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Abstract

Recent experiments have used tomographic techniques to reconstruct images of ro-
tating targets from either range-resolved or Doppler-resolved laser radar data. In
the range-time-intensity (RTI) imaging approach, a series of N range projections
of the target reflectivity is collected throughout the target rotation period by direct
detection of a short-duration laser illumination pulse. In the companion Doppler-
time-intensity imaging (DTI) technique, a set of N Doppler-resolved target reflec-
tivity projections is recorded over the target rotation by an optical heterodyne laser
radar receiver. The resulting two-dimensional image formed from either set of N
projections is corrupted by detector shot-noise and optical speckle effects.

This thesis theoretically models and analyzes the statistical performance of both
RTI and DTI imaging systems. Performance predictions are made in terms of radar-
target geometry, electromagnetic propagation, target characteristics, coherent or in-
coherent detection, post-detection processing and tomographic image reconstruction.
The derived image signal-to-noise ratios (SNR's) and point spread functions (PSF's)
are used to compare the two approaches to existing experimental data.

Thesis Supervisor: Professor Jeffrey H. Shapiro
Title: Professor of Electrical Engineering

2

�



Acknowledgements

The completion of this dissertation would not be possible without the help of many
people. I am very grateful to my research advisor, Professor Jeffrey Shapiro, for
his keen insight, patience and encouragement during the course of this research. I
also appreciate the suggestions and viewpoints offered by the two other members
of my Ph.D. committee, Professor Alan Willsky of the M.I.T. Dept. of Electrical
Engineering and Computer Science and Dr. Alan Kachelmyer of the Laser Radar
Measurements Group at the M.I.T. Lincoln Laboratory. I thank Drs. William Ke-
icher, Brian Edwards and Richard Marino of the M.I.T. Lincoln Laboratory Laser
Radar Measurements Group for their expertise and gracious support.

I am thankful for the friends I have made while attending M.I.T. The support
and friendship of Tom Green and Robert Mentle of the Optical Propagation and
Communication Group and David Nordquist and Mike Reiley of Lincoln Laboratory
made my schooling much more special. I am also very grateful for the encouragement
and prayers of my friends at the Waltham Evangelical Free Church.

Finally, I thank my fianc6e, Joellen DiRusso, for her commitment, love and un-
derstanding.

This thesis was sponsored by the Department of the Navy. This support is appre-
ciated.

3



To my parents, Robert and Claudette Binder

4



Contents

Abstract

Acknowledgements

1 Introduction
1.1 Optical Radar ..................
1.2 Research Program. ...............

2 The Mathematics of Tomography
2.1 The Radon Transform ..........................
2.2 Backprojection Image Reconstruction .................
2.3 The Inverse Radon Transform ......................
2.4 Sampling and Resolution .........................
2.5 Reconstruction Example .........................

3 Two-Dimensional Speckle Field Tomography
3.1 Tomographic Speckle Model.
3.2 Projection Statistics ...........................
3.3 Backprojection Image Statistics .....................
3.4 Backprojection Image Signal-to-Noise Ratio ..............
3.5 Filtered Backprojection Image Statistics ................
3.6 Filtered Backprojection Signal-to-Noise Ratio.

4 RTI Tomographic Imaging Performance
4.1 RTI Tomographic Imaging Model ....................

4.1.1 Transmitter Beam Propagation .................
4.1.2 Target Characterization .....................
4.1.3 Direct Detection .........................
4.1.4 Post-Detection Image Processing ................

4.2 Projection Statistics ...........................
4.3 Reconstructed Image Performance ....................

5

2

3

9
12

14

21
23
26
26
27
29

33
33

37
42
46
50
53

59
61

61

66

73

75

76

84



6

5 DTI Tomographic Imaging Performance
5.1 DTI Tomographic Imaging Model .

5.1.1 Transmitter Beam Propagation
5.1.2 Target Characterization.
5.1.3 Heterodyne Mixing Integral
5.1.4 Post-Detection Image Processing

5.2 Projection Statistics ...........
5.3 Reconstructed Image Performance ....

6 Comparison with Experimental Results

7 Conclusions

A Appendix

B Appendix
B.1 RTI Mean Projection Formulation ......
B.2 RTI Second Moment Projection Derivations

B.2.1 Projection Covariance ........
B.2.2 Filtered RTI Projection Variance

C Appendix
C.1 Heterodyne Signal Correlation ........
C.2 DTI Projection First Moment Derivation . .
C.3 DTI Second Moment Projection Derivations

C.3.1 Projection Covariance ........
C.3.2 Filtered DTI Projection Variance . .

129
... . . . . . . . . . . . 129

... . . . . . . . . . . . 134

... . . . . . . . . . . . 135............. ...146
151

... . . . . . . . . . . . 151

... . . . . . . . . . . . 155

... . . . . . . . . . . . 158

... . . . . . . . . . . . 159

... . . . . . . . . . . . 163

Bibliography 165

Biographical Note

CONTENTS

95
96

96

'38

99

102
104
111

117

121

125

170



List of Figures

1.1 Radar Operation ............................. 10

1.2 Optical Heterodyne Detection ...................... 13
1.3 Laser Radar Imaging Example ...................... 15
1.4 A Range-Time-Intensity Imaging Example ............... 17

2.1 Computerized Tomography Geometry ................. 22
2.2 Phantom Reconstructions: (a) Original Phantom, (b) Backprojection

Reconstruction, (c) Filtered Backprojection Reconstruction. ..... 30

3.1 Two-Dimensional Speckle Tomography Geometry ............ 36
3.2 Covariance Calculation Geometr. ................... 40
3.3 Normalized Mean Backprojection Tmnge PSF, Gbp(x,y :4) ...... 43
3.4 Backprojection SNTR Performa.nce ................... 49

3.5 Filtered BR.ckprojection Mean Image PSF (a) gf(r), (b) Gfbp(x,y :4) 52

3.6 Filtered Backprojection SNR Performance . . . . . . . . . . ... 55

3.7 SNR Performance Comparison ...................... 56

4.1 Laser Radar RTI Imaging Model Geometry ............... 62
4.2 Fraunhofer Diffraction Formula Geometry .............. 64
4.3 Photodetector Model ........................... 74

4.4 (a) Construction of the Orthographic Projection of a Sphere (b) Nor-
mal Orthographic Projection of the Globe (c) Transverse Orthographic
Projection of the Globe .......................... 86

4.5 (a) PSF Reconstruction for N = 144 Projections. (b) PSF Orientation. 90

5.1 Laser Radar DTI Imaging Model Geometry .............. 97
5.2 Post-Detection Image Processing .................... 103
5.3 (a) PSF Reconstruction for N = 144 Projections. (b) PSF Orientation. 113

6.1 Comparison of RTI and DTI Reconstructions ............. 118

7



8 LIST OF FIGURES

A.1 Placement of the (x,y), (,y), (x',y') , and ( y") Coordinate Sys-
tems with respect to the Scan Lines. .................. 126



Chapter 1

Introduction

For measuring the range and bearing of a distant object, no instrument outperforms

radar. Since before WWII, RAdio Detection And Ranging has been applied suc-

cessfully to a number of location, tracking, discrimination and remote sensing ap-

plications [1, 2]. Even after 50 years, the frontiers are being pushed forward with

the development of storm sensitive Doppler-weather radar [3, 4], the testing of an

over-the-horizon tracking radar in Maine [5, 6] and the operation of a high-resolution

terrain mapping radar platform in orbit about the planet Venus [7, 8].

Radar operation diagrammed in Figure 1.1. The radar transmitter sends a pulse

of electromagnetic radiation out into space toward a distant target. When the pulse

reaches the target, some of the pulse energy is reflected back to the radar set. The

radar receiver measures the direction of the arriving echo and computes the target

range from the round-trip flight time of the transmitted pulse.

While radar is primarily designed to measure range and bearing, a number of

secondary target characteristics can be gleaned from the target echo. For instance,

the target size, shape and composition affect the magnitude of the received echo.

Short-pulse radars can find the range-resolved cross-section of an extended target

by recording the return echo created by the transmission pulse traveling over the

9



CHAPTER 1. INTRODUCTION

Target

Radar

Figure 1.1: Radar Operation

target surface. Any gross Doppler frequency shift within the received return indicates

target motion along the radar's line-of-sight. Furthermore, spectral broadening of the

received echo shows relative motion between the components of an extended target

even if the target is unresolved by the radar transmitter beam. For example, an

approaching helicopter will exhibit a large echo shifted upward in frequency due to

the moving airframe, but the motion of the whirling blades relative to the aircraft

body will broaden the received spectrum about this gross frequency shift. In fact, this

effect can be used by radar set operators to classify airborne targets by measuring

the Doppler spread caused by aircraft blade rotation [2, p. 18.36].

Of course, target imaging provides the most straightforward means of identifica-

tion. Radar imaging can be approached two different ways. In the first approach,

the distant target can be raster scanned by a tightly focused beam which resolves the

target at the detail level of interest. Alternatively, the evolution of the target's radar

cross-section, projected onto either the range or cross-range axis, can be recorded

10
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as the target exposes all surface aspects to the radar through rigid body rotation.

The unique contribution of each target surface feature to each projection can then be

exploited to reconstruct an image of the target.

To see how these "projections" are produced in the second imaging - cenario, con-

sider the return from a rotating target. For a short-pulse radar employ.'ng a broad-

band receiver, the cross-sectional range projections are found by simply recording

the return echo over the total range extent of the target. A number of these range-

resolved projections, each of a different target aspect, are then used to reconstruct

the target image.

The measurement of the complement cross-range target projections is a bit more

complicated. From the point of view of the radar transmitter, all areas on the rotating

target surface with identical longitudinal velocity share the same return Doppler

frequency shift. In other words, the return spectrum corresponds to a profile of

the regions on the exposed surface with the same line-of-sight velocity. As with

the range-resolved measurements, this resulting set of velocity "projections" of the

rotating target can also be combined via tomographic techniques to form an image

of the target.

High-resolution raster scan imaging at radio and microwave frequencies requires

huge antennas or the application of interferometry, and projcztion-based imaging

requires a very large broadband transmitter/receiver pair or a very sensitive Doppler

receiver. At standard radar frequency bands these requirements can be difficult to

meet. But, by switching to optical wavelengths, targets may be imaged by systems

with relatively small apertures.



CHAPTER 1. INTRODUCTION

1.1 Optical Radar

Radars have been constructed which utilize pulse carrier frequencies from the tens

of megahertz up to the hundreds of terahertz, in the realm of optical frequencies [2,

§1.4]. In the optical regime, radar set transmitters use lasers to generate and control

the intense pulses required for target interrogation. By virtue of their small working

wavelength, these laser radars can be compact, high-resolution systems.

Laser radar set receivers use photodetectors to convert the target echo into an

electronic signal. These photon sensitive devices respond to the optical power falling

on the detector surface. Specifically, in the absence of excess noise sources, such

as speckle, etc. (see below), photons strike the detector with Poisson distributed

interarrival times at a rate proportional to the received optical power. Since the

detector output is a superposition of the responses of individual photons impinging

the detector surface, the detector response is essentially a shot noise process. This

means the detector output will have a noise component which cannot be separated

from the signal and is dependent upon the received signal strength. The requirements

for the range-resolved imaging scheme described in the previous section can be met

by employing a photodetector with a very fast response time.

A Doppler-imaging laser radar system, built according to the principle described

earlier, must have a receiver capable of discerning small frequency shifts of the optical

carrier frequency. This requirement is met by employing optical heterodyne detection

within the receiver. Heterodyne detection has the added advantage of being highly

sensitive to signals near the desired carrier frequency but relatively unresponsive to

any extraneous background light. Figure 1.2 shows a block diagram of the heterodyne

detection scheme. The target echo riding on an optical carrier of v, Hz and the back-

12
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Figure 1.2: Optical Heterodyne Detection

ground light are gathered by the receiver aperture optics and fall on the photodetector

through a beam splitter. Light from the local oscillator at a frequency of o, + vIF Hz

is combined with the light collected at the receiver aperture. The electric fields of the

aperture- and local oscillator-light are mixed on the surface of the intensity sensitive

(square-law) photodetector. The vIF beat-frequency component of the photodetector

output is separated from the other output signals by the intermediate frequency (IF)

filter. Therefore, the IF filter output is proportional to the received target echo and

the local oscillator field strengths. If the local oscillator power is much greater than

the received signal power, then the IF noise level is dominated by the local oscillator

shot noise [9].

The above heterodyne detection description assumed perfect wavefront alignment

and field polarization between the target echo and local oscillator. In fact, this is

almost never the case. As the coherent laser light travels from the transmitter, it

strikes targets often characterized by surface roughness much greater than the laser

13
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CHAPTER 1. INTRODUCTION

wavelength. As seen from the receiver, the returning echo is composed of the light

reflected from the target with seemingly random phase fluctuations distributed over

the exposed surface of the target. The spatial coherence of the transmitted beam

has been destroyed by microscopic surface variations along the line-of-sight. This

random wavefront distortion causes constructive and destructive wave interference at

the receiver aperture. The target looks mottled or speckled to the receiver [10, 11,

12, 13]. This effect is exacerbated by turbulence-induced refractive index changes

in the atmosphere [14, 15]. Since the field at the aperture is the superposition of

the echo returns from all the independent randomly phased scattering centers on the

target surface, the net field will exhibit circulo--complex Gaussian statistics. Thus,

the speckle phenomenon is a fading process which is exponentially distributed after

intensity detection.

It should be noted that the earlier proposed range-resolved scheme, which uses

direct detection, may also be prone to from the effects of speckle. Since the pho-

todetector intercepts the return intensity field across the receiver aperture, the direct

detector output shot-noise signal will be driven by the spatial distribution of the

random speckle process.

1.2 Research Program

Because of their high-resolutior, capabilities, laser radars have been employed in imag-

ing radar research. For relatively close targets, which can be resolved by the tightly

collimated beams produced by lasers, images can be readily formed by raster scan

angle-angle laser radars [10, 16, 17, 18, 19]. However, due to effects of diffraction,

many interesting targets lie beyond the range at which beam collimation can be main-

tained. Therefore, to perform target imaging at extreme ranges we must switch from

14
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Target

Rotation
Rate

Figure 1.3: Laser Radar Imaging Example

the raster scan approach to either the range-resolved or Doppler-resolved imaging

techniques introduced earlier [20, 21].

Consider the following laser radar imaging scenario. Suppose the three-dimen-

sional stationary target in Figure 1.3 is undergoing rigid body rotation about an axis

perpendicular to the plane of the page (z-axis). First, let the target be spotlight-mode

illuminated by a broadband direct detection laser radar with a transmission pulse

which is appreciably shorter then the target extent (e.g., super range resolution). The

pulse train interrogation of the target results in a set of one-dimensional reflectance

projections along the y-axis which is called the range-time-intensity (RTI) record.

Likewise, cross-range projections can be formed by continuously illuminating the

target with a heterodyne laser radar in spotlight-mode. Due to the relative motion

between the radar and the rotating target, each return from an illuminated point on

the target surface will have an associated Doppler frequency shift. In fact, points

on the exposed surface and in the two-dimensional plane = a will all have returns

15
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CHAPTER 1. INTRODUCTION

with a 2af2/A Doppler frequency shift. This means that the magnitude of the signal

spectrum at the output of the IF filter at a frequency of VIF + 2aQ/A corresponds

to the total line-of-sight target reflectivity within the x = a plane. In other words,

the magnitude of the receiver output spectrum centered at VIF Hz is proportional to

the one-dimensional projection of the line-of-sight target reflectivity onto the cross-

range axis (i.e., the x-axis in Figure 1.3) . A series of Doppler-resolved projections

taken over the target revolution is called the Doppler-time-intensity (DTI) record.

Can either set of RTI or DTI projections be used to reconstruct an image of

the target? The answer is yes. Image reconstruction from projections is the basis

of tomography. This technique has been successfully used to create cross-section

images of the human body from x-ray attenuation projections. Researchers have

experimentally applied these tomographic techniques to laser radar RTI and DTI

recordings to produce two-dimensional images of three-dimensional objects [22, 23,

24, 37].

Figure 1.4 shows a typical near-field RTI data set gathered' from an optically

diffuse cone slowly rotating perpendicular to the target central axis. On the right-

hand-side, the return intensity is plotted on a grey scale versus both the range- and

projection angle-axes. At a fixed projection angle, the intensity vs. range profile

is a projection of the laser radar target cross-section onto the range-axis. In this

example, the projection angle axis begins with a target nose-on view at 0°, progresses

to a broadside view at 90°, a base view at 180°, and finally a second broadside view

at 270° before completing the circle. Since target surfaces normal to the line-of-sight

will reflect the greatest amount of energy back to the radar, peak returns are recorded

for the two target broadside views. The left-hand-side of the figure shows three range

1This example was provided by Dr. Richard M. Marino of the Laser Radar Measurements Group
at the M.I.T. Lincoln Laboratory.

16
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Figure 1.4: A Range-Time--Intensity Imaging Example
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CHAPTER 1. INTRODUCTION

projection examples. Even though the direct detection intensity data was averaged,

each projection still exhibits the corrupting effects of speckle, shot-noise and receiver

front-end noise. The bottom right-hand-side presents the two-dimensional image of

the cone recovered via tomographic reconstruction techniques applied to the RTI data.

In general, researchers have noted that RTI reconstructions emphasize the outline of

the target, leaving the interior unfilled, while the companion DTI technique produces

silhouette-type images which have smoothed and softened target outlines [37].

The goal of this doctoral research program is to extend the above RTI and DTI

tomographic work to a theoretical analysis of the performance of both laser radar

imaging systems.

First, a realistic model will be developed of a both the RTI and DTI tomographic

imaging systems which includes the effects of operating wavelength, radar-target

geometry, target characteristics, coherent and direct detection, projection processing

and extraction, and finally tomographic reconstruction. Next, the first and second

moment projection statistics will be derived in a manner which takes into account

speckle, photodetector shot-noise and any excess receiver front-end noise. Finally,

these results will be woven together to produce two measures of image reconstruction

quality: the image point spread function (PSF) and the image signal-to-noise (SNR).

These quantities will be the used to interpret previous experimental results.

This dissertation is outlined as follows. The second chapter introduces the reader

to the methods and mathematics of tomography. In preparation for the full laser

radar problem, the third chapter discusses a simple two-dimensional speckle field

tomography problem. Here, we explore the reconstructed image's first and second

moment behavior as well as the image signal-to-noise ratio and resolution. To the

author's knowledge, these results for projections corrupted by speckle noise have not

18
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been investigated in the literature. The fourth and fifth chapters present the RTI and

DTI analysis, respectively. As was the case for chapter three, the results of the RTI

and DTI analysis have not previously appeared in the laser radar literature. Chapter

six compares the theoretical results with previous experiment and simulation. The

final chapter summarizes this research and suggests future work.
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Chapter 2

The Mathematics of Tomography

Researchers are often faced with representing the characteristics of two- or three-

dimensional objects in image form. For example, a medical doctor searching for a

tumor will find cross-section images of the human body produced by non-invasive

techniques a valuable diagnostic tool. Likewise, the rocket engineer wishing to ensure

the proper distribution of propellant within a solid fuel motor will examine a three-

dimensional representation of motor propellent density. The astronomer may be

interested in imaging the x-ray emission from a supernova remnant or mapping the

electron density of the Sun's corona over the entire solar surface. In all of the above

cases, the two- or three-dimensional image of the object of study cannot be obtained

with conventional photographic or electronic raster scan techniques. Rather, in all

these cases and others, the technique of image reconstruction from projections has

been successfully applied [25]. In this chapter we will study these techniques from

a mathematical perspective. However, we will first overview these techniques by

examining one of the above applications in detail.

The classic illustration of the application of these techniques comes from med-

ical science, where mathematics, computer science and radiology were combined to

21



CHAPTER 2. THE MATHEMATICS OF TOMOGRAPHY

Y'

Projection
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:ion

Figure 2.1: Computerized Tomography Geometry.

develop the technology called computerized tomography' (CT)2. The elementary prin-

ciples behind CT are demonstrated in Figure 2.1 [26]. The subject is illuminated with

a collimated sheet of penetrating radiation, usually x-rays. A row of closely spaced

detectors on the far side of the subject measures the amount of radiation exiting the

subject. Assuming that radiation travels in straight lines, the response at any point

on the detector array is an estimate of the radiation transmission from that point

back along a line passing through the subject to the radiation source. The line inte-

gral of the attenuation coefficient f(x, y) over the line L can be extracted from this

1The word tomography is derived from the Greek word meaning "slice." It is used in the context
of medical radiology to describe various methods to image cross-sections of the human body.

2 Computer assisted tomography, computer aided tomography or computed axial tomography
(CAT) is also used, as in the term "CAT scanner."

22
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2.1. THIE RADON TRANSFORM

transmission profile via the relation

Transmission = exp {-Jfdl} (2.1)

In other words, this measurement corresponds to a line integral of the instantaneous

radiation attenuation coefficient. For the given source-detector orientation angle, 0,

the detector array response estimates the collection of line integrals of the instanta-

neous attenuation coefficient f(x,y) lying in the cross-section plane. For this fixed

orientation , this response, denoted as ps(r), is called the projection of f(x, y); it is

a function of the cross-range distance, r. The challenge is to reconstruct the "image"

of the instantaneous attenuation coefficient f(x, y) from the set of projections pe(r)

over all values of the angle .

The collection of all line integrals of a function f(x, y) is called the Radon trans-

form of f. The problem of finding f given the Radon transform of f was solved

mathematically by Radon in his 1917 paper3 . Computer based signal processing al-

gorithms based upon Radon's solution have been applied to the CT problem and

others like it with great success. Motivated by this work, we will survey the mathe-

matical foundations of the Radon transform and derive its inverse in order to apply

the results to Doppler laser radar imaging.

2.1 The Radon Transform

We begin our discussion of the two-dimensional Radon transform by first building a

geometrical framework for this operator. Consider the line in the x-y plane specified

by r = x cos 0 + y sin 9. By rewriting this equation as the dot product r = (, y) ·

3 Radon, J. (1917). UJber die Bestimmung von Funktionen durch ihre Integralwerte Iings gewisser
Mannigfaltigkeiten. Berichte Sachsische Akademie der Wissen'schaften, Leipzig, Math.-Phys. K.,
69, 262-267.

23



CHAPTER 2. THE MATHEMATICS OF TOMOGRAPHY

(cos 0, sin 0) we see that this line is perpendicular to the vector = (cos 0, sin 8)T and

falls a distance r from the origin. This formulation allows us to easily specify any

line in R2 by choosing r and in an appropriate manner. If we restrict E [0, r] and

allow r E R then the space P = R x [0, r] containing the ordered pairs (r, 0) naturally

represents the set of all lines in the x-y plane. Note that P cannot be taken as the

familar polar form because r can be negative.

The two-dimensional Radon transform uses the line integral to map a function on

the x-y plane to a function on the space P. Using the symbol R to denote the Radon

transform operator, the Radon transform of f(x, y) is

[3Rf](r, ) = J dxdy(r - xcos - y sin )f(x, y). (2.2)

For a fixed (r, 0), Rf is simply the line integral of f(x, y) over the line r = x cos 9 +

y sin 9. Thus, the Radon transform decomposes a two-dimensional function into the

set of all line integrals. Note that Rf obeys [f](r, 8) = [Rf(-r, 8 + r) because these

transform values are line integrals traversing the same line in opposite directions, cf.

Figure 2.1.

A few words about notation are in order. We will often consider instances in which

8 is fixed and r is an independent variable. It will be convenient to represent these

cases as [Ref](r), emphasizing the r dependence. This is equivalent to our notion of

the tomographic projection po(r) in Figure 2.1. Furthermore, all single dimensional

Fourier and convolution operations on Radon transforms are understood to apply

only with respect to the variable r. With this convention in mind, we write

[anf I(e) = Jdr e27rjer[fi](r),

and

[g * f](r) = g(r)*[Rsef](r)

24



2.1. THE RADON TRANSFORM

= dr g(r - r)[Ref]().

To familiarize ourselves with these concepts and explore the connection between

the Radon and the Fourier transforms we prove the following theorem known in the

literature as the Fourier slice theorem or projection theorem [27, §II1.1].

Theorem: If e C R then [Rosf](e) = [f](e9)

This theorem states that the single-dimensional Fourier transform of projection Rsf

with respect to the variable r is the cross-section of the two-dimensional Fourier

transform Ff in the direction of 9 = (cos 0, sin 0)T. We begin our proof with the left

hand side.

[ef](e) = J dre-27rjgr Ief](r)

= J dre-' J dxdy(r - x cos S- y sin 9)f (x y)

-= I dxdye-27re(zcos sy sin )f(x, y)

= [f](e cos 0, e sin 8)

= [f](e)-

The reader will recognize that this theorem offers a path to inverting the Radon trans-

form. The function f(x, y) can be recovered from Rf by applying the two-dimensional

inverse Fourier transform to Ff reconstructed from the Fourier slices FRsf for all 9.

However, in practical sampled-data tomographic systems this approach is not highly

accurate and produces image artifacts [27, §V.2]. Rather, in the context of these

systems, researchers have pursued the inverse problem by using the backprojection

operator [27, ch. V]. We now turn our attention to this operator.

25



26 CHAPTER 2. THE MATHEMATICS OF TOMOGRAPHY

2.2 Backprojection Image Reconstruction

To motivate our study of the backprojection operator let us appeal to our earlier

tomography example illustrated in Figure 2.1. Suppose we wish to construct a cross-

sectional image of our subject using the set of projections ps(r). For a given point

(x,y) in the plane, we realize that each projection p(r) at r = x cos + ysin 

must contain information about the value of f(x,y). We might try to extract this

information about f(x, y) from our projections by summing over 0 the values of po(r)

such that r = x cos 0 + y sin 0. In essence, we are forming an image by propagating or

"backprojecting" the values of each projection po(r) along the lines r = x cos 0 +y sin 0

across the x-y plane and then summing over . This backprojection operation maps

functions from the space P to the x-y plane (R2 ). For the continuous transmission-

tomography case, the backprojection operator B is defined by [25, §2.2.3]

r

[Bp](x, y) = dpo(x cos + ysin 0). (2.3)

Note that this operator is a dual to the Radon transform in the sense of line-integral

geometry: the Radon transform sums all values of a function f(x,y) along a fixed

line while the backprojection operator sums the values of a function associated with

all lines (r, 0) passing through a fixed point.

2.3 The Inverse Radon Transform

The reconstructed images produced by backprojection incur a smearing-type of dis-

tortion. More specifically, by applying the backprojection operator to the Radon

transform of function f(x,y), it can be shown that [BRf](x,y)- = *f(x, y)

where * signifies two-dimensional convolution [27, Theorem 1.5]. This result, how-

ever, suggests an alternative method for inverting the Radon transform. Taking f,
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and fy as spatial frequencies, we have via the two-dimensional Fourier transform

[:BRf](f£., If) = f i y2 *f(x, )]

- - [Ff](f Ify).

The backprojected image suffers from a multiplicative radially-dependent distortion

in the frequency domain. Every radial cross-section in the spatial frequency domain or

Fourier slice of the backprojected image has been distorted by a l/loe filtering process

where is the radial spatial frequency variable. Applying the Fourier slice theorem,

we see that this distortion can be eliminated by prefiltering projections pe(r) with the

radial spatial frequency function jIQ. That is, applying the backprojection operator

to F-'[lel x .F[ie(r)] recovers f(x,y) with perfect fidelity. This formulation of the

inverse Radon transform is called filtered backprojection in the literature [26, ch. 7].

Good accuracy and moderate computation requirements make filtered backprojection

a favored starting point for developing algorithms in practical tomographic systems.

2.4 Sampling and Resolution

Modern tomographic systems are sampled-data machines employing digital signal

processing [25, ch. 2]. The above theory must be recast in discretized form to be

relevant. In the semi-discrete case, projections are taken on a finite set of N angles.

Writing this et of projection angles as {n : n = 0, N - 1}, the backprojection

operator becomes

N-1
(n+ - O,)pe,(x cosOS + y sin n). (2.4)

n=O

27
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For N equiangular projections about the half circle (transmission-tomography case)

we have
N-1

P i ,(x COS -n + y sinll n). (2.5)
n=O

In the fully-discrete case each projection po,(r) has been sampled along the radial

variable r.

Naturally, the sampled-data model begs questions concerning accuracy and res-

olution. The Shannon sampling theorem answers these questions by specifying the

sampling grid mesh size in terms of the bandwidth of f(x, y). Assume that f(x, y) is

spatially limited (compact) such that f(x, y) is negligible for all (x, y)l>T. Further-

more, assume that the Fourier transform [f](fz, fy) is also negligible in the spatial

frequency domain for (f 2, fy)>b (f(x,y) is b-bandlimited). Note by the Fourier

slice theorem that each projection of f(x,y) must also be spatially limited and b-

bandlimited.

In the fully discrete case each projection is represented by a set of samples along

the r-axis. According to the Shannon sampling theorem, the spatial sampling interval

must be less than the reciprocal of the Nyquist spatial frequency 2b. Therefore, since

each projection is spatially limited, these projections may be fully recovered from a

minimum of 2q+ 1 samples where q = 7Z/(2b)-1 . This sets the sampling requirements

for each projection.

We will now consider the overall two-dimensional sampling requirements for re-

constructing an image of f(x, y) from a set of N projections. Proceeding with a

heuristic argument, this will lead to a lower bound on N in terms of 7R and b.

Assume that we are dealing with the equiangular-projection transmission-tomo-

graphy case, i.e., projections are equally spaced such that ,n, = nlr/N. By the Fourier

slice theorem, the Fourier space of f(x, y) has been sampled in a radial pattern like

28
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the spokes of a wheel. These spoke sampling angles in the spatial frequency domain

are identical to the projection angles. Therefore, we must select a radial sampling grid

which approximates the rectangular sampling grid specified by the two-dimensional

Shannon sampling theorem.

In the spatial frequency domain, the sampling mesh size of the radial grid increases

with distance from the origin. The largest mesh occurs at the edge of the frequency

sample space and has a size of 7rb/N. This sample size must be the upper limit of the

corresponding mesh size of the rectangular spatial frequency sampling grid (1/2R)

specified by the two-dimensional sampling theorem. Therefore, for a spatially and

frequency limited function, we have

i rrb
> - (2.6)

27Z N

or

N > rq. (2.7)

Thus, if we are required to sample projections 2q + 1 times to satisfy the bandwidth

constraints of f(x, y), then we must use at least 7rq projections to recover f(x, y).

2.5 Reconstruction Example

To put these concepts into perspective, Figure 2.2 displays a demonstration of back-

projection and filtered backprojection reconstruction. Transmission projections were

numerically computed at 1° increments for the two-dimensional gray scale phantom

shown in Figure 2.2 (a). Backprojection and filtered backprojection reconstruction

was applied to this set of projections, resulting in the gray scale Figures 2.2 (b) and (c),

respectively. Note that the backprojection reconstruction has a "washed-out" or
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(a)

(b) (c)

Figure 2.2: Phantom Reconstructions: (a) Original Phantom, (b) Backprojection
Reconstruction, (c) Filtered Backprojection Reconstruction.

30
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smeared appearance typical of this approach, while the filtered backprojection recon-

struction restores the original phantom with little degradation.
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Chapter 3

Two-Dimensional Speckle Field
Tomography

As a prelude to an investigation of laser radar tomography, we now examine a two-

dimensional speckle field tomography problem which incorporates some of the aspects

of the more complex laser radar model. Here, we propose constructing projections

of a two-dimensional object by intensity detecting the back-scatter of a penetrating

beam of coherent radiation. Since the field impinging on the detector will be the

superposition of the back-propagated fields from all the scattering sites illuminated

by the probe beam, each projection will be corrupted by speckle-like noise. Our

investigation will center on describing the first and second moment behavior of the

image reconstructed from these speckled projections using semi-discrete tomographic

methods.

3.1 Tomographic Speckle Model

Imagine a transparent test cell filled with a fine aerosol of randomly sized and hap-

hazardly placed particles which scatter light. Suppose we wish to use a narrowly

collimated beam of coherent laser light to determine the two-dimensional distribu-
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tion of the reflectance density over a plane passing through the test cell. Conceivably,

this could be accomplished by measuring the optical backscatter striking a light de-

tector pointed into the test cell and focused along the laser's line-of-sight. The

laser-photodetector pair could be used to form a reflectance projection of the cell's

contents by sampling along the cross-range axis at a fixed orientation. Projections

could be taken over a number of aspect angles about the plane and combined through

tomographic techniques to form an estimate of the reflectance density. It is the impact

of speckle upon this simplified scenario that we wish to investigate.

Ultimately, we will want to characterize the performance of this imaging scheme in

terms of the resolution and signal-to-noise of the reconstructed density. The statis-

tics of these quality measures will be driven by the aerosol's scattering characteristics.

Therefore, we begin our investigation by specifying the tomographic scanning geom-

etry and the objects's scattering statistics.

Let the circulo-complex Gaussian random process s(x, y) represent the scattering

coefficient of a bounded two-dimensional object resting in the x-y plane. The squared

magnitude of s(x, y) is understood to be the intensity ratio of the scattered radiation

to the incoming illumination at the point (, y). The phase of s(x,y) accounts for

random and uncontrollable variations in the optical round trip path length to the

scattering site.

Assume s(x, y) has the following first and second moment statistics:

* (8(, y)) = o

* ((X 1,yl)8(X2,y 2))= 0

* (8(xl,yl)s9*(2,y2)) = f(xl, Y1)(xl - X2)6(Y1 - Y2)
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where the object's reflectance is modelled by the deterministic two-dimensional func-

tion f(z, y).

The above expectations are justified as follows. The first expectation is simply

the average of a circulo-complex Gaussian random variable. Therefore, the mean of

this phasor will be 0. The second expectation is over the product of two of these

random phasors, which will likewise have a mean of 0. The final expectation is the

complex phase correlation with respect to the spatial coordinates. Since scattering

sites are assumed to be statistically independent, this correlation was chosen to be a

delta function weighted by the scattering site's reflectivity f(x, y)

We propose estimating f(x,y) by applying tomographic methods to scans of the

object by a penetrating beam of coherent radiation. Assume the beam axis lies on

the line (r, 0) in the standard two-dimensional tomographic geometry shown in Fig-

ure 3.1. We assume the narrow probe beam maintains perfect collimation throughout

penetration of the object. Furthermore, let the field profile b,(x', y') of the probe beam

be Gaussian shaped such that the total beam illumination is constant regardless of

the beam width:

br(x(', y) e_(=- 1/ (3.1)

This formulation of the beam profile is expressed in the rotated projection Cartesian

coordinate system (x', y') where the beam axis (scan line) is perpendicular to the x'-

axis and fixed r meters from the y'-axis. The parameter rl controls the beam width,

and in some sense, models the finite the size of the scanner's transmitter/receiver

optics. In other words, the profile of b(;', y') along the x'-axis is the instrument

function of the coherent optical scanner. At the outset rl should be chosen smaller

than the smallest detail to be imaged in the distribution of s8(, y).

Suppose the probe signal is received by an intensity detector located R meters
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Figure 3.1: Two-Dimensional Speckle Tomography Geometry.
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from the x' axis. Assuming negligible beam attenuation, we can write the complex

signal field envelope at the infinite extent detector as

R(r, 9) = j j dx'dy's(x(x', y'), y(x', y'))br(x', y)e2jk(R+y') (3.2)

where k 27r/A is the wavenumber. Note that we have reformulated the scatter-

ing distribution s(x(x',y'),y(x',y')) upon the rotated coordinate system (',y') by

specifying the following transform:

x(x',y') = x'cos - y'sin 

y(x', y') = ' sin S + y' cos 9.

Since individual points lying in the probe beam's path reflect waves back to the

intensity detector with random phase, the output signal will be corrupted by speckle

noise.

3.2 Projection Statistics

Using the fact that IR(r, 0)12 = R(r, 0) R*(r, 9) where the * denotes complex conju-

gate, the first moment of the detector response is then

(IR(r,9)12 ) KjdL l

jroo J dxdyls*(x 2(x,, y), y2(x, y'))b,(x, yl)e2(R)

Exchanging the expectation and integration operators, and substituting f(x, ,yl)

6(X1 - x 2) (Y1 - Y2) for the reflectivity correlation (s(X 1,yl) 8*(X 2 ,Y2)), we find

0co 1) = 1 _(_/,1(3.3)( (r)Joo d'ldy f(x l(l 1 ), (x y)) --r/2e (33)
f oo ft 
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Recalling that r is small compared to the object's spatial detail, we make the ap-

proximation --;l ;e-2(\-')' /'L 1 8(xi - r) resulting in

roo poo 1
(lR(r,)12) dxldylf(l(lyl)yl(xll) ) 6(x -r)

dyl fi ((r, y')y1i(r y))

1 1
[Rf](r, ).

Thus, for small r, (IR(r,9)12 ) behaves like the Radon transform of the object's

reflectance f(x,y) within a scale factor. Thus, within an approximation, it seems

reasonable to regard (IR(r, 0)12) as a projection of the scattering object s(x, y). While

this result is intuitively pleasing because it makes physical sense, this analysis can be

extended to explicitly include the effects of the Gaussian beam profile (instrument

function) upon the Radon transform formulation.

Intuition tells us that features smaller than the probe beam's width will be lost

or suffer from a smearing type of distortion. Starting with (3.3) and the definition of

the Radon transform, it is easy to back out the result

(JR(r, )12) = - g(r) * [f](r) (3.4)
V22rr 2

where g(r) has the Gaussian form

g(r) = e-2r2r (3.5)

Thus, each projection (R(r, 0)12) is proportional to the true Radon transform [Ref](r)

convolved with a narrow Gaussian window. Using the fact that [h](r) * [Ref](r) =

[!a(x~(z, y) f(x, y))](r) we realize that we can extend the above result to

([R(r, )12) = R[g(,y) * f(x, y)] (3.6)
2 7rr
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where

g(r) = [Re{g(x,y)}](r) (3.7)

and

g(x, y) 2= e_2(-/ (3.8)

Thus, the set of projections IR(r, t)12 formed by the above "narrow Gaussian-beam

transform" correspond in the mean to the true Radon transform of the convolution of

the reflectance f(x,y) and a function g(x ,y) determined by the probe beam profile.

The small-scale smearing caused by this effect will fundamentally limit the resolution

of any reconstruction algorithm applied to R(r, 0)12.

In addition to the first moment of R(r, 8)12, it is of interest to characterize the

cross-correlation between the received signal fields, R(r1,t ) and R(r 2, 92), fol the

two scan lines (r1, 81) and (r2, 82) respectively. That is, we wish to compute the cross-

correlation (R(rl, 1)R*(r 2, 92)) in the semi-discrete case. As shown in Figure 3.2,

this expectation will be largely determined by the values of the reflectance f(x,y)

within the "footprint" formed by the intersection of the two narrow probe beams

along the scan lines (rl, 8) and (r2,02). This realization requires the consideration

of two distinct geometrical cases.

First, suppose the projection angles 81 and 2 are equal. In this case, the two

scan lines are parallel and the expectation will be nonzero when there is significant

overlap between the two narrow probe beams (i.e., r _ r2 ). This expectation can be

approximated by

(R(rl, )R* (r2, ))

= t j dxdy8(xi(x, yl), yi(,y'))br(Xt Y)e

j I dxdy8*(X 2( , y'), y2(X2, y))br(X2, y2)e-i( i) (3.9)
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Figure 3.2: Covariance Calculation Geometry.
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,.,,.,,,,,.,roo ~Df d f_ 1
(r2 rl)21 2ri 2 dxl dy"O f(x1 ( 1 y, Y1 (z ,A)) e-2(z, -(r2+rl)/2)2/r2i

-0 0oo -0 0 rr

1 _(r2_rl)2/2r [f](2 + r12irr 2 , ), (3.10)\/2 7rrl 2 '

where the approximation is obtained by retaining the r small condition as before

and passing to the Radon transform.

Second, consider the case when the two projection angles are unequal. In this

scenario the two scan lines (rl, 1) and (r2, 2) always intersect at a single point

(x@,y 9) in the x-y plane. The coordinates of this intersection point are dependent

upon the values of (rl,0 1 ) and (r 2,02 ) and take the values:

1

xe°(ri,' 1;r 2 92) = - )(rl sin(02) - r2 sin(01)) (3.11)

y(ri, 1;r2, 2 ) = sin( _ )(-rl cos(02) + r2 cos(91)). (3.12)

Beginning with equation (3.9), the expectation can be manipulated into a compli-

cated double-integral on a rotated coordinate system centered on the point (Xz, y@)

with an integrand of f and a complex phase factor windowed with the Gaussian pro-

files of the two probe beams. At this point, if we assume that the most significant con-

tribution comes from the region of the intersection footprint of the two narrow probe

beams, then the two beam profiles can be replaced with a single a two-dimensional

Gaussian window centered on (xe, y@) with major and minor axis lengths a function

of the angle of attack, 2 - 1, of the two scan lines. Again, assuming r is small

and f(x, y) varies slowly within the Gaussian window patch, then the double-integral

may be approximated by the value 2f(zx(rl, 01; r2, 02), y(rl, 01; r 2, 02))/ sin(8 2 -1)

times a complex phase factor. The factor of 1/I sin(02 - 01)1 accounts for the change

in the size of the footprint area as the scan line angle of attack varies. Therefore, for
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non-identical projection angles, the cross-correlation is approximated by

(R(rl, 01)R'(r 2, 02)) = 2Cf(xz(r, 01;r 2, 02), y9(r, 1 ; r2, 02))/1 sin(0 2 - 1)1l (3.13)

where C is a complex phase factor. The details of this calculation are disclosed

in Appendix A. This result is intuitively pleasing because it formulates the cross-

correlation in terms of the scanning geometry. As the angle of attack between two

projections decreases, the cross-correlation increases because the probe beams cover

a growing common region within the scattering object.

3.3 Backprojection Image Statistics

Let us now turn our attention to the first and second moments of the reflectance image

formed by applying the discrete backprojection operator to the set of magnitude

projections R(r,9)12 of s(x,y). In the semi-discrete case let Abp(x,y: N) be the

backprojected image formed by using N equiangular projections. Thus

Abp(x,y : N) = E - R(c (3.14)
n=O snn, n)

The semi-discrete mean image is then

1 N-1

(Ab(x,y: N)) i= N- 1 [9(XY)* f(XY)] (3.15)

It would be instructive to write this result in the form of f(x,y) convolved with a

point-spread-function (PSF). By setting f(x, y) = 8(x - xo,y - y,) and using the

property R9[f*g] = Rf f*sog it is easily shown that (3.15) represents a shift-invariant

linear system. Thus, we may alternately write

1
(Ap(x,y : N)) = V .f(:x,y) *Gbp(x,y : N) (3.16)

2irr(
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-o1 I 1-

Figure 3.3: Normalized Mean Backprojection Image PSF, Gbp(, y: 4)

where

N-1 7F

Gbp(,y: N) = i[Rng(',y')](xos Nn + y sin 7n)
n=0

N-i 1
~r a-o 1 -2(,cos n+y sin n)2/ (3.17)

= x~ irri/2N(3.17)

represents the N dependent PSF of the mean image. Figure 3.3 shows a surface plot

of the normalized PSF for N = 4 projections.

As N grows without bound, the semi-discrete backprojection case approaches

the continuous case as a limit. Define Abp(x, Y) to be the image produced by the

continuous backprojection operator:

Abp(x,y) = B[IR(r,0)12 ]
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= jo d R(r, o)12.

The mean of Abp(x, y) is found to be

(Abp(x, y)) = ( [R(r, )12])

= S(IR(r, 0)12)

= 2_r_ 8r[B[g(, y) *f(x, y)]

g (, Y) f(z, Y) (3.18)

Thus, the point-spread-function (PSF) of the mean of this narrow-beam tomographic

scheme under backprojection reconstruction is g(x,y) * ( 2 + y2)-1/ 2. Therefore,

continuous backprojection reconstruction alone cannot fully resolve f(x,y) within

the limitations imposed by the narrow-beam approach.

The reconstructed image noise strength is measured by the image covariance.

Let KAAbp(X1,Y1;x2,2 : N) designate the covariance of the image Abp(,y : N)

formed by semi-discrete backprojection. Using complex-Gaussian moment factoring

the covariance may be simplified to the following form:

KAAbp (x1, Y1; 2, Y2 : N)

- NZ E i KRn(x cos n + Yi sin n)R* i(X2 cos i + Y2 Sinl i)
n=O i=O

(3.19)

This result is equal to the summation of the magnitude-squared values of the cross-

correlation between the received signal fields R corresponding to the scan lines (rn, 9n)

and (ri, Si)

Consider the case of identical indices within the double-summation. The dou-

ble summation will collapse to a sum of the magnitude-squared equiangle cross-
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correlations. Itence, this component of the covariance becomes

a2 N-1 i
7r - 2- 2 exp -[(X2

[,f] 1 2 cos n +7
LJfV (~ cos -n +k2 N

- x,) cos N n + (Y2 - Y) sin Nn] /r2}

Y2 + Yi

2

7 7rsill -n - )

For non-identical indices we have the case of unequal projection angle cross-cor-

relations within the double-summation. Thus, the semi-discrete covariance may be

approximated by the sum of these two results:

KAAb(xi, Yl; 2, Y2 : N) 
a-2 N-1 
- E 2 exp -[(X2

N 2 27Ir exp

[f]2( X2 + c +

- X,) cos Nn + (Y2 - Y1) sin n]2/r }

Y2 + Yi

2

X

sin -n, Nn +

7 2 N-1 N-1

N_2 On=O i=O,i4n

4

sin2 (n- i)Y\""
(3.20)

where

ar = xicos 7i+yrsin ',
rl = Xi cos -i + yl sinai,N N

r .7r
r = x2 cos -n + Y2 sin n.N N

The reconstructed image variance varAA (, y : N) can be easily obtained from

the above covariance expression by setting (l,yl) = ( 2,Y 2) = (,Y). Under this

restriction the point ((rl, 01;r2, 02), y(ril, 01;r2,02)) reduces to (xl, y) giving

varAA~ (X, y: N) N2 E-
n=O

2R [f] 2 (X
27rNiN-

7r 7r 7r
cos -n + y sin -n, n)N N N'

45

x

~f2(X r . 7r
'(2(r, N,; r2, -n), y"(r,N N

7r . 7r
' z; r 2 , _n)),

(3.21)

(3.22)

2 N-1 N-1 4

N2f (z,y) E sin2 (n-i)
n=O i=O,i54n

+

(3.23)
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Hence, the variance of the reconstructed image consists of two terms, one proportional

to f 2 (x, y) and the other proportional to the backprojected image of the square of the

Radon transform of f(x, y).

The above covariance and variance expressions are complicated and provide partial

insight into the behavior of these quantities in terms of f(x,y) and N, the number

of projections per reconstruction. Further analysis has not yet yielded simpler forms

for arbitrary f(x,y) and N. Therefore, we proceed with an analysis in the next

section by fixing a bandlimited low-contrast model for f(x, y) and predicting image

signal-to-noise performance in terms of N. The low-contrast reflectance model is

a reasonable approximation for many objects of interest because it separates the

reflectance variations which describe distinguishable surface features from the gross

base reflectance which accounts for a majority of the speckle induced noise. Thus,

to a first order approximation, the signal-to-noise behavior of a reconstructed image

can be described.

3.4 Backprojection Image Signal-to-Noise Ratio

To place our analysis in perspective, let us calculate the signal-to-noise ratio of the

reconstructed image of a scattering object with a low-contrast reflectance function

of the form f(x, y) = F + Sf(x, y) where If(x, y)I < F. In this model, the term

Sf(x,y) describes the variation in reflectivity due to surface features, while the F

term accounts for the overall average reflectance. Since all interesting objects are

of limited spatial extent, (i.e., bounded) assume for the sake of simplicity that the

object has negligible reflectance outside a RD meter radius disk centered at the origin.

Furthermore, assume 6f(x, y) is a b-band limited function, viz. the spatial frequency

spectrum of Sf(a, y) negligible for (f,, fy)l > b. This is a natural assumption to make
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since most objects of interest have surface feature variations which are smooth on a

small enough scale. We will find it useful to let Xf designate the indicator function

for f(x,y), i.e.,

Xf(X y)= = 0 iff f(x,y)=0 (3.24)
1 otherwise.

Thus the indicator function for our scattering object is a RD meter radius unit height

disk.

The signal-to-noise ratio (SNR) under semi-discrete backprojection reconstruc-

tion is defined as follows

SNR = [mean reconstructed signal]2

mean squared noise strength

,. [ f(x, y) Gbp(x, y : N)]2

varAAbp(, Y : N)

(6f(x, ,) * G(x, y N))2
NF2 Eno [rnXf (X1 COS n + y, sin n) +

N227r IF2 n=O i=Oi n sin2 (n-i)

where we have used f(x, y) - F in the expression for the variance. For N > 10 the

double summation in the denominator can be approximated by 4N3 giving

SNR f(x, y) * Gbp(x, y: N)]2 (3.25)
72 F2 -N-lX - f2(Xl COS 2

N2 F2 E=l[ n xfJ2( 1 cos n + yl sin n) + 2rrN2 4N3F2

Recall that Sf(x, y) is b-band limited. Therefore, the appropriate number of projec-

tions to fully recover Sf(x, y) is rq where 2q + 1 is the number of points specified by

the one-dimensional Shannon sampling theorem for the proper sampling and recovery

of any one projection. For a RD meter bandlimited disk,

q = (disk radius (m)) + (sampling interval (m))

= RD (m)/(2b)-1(m)

= 2bRD (dimensionless).
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Thus, we set N = 27rbRD. Furthermore, we fix the beam width equal to the size of the

smallest detail on the bandlimited disk, i.e., r = 1/b. Therefore, the signal-to-noise

ratio becomes

SNR F2 (ZN- [6sf(x, y) * Gbp(x, y: N)]2

2bZ (n-° N[,RXxf ](x1 cos n + y sin n) + 7r4)

21-r f 2 f(x, y) * Gbp(x, : N)] 2/ITr (3.26)
A computer was used to calculated the above NR quantity for a RD = 1 meter(3.26)a2 (EN- -]IrCOS 327r4 R2

F 2 ( ~ N-n=0[ ,X]2(=O co fn d y sin 'rn) - N-~- 3 "

Note that the squared term in the numerator and the summation (backprojection)

term in the denominator both approach finite limiting values as N grows without

bound.

A computer was used to calculated the above SNR quantity for a RD = meter

radius disk. During the calculation, the bracketed term within the numerator was

approximated by Sf(x, y) times the area under Gbp(x, y: N). This is valid under our

assumption that b is less than or equal to the spatial bandwidth of Gbp(z,y: N).

The resulting SNR was found to have a radial profile which did not vary in respect

to rotation about the disk center. Therefore, Figure 3.4 presents a radial plot of

(3.26) normalized by the factor f 2(x, y)/F 2 for a family of N values. For a fixed

number of projections the above SNR equation scales independently with respect to

RD. Therefore, this set of curves can be interpreted as the normalized SNR of the

backprojection reconstruction of a RD meter disk where the abscissa scale is now in

terms of r/RD.

Note that the SNR performance is nearly constant versus radial distance from

the center of the disk. Thus, the disk image SNR is proportional to the number

of projections required to fully reconstruct f(x,y) under our bandwidth constraint.

This result stands in contrast to ordinary speckle-imaging systems which coherently

combine measurements during pixel formation, achieving SNR's equal to one [28].
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However, even in our case at 5f 2(, y)/F 2 = 1, we do not obtain a unity SNR until

N > 84. Considering the slow SNR rise vs. N, and the poor resolving power of

backprojection reconstruction, this tomographic speckle-imaging technique offers rel-

atively substandard performance, even for the larger sized projection sets of N - 200,

the typical number of projections recorded by a commercial CAT scanner.

3.5 Filtered Backprojection Image Statistics

Now consider a similar analysis for semi-discrete filtered backprojection processing.

In this case we will prefilter every projection before performing the backprojection

sum. Let Afbp(x,y: N) be the backprojected image of the reflectance formed by

using N equiangular filtered projections. Thus

Afb (,y: N) =
N-1

N [-1 {II x .'F[jR(r', Nn)I2]}] (x cos Nn + y sin Nn) (3.27)
n=-

where the expression within the outer brackets represents the filtered backprojections

as a function of r, and r is then set equal to x cos Nn + y sin Nn under the back-

projection sum. In order to simplify the notation during further discussions, let the

symbol 'H[p(r)] denote the filtering operation F-'{lel x F[p(r)]. The semi-discrete

mean image is then

(Afbp(x, y: N)) - x

N-1
E Nle X [[Rn(g(', ) * f(x', y'))](r' )] }]( cos n + y sin n)

N-1
= E. ~Y7[R~-n(9(x', y') * f(X', y'))]( cos Nn + y sin gn). (3.28)

n=0

As in the case of simple backprojection, the mean image PSF Gfbp(X,y : N) for

semi-discrete filtered backprojection can be calculated. Thus, we may alternately
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write

(Af bp(x, y: N)) = ff(, y) * Gfbp(x, y: N) (3.29)

where
N-1

Gfbp(x, y: N) = E Rgf( cos -n + y sin n) (3.30)
n=O

where the function gf(r) is equal to

gf(r) = [[Rng(xy)](r)]

= '-L {(e x [(1/ r/2) e 2(r)-] } (3.31)

The function gf(r) is plotted in Figure 3.5. The width of the central lobe deter-

mines the fundamental resolution of the filtered backprojection image reconstruction

scheme. Since filtered backprojection is one solution to the inverse Radon transform,

as N grows large and we pass to the continuous case, the PSF for the mean image

must be g(z, y) defined in equation (3.8) within a scale factor. Thus, the fundamental

resolution cell size is equal to the width of g(x, y) which is physically determined by

the scanning instrumentation.

The filtered backprojection image noise strength is measured by the reconstructed

image covariance. Let KAAfbp(Xl, Yl; 2 , Y2 : N) designate the covariance of the image

Afbp(x, y: N) formed by N equiangular semi-discrete filtered backprojection recon-

struction. Recalling that the filtering operation 7- is performed with respect to the

radial projection variable r, the filtered backprojection covariance may be written as

KAAb, (Xl1, YI;x2, Y2: N)

21rrT N no Nr2 [ e-(r2-rl)2/T[Rf]2(r 2 ' r )]

(X1 COS n + Yl sin N n) (X2 COS n + Y2sin n) +NN N N
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N2 i N si (n i) [f [f2((rl, -i;r 2, in),y y(rl, -i; r2, Nn))
n= s i=-,i)n nL - ( 

(Xl cos n + yl sin n) (2 cos Ni + y2 sin i) (3.32)N N NN

where the operators 7-, and 7tr2 filter with respect to the variables r1 and r2 re-

spectively. This expression is valid because the expectation, backprojection and X

operators are all linear. Thus, the prescription for finding the covariance is to filter

the expression within the inner brackets with respect to variables r and r2 and then

replace r and r2 with the proper cartesian coordinate expandb:on before performing

the sums. The variance of Afbp(x, y: N) may be obtained from the above expression

by setting (i,yi) = ( 2, Y2) before computing the sums.

The above covariance and variance approximations are complicated and provide

little insight into their behavior as f(x,y) and N vary. Further analysis has not

yielded a simpler form for arbitrary f(x,y) and N. Therefore, as in the case with

backprojection reconstruction, we have proceeded with the SNR performance analysis

of a bandlimited low-contrast disk-like scattering object.

3.6 Filtered Backprojection Signal-to-Noise Ra-
tio

For the reasons cited in §3.4, let us calculate the signal-to-noise ratio of a filtered

backprojection image reconstruction of a RD meter radius disk with a low-contrast

reflectance of the form f(x,y) = F + Sf(x,y) where 1f(x,y)J << F. As before, let

Sf(x, y) be a b-band limited function. Thus, the SNR under filtered semi-discrete
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equiangular backprojection reconstruction is:

SNR - (mean reconstructed signal)2

mean squared noise strength

9-(8f(x, y) * Gfbp(x, y : N))2

varAAfbp(x, y: N)
1 (Sf(x, y) * Gfbp(2, y: N)) 2

2 2XTZ (3.33)F2 27rrI VarAAfbp(X,y: N)/F 2

where the second term in the above product represents the SNR of a reconstructed RD

meter radius unit-height disk. This quantity has been numerically evaluated under

our bandwidth restriction of b = 1/rl and found to be radially symmetric about the

center of the disk within the resolution capabilities of the calculation. Figure 3.6

shows a radial plot of this second term for a family of N values. Each plot has been

normalized by f 2(x,y)/F 2 and the height of the filtered backprojection impulse

response Gfbp(,y : N) to facilitate direct comparison to the backprojection results

of §3.4. The b-bandwidth restriction has been enforced by windowing the 1/1pl spatial

frequency filtering with a Gaussian function centered on the frequency origin. Again,

we have used the relation N = 27rbRD to relate the number of projections to the

image bandwidth. Since (3.33) scales independently with the disk radius for a fixed

N, Figure 3.6 can be interpreted as the normalized SNR of a filtered backprojection

reconstruction of a RD meter disk where the abscissa scale is in terms of r/RD.

It is intuitively pleasing that the SNR increases with the number of projections in

light of projection signal processing which would tend to enhance high frequency noise.

Observe that as the number of projections increases, a peak appears to grow in height

at the edge of the disk. This seems to indicate that image quality is better at the

edge than in the disk interior. However, this phenomenon may be a phantom caused

by a large spatial frequency filter response at the disk edge drop-off. Furthermore,

slight SNR variations appear near the disk center as the number of projections rises
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above 40. This is believed to be caused by resolution limitations within the numerical

calculations.

Figure 3.7 plots the normalized disk center SNR for both the backprojected and fil-

tered backprojected reconstructions. Over the set of N, both reconstructions achieve

SNR's of less than one, with filtered backprojection performance lying approximately

8 dB below the backprojection curve. Furthermore, a linear extrapolation carried

out upon the central region of the filtered backprojection curve indicates that a unity

SNR will be obtained for N ~ 480, a value much larger than the corresponding back-

projection case. However, since both reconstructions have differing resolutions, this
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is not a fair comparison. For a non-random Sf(x, y), the image mean squared error

(MSE) for both reconstruction techniques breaks down into the variance of the recon-

structed low-contrast reflectance, 6f(x, y), plus the square of a second bias term. The

Sf(x,y) variance is inversely proportional to N, while the bias measures the depar-

ture of the reconstruction PSF from a delta function; the ideal imaging system PSF.

Making the comparison on this basis, the backprojection reconstruction bias term is

larger than the corresponding filtered reconstruction term because of the relatively

poor backprojection reconstruction resolving power, while the backprojection recon-

struction f/(, ,y) variance is smaller than the corresponding filtered reconstruction

contribution because, in this latter quantity, spatial projection filtering emphasizes

high frequency noise. Therefore, the SNR advantage of backprojection reconstruction

comes at the expense of much poorer resolution (cf. Figure 2.2 (b) and (c) and also

[24, Figure 18.]).
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Chapter 4

RTI Tomographic Imaging
Performance

We now turn our attention to the range-resolved laser radar tomography problem

originally outlined in chapter 1. In this scenario we use a direct detection laser

radar to illuminate a spinning target to obtain a fixed number of range resolved

returns which correspond to a set of projections of the target reflectance onto the

range axis. Tomographic techniques will then be applied to this semi-discrete range-

time-intensity (RTI) record of the target revolution to reconstruct a two-dimensional

reflectance image of the three-dimensional target. The goal of this investigation is to

examine the performance of this imaging technique.

The discussion in this chapter is organized along three main thrusts. First, we will

introduce the concepts necessary to build a mathematical signal model of the imag-

ing problem which will allow us to compute the first and second moments of the re-

constructed image. This model incorporates radar-target geometry, electromagnetic

propagation, target characteristics, direct detection and finally, tomographic image

reconstruction. As in most mathematical models of complex physical processes, we

are often forced to adopt approximations during the analysis which degrade accuracy
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but provide useful explicit closed-form performance predictions. While such is the

case here, we nevertheless hope to develop a theory which will qualitatively satisfy our

curiosity concerning the issues and interpretations of the reconstructed RTI images.

Here, our ultimate goal in modelling is to quantify the reconstructed image quality

in terms of resolution and SNR-like measures.

The second section deals with the calculation of the first and second moments

of RTI projections. The emphasis in this chapter will be on the discussion of the

assumptions and approximations behind the calculations and a presentation of the

results along with their proper interpretation. Full disclosure of every step of the

computations is made in Appendix B along with a detailed discussion justifying all

assumptions. While this necessitates some duplication in the presentation, it was felt

that the reader of this chapter should be spared from the seemingly daunting stream

of changes of variables, integrations and transformation operations required to obtain

the sought after signal covariances.

In the final section, the results of the two previous sections will be woven together

to produce two measures of the reconstructed image quality. The image resolution

will be derived from the projection mean, while the image SNR will be fashioned from

both the projection mean and variance. A discussion comparing these results with

previous experimental results and the companion DTI results of the next chapter will

be the scope of a later chapter.

As we begin the process of constructing the RTI imaging model, the most difficult

aspect to conceptualize is the specification of a target with arbitrary shape, reflectance

and roughness. Therefore, we step back from this general situation and begin by fixing

the target shape as spherical. While this action limits the results to a specific case,

we still should obtain a qualitative description of the performance in terms of the
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laser radar design parameters.

4.1 RTI Tomographic Imaging Model

In this section we will construct a model of the RTI imaging system. Model elements

and issues will be discussed in the order the are visited by the pulse emitted by

the transmitter, beginning with the transmitter beam modulation and propagation,

and then, target characterization, direct detection and finally post-detection image

processing.

Many features of the direct detection laser radar model are shown in Figure 4.1.

The model features a laser radar in which the transmitter and receiver apertures

share the same optical axis. We assume the spherical target is at a constant on-axis

position in the radar's optical far-field at a distance of L meters from the transmitter

aperture. The rigid target is centered at the origin of the target coordinate frame

(., y, z) and spinning about the z-axis at a rate of f2 radians/second. On the scale

of the transmission wavelength A, the microscopic surface variations of the target are

large and random in nature.

This geometric model is motivated by the tomographic imaging of a rotating

satellite from a ground- or space-based laser radar. In this scenario, targets typically

1-10 meters in size spin from 1-60 revolutions per second at range from the radar

which can easily exceed 100,000 meters.

4.1.1 Transmitter Beam Propagation

The process of measuring a set of target range projections begins with the trans-

mission of a train of short-duration optical illumination pulses. The optical source

within the transmitter is a laser which emits a spatially- and temporally-coherent
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linearly polarized monochromatic beam at the fixed frequency of vo = c/A. The nth

pulse arriving at the target at time tn is formed at the transmitter exit pupil by

amplitude modulating the electric field of the +y-axis traveling wave by the envelope

VS(t - (t - L/c)). The retarded time adjustment term L/c accounts for the time-

of-flight from the laser radar to the target. The envelope s(t) has a peak value of

unity at t = 0 and a very narrow width of T seconds. Since the range resolution will

be proportional to the pulse spatial depth, cT, systems producing useful resolution

·will require T to be less than a nanosecond for meter sized targets.

Under the linear polarization assumption, we may represent the electromagnetic

field strength of the nth pulse exiting the transmitter pupil by using the complex

scalar description [29, Chapter 3]

Ut(p1, t) = PT T(P1) (t - (tn - L/c)) (4.1)

where Ut(pi, t) is' proportional to the complex scalar envelope of the outgoing electro-

magnetic wave, PT is the peak transmitter power and T(1i) is the normalized com-

plex transmitter spatial mode (antenna pattern) within the exit pupil plane spanned

by the two-dimensional reference vector , i.e.,

/ d)p l (#)l2 = 1. (4.2)

Pupil

Therefore, the optical power launched to the target in the nth pulse is equal to PTS(t-

(tn - Llc)).

Often the large lasers encountered in the laboratory or in an industrial setting have

an aperture beam intensity profile which is bell shaped. From the point of view of a

tractable mathematical model which approximates the performance of manufactured

optical systems, we will assume the illumination produced by the transmitter takes
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Figure 4.2: Fraunhofer Diffraction Formula Geometry

the form of a collimated Gaussian beam. Therefore, the normalized complex spatial

mode at the transmitter exit pupil is

(l) = / {a22 } (4.3)
7r 0 1. 2ao2

The beam is considered to have a nominal radius of ao meters within the exit pupil

plane.

As the laser light propagates through free-space toward the target, the beam char-

acteristics begin to change. In our far-field paraxial case, this evolution in terms of

the complex spatial mode can be characterized by the Fraunhofer diffraction formula

[29]

Uo(, 2 , t) -T j-L exp jkL+j 2 (P2/AL) L2 + 2 /) (4.4)

Output Field Spatial Mode

where ka2/L < 1. Referring to the entrance-exit pupil diagram of Figure 4.2, we see

that the Fraunhofer diffraction formula specifies the output field Uo(p2, t) contained

in the exit pupil at time t in terms of the two-dimensional spatial Fourier transform

i of the input spatial mode pattern ~i(p) within the entrance pupil and the time
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retarded field modulation /s(t - L2 + 112 /c) riding upon the spherical wavefront

striking the exit pupil plane. Note that the input field spatial mode ji(A) is defined

as a function of the position vector p1 lying in the entrance pupil while the output

field U o(p2, t) is a function of the position vector p- spanning the exit pupil. Both

position vectors are understood to be perpendicular to the propagation axis of the

electromagnetic wave. The Fraunhofer diffraction formula is only valid when the

entrance-exit pupil separation distance, L, is much greater than the entrance aperture

area times the wavenumber. This is certainly the case for imaging system operation

at large distances, such as missions performed on earth orbiting satellites from the

ground.

Applying this relation to the collimated Gaussian beam at the transmitter exit

pupil, we find the probe beam Up(5 2, t) defined on the plane T touching the target

surface L meters from the exit pupil to be

Prai e2pjkL jkI12 exr2
Up(P2, t) = i Vs(t- t) xp jkL + 2exp -2 (4.5)

Gaussian
Spatial Mode

Note that the probe beam striking the target is also Gaussian and the parameter aL =

L/kao is the transmitted beam radius at the target site. This parameter is directly

proportional to the radar-target separation distance L and inversely proportional to

the transmitter exit pupil size.

In a typical imaging scenario, we will be illuminating a target with spatial di-

mensions on the order of meters over a radar-target separation distance in excess of

100 kilometers. Therefore, the 2 I2 dependence within the retarded time term has

been neglected in favor of the much larger radar-target separation distance L. This

approximation forces the pulse modulation to apparently propagate to the target
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on a plane wave rather than on the nearly flat spherical wavefronts which actually

strike the T-plane. owever, after considering the pulse range depth and paraxial

propagation, the error is very small.

4.1.2 Target Characterization

Consider the scenario of a spatially- and temporally-coherent monochromatic optical

wave striking a fixed surface. For a smooth, gently rolling mirror-like surface, the

reflected wavefront will suffer from a curvilinear spatial distortion which matches the

rolling surface shape. The reflected return from these so called specular surfaces main-

tain spatial- and temporal-coherence. However, in most situations, surfaces are not

highly polished but are rather rough when compared to the wavelength of the illumi-

nating laser. These diffuse surfaces are characterized by a seemingly random jumble

of microscopic surface relief features riding on the gross macroscopic target shape.

These diffuse surface characteristics cause spatial decorrelation in target returns.

Imagine then what an observer separated some distance from the diffuse surface

sees as he peers at the illuminated target. As long as the microscopic surface roughness

is nearly spatially incoherent over the surface, each exposed scattering site will return

an optical contribution which has an unpredictable random phase when compared

to the return from other sites. The reason for this decorrelation is the variance in

the optical path length as the scattering site is relocated over the rough surface.

Therefore, since the path length to any individual scattering site will experience a

variation of well over a wavelength, the return phase will be uniformly distributed

over a wavelength.

The electromagnetic return field from each exposed scattering site will interfere

upon reaching the observer's eye. Because the total return is the sum of the electric
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fields from a large number of sites with statistically independent propagation path

lengths, the distribution of this return will tend toward circulo-complex Gaussian, via

the Central limit theorem. Since the human eye senses intensity, the observer will ex-

perience a return fade if the individual scattered contributions interfere destructively,

otherwise, a very bright return will be seen if constructive interference occurs.

A pattern of constructive and destructive interference regions will be spatially

distributed over the image plane occupied by the observer. An intensity detector

will show this distribution as a haphazard marbled pattern of light and dark patches

called speckle. The size, shape and possible movement and evolution of these light

or dark patches, or speckle lobes, will depend upon the illumination wavelength,

observer-target separation, gross target shape and dynamics, and of course, the mi-

croscopic surface roughness characteristics. It is the goal of this subsection to develop

a mathematical description of the spherical RTI target which will lead to a statistical

characterization of speckle at the laser radar receiver.

Consider the task of calculating the return echo from the illuminated target. The

spatial distribution of the surface reflectivity over the target will determine the return

magnitude while the target shape and surface roughness will determine the return

phase. Thus, the overall return in coherent systems is not only determined by the

reflectivity but also by the macroscopic target shape and microscopic surface rough-

ness. In these situations, the adoption of a complex statistical reflectivity satisfies the

dual requirements of magnitude and phase.

To develop greater insight into these issues, consider a surface test patch on the

illuminated portion of the target. The patch size is chosen small enough so that the

target reflectivity p varies little over the patch extent. The entire patch appears to

the human eye as have a shading which corresponds to the value of p. Therefore,
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the parameter p becomes the power (intensity) ratio of the reflected echo to the

illumination strength for any scattering site within the patch.

The joint issues of target shape and surface roughness can be separated by con-

sidering the following scenario. We could imagine constructing an actual target by

impressing the microscopic surface roughness features onto a thin skin and then wrap-

ping this skin around the nominal target topology the way one would sew a leather

skin over the core of a baseball. Let the function h(x, y, z) be the skin thickness or

height above the point (x,y, z) on the nominal target topology. The set of (x, y, z)

are now understood to define precisely what is meant by the gross target shape and

h(x,y, z) represents the surface roughness. To give a sense of scale, h(x, y, z) may

have a maximum value of no more than a few wavelengths while the target shape

reflects the macroscopic target extent. For targets of practical interest, this may be

on the order of meters.

The receiver combines the phase contributions from all the exposed scattering

sites after the return has travelled to the radar. The phase contribution from each

scattering site is computed by simply expressing the round trip distance to the radar

in terms of wavelengths. The above target model naturally breaks each phase contri-

bution into two components. The first component is due to the macroscopic distance

between the laser radar and the surface defined by the target shape. The second

component is due to the intervening material defined by h(x, y, z) lying above the

target shape. In the following model for target reflectivity, we will separately deal

with the phase contributions caused by surface roughness and target shape.

Any credible description of target reflectivity must take into account the time

dependent issues of intensity reflectance, target shape and target surface roughness

as prescribed above. We will deal with these issues by developing an effective multi-
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plicative target reflectivity model which is positioned on the T-plane, easing future

propagation calculations. Note that range depth information will be lost by collaps-

ing the three-dimensional target reflectivity onto the T-plane. However, in §4.2, this

information will be restored. Therefore, let the complex target reflectivity, T, at the

point specified by the position vector p2 lying in the T-plane at time t be:

T(p 2,t) J p(p2 ,t) exp{-[p21 /aT} exp{jklplI2/RT} exp{2jkh( 2,t)}. (4.6)
- -

1st 2nd 3rd 4th

The first factor accounts for the reflectivity p(x, y, z) of the target surface projected

onto the T-plane at time t. At this point, since we are dealing with field strengths

and not intensities, the square-root of the reflectivity must be used. The second fac-

tor approximates the circular outline of the sphere in the T-plane with a Gaussian

window function of nominal radius aT/v/2 meters. Here, one's first instinct would

be to use a hard-edged window function for this purpose, but the adoption of the

Gaussian guarantees the existence of a closed-form solution after Fraunhofer prop-

agation. At this stage, the Gaussian profile does introduce an erroneous darkening

of the limb, but in later calculations this approximation will be relaxed. The third

factor is a spherical phase factor which accounts for the wavefront round-trip travel

from the T-plane to the spherical surface, where RT is the target radius of curvature.

It is this factor which accounts for the influence of the target shape upon the return

phase. The last factor models the phase fluctuations caused by the surface rough-

ness. The function h( 2, t) is understood to be the effective elevation of the surface

roughness features h(x, y, z) as they depart from a perfectly smooth spherical target.

Since this microscopic terrain appears haphazard in nature, h(p2, t) will be chosen to

be a random process. It is this last term which gives rise to speckle at the receiver

aperture
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It seems reasonable to assume that h(pi, t) can be described by a random process

[11, 30, §2.7.2]. Since we will be shortly working with the expectations of the RTI

record, we must go further, and specify the first and second moments of the random

phase factor exp{2jkh( 2 , t)}. Note that it is the second moment which will come

into play during the mean RTI record calculation because intensity detection is used

to form each projection.

Consider the returns from two patches on the surface of the sphere, each of which

are on the order of a wavelength or so in size. From the point of view of the in-

coming electromagnetic radiation, each diffuse patch resembles a flat plateau-like

landscape of microscopic "hills and valleys" which represent the seemingly random

surface roughness features. Therefore, the field return from each patch will tend to-

ward a circulo-complex Gaussian random variable via the Central limit theorem. If

the patches are separated by a distance of many wavelengths, then we would expect

the returns to be uncorrelated. However, as we decrease the patch center separation

until the patches begin to overlap, the return correlation should increase. Therefore,

we adopt the following description for the first and second moments of the the random

phase term exp{2jkh(., .)} for the coordinate points p2 and pi' and the times t and

u respectively:

( exp{2jkh(2, t)}) 0

* (exp{2jkh(,t)} exp{2jkh(p2',u)}) 0

* (exp{2jkh(p 2, t)} exp{-2jkh(p', u)}) exp i2 - P2 + zRT( - )12}

where izis the unit vector lying along the x-axis in the T-plane and the parameter

PT is the surface roughness correlation length. This formulation assumes PT < aT
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and PT > A, i.e., the surface roughness correlation length is on the order of a few

wavelengths.

The above expectations are justified as follows. The first expectation is simply the

average complex phase variation due to surface roughness. For fixed position p2 and

time t, the surface height shift from one sample to the next in the ensemble of random

skin functions h(P-2, t) is well over a wavelength. After taking into account phase wrap

around, the phase angle will be uniformly distributed from 0 to 2r. Therefore, the

mean of this phasor will be 0. The second expectation is over the product of two of

these random phasors, which will likewise have a uniform phase angle and therefore

also a phasor mean of 0. For a surface roughness skin function h(pJ positioned on the

T-plane and undergoing uniform motion along the cross-range axis, the final term

models the resulting phase decorrelation with respect to time and space. The skin

function velocity is set equal to izRTQ, the velocity of the equatorial target surface

passing over the radar line-of-sight. Therefore, this term measures decorrelation in

terms of PT by dividing the distance between the points p2 + RTft and P2' + RTQIL

by PT. The final structure of this decorrelation term was arbitrarily chosen to be a

Gaussian form.

At this point in the discussion, we must draw attention to a subtle weakness in this

reflectivity description which involves the specification of the phase component due

to the microscopic surface roughness. The reader may have noticed that the above

model describes the effects of surface roughness by specifying an equivalent surface

roughness skin function h(pi, t) that is stretched over the projection of the target in

the T plane. Note that the random process h(p2, t) has been fixed to be wide sense

stationary with respect to the spatial coordinate p2. The function h7 2, t) is meant

to behave as a two-dimensional projection of the path length variation caused by
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the actual surface roughness skin function h(x,y, z) covering the target shape. The

problem is that this goal is only partially obtained by the above model for T(p-2, t).

In order to gain insight into how this discrepancy might occur, consider the follow-

ing observations about the return from a small test patch on the surface of an actual

diffuse spherical target. First, let us choose an orientation in which the laser radar is

directly overhead of the patch so that the illuminating wavefronts are parallel to the

nominal target surface. Under these conditions, a two-dimensional projection of the

surface height fluctuations h(x, y, z) will exactly model the phase variations caused

by the difference between the actual scattering surface and the nominal target shape.

Now let the target rotate so that the laser radar illuminates our chosen patch partially

from the side. In this case, the radar line-of-sight will cut obliquely across h(x, y, z)

to the underlying nominal target surface. Therefore, the projection of h(x, y, z) does

not accurately model the surface variations. This means that the phase statistics will

change because the phase is not only dependent upon h(z, y, z) but also the angle

of incidence between the line-of-sight and the patch normal. In fact, we can expect

the surface correlation lengths to shorten while the variance of the apparent surface

roughness features increases as the patch rotates towards the target limb.

An additional complication comes in at grazing angles of incidence. In these cases

significant shadowing occurs as microscopic peaks in the patch foreground obscure

background terrain features along the line-of-sight, perhaps requiring a new defini-

tion of the surface correlation length in regions near the limb. Finally, for features

constructed of tight radii of curvature, multiple reflections of the electromagnetic

wave may result. Taking all these effects into account in a comprehensive scattering

theory is difficult, but some progress has been cited in the literature [31, 32, 33]. In

the case of a spherical target with a stationary h(x, y, z), we would expect the line-
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of-sight path length correlation function to change as the position of the test patch

moves about the exposed face of the target.

In the above equation for complex target reflectivity, the surface roughness is-

sues associated with variable surface aspect, shadowing and multiple reflections are

ignored. Proposed theories taking one or more of these concerns into account result

in complicated descriptions which make the expectation calculations extremely un-

wieldy. Instead, since our immediate goal is a qualitative rather than an exact quan-

titative understanding, we accept the above approximation with this understanding.

4.1.3 Direct Detection

The heart of the RTI receiver is the direct or incoherent optical detector. In modern

laser radar systems, the return is collected at the receiver aperture and focused by

a telescope upon a photodetector whose electrical output is directly proportional

to the optical power striking the device's photosensitive surface. System designers

usually choose between multidynode photomultiplier tubes (PMT's) or semiconductor

photodiodes for detection depending upon the relative merits of operating wavelength,

speed, gain, temperature, complexity and optical and electrical noise figure.

Figure 4.3 shows a block diagram of an abbreviated photodetector model which

incorporates the bandwidth, gain and noise issues. In this model, incident light at

wavelength A and short-time-average power P(t) (Watts) strikes the photosensitive

surface of the ideal photodetector. According to quantum mechanics, photon arrivals

will be described by a Poisson point process with an event rate of P(t)/hvo, where h is

Planck's constant and v, = c/A. Every photon will either form an electron-hole pair in

the depletion region of a semiconductor device or cause the emission of a photoelectron

from the photocathode of a PMT with probability 7, the photodetector quantum
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Figure 4.3: Photodetector Model

efficiency. In devices with gain, the avalanche multiplication mechanism produces a

randomly sized burst of photoconductors for each photoelectrical conversion event.

The number of burst carriers from event to event is statistically independent and has

a fixed average of G. Typically, G can vary from a few to more than a million over

the range of devices available to the radar engineer.

The current output of the ideal photodetector can be imagined as a train of

Poisson point process impulses of rate yP(t)/hvo and average weight Ge, the mean

gain times the charge of an electron. The photodetector load resistor RL adds a

zero mean white noise of spectral level 2kBTL/RL where TL is the load temperature

and k is Boltzman's constant. A third component is added representing the device's

dark current due to unavoidable spontaneous photoconductor generation. The sum of

these three processes is passed through a linear time invariant (LTI) detector response

filter h(t) which models the photodetector's overall bandwidth. The photodetector

output, i(t), is presented at the output of the detector response filter. Thus, the

direct detector output i(t) is fundamentally a shot-noise process, because the driving

Ideal
Photodetector

gain = G
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photon interarrival times are Poisson distributed, but additional noise accrues because

of illumination gain, thermal current and dark current randomness.

The first and second moments of i(t) are of interest since the photodetector output

is the measurement test point for the set of RTI projections. An added complication

comes in when we realize that the incident optical power is subject to random speckle

fades. However, these moments are shown to be [34, lecture 7, p. 9]

(i(t)) he J dr h(t - r) [(P(r)) + Pd] (4.7)

(t, te2G 2+x,
Ki(ts) = hv, J dr h(t - r) h(s - r) [(P(r)) + Pd]

+ { eGrhv J d h(t - r)h(s - ) Kpp(r,p)

+ 2k TL dr h(t - r) h(s - r) (4.8)

where Pd is the equivalent dark current optical power and Kpp(t, s) is the incident

optical power covariance.

4.1.4 Post-Detection Image Processing

Having reached the end of the signal path, we now complete the RTI imaging model

with a discussion of the post-detection image processing. As the target completes

one revolution, our goal is to gather N reflectance projections. We approach this

semi-discrete problem by transmitting a periodic train of short-duration pulses to

the target. The resulting set of received returns correspond to projections taken at

equiangular increments of the target rotation. For example, to acquire 20 projections

of a target spinning at 1 revolution per second, we would transmit a pulse every 50

ms to produce projections separated by 18 degrees in the Radon transform space.
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Each sample consists of a short duration record of the received signal i(t) after

correcting for the round trip propagation delay to the target center and back. The nth

range projection pe (r) of the target at time t, during the arrival of the illumination

pulse is then defined to be:

Pe.(r) = i(t) (4.9)
= 2r/c + t + L/ + 2RT/C

The retarded time terms are calculated to align each projection with the target center

at the range r = 0. The N projections will be subjected to standard tomographic

reconstruction techniques to form a reflectance image of the spherical target. In the

next section we turn our attention to calculating the first and second moments of the

projections pos(r).

4.2 Projection Statistics

In this section we outline the calculations describing the first and second moment

statistics of the projections provided by the above RTI imaging model. We begin by

expressing the mean optical return intensity intercepted by the photodetector as a

function of both the projected target reflectivity and the pulse propagation over the

target surface. After taking into account the photodetection process, this result is

rewritten as the range dependent photodetection mean current. This projection first

moment result exhibits features which begin to hint at some of the image reconstruc-

tion distortion issues. Finally, a similar analysis is performed to determine the second

moments of both the filtered and unfiltered projections used in image reconstruction.

At this point in the discussion, we begin with the derivation of the projection mean

(pon (T)).

In section 4.1.1 we determined that the probe beam Up( p2,t) striking the target

T-plane was a Gaussian beam with a field modulation written in retarded time
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coordinates. In the case of super-range resolution, the short-duration pulse travelling

over the target will freeze the surface motion and leave unresolved any Doppler shift

in the return. Therefore, the return echo UE(fP2, t) at the T-plane will be formulated

by taking the product of probe beam Up(p 2, t) and the projected target reflectance

T(p 2 , t) frozen in place at time t, while retarding the time variable in an appropriate

fashion to account for the round trip delay from the T-plane to the underlying target

surface. This multiplicative model can be constructed by specifying the probe beam

and echo in terms of their time-domain Fourier transforms. Therefore, we model the

return echo at the target as:

UE( 2i,,f) = T(p2, tn) Up(Y2, f) exp {-4rjf [RT - /R - IT22] /c} (4.10)

where Up(Wi2 , f) and UE(P2, f) are the time-domain Fourier transforms of the probe

beam and return echo respectively, and T(pi2, tn) is the target reflectivity evolution

frozen for an instant by the short-duration illumination pulse at time t,. The expo-

nential delay term restores retarded time as the pulse travels from the T-plane to

the spherical target surface and back. Note that Doppler shift has been neglected.

In order to calculate the optical power falling on the photodetector, we must take

the inverse Fourier transform of UE(p2, f) with respect to frequency and then use the

Fraunhofer diffraction formula to propagate the target echo to the laser radar. As in

section 4.1.1, we will assume with insignificant error that the return field modulation

rides a planar wavefront upon arrival at the receiver aperture. This approximation is

valid because the spatial depth of the return field modulation is significantly larger

than the departure of the curving return wavefront from a flat plane. Therefore, the

time retardation from the T-plane to the receiver is L/c, independent of the position

within the aperture.

Using the Fraunhofer diffraction formula, the complete retarded time target echo
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caused by the illumination pulse reaching the target at time t, is propagated back to

the laser radar. Taking the expectation of the return field intensity with respect to

the surface roughness and integrating over the receiver aperture results in the mean

optical power (P(t)) falling on the photodetector, giving the following result:

4rka2= 2/ *p(f2+t1)2exp{-|pf+l lb2}P() PT 2 k 2 p 2a L aa 47r2L2 Jd P(i2+,t,) exp 2 /b2}

s(t-tf-Llc-2 [RT- RT- IP2 ]/c) (4.11)

where
1

b p2 k2 2 (4.12)

p2 4 2

The derivation assumes that the surface correlation length PT is much smaller than the

target spatial extent aT. The details behind propagating the target surface correlation

structure to the optical field present at the receiver aperture during the course of this

mean power calculation are covered in Appendix B.

This result has elements in common with standard radar equation for the mean

return power from an angle-angle unresolved target [2, §1.2]:

(P) = PTLT x AR X s (4.13)
4rL2 47rL2

st~ 2nd
1 st 2 3 rd

The first factor is the on-axis target irradiance where GT is the transmitter antenna

gain referenced to an isotropic source. This factor corresponds directly to the RTI

on-axis irradiance term PT/ra in (4.11). The second factor in the radar equation

is the effective reception area of the receiyer aperture. This factor, which accounts

for the portion of the return power collected by the receiver aperture area AR, the

corresponds to the nominal receiver aperture area ra' in the RTI system. The third

factor, cs/41rL2, is the effective target cross-section solid angle subtended from the
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laser radar aperture. This then matches the remaining integral factor in (4.11) scaled

by the wavenumber squared k2 times the surface correlation area p and divided by

47r2L2 . Therefore, in the RTI case, the angle-angle unresolved target cross-section is

a function of propagation time or range.

The right-hand-side integral is a two-dimensional integral taken with respect to

the T-plane spatial variable p2. The integrand factor p(p2, t) is the two--dimensional

T-plane projection of the exposed three-dimensional surface reflectivity distribution

p(x, y, z) after the target has rotated through an angle of 0, = Qtn radians. The

second integrand factor is a circular two-dimensional Gaussian weighting function

which serves to spatially window the two-dimensional reflectivity projection p(p2, t).

The window dimensions depend upon the wavenumber and target parameters. At a

fixed time t, the product of these two factors are weighted by T-plane projection of

the target surface illumination pattern determined by the time dependent position of

the pulse s(t).

Let us now begin to interpret the time-of-flight, t, as equivalent to the target

centered range, r, via the relation r = c(t - t) - L - RT. Therefore, for a very short

duration pulse, the above integral collapses the weighted "side-projected" reflectivity

lying along a loop on the target onto the range axis at the point r = 1c(t-t , )-L-RT.

Or, in other words, the return power corresponds to constant range cross-sections

of the exposed target surface. This result can be regarded as a Radon transform

type operation taken over a circle on the target surface at the constant range plane

r = 1c(t - tn) - L - RT. The fact that side-projected reflectivity is windowed by the

circular Gaussian factor before Radon transformation means that projections incur

some distortion.

In coming to grips with the role of the Gaussian window function in (4.11), let us
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digress from our discussion and imagine shining a flashlight on a semi-rough surfaced

metal ball. Looking beyond the rear of the flashlight straight towards the ball, we

would see the target illuminated by the flashlight beam. The reflection from the center

of the ball would be the brightest because the normal orientation of the surface would

tend to scatter light directly back to the observer. However, as we move our gaze to

the limb, we would see the scattered light diminish. This occurs because the back

reflection from semi-diffuse surfaces drops as the angle of incidence increases between

the radiation line-of-sight and the surface normal. In the two extreme surface classes

of a Lambertian or highly rough surface and a specular or polished surface, the

back reflection fall-off is either slow or rapid, respectively, as the angle of incidence

increases from zero to 90°. In other words, shiny balls reflect light back from a small

region near the center, while very rough balls apparently reflect light from all over

the illuminated face. Most surfaces behave somewhere in between.

These same effects are modelled by the Gaussian weighting factor above. The

T-plane centered Gaussian window causes the target back reflection to fall-off as

the reflection point moves away from the perceived target center to the limb. The

rate of this fall-off is controlled by the parameter b which is inversely proportional to

the sum of two terms. The first term, k 2 p/RT, models the phenomenon of surface

roughness-aspect angle dependent back reflection. Different surface classes ranging

between specular and Lambertian can be chosen by setting the surface roughness

correlation length PT either as large or small, respectively, in terms of the operating

wavelength A.

The second term, 2/a2, accounts for the finite intensity support that we have

assigned to the target. As the reader will recall from the target modelling discussion,

this parameter was set in place in order to guarantee a closed-form solution after
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Fraunhofer propagation to the receiver. However, this inclusion generates an artifact

in each projection by unnecessarily dimming the target limb. This effect can now be

removed without any loss in accuracy by letting aT grow large and restricting 2 lie

only within the support of the T-plane projection of the target reflectivity.

The received intensity will be directly detected by the RTI laser radar. Using the

previous statistical photodetection model, the mean RTI projection can be written

as:

= y h(t) * (P(t)) [
hv0o h~) * t = 2r/c + t, + L/c + 2RT/c

eG7 PT k2p2
hv 47raLa L2

J dW2 p(t 2 t,) [ h * s](2r/c+2 /RT -[ 212/c) e-1P212 /b (4.14)

where the symbol * stands for the convolution operator and the origin of the range

coordinate system r has been shifted to the target center. Note that this formula-

tion demonstrates that RTI projections will be smeared by the finite photodetector

response time reinterpreted as the corresponding spatial range depth of the illumina-

tion pulse s(t).

Let us now turn our attention to the projection covariance. As shown in §2.1 of

Appendix B, individual projection measurements will be statistically independent if

N << RT (4.15)
PT

which is always the case for meter-sized rough-surfaced targets at infrared or visi-

ble wavelengths. Therefore, the correlation from one projection to the next will be

negligible and the second moment of any consequence will be the projection self-

covariance. Making the same arguments and assumptions as above in the analysis
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of the first moment and applying Gaussian moment factoring, §2.1 of Appendix B

demonstrates the projection covariance to be:

1 e2G2+"77 k2a2 PTT p B
Kpp(rl,r 2) 2 h B( CT) X

4V/i hvo L 2 aL ,p BcT) 

2 ) exp -(rl - 2) 47r2 B2 }
[{2 2} ]

+ (&G7)2( a) (pt)2 p2 (TCT)2TB x

2 C2T L 471-2~j2C2 (4 .1 6 )(- (r + r2))exp {-(r - 2) 4 } [ { ('(rl + r2) + RT)/ cT} -{ (2(rl + r2))/ cT} ]2+ S/ B 2kTL exP {-(ri- 2) 47r2B2 } (4.16)

where positive values of rl and r2 fall on the far side of the target; the error function,

· (x), is defined to be

(x)- 1 j dt exp{- t2}

and the quantity

B1 - |- (4.17)
4r2T2 + B2

is the total system bandwidth. This result was obtained by assuming a Gaussian

shaped pulse s(t) = e-t 2 /T2 with a nominal pulse width of T seconds and a Gaussian

shaped photodetector frequency response h(t) 4 e- f2 /B 2 with a bandwidth of B

Hertz. Furthermore, a low-contrast model for the target reflectivity was adopted,

i.e., p(X, y, ) = p + p(x, y, z) where JSp(x, y, z) << p. This reflectance model was

adopted in order to give closed-form expressions for the spatial integrals over the

target surface during Fraunhofer propagation.
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Note that the covariance is the sum of three terms. The first term accounts for

the effects of photodetector shot-noise driven by the return power, neglecting dark

current and background light. Speckle induced variations within the target return

contribute the second term. The final term is the thermal noise developed across the

photodetector load resistor. The thermal and shot-noise decorrelation distances are

on the order of c/B while the speckle decorrelation distance is proportional to c/B 1.

Likewise, the variance was calculated in Appendix B §2.2 for projections processed

by the inverse Radon transform spatial reconstruction filter If 1. Assuming the rea-

sonable case of useful spatial resolution (i.e., the so-called super-resolution condition

c/B 1 < RT), the filtered projection variance is found to be:

VarPP,(r) ire2G2+"r (kar) PT4 (T) B 3/C2 x

(-r) [ ( + RT) /cT} - {r /cT}]

+ 2 eG77) ka) PTPT p2 (cT) 2 TB3/C2 
\hv, L 2 1

(-r)2 [ {( + RT) /cT} - 1{r /cT} ]2

+ 2 R2kBTL 2B (4.18)

This result also assumes the low contrast reflectivity model of the previous result and

identical definitions for s(t) and h(t). Again, the contributions from photodetector

shot-noise, speckle and load resistor thermal noise are summed in that order.

This final variance will be used in the next section along with the projection

mean to formulate a SNR-like figure of merit for filtered backprojection reconstructed

images.
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4.3 Reconstructed Image Performance

In this final section we will characterize the performance of the RTI imaging system

in terms of the various forms of aberrations which cause the reconstructed image to

depart from the ideal image. Typically, the analyst will separate aberrations caused

by limitations in the system design from those caused by noise sources corrupting the

measurements. In this analysis, one of our goals is to understand and quantify the

impact of speckle and receiver front-end noise upon system performance by defining

and calculating an image signal-to-noise ratio (SNR). Essentially, this quantity will

compare the squared mean-image to the image variance with respect to both the

shot-, speckle and load resistor noise sources. While this gives an indication of

the noise-induced image fluctuations about the expected image vis-a-vis a fixed

target reflectivity and radar design parameters, the SNR provides little insight into

the deterministic distortions caused by limitations in the system design or imaging

technique. The second goal of this section is to conduct an investigation into this

other class of distortions which will lead to the construction of the imaging system

point spread function (PSF) and ultimately the image resolution. This exercise, which

we now begin, will provide us with a comparative interpretation of the RTI imaging

scenario in relation to the standard two-dimensional tomographic problem.

Cartographers have never produced a undistorted global map of the earth's sur-

face features. Since the RTI imaging system is attempting to produce a flat two-

dimensional image of a three-dimensional surface feature distribution across a sphere,

we suspect that the tomographic reconstruction will build in unavoidable distortions

in addition to the photodetector response smearing indicated earlier. In modeling the

sphere reflectance, T(p), the exposed three-dimensional surface reflectance p(x, y, z)
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is projected by parallel rays upon the perpendicular T plane, with the laser radar

observer located at infinity. Cartographers refer to this type of projection as the

orthographic projection (see Figure 4.4(a)) [35]. It is precisely these transverse or-

thographic projections of the reflectance p(x, y, z) on to the T-plane upon which the

RTI Radon transform operates to produce the set of N tomographic projections pe(r).

Any two-dimensional backprojection reconstruction applied to this set of N RTI

projections will form a flat image. Consider the nature of this image. In the standard

tomographic projection of a two-dimensional field, all the points lying on a common

range displacement (scan line) contribute to a single projection ordinate value through

a line integral construction. This same principle holds true for range projections of

rotating three-dimensional targets. The locus of surface scatterers lying in the x-z

plane at a cross-range displacement of r from the target rotation axis will contribute

to the single RTI projection ordinate p(r) through a line integral expression, albeit

a somewhat more complicated formulation which takes into account surface aspect.

If we suppress the z dependence in the three-dimensional problem by choosing a

vantage point above the target north pole, the plane x = r becomes the scan line

x' cos 0 + y'sin 0 = r in the z-axis rotated coordinates. This means that a surface

feature located at the cylindrical coordinates (r, 0, z) within the target frame will be

mapped to the polar coordinates (r, 0) within the image frame by the backprojection--

reconstruction process. Therefore, ignoring the issues connected with formulating

a line integral surface-aspect dependent metric, the reconstructed two-dimensional

image is a projection of the target reflectance p(x, y, z) onto the x-y plane. In other

words, the reconstruction is attempting to reproduce the two-dimensional distribution

ppoi(, y)= p( ,y, +/R - R 2 - y2) + p(,y -R T- - y2). This quantity is

the sum of the northern and southern normal (polar) orthogonal projections across
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the x-y plane (see Figure 4.4(b)).

The above argument forces us to conclude that the polar coordinates of a surface

feature are preserved through the process of RTI projection formation and backpro-

jection image reconstruction. However, this does not guarantee that the reconstructed

reflectance values of a surface feature will compare equally with the bi-hemispherical

polar target projection. To see how this discrepancy occurs, consider the transverse

orthographic projection of Figure 4.4(c). In any Radon transform of this transverse

projection, the contribution from regions near the equator (e.g. Central America) will

dominate contributions from higher latitudes (e.g. Canada) when compared on the

basis of features with equivalent surface areas on the sphere. The difference between

contributions is explained by a change in surface aspect which causes a foreshortening

effect in the plane of projection. Note that a similar comparison leads to exactly the

opposite conclusion when considering the polar orthogonal projection (Figure 4.4(c)).

These considerations lead us to the preliminary conclusion that the broadside nature

of the RTI projections will emphasize equatorial over limb-sited features in the re-

constructed image.

The above observations indicate that the set of range resolved projections pe(r)

should be rewritten as a Radon transform of the polar projected reflectivity, Ppolar,

before attempting to formulate the imaging system PSF. Beginning with the line

integral description of the T-plane projected reflectivity, this step gives

Po(r)) = h'12P 7aaR 4iL2 J dr' [h * s (2r/c - 2r'/c)

j dx e T I ]/b2 ppoar(X,(x, r'),y (x, I)) (4.19)

Aspect Metric
Aspect Metric

where the polar projection Ppolar is written in the (x', y') coordinate system rotated 9,n
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radians about the z-axis, the surface aspect metric is introduced through the change

of variables from p- to x and z on the target surface and the exponential factor

accounts for the surface roughness-aspect angle effect upon the optical return. We

consider the aspect metric as a two-dimensional function which windows the polar

reflectivity before the line integral transform is performed. Thus, this result is a

generalized Radon transform which weights contributions near the target broadside

(equator) over those from the target limb (polar) regions [27, §II.7]. Furthermore,

the contribution from individual features decreases as the target rotation moves them

away from the y-axis (radar line-of-sight). This behavior accounts for the change ill

surface aspect as target rotation draws features across the illuminated exposure.

This formulation gives us the final link in writing the mean reconstructed RTI

image in terms of the convolution of a two-dimensional PSF with the polar reflectivity

projection ppoir(x, y). The PSF for a specific point (x,, y,) in the (x, y) plane is found

by placing a two-dimensional delta function at (, yo) and calculating the Radon

transform of (4.19) and then computing the convolution of (4.14) to give the set of N

RTI projections. This set of projections is then subjected to filtered backprojection

reconstruction producing the PSF H(x, y, X,, y,). Assuming a Lambertian target for

simplicity's sake, this set of operations gives:

eG7 PT k2 2o
H(, y,, y) =T 2 hv, 4ra~ L222

27r N-1 in(C, + SO,) '14 [r cos(O+8o)]2/c2/B( i d y(4.20)__E sin(O. + 0) e - - IB"9 ° '(° " +° il / " o .o (4.20) c
0n=O, nE '

[-o,,7r-e] Aspect Reconstruction
Angle Projection

Prefiltering

where the dependence upon (O, y) is expressed through the polar coordinates r =
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x2 + y2 and tan - l 0o = y,/X,.

Let us take a moment to interpret this formulation. The operator 7H is the inverse

Radon transform projection prefiltering operator F-[If x F(pe(r))]. It is applied to

the detector response time smeared Gaussian projections of the delta function. The

sine function models the projection angle dependent effect of surface aspect change

throughout target rotation. Note that as a feature apparently travels from one target

limb to the other, the corresponding contribution from this sine term goes from zero

to unity on-axis and back down to zero at the far limb. These factors are combined

under the backprojection summation sign to produce an unscaled PSF. This result is

then scaled by various familar laser radar engineering parameters and an additional

factor which depends upon the original position (o, yo) of the delta function. This

last factor accounts for the latitudinal dependence of the surface aspect surrounding

the delta function. Therefore, unlike the formulation developed in chapter 3, the RTI

image PSF is not position independent, and the mean image must now be recovered

through a superposition integral rather than a convolution operation.

The presence of the sine function under the backprojection summation makes a

closed form solution of (4.20) difficult to calculate. However, the normalized PSF has

been numerically calculated and the result is shown in Figure 4.5. The result is a

dumbbell-shaped PSF which is has zero amplitude when located at the origin but

blows-up at the equator. The PSF minor axis lies along the radial axis protruding

from the origin. The major and minor axes lengths of the half-maximum half-

width dumbbell contour are approximately 2.1 and 1.4 times c/B1. Therefore, the

reconstructed RTI image will have finer resolution with respect to the radial axis

than along the transverse radial axis. Thus, we define c/B 1 to be the nominal RTI

resolution.
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(t,

Figure 4.5: (a) PSF Reconstruction for N = 144 Projections. (b) PSF Orientation.

Having demonstrated the resolution of the RTI imaging system, we now begin

an investigation of the reconstructed image noise performance via an appropriate

formulation of a signal-to-noise ratio. As in chapter 3, we adopt the following SNR

definition as a measure of reconstruction quality:

(Reconstructed Image Mean at (X,, yo))2

SNR( , yo)
var {Reconstructed Image at (, yo)}

On a pointwise basis, this measure contrasts the relative strength of the mean image

to the average strength of noise induced fluctuations.

Retaining our assumptions of a low-contrast reflectivity description and sufficient

system bandwidth to resolve details smaller than the target, the numerator of the

above SNR becomes

6f 2(, YO) IJ dx J dy H(xy, zo0 Yo)
SNR(a, o) = (4.21)var {Reconstructed Image at (xo, yo)}

where we have approximated the mean response by taking the product of the slowly

varying low-contrast reflectivity component with the area under PSF. This action is
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valid when the PSF spatial bandwidth is much larger than the bandlimited feature

component, which is certainly true under our super-resolution assumption.

Since projections are statistically independent, the variance in the denominator

can be found by backprojecting the filtered projection variance (4.18) over the en-

tire circle of projection angles. The number of projections required for the image

reconstruction in this reflective tomography problem must be greater than 2rrq where

q is the number of radial resolution cells on the target. Therefore, for a handful of

resolution cells across the target, the number of required projections is on the order

of 20-25. Under this condition, the semi-discrete variance backprojection summa-

tions for the shot-noise and speckle contributions can be closely approximated by the

corresponding continuous formulations, resulting in a closed form expression for the

SNR.

Taking these approximations results in the following low-contrast super-resolution

deep far-field SNR:

N B1 RT ) CNR f2(Xo, y)/ 16r5
SNR(ox, yo) = (4.22)

G y, B2 16 PTh + PD RT+ - GP +11+ TB1p2 CN

1st

where we have defined the carrier-to-noise ratio (CNR) to be the ratio of the mean

projection current squared to the signal shot-noise component, i.e.,

CNR E
i/ e G PT k PT B cT p 

A2 hv a2 R L2 T/P

hv0 a k PT (cT) / 2 +yj (4.23)
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and we have normalized by the low-contrast reflectivity component present in the nu-

merator mean response. The above SNR result introduces the thermal-noise equiva-

lent power, PTh, which is the optical power needed to produce a shot-noise component

equivalent to the thermal noise contribution, viz.,

2 kBTL e2 G2+ 77

RL h hv0

and the peak received power, PR,peak

PT 2 ___2

PR,peak iT PT ( cT) pRT

corresponding to a range of r = -RT. This resulting CNR-dependent SNR formula-

tion conveniently expresses performance in terms of physical measures.

From equation (4.22) we see that the filtered backprojection reconstructed RTI

image SNR is directly proportional to the number of projections, N, and the square

of the number or radial resolution cells, q = c/BlRT. The SNR is inversely propor-

tional to the suin of two terms. The first term combines the contributions from the

received power shot-noise, the photodetector dark current shot-noise and the load

resistor thermal noise. This term increases as the point (o, y) is relocated away

from the target boundary toward the image center, eventually dominating the entire

denominator. This condition, which will always occur in a region about the image

center, corresponds to a combined dark current-thermal noise limit. The second de-

nominator term is the excess speckle noise contribution. It is directly proportional

to the CNR and the nominal target reflectivity squared. As the CNR grows with

increasing transmission power, the SNR will grow beyond the dark current-thermal

noise limit in regions away from the image center and eventually saturate at a new

level determined by speckle.

92



4.3. RECONSTRUCTED IMAGE PERFORMANCE 93

Thus, in the high CNR regime, the speckle-limited SNR takes the following value:

8f2(Xo, y) N (c/BRT)2 f2(, y) N (c/BRT) 2 (4.24)
p2 167ir2TB 1 p2 4 V'i4

where we have introduced the approximation by equating the transmission pulse

and photodetector response filter bandwidths. Therefore, presuming the absence of

angle-angle resolution, the typical RTI tomographic imaging scenario achieving a

handful of radial resolution cells requires a large number of projections, on the order

of several thousand or more, to drive the SNR up to 5f2(X, yo)/p 2, the conventional

low-contrast speckle-limited laser radar resolved-pixel SNR.
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Chapter 5

DTI Tomographic Imaging
Performance

Motivated by the RTI tomography performance analysis, we now turn our atten-

tion to the Doppler-resolved laser radar tomography problem originally outlined in

chapter 1. In this scenario we use a heterodyne laser radar to illuminate a spinning

target to obtain a fixed number of Doppler broadened returns which correspond to

a set of projections of the target reflectance onto the cross-range axis. Tomographic

techniques will then be applied to this semi-discrete Doppler-time-intensity (DTI)

record of the target revolution to reconstruct a two-dimensional reflectance image of

the three-dimensional target. The goal of this inquiry is to examine the performance

of this imaging technique.

Since both the RTI and DTI investigations share the same goals, as well as many

common assumptions and analytical elements, this presentation of the DTI model

and performance analysis is organized in a manner similar to the previous chapter.

Therefore, when appropriate, we will borrow model elements and analytical treat-

ments from the RTI investigation during the DTI presentation. Again, the emphasis

of this chapter is to introduce the reader to the modelling process and the analyt-
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ical concepts used to produce the reconstructed DTI image PSF and SNR quality

measures. The companion Appendix C documents the details behind many of the

complicated first and second moment calculations required to obtain these measures.

5.1 DTI Tomographic Imaging Model

In this section we will construct a model of the DTI imaging system. As in the case

of the RTI analysis, model elements and issues will be discussed in the order the are

visited by the energy emitted by the transmitter.

Many features of the monostatic heterodyne laser radar model are shown in Fig-

ure 5.1. We assume the diffuse spherical target is at a constant on-axis position in

the radar's optical far-field at a distance of L meters from the transmitter aperture

and spinning at a rate of Q radians per second.

5.1.1 Transmitter Beam Propagation

In contrast to the RTI scenario, we assume that the DTI imaging system transmit-

ter will interrogate the target with a collimated continuous-wave Gaussian beam of

nominal radius a meters. Therefore, adopting the previous beam specification sans

intensity modulation, the Fraunhofer diffraction formula gives the following scalar

field description for the probe beam Up(p2) perpendicularly striking the T-plane at

the target:

Up(2) = 4 exp jkL + j k 2 exp 2 (5.1)
PkP2,- 2 2L 22a (1

Again, the parameter aL = L/kao is the the transmitted beam radius at the target

site.
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5.1.2 Target Characterization

The time dependent target reflectivity model presented during the RTI discussion sat-

isfies the requirements for the formulation of a DTI multiplicative reflectivity model.

Therefore, we specify the complex target reflectivity, T, at the point p2 lying in the

T-plane at time t to be:

T( 2 ,t) Vp(f2 ,t) exp{- IP2 2 /4a} exp{jki2 12/RT} exp{2jkh(f 2,t)} (5.2)
1st 2nd 3rd 4th

where the four factors take identical roles as in the RTI analysis. Again, we as-

sume that the phase randomness caused by the microscopic surface height random

variable h(p2, t) will cause the received fields to tend toward a circulo-complex Gaus-

sian. Therefore, subscribing to the earlier justifications, we adopt the following phase

statistics:

* (exp{2jkh(5 2,t)}) O

* (exp{2jkh(5 2, t)} exp{2jkh(2', u)}) 0

* (exp{2jkh(i , t)} exp{-2jkh( 2',u)}) 0

I2 - P2' + RT(t - u) 12

As in the RTI case, the same surface roughness issues involving variable surface

aspect, shadowing and multiple reflections are ignored. Since our immediate goal

is a qualitative rather than an exact quantitative understanding, we accept these

approximations.

In contrast to the RTI scenario, we will assume that DTI projections are taken

with sampling dwell times of such length to leave range unresolved. Therefore, in
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this dual to the RTI system, the following multiplicative time-domain reflectivity

formulation describes the evolution of the target echo upon the T-plane:

UE( 2,t) = Up(f 2)T(2,t). (5.3)

This expression does not explicitly show Doppler effects; the motion of the target

surface as modelled in the above phase correlations will produce the proper spatially

dependent frequency shift during subsequent analysis.

5.1.3 Heterodyne Mixing Integral

The heart of the Doppler sensitive receiver is the optical heterodyne detector. As

in a conventional superheterodyne radio receiver, the output response of the optical

heterodyne detector is proportional to the beat frequency component produced by

mixing the received signal with a spectrally pure local oscillator (LO) offset by an

intermediate frequency (IF). However, in the case of the laser radar scenario, the

return and LO signals are electromagnetic waves with carrier frequencies on the order

of 1014 Hz which corresponds to the infrared or optical portion of the spectrum. Since

infrared or optical photodetectors are inherently field intensity or square-law devices,

the beat signal is generated by simply focusing the LO and return fields on the light

sensitive surface of these devices.

Unlike a superheterodyne radio, the optical counterpart is very sensitive to the

relative spatial orientation of the incoming return field to the LO spatial mode. The

optical heterodyne detector rejects return fields whose wavefronts are not coplanar

with the LO wavefront. In other words, the Doppler laser radar will only respond to

the target return spatial mode which matches the LO spatial mode propagated to the

target far-field.
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In practical heterodyne detectors, great care must be taken to temporally and

spatially tune the LO to match the transmitted field. These systems are designed with

the goal in mind of using relatively inexpensive low frequency electronic components

to accomplish the post-optical detection signal processing. In fact, post-detection

electronic systems often borrow from the same technology used to construct millimeter

and microwave radar IF (10-60 MHz) strips.

Historically, two techniques have been used in practical continuous-wave laser

radar systems to produce frequency shifted LO beams. First, the transmitted optical

beam is sampled and fed through an acoustic-optic (AO) modulator driven by the

IF oscillator. The LO output beam shares the same spatial mode as the transmission

beam while experiencing an optical carrier frequency shift equal to the IF. The second

approach uses a separate LO laser cavity whose length is adjusted using a piezo-

electric (PE) device to produce the desired IF shift. The output beat signal from a

second heterodyne detector which samples both the LO and the transmission beam is

compared with an IF reference to generate the error signal controlling the PE crystal

drive voltage.

In developing a mathematical model of the optical heterodyne detector, one finds

that the beat frequency term is proportional to the square-root of the LO power,

AThio. Therefore, laser radar systems are operated with LO powers as high as possible

to maximize return signal sensitivity and minimize background light response. In

this mode of operation, the photodetector LO shot-noise component dominates the

contributions from both the return signal and background light shot-noise and the

detector load resistor thermal noise. Under these assumptions, we now introduce a

theoretical model of optical heterodyne reception which assumes perfect LO wavefront

matching with the return. As with the previous optical field work, we continue to
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express signal envelopes in terms of complex quantities.

In the high local oscillator power (PLO) regime, the response of the IF heterodyne

det -tor can be modeled as [9, 10]

r(t) = Re [r(t) exp{27rjvIFt}] (5.4)

where r(t) represents the complex envelope of the received signal. This envelope

can be broken down into two components and written in the form r(t) = y(t) + n(t)

where

y(t) =/ dp Ur(p3, t) jLo(i3 ,t) (5.5)

is the PLO normalized heterodyne return signal. The return y(t) is expressed as a

heterodyne mixing integral of the product of the optical return U,(fi 3, t) and the local

oscillator field VP/Lo Lo( 3). These fields are spatially integrated with respect to the

position vector pi3 lying on the photodetector (PD) surface.

The second term n(t) is a circulo-complex white Gaussian noise process with the

following statistics:

* (n(t)) = 0

* (n(t) n*(u)) =- 8(t - u).

The parameter 77 is the photodetector's quantum eft;riency and h is Planck's constant.

This noise term is the normalized local-oscillator shot-noise at the receiver front-end.

The shot-noise contributions from the received optical return and background light

are neglected in lieu of the dominant local oscillator field.

Traditionally, the analyst would propagate the return echo UE(f2, 1t) = U(P2)'

T( 2, t), back from the target through the receiver aperture to the photodetector
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surface (PD) in order to evaluate the heterodyne mixing integral. However, the an-

tenna theorem [36] states that (5.5) maybe evaluated by integrating the product

of the return echo UE(p2,t) at the T plane with the local oscillator spatial mode

Lo(ia3) propagnated to the T plane. This back propagation is understood to take

place in the sense that he LO spatial mode also travels through free-space along-

side the transmitter beam to the target. If we assume the local oscillator spatial

mode is matched to the transmitter spatial mode at the transmitter/receiver aperture

(that is, Lo(1') = T(Pl)), then the back propagated local oscillator field becomeF

v/Lot p(2) at the plane T and the mixing integral is then

y(t ) = PT J d 2 , (p2) T( 2, t). (5.6)

This description of heterodyne reception will used as a starting point for the projection

moment calculations in the next section.

5.1.4 Post-Detection Image Processing

Having reached the end of the signal path, we now complete the DTI imaging model

with a discussion of the post-detection image processing. The details of projection

extraction from the received signal are shown in Figure 5.2.

As the target completes one revolution, our goal is to gather N reflectance projec-

tions. We approach this semi-discrete problem by sampling the received heterodyne

output signal r(t) at regular time intervals. The set of sampling instants correspond

to equiangulr increments of the target rotation.

Each sample consists of a short duration record of the received signal r(t). The

nth record is formed by multiplying the received signal by a window centered on the

sampling instant tn = 0,l/n where in, is the angle of the nth projection psn(v). To ease

the mathematical analysis in the next section where we take projection moments, we
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have chosen a Gaussian profiled time window. The parameter T is the projection

observation dwell time.

Each projection pen(v) is then formed by computing the magnitude-squared fre-

quency spectrum of the associated signal record. This results in projections which

are proportional to the Doppler return spectrum of the rotating target. Finally, the

projection independent variable v (Hz) is transformed into the cross-range variable

r by the Doppler relation = 2rQ/A. Thus, the set of projections is a train of the

magnitude-squared Fourier transforms of the Gaussian time windowed signal r(t).

The N projections will be subjected to standard tomographic reconstruction tech-

niques to form a reflectance image of the spherical target. In the next section we

turn our attention to calculating the first and second moments of the projections

ps(v) ji=2r0/A

5.2 Projection Statistics

In this section we outline the calculations describing the first and second moment

statistics of the projections provided by the above DTI imaging model. An investiga-

tion into the time dependent heterodyne return correlation reveals a separable struc-

ture, which is exploited in formulating the heterodyne return power spectrum and

deriving the projection mean. The resulting projection first moment clearly demon-

strates the interplay between dwell time duration and spatial resolution and begins

to hint at some of the image distortion issues involved in reconstruction. Finally, a

similar analysis is performed to determine the second moments of both filtered and

unfiltered projections. At this point in the discussion, we begin with the derivation

of the projection mean (po(v)).
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Referring to Figure 5.2 we see that the projection mean can be written as

(Pe ( ))

(L(v) L(v)) (5.7)

= J du (- )r(u) e-27rJv(u-tn) e- 4(u-t )2/T2 x

JO dv ( 2) r(v) e2jv(v-tn) -4(v-t.)2/T2

- j_ du _ dv (y(u) y*(v)) e- 2 ij v(u-v) ( 8 ) e-4((u-tn)2 +(vt) 2)/T2 +

J do J o no) n -21i,(U-U) 8 2 -4((.-tn)2+(V-tn )2 )IT2
du dv (n(u) WM) e e

(5.8)

Pn ((v)), (P± n ())n (5 9)

where we have used the statistical independence of the return y(t) and the noise n(t).

The second double-integral in (5.8) is the local oscillator shot noise contribution to the

projection mean. Recalling that we have normalized by the local oscillator power,

a straightforward calculation reveals this contribution to be hvo/1. This constant

value provides no information about the target, and therefore, will be neglected in

our theoretical analysis. However, in actual image reconstruction systems, the effect

of this bias can be removed by subtracting hvo/I from each projection. It is the first

double-integral that formulates the target return component of the projection mean.

The challenge is to evaluate and interpret this double-integral involving (y (u)y*(v)).

Substituting equation (5.6), the heterodyne return component, this inner expec-

tation can be written as

(y(u)y*(v))= Jd 2 JdP 2 'PT (5 2) [d( 2')]2 (T(,u)T( 2 vt)) (5.10)
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where the expectation is taken over the random microscopic surface fluctuations of

the sphere.

Before evaluating the above covariance, let us consider the relationship between

the different physical processes which give rise to the return signal y(t). Intuitively,

the statistical behavior of this signal can be broken down into two largely independent

factors which correspond to physical processes which take place over relatively short-

and long-term time scales, respectively. This separation is natural when one realizes

that return variations, rising from the passing of speckle lobes over the receiver aper-

ture, have nearly stationary statistics over time scales in which there is little apparent

motion of the surface reflectivity distribution over the target. In other words, under

super-Doppler resolution conditions in which the dwell time T is chosen sufficiently

small to render negligible surface feature motion over the expose face of the target,

the heterodyne signal statistics are stationary during the dwell time, with first and

second moments which depend upon the target aspect or projection angle. Therefore,

on the longer time scale stretching over an inter-projection sampling period, we would

expect each average DTI projection to match with some type of Radon transform of

the target reflectivity taken at an aspect corresponding to the projection angle.

This approach is formalized by applying the Schell approximation to the hetero-

dyne component covariance formulation [40]:

(y(u)y*(v)) K ((u + v),u-v) var ((u + v)) k(u-v)

where the speckle decorrelation modelled by k(u - v) falls off much more quickly than

(ly(½(u + v))l2) _ var ((u + v)) which accounts for the return fluctuations caused

by the motion of the reflectivity distribution.

For the sake of convenience, we separate the short- and long-term time scales by

adopting the following sum and difference time coordinates according to our standard
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pattern

u = t + /2

v = t- r/2

where the time coordinate t, now accounts for long-term projection evolution while r

describes short-term speckle return variations. Defining the return power spectrum

to be the Fourier transform of the Schell approximation with respect to the small

time scale changes, r, we have, at time t,:

S(tn, f)

= j dr (y(t, + ) *(tn1 - -2

PTk 2 a x ra X 1
47rL2 0 4wL2

1k i± (p. I f, p) tn) exp {- (p +( ( f)2)b2} (5.11)

Two-Dimensional
Gaussian Window Function

where we have defined

b2 = (5.12)
2 T

- + 2RT

The missing details behind the derivation of the above result are supplied in §1 and §2

of Appendix C. As in the RTI case, this result assumes the assumptions of spotlight

mode target illumination, RT < L and PT << aT.

Recalling the RTI mean projection discussion, the right-hand-side of the above

result is written in the standard radar equation formulation where the first factor is the

on-axis target irradiance, the second is the effective aperture area of the monostatic

heterodyne receiver and the third factor is the Doppler frequency f resolved target

cross-section divided by 4rL 2. The integral component is single-dimensional and
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taken with respect to the T-plane spatial variable pz lying parallel to the target

rotation axis. Just as in the RTI analysis, p(,p2, t,) is the transverse orthographic

T-plane projection of the exposed three-dimensional surface reflectivity distribution

p(x, y, z) after the target has rotated through an angle of Qtn radians. The spatial

coordinates of this two-dimensional projection are written in terms of the dimension

pz and the cross-range dimension jf which corresponds to pa. The second integrand

factor is the same circular two-dimensional Gaussian weighting function discovered

during the course of the RTI investigation which serves to model the effects of surface

roughness-aspect angle as'modelled through the parameter b. The interpretation of

the role of this factor is identical to that of the RTI case.

Piecing these observations together, the integral collapses the weighted "side-

projected" reflectivity onto the cross-range axis, and must, therefore, be some type

of Radon transform. The transform line integral is taken along the pz-axis giving

one-dimensional projections which are a function of the cross-range dimension N f

and time, t,, which directly corresponds to the projection angle, 0,. Therefore, the

return power spectrum is directly proportional to a radar line-of-sight cross-range

reflectivity projection. This set of variable metric projections is called a generalized

Radon transform [27, §II.7].

Returning to the projection mean analysis, we substitute the inverse Fourier trans-

form of the statistical power spectrum into the initial expression (5.8) for the pro-

jection first moment and, by performing the indicated operations, we find the first

moment to be:

=IV [ { 2/ exp }]

[ 4 f dp p(r,pz) exp{-(p2 + r2)/b2}] (5.13)
1 TYT0_,27twaL I"J-o X~')ja.~ (5.13)7r4f0 Z x 
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This result assumes that the exposed distribution of the target reflectivity suffers from

little apparent motion during the observation dwell time. Note the we have expressed

the mean as a convolution of two functions with respect to the cross-range variable

r. The first function is a one-dimensional Gaussian form whose width is inversely

proportional to the product of the laser wavenumber k, the target rotation rate Q2 and

the observation dwell time T. The second function is the generalized Radon transform

of the projected reflectivity as formulated within the power spectrum expression.

(The reflectivity subscript t, denotes the projection's time dependence.) Recalling

the flashlight-ball gedanken experiment, this is a cross-range projection of a "net"

reflectivity distribution which takes into account the joint issues of aspect and surface

roughness. The convolution then smears this projecticn with an instrument function

whose spatial resolution is inversely proportional to the observation dwell time. It

is the width of this instrument function which will ultimately determine the final

resolution of the reconstructed image.

Let us turn our attention now to the projection covariance. As mentioned pre-

viously, the receiver aperture speckle coherence time is a fraction of the observation

dwell time. Therefore, the correlation from one projection to the next will be negligi-

ble and the second moment of any consequence will be the projection self-covariance.

Making the same arguments and assumptions as above in the analysis of the first

moment and applying Gaussian moment factoring, §3 of Appendix C demonstrates

the projection covariance to be:

[hvc WT2 PTp2b 2 1 (r + r)2 
Kpp(ri,r2 ) [ + P-T- pexp 7 exp {-( - ) / 2 (514)
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where

b2 1
2 (5.15)

2 k 2 Q22T2 '

This result was obtained by assuming a low contrast model for the target reflectivity,

i.e., p(x, y, z) = p+ p(x, y, z) where 16p(x, y, z)j << p. This simplification was adopted

in order to give closed-form expressions for the spatial integrals over the target surface

during Fraunhofer propagation.

Note that this result is the product of two factors. The first factor is the square of

the sum of two terms. The first term hvo/7 accounts for the LO shot-noise contribu-

tion to the projection covariance while the second term adds in the target's speckle

contribution. The non-negligible support of this last term is equal to the parameter

a, the radar resolved target extent. This implies that r2 is proportional in some man-

ner to the unresolved target cross-section. The second factor in the above product

is written as a function of the spatial coordinate difference, r - r 2. Therefore, the

projection decorrelation length is equal to V'2/kQT.

The variance for projections processed by the inverse Radon transform reconstruc-

tion filter H(f) = If I is also calculated in Appendix C §2. Assuming the reasonable

case of useful spatial resolution (i.e., the super-resolution condition l/kQT < A), the

filtered projection variance is found to be:

2
k2 Q2T2 hv + rT , PTp2b2 1 (rl + r2) 2

varp,(r) 87r2 v 2 kTP P 2 42 (5.16)8-2 77 2a kTo- 2 4or

This result also assumes the low contrast reflectivity model of the previous result.

As in the RTI analysis, the first and second moments will be used in the next

section to formulate a SNR-like figure of merit for reconstructed images.
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5.3 Reconstructed Image Performance

In this final section, as in the case of the RTI analysis, we will find it convenient to

characterize the reconstructed image distortion performance in terms of a PSF and

the image noise performance in terms of a SNR.

In defining an appropriate PSF, we must deal with the same issues encountered

during the RTI discussion in working with the T-plane transverse orthographic pro-

jections of the target reflectance in the course of taking Radon transforms. Therefore,

the set of Doppler resolved projections pe(r) should be rewritten as a Radon trans-

form of the polar projected reflectivity, Ppolar, before attempting to formulate the

imaging system PSF. This action places both the RTI and DTI PSF analysis on a

common basis, which will then allow direct performance comparisons. Beginning with

the line integral description of the T plane projected reflectivity, this step gives the

mean as

P r)/ praT , exp-r2 2( (4 2 k2Q2T2

/°dy - eT[R -2]/ b p (X (r, y), y (r, )) (5.17)

Aspect Metric

where the polar projection Ppolar is written in the (', y') coordinate system rotated 0Bn

radians about the z-axis, the surface aspect metric is introduced through the change

of variables from p, to y on the target surface and the exponential factor accounts for

the surface roughness-aspect angle effect upon the optical return. Thus, this integral

is a generalized Radon transform which weights contributions near the equator over

those from the polar regions.

This formulation gives us the means to write the average reconstructed DTI image

in terms of the convolution of the PSF with the polar reflectivity projection. Applying
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the same PSF construction prescription as in the RTI analysis for the response at the

point (xo, y) assuming a Lambertian target, we find:

rT2 PTP42 ro
H(x, y, Z0,Yo) 4 2 T -r X

2 N sin(O + o) -[ -[r-r +'/ (cossno 2n2 2 ( C + y ill .) (5.18)
Nn=o, oE "-
[-0o,7r-8] Aspect Reconstruction

Angle Projection
Prefiltering

where the dependence upon (xO, yo) is expressed through the polar coordinates r =

x2 + y2 and tan -1 6o = yo/x 0 .

The interpretation of this result is very similar to the RTI result. The operator 7

is the inverse Radon transform projection prefiltering operator F-[If I x (ps(r))].

It is applied to the dwell time smeared Gaussian projections of the delta function. The

sine function models the projection angle dependent effect of surface aspect change

throughout target rotation. Note that as a feature apparently travels from one target

limb to the other, the corresponding contribution from this sine term goes from zero

to unity on-axis and back down to zero at the far limb. These factors are combined

under the backprojection summation sign to produce an unscaled PSF. This result is

then scaled by various familar laser radar engineering parameters and an additional

factor which depends upon the original position ( 0 , yO) of the delta function. This

last factor accounts for the latitudinal dependence of the surface aspect surrounding

the delta function. Therefore, the these observations lead to the same conclusion

drawn for the RTI PSF, namely, that the DTI PSF is not position independent and

the mean image must be recovered by a superposition integral rather than through

the convolution operation.
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Figure 5.3: (a) PSF Reconstruction for N = 144 Projections. (b) PSF Orientation.

The presence of the sine function under the backprojection summation makes a

closed form solution of (5.18) difficult to calculate. However, the normalized PSF has

been numerically calculated and the result is shown in Figure 5.3. The result is a

dumbbell-shaped PSF which is has zero amplitude when located at the origin but

blows-up at the equator. The PSF major axis lies along the radial axis protruding

from the origin. The major and minor axes lengths of the half-maximum half-

width dumbbell contour are approximately 1.5 and 1.0 times 1/kQT. Therefore,

the reconstructed DTI image will have finer resolution with respect to the transverse

radial axis than along the radial axis. Thus, we define 1/kf2T to be the nominal DTI

resolution.

Having demonstrated the resolution of the DTI imaging system, we now begin

an investigation of the reconstructed image noise performance via an appropriate

formulation of a signal-to-noise ratio. As in the previous chapter, we adopt the same
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SNR definition as a measure of reconstruction quality:

f 2 (o, yo.,) d d y H(x, y, xo,, y)
SNR(o, yo) = (5.19)SNR(x, y) var {Reconstructed Image at (,, y,)}

On a pointwise basis, this measure contrasts the relative strength of the mean image

to the average strength of noise induced fluctuations for a low-contrast target under

super-resolution conditions which adequately resolve the bandlimited surface feature

distribution 6f(x,, y).

As demonstrated in Appendix C §3, projections are statistically independent, the

variance in the numerator can be found by backprojecting the filtered projection

variance (5.16) over the entire circle of projection angles. As in the RTI case, for a

handful of resolution cells across the target, the number of required projections is on

the order of 20-25. Under this condition, the semi-discrete variance backprojection

summations for the shot-noise cross speckle and the speckle cross speckle contri-

butions can be closely approximated by a factor proportional to Ne - ' /2 2Io(ro/2 r2)

and Ne -' o / 2 Io(ro/ 2), respectively, resulting in a closed form expression for the SNR,

where Io is the zeroth order modified Bessel function.

Taking these approximations results in the following low-contrast super-resolution

SNR:

SNR(xo,y,) =

8f 2(xo, yo) N (kT - CNR cos2bp/16 3

e_ 2-/CNB + 2 3r/4 2 Io(rI /4u2) + p2CNR e-r2/2 Io(ro/2 2

1 st 2nd 3rd

where we have defined the carrier-to-noise ratio (CNR) to be the ratio of the mean
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projection to the LO shot-noise spectrum, i.e.,

CNR I (p(rp))
(hv/77)

= PTp b2 r/2r2 (5.21)

2 hv,o a koe

where we have normalized by the low-contrast reflectivity component present in the

CNR numerator mean response. In the above SNR formulation we have assigned 

as the equivalent target latitude of the point (xo, yo). This resulting CNR dependent

SNR formulation conveniently expresses performance in terms of physical measures.

Thus, the filtered backprojection reconstructed DTI image SNR is directly propor-

tional to the number of projections, N, the square of the number of radial resolution

cells, q = b2 /kQTo- and the cosine squared of the latitude 0b. The SNR is inversely

proportional to the sum of three terms, the shot-noise x shot-noise, the shot-noise

x speckle and the speckle x speckle in that order. As the CNR grows with increasing

transmission power, the SNR will grow beyond the shot-noise limit imposed by the

first two denominator terms and eventually saturate at a new level determined by

speckle.

Thus, in the high CNR regime, the speckle-limited SNR takes the following value:

f 2 (X0' yo) N (k -) CNR cos2 167r3

p2CNR e-'/2 2 Io(r/2o2) 

This speckle limit rises from a value of zero at the reconstructed image center to

a peak value at the image boundary. As in the RTI case, presuming the absence of

angle-angle resolution, the typical DTI imaging scenario achieving a handful of radial

resolution cells across a Lambertian target requires a large number of projections, on

the order of several thousand, to drive the SNR up to 8f 2(Xo, yo)/p 2, the conventional

low-contrast speckle-limited laser radar resolved-pixel SNR.
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Chapter 6

Comparison with Experimental
Results

This chapter discusses a comparison between the theoretical PSF performance pre-

dictions of the past two chapters and the RTI and DTI work performed at the Laser

Radar Measurements group at the M.I.T. Lincoln Laboratory.

Researchers at this facility have noted that reconstructed RTI images tend to

emphasize target boundaries, leaving interior regions unresolved, while DTI images

take on a target silhouette-like appearance where, to the contrary, boundaries have

been de-emphasized and smoothed [37]. Kulkarni, et al, investigated these effects by

reconstructing simulated RTI and DTI images of a cylindrical target rotating about

the major axis (z-axis). Their results, reproduced in Figure 6.1, are RTI ((a), (c))

and DTI ((b), (c)) images for both a Lambertian surface ((a), (b)) and a second

surface ((c), (d)) which only exhibits strong reflectance a grazing angles of incidence

(i.e., their "non-physical BRDF" target). These figures plainly show for Lambertian

surfaces that indeed RTI resolves target outlines while DTI produces smoothed target

silhouettes.

Even though our analysis used a number of approximations during the devel-
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opment of the RTI and DTI results, the above patterns can now be qualitatively

explained in light of the analysis of the previous two chapters. For the case of RTI,

the trans-radial orientation of the dumbbell-shaped PSF means that details along

the radial axis will be resolved. Therefore, RTI imaging will highlight the target

outline. On the other hand, the radial orientation of the similarly dumbbell-shaped

DTI PSF will tend to smear radial details. Therefore, DTI imaging will soften the

projected target boundary and fill the reconstruction interior. In our imaging model,

if we assume that a non-negligible uniform reflectance confined to an equatorial belt

about the spherical target approximates the simulated cylindrical target in [37], then

on a qualitative basis, the above RTI and DTI reconstruction behavior is confirmed

by the results of Figure 6.1.

Note that RTI and DTI performance is reverEsd for the "non-physical" target.

Again, this dual behavior is predicted by our PSF formulations. The strong return a

grazing angles of incidence corresponds to responses taken along the trans-radial axis

of the RTI and DTI PSF's. At these orientations, the RTI and DTI PSF's are respec-

tively, relatively wide and narrow. Therefore, we would expect the DTI reconstruction

to resolve the target boundary while the RTI image would approximate a silhouette.

Again, this prediction is supported qualitatively by the simulated reconstructions in

Figure 6.1.
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Chapter 7

Conclusions

This dissertation analyzes the statistical performance of both direct-detection RTI

and heterodyne detection DTI tomographic laser radar imaging systems in the pres-

ence of speckle and photodetector shot-noise. This was accomplished by construct-

ing dual mathematical models for each system when interrogating a rotating diffuse

spherical target sited in the radar's optical far-field, and then calculating first and

second projection moments. These moments where used to develop two measures

of reconstructed image quality: the point-spread-function (PSF) and the pointwise

signal-to-noise ratio (SNR), which characterized distortion and noise performance,

respectively.

The resolution capabilities of both RTI and DTI are indicated by the contours of

their associated PSF's. In each case, the dumbbell-shaped PSF response peaked on

the equator of the spherical target and then fell to zero at the poles. This behavior is

readily explained by the effect of surface foreshortening as one moves from the equator

toward either pole. The nominal half-height half-width resolution cell size is oil the

order of c/B 1 and 1/kfT for RTI and DTI, respectively. The cross orientation of

the RTI and DTI PSF's predicts that range-resolved imaging will reconstruct target

boundaries while Doppler-resolved imaging will produce smoothed target silhouettes.
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These predictions are in agreement with the simulations performed by others.

The noise performance of both RTI and DTI systems was written in terms of a

carrier-to-noise (CNR) formulation of the reconstructed image SNR. In each case the

CNR was conveniently defined as a measurable physical quantity which entailed many

of the model parameters. For RTI, performance was limited at low transmission power

levels by presence of photodetector thermal noise and dark current. Local-oscillator

shot-noise limited DTI SNR performance at low transmission levels. However, in the

high transmitter power regime, radially dependent speckle SNR limits were identified

for both RTI and DTI. In both cases, this speckle limit was found to be directly

proportional to the number of projections and inversely proportional to the square

of the number of radial resolution cells across the target. Therefore, in the speckle

limit, these imaging techniques incoherently average speckle noise via tomographic

backprojection reconstruction while retaining all of the inherent resolution capabilities

of their underlying range- or cross-range-resolving systems. However, in scenarios

achieving a handful of radial resolution cells with a modest number of projections,

the SNR performance of both imaging systems was found to be below both unity and

the conventional low-contrast speckle-limited laser radar resolved-pixel SNR.

Beyond the results presented here, this work may be an appropriate foundation

for proceeding with a more general analysis. As implied during the error analysis at

the end of chapter 3, a projection gathering system in which the target reflectance

is regarded as a deterministic function could be modelled by attempting to meld the

distortion and noise issues by adopting a mean-squared-error (MSE). This quantity

would sum an image bias term, a measure of the departure lf the system PSF from the

ideal two-dimensional delta function PSF, and a second variance term which would

account for the reconstruction noise strength. We could then imagine generalizing this
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model by relaxing the deterministic restriction on the target reflectance and assuming

an appropriate random model. In this case, one could compute the MSE over the

reflectance ensemble by taking conditional expectations of the bias and variance terms

and then minimize this quantity over the system filters to produce an minimum error

imaging system design. Finally, one could approach the problem by developing a more

general model which removes the tomographic reconstruction assumption to allow

optimization over all possible image reconstruction algorithms and target observation

strategies.
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Appendix A

This appendix presents the details of the projection cross-correlation calculation dis-

cussed in §3.2 for the case of unequal projection angles (i.e., 01 02). Beginning with

equation (3.9) we have

(R(rl, O)R*(r2 , ))

~00 coe 2jk(R+, y)= 9j J dx1dy's(x I (x, '1), yl(x', y))b,(x'l, Yl )e(O f oo
00

J I dx2dY2s (X2(X2,y2), Y2(x ,y2))b,(x',y)e - 2 2( n+ y ) (3.9), (A.1)
_00 00

=--j dmldy'f(xl(xl Y'), Y(X' Y'))

exp (2jAkyl) exp (-2jk[-x' sin(L - 02) + Y1 cos(0- 02)])

1 J(x~ -rl)2) ((x cos(9i-2) + ysin(l-2)-r2) 2
exp exp- 2r )

(A.2)

where the cross-correlation is now written in terms of the (xi, y') Cartesian coordinate

system (cf. Figure 3.2 and Figure A.1). Suppose that in the (x, y4) coordinate system

the scan lines (rl, 90) and (r2, 2) intersect at the point denoted as (' , y). Solving

for these coordinates,

XX = rT

YX = r 2 SC( 1 - 2) - r1cot(9l - 2)-
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Footprint

itersection

oint (, y~)

Scan Line

(r, ,0 1)

Figure A.1: Placement of the (x, y), (xi,y"), (xIy"), and (x.',y') Coordinate Sys-
tems with respect to the Scan Lines.
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We now choose a new Cartesian coordinate system (, y1') whose axes are parallel to

the (x, y') coordinate frame and whose origin lies on the scan line intersection point

(x, Yx ). This axis translation is thus

II I Ixl = x1 - x

Y1 = Y1 - Yx

Expressing the cross-correlation in terms of this new coordinate system:

(R(ri, )R (r2, ))
oo r00oo

d1cd,'f2( + Y1 + X) Y1l( +X xY + ))
00 x0

exp (2jk(y' + y )) exp (-2jk[-(Z + x) sin(01 - 02) ( +' cos(01-- 02)])

r2 exp (- (z;)2/r) exp (- ( cos(01 - 02) + y' sin(01- 02))2/r) . (A.3)

Note the simplified the Gaussian forms. Finally, we rotate the (x', y"') coordinate axes

through an angle of AO/2 = -(V1 - 02)/2 to form the (x'1, y.") Cartesian coordinate

frame. The origin of (x', y") lies on the intersection point (x, yx ); the y"' axis bisects

the two scan lines (ri, 08) and (r2 , 02) at the (x' ,y) intersection point. Rewriting

the formulation of the cross-correlation in this final coordinate system, we have

(R(ri, O)R(r2, 6))

= J~0j dlx'' dy'": :1 1

f(('(x",Y 1") + , ''Y1 XIY) + '), yl(X (,") +'I '1 (X '"yj") + ')
I Iexp (2jk(yl'(x, Y1) + Yx))

exp (-2jk[-(x(l',Y111) + in(01 -02) + (Y1(, Y ) + Y ) cos(,0 - 02)])

2 [I sin(01 -02)1 (_ (xII92 ( (y~I)22 Is(0 2)1- "exp I (y M) " y 2"

si(e -2)1 7 rr exp r/ cos2 (AO/2) r / sin2 (A0/2) '
(A.4)
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Note that the term in brackets on the last line is a two-dimensional Gaussian prob-

ability density function (PDF) form centered on the intersection point with major

and minor axes lengths which vary with the angle of attack 92 - 81. The argument

of f(., ) within the original (x, y) Cartesian coordinate system defined in Figure 3.2

is simply the point (, y9). The rest of the integrand is a complex phase factor.

Therefore, asserting the same argument in passing to the Radon transform, if r be-

comes small enough such that f is smooth under the significant part of the Gaussian

PDF footprint, then the cross-correlation may be approximated by

(R(rl, O)R"(r2, 0)) - -sin( - 2) f( ) (A.5)

which in magnitude squared becomes

(R(ri, )R* (r2, 9))1 = sin2 4( - 92) f 2(zX,yO). (A.6)
sin 2(01 0 2)
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Thlis appendix details the assumptions and approximations behind the development

of the RTI mean projection optical power (4.11) and both the RTI projection vari-

ance (4.18) and covariance (4.16) for filtered and unfiltered projections, respectively,

produced by a Gaussian illumination pulse originating from a radar sited in the tar-

get deep far-field and reflecting from a low-contrast surface. These calculations also

provide a convenient framework for demonstrating inter-projection statistical inde-

pendence under typical RTI imaging scenarios. The essence of these derivations is the

determination of the return optical field covariance by propagating the target surface

covariance via the Fraunhofer diffraction formula.

B.1 RTI Mean Projection Formulation

In this section we compute the time dependent optical power falling on the receiver

photodetector due to the illumination pulse reaching the T-plane at time t,.

The power P(t) striking the photodetector is equal to the return electromagnetic

field intensity summed over the receiver aperture. Thus, we write

P(t) = J d 3 IU,(3,t)l2 Jd 3 e-3 2 /a2 lUd( ,t)l 2
Receiver
Aperture

where we have approximated the receiver aperture outline with a circular two-dimen-
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sional Gaussian window function of nominal radius anR in the aperture plane spanned

by the position vector pf.

The return at the receiver plane, U,(p 3, t), is found by using the Fraunhofer

diffraction formula to propagate the inverse time domain Fourier transform of the

T-plane echo, UE(p2, f), as formulated in equation (4.10). Since the radar-target

separation distance L is on the order of 100,000 m or more, the typical 10-100 cm

receiver objective subtends a very small portion of the spherical paraxial wavefront

radiating from any point on the target surface. Under this condition, the incoming

wavefront is relatively flat over the aperture as compared to the range variations of

interest in the return magnitude. Therefore, we will neglect the p3 spatial depen-

dence of the return field magnitude across the receiver aperture while keeping the

spatial dependence of the optical phase intact. Furthermore, we will assume that the

sub-nanosecond pulse duration will freeze the apparent motion of both the target re-

flectivity and surface roughness distributions and leave the return Doppler component

unresolved.

Applying these assumptions and approximations to the return field calculation

and then substituting into the above expression for the return power and taking

the mean with respect to the surface roughness randomness results in the following

expectation:

(P(t))- J d3 e- R"p' (U,(- t) U( X t))

=d e - I Al2 L exp jkL + 2i

1 Pexp-jkL-jk +jjAL ap e' (t_-x2L / C2[
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ejklp2 12/2L ejkl21 2/RT e2jkh( 2 ,t) e-1p212/a e-p21 2/2a2 e- 2 ijp3 2/AL

J d 2' p(2', t) S1/2 t-t,--L/c-2 RT - -P22] /C)
e-jklg2/2L e-jklpJ12/RT e--2jkh(po5J) e l2/a2, e-1 512/2a2 + 2rj3 4/AL )

where the quantity p(p2, t.) is the exposed target surface reflectivity frozen in place

at time t,, and then projected back along the laser radar line-of-sight to the T plane.

Collecting common terms and exponents, exchanging the order of integration and

expectation, we now obtain

(p) k2 PT Jd 3 eI13 12/ n /d dP2

Phase Correlation

exp { -2 2
+ 42 ) } exp {-IP2I(2 + 4) }/ 1/2T1/1
l/a} ~ l/aT

exp k(Il 2 2 -[2'12) (2 + R exp{--j/p 3 (P2 - P2')/L}. (B.1)

1/RT

The above expression can be further simplified by applying several reasonable as-

sumptions. First, since the target is unresolved by the transmitted laser beam, the

probe beam radius aL is much larger than the target radius aT. Therefore, the 1/2a

term may be neglected within the two parenthetical expressions on the fifth line of

(B.1). Adopting this approximation builds in the assumption that the target is spot-
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light mode illuminated by a pulse which has a uniform cross-range intensity pattern.

Second, since the target spherical radius RT is much smaller than the separation dis-

tance L between the laser radar and target, the 1/2L term may be discarded from

the first parenthetical expression on the sixth line of (B.1). By this action, we are

assuming that the far-field probe beam wavefront curvature is negligible compared

to the target radius of curvature. Finally, the phase correlation term can be replaced

by the approximation introduced in §4.1.2, giving

(P(t)) =

s1/2(t _

1/2(t _;

exp {-

k 2 PT 1d eIP2Pi/aR
47r2L2 ra2/ jP3

dW2'P ) VP(P Z VPAenP )

- L/c - 2[RT - /RT - IP212 /C)

t,- Lc -2[RT - -RT -2l 2]/C)
P2- P2112 exp {_ 21 JAI2 p212

4 - e exp J
Phase Decorrelation

exp {-(lp22 - IP2I)} exp - jp3 (2 - 2') - (B.2)

where we have neglected the movement of the target surface within the correlation

factor.

Note that the second through sixth lines of this result are written as a double two-

dimensional spatial Fourier transform with respect to the variables p2 and /p2'. Note

that the integrand of this result (line 5, B.2) contributes little to the double transform

if the two position vectors p2 and p2' lie more than a few surface correlation lengths PT

apart. This behavior is not surprising in light of the fact that returns from separate

surface patches will be uncorrelated on the frozen target surface.
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We will proceed by attempting to separate, evaluate and interpret the effect of a

very short surface coherence length versus a substantially larger target by rewriting

the two transforms in the following sum and difference coordinate systems:

p2- = A+ 2

P2 = P2 - P2

Applying these transformations leads to

kC2 PT 11 1.2
<(P(t)) - 4r2L2 2 JdP 3e-I3' / Jd 2+ ( 2+ t) exp {-2 iP2 

S (t-t -L/c-2 RT -- RT- IPi2] /)

Jd|,- exp {(T + 2 I-2 exp 2 P2 }exp-+3P2}
where, in the following manner, we have have used the assumption that any surface

roughness correlation region is much smaller than the target extent. Since the surface

maintains phase correlation over distances of only a few wavelengths, it seems reason-

able to to assume that the spatial distribution of both the surface reflectivity and the

pulse illumination varies slowly across any such surface correlation patch. Thus, in

preparation for evaluating the integral with respect to p2- in equation (B.2) above,

we have taken the following approximation:

|- lP2,tn) sl/2 (2t- -L/c-2 [RT- -IP2+-2P2 12] /c)

p(1 +,t+ ) a (tt-t-L/c-2 [RT - 4-I-2+ I2] i) 
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Taking

(P(t)) =

the Fourier transform with respect to the variable p2- results in

PTP 2 1 1PTP( 
LIPT472a 2I 

- P"

/dpf 2+ p(p2+,tn) s(I- - L/c-2 [RT - aRT - Ip2+12] /c) exp {-2 }2+1
P2 a2~~~~~~~~~~

2 l2 + / 2

P3 L2 P { 4 RT L I 2a }

2 p2z PT

Since PT << a, we will employ the indicated approximations.

Completing the square in the magnitude-squared term in the last

the integral with respect to fP3 results in:

line and taking

(P(t) - '4,,22 J/d2 + p( 2 X+ , t) s - - L/c -2 [RT - /R- P2+2] /C)

4x -rk2pT2 22a I2+ 12

+ k2T4) 1 } 2 (4+ /C2 ) |
2 4L2 1 2 4L2

Noting that J2+1 < L over the support for 1-10 meter targets allows us to drop the

last exponential factor, which results in the following expression for the return power:

4ra 2 2 ( pr+ 1 e 1P)) =4ra 'L2 d 2+ p(W2 T) ± R P2

s(t-t, -L/c-2 [RT - -RTI-2I2] /C) * (B-3)

B.2 RTI Second Moment Projection Derivations

In this section we will calculate the RTI projection covariance assuming a low-con-

trast target reflectivity model. The following subsection details the calculation of the
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covariance between any two points along the projection taken at time t for a radar

lying in the target deep far-field and satisfying a super-range resolution condition by

transmitting a sufficiently short Gaussian profiled transmission pulse s(t). In deriving

this result, this section builds the analytical frame work for demonstrating negligible

inter-projection correlation for a typical RTI imaging scenario. The projection co-

variance will then be used in the second subsection to derive the filtered projection

variance under identical assumptions.

B.2.1 Projection Covariance

As rendered in equation (4.8), the photodetector current covariance Kii(t, u) is the

sum of shot-noise, speckle and thermal noise components. Of these three, the speckle

contribution will be the most complicated calculation because the result will depend

upon the joint return statistics for the two surface regions illuminated at times t -

L/c and u - L/c, respectively. However, once this solution is in hand, the thermal

and shot-noise contributions easily follow. Therefore, we begin by computing the

underlying return power covariance in preparation for final specification of the speckle

and shot-noise terms.

We define the power covariance at the time instants t and u to be Kpp(t, u) =

( [P(t)- (P(t))]. [P(u)- (P(u))] ). Expanding this definition, we have

Kpp(t,u) = (JL dpU3 ei-(IaR u7( 3 t) U;(,t) x

dp a eIPl312/ U,(73 , u) U( , U)) - (P(t))(P())

L+°°od I+ i1? ' e(I3I12+ii'I 2 )/a (Ur(P3 t) Ur( 3, t) U(P u) U P3 u))

P-/ ()) (P(f)M) (B.4)

= Ld L: d dp' e -(lI31 2 + 13 '12)/- 2
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[ (U (3, t) U;(P3', U)) (Ur(P3, t) Ur(P3 ))

+ KUr(i53,t) u;(W3, t)) (U;(3 'U) Ur(/ 3 ',u))

Becomes (P(t)) Becomes (P(u))

+ (U(p, t) U(p', U)) U;(3, t) U;(a', u)) ]
=0 =0

- (P(t))(P(u)) (B.5)
+00 +00 (j163j2+jA / 2

J dJ 3 ] dp33' e-(I3I2+i3'l 2)/ (Ur ( 3 , t) U(3 u)? (B.6)

where complex Gaussian moment factoring was applied to (B.4) producing the ex-

pansion of (B.5). Applying the arguments and procedures of the previous section

to propagate the surface roughness covariance to the receiver aperture optical field

allows us to write the expectation within the magnitude-square as

k 2 pT 1 jk 2 - T

Ur (/3, t) U;(P-',U- P3( 3 ) (3u)) 47r2 L2 7ra p 2 L (I32 - P312)

J dP52 Jd,~P2' / 2,t.) p(2,21,tn) exp{- 2P2P1 }

81/2(t _ tn -L/C - 2 [RT - R -I 2 2] /C)

12 1/
exp {-P2 (2 2 2) } exp{- P2'12 (2 + 2) }

/ L aT '"L aT

exp {ik(I 2 -2I - 112) ( + R } exp{-jk(3 -- ' p2)/L}

2 1/RT1IR. . '
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Often, the short-duration mode-locked or Q-switched pulse lasers produce trans-

mission pulses which have a time-intensity profile that is bell shaped. Therefore,

we will assume that the pulse modulation can be represented by a Gaussian form,

s(t) = e- t2 '/T2 , where T is the nominal pulse width.

Applying this definition to the above correlation expression and converting both

the primed and unprimed p2 and p reference vectors to sum and difference coordinate

systems according to our previous pattern, we now write

Ur(p3 + +2 - -t) U(3 3 -

J d2 p(P2 +tn)exp{-2'P3 2P2+} exp{-- 
2 t-fl2igpiasT 2

sl/2 ({ tfl-/ 2 [R 2-t~-I2 12]-A/RT-jk2 /C) } xB 7)
L - 2 ,[RT - - (B7)

"Doughlut-shaped" Pulse Overlap Function

Again, we have assumed that the spatial distribution of both the surface reflectivity

and the pulse illumination varies slowly across the very small surface correlation

region. Therefore, in evaluating the integral with respect to p2-, we have taken the

following approximations:

vP(W2++ 2 p n 1) Vp(p + - 2 p P(P2+ t.)

and

1/2 (t-t,-Lc-2 [RT-VT-I 2++ 212 IC X

S (U-tn-L/c-2 RT- RTIP2 1 i 2 C)

~ exp -_1(t-u ) _U2I2/T2 X
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1 t Tr r,2- /T
exp - 2 (2 -n-L/c-2 RT -R 2 I /C)}

2 2
where the last approximation involving the Gaussian pulse modulation s(t) = e /T

fixes the retarded time over the surface correlation region as a function of the sum

coordinate P2+

The above expectation (B.7) is a function of both the sum and difference of t

and u. The reader will recognize that this expression is formulated as a rather com-

plicated two-dimensional spatial Fourier transform with respect to the variable p2 + .

The transform is operating on the target reflectivity projection taken at time t, and

weighted by both the aspect angle-surface roughness limb effect and a "doughnut-

shaped" projection of the t + u time dependent overlap between the two illumination

patterns on the target surface corresponding to the two pulse positions at times t and

u, respectively.

In general, this Fourier transform will not have a closed-form solution. However,

a close approximation can be developed for a laser radar sited in the target's deep

far-field optical regime. In this case, we restrict the receiver aperture to a range

of sizes such that the complex spatial frequency factor under the Fourier transform

integral is nearly unity over the target support. This will be accomplished if we choose

aR < 2AL/ 2- + . For the sake of simplicity, we will also assume a low-contrast

surface reflectivity model for p and disregard the limb darkening effects of aspect

angle-surface roughness. Therefore, the Fourier transform simply becomes the area

under the T-plane projection of the aforementioned doughnut-shaped illumination

overlap function.

Transforming p2+ to a polar coordinate formulation and restricting the radial

component to lie within the projected radius of the target, RT, gives an overlap
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formulation which can be rewritten in terms of the target centered range variable.

Integrating with respect to this range variable, the area under the overlap function

projection can be shown to be:

Area = 1 cT RTIC -2 U 2 ct + L/2) x

[,{ ( 2 -t -L/2) / cT} -

mu (2c + - ct -L/2-RT CT ] +

27(cT)[|exp {-I( t+u ctn-L/2-RT) 2(cT)2}-

exp { t+u 1 L/2) ( T) (B.8)

where the error function, (x), is defined as

(t)--va /dt exp{-t2}.

Under super-range resolution conditions, c/B1 < RT, the term on the last two lines

of (B.8) becomes negligible. This action gives an intuitively pleasing result, since the

area under the overlap function is now directly proportional to the equivalent sum

time range displacement from the target center times the difference between of the

two functions, which constitutes a range gate from L to L + RT meters from the

laser radar. Therefore, we only have significant returns from the illuminated face of

the target.

Incorporating this approximation into the expectation of (B.7), we find that

[P a , P3 , (Ur(i3 + 2P3 ,t) U:r( (P3 P3 ))

k2 PTP jk_+ _
41r2L2 ra p exp -L P3 'P3

-cT (RT-C t 2 + ct + L/2) exp { -(t u)2/T2} x
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2 2

[{1(t+U - ct -L/2- - ]

where the factor on the last three lines is equal to the projected overlap area.

Taking the magnitude-squared of this result and integrating over the aperture

within a sum and difference coordinate formulation gives the final expression for

the received power covariance

Kpp(t,u) - 2 L a p2

(RT-C 2c + lct, + L/2) X

[41 ( 1 c + -1t, -L/)/ 2 CT-

2 2

We will now take advantage of the fact that this result is written in sum and difference

time coordinates.

As stated in §4.1.3, the quantity

{^eGY} JIdJd 1Lh(t -r)h(u-i)Kpp(r,1) = KPeckl'e(t,u) (B.10)

is the photodetector current covariance component attributable to received power fluc-

tuations, where h(t) is the detector impulse response. In this analysis, the impulse re-

sponse will be modelled by the low-pass Gaussian frequency response h(t) . e-i 2/B 2

where B is the nominal detector bandwidth.

Before calculating this covariance component, the above double-integral will be

rewritten in a power spectrum formulation which contrasts the relative contributions

between the sum and difference time-dependent factors. Switching to the sum and
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difference time coordinate systems:a!+ = (t + )

aC_ = t-U

and

3+ = (7 + )

the double-integral becomes

KSPecle(+ 1 +1 - )

hv eG rl J
h(a+ - + (a-- 3-)) h*(+0+ +- (a- -))

- {eG 2}Jd3+ Jd KP(+,) Jdfi H(fi)Jdf 2 H(f 2)

exp {+2rj [(a+ -P3+)(fi -f2) + (fi + f2)(a- -- )] }

where Kpp is the sum and difference formulation for the received power covariance

and H(f) A h(t).

Using the fact from equation (B.9) that Kp(p+, ,_) is separable in the (P+, 3_)

sum and difference time coordinates, we now write:

Kp(+,_- ) = Varpe(+) kpp(/-)

where the corresponding Fourier transform pairs are defined as follows:

Varp(/3+)
Y

Vp(f)

kpp(P_) 4-, SPP(f).
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Exchanging the time- and frequency-domain integrals, we have:

KSpckle(Ca + 1 a - 1

= { eGhv J dfi H(fi) JdfH*(f 2) Jdo+d Varp(fP+) e+2w(t+-+)(f-f2)

f dO_ kp(_ ) e +2j I (f, +fi)]

= { eG}Jdfi H(fi)Jdf, (f2) (fl - f2)ej' +(fl - f2)

Spp ( f + f2)) e27rij(fl+f2)/2

Switching to the surmr and difference coordinate system in the frequency domain:

f+ = (f + f2)

f- = - f2

we may finally write our desired formulation for the covariance double-integral in the

resulting rotated frequency-plane coordinate system:

KPcle(a+ + c a_, a+ - a_)
2 1= {eG(h} Jdf+ J df_ H(f + 21 Hf - i f-)

Vp(f_ ) e2 ' jf - a+Spp(f+) e27rjf+a- (B.11)

= {eG} hv df+ Spp(f+) e- f+/B2 e2j f+ a - J df Vp(f_) ef-/4B 2e2f-a+

where, in the last line, we have substituted for the photodetector frequency response.

If we retain the assumption that the illumination pulse width T is sufficiently

small to provide meaningful resolution, every factor in the above expression has a

relatively large bandwidth except for Vp(f_). Assuming that e-f /4B2 is nearly unity

over the bandwidth of Vp(f) reduces the last integral to Varp(a+). Taking the

remaining integral with respect to df+ and converting back to the original t and u
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time coordinates, we then have:

KSpeckle(t u)// \~

{eGq 2 k4 a4

h L4

TB 1 exp {-(t

[i2 2

PT4T 2 (1 cT) 2
aL

_u)2/2 }1
- u 2 (RT 2- C + 2 ctn + L/2)

L/2- RT)/ 1CT}
2

(B. 12)

where we have defined the system bandwidth to be

B1 _ I 1
4~r2T 2 + B 2

(B.13)

A similar analysis results in the following quantities for the thermal and shot-noise

contributions:

2kBTL

RL
exp -(t-u) /, 22 } (B.14)

1 e 2 G2+z7

4 hv
exp {-(t )2

[F{ (tct+U

aR PT p B (cT)

I1
r2B2

I t(RT- + uRT-2c)(~ :":2
- ctn-L/2)/

, 1 t+u 1
2 

+ ct~ + L/2)

:t, - L/2

By rescaling the time axis to convert to range measured from the target center

and summing the shot-noise, speckle and thermal noise components in that order,
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KSN(t, u)

x

1cT]i~ (B.15)

- ct, L/2 1cT -)
2C~~~L~~n

Khermal(t' 1)

=

L.

4 -RT

=
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we have the result cited in (4.16),

1 e2 G2+"Y k2a2 PTpT ( x
Kp(ri, r2) .1 LB 2 a cT x

hv L 2 aL

(rl + r) exp -(r -r2)2 4r2B2 x

[ { ( y2 R)y T} {( 2 2)/1T} ]2 2

+ (eG12 (ka,) (Pi ) 2 (c2TB1 x

(-1 (r + r2)) exp -(r - r2 ) /4 2 } x
[{ ((rl + T2) + RT)/ cT} - { ((r + r2))/cT} I 2

-+ w B 2kBTL exp {-(T- r2)/2 2 } (B.16)

where positive values of rl and r2 fall on the far side of the target. Note that this

result is separable into sum and difference range coordinates.

To demonstrate that inter-projection correlation is negligible, we will show that

the speckle coherence time is much shorter than the inter-pulse period in a typical

RTI imaging scenario. The speckle coherence time will be estimated by dividing the

speckle coherence length by the rate at which speckle lobes travel over the receiver

aperture.

We begin by defining the speckle covariance between the two position vectors

p3 and p3' spanning the receiver plane as KI(3, P 3
1 ,t) = ( [I(p 3,t) -(I(P3, t))

[I(3', t) - (I(3', t))] ) where the received field intensity I(pf3, t) is Ur(pi3, t) U(pa, t).

Expanding this definition and applying complex Gaussian moment factoring, we have

KII(P3, p3', t)= ( Ur( t),U(3 t) U) |

Equation (B.7) implies that the speckle lobe spatial structure will depend upon

both the surface reflectivity and roughness distributions as well as the shape of the
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illumination pulse striking the target at time t,. Since only a rough, order of mag-

nitude estimate of the coherence length is needed to validate our inter-projection

decorrelation assertion, for convenience sake, let us assume a constant target reflec-

tivity of p and constant spotlight mode illumination of the target (i.e., s(t) = 1).

Under these conditions, (B.7) reduces to

P ++ 2P3 ) U*(3 23)UrP3i .
k2 PpT j f

4a2 L2 a, p exp - -P3 P3 

k2 PT(2 Lk' - f jk n-

exp -L2 a 2 2 ( T ) P3f
x{ ,12j42L 2 2 p2k2

during the time period when the laser illumination echo reaches the receiver.

Taking the magnitude-square and returning to the original P3 and P3' coordinates

results in the following time independent speckle spatial covariance:

4 P(4 2 2

KI I(,33,F3
1) = P247r 2L4 -r2a-4 a 2 /-aT RT

exp{-IP3- P3 p / 2
_ RT

If we define the speckle decorrelation length to be pi =- jAp such that

KII(P3 + Ap, 3 - Ap)

KI I(Pw3, pf3)

then we compute the following length:

-1_ e

v'xAL 2 pTk2

P = -
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The law of reflection implies that the reflected return speckle pattern reaching the

laser radar passes by the receiver aperture at an angular rate twice the target's rota-

tion rate of Q. Therefore, speckle lobes transverse the receiver at a velocity of 2L2.

Thus, the speckle coherence time, Tcoh, is found to be:

A ~2 p~,k' 2kpT
Tcoh A PT (B.17)J/7f aT 4 RTfl

where the final approximation comes from assuming aT = RT and PT - A.

Projections will be statistically independent if the inter-projection time, 27r/Nl,

is significantly larger that rcoh. This condition is satisfied if

N < RT (B.18)
PT

To put this result into perspective, consider a one meter radius spherical satellite

orbiting within the laser radar's far-field. In this case, assuming the radar uses a CO2

laser at a wavelength of 10.6 pm with a corresponding surface roughness correlation

length of PT = A at the target, the right-hand-side of the above relation becomes

419,000. Ignoring the case of an extremely large aperture which collects contributions

from many speckle lobes, we conclude that the remaining RTI imaging scenarios will

comfortably maintain inter-projection statistical independence over the course of the

target revolution.

B.2.2 Filtered RTI Projection Variance

In this section we will compute the filtered RTI projection variance used to establish

the filtered backprojection reconstruction SNR result. We begin by formulating the

filtering operation in a standard LTI systems description:

p(r) | LTI System r
h(r)
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where each projection is filtered by h(r) ,-- H(f) = If I to produce a new projection

p'(r) which is then backprojected establishing the inverse Radon transform operation.

Since the filtering operation is independent from projection to projection, we will still

assume that each p'(r) is statistically independent of all other filtered projections.

Our approach will build upon the projection covariance result derived in the previ-

ous subsection. Again, we will concentrate on the speckle contribution by formulating

this sum and difference range separable covariance component in a frequency-domain

description which easily allows us to calculate an approximation under super resolu-

tion conditions. Then the independent filtered thermal and shot-noise components

will be added to complete the filtered projection variance calculation.

The variance reformulation begins with the fact that varp,(r) = Kpp,(r, r) and

Kpxp(r1 r2) = Jdr Jdr'2 K,(r',r') h(r -r') h*(r2 -r').

For the speckle component, we apply the same covariance transformation procedure

as outlined from equation (B.10) to equation (B.11), which produces:

Kpe+e(+ r+ - r ) = Jdf+ Jdf_H(f+ + f ) H(f+-f )
V(f_) e27rjr+f- (+) / 27+r
Vp(f-) e "j+ f-,pp(f+) es j f+ ' -

where (r+,r_) and (f+, f_) are the sum and difference range and spatial range fre-

quencies, respectively, defined in our previous pattern, and

Varp(r+) , Vp(f)

k(r_) Spp(f)

are the Fourier transform pairs of the sum and difference range-dependent factors in

the separable speckle projection covariance. Thus, the filtered projection variance at
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the point r is

Speckle( KSpeckle( + , - )

df+ J df H(f+ If-) H (f+ - f_) Vp(f) e27rjrf- (f+) (B.19)

Now applying the above reformulation result to our specific case of the inverse

Radon transform, we have H(f) = If which gives:

Spele/
varpipt (r)

= Jdf+ dfI fi+2 fi2| Vp(f_)e27rtfp- (f+) (B.20)

= df+ df_ (f - fl) Vp(f_) e21f S(f+) -

2 x dff- df+ ( - f2) Vp(f_)e2rf Sf- (f+), (B.21)

Neglect

with the following specifications taken from (B.16),

kpp(r-) = exp
47r2 B

Varp(r+) = (eGl) 2 () ( Tp2 p2 (½CT)2 TBi

( + [{(+ + RT)/cT}-{r / cT} 12

Suppose the laser radar is operating with a pulse width T chosen to provide useful

resolution in the range dimension. In the frequency domain, this assumption means

that the function Vp is much narrower than the function S. Therefore, in the

(f+, f_) Fourier plane, the function Vp(f_)Spp(f+) forms a narrow ridge-like feature

running along the f+-axis. Since the region of integration for the double-integral on

the second line of (B.21) overlaps a small part of the footprint of this "ridge," this

contribute to the total will be neglected.
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Performing the remaining distribution over the parenthetical term in the first line

of (B.21) gives:

Speckle (r) varpi¥ ( ' = j0f f+2 Spp(f+)

- jIdf+ Spp(f+)
+00 ~~~21rjrf-jdf- V(f_ ) e2i f

j df_ f 2 V_(f ) e27rjrf_ 0 4 

Substituting in the expressions for the separable components and their Fourier trans-

forms and performing the indicated integrations, we discuver that the expansion of

the second double-integral in equation (B.22) is insignificant under super-resolution

conditions.

Therefore, neglecting those terms, and adding the filtered thermal and shot-noise

variances computed via a similar set of manipulations, we have the result cited in

equation (4.18):

7re2 G2 +77 ka, PTPT 1 B3/C2 X

2 hvo a--L 2

(-r) [{(r + RT) /cT} - {r /cT)]

+2 (eG7) (kar) (PPTT) 2 2 ('cT)2 TB 3/C2 X

(_r)2 [ {(r + RT)/1cT}- {r/cT} ]

2kBTL B 3

RL C2 (B.23)

(B.22)
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Appendix C

Chapter 5 laid the ground work for the formulation of the heterodyne detector output

signal r(t) covariance. Assuming the limiting case of high local oscillator power, the

covariance of r(t) was separated into independent contributions from the shot-noise

n(t) covariance and the return signal y(t) covariance. Compared with the return

signal, the shot-noise n(t) was modelled as a relatively uncomplicated white noise

random process and was easily handled in the analysis. It is the goal of this appendix

to investigate the much more complicated return covariance, (y(u) y*(v), in order

to complete the mean and covariance calculations.

At the heart of these calculations is the assumption that the statistical behavior of

the return signal can be broken down into two largely independent factors correspond-

ing to physical processes which take place over relatively short- and long-term time

scales, respectively. These notions will be formalized mathematically by adopting the

Schell approximation [40] during the following calculations.

C.1 Heterodyne Signal Correlation

In tlhis section we detail the assumptions and modelling behind the computation of the

return signal correlation. To begin, we restate the return signal covariance expression
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derived in chapter 5:

(y(u) yj(v)) = J dJ d' PT 2(P) [(-,(P)]2 (T(, u)T*(, V)) (C.1)

where y(.) is the complex target return heterodyne component, PT is the transmitter

power, p( ) is the Gaussian beam complex spatial mode striking the target and

T(., * ) is the effective target reflectivity projected on to the T-plane.

As justified in Appendix B §1, we will break apart this double-integral into a sum

and difference formulation which exploits the rapid spatial decorrelation of tile return

phase. Therefore, we reformulate the above integral expression in our standard sum

and difference coordinate system:

P+ =2 (P + P )
_ I -_

P- = p-p.

Applying this change of variables, we have

(y(u) y*(v)) 

1 -+1221

/drd fi PT kap exp { 2 ] p(p+(u, +v))exp 2 i+ }

exp {2jkF+ d -} exp{- + 1RT(t u)2 } (C.2)
RT { 2 J

where the approximation sign comes about because we have made the following as-

sumptions in addition to coordinate transformation:

* As in the RTI Fraunhofer return calculation, individual returns from ~ PT-

sized surface patches only exhibit significant correlation during patch overlap,

and otherwise, make negligible contributions to the double-integral. Therefore,

under this condition, we have p p' which leads to lIp2 + (III2 ' iIl,+ p I'2l =

21p+ 12.
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* Again, in the case of neighboring patches, the size of the regions over which

non-negligible contributions are made is on the order of the surface roughness

correlation length, PT. Since the value of this parameter is rather small, on

the order of a few wavelengths or so, we will assume that the target reflectivity

varies slowly over the patch extent, so that p(, u) Vp(', v), which gives:

p\(WU) p('v) p(p, 2(U + v)).

Since we are interested in investigating the speckle decorrelation behavior, let us

adopt the following time coordinates:

u = t+ x r (C.3)

v = t- 2T. (C.4)

The dummy time variable t accounts for the particular target aspect presented to

the laser radar during the observation time, while the time variable r will be used to

characterize the fast signal variations within the observation dwell time T. Thus, we

have

(y(t + 2r) y*(t- -))

d+ ; t74a4 7 P(P+t)ex P2 exp 2p 2T2 2

J d)_ exp{ X exp p2 }. (C.5)
RT PT

We model spotlight-mode target illumination by assuming the last Gaussian term

on the second line is unity over the support of the transversely projected reflectance.

This action builds uniform target illumination into the model. Evaluating the second
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integral, which the reader will recognize as a two-dimensional Fourier transform with

respect to the variable p_, gives the final form of the heterodyne signal correlation,

(y(t + 'r) y*(t - ))

/ d+ lr p(p+,t) exp{2jkfp.+(r} exp - + R, ) I/ + . (C.6)
7raL aT R 1

The above correlation result can be used to back out the speckle coherence time

for a uniform featureless spherical target of arbitrary reflectivity. If we define the

speckle coherence time to be Toh such that

(y(t + 'rCOh) y(t - TcOh)) -1

(y(t) *(t))

then the coherence time rcoh becomes

X/2 2 k2 p2
coh = k + (C.7)

kf2 +a R-

If we assume that the edge of the projected surface reflectance is modelled by the

support of such projections in the T-plane rather than the Gaussian fall off modelled

by the exp{-ip 2 /a4} term in the target model, we obtain the following rcoh formula

by taking aT -, oo,

7coh = V2 PT (C.8)
flRT

and assuming PT A.

This result is identical to the speckle coherence time in the RTI scenario (see

Appendix B §2.1). Therefore, we conclude that DTI projections are statistically

independent if the dwell time T is smaller than the inter-projection sampling period,

27r/N, by several speckle coherence times (see §3).
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C.2 DTI Projection First Moment Derivation

In this section we will continue our analysis and derive the first moment of the DTI

projection by building upon the concepts introduced in the last section. We begin

by restating the contribution to the projection mean due to the received signal y(t)

component as cited in equation (5.8):

(P,,(V)) 

where the variables u and v on the right-hand-side are dummy time arguments, the

expectation on the left-hand-side is taken with respect to the random process y, and

the projection angle 8,. corresponds to the projection taken during the observation

dwell time T centered on the sampling instant t.

The discussion in chapter 5 suggested that the heterodyne signal correlation can

be written in the form

(y(u) y*(v)) = K ((u + v), u-v) - var ((u + v)) k(u -v)

which is called the Schell approximation in the literature [40]. The time sum vari-

able accounts for the slow evolution of target aspect throughout the rotation period

while the time difference variable indexes the stationary speckle randomness over a

sufficiently short interval. Adopting a sum and difference time coordinate system in

our usual manner,

u = t-+ - (C.10)

v = t- -r, (C.11)

we write

(y(t+ 2)Y *(t - )) = K(t, ). (C.12)
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Therefore, using the covariance result derived in the previous section, the Fourier

transform of K(t, r) with respect to r is the power spectrum of the heterodyne signal

component at time indexed by the dummy variable t [40, 41]:

S(t,f) j= dr K(t, r) e - 2 If

PTP -00= j dr (y(t 2 - 2Rr I -

Io dr exp{2jkQp_+ r} exp{-2rjfr}
0o0

= PPT J, dP+ (p- t) ( ( )R/

PT dp+ P (2 IJZp+) t) exp + b2 (C.13)

Two-Dimensional
Gaussian Window Function

where we have defined

b1= (C.14)
0_,222 2

aT RT

Thus, for a fixed Doppler frequency f, which corresponds to a cross-range displace-

ment of r = Af/2Q meters, the power spectrum is proportional to a line-integral

along the p-axis. This formulation is a generalized Radon transform [27, §II.7]

indexed by the Doppler frequency. The integrand for the Radon transform is the sur-

face reflectivity transversely projected at time t onto the T-plane and weighted with

the same Gaussian metric discovered during the RTI analysis which models surface

roughness-aspect angle roll-off.

Thus, expressing the mean projection in the (t, r) sum and difference time coor-
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dinates

(PO(v)),

,2i dt

dt
~T2 oo

= 2f
oo_0

J00

J-00

dr K(t, r) e- 2wj e- 8(t- t )2 /T 2 e- 2r2 /T 2

dr ] df S(t, f)e 2jrfT' e- 27 j vr e-8(t- t )2/T 2 e-2.'2/T2

-oo 

= K(t, )

-oo ooj. df j. dt S(t, f) e8It)./T L d-re2

df e- 7r2T2(f - ) 2/ 2 J dt S(t, f) e-8(t- t ) 2/T 2

oo

- s(t. f) dte- 8 ~2/ T 2

00

j(f-v)r e-2r2/T2

rT2 +00 (f_)2 1- df (t,., f) exp -(-v) 2 /2r-y-f s+f00 i 7 2T 2 (C.15)

where the final step the last integral was evaluated by applying the Schell approxima-

tion, i.e., assuming that S(t, f) varies slowly with respect to t about the dwell time

centered on sampling instant t,.

Completing the calculation by substituting (C.13) for S(t,, f) and rewriting the

above integral as a convolution, we have the final form of the mean projection (equa-

tion 5.13):

(P.(V))lv=2, / = [7T2/2exp { r2/k 2Q2T 2 }]

[PT f [ d p z pt' (r, pz) exp{-(pZ 2 + r2)/b2}]
lraLJ-00

(C.16)
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C.3 DTI Second Moment Projection Derivations

In this section we will calculate the projection covariance for the DTI imaging system

assuming a low-contrast target reflectivity model and super-resolution conditions.

The following subsection details the calculation of the projection covariance. This

result is used in the second subsection to derive the filtered projection variance under

identical assumptions.

Before proceeding with these computations, we will use the results of the previous

section to demonstrate inter-projection statistical independence. This will be accom-

plished by showing that the sum of a typical dwell time T and speckle coherence

time is much shorter than the inter-projection sampling period. The upper bound

for T under permissible smearing conditions is found by setting the cross-range res-

olution cell dimension equal to the maximum target surface travel during the dwell

time. This gives the relation T < 1V/'/kTf for minimal smearing during projection

measurement. Therefore, the sum of both the maximum dwell and speckle coherence

times gives:

1 + V PT (C.17)
v'rk RT f 2 RTf2

At infrared and visible wavelengths where A - PT and RT is on the order of meters,

this quantity is always smaller than the inter-projection sampling interval, 2r/NQ,

except in cases where thousands of projections are required.

In practical systems, projections will number less than approximately 100, and

thus, we will assume negligible inter-projection correlation. Therefore, the variance

between any two points along each projection is all that is required to compute the

reconstructed image variance.
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C.3.1 Projection Covariance

We begin b: defining the projection covariance between the two points corresponding

to the Doppler frequencies f and g along a DTI projection as ( [IL(f) 2 - (IL(f)l 2 )] -

[IL(g)l2 - (IL(g) 2)] )= Kpp(f, g). Since the heterodyne signal y is a circulo-complex

Gaussian random process, the application of complex Gaussian moment factoring

results in:

Kp(f, g) = (L(f)L"(f)L(g)L*(g)) -(p(f))(p(g))

= L(f) L*(g)) K(lf) L(g)) +

L(f) L*(f)) (L*(g) L(g)) +
Becomes (p(f)) Becomes (p(g))

L(f) L(g)) L (f ) L(g) - (p(f))(p(g))
=0 =0

L(f) L*(g)) 2

(C.18)

(C.19)

(C.20)

where moment factoring was used to expand equation (C.18) into (C.19), which after

simplification, gives the final result of (C.20).

At this point, it is helpful to recall that L( ) ultimately represents contributions

from local oscillator shot-noise n and speckle induced phase variations in the received

signal y. Since the heterodyne detector model presents these two random processes

as statistically independent in the high local oscillator power regime, we may now

write the expectation within the above magnitude-squared expression as

(L (f) L(g)) =

I+du0 dv (y(u) y*(v)) e-2rjfu +27rigv (8 1/2

- I(f g)

e-4(u-t,)2/T2 e-4(v-tn)2/T2 +
e e +~~~~~~
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10du 1+d0 (n(u)n*(v)) e23rifue+2igv ( ) e-4(u-t.) 2 /T e-4(vIT

- 2(f, 9)

where the covariance of this nth projection is calculated for a projection dwell time

centered on the instant tn. Note that we have defined for the sake of future convenience

the first term in the above expansion as 11(f,g) and the second term as I2(f, g). Since

n(u) is a white noise process, we can immediately write the result:

I2(f, 9) = ho exp (f _ g)2 / 4 } exp {-27rj(f - g)t}. (C.21)

As with previous calculations involving the covariance of the received signal y(u),

we begin by taking expectations after converting to sum and difference time and

frequency coordinate systems in order to separate the short- and long-term statistical

behavior of the target return. Using the following transformations

t = 2(u + v)

= U-V

t= ½(f +g)

f-= f-g.
to convert the expression for I1 (f, g) into an equivalent quantity denoted as I (f+, f_),

we have:

+00 +00 +00

Il(f+, f ) -= dt] d I df'S(t,f')e2 f' 

= K(t, T)

exp {-27rj [(t +2+ -)(f. + f-) (t - )(f+ - -)] }

rT2 (.2
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where we have formulated the covariance of the received signal (y(u)y'(v)) in sum and

difference time coordinates and expressed this quantity, K(t, r), in terms of the single-

dimensional inverse Fourier transform of the power spectrum S(t, f') with respect

to f', the differential time-scale frequency. Cancelling common terms, exchanging

the order of integration and evaluating the resulting integral with respect to the

differential time coordinate r, we write:

8 1/2 +00 r+ (+00

= U+ ) ] dt]__dr ]__df'S(tf') e2rjr Iff +'-) (rT2 o t-00 J o
exp {-27rj(f+7- + f_t)} e- s(t-t )2/ T2 e- 2r2 IT2

7 T2 J df' I dt S(t, f') e-r2ft e-8(t-t)2/T2

+0 dr e-2j(fs+-f') e-2r2 /T2

-00

2 X df' exp 1 (f+ _ fl)2

f dt S(t, f') e-8(tt" )2/T2 e- 2 1jf1 t (C.23)

S(tnf) I dte-8 C T -rjf-(t t)

where again in the final line, we introduce the assumption that observation dwell time

is sufficiently long to provide super-resolution. Evaluating the integral with respect

to t results in the following expression:

I(f+,f_) = 2 2exp- f/2 7r exp {-27rj(f - g)tn}

df' S(tn, f') exp {- (f+ - f')2 /r }. (C.24)

Convolution Integral

Except for the presence of the exponential and complex phase factors, the above result

is identical in form to equation (C.15) preceding the final projection mean description.
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Beginning with the expression for S(t, f'), equation (C.13), the power spectrum was

calculated for a low-contrast target with an overall reflectivity of p(z, y, z) = p, giving:

PTp'b A 1 \2 (f 2/) 

S(t., f ) = p _exp { )(f)/b (C.25)

Substituting this result into equation (C.24), we have:

PTpTb2 A/2z~(+,7) a4 I1~(f~f-) = PT4 P/- exp {-2irj(f-g)t}
exp {- f /r2T2 } exp {2 n f+2/ } (C.26)

where we have defined
b2 1

o-2 - + (C.27)
2 k2 f2 2T 2 '

The parameter o in some sense accounts for the apparent physical size of the target as

seen by the laser radar after taking into consideration the effects of surface roughness-

aspect angle and smearing due to finite dwell time T.

Therefore, the covariance of the random process L is obtained by converting back

to the original (f, g) coordinate system and summing both 1 and I2:

(L(f) L(g)) =

exp {- (f g)2 / 2 2 } exp {-2rj(f-g)t,} x

[ v + PTP b p exp{- () (f/ 4 }] (C.28)

Taking the magnitude-squared, we have the projection covariance:

Kp(f,g) = exp {-(fg) r2T2} x

hvo+ PTpb 2 A/2 exp {-2 2( )(f+g)2/42}] (C.29)+ p exp - (f + g)2 4o- (c.29)
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Recalling that the Doppler shift from the IF center frequency is directly related to

the cross-range displacement via f = 2r/A, we write the projection covariance in

terms of the cross-range variables as:

4 + P exp (2 + r)2/42] (C.30)

Shot Target
Noise Induced Speckle
Term Term

This equation (C.30) is the final projection covariance result cited in equation (5.14).

Note that the covariance is the product of two factors. The first factor is a Gaus-

sian term which describes the projection decorrelation. The projection decorrelation

length, /2/kT, is directly proportional to the laser radar cross-range resolution.

The second factor sums the relative contributions from local oscillator shot-noise and

speckle resolved over the exposed face of the target. Note that this last term is di-

rectly proportional to transmission power, PT, and nominal target reflectivity, p, a

situation which indicates the presence of signal dependent noise.

C.3.2 Filtered DTI Projection Variance

In this section we will compute the filtered DTI projection variance used to establish

the filtered backprojection reconstruction SNR result. We begin with the observa-

tion that the above projection covariance is written in a range sum and difference

formulation reminiscent of the companion RTI covariance. Under super-range reso-

lution conditions, the analysis in §2.2 of Appendix B applies, if we make the following

covariance separation specification,

k(r-) = exp {-r /k22T2}
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Varp(r+)
PTp]b2

+ v 4p
' La 

A/20
O'

which gives in the following result cited in equation (5.16):

Ik2f2T2

varpp, (r) 82. varp(r).
87r2

APPENDIX C.

exp{

(C.31)

1 

2 
hv,
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