. On the other hand, perhaps it is feasible to only compress one stream while
the others are played back at normal speed.

6.3.2 Training Effects

Intelligibility and comprehension of time-compressed speech increase with training.
Novice listeners quickly adapt to a compression ration of 50%, but with more training
much higher compression is possible (Orr 1965). Parallel presentation is expected to
exhibit the same kind of behavior (this is informally confirmed by the experience of the
author). A controlled experiment can be designed to determine the extent of the increase
in browsing efficiency as well as the amount of time that is required to achieve
competence.

68 Conclusion

6.3.3 Language and Content

Language and content impacts the usefulness of AudioStreamer in several ways. In this
implementation of AudioStreamer broadcast news was chosen as data to present to a
listener. All three channels of audio presented similar high-density information. In Webster
and Thompson experiment (see chapter three) they reported that the number correct
responses was much lower for material having equal density per channel than for material
where the density varied from channel to channel. An experiment could be designed to
more exactly determine the benefits of playing different information on the various
channels. For example, it is conceivable that listeners could monitor a news broadcast, a
baseball game, and a radio show such as "A Prairie Home Companion" and miss little of
the interesting information.

6.4 Summary

Speech is a wonderfully rich channel of communication. Text has expressive power
as well but pales in comparison to the range of information that can be transmitted
with the power of the human voice. Rhythm, meter, intonation, emphasis, accent,
and hesitation are the vehicles whereby words are given their power and impact.
Unfortunately, for the designers of computer systems speech also has significant
liabilities. Naturally occurring speech is slow. Recorded speech is difficult to
browse, bulky and opaque. This research addresses these liabilities in a novel and
principled way.

The initial implementation of AudioStreamer took some basic ideas about parallel
presentation and embodied them in a system for browsing audio. While the
implementation was rudimentary in many ways, it immediately became clear that
some users could successfully browse three simultaneous channels of audio. Based
on feedback from users of version one, a more sophisticated system was
developed. The redesign focused on building a user interface that reinforces the
listening processes. Informal reports suggest that this goal was achieved. Several
styles of interaction were explored with the head-pointing interface being
particularly successful. Although some users found version two of AudioStreamer
difficult to listen to, most thought that with a little exposure browsing became
much easier.

Simultaneous presentation of spatialized audio has the potential to solve many
problems in current audio-based systems. During the design and implementation of
both versions of AudioStreamer it quickly became apparent that as many questions
were being posed as were being answered. Novel avenues for further research
constantly presented themselves. In the past, spatial audio has been primarily used
in the entertainment and virtual reality fields. This thesis is part of a movement to
apply these technologies to the rich arena of solving real-world problems facing all
of us in a society where time is increasingly at a premium.

A. Software Documentation

This appendix provides developer's documentation for using the Swindows and Streams
software modules. The following appendices outlined the scripts used by AudioStreamer
and the format of the segment files.

Swindows

SUMMARY

The Swindows, "sound windows", software module implements a windowing style
abstraction on top of the CRE Client module developed by Crystal River Engineering and
the author. Users of Swindows can "open", "close", and "move" sound windows in three
dimensions.

Familiarity with the Speech Group's audio library and audio server is required for using
this module. See the appropriate documentation.

DEPENDENCIES

The startsources script (see Appendix B) must be executed at runtime before Swindows
will be operational.

INCLUDES

The include file swindows.h must be included in application programs.

STRUCTURES

The swindow structure caches information that is required by various functions at run
time.

typedef struct

int id;
int b_id;
int focus;
float gain;
float last-gain;
float slocation[3];
float blocation[6];
} swindow;

/* Unique ID for window (fd of server)
/* ID used by the Beachtron
/* True if swindow is the focus
/* Current gain
/* Current non-focus gain
/* Spherical location of swindow
/* Location in Beachtron coordintates

70 Software Documentation

EXTERNAL INTERFACE

The following is a listing of exported functions from the Swindows module.

extern int
sw-inito;

Initializes the swindow system. Allocates memory for maximum number of
windows (hardware limited). Set default location and gain.
Returns true on success FALSE on failure

extern int
swikill();

Cleans up and exits Swindow system. Stops playing windows and reclaims
storage.
Returns true on success FALSE on failure

extern int
swmainloopo;

Main event processing loop for Swindows. Handles callbacks etc.
Returns TRUE on success FALSE on failure.

extern swindow
*sw-openo;

"Opens" a sound window and returns it. The gain and location of the
window are set to their defaults. Returns NULL if no more windows can
be allocated.

extern int
swclose(swindow *sw);

Closes the sound window and returns it to the free list.
Returns true on success FALSE on failure

extern void
swmove(swindow *sw, float r, float theta, float phi);

Moves the sound window to <r, theta, phi> in spherical
coordinates. The origin is at the listener's head.

Appendix A 71

extern void
swmovehead(float *location);

Moves the listener's head in Beachtron coordinates.

extern int
swgivefocus(swindow *sw, float focusgain);

Gives the focus to the sound window by setting the gain to
focus-gain.
Returns true on success FALSE on failure

extern int
swunfocuso;

Removes the current focus if there is one.
Returns true on success FALSE on failure

extern void
swset-gain(swindow *sw, float gain);

Sets the gain of the sound window to gain.

extern float
sw-get-gain(swindow *sw);

Returns the current gain of the swindow.

extern int
swdefault_gaino;

Set the gain on all sound windows to the default gain.
Returns TRUE on success FALSE on failure

extern int
swplay(swindow *sw, char *filename);

Plays the audio file pointed to by filename in the sound window.
Returns TRUE on success FALSE on failure

extern int
sw_halt(swindow *sw);

Stops playing audio on the sound window.
Returns TRUE on success FALSE on failure

72 Software Documentation

extern int
sw.offO;

Turns off all of the sound windows.
Returns TRUE on success FALSE on failure

extern int
swpause(swindow *sw);

Pauses the sound window until and sw continue command.
Returns TRUE on success FALSE on failure

extern int
swcontinue(swindow *sw);

Continues playing a paused sound window.
Returns TRUE on success FALSE on failure

extern int
swpause tilldone(swindow *sw);

Turns off the sound window until the current audio segment
finishes. Continues playing queued segments if there are any.
Returns TRUE on success FALSE on failure

extern int
swflush-queue(swindow *sw);

Flushes the audio server event queue without turning off the current
segment.
Returns TRUE on success FALSE on failure

extern int
swhaltandflush.queue(swindow *sw);

Stops playing audio on a sound window and flushes the audio server event
queue.
Returns TRUE on success FALSE on failure

extern int
sw-set-queueing(swindow *sw, int on);

Turns the event queue on and off for swindow.
Returns TRUE on success FALSE on failure

Appendix A 73

extern int
sw.registerscallback(char *event, void (*cb) (), char *data);

Registers a callback on an event with the audio server.
Returns TRUE on success FALSE on failure.

Streams

SUMMARY

The previous section discussed the Swindows software module. Swindows handles the
spatial layout of windows in the three-space of a listener. The Streams module on the
other hand implements the user interface for AudioStreamer. In addition to managing the
spatial location of sound sources in space (via Swindows) the Streams module also
manages time-varying events such as the rate of gain decay at a particular focus level.

DEPENDENCIES

The restartstreamer script must be executed at run time in order for the Streams module
to be operational.

INCLUDES

The include file stream.h must be included in application programs.

CONSTANTS

The following constants set the default values for the Streams module. All of these default
values can be overridden using a configuration file (see appendix C). The default values
represent the preferences of the author.

The gain constants set the gains for the various focus levels. The gains can be tuned to a
particular listener's hearing ability and preferences. The gains for turning a source off and
for the MIDI tones are also set here. Level 0 here represents the values used by

Gain Constant Value
LEVEL_0_LEFTGAIN (float)0.0
LEVEL_0_MIDDLEGAIN (float)0.0
LEVEL_0_RIGHTGAIN (float)2.5
LEVEL_1_LEFTGAIN (float)10.0
LEVEL_1_MIDDLEGAIN (float)10.0
LEVEL_1_RIGHTGAIN (float)12.5
LEVEL_2_MIDDLEGAIN (float)15.0
LEVEL_2_LEFTGAIN (float)15.0

74 Software Documentation

LEVEL_2_RIGHTGAIN
LEVEL_3_MIDDLEGAIN
LEVEL_3_LEFTGAIN
LEVEL_3_RIGHTGAIN
LEVEL_4_MIDDLEGAIN
LEVEL_4_LEFTGAIN
LEVEL_4_RIGHTGAIN
OFFGAIN
MIDIGAIN

(float)17.5
(float)15.0
(float) 15.0
(float)17.5
(float)15.0
(float)15.0
(float) 17.5
(float)- 120.0
(float)-1.0

The rate constants set the default increments (in dB) by which the gain decays at a
particular focus level. For example at focus level 1 the left sources gain decays by 0.04 for
every clock tick. There are approximately 25 clock ticks per second.

Rate Constant
LEVEL_1_LEFTRATE
LEVEL_1_MIDDLERATE
LEVEL_1-RIGHTRATE
LEVEL_2_MIDDLERATE
LEVEL_2_LEFTRATE
LEVEL_2_RIGHTRATE
LEVEL_3_MIDDLERATE
LEVEL_3_LEFTRATE
LEVEL_3_RIGHTRATE
LEVEL_4_MIDDLERATE
LEVEL_4_LEFTRATE
LEVEL_4_RIGHTRATE

Value
(float)0.04
(float)0.04
(float)0.04
(float)0.02
(float)0.02
(float)0.02
(float)0.0 1
(float)0.0 1
(float)0.01
(float)0.0
(float)0.0
(float)0.0

The start delay constants are used to stagger the start times of the streams. The values are
in ticks.

Start Constant Value
MIDDLESTARTDELAY 25
RIGHTSTARTDELAY 125
LEFTSTARTDELAY 245

The TSMS constants are used to control the time-compression at focus level four.
TSMSTICKS is the time interval between compression increases. MAXTSMSRATIO
defines the maximum time compression. TSMSRATE defines the increment in the the
time-compression ratio increases.

Time-compression Constant
TSMSTICKS
TSMSRATIO

Value
80
1.0

Appendix A 75

MAXTSMSRATIO
TSMSRATE

1.4
0.1

STRUCTURES

The Streams module uses three primary structures: segment, thread, and stream. Each will
be described below.

The segment structure holds data relevant to a particular segment playing on a stream.
Segments are portions of an audio file.

typedef struct
{
char audiofile[MAXLINELEN];
mt start;
mt stop;
int duration;
} segment;

/* Audio file for segment */
/* Start time in milliseconds */
/* Stop time in milliseconds */
/* Duration in milliseconds */

Sequences of segments are called threads. The thread structure is used to organize various
segments (not necessarily from the same audio file) into a coherent whole.

typedef struct

VARRAY *segments;
int numsegments;
int currentsegment-index;
} thread;

/* Array of segments in this thread */
/* Total number of segments in thread */
/* The index of the current segment */

The stream structure is the primary organizing structure in the Streams module. It contains
all of the information relevant to a particular stream at run time

typedef struct

swindow *sw;
thread *thread;
segment *current -segment;
double lasttsmsjratio;
double tsmsratio;
double tsmsrate;
int tsmsticks;
float delayed-gain;
float gains[5];
float rates[5];

Sound window for this stream
Pointer to the thread playing
Pointer to current segment on this stream
Play back speed before focus shift
Play back speed
Rate of play back speed change
Number of ticks at this tsms
Delayed gain on the stream
Array of gains
Array of rates

N , Okk , 0 !ON&.

76 Software Documentation

float last-gain;
int last-gain level;
int gainlevel;
int gain delay.ticks;
int start delayticks;
int segment-index;
int attention;
long paused.pos;
long start-pos;
long stop-pos;
timet focustime;
struct timeb *starttime;
} stream;

/* Gain before focus shift
/* Gain level before focus shift
/* Current gain level
/* Clock ticks to delay gain by
/* Clock ticks to delay start by
/* Index to current segment
/* Was the last tone a feedback tone
/* Position of paused stream, or -1
/* Start position of the segment
/* Current stop position
/* Last time this stream was in focus
/* Time the segment began playing

GLOBAL VARIABLES

The following are the global variables used in the Streams module.

stream *left, *center, *right;
Pointers to the left, center, and right stream respectivley.

thread *tl, *t2, *t3;
Pointers to the first, second, and third thread. tl is playing on the center
stream, t2 plays on the right stream, and t3 plays on the left stream.

EXTERNAL INTERFACE

The following is a list of exported functions from the Streams module.

extern void
s_initialize(char *filenamel, char *filename2, char *filename3,

char *config-filename, int output, int head, int gaze,
int fish, int fb);

Initialization functions for the Streams system. Audio files and associated
segment files (see appendix C) are pointed to by filename 1, filename2,
filename3. Config-filename points to the configuration file if there is one.
Finally output, head, gaze, fish, and fb are Boolean values that turn on/off
output to the screen, the smart chair interface, the fish interface, and MIDI
feedback respectively.

I A Mow

Appendix A 77

extern void
s_kill();

Stops all streams, reclaims storage, cleans up, and exists the Streams
system.

extern void
s give focus(stream *s);

Bumps the focus level on the stream.

extern void
s_unfocusO;

Removes the focus if there is one.

extern void
s_next segment(stream *s, int direction);

Advances to the next segment queued to play on the stream or reverses to
he previous segment depending on the value of direction.

extern void
s_rotateO;

Rotates the sound sources in a clockwise direction: Left->Center->Right.

- ..-Re.-a--\v<gans---r--r- y.-e.si.sy..re.---:sp.-:,--4-...-

B. Scripts and Utilities

The following is a listing of scripts and interfaces used to execute and manage
AudioStreamer's various components. The scripts are primarily written in Perl. Exceptions
are noted in the appropriate functional description.

MAIN ROUTINES

restart-streamer
arguments: none

function: Convenience routine that restarts AudioStreamer. Existing audio
servers and stereoclients are killed and restarted. Calls killsources and
start-sources.

start-sources
arguments: none

function: Starts four audio servers and two stereoclients for
AudioStreamer.

kill-sources
arguments: none

function: Kills existing audio servers and stereoclients and does general
cleanup.

restart r server
arguments: none

function: Convenience routine that kills the recognition server and restarts
it.

start r server
arguments: none

function: Starts the speech recognition server and sets AudioStreamer up
for recognition.

kill r server
arguments: none

function: Kills the recognition server and does general cleanup.

80 Scripts and Utilities

listentest
arguments: -c Following string names a configuration file

-o Output gain and focus data to screen
-h Fix sources in space using Polhemus
-g Turn on head tracking (gaze) interface
-f Turn on the fish (smart chair) interface
-s Turn on the speech interface
-t Turn on tone feedback for focus levels

function: Starts AudioStreamer in demo mode. Calls listen and passes
the arguements to it. If no arguments are passed to listentest
AudioStreamer starts up with the keyboard interface (which is always
available).

listen
arguments right segment file (string)

center segment file (string)
left segment file (string)
configuration file name (string)
output, true/false (string)
fix sources, true/false (string)
head tracking, true/false (string)
smart chair, true/false (string)
speech, true/false (string)
tone feedback, true/false (string)

function: C routine that starts AudioStreamer. Assumes that
restartstreamer has been executed. Sets up AudioStreamer with the
appropriate interface. Connects to stereoclients and starts playing audio.
Manages keyboard interface.

start-server
arguments: -p port

-d device

function: Convenience routine that starts an audio server using the given
port and device.

start-stereo
arguments: -l Named pipe for the left channel

-r Named pipe for the right channel
-d Name of device.

function: Convenience routine that calls steroclient (wriiten by Jordan
Slott) and passes the arguments.

Appendix B 81

ADDITIONAL APPLICATIONS

streamdirectory
arguments: Name of directory

function: Browse a directory of sound file using AudioStreamer. The head

tracking interface is used by default. Assumes that directoryjto.streamer
has been run to construct an appropriate segment file.

vmailtest
arguments: Same as listentest

function: Demo interface to voice mail browser. Assumes that
directoryjto-streamer has been run on the voice mail directory. Optional
configuration file vmailconfig can be passed in as the -c argument.

UTILITIES

adjust directory
arguments: Name of directory

function: Adjusts the sound level on a directory of sound files using
adjustsound_level (written by Chris schmandt).

directoryto-streamer
arguments: Name of directory

function: Constructs appropriate AudioStreamer segment files for the
directory. Also calls adjust-directory to normalize the sound levels of the
directories audio files.

index to streamer
arguments: Name of speaker index file.

function: Converts the output of the speaker indexing algorithm to an
AudioStreamer segment file.

sndnotetostreamer
arguments: Name of sndnote file

function: Converts the output of the closed-caption synchronization
algorithm to and AudioStreamer segment file.

82 Scripts and Utilities

speaker-index
arguments: Program (ABC, BBC, CBS, etc)

Directory

function: Convenience routine that transfers the audio file and associated
speaker index file and converts the index file into an AudioStreamer
segment file (using indextostreamer).

CLOSED CAPTION PROCESSING

All of the following routines were written in C by Chris Homer and Alan Blount of the
MIT Media Laboratory with the exception of the transfernews script. Some of the
routines were converted to run on the Sun SPARCStation by the author. For a more
detailed description see Homer 1993.

capcon
arguments: filename

seconds

function: Convenience routine that calls getcaption and recordtofile to
capture an audio file and its closed-captions. The raw closed-captions are
further passed through a series of filters to remove control information.

getcaption
arguments: seconds

function: Gets captions from a serial port connected to a video line 21
decoder. Runs for the requested number of seconds. Speaker and story
boundaries are time-stamped as they are encountered. The output is a file
of raw captions and associated time-stamps.

recordtofile
arguments: filename

seconds

function: Records audio to a file for the requested number of seconds.
Used in conjunction with getcaption to capture the audio and closed
captions for a new broadcast.

cap2db
arguments: none

function: A lex parser that converts a filtered closed-caption file to and
auxfile format.

Appendix B 83

paws
arguments: sound file name

silence level
silence length

function: Performs speech and silence detection for the sound file using the
requested parameters. Results are written to an aux file.

arguments: sound file name

function: Synchronizes closed-caption time-stamps and significant silences
to more accurately reflect actual speaker and story boundaries.

transfer-news
arguments: Program name

function: Transfers any new news that exist for the program. Processes the
Run speech/silence detection and the synchronization algorithm. The
output is converted to an AudioStreamer segment file.

syncs

01' WII IN' d 110 - , III h '15 NOOM

C. File Formats

AudioStreamer make use of two types of files configuration files and segment files.
Configuration files are used to override AudioStreamer's default settings. Segment files
pass information regarding potential points of interest to AudioStreamer so that the
system can cue the listener. Below each format is outlined in turn.

CONFIGURATION FILES

All of the defaults values for the parameters of the Streams module (see STREAMS
section of appendix A) can be tailored to a specific listener's tastes using a configuration
file. At run time the configuration file can be passed to AudioStreamer (using listen or
listentest). A configuration file consists of a series of entries of the following form:

<white space> name of constant: <white space> default value <CR>

The name of the constant to be changed comes first followed by a colon. The comes the
new value followed by a carriage return. White space is ingnored. Lines in the
configuration file can be commented out by preceding them with a sharp sign ('#').
Constant names are normalized to lower case at read time so case errors are not an issue.

During the development of AudioStreamer several configuration file were created for
different users of the system. In addition a configuration file tailored to listening to voice
mail was developed. That file (vmail-config) is included below as an example of how to
properly write a configuration file.

vmail-config: created May 1994 by Atty Mullins
Configuration file that tunes streamer for vmail listening.
In other words it is tuned for short messages.

level_0_left-gain: 0.0
level_0_middle-gain: -1.0
level_0_right-gain: 2.5
level_1_left-gain: 10.0
level_1_middle-gain: 08.0
level_1_right-gain: 14.0
level_2_middle-gain: 13.0
level_2_left-gain: 15.0
level_2_right-gain: 20.0
level_3_middlegain: 13.0
level_3_left-gain: 15.0
level_3_right-gain: 20.0
level_4_middle-gain: 13.0

-_-_______ -_-- ---- _-. -I- -- -". I - I I __ * I 10 , - -i !- -, _ - f , I - I I - I . I __ I , - -

86 File Formats

level_4_left .gain: 15.0
level_4_right-gain: 20.0
level 1 left-rate: 0.40
level 1 middle-rate: 0.40
level_1_right-rate: 0.40
level_2_middle rate: 0.30
level_2_left rate: 0.30
level_2_rightjrate: 0.30
level_3_middle rate: 0.0
level_3_left rate: 0.0
level_3_right-rate: 0.0
level_4_middle rate: 0.0
level_4_left rate: 0.0
level_4_right rate: 0.0
middlestart-delay: 5
rightstart-delay: 25
leftstart delay: 45
tone time interval: 3
tsms ticks: 20
tsms ratio: 1.0
max tsms ratio: 1.4
tsms rate: 0.1

SEGMENT FILES

Segment files contain information on which audio files to play on a particular stream. In
addition they contain optional pointers to interesting segments within a particular audio
file. Segment files have the following format:

<audio file name 1>
optional segment pointers
<audio file name 2>
optional segment pointers

Names of audio files are delimited by angle brackets. Following each audio file entry there
is an optional list of segment pointers (if they are omitted the entire audio file is treated as
a single segment). The segment pointers consist of a starting point and ending point for
the segment in milliseconds. For example, the following entry would play three segments
from the audio file example.snd.

<example.snd>
1000 50000
80000 100000
55000 90000

Appendix C 87

At run time AudioStreamer will play these three segments in the order they are listed on

the requested stream (left, center, or right).

Several utilities build segment files automatically (as an example see sndnotetostreamer
in appendix B). Segment files can also be constructed by hand.

References

Ackerman 1990

Arons 1991

Arons 1992a

Arons 1992b

Arons 1992c

Arons 1993

Arons 1994

Blauert 1983

Bregman 1990

Broadbent 1958

Brokx 1982

Buser 1991

Ackerman, D. A Natural History of the Senses. Vintage, 1990.

Arons, B. HyperSpeech: Navigating in speech-only hypermedia.
In Proceedings of HyperText. New York: ACM, 1991.

Arons, B. Techniques, perception, and applications of time-
compressed speech. In Proceedings of 1992 Conference,
American Voice I/O Society, pp. 169-177, 1992.

Arons, B. A review of the cocktail party effect. Journal of the
American Voice I/O Society. Volume 12, 1992.

Arons, B.A. Tools for building asynchronous servers to support
speech and audio applications. In Proceedings of the A CM
symposium on User Interface Software and Technology. New
York: ACM 1992.

Arons, B. SpeechSkimmer: interactively skimming recorded
speech. In Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST). ACM SIGGRAPH and ACM
SIGCHI. ACM, 1993.

Arons, B. Interactively Skimming Recorded Speech. Ph.D.
dissertation, MIT, February 1994.

Blauert, J. Spatial Hearing: The Psychophysics of Human Sound
Localization. MIT Press, 1983.

Bregman, A.S. Auditory Scene Analysis: The Perceptual
Organization of Sound. MIT Press, 1990.

Broadbent, D.E. Perception and Communication. Pergamon Press,
1958.

Brokx, J.P.L. and Nooteboom, S.G. Intonation and perceptual
separation of simultaneous voices. Journal of Phonetics. Volume
10, pp. 23-26, 1982.

Buser, P. and Imbert, M. Audition. Translated by R.H. Kay. MIT
Press, 1991.

Cage 1961

Chalfonte 1991

Cherry 1953

Cherry 1954

Cohen 1991

CRE 1993

Divenyi 1989

Egan 1954

Fisher 1988

Foster 1988

Foster 1991

Gerber 1974

Cage, J. Silence. Wesleyan University Press, 1961.

Chalfonte, B.L., R.S. Fish, and R.E. Kraut. Expressive richness:
a comparison of speech and text as media for revision. In
Proceedings of the Conference on Computer Human Interaction,
pp. 21-26. ACM, April 1991.

Cherry, E.C. Some Experiments on the recognition of speech,
with one and two ears. Journal of the Acoustic Society of
America. Volume 25, pp. 975-979, 1953.

Cherry, E.C., Taylor, W.K. Some further experiments on the
recognition of speech, with one and two ears. Journal of the
Acoustic Society of America. Volume 26, pp. 554-559, 1954.

Cohen, M. and Ludwig, L.F. Multidimensional audio window
management. International Journal of Man-Machine Studies.
Volume 34, pp. 319-336, 1991.

The Beachtron TM: Three Dimensional Audio for PC-compatibles.
Crystal River Engineering Inc. 1993.

Divenyi, D.L., and Oliver, S.K. Resolution of steady-state sounds in
simulated auditory space. Journal of the Acoustical Society of
America. Volume 85, pp. 2042-2052, 1989.

Egan, J.P., Carterette, E.C. and Thwing, E.J. Some factors
affecting multi-channel listening. Journal of the Acoustic Society
of America. Volume 26, pp. 774-782, 1954.

Fisher, S.S., Wenzel, E.M., Coler, C., and McGreevy, M.W.
Virtual interface environment workstations. In Proceedings of the
Human Factors Society. Volume 32, pp. 91-95, 1988.

Foster, S.H. ConvolvotronTM User's Manual. Crystal River
Engineering. 1988

Foster, S.H., Wenzel, E.M., and Taylor, R.M. Real time sythesis of
complex acoustic environments. In Proceedings of the ASSP
(IEEE) Workshop on Applications of Signal Processing to Audio
and Acoustics. 1991.

Gerber, S.E. Limits of speech time compression. In Time-
Compressed Speech. Edited by S. Duker. Scarecrow, 1974.

References 91

Hawley 1993

Hindus 1993

Homer 1993

Johnson 1988

Kahn 1992

Kendall 1990

Koizumi 1992

Lawson 1966

Lentz 1980

Ly 1993

Malone 1987

Hawley, M. Structure out of Sound. Ph.D. dissertation, MIT, Sep.
1993.

Hindus, D., Schmandt, C., and Horner, C. Capturing, structuring,
and representing ubiquitous audio. ACM Transactions on
Information Systems. Volume 11, No. 4, pp. 376-400. October
1993.

Homer, C. NewsTime: A Graphical User Interface to Audio News.
Masters Thesis, MIT Media Lab, June1993.

Johnson, S. The History of Rasselas, Prince of Abissinia. Oxford
University Press, 1988.

Kahn, D, and Whitehead, G. Wireless Imagination: Sound, Radio,
and the Avant-Garde. MIT Press, 1992.

Kendall, G.S. Visualization by ear: Auditory imagery for scientific
visualization and virtual reality. In Dream Machinesfor Computer
Music Production. Edited by A. Wolman and M. Cohen. School of
Music, Northwester University, 1990.

Koizumi, N., Cohen, M., and Aoki, S. Design of virtual
conferencing environments in audio telecommunication. In
Proceedings of the 92nd Annual Audio Engineering Society
Convention. 1992.

Lawson, E. Decisions concerning the rejected channel. Quarterly
Journal of Experimental Psychology. Volume 18, pp. 260-265,
1966.

Lentz, J., Sillman, D., Thedick, H., and Wetmore, E. Television
captioning for the deaf: signal and display specifications. Report no.
E-7709-C, Engineering and Technical Operations Department,
Public Broadcasting Service, Washington DC, 1980.

Ly, E., Schmandt, C., and Arons, B. Speech recognition
architectures for multimedia environments. In Proceedings of 1993
AVIOS Conference. San Jose, 1993.

Malone, T.W., Grant, K.R., Turbak, F.A., Brobst, S.A., and Cohen,
M.D. Intelligent information sharing systems. Communications of
the ACM. Volume 30, pp. 390-402, 1987.

Masterson 1969

Moray 1959

Moray 1970

Norman 1969

Norman 1976

Off 1965

Polhemus 1992

Rayleigh 1907

Roy 1995

Rhodes 1986

Roucus 1985

Roy 1995

Salton 1989

Masterson, R.B., Heffner, H.E., and Ravizza, R.J. The evolution of
human hearing. Journal of the Acousitcal Society of America.
Volume 45, pp. 966-985, 1969.

Moray, N. Attention in dichotic listening: Affective cues and the
influence of instructions. Quarterly Journal of Experimental
Psychology. Volume 11, pp. 56-60, 1959.

Moray, N. Attention: Selective Processes in Vision and Hearing.
Academic Press, 1970.

Norman, D. Memory while shadowing. Quarterly Journal of
Experimental Psychology. Volume 21, pp. 85-93, 1969.

Norman, D. Memory and Attention. John Wiley and Sons, 1976.

Off, D.B., Friedman, H.L., and Williams, J.C. Trainability of
listening comprehension of speeded discourse. Journal of
Educational Psychology. Volume 56, pp. 148-156. 1965.

Polhemus Inc. 3Space Isotrak User's Manual. Polhemus Inc., June
1992.

Lord Rayleigh. On our perception of sound direction.
Philosophical Magazine. Volume 13, pp. 214-232, 1907.

Roy, D.K. NewsComm: A Hand-Held Device for Interactive
Access to Structured Audio. Masters Thesis, MIT Media Lab, June
1995.

Rhodes, G. Auditory attention and the representation of spatial
information. Perception and Psychophysics. Volume 42, pp. 1-14,
1982.

Roucus, S., and Wilgus, A.M. High quality time-scale
modification for speech. In Proceedings of the Internationsal
Conference on Acoustics, Speech, and Signal Processing, IEEE,
pp. 493-496, 1985.

Roy, D. NewsComm: A Hand-Held Device for Interactive Access
to Structured Audio. Master's Thesis, MIT Media Lab. May, 1995.

Salton, G. Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer. Addison
Wesley Publishing, 1989.

References 93

Schmandt 1994

Schmandt 1993a

Schmandt 1993b

Shepard 1981

Sheth 1994

Spieth 1954

Stifelman 1993

Stifelman 1994

TBS 1992

Thurlow 1967

Tufte 1990

Schmandt, C. Voice Communication with Computers. Van
Nostrand Rheinhold, 1994.

Schmandt, C. Phoneshell: the telephone as computer terminal.
In Proceedings ACM Multimedia 93, pp. 373-382. New York:
ACM, 1993.

Schmandt, C. From desktop audio to mobile access:
opportunities for voice in computing. In Advances in
Human-Computer Interaction. Edited by H.R. Hartson and D. Hix.
Ablex Publishing Corporation, 1993.

Shepard, R.N. Psychophysical complementarity. In Perceptual
Organization. Edited by M. Kubovy and J.R. Pomerantz. Erlbaum,
1981.

Sheth, B. A Learning Approach to Personalized Information
Filtering. Master's Thesis, Department of Electrical Engineering
and Computer Science, MIT, February 1994.

Spieth, W., Curtis, J.F., Webster, J.C. Responding to one of two
simultaneous messages. Journal of the Acoustic Society of
America. Volume 26, pp. 391-396, 1954.

Stifelman, L. J., Arons, B., Schmandt, C., and Hulteen, E.A.
VoiceNotes: A speech interface for a hand-held voice notetaker.
In Proceedings of INTERCHI. ACM: New York: 1993.

Stifelman, L.J. The cocktail party effect in auditory interfaces: a
study of simultaneous presentation. MIT Media Laboratory
Technical Report, September 1994.

Turtle Beach Systems. MultiSound User's Guide. Version 1.2,
Turtle Beach Systems, 1992.

Thurlow, W.R., and Runge, P.S. Effects of induced head
movements on localization of direction of sound sources. Journal
of the Acoustical Society of America. Volume 42, pp. 480-488,
1967.

Tufte, E. Envisioning Information. Chesire, CT: Graphics Press,
1990.

Treisman 1967

Webster 1954

Webster 1993

Wenzel 1990

Wenzel 1992

Wheatley 1992

Zimmerman 1995

Treisman, A.M. and Geffen, G. Selective attention: Perception or
response ? Quarterly Journal of Experimental Psychology. Volume
19, pp. 1-17, 1967.

Webster, J.C., Thompson, P.O. Responding to both of two
overlapping messages. Journal of the Acoustic Society of America.
Volume 26, pp. 396-402, 1954.

Merriam-Webster. Merriam-Webster's Colligiate Dictionary - 10
Edition. Springfield, MA: Merriam-Webster Incorporated, 1993.

Wenzel, E.M., Stone, P.K., Fisher, S.S., and Foster, S.H. A system
for three-dimensional acoustic "visualization" in a virtual
environment workstation. In Proceedings of the IEEE
Visualization '90 Conference. pp. 329-337, 1990.

Wenzel, E.M. Localization in virtual acoustic displays.Presence.
Volume 1, pp. 80-107, 1992.

Wheatley, B., Tadlock, J., and Hemphill, C. Automatic efficiency
improvements for telecommunications application grammars. First
IEEE workshop on Interactive Voice Technology for
Telecommunications Applications, 1992.

Zimmerman, T., Smith, J.R., Paradiso, J.A., Allport, D., and
Gershenfeld, N. Applying electric field sensing to human-computer
interfaces. In Proceedings of the Conference on Computer Human
Interaction. ACM, 1995.

