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Abstract

The development of an Augmented Lambert Guidance Algorithm that matches the po-
sition and velocity of an orbiting target spacecraft is presented in this thesis. The Aug-
mented Lambert Guidance Algorithm manipulates the inputs given to a preexisting Lam-
bert guidance algorithm to control the boost of a launch vehicle, or chaser, from the
surface of the Earth to a transfer trajectory enroute to the aim point. After the chaser
coasts along this transfer trajectory for a time, a manoeuver is performed to match the po-
sition and velocity of the target spacecraft. A three degree-of-freedom model was created
to simulate the dynamics of the chaser and target spacecraft. The simulation was used to
evaluate the ability and versatility of the Augmented Lambert Guidance Algorithm. The
analysis proved that the methods developed in this thesis create a feasible algorithm to
perform the desired tasks.
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Chapter 1

Introduction

The purpose for the research conducted in this thesis is to develop a new guidance al-

gorithm. This new algorithm can be used for missions that launch from Earth, or any

other solid-surfaced celestial body, and match the position and velocity of a spacecraft in

orbit. This chapter provides the motivation behind pursuing such a guidance scheme, the

concept and scope of the research, and the objectives to be accomplished. Finally, the

topics to be covered are outlined by chapter.

1.1 Motivation

In the area of mission design, two particular topics that are currently of public and

scientific interest involve the launching of a spacecraft into orbit to eventually inspect

and/or dock with another craft in space.

The first topic pertains to humans living and working in space. With the tragic loss of

Space Shuttle Columbia and her seven crew on February 01, 2003, NASA is now requiring

the inspection of the exterior of the shuttle prior to returning to Earth. In the event of

another incident of ceramic tile damage or the occurrence of any other factor that would

impair the shuttle from reentering the Earth's atmosphere, the Orbiter and its crew are

now required to manoeuver to the ISS and wait for another Shuttle to be readied and
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launch a rescue mission.

In November 2004, the ISS was hit by a crisis that almost led to the evacuation of

its three crew members. The previous crew was given permission to eat some of the

food stored on the station intended for the next crew. However, by the time the new

crew arrived, the food reserves had not been replenished. This oversight led to the crew

rationing its food until a cargo ship could dock with the ISS weeks later.

Because the ISS is now going to be used as a life-raft of sorts for the crew of the Orbiter,

there is an even greater need to be able to get such resources as food, water, oxygen and/or

medical supplies on the ISS in a short period of time. Hence, new guidance algorithms

must be developed to accommodate the new demands of being able to launch from the

Earth and rendezvous with the orbiting ISS in a short period of time.

The creation of a guidance algorithm that conforms to the rapid ascent requirements

can also be applied to other missions where time may not be as critical. This secondary

use could help in the management of the aging satellite fleet.

Since the advent of commercial satellites in the 1960's, companies have been launching

equipment into orbit to facilitate such common services as cellular telephones, GPS, radio,

and the internet. With this ever-growing and aging satellite fleet, questions have been

raised about ways in which the mature satellites can be inspected, refurbished, refueled,

or removed from orbit.

Several missions have be constructed to support the upkeep or demise of these old

satellites. In particular, there are three missions that have either been recently launched

or are planning to launch in the near future: DART, XSS-11, and Orbital Express. These

three missions are all geared to demonstrate the ability of a spacecraft to autonomously

rendezvous, inspect, refuel, and/or service another satellite. Extending the lives of the

current fleet of orbiting satellites by way of smaller maintenance missions carries with

it the potential to saving money, reduce 'space junk', and change the way satellites are

designed.

18



From fly-by visual inspections and/or rendezvousing with an ailing craft to sending

up an ambulance of sorts to the ISS, the possible missions that use the new guidance

algorithm are as diverse as the hundreds of satellites in orbit. However, all the missions

have one component in common: the launch of another craft to reach the vicinity of the

already orbiting satellite.

One option for the launch from Earth is a direct-ascent trajectory. In the direct-

ascent scenario, the payload would be able to immediately connect to, or inspect, the

malfunctioning satellite instead of the more traditional approach of launching the payload

into a parking orbit and performing manoeuvres to reach the target satellite.

The advantage of the direct-ascent trajectory is that the inspection and/or rendezvous

can occur in a matter of minutes after the launch of the spacecraft instead of the hours

it may take using the traditional method. In the situation where the crew of the ISS is

in dire need of oxygen or supplies, the speediness with which a craft can get from the

surface of the Earth to the spacecraft is the most important aspect of the mission.

In this thesis, the attention is centered on a guidance algorithm capable of accomplish-

ing the direct-ascent trajectory in a relatively short time span. Focusing on the guidance

algorithm leads to easier implementation in current launch vehicles by making simple

software changes.

1.2 Concept, Scope, & Objectives

When planning a direct-ascent, quick-response mission, one way to minimize the time

needed to get the relatively small amount of supplies into orbit is to use a launch vehicle

that is abundant and readily available. Hence, the use of small commercially available

launch vehicles (or surplus missiles) make the most sense when planning missions of this

sort.

These types of vehicles have standard guidance algorithms that may not be capable of
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getting the payload to rendezvous with another spacecraft. To remedy this, these vehicles

could add functionality to their existing guidance algorithms by simply adding, either into

the existing processor or to another connected computer, an algorithm that modifies the

inputs to the existing guidance algorithm. These modified inputs would alow the vehicle

to match the position and velocity of the spacecraft in orbit.

One common guidance algorithm used in these type of small launch vehicles is the

Lambert Guidance Algorithm. There have been a multitude of papers published exam-

ining the characteristics of the Lambert Problem, which provide the framework of the

Lambert Guidance Algorithm. Most notably are the many papers written by Battin in

References [3]-[5]. More recently, Burns and Scherock in Reference [6] looked at how a

Lambert Guidance Algorithm can be modified to match the position and velocity of a

ballistic target. The research in this thesis goes one step beyond the work done by Burns

and Scherock and creates an Augmented Lambert Guidance Algorithm that modifies the

inputs to a Lambert Guidance Algorithm with the objective of matching the position and

velocity of an orbiting spacecraft.

The purpose of creating the Augmented Lambert Guidance Algorithm is to investigate

the possibility of constructing such an algorithm, not to create a final version to be imple-

mented on an actual launch vehicle. Therefore, only an initial version of the Augmented

Lambert Guidance Algorithm was developed. The newly-developed algorithm will then

be evaluated to quantify how well both the position and velocity of the launch vehicle

payload match those of an orbiting spacecraft.

The first-order evaluation consists of creating a computer simulation, which utilizes

various assumptions to simplify a range of factors. This simulation is created using a three

degree-of-freedom model of the launch vehicle dynamics. As a result, the launch vehicle

is essentially a point mass and is not concerned with the orientation, or attitude, of the

craft. Additionally, the simulation only manages the guidance system and not the other

systems of the launch vehicle, meaning that the intricacies of such items as the sensors,
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attitude control, stage separation control, and thrust vector control mechanisms will be

severely simplified or eliminated.

The focus of this thesis is solely on the ability of the Augmented Lambert Guidance

Algorithm to control the launch vehicle while thrusting; therefore, not all of the aspects

of the mission can or will be analyzed. Because such tasks as docking with an orbiting

spacecraft and/or controlling the manoeuvres of one spacecraft around another for in-

spection require a higher fidelity model, they will not be considered in this thesis. For

an example of possible inspection manoeuvres, and the fidelity needed to analyze them,

see Woffinden's Masters thesis (Reference [12]). Because the docking manoeuvres are

neglected, the payload of the launch vehicle will only match the position and velocity of

the spacecraft in orbit instead of fully rendezvousing. However, the term 'rendezvous', as

used in the rest of this thesis, refers to this matching of the position and velocity between

the launch vehicle payload, also referred to as the chaser, and the orbiting spacecraft, or

target spacecraft.

1.3 Thesis Overview

One of the main requirements in designing the Augmented Lambert Guidance Algorithm

is that it must work with a preexisting Lambert Guidance Algorithm to guide the chaser.

Therefore, the first task is to explore the theory behind the Lambert Guidance Algorithm.

Chapter 2 discusses the fundamental problem that defines the Lambert Guidance Algo-

rithm, which is known as Lambert's Problem. The properties of the problem along with

the governing equations and solution techniques are described. Then, the implementation

of Lambert's problem into a guidance algorithm is shown to provide a background for the

development of the Augmented Lambert Guidance Algorithm.

After the principles of the Lambert Guidance Algorithm have been discussed, Chapter

3 defines the rendezvous problem in the context of the missions described in Section 1.1.
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The assumptions used to better characterize the problem are then outlined. From these

assumptions, the requirements of the launch vehicle are specified along with the necessary

constraints on the orbit of the spacecraft.

Chapter 4 describes the development of the Augmented Lambert Guidance Algorithm

by adhering to the assumptions given in Chapter 3. After the construction of the Aug-

mented Lambert Guidance Algorithm was completed, a simulation was made to provide

a first-order evaluation of the abilities of the newly-developed Augmented Lambert Guid-

ance Algorithm. Chapter 5 depicts the four functional models used in the creation of a

simulation and discusses how the functional models are implemented in the simulation

software and executed over time.

Following the creation of the simulation, Chapter 6 provides an analysis of how well

the Augmented Lambert Guidance Algorithm succeeds in rendezvousing with an orbiting

spacecraft. The analysis covers a specified operational area based on the missions that

will use this new algorithm. Finally, Chapter 7 summarizes the results of the evaluation,

offers conclusions and describes what future work may be done in this area.
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Chapter 2

Guidance Algorithm

For the missile programs of the 1950's through the newest missions headed to Saturn

and beyond, engineers have been tasked to develop robust and versatile guidance systems

that ensure success in spite of the unpredictability of many variables. Inconsistencies in

such quantities as gravity, thrust, stage separation forces, and a host of others, all have

an impact on the position and velocity of a spacecraft. Because of these variabilities, an

onboard guidance system is needed to adapt to the changing conditions and control the

spacecraft to ensure it satisfies the mission objectives.

One main component of the guidance system is the guidance algorithm. The guidance

algorithm defines how the vehicle is steered while traveling from one point to another.

For a spacecraft outside any discernable atmosphere, thereby eliminating any aerody-

namic control, the only method of steering is to ignite an engine and thrust. Figure 2-1

outlines how the components of the onboard guidance system interact with the guidance

algorithm to adjust the thrust and steer the spacecraft. The guidance algorithm takes

inputs from Navigation and Targeting and outputs the velocity-to-be-gained to Steering.

Then Steering and Flight Control collaborate to actually alter the thrust direction. After

the thrust direction is changed, Navigation updates the spacecraft's position and velocity

and the flow of information begins again; therefore, the interactions between the elements
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occur in a closed-loop manner.

Figure 2-1: Guidance System Flow Chart

Given the spacecraft's current position from Navigation and an aim point from Target-

ing, there exists an infinite number of trajectories that will get the craft from its existing

location to its destination. To limit the number of possible solutions, another constraint

must be implemented. While there are many constraints from which to choose, fixing the

time of flight between the two points, which corresponds to a Lambert Guidance Algo-

rithm, is a reasonable and common choice for time-sensitive applications such as intercept

and rendezvous.

A Lambert Guidance Algorithm solves for the velocity-to-be-gained by first focusing

on a terminal state where the vehicle can shut off its engines and coast to the target. By

focusing on this terminal state, the problem transforms into determining a transfer orbit

that intersects both the current position and final destination with a transfer time between

the two points equal to the remaining flight time; this is known as the Lambert Problem.

The solution to Lambert's Problem is the correlated velocity, which is the instantaneous

velocity needed at the current position for the spacecraft to be on the transfer orbit

to the target. The Lambert Guidance Algorithm then takes the correlated velocity from

Lambert's Problem and calculates the velocity-to-be-gained, which measures the difference

in velocity between the current velocity and correlated velocity at the current time. The
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spacecraft will then use the velocity-to-be-gained to control its thrust direction over time

through Steering and Flight Control to a point where the spacecraft velocity matches

the correlated velocity. At this point, the spacecraft terminates its thrust and coasts

predictably to the target.

From determining the orbital elements of celestial bodies to guiding spacecraft and

rockets, the solution to Lambert's Problem has been essential to the study of Astrody-

namics. In this chapter, the properties of Lambert's Problem are explained, the governing

equations are listed, and methods to solve the problem are discussed. The implementation

of the Lambert Problem solution into a guidance algorithm will then be detailed. This

chapter gives a general understanding of Lambert Guidance, which provides a basis for

the development of the Augmented Lambert Guidance Algorithm discussed in Chapter 4.

2.1 Lambert's Problem

Given an initial position (rj), final position (r-2), and a time of flight (T), the solution to

Lambert's Problem gives the instantaneous velocity (v) needed for a craft to coast on a

unique orbit from r, to r in the time (T) with gravity being the only force acting on the

body.

2.1.1 Properties of the Problem

With the invariant time of flight, the number of possible solution trajectories between the

initial and final destinations is limited to two. By defining the transfer angle, 0, as the

angle between r'1 and '2, the dot product theorem stated in Equation 2.1 is used to find

the specific value of 9.

r1 - r2(.1
0 = arccos (2.1)

rlr2*

On the interval from 00 to 360' there are two solutions, one in which 0' < < 180' and

another when 180' < 0 < 360'. The two values of 9 represent the two possible directions
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of motion for a spacecraft orbiting around a body. To overcome this ambiguity and define

a unique solution trajectory for Lambert's Problem, a direction of travel is simply chosen.

In practice, the "short" (9 < 1800) route is usually preferred. An example of two possible

solutions for a given value of T are shown in Figure 2-2.

1 .5 . . . . . . . . . .. . . . . . .

Orbit 1: "Short" Way

0.5- - -

i~ri0

-0.5 - ---

"Y 
F

Orbit 2: "Long" Way
-1.5 --

- 2 - - - -- - -- - - - -

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
X-Location

Figure 2-2: Two Possible Paths

No matter what combination of travel direction and time of flight is chosen, the re-

sulting paths are all in the same orbital plane. The orbital plane is defined by the three

points: the initial and final positions, i1 and r'2 , and the center of gravitational force, or

focus, F. Although these three points are always known, there exists two situations where

the orbital plane cannot be defined: when 6 = 1800 or 0 = 00. In both of these cases,

the three points defining the orbital plane are collinear and a unique orbital plane cannot

be specified; therefore, many solutions exist. Some algorithms have developed special

subroutines to handle these two cases; however, they will not be discussed here.

Before there can be any more discussion of Lambert's Problem, the geometry and

associated variables must be illustrated. In the case of an elliptical transfer, the geometry

is shown in Figure 2-3 while the symbol definitions are found in Table 2.1.
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Figure 2-3: Elliptical Transfer

Table 2.1: Symbol Definition

Symbol Definition
_ 1 Starting Position Vector

r2 Destination Position Vector
0 Transfer angle
a Semi-major axis
c Chord

p Semiparameter
s Semiperimeter
e Eccentricity

E1 Eccentric Anomaly of F1
E2 Eccentric Anomaly of 'r2
fi True Anomaly of i'1
f2 True Anomaly of r2
61 Velocity at r'1
#2 Velocity at -2

In addition, similar drawings can be made for parabolic and hyperbolic transfers, which

can be found in Appendix A. More information about the derivation of these quantities

and their meanings can be found in several references, but most notably in Reference [2].
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2.1.2 Governing Equations

To solve Lambert's Problem, all of the values in Table 2.1 must be found to fully describe

the orbit and find the correlated velocity. After the path, either "short" or "long", has

been chosen, some quantities are found simply from the geometry, i.e.

0 = arccos (i i r 2  (2.2)

c= r2 + r2 -2rir 2 cos0 (2.3)

r1 + r 2 + C
2 =(2.4)2

The other quantities must be described in terms of the given quantities, Fi, 2, 7, and

those found from the geometry, 9, s, and c. The equations that describe the rest of the

quantities were developed by Lagrange after Lambert theorized that, "the orbital transfer

time (7) depends only upon the semimajor axis (a), the sum of the distances of the

initial and final points of the arc from the center of force (r1 + r 2), and the length of the

chord joining these points (c)" [2]. Lagrange was the first to supply the analytic formulas

to prove Lambert's theories; therefore, these formulas are called Lagrange's Equations

and are stated in Equations 2.5-2.9 for an elliptic transfer. The Lagrange Equations for

parabolic and hyperbolic orbits are, again, listed in Appendix A. The two quantities @

and cos were defined to simplify the set of equations (2.7-2.9).

1
-(E 2 - E1) (2.5)
2

1
cos # = e cos (E1 + E2) (2.6)

2

T1 = 2a1 (0 - sin # cos #) (2.7)

ri + r 2 = 2a(1 - cos 4 cos ) (2.8)

1
v/rir 2 cos -9 = a(cos 4 - cos #) (2.9)

2
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As can be seen by this set of equations, there are three equations and three unknowns:

a, V), and #. The methods of solving this set of equations is the subject of section

2.1.3; however, once a solution is found, the other quantities listed in Table 2.1 can be

ascertained from Equations 2.10 and 2.11 for the elliptic transfer.

rir2 sin 2 lop = 2 
2  (2.10)

a sin2 @

e= 1 - p (2.11)

By finding 4', #, a, p, and e, the unique orbit is completely defined, but the correlated

velocity still needs to be found. This is where another part of Lagrange's work is used.

Lagrange Coefficients, or F and G functions, are usually used in the form shown in

Equations 2.12 and 2.13. In this form, the position and velocity, r2 and '2, of a point

anywhere on the orbit can be found by knowing the position and velocity of another

point on the same orbit, where F, G, F, and O are constants defined by the unique

transfer orbit. These equations are mainly used to propagate the position and velocity of

a spacecraft on an orbit.

r2 =Fri + GV1  (2.12)

V2 =FN-i + 561 (2.13)

With some careful manipulation, the velocities at two points on an orbit, i71 and ' 2, can

be found given the two corresponding positions on that orbit, i1 and r'2.

-01 - F F
V1 = G-F 2 ' (2.14)

G
OFr1 - r-1

V2 = G (2.15)
G

In the case of Lambert's Problem, the correlated velocity is found by solving for i1 in
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Equation 2.14. The quantities F, G, F, and O for elliptic orbits are found from Equations

2.16-2.19. Appendix A lists the Lagrange Coefficients for the Parabolic and Hyperbolic

cases.

F=1 (1-cos 6) =1 -(1 cs) (2.16)
p ri

= sino = T - (- sin@) (2.17)

.Vj!7 1 (1- cos ll\1 1T
F= tan ---- - = -- sin (2.18)

p 2 p r r2 ri r 2

O, =1- (1 - cos ) = 1 _a(1 - cos ) (2.19)
p r2

The Lagrange Coefficients can also be used to solve Lambert's Problem without first

using Lagrange's Equations. As it turns out, F, G, F, and O, are not independent,

because they are described by only three unknowns: p, a, and $. Therefore, three of

the equations can be solved for the three unknowns and fully describe the unique orbit

between f 1 and r2.

The derivation of the Lagrange Equations can be found in Reference [2] while the

derivation of the Lagrange Coefficients is shown in Reference [1].

2.1.3 Solution Techniques

Upon closer inspection of these two sets of three equations (2.7-2.9 and 2.16-2.18) no

amount of algebraic operations can analytically solve either set of equations for all three

unknowns, which means the they are transcendental and must be solve iteratively. This

property of the problem along with the importance of solving Lambert's Problem to the

study of Astrodynamics is what has spurred the development of several algorithms to solve

Lambert's Problem. Creating algorithms to iteratively find a solution has commanded

attention from scholars since Lambert first published his solution almost 250 years ago.

From Lambert's original solution to many algorithms developed by commercial companies
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and the military, there are a plethora of papers and documentation on how to solve this

problem.

While these algorithms were developed for varying reasons, their methods are all sim-

ilar: they choose an independent iteration parameter and either Lagrange's Equations or

Lagrange's Coefficients to solve for the unique solution orbit, then solve for the correlated

velocity.

The basic procedure used in these many algorithms can be shown as a flow chart in

Figure 2-4.

Figure 2-4: Lambert Algorithm Flow Chart

Iteration Parameter Characteristics

One of the most important decisions in developing or selecting an algorithm is the choice

for the iteration parameter. While iteration parameters vary from algorithm to algorithm,

inspecting both Lagrange's Equations and Lagrange's Coefficients reveals some likely
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candidates for the iteration parameter, i.e. p, a, #, and V). In addition, other quantities

have been utilized such as fi, the true anomaly and e, the eccentricity. These quantities

have also been transformed into other forms such as j@02 or sin 2 14g. Essentially any

quantity can be used as long as it either directly or indirectly involves one of the three

unknowns in the set of chosen equations.

Although any of these quantities can be chosen and used to solve Lambert's Problem,

some have characteristics that make them less desirable while others have advantageous

qualities, which must be taken into consideration when looking at an algorithm. For in-

stance, a has many characteristics associated with it that make it an unattractive iteration

parameter candidate. The time of flight equation (2.7) is a double-value function of a, so

a goes to infinity for a parabolic orbit, which may cause computational errors in an algo-

rithm. Furthermore, there are issues with other parameters such as p because according

to Battin in Reference [2] the semiparameter has the same value for all orbits in a 180'

transfer orbit, which in some cases may cause erroneous results. By choosing the true

anomaly as an iteration parameter, a singularity or multiple solutions when 0 = 1800 can

be avoided, yet the orbital plane can still not be defined as stated previously in Section

2.1.1.

An important characteristic of an iteration parameter is its versatility. Throughout the

discussion of solving Lambert's Problem, it has been noted that there are three different

variations of both the Lagrange Equations and Lagrange Coefficients, one for each of the

elliptic, parabolic, and hyperbolic transfer orbit cases. It would be useful to have an

iteration parameter that is versatile and would encompass all possible orbits.

Some candidate iteration parameters that are defined for all orbits are the eccentricity,

true anomaly, and semiparameter. Furthermore, there are a host of other iteration pa-

rameters that are defined in terms of the eccentric, parabolic, and hyperbolic anomalies.

Based on the algorithms developed in References [2] and [8], the iteration parameters that

use the anomalies are developed using the difference between the anomaly values at the
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two positions. Therefore the actual iteration parameter ends up being AE, A/, and A H.

Where AE is the change in eccentric anomaly, A3 is the change in parabolic anomaly,

and AH is the change in hyperbolic anomaly.

AE = (E2 - E1) (2.20)

AO = (2 - 131)

A H = (H2 - H1)

(2.21)

(2.22)

One iteration parameter that uses the anomaly differences is X as seen in Equation 2.23.

ALE elliptic
2

0 parabolic

zAH
- hyberbolic

2

(2.23)

By definition E2 > Ei and H2 > H1, hence the range of values for x can vary from

positive to negative with no discontinuities. Furthermore, values of X greater than zero

correspond to ellipses, while values less than zero are hyperbolas and a value equal to zero

represents a parabolic orbit.

Other sets of iteration parameters that also have this property are X and x defined

in Equations 2.24 and 2.25.

X=

sin 2 1(AE)

0

- sinh 2 1(AH)

tan2 1(AE)

0

- tanh 2 1(z H)

elliptic

parabolic

hyperbolic

elliptic

parabolic

hyperbolic

(2.24)

(2.25)
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2.2 Lambert Guidance

For any moment in time, the spacecraft's position and velocity, rR and V'R, are known and

the correlated velocity, 'L, that satisfies the Lambert Problem can be found as described

in the previous section. Therefore, to get the spacecraft on the transfer trajectory found

from Lambert's Problem, a change in velocity (A,6) is needed. This A' will be referred

to as the velocity-to-be-gained ('G) and can be found from Equation 2.26.

VG = 6L - DR (2.26)

A vector diagram of the relationship between DR, DL, and DG is shown in Figure 2-5.

DL VG

VR

Figure 2-5: Lambert Guidance Vector Diagram

Once 'G is calculated, it is fed into a steering algorithm, which has its own logic to

manipulate the thrust to reduce VG over time.
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Chapter 3

Rendezvous Problem

From the discussion in Chapter 2, a thrusting spacecraft can be steered, using Lambert

Guidance, from an initial position to a point where the engines can be shut off and the

spacecraft will coast to its final destination. One particular application where Lambert

Guidance can be used is that of the intercept problem. Whether it is an Earth-launched

ballistic missile intercepting a target on the ground, having one spacecraft performing a

fly-by inspection of another, or any of the other possible missions, vehicles using Lambert

Guidance for intercept missions have been successful.

To get a better understanding of an intercept problem, the fly-by inspection scenario

is outlined and a diagram of the mission is shown in Figure 3-1. For this mission, the

"Inspector" spacecraft, or chaser, on an initial orbit would execute a single manoeuver

burn using a Lambert Guidance Algorithm to get onto a transfer trajectory that reaches

the target point. Once 'G has been reduced to the cut-off value, the thrust terminates

and the chaser coasts the rest of the way to target point on the transfer trajectory. Once

at the target point, the fly-by inspection occurs and the chaser continues on the transfer

orbit while the "Target" continues on its original orbit. Although the two spacecraft get

in close proximity, their velocities at the target point are such that their positions diverge

soon after their closest encounter.
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- -. Chaser's Position After Intercept *,
- . - Target's Position After Intercept

*Not to Scale Chaser's Original Orbit

TrgetBos
haser

Target's Orbit

Transfer Trajectory

Figure 3-1: Intercept Diagram

While a Lambert Guidance Algorithm is well-suited for intercept problems, it does

not have direct control over the spacecraft's velocity when it gets to the target point;

therefore, applications such as rendezvous, which require a specific velocity at the target

point, must either use a different guidance algorithm, or use a modified Lambert Guidance

Algorithm.

The development of a particular method to modify a Lambert Guidance Algorithm

(LGA) to create an Augmented Lambert Guidance Algorithm (ALGA) is discussed in

detail in Chapter 4; however, the rendezvous problem description, including assumptions

and success criteria, is the subject of this chapter.

3.1 Problem Definition

Figure 3-2 shows a typical trajectory for the rendezvous missions discussed in this thesis.

A launch vehicle, initially at rest on the surface of the Earth, launches off its platform and

performs the first burn, which is referred to as the boost phase. The engine is then cut

off and the vehicle coasts on the transfer trajectory. Some time later, the chaser performs
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a second burn manoeuver to match both the position and velocity of the orbiting target

spacecraft. The target and chaser follow the same orbit after the second burn until a time

when the terminal manoeuvres for inspection and/or docking are performed.

Burn 2

Target and Chaser

Follow Same Orbit

Boost

Earth o Transfer Trajectory
(Coast)

*Not to Scale

Target's Orbit

Figure 3-2: Rendezvous Diagram

3.2 Assumptions

Before the process of designing the ALGA could commence, assumptions were made to

provide a framework from which to develop the algorithm. These assumptions dictate the

dynamic equations used along with the initial conditions and vehicle configuration used

to further characterize how to create the ALGA.

3.2.1 Initial and Target Conditions

At the launch time, the chaser knows all of its physical characteristics, i.e. weight, number

of stages, etc. along with its position on the globe perfectly and is at rest at the surface

37



of the Earth.

rR(O) = FRo (3.1)

VR(0) = 0 (3.2)

Additionally, the chaser is given the exact position and velocity of the target spacecraft

at the launch time along with the time of flight to the target, T.

rs/c (0) = 7's/co (3.3)

58 1c(0) = 63/co (3.4)

The target spacecraft is designated as a non-manoeuvering target; therefore, its path is

an orbit around the Earth. Given the initial conditions and the specification that it moves

in a predictable orbit, the position and velocity ('s/c and 81c) of the target spacecraft can

be found by propagating the initial conditions along the orbit over a time interval using

Lagrange Coefficients. The target conditions are then found from Equations 3.5 and 3.6.

rT = s/c(T) (3.5)

VT - I/c(T) (3.6)

3.2.2 Dynamics

One major assumption is that all of the motion is governed by the two-body approxima-

tion. This assumption provides sufficient accuracy to perform a first-order evaluation of

the ALGA and significantly simplifies the necessary equations.

In combination with the two-body approximation, the target spacecraft and chaser's

motion will be found with respect to the Earth, which will be modeled as a non-rotating,

perfect sphere with gravity being proportional to the square of the distance from the
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center of the Earth as described by Newton's Second Law.

Although effects from the oblateness of the earth, atmospheric drag, solar radiation

pressure and third-body gravitation would perturb the actual trajectory of the vehicles,

they will be neglected for this analysis.

3.2.3 Vehicle

For the rendezvous mission scenarios to be investigated in this thesis, the target spacecraft

was elected to be launched from the surface of the Earth on either a land- or sea-based

platform. The vehicle is assumed to have multiple stages to bring a payload to orbit;

therefore, the chaser will consist of three boost stages and the payload.

As stated before, the LGA has no direct control over the velocity of a spacecraft

when it gets to its destination. A second burn provides the necessary velocity change

needed to match both the position and velocity of the target spacecraft. To execute

this manoeuver, the spacecraft payload must have a motor and fuel available to achieve

the second manoeuver. Hence, the payload will consist of an additional 4 th stage engine

attached to the 100 kg structure and equipment (i.e., cameras, sensors, etc.) essential to

the mission.

The second burn, also known as the 4th stage manoeuver, was chosen to have a constant

thrust magnitude and a fixed thrust direction with respect to the Earth for the entire burn

time, Tb. The 4 th stage ignites at a time, 7 4 th, so that after the 4th stage burn the chaser

can terminate its thrust and arrive at the target point at the given time, T.

4th= - Tb (3.7)

Dictated by the amount of velocity change needed to rendezvous with the target, TI, and

therefore T 4 th, are both variable quantities. Consequently, the 4th stage is assumed to be

able to initiate and terminate its thrust according to these values. The chaser can begin
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its terminal guidance either immediately after the 4 th stage cut-off or at any future time.

3.2.4 Boost Control

The development of the ALGA described in Chapter 4 is based on modifying the inputs

into the LGA. Because the LGA is designed for intercept missions, a comparison of the in-

tercept and rendezvous trajectories is illustrated in Figure 3-3 to provide more insight into

the differences between the two. The trajectories were given the same initial conditions:

TRo, rs1co, 6,/co and, T.

Intercept

Earth

Rendezvous
T Ro

*Not to Scale

Figure 3-3: Trajectory Comparison

In the intercept problem, the LGA controls the boost phase in such a way that the

vehicle coasts to the target point, rT, in the specified time, 7, as detailed in Chapter 2.

For the rendezvous problem, as defined in this chapter, the ALGA is assumed to control

the boost phase of the chaser to coast to a different point, r 4 th, at a different time, T 4 th,

in order to perform the 4 th stage burn of length Tb to match the position and velocity of

the target at the given time, T.
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3.3 Requirements

After the ALGA is developed, a simulation will be created to test the versatility and

effectiveness of the algorithm by running through multiple test cases. But, before the

ALGA can be put through a rigorous evaluation, several requirements must be specified to

generate consistent and meaningful test cases. To this end, the chaser vehicle specifications

along with limitations on the target orbits are described. Following this, the success

criteria are outlined.

3.3.1 Vehicle Specifications

To provide an accurate representation of the chaser vehicle, the vehicle specifications are

based on current US Space Launch Systems and will adhere to the assumptions outlined

previously in Section 3.2.3.

The boost stages will have solid fuel motors with no restart or throttling capabilities;

however, the 4 th stage engine will be capable of restarting multiple times, but it will

not be able to throttle. These requirements lead to a search for the configuration and

capabilities of current launch vehicles. The search will be limited to vehicles that launch

small payloads (< 2000 kg) and those that are widely available. The results of this search

will be the basis by which the chaser vehicle specifications will be defined.

The following is a description of a selection of current US Space Launch Systems.

These summaries are based off information in Reference [7]:

Athena II - Developed by Lockheed Martin to launch small spacecraft into LEO orbits,

the Athena II consists of four stages with the first three boost stages having solid

fuel and the fourth having a liquid engine.

Atlas IIIA/B - Initially designed to be an ICBM and then redesigned by Lockheed

Martin, the Atlas IIIA/B is a two stage liquid-fueled vehicle designed to carry

medium payloads into GTO.
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Delta II - Developed mainly to launch US Air Force payloads into GPS or LEO orbits,

the Delta II is available in two- and three-stage versions (with a zeroth solid rocket

booster stage) to accommodate both small and medium payloads. The first and

second stages are liquid fueled and the optional third stage is solid fueled.

Minotaur - Used by the US Air Force, this launch vehicle combines parts from the

Minuteman II ICBM and Pegasus XL launch vehicle (Made by The Orbital Sciences

Corporation) to launch small payloads into LEO orbits. Its four stages are solid

fueled.

Taurus - This solid fueled four-stage launch vehicle originally used a Peacekeeper missile

for the first stage and a Pegasus as an upper stage to launch military payloads.

Then The Orbital Sciences Corporation used a commercial first stage to create a

commercial version and launch small payloads into LEO and GTO.

Boost Sizing

The vehicle design specification values for the Space Launch Systems described previously,

again gathered from Reference [7], were tabulated in a spreadsheet and then averaged.

The tabulated data from Reference [7] can be found in Appendix B. Using engineering

judgement, values were then chosen for the specific quantities needed for the boost stages.

The following table describes the specifications of the chosen chaser to be used in the

simulation.

Table 3.1: Boost Stage Specifications

Engine Statistics Mass
Stage Thrust Burn Time ISP Structural Propellant Fraction

Newtons Seconds Seconds Kg Kg unitless
1 1,409,250 78.05 258.10 4276.50 45221.25 0.91
2 746,600 70.46 278.50 2141.00 20496.80 0.91
3 186,200 95.52 289.24 794.25 6143.00 0.89
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4th Stage Sizing

In this research, the abilities of the 4th stage are very important. It has to have enough

thrusting capability to change the velocity of the craft by values of up to 5000 m/sec. To

make sure the 4 th stage would be able to complete the manoeuvres it will be tasked to

do, some planning had to go into its design.

The mass of the payload is comprised of the mass of the propellant (mprop), the

structural mass for the engine mstruct, and the mass of the equipment (mequip).

M 4 th = mprop + nstruct + imequip (3.8)

As stated in Section 3.2.3, the equipment mass is assumed to be 100 kg. However, the

configuration of the 4 th stage engine, which includes the propellant mass and structural

mass has yet to be determined.

Having looked at the third or fourth stages of the launch vehicles on which the boost

stages of the chaser were based, preliminary values for the thrust (T), approximate mass

fraction (mf), and specific impulse (Isp) were chosen for the 4 th stage engine. Based on

these values and estimating that the 4th stage engine will have to provide approximately

5000 m/sec of velocity change (AV) to the entire payload, sufficient information has been

acquired to size the 4 th stage engine.

The contributions of mass for the 4 th stage engine from both the propellant and struc-

ture were found from the equations developed in Reference [13]. First, the propellant

mass was calculated from Equation 3.9. Note that go is the gravitational acceleration at

sea-level.

mequip [exp (gI.)
mprop = (___ (3.9)

mi mf exp 901,P

After the propellant mass was calculated, it was rounded up to the nearest integer and
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Equation 3.10 is then used to find the structural mass.

instruct = mprop(I - mf) (3.10)
mf

As a consequence of having a limited amount of fuel, there is a finite amount of time

in which the 4th stage engine can burn fuel and produce thrust. Given the propellant

mass, the maximum burn time was calculated from Equation 3.11.

Tmabx Ispgomprop (3.11)
"" T

After all of the calculations, the 4 th stage engine specifications are now known and are

shown in Table 3.2.

Table 3.2: 4 th Stage Engine Specifications

Engine Statistics Mass
Stage Thrust Burn Time ISP Structural Propellant Fraction

Newtons Seconds Seconds Kg Kg unitless
4 10,000 264.87 300 100 900 0.90

3.3.2 Target Orbits

Based on the capabilities of the US Space Launch Systems, it is impractical to try and

rendezvous with a target spacecraft in such a high altitude orbit as a geostationary com-

munications satellite, because the Space Launch Systems simply do not have enough fuel

to reach those high altitude orbits. Therefore, the possible orbits for the target spacecraft

are limited to Low Earth Orbits (LEO), which are defined as orbits whose semimajor axis

is between 100km and 500km greater than the radius of the Earth.

Because of the limited fuel, the chaser launch vehicle is presumed to not have enough

fuel to reach the parabolic and hyperbolic escape velocities; consequently, the focus is

primarily on circular and elliptic target orbits.
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3.4 Success Criteria

After the development of the ALGA, it must be tested for its effectiveness. To this end,

computer models are created to replicate the conditions of an actual test flight. Test cases

are constructed that utilize various initial conditions for the chaser and an assortment of

target orbits, which adhere to the requirements outlined previously. The information

generated by the test cases is used as inputs to the Simulink simulation software, which

executes the logic dictated by the models over the given time interval, T. The models

used in the simulation to test the ALGA are described in Chapter 5.

At the completion of the simulation, the effectiveness of the ALGA in guiding the

chaser to rendezvous with the target can be evaluated for that particular test case. The

evaluation is based on four factors. Two of the factors are based on calculating the

deviation in the position and velocity of the chaser with respect to the target. The

position and velocity errors, Rerr and Verr respectively, are defined as the magnitude

difference between the value for the chaser and the value for the target spacecraft at the

rendezvous time, T.

Rerr = ||?R - is/cI (3.12)

Verr I ||R -- s/c | (3.13)

A test case is deemed successful if the following four criteria are met:

1. The chaser does not impact the Earth - The magnitude of the chaser's position

vector (r) is never less than the radius of the Earth (rD).

rR > re (3.14)

2. The 4 th stage does not run out of fuel - The burn time needed to perform the
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rendezvous does not exceed the maximum burn time of the 4th stage.

(3.15)Tb 5 Tmax

3. The Position Error is within tolerable limits - The value is less than 100 meters.

Rerr < 100 m (3.16)

4. The Velocity Error is within tolerable limits - The value is less than 0.5 me-

ters/second.

Verr < 0.5 m/sec (3.17)
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Chapter 4

Augmenting Lambert

Starting with a preexisting Lambert Guidance Algorithm (LGA) in conjunction with

the assumptions outlined in Chapter 3, a method was devised to create the Augmented

Lambert Guidance Algorithm (ALGA) for use in rendezvous missions. This method

entails the creation of an adjunct algorithm that modifies the inputs into the original LGA

as opposed to explicitly altering it. The inspiration for creating an adjunct algorithm that

utilizes the given LGA stems from the implementation in an actual launch vehicle. The

adjunct algorithm could be placed on a supplementary processor or as a separate function

within the existing guidance algorithm processor. Essentially, the adjunct algorithm could

be used as an optional module that could be added based on the mission requirements.

The general procedure used to generate the ALGA is derived from the work done by

Burns and Scherock as described in Reference [6]. In their analysis, they ignored the

effects of the changing gravity vector during the 4th stage burn because their chaser and

target were both traveling on ballistic trajectories and their burn times were relatively

short (<50 seconds). In contrast, the missions discussed in this thesis have the target in an

orbital trajectory and the burn times are anticipated to be long (100-300 seconds) due to

the large AV' changes (maximum of 5000 m/sec). Therefore, ignoring the shifting gravity

vector could not be upheld for the analysis in this thesis. Consequently, the method
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derived in this chapter builds upon the technique created by Burns and Scherock. This

new method provides insight into how to modify the inputs to the LGA while including

compensation for the varying gravity vector during the 4 th stage burn.

4.1 General Procedure

As stated in Chapter 3, the objective of the ALGA is to get the chaser on a transfer tra-

jectory that reaches r4 th at the time T4th. It is then the adjunct algorithm's task to modify

the inputs given to the LGA to produce the expected transfer trajectory. Considering

what values the LGA needs to compute 'G, the adjunct algorithm is only able to modify

the target position, FT, the current position, r, and/or the time of flight, T, given to the

LGA. Consequently, there are seven possible combinations of modified inputs that could

be given to the LGA and produce the same transfer trajectory.

1. Modify only the target position. INPUTS: rTmod, 7, and FR

2. Modify only the time of flight. INPUTS: f, Tmod, and j'

3. Modify only the current position. INPUTS: ', T, and rmod

4. Modify the target position and the time of flight. INPUTS: 'rTmod, Tmod, and rR

5. Modify the target position and the current position. INPUTS: FTmod, 7, and rRmod

6. Modify the time of flight and the current position. INPUTS: r', Tmd and rRmod

7. Modify all three inputs. INPUTS: rTmod, Tmod, and rRmod

In this thesis, the choice was made to implement option one, thereby only modifying

one input into the LGA; the target position, r. Figure 4-1 shows the relationship between

the actual target point, modified target position, and the ignition point; r', Frmod, and

r 4th, respectively.
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Figure 4-1: False Target Diagram

By fixing the time of flight, several properties of the modified target position become

evident. First, as a result of the 4th stage burn, the chaser never reaches rrmod (providing

the 4th stage engine ignites); so, an important characteristic of 'rmod is that it is a false

target. Another feature of this point is that the time to get from 4 th to ?rTmOd is equal to

the time to get from T4 th to Fr, which is the burn time, Tb.

Calculating rTmod requires that the chaser reach r'th at T 4 th; hence, it would be helpful

to know those values. However, r 4 th and T 4th are dependant on the values of the thrust

direction vector, B 4th, and the burn time, Tb. Both of these values are initially unknown

and are, coincidentally, needed by the other systems on the chaser to successfully exe-

cute the 4 th stage manoeuver. Therefore, in addition to calculating irmod, the adjunct

algorithm is also responsible for calculating Tb and B 4 th.

The goal of the adjunct algorithm as part of the ALGA is to exploit the properties of

the LGA and the methods used by Burns and Scherock to calculate the three unknown

values: rTmod, B 4 th, and Tb. The modified technique is outlined in Figure 4-2. As can be

seen from the flow chart, there are five main steps (shown by bold outline): Initialization,

State Propagation, Match Velocity, Match Position, and Iteration.
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Figure 4-2: ALGA Flow Diagram

The Initialization block employs the method used by Burns and Scherock to find initial

approximations for the three unknowns. Therefore, the initialization values are found by
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neglecting the change in the acceleration due to gravity while the 4 th stage engine is

thrusting. The LGA is run using either the quantities from the Initialization block or

the values from the previous time step depending on whether this is the first time the

ALGA is called. The state produced by the LGA is propagated forward to get values at

the rendezvous time in the State Propagation block. These terminal conditions are then

used by the Match Position and Match Velocity blocks to generate updated values for the

unknowns. The Matching Position block produces a more accurate value of irmod while

the Matching Velocity block updates the values for $4th and Tb. The outputs of these two

blocks collectively compensate for the effects due to the variation in gravity during the

4 th stage burn. Finally, an outer iteration loop is used to produce more accurate values

for r'Tmod, B 4 th, and Tb.

4.2 Initialization

On the first call to the ALGA, the only information given is the initial conditions as

described in Section 3.2.1. The goal of the initialization block is to take the initial con-

ditions and produce reasonable approximations for the three unknowns. This is done by

making a first guess for the three unknowns, propagating the chaser's state forward to

find the terminal conditions, then updating the values for the three unknowns based on

the assumption that the gravity vector during the 4 th stage burn doesn't change.

4.2.1 First Guess

The first-guess step entails setting the 4 th stage burn time to zero and the modified target

position equal to the actual target position and running these values through the LGA.

Tb = 0 (4.1)

rTmod = rT (4.2)
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By setting these initial conditions, the resulting output from the LGA is essentially the

correlated velocity needed to be on an intercept trajectory to the target.

4.2.2 Propagation

Using the current chaser position, and the correlated velocity computed by the LGA, the

chaser's position and velocity are propagated forward in time by 7 to define the terminal

conditions of the initialization trajectory. The propagation is accomplished using the

Lagrange Coefficients method mentioned in Section 2.1.1. To find more information on

using the Lagrange Coefficients to propagate a spacecraft's trajectory, see References [2]

and [11].

The terminal conditions defined by the propagation of the initialization trajectory gives

the chaser's velocity, ' , at the actual target point, FT, and provides the adjunct algorithm

with a starting point from which to begin its calculations for the three unknowns.

Figure 4-3 is the area highlighted in Figure 4-1 and illustrates the initialization tra-

jectory along with the chaser's velocity and the target spacecraft's velocity at the actual

target point.

Initialization
Trajectory

rT rTmod

Figure 4-3: Rendezvous Velocity Vectors
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4.2.3 Thrust Direction

As can be seen from the figure, AV' is the relative change in velocity that needs to occur

to make the velocities of the chaser and target match, which is the reason for the 4th stage

burn. The initial value of A' is found from Equation 4.3.

AV= VS/C - VR (4.3)

Once a value for AV' has been found, the next step in the initialization is to find the

thrust direction required to reduce AV' to zero by the rendezvous time, T. To do this,

the chaser initiates a 4th stage manoeuver at T 4 th in the direction of B 4 th. By aligning

$4 th with AV, V changes over time and constantly reduces AV. Reducing AV' to zero

accomplishes the goal of matching the velocity. The 4 th stage thrust direction vector B 4 th

is then defined by a unit vector in the direction of AV. As it turns out, the magnitude of

AV' as well as its direction is needed in future calculations; therefore, A' will be passed

out of the Initialization block and B 4th will be extracted from that value when needed.

4.2.4 Burn Time

Remembering that T4th is calculated by subtracting Tb from T (Equation 3.7), the value

of Tb is a reasonable choice for the next unknown to be calculated.

The thrust provided by the 4 th stage engine is used to reduce AV to zero over the burn

time, Tb. Therefore, AV' can be calculated by integrating the acceleration experienced by

the chaser over the same interval.

AV= j0 aR(t) dt (4.4)

Given that the 4 th stage provides a constant thrust and burns its fuel at a constant rate,

MI, where M 4 th is the initial mass of the 4thstage, the acceleration due to thrust can be
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expressed as a function of time as stated in Equation 4.5.

_, Isygo M
aT (t) - (4.5)

M4th - Mt

For the initialization, the acceleration of the chaser during the 4 th stage burn is just the

acceleration produced by the thrust because the variation of the gravity vector is ignored.

Now that an equation for the acceleration with respect to time has been found, the

integration is performed to get AVX expressed as a function of time. It should be noted

that this is simply the standard rocket equation. This equation is then evaluated at the

two limits using the Fundamental Theorem of Calculus, which results in an equation for

Af in terms of Tb.

rTb MIit
AV* = 'spo M4th - B 4 th dt

I M4th - 4tt

- Isgo ln ( M B4th (4.6)
M4th -- MT .

By rearranging Equation 4.6 and noting that AV' is in the same direction as $4th, the 4 th

stage burn time is found by Equation 4.7.

Tb = ~t 1 - exp - V (4.7)

4.2.5 Modified Target Position

Now that initial values for B 4 th and Tb have been calculated, the last unknown, irmos, is

ready to be determined. Equation 4.6 is integrated to find the position offset.

A= IS[go( M4In . B 4 th dt
J . \M4th - Mt)

M4th M4t - MTb (
=Isygo -- Tb ln + Tb $4th (4.8)

-( I M4th
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When the position offset is found, the modified target position can finally be calculated

from Equation 4.9

rTmod =T ~ (z (4-9)

4.3 State Propagation

Using the burn time, modified target position, and thrust direction vector calculated from

Equations 4.7, 4.9, and 4.3 will result in the chaser not matching the position and velocity

of the target spacecraft due to the change in gravity vector during the burn. Figure 4-4

shows the gravity vectors when the 4 th stage ignites and at the target point along with

its effect on the chaser during the burn.

-qf 94th

-LIT
B4th

qT

94th

*Not to Scale Lf

rT A

Figure 4-4: Gravity Vectors

Not accounting for the variation in gravity results in the acceleration experienced by

the chaser, aR, being rotated. The amount of rotation is governed by how much the

gravity vector changes from the ignition point to the final position after the burn. This

change is denoted by A' in the figure. As a consequence of the rotating acceleration

vector, the position and velocity of the chaser also change direction and the chaser is

driven away from the desired target location as shown by the dotted trajectory.

The objective of the State Propagation block in conjunction with the Match Position

and Match Velocity blocks is to calculate values of B 4 th, irmod, and Tb that account for
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the change in gravity over the burn time.

To more accurately represent the dynamics, gravity is now included in the acceleration

equation experienced by the chaser and is shown in Equation 4.10.

_. IpgoM 1-_
aR B4I. - -rR (4.10)

LM4th - Mt rR

Unfortunately, this equation cannot be analytically integrated with respect to time

like Burns and Scherock were able to do for the acceleration when ignoring gravity. To

remedy this, a method was devised to account for the gravity variation.

First, the current chaser position along with the correlated velocity produced from the

call to the LGA is propagated forward using Lagrange Coefficients. This is identical to

the propagation done in the Initialization block in Section 4.2.2, except it is propagated

forward to the ignition time, T4th. The value of T 4 th is given by either the Initialization

block or the value from the previous iteration.

The second step involves using a separate fourth-order Runge-Kutta integrator to

numerically integrate Equation 4.10 over the burn time, Tb. The initial conditions given

to the Runge-Kutta integrator are the position and velocity output from the Lagrange

Coefficient propagation. The result of this second propagation is the predicted position, ,

and velocity, 'U,, of the chaser after coasting, executing the 4th stage burn and accounting

for the effects of gravity. From these predicted values, the position and velocity of the

target spacecraft are matched using the following techniques.

4.3.1 Matching Position

Figure 4-5 shows a possible miss-trajectory as predicted by the State Propagation block

using values for T 4 th, rTmod, and AV' from either the Initialization block or from the

previous iteration.

To find a better value of r'Tmod, the difference in the predicted position and target
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fTmod

Figure 4-5: Matching Position

spacecraft position is found.

rmiss = Tp - Tr (4.11)

This value for the miss distance is then subtracted from target position given to the LGA.

rTnew = rTmod - rmiss -.2)

A diagram of the vector addition is shown in Figure 4-6.

new

Figure 4-6: Matching Position Vector Addition

Once an updated value of rTnew is calculated it is used as an input to the LGA to get

a new value of 'G. The State Propagation block is then executed again to acquire an

updated predicted position and miss distance. This procedure is repeated until the value

of Frnew, changes minimally over successive iterations. To find the appropriate number of
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iterations, the magnitude of the miss distance versus the number of iterations was charted

for one call to ALGA and one set of initial conditions. Figure 4-7 shows a logarithmic

decrease in the magnitude of the miss distance over successive iterations. As can be seen

by this particular example, the predicted miss distance for the sixth iteration is on the

order of 10-6. Several other trajectories were examined and it was established that six

iterations leads to sufficient accuracy. Additionally, the three lines represent the three

outer loop iterations as shown in Figure 4-2 and discussed further in Section 4.4.

Match Position Error vs. Iteration

2

C
.Q
0

t-
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1 2 3 4 5 6 7 8 9 10
Iteration Number

Figure 4-7: Matching Position Error

4.3.2 Matching Velocity

Using the predicted velocity, 'J, from the Runge-Kutta integrator and Equations 4.6 and

4.7, an updated value for the thrust direction vector, B 4th, and burn time, Tb, can be

calculated. This updated value, again, takes into account the velocity difference due to

gravity.

Figure 4-8 shows the predicted velocity with respect to the target spacecraft velocity
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and the value of AV' passed from the Initialization block or the previous time step, which

is parallel to the thrust direction vector, B 4 th.

Figure 4-8: Matching Velocity

The first calculation to find improved values for the thrust direction vector and burn

time is to take the difference between the predicted chaser velocity and target velocity.

Vmiss = 's/c - 'Up (4.13)

This miss velocity is an additional change in velocity that the 4 th stage needs to provide

to the chaser to match the velocity of the target spacecraft. Therefore, the miss velocity

is added to the initial value of the velocity change, A'i.

A~new = AV + Vmiss (4.14)

Figure 4-9 shows a diagram of the vector addition used to calculate the new velocity

change.

The updated velocity change, A'Unew, is now a closer approximation to how much

velocity change the 4 th stage needs to provide. Given that the thrust supplied by the

4 th stage is constant, the burn time must be adjusted to accommodate the new velocity

change. Equation 4.15 is used to calculate the new burn time.

To~ new = M 1h[ -- exp -(4.15)
N .90sp
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A Vnew

Figure 4-9: Matching Velocity Vector Addition

4.4 Iteration

The techniques employed to update the values of rTmod, B 4th and Tb did so by matching

the position and velocity separately. Because the position and velocity of the chaser are

coupled, an iteration scheme needs to be implemented to get increased accuracy for the

values of Bmod, $ 4 th and Tb.

This can be seen by running the same initial condition, but only changing the number

of iterations used to calculate the three unknown values. Table 4.1 shows the difference

in Re,, and Verr when the number of iterations is increased from 2 to 3 for one particular

set of initial conditions.

Table 4.1: Rer, and Verr vs. Iterations

Iteration Rerr (M) Verr (m/s)
1 30.5858 0.2686
2 51.5083 0.1422
3 10.0722 0.0798

Consequently, the number of iterations chosen for the ALGA used in this thesis is

three. This provides sufficient accuracy given the success criteria outlined in Section 3.4.

Once the three iterations are performed, the ALGA outputs #rTmod, Tb, and Avi (re-

membering that B 4 th is the unit vector of A,6) to be saved and used in the next call to

ALGA at a future time step.
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Chapter 5

Models & Simulation

Modeling and Simulation of physical systems has become an indispensable tool in evaluat-

ing and developing new algorithms, software, and hardware in not only the space industry,

but in every engineering field. Using such computer software as MATLAB, Simulink, and

functions written in C-code, several models were created to embody the physical charac-

teristics of the chaser, target spacecraft, and the environment in which they both operate.

The implementation of the logic contained in the models over time creates the computer

simulation, which will be used as a first-order assessment of the Augmented Lambert

Guidance Algorithm (ALGA) developed in Chapter 4.

After the logic and equations dictated by the models are integrated into the simulation

software, the robustness and versatility of the ALGA can be tested by running several

simulations with various initial conditions. The results of running multiple simulations are

used to gauge how successful the ALGA is at manoeuvering the chaser to rendezvous with

the target spacecraft. The success of the algorithm will be determined by how well it meets

the criteria laid out in Chapter 3 and will be discussed comprehensively in Chapter 6. But

first, this chapter focuses on the logic and equations used to mimic the physical properties

of the two vehicles and the dynamics of motion. These equations define the models, which

are implemented using simulation software to create the computer simulation.
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5.1 Models

The simulation used to evaluate the ALGA includes four separate functional models whose

interactions are depicted in Figure 5-1. The current time measured from launch and the

remaining flight time is available in all of the models. The four models are described in

this chapter in conjunction with diagrams outlining their operations performed. These

models implement the assumptions outlined in Chapter 3.

Vehicle
S Staging -

ModelFio

T r
3-DOF TR

MR Vehicle '18/c Guidance VG Steering B

The Vehicle Staging Model encompasses the physical characteristics of the chaser, from

the mass depletion as a result of the burning of fuel to the execution of the stage separation.

The 3-DOF Vehicle Dynamics Model doubly integrates the accelerations experienced by

both the chaser and target spacecraft to provide the position and velocity of both vehicles.

The execution of the ALGA is contained in the Guidance Model, while the Steering Model

manages how the thrust of the chaser is directed throughout the trajectory from launch

to rendezvous.

5.1.1 Symbol Definition

Although most of the symbols used in the four functional models have been defined and

used throughout the preceding chapters, a table is included here as a refresher.
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Table 5.1: Model Symbols

Symbol Definition
MR Mass - Chaser
T Thrust - Chaser

B Steering Vector
rs/c Position - Target
iS/c Velocity - Target

rR Position - Chaser

VR Velocity - Chaser

VG Velocity-to-be-Gained
B 4th Thrust Direction Vector - 4 th Stage

M 4 th Mass - 4 th Stage
T7 Burn Time - 4 th Stage

Tsi Thrust - ih Stage

M8 i Mass - it Stage

Mpay Mass - Payload
dT Acceleration - Thrust
daR Acceleration - Chaser

ds/c Acceleration - Target

YR Gravity - Chaser

Ys/c Gravity - Target

5.1.2 Vehicle Staging Model

A generic small launch vehicle (GSLV), as discussed in Chapter 3, was chosen to be used as

the chaser in the simulation. The staging conditions for the GSLV have been implemented

to follow the vehicle model flow chart shown in Figure 5-2. A stage controller receives

cut-off signals from the Guidance Model, which it uses along with its own logic to give

signals to each of the stage motor subsystems. These signals indicate when it is time to

either ignite the motor and begin expending fuel or to separate the remaining fuel and

structural mass from the vehicle. This controller is where the physical limitations of the

rocket stages are implemented. For instance, no two stages can be burning at the same

time and the current stage cannot ignite without having first deployed the previous stages.

Each of these stage motor subsystems controls a mechanism that computes the pro-

pellant remaining in the storage tanks after the motor is given the signal to ignite. While
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the propellant mass is depleting, the model also outputs the thrust value produced by the

particular engine. When one motor is ignited, the thrust produced by the other stages

is zero. Furthermore, once a stage is separated it contributes values of zero for the mass

and thrust into the summations at the right of the diagram. To accurately represent the

chaser's thrust and mass characteristics at any time during the simulation, the thrust and

mass contributions from all of the stages is summed and output from the Vehicle Staging

Model.

F - ~- - - - - -- ~ ~- ~- - ~- --- --- -- - -~ ~- - - ~ i
Ts i

Boost - Stage I Msi
I nition and

Jet ison Signals

Boost - Stage 2 Ms2 --
cut-off signals I

Controller s3

Boost - Stage 3 Ms3

Manoeuver - Stage 4 M4Mt

Mpa
Payload

L -------------------------------- J

Figure 5-2: Vehicle Model Diagram

5.1.3 3-DOF Dynamics Model

Accurately describing the motion of the chaser relative to the Earth is critical to creating

a useful simulation. Based on the assumptions outlined in Chapter 3, the equation of

motion for the chaser and target are described by Equation 5.1.

dt2 + T - aT = 0 (5.1)
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With this equation, the only information needed to calculate the state of the chaser or

target at any time are initial values for their positions and velocities, 'R(O) and is/c(O),

and ' (0) and Us/c(0), respectively and any external acceleration caused by the engine

thrust, aT. To determine a future state, the equation needs to be numerically integrated

over the specified time interval for each of the spacecraft.

Figure 5-3 shows the 3-DOF Dynamics model used to perform the numerical inte-

gration to find the current position and velocity of the two spacecraft in the simulation.

ft 1 VR

T to

MR

9R
Earth Model rR

ds/c t2
ft1 dt V s/c

a 'to V

9s/c2

Earth Model I>'s/c

Figure 5-3: 3-DOF Dynamics Model Diagram

This model inputs the thrust and mass given by the Vehicle Staging Model and the

thrust direction vector supplied by the Steering Model. From these input values, the

specific force, or acceleration due to thrust, of the Launch Vehicle is calculated from
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Equation 5.2.
T-.

aT =-B (5.2)
MR

Meanwhile, the Earth model calculates the acceleration due to gravity for each of the

spacecraft from Equation 5.2 using the previous value of their respective positions.

YR = -'rR (5.3)
R

9s/c = .4_is/c (5.4)
T/c

Equation 5.1 can now be rearranged and simplified by using the values of gR and gs/c

from Equations 5.3 and 5.4 and substituting dR and ds1 c for the second-order differentials.

The resulting equations represent the accelerations of the chaser and target, respectively.

aR = aT - 9R (5.5)

as/c = -Js/c (5.6)

The 3-DOF Dynamics Model outputs the current velocities and positions of the chaser and

target spacecraft by twice numerically integrating the two differential equations (Equa-

tions 5.5 and 5.6). The numerical integration performed in this simulation is governed by

a variable step-size Runge-Kutta fourth- and fifth-order integration scheme.

5.1.4 Guidance Model

Once the current position and velocity for the chaser and target spacecraft have been

calculated, the task of guiding the chaser on to the rendezvous trajectory can be un-

dertaken. The guidance model is depicted in Figure 5-4 where the Augmented Lambert

Guidance Algorithm is detailed in Chapter 4. Per the discussion in the previous chapter,

the Guidance Model takes inputs of the current position and velocity as computed by the

3-DOF Dynamics Model. From these values and M 4th from the Vehicle Staging Model,
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B 4th

Figure 5-4: Guidance Model Diagram

the ALGA outputs the values for VR, VG, Tb, and B 4 th to be used in the cut-off controller

and the Steering Model. In addition, quantities such as rTmod and AVY are saved to be

used the next time ALGA is called.

To limit the amount of computing power needed to run the ALGA, it is called at a

rate of 2 Hz. Consequently, the VG is updated every half-second. The ALGA is called at

this rate until G is less than 100 m/sec. After this benchmark, the ALGA is called at a

rate of 100 Hz. Figure 5-5 shows an example of how VG is affected by the change in the

rate at which the ALGA is called.

VG

1 5 0 -- - - - - - - - -- - - -

2 Hz -- v

100 - -

10Hz

50

0 - - -

218.5 219 219.5 220 220.5 221 221.5 222
Time - seconds

Figure 5-5: Transition of Execution Rate
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This increase in rate is done to get a more accurate value of VG around the time

that the boost stages are cut-off by the cut-off controller and the coast phase begins. A

perfect cut-off controller would be able to terminate thrusting when VG is exactly zero; in

practice, this is very difficult to do. Therefore, the boost is cut-off when VG falls below

a predetermined value. The cut-off value is dependant on how often G is computed and

the amount of thrust being provided by the engine. Given the specifications tabulated in

Section 3.3.1, the 3 rd stage is jettisoned when VG is reduced to a value below 2.0 m/sec.

The importance of reducing the velocity error due to cut-off is discussed in Section 5.2.3.

Immediately after the 3rd stage jettison, the 4th stage ignites to reduce G at a slower

rate due to significantly lower thrust. When VG is reduced to a value below 0.10 m/sec, the

direction of 'G is held fixed, or frozen. From this point on, the controller runs at a rate of

1000 Hz, but the ALGA stops running and constantly outputs the last calculated values

for G, 'b, and $4 th. The remaining magnitude of 'G is reduced further by subtracting

the change in chaser velocity over the time interval between runs from the magnitude of

VG. This is done until the magnitude of VG is below 0.02 m/s. A plot of 'G versus time

through the 3rd stage jettison and 4th stage correction burn is shown in Figure 5-6.

VG

3 Freez
3 4th -cu:t-off

0

-1 --

-2.. . .
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Time - seconds

Figure 5-6: Execution of 3 rd Stage Cut-off and 4 th Stage Correction
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Meanwhile, the cut-off controller is sending signals to the stage controller in the Vehicle

Staging Model. The cut-off controller signals to jettison the 3 rd stage and ignite the 4 th

stage and again signals to cut-off the 4 th stage. After the 4 th stage correction burn and

the subsequent coast phase, the initiation of the 4 th stage manoeuver at time T 4 th is also

signaled by the cut-off controller by using the value of Tb from the ALGA.

5.1.5 Steering Model

For the first-order evaluation being carried out in this simulation, the physical character-

istics and limitations of the thrust vector control mechanisms for each of the four rocket

engines is not being modeled. Therefore, instead of having separate steering and flight

control subsystems, they are both combined into one model. Hence, the output of the

steering model is simply a unit vector defining the thrust direction, B. The simulation

assumes that the actual thrust changes instantaneously to match the direction output by

the steering model. Figure 5-7 shows the steering model layout.

Range Clearance

OR

Gravity Turn

RR
Steering Controller Merge

VG
Boost Stages

B 4 th

4th Stage

Figure 5-7: Steering Model Diagram
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The Steering Model is comprised of the steering controller and four subsystems that

dictate which value is used for the steering direction, B. The steering controller outputs

an execution signal to the particular subsystem based on the current time of flight and

also includes the necessary input value: rR, VR, VG, or B 4 th. The value for B is determined

by the logic contained in the particular subsystem signaled by the steering controller.

Range Clearance & Gravity Turn

Even though the specific range safety requirements imposed at any Earth-based launch

site are not modeled in this simulation, the steering controller implements an initial phase

that mimics a possible range safety trajectory.

Whether the chaser is launched from either a land- or sea-based platform, the rocket is

configured to launch vertically. From ignition, the steering controller positions the thrust

vector perpendicular to the launch platform making B align with r. Therefore, B is

defined by a unit vector in the direction of rR.

After 10 seconds, the chaser performs a gravity turn. A gravity turn is performed by

aligning the thrust vector with the velocity vector of the rocket; hence, B is defined by

the unit vector in the direction of '3. The gravity turn is performed for an additional 10

seconds after the vertical portion. The mock range clearance manoeuver profile is shown

in Figure 5-8.

Gravity Turn

Vertical

Earth
*Not to Scale

Figure 5-8: Mock Range Clearance Manoeuver
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Boost Steering

After the 20 second clearance manoeuver, the chaser begins to steer as guided by the

output of the guidance system. Recalling from Sections 2.2 and 5.1.4, the Guidance Model

outputs the velocity-to-be-gained, iG, which is the instantaneous change in velocity needed

to get the chaser on the correct transfer trajectory. In practice, however, the spacecraft's

velocity cannot instantaneously change by VG to match the correlated velocity; therefore,

the spacecraft will have to thrust to change it's velocity.

The Steering Model is required to change the thrust direction in a way that will

reduce G over time without specific knowledge of the thrust produced by the rocket

engines due to the potential variabilities. To this end, the Steering Model controls the

rocket during boost by producing a steering command that will align the thrust vector

with VG, subsequently reducing it. Figure 5-9 shows the results of aligning the thrust

vector with VG for a particular trajectory.
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Figure 5-9: Matching 'L by Reduction of 'G Over Time

In this example, the velocity for this spacecraft starts at zero and increases due to the

engines thrusting. Even though the value of VL changes over time, the thrust provides
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more than enough acceleration to steadily decrease the difference between the Lambert

solution and the spacecraft velocity over successive time steps.

Once VG is below a predetermined threshold, the thrust is terminated and the,space-

craft coasts on the orbit found by the augmented Lambert Guidance Algorithm until it

is time to perform the 4 th stage burn.

4 th Stage Manoeuver

Subsequent to the boost and the coast periods, the chaser begins the 4 th stage manoeuver

to match the position and velocity of target spacecraft. During this manoeuver, the

steering controller aims the thrust vector in the direction dictated by the ALGA, B 4th.

The steering vector remains constant throughout the entire 4 th stage manoeuver until the

rendezvous time is reached and the 4 th stage manoeuver is complete.

Coast

Target's Orbit

B4th

Earth

4th Stage Burn
*Not to Scale

Figure 5-10: 4 th Stage Manoeuver

5.2 Simulation

After the development of the equations and logic contained in the four functional models,

the next step is to integrate all of the components together into a cohesive unit known

as the simulation. The software used to implement the logic and equations defined by
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the four functional models is the same software used to execute the interactions between

those models over time. This software made by MathWorks, Inc. is called Simulink and it

works with another MathWorks program, MATLAB to implement the logic and produce

useable results. These two programs work in concert to pass information back and forth

performing the calculations outlined in the models over time while saving information

necessary to evaluate the ALGA. The technical specifications of these two programs are:

Simulink: Version 6.1 (Release 14) with Service Pack 1

MATLAB: Version 7.0.1.24704 (Release 14) with Service Pack 1

These programs were executed on a computer using the LINUX operating system.

Using this combination of hardware and software, a first-order, 3-DOF simulation was

created. This simulation consists of a four-stage launch vehicle that, using the ALGA

developed in Chapter 4, rendezvous's with a spacecraft orbiting the Earth. Included in

this section is a brief discussion of how the models were implemented using a combination

of Simulink blocks and functions written in C-code. In addition, the method of interaction

between Simulink and MATLAB is presented. After the implementation, the simulation

was put through several tests to validate the accuracy of the entire simulation by looking

at the models and the simulation as a whole. After the validation, the portions of the

simulation that significantly contribute to the terminal state deviation of the chaser from

the nominal trajectory are identified and discussed.

5.2.1 Implementation

The first step in creating the simulation used to evaluate the ALGA is to take the equations

and logic contained in the model descriptions and translate them into a form that Simulink

can understand. Once this is done, MATLAB is used to interface with Simulink by

supplying the inputs and collecting the outputs.
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Model Translation

The earlier model discussion simply outlined the equations or logic used to manipulate

the given inputs and produce the given outputs. It is in Simulink where these equations

and logic are executed by using a combination of pre-defined blocks, which are built into

Simulink, and defining new blocks that use functions written in C-code in a form Simulink

can understand.

Figure 5-11 shows the 3-DOF Dynamics Model as a representation of how the models

are implemented in Simulink. The inputs and outputs are represented by ovals as shown

in the diagram. The 'Multiplication & Division' block computes the value of aT as given

in Equation 5.2. This value is then given to the GSLV Dynamics Subsystem. Subsystem

blocks are used to simplify the diagrams in Simulink. In this model, there are two subsys-

tems, one to calculate the position and velocity of the chaser and the other to calculate

the position and velocity of the target spacecraft.

Tells MATLAB
To Save Data

Multiplication

- Division
x

Inputs Thrust Vel Rocket V

Thrust Dir 1 toS.Ip Pos Roe OuptL~l ~ I) Outputs
(I)- GSLV Dynamics Rocket P

S/C Pos g/S/CP
S/C Vel

S/C Dynamics S/C V

Sub-System
Blocks

Figure 5-11: Simulink: 3-DOF Dynamics Model
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The 'GSLV Dynamics' subsystem is shown in Figure 5-12. The 'Spacecraft Dynam-

ics' subsystem is similar to the 'GSLV Dynamics' Subsystem and is not shown. It is in

these subsystem blocks where the double integration is carried out. First the 'Addition

& Subtraction' block computes daR from Equation 5.5, then the integration is completed

using Simulink's 'Integration' blocks as shown in the diagram. The 'Earth Model' sub-

system contains the blocks necessary to calculate jR from Equation 5.3. Once all of the

calculations in the 'GSLV Dynamics' subsystem are completed, the position and velocity

of the chaser are output back to the 3-DOF Dynamics Model, which is then passed to the

Guidance Model. The 'Spacecraft Dynamics' subsystem similarly finds da and jR and

does the integration to find the position and velocity of the target spacecraft.

Addition Integration
Blocks

Subtraction

Sp. Imp acc to vel e

vel to pos

Earth Model

9 Pos 42:
Pos

Figure 5-12: Simulink: GSLV Dynamics Subsystem

The remaining models are implemented in a similar fashion. Most of the components

of the models were implemented using native Simulink blocks; however, the LGA, stage

controller, and cut-off controller were written in C-code and new Simulink blocks were

created to integrate these three functions into the simulation. After the individual models

were created in Simulink, they were connected together to complete the simulation.
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As stated before, data is passed back and forth between MATLAB and Simulink using

a combination of MATLAB scripts and specific blocks in Simulink. In this simulation,

the initial conditions, as described in Section 3.2.1, were given to the simulation via a

MATLAB script and variables on the MATLAB workspace. A MATLAB script generated

the initial conditions for the many test cases used to evaluate the ALGA, which were then

delivered to the MATLAB workspace. Simulink can then grab this data, i.e. the target

position, from the workspace by using a 'From Workspace' block. The target position is

then used as dictated by the models. Similarly, Simulink has several ways to extract data

from the simulation and give it back to MATLAB. There are two blocks that convert the

data from Simulink into a form that MATLAB can use. Once the data is converted it can

be loaded back into the MATLAB workspace and other MATLAB scripts can be used to

create plots to view the data.

An example of one method to exchange information is shown in Figure 5-11. The

'Thrust.mat' and 'Mass.mat' Simulink blocks convert the thrust and mass data into MAT-

LAB data files and saves them to the current directory under the names 'Thrust.mat' and

'Mass.mat', respectively. The other method of converting data is to use a 'To Workspace'

block, which is not pictured. This block saves the data directly to the MATLAB workspace

with the variable name given in the block.

Subsequent to implementing the models into Simulink, creating MATLAB scripts to

pass necessary information to Simulink, and providing a means to get data out of Simulink,

the task of validating the simulation can begin.

5.2.2 Validation

The validation of the models used in the simulation is carried out to confirm that the

implementation of the model into Simulink accurately represents the equations derived

in the model descriptions as given in Section 5.1. The execution of the model validation

is the most crucial step in assuring that the evaluation of the ALGA is valuable and
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accurate.

There are many possible validation methods, i.e., comparing results to flight data,

comparing results to cases which can also be solved analytically, etc. The method used to

validate this simulation is to run several trajectories using a Lambert Guidance Algorithm,

which has already been verified to produce sufficiently accurate outputs. Then, the LGA

is replaced by the ALGA and more trajectories are simulated to validate the parts of the

model associated with the ALGA. Several simulations are run and the data is then plotted

by MATLAB so that it may be analyzed. The model is considered validated if the logic in

the model description is adhered to or the data plotted by running multiple simulations

can be checked against known values or values that can be calculated analytically.

Running intercept trajectories using an LGA will test the Vehicle Staging Model, the

3-DOF Dynamics model, the cut-off controller in the Guidance Model, and the Steering

Model except the 4 th stage subsystem; essentially, all of the simulation parts are tested

besides those dealing with the 4 th stage manoeuver and the ALGA.

The next step is then to validate the parts of the model associated with the 4th stage

manoeuver and the ALGA including the execution of the 4 th stage burn at the appropriate

time, T4th, and in the correct direction, B 4th. This involves replacing the LGA with the

ALGA and again running several trajectories to validate the rest of the simulation. The

steps to validate each model are briefly discussed here.

A sample intercept trajectory is shown in Figure 5-13 as a representative of the several

trajectories used to validate the Vehicle Staging Model, 3-DOF Dynamics model, the cut-

off controller in the Guidance Model, and the Steering Model as discussed previously.

For completeness, the initial and target conditions are also listed here.

FrT = [2097576 -2717648 5375425] m
FR(0) = [-2668983 -4510008 3635517] m
VR(0) = [0 0 0] m/sec

T = 1623 sec
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Figure 5-13: Intercept Trajectory

Vehicle Staging Model

The quantities T and MR are the two outputs from the Vehicle Staging Model. From the

vehicle specifications outlined in Section 3.3.1, the values of T and MR can be analytically

determined over time and compared against the output of the model.

Because the quantities can be analytically computed, a plot of T and MR versus time

is a simple and accurate method of validating this model. Furthermore, as can be seen

from the plots in Figure 5-14, the stage controller executed its logic successively, i.e., the

previous stage mass is jettisoned before the next engine ignites, etc.

3-DOF Dynamics Model

The motion of a non-thrusting vehicle over time when acted upon only by gravity is

well known, when using the two-body approximation, and can be analytically calculated.

Using this information and recognizing that the LGA used has already been verified to

78

oint

L nc
omn

- - - - mm .ON!, 0 . I 4e__ - __' - - -- - ,I=

- -

-A/-
-. ...-.

--..-.-.-.

-.. . .. -. .



Mass Profile

0

0 200 400 600 800 1000 1200 1400 1600
Time - seconds

x 105  Thrust Profile

Stage 1

10 - --........... -...... . .....

z Stage 2

5 -

Stage 3

0
0 200 400 600 800 1000 1200 1400 1600

Time - seconds

Figure 5-14: Mass and Thrust Profiles for Intercept Sample

produce accurate results, enough information is known to begin to validate the 3-DOF

Dynamics Model for both the coast and boost phases.

Per the discussion in Chapter 2, given the chaser's current position and velocity,

the LGA outputs the correlated velocity needed to have the chaser be on an intercept

trajectory with the target. Hence, the model was validated by taking the position and

velocity of the chaser as calculated by the 3-DOF Dynamics Model and feeding it into

the LGA. The LGA then produces a correlated velocity which is used in conjunction with

the position and the remaining T to predict the final position and velocity of the chaser

using Lagrange Coefficients. The 3-DOF Dynamics model is considered validated if the

predicted final position is the same as the target position.

The result of executing this procedure over the entire T and for several different

trajectories showed that the position and velocity were calculated by the 3-DOF Dynamics

Model accurately to the third decimal place. This small difference in the position and

79

X 104



velocity of the chaser compared with the nominal values does not significantly contribute

to the terminal state deviation, which will be discussed in more detail in Section 5.2.3.

Cut-off Controller & Boost Steering

The job of the cut-off controller in conjunction with the boost steering is to control the

thrust direction of the chaser during boost to reduce the difference between the correlated

velocity and the chaser's velocity over the course of the boost phase. This is done by

using the logic as described in Sections 5.1.4 and 5.1.5.

Considering the values of 'L and YG produced by the LGA are accurate, and after

validating the 3-DOF Dynamics model, simple plots can be used to validate the execution

of the cut-off controller and boost steering. A comparison of VL and 6' versus time is

shown in Figure 5-15, while the reduction in VG over time is shown in Figure 5-16.

These figures show that the velocity of the chaser reaches the correlated velocity

given by the LGA and, accordingly, 'G is reduced. Then, the boost phase is terminated,

resulting in the velocity of the chaser closely following 'L for the rest of the coast phase.

A closer inspection of the cut-off time for the several trajectories show that, indeed,

the cut-off controller and boost steering execute as expected to reduce VG below the cut-off

value of 0.02 m/sec.

A plot of the components of the steering vector, B, during the boost phase also verify

that the boost steering is executing as expected. For the first 20 seconds, the boost vector

steers vertically and performs a gravity turn. For the rest of the boost phase, the boost

vector aligns itself with the velocity-to-be-gained vector, where VGX, VGy, and VGz, denote

the components of the unit vector of 'G as shown in Figure 5-17.

Now the parts of the simulation not dealing with the 4th stage manoeuver have been

sufficiently tested and deemed adequately accurate. The task is now to test the parts of

the simulation associated with the 4th Stage Manoeuver.
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Figure 5-15: VL vs. VR for Intercept Sample
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Figure 5-16: G for Intercept Sample

81

0
0
CD)U)

a)

0
0D

..- VLx

VLy
-- -VLz

VRx

VRy

-Rz

VGx
VGy

VGz

'D
C
0

0

a)



0

a,

1 -

0.8

0.6

0.4

0.2

0

-0.2'-

-0.4

-0.6

-0.8

-10

Thrust Direction During Boost

50 100 150 200 250
Time - seconds

Figure 5-17: B for Intercept Sample Trajectory

Stage Controller & 4 th Stage Steering

It is the job of the ALGA to compute both the 4 th stage ignition time, T4th, and steering

vector for the 4 th stage manoeuver, $ 4 th. Therefore, the validation of the 4 th stage com-

ponents of the Steering Model and the stage controller can only be accomplished after

the LGA is replaced by the ALGA in the simulation.

A plot of the steering vector, B, versus time shows whether or not the 4 th stage

manoeuver was executed and if it was executed at the correct time and proper direction

as dictated by the values given by the ALGA. Figure 5-18 shows B over the entire mission

time for one particular rendezvous trajectory.

By comparing the plot in Figure 5-18 with the thrust profile (not shown) it can be

confirmed that the simulation executed the 4th stage manoeuver after a time of coasting.

In addition, B 4th remained constant during the entire 4th stage burn. Checking the plotted

values against those given by the ALGA verifies that the values of T4th and B 4 th are
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Figure 5-18: Change in B for 4th Stage Burn

executed according to the values output from the ALGA. Consequently, the interactions

between the 4th stage components of the Steering Model and the stage controller work as

expected.

5.2.3 Sources of Terminal State Deviation

The terminal state deviation is the difference between the positions and velocities of the

chaser and the target spacecraft at the rendezvous time, T, and is quantified by the terms

Rerr and Verr. While some of the terminal state deviation is due to the inaccuracy of

the logic in the ALGA, any contribution from other sources must be identified to better

understand the results as they relate to the computations in the ALGA.

For any algorithm or simulation, there is assured to be some amount of calculation

inaccuracy in the output. In fact, the LGA used in this thesis has its own inherent

inadequacies when calculating the values of 'G and 'L, although they are small and
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contribute to the terminal state deviation in the third decimal place as stated in Section

5.2.2.

During the course of the model validation, potential sources that significantly con-

tribute to the terminal state deviation were identified and are listed here and discussed

in more detail below.

1. The inability to cut-off the boost thrust at the exact value of VL as dictated by the

ALGA.

2. The inability to initiate the 4 th stage burn at the exact ignition time, T4th.

3. The discrepancy in the 4 th stage mass due to the correction burn near cut-off.

Cut-Off Sources

The value of 'G at cut-off is a measure of how accurately the path of the chaser follows

the transfer trajectory dictated by the ALGA. Hence, the smaller the value of G, the

more accurately the chaser will follow the correct transfer trajectory. Having any amount

of inaccuracy in the velocity at cut-off results in the chaser coasting on a different trans-

fer trajectory where the position and velocity of the chaser constantly diverge from the

nominal values over time. During the course of the coast phase, the difference in posi-

tion of the chaser compared to the nominal trajectory may grow to be on the order of

hundreds of meters while the difference in velocity reaches values on the order of tens of

meters per second, depending on the cut-off value of VG. Therefore reducing 'G to a small

value before the termination of the boost phase is very important to the success of the

trajectory. This is the reasoning behind the logic of the cut-off controller as described in

Section 5.1.4.

Using the several trajectories used to validate these models, it was found that an

acceptable cut-off value for 'G is below 0.02 m/sec, as stated in Section 5.1.4. By reducing

VG to below this value, it was found that the resulting terminal state deviation for the
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range of coast times used in this thesis are on the order of 10 m and less than 0.1 m/sec,

respectively.

4 th Stage Ignition Timing

Along with the velocity-to-be-gained, the ALGA outputs the burn time, and thrust di-

rection vector of the 4 th stage manoeuver. This burn time, Tb, is used by the cut-off

controller to calculate the ignition time of the 4 th stage engine, which is passed to the

stage controller by way of the cut-off signals and is used to tell the engine when to start

burning fuel.

As stated in Section 5.1.4, the maximum rate at which the simulation is called is 1000

Hz. Therefore, the minimum lapse in time between when the cut-off signals are updated

and when these updated signals are read by the stage controller is 0.001 seconds. Assuming

that the burn time is calculated to more than three decimal places of accuracy, there is

an associated velocity discrepancy of at most 0.0009 m/sec by the time the 4 th stage burn

is executed. This may seem like a trivial amount of time, but with speeds ranging from 3

to 7 km/sec, this discrepancy translates in to a deviation of approximately 3 to 7 meters

for terminal position alone.

4 th Stage Mass Difference

During the first three boost phases, the Vehicle Staging Model does not know how much

fuel is going to be expended for the short 4th stage correction burn as described in Section

5.1.4. Therefore, the 4 th stage mass (M 4 th) given by the Vehicle Staging Model does

not account for the reduced mass due to the fuel burn. The calculation of Tb and B 4th

in the ALGA along with the state propagation by the Runge-Kutta integrator depend

on M 4 th, which is given as 1100 kg until a more accurate value is calculated. A more

accurate calculation of M 4th isn't achieved until the end of the boost phase when the

4 th stage correction burn is executed. Consequently, the values of Tb and B 4th have a
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computational inaccuracy proportional to the mass of the fuel expelled during the 4 th

stage correction burn, which is approximately 1 to 2 kg. This mass difference is small

compared to the total mass of the 4 th stage, but this difference in mass still effects the

terminal state deviation of the chaser.
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Chapter 6

ALGA Performance Analysis

After the development of the Augmented Lambert Guidance Algorithm, as described

in Chapter 4, the task of creating a computer simulation to evaluate the robustness,

versatility, and overall ability of the ALGA was undertaken. Chapter 5 illustrated the

models created to mimic the physical characteristics of the chaser, target spacecraft, and

the environment in which they both operate. These models were then implemented over

time through the use of simulation software. Once the models and the simulation were

completed, the evaluation of the ALGA was able to commence.

The evaluation consists of quantifying how well the ALGA completes the task of

getting the chaser to rendezvous with a target spacecraft in orbit around the Earth. To

this end, a multitude of test cases were created to survey the expected operational region

of the rendezvous missions. But first, the boundaries of this region must be defined. The

boundaries are characterized by several parameters, including the range of mission times,

the likely target orbits, and the possible approach paths that the chaser may take to get

to the target spacecraft. Once the range of parameters have been found, the test cases

are created.

After each of these test cases is run, the positions and velocities of both the chaser

and target spacecraft are found at the rendezvous time to calculate Rer, and Verr. The
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performance of the ALGA is then measured with respect to the success criteria outlined in

Chapter 3. The results of running these various test cases are then plotted and discussed.

6.1 Operational Region

The definition of the operational region is primarily based on the discussion of the possible

types of missions that would use the ALGA, as described in Section 1.1. Conforming to

these mission descriptions, the mission timing and the characterization of the target orbits

are the two major contributors to the boundaries of the operational region.

Because the 4th stage engine has a finite amount of fuel, it is the most influential factor

in determining whether the chaser can rendezvous with the target spacecraft. No matter

how accurate the ALGA computes the values of B 4 th, Tb, and dmod, if the chaser does

not have enough fuel to burn for the entire predicted burn time, the chaser will never

rendezvous with the target spacecraft.

Because the success of the rendezvous mission relies heavily on the amount of AVY, any

factor that may increase the required amount of AV' must be examined. Therefore, the

two possible approach paths that the chaser is able to take to reach the target will also

be discussed in this section.

6.1.1 Mission Timing

Recall from Section 1.1 that the expected missions employing this algorithm have the

desire to reach the target expeditiously; therefore, the segment of the mission time from

launch to rendezvous, 7, is chosen to be less than an hour.

Furthermore, the LGA used in this thesis has an inherent limitation that restricts the

value of 7. The LGA yields inaccurate results when the coast phase time, TCP, of the

transfer trajectory is less than 200 seconds. With this constraint and considering that the

possible maximum time for the boost phase, TBPmax, is 244 seconds, the lower bound for
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7 is calculated from Equation 6.1.

T min T BPmax + T CPmin

To assure that there are no calculation errors due to a coast phase time being

to the minimum, the lower bound of T is chosen to be greater than 444 seconds.

sequently, the evaluation of the ALGA is limited to values of T between 700 and

seconds.

(6.1)

close

Con-

3600

6.1.2 Target Orbits

Section 3.3.2 stated that the target orbits for the missions that use the ALGA are required

to be either circular or elliptical and to have a semimajor axis between 6478 and 6878

kilometers. The resulting set of target orbits are either circular or very near circular as

shown in Figure 6-1.
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Figure 6-1: Target Trajectories That Meet Requirements

This graph was created by plotting the semimajor axis versus eccentricity of orbits

who didn't intersect the surface of the Earth and had an altitude of perigee (the height
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above the Earth at closest approach) greater than 100km. To reduce the number of test

cases, and the ensuing number of results plots, only circular orbits were used during the

evaluation of the ALGA.

Now that the target orbits have been limited to circular trajectories, the next step is

to investigate the possibility of another orbital element effecting the ability of the chaser

to rendezvous with the target spacecraft. There is a property of the target orbit that

has a significant effect on the amount of fuel required by the chaser to rendezvous with

the target spacecraft. This property is the difference in inclination of the target orbit

with respect to the inclination of the chaser's transfer trajectory. As the difference in

inclination between the two spacecraft grows, the required amount of AVi grows as well.

The primary evaluation will focus on the test cases where the chaser is launched in

such a way that it does not have to make a plane change to rendezvous with the target.

By eliminating the plane change, the evaluation of the ALGA will show the maximum

range of successful test cases. Section 6.2.2 illustrates the difference between test cases

that differ by just the inclination change.

6.1.3 Approach Paths

To achieve the rendezvous point from the launch position, there are two possible approach

paths: Overtaking and Head-On. The importance in differentiating the two approach

paths is derived from the amount of AV' that the 4th stage engine must provide to the

chaser. The velocity characteristics of the two approach paths are briefly discussed here.

Overtaking Trajectory

The Overtaking trajectory is shown in Figure 6-2. For the Overtaking trajectory, the

chaser and target spacecraft are traveling in the same direction before the 4th stage ma-

noeuver.

In this case, the target spacecraft has a higher speed than the chaser before the 4 th
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stage. Therefore, the chore of the chaser's 4th stage engine is to provide enough thrust to

increase its speed. Figure 6-3 shows the x, y, and z components of both the velocity and

position for the target spacecraft versus the chaser.

The top graph compares the velocity of the two spacecraft. For this particular set of

initial conditions, the chaser ignites its 4 th stage engine at approximately 2800 seconds.

At this time the chaser's approximate speed is roughly 7.67 km/sec while the target's

is 7.84 km/sec. Additionally, the relative speed between the two spacecraft, since they

are traveling in nearly the same direction, is estimated by simply finding the magnitude

difference between the chaser and target spacecraft. Beginning with a relative velocity

difference of 0.17 km/sec, the chaser executes the 4 th stage burn and both the chaser and

target are traveling at the 7.84 km/sec.

Head-On Trajectory

Figure 6-4 shows the Head-On trajectory. In this situation, the chaser and target space-

craft are traveling in opposite directions toward the same rendezvous point.

Again, the target spacecraft has a higher speed than the chaser before the 4 th stage

manoeuver and needs the thrust from the 4 th stage burn to match the velocity of the

target. However, because the two spacecraft are traveling in opposite directions, the

relative velocity difference between the two cannot be computed by simply finding the

magnitude difference between the two quantities.

The velocity and position comparisons for a Head-On trajectory is shown in Figure 6-

5. The particular Head-On trajectory shown in these graphs requires that the chaser's 4 th

stage engine ignites at roughly 1100 seconds, when the chaser's speed is approximately 2.19

km/sec. Meanwhile, the target spacecraft is traveling in roughly the opposite direction at

7.61 km/sec. Because of the approach path, the relative speed between the two craft is

estimated by adding their two respective speeds. Therefore, the relative velocity difference

is roughly 9.8 km/sec.

92



Chaser Head-On to Target

-0.5 0
X - Earth Radii

0.5 1

Figure 6-4: Head-On Trajectory

Velocity Comparison

vs/cy
- - -- s/cz

VRx
VRy

'_VRz

0 200 400 600 800 1000 1200 1400
Time - seconds

Position Comparison

- - -Ts/cz

- s/cz

Rx
rRy

-rRz

0 200 400 600 800 1000 1200 1400
Time - seconds
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It can be seen that for this particular set of initial conditions, the 4th stage engine

simply doesn't have enough fuel and thrust capability to match the position and velocity

of the target spacecraft. Recall that the 4th stage engine was designed to provide a

maximum velocity change of 5000 m/sec and that the orbital speed of a spacecraft in

a 100 or 500 km orbit is 7844 or 7612 m/sec, respectively; therefore, for any head-on

trajectory, the chaser's 4th stage engine would have to provide well over 5000 m/sec

of velocity change to rendezvous with the orbiting target spacecraft. So, for the 4 th

stage engine and operational regions defined previously, none of the head-on approach

trajectories will result in a successful rendezvous. To verify this, the head-on trajectories

will still be run through the simulation.

Consequently, the evaluation will be performed for both the Overtaking approach

and the Head-On approach over the entire operational region. By looking at trajectories

following both approach paths, the evaluation will better quantify the ability of this

specific 4 th stage engine while using the ALGA.

6.1.4 Distances

Previously, Section 2.1.1 discussed the possibility of two solution trajectories between the

launch point and rendezvous point. Because the direction of travel was chosen to only

traverse the "short" route, the transfer angle, 0, does not exceed 1800. Therefore, the

linear distance (d) measured from the launch point to the rendezvous point, for any given

set of initial conditions, should not exceed a value of twice the radius of the Earth plus

the altitude of the target spacecraft (2re + hs/c). However, when the value of 6 gets in the

vicinity of 1800, the LGA may not be able to distinguish which direction is the "short"

way. Therefore, the actual value of d may be slightly greater than 2re.

d =1T - _'11 < (2r(D + 1%) (6.2)
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6.1.5 Summary of Boundaries and Approach Paths

The boundaries of the Operational region consist of mission times ranging from 700 to

3600 seconds, with linear distances ranging from 0 to roughly 2re. The target orbits

will be circular ranging in altitude from 100 to 500 km while the difference in inclination

between the transfer trajectory and target orbit varies anywhere between 0' and 90'. The

chaser spacecraft is also able to take either the overtaking or head-on approach path to

the target.

6.2 Evaluation Results

Now that the boundaries of the operational region have been defined, and the differences

between the two types of approach paths have been explored, the evaluation of the ALGA

over this entire operational range can now be carried out. The evaluation will first focus

on the cases where the chaser is launched in the same plane as the target spacecraft to

get a baseline performance envelope. Then, two successful test cases will be singled out

and examined more thoroughly: one with a plane change of 0' and the other with a plane

change of 15'

6.2.1 Baseline Performance Envelope

Considering the boundaries of the operational region as summarized in Section 6.1.5, the

evaluation begins with creating test cases that cover the entire mission time span and

possible linear distances, but are limited to the lower altitude threshold of 100 km for the

circular orbits and no plane change necessary. Then, similar test cases were created for

the upper altitude bound of 500 km.

For each test case the linear distance from the initial launch point, fR(O), to the target

point, 'T, was plotted versus the time of flight, T. Then, a marker was assigned to classify

the results. There are three categories to describe the possible finding for each test case:
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1. The values for Rerr and Ver, meet the success criteria (*).

2. The chaser runs out of fuel and success criteria are not met. (+).

3. The chaser impacts the surface of the Earth (0).

Figures 6-6 and 6-7 show the results for the 100 km head-on and overtaking approach

paths, respectively. Figures 6-8 and 6-9 show the results for the upper altitude threshold.

Head-On Approach Trajectories

By comparing the results plotted in Figures 6-7 and 6-9 to those in Figures 6-6 and 6-

8, it is apparent that the 4th stage engine is simply not capable of rendezvousing with

the target when taking a head-on approach as expected. The two plots for the head-on

approach path clearly show two zones, one marked by (0) and the other by (+). For

the semi-circular zone marked by (+), the 4 th stage engine, as outlined in Section 3.3.1,

cannot produce a sufficient amount of thrust to provide the necessary velocity change to

rendezvous with the target. Yet, the data suggests that these types of head-on trajectories

are possible if given a different 4th stage engine capable of producing either a higher level

of thrust or a longer burn time.

The other zone, marked by (o), indicates the test cases where the chaser impacted

the Earth. For the head-on approach path, the chaser may impact the ground for one of

two reasons. First, the combination of a long distance and short time of flight produces

a transfer trajectory whose semimajor axis is less than the radius of the Earth resulting

in an impact as the spacecraft follows this trajectory. The next explanation for why the

chaser crashes into the Earth results from the 4 th stage engine, again, not having enough

fuel. As stated before, the head-on approach requires the chaser to essentially make a

U-turn. During this reversal manoeuver, the 4th stage engine runs out of fuel changing

the chaser's trajectory enough to run into the Earth. Regardless of the reason, all of the
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TOF vs Distance - 500 km Height - Overtake
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head-on trajectories that impacted the Earth, produced a value of Tb greater than the

maximum burn time of the 4th stage engine, b just like the trajectories that didn't

crash. This confirms the expectation stated in Section 6.1.3.

Overtaking Approach Trajectories

Focusing on Figures 6-6 and 6-8, the first and most important observation about these

plots is that the ALGA is indeed able to compute values for irmod, B 4 th, and Tb that,

when executed, result in the chaser meeting the success criteria. Accordingly, there are

three visible zones. Like the head-on approach paths, the overtaking approach for both

the 100 km and 500 km circular target orbits have the two zones marked by (o) and

(+) with an additional (*) zone. This third zone conveys that the 4 th stage engine has

more than enough fuel to burn for the entire burn time, Tb. Fortuitously, this zone also

indicates that the values for Rer, and Ver also meet the success criteria.

Zone Predictability

The occurrence of these three distinct zones raises the question: given some initial condi-

tions, is it possible to predict the outcome without running the entire simulation?

For the overtaking trajectory, the difference between rendezvousing with a craft de-

pends, almost solely, on how much At'7 the 4 th stage engine can provide to the chaser

by means of burning fuel. As stated before, the 4 th stage engine used in this thesis has

the ability to provide a limited amount of AV' totalling 5000 m/s. Therefore, one major

part of answering the predictability question is dependant on whether the amount of AV

needed to rendezvous with the target can be predicted given a set of initial conditions.

Section 4.2 explains how the ALGA calculates a first guess for the needed AV' by using

the methods developed by Burns and Scherock. These equations are based on the given

initial conditions, are simple to calculate, and give an approximation of how much AV is

necessary for the 4 th stage engine to provide. Looking at several test cases, the difference
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between this initial approximation and the final AV' for the test cases that landed in the

(+) and (*) zones was approximately 100 to 400 m/s. For instance, one of the test cases

that landed in the (*) zone had an initial prediction from the Initialization block of 3264.8

m/sec of AV, which is much less than the maximum value of 5000 m/sec. By the end of

the boost phase, the calculated value of AV for this same trajectory was 3428.8 m/sec,

which is a difference of 164 m/sec. For the test cases that land in the (+) zone, the

Initialization block similarly predicts that the required AV' is substantially greater than

the limiting value of 5000 m/sec.

The conclusion is that the Initialization block can be a useful tool in predicting whether

or not the 4th stage engine is capable of providing the required amount of AV' for a given

set of initial conditions. However, there is a region of ambiguity when using this prediction

method, which is due to the 300 m/sec variation of AV' over the course of the boost phase.

Therefore, this prediction method cannot be relied on when the predicted value of AV' is

within 400 m/sec of the 5000 m/sec limit, which is the region near the boundary between

the (-+) and (*) zones.

On a side note, the boundary between the "Good" zone and the "Not Enough Fuel"

zone appears to be nearly a straight line. However, using the 'add trendline' feature in

Excel, it was found that the data fit a parabolic polynomial as stated in Equations 6.3

and 6.4 for the 100 km and 500km orbits, respectively.

dioo = -4 x 10- 08 T2 + 0.0006T - 0.037 (6.3)

d5oo = -3 x 10-08T 2 + 0.0006T - 0.0785 (6.4)

This Initialization block prediction technique only applies to those trajectories that

fall into either the (+) or (*) zones and does not account for the transfer trajectories

that impact the Earth (the (o) zone). A similar solution for predicting this zone is likely

possible, but has not yet been established.
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6.2.2 Sample Trajectories

After the creation of the baseline performance envelope, two specific test cases were se-

lected to take a comprehensive look at the trajectories produced by using the ALGA. This

section will focus on the values of rTmod, Tb, and B 4 th calculated by the ALGA over the

course of the boost phase. The differences in these values when a plane change is involved

will also be explored.

The two test cases were chosen based on their initial conditions. It was desired to have

two similar trajectories, which could be compared and contrasted more easily. Table 6.1

lists the initial conditions of the two sample trajectories for both the chaser and target

spacecraft. Both of the selected test cases have the same time of flight, are targeting a

spacecraft with the same position and velocity, and the linear distance between the launch

and rendezvous points are almost identical. The only difference between these two test

cases, is that one causes the chaser trajectory to make no plane change while in the other,

the chaser must make a plane change of 15'.

Table 6.1: Plane Change Comparison
0' Plane Change 15' Plane Change

Target
Position (m) [-6299284, 0,151171] [-6299284, 0, 151171]

Velocity (m/s) [-1830.47, 0, -7627.55] [-1830.47,0, -7627.55]
Chaser

Position (in) [3189068, 0, 5523629] [2761814,1594534, 5523628]
T (s) 2400 2400

d (m) 10301666 10037008

Trajectories and rTmod

Figure 6-10 shows the profile of the test case that does not have to make a plane change.

The vector rTmod describes the modified target position, which ends up being a point

beneath the surface of the Earth. Per the discussion in Chapter 4, fr'Tmod is expected to

have a value that would put it beneath the surface. It should be noted that this figure
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displays a bisected Earth to better view the aim point. This is the point that the ALGA

uses to calculate the correct transfer trajectory for the chaser to follow. Due to the chaser

not having to make a plane change, it is expected that the aim point lies in the same plane

as the both the transfer trajectory and target spacecraft trajectory. Through inspection

of the data, the aim point was found to be in the same orbital plane as the chaser and

target spacecraft.

0 Plane Change
1.2

0.8

0.6

_ 0.4

a 0.2 m

0 Rende vous
N Poi t

-0.2

-0.4

-0.8

-1 -0.5 0 0.5 1
X - Earth Radii

Figure 6-10: Profile of 0' Plane Change Trajectory

The 15' plane change trajectory is shown in Figure 6-11. The important thing to

recognize in this picture is that the transfer trajectory does indeed have a different orbital

inclination compared to the target spacecraft.

Figures 6-12 and 6-13 present two different views of the 150 plane change trajectory.

First is a zoomed-in profile view of the 15' plane change trajectory, which is similar to

that shown in Figure 6-10. The dotted line in the figure represents the path that the

chaser would follow if the 4 th stage engine did not ignite (and if the Earth was not there).

The aim point coincides with where the chaser would be at time, T. This confirms the
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Figure 6-11: View of 15' Plane Change Trajectory

derivation of the ALGA as dictated in Chapter 4.

The next interesting aspect of rTmod comes from looking at an edge-on view of the

trajectory. Figure 6-13 is a view that is perpendicular to the target spacecraft's trajectory.

The path of the chaser obviously changes as the chaser gets closer to the rendezvous point.

This change is due to the thrust produced by the 4th stage engine. However, the aim point

does not follow this motion. The aim point, again, is at the termination of the chaser's

projected path had the 4 th stage engines not ignited.

Table 6.2 shows the position of both the rendezvous point and aim point for the two

sample trajectories. The position difference between the aim points and the rendezvous

point is represented by ArT and is shown in the table. From the values of A 'T, the

position of the aim point is found to change more for the 15' case than for the 0' case.

Table 6.2: Comparison of rTmod

0 150
Rendezvous [-6299285 0 151171] [-6299285 0 151171]

Aim [-6050556 0 1523913] [-6001514 -151650 1547332]
ArT [248729 0 12202] [297770 -151650 35620]

ArT 249029 336056

103



Transfer Trajectory Target's Orbit

Earth

Rendezvous
Point

Aim
Point
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T & B 4th

Figures 6-14 to 6-15 both show a similar trend in the calculation of Tb, and B 4th: the

values start with the Initialization block value and exponentially reach their final value

over the course of the boost phase. The final values of Tb, and B 4 th are then used to

execute the 4 th stage manoeuver. Per the discussion of zone predictability in Section

6.2.1, the value of Av is expected to change over the course of the boost phase. This is

confirmed by Figure 6-14 showing approximately 315 m/sec and 265 m/sec decrease in

the predicted Av versus the ending Av for the 0' plane change and 15' plane change,

respectively. These figures also show that the amount of Av is substantially greater for

the 150 plane change trajectory than the 0' plane change trajectory, which was expected.

With the decreasing value of Av as time progresses, the value of the burn time de-

creases accordingly, due to the dependance of the burn time on the required amount of

Av. Hence, the burn time is greater for the 150 plane change trajectory than the 00 plane

change trajectory.

Accuracy

With the values of Frmod, Tb, and $ 4th calculated for these two trajectories, the next logical

step is to look at the accuracy as measured by the quantities Rerr and Ver, described in

Section 3.4. The values of Rer, and Ve,,r illustrate how well the ALGA was able to guide

the chaser during boost, calculate the proper ignition time, and determine thrust direction

of the 4 th stage manoeuver, which drives the chaser to match the position and velocity of

the target spacecraft.

Before looking at the exact values of Rer, and Verr, the position and velocity of both

the 00 plane change test case and 15' plane change test case are compared to the position

and velocity of the target spacecraft. Figures 6-16 and 6-17 show the comparisons for

each of the test cases. These figures confirm that the position of the chaser in both test

cases reaches the vicinity of the target spacecraft with comparable velocities.
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Focusing on the range of time of one second before and one second after the rendezvous

time, T, Figures 6-18 and 6-19 prove that these two test cases belong to the (*) zone,

meaning the values of Rerr and Verr meet the success criteria outlined in Section 3.4. By

examining these four graphs, it is apparent that Rerr and Ver, are much less for the 00

plane change trajectory than the 150 plane change trajectory. The 00 plane change case

has an approximate position error of 1 m and velocity error of less than .1 m/sec while

the 150 plane change case has an approximate position and velocity error of 38 m and less

than .5 m/s, respectively.

A summary of the findings for the two selected test cases is presented in Table 6.3.

Table 6.3: Plane Change Comparison
0' Plane Change 15' Plane Change

Target
Position (m) [-6299284,0, 151171] [-6299284, 0, 151171]

Velocity (m/s) [-1830.47, 0, -7627.55] [-1830.47, 0, -7627.55]
IC's

Position (m) [3189068, 0, 5523629] [2761814,1594534, 5523628]
T (s) 2400 2400

d (m) 10301666 10037008
Result

Tb (s) 203.065 229.753
B 4 th [-0.9986, 0, -0.0535] [-0.8830, 0.4559, -0.1113]

rTmod [-6061354, 0,3201670] [-6087747,236237,3164915]
Rerr (m) 2.801 37.919

Verr (m/s) 0.0773 0.132
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Chapter 7

Conclusions

The objective of the research conducted in this thesis was to generate an initial version of

an Augmented Lambert Guidance Algorithm (ALGA) that could be used in conjunction

with a preexisting Lambert Guidance Algorithm to guide a launch vehicle from the surface

of the Earth and rendezvous with a spacecraft in orbit. After the completion of this first

version, a simulation was created to evaluate the viability of the ALGA. The simulation

consisted of a 3 degree-of-freedom model implementing the two-body approximation for

the motion of the chaser and the target spacecraft. The simulation included models for the

thrust and mass characteristics of the chaser along with a simple mechanism for steering

so that the focus was mainly on the performance of the ALGA and not on other aspects

of the direct-ascent rendezvous missions.

7.1 Summary of Results

The simulation generated to mimic the physical characteristics of the chaser and target

spacecraft was used to evaluate how well the ALGA was able guide the chaser to ren-

dezvous with the target. The evaluation consisted of creating a multitude of test cases

that conformed to the defined operational region for the immediate-response direct-assent

missions.
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The data gathered from running these many test cases produced several plots that

described the ability of the ALGA to meet the defined success criteria. These plots

confirmed that the ALGA was, indeed, able to guide the chaser to rendezvous with the

target spacecraft. There were two main factors that contributed to the success or failure

of a particular test case: the relative direction of travel between the chaser and the target

spacecraft, and the amount of fuel carried by the chaser.

During the evaluation process, two types of approach paths were defined: overtaking

and head-on. For the overtaking approach the chaser and target spacecraft travel in the

same relative direction. Conversely, the head-on approach involves the chaser and target

spacecraft moving in opposite directions, headed towards one another. All of the head-

on trajectories required much more fuel than the maximum amount of fuel carried by

the chaser; consequently, there were no successful rendezvous test cases for the head-on

approach paths.

The data gathered for the overtaking approach paths showed three regions. One where

the chaser impacted the Earth, a region of successful test cases, and another unsuccessful

region. The difference between the successful region and the unsuccessful region was found

to be simply a difference in the amount of fuel required to rendezvous. As previously

stated, the chaser carries a limited amount of fuel. The successful test cases required an

amount of fuel that was less than this limit while the unsuccessful cases (not including

the ones that impacted the Earth) required more than the limit. A prediction method

was devised that can be used to predict the success of a particular test case based on how

much fuel is required compared to the available amount.

Overall, the simulations conducted for the various test cases proved that the methods

developed in this thesis created a feasible Augmented Lambert Guidance Algorithm for

use in the direct-ascent, quick-response missions.
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7.2 Future Work

Considering the ALGA created in this thesis is a first edition, much more work has to be

completed before the algorithm will ever be implemented in an actual launch vehicle. To

this end, several avenues of future work have been identified.

For the first-order evaluation of the ALGA completed in this thesis, a three degree-of-

freedom simulation is sufficiently adequate. However, much more detailed models will be

needed to test the ALGA further. A higher-fidelity six degree-of-freedom model would be

a logical next step in the evaluation process. This high-fidelity simulation would incorpo-

rate more components of the launch vehicle, including attitude control and possibly the

guidance logic to control the final terminal manoeuvres to dock with the target spacecraft.

In its current state, the ALGA uses much more processing power than would poten-

tially be available on an actual launch vehicle. Therefore, more research needs to be

conducted to make the ALGA more efficient. Another area to investigate is that of the

region of successful test cases. As it stands now, the successful region is limited by the

amount of fuel available to the payload of the chaser. It would be advantageous for the

payload to be able to tap into the excess fuel in the boost stages of the launch vehicle,

which could possibly increase the range of successful test cases.
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Appendix A

Other Conic Sections

A.1 Parabola

a =oo

e=1

V1

Figure A-1: Parabolic Transfer
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V72

Figure A-2: Hyperbolic Transfer

e = 1 (A.15)

F = 1- (1 - cosh 2V) (A.16)

G = T - (-a)3(sinh 20 - 24) (A.17)

= - sinh 24 (A.18)

S= 1- (1 - cosh 20) (A.19)
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Appendix B

Boost Sizing Spreadsheet

The values expressed in Table B.1 were taken from Reference [7].

Table B.1: US Space Launch Systems

Rocket Stage T Tbma_ Mtot Mstruct Mprop Isp
Newtons seconds kg kg kg seconds

ATHENA 2 1 1604000 83.4 531500 4450 48700 253
2 1604000 83.4 531500 4510 48700 253
3 187000 150 10715 1030 9780 293
4 890 1500 596 360 236 220

MINOTAUR 1 792000 60.8 23077 2248 20785 237
2 268000 65.54 7032 691 6237 287.5
3 154000 72.5 4332 416 3915 289
4 32000 69.6 897 126 771 290.1

START 1 980000 63 26000 3000 23000 263
2 490000 60 13000 1500 11500 280
3 245000 63 6000 1000 5000 280
4 100000 53 1000 300 700 295

Delta II 0 1497600 63.3 13080 1315 11765 274
1 1085800 261 101800 5680 96100 301.7
2 43657 431 6954 950 6004 319.2
3 66400 87.1 2217 208 2009 292.2
4 45800 66.4 1147 82 1065 291.8

TAURUS 1110 1 1615000 82.5 53100 4400 48.7 277.9
2 471000 72.4 13242 1088 12154 285
3 115000 75.1 3379 352 3027 290.2
4 32000 68.5 875 104 771 286.7
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