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to solving linear systems, and hence required fl(n2 49 ) processors by known methods,
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The most significant aspect of our parallel algorithms is the use of a sophisticated
data structure for representing sets of embeddings, the PQ-tree of [Booth and Lueker,

76]. Previously no parallel algorithms for PQ-trees were known. We have efficient parallel

algorithms for manipulating PQ-trees, which we use in our planarity algorithm. Our

parallel PQ-tree algorithms also have other applications.
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1 Introduction

1.1 Planarity

Planarity is a classical property of graphs, dating back to 1736, when Euler formulated
the concept. A drawing of a graph on a plane in which no edges cross is called a pla-

nar embedding. A graph for which such an embedding exists is called a planar graph.

The search for an efficient algorithm to decide planarity and find a planar embedding
culminated in Hopcroft and Tarjan's linear-time algorithm ([101).

Continuing in this tradition, we have developed a very efficient parallel algorithm for

this problem. Our new algorithm finds a planar embedding for an n-node graph (or

reports that none exists) in O(log2 n) time using only n processors of an exclusive-write,

concurrent-read P-RAM. Thus it achieves near-optimal speedup. The fact that only n
processors are needed for our algorithm makes it feasible to implement on a real parallel
computer.

In contrast, the previous best parallel algorithm for testing planarity, due to Ja'Ja'
and Simon ([12]), reduced the problem to solving linear systems, and hence required

M(n) processors, where M(n) is the number of operations required to multiply two n x n
matrices. Ja'Ja' and Simon's algorithm was important because it showed that planarity

could be decided quickly in parallel. However, such a large processor bound makes their

algorithm infeasible. For any n large enough that a parallel algorithm would be preferred
to the linear-time sequential algorithm (e.g., n = 5, 000), M(n) far exceeds the number of

processors on any realistic parallel computer (e.g., M(5,000) > 125,000,000,000). Our

planarity algorithm, on the other hand, would achieve the same time bound with only

5,000 processors.

In general, once a problem has been shown to be in NC, it is important for designers of

parallel algorithms to look for new techniques which enable the problem to be solved using

a minimum number of processors for the same parallel time bound. In particular, the

number of processors should not exceed the sequential time bound for the same problem.
Note that our new algorithm has this property. Realizing that any parallel algorithm

requiring matrix multiplication or inversion to solve planarity would be unacceptably

inefficient, we looked to completely different techniques. The inspiration for our parallel

algorithm is a highly efficient sequential algorithm resulting from the combined work of

Lempel, Even, and Cederbaum ([171), Even and Tarjan ([7]), and Booth and Lueker ([4]).

One essential ingredient we use from the work of Lempel, Even, and Cederbaum is that in

building an embedding for a graph, premature committment to a particular embedding

of a subgraph should be avoided. Instead, we use a data structure called a PQ-tree, due
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to Booth and Lueker, to represent all embeddings of each subgraph.

Our parallel algorithm differs significantly from the sequential algorithm that inspired

it. The sequential algorithm extended an embedding node by node. In contrast, we use a
divide-and-conquer strategy, computing embeddings for subgraphs and combining them

to form embeddings of larger subgraphs. To handle the numerous complications that
arise in carrying out this approach, we are forced to generalize the approach of Lempel,
Even, and Cederbaum.

In addition to being an historically important problem in algorithm design, finding
a planar embedding is an essential ingredient in other algorithms. For example, the

linear-time planar graph isomorphism algorithm of Hopcroft and Wong ([11]) started
with planar embeddings of the input graphs. The linear-time algorithm of Lipton and
Tarjan ([18]) for finding an o(n/i ) separator of a planar graph started with a planar
embedding of the input graph. Our new linear-processor parallel algorithm for planarity
has the following applications:

* planar graph isomorphism in O(log3 n) time using n processors (using an algorithm
due to Ja'Ja' and Kosaraju, which requires planar embeddings as input).

* finding a depth-first search tree of a planar graph in O(log3 n) time using n proces-
sors (using ideas due to Justin Smith, combined with techniques of [23]).

* finding an outerplanar embedding of an outerplanar graph in O(log2 n) time using
n processors, and finding an 0(1) separator of an outerplanar graph.

Because our algorithm does not rule out any embeddings, it can be used to enumerate all
possible planar embeddings of a graph at a rate of O(log2 n) time per embedding, using
n processors.

1.2 PQ-Trees

Our parallel planarity algorithm is rare among parallel algorithms in that it uses a sophis-
ticated data structure. We have parallelized the PQ-tree data structure, due to Booth
and Lueker ([4]), giving efficient parallel algorithms for manipulating PQ-trens. No par-

allel algorithms for PQ-trees existed previously. We define three operations on PQ-trees,

multiple-disjoint-reduction, join, and intersection, and give linear-processor parallel algo-

rithms for these operations. We use PQ-trees for representing sets of graph embeddings.

However, PQ-trees are generally useful for representing large sets of orderings subject to
adjacency constraints. Booth and Lueker use PQ-trees in efficient sequential algorithms

for recognizing (0,1)-matrices with the consecutive one's property, and in recognizing and

testing isomorphism of interval graphs. Using our parallel algorithms for PQ-trees, one
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can recognize n x n (0,1)-matrices with the consecutive one's property in O(log3 n) time
using n2 processors.

1.3 Outline of the Thesis

In Section 2, we describe some techniques useful for efficient parallel computation. In

Section 4, we define PQ-trees and some operations on them, and describe parallel al-
gorithms for these operations. In Section 5, we give some preliminary definitions and

results concerning planar graphs. In Section 6, we describe in greater detail the planarity
algorithm, using PQ-trees to efficiently represent sets of embeddings. We conclude in
Section ??.

2 Efficient Parallel Computation

In this section, we discuss some techniques for efficient parallel computation, and give
some applications of these techniques.

By "efficient parallel computation", we mean to suggest algorithms in which a single

processor is assigned to each element of the input structure. For example, in our pla-
narity algorithm, we assign a single processor to each node and each edge of the input
graph. Moreover, our interest is in algorithms whose running times are polynomial in
the logarithm of the size of the input structure, e.g. O(log n) or O(log2 n).

Note: In Sections 4 and 6, we describe algorithms which have more than one processor

per datum. However, the number of processors is always within a constant factor of the

number of data. Note that we can always reduce a processor bound by a constant
factor by using a single processor to simulate a constant number of others at the cost of
multiplying the time required by a constant. For this reason, we typically state processor
bounds for algorithm without using the "big-O" notation.

Our preferred model of computation is a P-RAM (see [8]), a parallel random-access

machine, in which many processors are allowed simultaneous access to a common random-
access memory. In the P-RAM, many processors are permitted to read the same memory

location simultaneously, but no more than one processor is permitted to write to a single

location. However, we will mention algorithms designed for a more powerful model of

parallel computation in which concurrent writing is permitted; typically, conflicts are

resolved by allowing exactly one of the processors attempting to write to a location to
succeed.
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2.1 Prefix Computation, Pointer-hopping, and Tree Contrac-
tion

Often a sequential computation can be formulated as follows:

Given elements xl ... x, from some domain D and an associative operator o

on D, compute Xzl o x2 o x o · · · o Xn.

For example, finding the product of n matrices can be so formulated.

A parallel solution to this problem is straightforward: form a balanced binary tree
with the xi's as leaves. Each internal node is viewed as a processor which applies the

operator o to the values computed by its children. The root of the tree will compute the

value xl o ... o xn. Such a tree has depth log ni, and therefore can compute the result in

time O([log nl), where we assume that o can be applied to two arguments in contstant
time.

A somewhat more general problem is:

Given x1 ... x, and o, compute each of xs o s2, xl o 2 o Xs, *l o .. x o X,.

This lattter problem is called the prefix problem in [15]. The problem is trivial to

solve sequentially. Indeed, the ordinary sequential approach to computing xl o ... o X,

actually yields all the prefixes xl o ... o xi.

A parallel solution to the prefix problem is less obvious. Fischer and Ladner give a

construction for solving this problem in [15]. For pedagogical reasons, we give a solution

that is more algorithmic than constructive.

Associate a processor r with each datum xi. Let the processor 7ri have a storage

location y to hold a value of D. (For j < 0, let yj denote the identify element for o). In

the following algorithm, we use y(t) to denote the value of yi at stage t.

1 Initially,

2 for each 7ri in parallel (i = 1, 2,..., n),

3 let y() := i

4 Fort :=0 to rlognl-1 do

5 for each 7ri in parallel,

6 let y(t+l)= y(t) y(t)

It is a simple induction to show that y?) i,-2+l C * i, where we let xi denote

the identity if j < 0. Hence y(flogn) = x10 ... O Xne

In the above algorithm, we assumed the data {xi) were arranged in an array. We

can also solve the analogous problem in the context of linked lists, using essentially

the same algorithm. Suppose we have n nodes that form a lined list. Associated with
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each node v is a value x(v) E D. Each node points to another node p(v) to form the

linked list--the last node in the list points to a dummy node id for which (vid) =

y(vid) =the identity for o. Let p be the j-fold composition of p with itself. To compute

x(v) o X(p(v)) o x(p(p(v))) o ... o x(pn-l(v)) for each node v, we assign to each node v a

storage location y(v) for storing an element of D, a storage location q(v) for storing a

pointer, and a processor pi(v) to each node. Then we execute the following algorithm:

1 Initially,

2 for each r(v) in parallel,

3 let y(°)(v) := x(v)

4 let q()(v) := p(v)

5 For t := 0 to [lognl-1 do

6 for each r(v) in parallel,

7 let y(t+)(v) = y(t)() o y(t)(v)

8 let q(t+l)(v)= q(t)(q(t)(v))

It is an easy induction to show that q(t)(v) = p2'(v) and y(t)(v) = x(v) o x(p(v)) o ... * o

X(p2 (v)).

Observe that since our model of parallel computation permits simultaneous reads
of the same location, we need not assume that the nodes v and pointers p(v) form a

list-indeed, they may form any directed acyclic graph with outdegree 1, i.e. a directed,

rooted forest. For each node v, the algorithm will compute the o-product of the sequence
of values x associated with all nodes from v to the root of the tree containing v. In

this more general setting, this technique is typically called pointer-hopping; the operation

q(t+l)(v) := q(t)(q(t)(v)) is thought of as v "hopping" the node q(t)(v) to get to q(t)(q(t)(v)).

As an example of how this technique may be applied, let each x(v) be 1, and let the

operation o be addition. Then the algorithm computes, for each node v, the depth of v

in the tree containing it.

As a second application, we show how to preprocess an n-node tree T in O(logn)

time so that subsequently, given any two nodes u and v, the least common ancestor of u

and v in T may be found sequentially in O(log n) time.
We first compute a preorder numbering of the nodes of T (see, e.g. [28]). Tarjan

and Vishkin describe a way of doing this using pointer-hopping. Each edge of the tree is

replaced by two edges, one going down the tree and one going up. Using these edges, Tar-

jan and Vishkin obtain a linked list of the nodes of T in which each internal node appears

twice and in which, excluding second appearances, the order is exactly the preorder. Us-

ing the previous example, we can compute, for each node v, the preorder number pre(v)
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for each node v. We can similarly compute, for each node v the maximum preorder num-

ber max(v) of a descendant of v. Now, given two nodes u and v, we can easily determine

whether u is an ancestor of v. Namely, check if pre(u) < pre(v) < max(u).
Next compute for each node v the nodes pl(v) = p(v),p 2(v),p 4(v),...,p2'(v), and

so on, up to t = [log n]. Note that these are just the values q(t)(v) computed in the
pointer-hopping algorithm. Let p(v) denote v.

Now, suppose u and v are nodes in the tree T. To find the least common ancestor of

u and v sequentially, we use a variant of binary search:

1 Initially,

2 let ow := u

3 let h := 2 rl° g n]-

4 While h > 0 do

5 if ph(eow) is not an ancestor of v then tow := ph(eow)

6 h := [h/2J
It is a simple induction to show that during the execution of the above algorithm, the

least common ancestor of u and v is an ancestor of tow and a descendant of p(2h(ow), and
that h is either a power of 2, or zero. ince h decreases by a factor of 2 at each iteration,

there are [log nl - 1 iterations. Upon termination, h = 0, so ow = p2h(tow) = the least
common ancestor of u and v.

A problem closely related to prefix computation and its generalization to linked struc-
tures is called tree evaluation: Given a pointer structure forming a directed, ordered tree,
where we assign a value to each leaf and a k-ary function f, to each internal node v with
k children, find the value at each internal node v resulting from applying f, to the values
of the children. When each node has at most one child, the structure is that of a linked
list, and the problem reduces to the previous one.

The tree evaluation problem is trivial to solve sequentially: process the tree bottom
up from leaves to root, applying each function to its arguments as they become available.
Miller and Reif show how to solve this problem in parallel. For a tree with n nodes, their
technique, parallel tree contraction, takes O(log n) time on a concurrent-write model of
parallel computation. If we use an alternate representation in which the children of each
node are arranged in a linked list, this same bound can be achieved on an exclusive-write
model (see [21J).

Parallel tree contraction has that name because it can be viewed as a process of
"contracting" a tree to a single node. (Contraction of an edge means identifying the
edge's endpoints and removing the edge.) Tree contratction uses two operations, RAKE
and COMPRESS. RAKE contracts all edges one of whose endpoints is a leaf. Thus,
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RAKE essentially deletes all leaves. COMPRESS contracts edges between pairs of nodes

each having one child. Thus contract will shorten a path by roughly a factor of two.

Miller and Reif prove in [23] that, starting with an n-node tree, only O(log n) executions
of RAKE followed by COMPRESS will contract the tree to a single node.

In tree evaluation, leaves are nodes for which a value is known. The RAKE operation

corresponds to substituting the value of each leaf v into the function associated with
the parent of v, hus obtaining a function with one fewer arguments. Suppose u is a

node having a single child v and v also has a single child. The COMPRESS operation

contracts the edge between u and v, identifying u and v. In tree evaluation, we assign

to the resulting node the function obtained by composing f, with fv. The child of the
resulting node is the previous child of v and the parent is the previous parent of u; note

the resemblance to pointer-hopping.
The tree contraction process applied to tree evaluation computes the value for some of

the original nodes of T, but not all. However, once tree contraction has terminated, it can
be run "in reverse," expanding edges in the reverse order in which they were contracted.

This process, callled parallel tree expansion, will allow a value to be assigned to each node

in T. Thus, Miller and Reif's parallIel solution to the tree evaluation problem involves
both a tree contraction phase and a tree expansion phase. However, we use "parallel tree

contraction" to refer to the technique as a whole.

2.2 Sorting of Small Integers in Parallel

3 Introduction

There has been much work in the area of parallel algorithms for sorting (e.g. [3], [2],

[16], [25]). However, much of this work has been in the tradition of comparison models,

whereas in fact for many parallel algorithms in which sorting is a subroutine (e.g. the

planarity algorithm of this thesis), it is sufficient to sort integers in the range [0,... , nk- 1]

for some constant k (we call them small integers). This is an easier problem. Indeed,

while (n log n) is the lower bound for sequential time to sort n values in the comparison

model, small integers can be sorted in O(n) time on a unit-cost random access model,
by radix sorting (see, e.g. [1]). One is therefore led tc investigate complexity bounds for

parallel sorting of small integers.

In [24], Reif gives a randomized parallel algorithm for sorting small integers in 0 (log n)

expected parallel time using rn/ log n processors of a concurrent-write model of parallel

computation. Thus, Reif's algorithm is asymptotically optimal. One might wonder
whether the randomness in Reif's algorithm can be eliminated without increasing the
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complexity bounds by much. In fact, Reif states, "we would be quite surprised if any

purely deterministic methods yield PT = O(n) for parallel integer sort in the case of
the bound T = O(log n). In this subsection, we describe a simple, deterministic parallel

algorithm for small integer sorting. It runs in O(log n) time using n processors, so it is a
factor of log n away from optimal. However, unlike the algorithm of [24], our algorithm

runs on an exclusive-write model of parallel computation.
The algorithm is essentially an implementation of merge-sort. We represent the or-

dering on a set of elements by a modified binary triel of height O(log n), whose leaves

correspond to the keys. The procedure TrieSort(i,j) will return a trie containing the

elements xi,... , x.

TrieSort(i,j) =
If i = j then return a trie containing only xi
else compute in parallel

T = TrieSort(i, i+ij) and T2 = TrieSort([li+J + 1,j)
and return Merge(T1, T2) -

Having obtained the trie TrieSort(1, n) for the entire sequence x, ... ,x, we can
easily obtain for each element its rank in the sorted order. First compute for each node

v the number lv(v) of leaves below v. This is done by a leaf-to-root pass of the tree in

O(log n) time. Next, assign to each node the rank of the lowest-ranked leaf below it. In

particular, each leaf is assigned the rank of the corresponding element. This is done by

calling rankTree(r, 1), where r is the root of the trie and rankTree is as below:
rankTree(v, k) =

assign k to v. If v has children vl and v2, then
in parallel call rankTree(vl, k) and

rankTree(v2,k + Iv(vI))
It remains to describe the modified trie and the merging algorithm. To obtain a stable

sort, we append the number i to the value of xi as low-order bits. Then every value occurs
exactly once. Let m be the length in bits of the resulting values.

Let S C {0,..., 2- 1}. We will represent S by a tree T(S) as follows. First, consider

the complete binary tree with 2m leaves. Label each node with a binary sequence which,

when read left to right, describes the path from the root, where 0 means "go to the

left child" and 1 means "go to the right child." Note that the leaves are labelled with

rn-bit representations of the numbers from 0 to 2 - 1, in left-to-right order. Mark

each leaf whose number is in S, and then mark each node with some marked leaf as a
descendent. Then the marked nodes form a tree. We contract long paths in this tree

to single edges, so that the only nodes remaining are those with either no children (the

leaves) or two children. This is T(S). Note that because we have eliminated one-child

'See, e.g., [141].
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nodes, the number of nodes is 21SI - 1. Note also that the height of the tree is no more

than m. For a node v of the tree, let v.label be the binary string labelling v, and let

Iv.labellI be the length of the string (i.e. the depth of v in the complete binary tree). Note
that if v and w are any two nodes (not necessarily in the same tree), the least common

ancestor of v and w in the complete binary tree would be the node whose label is the
initial substring (or prefix) common to v.label and w.label. In particular, v would be an
ancestor of w in the full binary tree iff v.label is a prefix of w.label.

Each node v has three fields, v.label, v.leftchild, and v.rightchild. Given the roots rl
and r2 of two tries T(S1 ) and T(S 2), respectively, and a variable newroot, Merge(rl, r2, newroot)

will first assign to newroot the root of a new trie T(S1 U S2) and then proceed to compute
the rest of the trie. It will be apparent to the reader that the merge can be carried out
in time O(max. height of tries) = O(log n) where there is one processor for each node
of the tries (i.e. O(n)). A naive implementation of TrieSort would therefore take time
O(log2 n), namely O(log n) per recursion for merging, times O(log n) stages of recursion.
However, the reader should observe of the following algorithm that it processes the tries
strictly from top to bottom, and can therefore be pipelined. That is, immediately after
the root of the new trie is assigned to newroot, the new trie can begin to participate in
another merge.
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Merge(rl, r2, varnewroot) =
if neither of rl.label and r2.abel is a prefix of the other, then

let r be a new node.
Set r.label to be the common prefix of rl.label and r2.label.
Set r.leftchild and r.rightchild to rl and r2

in the proper order (lexicographic according to labels).
Set newroot to be v

else
assume that r.label is a prefix of r2.abel (else swap rl and r2).
Set newroot to be rl.
If rl.label = r2.label then

Call
Merge(rl.leftchild, r2.leftchild, rl.leftchild) and
Merge(rl.rightchild, r2.rightchild, rl.rightchild) in parallel.

else
Let i = ri.labell.
If i + 1l bit of r2.label is 0 then

Merge(rl, lef tchild, r2, rl .leftchild)
else

Merge(rl.rightchild, r2, rl.leftchild)
end if

end if

end if
end Merge.

4 Our Parallel PQ-Tree Algorithms

4.1 PQ-tree Definitions

In our planarity algorithm, we will need to represent large sets of sequences of sets of

edges. These sets are too large to represent explicitly, so we make use of an efficient data

structure, the PQ-tree, due to Booth and Luecker ([4]). In this section, we define the

PQ-tree and some operations on it, and show how these operations may be carried out

efficiently in parallel. We freely adapt the terminology of [4] to suit our needs.

A PQ-tree over the ground set S is a tree with two kinds of internal nodes, P-nodes

and Q-nodes. Every internal node has at least two children, so the number of internal
nodes is no more than the number of leaves. The children of each internal node are

ordered. The leaves are just the elements of S. For example, in Figure 1 is depicted a

PQ-tree T over the ground set {a, b, c, d, e, f}. Here, as henceforth, Q-nodes are depicted

by rectangles and P-nodes are depicted by circles. Throughout this section, n will denote
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Figure 1: A PQ-tree over the ground set {a, b, c, d, e, f}.

the cardinality of S.
For concreteness, we will assume that a PQ-tree is represented by a pointer struc-

ture as follows: each node has a pointer to its parent, its left sibling, its right sibling,
its leftmost child, and its rightmost child (using null pointers where necessary). This
representation permits constant time insertion and deletion of consecutive sequences of
children.

A PQ-tree is used to represent certain classes of linear orderings of its ground set S.
Let T be a PQ-tree over S. We will denote by L(T) the set of linear orders represented
by T, and say that T generates L(T). One element of L(T) is obtained by reading off the

leaves left to right in the order in which they appear in T. This is called the frontier of

T, and written fr(T). (The frontier of the tree in Figure 1 is bafdce.) The other elements
are those linear orders obtained in the same way from all trees T' equivalent to T. We say
T' is equivalent to T if T' can be transformed into T by a sequence of transformations.
The permissible equivalence transformations are:

(1) the order of children of a Q-node may be reversed, and
(2) the children of a P-node may be arbitrarily reordered.

The first is called flipping a Q-node, and the second is called reordering a P-node. It is

useful to think of a PQ-tree T as a representative of all the trees equivalent to it. We
write T' T if T' is equivalent to T.

Note that for a node with only two children, the only possible reordering of its children

is a reversal. Thus if a node has two children, it makes no difference whether it is a P-

node or a Q-node. We shall automatically consider any node with two children to be a
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Q-node.

Consider once again the PQ-tree T in Figure 1. There are 12 orderings in L(T),

including bafdce, bdafce, ecafdb, ecfadb. The first is just the frontier of T. The second
ordering, bdafce, is obtained by reordering the P-node's children; the third ordering,
ecafdb, is obtained by reversing the order of the Q-node's children; the fourth ordering,

ecfadb, is obtained by both reversing the order of the Q-node'q children and reordering
the P-node's children.

Since there is no way a PQ-tree over a non-empty ground set can represent the empty

set of orderings, we use a special null tree, denoted by Tnul, to represent this empty set.

If v is any node of some PQ-tree T, the subtree rooted at v is itself a PQ-tree, whose
ground set is the set leavesT(v) of leaves below v. Say that v generates the set of linear

orderings of leaves(v) generated by the subtree rooted at v. The frontier of v (in T) is

just the frontier of the subtree of T rooted at v. We write leaves(v) for leavesT(v) when

T is implicit.
Note: Throughout this section, we use the terms descendent and ancestor to refer to

non-proper descendents and ancestors, unless otherwise specified. That is, v is its own

descendent and its own ancestor.

Let A be a subset of the ground set S. We say a linear ordering ) = sl ... s, of S

satisfies the set A if all the elements of A are consecutive in A, i.e. for some i and j,

sisi+l ... s are all the elements of A. The reduction of the PQ-tree T with respect to A

is a PQ-tree T generating exactly those linear orderings generated by T that satisfy A.

We say of T that it is reduced with respect to A. Booth and Lueker prove that given

any T and A C S, there is a reduction T of T with respect to A; in fact, they give an

algorithm REDUCE(T, A) which modifies T to get T. Their algorithm works in time

proportional to the cardinality of A1. Note that if no ordering generated by T satisfies

A, the reduction T is just the null tree.

In a typical algorithm using PQ-trees, one starts with a simple PQ-tree T and sequen-

tially reduces it with respect to each subset in a sequence A 1,..., Ak of subsets. Each

reduction further restricts the set of represented orderings. Note that by the definition

of reduction, the final resulting PQ-tree T does not depend on the order of the subsets;

T generates all orderings generated by T that satisfy every Ai. This observation suggests

the existence of a parallel algorithm for computing T by performing all the reductions

simultaneously on the single tree T.

Consider the special case in which the Ai's are all disjoint (we consider the general

case below). In this special case, it is convenient to think of the Ai's as defining a coloring

of some of the elements of the ground set, where an element v in Ai receives the color ci.

We say that an ordering satisfies the color ci if all the ci-colored elements occuring in the

12



ordering form a contiguous subsequence of the ordering. Then the intent of reduction is
to introduce just enough new constraints into a PQ-tree T so that every color is satisfied

by every ordering generated by the resulting PQ-tree. Note that a color that is assigned
to only one element is trivially satisfied. Hence it does no harm to assign a distinct

color to every element not appearing in any subset Ai. We may therefore assume that
every ground element receives a color. Let the coloring be cl: S -, C, where C is the
set of colors. In Subsection 4.2, we give a parallel algorithm MULTIPLE-DISJOINT-

REDUCE(T, cl) which reduces T with respect to the coloring cl.

Theorem 4.1 MULTIPLE-DISJOINT-REDUCE can be computed in O(log n) time us-
ing n processors.

More generally, let T1,..., Tk be PQ-trees over the ground sets SI,. . , Sk, and suppose
each ground element occurs in the ground sets of at most two trees. Let A{ij,} = Si n Si
for all 1 < i,j < k (i 0 j). For each tree Ti, the non-empty sets A({,j} are all disjoint, so
Ti can be reduced with respect to these sets. Carrying out all reductions simultaneously
is called all-adjacent-pairs reduction.

Corollary 4.1 All-adjacent-pairs reduction can be carried out in O(log n) time using n
processors, where n is the total number of ground elements.

We next define a new operation on PQ-trees, not considered in [4]. A PQ-tree T is the
intersection of two PQ-trees T, and T2 over the same ground set if L(T) = L(T1 ) n L(T2 ).

In Subsection 4.4, we describe an algorithm INTERSECT(T1,T 2) for intersecting two
PQ-trees using disjoint reduction as a subroutine. The algorithm modifies Tz to be the
intersection of the two original trees. Let n be the size of the ground set.

Theorem 4.2 INTERSECT can be computed in O(log2 n) time using n processors.

Note that, like reduction, intersection can "fail," i.e. the result may be the null tree.

As an illustration of the usefulness of INTERSECT for parallel algorithms, we use it to
obtain a parallel algorithm for reducing a PQ-tree T with respect to a sequence Al,... ,Ak

of subsets that are not necessarily disjoint. The algorithm works in O(log2 n log k) time
using O(n2) processors. Make k copies T1,..., Tk of the PQ-tree T, and in parallel reduce
each Ti with respect to A,. Next, use a parallel prefix computation on the T's with the
operation being intersection. Parallel prefix computation works in log k steps each of

which takes O(log2 n) time (to do the intersection). The parallel prefix computation
gives us k trees: the reduction of T with A1, the reduction of T with A1 and A2, the
reduction of T with A1, A2, and As, and so on.

For an ordering A of the elements of S satisfying a subset A C S, let AlA denote the
induced ordering on the elements of A, and let A1JA denote the induced ordering on the
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elements of S - A, i.e. the ordering obtained from A by deleting elements of A. Let AR

denote the reverse of A.

Suppose we have two PQ-trees T1 and T2 over the respective ground sets S1 and S2.

Let A = SlnS2, and suppose T1 and T2 are reduced with respect to A. For A1 E L(T1) and

A2 E L(T 2), let A1 join A2 denote the ordering over SI U S2 - A obtained by substituting

A2 IA for AlIA in Al. Let the join of T1 with T2 be the PQ-tree T generating

(A1 join A2 1 1 E L(T 1), 2 E L(T 2), and AIA = (A2 IA)R} (1)

(The term "join" is inspired by the join of relational database theory.)
In Subsection 4.3, we show how to compute the join of T1 with T2 in the special case

where T2 is reduced with respect to S2 - A. The join may be the null tree (in the event

(1) is empty). Assuming that this is not the case, we can compute the join in O(log n)

time (better still, 0(1) time after an O(logn) time preprocessing phase for a special
case). However, to determine whether (1) is empty requires intersection, and hence takes
O(log2 n) time.

In Subsection 4.5, we discuss the representation of certain sets of cyclic orderings by
PQ-trees. This subsection is directed specifically l owards the application of PQ-trees to
the parallel planarity algorithm. We give conditions under which reduction and join can

be applied to PQ-trees representing cyclic orderings.

4.2 Reduction

In this subsection, we describe the algorithm MULTIPLE-DISJOINT-REDUCE. Before
considering the most general case, let us consider a few easy examples. The tree in

Figure 2 consists of a single P-node, all of whose children are leaves. This tree allows all

possible orderings of its ground set. Now suppose we want to reduce the tree with respect

to the set {c, e, f}. We want to permit all possible orderings in which these letters are

consecutive. Think of first choosing any ordering of {c, e, f}, say fee, and then treating

this as a single element [fee] and choosing any ordering of the set {a, b, [fee], d, g, h}. The

corresponding PQ-tree is depicted in Figure 3.

Continuing one step further, the reduction of the tree in Figure 2 with respect to the
sets {c,e, f} and a, g, h} is shown in Figure 4. Note that we would have obtained the

same tree (up to equivalence) if we had started with the tree in Figure 3 and reduced

it with respect to {a,g, h}, or if we had first reduced the tree in Figure 2 with respect

to {a, g, h} and then reduced the result with respect to {c, e, f}. It is apparent from the

definition we gave for reduction that it is commutative; i.e. the result of reducing a tree

with respect to a collection of subsets does not depend on the order in which the subsets
are handled.
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Figure 2: This tree permits all orderings of its ground set {a, b, c, d, e, f, g, h}.

c e f

Figure 3: This tree permits those ordering of its ground set in which the elements of
{c, e, f} are consecutive.
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c e f a g h

Figure 4: This tree permits those ordering of its ground set in which the elements {c, e, f}
are consecutive and the elements of {a, g, h} are consecutive.

d c h

Figure 5: A PQ-tree over the ground set {a, b, c, d, e, f, g, h}.
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g e f

C

Figure 6: A first (and unsuccessful) attempt to reduce the PQ-tree of Figure 5 with
respect to {a, b, c}.

So far, we have not considered the interactions arising when we reduce with respect
to overlapping sets. The following example illustrates the sort of interactions that arise.
Consider the PQ-tree in Figure 5, and suppose we want to reduce it with respect to the

subset {a,b,c}. We check that a and b are already adjacent; we need not change the

PQ-tree in order to bring them together. However, c hangs below a P-node permitting
the arbitrary reordering of d, c, and h. We only want to permit those reorderings in
which c ends up adjacent to a. An initial step would be to separate c from d and h, as

in Figure 6. But while this does ensure that c is an endpoint (a leftmost or rightmost
element) of the subsequence consisting of c,d, and h, it does not ensure that c will end up

adjacent to a. The reason is that the parent of a and the parent of c are independently

"flip-able." For example, by flipping the root (the parent of a) of the PQ-tree in Figure

6, we obtain a tree having a frontier in which a is not adjacent to c. We need to introduce
a constraint requiring that when the parent of a flips, so does the parent of c, and vice
versa.

In order to be able to express this constraint it is useful to introduce a new kind of

node, an R-node. An R-node "follows the lead" of its parent node, in that, under any

equivalence transformation, an R-node is flipped if and only if its parent is flipped. (An

R-node is not permitted to be the child of a P-node.) To complete the previous example,

then, we let the parent of a be an R-node, as depicted in Figure 7; we signify that a node

is an R-node by drawing two lines connecting it to its parent.
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a b

I
g e f

Ad h

Figure 7: The reduction of the tree of Figure 5 with respect to {a, b, c}.

d h

Figure 8: A PQ-tree equivalent to the tree of figure 7, but without an R-node.

Another way to view an R-node is as a notational device for signifying that the R-

node's children should be inserted into the sequence of its parent's children. An R-node

may be eliminated and its children reattached to its parent without disturbing their

order; the resulting tree generates exactly the same set of orderings. For example, in

Figure 8, we illustrate the result of eliminating the R-node from the PQ-tree of Figure

7. Thus R-nodes are merely a notational and computational convenience-they do not

enhance the expressibility of PQ-trees.

As it turns out, the general case of disjoint reduction can be obtained by a modest

generalization of these examples. The essential idea is that we operate on each node

with regard to its children almost as if its children were leaves. The biggest difference
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between an internal node and a leaf in this context is that an internal node has (at
least) two different orientations"-flipped or not flipped. Thus at times we will need to

fix one orientation of an internal node with respect to its parent in order to effect the
reduction, as in the last example. We introduced the R-node in order to be able to fix
one orientation. After the reduction has been completed, we can eliminate the R-nodes.

The proof of Theorem 4.1 follows.
proof of Theorem 4.1: The algorithm for disjoint reduction consists of three stages:

(1) a pre-processing stage in which colors are assigned to the internal nodes of the

PQ-tree in accordance with the coloring of the leaves,

(2) a transformation stage in which the tree structure is modified to obtain the reduced
tree, and

(3) a post-processing stage in which R-nodes are eliminated.

The post-processing stage is the simplest, and we describe it first.

Lemma 4.1 From any PQ-tree T with R-nodes, we can in O(iogn) time using n pro-
cessors obtain a PQ-tree T' equivalent to T such that T' has no R-nodes.

proof First compute a preorder numbering of the tree (using techniques in [281). Now,
by use of parallel pointer-hopping techniques, each child v of an R-node can determine its
lowest Q-node ancestor. This will be v's new parent. Each Q-node can use the preorder

numbering to sort all its new children to obtain the proper order for them. The resulting
tree is equivalent to the original tree, but has no R-nodes. 

We next consider the pre-processing stage. This stage consists of extending the col-
oring of the leaves to the entire tree.

The following terminology will be used throughout the proof. For an internal node v
of T, say a color is complete at v if all the leaves with that color are descendents of v. Say
a color is incomplete at v if some, but not all, of the leaves of that color are descendents

of v. Say that a color covers v if all the leaves below v are of that color, and that v is

uncovered if no color covers v.

In general, the coloring of the ground elements imposes constraints on the ordering of
the children of each internal node u. However, if a color is complete at a child v of u, that

color does not constrain the ordering of u's children at all. The constraints arise because
of colors incomplete at children of u. Therefore, we assign to each internal node v all the
colors incomplete at v. Thus an internal node may have more than one color-but not
many more, as the following lemma and its corollary show.

Lemma 4.2 Suppose the ordering A is generated by some node u of T and satisfies a

color c which is incomplete at a descendent v of u. Let r be the ordering obtained by

restricting A to leaves(v). Then c is the color of an endpoint of r.
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proof of lemma The c-colored leaves are consecutive in A, as are the leaves below v.

Some c-colored leaves are below v and some are not, hence at least one endpoint of r
must be colored c. E

Corollary 4.2 If any ordering generated by T satisfies all colors, then for each internal
node v of T, there are at most two colors incomplete at v.

The following lemma is analogous, but considers the endpoints of unicolored se-
quences.

Lemma 4.3 Let v' be an uncovered node at which color c is incomplete. Then for any

ordering A generated by T, an endpoint of a c-colored consecutive subsequence of A belongs

to leaves(vt).

proof The leaves below v' occur as a consecutive subsequence r in any ordering generated

by T. Since r does not consist entirely of leaves colored c, there must be two consecutive

leaves only one of which is colored c. That is, one of the leaves below v' is an endpoint

of a sequence of c-colored leaves. El

Corollary 4.3 f any ordering generated by T satisfies all colors, every internal node
has at most two uncovered children with the same color.

proof Let v be an internal node, and consider any uncovered child v' with color c. By
Lemma 4.3, an endpoint of a c-colored subsequence is a leaf with v' as an ancestor. But

in any ordering satisfying c, the c-colored leaves form a single consecutive subsequence,

and so there are only two endpoints. Thus v can have at most two uncovered children v'
with color c. El

For node v, let INCOMPLETE(v) be the set of colors incomplete at v. (Ordinarily

INCOMPLETE(v) will contain no more than two elements.)

Lemma 4.4 If any order generated by T satisfies all colors, INCOMPLETE can be

computed for all nodes v simultaneously in O(log n) time using n processors.

proof By Corollary 4.2, we may assume that INCOMPLETE(v) never contains more

than two elements. Consider the sequence of leaves of T, read left to right. For each

color c, consider the first and the last node in this sequence that have color c. Their

lowest common ancestor, which we will call LCA(c), is the lowest node in the tree at

which the color c is complete. Using parallel tree contraction and expansion, it is easy to

compute lowest common ancestors for all colors simultaneously within the stated bounds.
If v is a leaf colored c, INCOMPLETE(v) is either {c}, or, if v is the only node colored

c, then INCOMPLETE(v) is empty. If v is an internal node, then

INCOMPLETE(v) = ( U INCOMPLETE(u)) - {: LCA(c) = 
u is child of v
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For an internal node v, INCOMPLETE(v) can be computed by determining the colors

incomplete at the children of v, and checking each such color c to see if LCA(c) is v. By

Corollary 4.2, each child can be assumed to contribute at most two colors. Moreover, the
colors contributed by all children can be checked against LCA(.) simultaneously. Using

parallel tree contraction, we obtain the desired result. O
If at any node, the number of incomplete colors turns out to exceed two, the processor

at that node should halt. After the computation completes, it can be determined in

O(log n) time whether any processor has halted. If so, the result of the reduction can be

taken to be Tnl. Having checked the tree T for violations of Corollary 4.2 and computed

INCOMPLETE(.), we can check T for violations of Corollary 4.3. For each internal node

v, and each color c incomplete at a child of v, we can in parallel count the number of

uncovered children of v with color c. If the number exceeds two, the processor at v should

halt.
This completes the description of the pre-processing stage. We commence the de-

scription of the second stage: obtaining the reduced tree. The second stage consists of

two phases, phase A and phase B. In phase A, each node v ensures that the ordering of

its children is consistent with the coloring (possibly by adding new nodes), and assigns
colors to temporary storage locations associated with itself and its children. In phase B,

the values of the fields are processed, and the order of children of some nodes is reversed.

Then some nodes are renamed to be R-nodes. The resulting PQ-tree generates exactly

those orderings in L(T) that satisfy all colors. The description of the second stage is

rather detailed, and we recommend the reader skip it upon first reading.

The next two lemmas identify those trees equivalent to T whose frontiers satisfy all

colors. Let T' be any PQ-tree derived from T by equivalence transformations. Consider

the nodes of T' to be colored as they were in T. For each node v, let IT'[vj and rTr[v] be

the leftmost and rightmost elements, respectively, of the frontier of v in T'. (We write

t[v] and r[v] when T' is implicit.) It is a consequence of Lemma 4.2 that if the frontier

of T' satisfies every color, then

for each node v, INCOMPLETE(v) C {cl(I[v], cl(r[v]}. (2)

Lemma 4.5 Assume (2) holds for T'. For each node u, the following two conditions are

equivalent:

(1) The frontier of u in T' satisfies every color.

(ii) For each (non-proper) descendent v of u, if v, ... v. are the children of v in order,
then e[vl]r[vl]e[v2 ]r[v2] .. [v,]r[v] satisfies every color.
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proof by induction on height of u. Trivial for u of height 0, for then u is a leaf.

(i) =* (ii): Since L[vl]r[vl] ... t[v,]r[v,] is a subsequence of the frontier of u, if the

frontier of u satisfies every color, then certainly so does t[vl]r[v] ... t[v,]r[v,].

(ii) (i): Suppose (ii) holds, and let the frontier of u be wl ... wt. Suppose for
a contradiction that (i) does not hold. A counterexample to (i) would be a consecutive

subsequence wi ... w ... wk of the frontier of u such that cl(wi) = cl(wk) $ cl(wj). Choose

such a counterexample of smallest length j - i + 1. If wi... wk is contained within the
frontier of some child of u, that frontier does not satisfy cl(wi), so apply the inductive
hypothesis to obtain a contradiction. Thus wi and wk must belong to the frontiers of
distinct children ul and ui of U ( < k). Hence the color c = ct(wi) is incomplete at u,
and u, so, by (2), c E {cl(t[ul]),cl(r[u,])} and c E {cl(t[uk]),cl(r[ui])}. By (ii), since

< k, cl(r[tluj) = cl(t[uk]) = c.
Let u; be the child of u to whose frontier w3 belongs, so < j < k. Since i < k, either

i < j or j < kc. In the former case, (ii) implies that cl(L[u;I) = c, but then [uj .. . w is
a counterexample to (i) of length smaller than that of wi ... Wk, contradicting the choice
of wi ... wk. The case j < kc is analogous. 0

Lemma 4.6 Assume (2) holds of T'. Then (ii) of Lemma 4.5 is equivalent to
(iii) For each descendent v of u, for each color c incomplete at a child of v, the children

with color c form a consecutive subsequence of the children of v, and any uncovered child
vi with color c is an endpoint of this subsequence-either cl(r[vji) = c and vi is a left

endpoint, or cl(t[vil) = c and vi is a right endpoint.

proof Note first that if c is incomplete at a child vi of v, then c E {cl(e[vi), cl(r[vi])} by

(2). To show that (iii) implies (ii), we merely note in addition that if v; is covered by

c, then certainly cl(e[vi]) = cl(r[vi) = c. To show that (ii) implies (iii), suppose v is

uncovered. Assume (ii), so by Lemma 4.5, the frontier of vi satisfies c. But then, since

vi is not covered by c, only one of cl(e[vi]) and cl(r[vj]) can be c. Then (iii) follows from

(ii). 
With Lemmas 4.5 and 4.6 in hand, we proceed to describe the second stage. This

stage consists of two phases, phase A and phase B. In phase A, each node v ensures

that the ordering of its children is consistent with the coloring (possibly by adding new

nodes), and assigns colors to temporary storage locations (called fields) associated with
itself and its children. In phase B, the values of the fields are processed, and the order
of children of some nodes is reversed. Then some nodes are renamed to be R-nodes.

We let T* denote the result of executing phase A on T, and let T denote the result
of executing phase B on T*.

Phase A is outlined in Figures 9 and 10.
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Remarks:

1. For the purposes of this algorithm we associate with each node v four fields: v.left,

v.right, v.request-left and v.request-right. We assume that these are all cleared

initially. The values may be discarded after the completion of phase B.

2. The node v assigns a color c to its field v.left to signify that the leftmost element of

v's frontier is colored c. Similarly for the field v.right. The parent of v assigns a color

c to the field v. request-left to signify that the leftmost element of v's frontier "should
be" colored c (from the parent's perspective). Similarly for v.request-right. If any

of these fields is set, its value is some color incomplete at v. Moreover, each color

incomplete at v is either v.left or v.right and either v.request-left or v.request-right.
Fields of v are set only if v is uncovered.

3. If v is a P-node (Figure 10), new nodes are inserted between v and its original
children. Figure 11 illustrates the new descendents of v introduced in phase A. A
new node may be created which ends up having fewer than two children. Such a

situation may be easily remedied during the post-processing phase: if a new node

has only one child, identify it with its child, and if a new node has no children,
delete it.

4. Fields are associated with only original nodes, never with newly created nodes.

5. At the end of phase A, every original node has become a Q-node.
In phase B, we use the following notation. If {a, b} = {a', b'}, we write swapped((a, b), (a', b'))

for the predicate that is true if a = b' and b = a', and false if a = a' and b = b'. We write
E to denote exclusive-or" (GF(2) addition). Note that

swapped((a, b), (a", b")) = swapped((a, b), (a', b')) E swapped((a', b'), (a", b")) (3)

Note also that in phase B we use two more temporary fields for each original node v,
namely v.opposite-parent and v.reverse.

Note that step B3 of phase B can be done using standard parallel pointer-hopping
techniques (or parallel tree expansion).

For a Q-node or R-node v in PQ-trees T and T2, define flippedv(T1 , T2) to be true if

the order of children of v in T1 is the reverse of the order in T2, false if the order is the

same, and undefined otherwise. Note that

flippedv (Ti, T3) = flipped (Ti, T2) e flippedv (T2 , Ts) (4)

In the following, we will use T for the original PQ-tree, T* for the result of applying

phase A to T, T for the result of applying phase B to T*, and T' for a PQ-tree equivalent
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Q1 For each Q-node v with children V .. .,,

Q2 for each color c incomplete at a child of v,

Q3 check that the children with color c form a consecutive subsequence vi ... vi . (If
not, halt.)

Q4 Check that any uncovered child with color c is either v or vi
Q5 -if vi, then assign vi.request-right := c,
Q6 -if vi, then assign vi.request-left := c

Q7 (If neither, halt.)
Q8 Assign to each color c E INCOMPLETE(v) a distinct representative v drawn

from {v, v,} such that c E INCOMPLETE(v).

Q9 (If this step is not possible, halt.)
Q10 For each color c E INCOMPLETE(v),

Q11 If v, is not covered, then
Q12 If v, = v1, assign v,.request-left:= c and assign v.left := c.
Q13 If v, = v,, assign v,.request-right := c and assign v.right := c.

Figure 9: Phase A for Q-nodes

to T. See Figure 13. If v is a node of T' other than the root, we denote its parent in T'
by p(v).

Lemma 4.7 For any PQ-tree T' T I' and R-node v of T,
flippedu(T*, T') swapped((v.left, v.right), (v.request-left, v.request-right)) = flipped( )(T*, T')

proof We first prove the claim for T' = T. In step B2 of phase B, we set

v. opposite-parent := swapped((v.left, v. right), (v .request-left, v. request-right)).

In step B2, we have

v.reverse := u.opposite-parent
u an ancestor of v

v.opposite-parent ( e u.opposite-parent)
u an ancestor of p(v)

= v.opposite-parent E p(v).reverse

and by step B3, flipped(T*,T) = v.reverse and flippedp(,)(T*,T) = p(v).reverse. So the
lemma follows for '.

Now for any T' _ T, flippedv (T, T') = flipped() (T, T') because v is an R-node in T.
The lemma follows for T' by (4). El
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P1 For each P-node v,

P2 create a new P-node we for each color c incomplete at a child of v.

P3 Construct a graph Gv by connecting each we to all the uncovered children of v
with color c. If any w, has > 2 neighbors, halt. Otherwise, Gv has maximum
degree < 2. Using known pointer-hopping techniques, identify the connected
components of G,, and verify that each is a simple path-not a cycle (otherwise,
halt). Call these paths color chains.

P4 For each color chain X,

P5 choose one of the two orientations of X arbitrarily.
Construct a new Q-node ux and assign the nodes of X as children of ux in the
chosen order.

P6 For each node w,, let the children of wc be those children of v covered by c.
P7 If there is only one color chain X, and every original child of v is now a child or

grandchild of ux, identify v with ux, so that v is now a Q-node, and follow the
algorithm of Figure 9. Otherwise continue with step P8.

P8 Construct a new P-node v whose children are
{ux: the chain X does not contain any w,, where c E INCOMPLETE(v)}
U {y: y is a child of v at which no color is incomplete}.

P9 Rename v to be a Q-node whose children are {0} U
{ux : the chain X contains some we such that c E INCOMPLETE(v)},
ordered so that each such ux is a leftmost or rightmost child.

P10 For each color c E INCOMPLETE(v),

Pll check that w, is either the leftmost or the rightmost child of its parent (else,
halt). If in fact we is the only child of its parent, do nothing. Otherwise ...

P12 If w, is a child of v's leftmost child,
P13 assign v.left:= c.
P14 If w, is the rightmost child of its parent, flip its parent (reverse the order of

the parent's children).
P15 If w, is a child of v's rightmost child,
P16 assign v.right := c.
P17 If w, is the leftmost child of its parent, flip its parent.
P18 rename we's parent to be an R-node.
P19 For each color chain X,

P20 For each uncovered child x appearing in X
P21 if wC is to the left of x, then assign z.request-left := c,
P22 and if w0 is to the right of x, then assign x.request-right:= c.

Figure 10: Phase A for P-nodes
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Figure 11: modifications to a P-node

B1 For each original node v other than the root,

B2

v.opposite-parent :=
swapped((v.left, v.right), (v.request-left, v.request-right))

B3 For each original node v other than the root,

v.reverse := u.opposite-parent
u an ancestor of v

B4

B5

B6

B7

For each original node v other than the root,

if v.reverse then flip v (reverse the order of its children).

For each original node v other than the root,

if v is not covered and INCOMPLETE(v) 0 then rename v to be an R-node.

Figure 12: Phase B
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T

phase A ,

T*

phase B |

i
Figure 13: Phase A takes T to T*, and phase B takes T* to 1'.

Lemma 4.8 For any T' - T, for any node v of T, INCOMPLETE(v) C {cl(4,[v]),cl(rt,[v])}.
In particular, if v.request-left was assigned c, then

| cl( 1,[v]) if not flippedp()(T*, T')
cl(r ,[lvj) if flipped(.) (T', T')

and if v.request-right was assigned c, then

C cl(r,[v]) if not flipped,()(T, T")
| cl(4,[v]) if flipped,,)(T T')

proof by induction on height of v. Trivial for any covered v, including v a leaf. Also trivial

for INCOMPLETE(v) = 0, including v = the root. Therefore, say v is an uncovered
node with parent p(v) and c E INCOMPLETE(v), and suppose the lemma holds for
the children of v. By our assumptions on v, either v.request-left or v.request-right was
assigned c in phase A. Assume without loss of generality that v.request-left = c.

case a) v is a Q-node with children vl ... v, in T'. In step Q8, c E INCOMPLETE(v,),
where v, E {vl, v,). We treat the case in which v, = v.; the case v, = vl is similar. If

v, = v,, then v,.request-right := c and v.right := c in step Q13. By the inductive
hypothesis,

= f cl(r,[v,]) if not flipped (T*,T')
cl((4, [v.]) if flipped,(T*, T')

But the right-hand side is

cl(r, [v]) if not flipped, (T*, ')

t cl(T, [v]) if flipped,,(T', ')

Moreover, by Lemma 4.7,

flipped), (T, T')
= flipped (T*, T") swapped((v.left, v.right), (v.request-left, v.request-right))

27



Since v.left = v.request-right, swapped(.) is true, so flipped(,) (T', A') = not flippedu(T', "').

The lemma follows.

case b) v is a P-node. In step P9, c is incomplete at either v's leftmost or rightmost

child. Say c is incomplete at v's rightmost child (the other case is similar). This child

is vx, where the color chain X contains we. By step P17, w, is the rightmost child of its

parent ux in T'. It remains to show

cl(rt,[vl) if not flipped (T, "')
lcl(,[v) if flipped(T',T')

for then the lemma follows by applying Lemma 4.7 as in case ().

But flippedc(T*,T') iff flippedx (T', T') because ux was made an R-node in step P18.
Hence if we let z be the rightmost node of ux in T', we have r,[v] = r,[z] if not

flippedc(T',1') and t,[v] = 4t,[z] if flippeci(T', '). Formally w, is the rightmost child
of ux . Any child of we is covered by c, so if w, has any children, the lemma follows. If wt

has no children, it will be deleted during the post-processing phase (see comment 3 on
page 23). Hence in this case the true rightmost child of ux in T' is an uncovered node y

with color c appearing to the left of w, in X. In step P22, y.request-right was assigned c,

so by the inductive hypothesis,

= fcl (rt, [y]) if not flipped,x (T*, T')
1 cl(4,[y) if flippedux(T*, T')

The lemma then follows by remarks above. 0

Lemma 4.9 If there is a PQ-tree equivalent to T satisfying every color, then phases A
and B succeed. Say phases A and B produce the PQ-tree T. Then the orderings generated
by T are ezactly the orderings generated by T and satisfying every color.

proof We show that phases A and B induce a frontier-preserving bijection X from
{T'T' - T,T' satisfies every color} to {T'IT' _ T}. We first define d, noting that it
is frontier-preserving. We show that if there is a T' - T satisfying every color, then
phases A and B succeed with input T, producing a PQ-tree T. Next we show that
4(T') T. Finally, we show that for any T' - T, the inverse image - (T') is a PQ-tree
T ' T and satisfying every color.

Let T' be a PQ-tree equivalent to T and satisfying every color. Lemma 4.2, (2)
holds of T'. By Lemmas 4.5 and 4.6, condition (iii) holds of T'. It is a straightforward
appl:cation of (2) and (iii) to the algorithms of Figures 9 and 10 to show that phase A

can be successfully applied to T' to yield a PQ-tree (T') ' such that each node v of T' has
the same frontier in (T')* as in T'. Let T be the result of executing phase B on (T')*.
See Figure 14. An application of Lemma 4.8 to (T') ' and T' will show that for every
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phase A

T* (T')*

{| phase B j

T T'
Figure 14: Phase A takes T to T' and T' to (T')'. Phase B takes T' to T, and (T')' to
T'.

node v of T', flipped((T'), T) is false, and hence T' has the same frontier as (T')*. We

let O(T') = T.
Now, we use the fact that Phase A succeeded for input PQ-tree T' to show that

it succeeds for PQ-tree T (although in the latter case Phase A will generally involve

reordering children). For any node v of T, if v is a Q-node, it has the same children
in the same order (up to a possible flip) in T as in T'. If v is a P-node, node that
the graph G, constructed in step P2 depends only on the coloring of v and its children,
which coloring is the same in T as in T'. Hence phase A succeeds for input PQ-tree T,

producing a PQ-tree T'. Let T be the result of executing phase B on T*.
By carrying the argument a bit further, we see that T and T are equivalent. Let v

be any node of T. If v is a Q-node, then certainly v has the same children in the same

order (up to a flip) in T and T'. If v is a P-node, since the color chains are determined

only by the coloring of v and its children, the nodes ux created in phase A have the same
children in the same order (up to a flip) in and T. It follows that T' and (T')* are

equivalent. Hence T and T have the same nodes, each node v has the same children,
and in the case that v is a Q-node, the order of v's children is the same (up to a flip). It
remains to show that the nodes made into R-nodes in step B are consistent, i.e. if v is
an uncovered node with some color incomplete, then flipped (T, T') = flipped,(,)(T, T').
But note that

flippedv (T. Tt) flipped() (T. T')

flipped( (T ' T*) ( flipped( (T', (T' )*) E flipped( v)( T' ) *, T")

by equation 4

= [flipped,,(T, T*) flippedp(,)(', T', *) flipped,(T*, (T')*) ( flippedp()(T*, (T')*)
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because flippedu ((T')', a) = flippedp(!) ((T'), T) = false

= [v.opposite-parent] eDflippedu(T*, (T')*) @flippedp()(T, (T')')

by line B5 of phase B.

By line B2 of phase B, v.opposite-parent = swapped((v.left, v.right), (v.request-left, v.request-righ,

Let v.left, v.request-left, etc. be the values assigned to these fields during the execution

of phase A on T, and let v.left', v.request-left', etc. be the corresponding values assigned

during the execution of phase A on T'. Then by phase A (steps Q6,Q5 and P22,P21),
we can also substitute for the second and third term, obtaining

= [wapped((v.left, v.right), (v.request.left, v.request-right))]

( swapped((v.left, v.right), (v.leftf, v.right))

( swapped((v. request-left, v. request-right), (v. request-lef', v. request-right'))
= false

by applying equation 3, using the fact that swapped((v.left', v.right'), (v.request-left', v.request-rig

false.

All that remains is to show that if T' is any PQ-tree equivalent to T, then T' = ,(T')
for some unique PQ-tree T' equivalent to T and satisfying every color. For every node v

of T, v appears in T' and a child of v in T is separated from v in T' by zero to three new

nodes (i.e. nodes that do not appear in T). To obtain T' from T', eliminate these new

nodes, connecting the original children of v directly to v without reordering them. Then
rename each node to be either a P-node or a Q-node, depending on what it was in T.

Let the result be T'. It is easy to verify that T' is equivalent to T: each node v has the

same children, and if v is a Q-node, they are in the same order (up to a flip). Because we

have not reordered children, this mapping +-l(.) is frontier-preserving. Any two distinct

trees equivalent to T have distinct frontiers, so map to distinct trees; thus T' is unique.

It remains to show that the frontier of T' satisfies every color. By Lemma 4.8, every

color incomplete at an original node is an endpoint of the frontier of that node in T', and

hence in T'. That is, (2) holds for T'. By Lemmas 4.5 and 4.6, to show that T' satisfies

every color, it is sufficient to show that each node u of T' satisfies condition (iii).

let v be any node of T', and let c be a color incomplete at a child of v.

case a) v is a Q-node. By step Q3, the children of v with color c form a consecutive

subsequence vi ... vi of the children of v in T', and hence are also consecutive in T,

T', and finally T'. By step Q4, any uncovered child with color c is either vi or vi in

T*. Suppose without loss of generality it is vi. Then vi.request-right was assigned c
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in step Q5. By Lemma 4.8,

cl(rIl,[vl) ifnot flipped,(T',1')
cl(4,[vj]) if flippedu(T, ')

If not flipped.(T', 12') then vi is still the left endpoint of the c-colored sequence. In

this case, Cl(rT[vil) = cl(rt,[v]) = c, and condition (ii) is satisfied. Similarly if

flipped (T', ') .

case b) v is a P-node. We first must show that the children of v with color c form a

consecutive subsequence in T', and any uncovered child with color c is an endpoint
of this subsequence. The following condition is equivalent: the covered children
with color c form a consecutive subsequence (possibly empty), and each uncovered
child with color c is either immediately to the left or immediately to the right of
this subsequence. Now, the covered children with color c are all the children of we
in T2', hence are consecutive in T' and in T'. Any uncovered child y of v with color

c is adjacent to w, in the chain X containing w,, hence y is immediately to the left

or right of w, as a child of ux in T. It follows that in T' the child y is adjacent
to the sequence of covered children with color c. To conclude that condition (iii)

holds, we must verify if y is to the left of the sequence in T', then cl(t[yJ) = c, and

if y is to the right of the sequence, then cl(r[y) = c. This can be done as in case a.

This completes the description of the disjoint-reduction algorithm. Lemma 4.9 proves
the correctness of phases A and B, so we have proved Theorem 4.1.

4.3 Segregation and Joining

In this subsection, we make some observations and introduce some terminology useful

to the rest of the algorithms in this section. We also describe the process of "joining"

PQ-trees. If a PQ-tree T is reduced with respect to a set A of ground elements, the part

of the tree "pertinent" to the set A is "contiguous," in a sense described below.

Lemma 4.10 Let T be a PQ-tree reduced with respect to a set A with more than one

element. Suppose v = lca(A) has children vl ... v,. For some consecutive subsequence of

children vp ... vq (p < q), A = Upi<q leaves(vi).

proof If only one child vi of v satisfies the condition

leaves(vi) n A 0 (5)

then lca(A) is a descendant of vi, contrary to choice of v. Thus v has more than one

child vi satisfying condition (5). Let the leftmost such child of v be vp and the rightmost
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v.. Suppose that for some child v (p < i < q), we did not have leaves(vi) C A. Then

either the frontier of T does not satisfy the subset A, or the frontier of the tree obtained

from T by flipping v does not satisfy A. (or both). Hence we have leaves(vi) C A for

each p < i < q. The claim follows because v was chosen to be an ancestor of every leaf
in A. C

We say that T has been segregated with respect to A if A = leaves(lca(A)). By Lemma
4.10, a PQ-tree T reduced with respect to A car. always be segregated with respect to
A, possibly by introducing an R-node. For if leaves(lca(A)) contains ground elements

not in A (i.e. if p > 1 or q < s in Lemma 4.10), we can introduce into T an R-node v'

as a child of v = Ica(A) replacing v's children vp... V,. In this modified version of T,
v' = lca(A) and A = leaves(v'). The modification can be carried out within the same
time bounds as reduction, for a suitable representation of PQ-trees.

If T is segregated with respect to A, we call the subtree rooted at Ica(A) the A-
pertinent subtree of T, and denote it by TJA. Let TA denote the result of deleting the

nodes of TIA from T.
Suppose that T is segregated with respect to A. If IcaT(A) is an R-node, we say

T is A-rigid; otherwise (if lca(A) is a P-node or Q-node), we say that T is A-hinged.

These definitions are motivated by the following considerations. If T is A-hinged, any
equivalence transformations may be applied to any node of the A-pertinent subtree of T

without affecting the rest of the tree. Consequently, we have the following lemma:

Lemma 4.11 If T is A-hinged, and A,r E L(T), then there is a y E L(T) such that

'y71 = AI: and 'ylA = rA.

Now suppose T is A-rigid. Any equivalence transformation may be applied to any

node of TIA other than Ica(A) without affecting the rest of T. However, Ica(A) cannot be

flipped without flipping its parent, because Ica(A) is an R-node. We obtain the following
lemma:

Lemma 4.12 If T is A-rigid, and A, r E L(T), then either
* there is a -y E L(T) such that AIA = rIA and AlA = l-A,

or
* there is a E L(T) such that AlA = rIA and AIA = (ylA)R,

but not both.

Thus when T is A-hinged, the choice of an ordering on A is totally independent from
the choice of an ordering on the rest of T's ground set, but when T is A-rigid, the choice
of an ordering on A is independent only up to a flip.

We make use of the new terminology in showing how to compute the join of two

PQ-trees.
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Figure 15: Computing the join of T with T2 in the case T is A-hinged.

Recall the definition of joining, given in Subsection 4.1. Given two PQ-trees T and
T2 over the respective ground sets S1 and S2, let A = S1 n S2, and suppose T1 and T2 are

reduced and segregated with respect to A. For A1 E L(TI) and A2 E T2, let AX1 join A2

denote the ordering over S1 U S2 - A obtained by substituting A2IA for AlIA in A1. Let

the join of T1 with T2 be the PQ-tree T generating

(A 1 join A2 1 E L(T1),A 2 E L(T2 ), and A\1 A = ( 2IA)R} (6)

For the set (6) to be non-empty, there must be some ordering r of A agreed upon"
by an ordering generated by T1 and an ordering generated by T2, i.e. for some A1 E L(TI)
and 2 E L(T2), AlA = r = (A21A)R. To determine whether the set (6) is non-empty
(and find some agreed-upon ordering r of A, we may intersect T1 IA with T2 IA and choose

r to be the frontier of the result, if the result is not the null tree. The intersection
algorithm takes O(log2 n) time. We can, however, assume that (6) is non-empty, and

compute a PQ-tree T that is the join of T1 and T2, provided our assumption is correct.

This computation takes only O(logn) time. We can later check our assumption using

intersection-if the assumption is verified, fine; otherwise, the true join is the null tree.
For now, we will assume that (6) is non-empty, i.e. that there is an agreed-upon

ordering r of A. Given this assumption (but not given r itself), we consider the problem
of computing the join of T1 with T2 when T2 is reduced with respect to S2 - A as well
as with respect to A. This latter condition simplifies the interaction in T2 between T2IA

and T2IA.

The reader should observe throughout the remainder of this subsection that there is

no difficulty in ext3nding our techniques to computing the join of T1 with many trees

T(i) simultaneously, as long as the trees T( ) all have disjoint ground sets. Assigning one

processor to each node of each tree, we can compute this "multiple join" in O (log n) time,

where n is the total number of nodes.
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Figure 16: Computing the join of T1 with T2 in the case both T1 and T2 are A-rigid.

Segregate T2 with respect to A and S2 - A. By Lemma 4.10, in the segregated tree
the root has two children, lcaT2(A) and lcaT,(S2 - A).

There are two cases in computing the join T of T1 and T2. First, suppose that either
T or T2 is A-hinged. Then let T be the PQ-tree obtained by substituting T2lA for TIIA

in T, (identifying the root of T2sA with the root of TlA), as in Figure 15. We claim that

T is the join of T1 with T2. For note that T generates

(A1 join A2 1 E L(TI), A2 E L(T 2 )} (7)

so certainly L(T) includes (6). But suppose Al join A2 belongs to (7). By Lemma 4.11,
there exist A E L(T1) and A2 E L(T) such that AIA = AiA (i = 1,2) but AlIA = r and

(A2 IA)R = r. Thus A1 join A2 = A1 join A is in (6), proving (6) and (7) are the same

sets.
For the second case, suppose both T and T2 are A-rigid. This case is slightly more

difficult. For simplicity, first suppose that the frontier of caT (A) is either the same as

the frontier of lcaTr(A), or its reverse. We may assume without loss of generality that

it is the reverse, by flipping every node of T2 if necessary. Now consider T2 l, the tree

obtained from T2 by deleting the nodes of T21A. The root r of T2lA may have only one

child (its second child in T2 being lca(A)).

Let (T2 1i)' f T2l1- r if r has one child
eT2 A otherwise

Then we obtain the join T of T1 and T2 by substituting (T21J)' for T IA, and renaming

the root of (T2 lSI)' to be an R-node. See Figure 16.

Ordinarily we will not be so lucky as to find that the frontier of IcaT, (A) is the same

as (or the reverse of) the frontier of Ica (A). There are two techniques to which we can

turn. The first is to execute a single phase of INTERSECT, giving us enough information

to carry out the join. This technique takes O(log n) time. The second technique is to
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make use of other constraints on orderings to construct the join provisionally in constant

time, and later call on the first technique to verify it (if the verification fails, the join is

the null tree). We describe the first technique here; the second technique will come into

play in the planarity algorithm, and we treat it in Subsection 4.5.

Let v = IcaT,(A), and suppose v has children vl,... ,v, (s > 1). Let As = leaves(vi)

for i = 1,... s. Because T1 is A-rigid, we know that v is an R-node. Hence any ordering

Al generated by Tl satisfies the following three constraints:

(a) A1 satisfies each of Al,..., A,.

(b) A1 satisfies each of Al U A 2, As U A4 ,...

(c) Al satisfies each of A 2 u A 3, A 4 U As,...

Constraint (a) is satisfied simply because each of the sets lies below a different child of

v. Constraints (b) and (c) are satisfied because of the order imposed on its children by
the R-node v.

Certainly any ordering r of A agreed upon by an ordering A1 generated by T1 and
an ordering 2 generated by T2 must satisfy constraints (a), (b), and (c), because any

A1 satisfies these constraints. To determine whether any 2 satisfies these contraints,
we reduce T2 three times, once for each constraint. If the result of the reductions is

the null tree, there is no agreed-upon ordering r of A, and hence the join is the null
tree. Otherwise, if all the reductions succeed, we segregate T2 with respect to Al,..., A,,

obtaining nodes v, ... , v in T2 such that v: = lca(A). Because of contraints (b) and (c),

which now hold in T2, the order of these nodes in T2 must be either vl ... v, or v, ... vl.
We may assume the latter without loss of generality, flipping every node of T2 if necessary.

Assuming that there exist A1 E L(Ti) and A2 E L(T2) such that AIIA = ( 2IA)R, these

orderings may be obtained as frontiers of T1 and T2 respectively, following the application

of equivalence transformations to the subtrees rooted at the nodes vl,. .. , v, and v, ... , v

respectively. We need not actually carry out these transformations in order to form the

join; we merely follow the procedure outlined above as if the frontier of IcaT, (A) were the

reverse of the frontier of carT (A). This completes our description of the join operation.
Observations concerning join in a special case useful in planarity-testing may be found
in Subsection 4.5.

4.4 Intersection

Recall from Subsection 4.1 the definition of intersection: A PQ-tree T is the intersection
of two PQ-trees T1 and T2 over the same ground set if L(T) = L(T1) n L(T2). In this

subsection, we describe an algorithm INTERSECTION(T1, T2) for intersecting two PQ-

35



trees using disjoint reduction as a subroutine. The algorithm modifies T to be the
intersection of the two original trees. If n is the size of the ground set, the algorithm
runs in O(log2 n) time using n processors, as stated in Theorem 4.2.

proof of Theorem 4.2. We can carry out intersection by O(log n) invocations of DISJOINT-

REDUCE. The idea is to consider each node v of T as a constraint on permitted order-

ings, and to incorporate this constraint into T, by reduction.

Assign to each node v of T2 a distinct color c(v). Let v be any node of T2 with children

vl... v,. Let A = leavesT,(v), and let A, = leavesr,(v,) for i = 1,...,s. We associate

with v the following two constraints:

(i) the elements of A must be consecutive, and

(ii) the elements of Ai must be consecutive for each i.
Constraint (i) can be incorporated into T1 by reducing Tx with respect to A. Constrain
(ii) can be incorporated into T1 by reducing T1 with respect to the coloring cl(Ai) = (vi).
If v is a Q-node, there is also an additional constraint associated with v:

(iii) the subsequence of elements of Al must be adjacent to the subsequence of elements
of A2, which must be adjacent to the subsequence of elements of As, etc.

This additional constraint can be incorporated into Tl by reducing T twice, once with
respect to the coloring cl(A,) = c(vri/2l) and once with respect to the coloring cl(A) =

c(vli/2J). The first coloring forces Al to be adjacent to A2, A3 to be adjacent to A4, etc.

The second coloring forces A2 to be adjacent to As, A4 to be adjacent to As, etc. Note
that in each of these colorings the only nodes to receive colors are those below v.

To intersect Tl with T2, we need only incorporate into T1 the constraints associated

with each node v of T2. We could do this by sequentially carrying out at most four

reductions of T for each node of T2; however, this would be inefficient, as T2 may have

fl(n) nodes. Our goal, therefore, is to perform only O(log n) reductions, where necessarily

each reduction will incorporate into T1 the constraints associated with many nodes of T2.

To make this possible, we introduce a useful tool for manipulating trees.
Fix a tree T of n nodes. If n > 2, let a good separator of T be a node v such that

if T(1),...,T(k) are the subtrees of T rooted at the children of v, and T(°) is the tree

obtained from T by deleting T(1),...,T ( ), then each subtree T(),...,T(") has no more

than nodes. It is easy to find a good separator if n > 2. For each node u of the tree
T, let size(u) be the number of nodes in the subtree rooted at u, and let childSize(u)
be the maximum number of nodes in the subtree rooted at a child of u. Note that size

and childSize can be computed using parallel tree contraction. Let u be a node such
that size(u) > ' but childSize(u) < . Then u is a good separator. To see that
such a u exists, consider a path vl ... v, from the root vl of T to a leaf v, such that

size(vi+l) = childSize(v,). Since the first node vl has size(vi) = m > ' and the last
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node v, has size(v,) = 1 '2, some node along this path must satisfy the condition
above. We have shown

Claim Given a tree T of m nodes, a good separator v of T may be found in O(log n)
time using m processors.

We will now describe the algorithm for intersecting a PQ-tree T with another PQ-

tree T2, proving Theorem 4.4. The form of the algorithm is a simple divide-and-conquer.
If T2 has only one node, do nothing. Otherwise, choose a separator v of T2 with children

vl... v,. Introduce into T1 the constraints associated with v as described above. Namely,

reduce T1 with respect to each of the following colorings in turn:

(a) cl(leavesT (v)) = c (all other elements uncolored),
(b) cl(leavesrT(v,)) = c(vi) for all 1 < i < s,

and, if v is a Q-node,

(c) cl(leavesT,(v)) = c(vf,/21) for all 1 < i < s, and
(d) cl(leavesT) = c(vLi/2J) for all 1 < i < s.

Next, we use the separator to separate T and T:. Conceptually, we remove the edges

from v to its children in T2, so that T2 falls into small pieces. Segregate Tl with respect
to the coloring (a), and let v' be the node of T such that leavesT,(v') = leaves 2r,(v).

Similarly, segregate T with respect to the coloring (b), and let v be the node of T1

such that T(v') = leavesr,(vi). Now conceptually remove the edges connecting v' to its

children and the edges connecting each vi to its parent, so that Tl falls into small pieces.

For each piece of T2, there is a corresponding piece of T1 with the same leaves (where we

identify v' in T1 with v in T2, and v' in T1 with v; in T2. Now intersect the parts of T1

with the corresponding parts in T2 recursively.

This concludes our description of the intersection algorithm and the proof of Theorem
4.4.0 

4.5 Representing Cyclic Orderings with PQ-trees

In our planarity algorithm, the orderings represented by PQ-trees will have a special
form. The ground set of each PQ-tree T will be the disjoint union of two non-empty sets

in(T) and out(T), and in every ordering in L(T), the elements of each of these sets will

be consecutive. That is, T will be reduced with respect to each of these sets. We will say

for conciseness that T is (in,out)-reduced.

Moreover, we intend to represent not sets of linear orderings, but sets of cyclic order-

ings. Consider Figure 17. We have depicted one cyclic ordering, namely (a4asazalblb 2bs).

(This notation means that a preceeds as3 and follows bs in the cyclic order.) One

way to represent this cyclic ordering as a linear ordering is aasa 2alblb2bs; another is
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Figure 17: The cyclic ordering (a4 asa2alblb 2bs).

blb2ba 4aaa2a, and still another is a2alblb2bsa4as. Thus there is considerable redun-
dancy in representing a cyclic ordering as a linear ordering. Note that in the third way,

the elements of INT are not consecutive. We will rule out such representations as invalid,

and restrict ourselves to representing a cyclic ordering as a linear ordering in which all

the elements of in(T) are consecutive and all the elements of out(T) are consecutive.

Consequently, there are two valid representations of a given cyclic order: one in which

the elements of in(T) come first, and another in which the elements of out(T) come first.
Say a/, is one valid representation of a cyclic ordering, where a consists of elements of

in(T) and consists of elements of out(T). Then the other valid representation of the

same cyclic ordering is Pa.

To represent a set of cyclic orderings, we can use a PQ-tree T that generates valid
representations of these orderings. If T is (in,out)-reduced, let C(T) be the set of cyclic

orderings whose valid representations are generated by T. Other definitions carry over

from linear orderings. A cyclic ordering a of S is said to satisfy a subset A C S if the

elements of A are consecutive in a. We let alA denote the linear ordering of A induced

by a, and let alA denote the linear ordering of S - A induced by a.

PQ-trees are useful because they can be reduced; hence, it is important to verify

that our reduction algorithm will work on a PQ-tree T used to represent a set of cyclic

orderings. If we reduce T with respect to a set A which is wholly contained in either

in(T) or out(T), then reduction will work as expected-the reduced tree will represent

the subset of C(T) in which the elements of A are consecutive. For we may assume that

T is segregated with respect to in(T) and out(T). If, for example, A is wholly contained

in in(T), reducing T with respect to A affects only the subtree Tlin(T). But for any

cyclic ordering a, the induced ordering alin(T) is a linear ordering. Hence the reduction
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operates on Tlin(T) correctly. It follows that MULTIPLE-DISJOINT-REDUCE(T, cl)

will work as expected if each color class of cl is wholly contained in either in(T) or out(T).

The result will still be (in,out)-reduced.
We also want to use the join operation on cyclic orderings. The join of two orderings,

defined in Subsection 4.1, may be interpreted to apply to cyclic orderings: Suppose Tl

and T2 are (in,out)-reduced PQ-trees over S1 and S2, respectively, and are reduced with
respect to A = S1 U S2. For al E C(T) and a2 E C(T), we let al join a2 denote the cyclic

ordering obtained by substituting the linear ordering 02l A for the linear ordering a, IA in
a,. The (in,out)-reduced join of T, with T2 is a PQ-tree T such that

C(T) = {al join a02: a0 E L(T1),02 E L(T2),crIlA = ( 2 A)R, and (8)

a1 join a2 satisfies in(T) and out(T)} (9)

where in(T) = in(Ti) U in(T2) - A and out(T) = out(TI) u out(T2) - A.
The remainder of this subsection is devoted to showing how to compute the (in,out)-

reduced join in two special cases, the two cases arising in the planarity algorithm of
Section 6. In each case, A will be wholly contained in each of the sets in(T,) and out(T 2 ).

Special case 1 holds if A = out(T 2). In this case, the elements of a2 A are all elements

of in(T2). Thus in obtaining al join 02, we substitute a sequence of elements of in(T2)
for a sequence of elements of in(TI). The result is certainly reduced with respect to

in(T) = in(T1 ) - A U in(T2). It is also reduced with respect to out(T) = out(TI) because
or, is. The join takes place entirely in TlJin(TI). Thus we may perform the ordinary join

of T1 in(T1) with T2 as described in Subsection 4.3, and the result will be automatically
(in,out)-reduced. Note that, as mentioned in Subsection 4.3, we may simultaneously join
T1 with many PQ-trees T(j) having disjoint ground sets.

For special case 2, on the other hand, the requirement that the result be (in,out)-
reduced is not automatically satisfied. For this case, we take pains to compute the
(in,out)-reduced join without performing a reduction. In fact, we develop a special form
such that an n-node PQ-tree may be put in this form in O(log n) time, and subsequently

join to another PQ-tree in constant time (subject to later verification). We take advantage
of the redundancy of representation of cyclic orderings in obtaining this special form.
First, we give the special form in Lemma 4.13. Next, we state special case 2 and show

how the (in,out)-reduced join can be computed in this case. Finally, we prove Lemma
4.13.

Lemma 4.13 Let T be a PQ-tree such that out(T) is the disjoint union of non-empty
sets B and C, and T is reduced with respect to B and C, as well as in(T) and out(T).
Then there is a PQ-tree T' such that C(T') = C(T) in which the root is a Q-node with

children a, b, c such that in(T) = leaves(a), B = leaves(b), and C = leaves(c).
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Figure 18: Replace the subtree rooted at the middle node of Tl with T2:A, making the
root of this new subtree an R-node.

Note: Lemma 4.13 also holds when 'in(T)" and out(T)" are exchanged.
We now state special case 2. It holds when in(T) - A and out(T 2) - A are both

non-empty, T: is reduced with respect to in(T) - A, and T2 is reduced with respect to
out(T) - A.

To compute the (in,out)-reduced join of T1 with T2 in special case 2 (subject to

later verification using intersection), first use Lemma 4.13 to modify the two PQ-trees.

We modify T1 so that the root rl of T: has three children alblcl, where leaves(al) =

in(T:) - A, leaves(bl) = A, and leavcs(cl) = out(TI). We modify T2 so that the root r2
of T2 has three children a2b2c2, where leaves(a2) = in(T2), leaves(b2) = out(T2 ) - A, and
leaves(c2) = A. Carrying out these modifications of T1 and T2 is the preprocessing stage.

To modify a tree with n leaves takes O(log n) time using n processors.
Verifying that (8) is non-empty can be done exactly as in Subsection 4.3, using con-

straints (a), (b), and (c) as well as intersection to check that some equivalence transfor-

mations can be applied to the nodes of T:IA and T21A so that the frontier of one is the
reverse of the frontier of the other.

For now, assume that (8) is non-empty. To compute the (in,out)-reduced join, replace
the subtree of T1 rooted at b1 with T2 A1, renaming r2 (which replaced bl as a child of rl)

to be an R-node, as depicted in Figure 18. Let T be the resulting PQ-tree.

Before we show that T is in fact the (in,out)-reduced join of T1 and T2, note that

computing T is very easy. In particular, after the preprocessing stage, the join can be

done sequentially in constant time, assuming the pointer-based representation for PQ-

trees recommended in Subsection 4.1. Of course, it is necessary to have a post-processing

phase to eliminate the newly introduced R-node, but this can also be done in constant
time because there is only one R-node, and it is a child of the root.

Now we will prove the correctness of the procedure given above for computing the
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(in,out)-reduced join T of Tl with T. To show that T is the (in,out)-reduced join,

first suppose that al join 02 belongs to the set (8). Then 01 E C(T1), a2 E C(T2),

sigmalJA = (a2lA)R, and al join a2 satisfies in(T) = in(T) - A U in(T) and out(T) =
out(T2) - A U out(Tl). For some TV - T, fr(T) represents the cyclic ordering Or (for

i = 1,2). Let T' be the tree obtained by substituting T2IA for TflA in T, renaming the
root of T2IA (now a child of the root of T:) to be an R-node. It remains to show that
T'~ T.

We call on some notation defined in Subsection 4.2. For a Q-node or R-node v in

PQ-trees T( ) and T(2), define flipped.(T(),T(2)) to be true if the order of children of v

in T(1) is the reverse of the order in T(2), false if the order is the same, and undefined
otherwise.

Claim flippedr (T , T) iff flipped,2 (T2, T2)

(Proof of the claim is given below).

We can now show that T' ~ T. Since T -- T2, T is the result of al plying a number of
equivalence transformations to T. A subset of these equivalence transformations affect
nodes of T, which are in T'. Apply this subset of transformations to the nodes of Tl that

are in T'. Similarly, consider the equivalence transformations used to transform T to
T2, and apply to the nodes of T2 in T' those transformations affecting those nodes. By
the claim, if one of the first subset of transformations flips the root r of T,, one of the

second flips the root r2 of T2. Thus we can legally carry out all these transformations on

T' despite the fact that in T' the node r 2 is an R-node and a child of rl. Let T" be the

result of applying all these transformations to T'. We claim that T" is T. Indeed, the
subtree of T" rooted at r2 is T21A, and the subtree obtained from T" by deleting every

descendent of r2 is T1[A.

In order to show that T is the (in,out)-reduced join, it remains only to show that

every linear ordering A generated by T represents a cyclic ordering belonging to the set

(8), assuming the set is non-empty. First note that by the construction A satisfies in(T)

and out(T). Second, by the assumption that the set (8) is not empty, there is some linear

ordering of A such that lcar,(A) generates r and caT2(A) generates (r)R.

Assume without loss of generality that A begins with an element of in(Ti). By con-

struction of T, A can be written as a l a 2 6P2# 1, where ai6 = AilA for some ordering

,Xi E L(Ti) (for i = 1,2). By Lemma 4.12, there is a A' E L(Ti) such that 'A L = AilA
and M IA is either r or (r)R (for i = 1,2). Let ci be the cyclic ordering represented by
AX (for i = 1,2). If Ai[A = r and A2IA = (r)R, or l4IA = (r)R and A4IA = r, then we

are done, for then od join a; belongs to the set (8). Assume without loss of generality

that XAIA = )'4A = r. If T2 is A-hinged, we can use Lemma 4.11 to obtain an ordering

A" e L(T 2 ) such that AIAX = A2 XA, and proceed as above. Similarly if T, is A-hinged.2 2 ~21JLI IlQ 2
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Hence assume that T1 and T2 are both A-rigid. It follows that for any two orderings

A1 E L(TI) and 2 E L(T 2 ), if A1IA = (A21 IA)R then

1* A starts with an element of in(T1) - A, has elements of A in the middle,and ends
with an element of out(Ti), and

* A2 starts with an element of out(T2) - A and ends with an element of out(T2).

Hence the join of the cyclic ordering represented by A1 with the cyclic ordering represented
by A2 does not satisfy in(T) and out(T). We conclude that the set (8) is empty. This

completes the proof of correctness of the join procedure; it remains to prove the claim
and to prove Lemma 4.13.
proof of claim. Assume without loss of generality that flipped,, (Ti, T) is false, so the

order of children of rl in T,' is alblcl. Hence the cyclic ordering a represented by

fr(T~) has the form (aliyzl) where al consists of elements of leaves(al) = in(T1 ) - A, $I
consists of elements of leaves(bl) = A, and 71 consists of elements of leaves(cl) = out(TI).

Suppose for a contradiction that flipped,, (T2, T2 ) is true, so the order of children of r2 in

T2 is c2b2a2. Then the cyclic ordering r2 represented by fr(T2) has the form (25P2a2),

where -'2 consists of elements of leaves(c2 ) = A, $2 consists of elements of leaves(b2) =
out(T 2) - A, and 72 consists of elements of leaves(a2) = in(T2 ). Hence the linear ordering
72 A has the form #i2a2. Substituting 2 IA for al A in or yields al join 02 = (alP2a2P1),

which is not (in,out)-reduced. Thus we have a contradiction. Fl

Before beginning the proof of Lemma 4.13, we prove two auxiliary lemmas:

Lemma 4.14 Let T be a PQ-tree reduced and segregated with respect to in(T) and
out(T). Let T' be the PQ-tree obtained from T by exchanging the root's two children

lca(in(T)) and Ica(out(T)). Then C(T') = C(T).

proof Before we prove lemma 4.14, note that it is not trivial. In particular, L(T') is

not necessarily the same as L(T). The reason is that Ica(in(T)) or lca(out(T)) (or both)

may be an R-node, in which case merely exchanging the two children of the root is not

a valid equivalence transformation.

In exchanging the two children of the root, we map every linear ordering aS generated

by T to f-a (where a is an ordering of in(T) and P is an ordering of out(T), or vice

versa). Since aS and pa are valid representations of the same cyclic ordering, we have

C(T') = C(T). O

Lemma 4.15 Let T be a PQ-tree reduced and segregated with respect to in(T) and

out(T). Suppose that Ica(in(T)) is an R-node and Ica(out(T)) is not. Let T' be the
PQ-tree obtained from T by renaming Ica(in(T)) to be a Q-node. Then C(T') = C(T).

proof Clearly C(T') C C(T); it remains to prove the other containment. Let ' E L(T'),
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and let a = r'lin(T),1 = r'lout(T). By Lemma 4.12, there is a r E L(T) such that

rlin(T) = a and rlout(T) is either P or PR. If the former, then r and r' represent the

same cyclic ordering, and we are done. Otherwise, let T be the PQ-tree equivalent to

T such that frTl = r. Flip every node in Tllout(T) without flipping any other nodes of

T; we can do this because lcar,(out(T)) is not an R-node. Let T2 be the result. Then
frTrlin(T) = a and frT 2lout(T) = P, so frT 2 represents the same cyclic ordering as r'

represents. This proves C(T') C C(T). O
proof of Lemma 4.13. Segregate T with respect to in(T) and out(T). Let a = Ica(in(T))

and d = lca(out(T)). The root now has two children, a and d, so we may assume it is
Q-node. Next, segregate Tlout(T) with respect to B and C, and let b = lca(B) and
c = lca(C). Now d has two children, b and c, so we may assume it is a Q-node or an
R-node.

We want b to be the left child of d; if it is not, flip d, a, and the root (we must flip all
three nodes because d and a may be R-nodes). Next, we want a to be the left node of
the root. If this is not the case, we apply Lemma 4.14 to exchange a and d as childdren
of the root.

If d is an R-node, we eliminate the R-node as on page 18, attaching its children b and c
to the root in its place. Then the root has children a, b, c satisfying the lemma. Suppose,
therefore, that d is not an R-node, but a Q-node. Rename it to be an R-node, and, if
a is an R-node, rename it to be a Q-node. By two applications of Lemma 4.15, it can
be shown that this modification does not change the set of represented cyclic orderings.

Now that d is an R-node, we proceed as above. ]

5 Planar Graph Preliminaries
Lemma 5.1 If a simple graph G with n nodes and m edges is planar, then m < 3n- 6.

proof follows from Euler's formula for the number of faces of a planar graph. See, e.g.,

[5].O
By Lemma 5.1, a planarity-testing algorithm can immediately reject a graph G that

has more than 3n edges.
In an embedding in the plane, one face, called the exterior face, is an infinite region. To

avoid this, we may consider embeddings in the surface of a sphere, for such an embedding

can be mapped directly into an embedding on a plane, and vice versa (see, e.g., [51)

In [6], Edmonds described a combinatorial representation of a planar embedding of
a graph G, namely a collection of cyclic orderings {a, v is a node of G} of edges of G,

where oa, cyclically orders the edges incident to v. Given an embedding of a graph on the

surface of a sphere, such a combinatorial embedding is found by observing the clockwise
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ordering of edges around each node when the graph is viewed from a point outside the

sphere.

Lemma 5.2 150 A graph G is planar iff its biconnected components are planar. More-

over, the combinatorial representation of a planar embedding of G can be immediately

obtained from the combinatorial representations of planar embedding of its biconnected

components.

Lemma 5.3 /291 Any algorithm running on a concurrent-read, concurrent-write model

of parallel computation can be simulated on a weaker model with exclusive-read and

exclusive-write at a cost of O(T(n)) time per simulated step, where T(n) is the time

for sorting n elements on n processors.

Remark: It is sufficient to sort integers of polynomial magnitude, so we can use, e.g. the

algorithm of Subsection 2.2 to get T(n) = O(log n) (with a small multiplicative constant).

Lemma 5.4 /28] A graph G on n nodes and m edges can be (edge) partitioned into its
biconnected components in O(log2 n) time on n + m processors.

Remark: The algorithm of [28] works in O(log n) time on a concurrent-write model of

parallel computation. Using Lemma 5.3, we can run the algorithm of [28] on our model

in O(log2 n) time.
By Lemmas 5.2 and 5.4, we can assume without loss of generality that the graph to

be tested for planarity is biconnected.

A graph G1 is a minor of another graph G2 if G1 can be obtained from G2 by dele-

tion of nodes and edges, and contraction of edges. Thus, for example, any minor of a

planar graph is planar, because the deletions and contractions can be carried out while

maintaining an embedding of the graph on the sphere.

A Jordan curve is a simple closed curve. For example, the boundary of a face is a

Jordan curve. A Jordan curve on the surface of the sphere separates the surface into two

regions, such that any continuous path starting in one region and ending in the other
must intersect the Jordan curve.

Suppose that the graph G is planar, and fix an embedding of G in the surface of a

sphere. A Jordan curve in the surface of the sphere will be called an H-curve (in G) if

* one region contains all the nodes and edges in the fragment H and the other region

contains all the nodes and edges in G - H, and

* the curve intersects each linking edge of H at exactly one point.

Let G be a connected graph with a connected subgraph H. We say that H is bound

in G if G - H is connected. We call an edge e of G linking edge of H if exactly one
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endpoint of e is in H. That endpoint is called the edge's linking point, and the endpoint
not in H is called the edge's outside point. Let Ie(H) be the set of linking edges of H.

Suppose H is bound in G. For each embedding of G, we define a cyclic ordering the

linking edges le(H) around H, analogous to the cyclic ordering in Edmonds' scheme for
representing an embedding. Fix an embedding of G, and consider the induced embedding
of G - H. Because H is connected, there is a single face F of the embedding of G- H in
which all the nodes and edges of H are embedded. Otherwise, some edge of H would have

to cross the embedding of GH. Because G - H is connected, the face F has a connected
boundary. Choose a Jordan curve within F but closer to the boundary of F than any
node of H. Then the curve defines two regions, one containing the nodes of H and the
other containing the nodes of G - H, . The curve must intersect each linking edge of H,
because each such edge goes from a node of z to the boundary of F. It can be chosen so
that it intersects every linking edge of H exactly once. So chosen, it is an H-curve.

Consider a point traced along the H-curve. For uniqueness, we will require that the
H-curve is traced in a clockwise direction; i.e. so that when viewed from outside the
sphere, the region to the right of the direction of motion is the region containing the

nodes of H. Such a point intersects the linking edges of H in some cyclic order. The
cyclic orderings of the linking edges le(H) determined in this way by embeddings of G
will be called embedding rotations of H in G. (If G has no embeddings, then H has no

embedding rotations in G.)

Lemma 5.5 Let G' be a connected minor of G in which H has been contracted to a con-
nected subgraph H' and no linking edges of H have been deleted. An embedding rotation
of H in G is an embedding rotation of H' in G'.

proof Let a be any embedding rotation of H in G. Choose an embedding of G and an
H-curve in accordance with a. The contractions and deletions used to obtain G' from G

may be carried out on the sphere in such a way that the cyclic ordering corresponding
to the H-curve remains a. 0

Clearly the set of embedding rotations of a bound subgraph H in G are determined
by the possible embeddings of G, and hence by the structure of G. The following lemma

is a first step towards the determination of the set of embedding rotations of H from the
structure of G.

Lemma 5.86 Let G' and H' be as in Lemma 5.5. Suppose G' - H' consists of only two

nodes, z and y. Then the linking edges of H whose outside point in G' is x are all

consecutive in any embedding rotation of H in G.

proof By Lemma 5.5, we need only show that the edges with outside point x in G' are

consecutive in any embedding rotation a of H' in G'. Choose an embedding of G' and an
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H'-curve in accordance with a. Consider a as a liner ordering starting at some linking
edge of H' whose outside point is y. Let (hi, ) and (h2, ) be, respectively, the first and

last edge in a whose outside point is z. Since Hi is connected, there is a path consisting
of nodes of H from hi to h2. Combine this path with the edges (h,z ) and (h2, ) to
form a Jordan curve. Of the two regions R1 and R2 formed by this curve, only one (say
R2) contains the node y. Then any linking edge of H' with outside point y must lie in
R2, else it would intersect the Jordan curve.

We see that the portion of the H-curve in R1 only intersects those linking edges of
H that go to x. But note that the H-curve only enters and leaves R1 once, else it would
intersect (hi, z) or (h2, ) more than once. It follows that between (hi, x) and (h, z) in
the linear ordering derived from a, only edges from H to z appear. That is, the collection
of edges from H to z are a consecutive sequence in any embedding rotation of H in G. 
Note: In the following section, we make use of the notation that identifies a set of nodes
with the subgraph induced by that set of nodes.

6 Our Efficient Parallel Planarity Testing Algorithm

Our main theorem is

Theorem 6.1 A graph with n nodes can be tested for planarity in O(log2 n) time using
n processors. If the graph is planar, a combinatorial representation of a planar embedding

can be found within the same bounds.

The basic strategy of our planarity-testing algorithm is to process the graph from the
bottom up," starting with embeddings of individual nodes and ending with embeddings
of the whole graph. A basic step in the algorithm is combining embeddings of subgraphs
to form an embedding of the larger subgraph. We cannot merely choose a single em-
bedding for each subgraph, for the embeddings of two subgraphs might be chosen to be
inconsistent, preventing the embeddings from being combined. Instead, we use PQ-trees
to represent the set of all embeddings of each subgraph. Once the planarity-testing al-
gorithm succeeds, a "top-down" process can obtain a combinatorial embedding of the
graph.

The first step of the algorithm is to find the biconnected components of the input
graph, using the algorithm of Lemma 5.4. By Lemma 5.2, all that remains is to show how
to test a biconnected graph G for planarity, and how to find a combinatorial embedding
for G, if G is planar.
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The second step is to find an st-numbering for C. An assignment of distinct integers

from 0 to n - 1 to the nodes of G is called an t-numbering 2 if two adjacent nodes a

and t are assigned 0 and n - 1 respectively, and every other node is adjacent to both a
lower-numbered and a higher-numbered node. Note that an at-numbering of G induces a

direction on the edges of G-namely, an edge points toward its higher-numbered endpoint.
Accordingly, we call an edge incident to v an incoming edge if its other endpoint is

numbered lower than v, an outgoing edge if its other endpoint is numbered higher than
v. Let in(v) be the set of incoming edges of v, and let out(v) be the set of outgoing edges.

The important fact about an at-numbering is that in the resulting directed acyclic graph,

for every node v, there is a directed path from s to t through v.

Lemma 6.1 /17/ If G is biconnected, then G has an st-numbering.

In (7], Even and Tarjan give a linear-time sequential algorithm for finding an st-
numbering. This algorithm does not seem parallelizable. Fortunately, Maon, Schieber,
and Vishkin have an efficient way to find an t-numbering in parallel.

Theorem 6.2 /l22 Given a biconnected graph G on n nodes and m > 1 edges, and an

edge (s, t}, an st-numbering can be found in O(log2 n) time on m processors.

Remark: The algorithm of [22] works in O(logn) time on a concurrent-write model
of parallel computation, but we can simulate the algorithm in O(log2 n) time on an

exclusive-write model, as in Lemma 5.4.

The remainder of our planarity algorithm may be viewed as a contraction process on
the st-numbered graph, taking place over a series of stages. We start with the original
at-numbered graph G(°) = G. In the ith stage, we choose a collection of edges of the

graph G(') in accordance with the st-numbering. We contract these edges, identifying
their endpoints, and we update the st-numbering, producing the graph G('i+ ). We stop

after stage I if every node in G(I+ ) except and t is adjacent only to s and t.

After the ith stage of the above contraction process, a node v in G(i+ ') corresponds
to a subgraph H(v) of the original graph G; namely, H(v) is the subgraph of G induced
by those nodes identified to form v. Thus, if in stage i the node v E G(i+') was formed

by identifying the nodes v, ... , v, E G(i), then H(v) = H(v,) U ... U H(vp) (using our

notation equating a set of nodes with the subgraph it induces). Generalizing slightly, if
v E G(' ) and j < i, let H(i)(v) be the subgraph of G(j) whose nodes were identified to

form v. For a node v E G(i), let v(0) be the (unique) node of G( ) such that v E H(i).

Note that G(i) is actually a multi-graph, not a graph. That is, G(') may have multiple

edges with the same endpoints. The reason is that two nodes adjacent to a common node
2As originally defined, an st-numbering ran from 1 to n, but we find it convenient to make this minor

change.
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u may have been identified to form a node v, in which case the node v will have two

edges to u.

We choose our edges at each stage i so that

* Neither a nor t is ever identified with any other node; i.e. (') - s and t(') = t for
all i.

* For each node v a, t in G, the subgraph H(v) permits a PQ-tree representation
of the set of its embeddings.

* The st-numbering is easy to update, following contraction of edges.

* Only O(log n) stages are needed.

We first show how the edges are selected, then prove that our method of choosing
edges has the above properties, Then we describe the method for representing the set of
embeddings of a subgraph with a PQ-tree, and show how this representation is updated
when edges are contracted. Finally, we show how to obtain an embedding of the original
graph G.

We say a node v 6 s, t of G(i) is joinable if v is adjacent to some node u ~ s, t in

G(). We use a sequence of twelve stages, called a phase, to reduce the number of joinable
nodes by a factor of two. In particular, we show that during a phase every joinable
node is identified with some other joionable node. Thus, if G(') is the graph immediately
following the completion of a phase, then for any joinable node v of G('), IH(- 8)(v) > 2.
This shows that each phase reduces the number of joinable nodes by a factor of two, so
only [log n] phases = 12 [log n stages are needed.

A phase has two parts, an s-rooted part and a t-rooted part, and each part consists
of two subparts, a main subpart and a clean-up subpart. Each subpart consists of three
stages.

For the s-rooted part of a phase, we construct a spanning tree of G(' - {t} rooted at
s. We show below that every node v E G(W' other than 8 and t is adjacent to some lower-

numbered node and to some higher-numbered node. For each such v, let its parent p(v)
be the highest-numbered neighbor of v whose number is less than that of v. We thereby
define a "multi-tree," a graph that would be a tree if multiple edges were identified. The
root of the multi-tree is . Using parallel pointer-hopping, compute for each node v the
distance distance from s to v in the multi-tree. Call a node even" or 'odd," according
to whether this distance is even or odd. In the main subpart, we contract all edges

connecting even nodes to their (necessarily odd) parents. In the clean-up subpart, we

contract all edges connecting odd leaves to their (necessarily non-leaf) parents, except
for those leaves whose parent is . In each case, we identify children with parent and
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assign to the resulting node. Say a child is type 1 if its only lower-numbered neighbor is

its parent, and type 2 otherwise. Below, we prove that if G( ) is planar, each parent has

at most two type 2 children. In the first stage comprising a subpart, all type 1 children

are simultaneously identified with their parents, contracting all the edges between them.

In each of the second and third stages, a single type 2 child is identified with its parent,

contracting the edges between them.

The t-rooted part of a phase is similar; the parent of v is chosen to be the lowest-

numbered neighbor of v with a higher number than v.

Let f be the function assigning to each node its at-number. Note that if the i h stage

belongs .to the -rooted part of a phase, then for any v E G(i), f(v(i+l)) < f(v). (If the

ith stage is part of the t-rooted part of a phase, then f(v( i+')) > f(v).) Note also that

the numbering of the nodes of G(') is not, strictly speaking, an st-numbering, because

there are numbers not assigned to any node, and the largest assigned number (n - 1)

may in fact exceed the number of nodes in G('). However, we will continue to refer to this

numbering as an at-numbering, because it has the property of an t-numbering needed

for our purposes: that every node other than a and t is adjacent to some lower-numbered

node and to some higher-numbered node.

Lemma 6.2 For any i, suppose that the numbering f of G(') has the property that every

node other than a and T has both an incoming and an outgoing edge. Then, the numbering

f of G(i+') has the same property.

proof Let v be any node of G(i+l). Assume without loss of generality that the jth stage

belongs to the a-rooted part of a phase. Suppose H() (v) = {vl,..., v,}, where we asssume

without loss of generality that vl was a parent and the other nodes (if any) were children.

By the inductive hypothesis, vl has an incoming edge (u, vl) in G('), so there is an edge

(u(' + '), v) in G( +'). We have f(u('+)) < f(u), f(u) < f(vl) by definition of an incoming

edge, so f(u('+)) < f(v1 ). Since f(vl) = f(v) by choice of v1, we conclude that (u(i+1), v)

is an incoming edge of v. It remains to show that v has an outgoing edge. But vp has

an incoming edge (vp, w) in G( }. There are two cases. If w was identified with its parent

p(w) in stage i, f(w( '+ l)) = f(p(w)) > f(vp) by choice of p(w). If w was not identified

with its parent in stage i, then f(w('i+ )) = f(w) > f(vp) > f(v(')). In either case,

(vi+l), w(i+1)) is an outgoing edge of v') = v. 0

Recall that a child u of v in the s-rooted multi-tree is said to be of type 1 if its only

lower-numbered neighbor is v. Similarly, a child u of v in the t-rooted multi-tree is said

to be of type 1 if its only higher-numbered neighbor is v. If u is not of type 1, it is of

type 2.
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Figure 19: A non-planar graph, used in the proof of Lemma 6.3

Lemma 6.3 Let v ¢ a,t be a node of G(' ) with three type 2 children v2, 3 , v4 in an
a-rooted (or t-rooted) multi-tree. Then G(O) is not planar.

proof By a series of contractions of edges and deletions of nodes and edges, we obtain
from G(') the graph depicted in Figure 19. The reader can check that by eliminating the
edges {, t} and {s, vl}, we obtain Ks,s, which is known not to be planar. Thus G(' ) is

not planar. "

We now consider the representation of the set of embeddings of a subgraph. Let

v 0 a, t be a node of G( ). It follows from Lemma 6.2 that by contraction of edges other
than those incident to v and those between s and t, one can obtain from G(i) a graph r(v)
containing only the nodes ,t, and v in which all the incoming edges of v are incident
to s and all the outgoing edges are incident to t. In r(v), uncontract all those edges

contracted to form v from H(v). Let f(v) denote the resulting graph.
Because H(v) was formed by contraction of edges, H(v) is connected. It follows

that H(v) is bound in (v). We call the embedding rotations of H(v) in 2(v) the
arrangements of v. Note that the arrangements of v are cyclic orderings of the edges
incident to v. We let c(v) be the set of arrangments of v.

Note that by Lemma 5.5, we have

Lemma 6.4 Any arrangement of v is an embedding rotation of v in r(v).

From Lemma 5.6, we may obtain

Corollary 6.1 In any embedding rotation of v in r(v) (and hence in any arrangement
of v), the incoming edges are consecutive (and hence the outgoing edges are consecutive).

proof Apply Lemma 5.6 with G' = v, z = t, and y = a. 0

We represent the set a(v) of arrangements of v by an (in,out)-reduced PQ-tree T(v)

whose ground elements are the edges incident to v, and where in(T(v)) =the set of

incoming edges of v and out(T(v)) =the set of outgoing edges of v.
If v E G(°), then H(v) = {v}, so any cyclic ordering of the edges incident to v is an

arrangement of v, provided that the incoming edges are consecutive and the outgoing

edges are consecutive. In this case, therefore, we let T(v) be the tree illustrated in Figure
20.
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Figure 20: The PQ-tree T(v) representing the set of arrangements of a node v E G(°).

Figure 21: The order in which the edges between H(u) and H(v) are encountered in a
clockwise contour around H(u) is the reverse of the order in which they are encountered
in a clockwise contour around DH(v).

The invariant of the planarity algorithm is:

For each node v s, t of G(i),C(T(v)) = o(v) (10)

The base case i = 0 is satisfied if we use the construction of Figure 20. For each

node v s,t in G('+1), our algorithm computes the PQ-tree T(v) from the PQ-trees

T(vi) ... T(vp), where H(i+ 1) = {vl,...,v}. Below we describe this computation and

show that, assuming (10) holds for i, it holds for i + 1.

Consider contracting of the edges between just two nodes of G('), say u and v, forming

a node w of G(;+'). Let shared(u, v) be the set of edges between u and v. We need to
compute the tree T(w) from the trees T(u) and T(v).

Lemma 6.5 Suppose the node w E G('+ ) was formed by contracting all the edges shared(u, v)

between the nodes u, v E G(). Suppose C(T'(u)) is contained in v(u) and contains all

the embedding rotations of H(u) in 2(w). Suppose C(T'(v)) is contained in a(v) and
contains all the embedding rotations of H(v) in iH(w). Assume that T'(u) and T'(v)
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are reduced with respect to shared(u, v). Let T be the (in,out)-reduced join of T'(u) with

T'(v). Then a(w) = C(T)

Before giving the proof, we recall the definition of join from Subsection 4.5. For cyclic
orderings al E C(T'(u)) and 02 E C(T'(v)), we let a join a2 denote the cyclic ordering
obtained by substituting a2 lshared(u,v) for allshared(u,v) in a2. The (in,out)-reduced
join of T'(u) with T'(v) is a PQ-tree T such that

C(T) = {a, join a2: al E L(T'(u)),2 E L(T'(v)),alsahared(u, v) = (a2lhared(u,v)f

and a, join a2 satisfies in(w) and out(w)} (l)

where in(w) = in(u) U in(v) - shared(u, v) and out(w) = out(u) U out(v) - shared(u, v).
proof of Lemma 6.5 Fix an element a E a(w). We show it belongs to the right-hand
side of (11). Choose an embedding of }?(w) giving rise to the arrangement a. The
embedding defines an embedding rotation a, of H(u) in i(w), and an embedding rotation

a2 of H(v) in Hl(w). By Lemma 6.4, a E a(u) and a2 E (v). By an application of
Lemma 5.6, the elements of shared(u,v) are consecutive in al and a2. To show that
ailshared(u,v) = (a2lshared(u,v))R can be seen by inspecting Figure 21. By applying
the definition of join, we see that a = al join a2.

It is easy to see that the right-hand side of (11) is contained in a(w). The idea is that
given or and 2 satisfying the conditions of the right-hand side of (11), embeddings for
2(u) and H(v) are chosen and combined to form an embedding of H(w). Then a join a2

is the arrangement corresponding to this embedding. Further details are omitted. O
We finally consider the implementation of the contractions occuring during a stage

of the algorithm. Assume without loss of generality that stage i belongs to an t-rooted
part, so edges between parent and child are incoming to parent and outgoing from child.

Suppose stage i is the first stage in its subpart. Then the contractions have the
following form: given a node u with type I children v,..., vp, contract all the edges from
these children to u, forming a node w of G('+1). The first step is to reduce T(u) with
respect to the coloring that assigns the color ck to the edges from vk to u; let T'(u) be
the reduction. Because each vk is of type 1, all the outgoing edges of vk are incident to
u. Hence we need not reduce the T(vk)'s; we may let T'(vk) = T(vk). The second step
is to compute the (in,out)-reduced join of T'(u) with the T'(vk)'s, and let the join be
T(w). Because all the outgoing edges of each vk are edges shared with u, we may use

special case 1 of the (in,out)-reduced join described in Subsection 4.5. In that subsection,
it was mentioned that in special case 1, a tree can be simultaneously joined with many.
Hence we can join T'(u) with all the T'(vk)'s simultaneously. By a slight generalization
of Lemma 6.5, the reculting PQ-tree T(w) satisfies C(T(w)) = a(w). Thus in this case
the invariant (10) is maintained.
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Next, suppose stage i is either the second or third stage in its subpart. Then the
contractions have the following form: given a node u with a type 2 child v, contract all
the edges between u and v. There are two cases. If all the incoming edges of u are incident
to v, we reduce T(v) with respect to shared(u, v), obtaining T'(v), and then use special

case 1 to join T'(v) with T(u). If not all of the incoming edges of u are in shared(u, v),

we reduce T(u) with respect to shared(u, v) and in(u) - shared(u, v), obtaining T'(u).

Similarly, we reduce T(v) with respect to shared(u, v) and out(v) -shared(u, v), obtaining
T'(v). Finally, we join T'(u) with T'(v), using special case 1 of the (in,out)-reduced join
described in Subsection 4.5.

Let the result of the join be T(w). If we could apply Lemma 6.5, it would follow that
C(T(w))' = v(w), satisfying the invariant (10). All we need to show is that C(T'(u)) con-
tains all the embedding rotations of H(u) in 2(w) (and similarly for C(T'(v))). Certainly

C(T(u)) contains all these embedding rotations, so it remains to prove that reducing T(u)
with respect to shared(u, v) and in(u) - shared(u, v) did not force out any embedding
rotations.

To show that in every embedding rotation of H(u) in 1(w) the edges shared(u, v) are
consecutive, we apply Lemma 5.6 as before. To show that in every embedding rotation

of H(u) in (w) the edges in(u) - shared(u,v) are consecutive, we start from H(w),
contract H(v) U {s) to a single node y, and apply Lemma 5.6.

We have shown how a stage may be implemented. To compute the joins completely

takes O(log2 n) time. However, as discussed in Subsections 4.3 and 4.5, we may compute

a provisional" join that is correct unless the correct result is the null PQ-tree in only

O(log n) time. Hence to implement a stage quickly, we only compute provisional joins,
This allows us to execute each phase in O(log n) time, for a total of O(log2 n) time for all
stages. We need not wait for the joins to be verified, because if a join fails to be verified,

the graph is non-planar. We delay the verification of the joins until after the last stage

is completed. Thus the time for all verifications merely adds O(log2 n) time to the total

time for the planarity-testing algorithm.
At each stage i, we assign one processor to each node of the PQ-tree T(v), for every

v E G(). The number of leaves of a PQ-tree T(v) is just the number of edges incident to

v in G(i ) , i.e. the degree of v. The sum of the degrees of all nodes in G(') is at most the

total number of edges in the original graph G(°). The total number of nodes in a PQ-tree

is no more than twice the number of leaves, hence the number of processors needed is at

most four times the number of original edges, or twelve times the number n of original

nodes, by the remarks following Lemma 5.1. To reduce the number of processors to n,

we simulate twelve processors by one, increasing the running time by a constant factor.
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Figure 22: Combining embeddings of the i?(v)'s (for v E G(')) to obtain an embedding
of G (O).

After the last stage, stage I, if for every node v E G(O) the PQ-tree T(v) is non-null,
the graph is planar. For given an embedding of each H(v), an embedding of G(°) = G
can be obtained by identifying the nodes s and t appearing in each of the embeddings.

The reason is that each v has no neighbors in G(I) but s and t. See Figure 22.

Finally, we sketch the method of obtaining a combinatorial embedding of each 2(v),

assuming the planarity-testing algorithm successfully terminated. In the course of car-

rying out that algorithm, we defined a forest with trees rooted at the nodes v E G(Z),
where the children of a node u E G(i+l ) are the nodes H(')(v). The trees are all of height

I = O(log n). Processing each tree from the top down, we choose orderings of the edges
incident to each node v E G('), for i = I, I - 1,... ,0, that define a combinatorial em-

bedding of G(') of the sort considered by Edmonds. To choose an ordering of the edges

incident to v E G(I ), read off the frontier of the tree T(v). This can be done in O(log n)

time using techniques of Subsection 2.1. We can then use small integer sorting to find

the induced ordering on the edges incident to the nodes in H ( - l), inserting the orderings

of the contracted edges (we can get these by reading the frontiers of the results of the

PQ-tree intersections). We continue in this way, descending one level in O(log n) time,

for a total of O(log2 n) time. We end up with orderings on the edges incident to each

node. The faces of the embedding are easily obtained from this representation using

techniques of Subsection 2.1.

7 Conclusion

We have presented an efficient parallel algorithm for planarity. Natural questions arise: is

there a more efficient parallel algorithm? Is there a faster parallel algorithm? To answer

the first question, we observe that most, if not all, of the techniques used for the present

algorithm can be made more efficient, at least asymptotically. In particular, all the
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problems we discussed in Section 2 can be solved using randomized parallel algorithms
in expected time O(logn) time using n/log n processors. Thus these problems may be
solved very quickly in parallel using a number of processors that is within a constant
factor of optimal. A careful study of our new planarity algorithm would probably yield

the conclusion that, using these randomized techniques, planarity could be tested and an

embedding found in O(log2 n) time using n/ log n processors.

Regarding the second question: We have made a major effort to speed up the planarity

algorithm to run in O(log n) time on a concurrent-write model, but without success. It

seems likely that, at least using n log n processors, this time bound could be achieved.
Our new result gives us hope that an O(V/n) separator could be found for an n-node

planar graph in polylogarithmic time using only n processors. Were this hope fulfilled,

many other problems concerning planar graphs could be solved within these bounds,
using divide-and-conquer techniques. Examples of such problems may be found in [19].
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