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Abstract
Breast cancer is the most common form of cancer afflicting women in the United States;
one out of eight women will be diagnosed with breast cancer during her lifetime. Currently,
screening is performed by a combination of annual clinical breast examinations and x-ray
mammography. However, only 10 to 25 percent of suspicious lesions detected during
mammography are diagnosed as malignant upon biopsy, which implies that a large number
of biopsies can be avoided. Although mammography images anatomic changes, it is not
sensitive to the underlying morphological and biochemical changes that distinguish benign
and malignant breast lesions. Presently employed diagnostic procedures are invasive, time
consuming, and expensive. Thus, there is a clinical need to develop new tools for the early
diagnosis of malignancy in the breast.

In recent years our laboratory has explored the use of Raman spectroscopy for diagnosing
disease; one important area is the detection of breast cancer. Raman spectroscopy provides
information about the morphological and biochemical make up of tissue and, with the aid of
our diagnostic algorithm, has provided good results in distinguishing between malignant
and benign breast lesions, with a sensitivity, specificity, and an overall accuracy of 90, 96,
and 86 percent, respectively [Haka,2004]. Although these initial results are promising, we
would like to improve the overall accuracy. Another promising spectroscopic technique
developed in our laboratory is tri-modal spectroscopy (TMS), the combination of diffuse
reflectance (DRS), intrinsic fluorescence (IFS), and light scattering spectroscopy (LSS).
This technique has been successfully applied to the diagnosis of epithelial neoplastic tissue,
leading to the interest in exploring its application to the diagnosis of lesions in breast tissue.
Finally, the Raman and DRS/IFS modalities provide complementary information and the
combination of this information into a single diagnostic algorithm may provide superior
diagnostic capabilities.

The central theme of this research is to investigate DRS/IFS as a useful technique for the
diagnosis of breast cancer and to evaluate the effectiveness of its combination with Raman
spectroscopy. Through this research, we hope to aid the medical community in early
diagnosis, treatment, and prevention of breast cancer.

Thesis Supervisor: Michael S. Feld
Title: Professor of Physics
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Chapter 1. Introduction

1.1 Introduction and Motivation

Breast cancer is one of the most common forms of cancer to afflict women in the United

States. One out of every eight women will be diagnosed with breast cancer during her

lifetime. The mortality rate due to breast cancer is second only to lung cancer. Nearly

forty thousand women died in 2003 from this disease [Jemal,2004] and the survival rate

critically depends on early diagnosis.

Mammography is currently the leading diagnostic technique used for the detection of

non-palpable, highly curable breast cancer [Dahnert,1999]. It relies on finding density

changes in the breast tissue. However, because these changes do not uniquely correlate

with breast cancer, abnormalities identified with mammography must be further

investigated with biopsy. Thus, mammography is used only as a screening technique, not

as a diagnostic one. Only 10 to 25 percent of suspicious lesions found during

mammography are diagnosed as malignant upon biopsy [NCI,2004]. Currently employed

diagnostic procedures are invasive, time consuming and expensive, and this has

motivated scientists to investigate new tools for the early diagnosis of malignancy in

breast tissue.

1.2 Minimally-Invasive Techniques and Previous Work

Optical techniques offer a means to gain morphological and biochemical information of

tissue in a non-destructive manner, since optical radiation is non-ionizing. Furthermore,

light delivery and collection is performed with minimal invasion via optical fibers.

Optical instrumentation is generally inexpensive, portable, and compact, making it

adaptable to a clinical setting. Presently, a variety of optical imaging and spectroscopic

techniques are being explored with the aim of improving breast cancer diagnosis, with an

emphasis on improving the ability to discern benign from malignant lesions. The

techniques, employing visible or near-infrared light, have the potential to provide

chemical information and assist pathologists in diagnosing cancer.
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Diffuse optical tomography (DOT), an optical analogue of X-ray, studies the propagation

of amplitude-modulated pulses of light through the breast, is non-invasive and can detect

lesions deep (10 cm) within the tissue. DOT employs diffuse light that propagate through

tissue; it provides three-dimensional tomographic images of the internal organs. Some

diagnostic ability has been demonstrated based on the detection of oxy/deoxy

hemoglobin with a contrast agent [Ntziachristos,2001]. However, DOT can only detect a

limited number of chemicals and its low resolution results in small lesions going

undetected.

Unlike DOT, optical spectroscopic techniques sample the tissue locally with a volume

less than 1 mm 3 . Light delivery and collection are accomplished by means of optical

fibers that can be incorporated into a biopsy needle. Depth information can be extracted

as the needle is inserted or withdrawn. In contrast to a standard biopsy, a spectroscopic

transdermal needle measurement has the advantage of providing immediate diagnosis. As

a result, spectroscopy has the potential to reduce both the likelihood of a non-diagnostic

biopsy, which requires a repeat of needle or surgical biopsies, and patient anxiety by

eliminating the currently unavoidable wait for a traditional histopathology diagnosis.

Previously to our own work, several groups have investigated Raman spectroscopy for

diagnosing cancer. The first Raman spectroscopy experiment of breast tissue was

performed in 1991 [Alfano,1991]. Redd et al. soon followed and examined the

application of Raman spectroscopy using visible excitation [Redd,1993]. In our

laboratory, Raman spectroscopy has been investigated as a diagnostic modality for breast

cancer for nearly 15 years. Our approach has been centered on accurately modeling

spectra with a set of morphological basis spectra and achieving diagnostic algorithms that

have physical interpretation valuable to pathologists. Results from an ex vivo study

conducted at the University Hospital in Cleveland confirmed that Raman spectroscopy is

able to distinguishing benign and malignant lesions, with a sensitivity and specificity of

90 and 96 percent, respectively, and an overall accuracy of 86 percent [Haka,2002].
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Raman spectroscopy has been successful in distinguishing cancerous from non-cancerous

lesions. However, the model and algorithm misdiagnose some benign tumors, such as

fibroadenoma. Our laboratory has also been successfully exploring the use of trimodal

spectroscopy (TMS: diffuse reflectance, light scattering and intrinsic fluorescence

spectroscopies) for the diagnosis of epithelial lesions, with excellent success. In a

parallel study, I have used fluorescence and reflectance spectroscopies to detect its

feasibility and efficacy for the diagnosis of breast cancer.

A few researchers have used diffuse reflectance spectroscopy [Bigio,2000, Yang,1997]

fluorescence spectroscopy [Alfano,1987, Nair,2002, Shama,1996] to study breast tissue.

They have achieved some success. Gupta and Majumder et al. [Gupta, 1997, Majumder,

1998] analyzed different data sets collected from the same set of breast tissues ex vivo

and showed that the emission spectra at excitation wavelengths of 340 and 488 nm and

excitation spectra at emission wavelengths 390 and 460 nm exhibit significant differences

between normal, benign and malignant tissues. Palmer et al. [Palmer,2003] also

examined fluorescence and diffuse reflectance spectroscopies. The results from this study

are promising: multiexcitation fluorescence spectroscopy is successful in discriminating

malignant and nonmalignant tissues, with a sensitivity and specificity of 70 and 92

percent, respectively. The sensitivity (30 percent) and specificity (78 percent) of diffuse

reflectance spectroscopy alone is significantly lower. Combining fluorescence and diffuse

reflectance spectra did not improve the classification accuracy of an algorithm based on

fluorescence spectra alone. The difficulty in the study is the inability to determine the

biological basis of the differences observed in the fluorescence spectra of malignant and

nonmalignant tissues. Several groups have investigated the Raman spectroscopy

[Alfano, 1991, Frank, 1995, Frank, 1994] for diagnosing cancer, but to our knowledge, no

researchers have employed the combination of fluorescence, reflectance, and Raman

spectroscopies. We expect that the combination of these techniques, which we call multi-

modal spectroscopy, will provide a better overall accuracy, defined as the correct

prediction of each of the different pathologies.

This thesis will explore the application of DRS/IFS to the diagnosis of breast lesions and

will evaluate the combination of DRS/IEFS and Raman spectroscopic modalities in terms

11



of diagnostic success with ex vivo data. DRS/IFS spectra of the tissue sample were

obtained, immediately followed by the collection of a Raman spectrum. Care was taken

in placing the Raman probe at the same site on the tissue as the FastEEM probe. The

tissue measurements were taken within half an hour of excision.

1.3 Objectives

The major goal of this thesis is to explore the usage of intrinsic fluorescence and diffuse

reflectance spectroscopies for diagnosing breast cancer. The research is performed in

several stages, which are examined in following chapters:

The goal of DRS/IFS data analysis is to develop an overall algorithm that

will distinguish among five pathologies. The algorithm is developed using

leave-one-out cross validation and logistic regression and includes

parameters from DRS (diffuse reflectance spectroscopy) and IFS (intrinsic

fluorescence spectroscopy).

Another direction of this research is the investigation of different

fluorescence excitation wavelengths. DRS/IFS data were collected via the

FastEEM instrument developed in the Spectroscopy Laboratory

[Motz,2002, Tunnell,2003]. The FastEEM delivers a sequence of ten laser

pulses (308- 480 nm) and two white light pulses to the tissue via an optical

fiber probe. Different excitation wavelengths excite different fluorophores

and probe different tissue depths. We utilize IFS data from three different

wavelengths to examine the differences in penetration depth in the breast

tissue. The information from the concentration of fluorophores, such as

NADH, collagen and others are expected to provide diagnostic

information about different pathologies that can be related back to breast

anatomy and histopathology. It is anticipated that the application of

different wavelengths provides us with additional diagnostic information.

Using an already developed chemical/morphological model of breast

cancer with Raman spectroscopy [Haka,2004], Raman spectra acquired
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from intact, ex vivo samples is examined in a prospective manner. The

chemical/morphological model is based on a linear combination of nine

basis spectra using an ordinary least-square minimization algorithm with a

non-negative constraint, as is explained in more detail in Chapter 5.

Additional goals include expanding our diagnostic algorithm to include

pathologies not observed in our ex vivo laboratory data, such as ductal

carcinoma in situ (DCIS).

The main goal of this study is to investigate and develop a multimodal

spectroscopy algorithm that combines Raman and DRS/IFS spectroscopic

information. In this phase of the research, the sensitivity and specificity of

each method are compared, with a focus on the similarities and differences

between the outliers obtained with either the Raman or DRS/IFS methods.

The results will shed light on the advantages of combining the two

techniques, and perhaps on the need for developing a combined Raman/

DRS/IFS probe.
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Chapter 2. Breast Cancer

In order to develop a diagnostic algorithm for the early detection of breast cancer, it is

important to thoroughly understand the anatomy of breast tissue. Some of the work in this

chapter can be found in more detail in [Haka,2005, Rubin,1996].

2.1 Introduction and Epidemiology

Cancer is described as any malignant growth or tumor caused by uncontrolled division of

abnormal cells; it also may spread to different parts of body through the blood stream or

lymphatic system. In 2003 in United States, there were 211,300 females diagnosed with

breast cancer, which accounts for nearly one in every three cancers diagnosed in women.

In the same year, there were an estimated 39,800 deaths attributed to breast cancer,

including about 400 males [Jemal,2004]. There is a difference in the number of

incidences of breast cancer for major ethnic groups (breast cancer is slightly more

common in Caucasians). This phenomenon is associated with differences in breast

anatomy for different ethnic groups, socioeconomic status and lifestyle, which brings

about a difference in treatment and survival rate. The growth of breast cancer tumors is

often affected by the presence of estrogen and progesterone. The following risk factors

are a result from exposure to these hormones: over the age of 50, first pregnancy after age

30, not having children at all, menstruation before age 12, menopause after age 50. Also a

family history of the disease, a personal history of disease, a history of breast biopsy or

chest radiation, moderate alcohol use (2 to 5 drinks daily), obesity, and race are

considered risk factors.

Over the last several years the mortality rate has decreased slightly likely owing to early

diagnoses and improvements in treatment. The earliest diagnosis is accomplished via

abnormalities detected by mammography before anything can be felt by a woman or her

doctor during a breast examination.
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The lack of glandular tissue in the male breast is the primary reason for the rarity of male

breast cancer. Because male breast cancer contributes only about one percent to the total

numbers of breast cancer, breast cancers in women will be the focus of this research

2.2 Breast Anatomy

The mature breast is made up of

secretory glandular tissue and

surrounding adipose tissue. Breast ribroadencma n
cystic disease

tissue extends from below the Lobule PecrtOa& MUS1le
Labular cancer, winor

collarbone to the level of the sixth Ductl ca"c .ajor
Duct .et~.a Intercostal

or seventh rib, and from the L*a oua" "'"*

breastbone to the axilla. The nipple sease
connectivesmmam

and areola are covered by stratified tisau *tZA
Phyllde tor

squamous epithelium and they are

located in the center of the breast.

Fibrous connective tissue (fascia) Figure 2.1 Anatomy of the breast
lies between the breast tissue and

the skin, and separates breast tissue from the chest muscles. A schematic of the female

breast is shown in Figure 2.1 .[Rubin,1996] Axilary and intercostals arteries provide blood

to the breasts; axillary and intercostals veins carry blood away from the breasts. Breast

cancer cells can travel to the lungs through surface veins and metastatic tumors; breast

cancer cells can spread to the bone via intercostals veins to the vertebral veins network in

and around the spine.

The glandular tissue is composed of 15 to 20 lobes, or milk glands, connected to a

conduit of ducts that carry milk to the nipples. Each lobe is autonomous and connects to

its own excretory duct, which connects to the nipple. The lobes themselves are divided

into smaller units called lobules, which in turn are made up of acini. The lobules are the

functional, milk producing, units of the mammary parenchyma. The lobular units and the

ducts that connect them are separated from the stroma by a basement membrane, which

15



composed of collagen. Two layers of fibrous ligaments (Cooper's ligaments) support the

mammary glands. These arise from stromal elements in the gland and insert into the skin

and pectoral fascia, holding the breast against the chest. The breasts lose their firmness

and take on a sagging appearance when these ligaments stretch with the age and multiple

pregnancies.

2.3 Normal Breast Tissue

The breast consists of three types of tissue: adipose (fat), fibrous, and glandular. The fatty

tissue and connective tissue make up the stroma - the tissue lying between the glands.

The fatty tissue encloses cells (adipocytes). The fibrous tissue contains collagen and

small amounts of glycosaminogycans. The majority of breast stroma consists of dense

fibroconnective tissue admixed with adipose tissue (interlobular stroma) containing

elastic fibers supporting large ducts.

2.4 Breast Pathology

Most breast diseases present as palpable masses, inflammatory lesions, nipple secretion

or mammographic abnormalities. Of the women with detected abnormalities,

approximately 30 percent are found to have no problems, 40 percent are diagnosed with

fibrocystic change, 13 percent have miscellaneous benign tumors, 7 percent have

fibroadenoma, and only 10 percent of women are diagnosed with cancer. Here we will

focus only on FCC (fibrocystic change) and on fibroadenoma.

Fibrocystic Chan2e

Multiple cut sections of breast tissue in Figure 2.2 display classic signs of fibrocystic

change, with blue-domed cysts and dense fibrosis (hence, the name fibro-cystic).

Fibrocystic change is a benign condition that can be described as fibrosis - formation of

fibrous tissue; adenosis - increase in number of ductules; or cyst formation - dilation of

ducts and lobules with semi-transparent fluid. These changes can occur alone or in any

combination. The cyst size often varies with the phase of menstrual cycle and can

16



.obular

of

Figure 2.2 Gross and histopathology slide with fibrocystic change

become quite tender when under tense pressure. Fibrocystic changes do not increase the

risk of developing cancer. However, if FCC produces palpable lumps, mammographic

densities or calcifications, or nipple discharge mimicking carcinoma, then it may come to

clinical attention.

Fibroadenoma

Fibroadenoma is the most common benign tumor of the breast. There are several other

types of benign tumors such as ductal epithelial hyperplasia (DEH), intraductal papiloma,

etc., though they occur at rates far lower than fibroadenoma. Many cases of

fibroadenoma occur in younger women. It is described as a new growth composed of

both fibrous and glandular tissues. Morphologically, fibroadenoma grows as a spherical

Figure 2.3 Gross and histopathology slide with fibroadenoma
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nodule that is usually circumscribed

and freely movable from the

surrounding tissue. Figure 2.3 displays

gross and histopathology slide of

fibroadenoma. Lesions diagnosed as

fibroadenoma show an accumulation

of collagen due to fibroblast

proliferation that results in expansion

of the stroma. Even though Figure 2.4 Gross breast carcinoma

fibroadenoma is a benign lesion, the

fact that it often grows rapidly resulting in significant morbidity causes it to be typically

excised. These tumors frequently occur in the upper outer quadrant of the breast. They

vary in size from less than 1 cm to giant forms of 10 to 15 cm in diameter. Most of them

are removed when they are 2 to 4 cm in diameter.

Cancer

Most breast cancer develops in glandular tissue, epithelium. Cancer is characterized by

abnormal cell proliferation as well as abnormal maturation of cells. Malignant cells tend

to reproduce even after they have doubled 50 or 60 times, so with time they form a

monomorphic tumor that is built up of billions of copies of the original cancerous cell.

Breast carcinoma is shown on Figure 2.4. A flowchart of the breast cancer "continuum"

from normal breast tissue to invasive cancer is shown in Figure2.5 [Haka,2005].

The earliest form of breast cancer, ductal carcinoma in situ (DCIS), develops solely in the

milk ducts. Malignant cells are still located within the ductules and have not broken

Normal - Hyperplasia -+ Atypical Carcinoma , Invasive
Hyperplasia in situ Cancer

(increase in (abnormal (cancer exists but (cancer exists
number of cells) increase in is confined to the and has spread

number of cells) ducts or lobules) beyond the ducts
and lobules)

Figure 2.5 Flowchart disDlavin2 the breast "continuum"
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Figure 2.6 Invasive ductal carcinoma. Gross and histopathology slide

through the basement membrane and into the stroma.

Currently women diagnosed with DCIS are treated with mastectomy followed by

radiation. It is now believed that many cases of low-grade DCIS and most of the cases of

high-grade DCIS progress to invasive carcinoma [Rubin,1996]. This fact once again

emphasizes the importance of proper early diagnosis and appropriate treatment.

The most common type of breast cancer, which accounts for 70-80 percent of cases, is

invasive ductal carcinoma (IDC). IDC develops from DCIS, spreads through the duct

walls, and invades the breast tissue. It can be seen in Figure 2.6.

The central white area on the picture of gross IDC is very hard and gritty because the

neoplasm is producing a desmoplastic reaction with lots of collagen. This is often called a

"scirrhous" appearance. There is also focal dystrophic calcification leading to the gritty

areas. Lesions diagnosed as infiltrating carcinoma exhibit significant hyperplasia and

often exhibit increases in collagen content due to fibroblast proliferation in response to

stromal invasion by the malignant epithelial cells. Lobular carcinoma in situ (LCIS)

consists of hyperplasia in the terminal breast ducts and acini. The cells are small and

round. Invasive lobular carcinoma (ILC) accounts for 5-15 percent of invasive breast

cancers. ILCs often have a diffusely invasive pattern causing tumors to be difficult to

detect by either physical examination or mammography. There are several other less

common types of breast cancer. The swelling of the breast, inflammatory breast cancer, is

an uncommon type of breast cancer. Its symptoms include an increase in the skin
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temperature, redness, and swelling of the breast. The skin may show signs of ridges and

welts or it may also have a pitted appearance.

2.5 Breast Cancer Screening, Diagnosis, and Treatment

Women between the ages of 20 and 39 should have a breast examination by a physician

every 3 years. After 40 years old, women should have a clinical breast exam and

mammogram annually. Mammography and ultrasound are techniques that allow many

cancers to be discovered at an early stage. They are considered as imaging techniques,

which rely on density changes in the breast to detect cancers.

2.5.1 Screening

Mammoraphy

Mammography is a non-invasive imaging procedure that uses x-rays to create images of

breast tissue [Dahnert,1999, Haka,2005]. During a mammogram, the breast is

compressed between two photographic plates that are used to record the attenuation of x-

rays as they traverse the tissue. Different tissues in the breast absorb different amounts of

x-rays, producing varying shades of black, gray, and white on the film. Fatty tissue

absorbs a relatively small amount of x-rays and thus appears black or dark gray. Normal

fibrous and glandular tissues contain water that causes absorption of a moderate amount

of x-rays and thus appear light gray. Dense breast

tissue, with more collagen, can make mammogram

evaluation difficult because the tissue can obscure small

cancers. Many mammograms show nontransparent

white specks. These are calcium deposits known as

calcifications and they are a key component that

radiologists look for in a mammogram. Radiologists are

looking for asymmetric densities - area in one breast

that has a distinctly different appearance than the same Figure 2.7 Mammogram

area in the other breast. The shape of a mass detected demonstrating speculated mass

20



by mammography is important for differentiating benign and malignant lesions. A

mammogram is a screening test, not a diagnostic test, which is why mammography

cannot be an indicator of the cancer on its own [HST,2004]. The abnormalities found on

a mammogram must be examined with further tests. Unfortunately, in most cases further

testing shows masses detected via mammography to be benign, and in 10 percent of

cases, radiologists misread normal tissue as abnormal.

Ultrasound

Ultrasound, or ultrasonography, is a medical imaging technique that uses high frequency

sound waves and their echoes. The technique is similar to the echolocation used by bats,

whales and dolphins. It is performed with a transducer. During the ultrasound procedure a

radiologist spreads a gel on the skin of the breast and uses the transducer to direct sound

waves through and into the breast. Thus, this technique provides freedom in obtaining

images of the breast from any orientation. It can be used in determining if a mass is a cyst

or a solid lesion that may possibly be cancerous. Even though ultrasound has great

contrast, it lacks the spatial resolution of mammography. For this reason it is unable to

image small lesions or microcalcifications, which may be a sign of malignancy.

Therefore, ultrasound is not approved by the FDA as a screening tool for breast cancer

and is only used to aid mammography in detecting abnormalities in the

breasts. [Gordon,2002, Haka,2005]

2.5.2 Biopsy

Excisional Biopsy

Biopsy is the procedure of removing tissue from a potentially abnormal site previously

found by mammography, ultrasound, or by a physician for further investigation.

Traditionally, open excisional biopsies are performed under general anesthesia in the

operating room. A surgeon removes the entire lesion, which can vary in size from a few

centimeters to the entire breast (mastectomy). After removal the tissue is sectioned,

specially stained, and examined by a pathologist. Currently, a diagnosis by pathology is

considered the gold standard for diagnostic algorithm development.
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Needle Biopsy

In recent years, less invasive techniques such as

needle biopsy have been developed. Needle

biopsies are less intrusive than excisional biopsies

yet they provide the same diagnostic accuracy.
. steredtectic table

The lump is localized with the aid of

mammography and ultrasound. During this Figure 2.8 Instrumentation used in

procedure the woman lies facedown on a special stereotactic biopsy procedures

table, as shown in Figure 2.8. Needle biopsies are performed in a radiologist's office on

an outpatient basis under local anesthesia. This whole procedure can be done in just few

minutes.

Fine Needle Aspiration (FNA)

Different needle biopsies use different sizes of needles. In cases where the doctor wants

to extract fluid from a cyst or cells from a solid lesion, they utilize very small needles of

20-25 gauge (0.89-0.51 mm). The procedure is performed under local anesthesia and

requires a small incision. The procedure takes a few minutes and typically leaves no

scarring and does not require stitches. FNA is the easiest method to provide pathologists

with a breast biopsy. Due to the small size of the needle used for FNA, the scarring

process will be quick, but as a result the evaluation of the suspicious lesion can be

incomplete. A study of fine needle aspiration found that 34 percent of patients were

insufficiently sampled and required more biopsies in the future.

Core Needle Biopsy

Core needle biopsies are similar to fine needle aspiration with the exception of the larger

size of the needle (14-18 gauge, 2.11-1.25 mm). Increasing the size of the needle enables

the doctor to obtain a larger sample that can lead to a better diagnostic accuracy and will

require a smaller number of biopsies in the future. During the core biopsy breast tissue is

removed while under FNA only cells and fluids are removed.
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2.5.3 Staging and Prognosis

Breast cancer has been divided into smaller groups in order to standardize comparisons of

results of various therapeutic modalities among clinics and guide treatment. The

American Joint Committee on Cancer Staging divides the clinical stages as follows

[Rubin,1996]:

Stage 0. Cancerous lesions diagnosed as DCIS or LCIS have a 5-year survival
rate of 92 percent.

Stage I. This stage includes invasive carcinoma with a size of 2 cm or less
without nodal involvement and without any distant metastases; the 5-year survival
prediction is 87 percent.

Stage II. As the cancer progress in size (invasive carcinoma 5 cm or less) and if
there are movable axillary nodes involved, but still there are no metastases, the 5-
year survavial rate drops to 75 percent.

Stage III. Different features of breast cancer development correspond to this
stage, such as a lesion that is greater than 5 cm in size; breast cancer with fixed
azillary nodes or that involves ipsilateral mammary lymph nodes; any breast
cancer with skin involvement, pectoral and chest wall fixation, edema, or clinical
inflammatory carcinoma, if distant metastases are absent. It relates to a 5-year
survival rate of 46 percent.

Stage IV. If the breast cancer already has distant metastases, the 5-year survival
rate is about 13 percent.

The older the patient with a single breast lesion, the more likely it is to be cancer. Tumor

size is another important prognostic factor also used in staging a lesion, as a larger tumor

increases the risk of axillary and systemic metastasis. However, although rare, very small

tumors are capable of distant metastasis. The course of treatment depends on both the

stage of the disease and the patient's preference. Treatment options include surgery,

radiation therapy, chemotherapy, hormone therapy, and immunotherapy. If no axillary

metastases are present, some patients may not receive systemic therapy, depending on the

characteristics of the tumor. Almost all women with one to three positive axillary nodes

receive some form of standard systemic treatment, either hormonal therapy or

chemotherapy. Women with four to nine positive axillary nodes are eligible for clinical

trials using high-dose chemotherapy. If ten or more nodes are positive, women are
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eligible for other experimental treatments, such as autologous bone marrow

transplantation.

2.5.4 Surgery

The combination of surgery with radiation and/or chemotherapy is the most common

treatment for breast cancer. Lumpectomy and mastectomy are both commonly performed

surgical procedures. A partial mastectomy, a lumpectomy, is the surgery of removing a

tumor from a breast. Depending on the case, lymph nodes may also be removed during

this procedure. To make sure that all of the cancerous cells are excised from the patient,

excised tissue is inked with different colors on all faces. If cancer cells are found

touching or near the inked regions, it is assumed that malignant cells are likely still

present in the patient. The color of ink identifies the region of the surgical cavity which

still had malignant cells. Simultaneously with inking excised tissue, the surgeon removes

about 6 small samples, called margins, from different spots of the lesion cavity. Margins

and the excised tissue are examined by a pathologist to decide if any cells can be

presumed present in normal tissue. In cases where those cells are found the doctor

recommends the patient undergo a re-excisional biopsy. Generally, lumpectomy

procedures take 60 to 90 minutes. Even in the case of clean margins (no cancerous cells

have been found in margins) women receive 6 to 7 weeks of radiation therapy in order to

eliminate the smallest possibility of remaining cancer cells.

There are three types of mastectomies: simple, modified radical and radical

mastectomies. A simple mastectomy includes removal of the breast tissue, skin and

nipple but rarely lymph nodes. A most common form of mastectomy is a modified radical

mastectomy, under which the entire breast is removed. Also, some amounts of lymph

nodes are removed from the underarm region, which is the reason for more difficulties

with the range of motion in the arm and shoulder on the operative side after the surgery.

Mastectomies require general anesthesia and must be done in the hospital. Patients have a

choice of getting breast reconstruction immediately following the mastectomy as a part of

the same surgery, or receiving it afterwards.
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2.5.5 Therapy

Radiation Therapy

Radiation therapy uses high-energy x-rays to destroy cancer cells. It is performed

externally or by radioactive "seeds" that are placed directly into the tumor, called

brachytherapy. The patient may be asked to go through radiation therapy in order to

shrink the tumor before surgery or she may be asked to undergo radiation after surgery to

destroy all the cancerous cells remaining in the breast, underarm, or chest wall, known as

adjuvant therapy. Radiation therapy is performed in a hospital or outpatient center.

Radiation treatment lasts for 6 to 7 weeks, and each treatment session takes a few

minutes.

Chemotherapy

Chemotherapy is a systemic treatment that travels throughout the body via the

bloodstream. It often relies on a combination of drugs to slow tumor growth and destroy

cancer cells. Drugs may be given to a patient orally or injected into the venous system.

Chemotherapy can be used before and after the surgery similar to radiation therapy for

the same reasons.

Hormone Therapy

The most effective and least toxic therapy currently available is endocrine manipulations.

Estrogen, a hormone produced by women's ovaries, promotes the growth of some breast

cancers, particularly those with detectable amounts of estrogen receptor protein.

Hormone therapy is based on blocking the effect of estrogen or lowering estrogen levels.

It can be prescribed to a patient before and/or after biopsy, as well as to treat cancer that

has spread or regenerated after treatment in the past.
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2.6 Summary

Breast cancer is the most common female cancer. The survival rate depends on early

diagnosis and the right treatment. Pathology is the gold standard for diagnosis, but it is

time consuming. Breast cancer is considered to be a heterogeneous disease, i.e. it is a

different disease in different women. Owing to the heterogeneity and complexity of the

breast, a good understanding of breast pathology is necessary for the correct development

of a diagnostic algorithm.
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Chapter 3. Theory and Instruments

The research presented in this thesis is focused on the application of diffuse reflectance,

intrinsic fluorescence, and Raman spectroscopies to diagnose breast cancer. The theories

have been explained in more detail in the theses of Abigail Haka [Haka, 2004] and

George Zonios [Zonios, 1998]. In this thesis, we will discuss only the key-points. For

more details refer to the works mentioned above.

3.1 Raman Scattering Theory

The Raman Effect was first discovered by C.V. Raman in 1928. For this discovery

Raman was awarded the Nobel Prize in Physics in 1930. The Raman Effect involves the

exchange of energy between light and matter. When light travels through a medium, the

scattering occurs over all directions and both the intensity and polarization of the

scattered radiation depend on the direction of observation. Most of the scattered light is

of the same wavelength as the incident photons. This type of scattering is elastic and is

called Rayleigh scattering. A small part of scattered light is inelastically scattered. The

Raman Effect is an inelastic scattering process in which photons incident on the sample

take energy from (Stokes) or transfer energy to (anti-Stokes) the sample's rovibrational

modes. Raman is a two-photon process that can be viewed as the simultaneous absorption

of an incident photon and emission of a Raman photon. The difference between the

energies of these two photons corresponds to the transition of the molecule from one

energy state to another. Since the energy level diagram is unique for every molecule,

Raman spectra are chemically specific. Individual bands in the Raman spectrum are

characteristic of specific molecular motions. Also, as Raman scattering involves a net

exchange between the radiation and the molecule, it is often classified as an active

process. The generation of the Stokes and anti-Stokes components are illustrated in

Figure 3.1.
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Figure 3.1 Energy level diagram of spontaneous Raman scattering: Stokes and Anti-Stokes
generation

The energy difference (hoR) between the incoming photon with frequency OL and the

scattered Stokes photon with frequency os matches a molecular vibration in a gas or

liquid, or a phonon in a solid Raman medium. When the scattered light has a lower

frequency than the exciting photon it is called the Stokes line (OS = (oL - oR). When the

scattered light has a higher frequency than the exciting photon it is called the anti-Stokes

line (OAS (OL + (OR)

The Stokes lines are usually much more intense than the anti-Stokes lines because in

thermal equilibrium the population of the excited state is much smaller than the

population in the ground state. At thermal equilibrium the fraction of the molecules in

one vibrational energy level relative to another is given by the Boltzman distribution:

NI 1  AE

N2  9 2  kT

where N2 and N1 are the numbers of molecules in a higher and lower vibrational energy

level, respectively; g2 and gi are the degeneracies of the higher and lower vibrational

levels respectively; AE is the energy difference between the higher and lower vibrational

energy levels; k is the Boltzman constant; and T is the temperature in degrees Kelvin.

The anti-Stokes Raman intensity becomes infinitely small relative to the Stokes Raman

intensity for high energy vibrations or low temperatures. Population in the higher energy

level is proportional to exp(-hoR/kT).
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3.2 Raman Instrument and Probe

The clinical Raman instrument, developed in the Spectroscopy laboratory, is illustrated in

Figure 3.2a. Light from an 830-nm diode is collimated by two cylindrical lenses, directed

through a bandpass filter, redirected by a gold-coated mirror and focused onto the Raman

probe excitation fiber by a lOxmicroscope objective.
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Figure 3.2 a)Schematic of the Raman spectroscopy system. b)Schematic of the Raman probe tip

The proximal linear array of collection fibers from the Raman probe are the input for the

f/1.8 spectrograph, which collimates the light before it is notch-filtered and focused onto

a slit, and then recollimated for dispersion by the holographic grating. Finally, the

dispersed light is focused onto a liquid-nitrogen cooled, back-illuminated, deep depletion

CCD detector, which is interfaced with a laptop computer. The schematic of the Raman

probe used in the study is presented in Figure 3.2b. The probe has a total diameter of 2

mm and a length of 4 m.

3.3 Diffusion theory

Diffuse reflectance spectroscopy (DRS), also sometimes known as elastic scattering

spectroscopy, is a non-invasive technique that uses the interaction of light with a sample

through absorption and scattering phenomena to produce a characteristic reflectance

spectrum that provides information about the structure and composition of the medium.
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Diffusion theory is appropriate in a medium dominated by scattering rather than

absorption so that each photon undergoes many scattering events before being terminated

by an absorption event. The photon has a relatively long residence time that allows it to

engage in a random walk within the medium.

Elastic scattering is the most prominent optical property of tissue. The scattering

coefficient, ps, which represents an average number of scattering events per unit length, is

in the range of pts=10-100mm-1 for soft tissue. This range indicates that light is scattered

several tens of times per millimeter of path length while traveling in tissue, i.e. it quickly

becomes diffusive. The angle-dependent scattering pattern of the scattering depends on

the scatterer size/wavelength ratio. Rayleigh scattering occurs when the scatters are much

smaller than the wavelength of light. In such a case, the scattering pattern is isotropic. In

the case when the scatterer size is much larger than the wavelength, scattering is highly

forward directed, which is the case in tissue.

Biological tissue is a complex and heterogeneous material. The exact origins of scattering

in tissue are not well known. Scattering arises from the microscopic variations and

inhomogeneities of the refractive index that correspond to various scattering centers.

[Zonios, 1998]. The angular distribution of the scattering is described by the scattering

phase function, p(O), which provides the probability of a photon to be scattered at an

angle, 0, with respect to the initial direction. The scattering coefficient is essentially the

cross-sectional area per unit volume of tissue. The reduced scattering coefficient is a

lumped property incorporating the scattering coefficient ps and the anisotropy g:

IIs' = ps(l - g), where g = 2r p(O)cos Osin OdO (2)

Anisotropy, g, is used to indicate how strongly forward-directed the scattering is. Typical

values for tissue are g = 0.8 - 0.95, which corresponds to average scattering angles

between 45 and 20 degrees, respectively. The purpose of ps' is to describe the diffusion

of photons in a random walk of step size of l/ps,' [cm] where each step involves isotropic

scattering. Such a description is equivalent to the description of photon movement using

many small steps 1/pts that each involve only a partial deflection angle 0 if there are many

scattering events before an absorption event, i.e., p'a << [s'. This is very appropriate and
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convenient for modeling multiple scattering processes where the light quickly becomes

diffusive.

The problem of scattering of a plane wave by homogeneous spherical objects is known as

Mie theory. Mie theory provides an exact solution for scattering of light with wavelength

X by a spherical object with diameter d and refractive index n that is located in a

surrounding medium with refractive index no. Experimental evidence [Zerull 1976]

indicates that by averaging over orientation and/or size, the scatter properties of

nonspherical particles can be equivalent to that of spheres, i.e. Mie theory can be applied.

In this study ps' was modeled using a power law in the following way:

pS'= AAB + (3)

where the first polynomial term represents Mie scattering and the second term represents

Rayleigh scattering. In this formula, A can be interpreted as the amount (or

concentration) of Mie scatterers, B is related to the sizes of the scatterers, and C is the

amount of Rayleigh scatterers. The exact physical meanings of these parameters are still

under investigation. However, upon analysis it was discovered that C is equal to zero,

which modified formula 3:

s=A-B (3a)

Absorption

Absorption is measured by means of the absorption coefficient, Pa, which is defined as

the amount of absorption present in units of inverse length. Water, being the major

component of soft tissue has negligible absorption in the visible range (<104 mm-I) [Hale

and Querry, 1973]. Tissue absorption, which depends on wavelength, is due to a number

of characteristic biochemical molecules. Strong absorption prevents photons from

engaging in an extended random walk. Typical values for the absorption coefficient in the

visible range are 0.005< pa< 5 mm- .

Nearly all types of tissue contain hemoglobin because its main function is to transport

oxygen from the lungs: a necessity for the metabolism and normal functioning of all

living tissue. Hemoglobin is a major absorber in the blue region of the visible spectrum.

Other biochemical compounds with characteristic light absorption in the visible range
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Figure 3.3 Absorption spectra for oxyhemoglobin and P-carotene

include P-carotene, bilirubin, and in the skin, melanin. Many other absorbers are present

in the tissue at much smaller concentrations and can be ignored. In this study,

oxyhemoglobin and P-carotene will be treated as the major absorbers of light in breast

tissue. Their absorption spectra are illustrated in Figure 3.3.

The total absorption coefficient, pa, can be expressed as a linear combination of the

extinction spectra of the two absorbers as follows:

pa = CHbo, - HbO, (A)± + eCP E() (4)

where cp is the concentration of P-carotene and c HbO 2 is the concentration of

oxyhemoglobin.

3.4 Fluorescence

Fluorescence is one of the categories of luminescence and occurs from electronically

excited states. The fluorescence lifetime is typically 10-9 s. It is a measure of the average

time between its excitation and its return to the ground state. Many fluorophores have

lifetimes on the order of nanoseconds. Figure 3.4 illustrates the fluorescence

phenomenon. A fluorophore is excited to a higher electronic level by absorption of a

photon. It relaxes quickly from a higher vibrational level to the lowest level of the excited
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state through nonradiative processes and then emits a photon to reach the ground state.

From this process it is clear that the energy of emission is typically lower than that of

absorption. As a result, fluorescence photons are typically at lower energies or longer

wavelengths than the exciting photon. This phenomenon was first observed by Sir G.G.

Stokes in 1852.

Fluorophores are divided into two general classes: intrinsic, which occur naturally, and

extrinsic, which are added to a sample that does not display the desired spectral

properties. Among biological molecules, fluorescence can be observed from reduced

nicotinamide adenine dinucleotide (NADH), oxidized flavins (FAD, the adenine

dinucleotide, and FMN, the mononucleotide), pyridoxal phosphate, and chlorophyll.

Fluorescence spectroscopy has been widely explored as an important medical diagnostic

technique. Promising results have been reported when tissue autofluorescence is used to

detect a diversity of diseases, such as

atherosclerosis in the aorta and the

coronary artery and dysplasia in the

colon and other tissues. A majority of TISSUE

the diagnostic methods employed

utilize empirical algorithms derived

from studying a limited number of

specimens. Such empirical algorithms Figure 3.5 Photon migration of fluorescence
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ignore the wealth of biochemical and/or morphological information contained in the

tissue spectrum. Part of the difficulty has been that fluorescence spectra observed from

optically thick tissue are distorted from the intrinsic spectra of individual fluorescence

chromophores by the interplay of factors such as scattering, absorption, geometry, and

tissue boundary conditions. A model that removes the distorting effects on the

fluorescence spectra of optically thick tissues allows connection of the clinically obtained

in vivo tissue spectra with their biochemically based fluorophores. Algorithms that

incorporate the effects of the intrinsic fluorescence - scattering, absorption, excitation

and collection geometries, and the tissue boundary conditions - must be developed in

order to move beyond the current empirical approaches. The algorithm determined from

the photon migration approach suggests that the distortion in a fluorescence spectrum can

be removed by measuring the diffuse reflectance spectrum over the same wavelength

range, and in the same manner as the fluorescence spectrum, and by applying the

information extracted from the diffuse reflectance spectrum to the fluorescence spectrum

in a well-defined manner.

The fluorescent photon is emitted isotropically and undergoes scattering on its way out of

the tissue. In the model it is assumed that the secondary fluorescence generated by the

fluorescent photons is negligible. Since in the photon migration model the photon path is

determined by g and p, the incident excitation photon and the fluorescent photon induced

by it will follow the exact same path in the above conditions. Figure 3.5. shows an

example of a photon path in which an incident photon is scattered n times along its path

and thus induces n fluorescent photons.

Assuming that g is constant over all wavelengths of the fluorescence spectrum, and

knowing that in the fluorescence event the photon is always emitted isotropically, the

effective anisotropy coefficient geff can be shown to be the average value of (N-1)

forward directed scattering events with anisotropic coefficient g and a single isotropic

fluorescence event with gfluorescence =0.

For a semi-infinite geometry and index-matched boundary conditions this expression can

be further simplified as [Zonios, 1998]:

F(2,, 2,)= #(,,, ){1 - R[a( ,), g,,, ]JR[a(L,.), ge,] (5)
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3.5 Optical Spectroscopy of BenignIMalignant Breast Tissues

The IFS spectrum can be decomposed into a linear combination of the spectra of

fluorophores associated with morphological structures in the tissue to provide diagnostic

information

The endogenous fluorophores present in breast tissue include tryptophan, reduced

nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), flavin adenine dinucleotide

(FAD), and collagen. NAD(P)H and flavoproteins are indicators of metabolic activity

and have excitation/ emission maxima at 351/460 nm and 450/520 nm, respectively.

Collagen is the primary structural protein in the extracellular matrix. It has several

excitation/emission maxima, one of which occurs at 325/390 nm.

Gupta and Majumder et al. analyzed different data sets collected from the same set of

breast tissues ex vivo and showed that the emission spectra at excitation wavelengths of

340 and 488 nm and excitation spectra at emission wavelengths 390 and 460 nm exhibit

significant differences between normal, benign and malignant tissues. The fluorescence

was attributed to reduced nicotinamide adenine dinucleotide (NADH) and collagen.

Spectral differences observed in the fluorescence spectra of normal, benign and

malignant breast tissues can also be attributed in part to non-fluorescent absorbers and

scatters. Diffuse reflectance spectroscopy provides a direct measurement of the tissue

absorption and scattering [Gupta,1997, Majumder,1998] .

According to Majumder et al., the fluorophores responsible for the 340, 390, 440, and

520 nm emission bands are amino acids (tryptophan), structural proteins (collagen and

elastin), the co-enzyme (NADH), and flavins, respectively [Majumder,1998]. It is known

that the excitation spectra recorded from the breast tissue samples for 340, 390, and 460

nm emission consists of spectral bands with peaks around 290, 335 and 340 nm, which

are characteristic excitation peaks for tryptophan, collagen and NADH, respectively. The

larger intensities of the 340 nm band in the excitation spectra, corresponding to 460 nm
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emission, for cancerous tissues would suggest a larger concentration of NADH in

cancerous tissues as compared to benign tumors and normal tissues.

Also, it has to be noted that light excited at different wavelengths penetrates to different

depths. We define the optical penetration depth as the depth at which the power of light

incident on a tissue sample falls to l/e of its incident value. The sampling depth

characterizes the attenuation of both the excitation and the emitted light, which can be at

a longer wavelength, as in the case of fluorescence or Raman scattering. Raman signal,

achieved using 830 nm excitation wavelength, has larger penetration depth than IFS

signal excited at 340 nm or 308 nm wavelengths. Later this information will be used in

comparison of Raman and DRS/IFS modalities.

3.6 FastEEM Instrument and Probe
A clinical instrument for DRS/IFS studies, the FastEEM, has been developed in the MIT

Spectroscopy Laboratory. This instrument collects white light reflectance and

fluorescence excitation-emission matrices (EEM's) within a fraction of a second in order

to collect diffuse reflectance, intrinsic fluorescence spectroscopic, and light scattering

spectroscopy data.

Diffuse reflectance spectroscopy (DRS) provides information about the morphology and

biochemistry of the stromal tissue and epithelium, determining values of the absorption

and reduced scattering coefficients, pa(X) and ps'(X), respectively. In the case of breast

tissue measurements, we study stromal lesions. Incident white light (300 - 800 nm)

undergoes many scattering and absorption events as it propagates through the tissue, and

the emerging ("diffusely reflected") light exhibits prominent spectral features caused by

the interplay of scattering and absorption. DRS employs a mathematical model based on

the diffusion approximation of light propagation in tissue.

The collected fluorescence and reflectance spectra can be used to extract the intrinsic

fluorescence spectra (i.e., the fluorescence unaffected by tissue absorption and

36



scattering). Intrinsic fluorescence spectroscopy (IFS) yields the relative contributions of

endogenous tissue fluorophores (e.g. NADH and collagen).

Light scattering spectroscopy (LSS), which is based on Mie theory, extracts epithelial

nuclear size distributions from white light reflectance spectra. Light that has been singly

scattered in the backward direction can be analyzed to provide the nuclear size

distribution. LSS can provide information on number density of nuclei, percentage of

enlarged nuclei as well as mean nuclear size. [Tunnell,2003]. The application of LSS

technique to diagnose breast cancer will be explored in the future.

A schematic of the FastEEM is presented in Figure 3.6a. It delivers a sequence of ten

laser pulses (308- 480 nm) and two white light pulses to the tissue via an optical fiber

probe (see below for details of the probe design). The same probe collects the white light

reflectance and fluorescence and delivers it to the entrance slit of a diffraction grating

spectrometer where it is dispersed onto an intensified CCD detector. All ten laser-induced

emission spectra and the two white light reflectance spectra are collected in

approximately 0.3 s. Several of these acquisitions can be averaged together to increase

the signal-to-noise ratio (SNR). Previously, we found that the acquisition of five

measurements provides sufficient SNR in most tissues, making a typical acquisition time
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Figure 3.6 a) FastEEM clinical spectrophotometer. b) Schematic diagram
of the distal tip of the optical fiber probe
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on the order of 1.5 s. The optical fiber probe, which is used for light delivery and

collection, is illustrated in Figure 3.6b. It is in the form of a flexible catheter, with an

overall length of over 3 m and a diameter of approximately 1.2 mm.

3.7 Summary

In this chapter the theories behind the spectroscopic techniques employed in this work,

DRS, IFS and Raman, were presented. The theories are explained in more detailed in

[Haka, 2005] and [Zonios, 1998]. A brief overview of the instrumental design and

collected data was also presented. The data obtained with Raman spectroscopy will be

analyzed in a prospective manner based on the algorithm developed by Abigail Haka.

DRS and IFS will provide additional information on the chemical composition of the

tissue.
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Chapter 4. DRS/IFS

In 2004, my colleague, Abigail Haka, and I collected DRS/IFS and Raman spectroscopy

data on 105 samples from 25 patients during an ex vivo study at University Hospitals

Cleveland in collaboration with Drs. Fitzmaurice, Shenk, and Wang. This study was

undertaken to investigate the use of these spectroscopic techniques for the diagnosis of

breast cancer. All studies involving human tissue were approved by the University

Hospitals of Cleveland and Case Western Reserve University Institutional Review Board

and the Massachusetts Institute of Technology Committee On the Use of Humans as

Experimental Subjects. Informed consent was obtained from all subjects prior to the

surgical procedures.

Measurements were taken in the frozen pathology room within half of an hour of tissue

excision. We obtained reflectance and fluorescence spectra from the specimens with the

FastEEM instrument first, followed by collection of Raman spectra with the clinical

Raman instrument. Care was taken in placing the Raman probe at the same site on the

tissue as the FastEEM probe. Overall, we obtained 223 spectra (approximately two

spectra per specimen). After the DRS/IFS and Raman data were taken, breast specimens

were fixed and given to a pathologist for a diagnosis. The exact spot of probe placement

was marked with ink to aid in our comparison of spectroscopy and pathology. The

pathologies of the specimens included 33 normals, 59 fibrocystic changes (FCC), 9

fibroadenomas, 13 ductal carcinoma in situs (DCIS), and 9 infiltrating ductal carcinomas

(IDC), as determined by Dr. Fitzmaurice, a board-certified pathologist.

The focus of this chapter is on the development of the diagnostic algorithm for DRS/IFS.

Subsequent chapters will focus on the use of a previously developed diagnostic algorithm

for the Raman data set, and the development of a diagnostic algorithm using combined

information from DRS/IFS and Raman spectroscopy.
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4.1 Data Processing
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Figure 4.1 a) a representative DRS spectrum and fit; b) representative IFS spectra
obtained with 340 nm excitation. The original spectrum acquired from breast tissue is
in blue and the contributions of NADH (green) and collagen (black) were found via
multivariate curve resolution (MCR)

Reflectance spectra are analyzed using the diffusion approximation to extract tissue

morphological properties such as scattering, oxidized hemoglobin concentration, and P-

carotene concentration. The intrinsic fluorescence photon-migration model was used to

correct the fluorescence spectrum for distortions introduced by tissue absorption and

scattering. This corrected spectrum was then used to extract the contributions of the

biochemical tissue constituents NADH and collagen. Examples of DRS and IFS spectra

are displayed in Figure 4.1. The basis spectra used to model the IFS data shown in

Figure 4.1 b were extracted using

1 Norm multivariate curve resolution
0.9 FCC

0.8 " Fodenom (MCR), an iterative statistical

technique that will be discussed

further in section 4.2.

0.4 Figure 4.2. displays average IFS

0.3 data from each of the pathologies

encountered in this study.
0.1

0 Differences are observed even
:W 400 450 500 550 800 850 700 760

wavelength, nm without a detailed analysis. The
Figure 4.2 normalized intrinsic full width at half-maximum
fluorescence spectra of breast tissue at
340 nm excitation. Peak at 680 nm (FWHM) is largest for IDC and
represents second order laser peak
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then decreases for fibroadenoma, DCIS, FCC and is smallest for normal tissue. A large

FWHM possibly indicates a higher concentration of NADH.

Three different excitation wavelengths (308, 340, and 360 nm) are analyzed in order to

reveal different fluorophores that could each provide information useful to a diagnostic

algorithm. Also, 400 nm excitation wavelength was analyzed, but information from this

wavelength did not provide any diagnostic importance. Table 4.1. presents an overview

of fluorophores that may be present in the breast tissue and fluoresce at particular

excitation wavelengths. However, upon analysis it was discovered that some of these

fluorophores are not present at high enough levels in our samples to be detected. These

include tryptophan excited at 308 nm, elastin excited at 340 nm, and porphyrin excited at

360 nm.

Excitation wavelength
308 nm 340 nm 360 nm

NADH NADH NADH
Fluorophores Collagen Collagen Collagen

Tryptophan Elastin FAD

Porphyrin

Table 4.1 Fluorophores at different excitation wavelengths

Representative spectra of DRS and IFS collected with different excitation wavelengths

are illustrated in Figure 4.3. Not all of the data collected were subsequently used for

analysis. Specifically, DRS data with overall reflectance less than 1 percent were

excluded because of the inability to use this information to process the fluorescence data

to obtain the intrinsic fluorescence. An example spectrum that was excluded from our

data set is shown in Figure 4.4. Furthermore, though most of the fits are observed to be

adequate, in cases of high oxyhemoglobin concentration, the region between 660 - 750

nm fits less well. We believe this to be a result of the fitting procedure and is a topic that

requires further investigation at a later date.
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4.2 MCR Analysis

In order to investigate the physical meaning of intrinsic fluorescence parameters, a

chemical study was performed in the Spectroscopy Laboratory using the FastEEM

instrument. The purpose of this study was to ensure that the fit coefficients resulting from

an MCR analysis have physical meaning. To test this assumption, fluorescence spectra

obtained from pure components (elastin, FAD, tryptophan) were used to fit data obtained

from mixtures of these pure components using ordinary least squares (OLS) fitting to

confirm linearity. Once the system was shown to be linear, parameters obtained from

MCR were used to fit the mixture data and the resulting fit coefficients compared to

expected values. Further, we examined whether the initial guess spectra used as inputs in

multivariate curve resolution affected these results, as will be discussed in more detail

below.
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Figure 4.5 Examples of pure
component spectra of elastin, and FAD
at 340 nm, also tryptophan at 308 nm
excitation are shown in red and the
previously collected basis spectra from
tissue that correspond to these
fluorophores are shown in blue.

FAD, tryptophan, and elastin were

dissolved in water for two hours.

Calibration spectra were collected to

ensure the DRS/IFS system was

operating correctly. Examples of

fluorescence spectra collected from

elastin, and FAD at 340 nm excitation

wavelength, and tryptophan at 308 nm

excitation are compared with the basis

spectra previously collected from

tissue in Figure 4.5. We observe that

the peak intensities of the spectra

collected from tissue are shifted to the

blue region compared to spectra

collected from pure chemicals. This

shift in emission wavelength is

expected because there are different

microclimates, which means that
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Figure 4.6. Mixture data: FAD, elastin and tryptophan; a) 1:1:1 concentrations ; b)
2:2:1 concentrations. resoectivelv. data is shown in blue. fit is in red

different fluorophores present in the tissue and interact with each other, in the tissue that

modify the spectral characteristics of the fluorophores [Richards-Kortrum, 1996].

Mixtures of FAD, elastin and tryptophan were created in concentration ratios of 1:1:1,

1:2:1, and 2:2:1. As expected, a linear combination of the spectra from pure components

weighted according to their concentration ratios fit the data well, thus confirming system

linearity. Representative spectra and fits are shown in Figure 4.6.

-pure component

basis spectrum

MCR from pure

MCR from basis
-- ---- ---- --- --

400 500 600 7
wavelength, nm

Figure 4.7 FAD: pure (blue), basis spectrum (red),
MCR from pure (green), MCR from basis spectrum
(black)
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Figure 4.8 MCR from pure components for fitting mixture data: FAD, elastin; a) 1:2
concentrations: b) 1:3 concentrations. resoectivelv. data (blue). fit (red)

MCR calculates basis spectra by minimizing the fitting error of a given spectrum using an

initial guess spectrum as the input. For the following analysis we extracted MCR basis

spectra twice: once using the pure component spectra as the initial guess and once using

basis spectra that were extracted from tissue measurements made by Irene Georgakoudi

as an initial guess. The basis spectra that MCR calculates are referred to subsequently as

MCR components. Although the original spectra were noisy, we were able to achieve

good fits regardless of the initial guess spectra used in MCR. Figure 4.7. shows the FAD

spectrum of the pure chemical along with its respective basis spectra obtained from tissue

measurements and the MCR components extracted using different initial guess spectra.

The resulted MCR spectra are practically identical, which suggests that minimization of

the fitting error does not rely heavily on the initial guess spectrum. This is ideal as it is
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Figure 4.9 MCR from basis spectra for fitting mixture data: FAD, elastin: a) 1:2
concentrations; b) 1:3 concentrations, respectively. data (blue), fit (red)
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difficult to know the exact spectral shape of the various fluorophores present in tissue

owing to the different tissue microclimates. The data from mixtures of FAD and elastin in

ratios of 1:2 and 1:3 are illustrated in Figure 4.8 along with fits obtained from MCR

components that used pure component spectra as the initial guess spectra. The fit

coefficients for a 1:2 ratio of FAD:elastin were 0.343 and 0.657, respectively. The fit

coefficients for a 1:3 ratio of FAD:elastin were 0.255 and 0.745, respectively. The error

was no more than 3 percent.

The same data from Figure 4.8 is displayed in Figure 4.9 with fits derived from MCR

components that used the tissue basis spectra as the initial guess spectra. The fit

coefficients for a 1:2 ratio of FAD:elastin were 0.356 and 0.644, respectively. The fit

coefficients for a 1:3 ratio of FAD:elastin were 0.255 and 0.745, respectively. In this

case the error was no more than 7 percent.

From this analysis we can conclude that in a simple system MCR is capable of obtaining

reasonable fit coefficients with a physical meaning from spectra of mixtures.

Based on the results of this study we analyzed IFS spectra of the ex vivo tissue using

MCR components. The basis spectra taken from separate tissue measurements were used

as the initial guess spectra. The basis spectra subsequently obtained using MCR are

thought to represent NADH and collagen because they have similar, though not identical,

lineshapes to the spectra of commercially available NADH and collagen. The lineshape

and the wavelength maximum of a fluorescence peak obtained from a solution of a pure
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C
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Figure 4.10 Comparison of basis spectra vs. MCR components excited at 340
nm. Basis spectra (red); MCR (green)
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component is known to be different than that obtained from the same component in a

different chemical environment, such as tissue. [Shafer-Peltier,2001] A comparison of

basis spectra vs. MCR components for 340 nm excitation is shown in Figure 4.10.

4.3 Algorithm Development

The DRS/IFS algorithm was developed using leave-one-out cross validation and logistic

regression. The desired algorithm must be able to distinguish among the 5 major

pathologies. From an examination of breast histopathology, it is known that normal breast

tissue consists mostly of adipocytes (fat) while the progression of malignancy includes an

increase in the amount of collagen. Therefore, we expect that normal tissue can be

separated from the remaining pathologies by the relative presence of collagen and P-

carotene, which is fat-soluble. Also from histopathology, fibroadenoma displays an

increased cellular density. Because the parameter A is representative of the number of

scatterers in the tissue, we expect fibroadenomas to have a relatively high A parameter.

Furthermore, we expect the NADH contribution, which is representative of cellular

metabolism, to be less than that from cancerous tissue.

By maximizing the sensitivity and specificity of each stage of the algorithm we were able

to identify the diagnostic parameters that can distinguish between pathologies in the

breast tissue. The diagnostically-relevant parameters from DRS were found to be P-

carotene, oxyhemoglobin, and the scattering A parameter. The diagnostically-relevant

parameters from IFS were found to be the fit coefficients for NADH at 340 nm excitation

and the fit coefficients for collagen at both 340 and 360 nm excitation wavelengths.

However, careful examination of the collagen fit coefficients obtained with 340 and 360

nm excitation revealed that only the results from one wavelength were necessary.

Because of the slight difference in wavelength between 340 nm and 360 nm, the

penetration depths of the light is not sufficient to result in different sampling volumes.

However, there is enough variation between the fit coefficients at both wavelengths that

averaging them does not provide benefit. This finding is quite important as the number

of diagnostic parameters should be minimized in order to prevent overfitting the data set.
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Figure 4.11 Schematic diagram of overall diagnostic algorithm

Therefore, the diagnostic parameters from IFS were reduced to NADH and collagen at

340 nm excitation.

The diagnosis is accomplished in a sequential manner. Normal tissue is first diagnosed

and removed from the remaining samples, followed by the diagnosis of fibroadenoma,

FCC, and then by the diagnosis of malignant lesions (DCIS and IDC), as depicted in

Figure 4.11. This algorithm can be implemented in "real time".

The scatter plots and decision lines for each step of the diagnostic algorithm are shown in

Figure 4.12. Figure 4.12a shows that P-carotene versus collagen can separate normal

tissue from the rest of the pathologies. After normal tissue was excluded from

subsequent steps, fibroadenoma was separated from FCC and IDC using NADH versus

the A parameter, as shown in Figure 4.12b. Finally, FCC was distinguished from cancer

using collagen versus oxyhemoglobin, as shown in Figure 4.12c. In the latter plot, three
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diagnostic parameters se, % sp, %
Normals vs. rest of diagnosis? -carotene collagen@340 90.5 84.3
Fibroadenoma vs. rest(no normals) A NADH@340 100 100
FCC vs. IDC Hb collagen@340 100 97.9

Table 4.2 Sensitivity and specificity using DRS/IFS algorithm

samples (6 spectra) classified as FCC were misdiagnosed as cancer. Two out of those

three data samples were previously misclassified as normals. With this knowledge, the

sensitivity and specificity of each step are summarized in Table 4.2.

Table 4.3 compares the pathological diagnosis of each sample with the diagnosis from the

DRS/IFS algorithm developed for our data set. The sensitivity and specificity for the

separation of cancerous and non-cancerous pathologies are 100% and 95.8%,

respectively. The overall accuracy (correct prediction of each of the pathologies) is

87.6% (92/105). We note that although we have 100% sensitivity there are only 9

malignant samples.

During the clinical study we also obtained spectra from specimens that were later

diagnosed as DCIS. A total of 15 specimens were analyzed in the same sequential

manner as explained above. Despite a great deal of effort we were unable to distinguish

DCIS from the rest of the pathologies. An example scatter plot of two diagnostic

parameters, collagen and 0-carotene, for all of the pathologies is shown in Figure 4.13.

The DCIS lesions are seen to fall in all the parts of the schematic, making it impossible to

separate them from the rest of the diagnoses. One possible explanation for this failure

could be the small number of cancerous cells in the tissue that precluded proper

measurement. Further studies will be conducted in order to solve this problem.

Pathology Normal Fibrocystic Fibroadenoma Invasive

TMS Change Carcinoma

(32 samples) (55 samples) (9 samples) (9 samples)

Normal 27 7 0 0

Fibrocystic Change 2 47 0 0

Fibroadenoma 0 0 9 0

Invasive Carcinoma 3 1 0 9

Table 4.3 Comparison of pathologic diagnosis with that of the DRS/IFS diagnostic
algorithm for ex vivo specimens. The DRS/IFS diagnostic algorithm resulted in an
overall accuracy of 87.6% (92/105)
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4.4 Discussion

This pilot study is the first from our laboratory to use diffuse reflectance and intrinsic

fluorescence spectroscopies to examine breast cancer ex vivo. This study clearly

demonstrates the feasibility of DRS/IFS as a clinical tool for breast cancer diagnosis.

Although the results of this study demonstrate the potential benefits of DRS/IFS, it also

reveals its weakness, as DRS/IFS was not able to separate DCIS from the rest of the

diagnoses. Further investigations will be conducted that will better elucidate the

advantages and limitations of DRS/IFS as well as provide a better understanding of the

physical meanings of the diagnostic parameters.
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Chapter 5. Raman Spectroscopy

We apply Raman spectroscopy to ex vivo samples in order to diagnose normal, benign

and malignant female breast tissue using a diagnostic algorithm previously developed in

our laboratory. Data were collected within half an hour of tissue excision and

immediately following DRS/IFS data collection. A total of 105 tissue samples from 25

patients are examined.

5.1 Raman Analysis

As stated in Chapter 3, Raman spectroscopy is a technique capable of providing accurate

chemical information of a tissue sample. There are a large number of Raman active

molecules in breast tissue and their spectral signatures are sharp and well defined.

Previously, we have developed a chemical/morphological model of breast tissue [Shafer-

Peltier,2001]. The Raman spectra, sampling a volume of 1 mm 3, are fit to a linear

combination of the basis spectra using an ordinary least-squares minimization algorithm

with a non-negative constraint. The following basis spectra are used in the algorithm: cell

cytoplasm, cell nucleus, fat, beta-carotene, collagen, calcium hydroxyapatite, calcium

oxalate dehydrate, and cholesterol-like lipid deposits. The Raman basis spectra are shown

in Figure 5.1.

Epithelial cell cytoplasm

Cell nucleus

Fat

A-carotene

Collagen

Calcium hydroxyapatite

-A Calcium oxalate dihydrate

Cholesterol-like

600 800 1000 1200 1400 1600 1800
Raman shift (cm')

Figure 5.1 Raman morphological model basis spectra
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Figure 5.2 Bar graph displaying the average composition of samples diagnosed as normEf,
fibrocystic chang 1g , fibroadenomE , and infiltrating ductal carcinoma I .

The fit coefficients, given by the model and normalized to sum to one, represent

contributions from chemical components and morphological features to the microscopic

tissue spectrum. Figure 5.2 illustrates a histogram of the average fit coefficients

associated with normal tissue, fibrocystic change, fibroadenoma, and infiltrating ductal

carcinoma. The fit coefficients of the normal breast indicate that it predominantly

consists of fat. This is consistent with breast pathology, as normal breast tissue is largely

made up of adipocytes cells containing copious amounts of cytoplastic fat, and adipose

tissue has a relatively large Raman scattering cross-section. The amount of collagen

increases in all abnormal breast pathologies. This happens because lesion formation is

often accompanied by scarring process - fibrosis, characterized by an accumulation of

collagen.

5.2 Data Measurements and Processing

Data were acquired via a clinical Raman system and Raman optical fiber probe. The

average laser excitation power was approximately 150 mW. No tissue damage was

observed at this power. The acquisition time varied depending on signal intensity and

ranged from 0.5 to 2 seconds. The spectrum of toluene was used to calibrate the
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instrument from day to day. The tissue fluorescence background was modeled with a

sixth-order polynomial and removed prior to data analysis.

5.3 Diagnostic Algorithm
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Figure 5.3 Scatter plot displaying the fat and collagen content for all pathologies
encountered in this study. Normal (rhombuses), fibrocystic change (squares),
fibroadenoma (stars), infiltrating carcinoma (circles).

Data were analyzed using the diagnostic algorithm previously developed on fresh-frozen

tissues in our laboratory, as shown in Figure 5.3. Application of this algorithm in a

prospective manner resulted in a sensitivity of 88.9 percent, correctly diagnosing 8 out of

9 IDCs, and a specificity of 90.6 percent for cancerous versus non-cancerous tissue.

This corresponds to an overall accuracy of 81 percent, (85/105). The limited number of

cancerous samples (9 IDCs) greatly influenced the sensitivity of our model. Table 5.11

represents a summary of the prospective use of the Raman diagnostic algorithm

5.4 Discussion
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Pathology Normal Fibrocystic Fibroadenoma Invasive

Raman Change Carcinoma

(32 samples) (55 samples) (9 samples) (9 samples)

Normal 30 7 0 0

Fibrocystic Change 2 41 0 0

Fibroadenoma 0 3 4 1

Invasive Carcinoma 0 4 5 8

Table 5.1 Comparison of pathologic diagnosis with that of the Raman
diagnostic algorithm for ex-vivo specimens. The DRS/IFS diagnostic
algorithm resulted in an overall accuracy of 81% (85/105)

The Raman algorithm remained quite robust when applied in a prospective manner.

However, this technique failed often for the diagnosis of fibroadenoma with 4 out of 9

specimens misclassified as cancerous. At the same time, it must be noted that due to the

nature of fibroadenoma, discussed in Chapter 2, lesions classified as such must be

excised. Thus, Raman spectroscopy, while having difficulty distinguishing between

fibroadenoma and cancerous lesions, can identify the lesions that must be removed from

the body.

This Raman diagnostic algorithm was developed to distinguish between four pathologies

at once, and did not include DCIS. An attempt was made to diagnose DCIS specimens

without changing the Raman algorithm, but it did not succeed. Studies to incorporate

additional fit coefficients and intensity information into the diagnostic scheme are

currently underway with the hope that it will aid in diagnosis. However, further work

needs to be done in order to properly distinguish among cancerous pathologies. It is clear

that additional model parameters need to be investigated to achieve this goal.

Finally, this analysis excludes patients who have undergone pre-operative chemotherapy

or who are undergoing re-excision surgery. Such patients harbor pathological tissue

changes that we have not previously examined. Pre-operative chemotherapy is used to

decrease the size of a large tumor and commonly a tumor is replaced by loose fibrosis.

This explains why we see an increase in collagen in all of the specimens from patients

who were treated with chemotherapy. If a patient already had an excisional biopsy and is
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undergoing a re-excisional surgery it is expected that the amount of collagen will be

increased as a result of the scarring process. These two pieces of information are very

important because our Raman analysis is based on the amount of collagen and fat present

in the breast tissue. The data from pre-operative and re-excisional chemotherapy biopsies

need to be analyzed separately from the rest of the data and a new diagnostic algorithm

developed. This will be accomplished in the near future.
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Chapter 6. Multi-Modal Spectroscopy
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Figure 6.1 Comparison of Raman collagen vs. DRS/IFS collagen

The promising results that were obtained using DRS/IFS and Raman spectroscopic

techniques separately raised the possibility of further improving our diagnostic

capabilities by combining the respective information into one diagnostic algorithm. Once

again, we used the data set from the clinical study performed in Cleveland, OH. In

developing the MMS algorithm, only parameters that were diagnostic in each of the

modalities were used. The diagnostic parameters from DRS/IFS include A, which

represents the amount of scatters, oxyhemoglobin, _-carotene, and NADH and collagen

with 340 nm excitation wavelength. The parameters from Raman Spectroscopy are the

fit coefficients for fat and collagen. Both of the modalities are sensitive to collagen.

However, because each uses a different wavelength of light (Raman at 830 nm and

DRS/IFS at 340 nm), the sampling depths are different. As it was mentioned in the

Chapter 3, Raman penetrates deeper than IFS excited at 340 or 360 nm wavelength.. This

fact explains why collagen fit coefficients extracted via Raman spectroscopy do not

strongly correlate with collagen fit coefficients extracted using DRS/IFS, as seen in

Figure 6.1.
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6.1 Diagnostic Algorithm
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Figure 6.2. Scatter plots for three steps of Multi-Modal Diagnostic algorithm

In order to distinguish among each of the pathologies, leave-one-out cross validation and

logistic regression were implemented on the set of data. Because of the fact that more

than two parameters must be used to separate all 4 of the pathologies, the analysis was

performed in a sequential fashion in the same manner as the DRS/IFS algorithm. Figure

6.2 displays the scatter plots and decision lines for each of the three steps performed in

order to achieve separation of the pathologies. In the DRS/IFS diagnostic algorithm

developed in Chapter 4, 2 normals were misdiagnosed as FCC and 3 normals

misdiagnosed as IDC. By introducing a parameter from the Raman model to the first step

of the analysis, which separates out normal pathologies, and incorporating it with the

DRS/IFS parameter of oxyhemoglobin, we achieve a greater number of correctly

diagnosed normals. Only two remain misdiagnosed as FCC, a benign condition. The two

subsequent diagnosis steps remain identical to that used in DRS/IFS because in the

Pathology Normal Fibrocystic Fibroadenoma Invasive

Multimodal Change Carcinoma

(32 samples) (55 samples) (9 samples) (9 samples)

Normal 30 4 0 0
Fibrocystic Change 2 49 0 0

Fibroadenoma 0 0 9 0

Invasive Carcinoma 0 2 0 9
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second step all 9 fibroadenoma lesions are correctly diagnosed, while in the third step

both DRS/IFS and Raman failed for the same two samples. The fact that both modalities

missed the same limited number of samples suggests a possible registration error, which

needs to be clarified with the pathologist. Table 6.1 provides an overview of the MMS

algorithm performance. This algorithm improves the number of correctly diagnosed

normal and fibrocystic changes over that from either DRS/IFS or Raman modalities.

Additionally, a fewer number of pathologies are misclassified as cancerous, which is an

obvious benefit in that it increases the sensitivity and overall accuracy of this technique.

6.2 Discussion

The results of this study clearly show that a combination of diffuse reflectance, intrinsic

fluorescence, and Raman spectroscopies provide results better than that obtained from

either technique, as shown in Table 6.2. By improving the sensitivity and specificity for

malignant versus non-malignant lesion of our techniques we will provide doctors with the

ability to achieve an accurate diagnosis in real time.

Raman FastEEM Multimodal

Sensitivity 88.90% 100% 100%

Specificity 90.60% 95.80% 97.90%
Overall
acuracy 81% 87.60% 92.40%

Table 6.2. Comparison of three different techniques. Multi-modal technique provides
better sensitivity and specificity, as well as overall accuracy
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Chapter 7. Future Directions

This chapter focuses on the future of Raman, DRS/IFS and Multi-Modal spectroscopies

in breast cancer diagnosis and treatment. With the successful demonstration of ex vivo

DRS/IFS and MMS modalities, there are many clinical applications that can be

addressed. These clinical studies will be accompanied by a validation of our diagnostic

algorithm and the introduction of new pathologies into our data set. Some of the basic

experiments will focus on quantitative analysis and spectral refinement. Experiments on

determination sampling depth must also be performed in order to clarify the physiological

meaning of the diagnostic parameters used in DRS/IFS and MMS algorithms.

7.1 Diagnostic Algorithm Validation and Extension

DRS/IFS, Raman and MMS diagnostic algorithms must be modified to identify DCIS

and possibly other pathologies that are present in enough quantity in the data set. As

stated previously, our MMS diagnostic algorithm uses the fit coefficients of collagen

obtained with the Raman modality to separate normals from the rest of the diagnoses. As

illustrated in Figure 6.2.a, the decision line is nearly horizontal, which indicates that only
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Figure 7.1 Collagen fit coefficient excited at 830 nm for
different pathologies.
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the collagen content from the Raman technique contributes to the diagnostic algorithm.

Figure 7.1 is a boxplot, which illustrates the average values (red line), the interquartile

range, which is the difference between the 75th and 25th percentile of the data, (blue

box), and outliers (red plusses), of collagen content for each pathology. Given that a

clear separation of normals from the other pathologies is possible based on this one value

alone, the algorithm may be redeveloped in the future to possibly gain a diagnostic

advantage. Previously, the collagen content from DRS/IFS was analyzed in this manner

but did not show the same success. This is likely because of the different probing depths

of the DRS/IFS and Raman modalities; DRS/IFS could not sample deep enough into the

tissue to obtain a meaningful collagen content. Based on this finding, the diagnostic

algorithm for Raman spectroscopy may be modified by rationing the fit coefficients for

fat and collagen and plotting them versus a third parameter such as cell nucleus content.

We hope this modification to the algorithm will allow us to correctly identify DCIS

pathologies.

The results of the DRS/IFS and especially the MMS diagnostic models presented in this

thesis are promising. However, because they were based on a pilot study and derived in a

cross-validated manner, new clinical studies with a greater number of patients must be

completed in order to validate the diagnostic algorithms. This clinical study will be

undertaken after the construction of an MMS instrument that will have features of both

the Raman and DRS/IFS modalities. Currently the FastEEM instrument for DRS/IFS

employs 10 different excitation wavelengths, as discussed in Chapter 3. Only one

wavelength was ultimately incorporated into our diagnostic algorithm, which means that

we can greatly simplify our FastEEM instrument. However, because our laboratory does

not focus exclusively on breast tissue (artery, oral and other organs are also being

studied), we will develop an instrument with three excitation wavelengths - 308, 340, and

440 nm - to accommodate all organs that are currently under investigation.
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7.2 Quantitative Study

Our Raman optical probe provides a reproducible geometry for data collection, allowing

us to examine spectral data that has not been normalized. Working with unnormalized

data, we can obtain quantitative information by incorporating the Raman scattering cross-

sections of the model components into the data analysis routine.

In this study, data will be acquired from thin sections of fresh-frozen breast tissue using

our Raman microscope. This data will be acquired using a low magnification objective to

ensure that the spectroscopic signal is representative of the entire breast tissue section.

Data will be collected for a long period of time to ensure high signal-to-noise ratio

Raman data. After spectroscopic data is collected, each thin section of breast tissue will

be examined by a pathologist. A combination of staining techniques and morpholometric

analysis will be used to obtain an estimate of the volume occupied by each morphological

feature represented in our Raman spectral model. These volumes will then be correlated

with the fit coefficients of the corresponding spectra. In this manner, the contribution of

each morphological component to the overall Raman signal level can be found.

Additionally, we expect this study to help elucidate the lower limit of detection of this

technique.

7.3 MMS Spectroscopy

Preliminary results examining Multi-modal spectroscopy of breast tissue are very

promising. However, a more rigorous understanding of the relationship between a given

data parameter and tissue morphology is necessary. Microscopy studies, similar to those

used to develop the Raman spectral model, may provide a basis for understanding the

fluorescence and reflectance signals obtained from tissue. This study will be performed in

the pathology suite as breast tissue cannot be frozen for this experiment. Freezing the

tissue will change the fluorescence characteristics of the tissue. Also, in order to

successfully combine the optical modalities, a clear understanding of the probe volume

and sampling depth is necessary. Monte Carlo simulations will be performed to simulate

breast tissue and estimate sampling depth for breast tissue.
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7.4 Transdermal Needle

Optical techniques are less invasive than current diagnostic procedures. Our initial results

from in vivo and ex vivo Raman studies illustrate the potential for spectroscopic

transdermal needle measurements to provide breast cancer diagnosis and treatment. Due

to the fact that the Raman technique was shown to be applicable in a prospective study,

we will first build a Raman transdermal needle. A DRS/IFS transdermal needle will be

developed in the near future.

Transdermal needle measurements can be performed with either a front-viewing or a

side-viewing optical fiber probe. A front-viewing probe can be used in conjunction with a

vacuum-assisted biopsy procedure, discussed previously. Studies must be undertaken to

investigate whether the vacuum device and overall setup can be used in conjunction with

the probe.

A side-viewing probe can also be used for transdermal needle measurements. Our

laboratory has developed a side-viewing probe prototype based on a design that replaces

the sapphire ball lens with a half-ball lens backed by a mirror. The lens and mirror are

configured at a 450 angle, providing collection capabilities similar to the front-viewing

probe. The performance of the side-viewing probe is currently under investigation. This

type of probe can be used in conjunction with either a spring-deployed or a vacuum-

assisted biopsy needle. At the same time, a side-viewing probe will necessitate a method

for registering the tissue examined spectroscopically, which will lie somewhere in the

middle of the biopsy sample, with that examined by the pathologist. A side-viewing

probe is ultimately preferable to a front-viewing probe in terms of spectroscopic

advantage as it collects data from a larger tissue volume.
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Chapter 8. Conclusions

The overall goal of this thesis was to develop a multi-modal spectroscopic algorithm that

can be used to diagnose breast cancer. This process included the development of a

diagnostic algorithm based on diffuse reflectance and intrinsic fluorescence, and the

validation of a previously-developed algorithm for Raman spectroscopy. Each of these

steps has been addressed and results have been presented throughout this thesis.

The DRS/IFS algorithm is developed based on results obtained in a clinical pilot study.

This diagnostic algorithm incorporates four different pathologies and results in a high

sensitivity and specificity of 100 percent and 95.8 percent, respectively, and an overall

accuracy of 87.6 percent. MCR analysis proves that even without perfect initial guess

spectra we can achieve good fits and reasonable values for concentration of the intrinsic

fluorescence spectra's components. Investigation of different excitation wavelengths

reveals that there is limited need for all ten wavelengths currently employed by the

FastEEM instrument. In fact, the diagnostic algorithm is based solely on DRS parameters

obtained from white light excitation and IFS parameters obtained from 340 nm

excitation. In comparison, Palmer et al. [Palmer, 2003] also examined fluorescence and

DRS: the sensitivity and specificity in discriminating malignant and nonmalignant tissues

were 70 and 92 percent, respectively; at the same time sensitivity (30 percent) and

specificity (78 percent) of DRS along was significantly lower; combination of two

techniques did not improve the classification accuracy. This finding will help in the

development of our next generation FastEEM instrument as well as for a new instrument

that combines the Raman and DRS/IFS modalities.

The Raman spectroscopy algorithm is applied in a prospective manner and shown to be

an effective diagnostic tool. The sensitivity and specificity of the validated algorithm is

88.9 percent and 90.6 percent, respectively, with an overall accuracy of 81 percent.

A multi-modal diagnostic technique is developed and preliminary results are very

promising. It is clear that by combining Raman and DRS/IFS modalities we are able to
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increase our sensitivity, specificity, and overall accuracy to 100 percent, 97.9 percent,

and 92.4 percent, respectively. A new MMS instrument will be developed and tested in

future clinical studies.
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