
Context-Sensitive Multimedia
by

Nathan Shalom Abramson

S.B., Computer Science and Engineering
Massachusetts Institute of Technology

(1990)

SUBMITTED TO THE
MEDIA ARTS AND SCIENCES SECTION, SCHOOL OF ARCHITECTURE

AND PLANNING
IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE
DEGREE OF

MASTER OF SCIENCE IN VISUAL STUDIES

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1993

© 1992 MIT All Rights Reserved

Signature of Author:

Certified by:

Accepted by:

Media Arts and Sciences Section
September 16, 1992

Walter Bender
Pr ncipal Research Scientist, MIT Media Lab

'7 I . Thesis Supervisor

Stephen A. Benton
Chairperson

Departmental Committee on Graduate Students

MASSACHUSETT WN~TUTE
OF TECHNP' "v

MAR 111993
LBRARIES

d0tr-;-(1
am*



Context-Sensitive Multimedia

by

Nathan Shalom Abramson

Submitted to the Media Arts and Sciences Section, School of Architecture and
Planning

on September 16, 1992 in partial fulfillment of the
requirements for the Degree of

Master of Science in Visual Studies at MIT

ABSTRACT

The current growth of multimedia applications illustrates the need for standard-
ized object libraries. This thesis suggests that an object-oriented context-sensitive
approach may provide the needed flexibility. This thesis describes the construction of
an environment for developing and experimenting with context-sensitive multimedia
objects. These objects are designed for use across a wide variety of applications: they
are active processes which can adapt themselves to the context in which they are
used.

The research testbed for object-oriented multimedia developed in this thesis is
called 0. The design and implementation of 0 is described. The initial use of 0 to
support context-sensitive multimedia is examined in two applications: an interactive
movie map and a personalized news presentation.

Thesis Advisor: Walter Bender
Principal Research Scientist, MIT Media Lab

This work was supported in part by International Business Machines Incorporated.



Context-Sensitive Multimedia

by

Nathan Shalom Abramson

Thesis readers

Reader:
-lorianna Davenport

Assistant Professor of Media Technology, MIT Media Arts & Sciences Section

Professor of Music and Media, MIT Media
od Machover

Arts &ciences Section

Reader:



Contents

1 Introduction

1.1 Prom ises . . . . . . . . . . . . . . . . . .

1.2 Paradigms . . . . . . . . . . . . . . . . .

1.3 Adaptability . . . . . . . . . . . . . . . .

1.4 Context-sensitive multimedia . . . . . .

1.5 Context-sensitive multimedia and current

1.6 0 . . . . . . . . . . . . . . . . . . . . . .

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

multimedia systems

. . . . . . . . . . . .

Glossary . . . . . . . . . .

Story of 0 . . . . . . . . .

Module networks.....

OSpace . . . . . . . . . . .

Transportable Objects . .

The Host/OStream model

Applications Interface

Future directions for 0

3 Context-Sensitive Multimedia

3.1 Object-Oriented Multimedia

3.2 Context-sensitive multimedia

2 0

. . . . . . . . . . . . . 11

. . . . . . . . . . . . . 15

. . . . . . . . . . . . . 24

. . . . . . . . . . . . . 4 2.

. . . . . . . . . . . . . 4 9

. . . . . . . . . . . . . 55

. . . . . . . . . . . . . 60

. . . . . . . . . . . . . 6 2

63

63

72

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .



3.3 Applications of context-sensitive multimedia . . . . . . . . . . . . . . 73

3.4 C ontext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Contextual hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Context-sensitive multimedia and 0 . . . . . . . . . . . . . . . . . . . 79

4 Demonstrations 85

4.1 The Bush Demo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 The Interactive Hallways Demo . . . . . . . . . . . . . . . . . . . . . 88

5 Conclusion 93

6 Acknowledgments 97



List of Figures

2.1 Movie player with many decoders

2.2 Universal movie player using entbedded decoders . .

2.3 Levels of programming in 0 . . . . . . . . . . . . .

2.4 Module network split across machines . . . . . . . .

2.5 A module network . . . . . . . . . . . . . . . . . .

2.6 An OModule . . . . . . . . . . . . . . . . . . . . .

2.7 A module group . . . . . . . . . . . . . . . . . . . .

2.8 A remote alias module . . . . . . . . . . . . . . . .

2.9 A module group inheriting configuration information

2.10 Immediate versus queued message delivery . . . . .

2.11 An OStream . . . . . . . . . . . . . . . . . . . . . .

2.12 Remote object location using Oservers . . . . . . .

2.13 Oserver starting an OStream . . . . . . . . . . . . .

2.14 Stdio OModule class type . . . . . . . . . . . . . .

2.15 Dtype client OModule class type . . . . . . . . . .

2.16 OModules being transported . . . . . . . . . . . . .

2.17 OStream forking . . . . . . . . . . . . . . . . . . .

2.18 Host/OStream model . . . . . . . . . . . . . . . . .

2.19 Application interface . . . . . . . . . . . . . . . . .

3.1 Context-sensitive movie object . .

. . . . . . . . . . . . . . . . . . 1 6



4.1 Object-oriented State of the Union . . . . . . . . . . . . . . . . . . . 86

4.2 The Bush demo system . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Context-sensitive hallways of MIT . . . . . . . . . . . . . . . . . . . . 90

4.4 0 schematic for the interactive hallways demo . . . . . . . . . . . . . 91



Chapter 1

Introduction

1.1 Promises

Multimedia is the term used to describe presentations that involve multiple modes of

communication. Traditionally these modes have included film, video, photos, draw-

ings, sound, and text. These media forms become more effective, memorable, and

entertaining when used in combinations.

However, the process of combining multiple media elements is difficult. Creating

multimedia presentations requires knowledge of design techniques, as well as a working

knowledge of several media forms. It is also expensive, requiring equipment that is

specialized to each media type (slide projectors, video machines). Once a multimedia

presentation is created, the actual display of the work may once again require a

great deal of knowledge and equipment. Finally, multimedia is extremely limited in

distribution, e.g. a slide/video show is difficult to package and sell to thousands of

customers.

For these reasons, the computer has become very popular-as a multimedia cre-

ation/presentation device. A computer with the ability to manipulate media objects

eliminates the need for individual pieces of expensive equipment dedicated to a single

media form. Computers can also be multimedia display devices, so that the presen-



tation of a multimedia work can be done with the same equipment that was used

to create that work. Finally, computer technology has made great advances in the

ability to distribute information between people. Multimedia can take advantage

of this technology, resulting in multimedia presentations that can be packaged and

distributed.

Recent technological advances have brought computer, or electronic, multimedia

within affordable reach of the population. The result has been an explosion of re-

search in multimedia technology, as well as countless methods and approaches for

actually using multimedia in an electronic form. The first phase of the explosion is

over, meaning that just about all traditional media forms now have electronic rep-

resentations (however crude they may be) that can be manipulated by a computer.

Photos, video, and film are now digital video. Sound is now digital audio. Printed

text in all its richness and variation can also be represented, in one of many electronic

forms.

The next step is to figure out how to put these multimedia elements together.

Vendors, programmers, and designers have been working on this problem, each one

crafting a unique way of thinking about electronic media integration, and a unique

approach for carrying it out. What is needed now is a consolidation of these results,

with the goal of a common model of multimedia integration.

While this common model will have its roots in traditional non-electronic mul-

timedia, there will be major differences. Computers became popular in multimedia

because they made multimedia cheap and easy to use. But computers have far more

potential because they are "intelligent": they know about their users, they know

about their environment, and they know about other computers they can talk to.

A computer can take a multimedia presentation one step farther than the multime-

dia designer could by personalizing the presentation, enriching the presentation, and

combining the presentation with other presentations.



1.2 Paradigms

The most popular approach for integrating multimedia is to create an application

which uses multimedia objects. The application is in complete control of the presenta-

tion; the objects provide data for the application to use. In such an arrangement, the

application and its data tend to be tightly coupled, which means that the multimedia

objects will only work on that particular application. However, some of those objects

may be valuable in other applications, so there should be some way of decoupling

the applications from their objects. For this reason, several interchange standards are

evolving which provide a common way of representing multimedia data. This will

allow multimedia designers to create presentations that can be used in-several appli-

cations. "Libraries" of shared multimedia objects can be created, which designers can

access to create presentations (assuming copyright laws do not interfere). And mul-

timedia can also be transported using these standards - the MIME standard [BF92],

for example, is a method for transporting multimedia through Internet mail.

As multimedia objects begin to proliferate in this manner, two things will happen.

First, multimedia objects will become more complex, with more interactive behav-

ior. For instance, an object may display itself in a more text-oriented or a more

video-oriented manner, depending on what the user prefers. Second, multimedia

applications will become more dynamic, with presentations being assembled out of

objects received "on the fly". For example, a multimedia news reader will constantly

be updating itself with new multimedia news items received from news servers.

These changes will require applications to give up their total control over the

presentation. The application will no longer know all about the multimedia objects

it will have to handle, nor will the application be able to interpret all the behaviors

a multimedia object may need to carry out.

As control shifts away from the application, that control is going to have be taken

up somewhere else. The logical choice is to give that control over to the multimedia

objects. But not all control should be shifted to the objects. Instead, the behavior



of the system will be shared between application and objects. The application knows

the direction of its presentation and what the user wants to see. The objects know

their content and how they would best be presented in different situations. Together,

the application and the objects can "negotiate" and work together to form the best

possible presentation for the user.

1.3 Adaptability

The idea of application/object cooperation is going to require fundamental changes

in the way that objects are represented. Currently, multimedia objects are strictly

static data, usually encoded in one of several standard static formats. These objects

may find themselves being used in various applications, on different platforms, for

different users. It is unlikely that the same object will behave identically in all cases,

especially if that object is a complete multimedia presentation. Therefore, the object

must no longer be represented as static data, but as adaptable data. The following

are examples of situations in which adaptable multimedia objects will be superior to

static multimedia objects.

1.3.1 Scalable resource use

Displaying multimedia requires resources (e.g., screen space, network bandwidth, and

computing resources), and some applications/platforms will have more resources than

others. For example, a home entertainment center will probably have more bandwidth

(and screen space) than a portable video player. Or, multiple media objects may

be combined into a single application and will have to divide their resource usage

according to their relative priority, as determined by the application. An adaptable

multimedia object will be able to respond to varying availability of resources by scaling

its operations accordingly. For example, an object may choose to reduce the size of

its video to fit available screen space, or to switch to a text stream if the network



bandwidth cannot support video data rates.

1.3.2 Presentation modes

Some multimedia objects will be able to present themselves effectively through a

variety of presentation modes (e.g., video, audio, text). An adaptable object will

be able to determine which modes to use, based on the display capabilities of the

applications, the available resources, and the needs or preferences of the user. For

example, the same multimedia news article may present itself in full video and text

at the breakfast table, but switch to audio only when taken onto a crowded subway.

1.3.3 Content

An adaptable object will not only fit several platforms and displays, it will also

fit several purposes. The same multimedia presentation may be called on in an

instructional setting, or in an entertainment setting. A single presentation may be

shown to different age groups or different nationalities, and will be expected to adjust

itself accordingly. A multimedia news article might be placed into a conservative or a

liberal newspaper, and be expected to rewrite itself to fit the tone of the newspaper.

Multimedia with these abilities will be the valuable and versatile members of a shared

multimedia library, and will also be the key to truly personalized applications.

1.4 Context-sensitive multimedia

If multimedia objects must be represented as adaptable data, how is this adaptability

expressed?

The first natural approach is to express these multimedia objects in an object-

oriented design. In this design method, an object comes complete with data and

methods. To access the different behaviors of the object, an application would invoke

the object's methods, thus causing the object to carry out its behavior according to



the design built into the object. This way the application can use an object and

the object's functions without knowing the inner workings and representations of the

object.

Object-oriented design is a good first step towards making adaptable objects.

With this design, the application can relate the current situation to the object by

invoking certain methods, and the object can reconfigure itself as it sees fit.

Object-oriented multimedia is slowly appearing in commercial contexts. For ex-

ample, Hype rMedia [Ber90] has its own particular scheme for representing objects, a

hypercard stack, which can also be used to represent multimedia. These hypercard

stacks can easily be shared and reused by other programmers, which is one of the

important qualities of object-oriented programming. QuickTime from Apple [Poo9l]

also takes a stab at an object-oriented approach for time-based media. QuickTime

movie objects can easily be used by a wide variety of Macintosh applications. How-

ever, both of these systems do not completely espouse the object-oriented model since

a great deal of the object-oriented design is hard-coded into the objects. Users are not

completely free to add their own methods - in the case of HyperMedia, the scheme

for linking objects is built into the design, and in the case of QuickTime, most of

the runtime operation and interaction is hidden in the QuickTime objects. Despite

these discrepencies, it is clear that the industry is starting to recognize object-oriented

design as an important element in future multimedia applications.

However, object-oriented design still places the application in control of the situ-

ation. The object remains a passive entity which can only respond to directions from

the application. As mentioned before, the object will have to take a more active role

in the presentation for a number of reasons: the object may need to initiate a negotia-

tion with the application for further resource allocation, the object may be in contact

with other entities such as news servers, and will have to maintain those connections,

etc. In other words, a multimedia object will be a self-aware, self-controlling, active

process, which negotiates with, supplies data to, and receives user interaction from



the application.

The concept of a multimedia object which is an active, self-aware entity is the

central idea of context-sensitive multimedia. Context-sensitive multimedia is a model

for representing active objects that are adaptable to a variety of situations, or contexts.

Context-sensitive multimedia is also a model for building applications which establish

and manipulate the contexts in which context-sensitive objects will operate.

1.5 Context-sensitive multimedia and current mul-

timedia systems

As mentioned before, several current multimedia systems are beginning to espouse

an object-oriented method in their design. Apple's QuickTime [Poo9l] and Fluent's

FM/1 [Flu90], for example, realize the benefits of encapsulating decoding behaviors,

mostly as a means for gracefully extending applications to take advantage of evolving

productions. In all cases, however, the application controls and keeps track of every

piece of media that runs through the application. For example, a QuickTime movie

contains several media tracks, each of which can hold video, sound, text - potentially

a rich multimedia presentation. However, it is still the job of the application to figure

out which tracks are appropriate to use and when, which is a lot to ask from the

application. Even though the application may know what it is aiming for in terms

of its presentation and content, the application is not necessarily familiar with the

content of the movies it is playing. This means that the application is not in the best

position to arrange an unknown multimedia object to its full potential.

Context-sensitive multimedia takes a different approach, by putting the applica-

tion and the media on more equal footing. The application "knows" what it wants

to present, the media "knows" what it can show. This "knowledge" might be repre-

sented as a series of complex behaviors, so it may be very difficult for the media to

turn over all of its knowledge to the application, or vice versa. Instead, the application



and the media keep their behaviors to themselves, but communicate with each other

what they know about themselves. In effect, the media and the application negotiate

with each other, towards the common goal of making the most effective and efficient

use of the media's capabilities while still maintaining the direction and intent of the

application.

This shift of decision-making from application to media is what is missing from

current multimedia systems. The need for this shift will become more apparent as

media objects become richer and multimedia research begins to focus on content

selection and understanding.

1.6 0

O is a prototyping testbed for exploring the ideas of object-oriented and context-

sensitive multimedia. 0 is itself a research project developed by the author over the

past year. Being a research project, 0 includes as many different features as it can

for exploring multimedia concepts. While this makes 0 somewhat large and bulky, it

also allows 0 to be used to explore other topics besides object-oriented multimedia,

such as networked digital video.

O is patterned after the object-oriented design method espoused by MAX [PZ] and

Data Explorer [IBM91]. This method is based on the design of a real-time process,

where the flow of data is directed between functional modules through a network of

connections. Like MAX and Data Explorer, design and programming of an 0 data

flow network is done through a graphical editor', rather than a text editor.

O is specially designed for object-oriented multimedia. Objects in 0 are OModules,

which are "black boxes" with inputs and outputs. The inputs and outputs allow an

OModule to be connected to other OModules or to an application. An OModule can

be many things: a piece of code, an executable program, a server, or even a group

'The graphical editor for 0, called Olga, was written by Marcel Bruchez and Eugene Lin.



of OModules. An OModule can be as complex or as simple as desired, which means

that both high-level designs and low-level implementations can be expressed using

the 0 model.

O's networked multimedia capabilities come from O's ability to distribute OMod-

ules to different machines on the network, while still keeping their connections intact.

This distribution is kept abstract for the 0 programmer, which simplifies the me-

chanics of experimenting with networked multimedia systems.

Another of O's features is the ability to allow OModules to communicate with

each other through an isolation barrier. so that one faulty OModule can not crash

the others. This feature is expanded later into the Host/OStream model, and is the

model used to create applications that run context-sensitive multimedia.

The remainder of this thesis explores the techniques and applications of object-

oriented/context-sensitive multimedia. The next chapter describes 0 in detail, and

is aimed more towards those using this thesis as a programming reference for 0. The

remaining chapters explore the concepts of context-sensitive multimedia in theory and

application. These latter chapters do not assume knowledge of 0, but the concepts in

these chapters will be more tangible if the reader is familiar with the concepts of 0.

Even if the reader completely skips the 0 chapter, the discussions in the remaining

chapters should be understandable on an intuitive level.



Chapter 2

0

o is a research testbed for exploring issues in multimedia, specifically object-oriented,

network-based multimedia. 0 was designed and developed by the author for the

Entertainment and Information Technology group in the MIT Media Lab. 0 has

been in development for over a year, and is currently in its third revision.

In addition to being a prototyping environment for object-oriented multimedia, 0

is also its own research project. The model for representing a distributed multimedia

object has undergone several revisions throughout the development of 0, a reflection

of our changing ideas about object-oriented multimedia. 0 will continue to evolve,

hopefully to incorporate the results of the multimedia research being performed with

0.

The model for 0 is similar to the ViewStation project proposed by Chris Lindblad

[Lin92], which is also based on a distributed object-oriented environment. ViewSta-

tion attempts to integrate the manipulation of temporally sensitive data with tem-

porally insensitive processing by using media entity programming (a form of object-

oriented programming), and time-stamped streams to move data around. However,

the ViewStation project is primarily designed to meet temporally sensitive specifica-

tions, not high-level functional specifications. 0 is designed to implement high-level

functional specifications, with the assumption that the 0 model can expand to include



temporally sensitive functions.

This chapter outlines the motivation and evolution of 0, followed by a detailed

description of the 0 model. Consult [Abr92c] for a more complete description of 0

programming and implementation.

2.1 Glossary

The following is a glossary of the terms that will be used throughout this chapter.

Dtype Client OModule An OModule class generated by an OServer, which is han-

dled by a Dtype server. Section 2.4.1.

Dtype environment A list of keyword/value pairs, used to allow OModules to in-

herit configuration information from parent OModules. Section 2.3.5.

Dtype reference A method of matching a value to a keyword in a Dtype environ-

ment, used to allow OModules to inherit configuration information from parent

OModules. Section 2.3.5.

Dtypes A generalized data type that is easy to transport between machines. Dtypes

are used to represent messages which are passed between 0 objects. Section

2.3.1.

Eval OModule A special OModule class which can be configured to a variety of

behaviors through a SCHEME-like language. Section 2.3.5.

Executable OModule An OModule class generated by an Oserver, which is han-

dled by a program that can have multiple inputs and outputs. Section 2.4.1.

Host/OStream isolation Part of the Host/OStream model, which guarantees that

Hosts and OStreams are isolated, so that an object cannot easily crash an

application. Section 2.6.1.



Host/OStream model A model for writing 0 applications, in which the applica-

tion is a Host, which forks off OStreams that are used to run the objects which

the application uses. Section 2.6.

o A system for creating and running distributed object-oriented processes. Section

OModule The basic 0 object - a single functional unit with inputs and outputs.

Section 2.3.2.

OModule class The type of the OModule. An OModule's behavior is determined

by its class. Section 2.3.3.

OModule instance A specific OModule generated from an OModule class. Section

2.3.3.

OSCRIPT The original language for describing 0 objects - text-based, similar to

C. Section 2.2.3.

OSpace The set of all OModules on all machines which can potentially connect with

each other. Section 2.4.

OStream The actual program which runs a set of OModules, maintains a message

queue, and also acts as a network server to communicate with other OStreams.

Section 2.3.8.

OStream forking The process of causing an OStream to split into two separate,

fully-functional OStreams. Section 2.5.4.

Omodtest An interactive test program for running OModules. Section 2.3.8.

Oserver A program which allows 0 objects to locate classes on remote machines.

Section 2.4.1.



SCHEME A programming language similar to LISP, with a very simple syntax.

Section 2.3.1.

Stdio OModule An ONlodule class generated by an Oserver, which is handled by a

program that takes input from stdin and sends output through stdout. Section

2.4.1.

X toolkit A library of objects used to form interfaces for X applications. Section

Xiface module A special OModule class which allows quick generation of an X

interface to running OModules. Section 2.3.8.

built-in OModule An OXlodule class which is defined by every 0 system. Section

2.3.4.

class registration The process of making a class known to an Oserver, thereby

making that class available to all 0 objects. Section 2.4.1.

configuration information The information supplied to an OModule when it is

created, which specifies the behavior of the OModule, according to the OMod-

ule's class. Section 2.3.5.

connection An 0 element which carries messages from the output of one OModule

to the input of another OModule. Section 2.3.7.

delayinst module A special OModule class which can delay the instantiation of

other modules. Section 2.5.3.

delivery mode The options selected for delivery of a message - currently includes

immediate, queued, unregistered, and registered delivery. Section 2.3.6.

delivery mode filter A property of connections which allows a connection to affect

the delivery mode of messages going through the connection. Section 2.3.7.



delivery notification output A special output on every OModule which emits a

signal whenever a registered message from that OModule is delivered to its

destination. Section 2.3.5.

hostname A name given to a machine on a network, which serves as part of a

hostname/port address, used to address network servers. Section 2.5.1.

immediate delivery A message delivery mode which guarantees that a message will

immediately be delivered to its destination. Section 2.3.6.

instantiation number An identifier for~O Module instances, which is unique among

OModules of the same class. Section 2.3.3.

message passing A method of cominiiicating information and invoking actions

between objects in an object-oriented system. Section 2.3.1.

modsend module A special OModule class which can send other modules over the

network to be handled on a remote machine. Section 2.5.2.

module alias An OModule which represents another OModule. Section 2.3.4.

module group An OINodule class which is defined by a group of OModules. Section

2.3.4.

object encapsulation The act of combining data and functions into a single unit,

an object. Section 2.2.2.

port number A number used to address a specific network server on a specific ma-

chine. Section 2.5.1.

queued delivery A messag-e delivery mode which directs a message to be sent to a

queue, for later delivery. Section 2.3.6.

registered delivery A message delivery mode which causes the source OModule to

emit a delivery notification message upon delivery of the message. Section 2.3.6.



resource A specific channel of communication used in the communication between

toparent and tochild OModules. Section 2.6.2.

server/client A network communication arrangement in which one entity, a client,

forms a single two-way connection with another entity, a server, and requests

the server to perform tasks or deliver information. Section 2.2.1.

tochild module A special O.Module class used in the Host/OStream model, which

allows a Host to talk to an OStream. Section 2.6.2.

toparent module A special O.lodule class used in the Ilost/OStream model, which

allows an OStream to talk to aI Host. Section 2.6.2.

transportable objects The 0 pr)emise that all objects can be moved to different

machines, or split across difFerelt machines. Section 2.5.

uninstantiated module An ONlodule which has no class. Section 2.3.4.

unregistered delivery A message delivery mode which does not cause the source

OModule to emit a delivery notification message. Section 2.3.6.

2.2 Story of 0

2.2.1 Motivation

The basic premise of 0 is that distributed media in the computing environment no

longer has to be static data which is transported from one place to another. Instead,

the data can have instructions and methods included with it. What this means is that

the behavior of the multimedia is deterined neither by the sender or the receiver,

but by the encoded behaviors embedded into the media itself.

This model arose to alleviate the time-consuming process of writing an entirely

new encoder/decoder pair (see figure 2.1) for every new video coding scheme developed



Movie Data Decoder1

Encoding Decoder3

Scheme #3 Decoder4

Figure 2.1: Movie player with many decoders

within our group (the Entertainment and Information Technology group at the Media

Lab). What we really wanted was to write one universal server and client, and

somehow embed the encoding and decoding instructions into the movie itself (see

figure 2.2).

The idea of embedding instructions into a multimedia stream is not new. MIME

[BF92], for example, specifies a multimedia representation for Internet mail. While

MIME supports several encoding schemes, the specification also allows for an appli-

cation to be included in the mail, where that application may serve as an interpreter

for the rest of the mail. This is only one way in which behavior might be encoded in

transmitted data. For our research, we have been conducting a structured exploration

of embedded behavior through a series of stages:

Embedded decoding methods

This is the basic model already put forth, in which the encoded byte stream car-

ries its own decoding instructions. These instructions are expressed in a universally

established language. Every movie player will have an interpreter for this universal

language.



Movie Data

- - - - - - > - Decoder

Figure 2.2: Universal movie player using embedded decoders

Embedded interaction methods

Traditionally the application program has had the burden of handling interaction with

the user and interpreting that interaction into something which is used to directly

manipulate the movie objects. With 0, the movie's response to user interaction can

also be embedded as a behavior that is interpreted by the universal movie player.

This way, pressing the "'rewind" button on a movie might do something different

than pressing the "rewind" button on a multimedia newspaper, and the application

doesn't have to know the difference.

This is where we enter the world of object-oriented multimedia. We can start

thinking of multimedia as closed packages which have a few hooks that applications

can adjust. Besides the explicitly stated hooks, applications shouldn't have to worry

about what happens.

Transportable methods

With the addition of embedded interaction methods, we have moved our model of

distributed multimedia from a byte stream to an object-oriented package. However

the traditional object-oriented model says little about how an object might be split



across two entities, such as a sender and a receiver. Thus the notion of embedded

behaviors had to be developed carefully around the idea that some of these behaviors

would have to be transported from one machine to another, that the object could

actually exist on several machines at once.

In order to make this advance, we need an addition to the underlying architecture

- the Oserver. On every machine that will be expected to "host" these multimedia

objects, there must be some process listening and waiting for multimedia objects to

arrive, knowing what to do with them when they do arrive, and of course there must

be a protocol set up to support this model of an object with transportable methods.

Context-sensitive methods

The final stage of the 0 idea is a model built on the rest of 0. In this stage, the

series of adjustments that goes on between application and 0 multimedia object is

formalized. The application explains to the 0 object what will be expected of it and

what resources are available to it. The 0 object adjusts itself in turn, or perhaps

negotiates with the application if it finds any of those terms disagreeable. 0 objects

with this embedded behavior are called "context-sensitive", and applications which

follow this model are called "contexts".

This final stage will require a protocol for negotiating an agreement between con-

texts and movie objects. This will also require something from the support system -

a back channel of communication. Rather than having a single station broadcasting

to many clients, each server/client connection will now have to be a two-way stream.

While this may seem unreasonable in the present reality of broadcast television, it

is actually not far off - already there are some cable companies experimenting with

real-time feedback from their viewers. And in the future, media can be distributed on

compact disks or over phone lines to private home servers (the VCR of the future).



2.2.2 Design goals of 0

Once the basic ideas of 0 were put forth, a design was developed for the implemen-

tation of 0, and also for how 0 would be visible to applications and users. The

following design goals were observed:

Ease of use

One of the major problems with multimedia, and especially with networked multi-

media, is the daunting complexity of working with any of it. Too many fields are

encompassed all at once (networking, movie coding, etc.) that most people who start

from the bottom never actually make it all the way to the top.

0 is a serious attempt to take away all that complexity, to encapsulate everything

in a model that is clear, easy to understand, yet still fully functional and configurable.

This is O's primary goal, and many of the following goals are derived from it.

Object encapsulation

Object encapsulation (from which, incidentally, 0 derives its name) is one of the

design goals of 0. This means that object encapsulation will be used consistently

through all levels of multimedia design, not just at the top application interface level.

Two (three) levels of programming

One of the keys to ease of use is to separate programming into two distinct levels - an

application level and an object level. The application level is most straightforward

and is designed for interacting with existing multimedia objects. The object level is

more complex (and more functional) and is meant for creating multimedia objects.

This is similar to the X toolkit programming model [N090]. Widgets are pre-

constructed objects, and the interface for using them is relatively simple. However,

a lesson can be learned here, because writing widget objects is extremely difficult.

Only a tiny fraction of X toolkit users are actually capable of creating a new widget.



Figure 2.3: Levels of programming in 0

This problem suggests an additional division of object programming into two more

levels. The purpose of these two levels is to push all C programming down to the

lower of the two levels, and make the higher of the two levels much easier to use.

The trick is to balance ease of use with functionality, and also with efficiency in the

real-time environment. Adhering to the object-oriented design goal, the higher of the

two levels is achieved by providing a set of built-in objects that can be wired-together

to produce the more complicated multimedia objects. The lower programming level

can be used to create new low-level objects, but programming on this level should in

general be unnecessary.

Network invisibility

The network is a daunting creature to most applications programmers, and it is one

of the favorite things for big systems to abstract away (NFS, X, etc.). In the same

tradition, 0 tries as hard as possible to make the network invisible, or at least model

the network in a very simplistic way. This is true on all three programming levels

Application
Layer

Module Programming

Object
Layer

C Programming



mentioned above. For the application level, it is the most true, so that the application

doesn't even have to know that there is a network out there. On the object level,

the programmer must be aware that there are separate machines that the object may

be running on, but that is modeled and abstracted so heavily that it can hardly be

called network programming. Even on the C programming level, there are the Dtype

[Abr92b] and dsys [Abr92a] libraries to keep networking as far away as possible.

This also means that all machine architecture differences have to be abstracted

away, which is done mostly through the dsys and Dtype libraries.

Remote object location

One of the last things to be added onto 0 is remote object location. This feature

enables 0 to locate objects which may be distributed at different sites throughout

the network.

While this seems like a "fringe" feature for 0, it is actually essential to achieving

the network invisibility goal. This way objects can refer to other objects which may

be local or remote, and 0 can properly locate these objects automatically.

2.2.3 Evolution of object encapsulation in 0

As mentioned before, the object-oriented idea of embedding behavior into data is not

new to multimedia. However, the idea of an object which can be split across several

machines is tricky to develop into a design, as is the delicate balance between ease of

use, functionality, and efficiency.

The primary question is, when someone wants to program an object, what descrip-

tion language will they use? How are the instructions embedded into the objects?

The following explains what methods were tried as 0 evolved.



OSCRIPT

The first idea was to make the description language into a traditional language syntax,

called OSCRIPT, based heavily on C. The reason was that such a language would be

fully functional, it would be familiar to C programmers, and it could be run through

a compiler that would turn it into something that could be interpreted efficiently.

Then, the transportable methods issue must be addressed. To do this, the lan-

guage was broken down in such a way that entire functions could be sent across the

network, so that a function called "sender()" night be running on the server ma-

chine, and a function called "-receiver()" might be running on the client machine.

Special constructs were included in the language for allowing the separated functions

to communicate with each other.

However, serious problems arose with this approach. A C-like language, while

fully functional, is problematic in that it is highly disorganized. This becomes very

difficult to work with in a ruLing distributed process. In such a situation, it is very

important to keep track of who is causing what to happen when, how to send replies

back, synchronization, etc. C, and in fact most traditional programming languages,

are very bad at organizing real-time processes in this manner.

Omodules

The second method that was attempted was a graphically based process description

language, similar to MAX [PZ] from IRCAM and Data Explorer [IBM91] from IBM.

Here, specific functional elements (modules) are wired together (with connections)

in such a way that it is graphically obvious how information is flowing. All activity

occurs in a consistent manner, through message passing between objects.

With this model, the transportable methods issue becomes simple. Given a net-

work of modules and connections, one can specify that certain modules should run

on one machine, other modules should run on another, and the underlying system

will automatically preserve the connections between the modules, even across the



Figure 2.4: Module network split across machines

network, all invisibly to the programmer (see figure 2.4).

The problem with this approach is that while the high-level concepts are nicely

packaged into powerful objects, the more mundane programming and housekeeping

tasks become very tedious and difficult to write using boxes and lines.

Omodules and Evaluator

The first two approaches reveal the need for a third combination. The graphically

based process could be used for estalishing the high-level behaviors, while the pro-

gramming details could be done in some more traditional programming language.

This is the third and final approach. Here, the modules and connections concept

remains the same as previously described. However, a new kind of module, an eval-

uator module, has been added. This module is fully programmable and configurable

using a SCHEME-like syntax (which is similar to LISP). This language was chosen

for many reasons (not the least of which is that it is trivial to interpret).



In the end, what we have is a clearly laid out network which describes the behavior

of an object through the flow of information. The basic elements of the network are

either preconstructed, or else modules whose behaviors have been described in a text-

based SCHEME-like programming language.

2.3 Module networks

The basic model of describing the behavior of an 0 object is through modules and

connections. Modules are coinputational elements with inputs and outputs. Each

module has a specification which relates its outputs to its inputs. Communication

into and out of a module (through the inputs and outputs) occurs through message

passing. Messages are encapsulated in a standard method (Dtypes).

Connections are used to carry messages from the output of one module to the input

of another module. A single output may connect to any number of destinations, and

any number of sources may connect to a single input.

A network of modules is a set of modules and their connections. Figure 2.5 shows

an example module network. This figure identifies all the elements of the network,

many of which have not yet been discussed. These elements will be described later,

and this figure can then be used as a reference.

2.3.1 Message Passing

Message passing is the basic means of communication between modules. Message

passing is also the basic indicator and carrier of activity in the module network.

Most modules do nothing until a message is passed to them, which causes them

to process the message and send other messages as output. Connections carry the

output messages to the inputs of other modules. Of course, there must be "instigator"

modules to start the process. Such modules would send messages spontaneously,

either according to a timer or else in response to some other activity on the system.



instantiation number

configuration information

OModule

delivery notification -

output

Figure 2.5: A module network

All messages are passed using a standardized data structure called a Dtype. The

following is a brief description of Dtypes, but the Dtype manual [Abr92b] should be

consulted for a full description of DtVpes.

Dtypes

Dtypes are typed data structures, which are used to represent many commonly used

data types in a universal format. The data types supported include integers, reals,

strings, variable-length lists, and packets of raw bytes. Dtypes are supported by a

library of functions which construct, destroy, interpret, print, load, save, send and

receive Dtypes. The following is an exanple of a Dtype:

(3 4 "hello" (2.4 -3.6))

This is a typical Dtype consisting of a list of integers, strings, and reals. The

following code would generate this Dtype:



DtypeCreate(DTYPELIST,
DtypeListCreate(DTYPE_INT, 3,

DTYPEINT, 4,
DTYPESTRING, "hello",
DTYPELIST,
DtypeListCreate(DTYPEREAL, 2.4,

DTYPEREAL, -3.6,
NULL),

NULL))

One of the biggest problems with distributed computing is that very few facilities

exist for sending anything besides raw bytes between machines. Programmers of dis-

tributed processes often spend a lot of time writing routines that convert information

into raw bytes that can be sent to another process, and routines that can convert raw

bytes back into information. The Dtype library is an attempt to write this code once

and set it as a standard that all programmers can use. The only real catch is that

programmers must be prepared to express their information as Dtypes, and also be

prepared to interpret Dtypes as information. But once programs are set up to use

Dtypes, they can instantly send information back and forth through functions in the

Dtype library.

The Dtype library also contains support for two important applications. The first

application is Dtype servers, which are servers that communicate with their clients

through Dtypes. The Dtype library has enough support for this application that

setting up a fully-functional multiclient Dtype server takes a couple of hours at the

most. The second application is the Dtype evaluator, which can interpret Dtype lists

as expressions or programs, in the style of LISP or SCHEME. The Dtype evaluator

is a lightweight interpreter for such expressions, which is useful in a situation where

an interpreted language needs to be "thrown in" to an applicat.ion.

2.3.2 OModules



input 0 input 1

class

delivery notification value:O < instantiation number

output (-1)

output 0 configuration information

Figure 2.6: An OModule

An OModule is the basic unit of the 0 system. An OModule can be visualized as a

box, with a number of inputs and outputs (see figure 2.6). What is inside the box

can be any number of things, but no matter what is inside the OModule, or for that

matter no matter where the OModule is located on the network, the interface to the

OModule and the behavior of the OModule remains consistent.

As a point of reference, the inputs and outputs are numbered in order, from left

to right, starting with 0.

2.3.3 OModule classes and instantiations

An OModule's class is what determines the behavior of the OModule. All OModules

in the same module network which have the same class name will all have the same

behavior. The behavior is determined by the handler which is assigned to the OMod-

ule. The process of translating OModule class names into OModule handlers is called

"'module instantiation". The process of module instantiation is a little tricky, since

the handler assigned to an ONIodule class depends partially on the environment of

the OModule - i.e., which module network it is in, which machine it is on. In general,

the module instantiation process is pretty clear, with a few oddities.

Every OModule also has an instantiation number, which is used to differentiate

two OModules of the same class. Within a single module network, no two OModules

of the same class should have the same instantiation number. Therefore, within



a single module network, a <class>:<instantiation> name is enough to identify a

specific module.

2.3.4 OModule types

As mentioned earlier, what behavior, or handler, is put into an OModule box is

determined when the OModule is instantiated. After that, it doesn't matter on the

outside of the OModule what is actually inside the box.

However, to get a handle on what's going on, it is often useful to know what is

inside the box. There are three basic ONlodule types, one of which is selected when

the OModule is instantiated.

Built-in modules

The built-in module classes are the module classes that come prepackaged with every

o system. Any module which bears the name of one of these built-in classes will

automatically have the handler from that class assigned to it. These handlers are

actual C subroutines that are included in the 0 library, and a catalog exists which

documents the behavior of each of these classes. In most cases, these modules are

very simple, such as modules which add, or hold values, or send out timing pulses at

regular intervals. However, these modules are basic and powerful enough to do just

about anything when wired together in the right combination.

Module groups

Module groups are the first level of abstraction in 0. Once a network of modules and

connections has been made, that entire network can be turned into a module group if

it is given a name. If an OModule uses that name as its class, then its handler will be

that entire module network. Of course, we must emphasize again that to whomever

is using that OModule, the fact that there is an entire module network inside that

OModule is completely hidden. It looks just like any other module.



"counter" module group

Figure 2.7: A module group

Just like any other OModule, a module group receives messages through its inputs

and sends messages out through its outputs. To the module network which defines

the module group, the inputs and outputs are represented by special built-in modules

called inlets and outlets. Messages which go in to the OModule are passed into the

module group through inlet modules. Messages which the module group sends to

outlet modules are passed through the output of the OModule.

Figure 2.7 shows a module group being used in a module network. Note the inlet

and outlet modules in the module group, and their relation to the inputs and outputs

of the "counter" module.

Some terminology - when a set of modules and connections is represented by a



displayQ - - - - ~ Xdisplay:O

NULL 1

Alias Module Aliased Module

Figure 2.8: A remote alias module

single OModule, that OModule is called the "parent" of the underlying modules, and

those underlying modules are the "children" of the OModule. There is also no limit

to the nesting of module groups - a module group may contain modules which are

themselves module groups, etc. Also, note that from now on "module group" and

"module network" will be used interchangeably, since they both refer to the same

concept'.

Module aliases

Module aliases are the means by which one OModule can represent another OModule.

An OModule alias always has a target ONlodule which is what the original OModule

aliases to. Any messages sent to the aliased OModule are rerouted to the target, and

any messages originating from the target are rerouted back through the outputs of

the original OModule (see figure 2.8).

1 "Module group" usually implies a module network that is being used as a single module within

another module network

C:D



OModule aliases are the mechanism for hiding the fact that an OModule may

exist on another machine. In that case, whoever is using the OModule can still send

it messages just as if it were a normal ONlodule, but because the module is actually

an alias to some remote machine, messages are automatically and invisibly rerouted

to and from the target OModule.

Uninstantiated modules

This is actually more of an ONlodule non-type. An uninstantiated module is com-

pletely nonfunctional - messages sent to it do absolutely nothing, and it generates no

messages.

All modules are uninstantiated when first created. Sometimes it is desirable to

leave a module uninstantiated. This occurs most often when there is a module that is

going to be sent to a remote destination - in this case, there is no point in instantiating

the module until it gets to its destination, so the module remains uninstantiated until

it is sent.

2.3.5 Configuration information

Every OModule, in addition to being identified with a class and an instantiation

number, also has configuration information. This is a single Dtype which the module

uses to control its operation. Every module class will use the configuration in a

different way. For example, a module which "ticks" at regular intervals might expect

the configuration information to be an integer specifying the tick interval. A general

convention is to have the configuration information be an initial configuring value,

but also to use one of the inputs to allow that value to be changed during runtime.

For the built-in module classes, what configuration information is expected for

each class and how that configuration information is used is included in the built-

in module catalog listing. When the module network is created by a designer, the

configuration information for each module in the network is also specified at that time



by the designer.

Inheriting configuration information

According to the description above, the configuration information for each module

is a static field which is determined at the time the module network is designed.

However, it may be desirable to allow that configuration information to change at

runtime. Here is an example:

Suppose a module group is created to output numbers at regular intervals. Such

a module group would require a few modules and a ticker module at the center.

The configuration information of the ticker module determines the rate at which the

numbers will be sent out.

Once this module group has been created, it can be treated as a single module

and incorporated into other module networks. However, these module networks have

no control over the timing interval of the module group, since the timing interval is

preset as the configuration information of the ticker module, which is hidden away in

the module group.

What is needed is a way to pass configuration information into a module group,

and have that configuration information be distributed to the proper modules. In

a sense, the module group itself needs to be configured. This fits perfectly, since a

module group appears to be a single module, and like any other module it gets its.

own configuration information. So, the issue is how to pass configuration information

specified for the module group down to the individual modules in the group - how

is configuration information inherited through different levels of the module group

hierarchy?

The 0 answer to this problem is to use a feature of the Dtype library called

environments and Dtype references. A Dtype environment is simply a list of

keyword/value pairs, such as the following:

((ticktime 2000) (color red) (WMBR 88.1))



The configuration information for a module group is such an environment.

The complement of a Dtype environment is a Dtype reference. A Dtype refer-

ence is a way of "looking up" values in a Dtype environment. A Dtype reference has

the following form:

(0 ticktime)

When processed through the above environment, the entire Dtype reference is

translated into "2000". The Dtype reference process is also recursive, so that if the

following Dtype were passed through the environment:

(20 30 (0 ticktime) 3.5)

it would be translated into the following:

(20 30 2000 3.5)

The Dtype environments and Dtype references are used to allow modules to inherit

configuration information from their parents. When a module is instantiated, its con-

figuration information is first passed through as a Dtype reference, using the parent's

configuration information as a Dtype environment. This way, any configuration in-

formation parameters that should be inherited are specified as Dtype references, and

when the module group is included in a module network, those parameters should

be specified in a Dtype environment as the configuration information to the module

group.

For example, refer to figure 2.9. This shows the same "counter" module group

example as before, except now the module group's "ticker" gets its timing parameter

from the parent's configuration information.

This process is extended to work even when module groups are nested several

layers deep. When a module uses a Dtype reference to specify a parameter, the

search for that parameter first occurs in the configuration information of the parent.

If not found there, the search continues to the grandparent, then the level above that,

etc. If not found in any configuration information, then the parameter is set to NULL.



'counter" module group

Dtype reference

iter:0 value:0

time 2000))

W-- add:0
:0 Dtype environment NULL

outlet:0
NULL

Figure 2.9: A module group inheriting configuration information



The delivery notification output

Sending messages from an OModule is not necessarily a synchronous process. Mes-

sages may be delayed in a queue, they might be delayed traveling through the network,

etc. It is often difficult to tell exactly when a message has arrived at its destination.

Sometimes it is useful to know when a message has been delivered to its desti-

nation. Take for example an application which is trying to send video frames from

a source to a destination as fast as possible. The source will want to know when

the frame it just sent to the destination arrives, so that it can immediately send out

another one.

To handle this situation, every module includes an extra output called the delivery

notification output. Visually this is represented as an output on the left side of the

module - out of the way since it is rarely used, but always available.

The purpose of a module's delivery notification output is to signal every time

a registered message sent by that module has been delivered. Whenever a message

sent by that module is delivered to its destination, an integer is sent out the delivery

notification output. The value of that integer is the output number that sent the

message.

Not all messages are registered. By default, messages are unregistered, but that

status can be modified by the connections, as explained later.

The delivery notification output, like all other outputs, has a number, which is -1.

The Eval OModule

The basic set of built-in OModule classes is sufficient to perform just about any

computation. However, in actual use it was awkward to build a useful module network

out of such small pieces, somewhat akin to building a computer purely from logic

gates.

The electronic hardware solution to this problem is a logic device called a PAL,

for Programmable Array Logic. On the outside, a PAL is just a normal logic device.



On the inside, however, is a tiny bit of software which configures how the inputs

and outputs of the PAL behave. This software can be easily changed to fit different

applications, which makes the PAL act like a universal logic device.

The 0 analog to the PAL is called the Eval OModule. On the outside, the eval

module is just like any other built-in module class. However, within the configuration

information of the eval module is a program which describes how the inputs and

outputs of the module behave. This program is written in a SCHEME-like language

which is handled by the Dtype evaluator (described in the Dtype manual). The reason

for choosing this syntax is that it is simple to learn, simple to interpret, and trivial

to fit into the Dtype syntax which is required for configuration information.

As an example, consider a module takes in 4 numbers, adds the first three and

multiplies the result by the fourth and sends the final result out output number 0.

Without using an eval module, this module would best be written as a module group

with 4 inlet modules, 1 outlet module, 3 add modules and 1 mult module.

Or, this could be done in a single eval module with the following configuration

information:

(1 0 ()
(out 0

("1*"1 (11+1

(in 0)
(in 1)
(in 2))

(in 3))))

In case this syntax appears foreign, here is a quick explanation - for every ex-

pression contained in parentheses, the first element of the list is a function name,

the remaining elements are arguments. The entire list is evaluated by evaluating the

arguments, passing them to the function, and what the function returns is the result

of the evaluation. Some functions have side-effects, such as the "out" function which

causes its second argument to be sent out the output number specified by the first



argument.

The practice, an eval module usually serves as the central control unit for a mod-

ule group, where status messages go into the module and control messages go out.

This way, the behavior of the module group can be coded in something closer to a

programming language, but the data flow in the module group is still represented

through modules and connections.

2.3.6 Message passing and delivery modes

When a module sends a message out one of its outputs, several things happen before

that message is actually delivered to its destination. First, the message's delivery

mode is examined.

The delivery mode of a message is a set of options which control how the message

is routed. One of these options is whether the message is to be delivered immediately

or whether it is to be placed in a, queue for delivery later. These delivery modes are

called immediate and queued (see figure 2.10).

A message marked for immediate delivery will arrive at its destination as soon

as it is sent. The destination module is then given a chance to process the message,

perhaps sending out messages of its own. Only when the destination has fully finished

processing the message will the original module regain control. This is important in

two situations: first, if a message needs to be sent to two or more destinations,

then the second destination will not receive the message until the first destination

has completely finished its processing and generating its own messages. Second, if a

circular loop has been formed in the module network such that a module is somehow

connected to itself, then a message sent by that module might cause an endless loop

and crash the 0 system. Despite these peculiarities, the immediate mode is attractive

because of its simplicity and the predictability of its operation.

Conversely, a message marked for queued delivery will not be sent immediately

to its destination, but instead the message is put onto the back of a message queue.



message queue

immediate mo

Figure 2.10: Immediate versus queued message delivery

When the 0 system gets a free moment (i.e., when it is done handling messages

marked for immediate delivery), it takes a message off the queue and delivers it to its

destination, where it is immediately processed. Messages are taken off the queue in

the order that they are put on. The main applications for the queued delivery mode

are to force a message to be delivered after a set of messages marked for immediate

delivery, or to avoid crashing the 0 system in the event of a circular loop in a module

network.

The queued/immediate choice is one delivery mode option, which defaults to the

immediate delivery mode. The major exception to this default is the eval module,

which sends out all its messages marked for queued mode. The reason for this is that

since the module is often used as a central control point, the outputs of the module

are sometimes routed back into its inputs. The queued default mode keeps this from

becoming a problem without the user having to think about it.

Another delivery mode choice, which has been mentioned before, is the regis-

tered/unregistered option. This option affects the delivery notification output of the

module which sent the message. If a message is sent unregistered, then nothing hap-

pens with the delivery notification output. If, however, the message is sent registered,

then once the message is finally delivered to its destination, and after the destina-

tion has finished processing it, a message is sent out the sender's delivery notification



output, as described previously. The default is for messages to be sent unregistered.

2.3.7 Connections

Connections are the objects which carry messages between modules. A connection

is attached at one end to exactly one output, and at the other end to exactly one

input. The output and input are allowed to be on the same module. More than one

connection may be attached to a single input or output. An output may also have

no connections attached to it. Messages may still be sent out that output, but they

will not go anywhere.

In general, connections will only exist between modules which are in the same

module network. Theoretically it is possible to connect any two modules anywhere,

but use of that "feature" quickly leads to confusion, and no provision is made for it

in the application interface.

Connections are equipped with delivery mode filters, which will affect the delivery

mode of messages passing through the connections. By default, the filters are off, so

that the delivery modes remain unaffected. When the connection is defined, it may

be defined with its queued mode filter on, which means that any messages passing

through are marked for queued delivery, no matter if they were marked for queued

or immediate when the module sent them out. The same is true for the immediate

mode filter, the registered mode filter, and the unregistered mode filter.

2.3.8 Module networks in operation

Once a network of modules and connections has been defined (probably through a

graphical interface), a special interpreter is needed to breathe life into the network

and start it running.



network
server s1

message queue

Figure 2.11: An OStream

OStreams

OStreams are the objects in 0 which are responsible for running module networks.

Usually a single OStream will run a single module group (which may of course contain

its own module groups, all still handled by the same OStream). The OStream is re-

sponsible for carrying messages from a module to their destinations or to the message

queue. The OStream also maintains the message queue and is responsible for making

sure that messages get off the queue and to their destinations as quickly as possible.

The OStream takes care of "waking up" modules that require periodic processing,

such as the "ticker" module. Finally, as will be described later, the OStream is a

complete network server. This allows OStreams all over the network to talk to each

other, for modules in different module groups on different machines to send messages

to each other, and even allows entire modules to be sent from one machine to another.

Figure 2.11 shows a figurative representation of an OStream.

Each OStream is implemented as a separate UNIX process.



Omodtest

The basic program for running and testing module groups is Omodtest. This pro-

gram starts up an OStream, loads a module group (specified on the command line)

into it, and starts the OStream running, thus running the module group. At the same

time, the program accepts keyboard input, which allows the user to "poke in" to the

module network and send messages to any module at any time. This is extremely

useful for testing, and for finer inspection there is a debugging mode in which every

message that is sent between two modules is printed to the console, along with the

source and destination of the message.

Interfacing with Xiface

The Omodtest is a powerful but clumsy method for real-time interaction with a

module group. It serves as a good debugging tool, but not as a nice user interface for

a running 0 application.

0 does have a provision for quickly creating a graphical user interface to a running

OModule network. This is done, of course, through a special 0 built-in module class

called an Xiface module. Currently, this Xiface module has been interfaced only to

X, but it is theoretically possible to port the module to whatever platform it happens

to be running on.

A separate X window will be created for each Xiface module that is instantiated

in a running module group. The X window can contain buttons, text fields, menus,

sliders, free-form line drawings, and even color images. What exactly is in the X

window is determined by the configuration information passed to the Xiface module.

Interaction with the X window is mirrored through the inputs and outputs of the

Xiface module. For example, if a button is pressed in the X window, then a message

is sent out one of the outputs of the Xiface module. On the other hand, inputs to the

module could be used to change text fields, display new images, etc. The specifications

of all these arrangements are very straightforward and fully documented in OXiface.c.



Keep in mind that the Xiface module is an excellent way to quickly construct an

X interface, but that interface is not as aesthetically and functionally configurable as

a full application interface should be. For a full-fledged application which uses 0, a

separate interface scheme should be used.

2.4 OSpace

Running module groups and connections is only half of the Story of 0. One of the

stated purposes of 0 is to act as a distributed object system, while at the same

time keeping the network invisible to the user. This goal fits in easily to the model of

modules and connections. Two modules might be on the same machine or on different

machines, and connections between them are preserved invisibly whether the modules

are local or separated by a network.

This is the concept of OSpace. All modules on all the machines in a given network

are considered to exist within a single universal set, called the OSpace. Any two

modules within the OSpace can be connected together, and 0 will take care of routing

messages through that connection from the source to the destination, even if messages

have to go through the network. This way, the network remains invisible to anyone

who is using 0.

OSpace also includes the idea of distributed object class location. Not every

machine has to know about every module class that it may be required to run. Every

machine running 0 knows about the built-in module classes, but beyond that, new

module classes may be created that some machines know about and others do not.

This is where the distributed object class system comes into use. If a machine is asked

to run a module group which contains a module whose class it does not recognize,

it broadcasts a call for hell) to all other machines on the network. If some other

machine knows how to handle that class, then an instance of that class is started up

on the more enlightened machine, and the original machine reroutes connections to



that module so that they go to the new machine. In other words, the module on the

original machine becomes an alias for the module on the new machine.

There is an important point to be made here: when this situation occurs, the

module group is now being distributed across two separate machines. There are other

options for handling this situation which were considered but rejected. One option is

to turn control of the whole module group entirely over to the enlightened machine,

but this would not work if the group also included a module that the enlightened

machine did not recognize, which would cause the module group to "ping-pong" back

and forth between two machines. A second option is for the enlightened machine to

somehow send a definition of the module class to the deprived machine, so that the

deprived machine would then know about the class forever and not have to distribute

its processing. The problem with this is that sometimes the distributed processing

is desired, such as for efficiency in a parallel computation. Another problem is that

sometimes there is a specific reason why a class might exist only on certain machines -

those machines might have resources that other machines would not have, so it would

not make sense for the class to be run on machines that are not properly equipped.

Ideally, the scheme for handling distributed object classes would be based on

some intelligent combination of the above proposed solutions, since one option may

be more efficient that the others in certain situations. However, for simplicity, the

current design of 0 always distributes its processing of remote object classes.

Note that when objects, instances, and classes are mentioned, they are still refer-

ring to modules and module classes. By constraining the distributed object system

to fit into the model of modules and connections, the network invisibility issue is re-

solved since the user has to make no special provisions for knowing whether a module

will run locally or remotely.



2.4.1 Oservers

The Oserver is the basic element of the distributed object location system. Every

machine that has publicly available object classes must run a single Oserver. The

object classes that are available on the machine are registered with the Oserver. The

registering process consists of stating the class's name, and specifying a handler for

the class. When another machine broadcasts a request for a class, the Oserver checks

its list of registered classes and responds if that class has been registered. The orig-

inal asking machine then sorts through all the responses it received and chooses one

Oserver to actually handle the class. Currently the choice is based on which Oserver

is running on the least loaded machine.

The Oserver also handles creating an instance of a class for use by a remote

machine. Once a machine has selected an Oserver to handle a class, the Oserver is

directed to create an instance of the class, connect it to the original machine, and

run the instance. The Oserver does this by forking off OStreams, which as explained

earlier are capable of running modules and connecting modules across the network.

At this point, the job of the Oserver is finished. Its responsibilities begin when

someone is looking for a class which it knows about, and its responsibilities end once

an instance of that class has been started. The OStream can handle things from

there. Figures 2.12 and 2.13 show the process of a remote class being located and

started using Oservers.

As mentioned before, all the objects started by an Oserver must follow the module

model in form, and once they are running they all behave and interact like modules.

However, the handlers for those objects can take on many different forms. Currently,

the Oserver recognizes four different kinds of handlers: groups, stdio, executable, and

Dtype client.



NOT ME!

counter?
WHO KNOWS
ABOUT "COUNTER"?

I DO!

Oserver

buyer
seller
cheater

O-6server

counter
reaper
sower

Figure 2.12: Remote object location using Oservers

Figure 2.13: Oserver starting an OStream



OModule Groups

When a module network/group is created, it is saved to disk in a special formatted

file, which may be registered with the Oserver as a handler. When the Oserver runs

this module group, it will behave exactly as if it were being run by the Omodtest

program, except that its inputs and outputs will be connected to a remote machine.

The module group handler is the easiest way of distributing an existing 0 ob-

ject, since module groups can be separated from the object and placed on different

machines.

Stdio OModules

Sometimes a special module class is needed quickly, a class whose behavior is most

easily written in C and not easily described in a module group. A stdio module

handler is provided for this situation. Such a handler is simply a C program which

takes Dtypes (in ASCII form) from stdin, and sends Dtypes out (in ASCII) to stdout.

The Oserver treats such a handler as a module with a single input and a single output.

Messages which are sent to the input are converted into ASCII form and routed to

stdin of the handler. Any output from stdout of the handler is captured and parsed

into a message which appears at the output of the module (see figure 2.14).

0 actually goes through a lot of work and spends a lot of time on the rerouting

and parsing for a stdio module. However, the payoff is that the module handler is

trivial to write, since the ASCII Dtypes are extremely simple to parse (especially if

the module expects only numbers or strings). This is an excellent starting point for

users who wish to write module handlers for 0.

Executable OModules

Executable module handlers are the next step up in complexity from the stdio module

handler. Like the stdio module handler, an executable module handler is a standalone

program which the Oserver invokes and communicates with. However, the executable



Figure 2.14: Stdio OModule class type

module handler has no limit on its number of inputs and outputs, and 0 is freed from

a lot of the parsing and rerouting that is required by the stdio module handler. In

return, the executable module handler is a little harder to write and must follow a

special form. The procedure for writing an executable module handler is similar to

writing a built-in module handler, and is described in the 0 User's Manual.

Dtype Client OModules

The Dtype package includes a method for quickly writing network servers, and re-

cently several such servers have appeared in the Entertainment and Information Tech-

nology group - betty [Blo92], a news server, videovisual, a visual activity server

similar to the UNIX "finger" command, digitizesrv, a server for digitizing video

from a NeXTDimension board, vpr3srv, a server for remotely controlling a VPR3

1" video machine, and doppelsrv, a forthcoming user-modeling server. All of these

servers are related in that the protocol for communicating with them is highly spe-

cialized. The servers receive messages in the form of Dtypes, and send Dtypes back



Figure 2.15: Dtype client OModule class type

as replies.

O includes a method for interfacing with any Dtype server. To 0, a Dtype server

can be modeled as a module with one input and one output (although a Dtype server

can handle multiple clients at once, one client usually maintains only a single two-

way connection with its server). The Dtype client module handler simulates a client

connection with a Dtype server, by passing messages it receives to the Dtype server,

and sending the server's replies back through the output of the Dtype client module

(see figure 2.15).

To register a Dtype client module handler with the Oserver, the Oserver only

needs to know the hostname and port (or service name) of the Dtype server. Any

machine then asking for that class will be connected and routed to the Dtype server.

With this mechanism, all the Dtype servers that are written or will be written are

immediately available for all 0 objects to use.

Bettyserver
(news server)



2.5 Transportable Objects

So far, 0 has been presented as a means of running a process built from modules

and connections, and 0 has also been shown as a network-based system with the

ability to distribute different object classes among several machines. So far, many of

the choices in the design of 0 may seem strange or arbitrary. However, all of these

choices have been building up to support the final stage of 0, its main purpose, the

ability to transport objects.

Remember that 0 began as a way of encoding movies so that any movie player

could understand and decode any encoded movie. Early on, it was decided that the

movie would have to somehow carry its decoding methods along with it as the movie

made the trip from the server to the movie player. This left two options open. The

first option was to extrapolate from the traditional broadcast model and send the

movie over as a continuous stream, with the decoding operations somehow embedded

in the data. The second option was to overhaul the entire broadcast paradigm and

replace it with a peer to peer comnunication model, where the movie player and

movie server can both communicate with each other and are both working together

as equals to bring the movie data from a source and display it.

The second option was chosen as the direction for 0. Although this greatly in-

creased the complexity of the 0 models and designs, it also opened far more possibili-

ties for other multimedia issues, such as interactivity, dynamic resource management,

and context-sensitivity. This choice was more appropriate for a research tool aimed

at exploring the future of multimedia.

So, given that 0 is based on equality of movie server and movie player, the question

is how are the tasks of server and player assigned? After all, the OStreams which run

the server and player are both identical in function. Where is the difference made?

The answer is that all of these tasks are divided and assigned by the movie objects

themselves. In the 0 model, a single movie object is expressed as a module group.

This module group is itself divided into different groups which read data from disk,



encode data, decode data, display images, handle interaction, etc. Of course, some of

these groups will belong on the movie server machine, and some of these groups will

belong on the movie player machine. At first, however, all of these groups will be a

part of the same module group which is running on a single machine. So the issue is

how to split that module group to operate across multiple machines.

0 provides a mechanism for module groups to be sent to and handled by remote

machines, while still maintaining their identity as children of their parent module

groups, and also maintaining their original connections to the other modules in parent

module group (see figure 2.16). In the case of the movie object, the entire object would

start off as a single module group running on one machine. The module group would

be told where the movie player is. The module group would then send the appropriate

module groups (decoder, displayer, etc.) to the movie player. It could even send them

to multiple movie players (for example, if the video hardware and the audio hardware

were on two different machines). Once distributed yet still fully connected, the movie

object could then begin the flow of data through its modules, thereby bringing the

movie data from the disk, through the network, to the viewer's screen.

This is the most important part of 0, and to understand it requires understanding

of both the basic underlying support for transportable objects, and how those support

functions are made available to the typical 0 object.

2.5.1 OStreams as servers

Transportable objects in 0 are made possible through the design of OStreams as full-

fledged servers. As mentioned before, OStreams are the means by which OModules are

interpreted and run. Technically, OStreams are actually OModule servers. Normally,

they are just used to run a single module. However, remote clients (such as other

OStreams) may connect to the OStream and direct it to handle other module groups.

These clients may also send messages to modules being handled by the OStream, and

the clients may direct the OStream to send the outputs of a module to some remote



Figure 2.16: OModules being transported

QIIJ

-4-



site.

With these functions available, it is possible for a module group to "send" one of

its child modules to a remote OStream, yet still have the child module act as if it

were still connected to the other children in the module group. This is exactly the

paradigm that was required for the movie object model in 0.

The final point about OStreams is how they are named. If a movie object is going

to be told to send its child modules to a particular OStream, someone must figure out

the name of the OStream and communicate it to the movie object. Since OStreams

are basically network servers, they can be named in the tradition of all network servers

- by a hostname and a port number. This pair is sufficient to uniquely identify any

OStream running anywhere on the network.

2.5.2 Modsend OModule class

Given a set of modules that a module group wishes to send to a remote OStream,

and also given the hostname and port of that OStream, all that is needed is a trigger

to cause the modules to be sent.

A special built-in module class, called a modsend module, is used to perform

this task. The configuration information for this module is a list of modules that are

to be sent to a remote site. The modsend module and the modules that are going to

be sent must all belong to the same module group.

The modsend module is triggered by sending it a message in the form (<hostname>

<port>). This will establish a connection with the remote OStream, send the named

modules to the OStream, and turn the named modules into aliases so that messages

to those modules get routed back and forth to the remote OStream.

When all of this rearrangement is complete, the original module group will still be

a single coherent module group, but it will span across two OStreams. The original

OStream still contains all of the modules it originally had, but some of those modules

will simply be placeholders, or aliases, to the modules which have been sent to the



remote OStream. On the remote OStream, only those modules which were sent there

will be running there - the remote OStream does NOT get a full copy of the entire

module group.

In the current implementation of 0, not all modules may be sent across the net-

work. Only module groups may be sent. This is not a problem, since a module group

may be wrapped around any single module that needs to be sent, and in any case

only large functional blocks should be sent to a remote site, which usually implies

module groups.

2.5.3 Delayed instantiation

Delayed instantiation and module sending are two closely related concepts. The

reason for this is efficiency. When a module group is instantiated, memory is required

to keep track of all the modules in that group, and all the modules in the groups under

it, etc. When that module group is sent over the network, all of those modules have

to be sent over too.

If it is known, however, that the module group will not be used until it has been

sent over the network, then there is no point in instantiating the module until it

has been sent. This is where delayed instantiation is used. A module group may

specify that certain child modules should not be instantiated immediately. This is

done through the delayinst built-in module. The configuration information for this

module is a listing of the modules whose instantiation will be delayed. The delayinst

module and the modules it lists must belong to the same module group.

The modules listed in the delayinst module remain uninstantiated until one of two

things happens. The first is that the delayinst module gets a message, which causes

all the modules it lists be instantiated. The second is that one of those modules is

sent to a remote OStream, in which case the module is immediately instantiated on

the remote OStream, and on the local OStream the module is instantiated as an alias.

In most 0 objects, the modsend module and the delayinst module will be used in



pairs.

2.5.4 OStream forking

When several modules have been sent to the same OStream, that OStream might start

getting bogged down. Other problems might occur if badly written 0 objects forget

to clean up themselves, or worse yet if they cause the OStream to crash, taking all of

its modules with it. An example of where this might occur is an OStream which is

constantly running as a movie player. 0 objects will occasionally be sending modules

to this OStream, and because things are never perfect, something is eventually bound

to go wrong. Perhaps a memory leak, perhaps one module hogging all the resources

of the OStream, whatever. In any case, the robustness of the OStream movie player

is too closely tied to the robustness of the movie objects it is playing.

To address this problem, OStreams are given the ability to fork themselves. When

an OStream has forked itself, a new, completely separate OStream is created. Under

UNIX, this OStream will have its own memory space, its own resources, and its own

slot of processing time (see figure 2.17). Thus, if something goes wrong with the

new OStream, the original OStream is not hurt or crippled, it simply loses a child

OStream.

Since OStreams are also servers, they may be directed to fork themselves by

outside processes. This is the purpose of the fork built-in module. This module takes

in the (<hostname> <port>) name of an OStream (local or remote). The module

then connects with that OStream and directs it to fork itself. The newly created

OStream will have its own new (<hostname> <port>) name, which is communicated

back to the fork module and the module sends the new name out its output. This

new OStream name is suitable for use by, say, a modsend module. It is not unusual to

see modsend, delayinst, and fork modules together in a combination, and in fact this

combination is required by the Host/OStream model described in the next section.



Parent OStream

Child OStream

movieplayer:O
NULL

Figure 2.17: OStream forking

2.6 The Host/OStream model

OStream forking, module sending, delayed instantiation, and remote module handling

are powerful features of 0, which can lead to a disorganized disaster if used without

policy.

After studying many of the likely applications for 0, the Host/OStream model was

chosen as the main policy for developing 0 applications. This policy is not technically

a part of 0 - 0 does have some support for this model, but does not actually enforce

it, and users are still free to use whatever model they wish.

The basis of the Host/OStream model is to set up special Hosts which accept and

display 0 multimedia objects. However, these multimedia objects are not sent directly

to a Host. Instead, the Host forks off OStreams which accept the multimedia objects

as they are sent. These child OStreams then run whatever decoders are necessary on

the data, and pass the final result back up to the Host, which takes care of display.

The users also interact directly with the host, which then relays the information to the

child OStreams. These OStreams then communicate this information to the original



multimedia objects so they can react accordingly.

As far as implementation goes, these Hosts are actually OStreams themselves,

probably running some module group which handles the details of display and inter-

action. Each Host might be able to display an entire multimedia presentation, or it

might just concentrate on one type of media (video, sound, text, etc.). By making

Hosts the same as regular module groups and OStreams, the current 0 model fits

perfectly into the Host/OStream model. The only thing that is missing is a means

for a Host to communicate with one of its child OStreams. This is explained later.

2.6.1 Host/OStream isolation

This elaborate multi-level system may seem excessive, but it is designed this way for

a good reason.

In electronics, when two circuits need to be interfaced together, the circuits are

often linked through an isolator device. This device allows information to flow through

it, but keeps the inputs and outputs electrically isolated, usually by converting the

information to and from some non-electrical representation such as light. Engineers

use an isolator in a situation where one circuit might misbehave, and if that circuit

blows up, the isolator will keep it from taking the other circuit with it.

0 is faced with the same situation. Hosts are generally supposed to stay around for

a while, able to play many different multimedia objects at different times. However,

the multimedia objects that will be coming over to the Hosts may be unstable or badly

written. Rather than directly "wiring-in" the multimedia objects and allowing them

to send modules to the Host, the Host instead spawns off a more expendable OStream,

which can take in the modules and communicate back with the Host through the

equivalent of an isolated communication channel.



2.6.2 Host/OStream communication

So far, all communication in 0 has taken place with messages through connections.

However, as described earlier, a Host and OStream need to communicate through

an isolated channel, which means that a direct connection will not be acceptable.

Instead, there is a special pair of modules for sending and receiving messages across

the isolated gap between Host and OStream.

Toparent/Tochild OModules

A -child OStream may send messages to its parent OStream (the OStream which

forked off the child) using a toparent module. This communication is different from

a direct 0 connection, because if something goes wrong with the child OStream, the

parent will not be affected. Any messages that the child wants sent to the parent are

simply sent into the input of the toparent module.

The parent OStream receives messages from the child through a tochild module.

Any messages that a child sends into the input of a toparent module will appear

at the outputs of the parent's tochild module. The converse is also true - messages

that a parent sends into a tochild module will appear at the outputs of the child's

toparent module.

Figure 2.18 shows a Host/OStream movie object and player in operation. Note

the use of the tochild and toparent modules to communicate between the movie

object (which is split across server and client machines) and the movie player.

The only major difference between toparent and tochild modules is that a child

always has exactly one parent, but a parent may have multiple children. Every time a

child is forked off from an OStream, it is assigned a unique number. When a message

from a child appears at a toparent module, it is accompanied by the number of the

child which sent the message. Conversely, when a message is sent into a tochild

module, it must be accompanied by the number of the child that is to receive the

message.



Figure 2.18: Host/OStream model

58



To help an OStream keep track of its children, the newchild module notifies the

OStream every time it has forked off a child, by sending out a message containing the

child's number.

Resources

Sometimes an OStream and its child may wish to communicate through several sepa-

rate channels. For example, the child may be sending video information through one

channel, sound information through another channel, and the parent may be send-

ing user feedback through another channel. Using only a single pair of tochild and

toparent modules makes this division awkward to implement.

Instead, each tochild and toparent module communicates over a single channel.

These channels are given names, called resources. The tochild and toparent mod-

ules specify the resource they will use as their configuration information. Toparent

modules will only communicate with tochild modules that have the same resource

name for their configuration information, and vice-versa.

So, most Hosts will have several tochild modules which they will use to take in

data for their various output modes (video, audio, etc.), or to send back data for

different kinds of user feedback.

The reason the different channels are called resources is that the child is usually

making a resource request by sending a message to its parent. Sending video infor-

mation to the parent, for example, requires the parent to use resources for displaying

that video information. Different channels of communication will generally require

different sets of resources, so even though the mapping is not strict, the name still

stuck.



Figure 2.19: Application interface

2.7 Applications Interface

The final issue in 0 is the interface that applications will use to access the functions

of 0. The interface should be simple and straightforward and should require little if

any knowledge of 0, but it should still allow the full power of 0 to be used.

The solution is to give the application an interface to a single 0 module. The

application will be given functions which it can use to send messages into the inputs

of that module. The application will also be able to register callbacks which will be

called when the module sends out messages (see figure 2.19). This way, the application

can easily wrap itself around the entire module. All the application needs to know

is how to manipulate the Dtypes that are sent to the module and received by the

module. Everything else is hidden from the application and handled by 0.

Once the application has an interface to a single 0 module, the application sud-

denly has access to all of the functionality in 0, because that single module may

be an entire module group, or a remote alias module, or whatever. As long as the

application has ties into that single module, the application has ties into everything.



2.7.1 Application as a host

Under the Host/OStream model, applications will generally interface themselves to

Host module groups. This way, the application establishes itself as a Host for dis-

playing and interacting with 0 multimedia objects.

The actual process an application uses to access an 0 multimedia object is a little

backwards. The application must first initiate a request for that object, and tell it the

(<hostname> <port>) that the movie should be sent to. Once the request is made,

there is an unpredictable amount of time before the 0 multimedia object actually

starts up and connects to the Host, so the Host must always be ready to accept the

new multimedia object. A well-written Host module group will take care of all these

issues, by allowing the application to ask the Host to find the 0 multimedia object

it wants, then prepare itself to handle that object.

An 0 widget for X

Since 0 is primarily designed for the transport and display of multimedia, it would

be nice if 0 could easily fit into existing display systems. An example of this is the X

toolkit, which uses object-oriented display elements called widgets. An 0 widget for

X would be an especially nice way for programmers to use 0 knowing hardly anything

about how 0 works.

However, a single 0 widget is impractical since 0 is capable of doing far more than

can be encapsulated by a single widget. A suitable compromise is to have a whole

set of 0 widgets, each of which handles a different type of interaction or output,

such as video, text, sound, or maybe some combination. This would require that the

O multimedia objects which are connecting to these widgets be able to reconfigure

themselves based on what kind of output the widget will be displaying, which is the

purpose of the context-sensitive multimedia model.



2.8 Future directions for 0

This chapter has repeatedly emphasized that 0 is a research tool, and that its purpose

is to turn ideas into working processes as quickly as possible. This being the case,

design decisions for 0 almost always favor functionality over efficiency.

0 currently has most of the functionality it needs, and 0 is designed to allow new

functionality to be added easily (by writing new built-in modules or creating new ob-

jects). The next major step for 0 is to improve its efficiency and begin to move 0 into

"real-time" applications. One possible goal is to enable 0 to meet temporal specifica-

tions (like Chris Lindblad's ViewStation [Lin92]) as well as functional specifications.

This will require 0 to perform temporally sensitive functions, such as maintaining

a constant bandwidth data stream over the network, and paying closer attention to

resource usage. The efficiency of O's implementation can always be improved, and

some of the designs may also need rethinking. For example, the decision to fork

off OStreams by using UNIX fork was a quick way to achieve Host/OStream isola-

tion, but that decision may prove to be inefficient as Host/OStream communication

becomes more intense.

Of course, 0 will only improve according to how much it is used. The current

plan is to incorporate 0 into as many applications as possible, and expose any areas

in which 0 is deficient or inefficient so that 0 can be tempered into a robust and

useful tool.



Chapter 3

Context-Sensitive Multimedia

Object-oriented programming will follow a steady progression into the field of mul-

timedia design, and as a result many new applications and interactive models will

follow. One possible model is context-sensitive multimedia. This chapter begins

with a detailed discussion of object-oriented multimedia, which is the prerequisite for

context-sensitive multimedia. The chapter then develops the object-oriented model

into a discussion on context-sensitive multimedia.

3.1 Object-Oriented Multimedia

Object-oriented programming is a well-established method for increasing productiv-

ity, improving standardizations, and reducing errors. Often-used pieces of code are

encapsulated into "black-boxes" which programmers have found that they can share

and improve. Because programmers can construct their applications out of highly

functional and reliable blocks rather than building everything "from scratch", pro-

grammers can create programs more quickly and with fewer errors. Most importantly,

though, programmers can describe their implementations on a higher level, making

the step from designing board to implementation shorter and less of a mental gear

change.



Electronic multimedia, in its current trend, can benefit from many of these ad-

vantages. Multimedia for computers is still in its industrial infancy, and as such it

suffers from a great deal of "reinventing the wheel". Few, if any, standards are used,

so multimedia designers usually end up striking out on their own, especially if their

designs can't fit one of the commercial multimedia authoring tools currently on the

market.

Part of the problem is that the standards which have been attempted are at much

too high of a level - establishing the correct video encoding algorithm (JPEG, MPEG,

etc.), standardizing the best way to link i-nultimedia objects together (hypermedia),

etc. While these approaches are fine for bootstrapping electronic multimedia into a

widespread market, they are too inflexible to survive the coming onslaught of new

technologies, new models, and new visions for multimedia. What is needed is a

standard model for computer multimedia that is universal enough to encompass the

needs of future designs and applications.

This is where object-oriented multimedia has its place. An object-oriented ap-

proach does not command a high-level design policy, but instead makes the lower-

levels of the design easier to work with, build on, and less error-prone. Object-oriented

multimedia is destined to become an accepted standard of the future, because it offers

a great deal of simplification in programming and design, without costing function-

ality or flexibility.

3.1.1 Features of object-oriented multimedia

An object-oriented approach has some key benefits which are especially appropriate

to multimedia.

Common interface

Interface has many meanings when used in conjunction with multimedia program-

ming. The most obvious meaning is the system that allows a user to interact with a



program. The second meaning, which is the one used in this section, is a program-

mer's interface. This interface is the set of methods a programmer establishes for

other programmers to interact with the functionality in his programs.

One of the major problems with group programming is misunderstandings in this

area. If one programmer is unclear about how others should use his code, then

his code can at best be considered unstable, at worst unusable. In all cases, each

programmer's individual style of interface adds more complexity and lost time to

other programmers.

In multimedia, a similar problem is growing. Source material for a multimedia

presentation might come in a variety of forms. For example, consider a video clip

that a multimedia designer may wish to use. The source might come on videotape,

or even film, or it might come already digitized, perhaps encoded in one of several

digital video coding formats.

But let's assume that the video has already made it to the digitized stage, and

has even come with programs that will decode the video into whatever form the

designer wishes. The problem now turns into a programming problem - how to fit

those routines into the application the designer is putting together. It may be that

the programmer has chosen his own arbitrary methods of interfacing to the program,

which the designer will have to learn and test.

Or, the programmer may have chosen a standard object-oriented approach, which

brings with it a standard method for interfacing to the code. If this is the case,

then the designer can happily consider the video clip to be a single object. All the

programmer has to do is specify what methods are available with that object, and

the designer knows immediately how to invoke those methods on the object.

Reusable libraries

Current multimedia in non-electronic form is inherently reusable. Video, audio, pho-

tos, and film clips may be duplicated and edited into many different applications.



These multimedia objects are quite simple and the means by which they can be

reused is physically obvious.

Electronic multimedia, however, is more complicated because it can actually do

things, rather than just being shown. More specifically, electronic multimedia has the

ability to interact, both with the viewer and with the system around it. So, reusing

electronic multimedia is a more complicated issue, because not only does its source

data need to be duplicated, its functionality must also be duplicated.

The object-oriented model handles this by declaring the encapsulation of both

data and functions into a single object. This way, when someone receives a multi-

media object, all the data and all the functionality of the object are immediately

made available. All that is necessary is some standardized method of invoking those

functions, and as explained earlier this is also addressed by the object-oriented model.

So, electronic multimedia can hope to see a future of reusable libraries of functional

media objects. Just as there are now file photos and file video, there can be file

electronic multimedia, where every object pulled out of the file brings along with it all

of its own methods for interactivity, adaptability, and even links to other multimedia

objects.

Scalability

Although the object-oriented method was presented as a low-level programming

paradigm, it can be scaled to work at higher levels. Objects may be built out of

objects, and so may inherit the functionality of all the included objects while adding

new functionality for the collective group of objects.

For multimedia, this means that an object can represent a single media source,

or it can represent a collective multimedia presentation, or it can represent an entire

database of presentations. The object-oriented method works the same across all

levels.



3.1.2 Applications of object-oriented multimedia

There are many "hot" issues in multimedia research today, and several of them can

be addressed in terms of applications of the object-oriented method.

Resource management

Resource management is one of the biggest problems that will affect the distribution

of electronic multimedia. Multimedia users are going to have very limited resources

at their disposal - computing power, network bandwidth, screen space, memory, etc.

Electronic multimedia in its current form consumes tremendous computing resources,

and will likely do so even more in the future. If a user attempts to combine two

multimedia objects which together use more resources than his system can give, there

will be trouble.

Fortunately, increasing attention is being given to scalable algorithms, which will

result in multimedia objects that can vary the amount of resources they require, in

exchange for better or worse quality of the final product. If such scalable multimedia

objects are constructed, then systems can have central resource managers, which can

mediate between objects and dole out system resources to the different objects as it

sees fit.

However, each multimedia object will scale in its own way. A scalable video stream

will doubtless have a different method for adjusting resource usage than will a scalable

audio stream. If a central resource manager is going to work at all, it must know all

of these scaling methods for all objects it will be controlling.

Or, the resource manager can know none of the scaling methods and leave the

scaling up to the multimedia objects themselves. An object-oriented design of multi-

media objects will make this possible. As long as every multimedia object understands

resource allocation requests, the resource manager can work simply by telling each

object what resources have been allocated for it and letting the objects reconfigure

themselves to work with what has been given them.



Central control

Resource management is a specific example of a more general issue, central control

over all the objects in a multimedia system. An example of this is the various "desk-

top" windowing systems (Macintosh, NeXT, etc.), where the user may globally specify

preferences for their applications, usually for things like color, or mouse behavior. A

multimedia system may desire similar kinds of central controls, which will affect the

behavior of all objects in the system.

The object-oriented method makes this possible by allowing such a central con-

trolling device to communicate with the objects through a common interface without

having to know the internal operations of these objects. So, the desktop preferences

can simply tell each object that its foreground color is blue, and each object will

adjust itself accordingly, if appropriate.

Synchronization

Synchronization is the problem of progressing two or more time-ordered media se-

quences (such as video and audio) in the same time scale, to make sure that they "go

together". While the object-oriented method is not an immediately obvious help, it

does provide a good stepping stone to several possible solutions.

One such solution is actually based on MIDI, a real-time electronic musical in-

strument network, which has been used for performances and in studios for several

years. With electronic instruments, there is often the problem of several instruments

having their own preprogrammed sequences which they must play together in syn-

chrony (drum machine, sampler, keyboard, etc.), a situation where no one instrument

is the master of all the other instruments. In this situation, one instrument is chosen

to synchronize the others, and that instrument sends out a synchronizing pulse at

regular intervals to the MIDI network. The other instruments pick up these pulses

and use them to synchronize themselves to the others. The same synchronization

pulse is sent to every machine, and every machine is free to figure out what it will do



with those pulses.

A similar scheme is a possible method of synchronization for multimedia systems,

where one object sends out synchronization messages to all other synchronized ob-

jects. This is most easily accomplished in an object-oriented environment, where each

object can receive and understand the same synchronization messages, but act dif-

ferently depending on how they internally achieve their synchronization. In such an

environment, one could imagine objects with a specific synchronization input, which

is wired directly to a master synchronization object, so that one object could be

synchronized to any other object. Although it is unlikely that objects will have to

synchronize themselves in such a flexible manner, it is useful to have such an ability

in mind when designing synchronized systems. Otherwise, the system might end up

with a dedicated method for synchronizing video and audio, but as soon as some other

kind of object comes along, such as a running text commentary or closed captioning,

it will be impossible to synchronize with the video and audio simply because it was

left out of the design.

Interobject communication

Synchronization is a specific example of a larger issue, which is interobject commu-

nication. Many applications will use several multimedia objects, and these objects

may have to interact with each other. This is where it becomes crucial that objects

rigidly adhere to a standardized programming interface. Consider an example where

a movie object might be controlled through a standard "VCR-like" interface (play,

stop, pause, <<, >> buttons). Now consider that the same object might have to be

controlled automatically to fit into another application such as a slide show, where it

receives instructions from other objects as to when it should start playing or pause.

Now consider that the original VCR-like interface might be used to control other

objects, such as that larger slide show presentation, where play, pause, and rewind

might have different meanings to the overall presentation.



In all these cases objects will have to communicate with each other, possibly in

some hastily constructed arrangements. It is vital that these objects can communi-

cate in a standardized fashion, rather than devising a new ad hoc scheme for each

application an object will be sent into. Here, not only is the object-oriented method

necessary, but a carefully considered design for the functionality and control of each

object is also required. If this is done right, then making multimedia objects work

together should be as easy as snapping together LEGO bricks, or at worst wiring up

a stereo system. Every object should be expected to at least recognize the common

messages that other objects or an application might want to set out.

3.1.3 Object-oriented multimedia and 0

There are many ways of establishing an object-oriented system for multimedia. 0

is one such system. 0 is actually a research testbed for exploring the possible ap-

plications of object-oriented multimedia, and as such it will probably not be the

multimedia system of the future. However, 0 does have at least a minimal set of

the necessary ingredients for an object-oriented multimedia system, concentrating es-

pecially on the features mentioned before: common interface, reusable libraries, and

scalability.

Common interface

Different object oriented systems have different methods of communicating with their

objects. A programming language such as C++ [ES90] invokes object methods in a

manner similar to function calls. 0 uses message passing, a more dynamic, process-

oriented approach.

In 0, every multimedia object is an OModule, figuratively a "black box" with

inputs and outputs. Objects communicate with each other by passing messages from

outputs to inputs. Applications communicate with objects in the same way, by passing

messages into the inputs of an OModule and receiving messages sent from the outputs



of an OModule. This is the common interface which is supported by 0.

As mentioned before, this common interface only serves to standardize the means

by which objects or applications invoke the functionality of an object. 0 does not

establish any minimal set of functionality that objects should have, nor does it estab-

lish a policy for object-oriented multimedia (except the Host/OStream model, which

is only supported, not imposed, by 0).

Reusable libraries

O is heavily based on the concept of reusable objects. Objects in 0 are machine-

independent, meaning that they can be used identically on all machine architectures.

In addition, 0 makes it especially easy for objects to be included within objects,

which makes it easy for an object to be reused and incorporated into a larger object

or an application.

However, O's strongest point for reusable libraries is its object location system.

A great deal of 0 is spent on real-time location of objects, both as files or as remote

entities. In order for an object to be used, one only needs to specify its name, and

at runtime the 0 system will go out and find that object. In programming, this is

known as dynamic linking, except that this process can go beyond the confines of the

machine and extend its search to remote sites, all invisibly to the user. This feature

of 0 insures that not only can objects be reused, but they can also be found easily

in order to be reused.

Scalability

O bases most of its design on the principle that every object is an OModule. The

most basic, low-level block of functionality in a system is an OModule, and a full

multimedia presentation or even an application is also an OModule. This insures

that the object-oriented scheme for 0 is scalable across all levels of design.

Among other things, this makes the design process much simpler. A design can be



sketched out in a very high-level form using large function blocks. Such a design can

quickly be expressed in the form of an 0 network. Then when the functional blocks

have to be designed, the exact same process can be used. The design is now occurring

on a different level, but the mechanics of the design process and its expression in 0

remain exactly the same.

3.2 Context-sensitive multimedia

Context-sensitive multimedia is an experimental design for multimedia objects, which

puts a subtle twist on the object-oriented programming model. Traditional object-

oriented programming assumes that objects are static entities which fit easily into ap-

plications because they have programming interfaces which are easy to use. Context-

sensitive multimedia makes less of a distinction between the application and the

objects. A context-sensitive multimedia object is an active, autonomous process,

which is placed into an environment, or context, that is arranged by the application.

Metaphorically, the application is a director who sets the stage for the objects, the

objects are the players which interact with each other, with the set, and with the

director (thanks to Brenda Laurel [Lau91] for this analogy).

Under this model, the application has less direct control over the objects it is

using. Instead, the application communicates with the objects as an equal, as if the

application were just another object operating in the environment. Of course, the

application is a special object, because it has direct control over the environment,

and thus has indirect control over the objects in the environment.

So why sacrifice an application's direct control over its objects? What benefits

can be expected from the context-sensitive model that will justify such a sacrifice?

And under what circumstances is the context-sensitive model an appropriate choice

for an application?



3.3 Applications of context-sensitive multimedia

Context-sensitive multimedia is not a universally acceptable model for all multimedia

applications. As mentioned before, the model demands a sacrifice in control from the

application, and this is not always appropriate.

Context-sensitive multimedia was originally proposed as a model for large multi-

media presentations that come packaged as a single multimedia object. For example,

when an application invokes such an object, the application might receive several

video and audio streams, closed captioning text, and references to other relevant

object. The object may even contain several different versions of its content, each

directed to a different viewing audience.

Under the pure vanilla object-oriented model, such a presentation would need

quite an intelligent application to drive it. The application would need to under-

stand all the things the presentation could offer, decide which of those elements are

useful, and direct the presentation in displaying those elements. The object-oriented

model simplifies the communication between the application and object and hides

many gritty details from the application. However, the application still requires a

fundamental understanding of the presentation's capabilities before it can use the

presentation. The major consequence of this fact is that the complexity of multime-

dia applications will have to scale according to the complexity of the presentations

they will run.

The context-sensitive model is an attempt to shift this balance, by placing a

greater burden of complexity on the context-sensitive objects, while allowing the

applications to be as simple or as complex as desired. More complex applications will

have the benefit of finer control over the presentations they display.

According to the basic context-sensitive multimedia model, an application waits

for a multimedia presentation object to arrive. The application then tells the object

as much as it can about the context that the object will be operating in: how much

screen space is available, if there are any facilities for playing sound, color capabilities,



and even information about the viewer's interests and preferences. The presentation

object then sorts through all this information for things that it finds relevant, and

uses that information to configure and adapt itself to the environment into which it

will be placed. At that point the presentation can begin, and the object will start

sending data to the application, which will presumably know what to do with it. The

object must also be prepared to reconfigure itself in the middle of a presentation,

since the context may change due to user intervention or a reshuffling of resources.

Once again, how smoothly this change is communicated to the object is a function of

the complexity of the application.

In order to adapt themselves to multiple environments and display platforms,

multimedia objects are going to have to be much more complicated and intelligent.

This means that a great deal of time will have to be spent on the production of

multimedia objects, which is a reasonable expectation for future electronic media

that will be published or sold on a large scale.

3.4 Context

Context is defined as a region of resources allocated for a presentation. The most

obvious and universal resources are space and time. Space refers to the visual (and

aural) area in which the presentation will occur, most likely on a display monitor.

Time refers to the expectation that a presentation will have a beginning and an end,

between which the presentation will occur. Other resources depend on the application,

the system the application is running on, and even the audience which is viewing the

presentation (the viewer's attention can be modeled as a resource).

Content is another property of contexts. A context can have a specific bias to

its content, which may be inherent to the application (a liberal versus a conservative

newspaper), or it might depend on the preferences of the viewer. In either case,

the content of multimedia objects can also be constrained and directed to fit into a



context.

When an application and a multimedia object first interact, the application must

communicate all of these resource constraints and preferences to the object. To.

organize this communication, the preferences have been divided into two categories,

contextual modes and content cues.

3.4.1 Contextual modes

One of the most important issues that a context and an object must resolve is what

forms of media are going to be used. The different forms of media (video, audio, text,

etc.) supported by a particular context are called the contextual modes of the

context. The first negotiation between an object and a context involves the context

telling the object what modes are supported or expected from the object. The object

then activates those modes within itself (if they are available). The context continues

the negotiation by supplying parameters about each mode. For example, if one of the

modes is a video stream, the context might indicate the amount of area that the video

must fill, whether color is available, and what form the data should be converted to

before being passed into the context.

In some cases the object may wish to negotiate back with the context. If, for

example, the allotted screen space is too small or the context is demanding its data

in a form that the object doesn't know about, the object may wish to tell this to the

context in the hope that the context will return with more favorable requests. Once

again, how well this is handled is entirely up to the context. The context might be

able to accommodate negotiation on many points, or it might simply ignore all such

requests from the object. The object should be able to continue operating in either

case.

In the 0 model for context-sensitive multimedia, each contextual mode is given

its own resource, or channel of communication. Upon startup, these channels carry

the configuring information for the different contextual modes. While the object is



running, these channels also carry the actual data that the object supplies to the

context, and carry runtime messages back from the context to the object. A special

channel, called the control resource, is used to start the whole process by telling the

object which modes are expected.

3.4.2 Content cues

Through the contextual modes, a context can determine the form of a presentation.

To influence the content of the presentation, the context uses a channel called content

cues. This channel can carry a wide range of information, anywhere from a desired

political slant to an entire personality profile of the viewer.

Consider for example a multimedia newspaper application. The application may

be made from several different contexts, each of which represents a "sports page"

or an "international page", etc. The newspaper has access to a large database of

multimedia "articles", each of which is capable of displaying itself in several different

formats (a text article, a photo, a map, etc.). Each article is also capable of rewriting

itself for different uses, since the same information will be expressed differently if

written for, say, a conservative newspaper rather than a liberal newspaper.

Now the newspaper begins to put together its articles. Somehow, the newspaper

has been given a set of today's articles, which are multimedia objects in the database.

Each context, or "page", goes and gets its articles from the database. Since these

articles are context-sensitive, or able to adapt themselves to their application, the

context must tell the articles just what is expected of them. If the sports section is

supposed to be heavily photo-based, then the context will negotiate with the objects

until about half of them agrees to send photos while the other half agrees to send

text articles. This is how the context communicates its contextual modes.

The context can then fine-tune the content of the articles. For example, one sports

page context can declare that it is oriented more towards statistics than stories. That

context would tell its articles to rewrite themselves to include more statistics. Or the



political page context might know that it is part of a conservative paper, and tell its

articles to be rewritten' from a conservative viewpoint. These content instructions

that the context passes to the articles are called "content cues".

The content cues are expressed and communicated from context to object by a

special knowledge representation being developed by Jon Orwant. This knowledge

representation is used by a program called editor (also by Jon Orwant), which can

search through a database for information that best fits the description specified in

this knowledge representation. Context-sensitive objects can use a similar technique

to take content cues and internally search for the best way to fit an article to those

content cues.

Content cues can be even more powerful if they are combined with the preferences

of the user. For example, an article may be written from a different viewpoint if it

is being read by a man or a woman. This is possible if the application is combined

with a user-modeling system, such as Doppelginger, by Jon Orwant [Orw9l]. This

system maintains user models of several people, where each model is expressed using

the same knowledge representation that the content cues use. If the viewer's user

model is included in Doppelginger's database, then the content cues already built

into a context can be improved by the viewer's user model, and the whole thing can

be sent to the object as one large set of content cues. This will have the effect of

adapting the multimedia objects to fit not only the needs of the application, but also

the interests and preferences of the viewer.

This system can also return the favor to Doppelginger by telling Doppelginger

what the user's response to the presentation was. One of Doppelginger's basic tenets

is that user models are dynamic, so if Doppelginger made a bad content choice for a

viewer, it wants to know about it so it can update its internal model for the user and

make a better choice next time.

'Note that "rewriting" an article can be done many ways: it might actually be rewritten by a

very talented computer, or the computer might just find an appropriate article in the database that

has already been written.



3.5 Contextual hierarchy

Many applications will have more than one context which will need to share common

traits, and a system may contain many applications which will also need to share

common traits. Contextual hierarchy is the method by which contexts may inherit

traits from each other. Each context has one parent and any number of children in

the hierarchy. There is also a root context for the entire system which has no parent.

The contextual hierarchy ignores the boundaries of separate applications, so contexts

from several different applications may inherit from the same context.

There are several possible applications for a contextual hierarchy.

3.5.1 System capabilities and preferences

Often there is information that will be common to all contexts on a given system.

For example, the hardware capabilities of a system is something that all contexts

in the system should be aware of. This sort of information would come built into

the root context of a system, so the information will be inherited by all contexts in

the system. Another piece of common information is something which many desktop

environments call "user preferences". This usually refers to adjustable details about

the user interface. If a user-modeling system, such as Doppelginger is being used,

then the root context can also contain the user model of the whomever is using the

system, and pass that information on to all contexts in the system, so that all contexts

will automatically tailor themselves to the interests of the user.

3.5.2 Resource manager

System resources are something that all contexts should be aware of, but the resources

should be controlled from a central point. This is once again a function of the root

context. A central system resource manager can run separate from all other appli-

cations and make its decisions known through the root context, where they will be



passed to all contexts in the system. Note that this requires the contextual hierarchy

to be dynamic - changes at one level of the hierarchy must immediately be propagated

to the lower levels.

3.5.3 Common interface

A hierarchy of contexts allows an application's interface to be designed hierarchically.

An application might have its own interface structure, while each context within the

application might have an additional interface. For example, the application as a

whole might have "play" and "pause" buttons, but the audio context of the applica-

tion would have a volume control, while the video context would have a brightness

control. Within both of these contexts, the "play" and "pause" buttons for the ap-

plication would still work. This could be done using a contextual hierarchy. The

application would have its own context with the "play" and "pause" buttons, while

the video and audio with their volume and brightness controls would be child contexts

of the application. Within the video and audio contexts, only the appropriate volume

or brightness control would be active, but both contexts inherit the functionality of

the "play" and "pause" buttons from the application's context.

3.6 Context-sensitive multimedia and 0

There are many possible ways of implementing a system to support context-sensitive

multimedia. This section describes one possible way, which uses 0 in its capacity as

a research tool for object-oriented multimedia. Context-sensitive multimedia, while

not directly related to object-oriented multimedia, is very easily implemented on an

object-oriented multimedia system such as 0.

Note that 0 is not in itself a context-sensitive multimedia system. What will

be described in this section is a model for using 0 to build multimedia objects in a

context-sensitive manner, and to build applications that are based on contexts.



3.6.1 The Host/OStream model

The Host/OStream model was introduced in the 0 chapter as a policy for developing

0 applications. This model will be used as the basis for a context-sensitive multimedia

system under 0.

Under the Host/OStream model, an application has several Hosts to which multi-

media objects attach themselves. Multimedia objects are actually spread out across

several machines, but originate from a single machine, usually the machine where all

the source data is kept. When an object is sent to a Host, the object is distributed

such that part of the object stays on the original machine while part of the object is

sent to the Host.

An OStream represents an object's connection with a Host. In order to maximize

the robustness of an application and its Hosts, the OStreams are isolated from the

Hosts. OStreams and Hosts communicate with each other through special channels

called resources.

In general, an object is responsible for acquiring, transporting, and decoding mul-

timedia data. The Host is responsible for displaying that data, and maintaining

the application's resources for displaying data. The Host uses the resources to tell

the OStreams what kind of data it expects from them, and the OStreams use the

resources to pass that data up to the Hosts.

3.6.2 Anatomy of a context-sensitive object

This section describes how one might build a simple context-sensitive object in 0. A

simple context-sensitive object must meet the following criteria:

* The object represents a single time-ordered sequence. This includes, but is not

limited to, a sequence of video, or audio, closed captioning, or some combination

thereof. The sequence may be divided into several parts happening in serial or

parallel (i.e., two video streams at the same time), but any sequences happening



sedrto movie player
sender -'- receiver- -

AUDIOMODE
senerc =civer'

Figure 3.1: Context-sensitive movie object

in parallel will be forced to progress together, not separately.

e The object contains one or more modes, which represent the different forms of

media the object can display. This includes video, audio, text, etc.

* The object can be driven or synchronized from a single master clock source.

Given these criteria, the object can be constructed as a single module group,

consisting of three different types of modules: a single MASTER module, a single

SCOUT module, and one or more MODE modules (see figure 3.1).

None of these modules actually gets sent across the network to the Host/context.

Instead, these modules are module groups which contain the modules that get sent

over. The following is a detailed analysis of each module:

MASTER module

This module is the heart of the object, containing only the master clock source from

which all the modes will be driven. The master module is designed around the



trigger OModule, which is a special module that can keep time accurately and trigger

events at regular intervals.

Sometimes the different modes will have to communicate with each other. The

master module handles this communication, usually by providing a means for each

mode to broadcast a message to all the other modes.

The master module can be controlled by sending it messages very similar to a

VCR control, such as play, stop, pause, reverse, forward, fast, and slow. Of course,

each object may have its own set of special commands for the master module, such

as commands which cause the timer to jump to the next scene rather than the next

frame.

In the current model, the master module remains completely on the source ma-

chine and does not get distributed to the context.

SCOUT module

This is the first module that makes contact with a new context. When the object is

sent to a new context, the scout goes first, and reports back which contextual modes

are going to be needed, and also reports any content cues. Any negotiation with the

context is carried out through the scout. The scout is also told when the object is

going to be moved to a new context, or dropped from a context altogether.

The scout module is a lightweight module which contains only a scoutpod mod-

ule, and a mechanism for sending the scoutpod module across the network to the

context which is waiting for it. The scoutpod communicates with the context through

two resources. The first resource, control, is how the scoutpod learns which modes

the context is expecting. This information is sent directly back to the object where

it is relayed to all the modes. This resource is also how the context informs the

object that it is to disconnect itself from the context, possibly to be redirected to a

different context. Upon receiving such a message, the scoutpod causes all the modes

to disconnect themselves, then the scoutpod sends itself to the new context to which



it has been redirected.

The second resource, content, is how the scoutpod receives the content cues from

the context. These content cues are passed directly to the mode modules for them to

analyze as they see fit.

MODE modules

This is actually a set of modules, one for each mode, called videomode, audiomode,

etc. Each mode is wired the same way into the scout and the master modules. The

master module transmits its clock signals to all of the mode modules. The scout

module also transmits its contextual modes and content cues to all the modes. It is

up to the modes to turn themselves on or off depending if they will be needed or not.

Each mode is responsible for acquiring, transporting, and decoding the information

associated with its media type. Each mode also handles user response from the

application, and may send some of those responses back to the master module to

affect the master clock.

The mode modules are where the actual work of the object gets done. Each mode

module contains two modules: a sender and a receiver. If a context requires that a

certain mode be present, then that mode sends its receiver module over to the context.

When the master clock begins ticking, the sender module will start acquiring data

from wherever its source is (disk, camera, etc.) and send that data to the receiver.

The receiver has decoders built into it which convert the data into whatever form is

required by the context.

The receiver module of a mode communicates with the context through a specific

resource. For example, a frame-based video mode will communicate with the context

through the frame resource. The context sends messages through the frame resource

indicating what form it wants its data in, what size it expects for the data, what color

scheme should be used, etc. The receiver module then sends the actual frames up to

the context through the frame resource, where they are displayed.



3.6.3 Context-sensitive multimedia and X

As mentioned in a previous chapter, X will probably be the first display platform for

0, and one of the first steps to making 0 easily accessible is to make an 0 widget

for X. The context-sensitive model is perfect for this application. To work with this

model, the 0 widget must contain a host which works with context-sensitive objects.

This widget may display any kind of medium: video, still, text, whatever. When an

object is attached to the host, the host then tells the object what mode it can display.

If the object is written in a context-sensitive manner, then it will configure itself to

do what the 0 widget expects from it, and everything will work just fine.



Chapter 4

Demonstrations

This chapter describes two applications which use 0 to demonstrate the concepts of

object-oriented multimedia and context-sensitive multimedia.

4.1 The Bush Demo

The object-oriented features of 0 were demonstrated in an application based on Pres-

ident Bush's 1992 State of the Union Address (see figure 4.1). The video and audio

from the broadcast of the address were broken into 33 "sound-bite" segments, ranging

from 10-30 seconds in length. The segmentation is based on content, each segment

containing only a single topic. The segments are turned into separate movie objects,

containing encoded video, an ASCII transcript of the audio, extracted keywords, edi-

torial annotation, and a high quality "salient" still image, representative of the entire

segment.

The application cycles through the objects by requesting and playing them in the

order of the original presentation. Each of the movie objects understands simple de-

coding messages such as requests to change size, or to change from color to black and

white. Each object responds to the application's issuing of a pause command by send-

ing over a the representative still image. When play is resumed, the object continues



u. ... .w- . ..

-... . . o. -...;,. 26
-. -, -! - xC -. w. -l x

-. . .. . -.. u. .::..-..:-... .. :.... . .-. x

-~~.. . .-. -..- y -.-..-- ...-.-*......-.

- -- 0 w'v

- - -- -- - .w-

- -. - - : - A - ---- - -: - ---. --

m::: no4yx : wn: -e >+i :x -+: -
.'::*0d n <A:.d::: is:: "o. Se0o

Figure 4.1: Object-oriented State of the Union

86

I
.. ... .... ... ...j. .

- X

-- --.. . -.. . - -.. . .. . .. --



o Movie objects

seg1 seg2 S( ... eg33

Figure 4.2: The Bush demo system

87



the movie. The response of the objects to the application's changing requirements,

and the system's changing resources, is embedded within them. The application itself

need not concern itself with either the segmentation or encoding of the objects.

In addition to being able to respond to the current display context, each movie

object is also aware of its own content, and is able to "advertise" that content to other

applications. For example, the objects are able to connect to an electronic news server

to get current news articles relevant to what the president is saying. These articles are

obtained solely through the "efforts" of the movie objects - the application doesn't

even have to know about a news server.

The implementation includes a "content-slider" which allows the viewer to se-

quence through the presentation. This slider is also an 0 object. It has access to

the content information conatined in each of the movie objects. It also has access to

models of several possible users. Consequently, the slider can match the movie ob-

jects up to the people who would be most interested in them. As a result, the slider

allows a user to "fast-forward" to the next segment that that user would personally

find interesting. This fast-forward by content rather than by frames is invisible to

the application - it is all handled by the methods of the slider object.

4.2 The Interactive Hallways Demo

The first application of the context-sensitive model was assembled by the author as

a demonstration of the MASTER/SCOUT/MODE model. The demonstration is a

basic application of the concepts in the context-sensitive model. Some elements of

the model have been left out, namely content cues and contextual hierarchy.

The demonstration is based on an interactive movie map of the hallways of M.I.T.,

similar to Interactive Hallways of 1978. In this version, the hallways have two modes

of display. The first mode contains digitized video taken from a camera. The camera

was mounted on a Steadicam JR, the cameraman mounted on inline skates. The



digitized video is encoded using a special combination of subband coding and vector

quantization. The mode contains a scalable decoder which allows the video to be

decoded to a variety of sizes, with or without color. The second mode of display

is through an overhead map, with a "you are here" marker indicating the position

of the viewer as he rockets virtually through the hallowed halls of M.I.T. The maps

were obtained from the MIT Office of Facility and Management Systems in CadView

form, then converted through AutoCad into a special form used in 0. The data for the

"videomode" and the "mapmode", the video decoder, and the interaction behaviors

(play, stop, reverse, etc.) were all combined and encapsulated into context-sensitive

movie objects.

The application consists of two contexts: one can display video, the other can

display maps. When a movie object first hooks up with the application, the object

is directed into the video context. There the SCOUT module learns that the context

is expecting video information, so the movie object activates the "videomode", sends

its decoder over to the context, and starts sending video frames to the context. The

context also includes a panel of VCR controls which direct the movie to stop, start,

reverse, etc. To demonstrate the scalable decoder, the context contains an additional

control panel which adjusts the size and color of the video.

The video context also contains a button that disconnects the movie object from

the video context and sends it over to the map context. There the SCOUT learns

that map information is desired, so the "mapmode" is activated. A diagram of the

appropriate map is sent to the context, and the movie object begins sending virtual

coordinates of the "you are here" marker. The VCR controls still work in this context,

but there is no panel for video size and color - instead, there are controls which allow

the viewer to zoom in on portions of the map. Like the video context, there is also

a button which disconnects the movie object and sends it back to the video context.

Figure 4.3 shows the demonstration in action. Figure 4.4 shows a schematic diagram

of the 0 module networks used to implement one of the movie objects.



Switch to
MAP video
Zoom in
Zoom out
Zoom all

Video Context Map Context

Figure 4.3: Context-sensitive hallways of MIT'

Hallway
Movie object

Videomode Mapmode

Switch to
VCR VIDEO map
Play 640x480
Stop 320x240
Pause 160x120
Unpause 80x60
Reverse 40x30
Forward Color
Faster Grayscale
Fast
Slow

VCR
Play
Stop
Pause
Unpause
Reverse
Forward
Faster
Fast
Slow



destaddr ScoutMovie Object

msg msgtype

newdestaddr modes

Video/Map mode

mode
newdestaddr frame broadcast

frame

VCR

Video Sender

frame

fdatread

frame VCR

Video Receiver
frame

Map Sender
frame

toparent P F
"VCRU oline position VCR
eva

VCR

Map Receiver
oline position

Keval
toparent
[Cntmap" P

VCR

Figure 4.4: 0 schematic for the interactive hallways demo

Master
VCR Broadcast



There are three major improvements that can be made to the demonstration. The

first is to be able to direct the movie object to both contexts simultaneously and syn-

chronize the contexts, so that one can watch the video and follow along on the map

at the same time. The second improvement is to use content cues to automatically

adjust the video to the interests of the user. For example, if the user is a tourist then

the video could highlight areas of tourist interest, but a physical plant worker would

have the access panels and pipes highlighted for him. The third improvement is a

matter of efficiency. Currently, the act of switching contexts requires several seconds

(5-10 seconds on a DECstation 5000/120) and has not yet reached a "seamless" qual-

ity. Shortening this context-switching time would be a major improvement, although

this may require considerable work on 0 itself.

Further (and hopefully, cleaner) demonstrations of context-sensitive movie objects

will be created once the 0 widget for X has been written.



Chapter 5

Conclusion

Electronic multimedia has some major steps to overcome before it can establish itself

as a natural means of communication. One of these steps is a consolidation of design

methods into a rigorous field of study, a "core" of multimedia research. The current

lack of such a "core" leads to a great deal of time lost to miscommunication and

reimplementation of details. Once such a standard becomes widespread, designers

can create, produce, and collaborate with greater efficiency. This may be the key

to an explosion of new and exciting applications involving electronic multimedia, an

explosion the computer world has been waiting for since its beginning.

Object-oriented programming is a method which has gained acceptance in the

computer programming world. Designs can be realized much more intuitively, and

work can easily be shared and reused, using object-oriented programming. Object-

oriented programming is also scalable, and can be applied anywhere from the lowest

level implementations to the highest level designs. However, object-oriented pro-

gramming provides no less power than any other programming methods, but rather

imposes a more rigorous standard for communicating that power.

Object-oriented design is clearly the next major step in computer multimedia

production. Object-oriented programming, while not imposing any particular policy

on look or feel or operation of multimedia, will still be valuable as a standard for



how multimedia elements will interact with each other and their applications. If

such a standard becomes accepted, then large libraries of multimedia objects can be

built, shared, and distributed. Designers can create multimedia productions simply

by fitting together the pieces they need, and creating the pieces they don't yet have.

Of course, this is all speculation and until object-oriented multimedia becomes

a widespread method, it will be impossible to foresee all of the ramifications. In

preparation, however, the Entertainment and Information Technology group has de-

veloped a system called 0, which is a research tool for exploring the developments

that are possible with object-oriented multimedia. 0 is only one of many possible

object-oriented multimedia standards, and is not necessarily the best or most usable.

In fact, 0 incorporates a couple of other research topics, distributed object processing

and dynamic object location, and as a result it is quite large and unstreamlined.

Still, 0 has been able to shed some light on a couple of topics involving object-

oriented multimedia. The first topic involves the representation of a multimedia

object. Should that representation be text-based, or should it be graphically based?

The answer turned out to be a combination of the two. The higher level designs work

best if they are expressed as a process specification: functional modules connected

together in a network, able to communicate with each other through messages. How-

ever, the operations of the functional blocks are best expressed in a more traditional

text-based programming style.

Another topic that 0 has addressed is interaction between applications and mul-

timedia objects. As the complexity of multimedia objects increased, 0 exposed a

need for a standard policy of interfacing applications to multimedia objects. This

led to the Host/OStream model which was based on the concept of isolation. Since

multimedia objects are actually complicated running processes, they are separated

from the application and given strict communication channels to the application, all

to prevent an application from being endangered by a badly written object.

The Host/OStream model evolved further into the model for context-sensitive



multimedia. This model proposed a new twist on the traditional model of applications

and data. The context-sensitive multimedia model places most of the intelligence and

the action within the multimedia objects themselves, while the application merely sets

up an environment, or context for those objects to operate in. Context-sensitive refers

to the object's ability to sense the conditions into which it has been placed, and adapt

itself accordingly.

Further exploration of the context-sensitive model revealed some key points in

how a context should describe itself to a context-sensitive object. The most impor-

tant point was the separation between contextual modes and content cues. Contextual

modes deal with selecting and configuring the actual elements of a multimedia pre-

sentation: video, audio, text, etc. Content cues allow the application to take a further

step and specify preferences about the content of the presentation: what viewpoint

to present from, what political slant to use, etc.

The final closure of the system was described by including a user-modeling system

such as Doppelginger. With such a system, the content cues of an application could

be combined with the known traits of a user to form a presentation with a definite

direction but tailored to the user's tastes. Furthermore, the user's interaction with

the presentation could be fed back to the user-modeling system, allowing the user-

modeler to update its model of the user.

Currently, context-sensitive multimedia is still in the design phase and very little

actual testing has been done to see if its benefits are feasible. However, the idea has

proven itself to be a sound extension of object-oriented multimedia. The question is,

will context-sensitive multimedia in some form be an appropriate model for the cre-

ation of multimedia objects and multimedia applications? If not for all applications,

which applications will benefit most from using context-sensitive multimedia?

Whether or not the methods presented in this thesis are entirely workable, the

general idea for context-sensitive multimedia still remains sound. Context-sensitive

multimedia advocates the creation of presentations that can adapt themselves to the



system they are playing on and to the viewer who is watching them. This is an idea

that will certainly grow more appropriate with the future, as not only multimedia

systems diverge and evolve, but multimedia viewers also diverge and evolve in their

uses and their expectations.



Chapter 6

Acknowledgments

The funding for this project was provided by IBM.

Thanks to the Office of Facilities and Management Systems for their assis-

tance in obtaining floor plans of MIT in electronic form.

Thanks to the Media Lab's System Services for providing the use of AutoCad.

Thanks to the Shadow Masks softball team and the band Adjective Noun,

for (unwittingly) providing video footage for use in the project.

Special honors to Pascal Chesnais for keeping up his support and manners

through the duration of this thesis (and hopefully beyond).

Thanks to my advisor, Walter Bender, for his patience and his serendipitous

but mighty insights into the work.

Thanks to my readers, Tod Machover and Glorianna Davenport for their

time and their suggestions.

Thanks to my officemate Judith Donath and my office successor Jon Orwant

for taking special care of my abstract.

Special thanks to my family, (yes, including my brother and sister), for their

consistent phone calls, food, and interruptions that kept me going.

Finally, thanks to M.I.T. for the best college education and experience that I've

had so far.



Bibliography

[Abr92a) Nathan S. Abramson. The dsys Library, April 1992.

[Abr92b] Nathan S. Abramson. The Dtype Library, June 1992.

[Abr92c] Nathan S. Abramson. The 0 User's Manual, July 1992.

[Ber90] Steven V. Bertsche. HyperMedia/Time-based Document (HyTime) and

Standard Music Description Language (SMDL) User Needs and Functional

Specification. University of Delaware, April 1990.

[BF92] Nathaniel Borenstein and Ned Freed. MIME (Multipurpose Internet Mail

Extensions): Mechanisms for Specifying and Describing the Format of In-

ternet Message Bodies. Bellcore and Innosoft, January 1992.

[Blo92] Alan Blount. Bettyserver: More News Than You Can Beat With a Stick,

August 1992.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference

Manual. Addison-Wesley Publishing Company, 1990.

[Flu90] Fluent Machines Inc. FM/AI Multimedia Development System, 1990.

[IBM91] IBM. A IX/Visualization Data Explorer/6000, November 1991.

[Lau91] Brenda Laurel. Computers as Theater. Addison-Wesley Publishing Com-

pany, 1991.



[Lin92] Christopher J. Lindblad. Thesis Proposal: A Distributed System for the

Dynamic Manipulation of Temporally Sensitive Data. PhD thesis, MIT

Laboratory for Computer Science, 1992.

[N090] Adrian Nye and Tim O'Reilly. X Toolkit Intrinsics Programming Manual.

O'Reilly & Associates, Inc., 1990.

[Orw9l] Jon Orwant. The Doppelginger User Modeling System. In Workshop on

Agent Modelling for Intelligent Interaction. International Joint Conference

on Artificial Intelligence, 1991.

[Poo91] Lon Poole. Quicktime in motion. Macworld, September 1991.

[PZ] Miller Puckette and David Zicarelli. MAX: An Interactive Graphic Pro-

gramming Environment. OPCODE Systems Inc.


