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ABSTRACT

Employment growth in the 1990s and its relationship with the initial industrial structure in 1990
are examined in the case of Appalachian counties, after controlling for labor-market conditions
and other factors, such as labor mobility, natural amenities, and market size.

Spatial exploratory data analysis of the competitive employment growth (CEG) in Appalachian
region shows that strong spillover effect of CEG exists among 410 counties. Counties with
higher employment growth rates are concentrated in the north side of Atlanta Metropolitan area
around Interstate highway 1-75. Counties with lower growth rates concentrated in Central
Appalachia, along the convergent border of three states, Kentucky, Virginia, and West Virginia.
Another low growth rate concentration is in Northeast Pennsylvania.

The existence of spatial autocorrelation affects my empirical model's explanatory power, the
significance levels, and the values of coefficients of independent variables. There is no specific
theoretical base for the county-interacting mechanism of this empirical model, whereas, the
magnitude of each independent variable's impact on employment growth depends on the
spatial-weight matrixes. To find a better match, I compare the parameters of the model by using
two different weight matrixes, i.e., weights based on physical neighbor interaction and weights
based on commuting ties. Based on the result of statistical comparison, the commuting tie is
more likely the way by which counties interact with each other than physical proximity in the
Appalachian Region.

My empirical model is not able to explain completely the employment growth for all the counties
in Appalachian Region, even after being adjusted for the spatial spillover effects, but it does
provide some insight about what factors might matter for many places for their competitive
employment growth from 1990 to 2000. Also, by analyzing the residuals of this model, analysts
will be able to find some good candidates for case studies to understand what other
determinants of economic growth might be.
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Title: Professor of Regional Political Economy and Planning
Thesis Reader: Joseph Ferreira, Jr.
Title: Professor of Urban Planning and Operations Research
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Chapter 1

Introduction and Literature Review

1.1 Introduction

Appalachia, having 22.9 million people in 2000-8 percent of the total U.S. population of 281.4

million-is known for its economic hardships and geographic isolation. Since a landmark report

by the President's Appalachian Regional Commission (ARC) in 1964, its variety of economic

development experiences is also studied by many analysts. In Pollard's (2003) study, he found

that the Appalachian
Ficure 1: Population Change in Appalachia, 1990-2000
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other areas, however, have an economic status that approaches-and in some cases

surpasses-that of the United States as a whole."



We might wonder why different regions have different economic growth rates. What are the

factors contributing to the patterns or rates of regional economic growth? Questions like these,

related to the source and mechanism of economic growth, are fundamental issues in regional

economics. They have intrigued economists for centuries, ever since the publication of Adam

Smith's "Inquiry into the Nature and Causes of the Wealth of Nations" (Adam Smith, 1776).

As one of the most common measurements of regional economic growth, I use employment

growth as the measure in this study. For a geographic area, employment growth is directly

related to business activities in the jurisdiction of that region. What makes its employment grow?

Obviously, the establishment of new plants/firms, spin-offs of old firms, or the expansion of

existing ones can result in positive growth in the regional employment. Conversely, the closure

of old firms or reduction of employees in existing factories will cause a negative employment

"growth." Therefore, to study the mechanism of employment growth, a logical approach is to

study what forces attract firms to a region, what forces make them leave. What virtues of the

region make existing firms prosper, and what vices make firms lose profits?

As discussed by Kusmin (1994), numerous economic-growth analysts have identified many

forces or characteristics of a region associated with employment growth. They cover almost

every aspect of the economy. Among those factors associated with employment growth, the

industrial mix of a region is one of the most important aspects in its industrial structure, as

suggested by Garcia-Mila and McGuire (1993). Also, the effects of economic diversity and

industrial specialization on employment growth are implicitly suggested by those analysts who

study the impact of urbanization and localization economies on the process of local economic

development. In their study of the U.S. cities between 1956 and 1987, Glaeser et al. (1992)

suggested that sectoral diversity matters for local growth. Yet, in their study of localization

economies, Henderson et al. (1995) show evidence of a positive effect of specialization on

urban growth between 1970 and 1987.

Kusmin (1994) did a comprehensive review of 35 empirical studies of factors influencing

business location and/or regional economic growth. His review shows how labor-market

conditions, which characterize the local economic structure, contribute to the explanation of

development. Additional variables, such as mobility/stability, natural amenities, and metropolitan

status of a county, also have significant impacts on economic growth.



Taking all the factors considered above, I propose a relatively universal specification/model of

employment growth to conduct empirical tests.

Employment Growth =f(industrial mix, economic diversity, manufacturing specialization, labor
market characteristics, natural amenity, market size).

In order to account for the "true" endogenous growth for each county, I use the competitive

component of employment growth (net of the effect of national growth and sectoral growth from

1990 to 2000) from shift-share analysis as the dependent variable.' For sake of simplification, I

use the term "competitive employment growth," CEG, in this study to refer to this endogenous

growth. In Chapter 2, I provide a more precise description of these variables.

Some of these factors had been studied by other researchers, but none of those analysts

includes all the factors in their growth model. Before the advent of spatial econometrics and the

related computer software, analysts could not do a comprehensive examination of spatial

effects in growth models due to the huge volume of observations. For example, ERS/USDA

(Economic Research Service/United State Department of Agriculture) has conducted a

statistical study of rural economic growth that took into account most of the factors suggested in

Kusmin's literature review of 35 empirical studies, but they failed to consider the possibility of

the existence of spatial autocorrelation, which might distort coefficients and significance levels

of all the exploratory variables in the model. Garcia-Mila and McGuire (1993) discussed the

impact of the historical economic structure on the employment growth rate, but they did not

incorporate the spatial interaction of different regions' economic structures, either.

In recent years, the field of spatial econometrics has rapidly developed, providing more powerful

tools and test methods for researchers to reveal the nature of economic growth and the

relationship among regions. For example, Moran's I coefficient enables analysts to test for

certain types of spatial autocorrelation and econometric methods have been developed that

allow particular forms of weighted regression to model various spatial spillover effects.

My study has benefited from the development of spatial econometrics, including related

computer software (especially GeoDa2 ), and the rich literature on economic-growth models in

1 Shift-share analysts refer to Dunn (1960), in which competitive effects are originally defined.
2 Geoda 9i-GeoDa is the latest incarnation in a long list of spatial software tools developed by Dr. Luc
Anselin's Spatial Analysis Laboratory (SAL) in the Department of Geography at the University of Illinois,
Urbana-Champaign.



both theoretical and empirical studies. As an attempt to test their applicability to the employment

growth of Appalachian Region counties, I do not try to devise a complete model of the

macroeconomics of regional economies in my study; instead, I hope to provide some compelling

empirical evidence for the link between the growth/variability of regional economies and the

limited, but critical, factors, i.e., industrial structure and labor-market conditions. Most

importantly, I examine the heterogeneity of and spatial interdependence in my empirical model

to account for the great diversity and the degree of counties' interaction in Appalachian Region.

Not surprisingly, the result shows evidence of heteroskedasticity among 410 counties- a result

that often occurs when there is a large difference between the size (and population) of the

individual observations (counties). I also detect spatial effects by examining the interactions

between neighboring counties in the empirical model.

Specifically, the driving forces or constraints of the growth are very diverse between

metropolitan and non-metropolitan counties, among the three sub-regions in Appalachia, and

among different economic-level groups. Finally, I examine the existence of spatial

autocorrelation and show how it affects the outcome of the models and performance of different

variables by using spatial-lag econometric modeling techniques.

The structure of my study is:

In Chapter 1, I review the theoretical and empirical literature about the relationship between

employment growth and county's industrial structure, i.e., their industrial mix, diversity, and

specialization. I also cover the interplay between employment growth and the other factors

associated with the growth, such as labor-market conditions, mobility/stability, natural amenities,

and metro status of a county.

In Chapter 2, I explain the methodology and variables I used in my study.

In Chapter 3, I provide the descriptive statistics of all the variables I used for the Appalachian

Region, and compare the characteristics of these variables based on three county

classifications, used in most of the previous studies of this region.

In Chapter 4, I present the results of my analysis. Specifically, I test the same empirical growth

model on different groups of counties and compare the regression results. Then, I examine the

spatial autocorrelation of employment growth among these counties. Finally, I employ two



weight matrices to see how, and to what extent, they can affect the outcome of the same

empirical growth model, and can explain some of the spatial interactions.

In summary, my study provides some insight into the diversity and spatial dependence of

Appalachian counties by using statistical analysis and spatial econometric techniques. But the

empirical model I use in this study is not perfect; I have difficulty explaining some results by just

looking at the "data" themselves. Case studies and some other qualitative methods are needed

in order to disentangle the puzzle of economic/employment growth, but those are beyond the

scope of this study.



1.2 Literature Review: Factors Associated with Employment Growth

I classify factors associated with employment growth into two major groups: economic factors

and non-economic factors. Within the economic factors, I distinguish core factors and peripheral

factors. Specifically, core factors are those directly associated with the economic structure, such

as industrial mix, diversity, specialization, and the size of the economy; the peripheral factors

include wages and the unemployment rate. Non-economic factors include natural amenities,

demographic features, and mobility etc. I will discuss them in order in this Section.

1.2.1 Industrial Structure and Employment Growth

For this study, I include three different, but related, components as parts of industrial structure:

industry mix, diversity, and specialization. Most analysts explain their influences on employment

growth through two perspectives: an agglomeration economies perspective and an economic-

stability/business-cycle perspective.

A. Agglomeration-economies perspective

Initial industrial mix matters in the employment growth of a region because a specific industry

could influence the growth of the economy by taking advantage of agglomeration economies.

Agglomeration economies are general cost savings or productivity increases resulting from a

geographic concentration of firms. If agglomeration economies characterize a specific industry

rather than all industries, then a region with a high share of employment in an industry exhibiting

agglomeration economies will experience a higher growth rate relative to regions with high

concentrations of industries that do not exhibit agglomeration economies.3 If an industry is

concentrated in a region having agglomeration diseconomies, the region will be relatively better-

off than other regions with a lower concentration of that industry and vice versa.

Sectoral specialization and diversity affect the total employment growth through different types

of agglomeration effects: "localization economies" and "urbanization economies." Localization

economies, also referred to as Marshall-Arrow-Romer (MAR) externalities (Marshall, 1890;

Romer 1986), imply that a firm benefits from clustering with other firms in the same sector,

whereas urbanization economies, also referred to as Jacobs externalities, imply that a firm

3 This industry-specific form of agglomeration economies is sometimes referred to as localization
economies. See the discussion of agglomeration economies by Heilbrun (1987, pp.15-18)



benefits from the clustering of many firms in the same place, regardless of type of firm because

of the inter-sectoral positive effects of agglomeration (Jacobs, 1969).

Localization and urbanization economies for a particular industry affect regional economic

growth in different way. If there are localization economies, regions involved in that industry are

likely to specialize in just that one business activity, or a closely connected set of activities.

Specialization, however, allows for full exploitation of scale economies (Henderson et al. 1995)

and therefore helps that industry grow. If an industry is subject to urbanization economies, a

diverse industrial environment might help it and all firms in the region thrive (Glaeser et al.,

1992).

Regional analysts, such as Quigley (1998), believe that knowledge/information spillovers are

one aspect of agglomeration economies that can be important in this context. The industrial mix

matters here because a bigger share of a specific industry affects the economic growth through

knowledge spillovers. If a specific industry devotes substantial investment in the types of

research and development (R&D) that have positive spillover effects on the productivity of other

industries, a region with a high share of the R&D industry may have a higher overall level of

productivity, and therefore a higher growth rate than other regions. The spillover effects of R&D

can be negative if a region has a large share of an industry that devotes very little investment in

R&D or invests in R&D that is not transferable to other industries. In that case the relative lack

of R&D spillovers will make the region grow slower than average.

B. Economic-stability and business-cycle perspective

Firms may be attracted to a region by its great economic stability and variability, because it can

reduce the risk of doing business. Therefore, economic stability and diversification is associated

with faster growth. The industrial mix, specialization, and diversity may affect the local economic

stability through interrelatedness of industries. In this way, the industrial structure indirectly

affects the growth rate through affecting the local economic stability.

From the business-cycle perspective, there are two ways to explain the relationship between

inter-sectoral connectedness and a region's stability and variability. First, on the one hand, if a

region has a large share of an industry that is highly interrelated with other industries through

supply or demand of inputs, and the industry is highly variable, its variability could possibly be

transmitted to related industries, making the cycle more intense. On the other hand, if the

industry happens to be relatively stable, that stability is likely to be transmitted to industries that



either provide or demand inputs from the stable industry, thus resulting in an economy that is

less unstable.

Second, the intensity of the cycle in a region's economy may also be related to the breadth of

the markets of the component industries of the region's economy. On the one hand, an industry

that primarily produces goods and services to sell in the local market will not be able to look for

alternative buyers outside the region when the local economy goes through a recession. On the

other hand, if the goods and services of a majority of the region's industries are sold in the

national market, these industries can sell their goods on alternative markets during a local

recession, effectively diversifying the risks of local shocks.

1.2.2 Other Factors Associated with Employment Growth

Through the literature review, I identify at least three other important factors associated with

employment growth: labor-market conditions, natural amenities, and size of the economy.

A. Labor-market conditions and labor mobility

The impact of labor-market conditions on the total employment growth closely relates to the

business-location decisions, which drive economic growth. If a desire to hold down production

costs drives business-location decisions, then, higher wages will tend to result in a relative

decrease in business activity.

For the same reason, just like the low-wage factor, a high unemployment rate implies that the

cost of recruiting new labor is easier and cheaper than in those regions with low unemployment

rates, but it also implies that the existing cluster/industries in that area do not match the labor

force quality/specialty in the region. Thus, the firms looking for a locality effect (knowledge

spillover/supply) or looking for a niche/urbanization effect might benefit from the high

unemployment rate.

At the same time, analysts need to be cautious that even if a search for the lowest production

costs does drive changes in business activities, they may fail to find that the expected negative

relationship between wages and business activity change if they fail to adjust for labor quality.

When there are no effective controls for labor-quality differences, differences in the wage

measure may primarily reflect differences in labor quality rather than in the cost of labor of a

given quality. One way to measure labor quality is to include education-level data. I use the



percentage of residents with a high school diploma in a county to indicate the education-level of

its labor force.

Economic growth is usually higher in a place with a well-functioning labor market,4 which can be

indicated by high labor mobility. When technological breakthroughs or other forces create new

opportunities for local employment growth, or indeed cause specific job losses, high labor

mobility ensures that labor is reallocated to where it can be employed most productively. For

this study, I use the percentage of residents from the same county five years ago as a proxy for

initial condition of labor mobility. The higher the value, the less the county's labor force is mobile.

B. Natural amenities

Amenity is considered an important factor of economic growth because the rise of an elite

"technocratic" work force creates an emphasis on privatized consumption and quality-of-life

(Gorz 1985, Gouldner 1979). This factor has an impact directly on residential preferences, thus

indirectly on business growth because of the ". . . non-wage incentive for privileged workers who

choose to forego the possible benefits of traditional locations for the life-style rewards of

amenity-rich environments. " (Kasarda and Irwin,1991, p.740). Because of the critical position of

the elite "technocratic" workers in the production process, they are able to influence firms to

locate in areas meeting their consumption and life-style preferences. Places offering greater

environmental amenities, such as mild winter climates and ample outdoor recreational

opportunities, gain more in competing for new businesses than those offering relatively few of

these amenities or those with disamenities, such as high pollution. McGranahan's study (1999)

found that, the average 1970-96 population change in non-metropolitan counties was 1 percent

among counties low on the natural-amenities index and 120 percent among counties high on

the natural-amenities index,5 which is developed by ERS/USDA. In my study, I use the same

natural amenities scale that McGranahan used to account for the amenities factor in the county.

4 A speech by William Poole, President, Federal Reserve Bank of St. Louis in Southern Illinois University
at Edwardsville on April 10, 2003. http://stlouisfed.org/news/speeches/2003/4_10_03.html

5 The ERS/USDA constructed the index by combining six measures of climate, typography, and water
area that reflect environmental qualities most people prefer. These measures are warm winter, winter sun,
temperate summer, low summer humidity, topographic variation, and water area.
http://www.ers.usda.gov/data/NaturalAmenities/



C. Size of the economy

The size of the economy matters when rural as well as urban areas are considered, because it

influences the intensity of agglomeration forces. On one hand, the level and quality of

information exchanges in spillovers are sufficiently important only when the number of firms,

thus the potential complementarity, is relatively high; on the other hand, the size of local

markets greatly affects the firms' location choices if transportation costs are non-zero. Moreover,

this variable is relevant for some non-specialized markets, such as land: high density implies

high land rent, which constitutes a dispersion force. (Ciccone and Hall, 1996)

Because of the lack of good measurement of the size of the economy and the complexity of this

aspect, I use the county designation of metropolitan and non-metropolitan status of 1993 as a

proxy to indicate the initial market size.

1.2.3 Spatial-Interaction Effects on the Determinants

In the description of the definition of spatial econometrics, Paelinck and Klassen (1979) stressed

the importance of identifying spatial interdependence, the asymmetry of spatial relations, and

the relevance of factors located in "other spaces" in empirical models, especially those based on

cross-sectional data. In my study, I use cross-sectional data (410 counties) to analyze the

regional employment growth and its relationship with industrial structure after controlling for

labor-market conditions and natural amenities. They all have potential spillover effects, so that I

cannot preclude the existence of spatial autocorrelation. In other words, the employment growth

in one county might not be independent from that of a neighboring county. For example, the

industrial structures in neighboring counties may affect the county in question by substantial

industrial interactions through seller-buyer/input-output relationships or agglomeration

economies. If a sector in a county has a rapid growth, the increased demand for its input

industries through backward linkages make the surrounding counties with backward linkage

industries grow relatively faster. Factor-mobilization theorists (Aldashev and M6ller, 2003) also

suggest that labor-market conditions in neighboring areas have the same ripple effects because

of the interacting equilibrium of employment and wage. For example, if the wage level of

surrounding counties is low, a firm might quickly lay-off its employees and might easily relocate

to one of those counties to reduce the labor cost. In addition, a county with high natural

amenities may have a positive effect in attracting a firm to locate in the county or nearby

counties.



I take spatial-interaction effects into account by using spatial econometric approaches that

explicitly model and control for spatial autocorrelation or interdependence to avoid inefficient or

inconsistent parameter estimates or specification errors. I provide a detailed discussion of the

spatial model in Chapter 2, Section 2.2.3.

In summary, the literature I reviewed suggests that initial industrial structure, i.e., the

composition, diversity, and specialization, might have significant effects on the employment

growth. Other factors, such as the size of the economy and labor-market conditions might be

associated with the growth pattern too. I consider spatial effects in the growth model to account

for the interaction among regions and areas.



Chapter 2

Variable Measurement and Methodology

I use regression technique to test my main hypothesis, which is that the competitive

employment growth (CEG) is highly correlated with industrial mix, industry diversity, and

specialization, and the labor-market conditions, but the influences of these factors on

employment growth might be distorted if analysts ignore the heterogeneity and effects of spatial

autocorrelation in the regression model. I express the hypothesis in Eq. (1):

Competitive Employment Growth =f(industrial mix, economic diversity, service diversity,
manufacturing specialization, labor-market characteristics, natural amenity, market size) (1)

In order to offset the effect of distortion caused by heterogeneity, I repeat the regression for

each group in three classifications used by most Appalachian researchers, i.e., (1) metropolitan

and non-metropolitan counties, (2) three sub-regions, and (3) distressed counties, transitional

counties, competitive and attainment counties.

In order to show the effect of distortion caused by spatial autocorrelation, I examine the total

competitive component of county employment growth from 1990 to 2000 in three regression

models: (1) ordinary least squares (OLS) regression, (2) spatial regression based on a so-called

"Queen" 6 contiguity-weight matrix, i.e., where any county that touches another at any point is

considered to be contiguous, and (3) a spatial regression based on a commuting-zone-

contiguity weight matrix.

2.1 Data sets and Variable Measurement

Here, I explain the definitions and measurements of these factors, including detailed definitions

and summary statistics of all variables in Appendix B.

6 "Queen" Contiguity includes all common points-boundaries and vertices in the definition, while "Rook"
Contiguity only considers counties that share common boundaries that are lines and not just a single
point (Anselin 2003b); both concepts are taken from chess.



2.1.1 Dependent Variable

Instead of using gross employment growth, I construct the dependent variable-county

"competitive" employment growth from 1990 to 2000-by using shift-share analysis. Typically,

shift-share studies isolate three components (national, industrial-mix, and competitive) of a

region's growth by algebraic calculation, with the competitive component describing the portion

of growth due to some undetermined regional effect other than national growth or industrial mix.

In this way, I distinguish the difference in the growth behaviors of county economies from those

that arise simply because one county has a greater share of its employment or output in a

relatively fast-growth industry than does another county. The competitive component of shift-

share analysis of total employment growth from 1990 to 2000 is the dependent variable CEGi

(where i denotes the county) in this study. I use the employment data for 1990 and 2000 in

Regional Economic Information System (REIS) 1969-2003, which are published by the Bureau

of Economic Analysis.

2.1.2 Independent Variables

I have thirteen independent variables categorized into the following five groups of factors: (1)

five of them are categorized as industrial-mix factors; (2) two of them represent the diversity; (3)

one represents specialization; (4) four indicate the labor market condition, and (5) natural

amenities and market size.

1. Industrial mix

The data set for the five industrial-mix factors contains income levels for 410 counties and the

United States by eight private sectors in 1990. The data are from the Regional Economic

Information System (REIS7) 1969-2003 provided by Bureau of Economic Analysis (BEA). This

data set contains nine private sectors as well as one public sector. The nine private sectors are:

Agriculture, Forestry, and Fisheries (SIC code 0); Mineral Industries (SIC code 11-14) and

Construction Industries (SIC code 15-17); Manufacturing (SIC code 2 and 3); Transportation,

Communications, and Utilities(SIC code 4); Wholesale Trade (SIC code 50 and 51); Retail

Trade (SIC code 52-59); Finance, Insurance, and Real Estate (SIC code 6); Service Industries

(SIC code 7-8). Using these income data, I describe the industrial composition of each economy

by calculating the income shares for each industry.

7 http://www.bea.doc.gov/bea/regional/docs/cd.asp



In order to avoid extreme linear correlation, I did not include all shares of the sector in the model.

Because I did not have any a priori information on which sectors are most relevant to

employment growth, I regressed Eq. (1) using OLS method with all sectors shares and selected

the particular combination that provided the highest regression fit. After doing that, I

incorporated the most relevant industries into the model, which are mining (MIN90),

manufacturing (MANFC90), transportation (TRNSP90), wholesale trade (WHTRD90), service

(SERV90) and public/governmental sectors (GOV90).

2. Diversity index-Gini coefficient

I measure two kinds of industrial diversity for each county: diversity within all private sectors and

diversity within the services sector. I think there are two important aspects of "diversity". Initially

high diversity within all private sectors provides opportunities for industries to gain urbanization

economies. Initially low diversity within services sector particularly indicates "room" for

entrepreneurship activities because entrepreneurs can find the insufficient supply more easily in

an area with low diversified service sector to meet the unlimited diverse need from consumers.

I named them diversity indicator I (BEAGINI90) and diversity indicator II (SGINI90), respectively,

in my study. The level of diversity is indicated by the value of the Gini coefficient (Paci, 1999).

Analysts use the Gini coefficient to measure the degree of concentration (inequality) of a

variable in a distribution of its elements. It compares the Lorenz curve of a ranked empirical

distribution with the line of perfect equality. This line assumes that each element has the same

contribution to the total summation of the values of a variable. The Gini coefficient represents

the area of concentration between the Lorenz curve and the line of perfect equality as it

expresses a proportion of the area enclosed by the triangle defined by the line of perfect

equality and the line of perfect inequality. The Gini coefficient ranges between 0, where there is

no concentration (perfect equality), and 1 where there is total concentration (perfect inequality).

The closer the coefficient is to 1, the more unequal the distribution.

The Gini coefficient, among n entities (industry sectors) is given by G

G n+1-2V (0:G 1)
n

n i iX i = 1,2, ... n
where V=ZVi and ViZ={Pj=Y 1n

= j=1 j=1 YXl V= 0
1=1



I use 1990 sectoral employment data from the Regional Economic Information System (REIS 8)

1969-2003 to construct the BEAGIN190 dataset. I use the same nine industries for the private

sector that I used in the industrial-composition analysis with the following standard industrial

classification (SIC) codes: Agriculture, Forestry, and Fisheries (SIC code 0); Mineral Industries

(SIC codes 11-14) and Construction Industries (SIC codes 15-17); Manufacturing (SIC codes 2

and 3); Transportation, Communications, and Utilities (SIC code 4); Wholesale Trade (SIC

codes 50 and 51); Retail Trade (SIC codes 52-59); Finance, Insurance, and Real Estate (SIC

code 6); Service Industries (SIC codes 7-8).

For the initial diversity of the service sector in 1990, I use the data set in County Business

Patterns9 (1990) provided by the Census Bureau, which contains the disaggregate employment

data within the service sector, to calculate the Gini coefficient for the service sector for each

county. I provide the summary statistics of Diversity Indicator I and Diversity Indicator II in

Appendix B.

I use employment instead of income data for the calculation of SGIN190. Income data are less

reliable in measuring the scale of each industrial sector, because they mix the information of the

scale of industrial sector (employment) as well as wage level (income = Employment * Wage).

For example, the scale of the service sector might be underrepresented if I measure it by the

income-share measure because the wage level for a service-sector worker is lower than the

wages in other sectors. Thus, the employment share of a sector is a more precise way to

indicate the scale of this industry.

3. Specialization index-Herfindahl measure

I construct the specialization index of the manufacturing sector (SIMM90) by using the

Herfindahl Index (H):

2

H=ZP ( H 1) Where p: = and X =x
i=1n i=1 1 Xi=1

where n represents the total number of individuals (firms) in the groups (counties) we are

considering, and ni represents the number of individuals in group i, and the sum is taken over

the total number of groups; therefore, pi represents the relative proportion of individuals in group

8 http://www.bea.doc.gov/bea/regional/docs/cd.asp
9 http://www.census.gov/epcd/cbp/view/cbpview.html



i. The Index ranges from 1/n to 1-the closer to 1 the more concentrated the group values, in

other words, the more specialized the manufacturing sector.

4. Labor-market conditions and labor mobility

I use the natural logarithm of average wage for employees of the county and unemployment

rate for residents of the county in 1990 as indicators for the labor-market condition. For the

wage-per-job data, I use the Regional Economic Information System (REIS 10) 1969-2003 data,

while I use 1990 county unemployment-rate" data from the Bureau of Labor Statistics (BLS).

Labor mobility is measured by the percentage of people living in the same county since 1985,
which is provided in the 1990 decennial Census.

5. Natural amenities and market size

I use natural amenities scale data13 developed by Economic Research Service/U.S. Department

of Agriculture (ERS/USDA) in 1993 as an indicator of the natural amenities level in the county

(SCALE). I can measure the market size (METRO93) roughly with the use of a dummy variable

to indicate whether this county is a metropolitan county designated by OMB (Office of

Management and Budget) in 1993. I indicate metropolitan counties as 1 and non-metropolitan

counties as 0.

2.2 Empirical Model and Analytical Techniques

The techniques I used include shift-share analysis, ordinary least square (OLS), and spatial-lag

regression.

2.2.1 Shift-Share Analysis

I use shift-share analysis to separate statistically in any time interval the component of a

region's growth that reflects the activity-mix of the region from those components that reflect

overall national growth rates and changes in the region's competitive position. Other things

10 http://www.bea.doc.gov/bea/regional/docs/cd.asp
11 http://www.bls.gov/lau/home.htm
1 1990 Summary Tape File 3 (STF 3) - Sample data, Detailed Tables
13 The natural-amenity scale is a combining index for warm winter, winter sun, temperate summer, low
summer humidity, topographic variation, and water area. http://www.ers.usda.gov/data/NaturalAmenities/



being equal, a region will grow faster if it specializes in "growth industries," just as it will tend to

have a low wage level if it specializes in low-wage activities or a high skill level if it specializes in

high-skill activities. But shift-share analysis does not tell us why regions grow or improve. It says

nothing about how a region's ability to hold its share of existing activities or to attract new ones

is affected by the region's economic structure.

2.2.2 Ordinary Least Squares (OLS) Regression

The specification I use for the analysis of the determinants and the spatial autocorrelation in the

competitive employment growth is based on the factors I discussed in Chapter 1.

The competitive employment growth for each county (CEG) from 1990 to 2000 is explained by

the initial conditions of the county: industrial mix (MIN90, MANFC90, TRNSP90, WHTRD90,
SERV90, GOV90), diversity of the whole economy (BEAGINI90), diversity of the service sector

(SGINI90), specialization of manufacturing industry (SIMM90), labor-market condition

(LNWAGE90, UNEMPL90, PCTHSGRAD90), labor mobility (PSAMECNT90), natural-amenities

level (SCALE), and market size (METRO93).

Thus, I have included the most important determinants for explaining the employment growth

that are identified in most of the regional literature. I fit the following model, Equation (2), for

explaining CEG for the whole Appalachian region, metropolitan counties and non-metropolitan

counties, the three sub-regions, and the distressed, transitional, and better performing counties:

CEGi=ao+ po MIN90 +1, MANFC90i+ p2 TRNSP90, +p3WHTRD90i+ p4SERV90i+ p5GOV90i
+p6 BEAGINI90;+ p7 SGINI90i+ p8 SIMM90i

+ P9 LNWAGE90i +P10 UNEMPL90i+ Oil PCTHSGRAD90+ p12 PSAMECNT90,
+ P13 SCALEi + + 014 METRO93i +Ei (2)

2.2.3 Spatial-Weights Matrix

The main difference between the traditional OLS regression model and spatial model is that, the

spatial model integrates a spatial-weights matrix in the equation. The motivation for

incorporating such a matrix is that the rate of economic development of regions/areas, named

"economic agents" by econometricians, are thought to be influenced by economic activity in

proximate agents. The function of the spatial-weights matrix in the model is to identify which



agents interact with one another. -that is, which agents are "neighbors" according to some

connectivity metric. (Anselin, 2002)

Generally speaking, in order to construct the spatial-weights matrix, I consider that regions and

areas interact through two kinds of connection:

A. Physical connection-where economic agents are interacting through the being neighbors, or

through existing transportation network, such as highways, rails, ports and airport.

B. Socioeconomic connection-commuting tie within labor market areas; trade/supply chain;

innovation/learning region. I can define the spatial-weights matrices by using some social or

economic indices, such as commuter flows or trade flows. (Bao, 2004)

Spatial econometrics provides very little formal guidance in the choice of the "correct" spatial

weights in any given application. As Anselin indicates, when an analyst focuses on a model for

substantive spatial dependence, the spatial weights should match the spatial-interaction

patterns suggested by the theoretical framework (for example, a spatial-reaction function

implying a specific range of interaction). In practice, analysts can eliminate bad choices by using

model-validation techniques, such as a comparison of goodness-of-fit, or cross-validation.

"Fortunately, empirical investigations can increasingly exploit both time and space dimensions

(spatial panel data analysis), which opens up a number of opportunities to relax the structure of

the weights matrix and employ non-parametric or semi-parametric methods to estimate a

generic covariance structure, avoiding some of the strong priors required in the cross-sectional

setting". (Anselin 2002, p. 259)

In this study, in order to present the difference between physical connection and socioeconomic

connectedness, I use both physical (geographically neighboring) and socioeconomic connection

(connections through commuting activity) to construct two different spatial-weights matrices in

the spatial-regression model: (1) the Queen contiguity-weights matrix (Queen) and (2)

commuting-zones weights matrix (CZs).

Actually, I could use GeoDa to create two contiguity-based spatial weights: Rook Contiguity and

Queen Contiguity. They are similar in indicating the "physical" neighbors of counties. The only

difference between them is that Rook Contiguity defines neighbors by including counties that

share a common boundary while Queen Contiguity adds counties that touch only at a single

point. (Anselin 2003b). In my study, I use the Queen-Contiguity definition to create the spatial



weights for the "physical" connection of counties, because many analysts prefer the Queen-

Contiguity to account for a more extensive definition of "neighbors" (Anselin 2002). All weights

of 410 counties form the "Queen" spatial weights matrix in this study although in the case of the

Appalachian Region, the Rook-Contiguity method will not affect much the scope of neighboring

because few neighboring counties touched only at isolated points. There are virtually no

differences between the two spatial weights for Appalachia.

For the socioeconomic connection of counties, I use the 1990 commuting-zone delineation of

counties developed by ERS/USDA to define connectedness of labor. In other words, I consider

all counties designated as being in the same commuting zone as "neighbors" in the "CZs"

spatial-weights matrix. The motivation of delineating commuting zones is to define local labor

market areas based on commuting ties among counties, which are economically meaningful

(Killian, and Tolbert, 1993).

According to the documentation provided by the ERS/USDA 4 , the delineation of commuting

zones begins with counties as basic building blocks of commuting zones, as do those who

construct MSAs (metropolitan statistical areas), BEA county groups, BTAs (Basic Trading

Areas), and aggregated counties solely on the basis of commuting ties. The delineation does

not consider absolute population size until later in the process. Also, the delineation is not

confined to state boundaries. In other word, counties are grouped without regard for state lines,

which makes the delineation more robust in reflecting the socioeconomic connections among

counties.

In my study, because I am just studying those 410 counties within the Appalachian Region, for

those counties along the border, I cannot catch the spatial effect from the physical counties

outside the region. For the socioeconomic connection aspect, the same issue exists for those

counties in a commuting zone that crosses the boundary of Appalachia because the information

of counties in the same commuting zone but located outside the region is missing. Thus, my

results may be biased to some extent.

2.2.4 Spatial Autocorrelation

Spatial autocorrelation means the value at any one point in space is dependent on values at the

surrounding points. That is, the arrangement of values is not just random spatially. Positive

14 http://www.ers.usda.gov/briefing/rurality/LMACZ/LMACZ1990.pdf



spatial correlation means that similar values tend to be near each other. Negative spatial

correlation means that different values tend to be near each other. The existence of spatial

autocorrelation is caused by spatial interaction/spillover effects.

In spatial econometrics, the spatial autocorrelation can be measure by Moran's I coefficient 5 . It

is constructed by a variable and its spatially lagged transformation, after standardizing the

variable such that the mean is zero and variance is one. The expression of the spatial lag for a

standardized variable as Z, is

where w are elements of a row-standardized spatial weights matrix. For all Z, with a row-

standardized spatial weights matrix, Moran's I coefficient of spatial autocorrelation is expressed

by the following formula

Y =

or the slope of the regression line of the spatially lagged variable [W] on the original variable,

Z, (Anselin 1996).

A positive Moran's I coefficient means that the observed values of locations within a certain

distance or defined as "neighbors" in the spatial-weights matrix tend to be similar; it is

negative when they tend to be dissimilar. In other words, the sign decides the pattern of

similarity across space. The absolute value of Moran's I coefficient indicates the strength of

spatial autocorrelation. Generally speaking, the higher the absolute value is, the stronger the

spatial autocorrelation. If it is approximately zero, the observed values are arranged randomly

and independently over space (Goodchild, 1986).

15 There are numbers of ways to measure it. The most common ways are Moran's I and Geary's C
Statistics. I choose Moran's I because the software GeoDa can compute it directly.



A. Visualizing and testing spatial autocorrelation

With Geoda16 , an analyst can conduct tests and visualization of both global (test for clustering)

and local (test for clusters) using Moran's I statistic. The global Moran's I statistic accounts for

spatial autocorrelation effects of all observations in the study area, while the local Moran

statistic represents the spatial effect confined to those neighboring observations. Analysts

visualize the global test by means of a Moran scatterplot (Anselin 1996), in which the slope of

the regression line corresponds to Moran's 1. Significance is based on a permutation test, which

is a special case of randomization tests, i.e. tests that use randomly generated numbers for

statistical inference. An analyst visualizes the local Moran statistic (Anselin 1995) in the form of

significance and cluster maps. Here, I use the CEG variable as an example to demonstrate

these methods.

Figure 2.1 shows the spatial Figure 2.1: Quartile Map for Competitive Employment
distribution of the competitive Growth in Appalachian Region, 1990 to 2000

employment growth rate in
Qt~atik: CMPT90_00

Appalachia. The darker color 1it range (102)

represents the higher growth 2nd ranp (103)
3rd range (102)

rates. As shown in the map, 4th rp(103)

most of the faster-growing

counties are concentrated in

Southern Appalachia.

Table 2.1 shows basic

statistics for both the

unadjusted employment growth

rates (EG) and the competitive

employment growth rates

(CEG). The average

employment growth rate (EG) Source: Regional Economic Information System (REIS), 1990

from 1990 to 2000 in

16 Geoda 9i-GeoDa is the latest incamation in a long list of spatial software tools developed by Dr. Luc
Anselin's Spatial Analysis Laboratory (SAL) in the Department of Geography at the University of Illinois,
Urbana-Champaign.
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Appalachian counties is 21 %, and the standard deviation is 23%. The mean of CEG is -15.9%,
and the standard deviation is 25%. Both EG and CEG is highly varied among the 410 counties.

For CEG, it is ranging from a minimum -58% (far lower than the national average: 0) to the

maximum 168%.

Table 2.1: Descriptive statistics of total employment growth rate and its competitive component
from 1990 to 2000

Variable # of Counties Mean Std. Dev. Min Max
Total Employment Growth
Rate 410 21% 0.23 -27% 166%
Competitive Employment
Growth Rate 410 -16% 0.25 -58% 168%

Source: Regional Economic Information System (REIS) 1969-2003, 1990 and 2000. Percentage
calculated by the author. http://www.bea.doc.gov/bea/regional/docs/cd.asp

a. Global test: Moran scatterplot

In Geoda, the visualization of spatial autocorrelation is through the Moran scatterplot and cluster

map (Anselin 2003a), which I use later in Chapter 4, Section 4.2. Basically, the main function of

the Moran scatterplot is to classify the spatial autocorrelation into two categories, referred to as

spatial clusters and spatial outliers. Each of them has two sub-categories. The cluster map,

which I give later, shows the geographical distribution of these four kinds of spatial

autocorrelation.

Figure 2.2 is an example of a scatterplot of

the dependent variable of 410 counties- I= 0.3491

CEG (competitive employment growth from

1990 to 2000). The original variable

(CMPT90 00) is plotted on the X-axis, and

the weighted average of its neighbors

(WCMPT90_00) is plotted on the Y-axis.

As explained in more detail in Anselin

(1996), each quadrant of the Moran

scatterplot corresponds to a different type of

spatial correlation. The lower-left and upper-

right quadrants indicate positive spatial -i0 -' 0

autocorrelation, respectively of low values C PT9O_00

surrounded by neighboring low values, or high values surrounded by neighboring high values.

Consequently, counties plotted within these quadrants are referred to as clusters of counties



that have low/low or high/high growth rates. In contrast, the upper-left and lower-right quadrants

suggest negative spatial autocorrelation, respectively of low values surrounded by neighboring

high values, or high values surrounded by neighboring low values. These are therefore referred

to as counties that are spatial outliers.

The scatterplot also provides a visual indication of the sign and strength of spatial

autocorrelation in the form of the slope of the regression line, which is shown on top of the

graph. Thus, the scatterplot allows for an informal investigation of the leverage (influence) of

specific observations (locations) on the autocorrelation measure.

It is important to note that the scatterplot provides the classification, but does not indicate

"significance". The latter is obtained by applying a Local Moran (LISA) test, as shown in Anselin

(1995).

b. Local test: significance and cluster maps

The local tests of spatial autocorrelation are visualized by maps depicting the locations with

significant Local Moran statistics (LISA17 significance maps) and classifying those locations by

type of association (LISA cluster maps).

17 LISA: Local indicators of spatial association

... ...... .....



The significance map on the left-hand panel of Figure 2.3 indicates counties with a local Moran

statistic significantly different from zero. Significance is indicated by darker shades of green,

with the darkest corresponding to p = 0.05 (based on 9999 random permutations of the

observed CEG values across the 410 counties). A tighter significance criterion will eliminate

some (but not many) locations from the map.

In the matching cluster map in the right-hand panel of Figure 2.3, the dark red and dark blue

locations are indications of spatial clusters (respectively, high surrounded by high, and low

surrounded by low). In contrast, the light red and light blue are indications of spatial outliers

(respectively, high surrounded by low, and low surrounded by high).

Further discussion of the spatial exploratory analysis for CEG is provided in Chapter 4, Section

4.2.1.

2.2.5 Spatial-Regression Models

There are two ways in which I incorporate spatial interaction in the model specifications: a

spatial-lag model and spatial-error model (Anselin 1988). Briefly speaking, the difference

between them is that, for the spatial-lag model, an analyst incorporates a spatially lagged

dependent variable (WY) on the right-hand side of the regression model, while in the spatial-

error model, an analyst either models the spatial-error autocorrelation directly, following the

general principles of geostatistics, or by utilizing a spatial-autoregressive process for the error

term (for a recent review of these models, see Anselin and Bera, 1998; Anselin, 2001 b)

To be more precise, the spatial-lag model is a spatial-reaction function that expresses how the

magnitude of the dependent variable for one county depends on the magnitudes of the

dependent variable for neighboring counties (Brueckner, 2002). This provides the theoretical

basis for a so-called spatial-lag model, or, mixed regressive spatial autoregressive model

(Anselin, 1988):

Y=pWY +PX +E,

Where, Y is an nx 1 vector of observations on the dependent variable, W is an n x n spatial-

weights matrix that formalizes the network of directly interacting counties, p is the spatial

autoregressive parameter, X is the usual n x k matrix of observations on the exogenous



variables, with an associated k x 1 regression coefficient vector p, and E is a vector or random

error terms.

The spatial-error model is a second form of spatial dependence, whereby the only interaction

among counties would be through correlated error terms. Hence,

Y = pX +E with E = A W E + u

where A is a spatial-autoregressive coefficient and u is a standard spherical error term, and the

actual error is a linear combination of u and a weighted sum of errors in neighborhing counties.

Ignoring spatial dependence in the error term does not lead to biased least-squares estimates,

but the estimate of their variance will be biased, yielding a misleading inference (for further

discussion, see, among others, Anselin, 1988a).

Thus far, I have explained the measurement of all variables in my empirical model and the

details of the major method that I will use in the following analysis. In Chapter 3, I provide the

descriptive statistics for the variables in the model. Then, in Chapter 4, I analyze the result of

the regressions and compare the coefficients and significant level of variables among groups of

counties within each classification. Also, I examine and compare the Ordinary Least Squares

(OLS) model and spatial-lag model in Chapter 4.



Chapter 3

Descriptive Statistics of Variables

Before interpreting the regressions I did for the industrial structure and other determinants on

competitive employment growth for Appalachian counties, I provide descriptive statistics for the

dependent variable (competitive employment growth) and its determinants. First, I provide

information about the geographical boundary of the Appalachian Region and its basic social

characteristics. Then, in order to account for the heterogeneity of the Appalachian Region, I

analyze the statistic for the dependent variable (competitive employment growth) and its

determinants based on the following three classifications used by most analysts of the

Appalachian Region: (1) metropolitan and non-metropolitan counties, (2) three sub-regions:

Northern, Central, and Southern, and (3) distressed counties, transitional counties, competitive

and attainment counties.

3.1 Geographical Definition of the Appalachian Region

Appalachia refers to the area Figure 3.1 Appalachian Region Boundaries

of and around the

Appalachian Mountains. The

Appalachian mountain chain

is the major mountain system

of eastern North America,

covering more than 1, 500

miles of territory from the

Canadian province of

Quebec to northern Alabama.

The definition of Appalachia

used in this study comes

from the Appalachian

Regional Commission

(ARC)18, created by the

Appalachian Regional MApai 12Ro ua
Sour: Appalachian Regional mission

18 The ARC is a partnership between the federal government and the governments of 13 states, whose purpose is to improve
conditions in the Appalachian region.



Development Act of 1965 (and most recently reauthorized in 2002). The region covers 410

counties 9 in the following 13 states (Figure 3.1): all of West Virginia, as well as southern New

York; most of Pennsylvania; southeastern Ohio; the western portions of Maryland, Virginia, and

the Carolinas; the eastern portions of Tennessee and Kentucky; the northern portions of

Georgia and Alabama; and northeastern Mississippi.

1. Employment growth and its competitive component

The total U.S. private employment in 1990 was 115 million, and it increased by 22.4% to 140.7

million in 2000 (Table 3.1). For the Appalachian Region, the private employment20 growth rate

from 1990-2000 is 19.5%, which is 3 percentage points lower than the U.S. average.

Table 3.1: Total employment and growth for the U.S. and Appalachian Region, 1990 and 2000
United States(in millions) Appalachian

Region(in millions)
1990 2000 Growth 1990 2000 Growth

Total Private Employment 115.00 140.70 22.4% 8.53 10.19 19.5%
Source: Regional Economic Information System (REIS), 1990 and 2000, percent calculated by the author

As previously shown in Table 2.1, the mean of the competitive employment growth (CEG) rate

from 1990 to 2000 in the Appalachian Region is -15.9%. Thus, the employment growth rates in

Appalachian counties are 15.9% lower than the U.S. average. The CEG rate also has a high

variation among the

410 counties, from the Figure 3.2: Frequency Histogram of CEG for 410 Counties
120-

minimum -0.58 to the 10 L Fequency

maximum 1.68.

The frequency

distribution of the CEG

rate21 (Figure 3.2)

shows that the majority

of Appalachian counties

(over 320 counties)

,80 --

60 -

40 -+ H iI -I4+4I20 --

-0.13 0.10 0.33 0.55

Value

Source: Regional Economic Information System (REIS), 1990 and 2000

19 In addition to the 410 counties, the Appalachian region contains eight Virginia cities that are
independent of any county authority (that is, they function like counties). For analytical purposes, the
Appalachian Regional Commission-following the practice of the U.S. Bureau of Economic Analysis
BEA)-incorporates each independent city within an adjacent county, and this report follows that practice.
0 Exclude governmental sector.

21 Value shown in the Figure 3.2 is ratio of year 2000 to year 1990.

0.78 1.00 1.23 1.46 More-0.58 -0.35



have negative competitive employment growth (relative to the US average for the decade).

I showed the spatial distribution of the CEG rate in Appalachia in Figure 2.1. From that map, we

notice that most of the faster-growing counties are concentrated in Southern Appalachia,

spatially near Atlanta. For details of the top/bottom 20 counties, refer to Appendix A.

2. Industrial mix

Employment grew differently from 1990 to 2000 in Appalachia when compared with the United

States for each sector. Table 3.2 lists the number of employees in 1990 and 2000 and the

growth rate in private employment by sectors for the United States and the Appalachian Region.

Notably, employment in the agriculture sector increases by 46% from 1990 to 2000 in the United

States, while in Appalachia, the employment growth of this sector is negative. The mining sector

also dramatically shrank in Appalachia during this period.

Although total employment grew slower in the Appalachia Region (AR) than in the United States

(US), some sectors greatly outperformed others in employment growth. For example, the

wholesale trade, retail trade, and finance, insurance, and real estate (FIRE) sectors grew faster

than the U.S average level. (Wholesale trade: U.S. 12.9% vs. AR 17.4%; Retail trade: U.S.

18.9% vs. AR 20.9%; FIRE: U.S. 23.1% vs. 30.5%).



Table 3.2: Industrial mix and growth rate of the U.S. and the Appalachia Region, 1990-2000
US (in millions) AR (in millions)

Sectors SIC code 1990 2000 Growth 1990 2000 Growth
Total private employment

115.00 140.70 22.4% 8.53 10.19 19.5%
Agricultural services,
forestry,fishing&others 0 1.45 2.12 45.9% 0.07 0.07 -5.2%
Mining

11-14 1.04 0.78 -24.9% 0.15 0.08 -44.4%
Construction

15-17 7.26 9.45 30.1% 0.58 0.74 27.5%
Manufacturing

2-3 19.69 19.11 -2.9% 2.04 1.94 -4.5%
Transportation and

public utilities 4 6.55 8.24 25.9% 0.46 0.56 21.9%
Wholesale trade

50-51 6.72 7.58 12.9% 0.42 0.49 17.4%
Retail trade

52-59 22.89 27.22 18.9% 1.76 2.12 20.9%
Finance, insurance,

and real estate 6 10.71 13.19 23.1% 0.53 0.69 30.5%
Services

7-8 38.67 52.99 37.0% 2.46 3.35 36.0%
Source: Regional Economic Information System (REIS) 1990 and 2000, percent calculated by the author

3. Diversity indices and specialization index

Table 3.3 shows the descriptive statistics for diversity and specialization indices. The diversity of

the whole economy (BEAGIN190) is less varied (StdDev/Mean = 0.074/0.50) than the diversity

of the service sector (SGIN190) among counties (StdDev/Mean = 0.163/0.51). The variance of

manufacturing specialization (SIMM90) is also very large (Std.Dev. = 0.32 with a mean of 0.60).

Table 3.3: Industrial diversity and specialization of Appalachian counties, 1990

Variable #of Observations* Mean Std. Dev. Min Max
BEAGINI90 399 0.499 0.074 0.000 0.680
SGINI90 399 0.506 0.163 0.000 0.781

SIM M90 312 0.597 0.323 0.100 1.000

Source: County Business Pattern (CBP) 1990, numbers are calculated by the author.
Note: BEAGIN190: Diversity index of the whole economy; SGIN190: Diversity index of service sector;
SIMM90: Manufacturing specialization indicator.
*Counties are excluded from this summary statistics analysis, because CBP did not provide the data in
the service/manufacturing sector for these counties to avoid disclosure of confidential information.



4. Labor-market conditions, labor mobility, amenities, and market size

From the statistical summary in Table 3.4, we confirm that Appalachian counties in 1990 are

diverse in many aspects. For example, the unemployment rate (UNEMPL90) varied from 2% to

22%; the percentage of residents with high school education (PHSGRAD90) ranged from 35%

to 87%. The "scale" measure for natural amenities is a standardized score using a scale that

has a mean of 0 and standard deviation of 1.0 across all US Counties. I set the metro93 dummy

variable to 1.0 for the 109 counties (26.6%) that were classified as metropolitan counties in

1993.

Table 3.4: Descriptive statistics of other variables for Appalachian counties, 1990

Variable # of Obs Mean Std. Dev. Min Max
UNEMPL90 410 8.1% 3.4% 2.7% 21.9%
LNWAGE90 410 9.752 0.186 9.310 10.346
PHSGRAD90 410 61.2% 10.2% 35.5% 87.2%
PSAMECNT90 410 83.8% 6.6% 53.9% 94.7%
SCALE 410 0.132 1.163 -3.720 3.550

Source: Regional Economic Information System (REIS), 1990; Census 1990; natural amenities
ERS/USDA, numbers are calculated by the author

scale from



3.2 Classification 1-Metropolitan and Non-metropolitan Counties

According to the amount of population and its distribution, Appalachia is not very rural. More

than three-fifths of the Appalachian population lives in metropolitan areas; about one-fourth

resides in large metropolitan (metro) areas such as Atlanta, Pittsburgh, and Birmingham.

However, many Appalachian areas remain sparsely populated. For example, nearly half of

Appalachia's 410 counties had fewer than 30,000 people in 2000; 33 of those counties had

fewer than 10,000 residents. (Pollard 2005)

The distinguishing characteristics and different development pattern of metro and non-metro

counties in the United State remain or maybe are even more significant in the Appalachia

Region. Here, I just stress those features relevant to this study.

1. Employment growth and its competitive component

It is not surprising to see that the average employment growth of metro counties is higher than

non-metropolitan counties, both in terms of gross growth or its competitive component. The

variance of metro counties is bigger than for their non-metro counterparts.

Table 3.5: Employment growth rate and its competitive component for Metropolitan counties and
non-metropolitan counties, 1990-2000

Variable # of Obs Mean Std. Dev. Min Max
Metropolitan GR9000 109 27.4% 28.3% -0.103 1.669

CMPT90 00 109 -13.4% 28.4% -0.459 1.197
Non- GR9000 301 20.1% 24.1% -0.277 2.163
metropolitan CMPT90 00 301 -16.8% 24.1% -0.578 1.683

Source: Regional Economic Information System (REIS), 1990 and 2000, numbers are calculated by the
author
Note: GR90_00: employment growth rate, 1990 to 2000; CMPT90_00: competitive employment growth
rate, 1990 to 2000.

2. Industrial mix

Figure 3.3 shows the industrial composition of metro and non-metro counties in Appalachia. The

mining sector (MIN90) is overrepresented in non-metro counties, while other sectors have

similar shares. The manufacturing sector dominated in the economy, followed by government

sector (GOV90) and services sector (SERV90).



Figure 3.3: Industrial Composition of Metro and Non-metro
counties in 1990
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Comparing the industrial composition between 1990 and 2000 (Figure 3.4), I notice that the

share of manufacturing sector (MANF90 and MANFOO) declines slightly (from around 27% to

below 25%) while the share of the services sector (SERV90 and SERVOO) increases.

Figure 3.4: Industrial Composition of Metro and Non-metro
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3. Diversity indices and the specialization index

In Table 3.6, I show that the average level of manufacturing specialization (SIMM90) of non-

metro counties is higher than the one of metro counties. Interestingly, the table shows that the

mean of the diversity index for the whole economy (BEAGIN190) of non-metro counties is higher

than that of metro counties, The difference of 0.014 is statistically significant (a= 0.1). This

finding means that non-metro economies are more diverse than metro economies in Appalachia.



Table 3.6: Industrial diversity and specialization of metropolitan counties and non-metropolitan
counties, 1990

Variable # of Observations Mean Std. Dev.
Non- Non- Non-

Metro metro Metro metro Metro metro

BEAGINI90 97 237 0.489 0.503 0.073 0.073
SGIN190* 97 237 0.486 0.513 0.209 0.141
SIM M90* 97 237 0.403 0.677 0.292 0.301

Source: County Business Pattern (CBP) 1990, numbers are calculated by the author.
Note: BEAGINI90: Diversity index of the whole economy; SGIN190: Diversity index of service sector;
SIM__M90: Manufacturing specialization indicator.
*76 Counties are excluded from this summary statistics analysis because CBP did not provide the data in
the service/manufacturing sector for these counties to avoid disclosure of confidential information.

4. Labor-market conditions, labor mobility, and amenities

After conducting statistical tests, I find that all the means of variables in Table 3.7 are

significantly different (a = 0.05) between metro and non-metro counties. On average, metro

counties have higher wage (LNWAGE90), lower unemployment rate (UNEMPL90), and more

educated labor force (PHSGRAD90) in 1990 but their variances are less than non-metro

counties. It is interesting that the natural-amenities indicator (SCALE) is better in metro counties

than their non-metro counterparts.

Table 3.7: Descriptive statistics of other variables for Metropolitan and Non-metropolitan Counties,
1990

Variable # of Observations Mean Std. Dev.
Non- Non- Non-

Metro metro Metro metro Metro metro

Inwage90 109 301 9.851 9.716 15.8% 18.3%
unemp190 109 301 6.4% 8.6% 1.789 3.622
phsgrad90 109 301 68.3% 58.6% 7.7% 9.7%
psamecnt90 109 301 81.8% 84.6% 7.5% 6.1%
scale 109 301 0.332 0.060 0.930 1.230

Census 1990; natural amenities scale fromSource: Regional Economic Information System (REIS), 1990;
ERS/USDA, numbers are calculated by the author



3.3 Classification 2-Three Subregions

The Appalachian Regional Figure 3.5: Subregions in Appalachia

Commission (ARC) divides the region WISCONSIN

into three subregions based on the MICHIGAN

location of the county: Northern,

Central, and Southern. (Figure 3.5)

Northern Appalachia contains every ILLINOS INDANA O PENSYLVANIA

Appalachian county in New York,

Pennsylvania, Maryland, and Ohio, as

well as 46 of West Virginia's 55

counties. Central Appalachia includes

West Virginia's nine southernmost

counties, all of Appalachian Kentucky,

the southwestern tip of Virginia, and I

the northwest part of Tennessee's

Appalachian area. Finally, southern M'SS"SIP"I ALABAMA

Appalachia includes most of the Source: ARC website
Appalachian portion of Virginia and

Tennessee, as well as the entire Appalachian sections of the Carolinas, Georgia, Alabama, and

Mississippi (Appalachian Regional Commission, 1974).

1. Employment growth and its competitive component

Table 3.8: Employment growth and its competitive component of three sub-regions, 1990-2000
Variable #of Observations Mean Std. Dev.

N C S N C S N C S
GR9000 144 87 179 15.2% 19.2% 28.9% 15.5% 23.9% 30.5%
cMPT90 00 144 87 179 -23.2% -18.3% -9% 18.2% 23.4% 29.2%

Source: Regional Economic Information System (REIS), 1990 and 2000, numbers are calculated by the
author. N: northem region; C: central region; S: southern region

After conducting the statistics test, I find that the mean of the northern, central and southern

regions are statistically significantly different from each other (a = 0.00).

These summary statistics Table 3.8 show that

M 14



First, on average, gross employment growth in the Southern subregion is the best among the

three regions. I notice that employment in Central Appalachia grew faster than that in the

Northern subregion, although the Central counties were thought to be most economically

distressed. (Isserman, 1996) This result might occur because a region with a weak initial

economic base has more room to grow.

Second, although all three subregions have a negative employment growth from 1990 to 2000

(in terms of the competitive component), the southern region has the lowest absolute value, -9%.

It is consistent with the fact found by the Brandow Company's (2001) research on number of

establishments in Appalachia. The Southern subregion has the highest birth rate of

establishments, followed by the Central and Northern subregions. They indicate that the

Southern subregion's establishment birth and death rates and job-creation and destruction rates

are more closely aligned with those of the United States as a whole than with either of the other

two subregions.

2. Industrial mix

Figure 3.6 shows that the Central subregion most closely approximates the conventional view of

Appalachia, where most of its activity is in non-metro areas and it relies on mining and

manufacturing.

Although, on average, the shares of manufacturing sector are highest among all sectors for

three subregions, it is more dominant in Southern counties.

Figure 3.6: Industrial Composition of Three Sub-regions in 1990
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From Figure 3.7, 1 find that the pattern did not change from 1990 to 2000.

Figure 3.7: Industrial Composition of Three Sub-regions in 2000
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3. Diversity indices and specialization index

Table 3.9: Industrial diversity and specialization of three subregions, 1990
Variable #of Observation Mean Std. Dev.

N C S N C S N C S

BEAGIN190 117 59 158 0.487 0.495 0.509 0.078 0.064 0.074
SGINI90* 117 59 158 0.509 0.500 0.504 0.164 0.145 0.168
SIM M90* 117 59 158 0.514 0.752 0.601 0.328 0.286 0.312
Source: County Business Pattern (CBP) 1990, numbers are calculated by the author.
Note: BEAGIN190: Diversity index of the whole economy; SGIN190: Diversity index of service sector; SIM_M90:
Manufacturing specialization indicator.
*76 Counties are excluded from these summary statistics analysis because CBP did not provide the data in the
service/manufacturing sector for these counties to avoid disclosure of confidential information.

Using the statistics test, I find that the means of the diversity level (BEAGIN190 and SGIN190)

are actually not different among the northern, central, and southern subregions, but the mean of

the manufacturing-specialization level index (SIM_M90) for Central Appalachian is significantly

higher (a = 0.01) than ones for the Northern and Southern subregions. This finding means that

the diversification of the economy and the service sector is similar among the three subregions,

while Central Appalachia counties have the highest level of manufacturing specialization,

followed by Southern and Northern Appalachia.



4. Labor-market conditions, labor mobility, and amenities

Labor-market conditios moiiy. and amenities of three suraos 90
Variable #of Observation Mean Std. Dev.

N C S N C S N C S
Inwage9O 144 87 179 9.834 9.680 9.722 0.154 0.226 0.165
unempl90 144 87 179 8.57% 10.85% 6.28% 3.069 3.760 2.169
phsgrad90 144 87 179 69.5% 50.0% 60.0% 0.069 0.073 0.074
psamecnt90 144 87 179 84.5% 86.8% 81.8% 0.064 0.050 0.067
scale 144 87 179 -0.361 -0.220 0.700 0.877 1.074 1.163
metro93 144 87 179 0.326 0.080 0.307 0.471 0.274 0.463
Source: Regional Economic Information System (REIS), 1990;
ERS/USDA; numbers are calculated by the author.

Census 1990; natural amenities scale from

Using the statistics test for the three subregions' means of the wage level in 1990, I find that the

mean of the northern, central, and southern subregions are different from each other. I show

that, on average, the Central subregion has the lowest wage level, while the Northern

Appalachia has the highest wage level in 1990.

The result is not surprising when considering Jensen's (1998) findings. He found that relative to

the United States, Northern Appalachia has lower entry rates and increasingly lower wages and

productivity, the Central subregion has higher entry rates and lower (but relatively unchanged

between 1963 and 1992) wages and productivity, and the Southern counties have higher entry

rates and lower (but less so) wages and productivity.

Another interesting finding is, the natural amenities (SCALE) of southern counties are much

better than those of the central and northern Appalachia. (0.7 vs. -0.22 and -0.36)

Table 3.10:



3.4 Classification 3-Overrepresented Distressed Counties in Appalachia

The economic status of Figu 3.8: County Economic Status in Appalachia, Fiscal Year 2004

Appalachia varies widely-

some areas are as MICHIGAN

economically advanced as

the United States as a

whole, while many areas

remain economically

depressed. The

Appalachian Regional

Commission has

developed a system that

uses three indicators of

economic viability-per

capita income, poverty, and

unemployment-to classify

counties into the following

four categories of D

econ micdeveopm nt:US, Cam" ueau. 2M0 Cer*A. SF3

economic development:ARC website

distressed, transitional,

competitive, and attainment counties. (Detail definition in Appendix C) Considering the limited

observations and the similarity of the latter two categories, I combine the competitive and

attainment counties and call them "better-performing"~ counties. (Figure 3.8)

1. Employment growth and its competitive component

Like the differences among three sub-regions, the differences among these three economic-

development groups are also statistically significant. Of course, the competitive and attainment

counties, on average, have the highest growth rate, and the distressed counties grew much

slower than their regional counterparts (Table 3.11).
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Table 3.11: Employment growth rate and its competitive component for three economic levels,
1990-2000

Variable # of Observations Mean Std. Dev.

D T 0 D T 0 D T 0
GR9000 91 289 30 13.9% 21.8% 48.9% 0.214 0.217 0.454
CMPT90 00 91 289 30 -23.2% -16.0% 6.4% 0.206 0.226 0.446
Source: Regional Economic Information System (REIS),
Note: D: distressed counties; T: transitional counties; 0:
ARC designation of fiscal year 2004.

1990 and 2000
competitive and attainment counties. Based on

2. Industrial mix

00

Figure 3.9:
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In Figure 3.9, comparing the 1990 industrial composition of counties grouped to three kinds of

economic status, I show that the mining sector is significantly overrepresented in distressed

counties, followed by the governmental sector. The transitional counties have the highest

average comparative income share (30%) in the manufacturing sector.

The same pattern still exists in the 2000 industrial composition (Figure 3.10).



Figure 3.10: 2000 Industrial Composition of Counties with Different Economic
Status(FY2004)

30%

25%

, 15%
E
o 10%

ID5%
ID0%

@ ~00 o~?
o06

(!2~

o0 @ p

Source: Regional Economic Information System (REIS), 2000

3. Diversity indices and specialization index

As observed in Table 3.12, different economic types of counties are similar both in terms of the

whole economy and the services sector, while the distressed counties have the highest

specialization level within the manufacturing sector.

Table 3.12: Industrial diversity and specialization of three economic levels, 1990
Variable # of Observations Mean Std. Dev.

D T 0 D T 0 D T 0
BEAGIN190 58 249 27 0.493 0.502 0.490 0.074 0.063 0.112
SGIN190* 58 249 27 0.512 0.513 0.422 0.148 0.153 0.244
SIM M90* 58 249 27 0.873 0.559 0.352 0.203 0.312 0.269

Source: County Business Pattern (CBP) 1990, calculated by author.
*Note: Counties are excluded from this summary statistics analysis because CBP did not provide the data
in the service/manufacturing sector for these counties to avoid disclosure of confidential information.

4. Labor-market conditions, labor mobility, and amenities

The distressed counties have the lowest wage level and the highest unemployment rate

compared to their regional counterparts. Labor mobility and the natural-amenity scale are also

highest in better-performing counties. (Table 3.13)



Table 3.13: Labor-market conditions, mobility, and amenities of three economic levels, 1990
Variable # of Observations Mean Std. Dev.

D T 0 D T 0 D T 0
inwage9O 91 289 30 9.679 9.763 9.868 0.226 0.167 0.144
unempl90 91 289 30 12.2% 7.1% 4.6% 3.537 2.172 1.065
phsgrad90 91 289 30 51.6% 63.3% 70.2% 0.080 0.089 0.077
psamecnt90 91 289 30 87.6% 83.4% 76.7% 0.048 0.062 0.076
scale 91 289 30 -0.302 0.219 0.606 1.066 1.165 1.084
metro93 91 289 30 0.022 0.287 0.800 0.147 0.453 0.407
Source: Regional Economic Information System (REIS), 1990; Census 1990; natural amenities scale from
ERS/USDA

So far, I have examined the competitive employment growth, industrial structure, labor-market

conditions, and natural amenities in the Appalachian Region as a whole and their characteristics

between metropolitan counties and non-metropolitan counties, among Northern, Central, and

Southern Appalachia, and among different economic-development groups.

In general, both of the actual employment growth (ER90_00) and the competitive employment

growth (CMPT90_00) are significantly different (1) between metropolitan and non-metropolitan

counties, (2) among distressed counties, transitional counties and better forming counties, and

(3) among three subregions.

For most of the characteristics I discussed above, i.e., Industrial diversity and specialization,

labor-market conditions, and amenities, there are strong differences (1) between metropolitan

and non-metropolitan counties and (2) among different economic-development groups, but they

are not significant among three subregions.

In Chapter 4, I use regression and spatial analyses for the empirical model and finally

summarize my findings in the conclusion part.



Chapter 4

Regression and Spatial Analysis

In the previous chapter, I have carefully examined the descriptive statistics of the dependent

variable and thirteen independent variables, and their differences among various groups of

counties in Appalachia, i.e., metropolitan (metro) and non-metropolitan (non-metro) counties,

three sub-regions, and different economic-development groups. In this chapter, I focus on the

following simple linear regression model for the competitive growth rate, which is one possible

specification of the general relationship specified by Eq. (2) in Section 2.2.2.

CEGi=ao+ Po MIN90 +01 MANFC90;+ p2 TRNSP90 +P3WHTRD90i+ P4SERV90i+ P5GOV90i
+P6 BEAGINI90i+ p7 SGINI90i+ p8 SIMM90i
+ P9 LNWAGE90i +1o UNEMPL90i+ P11 PCTHSGRAD90+ p12 PSAMECNT90,

+ p13 SCALEi + + p14 METRO93+E i

Using the optimal least squares (OLS) method of fit, I fit the same model specification for each

group of counties within the three types of county classification (metro, economic development

and geographic region). After analyzing and comparing the results, I examine possible spatial

autocorrelation effects and compare the OLS and spatial regression models.

4.1 OLS Regression Result Comparison among Different Groups

There are three types of county classifications used by most studies of the Appalachian Region:

(1) metro and non-metro segregation, (2) three sub-regions (northern, central and southern

Appalachian), and (3) county economic status classification (distressed, transitional and better-

performing counties). In this section, I regress the specification on groups within each of the

three classifications and compare the regression results.

From Table 4.1 (on page 54), I note that, the value of R2 and adjusted R2 are significantly

different between metro and non-metro models: 0.73 and 0.69 for metro model; 0.24 and 0.19

for non-metro model. This means that the regression model has more explanatory power for the

metro counties than for the non-metro counties. The model seems to explain the competitive

employment competitive growth rate (1990-2000) better by the determinants for southern than

for northern Appalachia 2 . When I classify Appalachian counties by their economic status in

2 Industry mix and diversity do not appear to matter for central Appalachia and F test for central
Appalachia is too large



2000, I find that the values of R2 and adjusted R2 for the better-performing county model are
much higher than the distressed- and transitional-county models (0.82 and 0.61 vs. 0.41 and
0.18 vs. 0.38 and 0.34). In summary, it seems that this empirical model better explains the
competitive employment growth from 1990 to 2000 by using the determinants in metro counties,
or in southern Appalachia counties, or or in better-performing counties.

Besides the discrimination of explanatory power of the specification among county groups, both
the significance levels (P>t.) and the value of the coefficients (Coef.) for those statistically
significant variables also varied greatly among groups within each classification. I conduct the
following comparison analysis for industrial mix, industrial diversity and specialization, labor-
market conditions, and others, respectively.

4.1.1 Industrial Mix

When I examine the industrial-mix factors for metro and non-metro counties, the share of
manufacturing, transportation, service, and governmental sectors in 1990 have significantly
negative correlations with the growth rates from 1990 to 2000 for metro counties. I also notice
that the mining sector matters only for non-metro counties. The reason might be that (1) the
mining sector is small outside the mountainous central Appalachian Region; (2) the rural
economy is too small and varied for other sectors to have a visible and consistent effect on
employment growth across all rural Appalachian counties; (3) technically thinking, the
significances of these variables may be diluted by the noise of other variables.

In the case of the three sub-regions, almost every sector's share I included in the model is
significantly correlated with the growth rates for counties in southern Appalachia, while for
counties in the central region, none of these is relevant. It might be because the economy of
most counties in Central Appalachia is dominated by mining sector and their whole economy is
very small. Therefore the impact of any single sector does not showed in the growth model.

For counties in northern Appalachia, the share of the wholesale trade sector in 1990 has a
significantly positive effect (coef. =2.05) while that of the service sector has a significantly
negative one (coef. = -0.65) on the county competitive employment growth rates. In comparing
the impacts of wholesale trade sector between Northern and Southern Appalachia counties, I
find a much larger coefficient of wholesale trade sectors for Northern Appalachia over Southern
Appalachia, (2.05 vs. 1.39). The pattern reverses for services sector; the impacts of services



sector are almost three times higher in counties of the southern region than those in the
Northern Appalachia (-1.66 vs. -0.65).

I obtain a similar pattern when I compare counties at different economic levels. Almost all the
shares of sectors I used in the model have significantly strong impacts on the growth rates for
transitional counties, but the wholesale trade sector has no statistically significant effects.
However, none of the shares are statistically significant for those distressed counties. For those
better-performing counties, only the share of the services sector in 1990 matters23 to their
competitive employment growth rates (CEG) from 1990 to 2000.

4.1.2 Diversity Indices and Specialization Index

The industrial diversity indicators and specialization indicator also perform differently, but they
are less diverse than industrial-mix factors among groups within each classification. Generally
speaking, Diversity Indicator I (BEAGIN190), which measures the diversity of the whole
economy in 1990, has a statistically significant negative impact (P<0.05) on the growth rates
within non-metro counties. It is less significant for metro counties (P < 0.2) and for transitional
counties (P < 0.10). This diversity indicator is not a significant factor in explaining the difference
of growth rates among counties either within each sub-region or within distressed counties and
better performing counties.

Diversity Indicator 11 (SGINI90), which measures the diversity of the service sector in 1990, only
contributes to the model for the different growth rates among better-performing counties. It has
a positive impact on the CEG rate (Coef. =0.50). This means that the more diverse services a
better-performing county provided in 1990, the more was its competitive employment growth
between 1990 and 2000. It makes sense because service diversity is one of the important
indicators of economic health, as illustrated by previous studies (e.g., Quigley 1998).

As the specialization indicator, I used the Herfindahl measure for the manufacturing sector in
each county, indicated by SIM_M90 in the model. I found a statistically significant (P < 0.10)
positive relationship between the level of manufacturing sector specialization and competitive
employment growth only in Southern Appalachia counties and in the transitional counties.

2 Only 27 counties are in this group and they include most of the half dozen outliers with especially high
growth rates. So, instead of examining further at this point, I will discuss it until accounting for spatial
autocorrelation.



This empirical result is consistent with the prediction of some growth theorists and findings from

many prior empirical studies, which usually confirm that the diversity of an economy will help

economic growth (Glaeser et al., 1992), but it might disappoint those theorists who believe that

specialization of a particular manufacturing industry allows for full exploitation of scale

economies and therefore helps "growth" (Henderson et al. 1995).

4.1.3 Labor-Market Conditions and Labor Mobility

The impact of labor-market conditions on employment growth is a little surprising because the

initial wage level at 1990 is not relevant, meanwhile the education level of labor force has a

statistically significant negative impact on the competitive employment growth within non-metro

counties, Northern Appalachian counties, and transitional counties (coef. =-0.42, -0.81 and -

0.66 respectively). This finding means that a county with a higher education level of labor force

in 1990 has a lower growth rate from 1990 to 2000 compared to other counties in the same

group. It might be that low-wage Appalachia counties were more attractive to firms seeking low

skilled labor in the 1990s.

I use the percentage of people who were living in the same county five years ago as a proxy for

labor mobility. The coefficients of this variable (PSAMECNT90) are negative for all county

groups; meaning that more mobile counties (with fewer of the same people living in the same

county between 1985 and 1990), experienced a higher competitive employment growth in the

next decade (after controlling for the other factors in the model). Thus, mobility has a statistically

significant positive impact on CEG for the overall model and all the sub-market models in Table

4.1. PSAMECNT90 is the only factor with consistent and highly statistically significant effects

across all the models runs. It is not surprising because economic growth is usually higher in a

place with a well-functioning labor market 24, which can be indicated by high labor mobility.

Higher labor mobility ensures that labor is more quickly reallocated to where it can be employed

most productively.

24 A speech by William Poole, President, Federal Reserve Bank of St. Louis in Southern Illinois University
at Edwardsville on April 10, 2003. http://stlouisfed.org/news/speeches/2003/4_10_03.html



4.1.4 Others: Amenities and Market Characteristics

Because I included natural amenities, people mobility, and metro status in 1990 as control

variables in this analysis, I discuss them briefly.

The natural-amenity scale25 has little impact on employment growth according to the regression

results. Metro status in 1990 also only has a modest impact on the employment growth from

1990 to 2000, but it is confined to the southern Appalachian counties only.

25 Refer to the added discussion in Chapter 2, Section 2.1.2.



Table 4.1: Regression Result Summary of Different Groups

All Metro and Non-metro Three Sub-re ions Economic Status in 2000
Transitiona

Metro Non-metro Northern Central Southern Distressed I Others
Sum- Observati
mary ons 312 94 218 109 55 148 55 230 27

F test(Prob. F) 0.00 0.00 0.00 0.00 0.25 0.00 0.07 0.00 0.01
R2 0.43 0.73 0.24 0.37 0.33 0.57 0.41 0.38 0.82

0.40 0.69 0.19 0.27 0.08 0.52 0.18 0.34 0.61
P> P> P> P> P> P> P> P> P>

Variables Coef. t Coef. t Coef. t Coef. t Coef. t Coef. t Coef. t Coef. t Coef. t
Industry MIN90 -0.17 D -0.12 *** -0.05 0.02 -0.23 -0.01 -0.16 D
Mix MANFC90 -0.40 *** -1.25 -0.05 0.15 0.23 -1.19 *** 0.07 -0.72 *** -0.72

TRNSP90 -0.49 * -1.53 -0.17 0.56 * 0.95 -1.98 -0.89 -0.90 *** -3.37
WHTRD90 1.85 *** 0.50 1.13 * 2.05 1.06 1.39 ** -0.77 0.58 0.77
SERV90 -1.10 *** -2.08 -0.52 -0.65 -0.17 -1.66 *** 0.23 -1.32 -2.22 **

GOV90 -0.83 -1.87 *** -0.28 -0.39 * -0.75 -1.39 *** -0.52 -0.94 *** -2.40
Diversity BEAGIN190 -0.31 -0.35 * -0.51 *** -0.14 -0.06 -0.07 -0.53 -0.30 ** -0.15
&Special SGINI90 0.06 0.00 0.04 -0.02 0.05 0.11 * 0.09 -0.01 0.50 **

ization SIM M90 0.07 ** 0.06 0.03 0.06 -0.07 0.11 ** -0.04 0.08 ** 0.45 *

Labor LNWAGE90 -0.09 0.11 -0.08 -0.08 -0.57 * 0.21 * -0.30 * 0.05 0.82
Market UNEMPL90 0.00 0.01 0.00 -0.01 * 0.03 ** 0.00 0.02 ** 0.01 0.10
Condi- PHSGRAD90 -0.45 -0.59 * -0.42 *** -0.81 *** -0.27 -0.70 ** -0.60 * -0.66 *** -0.16
tion PSAMECNT9 -1.79 *** -2.58 *** -0.97 *** -0.89 -2.17 *** -1.83 -1.90 *** -1.32 *** -2.71 ***

Others SCALE 0.01 * 0.01 0.01 -0.02 * 0.00 0.01 0.02 0.01 0.05
METRO93 0.05 ** D D -0.03 0.06 0.07 ** 0.08 0.02 0.23 *

Cons- -CONS 2.89 2.53 * 1.94 *** 2.02 ** 7.16 *** 0.60 4.80 *** 1.52 * -5.74
tants I

<.05
** <.10

* <.20
Note: D-dropped



4.2 Accounting for Spatial Autocorrelation in the Model

I have performed comprehensive OLS regressions to examine the relationship between

competitive employment growth and its determinants in the previous section. But none of these

analyses take into account the spatial factor. Spatial factors deal with the interactions among

different counties and have been identified as being important in the economic growth literature

(Nijkamp, 1998). In this section, I will focus on the spatial aspect of the models presented in

Table 4.1 above. As discussed in the methodology chapter, I will firstly carry out the spatial

exploratory data analysis (EDA) and visualize the spatial autocorrelation of competitive

employment growth. I will then conduct the spatial regressions on CEG based on two different

spatial weight matrixes and, finally, compare the results.

4.2.1 Spatial Exploratory Data Analysis for Spatial Autocorrelation

As discussed in Chapter 2, I test for the existence of spatial autocorrelation using Moran's I

value, which can be visualized by Moran's I scatterplot, using the GeoDa software. Figure 4.1

provides two Moran's I scatterplots of competitive employment growth from 1990 to 2000. The

left diagram used Queen-contiguity weight matrix and the right diagram used Commuting-Zones

contiguity weight matrix.

Figure 4.1
Moran Scatterplot using Queen weight matrix Moran Scatterplot using CZs weight matrix

Moran's I= 0.3491 Moran's I= 0.4013
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In the two scatterplots, the signs of the slope of the regression lines are positive, indicating that

the observed value of locations defined as "neighbors" tend to be similar in both cases. In other

words, counties tend to have higher competitive employment growth rates where the growth

rates are higher in the neighboring counties.

Both of Moran's I coefficients are far from zero, which indicates the existence of spatial

autocorrelation, and, furthermore, it is strong. The Moran's I value of CMPT90_00 using the

Queen-contiguity weight is 0.3491, which is lower than the one (0.4013) using Commuting

Zones contiguity weights. These values suggest that the spatial autocorrelation is stronger

among counties and its socioeconomic "neighbors" within the same commuting zones, than the

one among counties and its physical "neighbors" confined to having a common border or point. I

return to this question later after reporting model results.

To visualize the local test of spatial autocorrelation, I use maps that depict the locations with

significant Local Moran statistics (LISA 26 significance maps), and I classify those locations by

type of association (LISA cluster maps) as follows.

Figure 4.2 consists of both LISA significance maps and cluster maps for competitive

employment growth from 1990 to 2000, in which I use a "Queen" contiguity weight matrix and a

"Commuting Zones" contiguity weight matrix (based on 9999 random permutations).

26 LISA = local indicator of spatial autocorrelation.



Figure 4.2
LISA significance map using Queen weight

LISA significance map using CZs weight

In the right-hand panel of Figure 4.2, I show two

significant local Moran's I statistics, classified by

LISA cluster map using Queen weight matrix

LISA cluster map using CZs weight matrix

LISA cluster maps, depicting the locations of

type of spatial association (High-High, Low-



Low, Low-High, High-Low). Both of them use the default significance of P=0.05. These two

right-hand panels show matching LISA significance maps for the two weights matrices.

I observe from both cluster maps that a big dark red cluster, which consists of counties with high

competitive employment growth (CEG) rate from 1990 to 2000 surrounded by counties with high

CEG, is in Georgia. They are counties between Atlanta and Chattanooga along the Interstate

highway 1-75.

I also observe two big dark blue (green) clusters that consist of counties with low CEG

surrounded by low CEG in both cluster maps. They mostly consist of Central Appalachian

Counties, along the convergent border of three states, Kentucky, Virginia, and West Virginia. I

note another big dark blue (green) cluster in the northeast corner of Appalachian Region with

most of the counties being in Northeast Pennsylvania, along the Interstate highway 1-81. A

smaller dark blue (green) cluster is also present in Pennsylvania State, specifically, in northwest

Pennsylvania, along the interstate highway 1-79.

Except for the dark blue (green) cluster (Low-Low) in Central Appalachia, all big dark clusters

are constituted of counties along some interstate highway. This is consistent with many previous

studies (e.g., Wilbur Smith Associates, 1998). Interstate highways do play an important role in

the economic development process, by providing the vital connectivity of counties. However, an

interesting finding arises when I focus on the only exception-Central Appalachia-where

counties of low CEG cluster without any interstate connection. When I compare the spatial

pattern of dark blue (green) polygons in Central Appalachia between two cluster maps, I find

that the one constructed by commuting-zones contiguity, which indicates the spatial

autocorrelation among "socioeconomic" neighbors through commuting ties, is much more

scattered than the one constructed based on "physical" neighbors. I conduct additional

investigations of these patterns using the following full hedonic regression analysis.

4.2.2 Spatial Regression Result Comparative Analysis

The objective here is to include spatial autocorrelation effects directly in the model of

competitive employment growth and then to compare the regression result between OLS

models and spatial models. The result of OLS regressions on different groups presented earlier

in Section 4.1 suggests that there is some evidence of sub-market differences among the 410



counties and possible heteroskedasticity problems. The R2 values for the model runs are much

higher for the metro county submarket than for the non-metro submarket (R2=0.73 vs. 0.24).

I use several dummy variables and various interaction terms to allow for different constants and

coefficients for metro and non-metro counties and for different geographic subregions.

Specifically, I use the following formulation in Equation (3) to reconstruct my model:
k k

y = (1+m)RnxaRn+(1+m)RsxaRs i+mxna m X y +nxan fL{Xg +Cj

(3)

(m -metro county dummy; n -non-metro county dummy; k is the number of variables)

Where

m =1 and n =0 for metro counties; m =0 and n =1 for non-metro counties;
Rn = 1 for northern counties, and Rs = 1 for southern counties;
y is CEG (competitive employment growth rate) for county j;

is the value of independent variable i for county j;

am' a, aRn' aRs , and are constant terms;

/3? is the coefficient for metro county j's independent variable Xij

is the coefficient for non-metro county j's independent variable ;

is the error term for county j.

After running OLS regression in a complete form, I further tune the model according to the

significance level of each variable. I show the results in Appendix F. Variables with a

significance level less than 0.05 remain in the refined model. Therefore, the refined specification

for the comparison between OLS regression and spatial model is expressed as Equation (4):

CEGi=ao+ p1*MMANFC90i + p2*MTRNSP90i + p3*MSERV90 + P4*MGOV90i
+ @*PSAMECNT90i

+P6*N_MIN90i +P7*N MANFC90i+ p8*NSERV90i+ p*NGOV90i
+p10*NDV1;
+ p11*N UNEMPL90i + p1 1*N_PCTHSGRAD90+ p12*NPSAMECNT90

+ p13*NREGIONN+Ei (4)

In Table 4.2, I present the regression results for the competitive employment growth from 1990

to 2000 as the dependent variable, based on data of 410 Appalachian counties. I estimated the



same model specification using OLS and Geoda's spatial lag and spatial error formulations.

(Detailed results are in Appendix G). In Table 4.2, I show the results for the base model in

Columns 4 and 5 and for the two spatial models in Columns 6-9. Columns 6 and 7 are the

coefficients and significance levels of the spatial-lag model with Queen-contiguity weights matrix,

while Columns 8 and 9 are estimations of spatial-lag model with Commuting-Zone contiguity

weights matrix.

I choose the spatial-lag model, instead of the spatial-error model, because the spatial-lag model

resulted in a better fit according to the value of the Lagrange Multiplier (LM) and the related

robustness test (Anselin 1988b). As shown in the summary Table 4.2, the LM (lag) is higher

than LM (error) for both weights matrixes, i.e., 38.28 vs. 24.09 for "Queen" contiguity weight

matrix and 26.99 vs. 11.85 for "commuting zone" contiguity weights matrix. The robustness test

for the lag-model is much more statistically significant than the robustness test for error model

(0.00 vs. 0.84 for "Queen" and 0.00 vs. 0.15 for "Commuting Zone").

The OLS base model results are similar to those in Tables 4.1 for the separate metro and non-

metro submarkets. The metro and non-metro interaction terms allow separate coefficients to be

estimated for each submarket. Coefficient differences from the earlier results are due to

eliminating variables that were not significant and including the regional dummy variable. The

same industrial mix, diversity, and labor market condition factors are significant. The significant

LM-LAG statistic in both spatial lag models (Queen and CZs) suggests that the influence of a

county's economic development trend spreads well beyond the county border. The spatial-lag

models fit better than the OLS model in terms of explanatory power indicating that it makes

sense to attribute some of the CEG variability to spatial "spillover" effects and not just local

county characteristics. In statistics, the improved fit is indicated by the increased values of R2 for

two spatial-lag models comparing with the OLS base model. The R2 increases from 0.44 (OLS)

to 0.50 (Queen-lag) and 0.49 (CZs-lag).

When we compare the additional variable (WCMPT90_00) in the two spatial-lag models,

although both of them have significantly positive effects on the competitive employment growth,

the one weighted by commuting-zones-contiguity is 50% higher than that of the one using

Queen-contiguity (0.45 vs. 0.31). This phenomenon implies that the impact of neighboring

counties defined by "commuting tie" on a county's CEG is higher than that of counties confined

to "physically bordering".



I also notice that almost all coefficients of variables are less in the "CZs" spatial-lag model than

in the "Queen" one. It implies that the "commuting zone" method can do a little better than the

"Queen" method by reducing the magnitude of the local effects and increasing the magnitude of

"neighbor" effects. The characteristics of the county itself are less important when the spatial

spillover effect is measured through the "commuting tie" rather than the effect from simply being

a physical neighbor (Column 8 vs. Column 6). I also confirms the findings by comparing the

Moran's I value between "CZs" and "Queen" method in Section 4.2.1, spatial autocorrelation

effect is stronger among a county and its socioeconomic "neighbor(s)" within the same

commuting zones, than the one among a county and its physical "neighbor(s)" confined to

having a common border or point.



Table 4.2: Regression Result Summary of OLS model and Two Spatial-Lag models
Model OLS Spatial Lag
Spatial Weight Matrix N/A Queen CZs
Summaries R2  0.44 0.50 0.49

Coef. P>t Coef. P>t Coef. P>t

Constant CONSTANT 2.54 0.00 2.22 0.00 2.22 0.00
terms METRO93 0.27 0.49 0.14 0.69 -0.38 0.28

WCMPT90_00 N/A N/A 0.31 0.00 0.45 0.00
Industrial MMANFC90 -1.53 0.00 -1.34 0.00 -1.00 0.00
Mix MTRNSP90 -1.96 0.00 -1.71 0.00 -1.43 0.01

M_SERV90 -2.90 0.00 -2.62 0.00 -2.21 0.00
o _-__MGOV90 -1.89 0.00 -1.55 0.00 -1.24 0.00

o Labor Market MPSAMECNT
Condition -1.87 0.00 -1.48 0.00 -1.13 0.00

Industrial NMIN90 -0.95 0.00 -0.82 0.00 -0.77 0.00
Mix N MANFC90 -0.56 0.00 -0.52 0.00 -0.49 0.00

NSERV90 -1.44 0.00 -1.29 0.00 -1.26 0.00
N GOV90 -1.03 0.00 -0.93 0.00 -0.90 0.00

C. Diversity NBEAGIN190 -0.33 0.06 -0.31 0.06 -0.34 0.04
0

Labor Market N UNEMPL90 0.01 0.12 0.01 0.12 0.01 0.11
t Condition N PHSGRAD9 -0.76 0.00 -0.66 0.00 -0.66 0.00

N_PSAMECNT -1.84 0.00 -1.55 0.00 -1.54 0.00
z 0 Others N REGIONN 0.05 0.17 0.06 0.06 0.07 0.05

Value Prob. Value Prob.
Test Lagrange N/A

Multiplier (lag) 38.28 0.00 26.99 0.00
Robust LM N/A
(lag) 14.21 0.00 17.20 0.00
Lagrange N/A
Multiplier (error) 24.09 0.00 11.85 0.00
Robust LM N/A
(error) | 1 0.03 0.86 2.06 0.15

4.2.3 Outliers Analysis

Figure 4.1 shows that the outliers did not fit my empirical model by plotting the residuals for

spatial-lag model using CZs contiguity weights matrix. Those counties with highlighted boundary

line are the top/bottom seven counties with highest positive/negative residuals (Actual value -

Predicted value= Residual value), which means my empirical model under/over predicts the

CEG of these counties.

Specifically, there are three metro counties around Atlanta City and eleven are non-metro

counties, as shown in Table 4.3 and Table 4.4. These counties are good candidates for further



research (case studies) to understand what factors affecting their employment growth from 1990

to 2000 are not caught in my empirical model.

Table 4.3 Top Seven Counties with Highest Positive Residuals
Name MSAs Sub-region LC_CZs CEG Residual
Dawson Southern Atlanta city, GA 1.68 1.15
Jackson Central Cookeville city, TN 0.78 0.91
Meigs Southern Cleveland city, TN 0.74 0.67
Clay Northern Charleston city, WV 0.32 0.56
Paulding Atlanta MSA Southern Atlanta city, GA 1.20 0.52
Forsyth Atlanta MSA Southern Atlanta city, GA 1.11 0.49
Potter Northern Olean city, NY 0.23 0.46
Note: MSAs-Metropolitan Statistical Areas; LCCZs-largest city in its commuting zone; CEG-competitive
employment growth from 1990 to 2000

Table 4.4 Bottom Seven Counties with Highest Negative Residuals
Name MSAs Subregion LCCZs CEG Residual
Haralson Southern Anniston city, AL -0.40 -0.34
Montgomery" Southern Roanoke city, VA -0.27 -0.35
Lewis Central Maysville city, KY -0.57 -0.41
Pickett Central Cookeville city, TN -0.40 -0.44
Mason Northern Athens city, OH -0.56 -0.49
Grayson Southern Galax city, VA -0.58 -0.49
Pickens Atlanta MSA Southern Atlanta city, GA 0.11 -0.49
Note: MSAs-Metropolitan Statistical Areas; LCCZs-largest city in its commuting zone; CEG-competitive
employment growth from 1990 to 2000

In summary, the initial industrial mix (of some sectors), industrial diversity, labor market

conditions and people mobility do have statistically significant effects on economic growth in my

model. The spatial spillover effect of competitive employment growth is strong among the 410

counties in Appalachia. It is better caught by the commuting-tie weights lag model than the one

weighted by geographical adjacency.

27 Montgomery county + Radford city



Figure 4.1: Spatial Distribution of Residuals for CZ Spatial-Lag Model
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Chapter 5

Conclusion and Further Research

According to my statistical analysis of the competitive growth rate from 1990 to 2000 and its

hypothesized determinants, the empirical evidence from Appalachia suggests that the initial

industrial mix (of some sectors), industrial diversity, labor-market conditions and people mobility

do have statistically significant effects on economic growth in my model, after adjusting for

distinct characteristics of metropolitan and non-metropolitan counties. Specifically, my results

show that the share of the wholesale trade sector, diversity of the economy, and the mobility of

people have positive effects, while the initial share of mining, manufacturing, services, and

governmental sector have negative effects on the competitive employment growth rate.

From these results, I cannot conclude that they are the true determinants for economic growth

in Appalachia region just based on statistical analysis, especially for the effect from industrial

mix, because it might just mirror the technology change and industrial restructuring during the

1990s. For example, the high-tech sector is growing much faster than traditional industries

during late 1990s, so that counties with more firms in this sector will result in greater growth

during this period. Actually, the employment growth rate calculated from two data points (1990

and 2000) without looking at the business cycle in 1990s make it even more difficult to draw a

strong conclusion based on the statistical results. I am more confident with the effects from

other factors, such as diversity of economy and labor mobility, but the confirmation of the

causality between these factors and the employment growth needs further research from

theories or case studies.

Although with my empirical model I cannot confirm the causality between my hypothesized

determinants and county competitive employment growth in Appalachia by the data themselves,

there are still at least two interesting findings from the spatial analysis of this empirical model

and the comparison among the traditional OLS regression model and two spatial-lag models.

First, after the spatial exploratory data analysis on the spatial distribution of the competitive

employment growth (CEG) in Appalachian region, I find that a strong spillover effect of CEG

exists among 410 counties. As presented in Figure 4.2, counties with high employment growth

rates are concentrated in the north side of Atlanta Metropolitan area around Interstate highway



1-75. Counties with low growth rates are concentrated in Central Appalachia, along the

convergent border of three states, Kentucky, Virginia, and West Virginia. Another low growth

rate concentration is in Northeast Pennsylvania.

Second, I find the spillover effect of employment growth is better caught by the commuting-tie

weights lag model than the one weighted by geographical adjacency. This finding implies that

the impact of neighboring counties defined by "commuting ties" on a county's economic growth

is higher than that of counties defined by "physically bordering". In other words, counties are

more likely to interact through commuting flows than just by being next-door neighbors.

My empirical model is not able to explain completely the employment growth for all the counties

in Appalachian Region, even after adjusting for the spatial-spillover effects, but it does provide

some insights into what factors matter for many places for their competitive employment growth

from 1990 to 2000. Further research for this study can be (1) to understand the impacts of

industrial mix by looking deeply into the technology change and business cycle effects during

different time periods; (2) to understand the effect of "economic base" on counties employment

growth by incorporating the trade-flow data between counties and with regions outside of

Appalachia; (3) to find some other non-economic factors by using some qualitative method such

as case studies. The residuals analysis of this model will help us find some good candidates to

understand what other determinants of economic growth would be.



Appendices

Appendix A: Top/Bottom 20 Appalachian Counties in Employment Growth
from 1990 to 2000

Table A-1: To -20 Count in total employment growth, 1990-2000
Total National Comp

BEA_ County 1990 Private 2000 Private Change growth Mix etitive
STATE R FIPS Name Employment Employment (%) (%) (%) (
Pennsylvania N 42105 Potter 5628 9329 0.66 0.22 0.21 0.23
Kentucky C 21053 Clinton 2287 3869 0.69 0.22 0.16 0.31
Tennessee C 47087 Jackson 2373 5132 1.16 0.22 0.16 0.78
Alabama S 01117 Shelby 32207 54503 0.69 0.22 0.19 0.27
Georgia S 13085 Dawson 1854 5864 2.16 0.22 0.26 1.68
Georgia S 13223 Paulding 7123 19014 1.67 0.22 0.25 1.20
Georgia S 13117 Forsyth 15484 39201 1.53 0.22 0.20 1.11
Georgia S 13135 Gwinnett 164341 325810 0.98 0.22 0.21 0.55
Georgia S 13057 Cherokee 22212 43463 0.96 0.22 0.24 0.49
Georgia S 13111 Fannin 4123 7359 0.78 0.22 0.21 0.35
Georgia S 13281 Towns 2126 3777 0.78 0.22 0.23 0.32
Georgia S 13011 Banks 2799 4968 0.77 0.22 0.10 0.45
Georgia S 13291 Union 3493 6110 0.75 0.22 0.21 0.32
Georgia S 13187 Lumpkin 3918 6765 0.73 0.22 0.20 0.30
Georgia S 13097 Douglas 21510 36818 0.71 0.22 0.23 0.25
Georgia S 13015 Bartow 21761 37154 0.71 0.22 0.16 0.33
Georgia S 13195 Madison 3159 5274 0.67 0.22 0.18 0.26
Mississippi S 28009 Benton 1078 1779 0.65 0.22 0.20 0.23
Tennessee S 47121 Meigs 2118 4526 1.14 0.22 0.18 0.74
Virginia S 51023 Botetourt 5824 10567 0.81 0.22 0.21 0.38

Table A-2: Top-20 county in competitive employment growth, 1990-2000
Total National Comp

BEA_ County 1990 Private 2000 Private Change growth Mix etitive
STATE R FIPS Name Employment Employment (%) (%) (%) (%)
Ohio N 39001 Adams 5717 8771 0.53 0.22 -0.30 0.62
West Virginia N 54001 Barbour 3443 4068 0.18 0.22 -0.37 0.32
West Virginia N 54015 Clay 1224 2003 0.64 0.22 0.09 0.32
Kentucky C 21053 Clinton 2287 3869 0.69 0.22 0.16 0.31
Tennessee C 47087 Jackson 2373 5132 1.16 0.22 0.16 0.78
Tennessee C 47001 Anderson 35717 45009 0.26 0.22 -0.46 0.50
Georgia S 13085 Dawson 1854 5864 2.16 0.22 0.26 1.68
Georgia S 13223 Paulding 7123 19014 1.67 0.22 0.25 1.20
Georgia S 13117 Forsyth 15484 39201 1.53 0.22 0.20 1.11
Georgia S 13135 Gwinnett 164341 325810 0.98 0.22 0.21 0.55
Georgia S 13057 Cherokee 22212 43463 0.96 0.22 0.24 0.49
Georgia S 13011 Banks 2799 4968 0.77 0.22 0.10 0.45
Georgia S 13123 Gilmer 5995 9299 0.55 0.22 -0.10 0.43
Georgia S 13111 Fannin 4123 7359 0.78 0.22 0.21 0.35
Georgia S 13015 Bartow 21761 37154 0.71 0.22 0.16 0.33
Georgia S 13281 Towns 2126 3777 0.78 0.22 0.23 0.32
Georgia S 13291 Union 3493 6110 0.75 0.22 0.21 0.32
Tennessee S 47121 Meigs 2118 4526 1.14 0.22 0.18 0.74
Tennessee S 47145 Roane 19873 18736 -0.06 0.22 -0.59 0.31
Virginia S 51023 Botetourt 5824 10567 0.81 0.22 0.21 0.38



Table A-3: Bottom-20 county in total employment growth, 1990-2000
Nation

Total al Comp
BEA_ County 1990 Private 2000 Private Change growth Mix etitive

STATE R FIPS Name Employment Employment (%) (%) (%) (%)
Ohio N 39163 Vinton 2472 2240 -0.09 0.22 0.09 -0.40
West Virginia N 54023 Grant 5393 4625 -0.14 0.22 -0.26 -0.11
West Virginia N 54053 Mason 7479 6682 -0.11 0.22 0.23 -0.56
West Virginia N 54029 Hancock 18369 16478 -0.10 0.22 0.12 -0.45
Kentucky C 21095 Harlan 9962 7764 -0.22 0.22 0.08 -0.53
Kentucky C 21135 Lewis 3025 2383 -0.21 0.22 0.14 -0.57
Kentucky C 21025 Breathitt 3979 3386 -0.15 0.22 0.11 -0.48
Kentucky C 21207 Russell 6921 5982 -0.14 0.22 0.11 -0.47
Kentucky C 21171 Monroe 4074 3684 -0.10 0.22 0.14 -0.46
Kentucky C 21159 Martin 3251 3010 -0.07 0.22 -0.05 -0.25
Virginia C 51027 Buchanan 11869 8587 -0.28 0.22 0.04 -0.54
Virginia C 51051 Dickenson 4153 3538 -0.15 0.22 0.06 -0.43
West Virginia C 54047 McDowell 5763 4187 -0.27 0.22 0.02 -0.51
West Virginia C 54059 Mingo 9745 8274 -0.15 0.22 0.10 -0.48
West Virginia C 54045 Logan 12700 11513 -0.09 0.22 0.14 -0.46
Alabama S 01037 Coosa 2310 2050 -0.11 0.22 0.01 -0.35
Alabama S 01075 Lamar 6663 5989 -0.10 0.22 0.12 -0.44
Mississippi S 28095 Monroe 13644 12192 -0.11 0.22 0.12 -0.45
Virginia S 51077 Grayson 3726 2915 -0.22 0.22 0.14 -0.58
Virginia S 51021 Bland 1831 1632 -0.11 0.22 0.14 -0.48

Table A-4: Bottom-20 county in competitive employment growth, 1990-2000
Nation

Total al Comp
BEA_ County 1990 Private 2000 Private Change growth Mix etitive

STATE R FIPS Name Employment Employment (%) (%) (%) (%)
New York N 36109 Tompkins 54207 55148 0.02 0.22 0.29 -0.50
New York N 36077 Otsego 22825 23403 0.03 0.22 0.27 -0.46
Ohio N 39081 Jefferson 27932 27239 -0.02 0.22 0.21 -0.46
Pennsylvania N 42127 Wayne 15447 15697 0.02 0.22 0.24 -0.45
West Virginia N 54053 Mason 7479 6682 -0.11 0.22 0.23 -0.56
West Virginia N 54103 Wetzel 5090 4963 -0.02 0.22 0.23 -0.48
Kentucky C 21135 Lewis 3025 2383 -0.21 0.22 0.14 -0.57
Kentucky C 21095 Harlan 9962 7764 -0.22 0.22 0.08 -0.53
Kentucky C 21025 Breathitt 3979 3386 -0.15 0.22 0.11 -0.48
Kentucky C 21207 Russell 6921 5982 -0.14 0.22 0.11 -0.47
Kentucky C 21171 Monroe 4074 3684 -0.10 0.22 0.14 -0.46
Kentucky C 21071 Floyd 12387 11695 -0.06 0.22 0.17 -0.45
Virginia C 51027 Buchanan 11869 8587 -0.28 0.22 0.04 -0.54
West Virginia C 54047 McDowell 5763 4187 -0.27 0.22 0.02 -0.51
West Virginia C 54059 Mingo 9745 8274 -0.15 0.22 0.10 -0.48
West Virginia C 54045 Logan 12700 11513 -0.09 0.22 0.14 -0.46
Alabama S 01087 Macon 5674 5906 0.04 0.22 0.30 -0.48
Mississippi S 28095 Monroe 13644 12192 -0.11 0.22 0.12 -0.45
Virginia S 51077 Grayson 3726 2915 -0.22 0.22 0.14 -0.58
Virginia S 51021 Bland 1831 1632 -0.11 0.22 0.14 -0.48
Source: REIS, 1990 and 2000; percentage calculated by the author.
Note: R: Sub-Region; N: Northern Appalachia; C: Central Appalachia; S: Southern Appalachia



Appendix B: Definition of All Variables

Table B-1: Source and Definition of Variables

Vaniable Name |S-ource |Defmnition
Dependent Variable

Bureau of Economic Total employment growth net of national growth and industrial mix effects (competitive
cmpt90_00 Analysis(BEA) 1990 and 2000 component of shift-share analysis)

Explanatory Variables

Percentage of income from manufacturing industry (SIC code=2&3); County as work-
manfc90 BEA 1990 site
whtrd90 BEA 1990 Percentage of income from wholesale industry (SIC code=5); County as work-site
transp90 BEA 1990 Percentage of income from transportation industry (SIC code=4); County as work-site
serv90 BEA 1990 Percentage of income from services industry (SIC code=7&8); County as work-site

Percentage of income from public administration sector (SIC code=9); County as work-
gov90 BEA 1990 site

Diversity Indicator 1: Gini coefficient for private sectors' employment at the level of 1-
beagini9O County Business Pattern 1990 digit SIC code at the county in 1990

Diversity Indicator II: Gini coefficient for service sector's employment at the level of 2-
sgini90 County Business Pattern 1990 digit SIC code at the county in 1990

Specialization Indicator: Simpson's index for manufacturing sector at the level of 2-digit
sim m90 County Business Pattern 1990 SIC code at the county in 1990
unempl90 Bureau of Census 1990 Unemployment rate in 1990 (county as residence-place)
Inwage90 Bureau of Census 1990 Natural Logarithm of average wage in 1990 (county as work-site)
phsgrad90 Bureau of Census 1990 Percentage of people with high school education
psamecnt90 Bureau of Census 1990 Percentage of people living in the same county since 1985

USDA/Economic Research
scale Service Natural amenity scale level

Office of Management and
metro93 Budget (OMB) 1993 Whether or not metropolitan county in 1993 designation, 1=metro; 0=non-metro



Table B-2: Summary Statistics Table of Variables

Variable # of Obs Mean Std. Dev. Min Max
CMPT9000 410 -0.159 0.254 -0.578 1.683
MANFC90 410 0.271 0.149 0.006 0.708
WHTRD90 410 0.032 0.023 0.000 0.201
SERV90 410 0.158 0.071 0.000 0.615
GOV90 410 0.192 0.079 0.056 0.573
BEAGINI90 410 0.499 0.074 0.000 0.680
SGINI90* 399 0.506 0.163 0.000 0.781
SIMM90** 334 0.597 0.323 0.100 1.000
UNEMPL90 410 0.081 0.034 0.027 0.219
LNWAGE90 410 0.098 0.002 0.093 0.103
PSAMECNT90 410 0.838 0.066 0.539 0.947
PHSGRAD90 410 0.612 0.102 0.355 0.872
SCALE 410 0.132 1.163 -3.720 3.550
METRO93 410 0.266 0.442 0.000 1.000



Appendix C: Distressed Designation and County Economic Status
Classification System

The Appalachian Regional Commission (ARC) developed a county economic

classification system to target counties in need of special economic assistance. Four

economic levels were created based on the comparison of three county economic

indicators (three-year average unemployment, per-capita market income, and poverty)

to their respective national averages. Thresholds have been established to define the

four economic levels that classify counties: distressed, transitional, competitive, and

attainment. Using the defined thresholds, ARC computes county economic levels each

fiscal year using the most current data available. The county's economic level is then

used in the distribution of funds for the fiscal year.

__ _ County Economic Indicators

County Economic Three-Year Average Per Capita Market Poverty Rate
Levels Unemployment Rate Income

67% or less of U.S. 150% or more ofDistressed 150% or more of U.S. average average U.S. average

Transitional All counties not in other classes. Individual indicators vary.

Competitive 100% or less of U.S. average 8 /o avmore of 100% or ess of

Attainment 100% or less of U.S. average 100% or more of 100% or less of__________________________ U.S. average U.S. average

Source: Both text and table in this Appendix are

http://www.arc.gov/search/method/ctyecon.jsp

from ARC website,



Appendix D: Distribution Histogram of Variables in Reduced Form
Model
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Appendix E: Ordinary Least Square (OLS) Regression Comparison

D-1: OLS Regressions for Metropolitan and Non-Metropolitan Counties

Table D-1-1: Metropolitan Counties

metro93 = 1
Source SS df MS
Model 5.694247 12 0.4745
Residual 2.146195 81 0.0265
Total 7.840442 93 0.0843

R-squared
Adj R-

0.7263 squared 0.6857

Number of observations 94
F( 12, 81 17.91
Prob > F 0

Root MSE 0.16278
CMPT90 00 Coef. Std.Err. t P>t [95% Conf. Interval]
MANFC90** -1.18 0.328 -3.59 0.00 -1.829 -0.525
TRNSP90** -1.61 0.741 -2.18 0.03 -3.084 -0.137
WHTRD90 0.41 0.929 0.44 0.66 -1.438 2.257
SERV90** -2.34 0.560 -4.17 0.00 -3.451 -1.222
GOV90** -1.86 0.404 -4.6 0.00 -2.662 -1.054
BEAGINI90 -0.40 0.256 -1.56 0.12 -0.908 0.110
SGIN190 -0.02 0.094 -0.24 0.81 -0.208 0.164
SIM M90 0.10 0.083 1.2 0.23 -0.066 0.266
LNWAGE90 -0.01 0.177 -0.05 0.96 -0.361 0.343
UNEMPL90 0.01 0.013 1 0.32 -0.012 0.038
PSAMECNT90** -2.53 0.369 -6.85 0.00 -3.265 -1.796
SCALE 0.03 0.019 1.37 0.18 -0.012 0.062
METRo93 (dropped)

cons 3.28 1.714 1.91 0.06 -0.135 6.687

Table D-1-2: Non-metro Counties

metro93 = 0 Number of observations 218
Source SS df MS F( 12, 205) 4.54
Model 1.554445 12 0.1295 Prob > F 0
Residual 5.846221 205 0.0285
Total 7.400667 217 0.0341

Adjusted R-
R-squared 0.21 squared 0.1638 Root MSE 0.16887
CMPT90 00 Coef. Std.Err. t P>t [95% Conf. Interval]
MANFC90 0.10 0.129 0.75 0.46 -0.158 0.350
TRNSP90 -0.18 0.451 -0.41 0.68 -1.072 0.705
WHTRD90* 1.36 0.775 1.76 0.08 -0.165 2.890
SERV90** -0.47 0.220 -2.14 0.03 -0.905 -0.038
GOV90 -0.20 0.229 -0.89 0.38 -0.656 0.249
BEAGINI90** -0.50 0.190 -2.65 0.01 -0.876 -0.128
SGINI90 0.03 0.100 0.32 0.75 -0.165 0.230
SIM M90 0.04 0.045 0.92 0.36 -0.047 0.129



LNWAGE90** -0.26 0.075 -3.51 0.00 -0.408 -0.115
UNEMPL90 0.00 0.006 0.64 0.52 -0.007 0.014
PSAMECNT90** -0.85 0.265 -3.21 0.00 -1.371 -0.327
SCALE 0.02 0.011 1.47 0.14 -0.005 0.037
METRO93 (dropped) -- - _

cons 3.30 0.799 4.14 0.00 1.730 4.879



D-2: OLS Regressions for Three Sub-regions

Table D-2-1: Northern Appalachia

subregion = Northern
Source SS df MS
Model 0.585716 13 0.0451
Residual 1.333789 95 0.014
Total 1.919506 108 0.0178

R-squared
Adj R-

0.3051 squared 0.2101

Number of observations 109
F( 13, 95) 3.21
Prob > F 0.0005

Root MSE 0.11849
CMPT90 00 Coef. Std.Err. t P>t [95% Conf. Interval]
MANFC90 0.20 0.172 1.17 0.25 -0.141 0.542
TRNSP90 0.50 0.437 1.15 0.26 -0.367 1.370
WHTRD90** 2.33 0.896 2.6 0.01 0.547 4.105
SERV90** -0.66 0.235 -2.82 0.01 -1.127 -0.195
GoV90 -0.34 0.296 -1.16 0.25 -0.932 0.244
BEAGINI90 -0.16 0.168 -0.95 0.35 -0.493 0.175
SGINI90 0.00 0.083 -0.05 0.96 -0.169 0.161
SIM M90** 0.09 0.046 2.03 0.05 0.002 0.183
LNWAGE90** -0.21 0.101 -2.09 0.04 -0.412 -0.010
UNEMPL90 -0.01 0.006 -0.86 0.39 -0.017 0.007
PSAMECNT90** -0.66 0.329 -2 0.05 -1.314 -0.006
SCALE -0.02 0.015 -1.43 0.16 -0.052 0.008
METRO93 -0.04 0.030 -1.19 0.24 -0.095 0.024

cons 2.47 1.065 2.32 0.02 0.360 4.588

Table D-2-2: Central Appalachia

subregion = Central Number of observations 55
Source SS df MS F( 13,41) 1.55
Model 0.957117 13 0.0736 Prob > F 0.1398
Residual 1.943231 41 0.0474
Total 2.900348 54 0.0537

Adj R-
R-squared 0.33 squared 0.1176 Root MSE 0.21771
CMPT90 00 Coef. Std.Err. t P>t [95% Conf. Interval]
MANFC90 0.19 0.426 0.44 0.67 -0.674 1.045
TRNSP90 0.91 1.189 0.77 0.45 -1.492 3.312
WHTRD90 0.91 2.148 0.42 0.67 -3.427 5.250
SERV90 -0.20 0.837 -0.23 0.82 -1.887 1.495
GOV90 -0.81 0.770 -1.05 0.30 -2.364 0.745
BEAGINI90 -0.05 0.617 -0.09 0.93 -1.299 1.194
SGINI90 0.06 0.250 0.26 0.80 -0.440 0.569
SIM M90 -0.04 0.148 -0.3 0.77 -0.342 0.254
LNWAGE90**
UNEMPL90*

-0.60
0.03

0.289
0.017

-2.06
1.8

0.05
0.08

-1.180
-0.004

-0.012
0.064



PSAMECNT90**
SCALE
METRO93

-2.03
0.01
0.04

0.780
0.036
0.116

-2.61
0.16
0.34

0.01
0.87
0.73

-3.608
-0.066
-0.194

-0.458
0.077
0.273

cons 7.13 3.158 2.26 0.03 0.754 13.508

Table D-2-3: Southern Appalachia

subregion = Southern Number of observations 148
Source SS df MS F( 13, 134) 12.99
Model 5.106233 13 0.3928 Prob > F 0
Residual 4.05327 134 0.0302
Total 9.159503 147 0.0623

Adj R-
R-squared 0.5575 squared 0.5145 Root MSE 0.17392
CMPT90 00 Coef. Std.Err. t P>t [95% Conf. Interval]
MANFC90** -1.06 0.234 -4.53 0.00 -1.526 -0.598
TRNSP90** -1.93 0.666 -2.89 0.00 -3.245 -0.610
WHTRD90* 1.42 0.794 1.79 0.08 -0.147 2.992
SERV90** -1.83 0.380 -4.83 0.00 -2.585 -1.083
GoV90** -1.33 0.305 -4.36 0.00 -1.935 -0.728
BEAGINI90 -0.14 0.252 -0.57 0.57 -0.640 0.356
SGINI90 0.13 0.090 1.45 0.15 -0.047 0.308
SIM M90** 0.13 0.060 2.08 0.04 0.006 0.245
LNWAGE90 0.05 0.132 0.35 0.73 -0.216 0.308
UNEMPL90 0.00 0.009 0.44 0.66 -0.014 0.023
PSAMECNT90** -1.62 0.290 -5.58 0.00 -2.189 -1.043
SCALE 0.01 0.014 0.44 0.66 -0.021 0.033
METRO93* 0.07 0.037 1.93 0.06 -0.002 0.145
cons 1.57 1.298 1.21 0.23 -0.998 4.136



D-3: OLS Regressions for Distressed, Transitional and Other counties

Table D-3-1: Distressed Counties

distr04 = Distressed
Source SS df MS
Model 0.535324 13 0.04118
Residual 0.913349 41 0.02228
Total 1.448672 54 0.02683

R-squared
Adj R-

0.3695 squared 0.1696

Number of obs 55
F( 13, 41) 1.85
Prob > F 0.0675

Root MSE 0.14925
CMPT90 00 Coef. Std.Err. t P>t [95% Conf. Interval]
MANFC90* 0.02 0.266 0.06 0.96 -0.523 0.553
TRNSP90 -1.01 0.785 -1.29 0.21 -2.597 0.575
WHTRD90 -1.21 1.552 -0.78 0.44 -4.347 1.924
SERV90 0.30 0.581 0.51 0.61 -0.878 1.470
GOV90 -0.44 0.565 -0.78 0.44 -1.581 0.701
BEAGIN190 -0.59 0.433 -1.36 0.18 -1.461 0.287
SGIN190 0.11 0.172 0.61 0.54 -0.243 0.454
SIM M90 0.03 0.123 0.24 0.81 -0.219 0.278
LNWAGE90* -0.35 0.182 -1.91 0.06 -0.714 0.020
UNEMPL90* 0.02 0.011 1.78 0.08 -0.002 0.040
PSAMECNT90 -1.24 0.761 -1.64 0.11 -2.782 0.292
SCALE 0.02 0.024 0.95 0.35 -0.025 0.070
METRO93 0.06 0.116 0.52 0.61 -0.174 0.294

cons 4.36 2.216 1.97 0.06 -0.119 8.832

Table D-3-2: Transitional Counties

Number of
distr04 = Transitional obs 230
Source SS df MS F( 13, 216) 8.74
Model 3.356331 13 0.25818 Prob > F 0
Residual 6.382971 216 0.02955
Total 9.739303 229 0.04253

Adj R-
R-squared 0.3446 squared 0.3052 Root MSE 0.1719
CMPT90 00 Coef. Std. Err. t P>t [95% Conf. Interval]
MANFC90** -0.45 0.167 -2.68 0.01 -0.775 -0.118
TRNSP90* -0.80 0.449 -1.78 0.08 -1.685 0.084
WHTRD90 1.16 0.740 1.57 0.12 -0.298 2.618
SERV90** -1.32 0.279 -4.73 0.00 -1.872 -0.771
GOV90** -0.76 0.252 -3.01 0.00 -1.255 -0.263
BEAGIN190 -0.26 0.196 -1.33 0.19 -0.648 0.126
SGIN190 -0.01 0.080 -0.18 0.86 -0.172 0.143
SIM M90** 0.10 0.046 2.24 0.03 0.012 0.194
LNWAGE90**
UNEMPL90

-0.24
0.01

0.094
0.007

-2.52
1

0.01
0.32

-0.422
-0.007

-0.052
0.021



PSAMECNT90**
SCALE
METRO93

-1.24
0.01
0.03

0.245
0.011
0.028

-5.05
1.2

1.05

0.00
0.23
0.29

-1.720
-0.008
-0.026

-0.754
0.034
0.085

cons 3.69 0.916 4.03 0.00 1.888 5.498

Table D-3-3: Better Performing Counties

Number of
distr04 = Others obs 27
Source SS df MS F( 13, 13) 4.52
Model 2.463077 13 0.18947 Prob > F 0.0053
Residual 0.545106 13 0.04193
Total 3.008184 26 0.1157

Adj R-
R-squared 0.8188 squared 0.6376 Root MSE 0.20477
CMPT90 00 Coef. Std.Err. t P>t [95% Conf. Interval]
MANFC90 -0.74 1.117 -0.66 0.52 -3.151 1.676
TRNSP90 -3.52 3.023 -1.16 0.27 -10.050 3.011
WHTRD90 0.69 2.527 0.27 0.79 -4.768 6.149
SERV90* -2.28 1.225 -1.86 0.09 -4.929 0.364
GOV90 -2.50 1.817 -1.38 0.19 -6.426 1.426
BEAGINI90 -0.12 0.652 -0.18 0.86 -1.528 1.289
SGIN190* 0.52 0.255 2.02 0.06 -0.035 1.066
SIM M90* 0.47 0.236 2.01 0.07 -0.035 0.984
LNWAGE90 0.83 0.725 1.15 0.27 -0.736 2.397
UNEMPL90 0.11 0.070 1.56 0.14 -0.042 0.260
PSAMECNT90** -2.67 1.066 -2.51 0.03 -4.972 -0.367
SCALE 0.05 0.049 1 0.34 -0.057 0.154
METRO93 0.24 0.163 1.48 0.16 -0.111 0.594
cons -5.96 6.854 -0.87 0.40 -20.767 8.846



Appendix F: OLS Regression in Complete Form

GeoDa output:

REGRESSION SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION
Data set : newrun
Dependent Variable : CMPT90_00 Number of Observations: 410

Mean dependent var : -0.159379 Number of Variables : 34
S.D. dependent var : 0.253312 Degrees of Freedom : 376

R-squared : 0.477808 F-statistic : 10.4255
Adjusted R-squared : 0.431977 Prob(F-statistic) :6.96024e-036
Sum squared residual: 13.7381 Log likelihood : 114.412
Sigma-square : 0.0365374 Akaike info criterion : -160.824
S.E. of regression : 0.191148 Schwarz criterion : -24.2751
Sigma-square ML : 0.0335075
S.E of regression ML: 0.183051

Variable Coefficient Std.Error t-Statistic Probability

CONSTANT
METRO93
M MIN90

M MANFC90
M TRNSP90
MWHTRD90
MSERV90

M GOV90
MBEAGINI9
MNSGINI90
M SIm M90
MNLNWAGE90
M UNEMPL90
M PHSGRAD9
MNPSAMECNT

M SCALE
M REGIONN
MREGIONS

N MIN90
N MANFC90
N TRNSP90
N WHTRD90
NSERV90

N GOV90
NBEAGINI9

N SGINI90
NSIM M90

N LNWAGE90
N UNEMPL90
N PHSGRAD9
NPSAMECNT

N SCALE
N REGIONN
N REGIONS

0.8524948
2.234332
-1.067555
-1.353293
-1.722105
1.077476

-2.588241
-1.684338
-0.3838108
0.01433731
0.05345272
-0.04814726
0.008640487
0.03764387
-1.73917

0.01059255
-0.08077091
0.0112211
-1.226374
-0.7314531
-0.6193191
-0.2339414
-1.447641
-1.091843
-0.356131
0.04152135
0.001161411
0.1922334

0.01107982
-1.111692
-1.751223

0.01616135
0.112766

0.04472594

0.9398896 0.9070158 0.3649790
2.009016 1.112153 0.2667836
0.9546939 -1.118217 0.2641868
0.3424731 -3.951529 0.0000928
0.6815674 -2.526683 0.0119241
0.8794343 1.225193 0.2212695
0.5122081 -5.053105 0.0000007
0.403335 -4.176028 0.0000369
0.2848899 -1.347225 0.1787201
0.1092197 0.1312704 0.8956220
0.08257265 0.6473417 0.5178099
0.2024615 -0.2378094 0.8121601
0.01575967 0.5482656 0.5838337

0.5273733 0.07137992 0.9431760
0.3944176 -4.409464 0.0000135
0.02310846 0.4583842 0.6469447

0.09206242 -0.8773494 0.3808565
0.08984956 0.1248877 0.9006728
0.1985062 -6.178014 0.0000000
0.1611426 -4.539166 0.0000076
0.3369019 -1.838277 0.0668098
0.68404 -0.3419996 0.7325504

0.2065534 -7.008557 0.0000000
0.2317113 -4.712082 0.0000035
0.1765538 -2.017124 0.0443926
0.07117227 0.5833922 0.5599741
0.0305043 0.03807369 0.9695745

0.1000293 1.92177 0.0553898
0.005379754 2.059541 0.0401304
0.2431831 -4.571421 0.0000066
0.2633499 -6.649794 0.0000000
0.01057841 1.527767 0.1274119
0.04710633 2.393861 0.0171614
0.03615515 1.237056 0.2168382



Appendix G: Ordinary Least Square (OLS), Spatial Lag (SL) and
Spatial Error (SE) Regressions in Reduced Form

G-1: OLS Regression vs. SL and SE Regressions using Queen Contiguity
Weight

GeoDa output:
REGRESSION SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION
Data set : newrunp
Dependent Variable CMPT90_00 Number of Observations: 410
Mean dependent var : -0.159379 Number of Variables : 16
S.D. dependent var : 0.253312 Degrees of Freedom : 394

R-squared : 0.442638 F-statistic : 20.8601
Adjusted R-squared : 0.421419 Prob(F-statistic) :2.52087e-041
Sum squared residual: 14.6633 Log likelihood : 101.05
Sigma-square : 0.0372166 Akaike info criterion : -170.101
S.E. of regression : 0.192916 Schwarz criterion : -105.842
Sigma-square ML : 0.0357643
S.E of regression ML: 0.189114

Variable Coefficient Std.Error t-Statistic Probability

CONSTANT
MMANFC90
M TRNSP90
MSERV90

M GOV90
MPSAMECNT

N MIN90
N MANFC90
NSERV90

N GOV90
N BEAGINI9
N UNEMPL90
N PHSGRAD9
NPSAMECNT
NREGIONN
METRO93

2.538337
-1.528766
-1.962514

-2.90363
-1.889287
-1.867064

-0.9543176
-0.5622583
-1.439891
-1.027953
-0.3277234
0.007875714
-0.7563575
-1.838453
0.05076975
0.2666227

0.2867759 8.85129 0.0000000
0.2385629 -6.408233 0.0000000
0.6170154 -3.180656 0.0015857

0.3949812 -7.351312 0.0000000
0.3418206 -5.527128 0.0000001
0.2848492 -6.554569 0.0000000
0.152975 -6.238391 0.0000000
0.1394945 -4.030683 0.0000668

0.2046518 -7.035813 0.0000000
0.2124619 -4.838293 0.0000019
0.1753818 -1.868629 0.0624163
0.005058027 1.557072 0.1202562
0.1980215 -3.819574 0.0001553
0.2595618 -7.082911 0.0000000
0.03661835 1.386456 0.1663913

0.3829368 0.6962576 0.4866801

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER 108.4966
TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 1191.297 0.0000000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 15 184.3425
Koenker-Bassett test 15 37.37089
SPECIFICATION ROBUST TEST
TEST DF VALUE PROB
White 135 N/A N/A

0.0000000
0.0011168



DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : newrunp_410_queen.GAL (row-standardized weights)
TEST MI/DF VALUE PROB

Moran's I (error) 0.154182 5.3556721 0.0000001
Lagrange Multiplier (lag) 1 38.2774088 0.0000000
Robust LM (lag) 1 14.2147440 0.0001631
Lagrange Multiplier (error) 1 24.0949116 0.0000009
Robust LM (error) 1 0.0322469 0.8574870
Lagrange Multiplier (SARMA) 2 38.3096556 0.0000000
=========================-END OF REPORT-==============================

REGRESSION
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION
Data set : newrunp
Spatial Weight : newrunp_410_queen.GAL
Dependent Variable : CMPT90 00 Number of Observations: 410
Mean dependent var : -0.159379 Number of Variables : 17
S.D. dependent var : 0.253312 Degrees of Freedom : 393
Lag coeff. (Rho) : 0.312194

R-squared
Sq. Correlation
Sigma-square
S.E of regression

0.495286 Log likelihood : 117.193
Akaike info criterion : -200.387

0.032386 Schwarz criterion -132.112
: 0.179961

Variable Coefficient Std.Error z-value Probability

W CMPT90 00 0.3121943 0.05449624 5.728731 0.0000000
CONSTANT
MMANFC90
MTRNSP90
MSERV90

M GOV90
MPSAMECNT

N MIN90
N MANFC90
NSERV90

N GOV90
N BEAGINI9
N UNEMPL90
N PHSGRAD9
NPSAMECNT
NREGIONN
METRO93

2.219607
-1.337203
-1.707882

-2.61545
-1.552745
-1.483906

-0.8223876
-0.5249294
-1.28791

-0.9302916
-0.3123406
0.007409395
-0.6568795
-1.550067
0.063347

0.1407561

0.2741982 8.094901 0.0000000
0.2241154 -5.966583 0.0000000
0.5762689 -2.96369 0.0030399

0.3706547 -7.056298 0.0000000
0.3205595 -4.84386 0.0000013
0.2719014 -5.457515 0.0000000
0.1447188 -5.682661 0.0000000

0.1304514 -4.023947 0.0000573
0.1920266 -6.706936 0.0000000
0.1989137 -4.676861 0.0000029
0.1637543 -1.907373 0.0564722
0.004718972 1.570129 0.1163851
0.186879 -3.514998 0.0004398

0.2462742 -6.294068 0.0000000
0.03416331 1.854241 0.0637046
0.3572225 0.3940291 0.6935596

REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE

Breusch-Pagan test 15
PROB

173.2892 0.0000000

DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : newrunp_410_queen.GAL
TEST DF VALUE PROB

Likelihood Ratio Test 1 32.28597 0.0000000
=========================-END OF REPORT-==============================



REGRESSION
SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION
Data set : newrunp
Spatial Weight : newrunp_410_queen.GAL
Dependent Variable : CMPT90_00 Number of Observations: 410

Mean dependent var : -0.159379 Number of Variables : 16
S.D. dependent var : 0.253312 Degree of Freedom : 394
Lag coeff. (Lambda) : 0.363064

R-squared : 0.4 89417 R-squared (BUSE)

Sq. Correlation : - Log likelihood : 113.232801
Sigma-square : 0.032763 Akaike info criterion : -194.466
S.E of regression : 0.181005 Schwarz criterion : -130.207087

Variable Coefficient Std.Error z-value Probability

CONSTANT
MMANFC90
M TRNSP90
MSERV90

M GOV90
MPSAMECNT

N MIN90
N MANFC90
NSERV90

N GOV90
NBEAGINI9
N UNEMPL90
N PHSGRAD9
NPSAMECNT
NREGIONN
METRO93

2.396021
-1.385462
-1.646778
-2.64086
-1.533934
-1.631927
-0.9095739
-0.5577251
-1.27996
-0.9621373
-0.3502576
0.006198323
-0.8378153
-1.643429
0.0856656

0.04670385

0.288686
0.2263938
0.5743741

0.3629613
0.3258308
0.2796057
0.1505324

0.1323187
0.1911317
0.1965179
0.1652447
0.0050540
0.2096158

0.2487978
0.04119442
0.3740145

LAMBDA 0.3630636 0.06426622

REGRESSION DIAGNOSTICS

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE

Breusch-Pagan test 15

8.299748 0.0000000
-6.119699 0.0000000
-2.867083 0.0041429

-7.275873 0.0000000
-4.707764 0.0000025
-5.836528 0.0000000
-6.042379 0.0000000
-4.215012 0.0000250

-6.696741 0.0000000
-4.895927 0.0000010
-2.119629 0.0340372

6 1.226405 0.2200466
-3.99691 0.0000642

-6.605484 0.0000000
2.079544 0.0375673

0.1248718 0.9006250
5.64937 0.0000000

PROB
186.538 0.0000000

DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX : newrunp_410_queen.GAL
TEST DF VALUE PROB

Likelihood Ratio Test 1 24.36467 0.0000008
=========================-END OF REPORT-==============================



G-2: OLS Regression vs. SL and SE Regressions using Commuting Zones
Contiguity Weight

GeoDa output:
REGRESSION SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION
Data set : newrunp
Dependent Variable : CMPT90_00 Number of Observations: 410

Mean dependent var : -0.159379 Number of Variables : 16
S.D. dependent var : 0.253312 Degrees of Freedom : 394

R-squared : 0.442638 F-statistic : 20.8601
Adjusted R-squared : 0.421419 Prob(F-statistic) :2.52087e-041
Sum squared residual: 14.6633 Log likelihood : 101.05
Sigma-square : 0.0372166 Akaike info criterion : -170.101
S.E. of regression : 0.192916 Schwarz criterion : -105.842
Sigma-square ML : 0.0357643
S.E of regression ML: 0.189114

Variable Coefficient Std.Error t-Statistic Probability

CONSTANT
MMANFC90
M TRNSP90
MSERV90

M GOV90
MPSAMECNT

N MIN90
N MANFC90
NSERV90

N GOV90
N BEAGINI9
N UNEMPL90
N PHSGRAD9
NPSAMECNT
NREGIONN
METRO93

2.538337
-1.528766
-1.962514

-2.90363
-1.889287
-1.867064

-0.9543176
-0.5622583
-1.439891
-1.027953
-0.3277234
0.007875714
-0.7563575
-1.838453

0.05076975
0.2666227

0.2867759 8.85129 0.0000000
0.2385629 -6.408233 0.0000000
0.6170154 -3.180656 0.0015857

0.3949812 -7.351312 0.0000000
0.3418206 -5.527128 0.0000001
0.2848492 -6.554569 0.0000000
0.152975 -6.238391 0.0000000
0.1394945 -4.030683 0.0000668
0.2046518 -7.035813 0.0000000
0.2124619 -4.838293 0.0000019
0.1753818 -1.868629 0.0624163
0.005058027 1.557072 0.1202562
0.1980215 -3.819574 0.0001553
0.2595618 -7.082911 0.0000000
0.03661835 1.386456 0.1663913
0.3829368 0.6962576 0.4866801

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER 108.4966
TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 1191.297 0.0000000
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 15 184.3425 0.0000000
Koenker-Bassett test 15 37.37089 0.0011168
SPECIFICATION ROBUST TEST
TEST DF VALUE PROB
White 135 N/A N/A

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : newrunp_410_CZs.GAL (row-standardized weights)
TEST MI/DF VALUE PROB

Moran's I (error) 0.135734 3.7634593 0.0001676
Lagrange Multiplier (lag) 1 26.9892369 0.0000002
Robust LM (lag) 1 17.2032339 0.0000336
Lagrange Multiplier (error) 1 11.8482608 0.0005772
Robust LM (error) 1 2.0622579 0.1509863

Lagrange Multiplier (SARMA) 2 29.0514947 0.0000005
=========================-END OF REPORT-==============================



REGRESSION
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION
Data set : newrunp
Spatial Weight : newrunp_410_CZs.GAL
Dependent Variable : CMPT90_00 Number of Observations: 410
Mean dependent var : -0.159379 Number of Variables : 17
S.D. dependent var : 0.253312 Degrees of Freedom : 393
Lag coeff. (Rho) : 0.449155

R-squared
Sq. Correlation
Sigma-square
S.E of regression

0.488222 Log likelihood : 119.584
Akaike info criterion : -205.168

0.0328393 Schwarz criterion : -136.893
: 0.181216

Variable Coefficient Std.Error z-value Probability

WCMPT90 00
CONSTANT
M MANFC90
MTRNSP90
MSERV90

M GOV90
MPSAMECNT

N MIN90 -

N MANFC90
NSERV90

N GOV90
N BEAGINI9
N UNEMPL90
N PHSGRAD9
N PSAMECNT
NREGIONN
METRO93 -

0.4491548
2.216775 0
-1.000854

-1.426486
-2.213125
-1.236601
-1.130424
0.7709955
-0.4875663
-1.255102
-0.899127
-0.336473
0.007678306
-0.6556901
-1.541098
0.06716161
0.3849908

0.03498205 12.83958 0.0000000
.2735206 8.104599 0.0000000
0.226167 -4.425287 0.0000096
0.5804745 -2.457448 0.0139928
0.3734194 -5.926648 0.0000000
0.3225014 -3.834404 0.0001259
0.2724926 -4.148455 0.0000335
0.1451371 -5.312187 0.0000001
0.1315369 -3.706689 0.0002100
0.1932484 -6.494757 0.0000000
0.2002116 -4.490883 0.0000071
0.1648149 -2.04152 0.0411990
0.004752012 1.615801 0.1061373
0.1873016 -3.500717 0.0004641
0.2459486 -6.265936 0.0000000
0.03441961 1.95126 0.0510260
0.3599771 -1.069487 0.2848503

REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE

Breusch-Pagan test 15
PROB

131.3859 0.0000000

DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : newrunp_410_CZs.GAL
TEST DF VALUE PROB
Likelihood Ratio Test 1 37.06698 0.0000000
=========================-END OF REPORT =- = = = = = = = = = = = = =



REGRESSION
SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION
Data set : newrunp
Spatial Weight : newrunp_410 CZs.GAL
Dependent Variable : CMPT90_00 Number of Observations: 410

Mean dependent var : -0.159379 Number of Variables : 16
S.D. dependent var : 0.253312 Degree of Freedom : 394
Lag coeff. (Lambda) : 0.707508

R-squared
Sq. Correlation
Sigma-square
S.E of regressi

0.479956 R-squared (BUSE) : -

Log likelihood : 116.667609

0.033370 Akaike info criterion : -201.335
on : 0.182674 Schwarz criterion : -137.076704

Variable Coefficient Std.Error z-value Probability

CONSTANT 2.290938 0.2954415
MMANFC90 -0.7727514 0.2343555
MTRNSP90 -1.168803 0.5671539
MSERV90 -1.861858 0.3605005

M GOV90 -0.781218 0.3303541
MPSAMECNT -1.026475 0.2809606

N MIN90 -0.8267698 0.150422
N MANFC90 -0.547534 0.134175
N SERV90 -1.16555 0.1827482

N GOV90 -0.8611142 0.1907652
N BEAGINI9 -0.3840766 0.1571496
N UNEMPL90 0.002712699 0.0050192
N PHSGRAD9 -0.8834116 0.2151411

NPSAMECNT -1.525791 0.2445147
NREGIONN 0.1239154 0.04563657
METRO93 -0.8635432 0.3854858
LAMBDA 0.7075077 0.02290749

REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS
TEST DF VALUE

Breusch-Pagan test 15

7.754287 0.0000000
-3.297347 0.0009761
-2.060822 0.0393199
-5.164648 0.0000002
-2.36479 0.0180403
-3.653447 0.0002588
-5.496335 0.0000000
-4.080746 0.0000449
-6.377902 0.0000000
-4.513999 0.0000064
-2.444018 0.0145247

87 0.5404551 0.5888832
-4.106196 0.0000402
-6.24008 0.0000000
2.715265 0.0066224

-2.240142 0.0250816
30.88542 0.0000000

PROB
138.5611 0.0000000

DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX : newrunp_410_CZs.GAL
TEST DF VALUE PROB

Likelihood Ratio Test 1 31.23429 0.0000000
=========================-END OF REPORT == = = = = = = = = = = = = =
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