
Core Extraction and Non-Example Generation:

Debugging and Understanding Logical Models

by

Robert Morrison Seater

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

November 2004

@ Massachusetts Institute of Technology 2004. All rights reserved.

A u th or

Department of Electrical Engineering and Computer Science
November 30, 2004

C ertified by-.
Daniel N. Jackson

Associate Professor
Thesis Supervisor

Accepted by - .-. . .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUSETS INSTMi
OF TECHNOLOGY

1pok OCT 21 2005

LIBRARIES

1f

2

Core Extraction and Non-Example Generation: Debugging

and Understanding Logical Models

by

Robert Morrison Seater

Submitted to the Department of Electrical Engineering and Computer Science
on November 30, 2004, in partial fulfillment of the

requirements for the degree of
Masters of Science in Computer Science and Engineering

Abstract

Declarative models, in which conjunction and negation are freely used, are a pow-
erful tool for software specification and verification. Unfortunately, tool support for
developing and debugging such models is limited. The challenges to developing such
tools are twofold: technical information must be extracted from the model, then
that information must be presented to the user in way that is both meaningful and
manageable. This document introduces two such techniques to help fill the gap. Non-
example generation allows the user to ask for the role of a particular subformula in a
model. A formula's role is explained in terms of how the set of satisfying solutions to
the model would change were that subformula removed or altered. Core extraction
helps detect and localize unintentional overconstraint, in which real counterexamples
are masked by bugs in the model. It leverages recent advances in SAT solvers to
identify irrelevant portions of an unsatisfiable model. Experiences are reported from
applying these two techniques to a variety of existing models.

Thesis Supervisor: Daniel N. Jackson
Title: Associate Professor

Acknowledgments

This research was supported by grant 0086154 (Design Conformant Software) from

the ITR program of the National Science Foundation, by grant 6895566 (Safety

Mechanisms for Medical Software) from the ITR program of the National Science

Foundation, and by the High Dependability Computing Program from NASA Ames

cooperative agreement NCC-2-1298.

The core extraction portion of this thesis (Chapter 3) is isomorphic to a paper

co-authored with Ilya Shlyakhter, along with Manu Sridharan, Daniel Jackson, and

Mana Taghdiri [19]. In addition, the author is grateful for the insight and feedback

given by his advisor Dr. Daniel Jackson and colleagues Gregory Dennis, Emina

Torlak, Derek Rayside, Dr. Robert Miller, and Dr. Michael Ernst.

This work was completed while the author was a member of the Software Design

Group (SDG), a research group at the Computer Science and Artificial Intelligence

Labratory (CSAIL) at the Massachusetts Institute of Technology (MIT).

6

Contents

1 Declarative Modeling: Benefits and Drawbacks 21

1.0.1 Benefits of Declarative Modeling 22

1.0.2 Under- and Over-constraint 24

1.0.3 Writing and Analyzing Declarative Models 26

1.1 The Alloy Language . 27

1.2 Errors: Modeling Bugs vs. System Faults 27

2 Non-Example Generation: Explaining Subformulae 29

2.1 Motivating Non-Examples . 30

2.1.1 Windows and Rain . 30

2.1.2 Counterfactual Reasoning? . 32

2.1.3 Events vs. Policies . 36

2.1.4 What is the Role of a Formula? 37

2.2 Formalization and Representation: Conjunction Diagrams . . . 39

2.2.1 Deletion (and Sabotage) Formalized 39

2.2.2 Conjunction Diagrams . 40

2.2.3 Representing Sabotage . 42

2.2.4 Theorem s . 43

2.3 Propositional Logic Examples . 46

2.3.1 Trivial Examples . 46

2.3.2 CNF Example . 48

2.3.3 Using Expansion to Explore a Model 50

2.3.4 M aking Dinner . 51

7

2.4 Handling Rich Logics . 52

2.4.1 Non-Boolean Values . 53

2.4.2 Defined Names and Other Syntactic Sugars 54

2.5 Alloy Examples . 57

2.5.1 Ceilings and Floors . 58

2.5.2 Sequence Library . 64

2.5.3 The Firewire Network Protocol 66

2.6 Expansion and Refinement . 80

2.7 Related Work . 80

2.7.1 Understanding Counterexamples with explain 80

2.7.2 Mutation Testing . 81

2.7.3 Logic Programming: Prolog 82

2.7.4 Near Miss Learning . 84

3 Core Extraction: Identifying Overconstraint 87

3.1 Introduction . 88

3.2 A Toy Example . 90

3.3 The Core Extraction Algorithm . 95

3.3.1 Constraint Language . 96

3.3.2 Translation . 96

3.3.3 Mapping Back . 98

3.3.4 Complications . 99

3.4 Experience . 99

3.4.1 Common Mistakes . 100

3.4.2 Locating Known Overconstraints 102

3.4.3 Blunders Discovered . 105

3.4.4 Performance . 106

3.5 Related work . 107

3.6 Conclusions . 108

A Firewire Alloy Model 113

8

B Proofs 121

B.1 Deletion and Sabotage are Sufficient to Compute Correctness . 121

B.2 Disjoint Entries . 123

B.3 Empty Entries . 124

9

10

List of Figures

2-1 An Alloy model of the relation between the weather, the status of your

bedroom window, and whether or not you get wet. 31

2-2 There are only 6 pairs of entries in a conjunction diagram which are

not always disjoint. 45

2-3 An Alloy model written by Daniel Jackson about Paul Simon's song

"One Man's Ceiling Is Another Man's Floor". 58

2-4 A counterexample to the claim that one man's floor is another man's

ceiling . 59

2-5 The role of the PaulSimon constraint 60

2-6 A counterexample to the claim that the Geometry constraint is suffi-

cient to force each man's floor to be some man's ceiling 61

2-7 The role of the Geometry constraint 62

2-8 The role of the presence of the NoSharing constraint 63

2-9 A simplified version of Alloy's sequence module 65

2-10 The role of part of the add predicate in the sequence module. An arc

labeled next [seqO] from node widget1 to node widgetO means that,

in the sequence [seqO], widget1 immediately preceeds widgetO. . . . 67

2-11 In state SO, the system is initialized and the nodes are waiting. Each

link has a message queue which is initially empty. Node0 has only one

incoming link, and thus it has only one incoming link which has not

been classified as a parentLink. In state Si, Node0 becomes active

and sends a request to Node1, declaring its willingness to be a child. . 71

11

2-12 In state S2, Node2 acknowledges NodeO's request, indicating that Node2

is willing to be NodeO's parent. NodeO thus declares that its outgoing

link is a parentLink, making it a leaf in the tree being constructed.

In state S3, Node2 becomes active and notices that it how has only

one outgoing link which is not marked as being a parentLink. It thus

sends a request to Nodel, indicating its willingness to be a parent. . . 72

2-13 In state S4, Nodel acknowledges Node2's request, indicating its willing-

ness to be a child. Node2 sees that only one of its incoming links is not

a parentLink, so it sends a request to Nodel that the other incoming

link be made a parentLink. In state S5, Node1 activates and sees that

it can only be a leaf node. 73

2-14 In state S6, all of Node2's incoming links are parentLinks, and those

choices have been validated by its neighbors. Node2 thus declares itself

to be the root, and the algorithm terminates 74

2-15 One state from a trace in PCD from the entire constraint describing

of the stutter operation . 75

2-16 PCD from the conjunction diagram for the role of the latter half of

the constraint s' .op = Stutter => SameState (s, s') 76

2-17 The formula n in s .active in the specification for the Elect operator

is crucial to disallowing the case where an inactive node is elected as

the root. Shown, are states S5 and S6 (the final two states) of one such

trace. This trace would appear in the PCD entry of the conjunction

diagram . 79

3-1 A toy Alloy model describing the behavior of a web cache 91

3-2 The corrected version of the web cache Alloy model, taking into account

the information provided by core extraction 94

12

3-3 A Roadmap to Core Extraction. (1) A model is created in any con-

straint language which is reducible to SAT in a structure preserving

fashion. (2) During translation to CNF, each clause generated is anno-

tated with the AST node from which the clause was produced. (3) A

SAT solver (used as a black box) determines that the model is unsat-

isfiable and extracts an unsatisfiable core (a subset of the CNF clauses

which is also unsatisfiable). (4) The core is mapped back to the orig-

inal model by marking (as "relevant") any part of the AST indicated

by the annotation of any clause in the CNF core. The analysis is now

complete. The remaining steps concern guarantees made to the user

about what the markings on the AST mean; they are not actually ex-

ecuted during normal use of the tool. (5) The user is guaranteed that

changing the unmarked (non-relevant) portions of the AST will leave

the model unsatisfiable. (6) Specifically, the CNF corresponding to

the altered AST will be a superset of the unsatisfiable core previously

extracted, and thus will itself be unsatisfiable. 109

3-4 Translation of AST to CNF, and mapping back of unsatisfiable core.

The AST is for the (trivially unsatisfiable) Alloy formula of the form

"(some p) && (no p) && ...". To each node, a sequence of Boolean

variables (bi through b6) is allocated to represent the node's value.

From each inner node, translation produces a set of clauses relating

the node's Boolean variables to its childrens' Boolean variables. The

highlighted clauses form an unsatisfiable core, which is mapped back

to the highlighted AST nodes. 110

13

14

List of Tables

2.1 A generic conjunction diagram with column formulae Coll and Col2

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

and row formulae Row1 and Row 2

The generic conjunction diagram for deletion

The conjunction diagram for sabotage

The conjunction diagram for deletion and sabotage .

The role of the final clause of a CNF formula

The role of B in A V B

The role of B in A A B

Our intuition for the role of a CNF clause

Our intuition for the role of a term in a CNF clause .

The role of a redundant CNF clause

The role of a term in a redundant CNF clause

The role of -,Wif eLate in the dinner example

15

41

. 41

. 43

. 43

. 44

. 46

. 47

. 48

. 49

. 49

. 50

. 51

16

Introduction

Suppose you are a software developer and have formulated an important aspect of

your program as a logical model. Now you want to make sure that your model is

saying what you think it is saying and that you are correctly interpreting the results

it gives you.

Consider this excerpt from an Alloy model which is discussed in depth later on.

pred Geometry O{no m: Man I m.floor = m.ceiling}

What role does this constraint play in the model? Is it necessary? What would have

happened if it had been written it incorrectly? Is it allowing solutions which ought

to be eliminated? Is it eliminating solutions that ought to be allowed?

The answers to these questions could probably be deduced through careful reason-

ing but (a) it would be a lot of work, and (b) there would always remain a lingering

doubt that you missed something. Such concerns beg for automated tool support.

We present two such tools to help the user answer these questions.

Explaining Roles

When looking at a logical model, it is natural to ask what role some particular

constraint plays in that model. But what sort of an animal is the role of a subformula?

Logicians and philosophers have addressed this issue in a number of ways that involve

extending the logic to include special constructs. In Chapter 2, we propose non-

example generation as an appealing, lightweight alternative. This technique explains

the role of a formula by calculating what would happen differently if that formula

17

were absent or altered. We introduce conjunction diagrams as a notation to present

such information.

Determining the effect of deleting a suformula T is not as simple as removing T

and re-analyzing the model. Suppose, after removing T, your checker produces a

new solution. Was it a solution before you removed T? Are the old solution still

solutions? What you really want to know is what new solutions were added and what

old solutions have been inhibited. A more sophisticated approach is required, and we

introduce non-example generation as one such approach.

Overconstraint

Logical models are susceptible to unintentional overconstraint in which real coun-

terexamples are masked by bugs in the model. In Chapter 3, we introduce Core

extraction, a new analysis that mitigates this problem in the presence of a checker

which translated the model to CNF. It exploits a recently developed facility of SAT

solvers to deduce an unsatisfiable subset of a CNF which is often much smaller than

the clause set as a whole. This unsatisfiable "core" is mapped back into the syntax

of the original model, showing the user irrelevant fragments of the model. This in-

formation can be a great help in discovering and localizing overconstraint, sometimes

pinpointing it immediately. The construction of the mapping between the model and

an equivalent CNF is given for a generalized modeling language, along with a proof

of the soundness of the claim that the marked portions of the model are irrelevant.

Experiences in applying core extraction to a variety of existing models are discussed.

Summary

Chapter 1 provides background and puts the remaining chapters in context. We

introduce declarative modeling and discuss its benefits and drawbacks.

Chapter 2 introduces non-example generation, a technique which explains the role

of a subformula by computing solutions it is responsible for allowing or disallowing.

We begin by motivating our approach as a lightweight alternative to counterfactual

18

reasoning, formalize it, and introduce conjunction diagrams as a convenient notation.

We expand the technique to account for quantifiers and named predicates, then use

it to examine and explain several Alloy models.

Chapter 3 introduces core extraction, a technique for detecting unintentional over-

constraint by showing the user unused portion of the model. We introduce the tech-

nique in the context of a general constraint language, and discuss its implementation.

We prove the correctness of the algorithm, and report on our experience in applying

to several Alloy models.

19

20

Chapter 1

Declarative Modeling: Benefits

and Drawbacks

"There is nothing so annoying as a good example!"

Mark Twain

Roughly speaking, there are two ways to model a transition system 1 2. In the

operational idiom, transitions are expressed using assignment statements, either with

the control flow of a conventional imperative program (as in Promela, the language of

the Spin model checker [16]), or using a variant of Dijkstra's guarded commands (as

in Murphi [11] and SMV [7]). In the declarative idiom, transitions are expressed with

constraints, either on whole executions, or, more often, on individual steps. This idea

is rooted in the early work on program verification; the operation specifications of the

declarative languages VDM, Larch and Z are essentially the pre- and post-conditions

of Hoare triples.

For readers unfamiliar with these idioms, it may help to think of an operational

specification as one that gives a recipe for constructing new states from old ones, and

a declarative specification as one that gives a fact that can be observed about the

'This introduction is largely lifted from Daniel Jackson's description of declarative modeling,
as given in [19]. It has been altered to suite this document, but it retains much of his content,
organization, and elements of his style.

2A transition system is a model which specifies states and actions which cause the system to
transition between those states. A solution is thus a trace of states.

21

relationship between old and new states. An operational modeler asks "How would

I make X happen?"; a declarative modeler asks "How would I recognize that X has

happened?".

The advantage of the operational idiom is its executability. A simulation, either

random or guided by inputs from the user, can give useful feedback to a designer. In

model checking, the ability to generate a state's successor in a single computational

step makes it possible to explore the reachable state space by depth-first search (as in

Spin [7]). In contrast, declarative models have been viewed as not executable, and less

amenable to automatic analysis in general, since even generating successors requires

search. Recently, however, we have developed an analysis based on SAT that allows

both simulation and systematic exploration of declarative models [22]. A common

form of analysis that we perform is similar to bounded model checking [4]: the SAT

solver is used to find traces that violate specified properties. In fact, earlier symbolic

methods could also handle models with declarative elements. The earliest versions

of SMV, for example, provided a construct for expressing transitions implicitly. Its

analysis, being symbolic, was not hindered by the inability to generate successors of

a state constructively.

The advantage of the declarative idiom is its expressibility. For some kinds of

problem, especially the control-intensive aspects of a system, the operational idiom

can be more natural and direct. But in many cases, especially for software systems,

the declarative idiom is more flexible, more natural, and sometimes, surprisingly,

more amenable to analysis. In many contexts, it is more natural and concise to use

a declarative description; often one need only to describe the rules of the game and

what it means to have won, and not ever think about what moves will be needed (and

which must be avoided) in order to win.

1.0.1 Benefits of Declarative Modeling

Partial Descriptions. The declarative idiom better supports partial descriptions.

Sometimes, only one operation is of interest. In a study of a name server [27], for

example, only the lookup operation was modeled and analyzed, since the operations

22

for storing and distributing name records were straightforward. An explicit invariant

on the structure of the name database took the place of the operations that in an

operational model would define the reachable states implicitly. Even if the lookup

operation were not written declaratively, the need to account for the invariant in

generating initial states makes the description essentially declarative.

Underspecification. The need to constrain a model's behavior only loosely arises

in many ways. It arises when implementation issues are to be postponed or ignored;

analysis of a cache protocol, for example, can establish its correctness irrespective

of the eviction policy. It arises when analyzing a family of systems: an analysis can

check that a collection of design or style rules implies certain desirable properties, and

thus that any system built in conformance with the rules will have those properties

too. And it arises when accounting for an unpredictable environment: checking a

railway signaling protocol, for example, for all possible train motions. In these cases,

a declarative description is often succinct and natural, where an operational idiom

would, in contrast, require an explicit enumeration of possibilities. Cache eviction,

for example, might be specified by saying that the resulting cache, viewed as a set

of address/value pairs, is a subset of the original cache. The motion of trains on a

network might be specified by saying that the new track segment occupied by a train

is either its old one, or one connected to it.

Analyzing Specifications. Specifications can be used not only as yardsticks of

analysis, but also as subjects in their own right. It is easy to make mistakes writing

specifications, so it helps to analyze their properties directly: to check that one fol-

lows from another, for example, or to generate executions over which specifications

differ. If the model and specification are written in the same declarative language,

'masking' is possible. If the model M fails to have properties P and Q, we might want

to know whether the problems are correlated. By checking the conjunction of P and

M against Q, we can find out whether fixing M so that it satisfies P would also fix M

with respect to Q. A declarative analyzer also helps refactoring; any fragment of a

model or specification can be compared to a candidate replacement by conjecturing

the equivalence of the two.

23

Non-Operational Problems. Some problems are simply not operational in nature,

and demand a logical rather than a programmatic description. Alloy has been used,

for example, to check the soundness of a refinement rule: this involved modeling state

machines and their trace semantics, and checking that the rule related only machines

with appropriately related semantics. Many subjects are well described in a rule-

based manner: ontology models, security policies, and software architectural styles,

for example.

Topology Constraints. Sometimes one particular aspect of a system has a declar-

ative flavor. For example, many distributed algorithms are designed to work only if

the network's topology takes some form, such as a ring or tree. A declarative model

can be constructed that constrains the network appropriately, but does not limit it to

a single topology. The analysis will then account for all executions over all acceptable

topologies (for a network of some bounded size). The Firewire example described in

Sections 2.5.3 and 3.4 exploits this benefit.

Avoiding Initialization. In some systems, normal operation is preceded by an

initialization phase in which the system is configured. An operational description of

such a system will suffer from traces that are made longer than necessary by their

initialization prefixes. A declarative description can bypass the initialization phase

with an invariant that captures its possible results, thus shortening the traces. The

result is not only simpler description, uncluttered by the details of initialization, but

also more efficient analysis, since a bounded model checking analysis can use a lower

bound on trace length and still reach all states.

1.0.2 Under- and Over-constraint

"Example is the school of mankind, and [we] will learn at no other"

Edmund Burke

The very mechanisms that give declarative modeling its power - conjunction and

negation - also bring a curse. Any modeler faces the dual risks of underconstraint

and overconstraint. In a declarative setting, underconstraint turns out to be easy to

24

notice and correct, while overconstraint is both difficult to recognize and dangerous

when it goes undetected.

Underconstraint An underconstrained model does not eliminate all the situa-

tions which the user intended to eliminate. The consequence of underconstraint is

the discovery of bogus or absurd counterexamples. When the user encounters such a

counterexample, it is obvious that the model is underconstrained and usually straight-

forward to add a constraint to the model to eliminate the extraneous solution. Fur-

thermore, if the user does not discover the underconstraint there is no harm done: If a

valid counterexample is generated despite the underconstraint, the user still has found

a fault in the system. If there are no counterexamples despite the underconstraint,

then the user has inadvertently proven a stronger claim than intended.

Overconstraint It is unfortunately easy to write a model that has fewer behaviors

than intended. An overconstrained model does not allow some or all behaviors that

the user intended to investigate. A check of a safety property may then pass only

because the offending behavior has been accidentally ruled out (probably along with

many other behaviors). In the extreme, an overconstrained model may have no so-

lutions at all. As a result, there will be no counterexamples to any assertion! Such

situations are easily detected simply by analyzing the model - effectively a liveness

check'. The much more worrisome case is when the model is satisfiable, but bugs

in the constraints have accidentally eliminated those cases which violate the asser-

tion. The analyzer will (correctly) report that there are no counterexamples to the

model the user actually wrote, and the user will (erroneously) interpret this to mean

that there are no counterexamples to the model she intended to write; unlike with

underconstraint, undetected overconstrained is a serious problem.

The risk can be mitigated by working carefully. One can exploit the ability to

build and analyze a model incrementally, adding as few (and as weak) constraints

as possible to establish the required safety properties. One can simulate the model

3 1f your analyzer can only check an asserted property, then one can perform a liveness check by
asserting the property "True" and checking it

25

extensively, adding conditions to force execution of interesting cases. And of course

one can formulate and check liveness properties, at least ruling out the most egregious

overconstraints, such as those that lead to deadlock.

None of these approaches, however, counter the risk of overconstraint that is

relevant to a particular safety property. The worst overconstraints are not the ones

that rule out most behaviors, since they are usually easy to detect, but the ones that

rule out exactly those behaviors that would violate the safety property. Since the

purpose of checking a safety property is precisely to find behaviors that violate it, we

are hardly likely to be able to formulate a liveness constraint to ensure that those

behaviors are possible! And of course a liveness check can itself be confounded by

an overconstraint that rules out those traces that would be counterexamples to the

liveness check itself. A property-specific detection of overconstraint is thus required,

and core extraction, introduced in Chapter 3, is exactly such an analysis.

1.0.3 Writing and Analyzing Declarative Models

Let's consider what the world looks like from the eyes of a modeler developing a

declarative description about a subject system. The modeler begins with an empty

set of constraints, allowing all possible worlds and behaviors. Each constraint added

to the model eliminates some class of situations, and a complete model reduces the

set of possibilities to a meaningful subset. Typically, the model eliminates those

which cannot occur in the subject system. That set of solutions is searched for a

solution which violates a user-defined property - thus finding solutions which should

not occur in the subject system. Solutions are reported to the user as counterexamples

- situations which are possible but undesirable.

For example, one could write a model M with constraints that restrict the world to

those cases where trains obey traffic signals. One might then write a safety property

P which states that trains never collide. Solutions to the equation M A -,P are

counterexamples to the claim that traffic signals are sufficient to prevent collision.

In order to enumerate all the worlds satisfying the model, it is necessary to bound

the size of the universe. Such a bound is known as the scope of the model. The

26

implication is that counterexamples are sound but not complete (although they are

"complete up to scope"). The role of model checking is to find bugs, not to prove

properties, and the assumption is that many bugs can be revealed by small examples

[2]. However, by giving up the ability to prove a property for any bound (such as a

theorem prover does), the search process is made completely automatic.

Each new conjunct serves to eliminate some set of solutions, but a subformula

of one of those conjuncts may actually relax the model and increase the number of

solutions. For example, a top-level constraint of the form "A or B" excludes solutions

but the subformula "B" within that constraint allows solutions. In Chapter 2, we

introduce non-example generation, which explains the role played by a subformula of

a model by classifying it as either relaxing or restraining, and by computing solutions

it is responsible for including or excluding.

1.1 The Alloy Language

In developing the process of non-example generation, we will start with symbolic

logic and build up to more sophisticated logical languages, such as first order logic,

relational logic, and eventually the Alloy modeling language [9, 21, 8] . The techniques

described in this paper are not particular to the Alloy language. Rather, they are

particular to logical, declarative modeling languages of which Alloy is an example.

1.2 Errors: Modeling Bugs vs. System Faults

One of the chief benefits of writing a model about a piece of software or other system is

the discovery of faults in that system. This goal is reflected in the division of a model

into a description of the system and a property (which typically asserts the absence

of a particular class of faults). Of course, the model may iself contain errors. Bugs

are a risk of any language, although certain kinds of bugs (such as overconstraint)

are especially problematic for declarative models. It is important to distinguish bugs

in the model from faults in the system being modeled. The techniques in this thesis

27

help the user resolve the tension and interaction between these two types of errors.

Chapter 2: non-example generation

Whether or not there are solutions to the model, we wish to understand the role that

particular portions of the system play in preventing (or failing to prevent) faults. By

understanding the role that a constraint actually plays, and contrasting it to the role

we think it should play, we not only discover bugs in the model, but we also gain

insight into why there are or no faults in the system.

Chapter 3: core extraction

The absence of counterexamples indicates that either there are no faults in the system

or that bugs in the model are masking all of the system's faults. Unintentional

overconstraint can often be found by identifying which parts of the model played a

role in making it unsatisfiable (and which were irrelevant).

28

Chapter 2

Non-Example Generation:

Explaining Subformulae

"Give me a fruitful error anytime,

full of seeds, bursting with its own corrections."

Vilfredo Pareto

When looking at a logical model, it is natural to ask what role some particular

constraint plays in that model. But what sort of an animal is the role of a subformula?

In this chapter we discuss some of the ways logicians and philosophers have addressed

this issue, and we propose non-example generation as a lightweight alternative. This

technique explains the role of a formula by calculating what would happen differently

if that formula were absent or altered.

This chapter begins by motivating non-example generation as a lightweight al-

ternative to counterfactual reasoning for explaining models. Conjunction diagrams

are introduced as an effective notation both for presenting non-example information

to the user and for proving handy properties about the technique. Equipped with a

good notation, the technique can be extended beyond propositional logic to include

first order logics, relational logics, and logics with declarations and named predicates.

Non-example generation is applied to several existing models and experiences are

reported.

29

2.1 Motivating Non-Examples

"A life spent making mistakes is not only more honorable,

but more useful than a life spent doing nothing."

George Bernard Shaw

One often wishes to know what would be the case if the world were slightly different

than the way it currently is. When asked to explain a phenomenon, a common answer

is to describe how that phenomenon would have differed had the world been slightly

different. Understanding a situation means understanding the influence that small

changes to the initial conditions of that situation have on its the outcome. Let's

consider an example.

2.1.1 Windows and Rain

One morning, you notice that you left your bedroom window open overnight. Ex-

plaining to your child why this is a problem, you say something along the lines of

"Had it rained, then I would have gotten wet.". One can also present the situation

the other way around: having woken up, you notice that it rained last night. You

explain why it is a good thing your window was closed by saying "Had I left the

window open, then I would have gotten wet.". This example is deceptively simple.

Figure 2-1 shows a formalization of it in the Alloy language.

The model begins by defining the set State and 8 subsets. The following fact

ensures that opposite pairs of those subsets partition the set of states. E.g. every

state is either in Rain or Sunny but not both. The Physics constraint describes

the conditions under which you get wet. If the window is broken, then you get wet

whenever it rains. If the window is intact, then you get wet whenever it rains while

the window is open. The Diligent constraint ensures that you close the window

whenever it rains.

At the end of the model, we ask to analyzer to show us an example of the system.

We also check the StayDry assertion, which states that you're always dry if the

window is intact. No such cases are found, and the assertion passes.

30

module rain

sig State {}
sig Rain, Sunny, Wet, Dry, Open, Closed, Broken, Intact in State {}

/* In any given state, the weather is either rainy or sunny, the

* window is either open or closed, the window is either broken or

* intact, and you are either wet or dry. */

fact Partitions {
//the weather outside

Rain + Sunny = State
no Rain & Sunny

//your bedroom window
Open + Closed = State

no Open & Closed
Intact + Broken = State

no Intact & Broken

//your status

Wet + Dry = State
no Wet & Dry

}

/* If the window is intact, you get wet when the window is open and it

* rain. If the window is broken, you get wet when it rains. */
fact Physics {

all S: State I S in Intact =>
(S in Rain and S in Open <=> S in Wet)

all S: State I S in Broken =>
(S in Rain <=> S in Wet)

}

/* You always close the window when it rains. */

fact Diligent {all S: State I S in Raining => S in Closed}

pred example() {}
run example for exactly 1 State expect 1

assert StayDry {all S: State I S in Intact => S in Dry}

check StayDry for exactly 1 State expect 0

Figure 2-1: An Alloy model of the relation between the weather, the status of your
bedroom window, and whether or not you get wet.

31

Intuitively, the Diligence policy has something to do with why we manage to

stay dry as long as the window is intact. How can we ask the model to verify and

elaborate on that intuition?

2.1.2 Counterfactual Reasoning?

"If I had only known, I would have been a locksmith."

Albert Einstein

At first, this looks like a task for counterfactual reasoning. Counterfactual reason-

ing asks how the world would be different if some variable had taken on a different

value. For example, we might counterfactually inquire "What would have happened

had the window been left open last night?" and expect an answer along the lines

of "I would have gotten wet.". Philosophers and logicians have worked on formal-

izing counterfactual reasoning in a number of ways. However, we will see that each

solution either produces undesirable results or requires significant extensions to the

logic in which the model is written. The task at hand is to answer questions about

propositional logic, so requiring the user to rewrite her model in a different logic is

unacceptable.

Adding to the World

Consider a model M from which you can draw some conclusion C. If we add a new

fact N, stating our counterfactual supposition, we can draw some new conclusion Cil.

MFC

(M A N) I- C'

Unfortunately, this approach tends to produce one of two useless results for C':

'Astute readers may object to the use of the proof symbol I- when we are talking about model
checkers whose finite limitations prevent them from producing proofs. For the purposes of this
discussion, imagine that our analyzer can examine infinitely many possible worlds. The finite bound
put on a model is an issue of analysis not of semantics; the model is written as if the world were
arbitrarily large (or even infinite), and the bound is only enforced when we actually analyze the
model. In principle, conclusions can be proven from models. In practice our method of analysis does
not consitute proof.

32

1. Contradiction: Suppose the new constraint N contradicts the previous model

M. For example, N might be "It rained last night and I left the window open."?

This constraint contradicts the Diligent constraint already in M, so the new

model, M A N, is inconsistent. We would conclude that there are no possible

worlds in which it rains and the window is open.

2. Odd Causality: Even in the case where N does not contradict M, C' may

be a very odd conclusion. If we instead added the weaker constraint N = "I

left the window open last night.", then analysis of the model M A N will tell

us that it could not have rained. We have learned that opening our window

prevents rain!

Entailment vs. Causality

In the second case, had we instead added the constraint "It rained last night", then

the analyzer would tell us that we couldn't have opened the window. While this is not

quite what we want (since we were hoping to learn that we might have gotten wet),

it is at least consistent with our intuition about causality. Why does asking about

changing the state of the window ("What if I had left the window open?") produce

an unintuitive result yet asking about changing the state of the weather ("What if it

had rained?") produce a sensivle result? Where does the asymmetry come from.

The problem is that Diligent is written in propositional logic, and thus uses logi-

cal implication not causal implication. In Diligent, we wrote that (Rain -> Closed).

From that formula, the law of the contrapositive lets us conclude that (-,Closed -

,Rain). However, the law of the contrapositive does not apply to causal implication;

the formula (Rain causes Closed) does not imply that (,Closed causes ,Rain).

Unfortunately, without adding a "causes" operator to the language, we cannot

accurately represent causality, as discussed by Avi Sion [40] and John Stuart Mill [34].

33

Changing the World

To avoid producing the contradictions we saw in Section 2.1.2 when we added con-

straints to the model, we might consider instead changing part of the model. In

this approach, an old fact N in replaced with a new fact N', thus producing a new

(hopefully meaningful) conclusion C'.

M _ C

M[N +- N'] I C'

The complication here is that you cannot just change part of the state without vio-

lating constraints in the model. As before, we cannot force the window to be open

when it it raining without violating the Diligent constraint.

We are faced with a serious dilemma: Changing part of the world requires one of

two approaches:

1. Constraint Violation One solution is to allow constraints to be violated if neces-

sary. Unfortunately, we will end up with situations which violate fundamental

aspects of the model. For example, we might generate the situation in which

it is sunny and I close the window, yet I get wet (violates Physics). That is

hardly an explanation of how the model works!

2. Variable Alteration The other solution is to update other variables until all

constraints are satisfied. However, there may be several different ways to change

the world, all of which satisfy the constraints. Offhand, it is unclear which one

to choose.

Fixing Constraint Violation: Laws vs. Policies

One might try to avoid the problems with constraint violation by classifying facts into

"fundamental laws", such as Physics, versus "preferred policies", such as Diligent.

When making a counterfactual inquiry, one only allows policies to be violated. In

our simple model, such a distinction would indeed avoid the problem - the diligence

constraint may be violated but the physics constraint may not.

34

Such a distinction would require that the user annotate the model. Besides being

extra work for the user, it might not even be feasible - the user is asking about

the model in order to understand it better and may not feel qualified to make such

distinctions.

Furthermore, imposing such a distinction limits the questions one can ask - why

not allow the user to ask why a funamental law is necessary? For example, what roles

does the Physics constraint play in our toy model?

Even worse, this solution does not always avoid our previous dilemma. If our

supposition violates a fundamental law then we will have to either change the value

of some of the other variables or accept that one of the fundamental law is violated.

We are back where we started.

Fixing Variable Alteration: Closest Possible World

Since constraint violation seemes irreparable, let's look at how variable alteration can

be improved. David Lewis [31] developed an approach to change the world to satisfy

all the constraints, but to do so in a deterministic and sensible manner. In order

to determine what would have happened if some event E had occurred, consider the

closest possible world in which E holds. In this manner, we only consider worlds in

which all the constraints are satisfied, but use a distance metric do decide which other

variables should be changed. See Section 2.7.4 for his exact words on the matter.

In our simple example, this seems to work. Given that last night we observed the

state

Rain, Closed, Intact, Dry

we ask "What if the window had been open?". By the Closest Possible World defini-

tion, we want the state which is closest to the state

Rain, Open, Intact, Dry

but which satisfies the model. If we use a simple bit-comparison metric (the distance

between two states is the number of variables on which those states differ), then

35

closest such state is

Rain, Open, Intact, Wet

which is exactly what we want to see; if we had left the window open in the rain,

then we would have gotten wet.

The chief objections to this approach are the oddities which develop in very de-

tailed models. The traditional example of an unintuitive result is the so called Nixon

Paradox, originally pointed by Kit Fine in 1975 [12]: "What would have happened

if Nixon had pushed the button to launch nuclear weapons at Russia?". We expect

an answer along the lines of "Russia would have retaliated, reducing both nations

to radioactive ash.". However, if we look at the closest possible world to our own

in which nixon pushed the button, we instead conclude "There would have been an

electrical failure so that the button did nothing, after which Nixon would have come

to his senses.".

Problems such as the Nixon Paradox arise when the model becomes very detailed

and models unlikely events and corner cases. The model analyzer has no notion of

probability and so it will happily make rare events occur if doing so will produce a

solution which has a shorter distance. To correct this shortcoming, the model needs

a notion of probability - when selecting the "closest possible world" the possibilities

need to be weighted by likelihood as well as similarity. Extending traditional logic to

include such a notion is an interesting avenue, but it is not the task at hand.

2.1.3 Events vs. Policies

So far, the only ways we've seen to do counterfactual reasoning involve making non-

trivial additions to our logic. In fact, there is a solution to this problem which does

not involve counterfactual reasoning and all the complexities that go along with it.

Rather than asking the role of a bit of the state (e.g. whether or not the window was

open), consider asking about the role a constraint plays (e.g. the diligence policy).

What you really want to know is not the role of closing the window on that one

occasion, but the role of the constraint which makes you always close the window in

36

such situations. Instead of "If I left the window open, then ..." you would say "If

I were not diligent, then ..."; we will examine explaining the policy that lead to the

action, not the action itself. In order do do this, we will need to develop a notion of

the role of a constraint. In fact, the formalism we develop will not only let us ask

for the role of a constraint, but also about the role of an arbitrary subformula of a

constraint.

2.1.4 What is the Role of a Formula?

What kind of an animal is the role of a formula? I appeal to the intuition of what a

human would say to another human to explain such a thing; its role is what it allows

or what is disallows, or how it interacts with another part of the model. For now, we

will focus on non-example generation, which addresses the first view. Core extraction,

described in Chapter 3, addresses the second.

Note that this approach lends itself to a model-theoretic view of the world rather

than a logical view of the world. That is, it looks at enumerating the solutions

(within some bound) and looking at how that set changes, rather than using syntactic

manipulations to produce a proof.

Naive Role Computation

The naive approach is to just check the StayDry assertion once with Diligent present

and once with it absent. This might get us what we want, if we get either of the

following results:

(a) if neither check finds any counterexamples, then we know that Diligent is

redundant; we stay dry either way.

(b) if the first check passes but the second finds a counterexample, then we have

an example of a circumstance where Diligent is necessary to ensure StayDry.

The role of Diligent is to eliminate that case (and others like it).

As the model stands, we expect the second result. However, we might not be so

fortunate; consider the situation in which the window is broken. In that case, there's

37

nothing you can do to stay dry if it happens to rain, be you diligent or not. The two

possible results of the naive approach are the following:

(a) if both checks return the same counterexample (e.g. where the window is bro-

ken), you now know one case where Diligent is irrelevant since you will get

wet anyway. However, you don't know if there are cases where Diligent does

matter.

(b) if both checks return different counterexamples, you have learned even less.

Perhaps each counterexample is actually a solution to both checks, or perhaps

not.

What we really want is to solve for a counterexample which is only valid because

Diligent was not enforced. We want an assignment which is not a solution to the

model with Diligent enforced, but which is a solution when it is removed. This can

be expressed as a solution to

-M A (M - D)

where M is the model, and (M - D) is the model with the Diligent constraint

removed. Solutions to this formula are cases which are disallowed by the presence

of Diligent. We now get the desired solution <Intact, Open, Raining, Wet>.

We term this approach non-example generation, since we are generating assignments

which are almost solutions to the model, but not quite. In particular, we gener-

ate assignments which would be solutions except that they fail to satisfy the target

subformulae.

In the next section, we will formalize this notion of role in terms of non-examples,

develop a convenient notation (conjunction diagrams), and prove some handy lemmas.

Later, we will extend the technique beyond propositional logic.

38

2.2 Formalization and Representation:

Conjunction Diagrams

"In a few minutes a computer can make a mistake

so great that it would have taken many men many months to equal it."

Unknown

In the last section, we concluded that to determine the role of the presence of T

in M, we should examine solutions to the formula M A -,(M - T); such solutions

satisfy the original model but not the altered model, thus indicating what has been

disallowed by including T in the model. First, we need to formalize what it means

to delete a subformula from a model. Then we will look at other formulae which

produce useful information for the user.

2.2.1 Deletion (and Sabotage) Formalized

We need to be precise when we say "delete the subformula T from the model M",

denoted (M - T). Here is what it shall mean:

" M is the simple AST of the user's model model. A simple AST is one in which

all logical operations have been desugared into -,, binary A, and binary V.

* T is a node in M, at the root of the target subformula. We assume that T is

not the root of M and that T's parent node is not a negation (although T itself

may be a negation). To ask about the role of a subformula which is directly

negated, one must instead ask the role of the negation plus that subformulae.

A well formed tree results when the subtree rooted at T is removed from the AST

M, except that the old parent of T will now be either a unary A or a unary V. That

node is interpreted using the following semantics, making (M - T) a simple AST:

unary and A (x) = x

unary or V (x) = x

39

Constant Replacement

It will be convenient to talk about deletion in terms of replacing T with a Boolean

constant. To that end, we prove the following result:

Theorem 1:

(M - T) is either equivalent to M[T <- True] (the formula obtained by replacing

T with the constant True), or it is equivalent to M[T <- False] (the formula obtained

by replacing T with the constant False).

Proof:

Since M is simple and we have discounted the case were T's parent is a negation

(,), we know that T's parent is either an A or an V. If T's parent is an A, then

(M - T) - M[T <- True]. If T's parent is an V, then (M - T) = M[T <- False].

This property of deletion leads us to define the complementary notion of sabotage,

which will prove useful later on when we define a notion of correctness (Setion 2.2.4).

Definition:

Let C be the constant for which (M - T) = M[T <- C]. The result of sabotaging

T within M, denoted (M ~ T), is M[T <- -,C].

One way of thinking about sabotage is as follows: Where deleting T from M leaves

the rest of M as intact as possible, sabotaging T in M simplifies the rest of M as

much as possible, to the extend that altering T can. For example,

(AAB)-B = AATrue =-A

(AAB)~B _ AAFalse =-False

Sabotaging a subformula produces the maximum possible effect that the subformula

could have on the entire model.

2.2.2 Conjunction Diagrams

It is now clear exactly what we mean when we write M A ,(M - T). It will also prove

fruitful to consider the other 3 possible combinations of negating and conjoining those

two formulae: -M A (M - T), M A (M - T), and ,M A -,(M - T). A convenient

40

form for representing these combinations is a conjunction diagram.

Definition:

A conjunction diagram is a table constructed from two sets of logical formulae:

one set is written as labels on the columns of a table and the other as labels on

the rows. An entry in the table contains a formula (the conjunction of the row and

column formulae) and/or a set of assignments (solutions to that formula).

Table 2.1: A generic conjunction diagram with column formulae Coll and C012 and
row formulae Row, and Row2

A Col1 Col2
Row1 Col1 A Row1 0012 A Row1

Row 2 Col1 A Row 2 Col2 A Row 2

In our case, the row formulae will be always be M and -,M. When we draw the

conjunction diagram for deletion, the column formulae are (M - T) and -,(M - T).

Later we will add additional column formulae.

Table 2.2: The generic conjunction diagram for deletion

A (M - T) (M - T)
M PIA PCA

Presence Irrelevant to Allowing Presence Crucial to Allowing
MA(M-T) M A -,(M - T)

,M PCD PID
Presence Crucial to Disallowing Presence Irrelevant to Disallowing

,-M A (M - T) -,M A -,(M - T)

Conjunction diagrams are both useful for performing proofs and for presenting the

information to the user. However, it is probably unreasonable to expect to teach the

user the precise semantics of conjunction diagrams just to be able to answer simple

questions. To that end, each entry is also given a name which indicates the meaning

to the user of the solutions in that cell.

* M A (M - T) produces solutions to the original model, M, which are still solu-

tions if T is deleted. We abbreviate this category of solutions PIA, pronounced

"Presence Irrelevant to Allowing". (Presence means "failure to delete".)

41

" Al A -(M - T) produces solutions to the original model, M, which cease to

be solutions if T is deleted. We abbreviate this category of solutions PCA,

pronounced "Presence Crucial to Allowing".

* -1M A (M - T) produces assignments which are not solutions of the original

model, M, but which become solutions if T is deleted. We abbreviate this

category of solutions PCD, pronounced "Presence Crucial to Disallowing".

* ,M A -(M - T) produces assignments which are not solutions of the original

model, M, and are still not solutions if T is deleted. We abbreviate this category

of solutions PID, pronounced "Presence Irrelevant to Disallowing".

Each cell of the conjunction diagram contails all solutions satisfying the equation

written there. To avoid an overwhelming amount of data, when displaying a conjunc-

tion diagram to the user, only one (arbitrarily chosen) solution is shown in each cell.

As we will see in Section 2.5, one solution is often enough to learn interesting things

about a model.

Observation: Each possible assignment to variables of M appears somewhere in

the conjunction diagram for deletion; for any assignment A,

A E PIAU PCAu PCDU PID

2.2.3 Representing Sabotage

We construct an analogous conjunction diagram for sabotage by setting the column

formulae to (M ~ T) and -,(M ~ T). The interpretation of solutions in the con-

junction diagram for sabotage are similar to that of deletion. However, instead of

referring to the role of T's presence (failure to delete), they refer to the role of T's

integrity 2 (failure to sabotage).

Sabotage represents the maximum extent to which the target formula can influence

the structure of the model as a whole. This information is far less valuable to the

2 Read "integrity" as structural integrity not moral integrity.

42

Table 2.3: The conjunction diagram for sabotage

A (M ~ T) -,(M T)
M IIA ICA

Integrity Irrelevant to Allowing Integrity Crucial to Allowing
MA(M~T) M A -,(M T)

ICD IID
Integrity Crucial to Disallowing Integrity Irrelevant to Disallowing

,M A (M ~ T) ,-M A ,(M ~ T)

user than is deletion; its real value comes from combining it with information about

deletion to compute a notion of correctness (see Section 2.2.4. To that end, it will

prove convenient to display the two tables together.

Table 2.4: The conjunction diagram for deletion and sabotage

A (M-T) -,(M-T) (M~T) -,(M~T)
M PIA PCA IIA ICA

MA(M-T) MA-,(M -T) MA(M~T) MA-,(M~T)
,M PCD PID ICD IID

-,M A(M -T) -,MA -,(M -T) -,M A(M~,T) -,M A-,(M~T)

2.2.4 Theorems

"An expert is a person who has made all the mistakes

that can be made in a very narrow field."

Niels Bohr

One can consider other mutations of T, besides replacing it with True or False, and

construct comparable conjunction diagrams for them 3. However, it turns out that

the 8 formulae represented in the conjunction diagram for deletion and sabotage are

sufficient to compute (or bound) the effect of making an arbitrary change to T.

Definition:

Let CIA, pronounced "correctness irrelevant to allowing", denote the set of all

assignments which are solutions to M and which remain solutions regardless of how

3The column formulae will be M[T <- T'] (M with T mutated) and -(M[T <- T']) (the negation
of that formula)

43

T is altered. CIA represents solutions which are independent of any change to T.

CCA, pronounced "correctness crucial to allowing", denotes the set of assignments

which are solutions to M which may be disallowed by changes to T. CID and CCD

are defined accordingly.

Theorem 2: '

CIA = PIA n IIA

CID = PID n IID

CCA=PCAUICA

CCD = PCD U ICD

That is, an assignment is only irrelevant to correctness if both its presence and

its integrity are also irrelevant. An assignment is crucial to correctness if either its

presence or its integrity is crucial.

Technically, these 4 entries do not belong in a conjunction diaram, as they are not

computed by conjoining row and column formulae. However, in terms of the informa-

tion they carry, they belong with the 8 cells concerning correctness and integrity. We

will follow the convention of tacking them onto the end of our conjunction diagrams,

with the understanding that they are actually computed in a different manner.

Table 2.5: The role of the final clause of a CNF formula
A presence integrity correctness

(M -T) ,(M -T) (M~,T) ,(M~rdT)I
M PIA PCA IIA ICA CIA CCA

MA(M-T) MA-(M-T) MA(M~T) MA,_(M~T) PIA n IIA PCAuICA

-,M PCD PID ICD IID CCD CID

,MA(M -T) ,M A,(M -T) , MA(M~T) ,M A,(M~ T) PCD u ICD PID n IID

Sometimes the right notation is everything. In our case, conjunction diagrams

makes the following result obvious, and the proof trivial:

Observation: Consider a non-empty model, M, and a proper 5 subformula of that

model, T. The intersection of any two entries in the conjunction diagram of M for

the deletion of T is empty. The same is true of the conjunction diagram of M for the

4The proofs for theorems appearing in this section have been relegated to Appendix B.
5 i.e. MOLT

44

presence integrity

A (M-T) (M-T) (M~T) -',(M~T)

PIA PCA HA ICA

,M- ' - '-~

PCD PID ICD HD

Figure 2-2: There are only 6 pairs of entries in a conjunction diagram which are not

always disjoint.

sabotage of T. These results are intuitive given the labels chosen for each entry, and

the proof follows trivially from the definition of a conjunction diagram.

We can also make some guarantees about disjointness between the conjunction

diagram for deletion and that of sabotage.

Theorem 3:

PCAnICA = 0

PCD n ICD = 0

The interpretation of this result is that it is impossible for a target formula's presence

and its integrity to both be crucial to allowing solutions. If replacing T with True

would disallow some solution, then replacing T with False cannot disallow some

other solution. Intuitively, the relaxing nature of T is only undone by one of those

constants.

So far, we have proven that almost any pair of entries from the conjunction dia-

grams for deletion and sabotage are disjoint. In fact, there are only 6 pairs which are

not always disjoint: PIA/IIA, PIA/ICA, PCA/IIA, PCD/ICD, PCD/lID, and

PID/ICD. These pairs are indicated in Figure 2-2, and are proven by the first two

examples in Section 2.3.

45

We can make a stronger statement about certain pairs of disjoint entries; not only

are they disjoint but one of them is always empty.

Theorem 4:

(PCA=0)v(PCD=0)

(ICA 0) V (ICD = 0)

The significance of this result is that any given formula in a propsiional logic model

either strictly relaxes the model or strictly restricts it. The set of solutions to M - T

is either a subset of a superset of the solutions to M. 6

2.3 Propositional Logic Examples

2.3.1 Trivial Examples

Consider the role of B in the model A V B. In this case, B is deleted by setting it to

False and sabotaged by setting it to True.

Table 2.6: The role of B in A V B
A presence integrity correctness

(M - T) = A -(M - T) = -A (M ~ T) = True -(M ~ T)=False

M PIA PCA IIA ICA CIA CCA
Av B A ,A A B AVB False A -AAB

(A, ,B) (A, B) (-A, B) (A, B) (,A, B) (A,,B) (A, ,B) (A,B) (,A, B)

,M PCD PID ICD IID CCD CID
,AAB False -,A A -,B -,A A -,B False -,A A -,B -,A A -,B

0 (,A, ,B) (-A, ,B) 0 (,A, ,B) 0

Let's check these results with our intuition: the role of the presence of the target

(B) is to allow the solution (-,A, B); (-,A, B) is no longer a satisfying assignment if

B is deleted from the model. The target has no effect on (A, B) and (A, -,B), as

they would be allowed anyway. It also has no effect on (-,A, -,B), as that assignment

would be disallowed anyway. Its presence isn't crucial to disallowing any solutions.

6In logic, there is a standard notion of the polarity of a term (a variable or constant) in a Boolen
formula [13]. A logical formula is converted to NNF (Negation Normal Form) by repeatedly applying
DeMorgan's Laws to push all negations down to the terms. Once in NNF, a term's polarity is whether
or not is it negated. The polarity of a term plus the Boolean operator acting on it determine if the
term plays a relaxing or restricting role. Only terms have polarity - arbitrary subformula do not.

46

Since B is a top level disjunct, sabotaging it makes the model trivially True. The

integrity of B is not crucial to allowing any solutions, as any solution to M is trivially

a solution to M ~ T = True. Conversely, the integrity of B is crucial to disallowing

every assignment which is not a solution to M.

Now let's change that formula slightly, and consider the role of B in A A B. In

this formula, B is deleted by setting it to True and sabotaged by setting it to False.

Table 2.7: The role of B in A A B

A\ presence integrity correctness

(M - T) = A -(M - T) = -A (M ~ T) = False -(M - T)=True

M PIA PCA IIA ICA CIA CCA
A A B AAB False False A AB False AAB

(A, B) 0 0 (A, B) 0 (A, B)

,M PCD PID ICD IID CCD CID
,Av-B A A -,B -A False -,A A -,B A A -,B -A

(A, -B) (-A, -B) (-A, B) 0 (-A, ,B) (,A, B) (A, ,B) (A. , B) (-A, -B) (-A, B)

Let's check these results with our intuition: the role of the presence of the target

(B) is to disallow the solution (A, B). It has no effect on (-,A, -B) and (-,A, B),

as they would be allowed anyway. It also has no effect on (A, B), as that assignment

would be allowed anyway. Its presence isn't crucial to allowing any solutions.

Since B is a top level conjunct, sabotaging it makes the model trivially False.

The integrity of B is not crucial to disallowing any solutions, as any assignment

not satisfying M trivially does not satisfy M - T (since it simplifies to False).

Conversely, the integrity of B is crucial to allowing every solution of M.

Number of Solutions per Cell

In later examples, we will only list one solution in each cell of the conjunction dia-

gram, rather than all of them, as the number of variables (and thus total number of

assignments) will be much larger. In general, when a conjunction diagram is shown

to a human it is necessary to suppress all but one solution in each entry.

47

2.3.2 CNF Example

Now let's take a look at a model in CNF form. C 2 denotes the second clause, and

C24 denotes the fourth term of the second clause.

M =C1 A C2 A C3 A .. A Cength(M)

C1 = T 1 V T12 V T13 V ... V T1 length(Ci)

C2 = T2 1 V T2 2 V T2 3 V ... V T 2 length(C 2)

From our intuitive understanding of CNF, we expect to see that the role of a clause

is to restrain the model, and that the role of a term is to relax the model. That is,

the role of a clause CK is given by a conjunction diagram of the form depicted in

Table 2.8. In that table, ". . ." represents a cell we expect to containin one or more

solutions.

Table 2.8: Our intuition for the role of a CNF clause
A O presence integrity correctness

(M -T) ,(M -T) (M~T) -,(M~,T=) C1
M PIA PCA IIA ICA CIA CCA

0 ... 0 ...
,_M PCD PID ICD IID CCD CID

. .0 ...

The reasoning behind this expectation is as follows: As we saw in Theorem 4

(Section 2.2.4), each constraint plays either a relaxing or a restraining role in a model.

Since T is in a top-level conjunct, it is eliminating solutions to the model, and thus

PCD is non-empty and PCA is empty. In general, PCD jL 0 indicates that the

target formula plays a restricting role in the model. Sabotaging T is equivalent to

setting it to False, and thus (M ~ T) = False. Thus IIA must be empty, since T's

integrity is crucial to allowing every solution to M. It follows from Theorem 2 that

CIA is empty.

We would expect the role of a term in that clause, TKL, to be relaxing and thus

correspond to a conjunction diagram of the form depicted in Table 2.9.

48

Table 2.9: Our intuition for the role of a term in a CNF clause
A presence integrity correctness

(M -T) -,(M -T) (M~,T) ,_(M~,T)
M PIA PCA IIA ICA CIA CCA

PCD.. . 0 I1M PCD PID ICD IID CCD CID

- 1 0

In a CNF, we expect a term to play a relaxing role. Therefore PCA ought to

contain solutions while PCD is empty (Theorem 4 from Section 2.2.4). In general,

PCA : 0 indicates that the target formula plays a relaxing role in the model. Sabo-

taging a CNF term is equivalent to setting it to True, effectively deleting that clause

containing that term. Thus the integrity portion of this diagram will look like the

presence portion of the previous one. We do not have enough information to draw

any conclusions about the emptiness of the correctness cells.

Indeed our intuition for those two diagrams may well be correct. However, it is

also possible to get a very different result. What would it mean for the role of the

CNF clause CK to be given by Table 2.10?

Table 2.10: The role of a redundant CNF clause
A presence integrity correctness

(M-T) -,(M-T) (M~T) -,(M~T)_
M PIA PCA IIA ICA CIA CCA

... 0 0 ... 0
,M PCD PID ICD IID CCD CID

- 1 0.. .. 0 ..

Since both PCA and PCD are empty, we know that the target clause is redundant!

The target clause is implied by the other clauses, and can be deleted without effect;

(M - T) = M.

However, assuming M is satisfiable, sabotaging the target clause still has an effect,

and ICA will be non-empty. Theorems 2 and 4 tells us that ICD = 0 and therefore

CCD = 0. However, by the same theorems, CCA is non-empty; there exist clauses

we could write in place of CK which would not be redundant. While the target clause

is redundant, the context in which is appears is not.

49

Let's look at what we would have seen if we had instead asked for the role of a

term inside of that redundant clause. Table 2.11 shows the conjunction diagram we

would compute.

Table 2.11: The role of a term in a redundant CNF clause
A presence Jintegrity correctness

(M -T) ,(M -T) (M~,T) ,(M~rQT)

M PIA PCA IIA ICA CIA CCA
... 0 .. 0 .. 0

,M PCD PID ICD IID CCD CID
0 ... 0 ... 0

As before, both PCA and PCD are empty indicating that the target term's pres-

ence is irrelevant. Recall our previous observation that sabotaging a term effectively

deletes the clause containing it. In this case, the containing clause's presence is as-

sumed to be irrelevant, thus a term in it will have empty ICA and ICD entries. By

Theorem 2, CCD and CCA are also empty. In general, CCD U CCA = 0 means

that the context in which the target occurs is totally harmless; nothing we write in

its place will have any effect on M.

2.3.3 Using Expansion to Explore a Model

Suppose, in the course of exploring our model, we come across a subformula for

which CCD U CCA = 0. As with the CNF, we would expand the target subformula

to contain the previous target and some additional constraints. By incrementally

expanding the target subformula, we will eventually settle on a target for which

CCD U CCA =L 0 but either PCD U PCA = 0 or ICD U ICA 4 0 '. We can then

check that result against our intuition for the model and correct it if necessary. We

discuss a complementary approach, target refinement, in Section 2.6.

'Which pair is non-empty depends on whether sabotaging the original target serves to delete or
sabotage the enclosing target.

50

2.3.4 Making Dinner

I am considering making dinner for my wife, who is coming home from work. If it's dinner

time, and she's not running late, then I'll make dinner (unless I'm hungry). However, if

I'm hungry, I make dinner anyway. I only get hungry at dinner time.

The standard logical encoding of that situation is as follows:

(((DinnerTime A -,Wif eLate) z= MakeDinner) V Hungry)

A(Hungry #' MakeDinner)

A(-,DinnerTime #> -,Hungry)

Let's ask for the role of -Wif eLate in the first conjunct. That is, what if I don't

pay attention to whether or not she is running late? Solutions in the table below

are given in the form (WifeLate, DinnerTime, MakeDinner, Hungry); the entry

(1, 1, 0, 0) means that WifeLate and DinnerTime are True, while MakeDinner and

Hungry are False.

Table 2.12: The role of -WifeLate in the dinner example

A presence integrity correctness

((M-T) ,(M-T) (M~T) ,(M~T)
M PIA PCA IIA ICA CIA CCA

(1, 1, 1, 1) (1,1,0,0) (1,1,1,1) 0 (1, 1 1, 1) (1, 0, 0)
-MI1 PCD PID ICD IID CCD CID

1_0 0 (0,1,0, 0) (1,0,1,1) (0,1,0,0) 0

From Table 2.12 we can see that -WifeLate plays a relaxing role in the model.

In particular, its presence makes it possible for me to not make dinner even though

it is dinner time, in the case where she is running late and I am not hungry. Hence

PCA contains the solution

(WifeLate, DinnerTime, -MakeDinner, -,Hungry)

representing the case where she is running late at dinner tine and I'm not hungry, so

I don't make dinner

51

The solution ICD contains is

(-,WifeLate, DinnerTime, -,MakeDinner, -,Hungry)

and represents the situation in which she is coming home on time for dinner, I am not

hungry, and yet for some reason I do not make dinner. Since I always make dinner

when I am hungry, this situation cannot occur, even if we delete the target constraint.

We have also learned something about the context in which -,WifeLate appears.

Since ICD is non-empty, we know that it is possible to write a constraint in place of

-,WifeLate which would disallow the case in which she is running late, it's dinner

time, and I'm hungry and yet I don't make dinner. In particular, the constraint False

achieves that end.

By looking at I1D, we see that nothing we wrote in that context would ever

disallow the solution

(-,Wi f eLate, DinnerTime, -,MakeDinner, Hungry)

If it's dinner time and I'm hungry, no constraint in that context will stop me from

making dinner.

In our earlier examples, the role of a subformula could be determined by what

operator was acting on it; conjunctions restricted the model and disjunctions relaxed

it. However, in this case our target is in a conjunction, but its role is to relax the

model. The structure of the surrounding model matters!

2.4 Handling Rich Logics

"If I had my life to live again,

I'd make the same mistakes, only sooner."

Tallulah Bankhead

52

2.4.1 Non-Boolean Values

Many logics support non-Boolean values in addition to Boolean values. In such a case,

we can still ask about the role of a Boolean formula but not about a non-Boolean

one. This means that we can support relational logics (such as the one Alloy used)

as long as we do not ask for the role of a relational expression.

Handling First Order Logic

What if our logic is first-order? Will this complicate non-example generation? It

turns out not to, although coming to that conclusion requires understanding how

quantifiers are handled by declarative modeling languages.

In order to analyze a first-order model for counterexamples, it is first necessary

to eliminate the quantifiers. Since we are operating over a finite universe, quantifiers

can be rewritten by enumerating all possible values of the quantified variable. 8

Once the formula has been grounded out, the body has been duplicated many

times (one per element of the quantifier domain). At first glance, that duplication

makes us worry that we will need to develop some sort of notion of the 'joint role' of

several target subformulae. We might worry that each call site will need to be treated

differently: What if deletion is equivalent to replacement by True in one context but

equivalent to replacement by False in another? Furthermore, in order to compute

the role of the correctness of all those subformula, we would need to consider the effect

of deleting one copy while sabotaging another and leaving a third intact - considering

all such combinations would be an exponential computation!

Fortunately, we can avoid the introduction of such a notion. Each grounded

out copy of the quantifier body is in exactly the same context. If the target T

constitutes the entire quantifier body, grounding out will produce a bunch of conjoined

or disjoined copies of T (depending on the quantifier being grounded out) - all those

copies will be in the same context and will thus be deleted and sabotaged in identical

8 For example, in the finite universe where X = X1, X2, X3, the quantified formula Vx E Xlf (x) is
equivalent to the ground formula f(x 1) A f(x 2) A f(X 3). Similarly, we can rewrite]x e Xjf(x) as
the ground formula f(Xi) V f(x 2) V f(x 3).

53

manners. Similarly, the structure of each ground copy is the same - only variable

values change not the logical structure. Thus, if T is a proper (i.e. it does not include

the entire body) subformula of the quantifier body, each grounded copy will appear in

the same context. The need to consider all combinations of deleting and sabotaging

the different copies T is also averted. Since the local contexts of the copies of T are

identical, it would be impossible to change T in a way that would delete one copy

but sabotage another.

The consequence of all this is that a target subformula appearing in a quanti-

fier body can be handled just like an ordinary propositional formula. Non-example

generation can be applied as usual.

2.4.2 Defined Names and Other Syntactic Sugars

A definition is syntactic sugar which allows a token (the name) to be bound to a

formula (the body). Any instance of the name (a call site) is shorthand for the

corresponding body. The definition can be parameterized, in which case the body

that replaces the name depends on the parameter. For example, the following model

contains one definition with two uses:

N(x) := (B => x)

N(A) A (N(C) V D)

It is desugared into the following model:

(B => A) A ((B -> C) v D)

First of all, observe that if the target contains a function call site, then it can be

handled as usual. The call site can be deleted and sabotaged by replacing it with the

appropriate Boolean constants.

After desugaring, there is no trace left of the definitions, so we can proceed with

non-example generation as usual. However, there is a catch: if the target subformula

T is in the body of a definition, then there are now multiple copies of it.

54

This is the same problem we faced with first-order logic, but it will not be so easy

to avoid this time. In the case of grounded out quantifiers, each copy of T appeared

in an identical context. Two copies of an in-lined definitions may end up in very

different contexts! It turns out that we can avoid the introduction of a 'joint role'

computation in the cases that we care about, and simply forbid the uninteresting

(and difficult) cases. A proper formalization of joint role is possible, but fortunately

it is unnecessary.

The body of each in-lined copy of the definition is the same except for the values

of variables passed in. If T is proper (i.e. it does not contitute the entire body), the

situation is no different than that of a proper subformula of a quantifier body. Each

copy of T will appear in the same context, and non-example generation can proceed

as usual.

On the other hand, if T constitutes the entire definition body, then the different

copies of T may appear in different contexts. Before leaping into a formalism to

address that concern, let us consider what the user is asking by marking an entire

definition body as a target. The user is saying "what would happen if every call to

this definition were deleted?". This is a bizarre question to ask. The user would more

likely ask "what would happen if this call site were deleted?", which can be handled

without complication.9 For simplicity, we forbid the user from selecting an entire

definition body as a target. This restriction slightly reduces the expressiveness of the

questions users can ask, but it dramatically reduces the complexity (both conceptual

and computation) of the algorithm.

Special Case: Top Level Conjunct

There is a fairly common special case in which we can operate on the original model

without desugaring declarations and other special constructs. Consider the case where

the user has marked an entire top-level fact; that is, a formula which is a conjunct in

9 The user might also ask "What if this particular part of the definition body were deleted, but
only from this particular call site?". Since we only allow users to mark text on the original (non-
desugared) model, we do not support such questions, although the technique could be extended to
support them.

55

the top-level conjunction of the model 10. In such a case, let R denote the rest of the

model, so that M = R A T and (M - T) = R. We solve for PIA, PCA, and PCD

by using the following derivations, without the need to negate M (or R).

PIA can be computed by any of the following expressions:

MA(M-T)

= (RAT)AR
= (R A T)
= RAT

= M

PCA can be computed by any of the following expressions:

M A -(M - T)

= (RAT) A-R

-0

PCD can be computed by any of the following expressions:

= ,M A (M - T)

-,(R A T) A R

= (-,R V -,T) A R

= (-R A R)v (-,T A R)

= FALSE V (-,T A R)

=-,T A R

In summary, if T is a top level conjunct of M, then

PIA =M

PCA =0

PCD M[T +- -,T]

'Olt is safe to assume that the top node of any model's AST is a conjunction, since at the very
least one must conjoin the model description with the negated property: M A ,p

56

There is no comparable derivation for PID, but fortunately it is the least useful entry

in a conjunction diagram.

What About Sabotage? In the case of a top level conjunction, sabotage (and

therefore correctness) are not interesting, since sabotaging T makes M trivially false:

(M ~ T) = (M - T) A False = False

2.5 Alloy Examples

"Mistakes are the usual bridge

between inexperience and wisdom."

Phyllis Therous

In this section, three Alloy models are discussed in depth. The first model (Sec-

tion 2.5.1) is a toy example about Paul Simon's song "One Man's Ceiling is Another

Man's Floor". It serves to show how conjunction diagrams can explain parts of an

Alloy model, although since the model is so simple non-examples will not produce

any explanations which could not have easily been generated by hand.

The second model (Section 2.5.2) is distributed with the Alloy language as a

library module; it supplies a notion of a sequence (plus helper functions) which may be

imported into other models. The author of the sequence module reported difficulties

in understanding parts of the sequence module. The process he used to alleviate

that confusion is essentially a non-automatic and less precise version of non-example

generation.

The third model (Section 2.5.3) describes part of the Firewire network protocol.

It is a large model, but non-example generation can still help to understand the role

of small parts of it. This model demonstrates the value of understanding the role of

correctness and well as the role of presence of the target constraint.

57

Figure 2-3: An Alloy model written by Daniel Jackson about Paul Simon's song "One
Man's Ceiling Is Another Man's Floor".

module models/examples/toys/CeilingsAndFloors

sig Platform {}
sig Man {ceiling, floor: Platform}

fact PaulSimon {all m: Man I some n: Man I Above (n,m)}
pred Above(m, n: Man) {m.floor = n.ceiling}
assert BelowToo {all m: Man I some n: Man I Above (m,n)}
check BelowToo for 2 expect 1

pred Geometry (){no m: Man I m.floor = m.ceiling}
assert BelowToo' {
Geometry() => all m: Man I some n: Man I Above (m,n)}

check BelowToo' for 2 expect 0

check BelowToo' for 3 expect 1

pred NoSharing() {
no disj m,n: Man I m.floor = n.floor I m.ceiling = n.ceiling}

assert BelowToo'' {
NoSharing() => all m: Man I some n: Man I Above (m,n)}

check BelowToo'' for 6 expect 0

2.5.1 Ceilings and Floors

We will first examine a toy model to illustrate the basic structure of an Alloy model.

This model is perhaps the smallest example that uses all kinds of paragraph, and

will serve as a segue from toy logic examples to Alloy models written about real

applications.

In his 1973 song, Paul Simon said "One Man's Ceiling Is Another Man's Floor.".

Under what conditions does it follow that "One Man's Floor Is Another Man's Ceil-

ing."? An Alloy model asking this question is shown in Figure 2-3.

The first two lines create two signatures (sets): Platform and Man. They also

specify two relations, relating each Man to a "ceiling" Platform and a "floor"

Platform. The fact enforces Paul Simon's statement that each man's ceiling is some

man's floor. Next, a predicate is declared to define one man to be Above another

58

Figure 2-4: A counterexample to the claim that one man's floor is another man's

ceiling.

ManOMa1
(Mr. Problem)

ceiling floor ceiling floor

Platforml PlatformO

man when the first man's ceiling is the second man's floor. We then assert that

every man's floor is some man's ceiling and check that claim (bounding the size of

the universe to include up to 2 Man and up to 2 Platform objects).

Alloy finds the counterexample shown in Figure 2-4. ManO's ceiling is man1's floor

and manO's ceiling is mani's floor, so the PaulSimon constraint is satisfied. However,

Mani's floor is nobody's ceiling, so the assertion fails.

Let's check our intuition about the role of the PaulSimon constraint:

fact PaulSimon {all m: Man I some n: Man I Above (n,m)}

The conjunction diagram for this constraint's presence is shown in Figure 2-5.

We see right off the bat that PaulSimon plays a restraining role, since PCA is

empty.

Next we look at PCD and see a situation which would be allowed only if PaulSimon

were omitted: Both men share the same ceiling and the same floor, but floors and

ceilings are disjoint - this case violates PaulSimon but satisfies the rest of the model.

PCD is exactly the sort of situation that PaulSimon is suppose to eliminate, so our

previous understanding of the model is re-enforced.

PIA shows a situation which is a solution whether or not PaulSimon is present:

a case in which all ceilings and floors are the same platform. This case is a bit odd,

so maybe we want to add another constraint to eliminate it. Indeed, the Geometry

59

Figure 2-5: The role of the PaulSimon constraint

Platform0

ceiling

PIA IPCA

PID

Man1 ceiling

floor Platform

ManO

constraint discussed below prevents just this sort of situation.

PID shows us a constraint which is so bizarre that it will be excluded whether or

not PaulSimon is included. This entry is not very informative, but it does re-enforce

the belief that we correctly understand the model.

Geometry

Let's consider adding the Geometry constraint to remove some of the weirdness we

saw previously in the PIA entry. Geometry ensures that no man's floor is his own

ceiling. Alloy shows us that this requirement is still not enough to force every man's

floor to be some man's ceiling (although the smallest counterexample now has a scope

of 3 instead of 2).

In particular, analysis produces the counterexample shown in Figure 2-6: ManO

and Mani for, a cycle of ceilings and floors. Man2's ceiling is shared with ManO, but

his floor is nobody's ceiling. This counterexample also appears in the PIA entry

of the conjunction diagram for deletion.

While the Geometry constraint is not sufficient to prove our assertion, it still has

some effect on the model. We can pick apart the nature of that effect by examining

60

ManO Man1 PCD

ceiling floor ceiling floor

Platform 1 Platform0

ManO Man1

ceiling floor floor

atfo rm1

Figure 2-6: A counterexample to the claim that the Geometry constraint is sufficient

to force each man's floor to be some man's ceiling

floor

Man2 ceiling PlatformO
(Mr. Problem)

ceiling

nof loor

floor Platform2

Man1 ceiling

61

Figure 2-7: The role of the Geometry constraint

floor

Man2 ceiling PlatformO
(Mr. Problem)

ceiling

ManO foor

floor Platform"2

Man1 Meiing

PIA PCA

Mani PCD PID
ManO(Mr. Problem)

(Man1 ceiling
ceiling floor ceiling floor f

floor Patrm

Platrorm1 PIatformO ManO

the conjunction diagram shown in Figure 2-7.

Since PCA is empty, we confirm our belief that Geometry restrains the model,

rather than relaxing it. In particular, PCD shows a solution it is responsible for

disallowing - the case where some man's ceiling is his own floor. PIA shows one

of the solutions which is allowed whether or not we enforce Geometry, and we can

look at it and decide it it ought to be allowed. PID is the least interesting entry,

as it contains a bizarre situation which can't occur for many reasons, and would be

disallowed regardless of the presence of Geometry.

62

Figure 2-8: The role of the presence of the NoSharing constraint

0 PIA PCA0

~
PIA PCA /25'floor PCD

Man2 ceiling PlatformO
(Mr. Problem) -

ceiling

Man0 floorm

floor Platform2

Man1 ceiling

Platform1

IPID

Man1 ceiling

floor Platform0

ManD

NoSharing

The NoSharing constraint further constrains the model so that no two men can share

both the same ceiling and the same floor. We assert that NoSharing implies that

every man's ceiling is some man's floor, check it for a scope of 6, and find that there

are no counterexamples. The role of its presence is given in Figure 2-8.

Both PIA and PCA are empty PCA is empty, indicating that NoSharing does not

play a relaxing role. In fact, since PIA is also empty, we know that the unmodified

model is unsatisfiable - i.e. the assertion passed. PCD gives us an example of a

solution eliminated by NoSharing. As it turns out, the solution shown for PCD is

the very counterexample we saw earlier, when NoSharing was not enforced. PID is

the same solution we keep seeing there - a solution that violates so many constraints

that no one fact is responsible for eliminating it.

63

2.5.2 Sequence Library

Let's look at an example where the modeler actually got confused about the role of

a particular constraint. The developer of this model (Gregory Dennis) reports that

every time he looks at it, there is a particular constraint which he has to re-examine

and convince himself is necessary. He does so by running the model many times with

that constraint removed, and reasoning through each case (by hand) to determine if

it is only a solution because the constraint was removed. Non-example generation

automates that process.

The Model

Figure 2-9 shows a simplified version of the full model. Like a well written but

complex program, this model is easy to use but difficult to understand or modify

except perhaps by the original author.

The model encodes a sequence as a mapping from indices to elements. Thus the

sequence (A, B, C) would be represented as the relation (0 -+ A), (1 -+ B), (2 --

C). For simplicity, we have disallowed duplicate elements. For the purposes of easy

visualization, we have added a next relation in the visualizer that points from each

element in a sequence to the next element, if any.

Constraints are added to ensure that the indices begin at 0 and are consecutive

thereafter.

The Author's Confusion

The author's confusion arose around the need for the line

#added::inds() = #this::inds() + 1

in the definition of the add predicate. It states that the size of the last index value

of the list after adding an element is one larger than it was before adding the new

element. The confusion here is not about whether the constraint should hold, but

rather it is about whether the constraint should be enforced. Thus it is a question

64

Figure 2-9: A simplified version of Alloy's sequence module

module util/sequence2[elem]

open util/ordering[SeqIdx] as ord

sig SeqIdx {}
sig Seq {seqElems: SeqIdx -> lone elem}{

// Ensure that elems covers a prefix of SeqIdx,

// equal to the length of the signature
all i: SeqIdx - ord/first() I some i.seqElems => some ord/prev(i).seqElems

}

// no two sequences are identical

fact canonicalizeSeqs {no disj si, s2: Seq I sl.seqElems = s2.seqElems}

// helper functions

pred Seq::startsWith (prefix: Seq) {all i: prefix::inds() I this::at(i) prefix::at

fun next (i: SeqIdx): lone SeqIdx { ord/next(i) }
fun Seq::at (i: SeqIdx): lone elem { i.(this.seqElems) }
fun Seq::elems 0: set elem { SeqIdx.(this.seqElems) }
fun Seq::inds 0: set SeqIdx { elem.~(this.seqElems) }
fun Seq::lastIdx 0: lone SeqIdx { ord/max(this::inds() }
// returns the index after the last index

// if this sequence is empty, returns the first index,
// if this sequence is full, returns empty set

fun Seq::afterLastIdx () : lone SeqIdx {ord/min(SeqIdx - this::inds()}

// adds an element to the end of a sequence

pred Seq::add (e: elem, added: Seq) {
//added is the result of appending e to the end of s

added::startsWith(this)

added.seqElems[this::afterLastIdx(] = e
#added::inds() = #this::inds() + 1 I/TARGET

}

65

about the role of the constraint's presence, and we construct the conjunction diagram

shown in Figure 2-10.

To put it another way, is the target implied by the rest of the model?

The other constraints in the add function ensure that

1. the old list is a prefix of the new list, and

2. the next element is in the new list in a position past that prefix.

However, from the PCD entry of the conjunction diagram (Figure 2-10), we see the

following situation: Sequence seqi contains widget3 followed by widgeti. widgetO

is added to that list, creating the new sequence seqO. However, widget2 has also been

(extraneously) added to the end of that sequence. Apparently the target constraint

is necessary to prevent additional stray elements from being added to the end of the

new list.

Observations If we had thought of this particular problem beforehand, we could

have written an assertion that it never happens. Checking it with Alloy would return

us the same counterexample as we saw in the conjunction diagram. However, that

requires the user to have already thought of that potential problem, rather than

allowing the user to explore the meaning of the constraint.

2.5.3 The Firewire Network Protocol

"You must learn from the mistakes of others.

You can't possibly live long enough to make them all yourself."

Sam Levenson

A user can gain wisdom about a model by viewing automatically generated mistakes.

You might suppose that you are quite capable of generating your own mistakes and

are in no need of more, automatically generated or otherwise. We will argue that

understanding the effect of mistakes you could have made writing a constraint provides

valuable insight into the role of that constraint. In the Firewire model presented in

66

Figure 2-10: The role of part of the add predicate in the sequence module. An arc

labeled next [seqO] from node widget1 to node widgetO means that, in the sequence

[seq0l, widgeti immediately preceeds widgetO.

(next[SeqO]) next[Seq1]

(next[SeqO) next[Seql]

I next[Seq]

PIA PCA

PCD PID

next[Seq1) next[SeqOJ

' next[SeqO]

4 next[Seqo]

next[SeqO]

et1 next[Seql]

I next[SeqO]

67

this section, we will see how non-examples help us understand not only why certain

parts of the model were written, but why they weren't written differently.

An Overview of the Firewire Model

The Firewire protocol is employed as an initial phase for distributed algorithms. It

describes a method for a network of nodes to agree upon a tree-representation of their

network. The network is assumed to consist of a collection of nodes connected by a

pair of directed links, one in each direction. Viewing a link and its dual as a single,

undirected edge, the network as a whole is assumed to form a tree. At the conclusion

of the algorithm, the nodes should agree upon which node is the root, and which links

point down and which point up. In non-trivial networks, there will be many valid

tree representations, and the algorithm is only guaranteed to find one of them.

An Alloy model of this algorithm is given in Appendix A, key sections of which are

explained below. The details of the Alloy language are not necessary to understand

the model, and all relevant syntax will be explained as we go

The network is modeled as a set of nodes connected by directed links.

sig Node {to, from: set Link} {

to = {x: Link I x.target = this}

from = {x: Link I x.source = this}

}

sig Link {target, source: Node, reverse: Link} {

reverse.@source = target

reverse.@target = source

}

Each link has source and target nodes. Each node knows the set of links pointing

to and from it. The second set of curly braces after the Node signature define a fact

"Interested readers can learn the details of the Alloy language (and download it) from
http://alloy.mit. edu.

68

which makes sure that the to and from fields of each node are consistent with the

source and target fields of each link.

Each State records facts about the world which change as the algorithm proceeds.

sig State {

part waiting, active, contending, elected: set Node,

parentLinks: set Link,

queue: Link -> one Queue,

op: Op, -- the operation that produced the state

}

At any given point in the algorithm, each node has exactly one status (waiting,

active, contending, or elected), each link has a queue of messages (queue, and

some operation has just occurred (op).

We define a set of operations which can occur as the algorithm proceeds. We

then state that one of these operations occurs at each state transition, and describe

the effects of that operation. Remember that since this is a declarative model, we

describe how to recognize that a given operation has occurred, rather than describing

how that operation actually behaved. Only two of the operation descriptiosn are

shown here - the rest can be found in the full model, given in Appendix A.

sig Op {}

one sig Init, AssignParent, ReadReqOrAck, Elect, WriteReqOrAck,

ResolveContention, Stutter extends Op {}

pred Trans (s, s ': State) {

s '.op = Stutter => SameState (s, s')

s'.op = Elect => {

s'.parentLinks = s.parentLinks

some n: Node {

n in s.active

n in s'.elected

69

NoChangeExceptAt (s, s', n)

n.to in s.parentLinks

QueuesUnchanged (s, s', Link)

}}

other operations ...

}

Understanding the details of each operation would be quite overwhelming, so instead

we generate a sample run of the algorithm using the Alloy run command. Since Alloy

operates over a finite domain, we provide it with a set of bounds.

run ElectionHappens for 1 Int, 7 Op, 2 Msg,

exactly 3 Node, 6 Link, 3 Queue, 7 State

The ElectionHappens predicate mentioned in the command just states that initially

no node is elected as the root by eventually one is selected. Executing this statement

tells Alloy to analyzes the model and generate a solution - in our case solutions take

the form of traces of the algorithm over several states. One such trace is shown in

Figures 2-11 through 2-14.

While a sample run gives us some intuition for how the algorithm proceeds, it

does not offer much insight into the role each operation plays in the correctness of

the algorithm as a whole. We can see an operation's effect on one particular trace,

but not why it is necessary in general or why it should be written the way it is. To

answer those more general questions, we turn to non-example generation.

Applying Non-Example Generation

Let's examine what happens if we delete the entire constraint concerning one of the

operations. Let the target subformula be

s' .op = Stutter => SameState (s, s')

70

qu

source

queue: Q

Knt FQ7 Q1 m
) slot: Ack slot: ReqO

target target

eue: Q2 queue: Q2

source source source

target target

] queue: Q2 State SO

Writ 'e PeqO rAc k QO Q1 Q
p slot Ack slot Req 2

qu qu

sourc

queue:-

target target

eue: Q2 queue: Q1

source source source

Nqde:
(active)

target target

)2 queue: Q2
State SI

Figure 2-11: In state SO, the system is initialized and the nodes are waiting. Each link

has a message queue which is initially empty. NodeO has only one incoming link, and

thus it has only one incoming link which has not been classified as a parentLink. In

state Si, NodeO becomes active and sends a request to Nodel, declaring its willingness

to be a child.

71

QO Q1 AssignParent
slot: AckO slot: ReqO (op)

target target

queue: Q2 parentLinks
s sourc queue: Q2

source source source source

00 NodeO
- (active)

target target

queue:Q2 ueue: Q2 State S2

s 0 Q1 L Q2e
Slot: AckO slot: ReqO

target target

queue: Q2 parentUnks
queue:, 02

source source source source

NodeO
(active)

target target

queue: Q1I queue: QO
State S3

Figure 2-12: In state S2, Node2 acknowledges NodeO's request, indicating that Node2

is willing to be NodeO's parent. NodeQ thus declares that its outgoing link is a

parentLink, making it a leaf in the tree being constructed. In state S3, Node2 be-

comes active and notices that it how has only one outgoing link which is not marked

as being a parentLink. It thus sends a request to Node1, indicating its willingness

to be a parent.

72

QO Q1 AssignParent Q2
slot: AckO slot: Req((op)

qu

sourc

parentU
queue:

target target

uQ parentLinkseue: Q2queue: Q2

e source source source

NodeO
(active)

target ta rget

nks queue: QO
)2 State S4

QO Qs l2
slot: AckO I slot: ReqO

target target

qeue-tk quparentu nks
eue:eu* 02

source source source source

Node1 NodeO
(active) (actve)

targ et target

parentuinks queue: QO
queue: 02 State S5

Figure 2-13: In state S4, Nodel acknowledges Node2's request, indicating its willing-

ness to be a child. Node2 sees that only one of its incoming links is not a parentLink,
so it sends a request to Node1 that the other incoming link be made a parentLink.

In state S5, Node1 activates and sees that it can only be a leaf node.

73

od e 2 QO Q1 KE
actiVe) slot' AckO slot: Req0 (

target target

parent inksqueue: QOL

source source source source

Node1 Noqe eO
(electe) (act ve)

ta rg et target

>arentLinks queue: QO
queue:. Q2 State S6

Figure 2-14: In state S6, all of Node2's incoming links are parentLinks, and those

choices have been validated by its neighbors. Node2 thus declares itself to be the root,
and the algorithm terminates.

74

NodeO QO E'tutte r
(elected) slot: AckO (1 p)

target target

parentLinks parentLinks
queue: Q1 queue: Q1E

source source source source

Node2 Nodel
(elected) (elected)

target target

parentLinks |parentLinks
queue: Q1 ||queue' Q1

Figure 2-15: One state from a trace in PCD from the entire constraint describing of

the stutter operation

from the predicate Trans 12. The constraint says that a state following the Stutter

operation must be equivalent to the state preceding the operation. Stuttering just

allows the system to make a no-op transition.

One might suspect that deleting this subformula would effectively disallow that

operation from occurring. However, the PCD entry of the conjunction diagram

(Figure 2-15) tells a different story.

Failing to describe Stutter does not disallow it, but rather it allows it to take on

any behavior! What's going on is that elsewhere in the model, we list the possible

operations and state that exactly one of them occurs between each pair of states. If

1 2 Since this formula is part of a predicate, generating the conjunction diagrams for integrity and

correctness requires computing the joint role of all its call sites. However, it is only called in one

location, so we need not bother. The notion of a joint role is introduced in Section ??.

75

LI] Stutter
(op)

NodeO 0
(elected)

ta rg et ta rget

queue:- QO queue: QO

source source sour

Node2 Node1
(elected) (a ctive)

ta rg et targe

queue:QO p-entLinks
que u e: Q 0

Figure 2-16: PCD from the conjunction diagram for the role of the latter half of the

constraint s' . op = Stutter => SameState (s, s ')

the Stutter operation is chosen and there is no constraint describing its behavior,

then any behavior is allowed.

Refined Target Since deleting that formula had such an extreme effect on the

model, its conjunction diagram was not very informative. When a target formula has

too much influence on the model, we need to choose a smaller one. So we refine the

target to include only the latter half of the previous target:

SameState (s, s')

PCD (Figure 2-16) contains a trace in which the system never stutters. If we

look back at the model, we can confirm that observation. Deleting the new target is

equivalent to setting it to the constant False. The target appears in the context

s' .op = Stutter => SameState (s, s')

76

Deleting the target and desugaring the conditional gives us the following constraint

!(s'.op = Stutter)

The Stutter operation cannot occur.

Looking at ICD, we see that sabotaging the current target is equivalent to deleting

the entire line containing it - the situation we examined before and which is shown

in Figure 2-15.

Since the stutter operation is so simple, let's look at a more complicated one.

s'.op = Elect => {

s' .parentLinks = s.parentLinks

some n: Node {

n in s.active

n in s'.elected

NoChangeExceptAt (s, s', n)

n.to in s.parentLinks

QueuesUnchanged (s, s', Link)

}}

The Elect operation occurs just before the algorithm terminates, and involves the

nodes agreeing upon a node to be the root. If we choose the entire constraint, we will

see the same behavior as when we deleted the entire constraint describing Stutter;

we would be allowing the Elect operation to have an arbitrary effect. Similarly, if

we choose the target to be the entire formula following the conditional, we would be

preventing Elect from ever occurring.

Further Refined Target In order to understand the details of Elect, we need to

further refine the target by making it smaller. The role that most of the lines play is

obvious. This one is perhaps the most cryptic:

n in s.active

77

The node being elected (n) is required to have been active in the previous state.

While the meaning of this line is not difficult to understand, it is not clear why it is

necessary.

Looking at PCD, shown in Figure 2-17, we see a solution which appears to be ok.

It does indeed involve an inactive node being elected as the root, but that node is a

valid root, as are the parentLink labels.

So, is this constraint really necessary? PCD showed us a situation which it

eliminates which need not be eliminated. However, there might be a solutions it

eliminates which should be eliminated. Since we only show the user one arbitrarily

chosen element of PCD, such a solution might still exist. What the conjunction

diagram does do for us is (a) make us suspicious about this constraint and (b) suggest

a property to check. We write the following property and check it against the model

with the target formula deleted:

assert OK {

Execution() =>

(all s: State I (some s.elected)

=> all n: Node I s.elected in n.*(~source.((s.parentLinks) <: target))

)

}

check OK for 1 Int, 7 Op, 2 Msg, exactly 3 Node,

6 Link, 3 Queue, 7 State

expect 0

If the rules of execution are obeyed (Executiono), then the node elected (s .elected)

must be a valid root. To be a valid root, a node must be reachable from any other

node by following parentLink links some number of times. 13

Analyzing that assertion produces no counterexamples. We now know that (in a

network of up to 3 nodes) permitting inactive nodes to be elected does not produce

13The expression (source. ((s.parentLinks) <: target)) is Alloy's way of expressing the
relation from nodes to nodes indicated by the parentLinks. This roundabout way of expressing
"up edges" is necessary because the model reifies links. Perhaps there is a clearer way to write the
model, but our task is to understand it as it stands.

78

EZI Qi Assigrslot. ReqO

target target

entLinks parentLinks
eue: Q2 queue Q2

e source source source

Node1l NodeO
(active) (active)

target target

Q2 queue: Q2

iParent Q2
Sp)tLtelI

State 5

No de2 QOQ1 E'ect Q
(e Lted) slot: ReqO (OP)

target target

parentLinks parentLinks
qlueue: Q2 queue: Q2

source source source source

Node1 Node;
(active) (active)

target target

queue: Q2 queue. Q2 State S6

Figure 2-17: The formula n in s. active in the specification for the Elect operator

is crucial to disallowing the case where an inactive node is elected as the root. Shown,
are states S5 and S6 (the final two states) of one such trace. This trace would appear

in the PCD entry of the conjunction diagram.

79

par
qu

sourc

queue

ill-formed trees. We only know to check this property because of our exploration of

the role of various subformulae.

2.6 Expansion and Refinement

"The road to wisdom? Well, it's plain and simple to express:

Err and err again but less and less and less."

Piet Hein

Often, the first target formula one chooses will produce a trivial or unhelpful

conjunction diagram. In such a case, target expansion or target refinement is in

order.

If altering the target has little or no effect, then we probably want to expand the

target to include more of the model. In Section 2.3.2, we saw an example of using

target expansion to investigate a CNF formula.

On the other hand, if altering the target has a tremendous effect on the model, then

we should reduce the target to contain an even smaller subformula. In Section 2.5.3,

we saw an example of performing several target refinements in a row while exploring

operations in the Firewire network protocol.

2.7 Related Work

2.7.1 Understanding Counterexamples with explain

Groce, Kroening, and Lerda [1, 10] developed the tool explain, which address the

difficulty users have with understanding lengthy solution to a model. Where our goal

is to explain a particular subformula of the model, their goal is to explain a particular

solution of the model. Both approaches use the insight that slightly illegal behavior

is useful to explain regular behavior, and so both approaches produce explanations

in the form of non-satisfying assignments to the model. explain is given a particular

solution, so it uses a distance metric to find the most similar non-solution. Non-

80

example generation is given a particular subformula, so it uses mutations to that

subformula to produce non-solutions that violate only that subformula.

It takes a great deal of time and effort to work through a long solution to make

sure that it is not a bug in the model and to understand it sufficiently to correct the

system being modeled. explain uses a metric to measure the distance between two

assignments or solutions, allowing it to identify the "most similar solution". Given

a counterexample (an assignment satisfying the model but violating the property),

explain generates an execution that is as similar as possible to the failing run but

which does not violate the property. It can also generate a new counterexample which

is as different as possible from the previous run.

2.7.2 Mutation Testing

Both non-example generation and mutation testing deal with how small, artificial

changes to the source code (or, in our case, the model) affect the set of valid executions

(or solutions). In the case of mutation testing, the goal is to make sure that the

test suite can detect when the set of valid runs changes. In the case of non-example

generation, the goal is to explain the effect of that change by showing how the solution

set changes.

Mutation testing has been well-known to computer scientists for decades [28, 43,

17, 25, 32, 37]. It is based on applying mutation operators to the source code of a

program to seed that program with faults. A test case which is able to distinguish

the mutant from the original program is said to "kill" that mutant. If a test suite

kills all the mutants generated, then the test suite is complete with respect to that

class of mutations; it will detect future bugs of that type. If the mutant program does

not violate the test suite, then that suite is insufficient, and that mutant suggests a

test case to include in the suite. An infinite test suite of all valid and invalid runs

would kill all non-equivalent mutants. The goal is to select a small, finite subset of

those runs which still kills non-equivalent mutants. Ensuring that the mutations are

semantically different from the original program is a major topic of research.

One could apply mutation testing to a model instead of a program. One would

81

provide a class of mutations and a set of test cases (assignments). Such an approach

would be very different than non-example generation, since it would test how the

chosen assignments were affected by that class of mutations. It would not explain

how arbitrary changes to a particular formula affect the set of all solutions.

2.7.3 Logic Programming: Prolog

Declarative modeling is similar in form and philosophy to logic programming, for

which Prolog is perhaps the best known language 14. As with a declarative model, a

logic program is a set of declarative statements which describe restrictions on results

rather than dictating valid paths. There are many debugging tools for Prolog, but the

expressiveness limitations of the language prevent applying non-example generation

to that domain.

Logic Programs vs. Logical Models

The execution of a model checker is essentially a search of the finitized state space,

using a SAT solver to analyze a boolean encoding of the model. In contrast, the

execution of a Prolog program is effectively an application of theorem proving by first-

order resolution - a process using unification, tail recursion, and backtracking. For

efficiency reasons, many implementations estimate unification in an unsound manner.

Prolog cannot express arbitrary first-order predicate logic; a Prolog program is

a set of Horn clause,15 which takes the form of a conditional with a conjunctive

normal form (CNF) antecedent (with all positive terms) and single term consequence:

CNF => P.

1 4The name Prolog is taken from programmation en logique, and the language was developed by
Alain Colmerauer in the early 1970's.

'-The term Horn clause is derived from the logician Alfred Horn who first pointed out the signif-
icance of such clauses in his 1951 article "On sentences which are true of direct unions of algebras",
Journal of Symbolic Logic, 16, 14-21.

82

Prolog Debuggers

In 1983, Shapiro [38] introduced a debugging system for Prolog, and most modern

debuggers still take the same form [20]. Debugging is a process of writing meta-

programs, which are themselves written in Prolog [29, 36]. These meta-programs

provide information about the intended semantics of the program. They are provided

by an oracle (i.e. the user) and typically take the form of a partial specification.

Debugging a Prolog program in this style is analogous to debugging an Alloy model

by writing assertions about it. The assertions help to link the user's intention with the

implementation, and both Prolog debuggers and Alloy assertions can be automatically

checked. The user can provide assertions about the behavior of the model as a whole,

but cannot inquire about how some particular portion of the model contributes to

that behavior.

There are more sophisticated tools for understanding and debugging Prolog, even

some which generate visualizations. Hopfner and Seipel [33] have developed a method

which answers the question "What parts (files, modules) of a Prolog-project are

needed in order to make a specific predicate work correctly?"; "[I]f one only wants

to export [or reorganize] parts of a project...then it is sufficient to install only these

parts in the new environment.". The notion of "works correctly" is one of explicit

dependence, not of implicit interaction; it is about what parts of the program are

needed in order to make the target well formed, not which parts interact with the

target, or what would happen if the target were absent.

Non-Examples in Prolog?

Due to the limited expressive power of Horn clauses, generating non-examples for

Prolog is not as straight forward as it is in a language such as Alloy which supports

arbitrary first order logic, and it may not even be possible. One cannot arbitrarily

negate a subformula of the model without it ceasing to be a Horn clause.

83

2.7.4 Near Miss Learning

Patrick Winston's classic work on near miss learning [46] has the same psychological

foundations as non-example generation. Both techniques are based on the notion

that, in order to understand a category, one must see near-misses - examples which

are almost (but not quite) elements of that category.

Non-example generation is for understanding models, which we view as a descrip-

tion of a set of (satisfying) assignments. Near misses are assignments which violate

the model but would satisfy it if the chosen subformula were altered (PCD, ICD,

and CCD). We also use a notion of a near-hit - assignments which satisfy the model

but wouldn't if the chosen subformula were altered (PCA, ICA, and CCA).

Winston's work is in artificial intelligence, and is concerned with training a robot

to correctly categorize objects it sees. His approach involves presenting the machine

with positive examples, negative examples, and near misses. In this manner, Winston

trains the machine in the same way we train the user.

Winston's Approach Consider the task of training a machine to learn which

inputs satisfy some function, f. There may be a partial description of f, or none at

all. You can train the machine by giving it positive examples, which are known to

satisfy f, and negative examples, which are known to not satisfy f. There is also

a notion of a near miss, introduced by Winston in 1970 [45], which is a negative

example which only fails to satisfy f for "a small number of reasons". Winston's

classic example is that of an arch.

" positive: two non-touching blocks supporting a third

" negative: fifty blocks line up in a row

" near miss: two touching blocks supporting a third, or two non-touching blocks

with the third on the ground nearby.

A set of positive examples and near miss negative examples (a near miss group)

is an effective training method when combined with half a dozen heuristics for how

84

to restrain or relax the machine's model of f based on those example. Interested

readers will find clear descriptions of these heuristics, and this approach to learning

in general, in Patrick Winston's text book [46].

Winston gives two guiding principles to help understand why it is that near misses

are so helpful to learning, be it by a machine or a human:

1. You cannot learn if you cannot know. Good teachers help their students acquire

the necessary representation [thus allowing them to behave correctly in new or

extreme situations].

2. You cannot learn if you cannot isolate what is important. Good teachers help

their students by providing not only positive examples, but also negative exam-

ples and near misses [to identify what is important about the positive examples].

Counterfactual and Causal Reasoning

In Section 2.1.2, we motivated non-example generation as a lightweight alternative

to counterfactual reasoning. The brief summary given in that section does not do

justice to David Lewis's work on formalizing counterfactual logics.

David Lewis [31] suggested the defining counterfactuals in terms of "closest pos-

sible worlds". A question "What would have happened if event X had occurred?"

is answered by examining all possible worlds in which X occurred. Among those

worlds, the one which is closest to the current world is selected. His exact words on

the matter are as follows:

"A [counterfactually implies] C is true in the actual world if and only if (i) there

are no possible A-worlds; or (ii) some A-world where C holds is closer to to the actual

world than is any A-world where C does not hold.

We shall ignore the first case in which the counterfactual is vacuously true. The

fundamental idea of this analysis is that the counterfactual A [counterfactually im-

plies] C is true just in case it takes less of a departure from actuality to make the

antecedent true along with the consequent than to make the antecedent true without

the consequent."

85

86

Chapter 3

Core Extraction: Identifying

Overconstraint

"Logic takes care of itself;

all we have to do is to look and see how it does it."

Ludwig Wittgenstein

"Logic, like whiskey, loses its beneficial effect

when taken in too large quantities."

Lord Dunsany

Along with its many benefits, declarative modelling brings the risk of overcon-

straint, in which real counterexamples are masked by bugs in the model. In the

extreme, the model has no bad transitions because it has no transitions at all! Core

extraction is a new analysis that mitigates this problem in the presence of a checker

which translated the model to a CNF formula based on reduction to SAT. It exploits

a recently developed facility of SAT solvers to deduce an unsatisfiable subset of a CNF

formula which is often much smaller than the clause set as a whole. This unsatisfi-

able "core" is mapped back to the syntax of the original model, showing the user the

fragments of the model which caused it to be unsatisfiable (and thus revealing unused

or irrelevant portions of the model). Relevance information can be a great help in

discovering and localizing overconstraint, sometimes pinpointing it immediately. The

87

construction of the mapping between the model and an equivalent CNF formula is

given for a generalized modelling language, along with a proof of the soundness of the

claim that the marked portions of the model are irrelevant. Experiences in applying

core extraction to a variety of existing models are discussed. 1

3.1 Introduction

The risk of overconstraint in declarative specification languages such as Z [41] and

VDM [24] was recognized long ago, but only very limited automatic tool support

exists to mitigate it. In Z, preconditions are implicit; it is regarded as good style for

an operation's precondition to appear explicitly in the text of the operation's schema.

This discipline results in proof obligations (that the explicit conditions imply any im-

plicit preconditions). Checking these obligations is no easier than checking any other

property of a Z specification2 . Similarly, in VDM, the 'implementability' criterion

leads to a similar obligation. Because of the difficulty of discharging proof obligations

automatically, most tools for Z and VDM simply extract the proof obligations but

leave the user to determine their validity.

Analysis tools that support simulation or the checking of liveness properties can

mitigate the problem of overconstraint, but the risk remains: a safety property may

hold because of a subtle overconstraint that may not be noticed even if a host of

liveness checks have passed. Moreover, counterexamples to liveness may themselves

be ruled out because of overconstraint.

Even when a modeler suspects an overconstraint, identifying the conflicting con-

straints is often frustrating. Currently, the only systematic technique for finding

causes of conflict in a declarative model is to manualy disable individual constraints

until the culprits are identified. This task can be lengthy and runs the risk of intro-

ducing new errors into the model. The model checker provides no help to the user in

'Chapter 3 is isomorphic to a paper co-authored with Ilya Shlyakhter, along with Manu Sridharan,
Daniel Jackson, and Mana Taghdiri [19]. For example, the introduction was originally written by
Daniel Jackson and only minor changes have been made.

2And may indeed be harder, since the precondition of an operation involves a higher-order quan-
tification over its state components.

88

finding the overconstraint, other than to report whether a given version of the model

is still overconstrained. As discussed in Section 5, 'vacuity testing' addresses this

problem [30, 3, 6, 44], but does not apply to declarative models and helps debug only

overconstrained properties, not overconstrained models.

This chapter presents core extraction, a new approach to addressing the problem of

overconstraints in declarative models. Satisfiability solvers have recently developed a

facility for extracting the unsatisfiable core of a CNF formula: that is, a subset of the

clause set sufficient to cause a contradiction [47, 14]. For declarative model analyses

that can be cast as satisfiability instances, the unsatisfiable core can be mapped back

onto the model. In other words, we can identify the parts of the model responsible for

producing the unsatisfiable CNF core. Those parts, by themselves, suffice to produce

an overconstraint, and their identification can help the user find the overconstraint.

Showing an unsatisfiable core may also alert the user to the unexpected presence

of an overconstraint. If almost the entire formula is relevant (i.e. necessary to pre-

venting counterexamples to the property being checked), it will raise confidence that

the system description is not overconstrained, that the safety property is not vacuous,

and that it holds (at least for the bounded domain). But if the analysis highlights

only a small part of the system description (or does not highlight the property being

checked), it indicates as strong possibility that the model is unintentionally overcon-

strained. If it highlights only the safety property, it suggests that the property is a

tautology, and thus vacuously satisfied.

Our presentation is set in the context of an analysis for first-order relational logic

that has the flavor of model checking. In short, a system is specified as a formula,

whose models (which correspond to the behaviours of the system) assign values to

relations of various arities. A safety property is checked by conjoining its negation

to this formula; solutions to this new formula are counterexamples. If there are no

solutions, and the model is correct, then the property being checked holds (up to the

specified scope). The formula is translated to a propositional formula by bounding

the carrier sets from which the relations draw the values of their atoms. Models of

the propositional formula are found by a SAT solver, and translated back into the

89

relational domain for display to the user. This analysis scheme has been described

previously [22]; until now, if no counterexample were found, no further information

would be given. This lack of information has been the a complaint from users of our

tool.

Although we developed these techniques in the context of the declarative model-

ing language Alloy, which we will use to present case studies and examples. However,

both the technique and its implementation were intentionally kept much more gen-

eral; they are sufficiently modular to apply to any language which is reducable to

SAT in a structure-preserving fashion '. Concequently, our techniques should also

apply in related settings such as BMC [4] and planning 261. We provide a simple se-

mantic guarantee of correctness, assuring the user that deleting constraints identified

as irrelevant will preserve unsatisfiability of the model.

3.2 A Toy Example

To illustrate the use of core extraction on a toy example, consider the problem of

checking the design of a web caching scheme. The task is to design the Get operation

that obtains a page from its owner, or from a cache. The correctness of Get will be

contingent on some assumptions about the freshness of pages delivered by the owner,

which are recorded as an invariant. A complete (albeit simplified) Alloy model for

this problem is shown in Figurefig:webcache.

A detailed knowledge of Alloy is not needed to grasp the point of the example,

but some explanation is in order. A fuller explanation of Alloy may be found else-

where [23].

Each signature (labeled sig) introduces a set of atoms: Time for the atoms repre-

senting moments in time, URL for the URL's of documents, Page for the contents of

documents, and Server for the caches and owners. A field declared within a signature

is simply a relation of some arity, whose columns are the sets given, and implicitly, in

3 Our techniques and implementation still apply to non-structure-preserving translations, but the

more structure is lost, the less useful (larger and less likely to pinpoint the source of an overconstraint)
the extracted core will be.

90

Figure 3-1: A toy Alloy model describing the behavior of a web cache

module webcache

sig Time {}
sig URL {}

//A Server records (at most) one Page
// per URL at any given time.

sig Server {page: Time -> URL ->? Page}

//Page expiration is modeled by a set

// of times at which the page is fresh.
sig Page {life: set Time}

//Page recorded by any Server is fresh

fact ServerFresh {
all s:Server, t:Time,

u:URL, p:Page I
(t -> u -> p) in s.page =>

t in p.life }

//The cache may drop & add entries from the owner,

//but no stale pages may remain afterwards

fun Get (t,t':Time, cache,owner:Server,

u:URL, p:Page) {
cache.page[t'] in cache.page[t]

+ owner.page[t] -

{u:URL, p:Page I t' not in p.life}
=> p in (cache+owner).page[t'][u] }

//result of Get is always a fresh page
assert Freshness {

all t,t':Time, cache,owner:Server,

u:URL, p:Page I
Get (t, t', cache, owner, u, p)

=> t' in p.life }

check Freshness

91

the leftmost position, the signature itself. Thus life is a binary relation from Page

to Time, associating with each page the set of times for which it is current, and page

is a relation of arity 4, containing a tuple (s,t,u,p) when server s maps URL u to

page p at time t. The question mark in the declaration of the field page indicates

that at most one page is associated with a given server, time and URL.

The remaining paragraphs of the model are formulas that play different roles. An

assertion is a formula that is conjectured to be valid; here Freshness asserts that the

result of a Get is always a fresh page. The assertion makes use of a function, Get,

which is a parameterized formula that is simply inlined, and (implicitly) any global

facts. It's arguments comprise two times (v and v'), two servers (cache and owner),

a URL (u), and a page (p). In this case, the fact ServerFresh is implicitly applied,

which states that servers always yield fresh pages. The command check Freshness

instructs the tool to search for counterexamples to the assertion; by default, the search

is conducted in a 'scope' that limits each basic set to 3 atoms.

The formulas within the fact, function and assertion are written in an ASCII form

of first-order logic, enriched with relational operators. The keyword in is the subset

operator, + is set union, and - is set subtraction. The dot and square brackets are two

variants of a single relational image operator with different precedence and argument

order. For example, the expression

(cache+owner).page[t'][u]

does several things: first it takes the union of the two sets cache and owner; then it

takes their image under the relation page; then takes the image of first the time t'

under this relation, yielding a relation from URL's to pages representing the aggregate

contents of cache and server at time t'; then takes the image of the URL u under

this relation; and finally gives the set of all pages associated with the URL u in cache

or owner at time t'.

The times t and t' represent the moment just before and just after the Get occurs.

The function as a whole can be read as follows: the mapping from URL's to pages

in the cache after (cache .page [t ']) is a subset of the union of the mapping before

92

(cache .page [t]) and the mapping in the owner (owner . page [t]), minus all entries

whose pages are no longer fresh ({u:URL, p:Page I t' not in p.lif e}). In other

words, the cache is at liberty to drop any entries, and to add any entries from the

owner, so long as no stale pages remain afterwards. The fact is the crucial invariant

recording the assumption that pages in a server are always fresh.

In this case, there is no counterexample (and there would be no counterexample

even in a larger scope). We run the core extraction analysis; its output is an abstract

syntax tree, annotated (roughly speaking) with information about which nodes are

relevant, and, for those representing formulas with free variables, for which values of

the variables. We examine the tree top-down, looking for formulas that are deemed

irrelevant. Surprisingly, the entire first line of Get is irrelevant: even though the

page may be taken from the cache (as specified in the second line), how the cache is

updated is irrelevant.

What's wrong? First we check that the page is taken from the new and not the

old value of the cache. No problem here; the second line of Get correctly refers to t'

and not t. Then we see the blunder: the fact states that all servers yield fresh pages,

including the cache, so the assertion follows trivially from it. This might seem like an

absurd error to make, but in fact, an author of this paper made this error unwittingly

during the development of this example because he started with a more elaborate

model that distinguished caches from servers, then simplified it erroneously.

To fix the model, we partition the set of servers into caches and owners, modify

the fact to constrain only owners, and declare the arguments of Get to belong to the

appropriate subsets. This correction is shown in Figure 3.2.

Running core extraction again shows that almost all formulas in the function and

fact are relevant. The expression

c.page[t] + o.page[t]

in the first line of Get, however, is marked as irrelevant. This makes sense though;

since all stale pages are removed from the cache (by the set subtraction that follows),

the source of additional pages is irrelevant. That the remaining formulas are deemed

93

Figure 3-2: The corrected version of the web cache Alloy model, taking into account
the information provided by core extraction

module webcache

sig Time {}
sig URL {}
sig Server {page: Time -> URL ->? Page}
part sig Cache, Owner extends Server {}
sig Page {life: set Time}

fact OwnerFreshness {
all s: Owner, t: Time,

u: URL, p: Page I
(t -> u -> p) in s.page =>

t in p.life }

fun Get (t,t':Time, c:Cache,
o:Owner, u:URL, p:Page) {

c.page[t'] in c.page[t]
+ o.page[t] -

{u:URL, p:Page I
t' not in p.life} p in

(c+o).page t'][u] }

assert Freshness {
all t,t':Time, c:Cache,
o:Owner, u:URL, p:Page I
Get (t, t', c, o, u, p)
=> t' in p.life }

check Freshness

94

relevant gives us some confidence that our model is no longer vacuous; the irrelevance

of this particular expression suggests that an assertion about the authenticity of a

page is needed.

As another example, suppose we erroneously wrote

p in c.page[t'][u]

for the second line of Get, so that the page is always taken from the cache, and never

from the owner. In this case, the fact OwnerFreshness is found in its entirety to be

irrelevant: not surprisingly, since the cache from which the page is drawn has been

purged of stale entries.

3.3 The Core Extraction Algorithm

Core extraction is run only on formulas already found to be unsatisfiable: either

simulations that have no behaviours, or checks that have no counterexamples. It

runs fully automatically without user intervention. Its result is an identification of

fragments of the original model that were irrelevant to demonstrating unsatisfiability.

In our implementation, these fragments are shown as a colored abstract syntax tree

that is synchronized with the text in an editor. An irrelevant fragment is colored red,

and may be a subformula or an expression. For quantified formulas, the tree indicates

for which values of bound variables the body formula is irrelevant.

This section presents the algorithm on which our implementation is based, in a

generalized form. It starts with an abstract syntax tree (AST) in which there are

no quantifiers; our implementation involves an additional step of mapping back from

this tree, resulting from grounding out quantifiers, to the original syntax tree.

The correctness criterion for the algorithm is that the claim of irrelevance is sound.

More precisely, the function computed at any AST node marked as irrelevant can be

replaced by any function that leaves the AST well formed (in particular a constant

function of the appropriate type), without making the resulting AST satisfiable. An

irrelevant child of an AND node, for example, can be read as the constant true. In

95

some cases, as here, this means that the node can be removed entirely. A roadmap of

how the algorithm fits into the overall use of the tool algorithm is shown in Figure 3-3.

3.3.1 Constraint Language

We define an abstract constraint language for expressing formulas on a collection

of variables vi E V. A formula is expressed as an abstract syntax tree, in which

each node computes a predefined function of its children. The root node computes

a Boolean function, which becomes the value of the formula as a whole. The leaf

nodes are variables. We denote the universe of computable values by U. The set

F of node functions has elements of the form fi : U* -+ U Trees are thus defined

by Tree = F x Tree* + V. '. An assignment from U to each vi E V induces an

assignment from U to each AST node; the value of a leaf node is the value of the

AST variable at that node, while the value of a node n = Tree(f, ch) is computed

by applying the node function f to the sequence of values assigned to the children

ch. Testing satisfiability of the AST involves finding an assignment to the variables

vi which induces the value true in the root node, or determining that none exists.

3.3.2 Translation

Satisfiability of the formula can be tested by converting it to a Boolean formula in

conjunctive normal form (CNF). The translation framework is illustrated in Figure 3-

4. To convert an AST to CNF, we allocate to each AST node n E Tree a sequence

of Boolean variables bv(n) E BV* representing the node's value. The sequences of

Boolean variables allocated to two nodes are identical if these are leaf nodes with

the same AST variable, otherwise the sequences are disjoint. We define functions

enc : U -+ Bool* and dec : Bool* -+ U for encoding and decoding values in U as

binary strings. An assignment of Boolean values to all the Boolean variables allocated

for AST nodes thus corresponds to assigning a value from U to each AST node. An

4The sets U and F are determined by the semantics of the particular constraint language. For
example, for Alloy [231, U contains relational and Boolean values, and F includes relational and
Boolean operators. The particular semantics are unimportant for this paper.

96

assignment of U values to AST nodes is consistent if the value at each non-leaf node

equals the result of applying the node's node function to the sequence of U values

assigned to the node's children. We translate an AST to CNF by generating CNF

clauses on the Boolean variables allocated to AST nodes, so that the conjunction

of these clauses is true of a given assignment to Boolean variables iff the Boolean

assignment corresponds to a consistent assignment of U values to AST nodes.

The translation is done separately for each AST node. For each node, we produce

a set of CNF clauses relating the Boolean variables allocated to that node, to the

Boolean variables allocated to the node's children. Intuitively, the clauses are true iff

the U value represented by the nodes's Boolean variables equals the result of applying

the node's node function to the sequence of U values represented by the Boolean

variables allocated to the node's children. The clauses output from translating an

AST node depend only on the node function which the node computes of its children,

and on the Boolean variables allocated to the node and the children.

For each node function fi, we define a corresponding "CNF translation" function

fi : BV*, BV** -+ P Clause

f. takes a sequence of boolean variables from the domain BV, corresponding to the

result of the function, and a sequence of sequences of boolean variables corresponding

to the arguments, and returns a set of clauses that encode the function in CNF. The

correctness of this function is justified with respect to the encoding function and the

semantics of fi itself; its result evaluates to true iff the Boolean variables allocated

to the result of fi encode the value computed by applying fi to the argument values

encoded by the Boolean variables allocated to the arguments.

Using these individual translation functions, we can now translate the tree. The

function transl : T -- P Clause translates one AST node to CNF, and is defined as

transl(t) = let t = Tree(f, ch) I f(bv(t), map(bv, ch))

The CNF translation of an entire AST is then just the union of translations of its

97

nodes:

translTree(t) = UnEnodes(t)transl(n)

Correct translation to CNF requires that for each node t, for any Boolean assign-

ment ba : BV -+ Bool satisfying transl(t), we have

f(map(dec, map(A cv . map(ba,cv),map(bv,ch))))

= dec(map(ba, bv(t)))

where the node t computes the node function f of its children ch. To test satisfiability,

we constrain the Boolean variable(s) allocated to the root to represent the value true

from U, by adding the appropriate unit clauses.

3.3.3 Mapping Back

Suppose now that the CNF C translated from our AST is unsatisfiable, and the SAT

solver identifies an unsatisfiable core C' C C. We define a predicate irrel : T -* Bool

on AST nodes, which is true for nodes whose translations contributed no clauses to

the unsatisfiable core:

irrel(t) ={t I transl(t) n C' = 0}

Claim: For any node n for which irrel(n) holds, we can replace the node function

fi with an arbitrary node function f3 without making the AST satisfiable. To show

this, we argue that the CNF translation of the mutated AST will still include the

unsatisfiable core.

Proof: The function bw, which allocates Boolean variables to AST nodes, does not

depend on node functions; the sequence of Boolean variables allocated to a given AST

node depends only on the overall structure of the AST and the position of the node

within the AST. Therefore, the same sequences of Boolean variables are allocated to

all AST nodes in the mutated AST as in the original AST.

For any node whose node function has not changed, transl will thus output the

98

same clause set. Any node it whose clause set contributed to the core will node

function, and transl will output the same clause set for that node. Each clause of

the unsatisfiable core is thus present in the translation of the mutated AST, meaning

that the mutated AST is still unsatisfiable.

3.3.4 Complications

The description of the AST above was made rather abstract to make it clear that

although we have implemented the scheme for Alloy, it could be applied straightfor-

wardly to any constraint language that can be reduced to SAT. The description of

the translation is likewise more abstract, because this allows it to accommodate more

advanced translations. The Alloy Analyzer, for example, identifies opportunities for

sharing among subformulas [39], so that the AST is in fact not a tree but a DAG.

This can be modelled by having the bv function allocate the same Boolean variables

to different AST nodes. Similarly, like most tools that generate CNF, the analyzer

uses auxiliary Boolean variables to prevent CNF explosion; this can be modeled by

having bv allocate additional Boolean variables to each AST node.

3.4 Experience

To evaluate the technique, we performed a variety of experiments and small studies.

First, we examined our logs of common mistakes made in modelling, and identified

those that would likely be detected by core extraction. Second, we revisited some

models that had suffered from overconstraint during their construction, reinstated

the overconstraints, and ran the core extractor to see how it fared. We describe a

case in which it worked well, and some in which it did not. Third, we ran the extractor

on several models for which we had no expectation of overconstraint; to our surprise,

we found some serious flaws.

99

3.4.1 Common Mistakes

In this section, we will describe some pitfalls that we have observed (and had reported

to us by users) to be common in Alloy modelling, and show how core extraction helps

to highlight them. Mistakes in the use of a formalism are of course less interesting

than true conceptual mistakes, but their consequences can be just as painful (and

just as much of a deterrent for potential modelers). Arguably they reflect flaws in

the language design, but no language is perfect, and all include similar potentials for

error.

Pitfall #1: assuming variables with different names have distinct values

A quantifier may not bound its variables as intended. In a model with signatures

Person and Name, and a relation name from Person to Name, one might write

all p, q : Person I p.name != q.name

to say that each person has a unique name. But this formula is always false unless

the set Person is empty, since it cannot be satisfied when p = q. The extracted core

would likely include the property being checked 5 , a constraint requiring non-emptiness

of Person, and this quantified formula. Writing instead

all p : Person, q : Person - p I

p.name != q.name

would result in a much larger core (suggesting that it is correct, or at least more

sensible).

Pitfall #2: omitting a special case for the final state of a trace

A similar blunder is sometimes made in trace-based models in which the modeler

constraints transitions between states. We often lift a constraint on state pairs to a

'If the model is overconstrained and no instances are possible, then even the property being
checked may be omitted from the extracted core. In such a case, there exists a core which does not
contain the property being checked, although there is no guarantee that that particular core will be
extracted.

100

constraint on traces so that we can analyze traces using bounded model checking. An

example of such a lifting formula is the following:

all s : State I

LegalTransition (s, s.next)

where LegalTransition is the formula for the transition relation, and next is a

relation that maps a state to its successor. This particular attempt is flawed, and

will yield an empty trace set. The set of states is finite; usually, we bound it by

the machine diameter, which we have computed with the analyzer's help. There is

therefore a last state, for which s .next will be the empty set, thus making any fact

about next states vaccuously false. This is a classic "fencepost error", and modelers

are just as prone to making such a mistake as are other programmers. The extracted

core will show that the body of the quantified formula is only relevant for the last

state, since the presence of that state alone will make facts about s.next fail. This

is a big red flag for the user, who presumably expects most or all of the states to be

relevant. The correct formula is

all s : State - LastState I

LegalTransition(s, s.next)

Pitfall #3: Confusing the given constraints and their intended conce-

quences

Novice modellers often make the mistake of writing a constraint explicitly that

should instead be implied by the other constraints of the system. Consider a leader-

election algorithm that should allow for at most one leader at any given time. Using

our paradigm for modelling traces of algorithms, a beginner may write the following

erroneous declaration:

sig State {

leader : option Participant, ...

}

101

The option keyword by itself constrains leader to map each State atom to at most

one Participant. A correct declaration would use the set keyword instead, allowing

for any number of leader participants in a state and forcing other constraints to

enforce the property of at most one leader. When checking the property, the core

will make the error in the declaration obvious; it will contain only the constraint

generated because of the use of option.

3.4.2 Locating Known Overconstraints

We took flawed versions of two models known to suffer from overconstraint an ex-

tracted their cores. These are exacting tests, since they represent the hardest cases

we know of. There have been many simpler cases of overconstraint that we did not

record which core extraction would likely isolate immediately, but still took hours to

track down manually.

Iolus

The more successful case involved an analysis we performed [42] of Iolus, a scheme for

secure multicasting [35]. In Iolus, nodes multicast messages to other nodes within a

group whose membership changes dynamically. Scalability is achieved by partitioning

groups into subgroups, arranged in a tree, each with its own Key Distribution Server

(KDS) maintaining a local encryption key shared with members of the subgroup.

When a member joins or leaves a subgroup, its KDS generates a new local key and

distributes it to the updated list of subgroup members. This was modelled by speci-

fying that after a member joins or leaves, there is a key shared by the new members,

and no others. By mistake, the model said the key was shared by the members of

the entire group - thus including all nodes in contained subgroups. This severely

restricted the trace set, potentially masking errors.

We attempted to detect this overconstraint using our constraint core functionality.

We first checked an assertion stating that no node can read messages sent to the group

when that node was not a group member, one of the correctness properties of the

102

system. There was no counterexample, and unfortunately, the extracted core included

most of the constraints in the model. This result can be explained as follows. The

error in the model is only a partial overconstraint; while the error excludes some legal

traces of the system, it still allows many traces violating the correctness property.

Therefore, it is not surprising that most of the other constraints in the system are

still required to establish correctness. Just because the core contains most of a model

does not, unfortunately, imply that the model is free of overconstraint.

One method of finding overconstraints in this situation is to check correctness

properties on a restricted set of traces, where it is still expected that most constraints

of the model must be in the core. For the Iolus model, we attempted to check the

aformentioned correctness property on traces that had at least three key distribution

servers (constraining the size of relations is a typical way to restrict the search space).

With this additional restriction, the core no longer included the constraints defining

the transitions of the system or the formula stating the property, a clear indication

of overconstraint.

Two observations should be noted. First, when an overconstraint is more partial

and subtle (as in this case), some thinking by the user will be necessary to find its

source, even after the constraint core identifies its existence. This issue is fundamen-

tal; when several formulas in a model together overconstrain the system, the core can

help to identify them by eliminating irrelevant formulas from consideration, but the

reason why the remaining formulas contradict each other may still not be obvious.

Second, while this process of checking assertions in restricted spaces to find over-

constraints lacks automation, it still has important advantages over the process of

finding these overconstraints manually (without core extraction). Previously, a user

who suspected an overconstraint in a model would search for it by explicitly checking

that classes of legal traces were not ruled out by the system. Our new method of

inspecting cores over restricted sets of traces gives more useful information; even if a

class of traces is not entirely ruled out by a model, the core may show that important

constraints are irrelevant for that class, showing where the overconstraint lies.

103

Firewire

A model of the widely studied Firewire 'tree identify' protocol [18] suffered from a

modelling blunder that produced a nastily subtle overconstraint. The declarative form

of the model allowed it to include a topological constraint (that the links between

nodes form a connected, acyclic graph), so that analysis would cover all possible

topologies involving a given number of nodes. Most model checking analyses, in

contrast, hardwire a particular topology.

The model reified operations as entities, with the following declarations:

sig Op {}

disj sig NodeOp

extends Op {node: Node}

disj sig LinkOp

extends Op {link: Link}

static part sig SendRequests,

Elect extends NodeOp {}

static part sig AddChild,

GetResponse, Resolve

extends LinkOp {}

Operations are classified into node and link operations, each associated with a par-

ticular node or link respectively. A fragment of the transition relation specification

shows how this is used:

fun Trans (s, s': State, op: Op) {

op in Elect => {

s.mode[op.node] in Waiting

s'.mode[op.nodel in Elected

}

104

Analysis of this model produced bewildering results. For 6 nodes, no trace without

repeated states was found longer than 4 states, suggesting a machine diameter of 4.

But an assertion that at least one node is always elected within that bound was

violated. Some subset of the traces was ruled out by an overconstraint.

In retrospect, as always, the flaw was easy to see. The modeller got confused

about whether the atoms of the signature Op represented operation types or opera-

tion instances. Thinking of them as types, he added the keyword static in their

declarations, limiting a set such as AddChild to a single element. The confusing was

exacerbated by the presence of a message type partitioned into requests and acknowl-

edgments, for which it was sufficient to have exactly one message of each type (since

it contained no other information). But the operation carries with it its node or link.

The consequence therefore, was that each operation could only be performed on a

single node or link, and for most topologies, this ruled out all but the shortest traces.

Core extraction did not give much useful information. We trimmed the model

down to smaller and smaller fragments (not actually being aware of the location of

the overconstraint ourselves). Along the way, core extraction helped with the pruning,

but it did not pinpoint the problem. Finding overconstraints of this sort is a challenge

for future work.

3.4.3 Blunders Discovered

Running our core extractor revealed flaws in two models that we had believed not to

be overconstrained. We explain one of them here. In a different version of the Firewire

tree identify protocol, we had added a stuttering operation at the last minute, but

failed to adjust the scopes of the analyses. The declaration of operations read:

sig Op {}

static part sig Init, AssignParent,

ReadReqrAck, Elect, WriteReqOrAck,

ResolveContention, Stutter

extends Op {}

105

listing the 7 operation types. A command was specified as:

check AtMost~neElected for 6 Op, 2 Msg,

3 Node, 6 Link, 3 Queue, 9 State

incorrectly bounding the number of operation types by 6. Since the declaration of

operations can only be satisfied with 7, there is a glaring overconstraint. Core extrac-

tion pinpointed it immediately, showing all to be irrelevant by the declaration. While

one could imagine language improvements (eg. a built-in enumerated type construct)

to eliminate this specific example of overconstraint, it would be impossible for the

analyzer to detect constraints on scopes in general, so this type of overconstraint will

always exist.

Careless errors, like those described in this section, will occur in programs as read-

ily as in models. Eliminating such errors from models will not eliminate them from

programs. However, eliminating careless errors from models may enable discovery of

subtler errors in models that would otherwise have been missed. Finding the sublter

errors in models can help prevent such errors from occurring in programs.

3.4.4 Performance

For core extraction we have used a recent modification of the Zchaff satisfiability

solver that added core extraction functionality [47]. We found that Zchaff's per-

formance supports interactive identification of overconstraints. The modified solver's

performance on unsatisfiable instances was comparable to the performance of the orig-

inal solver. We have also done some experiments with the BerkMin solver [14, 15];

preliminary experiments indicate that BerkMin's performance is similar to Zchaff's.

An unsatisfiable core can be refined by iterating the solver on the core, pruning

away additional clauses irrelevant to unsatisfiability. Running 10-20 such iterations

can often reduce the core by about 30%. Since subsequent iterations run on smaller

CNF files, the overhead of iteration is often insignificant, especially for severely over-

constrained models. However, in our preliminary experiments we have found no

106

significant benefit in additional iterations in terms of what portion of the model was

identified as relevant.

3.5 Related work

The problem of detecting when a property is vacuously satisfied by a model has

been addressed in the context of temporal model checking [30, 3, 6, 44]. Given a

temporal logic formula, these methods produce a "witness" formula that is satisfied

if and only if the original formula is vacuously satisfied. Thus, vacuous satisfaction

can be detected with an additional model checking run. Several characteristics of

these methods prevent them from solving the problem of overconstraint in declarative

models. First, overconstraint occurs most often in the definition of the model-checked

algorithm rather than in the specification of correctness properties. Published vacuity

detection methods may alert the user to the presense of an overconstraint (by showing

that the entire correctness property is irrelevant), but cannot pinpoint the location of

overconstraint within the model. Second, these methods were described for temporal

logic formulas, and either assume a particular form of the formula [3] or require a

separate model-checking run to test for irrelevance of each subformula [44]. These

limitations preclude published vacuity detection methods from being effective on our

problem.

Debugging Equation-Based Models

Peter Bunus [5] has developed a system for debugging numeric systems of equations

describing circuits. As with logical models, numeric equations face the dual risks

of under- and over-constraint. A crucial difference is that the systems of circuit

equations Bunus considers ought to have have exactly one solution. It is therefore

easy to determine if the system is under- or over-constrained, but it is difficult to

narrow down the source of the problem. In contrast to logical models, underconstraint

turns out to be much harder to debug than overconstraint.

107

Overconstraint If there are no solutions, the tool determines an unsatisfiable sub-

set - in spirit, this approach is identical to core extraction. In order to detect such

a subset, the algorithm operates over a bipartite graph which relates each equation

to the variables it mentions. An overconstrained system has no subset constituting a

bijection between the variables and equations. Bunus uses combinatorial properties

of the graph to prove the absence of such a subset.

Underconstraint If there are multiple solutions, it must be the case that there are

fewer non-redundant equations than variables. Redundant equations are fairly easy

to detect, so the challenge is to determine what variables can be removed or what

equations should be added in order to produce exactly one solution. Bunus employs

a technique similar to the one used for overconstraint, but this time the algorithm is

searching for (a) extraneous variables which can be removed, and (b) new equations

which could be added. The system cannot deduce the new equations directly, but

it can provide hints about what they should look like (such as what variables the

equation may refer to).

3.6 Conclusions

We have presented core extraction, a new analysis that helps discover overconstraint

in declarative models. Utilizing the "unsatisfied core" functionality of recent SAT

solvers, our tool identifies the set of constraints in a model relevant to preserving a

given safety property; the exclusion of seemingly relevant constraints from this set

indicates an overconstraint. Our experience has shown that core extraction quickly

identifies simple overconstraints that have taken hours to identify previously or that

lingered unnoticed for months. Furthermore, we have had some success in applying

core extraction to more subtle overconstraints, although work remains to further

simplify the debugging process in this case. Core extraction addresses a key deficiency

in automatic analysis of declarative models, and may have useful application to other

analyses that rely on SAT, such as planning and bounded model checking.

108

in
[b6] [1

(-b6 Vb7)
(-b6 V b8)

>)5] (~b5 V b3)
(~b5 V b4)
(~b5 V b6)

me no

3] [b4]v

(~b-3 V b I V b2) (b

(~P

Figure 3-3: A Roadmap to Core Extraction. (1) A model is created in any constraint

language which is reducible to SAT in a structure preserving fashion. (2) During

translation to CNF, each clause generated is annotated with the AST node from

which the clause was produced. (3) A SAT solver (used as a black box) determines

that the model is unsatisfiable and extracts an unsatisfiable core (a subset of the

CNF clauses which is also unsatisfiable). (4) The core is mapped back to the original

model by marking (as "relevant") any part of the AST indicated by the annotation

of any clause in the CNF core. The analysis is now complete. The remaining steps

concern guarantees made to the user about what the markings on the AST mean;

they are not actually executed during normal use of the tool. (5) The user is guar-

anteed that changing the unmarked (non-relevant) portions of the AST will leave the

model unsatisfiable. (6) Specifically, the CNF corresponding to the altered AST will

be a superset of the unsatisfiable core previously extracted, and thus will itself be

unsatisfiable.

109

nF1
r~I(osett\j

ox:

User
Model
aan AST

A-STbronsee

Analyze
Model

2 3
CNF Conversion

l~oote nAnnotated sAT
Encoding A o CNFClanses Solver

S t Satisnability

4 Unsat sftnhle

Ifilyhlight AST Noden Which CNF Coe 1stsab
Yieldod Ctauses in the CoreA

User's View Core Extraction Algorithm SAT Solver

Figure 3-4: Translation of AST to CNF, and mapping back of unsatisfiable core.

The AST is for the (trivially unsatisfiable) Alloy formula of the form "(some p) &&

(no p) && ... ". To each node, a sequence of Boolean variables (bi through b6) is

allocated to represent the node's value. From each inner node, translation produces a

set of clauses relating the node's Boolean variables to its childrens' Boolean variables.

The highlighted clauses form an unsatisfiable core, which is mapped back to the

highlighted AST nodes.

110

5 Denetcnodes suest Satisfitibility

irrelvantn 6
CNF Convesion

Altered ASTEnoigseSo r
Analyze
Model

Conclusions

We have introduced two algorithms that provide tool support for understanding log-

ical models. Both techniques address problems that Alloy users have brought to our

attention - understanding the role of a subformula and detecting unintentional over-

constraint. Our initial experience applying the techniques on our own Alloy models

suggests that they can be helpful but that they are far from complete solutions to

either problem.

Non-example generation helps users understand the role of particular parts of

their models. When someone looks at a model for the first time, they often ask

questions about the role of (or need for) certain constraints. We formalize the notion

and introduce conjunction diagrams as a convenient notation. Our experience from

applying the technique on our own models is that it generates useful explanations

about why the constraint should be present; PCD and PCA were the most helpful

entries of the conjunction diagram, PIA was somewhat helpful for double checking

one's intuition, and PID was never helpful. However, information about integrity

was never helpful, and information about correctness was only rarely helpful. If these

conclusions are backed up by future experience, it may be appropriate to only show

the user PCA, PCD, and PIA.

Non-example generation is not currently implemented, although we hope to pro-

duce a prototype to explore its role in the modeling process. An implementation

would allow us to develop the techniques of target expansion and target refinement,

and allow us to rapidly apply the technique to new examples. We have already shown

how to avoid several complications of such an implementation. For example, there

is no need for a notion of the 'joint role' of several different subformula, even when

111

dealing with function bodies. We have also shown that the target subformula marked

by the user needs to be tracked to the desugared AST, but it does not need to be

tracked all the way to the ground DAG or the CNF representation.

Core extraction helps users identify unintentional overconstraint. The danger of

overconstraint in logical modeling is well known, and Alloy users have often requested

tool support to help overcome it. Our own experience applying core extraction sug-

gests that core extraction is very helpful in the common case of 'dumb' overconstraint

bugs, but only mildly helpful in more subtle cases.

Core extraction is currently implemented in the context of Alloy 2.0 and has

many rough edges. Edmond Lau, a colleague of the author, is currently adapting

that implementation to integrate smoothly with Alloy 3.0 (the most recent version of

Alloy) and to have a smoother user interface. The current interface displays a model's

core as colored markings on a browse-able AST of the model in which quantifiers have

been grounded out. Users would rather see the annotations directly on the original

model text, averting the need to expose them to the AST and the notion of grounding

out.

There is a significant and growing Alloy user community, giving us the opportunity

to get feedback from real modelers about the effectiveness of these tools. Alloy is being

taught in about a dozen software courses around the country, providing a us with a

wealth of users upon which to test new tools. As the implementations are completed

and refined, we will be able to better tailor these tools to users' needs, and document

how one can make the best use of these techniques.

112

Appendix A

Firewire Alloy Model

A complete Alloy model describing part of the Firewire network protocol is given

below. This model is described and investigated in Sections 2.5.3 and 3.4.

module examples/case-studies/firewire

open util/ordering[State] as ord

abstract sig Msg {}

one sig Req, Ack extends Msg {}

sig Node {to, from: set Link} {

to = {x: Link I x.target = this}

from = {x: Link I x.source = this}

}

sig Link {target, source: Node, reverse: Link} {

reverse.Qsource = target

reverse.@target = source

}

-- at most one link between a pair of nodes in a given direction

113

fact {no disj x,y: Link I x.source = y.source && x.target = y.target}

-- topology is tree-like: acyclic when viewed as an undirected graph

fact Topology {

some tree: Node lone -> Node, root: Node {

Node in root.*tree

no ^tree & iden & Node->Node

tree + ~tree = ~source.target

}

}

sig Op {}

one sig Init, AssignParent, ReadReqOrAck, Elect, WriteReqrAck,

ResolveContention, Stutter extends Op {}

sig State {

part waiting, active, contending, elected: set Node,

parentLinks: set Link,

queue: Link -> one Queue,

op: Op, -- the operation that produced the state

}

pred SameState (s, s': State) {

s.waiting = s'.waiting

s.active = s'.active

s.contending = s'.contending

s.elected = s'.elected

s.parentLinks = s'.parentLinks

all x: Link I SameQueue (s.queue[x], s'.queue[xl)

}

114

pred Trans (s, s': State) {

s'.op != Init

s'.op = Stutter => SameState (s, s')

s'.op = AssignParent => {

some x: Link {

x.target in s.waiting & s'.waiting

NoChangeExceptAt (s, s', x.target)

IsEmptyQueue (s, x)

s' .parentLinks = s.parentLinks + x

ReadQueue (s, s', x)

s'.op = ReadReq~rAck => {

s' .parentLinks = s.parentLinks

some x: Link {

x.target in s.(active + contending)

& if PeekQueue (s, x, Ack) then s'.contending else s'.active

NoChangeExceptAt (s, s', x.target)

I IsEmptyQueue (s, x)

ReadQueue (s', s, x)

s'.op = Elect => {

s'.parentLinks = s.parentLinks

some n: Node {

n in s.active

n in s'.elected

NoChangeExceptAt (s, s', n)

n.to in s.parentLinks

QueuesUnchanged (s, s', Link)

115

s' .op = WriteReqOrAck => {

-- note how this requires access to child ptr

s' .parentLinks = s.parentLinks

some n: Node {

n in s.waiting & s'.active

lone n.to - s.parentLinks

NoChangeExceptAt (s, s', n)

all x: n.from I

let msg = if x.reverse in s.parentLinks then Ack else Req

WriteQueue (s, s', x, msg)

QueuesUnchanged (s, s', Link - n.from)

s' .op = ResolveContention => {

some x: Link {

let contenders = x.(source + target) {

contenders in s.contending & s'.active

NoChangeExceptAt (s, s', contenders)

}

s'.parentLinks = s.parentLinks + x

}

QueuesUnchanged (s, s', Link)

}

}

pred NoChangeExceptAt (s, s': State, nodes: set Node) {

let ns = Node - nodes {

ns & s.waiting = ns & s'.waiting

ns & s.active = ns & s'.active

ns & s.contending = ns & s'.contending

ns & s.elected = ns & s'.elected}}

116

sig Queue {slot: lone Msg, overflow: lone Msg}

pred SameQueue (q, q': Queue) {

q.slot = q'.slot && q.overflow = q'.overflow

}

pred Readqueue (s, s': State, x: Link) {

-- let q = s'.queue[x] I no q.(slot + overflow)

no s' .queue[x].(slot + overflow)

all x': Link - x I s'.queue[x'] = s.queue[x']

}

pred PeekQueue (s: State, x: Link, m: Msg) {

m = s.queue[x].slot

}

pred WriteQueue (s, s': State, x: Link, m: Msg) {

let q = s'.queue[x] I

no s.queue[x].slot =>

(q.slot = m && no q.overflow),

some q.overflow

}

pred QueuesUnchanged (s, s': State, xs: set Link) {

all x: xs I s'.queue[x] = s.queue[x]

}

117

pred IsEmptyQueue (s: State, x: Link) {

no s.queue[x].(slot + overflow)

-- let q = s.queue[xl I no q.(slot + overflow)

}

pred Initialization (s: State) {

s.op = Init

Node in s.waiting

no s.parentLinks

all x: Link I IsEmptyQueue (s, x)

}

pred Execution 0 {

Initialization (ord/firsto)

all s: State - ord/last() I let s' = ord/next(s) I Trans (s, s')

}

pred NoRepeats 0 {

Execution 0

no disj s, s': State I SameState (s, s')

no s: State I s.op = Stutter

}

pred NoShortCuts 0 {

all s: State I

Trans (s, ord/next(ord/next(s)))

}

118

assert AtMostOneElected {

Execution () => all s: State I lone s.elected

}

check AtMostOneElected for 1 Int, 7 Op, 2 Msg,

3 Node, 6 Link, 3 Queue, 9 State expect 0

assert OneEventuallyElected {

Execution () => some s: State I some s.elected

}

check OneEventuallyElected for 1 Int, 7 Op, 2 Msg,

3 Node, 6 Link, 3 Queue, 9 State expect 1

pred ElectionHappens() {

Execution ()

some s: State I some s.elected

some s: State I no s.elected

}

run ElectionHappens for 1 Int, 7 Op, 2 Msg,

exactly 3 Node, 6 Link, 3 Queue, 7 State

expect 1

119

120

Appendix B

Proofs

In Section 2.2.4, a number of theorems were stated without proof. Those proofs have

been relegated to this appendix.

B.1 Deletion and Sabotage are Sufficient to

Compute Correctness

Let T be a target subformula of some model M. We have examined the effect of

deleting or sabotaging T from M, but one could also imagine asking about making

other changes to T. One might ask "what is the role of the correctness of this subfor-

mula?", meaning "What would have happened if I has written the target differently

or even incorrectly?".

Definition:

Let CIA, pronounced "correctness irrelevant to allowing", denote the set of all

assignments which are solutions to M and which remain solutions regardless of how

T is altered. CIA represents solutions which are independent of any change to T.

CCA, pronounced "correctness crucial to allowing", denotes the set of assignments

which are solutions to M which may be disallowed by changes to T. CID and CCD

are defined accordingly.

It turns out that we do not actually need to examing every possible mutation to

121

T in order to compute correctness information. In fact, we only need the 8 cells from

the conjunction diagrams for deletion and sabotage.

Theorem 2:

CIA =PIAnIIA

CID = PID n IID

CCA= PCA U ICA

CCD = PCDU ICD

Intuitively, an assignment is only irrelevant to correctness if both its presence and

its integrity are also irrelevant. An assignment is crucial to correctness if either its

presence or its integrity is crucial.

Part 1: CIA = PIA n IIA

Proof: Let A be some assignment in CIA. If no change to T stops A from being

a solution to the model, then the particular changes of setting it to true or f alse

cannot stop it from being a solution. Thus CIA C PIA n IIA.

Let B be some assignment in PIA n IIA. Suppose B 1 CIA; there is some T' such

that substituting it for T disallows B. Under the assignment B, T' must evaluate

to either True or False. However, by the definitions of PIA and IIA, setting T to

either True or False leaves B as a solution. Thus the supposition is contradictory,

and we can conclude that PIA n IA C CIA.

It follows from CIA C PIA n IIA and PIA n IIA C CIA that CIA = PIA n IIA.

D

The proof of CID = PID n IID follows analogously.

Part 2: CCA = PCA U ICA

Proof:

Let A be some assignment in PCA U ICA. If the specific change to T of replacing

it with true (or the specific change of replacing it with f alse) is enough to stop A

from being a solution, then allowing an arbitrary change to T will also disallow A.

Thus PCA U ICA C CCA.

Let B be some assignment in CCA. Suppose B 0 PCA U ICA; setting T to either

true or false disallows B. By the definition of CCA, there is some T' such that

122

replacing T with T' disallows B. However, under the assignment B, the subformula

T' evaluates to either true or false. Thus the supposition is contradictory, and we

can conclude that CCA C PCA U ICA.

It follows from PCA U ICA C CA and CCA C PCA U ICA that CCA = PCA U

ICA. f

The proof of CCD = PCD U ICD follows analogously.

B.2 Disjoint Entries

Within the conjunction diagram for presence (or within the conjunction diaram for

integrity), all the entries are disjoint. We can also make some guarantees about

disjointness between the conjunction diagram for deletion and that of sabotage.

Theorem: PCA n ICA = 0

Proof:

By construction, the formula generating PCA A ICA is

(-,(M - T) A M) A (-,(M ~ T) A M)

which simplifies to

M A -,(M - T) A -,(M ~ T)

Suppose there were some solution S satisfying that statement. S would necessarily

be a solution to M, and under S, T must evaluate to either True or False. However,

M with T set to a constant is (by definition) the same as either (M - T) or (M ~ T).

However, that contradicts the fact that S must violate each of those equations, and

thus the original supposition must be false. E

The proof that PCD n ICD = 0 is analogous.

123

B.3 Empty Entries

We can make a stronger statement about certain pairs of disjoint entries; not only

are they disjoint but one of them is always empty.

Theorem:

(PCA 0) v (PCD = 0)

(ICA 0) v (ICD = 0)

Proof: Suppose there were some solution SPCA to PCA and some solution SPCD to

PCD.

Without loss of generality, assume that there are no double (or triple etc.) nega-

tions, A and V are binary (i.e. no triple conjunction), and that conditionals and

biconditionals have been desugared into disjunctions and negations.

The proof follows by structural induction. The supposition fails in each of the two

base cases - M = T and M = -,T. In the inductive case, T is a proper subformula

of M and so there is some Boolen connective at the top of M's AST conntecting two

subtrees. One subtree contains (or equals) T and the other does not. In order for

the supposition to hold in the inductive case, it must hold in both child trees. By

structural induction, it fails for at least one child - the one containing T. The details

of the proof follow:

Base cases:

1. M=T

2. M =- T

Inductive cases: If neither base case applies, then there is some top level binary

connective combining two subformulae; one contains T and one does not. We will

term these formulae FT and F respectively. M can thus be rewritten as follows:

9 M=FAFT

Lemma: F is TRUE under both SPCA and SPCD

124

Proof: This lemma can be formulated logically

the formula for PCA implies F:

(M A -,(M - T)) =: F

((F A FT) A -,(F A (FT - T))) = F

(F A FT A (-,F v -,(FT - T))) = F

-,F V -,FT V (F A (FT - T)) V F

as two claims. First we prove that

claim

rewrite M

DeMorgan's Law

desugar conditional

The final statement contains F V -,F and is thus tautologically true. It is equivalent

to the first statement, proving our first claim.

The second claim we need to prove is that the formula for PCD implies F:

(-,M A (M - T)) =: F

(-, (F A FT) A (F A (FT - T)

((,F v ,FT) A F A (FT - T))

(F A FT) V -,F V -,(FT - T) V F

F

F

claim

rewrite M

DeMorgan's Law

desugar conditional

The final statement contains F V -'F and is thus tautologically true. It is equivalent

to the first statement, proving our second claim.

Since F is TRUE in both SPCD and SPCA, and since M = F A FT, we can reduce our

problem to examining M' = FT. M' will either match one of the base cases or one of

the inductive cases.

(2) M=FAFT

Lemma: F is FALSE in both SPCA and SPCD

Proof: This lemma can be formulated logically as two claims. The first is that the

formula for PCA implies -,F.

(M A -,(M - T)) :> -, F

((F V FT) A -,(F V (FT - T))) -,F

((F V FT) A -,F A -,(FT - T)) -,F

(-,F A -F) V F V (FT - T) V -,F

claim

rewrite M

DeMorgan's Law

desugar conditional

125

The final statement contains F V -,F and is thus tautologically true. It is equivalent

to the first statement, proving our first claim.

The second claim we will show is that the formula for PCD implies -,F.

(-,M A (M - T))= -,F claim

(-, (F V FT) A (F V (Fr - T))) = ,F rewrite M

(-,F A -FT A (F V (FT - T))) -,F DeMogan's Law

F V FT V (-,F A -,(FT - T)) V -,F desugar conditional

The final statement contains F V -,F and is thus tautologically true. It is equivalent

to the first statement, proving our second claim.

Since F is FALSE in both SPCD and SPCD, and since M = F V FT, we can reduce

our problem to examining Al' = FT. M' will either match one of the base cases or

one of the inductive cases.

Both inductive cases reduce to strictly simpler cases, and both base cases satisfy

the theorem. 0

Interpretation The interpretation of this lemma is that each portion of a propo-

sitional logic model either strictly relaxes the model or strictly restricts it. The set

of solutions to M - T is either a subset of a superset of the solutions to M.

126

Bibliography

[1] Flavio Lerda Alex Groce, Daniel Kroening. Understanding counterexamples

with explain. In Wizard V. Oz and Mihalis Yannakakis, editors, Proc. 16th

International Conference on Computer Aided Verification (CAV), number 16,

pages 453--456, Boston, July 2004. Springer. LNCS 3114.

[2] Sarfraz Khurshid Darko Marinov Alexandr Andoni, Dumitru Daniliuc. Evaluat-

ing the small scope hypothesis. September.

[3] Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient detec-

tion of vacuity in temporal model checking. Formal Methods in System Design,

18(2):141-163, 2001.

[4] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model

checking using sat procedures instead of bdds. In Design Automation Conference,

1999.

[5] Peter Bunus. Debugging and Structural Analsis of Declarative Equation-Based

Languages. Licentiate engineering dissertation, Linkopings Universitet, School

of Engineering, 2002. Thesis No. 964.

[6] Hana Chockler, Orna Kupferman, and Moshe Y. Vardi. Coverage metrics for

temporal logic model checking. Lecture Notes in Computer Science, 2031:528-

??, 2001.

127

[7] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic

model verifier. In Proceeding of International Conference on Computer-Aided

Verification (CAV'99), 1999.

[8] Ilya Shlyakhter Daniel Jackson, Ian Schechter. Alcoa: the alloy constraint ana-

lyzer, 2000.

[9] Mandan Vaziri Daniel Jackson. Finding bugs with a constraint solver. Interna-

tional Symposium on Software Testing and Analysis (ISSTA), 2000.

[10] Flavio Lerda Daniel Kroening, E. Clake. A tool for checking ansi-c programs.

Tools and Algorithms for the Construction and Analysis of Systems (TACAS),

pages 168-176, 2004.

[11] Alan J. Hu David L. Dill, Andreas J. Drexler and C. Han Yang. Protocol verifi-

cation as a hardware design aid. In IEEE International Conference on Computer

Design: VLSI in Computers and Processors, pages 522-525, 1992.

[12] Kit Fine. Vagueness, truth and logic. Philosophical Writings, 1975. p. 452.

[13] Melvin Fitting. Herbrand's theorem for a modal logic. 1996.

[14] Eugene Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability

for cnf formulas. In Proceedings of Design, Automation and Test in Europe

(DATE2003), Munich, Germany, March 2003.

[15] Evgueni Goldberg and Yakov Novikov. Berkmin: a fast and robust SAT-solver.

In Proceedings of Design, Automation, and Test in Europe (DATE), March 2002.

[16] G. Holzmann. The model checker spin. IEEE Trans. on Software Engineering,

23(5):279-295, 1997.

[17] William E. Howden. Completeness criteria for testing elementary program func-

tions. In Proc. International Conference on Software Engineering (ICSE), pages

235 - 243, 1981.

128

[181 IEEE. IEEE Standard for a High Performance Serial Bus, Standard 1394-1995.

IEEE, Aug 1996.

[19] Daniel Jackson Manu Sridharan Mana Taghdiri Ilya Shlyakhter, Robert Seater.

Debugging overconstrained declarative models using unsatisfiable cores. 18th

IEEE International Conference on Automated Software Engineering (ASE), Oc-

tober.

[20] Dietmar Seipel Jack Minker. Disjunctive logic programming: A survey and

assessment, in honor of robert a. kowalski. In Computational Logic: Logic Pro-

gramming and Beyond, Essays in Honour of Robert A. Kowalski, Part I, pages

472-511, 2002. ISBN:3-540-43959-5.

[21] Daniel Jackson. Automating first-order relational logic. Foundations of Software

Engineering, November.

[22] Daniel Jackson. Automating first-order relational logic. In Proceedings ACM

SIGSOFT Conference on Foundations of Software Engineering, San Diego,

November 2000.

[23] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity mech-

anism. In Proceedings of the ACM SIGSOFT Symposium on the Foundations of

Software Engineering (FSE), September 2001.

[24] Cliff B. Jones. Systematic Software Development using VDM. Prentice-Hall,

Upper Saddle River, NJ 07458, USA, 1990.

[25) R. M. Hierons K. Adamopoulos, M. Harman. Mutation testing using genetic

algorithms: A co-evolution approach. AAAI Genetic and Evolutionary Compu-

tation Conference (GECCO), 2004.

[26] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of the

Tenth European Conference on Artificial Intelligence (ECAI'92), 1992.

129

[27] Sarfraz Khurshid and Daniel Jackson. Exploring the design of an intentional

naming scheme with an automatic constraint analyzer. In Proceedings of the

15th IEEE International Conference on Automated Software Engineering (ASE),

September 2000.

[28] Adam Kolawa. Mutation testing: A new approach to automatic error-detection.

STAREAST, 1999. conference organized by Software Quality Engineering.

[29] M. Kulas. Debugging prolog using annotations. In M. Ducasse, A. Kusa-

lik, and G. Puebla, editors, Proc. of the 10th Workshop on Logic Pro-

gramming Environments (WLPE'99), Las Cruces, NM, volume 30, issue

4 of Electronic Notes in Theoretical Computer Science. Elsevier, 2000.

http://www.elsevier.nl/locate/entcs/volume30.html.

[30] Orna Kupferman and Moshe Y. Vardi. Vacuity detection in temporal model

checking. In Conference on Correct Hardware Design and Verification Methods,

pages 82-96, 1999.

[31] David Lewis. Causation. Journal of Philosophy, 70:556-356, 1973.

[32] S. Danicic M. Harman, R. M. Hierons. The relationship between program de-

pendence and mutation testing. In Proc. Mutation, pages 15 - 23, October.

[33] Dietmar Seipel Marbod Hopfner. Reasoning about rules in deductive databases.

In Proc. 17th Workshop on Logic Programming (WLP), 2002.

[34] John Stuart Mill. Five cannons of induction. Philosophical Writings, 1843. lived

1806-1873.

[35] Suvo Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings

A CM SIGCOMM'97, pages 277 - 288, Cannes, September 1997.

[36] Simin Nadjim-Tehrani. Debugging prolog programs declaratively. In

M. Bruynooghe, editor, Proc. 2nd Workshop on Meta-Programming in Logic,

pages 137-155. Springer, 1990. LNCS 3114.

130

[37] S. Danicic R.M. Hierons, M. Harman. Using program slicing to assist in the

detection of equivalent mutants. In Proc. The Journal of Software Testing, Ver-

ification, and Reliability, pages 233 - 262, 1999.

[38] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

[39] Ilya Shlyakhter, Manu Sridharan, Robert Seater, and Daniel Jackson. Ex-

ploiting subformula sharing in automatic analysis of quantified formulas.

http://ilya.cc/sharing.ps, May 2003.

[40] Avi Sion. Causal Logic: Definition, Deduction and Induction of Causation, Voli-

tion and Allied Cause-Effect Relations, chapter 1.1. Avi Scion, Geneva, Switzer-

land, second edition, 2003. TheLogician.net.

[41] J. Michael Spivey. The Z Notation: A Reference Manual, 2nd ed. Prentice-Hall,

1992.

[42] Mana Taghdiri. Lightweight modelling and automatic analysis of multicast key

management schemes. Master's thesis, Massachusetts Institute of Technology,

2002.

[43] Richard J. Lipton Frederick G. Sayward Timothy A. Budd, Richard A. De-

Millo. Theoretical and empirical studies on using program mutation to test the

functional correctness of programs. In Proceedings of the 7th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 220 - 233,

Las Vegas, Nevada, 1980. ACM Press, NY, NY, USA. ISBN:0-89791-011-7.

[44] M. Vardi, R. Armoni, L. Fix, A. Flaisher, 0. Grumberg, N. Piterman, and

A. Tiemeyer. Enhanced vacuity detection in linear temporal logic. In Proceeding

of International Conference on Computer-Aided Verification (CAV'03), 2003.

[45] Patrick Henry Winston. Learning Structural Descriptions from Examples. PhD

thesis, Massachusetts Institute of Technology, 1970.

131

[46] Patrick Henry Winston. Artificial Intelligence. Addison-Wesley, Reading, Mas-

sachusetts, third edition, 1992. pp. 150-356.

[47] Lintao Zhang and Sharad Malik. Validating sat solvers using an independent

resolution-based checker: Practical implementations and other applications. In

Proceedings of Design, Automation and Test in Europe (DATE2003), Munich,

Germany, March 2003.

132

§cioG-1~9~

