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ABSTRACT

Design process of Stewart platform used as Vehicle Emulator System
(VES) was investigated and various aspects which affect the basic behavior
of the mechanism was examined. Two additional design considerations
were proposed: stiffness and admittance emulation accuracy. The analysis
reveals the relationship between the performance of VES and the
components of the system, and it provides a deeper understanding of the
behavior of the mechanism. Different kinematic models of the platform
were discussed and compared. A new approach for numerically solving
the forward kinematics was presented. Kinematic constraints of the
platform are analyzed and a new algorithm was developed so that the leg
interference problem could be solved more realistically.

A powerful graphical computer-aided procedure based on analysis
was proposed and used as a valuable design tool to investigate the effects of
geometry and constraints on the motion of the Stewart platform, to provide
some important design information, such as platform's workspace, its joint
angle and hydraulic flow rate etc., and to evaluate a proposed platform
design. With the graphical simulation program, some design, control,
error improvement and VES application guidelines could be obtained.

This research also attempted to establish an approach for correcting
the position and orientation error of Stewart platform due to the variations
of geometric parameters by either modifying desired leg length or
modifying the desired position and orientation of the platform.
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Title: Assistant Professor of Mechanical Engineering
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Many applications of robotic manipulators today require or would

benefit from the manipulator to operate on moving vehicle or other

nonstationary environments. Such vehicles are compliant in comparison to

stationary and rigid bases on which most conventional industrial

manipulators mount. Examples of such applications include robots

operating in space and mobile robotic system for nuclear environment.

The base flexibility of mobile manipulator may seriously degrades system

dynamic performance and a robot to operate from mobile base is subjected

to arbitrary base motion disturbances. Such applications present

challenging control problems not commonly found in conventional

industrial manipulators. Research is undertaken at M.I.T. and a vehicle

emulator was designed and built for experimental investigation of the

behavior of manipulators operating in space, on compliant bases and in

nonstationary environments. (see West et al [6], Dubowsky et al [7,9],

Tanner [14] and Nguyen et al [27])

1.2 VEHICLE EMULATOR SYSTEM

The Vehicle Emulator System (VES) comprises a six-degree-of-

Chapter 1: Introduction 
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robotic manipulator

\~~~~~~

Figure 1.1 The Vehicle Emulator System

freedom, paralleled linked, hydraulic driven Stewart platform, a six-axis

force/torque sensor and a control computer, as shown in Figure 1.1.

VES serve as a programmable test bed in experimental studies of

robotic manipulator in space, on compliant bases and in nonstationary

environments. With a robotic manipulator mounted on top of it, the

platform acts as the dynamic system with which the manipulator interacts.

Chapter 1: Jntroduction 9
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The force sensor measures the forces acting on the platform due to the

motion of the manipulator. The platform controller model the dynamic

response of the system to those forces, i.e. the trajectory which the

modeled system would follow if it were subjected to those forces, and

controls the six hydraulic actuators to achieve the leg lengths

corresponding to each desired platform motion and thus imposes the

trajectory of the modeled system on platform. Because VES is

programmable, the platform can emulate a wide range of different

dynamic system.

1.3 CONTENTS AND ORGANIZATION

The design process of Stewart platform is studied. Two new design

considerations for Stewart platform used as VES are discussed in Chapter

2. Detail accuracy and stiffness analyses of Stewart platform are also

included. Chapter 3 presents the kinematic analysis of the platform.

Different kinematic models are discussed, a new numerical method to solve

the forward kinematics is given and a new approach to predict the

interference between legs of the platform is presented. Chapter 4

described a computer graphical simulation program developed based on

kinematic analysis, it is used as a design tool for the visualization of the

mechanism, checking the design results and exploring different design

alternatives. In Chapter 5, kinematics error correction problems including

error calibration and tracking compensation are discussed. Chapter 6

Chapter J. Introduction 
10

Chapter : Introductiont 10



concludes the investigation of design of Stewart platform use as VES and

suggests areas where further work is needed. The appendices contain

derivations which are too lengthy to be included in the main body.

Chapter 1: Introduction 
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CHAPTER 2

DESIGN SPECIFICATIONS

2.1 DESIGN CONSIDERATIONS

Stewart platform, which is constructed by connecting two plates to

six adjustable legs, was originally designed as an aircraft simulator, and

was also suggested for the application of machine tool, space vehicle

emulator, etc. There have been many researchers who contributed greatly

to the design and construction of this type of manipulators, especially,

Fichter and McDowell [11,12] conceptually outlined the major criteria to

design such manipulators. For Stewart platform used as VES, Fresco [3],

Stelman [5], and Ismail [4] proposed a set of design specifications, including

workspace requirements (vertical and horizontal range on motion, range

of rotations about all axes), load capacity, bandwidth and maximum

acceleration etc. Based on these design considerations, six geometric

parameters corresponding to six degrees of freedom of the platform were

determined and MIT first VES platform was designed and built. However,

this set of design specifications was not complete. The performance of the

platform designed only considering these specifications sometime was not

so satisfactory, e.g. MIT first platform was floppy in horizontal direction.

In order to assure overall satisfactory performance, more aspects of

the- Stewart platform should be considered for its design. A simple one-

degree-of-freedom model of VES was established and the characteristics of

Chapter 2: Design Specifications 12
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simulation was analyzed, and an error factor was proposed to estimate the

accuracy of the simulation and used as a design factor to measure the

quality of the platform. Another important factor should be included in

the set of design specifications is stiffness of the platform. Through detail

investigation of static loading characteristics of the platform, the

appropriate geometric parameters can be chosen so that the configuration

of the platform can guarantee high rigidity in all directions.

2.2 ADMITTANCE EMULATION ACCURACY ANALYSIS

When Vehicle Emulator System is used to simulate a dynamic

system, the tracking error of the platform is required to be smaller than

certain number, in other words, the accuracy of the simulation should be

specified. This accuracy is a measure of the quality of Stewart platform

use as VES and should be taken into consideration when the platform is

designed. However, using only a number value as accuracy without

specifying other conditions is not correct for determining,the quality of the

simulation. We need to consider the relationship between the performance

specifications of VES and simulation error, e.g., for simulating the motion

of a robot working in space, the performance specifications will include the

range and frequency of the robot motion, the masses of robot and satellite

(the base system to be simulated) and the simulation time. Therefore,

accuracy analysis is not only important but also necessary to find the

fundamental characteristics of VES performance and thus to obtain insight

Chapter~~~~~~ 2: Deig Specfictios1
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and some guidelines to the design process of Stewart platform.

Here we define the accuracy of VES as the tracking error of Stewart

platform

tracking error
the range of motion Eqn. (2.1)

Relative error was used here, because absolute error is not a good measure

for simulation, e.g, a 2 inch error for simulation with a range of 2 feet

motion is large but maybe not so bad for a 20 feet motion.

There are many physical phenomena which cause a platform to

deviate from its ideal tracking position. The stiffness of the platform

affects the position accuracy of the system in the presence of static loads

and disturbances. Detail stiffness analysis is given in next section.

Kinematics error such as joint compliance, backlash and variation of

geometric parameters of Stewart platform due to imperfect assembly and

machining tolerances contribute to the inaccuracy of the tracking, however,

these errors could be remedied either by good design and assembly or by

kinematic error calibration and compensation. The mathematic model and

error correction method for geometric parameters variation are discussed

in Chapter 5.

The goal of VES is to make the platform simulate the response of a

mechanical system of arbitrary dynamics which is subjected to the forces

Chapter 2: Design Specifications 14~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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acting on it. The performance in achieving this goal is affected by the

accuracy of the trajectory generated by the admittance model and by the

performance of the platform control system. The control of the hydraulic

actuators is accomplished by analog servoamplifiers using proportional and

derivative feedback. The model of the electrohydraulic actuator and

controller design for VES were investigated by a lot of researchers. (West

et al [6], Dubowsky et al [7,9], Fresco [3], Stelman [5], and Ismail [4] )

Tracking error caused by PD controller, position sensor and servo actuator

dynamics were found small enough to be ignored for simulation within the

bandwidth of the system when controller gains were high. So, the major

error is caused by inaccuracy of the trajectory generated by admittance

model, particularly the accuracy of VES suffer from the error of the force

data obtained by the computer from the force sensor.

For accuracy analysis here, it is assumed that the VES controller is

good enough to drive the legs to reach exactly the desired lengths and this

section focuses accuracy analysis on the errors caused from force sensor.

Force sensor error can be divided into repeatable errors and stochastic

errors. Repeatable errors include non-linearity and cross-talk which could

be accounted for by force sensor characteristics tests and error calibration

program. Stochastic errors include amplifier noise and drift, hysteresis,

A/D quantization and temp-induced gain change. In order to simplify our

accuracy analysis, force sensor errors were modelled in two types: offset

error Afo which is constant, and gain error Afg which has a linear relation

with the force the sensor measures.

Chapter 2: Design Spec4ications 
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fo = constant = 1fsmax

Afg = fs Eqn. (2.2b)

where and y are coefficients representing the quality of the force sensor,

andfs and fsmax are dynamic force the sensor measures and its maximum

value respectively.

For simplicity and without loss of the generality, a one-degree-of-

freedom model of VES, whose robot and platform move only along the

vertical direction, is studied. The model is shown in Figure 2.1, where me

is the mass of the robot and m is the mass of the base to be simulated.

This base model only considering a pure mass is very useful for analysis

-I I 
I I
I I
I I

I I

I I

I I

I__________ II.I
I

I
I 

Figure 2.1 One-Degree-Of-Freedom Translation Model of VES

Chpe 2: DeinSeifctos1
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of robot working in space. A sinusoidal motion was chosen as typical

robot motion type, i.e.,

y = Ysinwct Eqn. (2.3)

where Y and o represents the amplitude and frequency of robot motion

respectively. If we assume zero initial conditions and through the detail

dynamic analysis (see Appendix 1.1), the relative error corresponding to

two different force sensor error models are given as

Iz = -= 2t2m Eqn. (2.4a)

eg = Z =-Ym Eqn. (2.4b)

It is very obvious that the inaccuracy of VES simulation was caused

by inaccuracy of the force data given to the admittance model from the

force sensor, so quality of the force sensor is critical to VES performance.

The results also shows that the ratio of robot mass to base mass determines

the accuracy of the simulation, if the mass of the base is very large, the

base system to be simulated is very similar to a rigid base case, so the error

caused by the flexibility of the base will approach to zero. Eqn. (2.4a)

shows that the offset error is proportional to square of the simulation time

and frequency of robot motion, so for space simulation, the offset error

will dominate and this error will limit the application of VES to simulate a

space robot with fast motion or motion with a longer period .

Chapter 2. Design Specifications 
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*1~ ~ ~ ~ ~~~~I 4' -

I

- -- I___?~~~~~~~~~~~~~~~~~_1~~~~~~

J = mr2

Figure 2.2 One-Degree-Of-Freedom Rotation Model of VES

If we modify this one-degree-of-freedom model to analyze VES

rotational motion, as shown in Figure 2.2, and consider robot motion

0 = Osinot Eqn. (2.5)

Using the same initial conditions, and assuming small motion of the base,

we obtain very similar results. (see Appendix 1.2)

o= = Je 2t2 -
-lamax] J

pme1 2 2,2

mr2g Eqn. (2.6a)

£ = J = _yJ2 -= me12_a - J mr2~~~x ~ ~ Eqn. (2.6b)

Chapter 2: Design Spec4ications 18
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The difference between these two models is that relative error for

rotation motion is proportional to the ratio of moment of inertia instead of

ratio of mass as in the case of translational motion.

Combining these two one-degree-of-freedom models, we can extend

our model to a simple two-degrees-of freedom model, as shown in Figure

2.3, where the robot motion is still a pure sinusoidal rotation, but the base

moves vertically and also rotates corresponding the force or torque the

force sensor measures. If we assume small motion of base and zero initial

conditions, and also for simplicity not considering the cross-talk effect

between force sensor channels, the accuracy of VES could be obtained. (see

Appendix 1.3)

I /

J= mr29

T 

Z I

IO I

--I---~~~~~~~~~~~~~~~~~~~~~~__X @ II I

I I

Figure 2.3 Simple Two-Degrees-Of-Freedom Model of VES

Chpe :Dsg pcfctos1
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o ZI 1 me,2t2 1 + Me 2

IZmAu [ ri mr2 Eqn. (2.7a)

E9 - Z "M rg;2 +r2B Eqn. (2.7b)

The results shows that the both offset error or gain error consists of

pure translational term, pure rotational term and a coupling term, which

reflects the difficulty of accuracy analysis when the degrees of freedom of

the system increases. However, this simple VES model relates the

simulation error with masses or inertias of the system, quality of force

sensor, frequency of robot motion and simulation time, and thus gives a

rough measure of the accuracy of the simulation for a given system

especially for the simulation of a robot working in space, and it provides

very helpful information for selecting a proper force sensor.

For VES to simulate more general base system, e.g., the suspension

system of a vehicle, the stiffness of the base system is a very important fact,

so, it should be considered in the base model in addition to the inertial

effect of the base, this two-degrees-of-freedom VES model is shown in

Figure 2.4. In the model the stiffness of the base system includes both

translational stiffness k and rotational stiffness kr. Since stiffness exists in

the base system, the base will produce a restoring force to balance the

error force caused by the offset error of the force sensor. Therefore, in

vehicle emulation case, the offset error is static and negligible and the gain

error will dominate.

Chapter 2. Design Specifications 20~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Je = mel2
I

Z

- _rp_
J= mr2

k, kr

Figure 2.4 Two-Degrees-Of-Freedom Model of VES

Using the same method and same conditions, the accuracy of VES

for the vehicle emulation could be obtained. (see Appendix 1.4)

Mme Mrmlel 2
Eg = AZ =_( + +Mrel2 +

Z m+(1-M)me mrg2+(-Mr)mel 2
(Mme)(Mrm

[m+( -M)mel[mr2g+(

where M and Mr are magnifying factors,

2
M= (2

Mr=- )2
,R02_ ,i

te12)

I l-Mr)mel 2 ]

Eqn. (2.8)

Eqn. (2.9a)

Eqn. (2.9b)

and co, cr are natural frequencies of the system

Chapter 2. Design Specifications 21
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= m+ k

.O = ikr = kr
J+Je mrg+m1l 2

Eqn. (2.10a)

Eqn. (2.10b)

This model is consistent with previous models, e.g., let k-+O, and

krO, so, o-O0, c0-O, M-1 and Mr+l, and the result will be the same as

that of simple two-degrees-of-freedom model. If let k->O and kr-o, then

M---l and MrO, the result is exactly same as the result from simple one-

degree-of-freedom translation model. Like previous models, the error of

VES emulation due to the gain error of the force sensor consists of three

terms: pure translation term, pure rotation term and a coupling term. The

difference between space system and vehicle base system is that due to the

stiffness of the base system, the error now is also related to the ratio of

frequency of robot motion to the natural frequencies of the system. For a

practical case, when o << and co << Onr, we have

M -->- and Mr 02in~ Ct(4~~~~~ Eqn. (2.11 a)
02 021-M 1+2--1 and 1 -Mr 1+1 -

Qo Or Eqn. (2.1 b)

so the emulation error will approach to

£Az= - I 1 12 mel20) 2
Eg _z YmeCO2[k- z k k+ kkr Eqn. (2.12)

Chate 2.Dsg pcfctos2
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Therefore, for very low frequency robot motion, the error will be

dominated by quality of the force sensor, the mass or inertia of the robot,

the stiffness of the base system and the frequency of the robot motion.

The accuracy analysis reveals the relationship between the simulation

error, the components of Vehicle Emulation System and performance

specifications of VES. It shows the dominant factors which affect the

performance of VES in space simulation case or in vehicle simulation case,

so it provides insight and some guidelines to the design process of Stewart

platform. Although admittance emulation accuracy analysis results from

simple models, same method can be generalized for a six-degrees-of-

freedom case. And we should use the error factor as one of design

considerations for Stewart platform because error analysis results could be

used to approximately estimate the performance of VES, and Stewart

platform thus designed will satisfy customer's performance requirements.

2.3 STIFFNESS ANALYSIS

Stiffness is a very important property of the manipulators. It

determines the strength of the manipulators and positioning accuracy in the

presence of disturbance and loads. Since it is very obvious that the stiffness

of parallel manipulator like Stewart platform is much better than serial

manipulator because the load of the platform are shared by its six legs,

people will be prone to take it for granted that stiffness of Stewart platform

is good enough and is not necessary to consider it as one of design

Chpe :DeinSeifctos2
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considerations. The shape of the platform thus determined without detail

stiffness analysis resulted in a very floppy platform in horizontal direction

and caused unexpected and dangerous collapse of the platform. Therefore,

in order to design a platform with good stiffness in all directions within its

workspace, a thorough analytical investigation of the stiffness of the

Stewart platform should be made.

The idealized model for a symmetric Stewart platform is shown in

Figure 2.5. The base and platform ball joints lie on the circles with radius

R and r, respectively. Reference frame xyz is fixed to the platform and its

position and orientation is described with respect to the inertial reference

Y
z

Y)

(a)

Figure 2.5

(a) Model

(b)

A Symmetric Stewart Platform

of Platform (b) Top View

Chate 2

B1
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frame XYZ, whose origin locates at the center of the base, by the end-

effector position vector x = (x, y, z, ax, f3, y )T, where a, f3, y are roll,

pitch and yaw rotations. Let Bi = {XBi,YBi,ZBi}T, (i =1, 2, 6), be the

location of base joint center, defined as position vector with respect to

XYZ frame and let Ji = {xji,YJi,zji}T and Pi = (XPi,YPi,ZPi}T, ( i = 1, 2, ..

6) be the platform joint centers, defined as position vectors with respect to

xyz and XYZ frames, respectively. In matrix form, the transformation

from the xyz frame to XYZ frame is given by

1{i =[D] {1 Eqn. (2.13)

where [D] is a 4x4 displacement matrix, given by

R z(y)Ry(O)Rx(a) y
[D] = [D(x)]= z

0 0 0I

X

D1 D 2 D 3 y
z

O O0 1 I Eqn. (2.14)

Eqn. (2.15a)

sinasinpcosy-cosasiny

sincxsin3siny+cosacosy

sinacos3

cosasin[cosy+sinasiny

cosasinpsiny-sinacosy

cosacos[B

1

I

I

Eqn. (2.15b)

Eqn. (2.15c)

Chpe 2:Dsg pcfctos2

where

D 1 1

D21

D31

D1= 

I= 
I-

cospcosy

cos3sin-y

-sin[3
i

D1 2

D22
D32 IlD2= 

D3= I
I

1

-
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If we define leg i as a vector ij, ( i = 1, 2, ., 6), we have

i= liy=Pi-Bi
liz Eqn. (2.16a)

or described in xyz frame,

Eqn. (2.16b)

substitute Eqn. (2.13) - Eqn. (2.15) into Eqn. (2.16a), we obtain

= Dllxji+Dl2yJi+Dl3zJi+x-XBi

= D2 1 xi+D22YJi+D23zJi+Y-YBi

| D31 xi+D32YJi+D33ZJi+Z } Eqn. (2.17)

and the length of leg i, ( i = 1, 2, , 6), is given by

li =IPi- B i = 12 +2 +12z Eqn. (2.18)

and leg vector is defined as , given by

11

12

! = 13 = (X)

15

16
Eqn. (2.19)

According to the principles of virtual work, using the method very

similar to serial manipulator, it can be proved that there is a relationship

between the leg force and end-effector force. (Asada and Slotine [1] )
Chapter 2 DesinSpcf

Ii-D 1

li-D 
II fix }I liy

[ liz

-i
I

1i = liY

liz 
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Eqn. (2.20)

where
fx

(F), = f;
m,
myIm,

f2
(F) = f3

f 4
f5
f6 Eqn. (2.21)

are end-effector force vector and leg force vector respectively, as shown in

Figure 2.6. [j]T is the transpose of the manipulator Jacobian matrix, which

is defined as

= ai =
[axj

all

ax

a12

ax

all

ay

a12

ay

a16 a16

ax ay

a16

If we neglect gravity and friction, we

Eqn. (2.22)

can relate the, leg force to leg
deflection l = [ll, a12, , a16]T by the individual stiffness, which is

modeled as

fi = ki ali Eqn. (2.23)

where fi is the force produced by leg i and ali is the deflection of leg i.

is the spring constant. Eqn (2.6) could be rewritten in vector form

Chapter 2: Design Specifications 
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Figure 2.6 Forces Applied on Platform

Eqn. (2.24)

where [K] is 6x6 diagonal matrix given by

Chapter 2: Design Specifications
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kl

k2

0

0
Eqn. (2.25)

Since Jacobian matrix [J] relates platform deflection ax and leg

deflection aI by

Al = [j] Ax Eqn. (2.26)

so from Eqn. (2.16) we obtain

(F) = [K][J] Ax Eqn. (2.27)

substitute Eqn. (2.19) into Eqn. (2.13), we obtain

(F}X =[S]Ax Eqn. (2.28)

[S] = [j]T [K] [J] Eqn. (2.29)

Thus the deflection of the platform is related the external force

applied to the platform by the 6x6 matrix [S]. The matrix [S] is called the

stiffness matrix of the platform.

Chapter 2. Design Spec47cations 
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Since [S] consists of individual leg stiffness and Jacobian matrix, it is

configuration dependent. Based on above analysis, stiffness at any point

throughout the workspace of the platform can be obtained.

For a symmetric Stewart platform as shown in Figure 2.5, the

locations of the joints are given by

XBI = Rcos l;

XB2 = -Rsin( 6. - l);

XB3 = -Rsin( 6 + 4);

XB4 = XB3;

XB5 = XB2;

XB6 = XBI;

xj = rsin( - + 2);

IC
XJ2 = rsin( - 42);

XJ3 = -rcosO 2;

XJ4 = XJ3;

XJ5 = XJ2;

XJ6 = XJI;

ZBi = ZJi = 0

YBI = Rsinol;

YB2 = Rcos(6- );

YB3 = Rcos( + 1);

YB4 = YB3;

YB5 = YB2;

YB6 = YBI;

yJl = rcos( , + 2);

YJ2 = rcos( - 42);

yJ3 = rsinO2;

YJ4 = -YJ3;

YJ5 = -YJ2;

YJ6 = -YJ1;

( i = 1, 2, --, 6)

We define xi and Yi, ( i = 1, 2, ---, 6), by

Xi = XJi- XBi Eqn. (2.31a)
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Yi = Y - YBi Eqn. (2.31b)

and the following relations can be proved (see Appendix 2.1),

YBi = XJi = yi = 
inl iul

xj = == i = 0
ill iml i=l

-I
-I=

i=l

Eqn. (2.32a)

Eqn. (2.32b)

(y)2 = 3[r2+R2-2rRsin(Ci/6+(pl+p2)] = 3r*2

Eqn. (2.32c)

(yji) 2 = 3r2
Eqn. (2.32d)

(Xji)2 =
i=l

6

xJiXBi =X
i=l

(Yji)2 = 3R2

Eqn. (2.32e)

YJiYBi = -3(r*2 _r2_R 2 )
2 Eqn. (2.32f)

e XiYBi
i=l i=l

6

YjiXBi = 
i=l

YJiXBiYBi = -rR2sin(l/6+(p2-2(p 1)

XJiYJiYBi= 23 r2Rsin(lr/6+(pl-222)
2

Eqn. (2.32g)

Eqn. (2.32h)

xjYBi= 3 r2R2[3+2cos2(9 1 + (p2)--sin(2( 1 +2(p2)]
Eqn. (2.32

Eqn. (2.32i)
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XBi-=

iml

(X,)2

ii=l

~ (XJi)2
i=l

i=l

6

i=1

i=l

6

± yJiXBi
i=l i=1
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iul

xlyJiXBiYBi= -4Lr2R2sin(/6- 2p1 - 2 p2)
4

Eqn. (2.32j)

From Eqn. (2.17), (2.18) and (2.30), each term of Jacobian matrix

[J] can be given by (see Appendix 2.2),

ai liX DI qxj+Dl2yji+x-X3i
ax li li Eqn. (2.33a)

a i 
ay 1Iaij I:

-alI
dz 

D2lxJ+D22YJi+Y- YBi

ii Eqn. (2.33b)

D3 xji + D3 2Yi +Z

li Eqn. (2.33c)

Eqn. (2.33d)
ali yji(ll'D3) I ,

aa = i =YJi i

li (yjisinaD 1-xjisinaD 2-xjicosaD3)

li Eqn. (2.33e)

al Iri [x jicososfossaD 2 -sincxD 3)-yJi(cosocos3D 1+sin3D 3)]

du4~~~~~~ ~li Eqn. (2.33f)

Based on above analysis, for platform at home position, where x =

(0, 0, zo, 0, 0, 0), and due to symmetry of the configuration, the leg length

li = lo, ( i = 1, 2, , 6), and we assume that the individual stiffness of each

leg is same, i.e., ki = k, ( i = 1, 2, -- , 6), using Eqn. (2.28,2.29,2.32,2.33),

we can calculate [J] and [SI, and some useful results are obtained, as shown

in Figure 2.7. (see Appendix 2.3 for detail)
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(i) At home position, the stiffness in horizontal direction is the same,

i.e., it is independent of direction. And both the vertical or horizontal

stiffness of the platform depends only on its height zo, or 0, one of the

design parameters. Here zo = losinO, as shown in Figure 2.5. The vertical

stiffness increases with the increase of 0, but, horizontal stiffness decreases

when 0 is larger.

(ii) At home position, the maximum stiffness in horizontal direction

is just half of that in vertical direction.

(iii) = 45° is the half point for stiffness both in horizontal or

vertical direction. Therefore, the design parameter 0 should be chosen not

far away from 45°.

6

5

4

3

2

0

0
0 10 20 30 40 50 60 70 80 90

Figure 2.7 Stiffness of the Platform at Home Position
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This stiffness analysis explains why the old platform is so floppy in

horizontal direction, because the design parameter 0 was 740, so the ratio

of vertical stiffness to horizontal stiffness for the previous platform was

about 20. The stiffness analysis also provides us some guidelines for

determining the shape of the platform in terms of the locations of the joint

attachments to base, in other words, for a given home height of the

platform, zo, another design parameter 1 should be chosen as small as

possible, so that angle could be smaller to improve the horizontal

stiffness.

Since the stiffness of the platform is Jacobian matrix dependent, it

will be zero at least in one direction if Jacobian matrix [J] degenerates at

singular positions of the platform. So the end-effector will deflect in that

direction with no force or moment induced to resist this motion. Platform

will gain an extra degree of freedom and may crash.
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CHAPTER 3

KINEMATIC ANALYSIS

3.1 KINEMATIC MODELS

The purpose of investigation of kinematics of Stewart platform is to

establish analytical methods and develop computer-aided procedure capable

of analyzing the basic kinematic characteristics of this mechanism, such as

its extreme range of motion and workspace, and recognizing its physical

limitations, so that we can obtain some design and application guidelines

for this type of manipulator.

The first step of kinematic analysis is to develop a kinematic model

of the platform. Several kinematic models of the platform were proposed

and a lot of researchers, such as Do [2], Fresko [3], Powell [10], Fichter

and McDowell [12], McCallion and Truong [13], and Yang and Lee [17],

did great contributions to the developments and applications of these

models. Three models, among others, are mostly accepted and used.

Model 1: This model is described in Chapter 2, see Figure 2.2.

Using Cartesian coordinates and homogeneous transform matrix, the

displacement of the top plate (its position and orientation) is described with

respect to inertia frame XYZ. The locations of top joints described as

points in Cartesian space xyz are mapped to inertia Cartesian space XYZ

and each leg can be represented by a Cartesian vector in XYZ space.

Chapter~ 3: Kieai nlss3
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Figure 3.1 Plucker Coordinates of Leg i

Model 2: The displacement of top platform and the locations of joint

attachment are described in the same way as model 1. But, the legs are

represented by Plucker coordinates, as depicted in Figure 3.1. The legs

may be determined from any two distinct points on the line. The vector ii,

( i = 1, 2, -*, 6), lies along the line in the direction of leg i. Vector Mi is

perpendicular to the plane containing the line i and the origin, so it is the

moment of vector i about the origin. The vector !i and Mi are assembled

into the plucker coordinates vector Ui, given by

iy

Ui i= 1iix (

Miz Eqn. (3.1)
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According to skew theory, at every instant during the motion of a

body in space, there is an instantaneous screw axis (ISA) and the

translational velocity v and angular velocity o has a relation

v=ho Eqn. (3.2)

where h is the pitch. From skew theory, given the displacement and

velocity of the platform, the velocities of the legs can be obtained. (see

Fichter [11 ])

Model 3: This model is based on model 1. In addition to reference

(x\
YI
J 1(Y =X

Figure 3.2 Local Coordinates of Leg i
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frames XYZ and xyz, Cartesian reference frame xyzi, ( i = 1, 2, , ), is

denoted as the local coordinates system fixed to leg i, as shown in Figure

3.2.

The origin of xyzi is joint Bi and the axis xi points towards joint Ji.

The yi axis is parallel to the cross product of -Z and i, and the axis zi is

defined by the right hand rule. Thus the motion of the leg i could be

described by the reference frame xyzi with respect to XYZ.

These three models are essentially the same, because they represent

the same physical plant, just different in the mapping of the coordinates

from one vector space to another one. However, a different model is more

than just a varying representation of the platform, it can elucidate aspects

of the underlying theory and suggest results that might be otherwise go

unsolvable or unnoticed. Model 1 is an easy, straight-forward and efficient

model for calculation of inverse or forward kinematics and for real time

control of the platform. But, model 1 does not consider the rotation of the

legs, so generally it could not be extended to a dynamic, model. Model 2

takes consideration of the rotation of the legs and skew theory provides

qualitative and physical insight into underlying geometry of the platform

while quantitative calculation could be easier via coordinate map. Model 2

is used to calculate the rate change of the leg velocity, to determine the

singular positions of the platform and to do dynamic analysis based on

screw theory. However, the calculation using model 2 is complicated and

time consuming. Model 3 puts emphasis on each leg, so it is easy to

Chpel.Knmai nlss3
Chapter 3: Kinematic Analysis 38



analyze relative motion of the legs, such as the interference problem

between the legs, and a local coordinates system is more convenient to use

for each part of the platform as a free body, so that the equation of motion

of the system can be formulated for dynamic analysis.

3.2 FORWARD KINEMATICS

There are two types of kinematic analysis, known as inverse and

forward kinematics, very important and useful in the design and control of

Stewart platform. The inverse kinematics calculates the leg lengths li ( i =

1, 2, ., 6), corresponding to a given end-effector position x. Its solution

is straight-forward and unique, and is discussed in Chapter 2, Eqn. (2.17).

(also see McCallion and Truong [13], Fichter [11], Fresco [3]) The

forward kinematics transforms leg coordinates into the reference

coordinates of the end-effector, i.e. given the lengths of six variable legs, l,

find the transformation of coordinates representing the position and

orientation of the top plate, x, with respect to inertia reference frame

XYZ. By contrast to inverse kinematics, forward kinematics is neither

well behaved nor easily described.

Although the inverse kinematics of Stewart platform has been

extensively studied, no closed form solutions to the forward kinematics

have been presented in literature. Landsberger [36] studied the existence

and solvability of the forward kinematics problems. Zhang and Song [21]

explored the condition under which the closed form solutions of forward

Chpe 3.Knmtc nlss3
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kinematics of parallel platform. Griffs and Duffy [18] investigated a

special form of Stewart platform and reduced the forward kinematics

solution to a sixteenth degree polynomial after eliminations of unknowns.

Nunua and Waldron [19] studied the same problem by a different approach

and obtained the similar result.

It is very difficult to solve the forward kinematics by directly invert

Eqn. (2.18), because it involves simultaneous solution of six nonlinear

quadratic equations together with constraints equations. However, the

forward kinematics is required for dynamic simulation, workspace

analysis, error correction and other applications. So, that lead the

researchers to seek an iterate numerical method to solve the forward

kinematics. (Ismail [4], Cleary and Arai [22], Nguyen et al [27])

Two numerical techniques were often used. The first is a direct

integration. Given dl = [J] dx , then

x = [J]-ldl +xo

Eqn. (3.3)

where xo is initial guess of x, 10 is corresponding leg length vector. The

second method is using multidimensional Newton-Raphson procedure.

From Chapter 2, we know that the inverse kinematics can give the desired

leg length d corresponding to a given position of the platform Xd, so, we

define a multidimensional function
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If6(x)J 11 - Idl

f(x) i x) F16 l d26

Eqn. (3.4)

In the neighborhood of x, each of the functions fi, ( i = 1, 2, ., 6), can be

expanded in Taylor series. By neglecting higher order terms and letting

f(x) equal to zero,

af a
f(x+Ax) f(x) + f Ax = f(x) + l x

ax axEqn. (3.5)
= f x)+[J] x Eqn. (3.5)

therefore, we have an iterate formula for the forward kinematics,

Ax= - [J]- f(x) = - [JI- ( - Id) Eqn. (3.6)

Although these two methods can obtain rather accurate results

depending on a good initial guess of the position x0 , both methods need the

successive calculation of a 6x6 inverse Jacobian matrix [J]-1 and lower

efficiency degrades the methods, especially for real-time applications.

Also, these methods could fail when Jacobian matrix is singular.

There are some other numerical methods which could be used to

solve the forward kinematics, such as using a fixed [J]-', using difference

quotients instead of partial derivatives in calculation of Jacobian matrix or

using some multidimensional optimization algorithms. But, these methods
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could not improve the efficiency of the calculation without losing the

accuracy of the results.

The following method for forward kinematics was developed and is

shown in Figure 3.3. For the given leg lengths, which are physically

realizable, we suppose that the platform consisting of pairs of springs and

dampers is at equilibrium state. Any state deviated from this equilibrium

Figure 3.3 Model of Platform for Forward Kinematics
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state will cause the deflections of the virtual springs, which are the

differences between the current leg lengths and given leg lengths. The

platform driven by the corresponding spring forces will move towards the

equilibrium position until the disappearance of deflections of the springs.

Lyapunov stability theory is used here to derive the numerical forward

kinematics algorithm. For simplicity, we only discuss the model where the

effect of dampers are neglected. For a desired leg length Id, let x be the

current desired end-effector position estimate corresponding to the state off

the equilibrium position, and define the current error, i.e. the virtual

spring deflections as

i = AI= I(X)- Id Eqn. (3.7)

Let us then select a Lyapunov function candidate as

= ~iT [K p][
2 [Kp]i Eqn. (3.8)

where [Kp] is a positive definite matrix. Differentiating Eqn. (3.8) and

substitute Eqn. (2.26), we get

V = iT[Kp]t = iT[Kp]i = ir[Kp][J]Ax Eqn. (3.9)

so if we chose

Ax =-[J]-li Eqn. (3.10)

Chapter~~~~~~ 3. Kieai nlss4
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then

t = 4-[Kp] o 0 Eqn. (3.11)

This is essentially the multidimensional Newton-Raphson method.

However, if we chose

Ax = -[J]T[Kp]TI Eqn. (3.11)

then, we obtain

V = -T[Kp][J][J]T[Kp]T'
T

=-AxAx < 0 Eqn. (3.12)

For this method, it is not required to calculate the time consuming

inverse Jacobian matrix, [J]-', and it locally guarantees the convergence of

the algorithm, because we use the virtual mechanical energy V and

platform as a virtual passive physical system will eventually goes to its

equilibrium state. However, the number of iterations, i.e. the time of

calculation is dependent of the initial end-effector position guess xo. If

Jacobian matrix is singular, this method will lead ax "stuck" at a non-zero

value, but a skew symmetric matrix will be helpful to remedy the situation.

3.3 KINEMATIC CONSTRAINTS

In order to investigate the effect of configuration on workspace,

analysis of kinematic constraints is necessary in the design process of

Stewart platform and it is also imperative for a safe operation of the VES

Chapter 3. Kinematic Analysis 
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system. The Stewart platform controller should ensure any position of the

end-effector in a trajectory from breaking the kinematic constraints or

being beyond the workspace. Stelman [5] investigated three types of

kinematic constraints of Stewart platform: maximum and minimum

actuator lengths, limits of rotation of joints and interference of the legs. A

new approach here was developed for the interference problem.

Interference of legs occurs in a variety of platform positions.

Obvious example is when platform rotates about its z axis at certain angle,

pairs of adjacent legs will hit each other. This will not only limit the

workspace of the platform, but also dangerously cause the damage of the

platform. Stelman [5] used a cylinder model, as shown in Figure 3.4, to

Figure 3.4 Single Cylinder Model for Leg Interference
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predict this phenomenon, where a cylinder contains all the geometry of the

actuator and at each time the shortest distance between two adjacent

cylinders is checked not exceeding the diameter of the cylinder. The model

using a single cylinder to represent the whole actuator, is very conservative

and will be fail to apply to an actuator whose lower portion may be thicker

than the upper portion due to the assembly of position sensor, hydraulic

hose, etc., and the locations of top joints are close. In order to overcome

this limitation, the actuator is modeled as a combination of two cylinders

with different diameters. The cylinder with a larger diameter and a fixed

length, represents the thicker geometry while cylinder with small diameter

d2 !

Figure 3.5 Two-Cylinder Model for Leg Interference
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and a varying length represents the upper part of the actuator, as shown in

Figure 3.5. Now, the leg interference problem becomes the intersection

problem between cylinder ci,Ci, cj and Cj, ( i, j = 1, 2, , 6), where ci and

cj represent small cylinder i and j, and Ci and Cj represent large cylinder i

and j, respectively. If any two cylinders intersect at some point, no matter

in which direction to look at them, they must keep contact at that point.

Therefore, using model 3 of Stewart platform describing in Chapter 2, we

can project all four cylinders into plane YiZi and plane yjzj, respectively.

Criterion for interference is that it only occurs when two cylinders

interfere at both planes. This method is very effective and efficient if the

appropriate local Cartesian coordinates are used, because the interference

problem is reduced to just a check of intersection of circles and lines, e.g.

in plane YiZi, the projections of cylinder ci and Ci are two circles and that

of cylinder cj and Cj are just lines. Although this approach is still

conservative, it is much less conservative than the old one and it would

solve the leg interference problem more realistically.
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CHAPTER 4

GRAPHICAL SIMULATION

An interactive graphical simulation program was developed to

contribute to the design of the Stewart platform use as VES and its control

algorithm. The simulation program has been performed on Personal IRIS

workstation, using Unix operating system and C programming language.

Figure 4.1 shows the graphical output and user interface features of the

program. The main purposes of the program is to provide interactive

graphical simulation as a tool for the visualization of the mechanism, to

investigate the effects of geometric configuration on workspace and the

specifications of the hydraulic system. In addition to acting as a design

tool, the algorithm can also be used for graphical preview of the dynamic

behavior of the platform and verifying of the platform controller.

4.1 INTERACTIVE FORMAT

The graphical display consists of multiple windows, such as a

projected three-dimensional view of Stewart platform, a text area for data

entry from the keyboard, a ruler area showing several analog scales for

input and a display of top plate's position, orientation and other kinematic

parameters, a message area warning any violation of kinematic constraints

including leg lengths, joint angles and leg interference, and a menu column

containing 10 buttons for different actions, such as joint angle calculation,

Chapter 4: Graphical Simulation 48
Chapter 4 Graphical Simulation 48



Figure 4.1 Graphical Simulation of Stewart Platform

hydraulic flow rate calculation, coordinate system transformation, etc. The

program displays Stewart platform in selected configurations and user

controls a mouse to change the viewing angle or the direction in which the

platform is projected. For the position or orientation of the platform, user

can either input the data from the keyboard or using a mouse to select the

analog scale. The orientation can be described using roll, pitch and yaw

coordinates or Euler angle coordinates. Alternatively the user can specify

a sequence of rotations about the axes fixed to the platform or fixed to the
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base. In addition to interactive control of platform position and

orientation, the program also provides sinusoidal motion and some other

types of motion. The program solve the inverse kinematics to get the leg

length, calculate joint angles and the clearance between the legs to check the

workspace violation, based on the analysis described in Chapter 2 and 3.

Also, the program calculates flow rate of the hydraulic pump according to

the amplitude and frequency of platform's motion, which is used to

establish the specification of the hydraulic pump and accumulator.

4.2 DESIGN TOOL

Because of the complexity of the geometry of the six-degree-of-

freedom Stewart mechanism, there is not a clearly defined optimal design

and it is not trivial to check whether or not a proposed design satisfies the

design requirements. Therefore, a graphical simulation program is vital to

the progress of the design of VES. As a valuable design tool, it provides

the visualization of the platform at each point throughout its workspace and

variation of the geometry of the platform is investigated graphically until a

close to optimal design is achieved. Graphical simulation is used to

establish the basic shape of the platform, to check the violation of the

kinematic constraints, such as leg length limitations, joint angle limitations

and leg interference. The graphical simulation also provides information

of the flow rate design parameter which is used to determine the

specifications of the hydraulic system of VES.
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Table 4.1: Workspace Requirements of VES

4.2.1 WORKSPACE

The workspace of the Stewart platform is defined as the range of

allowable end-effector displacement, i.e. the region of three-dimensional

Cartesian space that can be attained by the end-effector with the given

orientation of platform of three rotational degrees of freedom. It is

determined by the scale and configuration of the mechanism, constrained

by the kinematic limitations. The optimal design of Stewart platform is to

choose a geometry for which the resulting workspace spans the desired

range of motion.

Based on the available laboratory space and the investigation of

applications of robot to operate from moving bases or in nonstationary

environment, workspace requirements of VES was specified in terms of the

amplitude of motion of the platform from its home position in three

translational and three rotational degrees of freedom, listed in table 4.1.

Here, numerical values are used to define the workspace of the platform,
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Motion Displacement from Home Position

x 1 ,,, roll pitch yaw

Translation ± 12 in ± 12 in ± 12 in

Rotation - _ ± 300 + 300 ± 300
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but in fact the workspace embedded in a six-dimensional space is not a

quantity. In recent years, several researchers have addressed the

workspace analysis, focus on generating planar graphical contour maps or

cross section of the workspace. (Yang and Lee [17], Fichter [1 1], Weng et

al [16], Cwiakala [23], Gosselin [24,25], Clearly and Arai [22])

Graphical simulation program, based on kinematic analysis, provides

a qualitative evaluation of the Stewart platform design, and feedback

information is then used to modify the design. In order to determine the

suitability of a proposed design for specified workspace requirements, the

simulation program searches the boundaries of the workspace where at

least one of kinematic constraints is violated and checks whether or not the

boundary point is within the desired range of motion. The searching is

undertaken in all directions and search space is scaled up and down as

appropriate. The graphical simulation provides some insight into the shape

of the workspace and effects of geometry on the relative amounts of

rotational and translational freedom. The simulation program allows the

user to interactively specify and change all the design parameters and chose

the type of scaling until the most appropriate platform geometry for VES

is achieved.

Using the simulation program, a design is found that meets the

workspace requirements given the dimensions of readily available

mechanical components and the available laboratory space. The resulting

geometric parameters and mechanical limitations are listed in table 4.2.
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Table 4.2: Platform Geometric Parameters

Base Radius R

Platform Radius r

Base Angle 41

Platform Angle 42

Angle of Legs to the Base 

Stroke of Actuator

Platform Geometric Parameters

52.77 in

12.0 in

3.260

14.480

500

30.0 in

Kinematic Limitations

Minimum Actuator Length 22.0 in

Top Joint Angle 450

Base Joint Angle 450

Figure 4.2 is an example of the shape of the Workspace of the

platform, showing the reachable rotational degree of platform before the

violation of any kinematic constraints when the platform moves along the

vertical direction axis or along the horizontal axis. From the figure, it is

seen that the shape of the workspace has some concavities. For the purpose

of control, we model the nominal workspace as a convex shape within the

real workspace so that any line segment connected by any two points within

this space will not go beyond the real workspace of the platform.
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4.2.2 JOINT ANGLE

Since Stewart platform is a parallel configuration of six adjustable

legs connected by universal or spherical joints to the platform and the base,

joints play an important role in determining the flexibility and workspace

of the platform. Graphical simulation results are very useful in assessing
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the qualitative features of rotational freedom of the joints and the

orientation of the joint axes. Figure 4.3 shows a polar plot of the top

universal joint angles as the position of the platform is varied throughout

its workspace. A point on the plot gives the angle value,of the joint by its

radius and shows the direction of the rotation by its location. The range of

the joints and the angle at which the joints are attached relative to the

platform or base are specified using this information. Joints are so

designed that they would not restricted the motion of the platform.
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4.2.3 FLOW RATE

The kinematic limitation on amplitude and frequency of the platform

motion is the flow rate of the hydraulic pump and the size of the

accumulator. Graphical simulation program determines the appropriate

requirements for a hydraulic system by considering sinusoidal motion of

the platform at the specified dynamic limits. For the selected platform

geometry, Figure 4.4 shows the hydraulic flow rate for a 0.5 Hz and 12"
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amplitude sinusoidal motion in the vertical direction and accumulator flow

needed to sustain that flow rate with a 40 GPM pump.

4.3 VALIDATION OF CONTROLLER

In addition to acting as a valuable design tool for Stewart platform

use as VES, the graphical simulation is used to validate VES controller

algorithm. The simulation program also provides graphical preview of the

kinematic and dynamic behavior of the platform and error checking

schemes etc before applying them to the real platform.

The capabilities of the graphical simulation program could be

extended by introducing some other functions like error compensation,

stiffness analysis and dynamic analysis etc. These algorithms could either

work independently or in collaboration with other functions of the

program so that the whole graphical simulation program becomes

efficient, effective, flexible and very powerful. Some parts of graphical

simulation algorithm could be directly implemented on VES controller.to

control the platform in the laboratory.
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CHAPTER 5

KINEMATICS ERROR CORRECTION

The improvement of the accuracy of the simulation of VES is related

to two important activities: calibration and compensation. Kinematic

calibration concerns the accurate mapping from leg space to end-effector

space while compensation is used in platform control to correct position

and orientation errors due to the difference between actual and nominal

values of platform parameters. Although calibration and compensation

techniques for serial type of manipulators and some closed-loop

manipulators have been received considerable attention in recent years (Wu

et al [33,34], Ahmad [29], Payannet [32], Vuskovic [30], Ziegert and

Datseris [35], Hollerbach and Bennett [31]), no analysis of calibration and

compensation for Stewart platform has been presented. Since a lot of other

error sources in addition to geometric parameters contribute to the

inaccuracy of the simulation of VES, such as non-geometric factors like

joint compliance and backlash, repeatability of platform, resolution of

instrumentation and control structure, error correction for VES will

involves theories and techniques in different fields. In order to provide

bounds on this topic, error correction problem discussed here is restricted

to a static geometric parameters analysis, leaving such non-geometric,

time-varying or dynamic effects as backlash, servo and force sensor errors,

and platform vibrations to future works.
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5.1 ERROR CALIBRATION

The purpose of calibration is to identify the actual values of

geometric parameters of the platform. The previous kinematic analysis is

based on such an assumption that the Jacobian matrix [J] represents the

mapping between leg vector space and end-effector vector space. But, this

is only true for ideal model of the platform. For the real platform,

variations of geometric parameters such as the locations of joints and the

concentricity of the top plate and base arise from imprecision in the

manufacturing and assembly process. The real geometric parameters

generally deviate from their nominal values. Let vector c represent the

real geometric parameters of the platform, whose components are locations

of joints, the centers of base and top plate etc, and Cn corresponds to the

nominal value of c in the ideal case, we have

= Cn + Ac Eqn. (5.1)

where ac is the parameter variations. For the real platform, leg length

vector is the function of geometric parameter c and the configuration of

the platform x, i.e.

I = (c,x) Eqn. (5.2)

For nominal value of geometric parameter ce, it becomes

I = I(cn,x)= In (X) Eqn. (5.3)
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where I, represent the nominal leg length vector and it is exact Eqn. (2.19)

and corresponding Jacobian matrix is

'j-ca, Eqn. (5.4)

which is exact Eqn. (2.22). For the desired end-effector position vector

Xd, we have

I(C, Xd) = In (Xd) = Id Eqn. (5.5)

where Id is the desired leg length corresponding to Xd at nominal value

case. However, for the real platform, due to the deviation of the geometric

parameters, the leg length corresponding to the desired end-effector

configuration Xd is

I = I(C,Xd) Id Eqn. (5.6)

therefore, even the VES controller is good enough to drive the legs to

reach exactly the desired lengths, there still exists an error between the

configuration of the platform and the desired configuration, i.e.

x = I 1(C.ld) Xd Eqn. (5.7)

If we assume that error due to the deviations of geometric parameters is
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small, global constant and not dependent of configuration of the platform,

the desired leg length of the real platform could be written as

Id = I (CX) I(Cn+AC, d+AX) Eqn. (5.8)

where

Ax = X-Xd Eqn. (5.9)

is the configuration deviation of the real platform when its leg length is Id.

If we expand Eqn. (5.8) in Taylor series and neglect the higher order

terms, we obtain

Id = I(Cn, Xd) + lacx=x;C
C =Ca Eqn. (5.10)

substitute Eqn. (5.4) and Eqn. (5.5) into the above equation,

Id = Id + [] Xd Ac + [ Xn Ax
L ax X =Xd Eqn. (5.11)

Now, we have a relation between the deviation of the configuration and

deviation of geometric parameters.

[lAc+ [J]Ax =0 Eqn. (5.12)
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With this relation, we can calibrate the platform to find the exact platform

geometric parameters. Eqn. (5.10) could be rewritten as

AC Lin ac [J]Ax
Ic [C J x Eqn. (5.13)

Calibration proceeds by positioning the platform in many

configurations within the workspace of the platform or letting the platform

follow some known test trajectories. Since we can measure the

corresponding leg lengths for each configuration, using the forward

kinematics algorithm, discussed in Chapter 4, we can obtain the deviation

of configuration ax and so finally solve for geometric deviation Ac.

There are a number of issues that arise when executing this

procedure, which will be related to techniques in different fields. One

issue has to do with the measurements of position and orientation of

platform as well as the measurements of leg lengths and the advanced

instrumentation is required. The effects on the accuracy of the

measurement by the error due to noise, drift and nonlinearity should be

diminished. Potentially the most serious issue is optimal choice of

geometric parameters to be calibrated. The dimension of the vector c or

ac is not restricted. A large dimension vector will increase the possibility

of accurate and converging calibration but at the same time increase the

difficulty of calculation of matrix [a] and its inverse matrix, and the

mount of experiment work might be excessive. A small dimension vector
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could result in an ill condition for the convergence of the solution or the

invertability problem of matrix [a'j, arising from singularities or from

data not being "persistently exciting". Since we only deal with the

deviation of geometric parameters, how to delete the effects of non-

geometric factors such as backlash and joint compliance should be very

carefully considered in the experiments. In order to obtain an accurate and

stable solution, a parameter identification procedure including the method

of statistical approximation must also be applied.

5.2 ERROR COMPENSATION

Two approaches for the compensation of the position and orientation

errors due to the variations of geometric parameters are considered.

Method 1: This method is based on the redefinition of the desired

position and orientation of the platform before applying the nominal

inverse kinematics. The modified desired platform configuration vector

Xd, which will bring the legs into the correct lengths corresponding to the

desired position and orientation of the platform Xd, is

Xd =Xd+ AXd Eqn. (5.14)

where

Axd =-[J][aln ]Ac
DC Eqn. (5.15)
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This method requires the inversion of the platform Jacobian matrix.

Obviously, this approach cannot be applied for the singular configuration

or even near singular configuration of the platform, when the Jacobian

matrix becomes a singular or near singular matrix.

Method 2: Instead of redefining the position and orientation of the

platform, this method directly correct the leg lengths corresponding to the

desired configuration of the platform Xd. For small geometric parameters

error Ac, the modified leg length is

Id =ld+ Aid Eqn. (5.16)

where

A Id = Jax =-In AcId =[J]x = ac Eqn. (5.17)

From the analysis in previous section, it is shown that both approaches are

equivalent in terms of the compensation effect if the geometric parameter

variations are sufficiently small. However, the second method does not

require computation of the inverse Jacobian matrix and thus can be used in

the singular configurations of the platform. In addition, this method is

superior in terms of time efficiency.
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CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

The design process of a six-degree-of-freedom, parallel linked,

hydraulic driven Stewart platform use as Vehicle Emulator System is

thoroughly discussed.

Two additional design considerations were proposed: stiffness and

admittance emulation accuracy. Detail analyses reveal the relationship

between the simulation error, components of Vehicle Emulation System

and performance specifications of VES. Analysis results show the

dominant factors which affect the performance of VES in static case, space

simulation case and vehicle simulation case, therefore, they provide insight

and some guidelines to the design process of Stewart platform.

Different kinematic models of the platform were discussed and

compared. A new approach for numerically solving the forward

kinematics was presented. In contrast to other numerical methods, it is

more efficient because of not requiring the calculation of 6x6 inverse

Jacobian matrix and it is also remediable when the configuration is in the

singular state. Kinematic constraints of the platform are analyzed and a

new algorithm was developed so that the leg interference problem could be

solved more realistically.
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A graphical simulation program based on analysis was developed and

used as a valuable design tool to investigate the effects of geometry and

constraints on the motion of the Stewart platform and to provide the useful

information about workspace, joint angle and hydraulic flow rate. The

simulation program allows the user to explore the different design

alternatives by interactively specifying and changing the design parameters

until a close to optimal design which satisfies all the design requirements is

achieved. The graphical simulation program is also used to preview the

experiment, to check the software error and to validate the control

algorithm.

The approach for correcting the position and orientation error of

Stewart platform due to the variations of geometric parameters was

discussed. The analytical formulas for improving the tracking accuracy

either by modifying desired leg length or modifying the desired position

and orientation of the platform were given.

Future work to improve the design of Stewart platform used as VES

should include the development of a six-degree-of-freedom dynamic model

of Stewart platform which could be used in accuracy analysis, impedance

(dynamic stiffness) analysis and advanced VES controller. Forward

kinematics of Stewart platform is a good research topic, which is not only

of theoretical importance, and also practically critical for error calibration,

failure recovery and dynamic simulation. In order to obtain a good,

accurate VES simulation , we have to thoroughly study a lot of issues
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concerning error compensation for Stewart platform, such as error effects

due to backlash of joints, servo and force sensor errors, and platform

vibrations etc.
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APPENDIX

Appendix 1.1

The follwing figure shows a one-degree-of-freedom translation

model of VES. The robot and platform move only along the vertical

direction. me is the mass of the robot and m is the mass of the base to be

simulated.

me

I f .I M 

I I

I
I I

Iy I
I I

iZ
I I

1- 1 1

I 

X I
I I

I I

I I

I I

z = x+y mZi= f .'. me(+Y;) = f

since fs = -f .. m= fs =-f

.'. mne(+Y) = -mi, or (me+m)/ = -Me

If we assume the motion of robot is a typical sinusoidal motion, y = Ysincot,

where Y is the magnitude of robot motion and w is the frequency of robot

motion, we have

y =Ycocoscot and y = -Yo2sincot = -o2y

We also assume zero initial conditions, i.e.,
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x = 0, =,O y O=0, 9 - O

.. x =-m+e y and z=x+y =me +y = m. Y

(i)Due to the offset error of the force sensor Afo = fsmax = ImXmax, and from

the equation m(AX) = AfO = Pmkmax= -p mm, .ax, we integrate twice and getm+ne

AxiAr. = jYme Y 2
AXIl =m+me 

Since VES uses admittance model, the Ax won't affect y, i.e., Aylaf. = 0

.. AzlIf° = AXilf + AyIf = m+m Y2t2

and also we have Zmax = m Y, so, the error of simulation due to offseta+me
error of the force sensor is

lAzl me2 2
Eo = AZI1 = - t2

mne(ii) Due to the gain error of the force sensor Afg = fs = -yf = yrnx = -mr,

and from the equation m(Axi) = Afg = ymni, integration gives us

AxlIf = -m+m y =

therefore, the error of simulation due to gain error of the force sensor is

-Yn~
Eg = zi - A=XIf= may+- t

Z -- Z m 
m+mey

Apedx116

when t 0.
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Appendix 1.2

Je

A

= me12

(r

J = r2
g

If we modify the one-degree -of-freedom model as shown in

Appendixl.1 to analyze VES rotational motion, and consider robot motion

0 = 3sin(ot, we have

a = +q , Jea = mel2 = X, ·. . 12(i+ ) = X, since rs =-r

(mel2 +mr2g) = -mel12

0 =Oocoscot and 0 = -3co2 sincot = -20

We assume zero initial conditions, i.e.,

0 =0, =0 ,p = O = when t = 

Je.0 = me1l2

me12 +mr 2

Appendix~~~~~~ 1. 
7
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1-+3 Me 12+mr t

(i)Due to the offset error of the force sensor Mf - Psmax " PJ$mx, and from

the equation J(ai) -if = f PJsmax - 1 ,max, we

1la& = =.2t2
J+Je

since BAfo = 0

.'. AXAf0 = APIf = .- (e 2t2 =
J+Je

and also we have axmax = 
J+je

integrate twice and get

1 . 12 8.oCt2

mri+m1el

therefor, the error of simulation due to

offset error of the force sensor is

al
lamaxtl

=Je 2t2 = p! mel)2 C2t2
= ~Tc = '-(. ot

(ii) Due to the gain error of the force sensor afg = yrs = -' = yJ = -i J"
and fJ+J te

and from the equation J(4aq) = Afg = yJ*p, integration gives us

APlaf, = -=- jej
= me12 0

me1l2+mr 2

Aclaf = A(PIAf, +AOlaf, = Aplaf + = Aplaft

so, the error of simulation due to gain error of the force sensor is

Je0/(Je+J)

J0/(Je+J)
= rg)2mr
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Appendix 1.3

Combining two one-degree-of-freedom models, which are discussed
in Appendix 1.1 and 1.2, we can develop a simple two-degrees-of-freedom
model. The robot motion is still a prue sinusoidal rotation, but the base
can move vertically or rotate corresponding to the force or torque the
force sensor measuires. In order to simplify the analysis, small motion of
the base system is assumed and the cross-talk effect between force sensor
channels is not considered.

J = mr2J-,,29

--I--- -r·--T

ZI
~~~~~~~~~~~I

XIf_ I
I~~~~~~~~~~~Xi I

1

I I

p z = x+la Jea = me12 a = T m.Ml12 (O+i) = I

for the base system,

mx'= fS J = mr2p =s

since rs =-t and fs = - m =-me(R +la)

· (mel2 +mr2) = -me120 and (m + me)R =-mel
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Assuming zero initial conditions, integration gives us

-J,+J 
12 ,,_ o-

(^1~4)

00 a 0+9 = -16+
J~e·f m1 2 +nm

and also

-(mel)(mrj) 0
(m+me)(me1 2 +m4)

Check the solution. Since initial conditions are all zero, the center of the
system must remain zero, i.e.,

Z O or I mizi 
i

since z = x+la -
m+l

i.e. mez+mx=0

la +la= mi a
me m+me

.'. rez =exa= me(x+la) = mm la
m+me

mx = m( rnela) = -M

. mez + mxO
(i)Assuming offset error of the force sensor is

AfO = Aft - smax)

Integrating the equation

JAp = ATo = tlsmax = 3J(Pmax= - J Jmax = JJe (. 2E
Je+J

and assuming zero initial conditions, we get

Apedx137

X=- mrrn, a 
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A(lI rp l I.42t2
J+J,

since AOlar. = 0

... JO - LAcpl _ J 22 = 12 4 2 t2
J+JI mrj+m,1 2

Assuming zero initial conditions and integrating the following equation

mA = af = fsmax = mmax r- m (Me+m=) (e+J)

n1 + male - (rn+m ) (J +J)

AxIlAo = M1C . 2t2
(me+m) (J,+J)

so, we have

Azlfo = Axlol + IAalfo = PmI eTI J-O 2t 2+ Je O 22t2
,(me+m) (Je+J) (J+J)

= mC2t2 )Mnl J + 12]
(Je+J) (me+m)

and also we have

zmax = + amax- + J

so, the error of simulation due to offset error of the force- sensor is

Az = t3o2t2mel mem [ J + 12]
= Izmi - - mlU Me+m

= mZt2 me [ 1 + m 12] = 2t2 me 1 + (1 2 + -e 2]- r2 + rsk [ +
m mr2 m r8 mr 8

ii)Assuming gain error of the force sensor is

Afg =(Ax) x fS9 Tg I "S,

Apeni 1. 74
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Integrating the equation

J,&,. = .. 0 Bs j j Y

and assuming zero initial conditions, we get

Alafs = 'yp =1 O

since aOlr = O

J+jeAssuming zero initial conditions and integrating the following equation=-

Assuming zero initial conditions and integrating the following equation

mA = Afg = yf =yrr = +m a =A . =X I
'Aia (lme+m) (Je+J)

so, we have

Azlir, = Axla + ILalif, =

- (m+m) (-J+J(Me4+M) (Je+J)

y Jel 
(Je+J)

y Omel [ J +12]

=(Je+J) (me+m)

and also we have z= l a= ml J 0
m+me m+me J+Je

therefore, the error of simulation due to gain error of the force sensor is

gaz = =men+m + 12]
F- z = J Me+m

= y me [ 1 + me+m 12]

=-,m [1+( (-_2+ me rl)2]r()2 m 12 1r g g

Apedx137

m-

(me+m) (Je+J)
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Appendix 1.4

For VES to simulate more general base system, e.g., the suspension

system of a vehicle, the stiffness of the base system is a very important fact,

so, it should be considered in the base model in addition to the inertial

effect of the base. On the basis of simple two-degrees-of-freedom model,

which is discussed in Appendix 1.3, we include stiffness of base system and

establish a two-degrees-of-freedom VES model. In the model, the stiffness

of the base system includes both translational stiffness k and rotational

stiffness kr. Since stiffness exists in the base system, the base will produce a

restoring force to balance the error force caused by the offset error of the

force sensor. Therefore, in vehicle emulation case, the offset error is static

and negligible and the gain error will dominate.

Je = me 12
I ---- 4--

Z I

J= mr2
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.. m-2(0 ) Ja m1el2 r

for the base system,

m'+ kx = f =-f =--mel- a -n(Xla)

'. (J,+J)p + krqp =-JeO or (mn

J + kp = mrip + kp= s= -r

.12+ mrj) " + k,p = -me12

and (m + me) + kx =-n1rla

Assuming zero initial conditions and sinusoidal motion of the robot

0 = Osinot and 0 = -co2 esinot

the forced response of the system is

(o = °W2Je 0

kr- (Je+J)o2

Define

= kr

(ml1 2+mr2g)
and Mr = 02 = 

co2wZ- 1-_( _rw)2
co

.(p=-MrJe0
(Je+J)

aO = +p = J+(1 - Mr)Je 
Je+J

Similar, the forced response of x is

X = melo2
k-(m+me)

= mel 2 [J+(1-Mr)Jele
k-(m+nme) (Je+J)

Define

( (me+m)
and M= C2 = 1

2--l_ (1_(--)2

Apedx147

kr
(Je+J)

Z x+fla
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'. x = - m ItJ+(l (-M t)J e]
(mr+me) ($e+J)

Assuming gain error of the force sensor is

Afs = Af) fl

"'. I Ax

I A|
= -ye

1!_[J -+(Mr)Je
(nM+m) (Je+J)

MJe
(JO+J)

Since AO = 

.'. A = AL + a(l = A(p

.'. Az = Ax+lAa =- 0Mml J +(1-Mr)Je
(me+m) (Je+J) (Je+J)

_yme ( M [J +(l-Mr)Je] + Mr12)
- (Je+J) (nMe+m)

and z=x+l=-O Mnl [J +(-Mr)Je]
(ad l-+m) (J'+J)

= el [J+(1-Mr)Je][1 Mme]
(Je+J) (me+m)

J +(1-Mr)Je
(Je+J)

m +(1-M)e
= Oe' [j+(lMr)Je][ (In--- ]

(Je+J) (MemM

Therefore, the error of simulation due to the gain error of force sensor is

-YOe+J) { M J+(-Mr)JeI + Mr12 )
(Je+J) (me+m)

Oe [J+(lMr)Je][m+(1-M)rr e
(Je+J) (Me+m)

-Ye { M[J+(1-Mr)Je] + (me+m)Mrl2)

[J+( 1-Mr)Je] [m+(1 - M)me]

+ MmeMrmel1l 2

[J+( 1-Mr)Je] [m+(1 -M)Me]
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=Sy-Mm M rmel2

m+(1 -M)me [J+(1-Mr)Je]

.' g= Z
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Let's discuss some special cases.

(1) k=O and k0,SOCa= 0, cr=0, M1 and M=l

. 8' .-=[ + )2 + (X)21

This is the same result as that we obtained from simple two-degrees-
of-freedom model.

2) k=0 and kr-+o, socon,=, oo,M = and Mr -O

This is the same result as that we obtained from simple one-degree-
of-freedom translation model. Very large rotational stiffness prevents the
base sytem from rotating.

3) kr=0 and k-*-oo,so =O, o)n-oo, Mr=l and M -O

£g= AZ e+ _y2

This is the same result as that we obtained from simple one-degree-
of-freedom rotation model. Very large translational stiffness prevents the
base sytem from moving.vertically.

(4)For a practical case, when o << on and co << onr, we have

M--- 2 and -M - 1+ 2 - 1

Mr- -c)2 and -Mr - 1+ 2 --- 1

so the emulation error will approach to

= = -r - ~+ _ ]c Az _y ymeO2 12 me12co2

Z k kr kkr
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Appendix 2.1

1.1

= rsin(cr/6+p2);
= rsin(/6-p2);
= -rcos(9p2);

YJ1

yJ2

YJ3

YJ4

YJ5

YJ6

= XJ3;

= XJ2;

= XJ1;

= Rcos(qpI);

= -Rsin(ir/6-pl);
= -Rsin(7l/6+pl);

= XB3;

= XB2;

= XB1;

= rcos(7c/6+p2);
= rcos(ir/6-p2);
= rsin(9p2);

= -YJ3;

= -YJ2;

= -YJ1;

YB1 = Rsin((pl); ,

YB2 = Rcos(ir/6-p 1);
YB3 = RCOS(ir/6+(P1);

YB4 = -YB3;

YB5 = -YB2;

YB6 = -YB1;

Let X =xJi-XBi and Yi=YJi-YBi, i=1,...6., and denote

sO=sinO; cO=cosO; s2 0=sin 2( and c2(=cos 2 etc.

Appendix 21 
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y)

B1

XJI

XJ2

XJ3

XJ4

XJ5

XJ6

XB1

XB2

XB3

XB4

XB5

XB6

Appendix 21 80



since xJl+ X2+XJ3 = rs(n/6+p2)+rs(l/6-qp2)-rc((p2)
= rs(7t/6)c((p2)+c(,r/6)s(p2)+s(gi/6)c(qp2)-c((X/6)s(p2)-c((p2)]
= r[O.Sc(qp2)+0.5c(p2)-c(P)2)]= 0

so e xJ=xl+xs2+xs3+xl4+xs5+xs6=xJl+Xl2+xJ3+(xJ3+xJ 2+XJI)
isl

=2(XJl+XJ2+x1 3) = 0

since XBI+XB2+XB3 = Rc(P 1)-Rs(7/6--1)-Rs(/6+ qP1)
= R[c((pl)-s(7c/6)c(p1 )+c(7r/6)s( 1 )-s(c/6)c(p1 )-c(R/6)s(pl)]
= R[c(qpl)-O.5c(pl)-0.Sc(pl)]= 0

so

Y XBi=XB I+XB2+XB3+XB4+XB5+XB6=(XB I+XB2+XB3)+(XB3+XB2+XB1)

= 2 (XB1+XB2+XB3) = 0

e YJi=YJI+YJ2+YJ3+YJ4+YJ5+YJ6=(YJI+YJ2+YJ3)+(-YJ3-YJ2-YJI)= 0
i=l

, YBi=YB +YB2+YB3YB 4+YB+YB+YB6
i=l

=(YB 1+YB2+YB3)+(-YB3-YB2-YB 1) =

6 6

I Xi= I (XJi-XBi)
i=l i=l

6 6

= E Xi- XBi = 0
i=l i=l

A pp di 21 
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i Y= (Yli-Yi) = Yi- YBI = 
iul ij l ji l iul

i xi = xy+2y2+x3y3x4y 4 + xsy5+x6y6
i=l

= XlYl+X2y2+x3Y3+X3(-Y3)+X2(-y2)+Xl(-Yl) = 0

x?)2 *2 .2 *2 *2 *2 2 2 2 2
(x,2)= (X,) +(x2) +(3) +(X4) +(x5) +(x6) = 2[(xl) +(x2) +(X3) ]

i=l

= 2 [(XJ1-XBI) 2 +(XJ2-XB2)2 +(XJ3-XB3)2 ]

= 2 [xJI+x2+x3+X Bi 1++X2+X3-2J1X1--2XJ2XB2.-2XJ3XB3]

= 2 r2 [s 2(7r/6+ 92)+S2(7r/6-92)+2p2)+R2 2( 2 (pl )+s 2 0(/6-(p 1)

+s 2(r/6+(p1 )]-2rR[s(7r/6+(p2)c( 1 )-s(r/6-p2)s(r/6- 1)

+c((p2)s(r/6+p1)] }

= 2 r2[2(2)+2((q2 )+qs(q2)(2)+4cc(9 c2(p2)+s((p2)

-fs((p2)c(p2)+c2(p2)+R 2 [c2(p 1 )+ 2(p)+ 3 s2(p 1)

-fS(p 1)c(p1pl)+c 2(qp 1)+3 s2((p1 )+2sS(qpl)C(pl )]

- 2rR[ 2 -+2rR[ c((pl )c((p2)-c(p l)s((p2)-4((p)c((p2)
+os(pl)c(p2)+<c(gpl)s(p2)-s(pl)s(p2)+ (9p1)c((P2)

+f s(l)c(p2)] }
2

= 2f 3 r2+3 R2-2rR 3[ ((pl+qp2)+q5s(pl+q2)] }

= 3[r2+R2-2rRs(g/6+pl+p2)] = 3[r2+R2-2rRc(7/3-qp-(q12)]

= 3r* 2

where r*2= r2+R2-2rRsin(r/6+p 1 +(P2 ) = r2+R2 -2rRcos(0/3-p 1-(p2)
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2 .2 .2 .,2 .,2 .2 2 ,2 .2
(Y) 2 (Y2) +(y,,)2 (Y+( 4) +(yS) +(Y6) = 2[(yl) +(Y2) +(y3) ]

iul

= 2 [(yj -YB )2+(yj2-YB 2)2+(YJ3-YB3)2 ]

= 2 [Y+Y2+5y3+Y&i+Y1B2+Y3-2y2yIYBI-2YJ2YB2-2yJ3YB3]

= 2 r2 [c2 (i /6+ p2)+c2(X/6-(2)+s2(p2)]+R 2[s2(p 1 )+c 2 (/6-p 1)

+c2 (7/6+(pl) ]-2rR [c(r/6+ p2)s( pl)+c(c/6-(p2)c(c/6-p )

+s((p2)c(r/6+ 91 )] 

=2 (r [C2((p2)+iS2((p2)-gs(p2)c((p2)+c2p)

+ Is(q92)c(92)+s2(92)]+R2 [s2( )+C2(91)+ls2(91)

+s(1)C((p1)+2(p )+-ls2((p 1 )-S(1 )c(p 1)]

- 2rR[ Is((l)c((2)-4s((p1)s(92)+c((pl1)c((p2)

+sS(P1)c(2)+ c(( 1 )S(2)+ lS((1)s(92)+ c(1 )S((P2)

-Is(l1 )s(9P2)] })
2

= 2{2r2+ 3 R2 -2rRi-[ I-C((p1+(p2)+ s(91+(p2)] }

= 3[r2+R2-2rRs(7r/6+ p1+ p2)] = 3[r2+R2L2rRc(r/3-qpl-(p2)]

= 3r*2

E (Xji )2 = XJ12+J2 2+x X 42 +4 2+ XJ5 2+Xj62 = 2[Xj1 2 +XJ22 +XJ32 ] =
i=l

E (Y i)2 = YJ1 2+yJ 2+YJ32+J42 +YJ52+YJ62= 2[yJ1 2 +yJ22 +yJ32] = 3r2
i=l

E (XB) = 2[XBI 2+XBXB2+XB32 ] = 3R2

i=l
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j (yBI)2 = 2[YB12+YB22+YB32] = 3R2

i-l

jXBi = 2(XJIXB1+XJ2XB2+xJ3XB3) = -(3C -3r2-3R 2 )
2

im

= 3rRsin(n/6+p 1+p2)

YJiYBi = 2(YJ1YB1Yy+YYB2+YJ3YB3) = - 1 (3C -3r2-3R 2 )
2

= 3rRsin(i/6+(pl+(p2)

xjiY2i = 2(xriY 1B+XJ2YB2+XJ3YB3 =2rR 2 [s2 ((pl)s(/6+(p22)
i=l

+c2(ir/6-(pl )s(r/6-(p2)-c2(/6+pl)c( 2)]= 2rR2[-8c((p2)c2((p )

+8(p2)s2(1 ) 3 s( (p2)c 2 ((p 1 )+T-s(2)s2(p 1 ) 1s(1 )c(p 1 )c(p2)

- 3 -s((p 1)c((p 1)s(p2)] = 2rR2[-c(2(p 1 )s(/6+(p2) +3-s(2( 1 )c(r/6+(p2)]

= - 2 rR2s(n/6+(p2-21 )

2
E yj2iXsi = 2(yjlX B l+ y 22X B2 + J23X B3 ) =2r2R[c2/6+ 2))c(p1 l)
i=l-

-c2(/r6-_p2)s(//6- l )-s2((2)s(x/6+01)] = -2Rs(/6+q1-2q}2)

(permutation of the subscripts)

e XJiYJiYBi = 2(XJlYJ1YBI+XJ2YJ2YB2+XJ3YJ3YB3)
i=l

=2r2R[s( (/6+2)c(//6+2)s((pl)+s)c(/6- 6 )

-c((p2)s(2)c(r/6+ (l1 ) = 2r2R3s ((pl1 )c(2(p2)---C((P1 )s(2 (p2)

+3c(l1)c(292)+3-s((l)s(292)] = 2r2R[c(2(p2)s(ir/6+91)
8 8 2
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-s(2 qp2)c( /6+p) 1)] I 2Rs(/6+p1- 2p2)

. yJiXBiYBi = 2(yjIXBIYB+YJ2XB2YB2+YJ3XB3YB3)
is'

=2rR2[c(g/6+p2)c(p )s(pl )-c(x/6- 2)s(x/6- p1)c(X/6-V I)

-s(p2)s(x/6+pl )c(r/6+p1)1 ) -=rR2s(/6+(p2-2pl)

(permutation of the subscripts)

y2iXi = 2(y2,X 2Bl+y?2XB2+y23X 23) =2r2R2[c2(opl)c2(/6+(p2)
itl

+C2(x/6-(p2)s2(xr/6-p 1 )+S2((p2)s2( /6 . )] = 2r2R2I[C2(q 1)C2(p2)

+e2(pl )s2(p2)+i.s2 (p I )s2(2) s2(p91 )2(2)c 2(p1 )s(p2)c(p2)

I+-z( 1 )s(pq2)c(2)+ s 2(qp2)s((p l )c(p 1 )-3c2(p2)s((pl )c(1 )

-3 s(p)s((p2)c(pl)c(( p2) = 2r2R2 (-[ lc((pl)c((p2)-( s((p2)] 2

c-¢((p 1 )s((p2)+s((p 1 )c((p2)12- 3 l[s(21 )c(2(p2)+c(2(p1)s(2p2)] )
16 16

= ar2R2[5c2(qp 1 +pq2)+3s 2(p l +(p2)-/3s(2 1+2(p2)]
8

= ar2R2[3+2c2(9 1 +(p2)-/3s(2(p 1+2(p2)]

6 2 2 2 2X xjiYBi = 2(xJlYBl+XJ2 YB2+XJ3YB3) =-2r2R2 [s2(lp 1 2 (/6+(p2)
i=l

+c2(K/6- l)s2(f/6-p92)+2( p2)2(r/6+p )]

= ar2R2[3+2c2((pl +(p2)-/T3s(2(p1+2(p2)]
8

(permutation of the subscripts)

Z XJiYJiXBiYBi=2(XJlYJ1XBIYBI+XJ2YJ2XB2YB2+XJ3yJ3XB3YB3)
i=l

=2r2R2 [s(7r/3+2p2)s(2pl1 )-2s(r/33-2p2)s(/3-2l)s(2p2)s(r/3+2p)]
4 4 4
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=Ir2R2( 3 s(2(p l )s(2p2)- lc(2p1 )cs(2(p2) s(2(p l)c(2(p2)
2 4 44

+3fC(2p1)s(2(p2)J r2R2[.C(201 +2 p2)- fs(2 p1 +2(p2)J

= -Ar2R2s(n/6-2(p1-2(p2)
4
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Appendix 2.2

Eqn. (2.17) gives I = ity)
NZ1 

Dl xji+D 1 2YJi+X-XBi

D2 1 Xi+D22YJi+Y-YBi
D31Xji+ D32YJi+z

and Eqn. (2.16b) shows 1i described in platform coordinates, i.e., xyz
frame,

i = lI = IllD 2

iz I IID3
I

where the direction vectors DI, D2, and D3 are given by Eqn. (2.15)

Dli

D21
D31 I

coslcosy

cossiny

-sin3

I

I

D12

D 2 = D22
D 32

I D 13

D3= D23
D33

)=f
1=LI-

It

1-

sinasinopcosy-cosasiny

sinasinpsiny+cosacosy

sinacos3

cosasinpcosy+sinasiny

cosasin3siny-sinacosy

cosacosB

1

I

1

Dr

the leg length is given by Eqn. (2.18)

li = 7 1~X + i 2y + 12
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and the Jacobian matrix will be

[J]= a = ([ ali -

where

- acV 1?+py+ Z )

ay - ay

alix
ax

ax 2 I + + I'

a(v/l+12 + i ) __21iy Iaya X+2 + )=

=lix =DllxJi+Dl2YJi+x-XB
ii Ii

=liy =D21xii+D22YJi+y-YBi
li li

aliZ
2 iz-

21 Ij2+1I.+ l;ZZ

=z =D31xji+D32YJi+Z
Ii li

since
aD I
aa

aDI _ i aD2 l, 

aD3, 

I aD 12 I

aa
aD 2 2

aa (
aD 32

aa

-J

-II

cosasinf3cosy+sinasiny

cosasinf3siny- sinacosy

cosacoso
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all all

ax ay

al2 a2

ax ay

al6 ai6

ax y

all

av

al2

ai

a16

. .

aD2

aa I=D3

a(V"_12-,Xt 12 12 )
iy i7l

ax

ali_ =

2V 12 +12 + 12
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D 3 8aD23 
aD3 = aD23 -sinasinlsiny-cosacosy -D2

8d 3 { | -sinacos I

Ia" I -sinopcosy

aD-aD21 1-sinsin =-(sinaD 2 +cosaD 3)

aD -COSITa i

aD2 aD3 (
a1I ap I1

aD32 |.

D 1

aD I

aD3 ap l cosacospcosy

ap aDp = cosoccospsiny =cosaD,

aD33) 1 -cosasino

aY| l-cosl3siny siny

ayD a coscosy =cosl Co sY =cos3(cosaD2-sinaD3)

IaD12

ay - sinasinsiny-cossa cosy

02 a n = sinasinocossin -cosasin =- cosacos l-sinD3
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aD aD -cosasinsiny+sinacosy
aD3 = aD23 = cosasincosy+sinasiny =sinacosPDj+sin3D 2

aD33 l0

ay I
SO,

al = a(! +12Y+ i2)
aa aa

21i +aix 21 +·li 21·-az
!iaa a aa 

2V 1 +1x+ 12

liaDl aDl2 aD21 aD2 2 aD 3 1 aD 32
liX(Xi+Y i)+liY( -8-XJi+-yja+i)+iz( aai Jaa +a aa au

li

Xji(I. DI)+yji()ii D 2 ) J-i 1i .
al-; ad iiiY+ lZ)

DINali aliz
21iXaix +21ijYliY +21a

ap a a1

2V I' +1' y+ 2

aD· I aD 1 , aD21 aD22 aD31 aD32

lix( -~XJi+- Yi)+iy X i)+ iz( -xJi a YJi)ap ap ap a al ap

li

xj(li D )+yji(li. D2)
ap ap

li

=ir (yjisinocD -xjisinaD2-xjicostaD3)

li

-xi[ sina(li D2)+cosa(li. D 3) j +yjisina(lI D 1)
li

= lix icy 1z= yjisinca--i -xjisinfa- xjicosC--li -F -F

o l ai = 0'1/2+1y+ 2_'"~-'r/'Y--'VPz'/'Iav au ~ ~ 2l~l~l
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,aD, 1 aD ,.. aD a .a . . aD3 .aD3 

II

Xi(I aD
ma

.)+Y(li- aDa2
0"Y

II

xjcOsjicosp[csa(l r D2 )-sina(Ir D3)-yji[cosacos3(li. D )+sin1(Ir D3 ) 
li

= xjicos3(cosa-sina.i1 -yji(cosacosi+sini P,)ii ii ii ii
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Appendix 2.3

Eqn. (2.29) gives [S][(J]T[KI[J], so, for platform is at its rest

configuration, where x = (0, 0, zo, 0, 0, 0) and due to symmetry of the

configuration, each leg length will be same at this time, i = lo, ( i = 1, 2,

..., 6), if we assume that the individual stiffness of each leg is same, i.e.,

ki = k, ( i = 1, 2, ..., 6), the stiffness matrix [S] is

[aljrfai] _m__ alaml[S] - [J] [K] [J] = k [J]TJ] = [siJ =k il[aiA = k axl axj]

since x=0O, y=O, z=zo. oa=O, 3=0, y=0, the direction vectors are

D1= 0o D2= 1 D3= 0

and the components of leg length are

lix=liX= D1 lXJi+DI2YJi+X-XBi=X,

liy=liy = D21Xi+D22YJi+Y-YBi=Y,

liz=liz = D 31 xi+D 3 2YJ i +Zo=zo

so,

ali _ lix Xi
ax ii lo

ali _ l i y
ay li lo

ali _ liz _ ZO
az li lo
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F i 
ali

ap

Yj 010

= Xi k,i - j

a= X ..j. -yJi -
1'i l Xi y l i - x JIY s i

and

SI= k]t (ali.2= k:
iml X i-l o I i=l1

(x)2 ) 3kr2

where

r*2 = r2+R2-2rRsin(1r/6+ pl+p2)= r2+R2 -2rRcos(r/3-(pl-(p2)

X

z

J1

B1I

From the above figure, we have

sinO = Zo and
lo
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so,

S t t - 3kCos20
2

6 a, 6 · 6
~ ()=kj (L)2k.(Y (~~)2) =3kcos2OS224k ( ,io 2t (y )2)=3kc2 3kcos26

il ay i.l 1o 12 il 

S33=k (ai)2.-k (L)26k 4 = 6ksin2o
il OZ i'l 10

S44=k, (ja-)t2..kX (yl, =k)2kX yi = 3kr 4 = 3kr2sin2O

Sss=kX (.)i 2=kX ( xli; ,2=k2 6 xi = 3kr2 = 3kr2 sin 2O

S66=kX (l $)2= k (YJiXBi-XJiYBi) 2
i=l =l i =l
6 6 6

&42 2 4Ss=kR 2 (2 [2c2=(-X+p2-c(2p1+22)+3s(l/6-2p -22)i1l(~ l

3r 2R2 [ 1+sr/6-2pl-2p2)]
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6 aliali 6S 1 23 S 1 k aXa) X;I) o0

S1 3= S1 =k x xjij) =0S 1 4 = S4 1 =k (l ll) (XJiyji) =0axacx l

i=1 i=lS24= I =k ( iyi )= 6- [3rRs(i/6+p1+p2)]"~~0 i=16 6

S26 S61 =kZ (alali kzo ) Oi--1 (l~ =, " 2( [i(YJiXBi- iYBi)] 

S23= S32 =k) =°=S24=S42 ki= ali= z 3kzr23rRs(t/6+ql+q2)
i=l lya i=l 12o

S25= S52 =k ( ~ 2 yjixii) = 0

$26 = 62 =k (~ =k { [Yji(YJiXBi-(XJiYBi)]}
i=1 aly 120 i=l

=k (yiXBi)_1 (JiYJiYBi)+Z (xJiy i)-2 (yJiXBiYBi) =0
10i=l i=l i=l i=l
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6

S34= S43 "ki
i-i

allali

S35= Ss3 =k, (ll)
iml ap

- k ( Yi) = 0
lo il

xji) = O0
0 im,

S3 6= S63 =k2
i=l

aliali)
azay

6 6
= (YiXBi)-l

iul i1
(xJiYBi)] = 0

S45= S54 =kX ( al)
i aap

(xjiyji)] = 0
0 i=l

6

S46= S64 =kX
i=1

(al ali kzoI

caaay i=

6

(YiXB)-1
i=l

(xJiYJiYBi)] = 0

6

S56= S65 =kX
i=l

ali a li

a '
= -kzo [ (XJiYJiXBi-X

1o i=l i=l
(Xi YBi) = 0

We know that if displacement only in x direction, i.e., Ax=(Ax O0 0 0 0 t ,

the corresponding force will be

Fx= S 11Ax

so, the stiffness in x direction is

Sx=Fx/Ax = Sll= 3kcos20

and if displacement only in y direction,

corresponding force will be

Fy= S22Ay

i.e., Ax=(OyO O 0 0 )'
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so, the stiffness in y direction is

Sy=Fy/Ay S 3kcos 2

if in oxy plane, there is a displacement Ap in the direction at the angle V

with x axis, i.e., Ax=(ApcosV ApsinV 0 0 0 0), and the corresponding force

is

FX=S11iApcosl and Fy=S 22ApsinWi

the force in ' direction is then

FWVF2---(S 1 lApcos2V)2+(S'22ApsinV)2 = 3kcos28Ap

so, the stiffness in v direction is

S,=FW/Ap= 3kcos 2 = S = Sy

the stiffness in horizontal direction at platform's rest position is the same,

and is independent of direction W.
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