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Chapter 1

Introduction

Aerodynamic design optimization has seen significant development over the past

decade. Adjoint-based shape design for elliptic systems was first proposed by Piron-

neau [69] and applied to transonic flow by Jameson [49]. A review of the aerodynamic

shape optimization literature and a large list of references is given in [46]. Over the

years much technology has been developed, allowing engineers to contemplate apply-

ing optimization methods to a wide variety of problems. In the context of structured

grids, adjoint-based applications include multipoint, multi-objective airfoil design us-

ing compressible Navier-Stokes equations [64] and 3D multipoint design of aircraft

configurations using inviscid Euler equations [75, 76]. There have also been signif-

icant effort in applying adjoint methods to the unstructured grid setting. In this

context, Newman et al. [47, 45], Elliot and Peraire [21, 22] were among the first to

develop discrete adjoint approaches for the inviscid Euler equations. The work of El-

liot and Peraire was also extended to include laminar viscous effects [23]. For 2- and

3D turbulent flows respectively, Anderson and Bonhaus [4], Nielsen and Anderson

[66] have developed discrete adjoint implementations for the one-equation turbulence

model of Spalart-Allmaras. In [5], Anderson and Venkatakrishnan developed a con-

tinuous adjoint approach using unstructured grids. The reverse mode of automatic

differentiation has also been applied to both inviscid and Navier-Stokes equations

with a two-equation k - e turbulence model [60].

Despite these significant advances in the development of computational implemen-
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tations, there are still obstacles that stand in the way of automatic design methods

being widely accepted and applied in the engineering community. In particular, an

outstanding issue is the question of reliability of the discrete computational mod-

els and its impact on the resulting designs. Lack of trust in the computed results

may lead to decreased acceptance and utility of automatic design tools in the engi-

neering community, or in an attempt to minimize uncertainty in the computational

results, the designer may use unnecessarily refined large-scale models for which the

computational costs quickly become prohibitive.

Currently, the predominant approach towards the optimization of continuous sys-

tems is to apply a general nonlinear programming algorithm to discrete models that

are at a precision that is fixed prior to optimization. Thus, the chosen algorithm at-

tempts to attain the best possible performance for the discrete model but is not aware

of the underlying continuous system of interest. An alternative approach described

in this thesis is to adaptively control the precision of the discrete model during the

optimization. In particular, we propose a method which can ensure that: (1) at each

step of the optimization, the objective function for the underlying continuous system

is improved; (2) stationary points of the continuous system can be approached to

arbitrary accuracy given enough iterations of the optimization algorithm.

1.1 Objective

The objective of this work is, firstly to develop a framework to increase designer

confidence in simulation-based design and, secondly to demonstrate the feasibility of

the framework in the context of aerodynamic design.

1.2 Review of related prior work

A major source of model uncertainty arises from the use of coarse discretizations

and incomplete solution iteration. To ensure the reliability of the design changes

obtained by optimization algorithms based on these approximations, it is necessary

18



to accurately estimate the error contributions and effect a mechanism for control.

The use of model precision adjustments (or variable fidelity) in optimization has been

previously proposed. However, in contrast to our objective these prior efforts were

largely driven by the desire to decrease the significant computational effort required

to perform optimization, typically for a given high-fidelity model. Below, a review of

these work is given in particular examining whether these approaches ensure reliable

convergence towards a true optimum for the underlying continuous system, in the

sense defined previously.

1.2.1 First-order approximation and model management

The approximation and model management (AMMO) approach proposed by Alexan-

drov et al. (see [2] for an overview) is a methodology for utilizing a computationally

cheap but low-fidelity model in combination with an expensive, high-fidelity model so

that global convergence to a local optimum of the high-fidelity model is guaranteed.

In this approach, gradient-based optimization is performed using a low-fidelity model

with occasional use of the high-fidelity model to provide a performance measure of

the low-fidelity model's predictive quality and recalibrate it via a multiplicative cor-

rection. The correction term is constructed so that the low-fidelity model satisfies

first-order consistency with the high-fidelity model. Denoting Fo, Fhi to be the objec-

tive function obtained from low- and high-fidelity models, the corrected low-fidelity

model Fio around the design dk satisfies

Fio(dk) = Fhi(dk), VFlo(dk) = VFhi(dk)- -

A way to enforce the above is to obtain F1 from Fo via a multiplicative correction

[2],

Fio(d) = #(d)Fio(d), (1.2)

19



where #(d) is a linear function constructed using information from low/high-fidelity

models at dk so as to ensure Fi0 satisfies (1.1). This consistency condition is crucial

both theoretically for the convergence proof as well as practically in ensuring a good

match of trends between the two models. For 2D and 3D wing optimization in

inviscid Euler flows and utilizing low/high-fidelity models of same physics but half

the mesh spacing, AMMO results in a factor of 2 to 3 compute time saving [2]. When

low/high-fidelity models have variable physics as well, the computational saving of

AMMO is more significant. The use of AMMO for variable physics models was first

demonstrated by Alexandrov et al. [3] and more recently applied by Le Moigne and

Qin [62] as well.

AMMO provides a general framework to automatically manage the use of variable

fidelity models (of arbitrary accuracies) provided by the user. An inherent assump-

tion in AMMO is that the (computable) high-fidelity model is a sufficiently accurate

representation of the underlying continuous system. Hence, in the present context

where we would like to ensure convergence to the (uncomputable) continuous system,

the assumptions made in the AMMO approach are violated. In particular, the gradi-

ent information for the continuous system is not available; however, the error in the

objective values can usually be estimated. Hence, a different approach based on this

assumption is needed.

1.2.2 Progressive optimization

In a series of papers [18, 19, 20], Dadone and Grossman proposed an approach for

increasing the efficiency of aerodynamic optimization that relies on converging the

analysis and design process simultaneously using progressively finer grids. To decrease

the computational costs associated with obtaining the objective function gradient, for

inviscid design problems the adjoint state is not solved on the current working grid

but on the coarsest grid. For viscous optimization cases, a further approximation

is made for the adjoint by ignoring the viscous contribution to the residual. On

each given mesh, the flow and adjoint equations are not solved exactly but only

converged 1 to 2 orders of magnitude. Once the objective function has decreased
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by an order of magnitude on the current mesh, the mesh spacing is halved and the

same steps are carried out on the new mesh. Among the factors contributing to the

efficiency of strategy, it was estimated that the most significant contribution comes

from progressively converging the flow solution [19].

The methodology demonstrates significant compute time savings for many aerody-

namic design problems. For our purpose of developing a framework that is applicable

to general optimization problems for PDE systems, it is not clear that the prescribed

strategy is easily extendable without considerable user experience in fine tuning the

parameters. In particular, both the desired level of optimization convergence prior to

refining the mesh and the drop in the solution residuals in each design cycle may be

highly problem-dependent. We would like to develop an approach that incorporates

a procedure to automatically detect the need to refine mesh or continue iterative

solution, in a manner that is generally applicable.

1.2.3 Simultaneous analysis and design

In the simultaneous analysis and design (SAND) or one-shot approach, design updates

are not computed from fully converged solutions. Rather, the design and solution ap-

proximation are evolved at the same time. Thus, in contast to the reduced variable

approach where the primal state is fully determined from the design via the residual

equations, for SAND the solution is not required to be feasible until the design ap-

proaches optimality. In [54], Kuruvila et al. propose an implementation where the

geometry is updated in a hierarchical manner such that high frequency changes are

done separately from low frequency changes. Hence, the optimization procedure is

broken into a sequence of problems each of its own length scale so as to minimize com-

putational costs and improve the conditioning for the optimization problems. The

approach is applied to airfoil optimization using the potential flow equations, where

the multigrid one-shot strategy is demonstrated to bring the cost of optimization

down to two or three times the effort required for one analysis. In [48] the one-shot

approach without the use of multiple grids is further applied to inviscid channel and

Ringleb flow designs with shape updates obtained via the steepest descent method.
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In [79], interior-point trust-region sequential quadratic programming (SQP) is ap-

plied to drag constrained 2D airfoil design in Euler flow. More recently, Sung and

Kwon extends approach of [48] to more complex and challenging 2/3D design cases

[82, 81]. In the context of optimal control of incompressible Navier-Stokes flows,

Ghattas and Bark applied the one-shot strategy using a quasi-Newton approximation

for the equations governing the control updates [27]. To improve convergence rate,

Biros and Ghattas [14] proposed the use of Krylov method to solve the Newton sys-

tem for the Karusch-Kuhn-Tucker (KKT) condition, preconditioned by quasi-Newton

SQP with inexact forward and adjoint solves.

Although significant progress has been made, there are a number of issues that

remain to be addressed for the SAND approaches. Firstly, it has been observed that

these approaches tend to suffer more convergence difficulties in comparison to the

traditional reduced-gradient approach [79, 27], motivating Biros et al. to develop

globalizing strategies [14]. Also, owing to the lack of theoretical criterion to deter-

mine the adequate amount of solution convergence carried out in each design step,

numerical experience is needed to find the appropriate trade-off between convergence

robustness and efficiency [82]. In addition to convergence instability, another po-

tential drawback to SAND approaches is the uncertainty associated with incomplete

solution convergence introduced into the design procedure. For instance, in [82] Sung

and Kwon described an airfoil optimization test case where the optimized results ob-

tained from reduced-gradient and one-shot algorithms are dissimilar. This could be

a manifestation of invalid optimization steps in the sense of leading to an increased

objective function that allowed the design to escape the basin of attraction and con-

verge instead to a neighboring local optimum. While in this case the design converged

to another acceptable solution, in other cases this effect could lead to detrimentally

degraded designs. A procedure of balancing the degree of feasibility and optimality

in the design path to result in added robustness of the algorithm is clearly desirable.

Another issue that remains to be addressed is the incorporation of discretization

levels into SAND approaches. Most of the SAND strategies are implemented on a

single, fine grid. Although in Kuruvila et al. [54] and Shenoy et al. [79] a sequence of
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refined meshes are used in conjunction with the SAND strategy, the refinement criteria

used are purely heuristic. Lacking in the current SAND approaches are automatic

mesh refinement procedures based on the approximation properties provided by the

current mesh and taking into account both the current level of solution convergence

and design optimality.

1.2.4 Adaptive precision

Recently, algorithm models for controlling the degree of discretization fidelity and

iterative convergence have been proposed by Pironneau and Polak [70]. These consti-

tute extensions of previous work by Polak et al. where only the effect of discretization

fidelity was of concern [71, 53, 78]. Based on a priori known convergence properties of

the discretization formulation and solution procedure, a number of algorithm models

are proposed such that precision parameters are controlled within the optimization

process. The framework of quasi-consistent approximations ensures that using any op-

timizer which produces sufficient decrease in the objective function away from points

of zero gradient, every accumulation point of the sequence of iterates constructed

by the algorithm is a stationary point for the underlying continuous system. The

approach has been successfully applied to distributed control problems governed by

elliptic equations.

For more complex problems, the approach of Pironneau and Polak may not be

applicable since the discretization and iterative convergence properties are not known.

A related issue is that although the algorithm would eventually converge to a sta-

tionary point of the continuous model, it does not guarantee that all design updates

computed on intermediate models are valid improvements. Thus, upon termination

at a finite optimization index the designer is left unsure whether the obtained design

constitutes an improvement over the initial or the observed changes in the computed

objective values arise from the use of numerical approximations. Hence, for the given

goal of increasing reliability, a further extension is necessary.

23



1.3 Approach

The approach taken here is to develop a framework to increase designer confidence

that is applicable to general contexts, including aerodynamic optimization. In partic-

ular, the approach under consideration is that of successive model refinement which is

necessary in order to obtain converging approximations to the underlying continuous

system. Furthermore, this approach is arguably more applicable to situations where

certain solution features (in the primal and dual variables) may develop during the

optimization procedure and hence (local) refinements in the model may be necessary.

The framework proposed in this thesis replaces the a priori error estimates uti-

lized in Pironneau and Polak's work with a posteriori output error estimates. This

approach reduces the uncertainty inherent in a priori error estimates while simul-

taneously targeting the outputs for which the optimization is focused on. This a

posteriori framework is discussed in Section 1.3.1. The method is then applied to

aerodynamic optimization using higher-order discontinuous Galerkin discretization

of the compressible Euler and Navier-Stokes equations. In Section 1.3.2, the poten-

tial benefits of higher-order DGFEM in this context are discussed.

1.3.1 A posteriori error estimation and control in optimiza-

tion

As reviewed in Section 1.2, in all the variable-fidelity techniques other than the adap-

tive precision method proposed by Pironneau and Polak [70] a fixed set of high and low

fidelity models are chosen a priori, often simply constructed for instance by uniform,

global mesh refinements. The computed sequence of designs are only guaranteed to

converge to an optimal solution of a fixed finite dimensional model rather than to

that of the underlying continuous system. Given the lack of feedback on the model

accuracy, there exists no automatic precedure for increasing the refinement of the

highest-fidelity model when it is in fact not sufficiently refined for the purpose of

optimization or alternatively stopping the procedure when the design changes given

by the optimizer may no longer improvements for the underlying continous system.
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There is clearly a need for a precision adjustment framework to ensure the informa-

tion provided by the optimization procedure (including the history of designs and

computed values of the objective) can be relied upon by the designer.

Recent years has seen the development of a posterior error estimators and bounds

in the context of computational simulation. Error estimates for functionals allow

one to gain confidence in the computed accuracy for outputs of engineering interest

and localization of these estimators give one an ability to perform local refinements

where necessary [1, 13, 83, 84, 74, 33, 7]. For exact weak solutions of linear coer-

cive PDEs, the existence of functional error bounds in fact allows one to certify the

result of the simulation [77]. Application of duality-based analysis technique to the

iterative solution of algebraic systems also results in output error estimates due to

incomplete solution convergence [68, 37, 57]. In the context of optimal control, there

has also been recent effort in using duality-based local error indicators to obtain a se-

quence of approximating meshes. For drag reduction in incompressible Navier-Stokes

flow via Neumann and Dirichlet boundary control, by applying the general approach

proposed for functional outputs [13] Becker used the Lagrangian for the discretized

control problem computed with the converged primal and dual states to obtain the

subsequent mesh via local mesh refinement [11, 12]. Other potential alternatives exist

to obtain meshes that approximate the continuous problem. In the context of Neu-

mann boundary control for elliptic systems, Liu et al. [56] perform error analysis for

the sum of the norms of the state, adjoint and control errors and adapts the mesh to

effect control on these quantities [55].

Although the use of error estimates is becoming prevalent in simulations and local

error indicators have been applied to construct sequence of approximating meshes

in the optimal control context, the quantitative estimate on the magnitude of the

uncertainty in the objective function computed with the approximation models has

yet to be incorporated within optimization procedures as a basis for controlling the

level of model fidelity for reliability. In this thesis, a posterior error estimates are

incorporated within the general adaptive precision framework of Pironneau and Polak

[70]. By using discretization and iteration error estimates rather than a priori bound
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functions containing unknown constants, the accuracy provided by the discretization

in relation to optimization steps as well as the accuracy of solution iteration in relation

to discretization level can be appropriately controlled so as to significantly increase

the reliability of simulation-based design.

Several connections can be made between the proposed and existing approaches.

For instance, the proposed approach of sequencing the grids within optimization can

be viewed as an adaptive extension of progressive optimization described in Sec-

tion 1.2.2 based on rigorous error estimates. Whereas the latter converges the flow

solution by a fixed number of iterations, the proposed approach ensures the iterative

error reaches an adaptively chosen tolerance. Also, instead of using a predetermined

fine grid, the proposed approach successively refines grids via the current error esti-

mator when and where necessary.

1.3.2 High-order DGFEM implementation

To demonstrate the practicality of the proposed methodology, the necessary analy-

sis and computational tools are developed in the context of discontinuous Galerkin

finite element method (DGFEM). DG schemes have recently become popular for

convection-dominated flow problems with the potential of resulting in orders of mag-

nitude decrease in simulation time compared to traditional low-order finite volume

methods. At least for shock-free flows, it has been demonstrated that given a desired

error tolerance on outputs of engineering interest, high-order interpolations can ob-

tain estimates with orders of magnitude fewer degrees of freedom in comparison to the

use of linear interpolation [25, 67]. In the context of optimal control and shape opti-

mization, the use of high-order solution could similarly result in significant efficiency

benefits.

Although DGFEM has seen significant development as an analysis tool, it has only

recently been applied to the context of optimal control [16] and has yet to be demon-

strated in an aerodynamic optimization setting. Owing to the variational properties

inherent in its formulation, DGFEM is arguably more amenable to duality analysis

than finite volume methods and hence more suitable to the setting of optimal con-
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trol and error estimation. To enable the use of these adjoint-based techniques it is

important to examine the dual-consistency property of DG schemes. In particular,

the form of boundary treatment has significant effects on adjoint regularity and care

needs to be taken to ensure that the primal boundary conditions and functionals are

formulated in a dual-consistent manner. This variational property of the numeri-

cal scheme turns out also to be crucial for duality-based techniques to fully benefit

from the use of high-order solution. Implications of dual-consistency demonstrated

in this thesis include the convergence rate in certain error measures, as well as po-

tentially benefitting both the effectivity of error estimates and the accuracy of shape

sensitivities.

Another essential ingredient for the proposed adaptive precision methodology is

the ability to efficiently estimate output error due to incomplete solution. The pro-

posed approach is based on the development of a concurrent flow-adjoint solver. Al-

though the feasibility of iterative error estimation via concurrent primal-dual itera-

tions has been shown in a number of settings [68, 37, 57], it remains to demonstrate

that this solution approach can be performed in an efficient manner. It turns out

that by making use of the DG properties of nearest neighbor stencil as well as the

algebraic construction of adjoint preconditioner and residual, the concurrent solver

can obtain the adjoint solution at little additional cost over the flow algorithm. To

summarize, a unified adjoint approach is developed in the present DGFEM context

for all of discretization and iteration error estimation as well as the computation of

shape sensitivities.

1.4 Contributions

The main contributions of this thesis are in two general areas: firstly, a strategy is

proposed for the incorporation of a posteriori estimates into optimization for PDE

systems; secondly, the feasibility of the proposed strategy is demonstrated via an

application to aerodynamic design. In the latter area, DGFEM is demonstrated as

an effective way to realize the proposed methodology. Summing up, the advances
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made in this work include:

" Development of an a posteriori error estimation and control framework for adap-

tive precision optimization.

* Demonstration of the feasibility of the proposed framework to aerodynamic

optimization.

" Development of duality techniques for high-order DG, including:

- Dual-consistent boundary treatment;

- Efficient concurrent flow-adjoint solution algorithm;

- Accurate adjoint-based estimation of geometric design sensitivities.

1.5 Overview of thesis

In Chapter 2 the setting of consistent approximations is introduced and an adaptive

precision framework based on a posteriori error estimates is developed. In Chap-

ters 3 to 6 the overarching goals are to build the necessary computational tools for

adjoint-based methods within the DG context and verify certain assumptions on the

finite dimensional approximations made in the adaptive precision framework. In par-

ticular, the numerical examples given at the end of each chapter demonstrate the

particular capability required for the adaptive precision computation carried out in

Chapter 7. A number of contributions of independent interest are also made in each

chapter. In Chapter 3, a dual-consistent boundary treatment for DG is proposed and

implications are illustrated. In Chapter 4, error analysis and control for functional

outputs is carried out within a general, optimal control framework applicable to DG

schemes. This represents the first treatment of output-based error analysis and adap-

tation using the second form of Bassi-Rebay (BR2) discretization. Expressions for

local error indicators are derived. Due in part to the dual-consistent property of the

chosen DG scheme, the error indicators do capture the local error contribution and

the output error is effectively controlled via p-adaptation. In Chapter 5, a concurrent
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flow-adjoint solution algorithm is developed to enable adjoint-based estimation of it-

eration error. In particular, it is shown that the nearest-neighbor stencil property of

BR2 discretization allows for an efficient adjoint solution algorithm. Furthermore, in

the case that the full linearization cannot be stored in memory, the concurrent ap-

proach is shown to provide an attractive alternative to the sequential adjoint solution

approach in regard to the computational cost. In Chapter 6, the use of an incom-

plete shape-sensitivity based on discrete adjoint solution is proposed. Instead of fully

differentiating the location of all mesh nodes with respect to the design variables,

only surface elements are perturbed while the interior mesh motion is ignored. It is

demonstrated that accurate gradient approximations can be obtained from high-order

interpolations without including interior mesh motions. To verify the gradient con-

vergence assumption made in the adaptive precision framework, the convergence rate

of the incomplete to full discrete adjoint sensitivities is studied for various solution

orders. In Chapter 7 computational results of applying the adaptive precision frame-

work to aerodynamic design cases are presented. Finally, conclusions and potential

areas of future work are discussed in Chapter 8.
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Chapter 2

Adaptive precision methodology

2.1 Introduction

This chapter is concerned with the development of an adaptive precision methodology

based on the error estimates that will be developed in the subsequent chapters. Given

the underlying concern for reliability and correctness, the main issues addressed here

are conditions on the precision adjustments so that design changes computed on the

approximation models are valid improvements as well as ensuring the convergence of

a sequence of discrete solutions to local optima of the underlying continuous problem.

The latter issue of convergence has been examined by Polak et al. in the context of

computational optimal control of differential equations via discretized approximations

[53, 78, 71] and has more recently been extended to include the use of iterative

methods to solve the discrete approximations [70]. This general setting is introduced

in Section 2.2. However, the issue of reliability in the algorithm is not addressed by

the use of a priori bound functions with its unknown, multiplicative constants that

have to be properly tuned in an implementation of the algorithm. The approach to

improve the reliability proposed here is to incorporate a posteriori error estimates and

is discussed in Section 2.3. By an appropriate choice of parameters in the algorithm,

optimization steps on the approximation models are required to satisfy a descent

condition for the underlying continuous problem.
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2.2 Consistent approximations

Consider the optimization problem P of minimizing an objective function J(.) over

a normed space (D, || - |ID):

(P) : mindED 5(d). (21)

For finite dimensional implementations, consider Dh a sequence of dense finite di-

mensional subspaces of D and Ph a sequence of optimization problems for Jh(-):

(Ph) : mindh EDh Jh(dh)- (2.2)

The above setting includes the situation where an optimization problem on a PDE

model with an infinite dimensional control space is approximated by a sequence of op-

timization problems consisting of increasingly finer discretizations over control spaces

of expanding dimension. The problems Ph are assumed to provide approximations

to P, mathematically described as the convergence of the epigraphs of Ph to that of

P as defined by Polak [71]:

Definition 1 The problems epi-converge (Ph -P) if:

1. For every d E D, 3dh E Dh such that dh -* d and limsup Jh(dh) < (d);

2. For every sequence dh E Dh, dh -+ d E D, liminf jh(dh) ; 5(d).

Although epi-convergence ensures that global optimal solutions of Ph converge to that

of P, it does not ensure that local optima of Ph converge to stationary points of P. As

shown in [71], this may happen if the radius of attraction of the local minimizer for Ph

is not bounded away from zero. This is due to the fact that epi-convergence prescribes

only zeroth-order characterization of the approximation problems. To preclude this

situation, optimality functions Oh(-), 0(.) are introduced to characterize the first-order

(gradient) convergence of the approximations.

Definition 2 Oh(-), 6(-) are optimality functions for Ph, P if they are upper semi-

continuous, non-positive functions which vanish at the local minimizers for Ph,P
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respectively.

For the case of continuously differentiable objectives, an example of optimality func-

tion is some chosen norm of the gradient. The consistent approximation qualification

given below on the problem-optimality function pair {P, 6(.)} provides a sufficient

condition for the local minima of the finite dimensional approximations to converge

to stationary points for the original problem.

Definition 3 The pair {Ph,Oh(-)} form consistent approximations to {P,6(.)} if

Ph + P and for every sequence dh E Dh such that dh - d E D, limsupOh(dh) <

8(d).

In particular, the above is satisfied if it can be shown that:

lim dh -+ d - lim Oh(dh) -+ 0(d). (2.3)
h-+0 h-+0

The above condition has been shown in a number of simple settings. For an in-

verse design problem on an elliptic PDE via Neumann boundary control, it has been

shown that both the objective and optimality function are continuous with respect

to boundary control in L 2 [61]. By discretizing the continuous system using standard

conforming finite element method (FEM), the sequence of finite-dimensional problems

obtained as the mesh diameter goes to zero are consistent approximations in the sense

of Definition 3. In the setting of shape optimization, for an inverse design problem of

nozzle flow modelled by Laplace's equation with homogeneous Neumann boundary

condition enforced on the design surface, it has been shown that both the objective

and the optimality function are continuous with respect to shape perturbations in

H02. Using standard conforming FEM to approximate the continuous problem, in the

limit h -+ 0 both the discrete objective and the optimality functions converge to the

corresponding continuous functions as well.

In order to obtain an approximating sequence to some stationary point of problem

P via nonlinear programming iterations on the finite-dimensional problems Ph, it is

necessary to dynamically adjust the precision parameter h at certain points of the
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computation. In [71], algorithm models are proposed where refinements are based on

tests involving either the comparison of optimality function or function changes pro-

duced by the underlying nonlinear programming algorithm, with bound functions on

the precision of the model Ph. In [70], the algorithm models are further extended to

handle the situation where a significant number N of solver iterations are necessary to

obtain approximation to the functional output. To decrease the computational time

required for optimal control, N is dynamically set with respect to h in a manner so

as to ensure convergence. In the situation involving both discretization and iteration

parameters, the following assumptions are made on the behavior of the discretization

and iteration error [70]. Consider optimization problems where the objective function

is a functional of the state u(dh). Let uh(dh) denote a finite dimensional approxima-

tion of the state. Also, let uh,N(dh) denote an approximation to Uh(dh) obtained by

N steps of iterative solution.

Assumption 1 For every bounded set B E D, there exists hmax E R+, k < oo,

A :R+ -* R+ such that Vh E (0, hmax], dh E Dh n B:

IJh(uh(dh), dh) - J(u(dh), dh)j kA(h), (2.4)

and for N E N there exists p : R+ x N --+ R+:

|Jh(Uh,N(dh), dh) - Jh (uh(dh), dh) kp(h, N), (2.5)

where the discretization and iterative bound functions A(.), (-,-) are naturally as-

sumed to satisfy the limiting properties,

lim A(h) = 0,
h-+O

lim p(h, N) = 0,
N-oo

3N*(h) lim p(h, N*(h)) = 0. (2.6)
h-0

For a given h, equation (2.4) assumes the existence of a bound function kA(h) that

holds uniformly on the set Dh n B with k being a constant that absorbs the depen-
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dence of the bound on the size of the bounded set B. To prove convergence results, the

underlying nonlinear programming algorithm is required to satisfy a monotone, uni-

form descent condition [70]. The gradient-based nonlinear programming algorithm

is denoted by the map of controls d' -+ C(di, Uh,N, A'hN) where the gradient is

computed using an adjoint approximation, ?Ph,N, as discussed in Chapter 6.

Assumption 2 For every d* where dJ(d*) # 0, 3p*, &*, h* > 0, N**(.) < oo such thatdd

Vh < h*, N > N**(h),

Jh(Uh,N(C(dh)), C(dh)) - Jh(uh,N(dh), dh) : ~5*, Vdh E Dh n B(d*, p*). (2.7)

The above condition stipulates that around every non-stationary point d* E D, there

exists some ball B of radius p* such that applying the nonlinear programming al-

gorithm on all dh E Dh n B using gradient information obtained from primal and

dual approximations with sufficiently fine h, N would produce an improvement in the

computed objective function that is bounded away from zero. With the conditions

set out in Assumption 1, the Algorithm Model 2 of [70] based on a nonlinear pro-

gramming algorithm satisfying Assumption 2 has the property that if the constructed

sequence has any accumulation point then the discretization parameter has to tend

zero (h -- 0). Furthermore, every accumulation point of the constructed sequence are

stationary points for {P, (-)}. Hence, if J(-) is strictly convex with bounded level

sets, the algorithm converges to the unique optimum.

2.3 Algorithm based on error estimates

In this work, the bound functions are determined by a posteriori estimates rather than

chosen a priori by the user. The former is preferred since the latter is often difficult to

realize in many practical situations. An instance of this is the case where the mesh is

updated by local p-refinements rather than global h-refinements where both the order

of convergence and the required number of solver iterations are difficult to estimate a

priori. Standard results in a posteriori error estimates are of the form (2.4) with k = 1
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for a particular given dh rather than over some bounded neighborhood. However, if

the discretization error for the underlying problem has a smooth dependence on the

design with respect to the norm || - ||D, within some small enough set A(h) can be

approximated by an a posteriori estimate at the given single design point or obtained

by interpolation at a certain set of neighboring design points. Similarly, if for each

given discretization the iteration error is assumed to have a smooth dependence on

the design then p(h, N) of (2.5) can be obtained via an iteration error estimate for

the given design dh.

In the current work, the discretization bound function is simply set to the value of

the discretization error estimate computed from partially converged primal and dual

state approximations so that A = A(uh,N, 2Ph,N). The specific form of the estimate

will be discussed in Chapter 4. Similarly, the iterative bound function is simply set to

the value of the iteration error estimate computed from primal and dual state approx-

imations, P = O(Uh,N, 4 -h,N). The procedure for obtaining Sp(uh,N, bh,N) is discussed

in Chapter 5. Also necessary in the algorithm is a function N*(-) satisfying (2.6).

Given that asymptotically, limN-+oo A(Uh,N, Ph, N) A(Uh, "Ph) and since A(uh, Ph)

vanishes in the limit as h -- 0, a choice for N* (-) satisfying the condition (2.6) is

to take it to be the smallest N such that the iterative error is less than a certain (

multiple of A(Uh,N, Oh,N)

N*(h) -- arg min {I(uh,N, 1h,N) ( X A (uh,N, h,N)}
N

The above choice of N*(h) has the property that a correspondence is maintained

between the tolerance level of iterative to discretization error. Using these ingredients,

the proposed adaptive precision algorithm taking parameters within the range -Y, ( >

0, r, E E (0, 1), w E (0, 1], jmax Z+ is shown below.

Adaptive Precision Algorithm (-y, (, T, w, E, jmax)

Initial control: dh E Dh.

Initial converged solution: Uh,#Ih-

Set Uh,N U= Uh, 7Ph,N : Ph'
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Begin Outer Loop( i:= 0; i < im x)

e Set A := A(uh,N, Oh,N)'

While Inner Loop( j := 0; j < jmax)

1. While Line-search

- Compute control update

dh C(dh, Uh,N, 7?Ph,N)-

- Concurrently iterate state updates fih,N(dh), g Ndh) until:

(p(flh,N, h,N) T-j X A(1dh,N,'Ph N)-

End Line-search

2. Set p := p(Uh,N Ph,N)-

3. If Jh(Uh,N, dh) - Jh(Uh,N, dh) < -

- Exit Inner Loop.

Else

- j := j + 1.

- Concurrently iterate uh,N(dh), Oh,N(dh) until:

(uh,N yh,N <_ (T X A (uh,N i Oh,N -

End Inner Loop

e Set

(2.8)

(2.9)

(2.10)

a(h, N) := A +.
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0 If

Jh(Uh,N, dh) - Jh(Uh,N, dh) > -- ya(h, N)W (2.11)

- Call AdaptGrid(E, dh, Uh,N, 'h,N)'

Else

- Update valid control and states:

{dh; Uh,N; 4h,N {h; uh,N; 4'h,N (2.12)

End Outer Loop

The algorithm controls the error in the objective function in a two-tiered manner.

In the inner loop, at the trial update dh the iterative error is initially made to be less

than a ( multiple of the discretization error term A' at the current design point dh- If

the change in the approximate objective function is not sufficiently negative, as may

happen if the approximate gradient does not result in a descent direction, additional

solution iterations are performed to tighten the value of iterative error by the factor

T. If the iterative error test is satisfied, the computed change in the objective function

is tested against -y multiple of the sum of discretization and iteration error contribu-

tions, A(h, N)w. If the change is not sufficiently negative, the procedure denoted by

AdaptGrid(E, dh, Uh,N, 'h,N) refines the grid according to the local error indicator (as

discussed in Chapter 4) to reduce the error bound in the objective function by the

fraction E.

Given parameters in the valid range as described, if the algorithm produces an

infinite sequence of iterates d" that has at least one accumulation point, the model

precision as governed by h, N can be proved to increase indefinitely. An additional

criterion is needed to obtain convergence statements for subsequences of {d'}. A

sufficient condition for every accumulation point d* of the constructed sequence {di}

to be stationary points for problem P is that for all large enough i, the change in the
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"exact" objective function evaluated with {d'} is negative (Theorem 5, [70]):

J(u(di),d - J(u(d ), d) < 0. (2.13)

In the Algorithm Model 2 presented in [70], w is chosen to be strictly less than 1.

In this case, for all choice of precision parameters -y, (, the condition (2.13) would

eventually be satisfied for sufficiently large i. In the case that the constant k of (2.4,

2.5) can be estimated effectively, the choice w = 1 can also be made to satisfy the

improvement condition (2.13) provided -y is chosen appropriately. In view of the test

(2.11) as well as error bounds (2.4) and (2.5), the change in the objective function

given by iterates produced by the adaptive precision algorithm is bounded by,

J(u(d+1),d+1) - J(u(d'),d') -- yz ,(h,N) + 2ka(h,N)

= L (hN)(--y+2k), (2.14)

which is negative provided -y 2k. Therefore, in the case that the a posteriori error

estimate is tight (k ~ 1) for some appropriate range of designs, setting -y 2 would

ensure the inequality (2.13) which has the interpretation that the design updates are

always valid in the sense of leading to improvements for the underlying problem P.

Given the goal of providing the user confidence in the design updates, the parameter

values w = 1, -y = 2 is adopted in this thesis. For the algorithm to be stable and

efficient, the value of the iterative precision parameter ( should also be appropriately

chosen. Since the discretization error is estimated using partially converged primal

and dual states, a natural requirement is that the iterative error contribution should

at least be small in comparison. However, for reasons of efficiency, it should not be

chosen unnecessarily small. For computational results shown in Chapter 7, C = 0.2 is

chosen.
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Chapter 3

Dual-consistent discretization

In this chapter, the dual-consistency of DGFEM discretizations are discussed. In

Section 3.1, the concept of dual-consistency is defined. Past work related to dual-

consistency for FEM are discussed in Section 3.2. In Sections 3.3 and 3.4, the dual-

consistency of DGFEM discretizations of first- and second-order equations is analyzed.

Finally, Section 3.5 demonstrates some of the implications of dual-consistency via

application to the Euler and Navier-Stokes equations.

3.1 Dual-consistency

Let V and W be appropriate function spaces. Let u E V be a weak solution to a

partial differential equation (PDE) together with a certain set of boundary conditions

(BCs), satisfying

F(u) = 0, (3.1)

where F is an operator mapping V -+ W', with W' being the dual space of W. Let

J(-) V -+ IR be the functional of interest. Introduce the Lagrangian L : V x W -+ R,

J(u, @) = J(u) - (F(u), @)w,w', (3.2)

41



where (-, -)-vv,w denotes duality pairing of W with )'. Taking variations u -+ u+6v E

V permitted by the primal BCs and requiring the Lagrangian (3.2) be stationary with

respect to permissible 6v, the equation for the adjoint variable ' is obtained,

F'[u)*V = J'[u], (3.3)

where the primed notation on an operator is used to denote the Frechet derivative,

the square bracket [-] denotes the state about which linearization is performed and

superscript * denotes the adjoint operation. In applications such as a posteriori

error estimation and optimal control of PDEs, it is important to obtain convergent,

finite dimensional approximations to the PDE (continuous) adjoint. This could be

done by directly discretizing (3.3). An alternative to discretizing the adjoint PDE

directly would be to solve the discete adjoint problem corresponding to the Lagrangian

functional for the discretized equation and output. With the algebraic system for the

primal unknowns U E R" denoted by,

A(U) = 0, (3.4)

and J(.) the discrete functional, the same procedure as carried out in (3.3) can be

performed at a discrete level. In this case, the discrete Lagrangian L : R" x R" -> R

is introduced

L(U, W) =- J(U) - (A(U), 'I), (3.5)

where (-,-) denotes the Euclidean inner product. Then the discrete adjoint XJ is the

solution to the linear system

A'[U]TXF = J'[U]. (3.6)

For finite element formulations, the transpose Jacobian A'[U]T in (3.6) is equivalent

to permuting the role of trial and test functions. In the following discussion of general
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finite element methods let Vh be a N-dimensional vector space and let the primal state

Uh be sought in the affine space uD + Vh where u' arises for instance in Dirichlet BC

imposition. Let Wh be a possibly different trial space of the same dimension. With

Rh(-,-) :RI x Rn -+ R denoting a chosen finite element semilinear form (linear in the

second argument), the primal solution uh E uf- + Vh satisfies:

Rh(uh, vh)=0, Y E VV Wh. (3.7)

Denote Jh(-) to be the discrete functional of interest. Let {#k} and {Pk} be a set

of bases for Vh and VVh respectively and let Uk, Vk denote the coefficients of given

Uh E Vh, vh E Wh in the bases:

N

Uh = uh+ U# ,
i=1

N

Vh = V . (3.8)
i=1

To form the primal system (3.4), let the i-th component of the nonlinear system of

equations for the unknown coefficients U {Uk} be

N

Rh(u + U Uik#, pi) = 0, i = 0,..., N. (3.9)
k=1

With the coefficients Uk as unknowns, the (i, j)-th entry of the transposed Jacobian

matrix and i-th entry of the discrete functional derivative are given by,

[A'[U]T A'[U]

=R'h[Uh] (#i, Pj),

J'[U]1 = J/[uh](#b). (3.10)

where R' [uh](-,-) :R' x R' - R is the bilinear form obtained from the corresponding

semilinear form by linearising about uh. Hence for the finite element formulation (3.7)
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the discrete adjoint system (3.6) is

N

R'[uh](#i, pj)P' = Jh[uh](#i), Vi = 0,... , N. (3.11)
j=1

Since R'[uh](-, -) is bilinear in the arguments, the above trivially implies the following

variational characterization for the discrete adjoint solution 'Ih ZI~ 'j!p E Wh,

R'[uh (Vh, Oh) = Jh[Uh](Vh), VVh E Vh. (3.12)

To make the connection between discrete and continuous adjoint equations (3.3) and

(3.12), the concept of dual-consistency is introduced. In addition to the property of

consistency (as defined for example in [80, 24]), this variational characterization of

finite element methods is of importance for duality-based analysis and techniques.

Definition 4 The finite element formulation (3.7) together with the discrete func-

tional Jh(-) is dual-consistent if given u and i/ solutions to the primal (3.1) and

adjoint PDE (3.3) respectively,

R'[u](Vh, 7) = Jh[u](Vh), VVh E Vh. (3.13)

The formulation is asymptotically dual-consistent if the following holds:

| R [u) (Yh, 0) ~~ Jh[u (Vh)
lim sup h 0. (3.14)
h-O VhEVh YjVhIIVh

In Section 3.2, we give a review of factors contributing to dual-inconsistency for both

the conforming finite element and DG methods as well as the implications for the

numerical behavior in applications. These examples serve to illustrate some of the

differences between the conforming and DG finite element methods as well as point out

the potential pitfalls leading to dual-inconsistency. There are two parts to consider in

showing dual-consistency: the semilinear form of the finite element method and the

boundary treatment used. Whereas the choice of DG formulation on dual-consistency

is widely appreciated [6], the latter issue of the effect of boundary treatment appears
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to be much less understood. In fact, there is currently no general prescription for

handling boundary conditions and functionals in a dual-consistent manner. Thus the

main contribution of this chapter is the construction of state and flux mappings which

are dual-consistent.

3.2 Review of dual-consistency and implications

3.2.1 Interior treatment

One source of dual-inconsistency arises from the use of stabilization terms present

in some finite element methods. An illustrative example of a conforming, but dual-

inconsistent method is the streamline upwind/Petrov Galerkin (SUPG) discretization

[15]. This method was considered by Collis and Heinkenschloss [17] for a distributed

optimal control problem governed by the linear advection-diffusion equation. It is

well known [72] that SUPG has the consistency property that the stabilization term

vanishes when evaluated with a solution to the underlying differential operator. How-

ever, as shown in [17], SUPG is not dual-consistent since the discrete adjoint of the

stabilization operator does not vanish on the continuous adjoint solution [17]. By es-

timating the dual-consistency error, a priori analysis on the solution of the optimality

system shows that the convergence rates of the norm of error in the computed control

and the corresponding primal, dual states for the discretize-then-optimize approach

are lower than the optimize-then-discretize approach. That is, using the discrete

adjoint approximation rather than directly discretizing the adjoint PDE leads to a

poorer approximation of the underlying control problem on the continuous system.

This finding is verified numerically, demonstrating that whereas the convergence dis-

crepancy is small when linear elements are used, for higher-order interpolations the

degradation becomes significant. As an additional note, a closely related SUPG ex-

ists where the stabilization term is in fact dual-consistent [26]. In the context of a

posteriori error analysis and adaptation for functionals using stabilized finite element

methods, the issue of whether to use some approximate solution to the dual PDE or
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the stabilization-dependent, discrete adjoint state obtained from the stabilized finite

element formulation also arises and is discussed in detail in [44, 33].

The property of dual-consistency is also important for the analysis of solution

convergence in various norms. For instance, for the purpose of analyzing L 2 conver-

gence of DG formulations for second order elliptic operators, Arnold et al. [6] applied

the standard Aubin-Nitsche duality technique [80, 24] via an adjoint state 4' for the

primal state error, solving:

-A = u - uh on, '=0 on 8Q. (3.15)

In this context, dual-consistent schemes are those where 4 satisfy the weak statement

associated with the bilinear form,

Rh(vh, 4) = (u - uh, vh)L 2, Vv E Vh. (3.16)

Using regularity property of the elliptic operator, optimal L 2 convergence estimates

of the following form can be obtained for dual-consistent DG schemes:

|1U - UhIIOQ 5 ChP+1|ujp+1,Q. (3.17)

Not all DG schemes allow for duality-based derivation of optimal estimates. For

instance, the nonsymmetric interior penalty (NIP) method lacks the necessary dual-

consistency property and in fact suboptimal L2 convergence rates have been shown

numerically. Similar sub-optimal convergence is observed when the error is measured

with respect to certain functional outputs [39, 38]. In this case, the dual-inconsistency

of the scheme is manifested as non-convergent, mesh-dependent discontinuities in the

discrete adjoint solution [39, 38]. Since this violates the smoothness estimates of the

dual problem used in the construction of superconvergent a priori bounds, NIP also

suffers from degraded output convergence as compared to dual-consistent schemes.

A general conclusion that may be drawn is that although consistency and stability

of the method together implies the solutions converge at optimal order with respect
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to the DG (energy) norm, the lack of dual-inconsistency results in suboptimal error

convergence in both the L 2 norm and functional outputs. By appropriately controlling

the consistency error such that the discretization is asymptotically dual-consistent

it is possible to retain properties obtained via these duality-based techniques. For

instance, by choosing the penalty parameter of NIP proportional to some negative

power of the mesh size h, the resulting superpenalized version of NIP is asymptotically

dual-consistent and in fact the optimal L 2 convergence rate of the form (3.17) is

recovered [6].

3.2.2 Boundary treatment and functional

Another source of dual-inconsistency arises from the incompatibility of discrete bound-

ary treatment and the functional with the dual variational property of the underlying

continuous problem. Again, the lack of dual-consistency results in degraded conver-

gence rate for functional outputs which can be connected with the resulting irregular

discrete adjoint solution behavior at the boundary. Here we illustrate via an example

that, even in the case of conforming finite element method, analysis is needed to ex-

amine the form of discrete functional so as to ensure Galerkin superconvergence. The

concept of dual-consistency can be used to further provide an understanding into the

well-known fact that for second-order elliptic systems, weighted surfrace flux integrals

can be approximated more accurately using an equivalent, volume form.

Consider the following boundary value problem for u as described in Giles and

Sili [33]:

-V - [A(x)Vu] = f(x), in Q,

u = 0, on OQ, (3.18)

where A(x) is an m x m smooth, positive definite matrix-valued function. The

functional of interest is

J(-) = g(x)T i - [A(x)V(.)]ds, (3.19)
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where g(x) is a smooth function on &Q. The standard conforming finite element

formulation for (3.18) consists of: find uh E Vh such that

R(uh, vh) = (f, vh)L 2 (0), Vh 6 Vh. (3.20)

where (-, -)L denotes the L2 inner product on Q, the bilinear form R(-, -) is defined

as,

R(uh, Vh) j VvjA(x)Vuhdx, (3.21)
Ja

and Vh is the vector space of continuous, piecewise polynomial functions with zero

trace on &Q. The straightforward way to compute an output estimate is to evaluate

the discrete solution Uh in the functional (3.19). However, as shown by Giles and

Stili [33] this choice is not optimal with regard to the convergence rate. For better

convergence, an alternative volume form of the functional is proposed [33]:

Jv*1() = (f, W") L - R(-,whg), (3.22)

where whj is an arbitrary element in the affine space of functions V~g with trace -g

on 8Q. Using this functional, the output error can be precisely represented as the

residual of uh weighted by the interpolation error of the PDE adjoint solution. Using

interpolation estimates for the adjoint solution a priori analysis has been carried out

to derive a superconvergent rate for output convergence [33]. The enhanced conver-

gence has been numerically demonstrated for conforming discretization of the Stokes

and incompressible Navier-Stokes equations [28, 33]. In the case of drag estimation,

whereas the standard surface functional of the form (3.19) produce only first-order

convergent output estimates on linear finite element solutions, the volume functional

(3.22) extracts second-order convergent drag estimates on quasi-uniform meshes. The

volume form of the flux functional has also been applied to the context of control for

incompressible Navier-Stokes equations [11] and goal-oriented error estimators for

Stokes equations [59].
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The lower convergence rate provided by functional (3.19) results from the lack

of a well-posed dual statement. This in turn is a consequence of the lack of dual-

consistency property in the numerical approximation used. Examine the discrete

adjoint problem for the surface functional (3.19) : find .h E Vh such that

R(vh,'h) = (g, i - [A(x)Vvh])an, VVh E Vh. (3.23)

However, the PDE adjoint 'b solves the following boundary value problem:

-V - [A(x)TVb] = 0, in Q,

S-g(x), on 8Q. (3.24)

Hence, solution 4 of (3.24) does not satisfy the discrete adjoint equations (3.23) since

for a general Vh E Vh,

R(vh, ') = (Vh, nl -[A(x)TVO])aW (integration by parts)

= 0 (zero trace of Vh)

$ (g, fi - [A(x)Vvh])nQ-

The above is clearly non-vanishing even as the mesh is refined. This dual-inconsistent

term forms the underlying obstruction to the convergence of discrete adjoint solution

towards its continuous counterpart. In contrast to (3.23), for the choice of volume

functional (3.22) the discrete adjoint 0"' satisfies the variational statement

R(vh, V h + wh") = 0, Vvh E V, (3.25)

Hence, the PDE adjoint 4 satisfies the variational statement for Ol + w-g as given

above. Thus, this functional results in a dual-consistent formulation allowing the

discrete adjoint to converge towards the continuous solution. To summarize, in this

example the property of dual-consistency determines whether or not the discrete

adjoint solution can approximate the continuous solution as the mesh is refined.
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3.3 First-order conservation laws

Let Q C R' be the computational domain

and DQ respectively such that there exists

V to DV. Let u E V be a weak solution to

{ -
B(u)

D(ulaQ, BC)

of interest, V, DV be function spaces on Q

a bounded, surjective trace operator from

the following conservation law,

= 0, x E ,

=0, xEDQ,
(3.26)

where the boundary operator D(., BC) : DV -+ DV imposes Dirichlet conditions with

the associated input BC data. Following the prescription given in Section 3.1 and

using integration by parts, it can be shown that the adjoint state 4, associated to the

output J(-) = fru J(-)ds, routput C 8Q, satisfies the following PDE [31],

- F'[u]T -VO = 0, x E Q, (3.27)

subject to the adjoint boundary conditions,

/ Tn F'[u](i)ds = J J'[u](i)ds, VI E VDy,

where DV' denotes the trace space of V satisfying homogeneous Dirichlet condition,

DyV {fl E V : D'[ulaQ](fi) = 0}. (3.29)

The adjoint PDE (3.27) differs in character from the primal PDE (3.26) in that the

former is not in conservative form, in contrast to the latter. However, the adjoint and

primal BCs do exhibit a duality structure: components of variations GIJaQ allowed by

the flow Dirichlet data give rise to constraints on 4|aQ, whereas components of I|Q

fixed by the Dirichlet data do not constrain '|aIQ.
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3.3.1 DG discretization

Denote V[ to be the space of discontinuous, vector-valued polynomials of degree p on

a subdivision Th of domain Q into elements such that ( = UThR . The discontinuous

Galerkin discretization for systems of conservation law (3.26) is given as: find uh E Vh

such that VVh E h,

Rh(uh, vh) - - VvT -F(uh)dx + v T +(u u_- n)ds

+ v XTb(u , u , n)ds =0, (3.30)
Ja Knan

where on On, nt is the outward pointing normal, (.)+ and (.)- are the interior and

exterior traces with respect to element r,. R(u , u-, n') and Xb(u+, u-, fn) denote

numerical flux functions used on interior edges and OQ, respectively. The boundary

conditions on 8Q are imposed weakly through constructing a boundary state trace

that is a function of the inner state and BC data, ut (ut, BCData). The associated

mapping on the space of discrete boundary traces, ub(., BCData) : BVhP --+ OVh, is

assumed to be projective: ub(u (-)) = ub(-). Differentiation of the mapping shows

that is a linear projection operator on aVhp:
_ h -b Uh

h hh

+Dn [+Uh [O~] U (3.31)

h ub 1~

Hence, the eigenvalues of the map[ [&u are either 0 or 1.

Below, the dual-consistency of the DG discretization (3.30) together with func-

tional implementations are examined. This is done for the two components of the

discrete adjoint equations: firstly, those terms arising from the trace of test functions

on the boundary domain are examined in Section 3.3.2; subsequently, those terms

arising from the domain interior are examined in Section 3.3.3. For the scheme to be

dual-consistent, both contributions have to vanish.
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3.3.2 Boundary treatment

To show dual-consistency for appropriately chosen boundary flux and functional, a

number of assumptions are made regarding the problem setting.

Assumption 3 The discrete and continuous boundary traces satisfy the inclusion

property:

DV[ c DV. (3.32)

The above is satisfied for instance if aV C L 2 (8Q). Also assumed is a correspondence

between the boundary state map ub(-, BCData) and the boundary operator D(-, BC).

Assumption 4 The domain of the map u bis assumed to be extendable to DV so that

the set of boundary traces satisfying Dirichlet BC are fixed points of the map:

D(ulaQ, BC) = 0 => u (ulaQ, BCData) = ulan. (3.33)

Furthermore, the following inclusion relation holds for the homogeneous trace spaces:

DVP0 = v E V: [ =]+ v} c DV . (3.34)

Now we consider the following choice of boundary flux and discrete functional'Hj(-), Jh(-)

aVhP -+ R,

'Hb(-) =, n -,F(ub(-, BCData))

Jh(-) = (-, BCData))ds. (3.35)
froutput 

h

Examine the discrete adjoint equations (3.12) arising from the boundary trace of test

functions, vZ E aVh. From the expression for the DG semilinear form (3.30), the

boundary contribution to the bilinear form evaluated with solutions u and 0 is

R' [u](vhIaQ, V) = j T fn -F'[u)( ] v)ds. (3.36)
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Also, the functional contribution is simply

fJ[u)(vh la) = J'[u]( v+)ds. (3.37)
output - h-

Consider first test functions vhlan in the quotient space BV \8V '". From the projec-

tion property (3.31) it follows that this space can be characterized by:

Vh\BV'" = V+ E OVj : v = 0}. (3.38)

Since all discrete adjoint terms on the boundary are multiplied by [1u9/0u9], these

all vanish for vtE aVhp\&Vh' and therefore # trivially satisfies the discrete adjoint

equations on this subspace. Now consider v+ EV '0. Since the adjoint solution 4
satisfies the boundary condition (3.28), it follows from the inclusion property (3.34)

of Assumption 4 that the discrete dual variational statement is satisfied identically:

j T7b' [u](v)ds = J'[u](v+)ds, Vv+ E OVhP'0
a Q froutput hh

thus verifying dual-consistency for the choice (3.35).

In the above demonstration, it is crucial for the boundary flux and functional to

depend purely on u'. Suppose now the functional Jh(-) is fixed as before but the same

numerical flux function that is used on interior edges is also used on the boundary,

so that there is explicit dependence on u+:

b(-) = ((-, ut(-, BCData), fi). (3.39)

Whereas previously all terms vanish for v+ E DV \&V['0 , now there exists the term

#T M(v+)ds,
an Bh

which is not required to vanish as part of the adjoint BC for 4. Note that in particular,

the above error term remains constant even as the mesh size h - 0 and hence the
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formulation is not asymptotically dual-consistent. This conclusion holds in general if

proper care is not taken in the boundary treatment. In output-based adaptation, this

could result in detrimental situations where the discrete adjoint solution error does

not vanish even as the boundary elements are targeted for mesh refinement.

As another illustration, consider a more specialized case where the output of

interest is in fact a functional of the boundary flux, J(u) = 1ix(n - .F(u)). To

satisfy dual-consistency, it is not sufficient to evaluate the output based on the same

boundary flux function as that used in the underlying numerical scheme. Assume

that a generic numerical flux function is used on the domain boundary, from which

the discrete output is computed. That is, the boundary flux and functional are given

by:

H'(-) = (-.,,u'(-,BCData),fi),

,7(-) = Jflux(XH(-))ds. (3.40)

Then, the discrete adjoint equations on the boundary are:

jPT(8 V++ O [DUh] V+)ds
vu + vh ds 0U

h'l-1 _ h__ h__ __

'out put Uhh hJfx](Lui ±vh + Bu u v)s, VV E DVJ . (3.41)

Hence, for v E OVh \8V '0 in which case the terms multiplying vanish, the

PDE adjoint 4' does not satisfy the above discrete adjoint equation if f 0.

Thus, it is still necessary that both the output and boundary flux are based purely

on a boundary state map that has the necessary projection properties. Therefore,

requiring dual-consistency is a stronger condition than that obtained by conservation

arguments that are typically used to motivate the appropriate form of functional for

good output estimates.
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3.3.3 Interior treatment

A review of previous work on the discretization of the adjoint PDE is discussed in

Appendix A. In particular, a non-conservative finite-volume formulation is described

that was studied by Anderson and Venkatakrishnan [5]. In this section, terms of the

DG discrete adjoint formulation are shown to correspond to this non-conservative

formulation.

Making use of the conservative property 7(u, v, i) = -(v, u, -n), the discrete

adjoint equations (3.13) for DG discretization (3.30) on interior elements (fnOQ = 0)

are: VVh E VxK,

- f -F'[uh](vh)dx + (Pt - ?4')T 091H (vt)ds = 0.

For the purpose of comparing the DG discrete adjoint formulation with the finite

volume discretizations (A.1) of the adjoint PDE, rewrite the above using integration

by parts:

j/@ (V. -'[uh](vh)) dx - (n -F'[ut](vt)) ds

+ (P+ -0-) (v+)ds = 0. (3.42)

The first term of the above has no correspondence in the finite volume schemes of

Anderson et al. [5] and Baysal et al.[10]. However, this discrepancy only appears at

higher-orders as it vanishes for piecewise-constant solutions. The remaining terms do

have correspondence to these finite volume schemes: if the Roe flux is used for R with

A denoting the flux Jacobian evaluated at the Roe-averaged state, the coefficient of

vt for the sum of second and third terms above is

Gl F'[u4]T + (#f -+ -)
h au+

1h

= -- n -h'u ]( + -
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8T
+ In - i(uh, uh-)|(u+ -) ($ g), (3.43)

which is analogous to the adjoint flux expression given in (A.2).

3.4 Second-order elliptic systems

In Section 3.4.1 the DG treatment of second-order operators proposed by Bassi-Rebay

is given. Then, in Section 3.4.2 dual-consistency analysis is carried out for boundary

terms arising from the formulation and functional. Subsequently, the interior terms

are examined in Section 3.4.3.

Let Q denote the domain of interest and consider u E [H1 (Q)]m a weak solution

to the following m-component second-order system,

V -(A,(u)Vu) = 0, x E Q, (3.44)

with A,(u) the coefficient matrix, subject to Dirichlet and Neumann boundary con-

ditions:

{ D(ulan, BC) =0, x E ,

N(fi -A.(u)Vulan, BC) = 0, x E &Q,

where D(., BC) : [Hi/2 (aQ) m - [H1/ 2 (3Q)] m and N(.,BC) : [H-1/2(Q) m

[L2 (DQ)] m are boundary operators. Consider outputs of interest of the following

general form,

J(u, Vu) j [Jj(u) + J 1(fi -AVu)] ds, (3.45)
routput

where Jr(.) : [L2 (aQ)]m -* R, J11(.) : [H-1 /2 (aQ)] m -+ R are bounded functionals.

Via the prescription given in Section 3.1 and integration by parts, it can be shown

that the corresponding adjoint state E G [Hl(Q)]m solves the following PDE in the
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weak sense,

ATV ) - (Av'Vu)T - V =0, x E . (3.46)

Adjoint boundary condition are obtained by examining the permissible boundary

variations. Dirichlet BCs on |an E [H 1/2 (O) are obtained from the primal

boundary flux variations: Vii E [H-1/2(aQ)]

I IT/Ods = fDQrutu
(3.47)

and Robin BCs are obtained from the permissible state variations: Vi6 G [Hei/2(QQ)]

- I -i(i A VO) ds + f(n- A I'[u](6)Vu) T #bds f
JaJfroutput

Jj[u] (i)ds,(3.48)

where the homogeneous trace spaces are defined as,

HO1/2(Q)l M ={fi E [H 1/2 (9Q)] m : D'[ula, BC](6l) = 01,

[HJ1/2(8Q)lr= {i E [H- 1/ 2 (Q)] m : N'[f -A.Vula, BC](f) = 0}.

The variational characterizations (3.47) and (3.48) imply that the corresponding ad-

joint BCs are satisfied almost everywhere on the boundary.

3.4.1 DG discretization

The viscous terms are treated using the second form of Bassi and Rebay (BR2) [9]

discretization. The notations [-], {-} are used to denote jump and average operators

on interior faces,

s] s+n+ +s-f, {0 1I ( ± +
2
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where s is a scalar quantity and (p is a vector quantity. The semilinear form for the

discretization of (3.44) is given by:

Rh(uh, vh) - V'- (A(uh)Vuh)dx

+j (u&]. {AI(uh)T Vvh} + [vh1I {A(u )Vuh}ds

- j f[VhT- {}ds - (ub - u+)T (fi. Av(ub)T Vv )ds

+ j VFh (n- A(u5)Vug -h n- 6f) ds, (3.50)

where qf is a stabilization parameter, 6f and f are auxiliary variables associated

with interior and boundary faces, defined by the following weak statements: find

6 f E [Vh]2 such that V-rh C [VP]2,

/rJ -ip o6 dx = J[uhT- {A(u)frh} ds, (3.51)

and 6E [V] 2 such that

j .3 bdx J (u+ -ub) T[f_ -(u) T -r% ] ds, (3.52)

where o-f denotes the face indexed by f. Neumann BCs are set via a boundary flux

map F'(-, BCData) : O(VVhp) -+ 8(VV[) on the space of gradient traces.

3.4.2 Boundary treatment

In the present setting, because the DG trace space on the boundary is discontinu-

ous and hence does not have the required regularity to lie in [H1/ 2 (-Q)] m, (3.32)

of Assumption 3 no longer holds. However, as before the boundary state map

u (., BCData) is assumed to satisfy the correspondence assumption of (4) with the

boundary operator D(., BC). Analogously, the boundary flux map Fb(., BCData) is

assumed to be extendable to [H-1/2(1) ]m so as to satisfy the following correspon-

dence with N(., BC).
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Assumption 5 The set of boundary fluxes satisfying Neumann BC are a fixed points

of the map:

N(n -AvVulan, BC) = 0 = F (ii AoVulaq, BCData) = n -AVVulaQ. (3.53)

Furthermore,

{Vv+ E a(VVhP) Vv = Vv c [H-1/2(8) . (3.54)

Here, we consider the following form of discrete output:

Jh(Uh, VUh) [jI(Ub(U+)) ± J (F(fn -AvVu+ - 1fi -, _b))] ds.

To obtain the boundary contribution to the discrete adjoint residual, the expression

for the BR2 semilinear form is first rewritten via integration by parts. Evaluating u,

b in the discrete adjoint residual together with the fact that on a continuous primal

state 6b, = 0, gives the following expressions involving vZ and Vv+ respectively:

V+ [ -]) T ATVds

([ ] ii -A'[u ([u] V u ds

±+ j F v+ - (r n -o&d")ds - Jj[u]
VFV .AV+ \d

Vvt : jnT E AFvV d

where -J [n A (Ku] n -AvVvt) ds,
fq Ti' 6bbduu -d - h L &

-output h oF h

ri' - fij- dx = I - ] [n -A v+ n d Arsd.

v+ ds,

(3.56)
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It remains to check whether the above vanish for all traces of test functions and its

gradients in the respective discrete spaces, vt E aV' and Vvt C (VV ). Firstly,

note that obgd" = 0 by the Dirichlet condition (3.47) on 4, and the inclusion relation

(3.54), hence has a zero contribution to the residual expression involving v+. Also,

the discrete adjoint equations are trivially satisfied for vh E aVhp\&Vh'" and Vv E

a(VV[)\a(VVh[) 0 . Otherwise, using the adjoint BCs (3.47) and (3.48) on 4 it follows

that all boundary terms vanish as well. Thus, the discrete formulation and functional

(3.55) constitute a dual-consistent treatment. The above analysis also shows the

importance of including bb in the output (3.55): without it, 6b' d" as defined in (3.56)

is non-zero in general and therefore constitutes a non-vanishing error term.

3.4.3 Interior treatment

To study the dual-consistency of interior treatment, a stronger regularity assumption

of u, ip E [H2 (Q)]' is made, as is done in Arnold et al. [6]. For the case that the

coefficient matrix has no u dependence, A, = A, (x), dual-consistency of BR2 scheme

follows from the analysis carried out in [6]. Hence, it remains to examine only the u

dependent contribution of the coefficient matrix. Firstly, since u is continuous across

element faces, the contribution arising from the auxiliary variable 6f is zero. The

remaining terms are,

- E (A' [u](v)Vuf V dx
KETh

+ j (u]T- {,[u](vh)TV } + q]T - {A[u](vh)Vu}) .ds (3.57)

where the first term is dual-consistent and the remaining terms involving [u], [01 are

both zero as a result of the regularity assumption. To conclude, the BR2 scheme is

shown to be dual-consistent for the nonlinear second-order system of the form (3.44),

irrespective of the the stabilization parameter r/f.
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3.5 Computational demonstrations

In this section, the general analysis carried out in the previous sections is verified

via numerical experiments. In particular, the effect of dual-consistency arising from

different boundary treatments is demonstrated. This is first done in Section 3.5.1 for

the case of inviscid Euler equations, followed by Section 3.5.2 with the inclusion of

viscous terms in the compressible Navier-Stokes equations.

3.5.1 Inviscid Euler equations

For 2D Euler's flow equations the conservative state u is given by,

P

Pu

Pv

pE

and the expression for the fluxes F = [F', FY] are,

Pu Pv

pu2 + p puv

Puv pv2 + p

puH pvH

The total enthalpy is given by H = E + p/p and the pressure given by

p = (-Y - 1) pE - 1p (U2 + V2)

Discrete adjoint regularity

The implication of boundary treatment for discrete adjoint solution behavior is demon-

strated here for a smooth, subsonic Euler flow test case. A standard DG formulation

using Roe flux function is used on uniformly-spaced grids of 587, 2325 and 9169 el-
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ements with q = 4 boundary representation [67] to discretize a 2D, M, = 0.5 duct

flow over a Gaussian-shaped bump. The flow domain is described as:

Q = (x, y) E (-6, 6) x (0, 6) : y > Ie 2x2. (3.58)

As the output of interest, a weighted lift on the bump surface of the duct is used:

f~~u) = nyp(u)e- ds, (.9
J(U) = Jc[-6,61, y=ie-2x2 nPUe2d,(3.59)

where the Gaussian weight is used to localize the output around the bump portion

of the channel. On the inflow boundary the total pressure and temperature are

prescribed and at the outflow boundary the pressure is prescribed. At the duct walls,

the flow-tangency condition is set. To impose the boundary conditions and compute

outputs in a dual-consistent manner, the functional form (3.35) is used. Figure 3-1

shows the x-momentum component of the discrete adjoint solution, g0(2), computed

using p = 3 interpolation on the fine mesh. As an example of boundary treatments

that are dual-inconsistent, consider evaluating u' in the following:

'H'(-) = H(-, u'(-, BCData),fn),

3h(-) = loutput J(.)ds. (3.60)

In this case, both the boundary flux and output has explicit dependence on u+ rather

than purely through ub as the analysis requires. As Figure 3-2 shows, the resulting

discrete adjoint using the same mesh and solution order has significant irregularity

near the domain boundary, as well as large pollution error in the whole domain.

Consider also a "conservative" but dual-inconsistent treatment described previously

whose functional form is given by expression (3.40). As Figure 3-3 shows, in this

case the discrete adjoint solution similarly has spurious irregularity near the domain

boundary.
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Figure 3-1: Adjoint behavior: dual-consistent
Inviscid Euler flow over Gaussian bump, M,

boundary treatment using only ub(u+).

/ I

Figure 3-2:
and ub(u ).

Adjoint behavior: dual-inconsistent boundary treatment using both u+

Inviscid Euler flow over Gaussian bump, M, = 0.5.
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Figure 3-3: Adjoint behavior: conservative but dual-inconsistent boundary treatment

based on numerical flux function. Inviscid Euler flow over Gaussian bump, M, = 0.5.
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Output convergence

Here, output convergence for the previously described duct flow test case is examined.

The "truth" solution is taken to be the p = 5 result on the fine, 9169 element mesh.

For the computational result shown in Figure 3-4, the dual-consistent treatment given

in (3.35) is used. It is shown that at least for p = 1 and p = 2 solutions, the boundary

output converges at the superconvergent rate of O(h2p+1) which is significantly higher

than the O(hP+1) rate achieved for the L 2(Q) norm of the solution error for smooth

cases. For the p = 3 case, the convergence rate does not attain the expected value of

O(h2p+1). This may be due to a number of reasons. Firstly, the boundary is repre-

sented using q = 4 interpolation and it may be that higher order is necessary to attain

the full convergence rate. Secondly, there may be insufficient smoothness in either the

flow or adjoint solution (possibly arising from the four corners of the channel), thereby

hindering the expected superconvergence. For comparison, the output convergence

using the dual-inconsistent boundary treatment (3.60) is given in Figure 3-5. The

"true" output is the same as that used in the dual-consistent convergence plot of Fig-

ure 3-4. However, the plot is virtually indistinguishable if instead, the "true" output

is taken to be the dual-inconsistent result using p = 5 interpolation on the same 9169

element mesh. It turns out that the error arising from dual-inconsistency for p = 1

to p = 3 solutions are simply significantly larger than corresponding output discrep-

ancies on the p = 5 solution. In the dual-inconsistent case the output convergence

rate obtained from the p = 1 solution appears to be only second-order. Furthermore,

within the range of mesh refinements examined degradation in convergence becomes

more significant at higher-orders. In fact, a conclusion that might be drawn for this

dual-inconsistent treatment is that, for the purpose of obtaining accurate functional

outputs, the benefit of higher-order is dubious. Consider also the conservative func-

tional treatment given by expression (3.40), whose convergence is given in Figure 3-6.

Comparison with Figure 3-5 shows that with this choice of flux-based functional the

convergence of outputs are significantly better. Nevertheless, the full superconvergent

rate of O(h2p+1) is not achieved. Instead, it appears that the convergence rate is only
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Figure 3-4: Output convergence: dual-consistent boundary treatment using only

ub(ul). Inviscid Euler flow over Gaussian bump, Moo = 0.5.

0(hP+1 ) (at least for p = 1 and p = 2 solutions). Thus, the overall conclusion is that

to attain the best convergence rate the functional should be not only conservative

but satisfy dual-consistency as well.
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Lift error
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3-5: Output convergence: dual-inconsistent boundary treatn

u6 (u+). Inviscid Euler flow over Gaussian bump, M, = 0.5.

Lift error
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Figure 3-6: Output convergence: conservative but dual-inconsistent boundary treat-

ment based on numerical flux function. Inviscid Euler flow over Gaussian bump,

mo = 0.5.
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3.5.2 Compressible Navier-Stokes equations

Here, the x- and y-components of the viscous flux contribution are given respectively

by,

0

i -A,(u)Vu =

2

j-A,(u)Vu

p (u) (2) -9 a)

p(u)(, + 2)

)u + p (u)( + 2)v + r,(u) a'

0

p(u)(N + )9

pt(u)(2 - )

(u)(2 - V + (u)( + )u +±

where n(u) is the thermal conductivity

r,(u) = c, p-t(U),Pr

Pr the Prandtl number, cv the specific heat at constant volume and p(u)

dynamic viscosity, determined via Sutherland's law:

To+S (T 3/2
p(u) = po-TS To

(3.61)

is the

(3.62)

where yo, To are free-stream temperature and viscosity, S the Sutherland's constant.

Discrete adjoint regularity

The implication of boundary treatment in the discretization of second-order operators

is demonstrated here for a subsonic, compressible Navier-Stokes test case. In addition

to the standard treatment of inviscid terms, the BR2 discretization of viscous contri-

butions as described in Section 3.4.1 is used to approximate a Mac = 0.5, Re = 5000

laminar flow over a NACA 0012 airfoil at angle of attack o = 2'. The results shown

here are obtained using structured grids containing 672, 2688, and 10752 elements
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with q = 3 boundary representation generated by Oliver [67] from a baseline grid pro-

vided by Swanson [73]. The finest, 10752 element mesh used in the following results

is shown in Figure 3-7. The airfoil surface is analytically defined as

y = t0.6(0.2969V7 - 0.1260x - 0.3516x 2 + 0.2843x 3 - 0.1036x 4 ), x E [0, 1].

On the airfoil surface, the Dirichlet boundary condition of zero velocity together

with the Neumann condition of adiabatic wall are set. On the inflow boundary, the

Dirichlet conditions consist of prescribing the total temperature and pressure together

with the flow angle. On the outflow boundary, the Dirichlet condition of prescribing

the static pressure together with the Neumann condition of zero viscous momentum

fluxes are set. The drag functional output is of the generic form (3.45) where Ji(u),

J(ii - AVu) consist of the pressure and viscous stress contributions respectively.

As the previous analysis shows, dual-consistent treatment of the discrete functional

is of the form given in (3.55). Figure 3-8 shows the corresponding discrete adjoint

solution behavior. As an example of dual-inconsistent boundary treatment, consider

the following form of discrete functional where the auxiliary variable contributions

are ignored:

Jh(Uh, Vuh) [Ji(u'(u+)) + JI(Fb (n . AvVu+))] ds. (3.63)
routput

The top plot of Figure 3-9 shows the first component of the adjoint solution around

the leading edge of the airfoil computed using p = 3 interpoluation on the fine, 10752

element mesh. As can be clearly seen, the resulting discrete adjoint has an irregular

layer in the elements lying on the boundary. Furthermore, the error stemming from

boundary treatment results in significant pollution error around the mid-section of

the airfoil as can be seen by comparing Figure 3-8 and the bottom plot of Figure 3-9.

The plots clearly demonstrate the need to include the stabilization contribution 6f

in the functional even when fine meshes and high-order interpolations are used.
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Figure 3-7: Fine NACA 0012 grid, 10752 elements.
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Figure 3-8: Adjoint behavior: dual-consistent treatment with the inclusion of 6 in
functional. Laminar flow over NACA 0012 airfoil, Mc = 0.5, Re = 5000, a = 2.00.
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(a) Leading edge close-up

(b) Full view

Figure 3-9: Adjoint behavior: dual-inconsistent treatment without the inclusion of 6b

in functional. Laminar flow over NACA 0012 airfoil, Mo = 0.5, Re = 5000, a = 2.0'.
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Output convergence

Here, output convergence for the previously described functional implementations

are compared to study the effect of solution post-processing. Figure 3-10 shows the

drag convergence on the NACA 0012 airfoil using the dual-consistent functional. A

sequence of p = 1 to p = 3 solutions are compared to the "truth" solution taken

to be the p = 4 result on the fine, 10752 element mesh. Here, the line-fit through

p = 1 result matches the expected 0(h 2P) rate while the p = 2 result is somewhat

better than expected. The p = 3 result does not attain the full expected rate of

0(h') in going from the medium to fine mesh; this may possibly due to the lack

of flow or adjoint solution regularity near the trailing edge. Figure 3-11 shows the

drag convergence using the above described dual-inconsistent functional. Again, the

"truth" value is the same as that used for Figure 3-10, although the plot is virtually

indistinguishable if the dual-inconsistent output is used instead. In comparison, the

p = 1 rate is significantly regraded especially as the mesh is refined. The p = 2 rate

is less affected, but nevertheless the convergence line is shifted upwards. The p = 3

convergence is clearly quite erratic. In fact, the error on the dual-consistent drag for

the p = 2 solution on the fine, 10752 element mesh is smaller by a factor of 5 than

that of using an inconsistent functional to post-process the p = 3 solution on the

same mesh. Hence, it is important to use dual-consistent solution post-processing to

fully benefit from the use of high-order solution.
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Figure 3-10: Drag convergence: dual-consistent treatment with the inclusion of o in

functional. Laminar flow over NACA 0012 airfoil, Moo = 0.5, Re = 5000, a = 2.0'.
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Figure 3-11: Drag convergence: dual-inconsistent treatment without 6b in functional.

Laminar flow over NACA 0012 airfoil, M.. = 0.5, Re = 5000, a = 2.00.
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Chapter 4

Error estimation and adaptation

4.1 Background

Again consider the general setting introduced in Chapter 3: let u E V be a weak

solution to

F(u) = 0, (4.1)

where F : V -+ W' is a differential operator mapping V to W'. Let J(.) : u E V - R

be a general nonlinear functional of interest. The goal of this chapter is to derive

general error estimates for functional outputs using DG approximations of the under-

lying PDE (4.1), with specific results pertaining to the inviscid Euler and compressible

Navier-Stokes equations. In the context of DG discretization for first-order hyper-

bolic systems, duality-based analysis has been carried out by Hartmann and Houston

[40], Barth [8], Giles and Sili [33]. For second-order differential systems, the same

analysis has been applied to the advection-diffusion-reaction [39] and compressible

Navier-Stokes equations [41] using the symmetric interior penalty discretization of

the diffusive operator. Common in the analysis is the use of consistency of the DG

scheme, that is u of (4.1) satisfies the finite-dimensional weak statement:

RH(U,VH) = 0, VVH EVH, (4.2)
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where RH(-, -) : V x i --+ R is the mesh-dependent DG semilinear form (linear in

the second argument) and VHP is the element-wise polynomial function space on the

(coarse) working mesh. Assume the functional J(-) may be extended to be defined

on Vji as well. The error in the value of the functional output may be written in the

following manner:

J(U) - J(UH) j [OU + (I - 0)UH (U - UH)dO,

J(U, UHU -uH) (4-3)

where the mean-value linearization 7 is introduced, which is linear in the last argu-

ment. Similarly, the DG semilinear form may be written as:

RH (U, V) - RH(UH,v) ] [Ou + (1 - O)UH(U - UH,v)dO

RH(, UH; U - UH, V)- (4.4)

Let g, denote the dual state for the mean-value linearized functional and DG semi-

linear form,

RH (U, UH ; V, V) = J(u, UH; V), VV E V, (4.5)

then it may be shown that the error in the output is given by:

3(U) - 3(UH) = -RH(UH,$ - ?PH)- (4.6)

Since the exact primal solution u in (4.5) is unknown, in practice some approxima-

tion has to be made for the mean-value linearization. Hartmann et al. employs the

straightforward strategy of replacing the mean-value linearizations with linearizing at

UH. Barth [8] employs both this method and the more involved technique of replac-

ing path integration in the definition of RH, j with numerical quadrature between

the working approximation and a higher-order approximation obtained via interpola-

tion. Although these approximation approaches have been demonstrated, there does
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not appear to be conclusive evidence indicating the advantage of one over the other.

Also needed in the expression (4.6) is an approximation to the adjoint solution Vz.

Hartmann et al. computes a more refined approximation to the adjoint by using a

solution order that is globally one polynomial degree higher but on the same underly-

ing mesh. In the context of Godunov finite volume methods, Barth [8] examined the

use of adjoint approximation via reconstructive interpolation on a test case using 2D

linear advection equation for which analytical expressions for the adjoint solutions

are available. Using various surface and volume integral functionals, the accuracy

provided by the reconstructed adjoint closely matche that of the analytical adjoint

solution and in most cases provide a better approximation than the original, working

adjoint approximation with regard to the error estimate obtained.

4.2 Optimal control framework

The expression for the error estimator given in (4.6) involves only the residual of the

primal problem but not the dual. However, it would appear that adapting on both the

primal and dual residuals should be advantageous with respect to the robustness of

the procedure [83]. The optimal control framework to error estimation for functional

output introduced by Rannacher et al. is formulated by the introduction of a La-

grangian functional [13, 7]. Using this framework, an error estimator involving both

the primal and dual residuals naturally arises. The framework has been applied to a

wide variety of problems discretized with conforming finite element methods. Here,

it is applied to DG discretization of inviscid Euler and compressible Navier-Stokes

equations. The present analysis is carried out by considering a working approxima-

tion space VHi and a refined space Vhp, such that the inclusion relation VHi C V[ holds.

The corresponding approximate solutions UH E VH, Uh E VhP satisfy respectively,

RH(UH, VH) = 0, VVH E ,

Rh(uh, Vh) = 0, VVhCVh- (4.7)
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To apply the optimal-control framework of error estimation, we consider the situation

where the coarse and fine semilinear forms are equivalent on the coarse space:

RH (UH, VH) = Rh (UH, VH), VUH, VH E V. (4.8)

Similarly, the functionals of interest are also assumed to satisfy the coarse space

equivalence:

JH(UH) = Jh(uH), VUH E VH. (4.9)

The conditions (4.8) and (4.9) are satisfied by almost all DG schemes when the

fine mesh is obtained by increasing the solution order while keeping the underlying

triangulation fixed. Introduce the Lagrangian functional Lh(-, -) on V x V :

Lh(Vh, 'Ph) Jh(Vh) - Rh(Vh, 'Ph), VVh, Wh E Vh. (4.10)

Using properties (4.8) and (4.9) in the residual equations (4.7) defining UH and Uh,

the outputs JH(UH) and Jh(Uh) are the values of h(-, -) at stationary points in the

spaces Vf and Vh[ respectively. Using error representation of the following form,

f(t)dt = (f (0) + f (1)) + - s(s - 1) x f"(s)ds, (4.11)

it may be shown that the difference in the outputs obtained from Uh and UH consists

of weighted primal and dual residuals plus a remainder term R( 3 ) that is cubic in the

primal and adjoint state errors [13, 7]:

1
Jh(Uh)-Jh(UH) - -Rh(UH ,'bh-H)

+Jh[UH(Uh - VH) - R'[UH(Uh - VH<,1H)

+R(3) ,V 4 H,VH E VHk, (4.12)
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where Galerkin orthogonality permits any choice of OH, VH E VHT in the estimator.

Since the remainder term R(') is of higher order in comparison to terms of (4.12) in

the curly braces, throughout this work only the latter is used in error estimation and

adaptation procedures.

4.3 Higher-order reconstruction

The expression (4.12) involves unavailable fine mesh solutions, uh, #bh. One way

to obtain estimates for these fine mesh solutions is to perform reconstructive post-

processing on the coarse mesh solutions UH, 'lH. This class of procedures can be

motivated with the observation that since the output error estimator holds for all

H, VH E VHf, an equivalent expression for the terms in the curly brackets is:

1
inf -IRh(uH , h ~$H)

pHV 24H OH
1

+ inf -1 (J[uH](uh -- VH) - Rh uH (uh - VH, 4 'H)) (4.13)
VHEVP 2h

HH

This shows that in the expression for the estimator, primal and dual residuals are

weighted by quantities that estimate the lack of ability of the coarse mesh function

space to interpolate fine mesh dual and primal states respectively. Thus, patch-wise

least-squares reconstruction procedures could be used to estimate these approxima-

tion properties. Although there may be situations where reconstructive procedures do

not capture interpolative error to a sufficient accuracy, there has been demonstrated

success in applying these reconstruction techniques for the estimation of functional

outputs. For practical cases using finite element methods with linear interpolation

and quadratic reconstruction, Rannacher et at. have observed that the quality of the

resulting estimates are satisfactory with the effectivity index, defined as the estimated

to true error, typically in the range of ef f 1.2 ~ 3 [74].

In the current work, the fine mesh is obtained from the working mesh by increasing

the solution order P but keeping the underlying triangulation fixed. Let K be an

element for which high-order reconstruction is desired, and let Nf(K) be a patch of
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neighboring elements surrounding ,. Given the coarse mesh solution UH, the increased

order flow state estimate 6H on r, is given by:

UHK= argl 1 min IIH - UHIIL 2 (A((K))- (4.14)
VHEH((r)

The same procedure is applied to obtain fine mesh adjoint estimate, 'IH. Similar

recovery techniques are widely used in output error estimation and control [74, 84, 8].

For each element K, the above results in a local system of normal equations that may

be solved by direct methods.

4.4 Localization

The error estimator (4.12) for DG discretizations consists of a sum over elements of

area and surface integrals involving primal/dual state errors. Hence, it is natural to

consider local error indicators that are simply inner products of the discrete residuals

weighted by the corresponding elemental state errors. Here, results are given in the

general setting assuming only the inclusion relation of the finite element spaces,

)Pj c V, (4.15)

rather than restricting to the case of increasing only the order of the interpolation as

done in the expression (4.14).

4.4.1 First-order conservation laws

For the simplicity of presentation, the analysis is presented only for the case where

the functional is an integral over some portion of the domain boundary: Jh --

f1. J(u)ds, Futput C &Q. For the primal problem, the fine mesh DG semilin-

ear form (3.3.1) can be written as a sum of elemental contributions with each term
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involving the test function supported on the element of interest:

Rh(uh, vh) = Rh(uh, Vh I),
I.6ETh

Rh(uh, VhIK) = j VvT - F(uh)dx + v T(uu, u,)ds
fr j f as\an

+ v nTf - -F(u '(u ))ds.
Jannan

For the dual problem, the linearized fine mesh DG bilinear form may be similarly

written as the sum R'[uhl(vh, ?Ph) - , R'[uh] (h, h), where

T __ +
FUhVhdX + -P) ±(vh )dsR' [Uhl(vh I, h) --- u hd h h TO +h

K aK\an h

± j 4TfiF[Ub (U+)](OUh Vh)ds. (4.18)
annan B

The above expansions show that the estimator expression (4.12) may naturally be

written as a sum over elements of primal and dual residual contributions. From the

inclusion assumption (4.15), any element in the coarse space K E TH may be written

as a sum over fine mesh elements:

(4.19)
K= U ', U ' Th.

K'CK

It follows that UH and PH are continuous across OK'\1K. The local error indicator

on a coarse element K may be written as a sum of two contributions p = + "

where:

r - (j V ('Oh - "H T . F(uH)dx ~ Jh~_ + T
1 +Hu, uHH

K IIK K ,a
- j (p - -+ (urn))ds, (4.20)

hJH naH
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and

du H'~ fF '[uH (h - UH) dx

- _-F 7 ) ( [+ - u+)) ds
- H T HU -H+

aun+ h .

± aj nar+uu(uH - u+H ) s' (2 )

As a practical note, the elemental error indicators (4.20), (4.21) are not computed via

approximating the respective volume and surface integrals. Instead, the expressions

are equivalently evaluated in an algebraic manner by taking the Euclidean inner

product of the residual vectors with the degrees of freedoms representing the state

error as suggested by the decomposition (4.16). This is analogous to the form of the

local error indicator used in the works of Venditti and Darmofal where the expression

consists of vector inner products of the discrete residuals with the state error degrees

of freedom [83, 84].

To further elucidate the role of adjoint state as the output sensitivity to the

consistency error of the discrete solution uH for the differential operator, expression

(4.20) may be integrated by parts and use flux consistency 2H(UH, UH, fi) = fi' F(UH)

to yield:

~pr - z ~p)vF(UH~dx)

- - g) T (7( - fii -F)ds

+ 'ip+) T fj [_,F(U5 (U+)) - F(u+)] ds. (.2

The first line of (4.22) gives the adjoint solution its interpretation as a Lagrange

multiplier to the primal differential operator. The second line may be similarly inter-

preted but now with generalized flux derivative arising from flow discontinuity across

elements. The term on Or, n 80in the last line can be better understood via linear
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analysis. Assuming [B] : (.) -- ub(.) to be a linear projective mapping of boundary

states and making linear approximation of the flux, obtain:

dLF
F(ub(u+)) - F(u+) ([B]u - u), (4.23)du

which is zero for the component of u+ that lies in the range of [B]. This shows that

the only non-zero contribution from the last line of (4.22) comes from the component

of u+ which lies in the null space of [B]; the component of u+ in range([B]) results

in no contribution. Thus the error contribution from the sides of element r lying on

the domain boundary 9Q consists only of flux consistency error of the interior state

with the prescribed boundary data. The multiplication of the adjoint state with the

flux error is in contrast to the resulting expression in the case of strong enforcement

of boundary condition where the adjoint states takes on a different character on

the boundary as the Lagrange multiplier to the boundary condition. Similar result

holds for the adjoint error estimator (4.21) supported on oQ. In this case, only the

component of i - u+ in range([B]) gives rise to a non-trivial contribution; the

component of the state error in null([B]) does not contribute. This is consistent with

the fact that adjoint boundary condition is prescribed via the flux for the space of

test functions in range([B]) but allowed to be free otherwise.

4.4.2 Second-order systems

In a manner similar to that carried out for expression (4.22), integrating by parts on

the BR2 semilinear form (3.50) together with manipulations detailed in Appendix B

show that the primal residual contribution to the local error indicator takes the form,

Pr= - (E I h -- PH)V* (A(uH)VuH)dx

1 ~+
+ j N)huH T +) T (UH) VUH + 2qif {6 f ) ds

2 a(\(-
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- ( - +)T [F(fi -Av (u' )Vu+ - fi - 6') - i. A(u+)Vu ] ds

+ (u - u+)T [-i( - /i+H d'(4.24)

where the abbreviation ub ub(u+) is used. The volume term on the first line

measures the consistency error with respect to the underlying differential operator

weighted by an estimate of the adjoint error. Similarly, the second line measures

error arising from the jump of viscous flux across element interfaces. The third line

measures conformity error arising from discontinuities in the state which is weighted

by the gradient in the adjoint error. The last two lines are analogous to the previous

interior boundary terms, except that only the errors with respect to the imposed

viscous flux and boundary state data are measured. The dual residual contribution

to the local error indicator may be similarly derived, shown in detail in Section B.2

of Appendix B. For the simplicity of presentation, the resulting expression is shown

here only for the case where the coefficient matrix is state-independent, A, = A, (x).

For terms arising from the state-dependency A, = Av(u), refer to Section B.2.2 of

Appendix B. Given a coarse mesh element r- c TH, the dual local error estimator is:

- (~ ~ii~ UH)TV (7'VV H)dx)

+i =~ j (i -- uH T ~V4 H ± 2 fi

+ j (6 - u+ir HiJ fi

+ j ( (n - u+)T H +H+2 ~ sf d

2Jannon Bu+H

+ fj~uIT] (n 1 - ui)))

+. (Fu -V5- "-l [UF [u - A(( - u+H d

+ ~~ ~ J+~n A uh -H s.(.5
OKnroutputI H
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Many of the terms of the dual error indicator have analogues to the primal expression

(4.24). The first volume term measure the consistency error with respect to the

adjoint differential operator (3.46), weighted by an estimate of the state error. The

second line also measures consistency error but for the jump of adjoint viscous flux

across element interfaces, where the auxiliary variable 6d, is defined in (B.6). The

third line measures the conforming error of the adjoint solution where the interelement

jumps are weighted by gradient of the primal solution. The boundary terms of lines

4-5 measure consistency error for the adjoint Neumann boundary conditions (3.48),

measured only for the component of the primal state error in the range of the linearized

boundary state mapping, [Bu /au']. Line 6 has no correspondence in the primal

expression (4.24), which from the definition of obd" given in (B.7) is only non-zero if

the adjoint approximation does not satisfy the Dirichlet boundary condition (3.47).

The last two lines measures the adjoint consistency error for the Dirichlet boundary

condition (3.47), weighted by the component of the primal flux error in the range of

4.5 Adaptation strategy

For a given choice of local error indicator, there are several possibilities for mesh adap-

tation criterion. These include [33, 7]: error-balancing strategy, where elements are

marked for refinement if the local error contribution is larger than some desired toler-

ance divided by the total number of elements; mesh-optimization strategy, where one

seeks to minimize the number of elements subject to meeting some desired error tol-

erance; fixed-fraction strategy, where a fixed fraction of the total number of elements

are refined or coarsened according to the ordered size of the error contribution.

Carrying out mesh adaptation within the context of optimization, it is reasonable

to choose an adaptation criterion such that the precision estimate of the subsequent

approximation model is a certain fraction of that for the current model. Hence, the

fixed-error-reduction strategy as described in [7] is a natural choice and is adopted

throughout the thesis. Let E denote the error reduction desired at each adaptation
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iteration. The total number of elements naTt are ordered by the size of the local error

contribution so that 17, > 1 I1 ... - - | 1 and the number n* is determined such

that the partial sum of the absolute value of the error contribution up to element

number n* is E fraction of the total:

n* nTot

|g |~E x | |.(4.26)
i=1 i=1

Subsequently, the elements r,1, - , in- are marked for refinement. In the current

work, refinement is done only by increasing the order of interpolation by 1.

4.6 Results

Inviscid test case

In this section, error estimation for smooth solutions to the inviscid Euler equations

is demonstrated. In particular, the test case involves a Mo = 0.5 subsonic flow

over Gaussian-shaped bump as described in Section 3.5.1. The effectivity of the error

estimator for the weighted lift output (3.59) is investigated for p = 1 to p = 3 solutions

on a sequence of uniformly refined meshes containing 587, 2325 and 9169 elements.

Figure 4-1 shows the result obtained using the dual-consistent treatment, for which

the output convergence is given in Figure 3-4. It can be seen that the effectivity for

the estimate is close to 1 for all solution orders and mesh sizes.

The results for the two forms of dual-inconsistent boundary treatments are shown

in Figure 4-2 and 4-3 respectively. It can be seen that there is significantly more

uncertainty in the error estimates. This is partly due to the fact that the discrete

adjoint solution has strong, mesh depedent irregularities and thus rendering higher-

order reconstruction for the adjoint ineffective.
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Figure 4-1: Error estimate: dual-consistent boundary treatment using only ub(u ).

Inviscid Euler flow over Gaussian bump, M, = 0.5.

Lift error

0

CU)

W

1.4 1.5 1.6 1.7 1.8 1.9 2
1/2 x Logl (Num. elements)

Figure 4-2: Error estimate: dual-inconsistent boundary treatment using both uZ and

u6(u+). Inviscid Euler flow over Gaussian bump, M, = 0.5.
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Figure 4-3: Error estimate: conservative but dual-inconsistent boundary treatment
based on numerical flux function. Inviscid Euler flow over Gaussian bump, Moo = 0.5.

88



Viscous test case

The test case considered is a NACA 0012 airfoil in subsonic, laminar flow with free-

stream Mach number Moo = 0.5, Reynolds number Re = 5000 and angle of attack

a = 2.00 as used in Section 3.5.2. The p-adaptation is based on the drag output with

error reduction parameter E = 0.75, performed on a mesh containing 2688 elements

and initiated with a uniform p = 1 solution. The "true" drag is taken to be the

p = 4 result on a finer, 10752 element mesh also used in Section 3.5.2. As Figure 4-4

shows, within the range of order refinement the drag converges exponentially in the

degrees of freedom. On the sequence of output-adapted meshes, the effectivity index

for the estimator (4.12) based on higher-order reconstruction is centered around 0.8

and is bounded below and above by 0.6 and 1.5 respectively. As Figure 4-7 shows,

output-based adaptation gives rise to high order (p = 4) interpolation being used at

the trailing edge, in the wake of the airfoil and upstream of the stagnation point.

This is consistent with the presense of significant flow solution gradient in the wake,

a localized region of sharp change in 4P(3) at the airfoil trailing edge and an elongated

layer in the adjoint solution emanating out of the stagnation point, as shown in Figure

4-5. To demonstrate the effect of p-adaptation on the flow solution, in Figure 4.6 the

Mach contour is plotted for the original, uniform p = 1 solution as well as the last

adaptive iteration.

The dual-consistency of the boundary treatment goes towards contributing to the

monotonicity of error convergence shown in Figure 4-4. This can be demonstrated by

comparison with adaptation result obtained using a dual-inconsistent form of func-

tional without the penalty parameter 6 b, for which the lack of adjoint regularity is

shown in Section 3.5.2. The resulting output convergence and the effectivity of error

estimate is shown in Figure 4-8. In contrast to the result shown in Figure 4-4, the

output error initially increases as the solution order is refined. Furthermore, due to

the discrete adjoint irregularity introduced, adaptation results in significantly refined

solution orders for elements lying on the airfoil boundary, shown in Figure 4-9 for

the leading edge close-up. This result is in agreement with the computational re-
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Figure 4-4: p-adaptation for drag: output convergence and error estimate. NACA
0012 airfoil. Moo = 0.5, Re = 5000, a = 2.0'.
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Figure 4-5: Contour plots of drag adjoint solution. NACA 0012 airfoil, Mo =

0.5, Re = 5000, a = 2.00.
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Figure 4-7: Adapted solution orders: p=1 to p=4. NACA 0012 airfoil, Mac =

0.5, Re = 5000, a = 2.0'.
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Figure 4-8: p-adaptation for drag using dual-inconsistent treatment: output conver-
gence and error estimate. NACA 0012 airfoil. Moo = 0.5, Re = 5000, a = 2.00.

sults of Hartmann and Houston [40] in the context of h-adaptation for inviscid Euler

equations, where the irregularity in the discrete adjoint solution (introduced by the

boundary treatment) leads to small mesh sizes near the airfoil surface. To conclude:

by ensuring dual-consistency, the error in the output can be effectively controlled

without requiring significant refinement at the boundary.
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(a) Dual-consistent functional treatment

(b) Dual-inconsistent functional treatment

Figure 4-9: Comparison of adapted solution orders near leading edge, showing p = 4

being utilized for region near the airfoil in the dual-inconsistent case. NACA 0012
airfoil, Moo = 0.5, Re = 5000, a = 2.0'.
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Chapter 5

Concurrent flow-adjoint solution

5.1 Introduction

This chapter is concerned with the development of computational tools enabling the

estimation of output error due to incomplete solution iteration, within the frame-

work of adaptive precision methodology discussed in Chapter 2. In particular, an

adjoint solution strategy is developed in which dual approximations are iterated at

the same time as the nonlinear primal problem. For the proposed error estimation

approach to be computationally viable in analysis and design settings, the result-

ing concurrent flow-adjoint solution algorithm has to be computationally efficient in

comparison with the underlying flow solution algorithm, as well as being competitive

with the traditional, sequential adjoint solution approach. It is shown here that the

computational overhead associated with concurrently iterating the adjoint equations

is a small fraction of the baseline flow algorithm. Furthermore, in practical situations

where full linearization of the computational problem cannot be stored in memory,

the concurrent approach can in fact be a better alternative to the sequential approach

in terms of the computational cost. Using the adjoint approximations available from

the concurrent algorithm, duality-based error analysis can be carried out to estimate

the leading order error in the functional outputs of interest.

In Section 5.2 a duality-based technique is carried out to show how by an appro-

priate choice of preconditioner, the adjoint algorithm can be derived to match the
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primal in the sense of outputs. In Section 5.3 the concurrent solution approach is

introduced, with a discussion given on how the nearest neighbor stencil property of

the chosen DG scheme can be used to construct an efficient adjoint solver. In Sec-

tion 5.4 analysis is carried out to show the readily available adjoint iterates may be

used to form a first order correction to the output estimates. In Section 5.5 computa-

tional results are given, in particular showing that adjoint estimates can be obtained

concurrently at a fractional cost over the baseline (primal) algorithm and in fact its

efficiency ratio can scale favorably with the solution order. The advantage of being

able to compute the discrete adjoint residual in a purely algebraic manner that is in-

dependent of either the solution order or the underlying physics is particularly clear

for the case of compressible Navier-Stokes equations.

5.2 Exact-dual solution method

Denote a general, nonlinear algebraic system of equations for the primal unknowns

U as

A(U) = 0, (5.1)

and let J(U) be an output of interest. The corresponding discrete adjoint state 4' is

the solution to the linear system

A'[U]Txp = J'[U]. (5.2)

Now consider the special case of a linearized primal problem, A(U) = AU-f. Denote

a preconditioned iterative scheme for the linearized primal problem as,

UO = 0

Un+1 = Un - P;- (AU" - f), n = 1, 2, -. , N, (5.3)
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where Pn is the preconditioner which may in general depend on the iteration index

n. Denote the linearized primal functional as

JPr(-) (g,-). (5.4)

where (-,-) is the Euclidean inner product. Giles proposed an approach to derive

iterative schemes for the adjoint equations via maintaining a duality property [29].

By introducing Lagrange multipliers An+ 1 to the primal solution scheme (5.3), the

linear output at final iteration N can be trivially rewritten as:

Jpr(UN) (g, UN)
N-1

= (g, UN) - A n+ 1 , Un+1 - U" + Pn-1 (AU" - f)). (5.5)
n=0

Using the summation by parts formula for arbitrary sequences {a }, {b"}:

N-1 N-I

(an+1, bn+1 - b-) = a)N N _ O o - (an+1 - a" b"), (5.6)
n=O n=o

expression (5.5) is

JP (UN) (g - AN, UN) + (AO U)
N-1

+ Z(P ~TAn+1, f) + (An+1 _ An _ (P-1A)TAn+l, U). (5.7)
n=0

Suppose now the multipliers are chosen to satisfy the following:

AN g,

A = An+1 + ATPJ-TAn+1, n = N - 1, N - 2,... , 0, (5.8)

then the value of primal output equals

N-1
JPr(UN) PT An+1 , f). (5.9)

n=o
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The multipliers A+ 1 can be regrouped so that (5.8) takes a form similar to the primal

iterative scheme (5.3). Define

N-1

4" = E P-TAi+l. (5.10)
i=N-n

Inductively, it can be shown via (5.8) and (5.10) that

AN-n =g AT pn, 0 < i < N. (5.11)

Hence, the iterative scheme for the regrouped adjoint variable {"n} is:

Apo = 0,

+ gn _pv- (AT r - g), (5.12)

If the dual functional is defined as:

Jdu(.) (f,-), (5.13)

it follows from (5.9) that the following output equivalence relation holds:

Jpr(UN) - Jdu( pN). (5.14)

The exact-dual derivation shown above may be generalized to a wide class of iterative

methods, as has been carried out for multigrid solution by Giles et al. [30] or the

inclusion of inner/outer iterations by Nielsen et al. [65].

5.3 Concurrent iteration

Since the adjoint xF satisfying (5.2) is defined in terms of the linearization of the alge-

briac system at its true solution U, the traditional solution approach is to commence

adjoint iterations only after the primal solution (or some accurate approximation
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thereof) has been obtained, in a sequential manner. There have been recent work

exploring the benefit of simultaneously iterating the primal and dual. In [68], Patera

and Ronquist applied a general bound result for functional outputs to the situation

of estimating the output error due to incomplete iteration of a linear system. In

particular, a bound procedure is developed for the preconditioned conjugate gradi-

ent method for the solution of symmetric positive definite (SPD) linear systems in

which the primal and dual states are solved simultaneosly via the respective Lanczos

processes. At each iteration index n, the procedure involves the computation of the

minimum eigenvalue of the tridiagonal n x n Lanczos matrix which is naturally avail-

able from the solution procedure. For sufficiently large n, the computable minimum

eigenvalue estimates are assured to closely approximate that for the underlying coef-

ficient matrix hence the bound expression produces true lower and upper bounds for

the exact output.

In the context of nonlinear systems, Griewank described a "piggy-back" approach

of simultaneously iterating the primal and dual states via fixed-point iterations [35] to

obtain improved output estimates via duality corrections. This concurrent approach

is also utilized by Lu and Darmofal [581 to estimate output error due to incomplete

convergence. In particular, the adjoint estimate 'I'n is iterated using a preconditioner

which is the transpose of the primal, driven by a forcing term consisting of the lin-

earization of the nonlinear system at the current primal iterate Un. That is, the

primal and dual systems are iterated in the following manner:

Un+1 = Un - P(Un)- 1 A(Un)

Wn+1 = in - P(Un)-T (A'[Un]T41n - J'[Un]T) , (5.15)

where in general the preconditioners have state-dependence as well. Since the adjoint

residual at iteration n depends on the primal state Un, analysis shows that the re-

sulting adjoint convergence rate is limited in part by the primal residual convergence

rate [35]. However, since the asymptotic convergence rate of the primal problem

should be the same as that for the adjoint, the convergence rate of the concurrent
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solution method is not expected to be adversely affected by the use of non-stationary

linearization. This is verified in Griewank and Faure [36, 37] on 2D Euler flow airfoil

test cases with lift and drag as functionals of interest, where it is shown that the con-

current approach has almost identical convergence behavior to that of the sequential

approach.

Although the concurrent flow-adjoint solution methodology has been successfully

demonstrated as a viable approach for giving estimates or bounds for the iterative

error in the output, to establish its computational benefit in various analysis and

design settings, important questions that need to be addressed include the amount of

additional computational cost necessary over the baseline flow algorithm to iterate the

adjoint equations as well as the efficiency of concurrent adjoint solution in comparison

to the standard sequential approach. In the context of iterative solution for high-order

discretization of PDEs, a related question to consider is the scalability of the efficiency

for the concurrent solver with the interpolation order.

In the present context of DG formulation, the state degrees of freedom are grouped

by elements and the computational stencil consists of nearest neighbor elements for

all solution orders. Thus, the coefficient matrix for the adjoint problem has exactly

the same block non-zero pattern as that for the primal problem. This implies that

the adjoint residual can be computed simply using the available linearization as the

primal residual and preconditioner are assembled, instead of needing to resort to

different loops over the elements. In the latter case, linearizations required for primal

and dual residual calculations may have to be duplicated if the full Jacobian matrix is

not stored. By directly using the flow linearization, the computation required for the

adjoint residual in the concurrent approach can be a small fraction of that needed for

the baseline flow algorithm. In practical, high-dimensional applications one usually

cannot afford to store in memory the full linearization for the whole computational

domain. Instead, the residual and its linearization may only be performed over some

sub-domain such as element blocks and lines, which are then used to compute an

update for the degrees of freedom on the same sub-domain. Thus, in the case that full

linearization cannot be stored, for the sequential adjoint approach the linearization
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about the converged primal state has to be performed for each step of the adjoint

solver. This can be significantly more expensive than the concurrent approach where

linearization is performed once to compute both flow and adjoint residuals. The

nearest stencil property is also advantageous when matrix-vector products of the

adjoint preconditioner P-T with the corresponding residual vector is needed to obtain

the adjoint updates. For instance, in the case where the preconditioner P- 1 consist

of a set of block-tridiagonal pieces of the Jacobian obtained from line elements as

described in [25], entries of the transposed matrix p-T may be obtained from P- 1

simply by reversing the role of upper and lower block diagonal as well as the row

and column indices within the individual square blocks. The implications of compact

stencil property on the computational cost of adjoint solver are illustrated by results

shown in Section 5.5.

5.4 Superconvergent output estimates

Consider again the primal iterative scheme (5.3) and its dual (5.12) in the linear case,

where now the primal preconditioner P is assumed fixed for all iterations. In this

case the primal and dual iterates may be written explicitly as

n-1

U"= - (I - P- 1 A)'P-lf
i=0
n-1

*n = - (- PTAT)iP-Tg. (5.16)
i=O

Define the primal and adjoint residual as:

Rr a AU - f,

Rn du A Tql" - g. (5.17)
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Then, under the fixed preconditioner assumption, the residuals may be written ex-

plicitly as:

Rpr = (I - AP-')"f,

Ru = (I - ATP-T)ng. (5.18)

Now examine the output estimates obtained from the primal state approximation

together with a correction term consisting of the inner product of primal residual and

adjoint state approximations. The following exact result holds [36]:

n-I n-I

JPr(U") - (W"n, Rpr) = (g, - Z( - P-1 A)'P-f) + (g, P-1(I - AP-1 )n+if)
i=0 i=0
n-I n-1

(g, - (I - P'A)'P-1 f) - (g, Z(I - PiA)n+ip1f)
i=0 i=0

n-1

= (g, -[I+ (I- P 1 A)"] (I - P1A)Pif)

2n-1

= (g, (I - P 1 A)'P-f)
i=0

= JPr(U 2n). (5.19)

That is, in this instance the corrected output estimate exactly equals the original

sequence of output estimates at twice the iteration count. Thus, the correction term

(IFl", Rpr) can either be used as an output error estimate or increase the convergence

rate by exactly a factor of 2.

The above is a result relating the convergence of duality corrected output to the

original values in a special situation. More generally, for output estimates obtained

from arbitrary iterative solvers of linearized primal and dual systems, one has the

following error expansion [57]:

JPr(U) - JPr(Un) - (qWn, Rpr) + (4' - q", A(U - Un)). (5.20)

Hence, if omin is the minimum singular value of A, the following bound on the output
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error is obtained:

1
|JP(U) - (JPr(U") - (, Rn,p))| < ||Rn||IRnu|. (5.21)

Umin

Therefore, if the primal and dual residual converge at the same rate, the corrected

output estimate is expected to converge at twice the original rate. Alternatively, the

correction term can be used as an effective error estimate due to incomplete iteration.

For the concurrent flow-adjoint solver developed in this chapter the underlying prob-

lem (5.1) is nonlinear. In this situation, higher-order terms need to be considered

in addition to those in the error expression (5.20). Nevertheless, the inner product

(", RP') constitutes a first-order error correction.

5.5 Convergence and timing results

All the computational results in this section are performed on a 2688 element mesh

around a NACA 0012 airfoil. All test cases are subsonic with Moo = 0.5 and angle of

attack a = 2.0'. For the laminar test case, Re = 5000 is used. The line solver results

are obtained with the preconditioner consisting of a set block-tridiagonal pieces of the

Jacobian obtained from line elements as described in [25]. The block-tridiagonal sub-

systems are LU-decomposed to obtain the state updates. For all v-cycle multigrid

solver results, line element Jacobi smoothing as described in [25, 67] is used. On

each level, 8 pre- and post-smoothing iterations are carried out and 150 sweeps are

performed on the coarsest, p = 0 level.

5.5.1 Inviscid Euler equations

Comparison of the compute time profiles for the baseline flow and flow-adjoint codes

show that for all orders, about 2/3 of the additional CPU time required by the lat-

ter arises from computing the adjoint residual. Since for DG schemes the residual

coupling exist only through nearest neighbor elements, as discussed in Section 5.3

the adjoint residual computation can be done in the same loops over the elements
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and edges as carried out for the primal problem. By making use of the linearization

already performed by the baseline flow solver, for all orders the adjoint residual is

observed to require only about 1/2 the time taken to compute the flow residual and

Jacobian. As the solution order increases, the compute time required to invert the

preconditioner P becomes dominant. Using p-T to obtain adjoint updates avoids

another preconditioner inversion for the adjoint problem hence results in significant

efficiency. In fact, the ratio of the time needed to invert the primal, block-tridiagonal

element line Jacobian against the total additional time required for adjoint compu-

tation increases from about 0.8 to over 3 as the solution order increases from p = 1

to p = 4. This largely accounts for the decrease in the compute time required per

adjoint solution in relation to the baseline flow solution from 31% to 13% over the

same range of solution orders shown in Figure 5-1. The implications for multigrid

solution are similar and demonstrates favorable scaling of the relative efficiency of

adjoint solver with the finest solution order p.

Figure 5-2 shows the residual and output convergence for concurrent flow-adjoint

line solver on an initial p = 3 solution using 10 inner iterations per step. The flow

and adjoint residual rates reach the same asymptote and the drag and lift output

corrections do indeed result in doubled convergence rate. Figure 5-3 shows the con-

vergence of full multigrid (FMG) starting from a p = 0 solution. As can be seen

from the top plot, the convergence of the primal and dual residuals again share the

same asymptotic rates. For comparison, the convergence for the sequential adjoint

solution approach of linearizing about a converged flow solution is shown in Figure 5-

4, demonstrating that the adjoint convergence using the concurrent and sequential

approaches are similar with the former somewhat affected by the convergence rate of

the flow solution. However, as shown in the bottom plot of Figure 5-3, the former

enables duality-based correction for outputs that results in full convergence within 15

multigrid iterations.
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Figure 5-2: Convergence of concurrent flow-adjoint line solver for p = 3 interpolation.

Inviscid flow over NACA 0012 airfoil, Moo = 0.5, a = 2.00.
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Inviscid flow over NACA 0012 airfoil, Moo = 0.5, a = 2.0'.

5.5.2 Compressible Navier-Stokes equations

In contrast to the inviscid results of Section 5.5.1, for the compressible Navier-Stokes

case the computational effort in the current implementation of the baseline primal

algorithm is dominated by the flow residual and Jacobian calculation rather than

cost of inverting the preconditioner. In fact, for all of p = 1 to p = 4 solutions these

computations turn out to take around 90% of the total solver time. Comparatively,

the adjoint residual calculation is a much smaller proportion than the inviscid case:

here, the adjoint residual requires less than 5% that of the primal residual/ Jacobian.

A factor that contributes to the relative efficiency of the former is that the discrete

adjoint residual is defined algebraically, in particular it is independent of the complex-

ity required to compute the various contributing terms and the number of quadrature

points required to approximate the corresponding integrals both of which result in

the increased cost of the primal residual. Given that the linearization is available

from the primal routine, the discrete adjoint residual for the chosen DG discretiza-
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tion can always be computed via a matrix vector multiplication that is independent

of solution order and physics. This fact accounts for the minimal cost of computing

the adjoint solution in relation to the flow which is clearly shown by Figure 5-5. The

residual and output convergence for the concurrent, p = 3 line solver are given in

Figure 5-6. Again, the flow and adjoint residual convergence reach the same asymp-

totic rate as guaranteed by the exact dual construction. The corrected outputs fully

converge within half the number of solver iterations that needed for the flow residual

and original outputs. Similar results are obtained for the p = 0 to 3 FMG solver,

shown in Figure 5-7. Figure 5-8 shows the adjoint convergence for the sequential

approach, where the adjoint iterations are only commenced after full convergence of

the flow equations. Comparison of the concurrent and sequential approaches verify

that the two converge with the same rate, differing only in the initial transient where

the solution order in the former is increased from p = 0 to p = 3.
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Chapter 6

Adjoint approach to shape

sensitivity

6.1 Introduction

There are two main approaches to adjoint-based shape sensitivity calculation, namely

discrete and continuous formulations classified according to whether duality tech-

niques are applied to the discrete or continuous system. The fully discrete approach

allows for the computation of exact gradients of the discretized functional. However,

this requires one to fully differentiate the motion of the mesh with respect to design as

well as calculate the full primal residual for each design variable of interest. In many

applications this is undesirable as the mesh differentiation may be unavailable or dif-

ficult to implement and the residual calculation can require a non-trivial compute

time which scales linearly with the design dimension. Alternatively, the continuous

approach can be used which has no dependence on interior mesh movement and can

be computed via the primal and dual states at the control boundary [5, 50, 42]. How-

ever, this approach has the drawback of potentially large discrepancy between the

computed gradient approximation and its exact value [5] which can slow down or halt

the underlying nonlinear programming algorithm if the quality of approximation is

not appropriately controlled by the underlying mesh refinement procedure.

Given the advantages and disadvantages of the above described approaches, the
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best choice appears to be some compromise between the two. The proposed approach

is developed in the context of adaptive precision framework as discussed in Chapter 2

where exact gradients for the finite dimensional models are not required. However,

the computed gradients should be pseudo-consistent [70] in the sense that the error is

controlled to be vanishingly small as the discretization parameter is increased. The

proposed incomplete gradient is computed via the discrete approach with the assump-

tion that only the boundary elements are perturbed. Thus, it is an exact gradient for

the particular case where the interior mesh is held fixed when design is updated. For

general mesh movement strategy, a discrepancy with the exact gradient exists. How-

ever, as will be demonstrated the error in the proposed incomplete gradient converges

at the same rate as the discrete functional. In particular, by using higher order solu-

tions in a dual-consistent formulation, incomplete gradients are demonstrated to be

in close agreement with the full discrete results for smooth solutions of compressible

Navier-Stokes equations.

In Section 6.2, discrete shape sensitivity formulation is reviewed. The explicit

mesh movement strategy used in this work is described in Section 6.3. Finally, compu-

tational results are shown in Section 6.4 to demonstrate the accuracy of the proposed

incomplete shape sensitivities in simple aerodynamic settings as well as verifying its

convergence with respect to the full discrete values.

6.2 Shape sensitivity calculation

The discussions given in this section follow closely the standard treatments given

in [21, 66]. Let d denote the vector design variables, U and 4' the primal and dual

degrees of freedom. With explicit dependence on the mesh X, the discrete Lagrangian

£(U, 4', X, d) for the primal equations A(U, X, d) = 0 may be obtained from the

discrete cost function J(U, X, d) as in Chapter 3,

L(U, , X, d) = J(U, X, d) - (A(U, X, d), '), (6.1)
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where again (-, -) denotes the Euclidean inner product. Differentiating with respect

to design d and using the fact that xL satisfies the discrete adjoint equations (3.6),

the following shape sensitivity expression is obtained:

dJ _801

dd ad
OJ /[X~ J /[A1 [BA~1~X1
= + '+ [ (6.2)
ad ad_ 'OX /d LX _Od a '

The above adjoint-based approach to shape sensitivity allows for calculating deriva-

tives in a much more efficient manner than performing dim(D) linear solves required

for the forward differentiation approach. In particular, provided 2 is not expensive

to evaluate shape sensitivities can be computed at a cost essentially independent of

the design dimension.

6.3 Mesh movement procedure

The domain deformation used in the current work is an explicit strategy described

in [61]. Similar strategies have been used in a number of settings [23, 82]. More

sophisticated implicit strategies are needed for robustness in more complex geometries

[66], which remains an area for future work. Let ]Fcot E 8Q denote the control surface

being perturbed and M the set of all nodes in the mesh. For all element nodes m

lying on the control surface, the mesh movement 6xm is completely specified by the

design variable. Consider a boundary update Fcont(x) -+ ]Fcont(x) + 'y(x) where y(x)

is a prescribed shape change. Then necessarily,

Jxm = -Y(Xm), Vm E Mrcom, (6.3)

where the control node set is defined as Mr {m E M : xm n 0coat # 0}.

For the remaining nodes, the deformation is chosen to contain a proportional factor
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accounting for their distance to the control boundary being moved. That is,

6Xm = ( rI WkCxk)x ( Wkak,m7Y(Xk)) Vm E M\MrcO.t (6.4)
kGMcont wkkm/ kE Mrcont

where the first inverse sum is a normalization factor, Wk a weight factor taken to be

the size of elemental boundary segment containing node k and ak,m = 1/Ixk - Xm

with 3 > 1 a decay function. It has been found that # = 4 is a good choice [61] and

hence this is used throughout the current work. The mesh movement formula (6.4)

can be interpreted as the convolution of kernel 1/xl3 with the shape perturbation

function 'y(x) on the boundary.

6.4 Computational verifications

The present computational study serves two main purposes. Firstly, it is a demon-

stration of the effect of high-order interpolation on the accuracy of shape gradients.

Secondly, it serves to verify gradient convergence for problems of relevance to adaptive

precision work in Chapter 7.

To study the convergence shape sensitivities, smooth Hicks-Henne sine bump func-

tions [43] are used as perturbations. These functions are given analytically on the

unit interval as:

bxm(x) = sin ( Vrog /log xm), x E [0, 1], (6.5)

where xm E [0, 11 is a parameter specifying the peak of the bump. Figure 6-1 gives a

plot of the bump functions (6.5) as xm takes on a range of values from 0.025 to 0.95.

6.4.1 Inviscid design

The test case considered in this section is the same smooth, channel flow over a

Gaussian bump whose convergence is verified in Section 3.5.1. The output of interest

is similarly a weighted lift over the bump surface given in (3.59). Figure 6-2 is a plot

120



1

0.8

0.6

0.4

0.2

X
0.2 0.4 0.6 0.8 1

Figure 6-1: Samples of Hicks-Henne sine functions for various xm parameters

of lift sensitivity computed on the fine, 9169 element mesh using p = 5 interpolation.

Each data point in the plot represents the sensitivity with respect to a perturbation in

the Hicks-Henne shape function whose peak is at the given x-coordinate. Figure 6-3

compares the full and incomplete discrete adjoint sensitivities, using uniformly refined

meshes containing 587 and 9169 elements with solution orders p = 1 and p = 3. For

both meshes and solution orders, the discrepancy between the two are small and nearly

indistinguishable on the plots. Figure 6-4 plots the discrepancies directly for various

discretization levels, showing the error decay with mesh refinement. Table 6.1 gives

the values of Euclidean norm of the gradient discrepancies, normalized with respect

to the values of the full discrete sensitivity. Convergence plot of the same quantities

is given in Figure 6-5, showing that the error decreases at O(h2p+1) rate for the p = 1

and p = 2 solutions. For the p = 3 solution, the convergence does not reach the

expected rate. However, this degradation in the sensitivity convergence rate is not in

contradiction to the lift convergence result as shown in Figure 3-4.
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Figure 6-2: Full discrete adjoint shape sensitivities (6.2) with respect to Hicks-Henne

sine bump perturbations using p = 5 solution on fine, 9196 element mesh. Gaussian
bump, inviscid subsonic flow (Moo = 0.5).
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Figure 6-5: Convergence of Euclidean norm
ties. Gaussian bump, inviscid subsonic flow

of error in incomplete

(M,, = 0.5).
discrete sensitivi-

Order Coarse mesh Medium mesh Fine mesh
p=1 1.11E-3 1.34E-4 1.72E-5

p=2 2.67E-5 7.09E-7 2.09E-8
p=3 3.15E-7 1.12E-8 1.20E-9

Table 6.1: Euclidean norm of error in incomplete discrete sensitivities. Gaussian
bump, inviscid subsonic flow (Moo = 0.5).
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6.4.2 Viscous design

Here, the lift and drag sensitivities are examined for a subsonic, laminar flow (Mo, =

0.5, Re = 5000) over the NACA 0012 airfoil at 2' angle of attack for which the

drag convergence is studied in Section 3.5.2. Figure 6-6 shows the computed, fully

discrete sensitivities with respect to Hicks-Henne shape perturbations on the fine,

10752 element mesh with p = 3 solution. Figures 6-7, 6-8 and 6-9 each compare

the discrete sensitivities obtained using full mesh and surface movement on a set of

uniformly refined meshes containing 672, 2688 and 10752 elements. For the p = 1

result given in Figure 6-7, the discrepancies are significant on coarser meshes which

only become small on the finest mesh. Moreoever, on the two coarser meshes there

are large regions where the incomplete and full sensitivities are of the opposite sign.

For the p = 2 result given in Figure 6-8, the discepancies are significantly smaller

and very good agreement is obtained on the medium mesh. For the p = 3 result

given in Figure 6-9, the discrepancy is small even on the coarsest mesh and is within

plotting accuracy on the two finer meshes. The mesh convergence for each order is

given in Figure 6-10. Tables 6.2 and 6.3 show the Euclidean norm of the discrepancy

for lift and drag sensitivities respectively. Convergence plots of the respective values

are given in Figures 6-11 and 6-12. For p = 1 and p = 2 solutions, the convergence

for both lift and drag sensitivities are at the rates ~ O(h2 ) and O(h4 ) respectively.

For the p = 3 solution, the convergence rate for lift is 0(h'). In the case of drag, the

p = 3 rate is lower than expected. Again, this may be a consequence of the fact that

q = 3 boundary representation is used and higher-order boundary interpolation may

be needed to acheieve the full convergence order.
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Figure 6-6: Full discrete adjoint shape sensitivities (6.2) on 10752 element fine mesh

using p = 3 solution. NACA 0012, laminar subsonic flow (Mo = 0.5, Re = 5000).
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Figure 6-7: Comparison of incomplete and full discrete sensitivities for p = 1 solution.

NACA 0012, laminar subsonic flow (Moo = 0.5, Re = 5000).
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Figure 6-10: Convergence of incomplete to full discrete sensitivities. NACA 0012,
laminar subsonic flow (Mco = 0.5, Re = 5000).
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Figure 6-11: Convergence of Euclidean norm of error in incomplete discrete sensitiv-

ities for lift output. NACA 0012, laminar subsonic flow (Mo, = 0.5, Re = 5000).

II' Ifull - I incomp .full

Order Coarse mesh Medium mesh Fine mesh
p=1 1.84E-0 6.82E-1 1.67E-1
p=2 5.43E-1 7.58E-2 1.71E-3
p=3 1.61E-1 3.47E-3 3.86E-5

Table 6.2: Euclidean norm of error in incomplete discrete sensitivities

NACA 0012, laminar subsonic flow (Moo = 0.5, Re = 5000).
for lift output.
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Figure 6-12: Convergence of Euclidean norm of error in incomplete discrete sensitiv-
ities for drag output. NACA 0012, laminar subsonic flow (Moo = 0.5, Re = 5000).

J Ifull Jncomp. full

Order Coarse mesh Medium mesh Fine mesh
p=1 1.35E-0 2.42E-1 5.03E-2
p=2 1.21E-1 1.26E-2 5.38E-4
p=3 2.10E-2 6.07E-4 8.33E-5

Table 6.3: Euclidean norm of error in incomplete discrete sensitivities for drag output.
NACA 0012, laminar subsonic flow (Moo = 0.5, Re = 5000).
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Chapter 7

Applications

In this chapter, the Adaptive Precision Algorithm is applied to a number of aero-

dynamic design cases. In Section 7.1, drag minimization using Hicks-Henne sine

functions on the NACA 0012 airfoil is carried out. To avoid thin airfoils, a quadratic

penalty term is added to maintain constant airfoil volume, as is commonly used in

aerodynamic design [5, 66, 52]. In Section 7.2, an additional penalty term is added

to enforce a constraint on the lift and the angle of attack is further introduced as a

design variable. In Section 7.3, an inverse design problem is performed to minimize

the interference effects of a nearby airfoil.

7.1 Drag minimization at constant volume

The flow case utilized here is a subsonic, laminar flow over NACA 0012 airfoil with

Mc = 0.5, Re = 5000, at an angle of attack a = 2.0'. As a function of design d, the

objective is a drag squared functional combined with a quadratic penalization term

to maintain constant airfoil volume:

(u( d) 2 Vol(d) - Volo 2
J(u, d)~ =jd ' +A 10 Vol0  ) (7.1)

Cod Vol0

where Vol(d) denotes the airfoil volume, cd(u, d) the drag coefficient consisting of

pressure and viscous stress contributions and the superscript 0 denotes the values
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Figure 7-1: Hicks-Henne sine functions used for airfoil design.

corresponding to the initial, NACA 0012 airfoil discretized with p = 1 interpolation

on a 2688 element mesh, for which drag convergence with adaptive solution order is

studied in Section 4.6.

The design space used in this test case consists of 30 Hicks-Henne functions on

each of the upper and lower surfaces of the aifoil, plotted in Figure 7-1. The un-

derlying optimizer is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton

algorithm with Armijo linear-search [34]. The concurrent flow-adjoint line-solver is

used to iteratively obtain the state estimates. The Adaptive Precision Algorithm of

Section 2.3 with parameters y 2, ( = 0.2, r = 0.5, w = 1, E = 0.8, jmax 3 is

applied to the initial, NACA 0012 airfoil. Figure 7-2, 7-3, 7-4 show the pressure, fric-

tion profiles as well as airfoil shapes at various stages of the optimization procedure,

plotted against those of the initial NACA 0012 airfoil. Owing to the coarseness of the

mesh, error exists in the pressure and friction coefficient on this initial NACA 0012

solution as is evident by the irregular profiles. By the 4th iteration, p-refinement has

been carried out to ensure the validity of design updates and as a result the pressure

and friction coefficients are smoother. By the 12th iteration, the errors are small and

the design has improved. Over the course of the optimization and adaptation steps,

the drag decreases by 4.5% of its original value while the airfoil volume increases by

only 0.03%.
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Figure 7-3: Results of drag minimization at constant volume. NACA 0012 airfoil,
Moo = 0.5, Re = 5000, a = 2.0'.

136

8)

- Lower surface, initial
- - Upper surface, initial

Lower surface, current
Upper surface, current

0.18

0.16-

0.14-

0.12

0.1

0.08

0.06

0.04

0.02

.2

U

0
-- ---- --

0

1



0 0.1 0.2 0.3 0.4 0.5 0.6
chordwise location x

0.7 0.8 0.9 1

- - Lower surface, initial - - - Upper surface, initial Lower surface, current Upper surface, current

(a) Optimization step 4

0.

0.0

-0.0

-0.
0 0.1 0.2 0.3 0.4 0.5 0.6

chordwise location x
0.7 0.8 0.9 1

Lower surface, initial - - Upper surface, initial Lower surface, current Upper surface, current

(b) Optimization step 6

chordwise location x
- - Lower surface, initial - - Upper surface, initial -- Lower surface, current Upper surface, current

(c) Optimization step 12

0.1

0.05

0

-0.05

0.1 0.2 0.3 0.4 0.5 0.6
chordwise location x

0.7 0.8 0.9 1

- Lower surface, initial - - Upper surface, initial - Lower surface, current Upper surface, current

(d) Optimization step 20

Figure 7-4: Results of drag minimization at constant volume. NACA 0012 airfoil,
M, = 0.5, Re = 5000, a = 2.0'.
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Figure 7-5: Convergence of adaptive precision optimization for drag minimization at

constant volume. NACA 0012 airfoil, Moo = 0.5, Re = 5000, a = 2.00.
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Figure 7-5 shows the convergence result obtained by the Adaptive Precision Algo-

rithm, where successful design updates are plotted together with the adaptive steps.

Plot 7-5 (a) shows the values of the computed objective function as optimization

or adaptation steps are carried out. The solid line from step 0 to 1 shows that an

optimization step is attempted. However, the resulting change in the value of the

objective function is smaller than the estimated error. Hence, an adaptation step

is carried out on the initial design and the change in objective function from carry-

ing out p-refinement is shown by the dotted line from step 0 to step 2. The result

shows that adaptation gives rise to significant change in the computed objective and

confirms that the attempted initial design step does not constitute a valid design

improvement. At step 2, another optimization iteration is attempted as shown by

the solid line from step 2 to 3. However, it is again invalid and another adapta-

tion step is carried out, shown by the dotted line from step 2 to 4. This adaptation

again results in a large change in the computed objective function. Next, the design

change is successful and the objective function improves significantly, as shown by

the solid line from step 4 to 5. The rest of the convergence plot similarly follows.

Plot 7-5 (b) shows the solution degrees of freedom at every step, which increases at

relatively regular intervals in constant increments. The p-adaptation steps decrease

the estimated error in the objective function, which is shown in plot 7-5 (d). It is

seen that during optimization steps, the error stays virtually constant. Every time

adaptation is carried out, the estimated error drops by a constant fraction, confirming

that p-refinement is effective for this problem. By the choice of parameter ( = 0.2, as

the plot confirms the iterative error estimate is always controlled to be less than 0.2

that of the discretization error estimate. Plot 7-5 (c) shows the number of solution

iterations carried out for each optimization or adaptation step. In the first 4 steps,

the number of solution iterations carried out are small owing to the low tolerance

required. From step 5 onwards, more solution iterations are needed to meet the more

stringent error requirement. The solution iterations labelled as line-search are those

additional solution iterations carried out when the size of the design steps are de-

creased so as to satisfy Armijo's criterion. The data for the last few design steps
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show that as the size of the design changes become small, it is no longer necessary to

carry out a large number of solution iterations to meet the error criterion.

In demonstrating the adaptive precision approach, an important question is its

potential reliability benefits over a fixed precision strategy where a single model is

used. This is illustrated here via an example where the fixed precision approach is

carried out on a coarse model. In particular, the chosen model consists of a uniform

p = 1 solution on the same 2688 element mesh. The solutions are tightly converged,

with flow residual dropping to lower than 10-9 its initial value. Figure 7-6 compares

the airfoil shapes, pressure and friction coefficient profiles for adaptive and fixed

precision approaches. Although the lower surfaces of the airfoil computed using either

approach are very similar, discrepancies in the upper airfoil surfaces exist at certain

locations. This leads to a difference in the friction coefficient profiles close to the

leading edge of the top airfoil surface.

To compare the quality of optimized results given by the fixed and adaptive pre-

cision strategies, Table 7.1 shows certain quantities of interested computed via the

approximation models and the corresponding "exact" results. The latter is computed

from a p = 4 solution on the same 2688 element mesh. From columns 2 and 3 of

Table 7.1, it can be seen that the drag is over predicted by the initial, p = 1 solution.

This is also reflected in the fixed precision result, where the computed value is a pes-

simistic prediction of the optimal drag. In fact, in the current test case the true drag

obtained from the fixed precision approach is essentially identical to that attained by

the adaptive precision approach. However, the latter approach provides the designer

with a confidence in design optimality that is lacking in the former approach. Owing

to the p-adaptation carried out, the computed adaptive precision results (which has

solution orders consisting mainly of p = 2 and p = 3) closely match the exact values.

Furthermore, the remaining error is effectively captured by the estimator: computing

the ratio of the discretization error estimate over the "true" error in the objective

function shows that Iegg = 0.98.
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Figure 7-6: Comparison of optimized airfoils computed using fixed p = 1 interpolation

and Adaptive Precision Algorithm for drag minimization at constant volume. NACA

0012 airfoil, Mo = 0.5, Re = 5000, a = 2.00.
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Initial Adapt. Prec. Fixed Prec.

Computed Exact Computed Exact Computed Exact

Cd 5.7769E-2 5.6829E-2 5.5171E-2 5.5168E-2 5.6224E-2 5.5169E-2
cl 5.1590E-2 3.7035E-2 2.7280E-2 2.7210E-2 3.5906E-2 3.8896E-2

J 3.3384E-3 3.2296E-3 3.0439E-3 3.0436E-3 3.1622E-3 3.04460E-3

Table 7.1: Computed and exact results for drag minimization at constant volume.
NACA 0012, laminar subsonic flow (M, = 0.5, Re = 5000).

7.2 Drag minimization at constant volume and lift

The subsonic, laminar flow test case used here is the same as that used in Section 7.1.

Here, the objective function takes the form:

J~ud) cd(u, d) )2 c 1X ( U, d) - cl )2 +1X Vol(d) - Volo 2 (72
J(u, d) - + 10 x e +)10 x k Vl , (7.2)

cO CO Vol0

where in addition to terms given in (7.1) is a penalty functional involving the lift

coefficient ci(u, d) and its value computed on the initial NACA 0012 airfoil, cl. The

results shown here is based on Adaptive Precision Algorithm using BFGS optimizer,

with the same choice of parameters as that used in Section 7.1. Also, the same Hicks-

Henne sine functions with the addition of the angle of attack are chosen as the design

variables, with the latter implemented by rotating the chordline of the airfoil rather

than modifying the farfield BC.

The presence of an additional penalty functional to maintain a specified lift pro-

vides a further test of the adaptive precision algorithm. An effect that arises in

this case is that discretization error in the lift penalty functional can be significantly

larger at far-off design points where the lift does not match its desired value, than at

close-to-optimal design points where it does. In comparison to the test case examined

Section 7.1, in this case there is expected to be a stronger influence between opti-

mization and adaptation. If too much optimization is carried out before adaptation,

then at a given design the computed lift on the coarse mesh is in fact far away from
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its true value and hence the angle of attack has to be significantly updated when

adaptation is finally carried out. In the reverse case where significant adaptation is

performed before carrying out optimization, the former may result in a highly refined

mesh that is necessary to accurately estimate the lift penalty functional when in fact

if some optimization steps were carried out to decrease the penalty term, the demand

on the accuracy of the predicted lift can be decreased.

Figures 7-7, 7-8, 7-9 show pressure, friction profiles as well as airfoil shapes at

various stages of the optimization procedure, plotted against those of the initial NACA

0012 airfoil. Here, apparently due to the lift constraint, the design changes are smaller

than the those shown in Section 7.1. However, design objectives are successfully

achieved. At the end of optimization and adaptation, the lift and volume discrepancies

are only 0.3% and 0.01% of its respective desired values while the drag has decreased

by 4.1% over its initial value. Figure 7-10 shows the convergence result of the Adaptive

Precision Algorithm. The computed objective function as optimization or adaptation

is carried out is shown in Plot 7-10 (a). The solid line from step 0 to 1 shows that

an initial design update is attempted. However it is too small for the design update

to be valid, hence an adaptation step is carried out on the original design as denoted

by the dotted line from step 0 to 2. Because the lift is poorly predicted on the initial

mesh, the objective function increases drastically after adaptation. Given that the

lift is poorly predicted, the algorithm is consistent with the heuristic that adaptation

should be chosen over optimization. After adaptation, two successful design updates

are carried out, denoted by solid lines from steps 2 to 3 and 3 to 4. Owing to the closer

matching of computed to the desired lift, the objective function decreases significantly.

A design update is attempted as denoted by the flat solid line from step 4 to 5.

However, the discretization error is large in relation to the design change and hence

adaptation is carried out, denoted by the dotted line from step 4 to 6. The large size

of discretization error is confirmed by the relatively large change in objective function

brought about by adaptation. Similar "zig-zag" effect in the objective function can

be observed till step 9. Plot 7-10 (b) shows the increase in the solution degrees of

freedom brought about by adaptation. It can be seen that the solution size increases
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in a relatively uniform manner. Plot 7-10 (d) shows the discretization and iteration

error estimates during the optimization procedure. Of particular interest is that,

in contrast to Plot 7-5 (d), the discretization error is significantly non-monotone

for the initial steps. In particular, the discretization error estimate can increase after

adaptation steps which is a result of the computed lift on the more refined mesh being

further away from the desired value than previously. Also, the discretization error

can change significantly with optimization steps depending on whether the updates

lift is closer to the desired value or not.

Figure 7-11 demonstrates the difference in the optimal results produced using a

fixed p = 1 interpolation and adaptive precision approach. Some difference in trends

can be observed in the optimized airfoil profiles. In particular, for the top surface

airfoil shape shown in the bottom plot, near the leading edge the adaptive precision

result is fairly close to the initial NACA 0012 whereas the p = 1 result is thinner in

this region. This thinning is compensated by a slightly thicker profile in the middle

of the airfoil. The discrepancy in the airfoils at the leading edge is also reflected in

the computed pressure profiles shown in the top plot.

As a comparison of the outputs computed using the fixed and adaptive precision

strategies, Table 7.2 shows the corresponding values for drag and lift outputs as well as

the objective function. The "exact" values given in the tables are again obtained from

the uniform, p = 4 solution computed on the same underlying, 2688 element mesh.

As columns 2 and 3 of Table 7.2 show, the lift predicted by the initial, p = 1 solution

is too large by almost 1/3 of the true value, hence resulting in a large discrepancy

between the computed and true objective function values. For the optimized drag,

the computed p = 1 result is Cd = 5.6401E-2 whereas the adaptive precision result is

Cd = 5.5402E-2. Since the exact result for the fixed precision optimized airfoil is Cd

= 5.5435E-2, the discrepancy arises as a result of inaccuracy in the drag prediction.

The cl for the fixed precision result computed using p = 1 interpolation is 5.3893E-2,

which is significantly different from the desired value of co = 5.1590E-2. Thus, the

lack of precision in the p = 1 solution results in an optimized design that deviates from

an underlying design goal of maintaining a specified lift. Upon evaluation on a fine
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Figure 7-7: Results of drag minimization at constant volume and lift. NACA 0012

airfoil, M, = 0.5, Re = 5000, a = 2.0 .
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Figure 7-8: Results of drag minimization at constant volume and lift. NACA 0012

airfoil, M, = 0.5, Re = 5000, a = 2.00.
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Figure 7-9: Results of drag minimization at constant volume and lift. NACA 0012

airfoil, M,, = 0.5, Re = 5000, a = 2.0'.
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Figure 7-10: Convergence of adaptive precision optimization for drag minimization

at constant volume and lift. NACA 0012 airfoil, Moo = 0.5, Re = 5000, a = 2.0'.
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mesh, redesign has to be carried out so that the lift requirement is met. Finally, for

the adaptive precision results the small discrepancy between the exact and computed

objectives (where again the adapted solution order is mostly of p = 2 or p = 3)

confirms the effectiveness of error control strategy within the optimization procedure.

The effectivity is computed to be Ieff = 1.55, thereby demonstrating the correctness

of the estimated error at convergence.
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Initial Adapt. Prec. Fixed Prec.

Computed Exact Computed Exact Computed Exact

Cd 5.7769E-2 5.6829E-2 5.5402E-2 5.5398E-2 5.6401E-2 5.5435E-2

cl 5.1590E-2 3.7035E-2 5.1447E-2 5.1458E-2 5.1341E-2 5.3893E-2

I 3.3438E-3 1.3370E-2 3.1048E-3 3.1043E-3 3.1827E-3 3.1272E-3

Table 7.2: Computed and exact results for drag minimization at constant volume and

lift. NACA 0012, laminar subsonic flow (Moo = 0.5, Re = 5000).

7.3 Interference inverse design

The inverse design problem examined here is motivated by practical applications

where it is desired to minimize the aerodynamic interference effect on a component

whose performance in isolation has been separately optimized. This includes situa-

tions such as the problem of redesigning the wing so as to minimize the aerodynamic

impact of the engine nacelle. For the combined configuration, by inverse designing

the wing so that the pressure profile matches its original values as far as possible, the

effect of the engine is hopefully minimized.

The particular case examined here is that of inviscid, subsonic flow (Moo = 0.5,

a = 0.00) over two NACA 0012 airfoils in close proximity. The two airfoils are placed

in parallel, with the airfoil undergoing redesign placed one chord in front and above the

airfoil whose interference effect is to be minimized. The airfoils and the underlying

3382 element mesh are shown in Figure 7-12. The goal of the inverse design is to

match the target pressure profile of a NACA 0012 airfoil placed in isolation with the

same flow condition. For the computations shown here, the desired pressure profile

Ptarget(x) is taken to be the value computed using a p = 4 interpolation on a uniform

mesh containing 7344 elements. That is, the objective function is given by:

J(u, d) =rairfoil (p(u, d) - Ptarget (X)) 2 ds., (7.3)

where s. is the chordwise distance along the airfoil. The design variables are the 30

151



Figure 7-12: Mesh for interference inverse design. NACA 0012 airfoils in close prox-
imity, Mo = 0.5, a = 0.00.

152



Hicks-Henne sine functions (shown in Figure 7-1) used to design the mean camber

line of the airfoil, as well as the angle of rotation pivoted about the mid-span of the

airfoil. Thus, the volume of the airfoil is not affected by the design variables. The

optimization problem is initiated using a uniform, p = 1 solution.

Figure 7-13 and 7-14 show the pressure profiles and airfoil shapes respectively

at various steps of adaptive precision optimization. At the first step, significant

tilt downward is introduced at the leading edge while the trailing edge is deflected

upwards. This results in the pressure at the leading edge closely matching that of the

desired distribution but an oscillatory pressure profile is produced near the trailing

edge. By step 3, the trailing edge pressure oscillation is removed and is significantly

closer to the desired profile. By step 6, the upper and lower pressure profiles are

essentially overlapping except near the leading edge. For the final design, in the front

section of the airfoil close matching to the desired pressure profile is attained. In the

rear portion of the airfoil, interference effect of the trailing airfoil remains.

Figure 7-15 shows the convergence of the Adaptive Precision Algorithm. From

Plot 7-15 (a) it can be seen that most of the design improvements take place within the

first 5 optimization steps, after which improvements are significantly decreased and

adaptation steps are needed to ensure that discretization error is small in comparison.

Plot 7-15 (d) shows significant decrease in the discretization error error estimates

when adaptation is carried out at steps 11, 18 and 20. Finally, Plot 7-15 (c) shows

that from step 20 onwards, as the design converges the number of solution iterations

necessary to meet the accuracy tolerance decreases.
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Chapter 8

Conclusions

A general methodology has been demonstrated to incorporate a posteriori error esti-

mates to give the designer confidence in the validity of design updates computed on

approximation models. By introducing a precision control framework based on rigor-

ous error estimates, approximation models can be used in computational optimization

without compromising reliability while ensuring that the limit points obtained by the

algorithm are stationary points for the underlying continuous system of interest. The

error estimation ingredients for the proposed methodology can be realized in an in-

expensive manner by utilizing a single adjoint solution that is already computed for

shape sensitivities and hence does not require any additional global solves. In terms

of the computational cost benefit, by allowing the model precision to increase adap-

tively when necessary and effecting error control on the objective function of interest

via local refinements, the time needed for carrying out computational optimization

can be significantly decreased in comparison to the fixed precision approach where

computations may have to be carried out on a fine mesh constructed a priori.

In the aerodynamic optimization context, higher-order DGFEM is demonstrated

to be an effective way to realize the adaptive precision methodology. From its consis-

tency and dual-consistency properties, discretization error for functional outputs can

be accurately estimated and controlled. Due to its nearest-neighbor stencil, DGFEM

allows for an efficient implementation of concurrent flow-adjoint solver necessary for

iterative error estimation. These attributes of DGFEM also make it attractive for
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general control applications, independent of the benefits within the adaptive precision

framework. Also of interest to general shape optimization applications is the demon-

stration that exact shape sensitivities can be accurately estimated from higher-order

solutions via an incomplete formulation, where the contribution from the potentially

expensive or unavailable interior mesh motion is ignored.

Based on DGFEM implementation developed, the work presented here represents

a demonstration of adaptive precision methodology in simple but relevant aerody-

namic optimization settings using inviscid Euler and compressible Navier-Stokes equa-

tions. From the numerical results, a number of conclusions may be drawn. Firstly,

provided discretization error can be reliably assessed, the model precision can be ef-

fectively controlled in the optimization context. The optimization procedure can be

initiated on a coarse solution and adaptively refined along the optimization trajectory

so that a fine mesh that represents the true optimal solution to a sufficient accuracy is

obtained at convergence. Secondly, within the optimization context the iterative er-

ror estimates for the objective function can be used as an effective stopping criterion.

By requiring an increasingly stricter tolerance on the iterative error, the number of

solution iterations carried out is appropriately increased.

Future work

The methodology as formulated is restricted to the context of unconstrained mini-

mization. Hence, in the computational results demonstrated the desired equality con-

straints have been weakly enforced via the use of penalty functions. Future research

can be carried out to extend the methodology to classes of optimization algorithms

that handle the constraints in an explicit manner. In particular, for cases where in-

equality constraints are enforced through functionals of the state, numerical errors

for both the objective and constraints need to be considered.

Significant further work is necessary to apply the proposed duality-based tools

to practical, large-scale aerodynamic problems. In the area of error estimation and

mesh adaptation for functional outputs, more work is necessary to study the quality
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of discretization error estimates in the presence of flow discontinuities. Furthermore,

to effectively control the discretization error, hp-adaptation strategies need to be

developed. In the area of shape sensitivities, it remains to show the accuracy of

incomplete gradient computed from hp-adapted meshes when sharp discontinuities

exist in the solutions computed around complex geometries.

Some theoretical issues also remain to be addressed. Firstly, although finite el-

ement discretizations of linear elliptic systems have been shown to form consistent

approximations, the same is not known for convection dominated, nonlinear prob-

lems relevant to many applications. In certain situations, theoretical analysis may

be needed to choose the objective function appropriately in order for the discretized

problems to consistently approximate the continuous counterpart. Secondly, given

consistent approximations obtained by some chosen discretization, a question that

arises from the use of a posteriori error estimates is how does the discretization error

depend parametrically on the design in a given neighborhood and if the error can

be effectively estimated. This is an issue that may need to be better understood in

situations involving more complex geometries or the use of shape design functions of

less regularity.
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Appendix A

Review of Discretizations for

Adjoint of Inviscid Euler Equations

In this appendix, a review of previous work on the discretization of the adjoint PDE

is given, first for non-conservative finite-volume formulations and then for a recently

proposed conservative, DG formulation. Although the latter formulation is consistent

for smooth flows, it is not so for general shocked flows as is demonstrated in the context

of quasi-one dimensional Euler equations.

A.1 Non-conservative formulations

The adjoint discretization adopted by Jameson et al. [75, 76, 51, 63] is a second-order

central difference scheme with blended first and third-order artificial dissipation of

the same form as that used for the flow equations to remove high frequency oscillatory

errors.

In [5] Anderson and Venkatakrishnan implements a vertex-based finite volume

discretization of continuous adjoint for compressible Naveris-Stokes equations. The

derivation of the scheme is guided by the discrete adjoint formulation, so that for the

first order accurate version, direct correspondence with discrete adjoint is achieved.

This is in part motivated by the desire to maintain good agreement of adjoint-based

sensitivities with the finite difference results. Let Ni be the set of vertex neighbors of
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vertex i in a given triangulation Th of the flow domain. Taking the median duals of

Th to obtain control volumes Qj, the inviscid discretization for the adjoint is:

a idx - 1: Gjjlij = 0, (A. 1)
jcNi

where lij is the length of the dual edge for nodes i, j, Gij is given by the following

expression,

Gij = fl n - F[uj(]) +,O)

+1 |n - X&(uri||(u -U u)T ( b - 01)aul

and A(Ur, ul) is the Jacobian matrix evaluated at the Roe-averaged state. The left

and right flow, adjoint states are obtained from extrapolation:

u 1 = u + Vu -(x - xi), Ur = u + Vu - (xi - xj)
2 2rJ V ( i J

1, = 0i + 0VIP - X - X-), O, = #5 + V 17 - (xj - xj),
22

where # = 0, 1 for first- and second-order discretizations respectively and xi, x, are

nodal locations. The scheme has the property that adjoint flux is not conservative:

Gij # -Gji; however this is not in contradiction with the fact that the adjoint of a

conservative system is not in conservative form.

In [10], Baysal and Ghayour propose a cell-based scheme for the discretization of

continuous adjoint for the inviscid Euler's equations. The underlying flow scheme is

similarly a second-order discretization using Roe's flux-difference splitting, taking as

left and right states the Taylor expanded cell-centered flow states to the faces of each

triangular cell. The equations for the adjoint are again given by (A.1), but now with

lij denoting the length of the side lying between cell i and j. The expression for Gij
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is given by

Gii = Ii [f.FI~qu]T(1pi ±, ir)+ ± (1i-'&A(ur, Ui)I(Ur -U U Tf (?Pr - 'l
2 -9uI

where the extrapolated adjoint average 01 + @r is used.

A.2 Conservative formulations

In [16], Chen and Collis propose a discontinuous Galerkin method for optimal control

of flows governed by the viscous Burgers and compressible Navier-Stokes equations.

The inviscid discretization is derived via rewriting the adjoint PDE into a divergence

form plus a source term. That is,

F'[u]T- VO = V. (F'[u]Tp) - (V. F'[u]T ) '. (A.2)

Then the DG formulation for the inviscid adjoint term is chosen to be

Z v (Uh)t + Vv/j' - bh) - v Fu h dx
rETh

- V _~~ - ) ~/+ fi)ds

- (vZ) T 1'du(t, 4'i, fn)ds = 0, (A.3)

where the Lax-Friedrichs method based on the maximum eigenvalue Ama of the Euler

Jacobian is used for interelement adjoint flux,

'"(Vp, ?p- fl) = 1 (fi. '[u+] T lp + fi - - AmaxQ~ - +)) (A.4)

and similarly for 7 <du on the domain boundary.

If both the underlying flow and adjoint PDE solutions are smooth, the above

adjoint formulation is consistent. However in situations where flow discontinuities

are present, the formulation is in general inconsistent as may be shown by examining
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the case of analytical adjoint solution for quasi-one-dimensional Euler equations. It

has been shown that [32, 85] across the shock location, the analytical adjoint solution

is continuous. Suppose the shock is located at a node of the mesh, x,. Since +(x,)

'i-I(x5) = Hdu = 1 (nl. F[u+]T + fi. F'[u-]T) @8 . Given arbitrary vh, denote

its values at the shock as vh(Xs)+, Vh(X,)-. Then the consistency error consists of

the jump of flux Jacobian across the shock:

OVh(X,) (fi - F[u+] - {. [U]T})

- @vh(x,)- (fn -F[u-] -- {fi. -F[u]T}) (A.5)

where the notation {-} denotes the average across the shock. Hence, the consistency

error does not vanish if 4, # 0.
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Appendix B

Derivation of local error indicator

expression

In this appendix, derivations of local error indicator expressions for BR2 discretization

of second-order systems [9] are given. This is first done for primal residual contri-

butions in Section B.1 followed by the corresponding dual residual contributions in

Section B.2.

B.1 Primal local error indicator

Using an integration by parts formula on discontinuous functions as given in [6],

obtain:

Vv'- (A,(uH)VuH)dx
KETh 

- jv -V. (A,(uH)VuH)dx
,ETh

+ j vh- { A,(u )VuHds + h v v, u+) Vu+ ds

+ {Vh }T[A(UH)VUHIdS.
Jr

(B.1)
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Using the above, the BR2 semilinear form (3.50) may be written as:

Rh(uH, Vh) -S vV u (A(UH)VuH)dx
KETh K

+ jUH IT. {AV(uH)TVvh ds

-vj IT -/5{35}ds

- fVh}ITA (UH1)VUHIdS

+ jv hT[A(u )vuH )VUds

u( b _ +) T [ (ub ) T Vv hds. (B.2)

From the definition of the jump operator E-1, the third line of above involving 6f may

be rewritten as a sum over element boundaries:

/[VhT - r7f {f6}ds = 1 J\

KETh Ka Q
V Tfn {ff}ds.

Finally, (4.24) is obtained by using (B.3) in (B.2) to write the resulting expression as

a sum over all elements and making the substitution Vh *h - ?PH-

B.2 Dual local error indicator

Since the dual local error indicator involves many terms, the derivation is broken

into two steps. Firstly, in Section B.2.1 the assumption is made that the coefficient

matrix has no dependence on the state, A, = A,(x). Subsequently, in Section B.2.2

the contribution from state dependence of the coefficient matrix A, is given.

B.2.1 State-independent coefficient matrix

Using integration by parts, obtain:

VIP j - (A,(uH)Vvh)dx

KE Th
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= - jvV. (Av(uH )T VV)H)dx
K ETh

+ jvh - {Av(uH)TVhds + +T_ +)Tp+ds

+ j2 {vh}TAv(uH )TV7PHds. (B.4)

Using the above and the generic form of boundary functional given by (3.55), the

expression for adjoint residual may be written as:

R' [uH](vh,'0H) - Jh[uH](Vh)

= vV- (Av(uH )T VbH X

- {h jHH

jr VhIAv(HTVb jrs+ 1HI {Av(uH)Vvhjds

- j -7f T u

- Eau+ I ft) iiA v uH

+ j+T ([,]fIvVt)

- jOUPU Jj[uH] v([u ds

- foutput ( [ ' I uH

vp+ ds

ds

LQ (Ou+Hj

Avv) ds,

T

fL ft .5duds

(B.5)

where, to rewrite the boundary integrals of the inner product of the adjoint state with

the linearization of the primal auxiliary variables of,the dual auxiliary variables odu
are introduced which are defined on interior faces by,

4 nTh 7dx = j H {Avirh s, Vrh E , (B.6)

and for boundary faces od"'b are defined by: Vih E []2

I h ',dudx

10 -rh ff
TO- J' [' Av VuH) (E [F]f vi A.+ ds.

OF+J f vh}
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By breaking up the expression (B.5) into elemental volume and surface integral con-

tributions and making the substitution Vh -- Uh - UH, the dual form of the local

error indicator (4.25) is obtained.

B.2.2 State-dependent coefficient matrix

From the expression for the semilinear form (3.50), it is straightforward to compute:

R'[uH](Vh, H) - J[uH] (Vh) = (B.5)

+ z JV'O 'H (A uH (Vh)VuH) dx
KETh

+ uH [ uH](Vh TVVhjds + j H vuH](Vh)VuHjds

if[H { vh ds

(ubu - u+T(f bA (H[Ob T

±[ jbiT~~ ] H]r [aV VhV)+dS+ H T H +h H

- Oo fF J uVH

-r/fn - Buh du+H

where B 6 f/DuH is understood to denote the derivative of 36 with respect to UH

through the state dependence of coefficient matrix, A, = AV(uH). The contribution

of state-dependent coefficient matrix to the local error indicator is again obtained by

a decomposition into elemental contributions and replacing Vh -~ 6h -- UH-
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