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ABSTRACT

A two—dimensional Boundary Element formulaticn is developed to study
dynamic problems involving several rigid foundations and tunnels embedded in a
layered halfspace. This formulation is applied in the frequency domain, and uses very
efficient approximate Green’s functions which can be evaluated in closed form without
the need of numerical integrations. The approximation consists in subdividing each
layer of soil into several sublayers and assuming a linear variation of the displacements
across each sublayer.

The possible existence of noncausal solutions while considering nonconvex
domains is investigated with the method developed, and some comparisons with
time—domain results are performed. It is found that the frequency—domain results
using the discrete Green’s functions obey causality in every case.

The boundary element code is used to assess the influence of underground
structures, such as a tunnel, in the seismic motion observed at the surface. A
particular situation examined is that of downtown Mexico City during the earthquakes
of September 1985, with focus on the effects that the underground tunnel may have
had on the motion in its vicinity. However, no significant effects were observed since
the low frequency contents of the seismic waves produced essentially translations on
large structures.

An approximate procedure to evaluate the effects of the interaction between
multiple foundations subjected to seismic excitations is presented. This method is
relatively simple to implement and can be used in fairly general situations involving
several cylindrical and rectangular foundations embedded in a halfspace. Some
comparisons with more accurate methods show a good agreement, at least as far as the
qualitative effect of the interaction is concerned.

Thesis Supervisor: Dr. Eduardo Kausel

Title: Associate Professor of Civil Engineering
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1. INTRODUCTION

Seismic ground motions are, in general, highly variable in space and time.
Although the variability in time is easily quantified from seismograms, less is known
about the spatial variability, which depends substantially on the type of waves present
and their paths. For extended structures, or structures founded on several foundations,
the spatial va.riability of the seismic motion can be very important and should not be

neglected.

When the seismic waves impinge on an extended foundaticn having a rigidity
much higher than the surrounding soil, the foundation cannot accomodate the spatial
variation of the motion; as a result, the free—field motion is distorted by the effect of the
waves scattered by the foundation as well as those generated by its vibration. This
phenomenon is usually called soil-structure interaction. On the other hand, when a
structure is founded on several foundations placed at some distance, the free—field
ground motion will be different under each foundation, and since they are connected

through the structure, some interaction takes place.

The exact solution for soil-structure interaction problems is very complex,
analytical solutions being available only for very special situations such as strip or disk
foundations bonded to an elastic halfspace and subjected to either forced vibrations or
seismic waves. For more general cases, numerical methods such as finite elements and
boundary elements have been used. Since these problems deal, in general, with infinite
domains, the Boundary Element Method (BEM) seems very advantageous, because it
only requires discretization of the boundary separating the foundation from the soil.
However, the BEM is based in the validity of the superposition principle and, hence can

only be used efficiently for linear problems. The BEM requires the use of certain



9

fundamental solutions referred to as Green’s functions, which represent the free—field
dynamic displacements observed when a unit load is applied at some point in the
domain. These fundamental solutiuns are usually very difficult to obtain in closed form,

which limits the applicability of the BEM.

Although an homogeneous halfspace represents the simplest soil model of
practical importance, it is rather limited since most subgrades present a stratification
into horizontal layers due to the geological process of sedimentation. To account for the
variability along the vertical direction, a great effort has been made in the evaluation of
the Green’s functions for the case of horizontally layered media. Exact solutions in
closed form are not available and most methods require the numerical integration of
infinite integrals. Another approach, developed by Kausel and Peek [22], discretizes
each layer into several sublayers assuming that the displacements vary linearly across
each sublayer along the vertical direction. This procedure is restricted to a stratum of
finite depth but it is very efficient as the Green’s functions do not require the numerical
evaluation of integral transforms. The solution is expressed in the frequency domain but
results in the time domain can easily be obtained by Fourier transformation, using the
fast Fourier algorithm. Seale [39] extended this formulation to incorporate a halfspace
by using approximate expressions for the dynamic impedances of the halfspace. This
approximation, named paraaxial, works well if the vibration near the halfspace interface
is originated by waves travelling close to a vertical path (small values of the
wave—number). However, even in other cases, good results can be obtained if a series of
sublayers are added underneath the zone of interest before the halfspace is considered.
A very efficient Boundary Element code can be developed by using the procedure just

described to evaluate the Green’s functions.
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The problem of dynamic coupling between several structures through the soil,
sometimes referred to as structure—soil—structure interaction, has been receiving some
attention recently. However, most of the studies up to date consider only surface
foundations, or two foundations embedded in a homogeneous stratum; also, past efforts
have concentrated almost exclusively on theory and code development. For
3—dimensional modelling, supercomputers have been used extensively in order to be able

to analyse several foundations.

In this work, a boundary element code is developed for studying the dynamic
interaction between multiple structures. The code is implemented in a microcomputer
in a modular way, to take maximum advantage of the memory available. Since the
a.na.ly'sié focuses mainly on demonstrating in a qualitative sense the implications of
structure to structure interaction, the code will be restricted to a 2—dimensional
analysis, considering both in—plane and anti—plane motions. The Green’s functions used
are based on the algorithm developed by Kausel and Seale. Some effort is made in
showing the accuracy of such idealizations by comparing the results with other
numerical solutions obtained using finite elements and time—domain boundary elements;
special attention is given to the verification of causality constraints of the response in
non—convex domains, since in these cases the BEM does not insure that the response
perceived at a given point is null until the time it takes the fastest wave to reach that

point travelling along the shortest path.

The influence of underground structures on the surrounding ground motion as
well as the interaction between underground structures and surface or embedded
foundations is investigated in relation to the earthquakes that hit Mexico City in
September 1985. The presence of underground structures, such as the subway tunnel,

has been thought as a possible cause of the contrasting pattern of structural damages
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observed in downtown Mexico City during the earthquakes. Severely affected zones
alternate with zones where the buildings hardly suffered any damages, even though the
geological characteristics essentially did not change from one site to the other. Results
obtained by a 2-dimensional amplification analysis using the code developed are
compared with actual recorded motions at the surface, and the potential for deleterious
effects caused by the tunnel is assessed. Emphasis is made on the effects of the in—plane

rotation of the subway tunnel elicited by incident SV seismic waves.

Finally, an approximate procedure is suggested which may be used to assess in a
qualitative sense the effects of dynamic coupling of multiple structures through the soil.
This approximation is based on Iguchi’s method, which was shown to provide very good
estimates of soil—structure interaction for the case of a single embedded foundation
subjected to seismic excitations. The method presented can be used in the case of
several rectangular and/or cylindrical foundations embedded into a halfspace subjected
to seismic waves travelling obliquely in any direction. Some examples and comparisons

with more exact solutions 2re shown.
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2. REVIEW OF PREVIOUS WORK

2.1 Wave Propagation in Layered Media

The solution of problems involving forced vibrations of foundations or the
response of underground structures to seismic excitations requires the analysis of wave
propagation by fhe soil. As widely recognized, soil is a very complex medium
composed in general, of three different phases (air, water and skeleton), and exhibiting
a highly non-linear behavior. In addition, the soil characteristics can only be
determined with some accuracy near the surface or at discrete intervals by means of
borings. Hence, several assumptions must be made when describing the soil behavior,
even for static problems. Dynamic analysis, on the other hand, presents another
degree of complexity, in that the soil is thought of in most cases as an homogeneous
linear elastic material. Although such simplifications are clearly limiting, these models

describe with acceptable accuracy the main features of the dynamic problem analyzed.

It is often the case that the soil exhibits distinct horizontal layers due to the
process of sedimentation; in such case the idealization of the soil as a homogeneous
halfspace or stratum is unacceptable. Even though such layering is never perfectly
horizontal, due to the geological movements and faulting of the soil mass, the
idealization of the subgrade as being composed of several horizontal layers welded to

one another is necessary in order for the mathematical model to remain solvable.

Thomson [41] and Haskell [17] developed some 30 years ago a transfer matrix
approach to study wave propagation in layered media. This problem can be divided
into two uncoupled motions in a 2—dimensional domain: one motion is produced by

SV (shear) and P (longitudinal) waves, and the displacements are contained in a
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vertical plane (in—plane case); the other motion results from SH (shear) waves
propagating along the vertical plane, with the ground displacements being
perpendicular to that plane (anti—plane case). Figure 2.1 shows the geometry and axis

orientation chcsen.

in—plane case

The dynamic equilibrium equations for waves propagating in a layer j are

62ux 82uz 62ux Bzuz 62ux
()\m+2(}m)&(2 + /\maxaz + G 5;2—+0xaz ~ Py Py =0 (2.1 a)
% 4%u 0%u_ 8%u ] 0%
(A_4+2G_)—Z2+ A X+G 2y X _p —Z=0 (2.1 b)
miTTms e TMas, Mgk oxdz) O ot? A

where u - and u, represent the displacements in the x and z directions respectively; A m

and G m aTe the Lame constants of layer m and [ is its mass density.

Fourier transforming these equations with respect to time (t - w) and horizontal

coordinate (x - k), one obtains

2 ; \d (4 ¢’ z 2
KA +2G )T+ 1k(Am+Gm,dz G, oY wp U, = (2.2 a)
. U, 4*T, 2
kG U +ik(A +G ) (Ap+2G,) Y 0 U, = (2.2 b)

dz dz
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Equations 2.2 a,b can be uncoupled with the introduction of two potential

functions ¢ and y such that

ux=g$——g-f—-’ ITx=-—iko——d‘: (2.3 a)
uz=§g——gg(L U =8 ik (23 b)

and the equations of motion become

d% 2 w? _
_——dz2 k@‘f‘cp—mQ—O (248.)
d%y 2 w? _
o kw+C-s—;v—0 (2.41)
A+ 2G ' G
where Cpm = J Jn__p__m and Csm = _b_x_n__ are, respectively, the longitudinal
m m

and shear wave velocities. Defining 1 = J 1—(w/kam)2 and s = J 1—(w/szm)2

, the solution of equations 2.4 can be written as
®(z) = A cos(kr z) + B sin(kr z) (2.5 a)
¥(z) = C_, cos(ks_z) + D__ sin(ks_z) (2.5b)

and the displacements U;( and U'z can then be obtained by substituting these
expressions into equations 2.3. To find the integration constants Am, Bm, Cm and
Dm, boundary conditions must be imposed at the upper and lower interfaces of the

layer m, where either traction or displacements are prescribed. In the transfer matrix
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method developed by Thompson and Haskell, the tractions and displacements at one
interface cf the layer can be expressed in terms of the same quantities at the other

interface through a matrix Hm called the transfer matrix or propagator matrix:

T
! l (2.6)

anti—plane case

For anti—plane motion the displacements are in the y direction (u y) and the

differential equation of motion in a layer m is

2

QD

u

0*u
Yy
Gm(0x2 +

d*u
; —pm——fLat2 =0 (2.7)

g

which after Fourier transformation becomes

d?U_
2 — y_ .2 =
k GmU"y G 17 wme; 0 (2.8)
with solution
U;, = E_ cos(ks z) + F_ sin(ks z) (2.9)

As in the in—plane case, the constants E  and F  are obtained from the

boundary conditions at the interfaces (traction or displacement) and a transfer matrix
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H  can be constructed in order to obtain a relation similar to that in equation (2.6).

2.1.1 Stiffness Matrix Approach

Kausel and Roesset [21] extended the transfer matrix algorithm by
manipulating equation (2.6) in such a way so that the tractions at the interfaces are
expressed in terms of the boundary displacements. Recognizing that in the upper
interface the external loads P'l are equal to the corresponding traction S'1 while at the
bottom interface P‘2=— o @ Telation is obtained between external loads and

displacements

P ok [T 210
[P;]‘ [v] 0

The matrix K, can be thought of as a stiffness matrix for layer m, and if a
factor i (i=/~T) is introduced in the vertical loads and displacements, then K__ is also
symmetric. The global stiffness matrix of a stack of layers can be obtained by
overlaying the individual layers stiffnesses at the corresponding degrees of freedom as is

usual in structural analysis.

Kausel and Roesset presented expressions for the stiffness matrices of layers
corresponding to in—plane and anti—plane motions for zero and non—zero values of the
frequency w and the wave-number k. Such expressions involve transcendental

functions of the parameters r_ and 5 defined previously. The stiffnesses of a

m
halfspace relating the loads applied to the surface of the halfspace and the
corresponding displacements were also included. This approach can be used to solve in

an exact and very elegant way problems related to wave propagation.
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2.2 Thin—layer Method

2.2.1 Description

As pointeq out in the previous section, the terms of the stiffness matrices of
each layer have cdmplex terms, so that the inverse Fourier transformation required to
express the solution in terms of the horizontal coordinate x must be evaluated
numerically. Even if efficient procedures are used to perform these transformations
(see Apsel [4]) they are very time consuming since the integrations extend to infinity
and the kernels of the integrals have an oscillating behavior. A quite different
approach was undertaken by Waas [45], who used instead a finite element
approximation to model the stack of layers. Each layer is divided into several
sublayers, and the displacements are assumed to vary linearly across the thickness of
each sublayer. Waas used this procedure to obtain consistent boundaries in a 2-D
domain, and Kausel [20] extended it to the axisymmetric case. In this method, the
stiffness matrix of each sublayer is an algebraic expression in terms of the
wave—number k

K, =A kK+B k+G —uw'M (2.11)

For purposes of completness, the derivation of the expression for K m and the
matrices Am, Bm, G m and Mm are described in appendix A. These matrices depend
only on the thickness h of the sublayer and its material properties (G, A and p). This
thickness shall be chosen in such a way that the system models properly waves

travelling in a vertical direction; this implies a maximum value of h equal to 1/4 the
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21rCs
wavelength A (A= ——).

2.2.2 Green’s Functions in a Laye tratum

Kausel and Peek [22] used the approximate stiffness matrices given by equation
2.11 to develop a-closed form solution for the Green’s functions corresponding to
dynamic loads in a horizontally layered stratum. The procedure was as follows: the
stiffness matrix of each sublayer (in the frequency—wave number domain) was
assembled into a global stiffness matrix. The resulting algebraic system of equations
was solved by a spectral decomposition of the stiffness matrix (which implied solving a
quadratic eigenvalue problem for the wave—numbers) and the solution in the
&eqﬁe;lcy—spatial coordinates domain was then obtained by inverse Fourier
transformation, which could be performed in closed form. The displacements were

then computed as a summation over all the natural modes of the system.

Although the formulatior for the Green’s functions described above is
completely general and can be applied to three—dimensional geometries, this study
focuses on a two—dimensional implementation of this method, and the Green’s
functions are evaluated for in—plane and anti—plane line loads. Appendix B describes
in detail the steps necessary for the computation of the Green’s functions for both of
these (plane) cases. The final result is a matrix relating the displacements at any
interface to the external loads applied (equations B19 and B20). If the loads are
applied within the interior of a sublayer, then the load can be replaced by the
consistent "nodal" loads at the interfaces as described in [21].  Also, if the
displacements are required at the interior of a sublayer, then they can be obtained by

linear interpolation of the displacements at the corresponding interfaces (at the same x
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location), since the model assumes a linear variation of displacements across each

sublayer.)

2.2.3 Extension to Layered Halfspaces — Paraaxial Approximation

The Green’s functions developed by Kausel and Peek [22] and described above
are extremely efﬁ’cient, especially for problems involving several layers with distinct
characteristics. As shown in [22], the accuracy obtained is also very good when
considering just a reduced number of sublayers. However, the formulation assumes
that the stack of layers rest on top of firm rock and cannot be extended directly to the
cases where a halfspace is present. The reason is that since the halfspace has an
infinite depth, a linear variation of displacements is certainly not possible. One way to
cope with this problem is to extend the stratum to a greater depth so that any
reflections at the bottom attenuate sufficiently (because of internal damping) before
they reach and influence the response in the region of interest. However, this approach
increases the number of sublayers required and does not eliminate the reflected waves
at the bottom of the stratum. To extend this formulation to layered halfspaces, Seale
[39] developed a paraaxial approximation by expanding the dynamic stiffnesses of the
halfspace in Taylor series with respect to the wave—number k. This solution is very
convenient since the quadratic eigenvalue problem in k is still quadratic and the
algorithm to compute .the Green’s function remains exactly the same, the only
difference being the introduction of the extra degrees of freedom in the stiffness matrix

corresponding to the displacements at the top of the halfspace.

The exact halfspace impedances given in Kausel and Roesset [21] are, for the

in—plane case
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=20 (i) -[14) @

and for the anti—plane case

K = ksG (2.13)

where 1 = J 1—(w/ka)’ and s = l 1--(:.)/1(03)2 ; w being the frequency of the

motion.

For the in—plane case, the approximate stiffness matrix of the halfspace

becozqes

S l}ﬁg_ﬁ%z[*z-a) 0 4 (.14

0 1/a @ 1o 0 (1-2a)/a

and for the anti—plane case it becomes

GC
K(k) ~ i%%— ik (2.15)

where a = Cs/ C p’ the ratio between the shear wave and longitudinal wave velocities.
It can be seen that the exact stiffnesses have terms involving square roots which imply
that those expressions have branch points in the complex k—plane. As it is widely
known, Taylor series are only valid up to the nearest singularity so that for values of
k> w/ Cp the values given by the approximations are not valid anymore (even if more
terms were taken in the Taylor series). Hence, it is important to model the layered

halfspace in such a way that high values of k do not contribute significantly to the
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response. One possibility is to always have a sufficient number of sublayers (10 to 12)
between the deepest concentrated load and the top of the halfspace, so that the load
gets diffused along the horizontal coordinate at the top of the halfspace. As a result,
its spatial Fourier transform (in the x coordinate) does not contain high values of the
wave number k.

Seale showed that the paraxial approximation is similar to the absorbing
boundaries develdpéd by Clayton and Engquist (see [39]). Waves traveling nearly
vertically are well transmitted into the halfspace, while shallow waves are in part
reflected back. Hence, in the special cases when the halfspace is softer than the
overlying layers the paraxial approximation does not work very well for obliquely

incident waves.
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3. BOUNDARY ELEMENT SOLUTION

3.1 Formulation of the Method

The dynamic equilibrium equation for wave propagation in homogeneous media

can be written as

1.11.] + b =Y 4 = )] i,j=1,2,3 (3.1)

where the comma defines differentiation, and a repeated index means summation over
its range; bi represents the distributed external load in the direction i and p is the

specific mass of the soil.

*
Consider another displacement field, denominated u;, which is virtual in nature
*
but also satisfies the wave equation. Multiplying equation (3.1) by u, and integrating

the resulting equality over the entire domain under consideration gives

fff u; (o %ij + bi —pu, tt) dv=0 ij=1,23 (3.2)

After integration by parts of the term in %55 the above equation is transformed

into

ff dS fff 1_] 1J dV fff (b Y tt)"1 ¢V =0 (3-3)

in which t, = @50 represent the tractions along the boundary S (ozl/j is the

direction cosiue for the angle formed by the outward normal and the axis j).
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*
The term o Jel j can be expressed in terms of &i ij using the stress—strain tensor

for the soil D

= (D¢ ¢ (3.4)

%iji] i

Taking into account the symmetry of D, eq. 3.4 can be transformed into
* * *
(Deij) €= (Deij) &)= %jj (3.5)

so that

fff %;j leV fff ‘71qudv (3.6)

Integrating by parts the right hand side of the expression above, one obtains

f ff 01564V = fft u,ds — f f j; a:j,juidV (3.7)

But the virtual displacement field also satisfies the equilibrium equations, hence
*
g:i=—by + puy 4y (3.8)

Combining the results of equations 3.4—3.8 with equation 3.3, the basic relation

for the boundary element formulation is obtained

* * * *  x
.ﬂ;tiuid°+ffj:,(bi_pui,tt)uidV = fj;tiuids+ff.f;(bi—pni,tt)uidv (3.9)
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Equation 3.9 can also be expressed in the frequency domain. Assuming an

* *
harmonic motion with frequency w, u it = —Ww u and u, it = —Ww u . Hence,

* *
Y T Uit
distributed loads, b, = 0, and equation (3.9) becomes

fftu ds —fft dS + fﬂ;b:uidv (3.10)

If b corresponds to a unit load in direction i at point x| b =6 (x—x ) (6 being

*
= —w'uu.. Furthermore, assuming that there are no external

the Dirac delta function), the volume integral reduces to the value of the displacement
in direction i at point Xy lli()_to). Thus, the displacement in any direction at any point
inside the domain can be expressed in terms of the displacements and tractions at the

boundary,
* *
u(x,) = fs(tiui —t;1,)dS (3.11)

For problems involving a halfspace or a stratum over rigid rock, the only finite
boundary where the product of the boundary tractions and displacements do not vanish
is the boundary of the structure being analysed (foundation, tunnel, cavity, etc.).
Along, the free surface, since t, and t’; vanish, the products ti“; and t?ui are zero.
Hence, the surface integral in equation 3.11 only needs to be evaluated at the interface

between the structure or cavity being analyzed and the soil.

When the ficticious point load is applied on the boundary (goeS), equation 3.11
will involve only unknown displacements and tractions at the boundary. However, the

integral will exhibit singularities near the loading, which need to be integrated with
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caution. This procedure leads to an integral equation, which in most cases cannot be

solved in closed form. Hence, to generalize the method, one has to use numerical

approximations.

In the Direct Boundary Element Method, the boundary tractions and
displacements are expressed as a function of their values at a few discrete points (nodes),
usually using polynomial interpolations. The integral in equation 3.11 is, therefore,
approximated by a summation having as unknowns either the tractions, or the
displacements at each node (but not both, since in a well posed problem, one of them
must be prescribed at every point on the boundary). Imposing virtual displacement
fields corresponding to virtual loads at each node and for each direction, a system of
linear equations is obtained. Defining U as the vector of displacements at the boundary
nodes, some of which are known, and P the vector of the tractions, the system of

equations can be written as
A-U=B.P (3.12)

i of A represents the traction in node—direction j due to a

unit load in node—direction i and the element bij of B corresponds to the displacement in

where the element 3

node—direction j due to a unit load in node—direction i. The system above can be
rearranged so that all unknowns are transferred to the same side and the resulting
system can be solved using standard algorithms. It should be noted, however, that the

matrices obtained are not symmetric and are fully populated.

A two—dimensional boundary element code was developed using the Green’s
functions described in the previous chapter. The type of elements used are linear in

vertical planes and constant in horizontal planes. The details of the computation of the
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resulting tractions and displacements at the nodes are described in Appendix C. Tt
should be emphasized that in this case, due to the constraint of having the
displacements varying piecewise linearly with depth, the singularities near a
concentrated load are just Dirac delta functions, which are easy to integrate. In a
continuous and isotropic formulation, the singularities are of the logarithmic type and
special integratiox} quadratures need to be used. Both in—plane and anti—plane motions
are analyzed, and since they are completely uncoupled, two separate programs were
developed, one for each situation. The code can be used to obtain the dynamic stiffness
matrices of embedded rigid foundations or tunnels, as well as their response to seismic
waves. These waves are prescribed at the base of the stratum or at the top of the
halfspace and can consist of '! (anti—plane), P or SV (in—plane) waves arriving
obliquely. The solution is computed for different frequencies of the motion and the
response in time can then be obtained by Fourier transformation using the fast Fourier
transform algorithm. The programs were implemented in a 'AT’ type microcomputer

and all the computations in this work were performed in that system.

Response to Ground Motions

In order to study the resporse of a rigid foundation or tunnel to incident seismic
waves, the solution can be divided into two steps. First, using the free—field motion due
to the incident waves, the corresponding tractions and displacements along the
"imaginary" boundary of the structure are computed (P* and U* respectively). In a
second step, the boundary element equations are solved for the incremental tractions
(P—P*), and displacements (U—U*). These incremental values must correspond to
changes on the boundary conditions at the interface soil—structure and hence, they must

satisfy the boundary element equation 3.12
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A-(U=U") = B.(P-P") (3.13)

When the structures are very stiff in comparison to the soil, it can be assumed
that they displace rigidly, so that the displacements along the boundary can be obtained
from the rigid body motions through a transformation matrix T, which only depends on

the relative coordinates of the boundary nodes with respect to a reference point

U=Tu, (3.14)

Assuming the reference point has zero coordinates and using the axis convention

shown in figure 3.1, each submatrix of T, corresponding to each node j, is given by

X.

10 —z.
in—plane motion Tj= [0 1 -‘} (3.15)
: .

T _ [ 11,1222 Y
for u 0= [ux u, Upu U ug ... where the superscript indicates to the structure

under consideration
anti—plane motion Tj = [1] (3.16)
T _ [ 1.2
for u) = [uy uy ]

Introducing equation 3.14 into equation 3.13 and rearranging some terms, gives
* *
ATu0 =A-U +B-.(P-P) (3.17)

Premultiplying equation 3.17 by TTB ™ results in
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— — *
1T AT, = TTB71A.U" + TP - TTP’ (3.18)
Defining K = TTB AT and H= B‘IA, equation 3.18 can be written as
* *
Ku,~ TP =T/(H.U -P) (3.19)
The term TTp represents the resulting forces and moments on the soil around
each structure. Since no external loads are applied to the structures, these resulting
forces must equal the inertial loads

TTP = uMu, (3.20)

where M stands for the mass matrix of the structures considered and is explicitly

given by

in—plane case

1 11
m Xxm 0
1 11
J
1
m 0 —zﬂm2
M= S ymm. m xm (3.21)
2 2 2
J
2
m 0

anti-planecase M=, (3.22)
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where m, represents the mass of structure i and J, its mass moment of inertia (J;
= 2, N\m. ] .= — :
=Ju+ (xi+zi)mi, J,;=mass moment of inertia w.r.t. the center of mass); (x;, z) are

the relative coordinates of the center of mass of structure i with respect to its reference

point.

Substitutioﬁ from equation 3.20 into equation 3.19 leads to
* *
(K—"M)u, = TT(H.U'-P") (3.23)

Equation 3.23 can be solved for U, the rigid motions of each structure,
considering different seismic motions (defined by U* and P*). Figure 3.1 shows an
example of a model that this formulation can solve. After obtaining the rigid motions of
each structure, the resulting displacements at points within the domain can be
computed by applying a ficticious load at the location and direction of the desired
displacement. Designating by AI the row matrix of the resulting tractions on the
boundary nodes of the structures, and BI the row matrix of the resulting displacements,

the unknown displacement u, is given by (referring to equation 3.11)

* I * I *
y—u, =—A(Tu,-U )+ B(P-P) (3.24)
*
where u, represents the displacement due to the incident seismic waves at the point and
* - * *
direction chosen. Since from equation 3.13, P-P =B lA(Tu o—U)=H(Tu -U),
equation 3.24 can be transformed into

I I * *
y=(BH-A)(Tu -U)+uy (3.25)



MULTIPLE STRUCTURE ANALYSIS




To test the Boundary Element code developed, some comparisons with other
numerical resultslv.vere performed. First, the dynamic complianées of a rigid embedded
strip foundation were evaluated and compared with the results obtained by
Chang-Liang [9], who used for this purpose the finite element method. Figure 3.2 shows
the geometry of the model chosen. The soil was taken as linearly viscoelastic with an
internal damping of the hysteretic type, which was incorporated using the
Correspondence Principle as explained in Appendix A. The stratum thickness was taken
equal ‘to the total width of the foundation (H/B=2), since with these dimensions the
soil-structure interaction effects are important at frequencies close to the lowest natural
frequencies of the stratum. The embeddement of the foundation was taken equal to 2/3
its halfwidth (E/B=2/3), the deepest case analyzed by Chang—Liang. A Poisson’s ratio
of 0.30 and internal damping coefficient #=10% were chosen in accordance with the
values used in [9]. A massless foundation was analyzed and the results were computed
for several values of the dimensionless frequency 3y defined as a, = wH/CS. In the
boundary element analysis, the stratum was divided into 9 equal sublayers and the
bottom of the foundation was discretized into 5 constant elements. Some comparisons
with a finer discretization, halving each sublayer, were also undertaken for the static
case. The dynamic compliances for the in—plane horizontal displacement and rocking
were normalized with respect to the corresponding static values and their variations
with frequency are displayed in figures 3.3—3.5, where both the real and the (negative of
the) imaginary parts are plotted. It can be seen that the results of the two methods
agree extremely well in the entire frequency range analyzed, the largest differences being

of the order of only a few percent.



33

RIGID EMBEDDED STRIP FOUNDATION

stratum

G, Py Vv

Fig.3.2 - Geometry
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Afterwards, the response of the rigid foundation to vertically incident in—plane
shear waves was computed. The displacements of the foundation are referred to the
centroid of its bottom, and were normalized with respect to the free—field horizontal
displacement at rock level, ugp. The results corresponding to the absolute value of the
horizontal displacgment and rocking are displayed, respectively, in figures 3.6 and 3.7 as
a function of the ciimensionless frequency a,. Figure 3.8 shows the phase angle of the
input motions. The ratio of the horizontal displacement of the foundation and the
free—field motion at the surface can be seen in figure 3.9. As before, an extremely good

agreement between both methods is found in all cases.

- These results are very satisfactory if it is noted that while in the Finite Element
method the whole stratum depth needs to be discretized (even incorporating consistent
boundaries at each side of the foundation) while in the Boundary Element approach only

(4+4+5)*2=26 degrees of freedom were needed.

3.2.2 Dynamic Stiffnesses of Surface Strip Foundations Bonded to a Halfspace

As explained in section 2.2.3, the extension of the Green functions used to the
case of a layered halfspace can only be done directly in an approximate way by using a
paraaxial approximation for the dynamic stiffnesses of the halfspace. In order to check
the accuracy and convergence of such procedure, the dynamic stiffnesses of a rigid strip
foundation bonded to the surface of an homogeneous halfspace were computed and
compared with accurate numerical solutions given in Gazetas [13], which were computed
by a semi—analytical procedure. Figure 3.10 shows the geometry and parameters chosen

for this problem. The boundary element results were obtained using constant elements
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and modelling the halfspace with a top layer having 100 m (=2B) and divided into 24

sublayers.

The theoretical static stiffness for rocking of a strip footing is

K¢=m[l + [‘ 3 ] (3.26)

while the static stiffnesses for in—plane horizontal and vertical displacements of

strip footings are zero.

_Figure 3.11 shows a comparison of the results using the Boundary Element (B.E.)
metilod with several discretizations (10,20 and 40 nodes) and the value given by
equation 3.26 (for a Poisson’s ratio of 0.33 and unit shear modulus). The horizontal axis
represents a measure of the discretization size and it can be seen that the B.E. results
converge almost in a linear way to the exact stiffness. Moreover, if the results
corresponding to 20 and 40 nodes are extrapolated linearly, a very accurate estimate of

the static rocking stiffness is obtained.

In figures 3.12—3.14, the absolute value of the dynamic stiffnesses for horizontal
displacement, rocking and vertical displacement are displayed for a dimensionless
frequency a =1.5 (8.0=L;JB/CS). Again the B.E. results seem to converge linearly to the
more accurate values, except for the rocking mode in which a linear extrapolation gives

an error of about 5%.

Overall it can be said that constant elements turn out not to be very accurate for

this problem, in particular for rocking, since the extremeties of the foundations have an
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v=0,33
G=100000
p=2.0
8=0.005

100 24 sublayers

halfspace

Fig. 3.10- Strip foundation
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important effect on the response and are not well modelled with constant elements.
However, the results are still acceptable, specially if they are corrected for discretization

errors. Finally, the paraaxial approximation seems to work well.

3.3 Causality of the Responge

When analg'rsing a dynamic problem in the time domain, the response must
satisfy the causality relations between any two points. These relations stipulate that
the response at an arbitrary point B due to an excitation at point A can only be received
(assuming zero initial conditions) after the shortest period of time it takes the fastest
wave to travel from A to B, where the travelling path must be contained inside the
domain considered. Since the longitudinal waves have the highest speed Cp, and
assuming that the only loading is at point A, it can be stated that ug=0 for
t'.<|B--A|/Cp where |B—A| represents the shortest distance between A and B. These
causality relations are very important because they follow directly from basic physical

considerations, so that any accurate solution must satisfy causality.

This problem has recently received much attention as can be seen in the works of
Antes and von Estorff [2] and Triantafyllidis et al [43]. In particular, when the domains
considered are non—convex, it is important to insure that direct waves travelling in a
path passing outside the domain, are not present in the solution. Non—convex domains
arise when considering open trenches, tunnels, embedded foundations or even hills as is
illustrated in figure 3.15. Antes and von Estorff used a boundary element formulation in
the time domain and showed that if the method is applied directly to non—convex
domains, the causality condition is not satisfied. However, by dividing the domain into
convex subdomains and ensuring compatibility and equilibrium at each new boundary,

the results obtained improve substantially. Another possibility to ensure causality of
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S - Source

R - Receiver

-~ direct wave (physically not possible)

Fig. 3.15 - Non-convex domains
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the response in time domain B.E. is to check the real shortest travel time between
boundary nodes and set automatically the Green’s function to zero for lower times and

correct them to eliminate the contribution of "direct" waves.

The contribution of "direct" waves in non—convex domains can be associated
with the approximations that need to be made in the exact boundary conditions
(tractions and diéplacements). Since the B.E.M. only satisfies these boundary
conditions in an integral sense, there are remaining "sources" along the boundary
corresponding to the difference between the exact and approximate boundary conditions.
These "sources" produce waves which can travel outside the domain and influence
directly other points. If finer discretizations of the boundary are used, then the "errors"
on the boundary decrease, and consequently, so does the contribution of direct waves.
The B.E.M. approximation errors are intrinsic to the method and exist in all boundaries
and at all times; however, their effects are particularly relevant in situations where,
because of the causality constraint, the response observed should be null. Hence, a
measure of the accuracy of the method can be given by verifying if the solution using the
boundary element formulation satisfies causality. In particular, when analyzing
non—convex domains with stress—free boundaries (open trench or excavation), the
boundary element results ‘end to present higher errors since, the stresses being obtained
by differentiation of the displacements, they are less accurately represented by the

polynomial expansions of the displacements.

Triantafyllidis investigated the causality effects in the boundary element solution
to dynamic problems formulated both in the time domain and in the frequency domain.
He compared the results obtained in the frequency domain for an harmonic loading in a
non—convex domain using a direct approach, with the corresponding solution given by a

division of the global domain into convex subdomains, and requiring continuity at their
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interfaces. The time lag required by the causality constraint translates into a phase
delay for the frequency domain solutions. It was found once more that both solutions

have important differences, the latter approach giving more accurate results.

The causality constraint was investigated for solutions obtained by the boundary
element formulation described in chapter 2. Since the computations are performed in
the frequency domain, results in the time—domain were obtained by Fourier
transformation using the fast Fourier transform algorithm. The example chosen consists
of an open trench 50 m deep and 10 m wide in a halfspace, and the results were
compadred to the case in which no trench is present. Figure 3.16 a,b show the geometry
of both models and the soil properties. The halfspace was modelled as a stratum with
100 m in depth, divided into 24 sublayers and the paraaxial approximation for the
halfspace was added below the stratum. A small internal damping was prescribed

(=0.005) to prevent numerical overflows for the natural modes of the system.

Since the Green’s functions used take into account the stress—free condition at
the surface, the only boundary discretized consisted of the trench walls and bottom.

The boundary element equation 3.13 was modified as follows
* * *
A-(U-U )=B-(P-P )=-B-P (3.27)

*

where U* and P represent the free—field displacements and tractions of the
imaginary boundary of the trench caused by the applied loading; and P=0 because the
walls and bottom of the trench are stress—free. Hence, the displacements of the trench

are obtained as
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p=2.0
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=0,005
P
(b)

- — — - Shortest Path

Fig. 3.16 - Source and receiver points. (a) No trench; (b) With trench
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u=U -a"B.p (3.28)

Knowing the displacements of the trench, displacements at other points in the

domain can be computed using a derived form of equation 3.24.
. * *
v, = u, - Al(U-U") - BlP (3.29)

*
u; representing the displacements at point i in a free—field situation due to the

loading.
+ " The dynamic excitation was idealized as a point load with a time variation of a
Ricker wavelet. The Ricker wavelet was chosen, since it decays very rapidly both in

time and frequency, thus reducing the number of frequencies to be analyzed. Its

equation in time is

2
f(t) = a(1-2r%) e " (3.30)
where 7 = (t-t;)/t; t, is the time at which the maximum occurs, ’a’ is the
amplitude, and t corresponds to the dominant period of the wavelet. Figure 3.17

displays a graph of f(t). -

The Fourier transform of f(t), F(w), is given by

F(w) = a[2/? to(e"iwts)] Q’e—m (3.31)
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where Q=wt /2 and w is the angular frequency in rads/sec. A graph of F(w) is
shown in figure 3.18 for two different values of t . For this study, t  was set to 1/,
which corresponds to a dominant frequency of the wavelet near 1 Hz. The time lag b
was taken equal to t (t;=1/7) which means that it takes about 0.95 sec for the loading

to attain its maximum.

The solutions in the time domain were obtained multiplying F(w) by the transfer
function corresponding to the displacement observed, and Fourier inverting the result
(using 8192 points). These transfer functions were computed up to 5 Hz at intervals of
0.10 Hz, and the intermediate values were computed by polynomial interpolation (using

Newton’s quadrature). The solution in time was obtained at intervals of 0.035 sec.

Figures 3.19-3.21 show a comparison of the results obtained at a point 20 m
apart from the loading {point B) for the cases with trench, and without trench. These
figures also indicate the shortest time that it would take a shear S or compressional P
wave to reach point B. In figure 3.19, the load and displacement considered are vertical.
It can be seen that without the trench, the maximum displacement at B is delayed with
respect to the maximum loading by about the time it takes a shear wave to travel from
A to B, reflecting the fact that for this direction of loading, the perturbation is
transmitted along the surface essencially as shear waves. In the case with trench, the
maximum displacement is observed later and corresponds very closely to the extra time
it takes the shear waves to contour the trench. Also, at the beginning, the displacement
at B is zero for a longer period, reflecting the impossibility for the waves to cross the
trench directly. According to these results, it seems that the boundary element

formulation adopted satisfies quite accurately the causality constraint of the response.

The horizontal displacement at B corresponding to a vertical load at A is shown
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in figure 3.20. Again, there is a delay in the time when the maximum response is
observed when the trench is present, and this delay is somewhat longer then the
difference in travelling times of the fastest shear waves. This may be caused by
intermediate reflexions at the walls of the trench. It should be noted that the presence
of the trench induces much more important horizontal displacement than would

otherwise be observed.

Another interesting observation concerns the comparison of the horizontal
displacement at B due to a vertical load at A and the vertical displacement at A due to
a horizontal load at B. According to Betti—Maxwell’s reciprocity theorem, both should
be equal; however, the B.E.M. does not ensure this theorem because of the
approximations used at the boundary. Only if the boundary conditions were exactly
satisfied could the B.E. solution satisfy the reciprocity relationship. This implies that
another test on the accuracy of the B.E. results is to check the reciprocity of the load
and displacement in two solutions. Since the domain and reference points considered are
symmetric, the vertical displacement at A due to a horizontal load at B is equal to the
negative of the vertical displacement at B due to a horizontal load at A. Hence,
comparing the results in figure 3.20 with the ones corresponding to a horizontal load at
A (in the negative direction) and a vertical displacement at B, a good measure of the
accuracy of the solution is obtained. For the case without trench, both results are
identical since the Green’s functions used satisfy reciprocity; in the case with trench,

although some differences were found, they were minimal, less than 1%.

Figure 3.21 corresponds to the case of a horizontal load at A and displacement at
B. The displacements at B in the case with trench are very different to the
corresponding ones for the halfspace. Instead of the displacements varying in time like

the loading function, they are affected by waves reflected at the trench’s bottom; this
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also explains the change in sign of the solution during the initial period. Also, the
difference in arrival time of the two peaks observed (one negative and the other positive)
approaches the difference in travel time between P and S waves. Therefore, it seems

that the motion at B is first caused by P waves and later by S waves.
.3.2 Comparison with Time—Domain Solution

The results shown in figures 3.19-3.21 were compared with corresponding
solutions obtained using a time—domain B.E. formulation presented by Antes and von
Estorff [1). Von Estorff also performed the computations in the time domain for the
same cases referred to previously, using either constant or linear elements to model the
halfspace and the trench. In his solution, the halfspace surface had to be discretized as
well, since the Green’s functions used by him correspond to the full 2-D space. The

concentrated loading was idealized as an uniformly distributed load over one element.

Figures 3.22-3.30 show a comparison of the displacements observed at various
locations using the two approaches. It can be seen that the solutions agree very well for
both vertical and horizontal loads and displacements. The more important differences
arise for horizontal displacements due to a vertical load, in particular after the
maximum is attained. These comparisons, although corresponding to a very simple
problem, served to establish a common ground for the more complex situation with a

trench.

The displacements obtained for the case with trench are compared in figures
3.31-3.36. Figures 3.31 and 3.32 correspond to the vertical displacement at B and C
respectively, caused by a vertical load. It can be seen that the frequency domain

solution seems to satisfy the causality principle more closely, and that in the
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time—domain approach, linear elements are more accurate than constant elements.
These same conclusions are valid for the horizontal displacements due to a vertical load
shown in figures 3.33 and 3.34, except that in this case, larger differences can be
observed between the various solutions. In figures 3.35 and 3.36, corresponding to
horizontal displacements due to a horizontal load, the time—domain results clearly
violate the ca.usa.}i;y condition, since a response is perceived at the control point before

the fastest waves liave time to arrive there.

These results seem to verify that the thin—layer method gives very accurate
results, even for layered halfspaces. The reason that the B.E.M. solutions using the
discrete Green’s functions obey the causality principle, while the time domain solution
using "Stoke’s tensor does not can be explained as follows: when using the thin—layer
method, the upper part of the halfspace is approximated by several sublayers, and the
displacements there are constrained to vary linearly across each sublayer. Since the
boundary element formulation developed uses linear elements on vertical boundaries, the
boundary displacements are completely consistent with the Green’s functions used and
the boundary conditions on vertical walls are satisfied exactly. Hence, the B.E. method
developed seems especially appropriate for this type of problems involving non—convex

regions with vertical boundaries.
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4.1. Introduction

On September 19, 1985, Mexico City was hit by a strong earthquake causing
the loss of several thousands human lifes and great damage to existing constructions.
The earthquake, with a magnitude of 8.1, had its epicenter located about 370 km West
of Mexico City, at the subducting zone of the Cocos plate near the town of Lazaro
Cardenas, Michoacan, on the Pacific Coast. The earthquake originated from two main
pulses separated by about 25 sec. This accounts for the unexpected long duration of
the ground motion felt in Mexico City. Due to the city’s relatively large distance from
the fault, the dispersion of the seismic waves resulted in a ground motion in Mexico

City which seemed the result of a single event and exhibited a long duration.

Mexico City has been expanding in recent times at a rapid rate, increasing its
population from 1.7 millions in 1940 to more than 17 millions today. Most of this
expansion took place over lands on Lake Texcoco, which once surrounded the city.
Mexico City also became a modern city with tall buildings, large avenues and polluted
air. The majority of the downtown area is located on the lake bed, which is composed
of very soft clays extending to a depth of 3540 meters. In past years, to
accommodate the water needs of a growing population, water was extensively pumped
from the subsoil and, as a result, the city suffered considerable subsidence. Such
pumping of water is no longer allowed, and as a result the settlement rate has

decreased to about 7—10 cm/year.
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Although Mexico City is not located in the immediate vicinity of any important
seismic fault, nevertheless it is exposed to major earthquakes. The severity of certain
earthquake events in Mexico City is due to the considerable amplification suffered by
seismic waves originating at moderate distances, as they pass through the soft clay
layers under the city. This results in large seismic intensities observed on the surface

in the downtown area.

While the city has experienced several important earthquakes during this
century, the September 1985 tremor was one of the most violent and resulted in the
greatest damage to date. This damage was, however, concentrated within a few square
kilometers, in the lake bed zome, and affected mainly buildings with 8~14 stories,

public service buildings, and hospitals, schools and telephone centers.

A detailed study of the damages suffered by a big city during a major
earthquake provides lessons for researchers and designers alike. Mexico City, in
particular exhibits unique characteristics which make it a specially interesting target
for study. Indeed, nowhere else in the world can one find a city of such size standing

on deposits as soft as those and located at only moderate distances from major faults.

While the largest damage was confined to certain areas in downtown Mexico
City, it was certainly not uniform within such areas, as buildings collapsed next to
buildings which sustained little or no damage. One possible cause for this could be the
dynamic coupling through the soil of several structures, commonly called structure—soil—
—structure interaction. Such interaction is indeed important in Mexico City, since the
soft sediments there have unusually low shear wave velocities (about 60—80 m/s); as a

result, the characteristic wavelength of the seismic motions in the sediment basin are
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of the same order of magnitude as the physical dimensions of some of the structures
standing there. Since these structures are rigid and cannot accommodate the
variations in soil motion, interaction takes place (this is normally referred to as

kinematic interaction).

As mentioned above, Mexico City is built on the bed of Lake Texcoco, a valley
surrounded by basaltic hills belonging to old volcanoes. This valley can be divided into
3 zones according to the subsocil stratigraphy : the zone on the lake bed, containing
thick deposits of soft clay with a water content between 100% and 500%, having a
depth around 35 m and laying on top of more firm materials; the zone of the hills,
exhibiting a rough topography and being composed of hard soils with a relatively high
shearing strength; and a zone of transition with variable depth deposits connecting the

lake bed to the hard soils.

The soft clay deposits exhibit peculiar dynamic characteristics in the sense that
they behave essentially as an elastic material with very little internal damping (2-3%)
for large strain values. This behavior contributed to the important amplification of the
motion passing through the clay deposits for frequencies equal to the natural
frequencies of the stratum. Such amplifications produced an essentially harmonic
ground motion which, together with its long duration, was responsible for most of the

damage seen in some parts of Mexico City.

One of the most striking facts in the pattern of earthquake’s damage in Mexico
City was that the more severely affected zones alternated with zones where the
buildings hardly suffered any damages. The cause of such irregularities is not well
understood, and is presumed to be the result of local soil effects as well as the

interaction between multiple structures through the soil. This study presents an
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investigation on one possible reason for the variability of seismic severity over short
distances, namely the influence of massive underground structures (such as the subway
tunnel) on the motion observed on the ground surface in their vicinity, and on the
interaction between underground structures and surface or embedded foundations. The
objective is to understand whether the presence of the tunnel increases or decreases the
dynamic response of buildings located in the vianity, and whether they are more or
less prone to seismic damage. The findings are also correlated with actual field
evidence concerning the presence or absence of damage. In order to maintain the
model simple and make parametric studies possible, a 2—D idealization was used, the
soil being modelled as a horizontally stratified stratum. This model can be analyzed

using the boundary element code developed.

4.2 Data Available

4.2.1 Seismic Records

Mexico City has an extensive installation of accelerographs with stations
located on various types of soils within the valley. Most of these stations registered
the September 1985 earthquake, and provided valuable data for the characterization of
the seismic motion. However, only one set of records was obtained in the damaged
zone, at a station located near the Ministry of Communication and Transportation
(abbreviated as SCT) in the southern part of the region. Ground motion records were
also obtained at four stations located on hard soil, of which three are in the campus of
the National University of Mexico (CUMV, CUIP and CUO1) and one at the
Tacubaya site (TACY). On the other hand, the seismic motion experienced in the
transition zone was registered by one station placed in the Viveros region (SXVI). In

addition, two other stations registered the ground motion above the deeper clay
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deposits at the Central de Abastos site (CDAO and CDAF). Figure 4.1 shows the
location of each of these stations. The seismic records were promptly processed at the
Instituto de Ingenieria of the National University of Mexico, using standard procedures
for baseline correction and filtering. These data were promptly made available on

magnetic tapes.
4.2.2 Soil P h igti

In order to carry out this study, it is necessary to obtain a good description of
the soil profile near the SCT station as well as the stratification pattera for the soft
soil deposits in the damaged region. Reliable soil properties, in particular density and
shear 'wave velocity, are needed to study wave propagation phenomena. A

stratigraphy of the subsoil near the SCT station is shown in fig. 4.2.

As can be seen, a layer of much stiffer soil is found at a depth of 41 m; hence,
the subsoil can be modelled as a stratum resting over rigid rock. The stratum is
divided into three distinct layers: the one on top is composed of very soft soil deposits
having a shear wave velocity of about 76 m/sec; it then follows an intermediate 3 m
thick layer of a harder soil, which in turn is underlaid by a third layer having a soil
with a shear wave velocity of about 94 m/sec. The density of all the materials in the
stratum is small, close to the water density, reflecting the high water content of the

soil (which can be as high as 500%).

Tests on the dynamic properties of the soft soil deposits showed that they
behave essentially as elastic materials for shear strains up to 5-10%, the shear modulus
remaining almost constant in this range. However, with further increases in

deformation, the shear modulus decays rapidly (see Ref [36]). At the same time, the
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internal damping is very small, on the order of 2—3% for shear strain values up to 10%;
this implies that seismic motions will be subjected to only very small attenuation, and

that amplification effects could be important.

4.2.3 Metropolitan Subway Tunnel

Mexico City has a vast system of subway lines extending over the entire urban area
(see Fig. 4.3). Its construction began 20 years ago and has since extended to form a
network of more than 100 km in total length. Figure 4 shows two typical
cross—sections of the subway tunnel. This tunnel has been constructed by excavation
from the surface, using for this purpose dug—out walls on each side of the tunnel. The

ceiling was subsequently covered with an earth cap of akout 1-3 m.

The subway system sustained very well the earthquake, the service being
interrupted only momentarily for a global check—up. Some stations, however, became

inoperative due to debris formed by collapsed buildings which made their use risky.

43. t

4.3.1 Analysis of Motion Data

The seismic records obtained during the September 1985 earthquake at several
stations in Mexico City are valuable in identifying the principal causes of the great
damage suffered by some structures. Although only one station (SCT) was active in
the heavily damaged zone, the results that it provided give good indications of the
characteristics of the seismic motion in that region. Figures 4.5 and 4.6 show the time

history of the two components of the horizontal acceleration (after correction)
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TYPICAL CROSS-SECTIONS OF SUBWAY TUNNEL IN MEXICO CITY
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registered at that station. As can be seen, the strong phase of the motion had a
duration of more than 40 s and exhibited an almost pure sinusoidal characteristic, with
the E-W component attaining higher amplitudes than the N-S component.
Performing Fourier transforms on these time histories, the frequency contents can be
analyzed (see figs. 4.7 a,b and 4.8 a,b). The motion has a predominant frequency of
0.5 Hz, and freqqencies higher than 1.0 Hz are almost non-existent. This peak
concentration of énergy at a single frequency is responsible for the concentration of
damage in buildings having natural frequencies in this range, and explains why the
majority of the collapsed buildings had 6 to 16 stories while short and very tall
buildings behaved well during the earthquake. A good approximation for the first
natural period of concrete buildings on fixed base in Mexico City is n/10, where n
represents the number of stories. Hence, a building with 20 stories has a fundamental
period of approximately 2 secs, which coincides with the dominant period of the
motion. However, when the elasticity of the foundation and nonlinear behavior of the
structural members is taken into account, it is found that buildings most prone to

collapse have less than 20 stories.

To understand the peak in the frequency content at 0.5 Hz, the motion
amplification for a shear wave travelling vertically through the stratum was analyzed.
The result is shown in figures 4.9 and 4.10, which represent the transfer function
between the motion at the base of the stratum and at the free surface. An internal
damping ratio of 2% was chosen, in accordance with experimental data, and a
Poisson’s coefficient equal to 0.45, which can be justified by the high water content of
the soil. The absolute value of the transfer function exhibits several peaks coincident
with the natural frequencies of the stratum. The first peak occurs for a frequency close
to 0.5 Hz, which agrees with the Fourier transform of the observed motion at the

surface, the amplification value at this frequency exceeding 6.0. It is interesting to
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note that the other peaks in the transfer function, for higher frequencies, are not
present at all in the frequency spectrum of the motion recorded at the surface. Hence,
either the motion arriving at the base of the stratum does not contain frequencies

higher than about 1.0 Hz or the damping effect is more important for those frequencies.

It is helpful to filter through the stratum the motion observed in a region with
firm soil outcmpp.ing and compare the resulting motion with the one observed at the
SCT station. This was done using the acceleraiion of the motion recorded at the
Tacubaya Station (TACY), whose frequency content is shown in figures 4.11 and 4.12.
The absolute value of the Fourier Transform of the corresponding filtered motion at
the surface is plotted in figures 4.13 and 4.14. Comparing these figures with figures
4.7a and 4.8a (taking into account the different scales) it can be seen that the
amplitude of the filtered motion for a frequency of 0.5 Hz is about one third the
amplitude of the real motion while at higher frequencies the opposite occurs, with the
amplitude of the filtered motion showing a much greater amplitude than the real
motion. This seems to indicate that internal damping is of a viscous nature and
increases with frequency; since the saturation of the soil is nearly 300—500%, it is not

surprising that viscous effects should be observable.

The acceleration of the motion registered in the transition region at the Viveros
Station (SXVI) was also analyzed; the time history and frequency spectrum are
displayed in figures 4.15—4.18, which show that this motion is rich in frequencies up to
2.5 Hz. Although the peaks corresponding to the natural frequencies of the stratum at
that location are not clearly discernible, it can still be guessed that the lower natural
frequencies should be around 0.4 Hz, 1.2 Hz and 2.0 Hz. These values are lower than
the natural frequencies at the SCT station, which agrees with the larger depth of the

stratum in the Viveros region.



98

11y 2anbtg

N

o ran b

on g1
|

00

(14

I

N0°09

]
‘08

v
]

307001

CORLINE AT} )% UNLOTT PRatD dody

IV (S=N) Uoenmyy OV

<



99

1% Danbtg

_vﬁ_.u. w__ N anoa

ame g1

CORLANE alf} yr Tdoryoru

DOV (M=0) TRy

..f b w / r—.._

00

1 02

pLs

0%

;

00°09



100

€1°p »anbryg

Sy
no» cern g he 40°z 0g1 10 1 'S0 roa
L ~, T " L 1 " ~ . —
SRR A I ¥ aiﬁg b \
. v A I
P e rﬁc; {~: L
. ) . A LY

)

..wf.ﬂ,

ORI Q) g Tonaur padagqiy]

(N=N) uonw»yy (v,

PIEN AR 2001 0'0S 00

¢5'008

~

3u°6s?



101

EAR

T oanbty

sotton by

a0y 0S E X ney ca.m. ng 1 00°0
L, . R i !
R x__..., R RN TG * Iy !
~._ ! f_,.. r: :& Sf__ __ — \
. i _f

SORILN A} 38 Uoljouwl podogta

DOV (W) T )V,

13708 2S00

2091

0¥

TN 4N

30 00F



102

0 %3
L

0" 9g
i

ST v @2anbtg

IREEIEETIINS

Or 8y oo ov [PLaaE~4 4 01) 18 44 9t no's nya
! ! | 1 1 1

AORLINE Y} )% UONNUL PIAT) - aod ]

S—N) uonels [AXS

o0 00'0 s 0e- God- 1L 'Q9~

us'ob



103

B A

0059 (1)'9¢ oo gy
1 !

9T 'y @anbrg

..:Mm_.?

::oﬂ cclmn
1 1

nn v
|

0091
i

an'g

0no'o

SOREINE Ay} m

UNLYOUI

(M—3) uonje)g

Ity

<abey —r.—

[AXS

J‘,‘O“'

Lu0Z-

30

0G0 ol

o3'0d

c 09



104

0oy
| —

7

L1y 2anbt g

[ 7] Aot nbady

o2 gt 001 g0 ny'a
A

SORMINE AUy JRr UONOrH PIatT - aod]

09V (S—N) uUonels [AXS

021 5 08 W 0F <Q°0

4u'08l

GU 08¢



105

8T v oanbrg

| 7raep ] £ortanbaoay

on'e {

l?)_
— o

) N asg (U 0g’1 (IO | 432X ¢} 0o o
|

SORLINK 9T} A% UOTYOUT Plat] - ey

(M—F) uonels JAXS

T

308

AN

su 0¥

N
o

021

Su

jo'091

347902



106

4.3.2 Boundary Element Results

The boundary element program referred to earlier was used to study the
scattering of seismic waves by the underground tunnel, and in a particular, the

influence of the tunnel on the ground motion at the surface.

Figure 4.19 shows the geometry of the tunnel and soil properties used. The
tunnel was idealized as a rectangular rigid box with a height of 8.3 m and a width of
9.4m; these dimensions correspond approximately to the overall dimensions of a typical
section of the actual tunnel. A soil layer with a thickness of 2.5m covers the the
tunnel; while the actual depth of the tunnel varies along the longitudinal axis, the
value of 2.5m seems to be a representative one. The mass of the tunnel and its inertial
moment were set to be equal to the mass of soil removed. Actual inertias are probably
somewhat smaller, but precise values are not needed since they do not have an

important effect in the response, as will be shown.

The stratum is composed of three different layers of soil: a very soft top layer
extending to a depth of 31.0 m; an intermediate thin layer having a shear wave
velocity almost double that of the top layer; and a third layer with properties similar
to the first one. The stratum rests on top of a much stiffer soil, which in the numerical

computations was idealized as a rigid boundary.

The stratum was first discretized into 14 sublayers and then into 28 sublayers;
the results were then compared. While an excellent agreement was found, the final
computations were nevertheless performed using the more refined model. The

soil-tunnel boundary was discretized into 8 linear elements along each vertical wall
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tunnel:

Mass=103.2 t
Imass=1353 tm?

Cs=75.5 m/s
v=0,45

J p=1.323 t/m?d
(3=0.02

2Ot /a7 C3=145.6 m/s 0,45
p=1.352 t/m3 =0.45
Cs=94.4 m/s (3=0.02

L
p=1.372 t/m3 v=0.30

Cs=700.0 m/s {3=0.01

Figura 4.19 ~ Geometry and soil properties
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and 5 constant elements along the horizontal direction. This discretization seemed to
give accurate results except in the immediate vicinity of the tunnel for distances
smaller than the dimensions of the boundary elements. Frequencies up to 5 Hz were
considered in the computations. At a frequency of 5 Hz, the wavelength corresponding
to a wave velocity of 70 m/s is 14 m, which is greater by a factor of 4 the size of the

boundary elements chosen; hence, the results provided by this model should be reliable.

Three types of seismic waves were considered: SH, SV and P waves. On the
other hand, when the change in rigidity between the soft soil in the stratum and the
hard deposits underneath is taken into account, it becomes clear that waves arriving
from underneath the stratum will refract to a nearly vertical direction; he;lce, it is not
necessary to assume obliquely incident waves. For this reason, only vertically

traveling waves were specified as input at the base of the stratum.

An in—plane situation was considered first, the seismic excitation being
described by vertically propagating SV waves. In this case, the displacements are
constrained in a plane perpendicular to the longitudiral axis of the tunnel, implying
that only three degrees of freedom are active: horizontal and vertical displacements,
and inplane rotation. The influence of the tunnel on the resulting motion at the free
surface was the main objective of the analysis. Figures 4.20 and 4.21 show the absolute
value of the horizontal displacement at the surface as a function of the distance from
the axis of the tunnel and the frequency of the motion. Figure 4.20 shows in more
detail the results in the frequency range 0—2 Hz while in figure 4.21, the results for
frequencies up to 5 Hz are displayed. Comparing these results with figures 4.22 and
4.23 showing the response functions for free—field conditions (i.e., without tunnel) it
can be concluded that for frequencies up to 2 Hz the presence of the tunnel does not

affect the ground motion, while for higher frequencies, a substantial reduction of the
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motion arises in the vicinity of the tunnel. This can be explained intuitively
considering that the maximum dimension of the tunnel along the direction of
propagation of the waves is 8.3 m, which exceeds one quarter of the wavelength only
for frequencies greater than Cs/A=76.5/(8.3x4) = 2.3 Hz. At frequencies greater than
this value, the soil near the tunnel deforms substantially, and because the tunnel is
rigid and cannot accomodate such distortions, it follows that the displacements in the

vicinity of the tunnel suffer considerable interactions.

The sensitivity of the results to the assumed mass of the tunnel was studied
also, by considering the extreme case of a massless tunnel. The corresponding
amplification functions for vertical SV waves are displayed in figures 4.24 and 4.25.
They look very similar to figures 4.20 and 4.21, which demonstrates that the results

are not very dependent on the exact mass of the tunnel.

Figures 4.26—4.29, on the other hand, show the results corresponding to a
Poisson’s coefficient of 0.30. In this case, the motion is more strongly affected by the
presence of the tunnel because of the greater deformability of the soil. However, since
the energy of the seismic motion is concentrated in a frequency band in the vicinity of
the first resonant frequency of the soil, the values of the amplification functions for
higher frequencies have only a minor effect on the resulting motions. Considering the
high water content of the soil, a Poisson’s coefficient of 0.45 seems more realistic, so

that further computations will be performed using this value.

On the other hand, the rotation of the tunnel will induce vertical displacements
on the surface. These displacements can attain important values at high frequencies of
vibration, as is shown in figures 4.30 and 4.31. For frequencies up to 1.2 Hz, which

encloses the range of interest, very small vertical displacements are induced at the
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surface since the tunnel accommodates to the soil motions almost without rotation.
For higher frequencies, especially at the natural frequencies of the stratum, larger
rotations are induced in the tunnel which translate into greater vertical displacements
on the surface. However, if the frequency is increased further, the highly varying
displacement profile will introduce less and less rotation in the tunnel, so that the
value of the corresponding vertical displacements at the surface will decrease (see fig.

4.31).

For a Poisson’s coefficient of 0.45 the P wave celerity, Cp, is about 3.3 times
the shear wave celerity Cs; hence the first natural mode of the stratum for vertical
displacements occurs for a frequency of 3.3x0.5=1.65 Hz. Figures 4.32—4.35 correspond
to vertically propagating P waves; comparing figures 4.33 and 4.35 it can be seen that
for this type of waves and in the frequency range of interest, the influence of the rigid
tunnel on the amplification of the seismic motion is very small. Only for frequencies
on the order of 5 Hz is a substantial deamplification of the motion observed in the

region adjacent to the tunnel.

A more interesting case is the excitation of the stratum by SH waves
propagating vertically, with soil displacements in the longitudinal direction of the
tunnel (anti—plane case). The results for this situation are displayed in figures
4.36—4.39. These figures show that, although for very low frequencies the presence of
the tunnel does not produce any substantial change in the amplification of the motion,
for frequencies greater than 1 Hz a substancial reduction of the motion is observed near
the tunnel. Comparing this case with the one corresponding to SV waves (in—plane
case), the higher attenuation in the case of SH waves can be explained by considering
the fact that in the in—plane case, the tunnel can rotate to accommodate the

differential displacements along the vertical propagation path of the waves, whereas for
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anti—plane motions, it cannot.

4.3.3 Ground Motion Regults

In the previous section, the influence of a rigid tunnel on the seismic ground
motion at the surface was studied for various wave types and frequencies of excitation.
In this section we shall take into account the actual frequency content of the motions
observed in order to assess the possible effects of the subway tunnel during a real
earthquake. Three different observed motions are examined: the records obtained at
the SCT station, Tacubaya station (TACY) and Viveros station (SXVI). The motions
observed at TACY and SXVI are input at the base of the stratum at the SCT station
location. An approximate measure of the maximum amplification of the motion as a
function of the distance to the tunnel is obtained by computing the root mean square
value of the motion on the surface, as a function of the distance to the tunnel. This is
achieved by computing a normalized Root—Mean—Square (RMS) of the amplification
function, T(f,x), multiplied by the amplitude of the motion at each frequency, F(f); f
being the frequency of the motion and x representing the horizontal distance from the
axis of the tunnel. T(f,x) corresponds to the transfer function from the base of the
stratum to the surface at a distance x from the tunnel, and T(f,<) is the same transfer
function in the free—field (no tunnel present). Hence, when considering the motion
recorded at the SCT station, %{?—;)— represents the frequency contents of the
corresponding motion observed at the base of the stratum, and in this case the

following expression is used:

sy | LT (/T (41)
TIF(D)|? af
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For the other motions the formula becomes:

AMse)= | [ITEx)F@) df (42
[ IT(6=)*F()]? df

The numerator represents a measure of the severity of the motion at a distance

x, while the denominator evaluates the corresponding value for the free—field situation.

The expressions in (4.1) and (4.2) are evaluated for different seismic records and
types of waves. The results are displayed in figures 4.40—4.51 and show that some
redtict‘.ion in the amplitude of the motion is discernible near the tunnel in the case of
incident shear waves. However, this reduction is very small, on the order of 4—8%,
because the energy contents of the motions are concentrated in the range of 0—2 Hz, in

which the tunnel does not influence significantly the surrounding motion.

When the motion observed at the TACY station is used instead as input at the
base of the stratum (figs. 4.44 and 4.45), a small amplification results for points distant
about 40 m of the tunnel. This is due to the higher frequency contents of this motion
when compared with the one observed at the SCT station (taking deconvolution into
account). For vertically incident P—waves (figs 4.46 and 4.47), the resulting motion
has almost the same amplitude as in the free—field case, since only for much higher

frequencies has the tunnel any significant effect.

In order to obtain a measure of the severity of the vertical component of the

motion at the surface induced by the presence of the tunnel (as a result of its rotation),
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formulas 4.1 and 4.2 are evaluated again for the case of vertically incident SV waves,
but replacing T(f,x) by the transfer function corresponding to the vertical ccomponent,
Tv(f,x). The resulting formulas give an indication of the magnitude of the vertical
motion relative to the free—field horizontal motion at the surface, for a given seismic
motion. Figures 4.52—4.55 show the values obtained using the seismic records at SCT
and TACY stations. The vertical motion induced is maximum near the edge of the
tunnel, with an in'tensity of about 6% of the horizontal motion if the SCT records are
used; if the motion recorded at the TACY station is used instead, the resulting vertical
motion is much higher, approaching 16% of the horizontal motion. This is due, again,
to the higher frequency content in the motion recorded at the TACY station, which
produces a more important rotation of the tunnel. The variation in magnitude of the

vertical motion with distance to the tunnel could, in principle, affect nearby structures.
4.3.4 Motion Due to an Incident Wavelet

Another perspective on the effects of the underground tunnel on seismic motions
can be gained by studying the scattering of waves associated with pulses of short
duration and narrowly banded. A Ricker wavelet was chosen for this purpose, since it
decays very rapidly both in time and frequency. Its variation in time and frequency
which are given, respectively, by equations 3.29 and 3.30,are displayed on figures 3.16
and 3.17.

By convolving F(w) with the transfer functions corresponding to the rotations
induced by the tunnel, the time history of these rotations are obtained. The results are
displayed in figure 4.56; it takes approximately 0.8 secs for the rotation to reach its
maximum, which corresponds to the value of t plus the time that it takes for the

wavelet to arrive at the surface (¥ 0.5 sec); also, it can be seen that the tunnel executes
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multiple rotations, since the energy of the wavelet gets trapped in the stratum and is
reflected multiple times at the surface and bottom. This motion is eventually
attenuated due to the internal damping of the soil and the radiation of energy in the
lateral direction. Comparing the two curves presented in figure 4.56, it can be
concluded that the higher response values obtained for t0=1/21r are caused by the
higher frequencies present in the motion for this case; these motions, however, are also
attenuated more rapidly and after a certain period, the only contribution to the
rotation of the tunnel comes from frequencies around 1.5 Hz. Since the Ricker
wavelets for the two values of t considered have about the same amplitude at this
frequency, the rotations induced in both cases become very similar after some time

(the two curves almost coincide for t>1.5 secs).

The rotation of the tunnel induces vertical motions at the surface that
propagate away from the tunnel. Figures 4.57 and 4.58 a,b show a 3—D plot of these
oscillations as a function of time and distance from the tunnel. As can be seen, the
point x=0.0 does not move vertically since it is on the axis of symmetry; also, the
vertical motions observed near the edge of the tunnel are very similar to the rotation of
the tunnel, as expected. Concerning the propagation of the disturbances in space, they
decay rapidly with distance as a result of internal damping in the soil; when the
velocity of propagation of these disturbances is inferred from the plots, it is found that
it approaches the shear wave celerity of the top layer, indicating that the disturbances

propagate essentially as surface waves.
4.3.5 Interaction Betwee. the Tunnel and an Embedded Foundation

In this section, the influence of the underground tunnel on nearby structures is

studied by analyzing a typical situation. Figure 4.59 shows the geometry of the model
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chosen, a massless foundation embedded about 4.5m, situated near the tunnel, and
having a width of 12m. While the majority of the structures situated in Mexico City’s
lakebed zone are founded on piles (either floating or endbearing), their presence is
ignored in what follows in order to assess the worst scenario of a foundation without

piles.

The motidris of the foundation will be referred to its central point at the surface
level. Vertically incident SV waves are prescribed at the base of the stratum, since we
are mostly concerned with the effects of the rotation experienced by the tunnel.
Frequencies up to 5 Hz are considered, even though our interest is mainly in the lower

frequency range.

The motions of the embedded foundation are depicted in figures 4.60—4.62,
which show the cases of a foundation with the tunnel, and without it. The presence of
the tunnel influences very little the resulting horizontal displacement of the foundation
for frequencies up to 2 Hz; it is only for higher frequencies that the presence of the
tunnel does smooth out the variation with frequency of the horizontal displacement of
the foundation. Because of symmetry, the center of the foundation would not displace
vertically if it stood alone; however, the rotation of the tunnel introduces very
important vertical displacements on the foundation, which attain almost 70% of the
horizontal displacement at the base of the stratum for frequencies near 1.5 Hz. For
lower frequencies, on the other hand, very little vertical displacement is induced in the
foundation. This plot is very similar to the one showing the rotation of the tunnel,
which indicates that the rotation is the direct cause of the vertical motion of the
foundation. Concerning the rotation of the foundation, the presence of the tunnel has
mixed effects, depending on the frequency of the motion; for frequencies near 1.5 Hz

the rotation of the tunnel attenuates the rotation of the foundation since both rotations
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are in phase, and when the right edge of the tunnel moves up, the left edge of the
foundation wants to move down; for higher frequencies (2.5—4.5 Hz) both structures
rotate out of phase, so that the tunnel amplifies the rotation of the foundation. Again,
in the low frequency range, both structures rotate very little so that the presence of the

tunnel is not important.
l I l[ . Q l »

This study focused on the effects of underground structures, and in particular of
the subway tunnel, on the motion experienced by neighboring structures during the
Mexico City earthquakes of September 1985. These effects were thought as possible
explahations for the high contrast in damage intensities suffered by constructions in
the lakebed zone. The records registered at several seismic stations within Mexico
City, were used to obtain the frequency spectrum of the earthquakes at several
locations. The horizontal ground acceleration registered in the more heavily damaged
region shows a very narrow peak at a frequency of 0.5 Hz, corresponding to the first
natural frequency of the underlying stratum; for higher frequencies, the energy
contents of the motion is almost nil, so that the observed horizontal motion on the
surface exhibits a nearly harmonic variation with time. This elicited important
resonance phenomena in buildings of medium size, which in turn suffered great damage

or total collapse.

The Boundary Element formulation developed was used to evaluate the effects
of the subway tunnel on the motion at the ground surface and on the motions
experienced by embedded foundations in the neighborhood of the tunnel. The analysis
was performed for several frequencies of the motion and the results combined with the

frequency spectrum of the actual seismic records, in order to obtain an overall measure
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of the influence of the tunnel. Both in-plane and anti—plane motions were considered.
The results show that, in general, the tunnel acts as a filtering screen, attenuating
somewhat the resulting motion at nearby sites for high frequency excitations. In the
case of incident SV waves, the rotation of the tunnel induces important vertical
displacements on the surface, which would not be present otherwise. However, in the
model analyzed, only for frequencies greater than 1 Hz does the seismic waves induce

important rotations in the tunnel.

It can be concluded that for the seismic motions felt in Mexico City during the
earthquakes of September 1985, the interaction between underground structures and
nearby foundations did not have an important effect on the levels of damage observed.
This ‘conclusion, drawn from a 2-dimensional analysis, remains valid for the
3—dimensional case, since more attenuation would be observed if the radiation damping

into the third dimension was taken into consideration.



The study'bf structure—soil—structure interaction refers to the coupling through
the soil of multiple structures subjected to a dynamic excitation. This is a very complex
problem requiring, in general, the use of numerical methods. Moreover, there are so
many parameters to consider (geometry of the foundations and relative position,
characteristics of the underground, seismic excitation, masses and dynamic
characteristics of the structures) that an exhaustive study of all situations is not
practical. For this reason, most studies dealing with this problem in the past have been
restricted to a few typical situations, showing the effects of several structures and their

response to either forced dynamic loads or seismic excitations.

Lysmer et al [31] studied the effect of two adjacent buildings on the response of a
nuclear containment building subjected to a seismic excitation, with the analysis being
carried out in two dimensions. The results showed a very pronounced influence of the
two buildings on the peak response of the main structure, which increased by more than
100%. The structures were founded in a shallow stratum, and the two secondary
buildings were located on each side of the containment structure and deeply embedded
in the stratum; this may have created a box—type effect, which decreased substantially

the radiation damping away from the main building, and increased its response.

Wong and Trifunac [50] investigated the effects of structure—soil—structure

interaction for two or more structures subjected to obliquely incident SH—waves. The
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structures were idealized as vertical shear beams founded on embedded strip foundations
with semi—cylindrical cross sections. Even though the analysis was two—dimensional
and restricted to anti—plane motions, the results indicated that the interaction between
the structures can cause noticeable changes in the amplitude of the input motions of
each foundation. These effects appear to be more important for structures which are
smaller and lighter' than their neighboring structures. Depending on the position of the
small structure relative to its neighbors and the direction of the incident seismic waves,
the amplitude of its response could be altered substantially as a result of the presence of
the heavier structures. If the waves were screened by the larger structure before arriving
to the smaller one, the latter would tend to follow the motion of the former; however, if
the waves impinge first on the small structure, then the presence of the larger structure
behind it changes the displacements observed in the first structure in an erratic way

(depending on the frequency of the motion).

The dynamic interaction between two embedded strip foundations for in—plane
motions was studied by Chang—Liang [9] using a finite element formulation. The soil
was idealized as a homogeneous viscoelastic stratum on rigid rock. The results showed
that for forced vibrations, a very shallow layer of soil produces less interaction between
the two foundations than a deep layer. Indeed, the secondary foundation displaced
horizontally by about 50% of the motion of the excited foundation for a deep soil, but
only 20% for a shallow soil. This can be explained by the fact that for very shallow
strata, the energy does not radiate much laterally, which results in smaller
displacements in the far—field. Furthermore, it was also found that the motion of the
excited structure was not substantially affected by the presence of the other foundation,
especially for rocking or vertical excitations. Rocking excitations give, in general, less
cross—interaction than horizontal excitations because the moments giving rise to rocking

have no net resultant; as a result, the displacement field associated with
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rocking decays faster with distance to the source than for swaying. Chang—Liang also
analyzed the effects of the interaction for seismic excitations, considering the case of
vertically propagating shear waves. The results showed that the interaction changes the
natural frequencies of the systems, and depending on the frequency of the excitation,
amplifications of up to 100% or attenuations of 40—60% can be observed; hence, these

effects can be very important, in particular for narrow band processes.

The study of structure—soil—structure interaction in three—~dimensional domains
involves an enormous number of degrees of freedom to model properly the foundations
and the subgrade; hence, most of these studies have been restricted to surface
foundations, which simplifies greatly the computations. Of special mention are the
works by Wong and Luco [49], Bielak and Coronato [7], Gonzalez [14], Kobori et al
[26,27], Sarfeld and Frohlich [37] and more recently Triantafyllidis [42]; these researchers
investigated the response of a passive surface foundation to the dynamic excitation of a
nearby surface foundation, and the response of groups of foundations to seismic
excitations. In most of these analyses, both foundations were square and the soil was
taken as a homogeneous stratum or halfspace. Several cases were studied, varying the
relative position of the foundations and their masses as well as the depth of the stratum.
It was found that a forced vibration of one of the masses induces displacements of the
same order of magnitude in the secondary mass, even for distances between the masses
equal to five times their width. Another consequence of the interaction between the two
foundations is the presence of vertical displacements, torsion or rocking due to
horizontal loads. This result is not surprising if one considers the displacement field of
the soil in the vicinity of the excited foundation and the fact that the other foundation
has to accommodate to these displacements. These effects can be very important for the

dynamic response of both structures.
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More recently, Lin et al [30] studied the effects of dynamic interaction between
two square, closely spaced, embedded foundations. In their study, these authors varied
the masses of the structures, their relative position and distance, and their degree of
embedment. The analysis was fully three—dimensional and the structures were founded
on a homogeneous stratum of soil. The results confirmed previous works by showing
that the interacfibn had little effect on the motion of the excited foundation; that the
motion of the loaded foundation induced a substantial vibration in the passive
foundation; and that these effects increased as the distances between the two
foundations was made smaller. In addition, important changes were detected in the
coupling terms (rotation due to an horizontal load, etc.) of the primary structure caused
by the secondary structure. They observed also that when the polarization of the free
field motion is not aligned with the direction defined by the two foundations, then the
interaction effects are decreased. In other words, when the foundations shake in the
plane defined by the two foundations, the interaction effects are more pronounced than
when the shaking occurs in a transversal direction. This suggests that the results
obtained from a two—dimensional analysis provide an upper bound on the total effects of

the interaction, if one discards torsional motions.

In all of the works cited previously, it was shown that the interaction between
multiple adjacent foundations can be a very important factor that should not be ignored
in a dynamic analysis. However, as pointed out before, models that accurately take into
account structure—soil-structure interaction require expensive numerical solutions.
Several attempts were made to formulate simpler solutions to this problem, but usually
the approximations obtained were only valid for very specific situations. Wong and
Trifunac [50] used an infinite series solution in their study, which was restricted to

anti—plane motions and to embedded strip foundations having a semi—cylindrical cross
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section. Wong and Luco [49] used an iterative procedure to solve the resulting algebraic
system of equations which reduced the number of computations necessary without
affecting much the accuracy of the solution. In the work by Triantafyllidis [42], the
stress distribution at the foundation boundaries was approximated by Chebychev

polynomials, thus reducing the total number of unknowns.

The great .x'najority of seismic analyses deal with very idealized situations: the soil
is thought of as a linear elastic and homogeneous medium; the foundation is assumed to
be completely welded to the surrounding soil; the seismic excitation is highly simplified
both on its frequency contents and type of waves present. In reality, however, the soil
properties vary from point to point, nonlinearities are present, the contact of the
foundation with the surrounding soil can exhibit complex behavior, with possible
upliftings and slidings, and the actual characteristics of the seismic excitation are
unpredictable. With so many uncertainties in the physical model, the results obtained
in the analysis should be taken with caution, and the limitations of the model be studied
by varying a few parameters and looking at their effect on the results. Hence, it is often
preferable to use simple models to get an idea of the important factors dominating the
behavior of the system, at least in a preliminary analysis. In this way, one can estimate
the degree of interaction between several foundations. Should the results obtained by
use of these approximate methods indicate the effects of structure—soil-structure
interaction are not important, then the application of more sophisticated (and more
expensive!) methods couid be avoided. Moreover, such approximate methods would
allow more frequent consideration of the dynamic interaction between foundations, even
if the results were valid only in a qualitative sense. For this reason, an approximate

technique for the analysis of structure—soil—structure interaction is presented in the next

pages.



The response of a group of structures to seismic excitations is studied assuming
an elastic behavior of the structures and soil and a complete bonding between the
foundations and the surrounding soil. Since, in general, problems of this type need to be
solved numerically, discretizing the model, the formulation is presented for a discrete
number of degreés. of freedom, and not for continuous media. In this case, the equations

of motion can be written as

MU + CU + KU = R(t) (5.1)

" where M,C, and K are respectively the mass, damping and stiffness matrices of
the system; U represents the displacements vector; a superscript dot indicates
differentiation with respect to time; and R(t) is the loading vector, corresponding to the

imposed displacements and tractions at the boundaries.

By using the Superposition Theorem, presented by Kausel et al [24], the system
of equations in 5.1 can be split into two. First, all the structures and foundations are
assumed massless, and in a second step the loading is imposed as inertial forces only at

the degrees of freedom of the structures. This corresponds to splitting the mass matrix
into two parts

M = M!+ M? (5.2)

and equation 5.1 becomes



M!U° + CU° +KU° = R(t)

MUT + CUT +KUT =

—M2y°
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(5.3)

(5.4)

The equivalence of equations 5.3 and 5.4 with equation 5.1 can be verified by

simple addition, noting that the total displacement U is the sum of U® and U'. The

phenomena described by equations 5.3 and 5.4 are usually referred to as Kinematic

Interaction and Inertial Interaction, respectively. While several structures can be taken

into account simultaneously, for the sake of simplicity and without loss of generality, in

what follows the formulation is presented for the case of only two structures (see fig.5.1).

We distinguish between the displacements of the soil, U

g’

the displacements of the nodes

on the soil—structure interfaces, Usl and U52, and the displacements of each structure,

Ul and U2. Equation 5.3 can be written in full as
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Fig. 5.1 - Degrees of freedom in the analysis of two embedded structures
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Equation 5.5 is quite general, allowing for both foundations to be connected
through the superstructure. Discarding (temporarily) the damping term in equation 5.5,
the displacements induced in the structures can be solved in terms of the displacements

at the interfaces

PUO-
1
0
[Kl an Kbsl Kl,Sz} Uz =0
K’n Kz Kz,sx Kz,sz U‘ij
0
_Usz_
which gives
-1
o] . 0
Ul' = - 1 Kl2 . Kl)sl Kl)s2 . Usl =__K—1K UO (56)
. 2 2 2,51 2,82 S5

Introducing this result into equation 5.5, discarding again the coupling terms in

the damping matrix between the structures and the interfaces, one obtains

o o u°] o
M| S|4 Cl| S|+ (K=K KK, )| ff = (5.7)
Ug Ug Ug R(t)

where C! and K! correspond to the degrees of freedom for nodes at the interfaces

and in the soil. (It should be noted that the term Krf S-Kzl

'Kt s in equation 5.7
contains an implicit addition of null rows and columns which are necessary to match the

dimensions of K1).
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The influence of internal damping on the structures can also be incorporated,
provided that relation 5.6 remains valid. This implies setting the damping terms
proportional to the stiffness terms (Cl = aK, etc...). If this simplification is not realistic

or convenient, then equation 5.5 must be solved in full.

Equation 5.4 represents the second step in the solution of the dynamic problem.
Since the loading.in this step is applied only to the structures, the degrees of freedom for
the soil can be condensed out and just the ones for the soil-foundation interfaces are
retained. After such reduction, equation 5.4 will involve only the degrees of freedom for

the structures and the interfaces.

. " Although equations 5.4 and 5.7 are sufficiently general in that they may include
coupling of the superstructures (such as in a bridge), in most cases no such coupling
exists, and the structures are separate. Since the foundations are much more rigid than
the surrounding soil, it may be assumed that they displace essentially as rigid bodies. In

these cases, Ug can be expressed in terms of the rigid body motions of the foundations as

T U°

u=| 1t || M=TT} (5.8)
T | |02
2 52

where Ugi = [u, U, u, b ¢y ¢Z]T (5.9)

represents the rigid—body displacements of foundation i and Ti is a
transformation matrix connecting the rigid—body displacements to the displacements at
each node along the interface i. For example, the elements of Ti corresponding to node j

are (in 3—dimensions)
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100 0 z—z_  —(y-y.)

P P
Tij= 010 —(z-—zp) 0 XX, (5.10)
001 y~¥p --(x-xp) 0

Since rigid body motions of the foundations do not introduce internal forces in

the foundations, we have

K, T=0 (5.11)

and equation 5.7 becomes

(T T} M T?g + [TT1)C! Tr_Ig + [TTK! 0| _|° (5.12)
Ug Ug Ug R(t)

In this case, no assumptions need to be made concerning the damping matrix of

the structures.

Regarding Inertial Interaction, equation 5.4 can be modified by imposing the
condition that the foundation is rigid. The net effect of this kinematic constraint is a
reduction in the number of degrees of freedom at the soil—structure interface to at most
six dof’s (3 translations and 3 rotations). The soil impedance matrix reduces then to the
classical foundation stiffness matrix containing the (frequency dependent) "springs and
dashpots". Since the emphasis in this section is on Kinematic Interaction, such

manipulations of equation 5.4 will not be pursued further.
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In the Superposition Theorem described previously, all of the structures and
foundations were analyzed simultaneously. An alternative formulation is obtained if
only one structure~foundation system is considered at a time, and the presence of the
other structures is captures directly in the foundation stiffnesses and kinematic
interaction of this structure. In other words, the other structures become "part of the
soil"; mathematicglly speaking, the degrees of freedom for the other structures have
been condensed 6i1t. This approach was used for the results presented in section 5.6,
where only the first structure was assumed massless, while the other structures had
mass; a dynamic condensation of the dof’s of the neighboring structures was then

performed.

. * Since the exact time variation of the seismic loading is not known, it is generally
necessary to carry out analyses with different excitations. In such case, it is
advantageous to formulate the equations in the frequency domain, since less
computational effort is then required. An added advantage is that, arbitrary variations
with frequency of the dynamic stiffnesses for the rigid foundations can be considered in
the equation of motion, and that damping is not restricted to be of the viscous type.
Results in the time domain can then be obtained by Inverse Fourier transformation of
the frequency domain solution, after consideration is given to the frequency contents of
the loading. These Fourier transformations shall be performed using the efficient fast

Fourier transform algorithm.
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5.3 Extension to Izuchi’s Method

Iguchi (18] proposed an approximate method for the computation of the dynamic
response of rigid embedded foundations to seismic motions. The method is extremely
simple to implement and gives quite accurate results (see Iguchi [19] and Pais [33]). The
soil—structure intefaction is solved in two separate steps. First the free—field ground
motion is computéd, disregarding the presence of the foundation, and the displacements
and tractions are computed on a fictitious surface coincident with the soil-foundation
interfaces. Using these displacements, average translations and rotations of the rigid
foundation are obtained by least squares, minimizing the differences between the soil

displacements and those at the foundation boundary.

These rigid body displacements Ul are obtained by computing a weighted average

*
of the free—field displacements u along the interface soil-foundation, as follows
-1 T *
U=H T u ds (5.13)
)

where s corresponds to the surface of the foundation in contact with the soil;

U= [0, 0,0, %77 (5.14)
*1 * x %
= [ux ugu, (5.15)

T, given by equation 5.10, is a transformation matrix relating the displacements
of the foundation at a point P with coordinates (x,y,z) to the rigid body motions of the

foundations, defined with respect to a reference point ¢ with coordinates (x Y er? c)’ and
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H= ff TTT ds (5.16)
8

The forces and moments corresponding to the tractions at the boundary
soil-foundation are computed using the fact that the foundation is in dynamic
equilibrium; hence, the inertial forces must equilibrate the boundary tractions. If the

foundation is assumed massless, then the forces and moments are given by
*®
F= —w’pfff Ty dv (5.17)
v

F=[LLm @] (5.18)
In a second step, these forces and moments are eliminated by imposing additional

displacements on the foundation. These additional displacements are obtained by

-1
multiplying the dynamic compliance matrix of the foundation Kd by the force vector

F

d—l
aU=KY F (5.19)

The total input motions of the foundation, U,, are then obtained by adding the

displacement vectors computed in both steps
U, =T+ AU (5.20)

Figure 5.2 illustrates these two steps. It can be seen that the errors in this

approach arise from neglecting the global effect of the additional tractions needed at the
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boundary to make the soil displacements conform with the rigid motions of the
foundation. It can be assumed that the overall effect of these additional tractions is
very small since they tend to cancel each other. This would indeed happen if the soil

was modelled along the boundary as a group of independent springs without coupling.

The method' presented assumes that the dynamic stiffnesses of the foundation are
known apriori, wiﬁch restricts its use to simple configurations, such as cylindrical or
rectangular foundations embedded in a halfspace. For these cases, Pais and Kausel [33]
developed some approximate formulas which give with enough accuracy the values of

the dynamic stiffnesses for a large range of frequencies.

. *If it is assumed that the foundation has a certain mass matrix M, then the forces

computed in step one and the dynamic stiffnesses must be corrected as follows

-1
U =T+K (F+u™MU) (5.21)
where K¢ = K4 — 2M

In principle, this method can be extended directly to the case where multiple
foundations are considered simultaneously. Referring to figure 5.3 (which for simplicity,
and without loss of generality, displays only two foundations), the average
displacements and the forces and moments acting on each foundation are computed from

the free—field solution, as before

_ ol T *
U =H ffs.Aiu ds, (5.22)
1
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F =% [[f ATu dv; (5.23)
Yi

where the subscript i refers to the foundation being considered.

The total displacements are obtained using a procedure similar to that used for

massless foundations:

it 1 1

1 -1
U, =|u |=|0]+Re | |F| +uM |T (5.24)
t ot 2 2 2

with K4 corresponding to the global dynamic stiffness matrix of the group of

foundations and M being the global mass matrix

'Kd Kd ]
11 12
Kd = Kd Kd ... _w2M (5.25)
21 22
and
1
M=| M (5.26)

where K?j are the forces and moments in foundation i corresponding to rigid

motions of foundation j and M, is the mass matrix of foundation i.
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As in the case of one foundation, the errors are introduced by not taking into
account the overall effect of the additional tractions required in each foundation to
ensure complete compatibility. While this additional tractions have essentially no net
resultant, and so have little effect on the foundation under consideration, they may
nevertheless exert an important effect on neighboring foundations because of the fact
that they are spatially distributed, and not point—like. As a result, some of these
tractions are closer to the neighboring foundation than others and have, therefore, a
greater influence. Hence, this approximation should not be used when the analysis
involves very close foundations, or at least the results should be interpreted with great

caution in such a case.

’

This approach is extremely easy to implement but there is a serious drawback in
that the global dynamic stiffness matrix of the group of foundations must be known. To
compute this matrix for a general situation requires complex and expensive models
which would decrease the attractiveness of the approximate method described. Another
approach is to try to obtain some rough estimates of the global dynamic stiffnesses and
use them in equation 5.24. In this way, at least to a first approximation, some

qualitative results could be obtained regarding the interaction effects of several

foundations.

5.4 Dynamic Stiffnesses of Groups of Foundations

In order to be able to use Iguchi’s method for finding approximate solutions for
the Kinematic Interaction problem involving several embedded foundations, it is

necessary to know the full dynamic stiffness matrix of the group of foundations. This
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section describes an approximate method for the computation of such stiffnesses as a
function of the frequency of excitation w. It will be assumed that the dynamic
stiffnesses of the isolated foundations are known, or that these stiffnesses are being
computed with the approximate formulae developed by Pais and Kausel [33] for
cylindrical and rectangular foundations embedded in a halfspace. This approximation is
described for the case of only two foundations but it can also be used for any number of

foundations.

The basic approach consists in applying, one at a time, unit displacements for
each of the degrees of freedom of a given foundation and evaluating approximately the
displacements and generalized forces induced in the other foundation(s). Since the
stiffnesses of the isolated foundations are known, the magnitude of the loads applied to
them are taken equal to the stiffness terms so as to displace the foundation by one unit
(assuming that the presence of the second foundation can be neglected as far as the
self—stiffness is concerned). For embedded foundations the boundary tractions are forces
transmitted to the soil at a certain depth. Since the displacement field due to buried
forces is rather difficult to obtain, these forces will be replaced by statically equivalent
surface forces distributed uniformly along the surface area of the foundation and
distributed moments along the sides of the foundation. Also, to simplify further the
procedure, the displacement field corresponding to a surface load will be substituted by
the displacement field cqrresponding to a load twice as large applied to the full space.
Figure 5.4 illustrates these various simplifications for the case of horizontal forces. The
resulting displacements at any point in the halfspace are then computed using the full

space Green’s functions, which are known in closed form (see Dominguez [12]).
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Referring to a cartesian coordinate system (1,2,3), the displacement in direction i
at a point with coordinates (xl,xz,xs) relative to a point where a load P with frequency w

is applied in direction j, is equal to

_ 1 or Or

¥ = [1 1 i ].e_iksr_ag[_ 1 i]e™p
2 2
(kgr) ker r (kpr) kprJ r

. —ik r . —ik r
3 3i] e S_az[l_ 3 d3ile ' p

R=[1_(ksr)2 ker. I (kpr)’ kprJ' I

where i=/~T; r = fo + xz + x: : G is the shear modulus of the soil; §ij is the
Kronecker delta function; a = Cs/Cp (the ratio of shear wave velocity and P—wave

velocity); k; = w/Cg and kp = a.:/Cp .

Figures 5.5-5.10 display the variation of the displacement u multiplied by the

distance to the load r as a function of the normalized frequency gr—and the angle
s

between r and the diretion of loading 4. Both the real and imaginary parts, and the
absolute value of the displacement components in the direction of the load as well as
perpendicular to it are shown. It can be seen that, although the values of the
displacements show some variation with frequency (and/or distance) and angle 0, these
variations are smooth. Hence, when these displacements (Green’s functions) will be
used later as kernels in the integrals 5.28 and 5.29, it will be possible to sample the
displacements at discrete points not too close to which other and still obtain accurate

values for the integrals.
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The loads corresponding to the degree of freedom being considered are then
applied at discrete points at elevation z=0 over the area of the foundation (see fig. 5.4).
The average rigid body motions and forces in the second foundation are then computed

using an approach similar to Iguchi’s method

el fp T *
U =H fj; T, u dS (5.28)
2

F = -/ ffj; T'f a v, (5.29)
2

*
where'u is the displacement field resulting from all the loads applied to foundation one;
and Tz, H2 are as defined in the previous section. Since, in general, these integrals can
not be evaluated in closed form, they will be approximated by summations, considering

a finite number of control points along the surface or volume of the excavated soil.

If the degree of freedom being considered was the horizontal displacement of

foundation one, then we would have
T
U =[100000] (5.30)
Fr= K,y 000K, 0 (5.31)
' = ™ME 1H¢ :

This procedure is repeated for all rigid motions of both foundations and the

displacements and forces are grouped into two matrices U and F
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U
U= 11 12 (5.32)
U U
TR
F
F = i1 12 (5‘33)
F F
21 22
where U j and Fij‘ are the displacements and forces in foundation i due to each rigid

motion of foundation j. With our choice of loads, we have that U“ = U.)2 = g (the 6x6

identity matrix).
On the other hand, the stiffness matrix satisfies the following relation
KU=F (5.34)
Solving for K yields
K=F.U! (5.35)

Because of errors of approximation while computing F and U, the resulting
matrix K is not exactly symmetric. Since the true stiffness matrix must be symmetric,

this condition will be enforced by substituting K by 1/2(K + KT).

It is clear that the coupled dynamic stiffness matrix thus cobtained is only
approximate, but the method is simple to implement and very flexible, since any
number of embedded foundations (and in particular rectangular and cylindrical
foundations) at any relative position can be considered simultaneously. However, since

the loads in this method are applied at the surface, the embedment of the foundations
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should be smaller than their mutual distance for meaningful results.

If, in addition, the foundations considered have mass, then the global mass
matrix M can be incorporated into the stiffness matrix by simply adding to it the term

(—wM).

5.5 Comparison with Numerical Results

Some comparisons with other numerical solutions were performed in order to

assess the accuracy of the approximate method described in the previous sections.

. * First, the dynamic stiffnesses of a surface square foundation were obtained using
the full space Green’s functions while applying a double load. Two cases were
considered: first, only four loads were applied at a distance of 0.3B from each corner (B
being the halfwidth) in both directions; then, 36 equal loads were applied uniformly
distributed over the surface of the foundation. The rigid displacement of the foundation
was obtained by averaging the displacements at the corners, center and midpoints on
each side of the foundation. Figure 5.11 shows the location of each load and control
point. The variation with frequency of the vertical and horizontal stiffnesses obtained
by this method is displayed in figures 5.12—5.15 for both the real part and normalized
imaginary part (divided by ao). These figures also show the more accurate solutions. It
can be seen that the results obtained, while certainly crude, give a good indication of the
stiffnesses of the square foundation especially in the low frequency range. For higher
frequencies, it is apparent that more than 4 lcads need be used since the contact stresses
are more uniformly distributed over the soil-foundation interface than in the static case.
These results seem to justify the validity of using the full space displacement—field with

a double load to simulate the halfspace solution with a single load. It should be noted
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however, that this procedure discards the coupling between horizontal and vertical

displacements at the surface, which in some cases might be important.

Unfortunately, the effects of coupling through the soil of two foundations
embedded in a halfspace computed with the proposed method cannot be compared
directly (as of this writing) with other numerical results published, since most of the
solutions avajlabié are restricted either to surface foundations, or to foundations
embedded in a stratum of finite depth. For this reason, to estimate the accuracy of the
proposed method for embedded foundations, the results corresponding to two elongated
rectangular foundations were compared with the results for two embedded strip footings
subjected to vertically incident shear waves, obtained with the B.E. formulation
developed in chapter 3. The horizontal displacement and rocking of the primary
foundation are displayed in figures 5.16—5.19 for two values of the distance between the
foundations and for the case of one isolated foundation. The secondary foundation was
assumed to have a normalized mass equal to 1.0; this normalized mass was defined as
the ratio of the mass of the foundation to the mass of the excavated soil, and its center
of mass was taken at the geometric center of the excavated soil. Comparing the results
obtained for rectangular foundations (using 5 loads and control points per side) with
those corresponding to strip foundations, it can be seen that the effects of coupling
between the foundations are qualitatively of the same magnitude, especially when the
foundations are close together. If the fact is taken into account that for rectangular
foundations there is radiation into the third dimension (which tends to decrease the
coupling between the foundations) then the results of the comparison obtained appear to
be very satisfactory. Again, the fact is stressed that the solution given by the current
method is only approximate, and that the effect of coupling through the soil can be
taken only in a qualitative sense. If a strong coupling is detected, then this is an

indication that a more careful evaluation of this problem is warranted; on the other
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hand, if the computation indicates only weak coupling, it follows that the expense of
more sophisticated analysis can be spared. In other words, the proposed procedure could
be used to assess the potential of coupling through the soil without the need of complex

programs.

5.6 Examples

The approximate solution described in the previous sections is used to study the
effects of coupling through the soil in some typical situations. First, the global dynamic
stiffness matrix of two square embedded foundations are evaluated using the procedure
described in section 5.4. It is assumed that the foundation of interest (foundation one)
is massless, while the second foundation has a mass that is m2 times the mass of the
excavated soil. The global stiffness matrix involving both foundations is then
condensed, and only the degrees of freedom of foundation one are retained. This allows
to compare the stiffnesses, as seen from foundation one, with the corresponding
stiffnesses for the case when this foundation is standing alone. The main differences
induced by the presence of the second foundation are that the soil bonded to the
neizhboring foundation must vibrate as a rigid body, and that there are inertial forces
associated with the mass of the second foundation and loss of such forces because of the
excavation. These effects car increase or decrease the stiffness term of foundation one,

depending on the frequency of vibration.

Figures 5.20—5.24 display the results obtained for several terms of the dynamic
stiffness matrix. The coupling terms presented, which are zero for the case of a
foundation standing alone, are normalized with respect to the square root of the
corresponding diagonal terms. It can be seen that the horizontal and vertical stiffnesses

are modified, especially in the low frequency range, and that the mass of the second
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foundation does not influence very much these terms. However, the coupling terms are
very dependent on the mass of the second foundation, even though their normalized
values are small. The peaks observed in figures 5.22—5.24 seem to coincide with
frequencies for which the rotations induced in the foundation by travelling waves are

higher.

The motion induced in foundation one by seismic waves is analyzed next. Three
different cases are compared: the foundation standing alone; the foundation and another
similar foundation present at a distance D/B=2, and having a normalized mass equal to
1.0; and a third case, similar to the second, except that the normalized mass is equal to
3.0. Three seismic motions are considered: SV waves propagating vertically; SV waves
propagating at an angle of 45° with respect to the vertical; and SH waves propagating
horizontally. All waves travel in a vertical plane containing the x—axis. Due to
symmetry, the SV waves induce only displacements in the x and z direction and
rotations about the y—axis, while the SH waves induce motions in the y direction and
rotations about the x (rocking) and z (torsion) axes. Figures 5.25-5.33 show the
motions in foundation one for each wave type. The most pronounced effects of coupling
through the soil are observed when SV waves travel vertically; these effects seem
particularly important when the mass of the second foundation is increased. Somewhat
different results are obtained when the SV waves travel at an angle of 45°, since
noticeable effects are observed only for the rotation mode. Conversely, SH waves
produce very little coupling between the two foundations; this can be attributed to the
fact that the motions in this case are perpendicular to the direction connecting the two

foundations, and therefore, attenuate much faster in the x—direction.
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Interesting results are also obtained when considering incident waves with a
prescribed Power Spectrum and computing the Response Spectra for a 1—dof structure
supported by foundation one. The Response Spectra are obtained using the approximate
formulas given by Der Kiureghian [25] which in turn are based on a probability
distribution derived by Vanmarcke [44] for the time to first—exceedance of a given level
by a stochastic process. This approach was used by Pais and Kausel [33], who describe
in more detail tﬂé formulas used in the computation of Response Spectra from Power
Spectra. Examples of Response Spectra are presented in figures 5.35—5.38, which show
the influence of coupling through the soil as a function of the natural frequency of the
structure and the mass of the second foundation. These spectra were obtained

considering incident waves with an acceleration Power Spectrum given by

"
f—{{(l-f2/64) s, f<THz

sy =10°F (5.36)
& 0 >7Hz

where f (in Hertz) represents the frequency of the motion. Also, damping of the

structure is assumed to be 5% of critical, and the duration of the earthquake is 100 secs.

This function is displayed in figure 5.34 for the case S,=1. Note that in the low

frequency range, S, varies at least as i (or w4), so that the associated displacement
g -

Power Spectrum S11 = —ITSﬁ does not become unbounded as f approaches zero. The
g w 8

cross—coupling for the two foundations can either increase or decrease the maximum

displacement recorded at the top of the first structure, depending on its natural
frequency. As would be expected, these differences are more pronounced when the

second foundation is heavier, and when the incident waves propagate vertically.
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These results illustrate how the simple approximation developed can be used to
estimate the influence of coupling through the soil of multiple structures. By varying
the parameters of the model, namely the seismic excitation or the masses of the
structures, several cases can be analyzed and some qualitative conclusions drawn

concerning the most unfavorable situations.
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NCL N

This work focused on the dynamic response of multiple foundations and buried
structures to seismic waves, and on the influences (or "coupling") that these various

structures exert on each other.

A Boundary Element formulation was developed to study dynamic problems
involving several rigid foundations and tunnels embedded in a layered halfspace. This
procedure is formulated in the frequency domain, and uses very efficient approximate
Green’s functions developed by Kausel and Peek [22]. These functions represent the
displacement field produced by a unit load applied at some point inside the domain,
and can be evaluated in closed form without numerical integrations.  The
approximation consists in subdividing each layer of soil into several sublayers, and
assuming a linear variation of the displacements across each sublayer. The effect of
the halfspace is introduced by a paraaxial approximation suggested by Seale [39]. To
reduce the number of equations, the formulation was restricted to two dimensions,
considering both in—plane and anti-plane motions. Comparisons were then performed
with corresponding solutions obtained using the finite element method, and excellent

agreements were found.

When applying the Boundary Element method to wave propagation problems in
non—convex domains, the solution can exhibit noncausal behavior; this means that a
dynamic excitation at a given point produces responses at other points before the time
it takes the fastest waves to travel thereto. Such observed responses are certainly not
physically possible, and result from errors introduced by the discretization of the

boundary integral. Hence, a study of the causality of the response for certain classes of
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problems gives an indication of the accuracy of a given Boundary Element formulation.
The case of an open trench was analyzed using the method described, and the results
compared with a time—domain boundary element solution. It was found that the
frequency domain results obey causality in every case while the results obtained with
the available time—domain model did not. This is a consequence of having constrained
the displacements ‘to vary piecewise linearly along the vertical direction; as a result,
the boundary ele.rhents satisfy exactly the boundary conditions along vertical planes.
Hence, the formulation developed is especially well suited for problems involving

non—convex boundaries, such as the analysis of embedded foundations and tunnels.

The earthquakes that struck Mexico City in September 1985 produced very
heavy structural damage, especially in the downtown zone. Even though the severity
of the seismic motion felt at the surface, and the concentration of its energy near the
fundamental natural frequency of the underlying stratum, certainly contributed to the
great damages sustained, some concerns were raised about the influence of underground
structures, namely the subway tunnel, on the vibration of nearby structures. The
subgrade in the downtown area consists of very soft sediments having a high water
content and low shear wave velocities; therefore, soil—structure interaction can be
expected to be very important for large structures. The boundary element method
developed was used to study this problem. The influence of the subway tunnel on the
motion observed at the surface was analyzed for various frequencies considering
vertically incident P, SV and SH waves. These results were then convolved with the
frequency contents of the records obtained during the earthquake so as to obtain a
measure of the disturbances on the seismic motions caused by the presence of the
tunnel. It was found that the underground tunnel in Mexico City did not have a
significant influence on the severity of the motions observed, since their energy was

concentrated at low frequencies for which the associated wavelengths are large in
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comparison to the dimensions of the tunnel. Hence, the tunnel experience mostly

translations, and only very little rotation.

Chapter 5 describes an approximate procedure to evaluate the interaction
between multiple foundations subjected to seismic excitations. The method is very
simple to implemept and can be used for situations involving several cylindrical and
rectangular found'ations embedded in a halfspace. Some comparisons with the results
obtained by more accurate methods, namely the boundary element method developed,
show a good qualitative agreement. Hence, the procedure proposed seems to be ideally
suited for the preliminary assessment of cross—coupling effects in systems involving

multiple foundations.

,
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APPENDIX A

Thin—Layer Method
angigtenﬁ forces at the interfaces:

The finite element method is applied by requiring the approximate solution to
satisfy the principle of virtual displacements (PVD) for virtual fields consistent with the

displacement expansions chosen. The PVD can be written as:

where the superscript bar denotes an apprevimate solution and the double dot represents

a second derivative with respect to time.

Noting that &ij = ;—(Jui j + 6uj ;) and integrating by parts the left hand side of

equation A.1, the following is obtained:

.ﬂ; buy(e 075 — 4;)dS — ff , By 5+ by = pu)dV =0 (A2)
a; being the j coordinate of the outwards unit normal to the surface S.

The calculation of the approximate stiffness matrices will be illustrated for
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in—plane motions. Assume a solution in the wave number domain k in which u = U(z)

gikx Hence, gx_'_‘ —ik .

An isolated sublayer extending between interfaces m and m+1, with the

coordinates’ axes defined as indicated is shown below

o Uzm
z T, ]
m 1
Uxm
Z
sublayer m h ~[—_‘ X
Uzm+1
. 4 I
m+1 1 - l
Txz a, Uxm+1
atm,{=1; atm+l, £€=0; %_‘111_33_
The stresses are given by:
ou
0, = [(A\+2G)5-"—ikAU, ] (A.3)
0U
: X
sz = G[—lkUz + ET] (A4)

Inside the sublayer the displacements are given by

z

U
[ U"] =N.U (A.5)
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xm
zm
xm+1
zm+1

where N = [6 f 1j€1;§] and U=

acaca

Introducing this expansion in the equations for the stresses, we get

o =

A + 2G
zZ

A R R L }-U (A.6)

7y =G {-—ik [€ 1-6+ 11;[1 1] }-U (A7)
- " Equation (A.2) can be written as
w’f.[ fj;NT(aquij-q)ds - ffj;NT(a;j,j +b, -p{?i)dv] =0 (A.8)

Since we require this equation to hold for arbitrary é"Ui , the term in brackets
should equal zero. In this case, the boundary S is represented by the top and bottom
interfaces (m and m+1) and the integral over the volume becomes an integral over &.
Also b, = 0 if no distributed loadings are prescribed. For harmonic motion u = -

Hence

T 1 )™ 1T —
0

or
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xm Txzm L [+ 26) -ikdES i) (A+20)
P o4
sz - :m hf NT.
xm+1| |7 xzm+l 0
.. A+G 2 .1 =A-G

sz+1 “Ozm+1 -k k%G k=g

e

-k 1

| -df——pw’hf NINde U (A.10)
*?(1—€)G 0

Evaluating the above integrals and changing the result so that the vertical

components of P and U are multiplied by i (i=/~1), we obtain:

— 2 2
P_=(A_k*+B_k+G_—uM_)U_ (A.11)
2(A+2G) A+2G A—G —(A+G)
with A_ =1 2G G|. g 1 »G A+G
m =8| A+2G  200+2G) |’ Pm =2 A+G ~(A—G)
G 2G —(A+G)  —2—G)
G -G _20) 2 1
a1 A+2G A+2G _ph| 2 1
G, =t _g G and M_ =84, %, (A.12)
—(A+2G)  (A+2G) 12

For the anti—plane case, we obtain similarly:

_h[2G G]. —a- _1[ G-G _phf2 1
Am" G2G]’Bm_0’Gm— -G G] and M, =3¢ 12] (A.13)
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Internal damping

An internal damping of the hysteretic type can be incorporated in the dynamic
stiffness matrices by using the Correspondence Principle. In the present formulation,
this is achieved by multiplying the Lame constants A and G by (1+2i4), where £ is the
fraction of critical damping. The complex moduli thus obtained are

‘ A= A(1+2if) (A.14)
G®= G(1+2if) (A.15)
and it suffices to substitute A and G by their complex counterparts in the matrices Am,

Bm and Gm.
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APPENDIX B

Green’s Functions

The Green’s functions are obtained using the solution proposed by Kausel and
Peek [22] and exiénded to layered halfspaces by Seale [39]. This solution requires the
spectral decomposition of the dynamic stiffness matrix, which requires in turn the
solution of a quadratic eigenvalue problem. The displacements are then computed as a

summation over all the natural modes of the system.
, - Evaluation of Green’s functions
The quadratic eigenvalue prohlem can be written as:

(Akj2 + Bkj +G- sz):pj =0 (B.1)

where A, B, G and M are assembled using the sublayer matrices given in

appendix A.

The solution for this eigenproblem results in 4N eigenvalues for the in—plane case
and 2N for anti—plane motions (N being the total number of sublayers). Half of these
eigenvalues correspond to motions that decay with distance from the source or
propagate away from it; the other half corresponding to the opposite. We keep only the
former modes, since these are the ones that satisfy the variation and boundedness
condition at infinity. This is accomplished by choosing the eigenvalues with a negative

imaginary part or, for real eigenvalues, the positive ones.
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Since our analysis is 2—D we will study separately the in—plane and anti—plane

situations. We will follow the solution algorithm as described in [20].

in—plane case

Rearranging all matrices and vectors by considering first the x components and

then the z components, and defining C=G—w?M, the eigenvalue problem can be written

as
’Az. .= B.2
k.§ﬁj+ CEJ 0 (B.2a)
or
‘yTEk? + yTT=0 (B-2b)
J ) J
Ax Cx By ¢xj j¢xj
where A=| C= z; = ¥j=
Bys A, C, kquzj ¢zj
T

Premultiplying equation B.2a by Yy, post multiplying equation B.2b by z. and

J
subtracting the two equations, the following orthogonality conditions are found:

YK =0 inj; 0 i=] (B.3a)
Tre 0 si. 0 i

yiﬁj—o i) ; 0 i=j (B.3b)
Defining

Y= {yj} = [::K], Z= {zj} _ F:K}’ K = diag {kj} =1, .., 2N
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equations B.2 can be written in matrix form as
RZK?*+TZ=0 (B.4a)
ATYK? + TIY =0 (B.4b)
The follow'i‘ng normalization of the eigenvectors is chosen

YTKZ =K (B.5)
which implies YL CZ = — K3

" Let us now consider the solution of the dynamic equilibrium equation in the

wave-number domain
(A2 +T)U =F (B.6)
x Px
where f = o P'* = |y k being the horizontal wave number
z z
of the load and displacements.
Premultiplying equation B.6 by YT and introducing ZZ '=I, we obtain
YI(Ak? + T2z U = YIP (B.7)
Considering the normalization relations this equation becomes

(Kk?—K%) 2710 = YIP (B.8)
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which can easily be solved for U’ since the matrix in parenthesis is diagonal
v = z(xe? - k)Y TP (B.9)

or, in extended form

U-X ¢x X
[kU"z] = |4,K (Kk? - K?) 1[K¢$ ¢’£] [kp'z] (B.10)
hence
[ffl 4Dé; KK 'D4;| [P
= (B.11)
Ul |i,x08;  ¢08] | |F,

with D = (kI - K"')—'1 (I representing the identity matrix)

Since the dynamic stiffness matrix is symmetric, its inverse must also be. Hence

kb KDY = (8,KDE) = 14, DK, (B.12)
or § (kKD ~ KD)§, =0 (since KD=DK) (B.13)

Noting that (kI — K?)D =1 we obtain

$ K 14T =0 (B.14)
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anti-plane case

A similar procedure gives for the anti—plane case

U, = ¢.D, $IF (B.15)
y Yy LYy'y

Dy = (kI - Kﬁ)—l K; = diag{kj} j=1,..N the eigenvalues corresponding
to anti—plane motion

and ¢y = [¢y)]
Transformation of the results to spatial coordinates

To obtain the displacements corresponding to a point load, the previous results

have to be Fourier transformed back to the spatial coordinate x.

The Spatial Fourier transform of a point load located at x=0 is equal to unity for

all wave numbers

P=ix) ; f " §(x)eF¥dx = 1 (B.16)

-0

Hence, to find the displacements corresponding to a point load, it suffices to
Fourier invert the relations in equation B.11 and B.15. The only function of k present
in these relations are D ; and kD j/k.i (D i = (k2 - k})_l), which need to be inverted

® Hkx ~ik.|x|
I =§?f € __gk=8 1 (B.17)
1 kk? 2ik;

—c0
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f --1k | x| ®)

= sng(x B.18
- Jk"'—k’ 211:j (B.18)
where sng(x) ={_i :Zg
Calling EI | = diag { —'kjlxl} and removing an implicit factor "i" from the z

components of U and P (introduced into the formulation so as to attain symmetry in the

dynamic stiffness matrix), equations B.11 and B.15 become

in—plane
[ux] [0 Ix‘1¢'£ i¢xElx|K—1¢'£ sga(x)| [P
Ua) " F ik R 4L sea(x) 4B KT . (B.19)
where E|x| and K contain the in—plane modes (Rayleigh modes).
anti—plane
U, = éﬁyzlxix‘ilg F, (B.20)

where E|X| and K; contain the anti—plane modes (Love modes).
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APPEND
Evaluation of Consistent Tractions on Vertical and Horizontal Planes

In the boundary element formulation deveioped, only vertical and horizontal
boundaries are cbx;sidered. Along vertical planes, the boundary elements are assumed
to have a linear variation of displacements between nodes; moreover, these nodes are
located at the interfaces between the sublayers; in horizontal planes, on the other hand,
the elements have piecewise constant displacements, and have one node in the middle
of each element. For best results, if there are elements in different horizontal planes
(interfaces) that overlap one another (i.e., if the shadow of elements in one plane is
cast onto elements below), then these elements are taken of the same size, and their

nodes are place in the same vertical line.
The nodal tractions at the boundary are obtained from the displacements.

Because of the vertical discretization, the procedure to obtain consistent nodal

tractions is not evident and will be illustrated here.

in—plane case

I
sz T

m —e
me1 S Ve

The figure above shows the sign convention for the stresses and coordinate axes

in this case.
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Using the stress—strain relations, we have

g A+2G A u
Tz G G u,
The tractions at the boundary are given by
t o
[ X = [ * |sng(a,) (C2)
|tz Txz

sng(nx) being equal to the cosine between the outward normal to the boundary

and the x axis

a

£o1e - (U
1 . .
Sinceu= | X| = A4 = -[Um ] (C.3)
Ll e - 1-¢ |Usmtr Un+1
_Uzm+1_

(C.4)

0. _ 46 m __110“1 0 m ~F.| m
e Al N T A
m+1 m+1 m+1

In order to find the consistent nodal tractions, we need to multiply the stresses

by NT and evaluate the integrals over the sublayer thickness.
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The result is

sgn(nx) (C.5)

) |Um
m+1

m
Tm+ 1

T
where Tm = XM | represents the nodal tractions, Am is as given in appendix

' zm
A and Dm is equal to

00X 0 =)\
11G o0 -G o
D = C.6
m 0A 0 =X\ (€.6)
Go-G ¢

To evaluate %{U m } one just substitutes in equation B.19 EI x| =

diag{e—ikjlxl} by Ei x| = diag{—ikf.—ikjlxlsgn(x)}. It should be noted that o due
to a vertical load or T.p due to an horizontal load exhibit a discontinuity at x=0
(change in sign); hence, at x=0 these stresses are taken as null. This formulation
shows the contribution of one sublayer to the nodal tractions; if the boundary extends
to adjacent sublayers, their contribution must be added as well. When the load is
applied to the same node where the tractions are computed, then one can consider the
load to be just inside.the domain and sum one unit to the corresponding diagonal

element of matrix A of the BEM equation.

horizontal planes

The tractions on horizontal planes are obtained by considering only one

sublayer. The sublayer chosen can either be the one just on top, or the one below;
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identical results are obtained in both cases. The only difference is the singular term
that arises when the load is applied to the same node where the traction is computed;
this singular term can be computed either using the sublayer that is inside the domain
(which means that the concentrated force is the real one being applied to the soil), or
from the ficticious layer that extends outside the domain (in this last case, the
concentrated for'cg computed is applied to the outer layer and to obtain the
corresponding real force applied to the soil one should subtract the computed force

from 1, since these two forces equilibrate the external unit load).

We begin with the relation in the wave—number domain, equation 2.10

(considering only the top two rows of the L.h.s.).

- e
i

. xm - .—m Sng(nz)=Km- . zn

iT io -U-xm+lJ

_IUFzm+1J

-sng(n,) (C.7)

— 2 - 2 . . . .
where K m = Amk + Bmk + Gm WM, is the dynamic stiffness matrix of

sublayer m.

U | &Déx kK 'Dy;| [P
But [ "} = : (C.8)
1

i -1, T T .
IR e A A
where D = (ki — Kz)—l‘ and the off diagonal terms can be substituted by

1124>xDK¢'£ and its transpose.
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-

Since we are considering the top of a sublayer, sng(nz)=1 and we will drop it.

hori loa

Considering an horizontal load at the interface n

ro" .
0 .
P = é ~—n interface (C.9)
0]
1
U j¢xm,j K2_k? %xn, j
at the m*? interface . xm J (C.10)
Uym

k.
1
WK jryr Pon
J

where j represents the natural mode of the system and the summation extends

over all the modes (j=1, ,.., 2N)

|

hence
Y. L g .
j xm’.]k'a’_k}’ Xxn, ]
k.
1
™ §¢zm )] E'Lkz__kg ¢xn,j
’I‘_""1}=(Amk2 +B_k+ G —wM ) 1 J (C.11)
zm z¢xm+]_,] k2__k2 ¢xn,j
. ]
k.
1
Z¢zm+1,j EJ_kz k2 ¢xn,J
) ~j _
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L | =
Taking into account the fact that Z k'¢zn,j¢xn,j = %: F¢ ,j¢ nj = 0 and
substituting A k?= A (k?-k?) + A k2 and B k=B kJ k_’ we get after inverse

Fourier transforming the non—zero terms:

Yxm ) J
Txm =6x)A_3| " 6. .+
sz sng( ) o J ¢xm+1’1 s
0
Pxm, j
1 k. ) J
J J ¢xm+1,j
¢zm+1,j
— 2 2
vertical loads
Considering a vertical load at the interface n
0
0
P_z = (1| «—n interface (C.13)
0
o]
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and using an approach as before, the tractions are obtained as follows

K
T,  -sng(x)
[' xm ]:is(x)Amz um, j bn i+
iT ] !
zm 0
_¢zm+1)j.l
[
Pxm, |
1 —ik.|x| |"zm,j
+§;Km(kj)7i-k?e j -¢ _d’zn,j (C.14)
xm+1,j
¢zm+1,j
L 4

In order to find the corresponding nodal tractions, it is necessary to multiply
the second term in equations C.12 and C.14 by the length of the boundary element ,
since we consider constant displacement elements. Also, the integration of the singular
term is straight forward, sufficing to integrate the delta function, which gives one.
Since the matrix A  is not diagonal, the contribution of the singularity extends along

the same vertical to adjacent interfaces.

anti—plane case

X
Tay 7
m—
m+1&— Txy

The figure above shows the sign convention for the stresses and coordinate axes

in this case.
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yertical planes

Using the same approach as for the in~plane case the nodal tractions are given

by

Tym= m%(—-[uym ]sgn(nx) (C.15)
' Uym+1

To evaluate g’i” ym one just substitutes in equation B20 EI x| =
Uym-+-1

diag{e"ikjlxl} by Ei x| = diag{-—ikje—. j sgn(x)}.

horizontal planes

Following a procedure that is similar to that used for the in—plane case, one

obtains (for sng(n,)=1)

¢ (C.16)

6. . : b .
ym, j 1 _—ik.|x||{*ym, j

ym+1,j J ¢ym+1,j

In order to get the nodal traction, it is necessary to multiply the second term of

Tym by the length of the boundary element, and add the singular term if the
horizontal coordinates in the element contain the horizontal position of the load.



