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Abstract

Measures of graph similarity have a broad array of applications, including comparing chemical structures,
navigating complex networks like the World Wide Web, and more recently, analyzing different kinds of
biological data. This thesis surveys several different notions of similarity, then focuses on an interesting class
of iterative algorithms that use the structural similarity of local neighborhoods to derive pairwise similarity
scores between graph elements. We have developed a new similarity measure that uses a linear update to
generate both node and edge similarity scores and has desirable convergence properties.

This thesis also explores the application of our similarity measure to graph matching. We attempt to
correctly position a subgraph GB within a graph GA using a maximum weight matching algorithm applied
to the similarity scores between GA and GB. Significant performance improvements are observed when the
topological information provided by the similarity measure is combined with additional information about the
attributes of the graph elements and their local neighborhoods. Matching results are presented for subgraph
matching within randomly-generated graphs; an appendix briefly discusses matching applications in the yeast
interactome, a graph representing protein-protein interactions within yeast.

Thesis Supervisor: George Verghese
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

G RAPH THEORY, the study of binary relationships among elements of a set, has undergone tremen-

dous changes since its formal beginnings in the 18th century. Early work, beginning with Euler's

solution to the K6nigsberg bridge problem, was largely focused on proving combinatoric and existence state-

ments about graph structures. A major advance occurred in 1959 when a paper by Erd6s and R6nyi introduced

the random graph, whose nodes are connected to each other according to a probabilistic model. Throughout

these periods, graph theorists focused principally on graphs that were theoretically constructed, and sought

to answer questions about their properties.

Figure 1.1: The Konigsberg bridge problem: Euler was the first to prove the impossibility of starting from any node in
this graph, passing through every edge exactly once, and returning to the starting point.

Over the past twenty years, however, researchers have revived graph theory to answer questions about real

graphs that arise in the natural world. This revival has come in response to several related developments. The

first is the data explosion that has taken place in many fields of research, fueled by the continual improvement

in computing and data storage. Particularly in biology, where automatic sequencing and microarray technol-

ogy have revolutionized experimental work, researchers have taken full advantage of these improvements,

generating data quickly and on a massive scale. Often, these data can be imbued with a graph structure that

reveals interesting relationships and suggests further lines of inquiry. Scientists faced with these kinds of data
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graphs require algorithms that can search through large datasets quickly and return the relevant information.

A second driving force behind graph theory's recent re-emergence is increased collaboration between

researchers in previously disparate fields, largely due to the ease of electronically disseminating information.

This new collaboration has revealed that the graph structures seen by biologists, physicists and sociologists

often have the same interesting and peculiar features. Discoveries of this kind certainly open the lines of com-

munication between different academic communities, but perhaps more importantly, also compel researchers

to return to the pure theory to search for fundamental explanations.

A quick and readable survey of modem attitudes toward graph theory can be found in [HO. 1] and

[HOO.21. The following section is devoted to a brief discussion of many of the interesting graph theory

applications that have arisen across a broad array of scientific fields. This survey will motivate an introduc-

tory discussion of the notion of the similarity of two graphs, the exploration of which is to be the focus of this

paper.

1.1 Examples and applications

To begin to understand which graph theoretic concepts are useful, it is worthwhile to sample some uses of

graph theory in practical research. This section will do its best to avoid technical notation and results, but

definitions of any concepts that may arise can be found in Chapter 2.

1.1.1 Chemistry

The application of graph theory to problems in chemistry has a long history. Chemical compounds have a

natural graph structure, with nodes representing different types of atoms and edges representing inter-atomic

bonds. One early survey of the use of graph theory in chemistry is given by Balaban in [B85], in which

the author emphasizes the essentially graph theoretical nature of many contemporary problems, including

identifying isomers, planarity of molecules, and reaction graphs. Today, the question facing computational

chemists is not whether a graph theoretic approach is appropriate, but which graph-based algorithm should

be selected.

When experimental chemists develop a new compound, their first step is to compare its molecular struc-
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ture to a database of compounds and look for those which are structurally identical, or have structurally

identical sub-components. In graph theory, this is referred to as the maximum common subgraph problem,

and is discussed in greater detail in Section 3.3. A recent survey of the state of the art in solving maximum

common subgraph problems for chemical compounds is given by Raymond and Willett in [RWO2]. A re-

lated approach is taken by Kanehisa et al. in [HOGK03] with their development of a similarity measure for

chemical structures that uses structural subgraph matching to identify biochemically meaningful features in

a database of metabolic compounds.

1.1.2 Biology

Biological systems are complex networks with many different kinds of interacting units, from the most

'macro' population level to the most 'micro' molecular scale. Detangling this web of interactions has been

made more plausible over the last twenty years with the development of many breakthrough technologies that

have allowed researchers to probe the activating and inhibiting relationships between biological components.

In many ways, the forefront of biology is no longer the collection of experimental observations, but the intel-

ligent analysis of existing data. In [KB03], Kanehisa and Bork reflect on the challenges facing biologists as

they develop models that have a sound underlying structure and predictive value. Mapping and understanding

the nature of biological networks is central to addressing these challenges.

Different kinds of graphs constructed from biological data require different types of analyses. One ex-

ample of biological data with a graph structure is a mapping of metabolic networks into enzyme graphs:

biological enzymes serve as nodes in the graph, with an edge existing from enzyme el to enzyme e2 if el

catalyzes a reaction whose product is the substrate for e2. In Section 4.3.3, we will have much more to say

about one particular use of these graphs in our discussion of the work of Heymans and Singh in [HSO3]. More

generally, the protein-protein interactions of any species can be represented as a graph; one such example is

given in Figure 1.2.

Another graphical representation of a metabolic network is one that represents the differential equations

governing some portion of the metabolic pathway of an organism. In these graphs, each node represents a

molecule involved in a particular metabolic process, which is subject to mass conservation and thermody-
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Figure 1.2: A graphical representation of a protein-protein interaction network (provided by [VO3]).

namic requirements represented by the edges. In these kinds of networks, one is often interested in exploring

different paths through the network in order to predict behavior or explain experimental results. In each of

[SLPOO] and [PRPF03], the authors present different methods for finding representations of these metabolic

networks in terms of essential pathways within the network, then use these essential pathways to provide

some biological insight.

Biologists are also interested in a more 'global' or 'aggregate' view of graphs of biological data. In

[CLDG03], Chung et al. develop a probabilistic model for gene duplication that attempts to explain the

empirically-observed degree distribution (see Chapter 2) of many biological networks.

1.1.3 Computer vision

Computer science has long used graph theory to represent network and data structures, but one of the most

interesting applications of graph theory is to pattern recognition and computer vision. Given two images,

image processing software can often identify interesting features, and then describe the relationship among

these features, for instance, in terms of distance and angle. An example of this kind of processing is given in

Figure 1.3. This naturally leads to the representation of the image as an attributed graph.

An excellent and thorough overview of gra thr eory in pattern recognition is given by Conte et al. in
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Figure 1.3: Two related images, with indicated features (provided by [DSDK04]).

[CFSV04]. In addition to discussing graph matching techniques, the authors describe a number of applica-

tions that rely heavily on graph representations, including optical character recognition and biometric identi-

fication. Many of these problems involve trying to find a subject graph within a database of graphs, the same

task that arises with chemical compounds in databases.

1.1.4 Social networks

Much has been made in the past few years of the small world phenomenon, which occurs when a large,

sparsely connected network has a surprisingly low average distance between any two randomly chosen nodes.

This phenomenon was first observed and studied in social networks by the psychologist Stanley Milgram in

the 1960s [TM69]. Milgram (most famous for his disturbing experiments investigating obedience to author-

ity) devised a series of experiments to quantify the average number of acquaintances between any two people

in America. In his experiments, a randomly selected person A in Nebraska was asked to route a letter to a

randomly selected person B in Boston by passing the letter to an acquaintance who might know better how

to reach B. The letters traveled along the acquaintance network, many of them reaching the target person.

Among letters that successfully reached the target, Milgram found that the average number of people that it

had to pass through was 5.7, an intriguingly small number for strangers situated 1300 miles apart.

The network theory needed for a more rigorous analysis of these kinds of results did not come together

until the late 1990s, with work by Duncan Watts. In [W99], Watts presents several theoretical models for

13



networks, each with different rules for how nodes may be connected, and examines these models for evidence

of the small world phenomenon. Watts' work has inspired researchers in many fields to search for this

phenomenon in their own data and examine its implications. For example, Davis, Yoo and Baker in [DYB03]

perform an analysis of the relationships between board members of the top American corporations and find

evidence of a small-world network. Most interestingly, the small world nature of these networks has persisted

over the last twenty years, amidst considerable change in the selection procedure for board members and the

duties required. The implication of this phenomenon is that new ideas in corporate strategy can move quickly

through the corporate 'elite,' much like an infection, via person-to-person contact.

Certainly, the application of graph theory to social networks is not limited to observing occurrences of the

small world phenomenon. Another compelling concept is that of viral marketing, in which a group desires

to influence an entire population by selectively influencing well-connected members of the population. The

questions of how best to define a network that models a target population, and from there to select the most

influential members and estimate the network's behavior, are of much interest. For one set of models and

performance results, see Kempe, Kleinberg and Tardos' work [KKT03].

1.1.5 World Wide Web

The Web is a fascinating graph, constantly undergoing editing by millions of independent users across the

globe. Edges between nodes in the Web graph, representing links between webpages, can represent many

different kinds of relationships, including the personal, professional, and navigational. The Web often serves

as a proxy measure of the social structure of a community; for example, the graph of homepage connections

between MIT students represented in Figure 1.4. The Web provides a dual set of challenges for researchers; to

understand the statistics and dynamics of Web growth and connectivity, and to use this knowledge to improve

tools for information retrieval from the Web.

One step in this direction is provided by Dill et al. in [DKMR02J, who performed extensive sampling of

the Web and found evidence of a fundamentally fractal organization; the same types of structures (and hence

the same statistics) can be seen at varying scales of the Web graph. Their contention is that this repeated

structure should simplify the design of web-based algorithms and improve search quality.
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Figure 1.4: The network of connections among MIT student homepages (taken from [A A03]).

The sheer size of the Web graph is astounding: one lower bound is 8 billion documents in November,

2004, given by the number of sites in the Google search engine database [G04]. Google's search algorithm,

the most commonly used in the world, was originally proposed by Brin and Page in 1998 [BP98]. The

power of their approach derives from not only considering the text in a Web document and its relevance to a

given query, but how the link structure of the graph as a whole differentiates between important and marginal

sources of information. Another web search tool that relies heavily on link structure is the HITS algorithm

proposed by Kleinberg [K991, which we will discuss in detail in Chapter 4.

1.2 Similarity

One common thread that runs though many of the examples in the previous section is the need to be able

to compare two graphs and somehow assess their similarity. Certainly, what one means by 'similarity' is

particular to the application; there are many kinds of similarities one may be interested in between two

graphs. A first list of such similarity questions might include:

" Are these graphs identical copies of each other?

" How many changes must I make to one graph to change it into the other?

" Do each of these graphs contain an identical subgraph? How large is this subgraph?
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" Can we contain both of these graph in a single larger graph? How small can this graph be?

" If we allow the graph to change over time, can we assess whether two graphs were generated from the

same set of evolutionary rules from a common ancestor graph?

" How much does the neighborhood of a given node in one graph look like the neighborhood of a given

node in another graph? Can we compare the neighborhoods of edges?

Each of these questions corresponds to a distinct similarity notion. Indeed, having many different notions

of similarity available allows a researcher to select the most appropriate measure for his or her application.

There exists an array of answers for each of these questions, many of which will be discussed in Chapter 3.
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Chapter 2

Graph terminology

T HIS CHAPTER will outline some of the important definitions and concepts of graph theory that we

will utilize throughout the thesis. The final section contains a brief review of some standard linear

algebra results that will be useful.

2.1 Graph fundamentals

A graph G(V, E) consists of a set of vertices (interchangeably called nodes), V, and a set of edges, E 9 V x V.

A graph may be directed or undirected; in an undirected graph, for u, v e V, then (u, v) E E implies that

(v, u) E E. Two pictorial examples of graphs are shown below in Figures 2.1 and 2.2.

3
1

4

Figure 2.1: An undirected graph, Gu.

3

4

2

Figure 2.2: A directed graph, Gd.

For an edge (u, v), the source of the edge is node u and the terminus of the edge is node v. In an undirected

graph, both nodes u and v are source and terminal nodes.

A path through a graph is a sequence of nodes (with no repetitions) connected by edges. For example,

2 -+ 3 -- 4 is an admissible path in the graph of Figure 2.1, but not for the graph of Figure 2.2 because it

does not respect edge orientation. A cycle is a path that ends on its starting node. A connected graph (see

Section 2.6 for a definition) with no cycles is called a tree.
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2.2 Node-node adjacency matrices

A convenient way to represent a graph is a node-node adjacency matrix (also referred to simply as an adja-

cency matrix). Consider a graph, GA = G(VA, EA). If the cardinality of VA is nA, then the adjacency matrix

9I of this graph is an nA x nA matrix in which entry [Yl]ij is equal to I if and only if (i, j) e EA, and is equal

to 0 otherwise. Observe that the adjacency matrix of an undirected graph will always be symmetric. The

adjacency matrices of the graphs in Figures 2.1 and 2.2 are given below.

o 1 0 0 0 0 0 1
1 0 1 1 0 0 1 0

U 010 1 Ad= 0 1 1 0
0 1 1 1 0 0 1 0

Table 2.1: Adjacency matrix of Figure 2.1. Table 2.2: Adjacency matrix of Figure 2.2.

Every node i in a graph has an out-degree and an in-degree, the former being the number of edges that

begin at i and the latter the number of edges that terminate at i. These values can be found by simply summing

over the rows and columns of the node-node adjacency matrix, respectively. Note that in an undirected graph,

the out-degree and in-degree of a node are equal. One measure of a graph's global structure is the degree

distribution, a histogram of the degrees of each of its nodes.

2.3 Node-edge adjacency matrices

Another common matrix representation of a graph is the node-edge adjacency matrix. For a graph GA

G(VA, EA), denote its node-edge adjacency matrix by A, a IVA Ix IEA I matrix, with each row of A corresponding

to an element of VA and each column corresponding to an element of EA. First, let sA (i) denote the source of

edge i, and let tA(i) denote the terminus of edge i. Then we can define the node-edge adjacency matrix A as

follows:

[A]ij 1 tA(j)

0 else

Observe that this definition is not well-defined for a self-loop in the graph GA, i.e. an edge (i, i). Thus, we
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will introduce a further refinement of the node-edge adjacency matrix that resolves this issue: the representa-

tion of a graph GA by a pair of matrices, the edge-source matrix As and the edge-terminus matrix AT. These

matrices can be defined as follows:

I SA(J)='
[As]ij =

0 else

I tA (J)=i
[AT]i] =

0 else

For graphs without self-loops, A = AT - As. This kind of representation has some useful and interesting

properties, including the following:

* Y= AsA T. To see this, observe that entry [AsA T ]ij is the inner product of the ith row of As and the

jth row of AT, which counts the number of edges from node i to node j.

SDAs AsAT is a diagonal matrix with the out-degree of node i in the ith diagonal position.

DA= ATA T is diagonal with the in-degree of each node in the corresponding diagonal entry.

AsT is a particular kind of edge-edge adjacency matrix which tell us when one edge originates at

another's terminal node. Specifically,

[AsAT7i = s(i)= tA()

0 else

This matrix is symmetric, with a '1' in the ith diagonal entry if edge i is a self-loop.

" The matrices ATAs and A TAT are also kinds of edge-edge adjacency matrices, which tell us when two

edges start or terminate at the same node, respectively. Explicitly, these matrices are:

[AsAs]ij= { s A(I)

10 else
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[ATA]ij I tA(U) = tA(J)

0 else

These matrices always have '1' entries on the diagonal, and are symmetric.

The representation of a graph by two node-edge matrices will be the most computationally convenient in

our later work on iterative similarity methods.

2.4 Weighted graphs and attributed graphs

In a graph representing a social network, for example, connections between individuals are rarely best de-

scribed as 'I's and '0's; it is useful to be able to distinguish between a strong friendship and a weak acquain-

tanceship. This naturally leads to a notion of weighted edges, in which each edge i of a graph has a weight w;

(often restricted to the interval [0, 1]). We can generalize the node-node adjacency matrix by allowing the ijth

entry to take the value of the weight of edge (i, j). Weighted graphs also naturally arise in the representation

of electrical circuits, with the weight of an edge representing a resistance value.

It is also possible to associates weights to the nodes in a graph: one could imagine a scenario in which the

weight of a node indicated that node's relative importance to the graph, perhaps in modeling the hierarchy in

a corporation. One way of incorporating these weights into a graph model is to left-multiply the node-node

adjacency matrix by a diagonal node weight matrix, but there are certainly others; the best choice of a node

weighting method depends upon the application.

A higher-level approach to weighting nodes and edges in graphs is to label each node and/or edge with a

vector of attributes. Attributes could be drawn from any class of descriptors; these could simply be weights

as discussed previously, or they could be text strings or even functions. Attributed graphs naturally arise in

image processing applications, where nodes might be associated with a point in an image and be attributed

with an RGB color vector as an attribute, while edges may have distance and angle attributes.
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2.5 Hypergraphs

One natural extension of the graphs that we've discussed, in which edges are pairs of nodes, is a hypergraph,

in which edges are subsets of nodes. In a hypergraph, two nodes are adjacent if there exists a hyperedge

containing both nodes. The most appropriate representation of a hypergraph is a node-edge adjacency matrix

with multiple l's allowed in each column.' An example of a hypergraph is depicted in Figure 2.3, with nodes

labeled by numbers and hyperedges labeled by letters, alongside its node-edge adjacency matrix, H.

6

a * 0 0 0 1
a 4b 0 0 0 1

5 0 0 1 0
H= 0 1 1 0

C 1 0 0 0
12 3 1 0 1 0

2,
d

Figure 2.3: A hypergraph GH and its node-edge adjacency matrix H.

2.6 Statistics of graphs

For simplicity, we will state the following properties with respect to an undirected graph, bearing in mind

that there exist generalizations of each to the directed case. For additional interesting graph properties, see

Watts [W99] and Buckley and Harary [BH90].

A graph is connected if there exists a path between any pair of nodes. The nodes of any graph can be

partitioned into connected components, each of which is connected. An example of an undirected graph with

two connected components is given in Figure 2.4. A geodesic between nodes s and t is a path of shortest

length from s to t. Note that a geodesic between two nodes is not necessarily unique. The diameter of a

connected graph is the length of its longest geodesic.

In a communication network, we might be interested in identifying which nodes are critical to the net-

work's operation, in the sense that removal of one of these nodes jeopardizes the connectivity of the network.

One measure of the criticality of node i is its betweenness centrality, C(i). Define o-s to be the number of

'Berge's canonical text on hypergraphs [B731 actually defines the adjacency matrix as the transpose of this definition; we've chosen
this representation for continuity with the standard graph case.
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Figure 2.4: An undirected graph with two connected components.

geodesics from node s to node t, and o-,t(i) to be the number of geodesics that go through node i. Then we

can define C(i) as follows:

C(i) = z st(i)

stt 0-st

If C(i) = 1, removal of node i is guaranteed to disconnect the graph.

Another node statistic is the clustering coefficient of a given node, which measures how connected a

node's neighbors are to each other. This statistic might be of interest in an friendship network, where the

clustering coefficient provides a measure of how tightly knit one's social group is. Define the neighborhood

of node i as the set of nodes j such that edge (i, j) exists, and denote the number of neighbors of node i by

ki. Finally, denote the number of connections between these neighbors by E(i). Observe that the maximum

number of possible edges between the neighbors of i is given by (2). Then we can define the clustering

coefficient of node i, y(i), as

y(i) E(i)
(2)

In a complete graph, one in which every distinct pair of nodes is connected by an edge, the clustering coeffi-

cient of every node is 1.

2.7 Linear algebra review

Before we begin a technical discussion, it is worth reviewing some useful linear algebra results and standard-

izing our notation.
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Recall the following definitions:

* A matrix M is symmetric if M = MT, where T denotes matrix transposition.

* The trace of a matrix M, denoted by tr(M), is the sum of the diagonal elements of M.

" A matrix M is positive definite if XTMX > 0 for every vector x # 0. M is positive semi-defnite if

XTMX > 0 for every x # 0.

" The Perron root of a square, component-wise non-negative matrix M, denoted by p(M), is the real

eigenvalue of M with largest magnitude.

* The p-norm of a vector x e R", denoted by 1| x 11p, is defined as

n I/P

11 x ip:= ( xi|

" The Frobenius norm of an n x m matrix M, denoted by 11 M I|F, is defined as

[ n M [] 
1/2

11|M IF= E E M f;
i=1 j=1

" For two vectors v, w C 'R", their Euclidean inner product, < v, w >, is defined as vTw.

" Let S be a subspace of %". The orthogonal projection onto S of a vector x . 'R" is the unique

element x* in S that has the smallest Euclidean distance (2-norm) to x. Given x, we can find x* via

the orthogonal projector, H. To construct H, let vi, v2,.., Vm form an orthonormal basis for S. Then

I I I

x* = rHx where H = PPT andP= v, V2 -- Vm

" The invariant subspace of a symmetric matrix M e 
9
R"l" associated with the eigenvalue A is the span

of all v E V such that Mv = Av.
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* If A = {aij} is an n x n matrix, and B = {bi} is an m x m matrix, then the Kronecker product, A ® B is

the nm x nm matrix defined by:

a11B a 12B --- ainB

AOB=

an1B an2 B --- annB

* The vec(-) operation, which concatenates the columns of an n

can be defined as follows:

x m matrix A = {aij} into an nm x 1 vector

vec(A)= a11  a21  ain -.... ai. .a anml

Recall also the following results:

" For any matrix M, the matrices MT M and MMT are positive semi-definite.

* For a positive semi-definite matrix M, there exists a real matrix W such that M = WT W and rank(W) =

rank(M).

" All of the eigenvalues of a symmetric matrix M are real.

" All of the eigenvalues of a positive semi-definite matrix M are nonnegative.

" For a symmetric, nonnegative matrix M, there exists a nonnegative basis V for the invariant subspace

associated with its Perron root p(M).

" An orthogonal projector 11 has the property that H2 
= 1l.

" For matrices A and B, (A 0 B) T = A T 0 BT.

* For matrices A, B, C, and D of compatible dimensions, (A 0 B)(C 0 D) = AC 0 BD.

" If AXB is the product of three matrices A, X, and B, then vec(AXB) = (B T
0 A)vec(X).
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A helpful reference for many general linear algebra results is Horn and Johnson [HJ85]. See Steeb's short

text [S91] for a compilation of Kronecker product facts. A thorough source on graphs and hypergraphs is

Berge's text [B73].

A final note: there exists a very rich and interesting subfield of linear algebra, called spectral graph

theory, which is devoted to uncovering relationships between the spectral properties of matrix representations

of graphs and their physical properties (e.g., connectivity, reducibility, etc.). Spectral methods are becoming

increasingly attractive because they allow one to trade in combinatorial methods for faster and more efficient

matrix methods. Often, algorithms that deal explicitly with all of the node and edge details of a graph are

exponential in time and memory requirements, so the use of matrix approximation techniques is extremely

helpful. An excellent introduction to spectral graph theory is given in Mohar in [M97], and a standard text is

Chung [C97].
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Chapter 3

Notions of similarity

A T THE END of Chapter 1, we briefly discussed some possible meanings of the term 'similarity'when applied to graphs. In this chapter, we will develop several of these notions more extensively.

These approaches will provide a point of comparison for the similarity notion that is our primary focus,

namely, the idea of iterative similarity measures presented in Chapter 4.

3.1 Isomorphism

If an isomorphism exists between two graphs, then they are structurally indistinguishable. More formally,

two graphs are isomorphic if there exists a bijective (one-to-one and onto) function between the sets of nodes

such that two nodes are connected in one graph if and only if their images under the bijection are connected. If

graphs GA and GB are isomorphic, then there exists a permutation matrix, P, that will transform the adjacency

matrix A( into the adjacency matrix B, i.e. B = PYIPT. Additionally, if GA and GB are attributed graphs, then

an isomorphism between them must also preserve the attributes on each node and edge. An example of two

isomorphic graphs is given in Figures 3.1 and 3.2.

Figure 3.1: An undirected graph. Figure 3.2: A graph that is isomorphic to Figure 3.1.

The complexity of determining whether two graphs are isomorphic is still undecided. Polynomial time

algorithms have been developed for several special classes of graphs, including trees and planar graphs [T04],
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but many existing algorithms, which often seek to find the correct matrix permutation, are exhaustive in the

worst case: see, for example, [U76]. It is currently postulated that graph isomorphism may lie strictly between

the P and NP-complete complexity classes [P99].

Observe that, because their adjacency matrices A and D can be made identical via a permutation, A

and B must have the same set of eigenvalues; unfortunately, this is only a necessary condition. However,

algorithms exist that use the spectra of two weighted graphs (of equal size) to find an approximation to a

bijective function between each set of nodes that minimizes a certain error criterion; an isomorphism has

been found when this function has zero error [U88].

A generalization of the graph isomorphism problem is that of subgraph isomorphism, in which one looks

for isomorphic copies of a graph GA within another graph GB-

3.2 Error correcting graph matching

Often in pattern recognition problems, images will have missing or corrupted information that affects their

representations as graphs. In this case, whole graph isomorphism will fail to recognize the underlying simi-

larity of the images. One way to deal with corrupted information is to use an error correcting procedure. In

its simplest form, the error correcting graph matching (or edit distance) between two graphs is the minimum

number of edit operations (node and edge additions, substitutions and deletions) required to transform one

graph into the other. Observe that this problem is a generalization of isomorphism; two graphs are isomorphic

if their edit distance is zero.

Typically, different edit operations have different associated costs which are inversely related to how likely

the edit is to occur. Thus, finding the edit distance between two graphs becomes an optimization problem:

determine a minimum cost set of edit operations to transform one graph into another. Additionally, if the

nodes and edges of the graph have their own attributes, then there may exist different costs for different pairs

of substitutions. The optimal error correcting graph matching is highly dependent on the cost function; in

[B99], Bunke presents results which describe whole classes of cost functions that will yield the same optimal

matching.
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3.3 Maximum common subgraph and minimum common supergraph

Two additional generalizations of subgraph isomorphism are the twin notions of maximum common sub-

graph and minimum common supergraph. These measures of graph similarity compare two subject graphs

by generating a third. The maximum common subgraph of two graphs is the largest graph (by some measure

involving the numbers of nodes and edges) contained in both subject graphs. Finding the maximum com-

mon subgraph of two graphs is another common way of dealing with loss or corruption of data in pattern

recognition problems.

Similarly, the minimum common supergraph is the smallest graph that contains both subject graphs. In

[BJKOO], Bunke et al. observe that the problem of finding the minimum common supergraph is equivalent to

identifying the maximum common subgraph, in the sense that algorithms for one can be trivially modified to

find the other. Additionally, the authors find that, under a set of restrictions on the relationships between the

costs of particular edit operations, there exists a lowest cost error-correcting graph matching that preserves

the maximum common subgraph, Gs, and that the cost of this matching is an affine function of the size of

Gs.

It is often useful to have a scalar measurement of the distance between two graphs, but graphs do not exist

in an obvious metric space. However, the size of the maximum (minimum) common subgraph (supergraph)

of two graphs can be used to define a metric distance between them: one such metric is presented by Bunke

et al. in [BJKOO] and another by Fernandez and Valiente in [FVO1].

The maximum common subgraph problem is known to be NP-complete [GJ79], so most algorithms on

general graphs are exhaustive in the worst case: see [L71] for an early but still influential example. In fact,

finding the maximum common subgraph is equivalent to another graph theoretic problem. First, we'll define

the product graph, GAB between two graphs GA and GB. The node set of GAB is VA x VB with an edge

((a, b), (c, d)) existing if and only if (a, c) is an edge of GA and (b, d) is an edge of GB. Also, define a clique

of GAB as a subset of its vertices such that every vertex in the clique is connected to every other in the clique.

Then finding the maximum common subgraph between GA and GB is equivalent to finding a maximum clique

in the product graph GAB.

In response to the complexity of this problem, many researchers have developed methods to approximate
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the solution. These approximations typically involve embedding this discrete problem into a continuous

space, then applying continuous optimization methods that are well-understood. In [P02], Pelillo develops an

approximation algorithm for finding the maximum common subgraph of free trees by solving a continuous

optimization problem with a quadratic cost function, using tools of evolutionary game theory.

3.4 Topological measures

For very large graphs, trying to compute the edit distance or the maximum common subgraph is a daunting

task. One way of reducing large graphs to their essential characteristics is to represent them using aggregate

topological measurements; for example, in- and out-degree distributions, clustering coefficients, betweenness

measures and diameter, as discussed in Chapter 2.

Not only do these topological measures simplify the comparison of large graphs, but they often suggest a

particular kind of growth process underlying the formation of the graph. Frequently, these growth processes

are the primary interest of researchers; much of today's work in large graphs focuses on formulating a prob-

abilistic model of graph evolution, then examining its statistics to see if they match what has been observed

experimentally. In [JKOI], Jain and Krishna present a weighted graph model representing the promotive or

inhibitory effects of different chemical or biological species, then apply some simple rules of 'evolution' to

the model and observe the spontaneous appearance of cooperativity and interdependence among the species.

One particular class of graphs that have received a lot of attention in the past few years are those that

have scale-free degree distributions, i.e. the probability of any node having k neighbors is given by ko for

some constant y. The World Wide Web, Internet and many biological systems are all scale-free, albeit with

different characteristic ranges for y. As discussed in Section 1.1.2, the authors of [CLDG03] have developed

a graph model for genetic evolution that matches the observed y from experimental studies. An excellent

overview of examples and approaches in complex networks is given by Albert and Barabisi in [AB02I.
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Chapter 4

Iterative methods

T HERE EXISTS a large class of similarity algorithms that take a very local perspective on similarity;

namely, two nodes of two different graphs are considered 'similar' if their neighboring nodes are

'similar'. This is a cyclic definition, and very naturally leads to iterative updates, in which similarity scores

between elements propagate along to neighboring elements at each time step. This chapter will explore

several recent iterative approaches to computing node similarity scores between graphs, including several

developed for specific applications.

4.1 Hub and authority scoring

An influential iterative approach to web searching was put forth by Kleinberg in [K99]. The author was mo-

tivated by the observation that traditional text-based search engines, which often naively rank search results

via a function of the number of times a given query term appears in a page, routinely fail to find the most

relevant pages. For example, the URL http: //www.mit. edu might be the best response to a query on the

term 'MIT', but the text 'MIT' may only appear once or not at all in the page.

A key insight is that the information content of the web is not simply the sum of the information within

its individual webpages, but also includes the relationships between pages, i.e. the Web's link structure.

Specifically, a link from page A to page B indicates that page A endorses page B in some way, or, as Kleinberg

phrases it, A confers authority on B.

Kleinberg observes two different categories of results that might be relevant to a given query. The first

category are pages he calls 'hubs', which point to many good sources of information on the query. A sec-

ond category of relevent pages are the 'authorities', which contain detailed information regarding the query.

Depending upon the objective of the user, one or both of these categories of results might be of interest.
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Kleinberg then observes a cyclic relationship between these two categories of pages; a good hub is one that

points to many good authorities, and a good authority is one that is pointed to by many good hubs.

This idea forms the core of Kleinberg's Hypertext Induced Topic Selection (HITS) search engine. First,

a given query o- is fed into a text-based search engine to return a set of webpages VR,. The link structure

between elements of VR, is mapped, yielding a graph GR, = G(VR,, ER). Next, GR, is expanded to a larger

graph Gs, = G(Vs,, Es,) by adding a fixed number of in- and out-neighbors of each node in VR,. Gs, is now

the candidate graph whose pages will be scored and returned as the results of the search. These graphs are

depicted in Figure 4.1. Denote the node-node adjacency matrix of Gs, by qis,.

404Gs,

G,

Figure 4.1: The search result graph GR, and the candidate graph Gs,-

Each page n in Vs, is scored with a pair of numbers (hn, an), where hn is the hub score of page n and a, is

its authority score. As just discussed, these scores can be computed in a mutually reinforcing way. Kleinberg

defines the HITS update procedure as follows: at stage k of the iteration,

an (k) <- hi(k - 1)
i:(i,n)EEs,

hn (k) <-- ai(k - 1)
i:(n,i)EEs,

That is, the authority score of a node n at iteration k is the sum of the hub scores at iteration k - 1 of the

nodes that 'feed into' node n. Similarly, the hub score of node n at iteration k is the sum of the authority

'This is not the precise update formulated in [K99]. There, the author first computes a,(k) as defined here, then computes h,(k) using
the most recent value a,(k) instead of a,(k - 1) (i.e., a sequential rather than a simultaneous update). The results returned by these two
approaches are identical - in Section 5.2.3, we will prove this statement in another context.
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scores at iteration k - I of the nodes that n 'feeds into'. Let us represent the set of hub scores at iteration k as

a vector hk and the authority scores as a vector ak, and normalize hk and ak by some convenient vector norm

at each stage (e.g., by the 2-norm of the vector, so that the sum of the squares of the entries of each vector

equals 1). We can rewrite this update in matrix notation as follows:

h 0 As, h h
<--- = M

a YiT 0 a a
k - , - k-I - k-1

where the normalization at each stage is necessary, but not explicitly indicated. Will this procedure converge?

Observe that, since this matrix M is nonnegative and symmetric, all of its eigenvalues are real, and in par-

ticular p(M) is one of the eigenvalues. This iteration is guaranteed to converge to a single limit as long as

-p(M) is not also an eigenvalue, an assumption that Kleinberg makes but which is not always valid in practice

(see Section 4.2 for a discussion of this issue). Kleinberg also assumes that p(M) has multiplicity 1, another

assumption which is not always valid, and which has consequences for the magnitudes of the final scores.

We will have much more to say on convergence issues in the following sections. An example of applying this

iterative approach to a graph that can be clearly partitioned into hubs and authorities is given below in Figure

4.2.

3

2 nodes hub score authority score
1 0.374 0
2 0.242 0

1 3 0.467 0
4 0 0.365

6 5 0 0.467
6 0 0.365
7 0 0.308

5

4

Figure 4.2: A graph and its hub and authority scores.

Certainly, the hub and authority score results for the graph in Figure 4.2 finds the correct partitioning into

'hub-like' and 'authority-like' nodes. We also see that the node with the highest hub score points to the most

nodes, and the node that is pointed to most has the highest authority score.
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Given sets of hub and authority scores for all of the pages in Vs,, the HITS algorithm then returns the top

scorers in each of the hub and authority categories. This method performs quite well, finding good pages that

text-based search engines often miss, and allowing a user to choose which type of page is most relevant to

him or her. For more details on implementation and performance results, refer to [K99]. For an interesting

overview of the HITS approach and how it compares with other popular search engines, see [R04].

4.2 Blondel, Van Dooren, et.al, 2004

The work of Blondel, van Dooren et al. in [BVD04] is an interesting generalization of Kleinberg's approach.

The authors begin with the recognition that, in essence, Kleinberg's algorithm compares each node in the

candidate graph Gs, to the two nodes of a smaller hub-authority graph GHA, depicted below in Figure 4.3.

The hub and authority scores of each node in Gs, are similarity measures between each element in Vs, and

the hub and authority elements in VHA, respectively.

hub authority

Figure 4.3: The hub-authority graph HA.

For a node i in Gs, and a node j in the hub-authority graph GHA, let us denote their similarity by xij and

define it as follows (again, with an implicit normalization at each iteration):

xij (k) <- E xrs(k - 1) + Y, xrs(k - 1) (4.1)
r: (r, i)E Es ,S: (s,j)EEHA r: (i, r)EES ,,S: (j, s)E EHA

Observe that, since there are no incoming edges to node h in GHA, and no outgoing edges from node a,

then for j E {h, a), we can simplify this equation for each of the two values of j:

Xih(k) <-- xrak - 1)
r:(i,r)EEs,

Xia(k) <- , Xr(k - 1)
r:(rc)EEs,

which is precisely Kleinberg's update.
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However, Eq. 4.1 is interesting on its own, for it gives us an update equation for a similarity measure

between any two nodes in any two graphs, in which a node's score is updated in repsonse to the scores of its

neighbors. In [BVD04], the authors present Eq. 4.1 as the update for two arbitrary graphs, GA and GB:

If we combine the scores xi; into a IVAI x IVBI score matrix X, and if we use A and D to denote the node-

node adjacency matrices of GA and GB, respectively, then this update at iteration k can be rewritten in matrix

notation as follows:

Xk <_- BXk I A T 
+ BTXk_ (4.2)

A third representation, which will be most useful, is obtained by applying the vec(-) operation to Eq. 4.2,

which concatenates the columns of a matrix into one column vector. If we denote vec(Xk) = xk, and recall

the properties of this operation from Chapter 2, we obtain:

Xk+1 <-- ( B + T g BT )Xk= MXk

With this representation, determining the score vector x to which this procedure converges is a matrix

iteration problem for which many tools exist. We will now state an important general result, the proof of

which is based on the proof of Theorem 2 in [BVD04]:

Theorem 4.2.1. Let M be a symmetric, non-negative matrix with Perron root p. Let xo > 0 and define:

Mxk
Xk+1 

x -1 Mxk 112

When -p is not an eigenvalue of M, then the sequence xk converges to Ixo/I Ixo 112, where 1 is the

orthogonal projector onto the invariant subspace associated with p. If -p is an eigenvalue of M, then the odd

and even subsequences X2k and X2k+1 converge to the following limits:

fIx0
Xeven = | fix 0 112

H MxO
Xodd = 1| H Mx0 112
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where H is the orthogonal projector onto the sum of the invariant subspaces associated with p and -p.

Proof Let V, be a matrix whose columns are orthonormal vectors that form a basis for the invariant subspace

of M associated with eigenvalue p, and let V_, be similarly defined for the invariant subspace associated with

the eigenvalue -p. (If -p is not an eigenvalue of M, then Vp is zero). Let V, be an orthonormal matrix

whose columns form a basis for the invariant subspace associated with the rest of the spectrum of M. Then

MVp = pVp, MVp = -pV_, and MV, = V.M. for some square matrix M. whose largest eigenvalue has

magnitude p < p. Then we can decompose M using its eigenvalues and eigenvectors as:

M =pVPV - pV VT + VMIV,

Since V, V_, and V. have mutually orthogonal columns,

m 2  (2yVp +2V(VV_,)+ VMM2V p211 + VMJ2V,

Clearly then, for any even power of M,

M2k _ 2kri + VM,2k VT

Now, we will show that HxO > 0. First, observe that H is the projector onto the invariant subspace

associated with the eigenvalue p 2 of the matrix M 2 . Since M is symmetric and nonnegative, so is M 2 . Thus,

there exists a nonnegative basis for the invariant subspace associated with the eigenvalue p 2 of M 2, and

therefore a nonnegative projector H. Thus, for a nonnegative H and a positive xo, Hxo > 0. Since H and H

project onto the same subspace in R", Hxo = Hxo, which means that FxO > 0. Similarly, HMxO > 0; since

M is nonnegative, MxO must be strictly greater than zero and the same argument applies.

Now, observe that the maximum amplification that the matrix VmMVT can exert on a vector is P < p.
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Thus, if we multiply M 2k by xO and normalize, the result is:

(p2k + VMykV o _ (n + I um2kVT )O
X 2k

(p2k + V" M2k , x 0 112 | |I (+ P V. M2k)VT X 112

[1x 0= + o(p/p)2k
1 fIxo 112

Taking the limit as k -> oo:

Xeven = lim X + O(p)2k I-ix 0
k-oo | fix0 112 |1 IXO 112

We obtain a similar result for the odd limit:

X2k+1 =o +OM 2k+1

11 flMxO 112

Therefore,

. [IMx0  2k H Mx0
Xodd = lim + Q(p/p)k+I = __________

k-oo |1 MxO 112 11 flMxo 112

Note that if p has multiplicity 1, and if -p is not an eigenvalue, then the choice of initialization of xO is

irrelevent; the process will converge to the unique dominant eigenvector of M. If, however, p is associated

with more than one eigenvector or -p is an eigenvalue, the choice of initial condition is critical to the final

score. Bearing these observations in mind, the authors of [BVDO4] choose to initialize xO to the all-ones

vector, and choose their final score to be the limit of the even iterations. An example of the application of this

similarity scoring method is given in Figure 4.4 and Table 4.1

4.3 Application-based approaches

Several other application-oriented algorithms emerged at roughly the same time as [BVDO4] that utilize the

idea of recursively computing node similarity scores based on the scores of neighboring nodes.
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3

1 2 3 1 2

p - 4

5

6

Figure 4.4: Two directed graphs.

nodes 1 2 3
1 0.211 0 0
2 0.426 0.336 0
3 0.255 0.096 0
4 0.171 0.406 0.271
5 0 0.271 0.466
6 0 0 0.171

Table 4.1: [BVDO4] node similarity scores for the graphs in Figure 4.4.

4.3.1 Similarity flooding

The goal of the similarity flooding algorithm presented by Melnik, Garcia-Molina and Rahm in [MGMR02]

is the matching of two different database structures, DA and DB. For example, if one were combining two

personnel databases from two merging companies, one might want to be able to match the field 'Emp. Name'

in one database with the field 'Name' in the second. To perform this matching, the authors take an approach

that is similar to Kleinberg's hub-authority method. First, a preliminary similarity score between the text

labels associated with each element in the database is computed according to some predefined function,

without considering the database structure. Elements in a database might be any kind of data structure,

including tables or individual fields. Next, each database is transformed into a representative graph (GA and

GB, respectively) with labels on the nodes (database elements) and edges (relationships between elements).

A particular method of performing this transformation is not defined, but examples are given in which node

P points to node Q with edge label 'column' if Q is a daughter column in table P.

Next, some heuristically-derived weight function is defined: w(a 1 ,a 2 ), (b1 , b 2)) for (a,, a 2 ) E EA and

(b1 , b 2) c EB. This function compares edges drawn from GA and GB, respectively, and assigns a 'matching'
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value. The update procedure of [MGMR02] is then:

xij +- xij + E w((r, i), (s, j))xrs + X w((r, i), (s, j))Xrs
r:(r,i)EEB,s:(s,j)EEA r:(i,r)EEB,s:(js)EEA

with normalization at each stage by the maximum xij. Once a matrix of similarity scores is obtained, the au-

thors describe several filters that can be applied to this data to obtain a one-to-one mapping between elements

in each database, including solving a stable marriage problem or simply maximizing the sum of matched

scores. We will discuss matching issues in more detail in Chapter 6.

Because this approach has several arbitrary functions embedded inside it, its properties are not particularly

easy to analyze, but the authors report positive results in matching performance as compared to a benchmark

of human matchers.

4.3.2 SimRank

The SimRank algorithm, described by Jeh and Widom in [JWO2], computes the similarities between pairs of

nodes within a single graph; that is, the algorithm computes a graph's self-similarity. This kind of information

has applications in recommender systems, where prior similar purchases on the parts of two consumers leads

one to infer the consumers' similarity. In light of this motivation, [JWO2] focuses on the influence of incoming

edges to each node in its similarity score. This update procedure is:

xi Xrs
r:(r,i)EEB,s: (s,j)EEA

The authors also describe variations on their approach, including using non-linear functions within the

update and, citing [K99], defining a separate score that counts the influence of outgoing edges as well.

4.3.3 Heymans and Singh, 2003

As evidence of the broad applicability of iterative methods, in [HSO3], Heymans and Singh present an inter-

esting challenge: comparing a set of graphs, each of which represent enzyme interactions within a particular

species, to determine the evolutionary relationship between the species. The evolutionary relationship they
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seek to construct is a phylogenetic tree, analogous to a family tree in the sense that every branch of the tree

represents descendents from a common ancester. To do this, the enzyme graphs of many species are compared

pairwise, each yielding a node similarity matrix. As described in Chapter 1, enzyme graphs are a particular

mapping of metabolic networks; enzymes serve as nodes in the graph, with an edge existing from enzyme eI

to enzyme e 2 if el catalyzes a reaction whose product is the substrate for e2. The pairwise similarity matrices

are computed, then used to compute a distance between the two species. If N species are compared this

way, the result is an N x N matrix of distances which can then be fed into a software program for computing

phylogenetic trees that maximizes certain performance objectives.

To initialize their method, the authors compare the enzymes represented by each node using their four-

digit Enzyme Commission numbers, which categorize the type of reaction that the enzyme catalyzes, yielding

a number between 0 and 1. What is perhaps most interesting about the method of [HSO3] are the terms used

in the update. Not only does their update include the positive flow of similarity from neighboring nodes, but

also includes positive flows from nodes that are not connected, as well as penalizing flows from neighbors

that are mismatched. The simplest way to see this is to examine their update equation.

Define IB to be the matrix of all ones with the same dimension as B. Removing many constants, extra-

neous details and scaling terms, a stripped-down version of their update is as follows, accompanied by text

describing the contributions to a given similarity score xi:

X <- BXYT + BT XA [BVD04] terms, summing the scores of
pairs (p, q) in which (p, j) e EB, (q, i) E

EA or (j, p) E EB, (i, q) E EA.

+(B~ _ B)X(IA - ) T 
+ (IB - B)TX(IA - ) summing the scores of pairs (p, q) in

which (p, j) Z EB, (q, i) % EA or (j, p) e
EB, (i, q) Z EA.

-BX(IA - ) T 
- B T X(IA - ) subtracting the scores of pairs (p, q) in

which (p, j) E EB, (q, i) 1 EA or (j, p) E
EB, (i, q) 9 EA.

-(IB - - (IB - B)TXA subtracting the scores of pairs (p, q) in
which (p, j) % EB, (q, i) E EA or (j, p) e
EB, (i, q) E EA.

The justification for the use of the extra terms in this update is that, in an evolutionary setting, the absence

of connections between nodes can be as meaningful as the presence of such connections. Additionally, the

more connections that one enzyme graph has that the other doesn't indicates that the two have probably not
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descended from the same species recently, and thus should reduce their similarity.

The inclusion of the subtracted terms means that we can end up with a negative similarity score between

two nodes. When a vectorization is applied to the matrix X, transforming it to the column vector x, the

resulting expression is:

x <- [A{ D D+ (S) D T + (JA _ A) ( (IB ~ B) + (JA _ A) ( (IB _ B)

-(IA - A)& B -A(IA - ®& BT -- A ( (IB ~ 3) - AT ( (IB - 3)T ]X

This update matrix is symmetric, so its eigenvalues are purely real. Thus, the normalized even and odd

iterations will each converge to a real vector of scores.

The authors apply this approach to several sets of data from varying numbers of species, and report

positive results in comparing their phylogenetic trees with those that are already well understood. Some

numerical examples of this similarity measure are given in Section 5.3.
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Chapter 5

Coupled node-edge scoring

A LL OF the iterative similarity methods in the previous chapter return a set of node similarity scores,

without considering the possibility of also scoring the similarity of edges. This might be a useful

notion in graphs where the relationships represented by the edges are also important. Using the iterative

method framework, in which two graph elements are similar if their neighborhoods are similar, we can

immediate suggest one possible way to constructing an edge score: an edge in GB is like an edge in GA if

their source and terminal nodes are similar, respectively.

This definition of edge similarity introduces a coupling between edge scores and node scores, which could

be interesting. Thus, our approach will be to update the edge scores via the node scores and vice versa.

5.1 Constructing a coupled node-edge score update

First, arbitrarily number the edges and nodes of two graphs, GA and GB. Denote the number of nodes and

edges in GA by n and m, respectively, and the number of nodes and edges in GB by q and p, respectively. Let

sA(i) denote the source node of edge i in graph GA, and let tA (i) denote the terminal node of edge i in graph

GA (similarly for GB). Also, let x;j denote the node score between node i in GB and node j in GA, and yij the

edge score between edge i in GB and edge j in GA. An update equation for node and edge scores takes the

following form:

y;j(k) <- xs(i)s(j)(k - 1) + xt(i)t(j)(k - 1) (5.1)

xij(k) <- > ykl(k - 1) + E ykl(k - 1) (5.2)
t(k)=i e:Y)=j s(k)=i,s()=j

These scores can be assembled into matrices: Y = {yjj} and X = {xj;}. A normalization at each stage by
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the Frobenius norm (or any appropriate matrix norm) is required, but will not be explicitly represented when

discussing the update unless it is relevant to the work at hand.

To begin to work with such a definition, both the nodes and edges of each graph must be identified and

enumerated. Using the construction of edge-source matrices As and edge-terminus matrices AT of a graph

GA as defined in Section 2.3, the update process represented in Eqs. 5.1 and 5.2 can be written concisely in

the following matrix form:

Yk <- BsXk-_I As + B'IXk-1 AT

Xk <- BsYk- AI + BTYk-jA T

Following the development in [BVD04] that was discussed in Section 4.2, we can vectorize these equa-

tions. If we denote y = vec(Y) and x = vec(X), the update becomes:

Yk (AsT 0 BsT + AT e B)xk1 Gxk--I

Xk +- (As ® Bs + AT 0 BT)ykI G T yk_

Concatenating these vectors yields a single matrix equation:

x 0 G T X x
<- i M (5.3)

-Y k - -- y k-1 -Y- k-1

5.2 Properties of the coupled model

In this section, we will explore some of the interesting features of this coupled model.

5.2.1 Invariance to even/odd iteration

Observe that if aT bT Iis a right eigenvector of M as defined in Eq. 5.3 associated with the eigenvalue A,
tfT

then -_aT b T Iis an eigenvector of M associated with the eigenvalue -A. Thus, eigenvalues of M always
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have their complement as an eigenvalue.

As was stated in Theorem 4.2, this implies that there will exist different limits for the odd and even

subsequences of sk. To see what might happen, observe that if XT YT] is an eigenvector of M with

eigenvalue 1, then the following equation holds:

0 GT ax bx

G 0 -by- ay-

Clearly, iterating this procedure will cause the score vector s to jump back and forth between two different

values. However, recall that x and y are two separate sets of scores that we concatenated into a single vector

for convenience. Thus, it is irrelevent to us if the constants that multiply each of these score sets changes at

every iteration. Since we can normalize x and y however we'd like, the normalized even and odd limits of

this process are essentially the same. In fact, if p denotes the Perron root of M, the relationship between the

two is precisely:

x apx
Seven , Sodd -j

y yp

Without loss of generality, assume that p is a unique eigenvalue (which implies that its complement is

also). The consequence of this assumption is that the invariant subspace associated with p has dimension

1 (i.e., it is the span of the unique right eigenvector of M associated with eigenvalue p). If this assumption

does not hold and the invariant subspace associated with p has higher dimension, it simply means carrying

extra terms through the computation, but the result is identical. Denote the unit length right eigenvector of M

associated with eigenvalue p by aT bT . Note that this implies that:

0 GT a GT b pa

[G 0 b] Ga [pbj

As presented in Theorem 4.2, the limit seven is

fls(0)
Seven = 11 Hs(O) 112
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where rl is a projector onto the invariant subspace associated with the eigenvalues ±p. Thus, 11 can be written

as:

a -a

b = a T bT + -a bT

If SO = KT aGxT], then:

a -a T

lso = aT bT + H -a T bT xOT aGxOT

a(aT + abTG)xo - a(-aT + abT G)xo

b(aT + abTG)xo + b(-a T + abTG)xo

2(aaT)xo

2a(abbTG)xo]

2(aaT)xo y

2ap(ba )xo £5

In the odd limit,

FIMs(O)
Sodd s 1 IMs(O) 112

Following a similar set of calculations, we find that

2ap2(aaT )xO ap 2
HMsO =

2p(baT)xo] i5

Now, normalizing as prescribed:
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Seven [T]
] Ii [T ST 112

apy 1 apy 1
S~d~1~]112 lIL T I (T 12'S5d1 2 T I T ||2Y 

app6a~II apj I - 5 111

We can also observe this property by using the block off-diagonal structure to decouple the computations

of Xk and yk. Initializing x and y to xo and yo, respectively, we can write explicit formulas for xk and yk:

(GTG)k/2xo k even
xk =

(GTG)(k-1)/ 2GTyo k odd

(GG T)k/ 2
yo k even

Yk =

(GGT)(k- 1 )/2Gxo k odd

Defining yo = aGxo, where a > 0 is some constant:

(GT G)(k-2)/2GT Gxo = (GT G)(k-2)/2GT 1yo k even
Xk

(GT G)(k- 1)/ 2GTyo k odd

(GGT)k/ 2yo k even
y(k) =

(GGT)(k-i)/2Gxo = (GG T)(k-l)/ 2 1yo k odda

It is important here to recall that each step in the iteration is normalized by some norm of the score vector.

Thus, the multiplication by 1 in the even iterations of x and the odd iterations of y will be normalized away

and have no bearing on the final score.

Now, recall Theorem 4.2, which describes the limiting behavior of this kind of matrix iteration. Since

GTG is positive semi-definite, its eigenvalues are all nonnegative. Thus, it is not possible for -p(GTG) to

be an eigenvalue of GTG and so the even and odd iterations of the computation of x converge to the same
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value, namely the orthogonal projection of GTyo onto the invariant subspace associated with the Perron root

p(GTG). An analogous result holds for the iterations of y, since GGT is also positive semi-definite.

5.2.2 Choice of initial condition

Interestingly, if xo is chosen to be the all-ones vector, then GxO = 2yo, where yo is also an all-ones vector. To

see this, set xO to be the nq x I vector of ones, f. The product GxO is an mp x 1 column vector containing

the row sums of G. Since (Gxo)T = xJG', which is a vector containing the column sums of GT. Recall that

GT = As o Bs + AT o BT.

Now we will argue that each column sum of GT is equal to 2. To see this, examine the first column of

As ® Bs. The first column of As contains exactly one 1, as does the first column of Bs - thus, there will be a

single '' in the first column of As 9 Bs. Since this is true for any column of As 9 Bs, we see that the column

sums of this matrix are all 1. An identical argument applies to AT O BT. Thus, each column sum in GT is

equal to 2, which means that every row sum in G is also equal to 2 and G I = 2f, where any occurrence of I

has the appropriate dimensions.

Recall that the all-ones vector was the initial condition used in the iteration of [BVD04]; thus, we see that

it is also a natural choice for this coupled method. It also has some intuitive merit, since there is no reason a

priori to expect that any node or edge in one graph is more or less like any node or edge in another graph.

5.2.3 Sequential updating

The iteration that we've been working with has updated the node and edge scores simultaneously. Now,

consider a sequential update that could be defined as:

Yk = Gxk 1 (5.4)

Xk = G T 
yk (5.5)

or as:
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Xk = GT ykI

Yk = Gxk

Will this procedure give us the same result as the simultaneous update? The answer is yes, and can be

easily shown. Let us consider the first kind of sequential update represented in Eqs. 5.4 and 5.5. Then a

matrix representation for this update is:

x 0 GT X x

= N

- k - - - - k-I - k-I

Observe that if aT bT is a right eigenvector of M (as defined in the simultaneous update) associated
[ 1T

with eigenvalue A, then [aT bT is a right eigenvector of N associated with eigenvalue A2 . To see this:

0[ GT fa/A G Tb la = /A2 [j
0 GG T b -GG Tb- A2b- b

Thus, if the simultaneous update converges to scores x and y, the sequential update will converge to the

same set of scores.

5.2.4 Expanding the decoupled updates

We can take the decoupling described in Section 5.2.1 one step further by applying the definition of G. First,

we'll focus on the node similarity vector x.

xk <- (GT G)xk-1

= (As 0 Bs +AT® BT)(As Bs +AT 0 BT) fXk_

= (AsAI T BsBT + ATAs T BTBsT + AsAI sBsBT + ATA T BTB )x

(A OB +,lT DT + DAs o DBs + DAT o DBT) xk-1
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where A, DA, and DA, are defined in Section 2.3. Reshaping the vector x into its matrix form, X, we obtain:

Xk +- BXkI$T + BTXA_,_qT + DBs XkI DAS + DB7 Xk-1DAT.

Explaining this update is not difficult. First, denote the out-degree of node i by 0(i) and the in-degree

by I(i). Then, to obtain a new xij, multiply the existing xij by the quantity 0(i)O(j) + I(i)I(j), then add

the scores of the neighboring nodes. Interestingly, this is not too different from the approach taken by the

similarity flooding algorithm put forth in [MGMR02]. Recall from Section 4.3.1 that the update in this paper

is:

Xij *- Xij + Y, w((r, i), (s, j))Xrs + w((r, i), (s, j))Xrs
r:(r,i)EEB,s:(s,j)EEA r:(i,r)EEB,s:(j,s)EEA

In our approach, there is a multiplicative term before the xij and an identity weighting function.

Also, recall that the iteration in [BVD04] is:

Xk (-- BXk-1Y T 
+ BXk-1AT

Thus, our node calculation differs from that in [BVD04] by the inclusion of additional diagonal terms that

serve to amplify the scores of nodes that are highly connected.

We can also expand the expression for the edge similarity vector y:

Yk - (GGT )yk-I

S(AsI 0 BsI + AT BT )(As 0 Bs + AT 0 BT)YkI

= (AT As (9B TBs + T AT D BsTBT + AT As ®9BIBs +A T AT e BT Br Yk-1

Recall the properties of these matrices, given in Section 2.3. In matrix form:

Yk +- BTiBs Yk-AsIAT + Bs BrYk-jArAs + Bs Bs YkiAsIAs + BTIBTYkIAr AT
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5.2.5 Interpreting node similarity scores

Recall the definition of a product graph given in Section 3.3. The product graph GAB between two graphs GA

and GB has node set VA x VB with an edge ((a, b), (c, d)) existing if and only if (a, c) is an edge of GA and

(b, d) is an edge of GB. It is not difficult to see that the adjacency matrix of GAB will be I ® D.

In the coupled score model, node similarity scores are updated as follows:

Xk_1 +- (A 0 D + AlT DT + DA, 0 DBs + DAT 0 DBT) xk (5.6)

In light of this observation, we can interpret the update matrix in Eq. 5.6 as an undirected adjacency

matrix of the product graph of GA and GB, with the diagonal terms contributing multiple self-loops at every

non-singleton product node. Singleton nodes ij in this product graph will arise when node i in GA has no

outgoing edges and node j in GB has no incoming edges, or vice versa. Thus, we can regard our node

similarity score update procedure as the propagation of scores along the edges of this product graph at each

time step, with each node summing the scores of its neighbors.

5.2.6 Self-similarity

Often, one is interested in the similarity scores between a given graph and itself. We'll refer to these scores

as the self-similarity of a graph. Given positive semi-definite initial conditions Xo and Yo, the node and edge

self-similarity matrices of a graph are also positive semi-definite. To see this, we can use the decoupled

description of these updates given in the previous section. The node self-similarity update for a graph GA is:

Xk <_- iIXk_ I + glTk X { + DA, Xk1DAs + DA, Xk-IDA,

If X0 is positive semi-definite, then it can be decomposed into a product Xo = WWT where W is non-

singular. Then for some vector v,

v TIXoJITv = VYWWTgITVT =< WTLITv, WTYITV >> 0
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Similarly, vT]{TXoJ(v > 0. Thus, the node score update is a scaled sum of two positive semi-definite ma-

trices, which is also positive semi-definite. A parallel result holds for edge self-similarity scores. Observe

that the all-ones intial conditions, Xo = IT and Yo = I T are both positive semi-definite. We will use these

results in Chapter 6 in our discussion of identifying isomorphic graphs.

5.2.7 Paths and cycles

We've mostly focused on adjacency matrices with entries that are '0' or '1'; either an edge exists between

two nodes, or it does not. It's entirely possible to assign weights to edges by using values in the interval [0, 1].

As one example of this, consider the graph with a single weighted edge depicted in Figure 5.1; the nodes of

this graph are labeled '1' through '3', and the edge weights are given as shown.

2

1 1

1 3

w

Figure 5.1: A graph with weighted edges.

When w = 0, this is simply a path graph on three nodes. When w = 1, this is a cycle graph. It is interesting

to observe how the node self-similarity scores change as w is varied from 0 to 1 and beyond. This result is

depicted in Figure 5.2, where each line depicts one of the entries in the self-similarity matrix.

The simple nature of this graph makes it easy to compute the trajectory of similarity scores as w is varied

by computing the dominant eigenvector(s) of GTG. For w = 1, the dominant eigenvalue is associated with

three eigenvectors, v1 , v2 and v3:

Vl = 1 0 0 0 1 0 0 0 1

V2 = 0 1 0 0 0 1 1 0 0

V3 = 0 0 1 1 0 0 0 1 0]

The similarity score is a result of the projection of the all-ones vector onto the subspace that they span,
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Figure 5.2: Node self-similarity scores for the graph of Figure 5.1 as afunction of the weight w.

yielding the following:

Xx i 1 1

For w # 1, the matrix has a single dominant eigenvector, and thus the node similarity score matrix, X will

be as follows:

1 0 0

X cc 0 1-2w2
+ V9-4w

2
+4w 0

2

0 0 1

For w 0, the node scores are:

1 0 0

Xx 0 2 0

0 0 1
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confirming the result given in Figure 5.2. As w -+ oo, this matrix becomes:

1 0 0

X c 0 0 0

0 0 1

Interestingly, this is the same self-similarity matrix obtained for the graph depicted in Figure 5.3, sug-

gesting that the as w -+ oo, the other edges cease to be relevant.

2

1 3

Figure 5.3: The self similarity scores of this graph are the same as those for the graph in Figure 5.1 in the limit as
W -4 00.

Note that the method used to compute the node similarity scores here is critical; for w close to 1, the

second largest eigenvalue of the matrix GTG approaches the dominant eigenvalue, and thus the iteration will

take infinitely long to converge.

5.2.8 Similarity scores of projective planes

One interesting class of graphs is the set that represent finite projective planes. A finite projective plane of

order n is defined as a set of n2 + n + I points and n 2 + n + 1 lines with the following incidence properties

[L91]:

1. Every line contains n + 1 points.

2. Every point is on n + I lines.

3. Any two distinct lines intersect at exactly one point.

4. Any two distinct points lie on exactly one line.

There are two ways to represent a projective plane as a graph. First, we might use the points and lines of

the projective plane to draw vertices and edges, respectively. An example of this construction is given below
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in Figure 5.4 for the Fano plane, the unique projective plane of order 2..

Figure 5.4: One representation of the Fano plane, a projective plane of order 2.

A second way of representing a projective plane of order n is as a graph in which one set of n 2 + n + I

vertices represents points and a second equally-sized set represents lines. An edge then connects the vertices

representing point i and point j if i is on line j. These graphs are referred to as the point-line incidence graphs

of the projective plane. Observe that this graph is an example of a bipartite graph, in which the node set can

be partitioned into two subsets A and B such that every edge joins a node in A and a node in B.

Figure 5.5: The point-line incidence representation of the Fano plane.

The point-line incidence graph of a projective plane is a connected, undirected, n + 1-regular, bipartite

graph. We can now show that the similarity matrix between any pair of graphs, each of which have those four

properties, will have identical node and edge similarity matrices.

Let GA be a r-regular, connected, undirected bipartite graph on n nodes, which each node partition con-

taining n/2 nodes. Similarly, let GB be an s-regular undirected bipartite graph on m nodes, also equally

55



partitioned. Then without loss of generality, we can assume that the nodes are labeled such that the adjacency

matrix of GA takes the following form:

0 A]
A=

A2  0o

It is easy to see then, that if v = v 2 IT is an eigenvector of A with eigenvalue A, then w = [V2 T

is an eigenvector with eigenvalue -A. Also, since A has constant row sum r, its Perron root p(A) is equal to

IJAIk = r, the eigenvector associated with p(A) r is I ... I I ... I and the eigenvector associated

with -p(A)= -r is I ... 1 -1 ... _1

Also, because GA is connected and undirected, it is irreducible. Perron-Frobenius theory tells us that

a nonnegative, irreducible matrix has its Perron root as an eigenvalue with multiplicity 1. Thus, we can

conclude that r and -r are eigenvalues of A and each have multiplicity 1. In an analogous way, we can

conclude that B has simple eigenvalues s and -s.

Now, let us consider the matrix M upon which our update is based. Recall that:

M=AoB+AT g&BT +Ds 0 Ds+D' 9D'

For regular, undirected graphs:

A = AT

Ds = D' = rI,

B = BT

Ds = Dt = sIm
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Thus, M = 2(A & B + rsInm). We know that if Ax = yx and By = 5y, then A 0 B(x ® y) = y6(x 0 y). Thus,

we can see that the dominant eigenvalue of M will be 2rs, and will have two associated eigenvectors:

I .. I I .. I and I .. 1 -1 .. -1 ].

Observe that the subspace spanned by the dominant eigenvectors is independent of the exact connectivity

structure of GA and GB - it is the same subspace for any pair of undirected, regular, bipartite graphs. Thus,

every self-similarity and cross-similarity matrix for graphs of projective planes will always be identical,

regardless of the initial condition. Also observe that the projection of the all-ones vector onto these dominant

eigenvectors will yield the following:

1 - - 1 1 1 --- 1] + -1

-1

= 2(n2 +n+ 1)

For the all-ones initial condition, every similarity score will be identical.

5.3 Examples

It's worthwhile to compare four different methods of computing node similarity, each with some implicitly

associated normalizing step. The first is the method reported in [BVDO4], in which A7 is the node-node

adjacency matrix of graph GA, and the process is iterated an even number of times:

XVDB <- BXVDBA T
VDB
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The second is our coupled node-edge score method, where DA, is a diagonal matrix containing the out-

degree of each node in graph A, and DA, is a diagonal matrix containing the in-degree of each node in A:

XNE <- BXNE]AT + B XNE9 + DBsXNEDAS + DBXNEDA,

The third is a fragment of the modified iteration from [HSO3] described above that only includes the novel

positive terms, so as to maintain a purely positive score:

XHS+ <_ BXHy+Y T 
+ fBT

XH3+Y{ + (IB - B)XHS+(IA ~ + T ('B - B) T 
XH+(IA -

The fourth is the entire modified [HSO3 update:

Xqs <__ i + XgSsY + (IB - B)Xgs(IA - + (IB - s B) TXS(IA ~ 1)

-BXtIs (A - A)T- BTXIS (A - A) - (IB - B)XgS A
T 

- (l - B)TXgS A

We will apply each of these methods to the pair of graphs first presented in Chapter 4 in Figure 4.4

(reprinted here as Figure 5.6, below).

1 2 3

a b

d

1 2 b

a

C e
e

5

f

6

3

4

Figure 5.6: Two directed graphs.

Intuitively, we might like to see the following correspondences show up in some way:

1. Node I e GA is like node 1 e GB-

2. Node I e GA is like node 3 e GB-
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3. Node 2 c GA is like node 2 e GB.

4. Node 2 e GA is like node 5 E GB-

5. Node 3 c GA is like node 6 E GB.

nodes 1 2 3
1 0.211 0 0
2 0.426 0.336 0
3 0.255 0.096 0
4 0.171 0.406 0.271
5 0 0.271 0.466
6 0 0 0.171

Table 5.1: XVDB for the graphs in Figure 5.6.

With the [BVDO4] score given in Table 5.1, we see that the Correspondences 1 and 3 are represented, but

the rest are difficult to distinguish strongly.

nodes 1 2 3 edges a b
1 0.124 0 0 a 0.265 0
2 0.348 0.445 0 b 0.426 0.297
3 0.157 0.054 0 c 0.320 0.389
4 0.094 0.563 0.193 d 0.336 0.115
5 0 0.338 0.340 e 0.202 0.445
6 0 0 0.094 f 0 0.202

Table 5.2: XNE and YNE for the graphs of Figure 5.6.

Referring to Table 5.3, we see that zeros appear in the same places for XNE and XVDB, an observation

which is true in general. To see this, first recall that the two updates are the same except for the addition of

diagonal terms in the coupled model which serve to magnify the scores of the more highly connected nodes.

If [XNEIij = 0, then the contribution of these diagonal terms is zero, and the constraints for the [BVD04]

update and the coupled model are the same.

Though zeros are located in the same positions, observe that the relative magnitudes of any two scores

within each are not necessarily the same between the two methods.

For the scores XH3+ in Table 5.3, observe that we no longer have zeros in the same locations because of

the influence between nodes which are not connected. This method indicates Correspondences 1, 2 and 3,

but certainly not 4 or 5.
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nodes 1 2 3
1 0.278 0.208 0.262
2 0.237 0.195 0.223
3 0.278 0.210 0.262
4 0.222 0.195 0.239
5 0.223 0.193 0.238
6 0.262 0.209 0.278

Table 5.3: XHS,$+ for the graphs in Figure 5.6.

nodes 1 2 3
1 0.347 0 0.347
2 0.215 0 0.215
3 0.347 0 0.347
4 0.215 0 0.215
5 0.215 0 0.215
6 0.347 0 0.347

Table 5.4: Xgs for the graphs in Figure 5.6.

These scores given by Xqs in Table 5.4 are very difficult to interpret; for example, why is node 2 'unlike'

any other node? Or equally 'like' all nodes? One of the difficulties in using positive and negative influences

between nodes and edges is that cancellations arise because of symmetries in the graph, yielding scores whose

meaning is not easy to decipher.
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Chapter 6

Graph matching

Q NE COMMON TASK in graph theory applications is the identification of some kind of optimal

matching between the elements (i.e., nodes and edges) of two graphs. For example, one might

use an attributed graph to represent the dominant features of an image of an object, then compare a set of

these graphs to determine which depict the same underlying object by aligning the dominant features.

There exist a tremendous number of graph matching algorithms which vary in their specific application,

optimization criterion, accuracy, and time and memory complexity. Here, we will restrict our attention to a

particular class of techniques that arise in pattern recognition and have a natural connection to our node and

edge similarity measures.

6.1 Pattern recognition approaches

Consider the following problem: given two sets of points in a metric space, determine an optimal matching

between the elements of the two sets that minimizes some error criterion. Practically, this problem often

means matching significant features of two images, when one image is a distortion of the other.

What we seek in this kind of problem is an assignment matrix P; if set A has m elements and set B has

n > m elements, then P will be an m x n matrix of 'O's and 'l's, with a single '1' entry on each row, and no

more than one '1' entry in each column. If Pi1 = 1, then element i of A is matched to element j of B. Note

that for m = n, P is a permutation matrix.

One early work in point set pattern matching is that of Scott and Longuet-Higgins in [SLH91 ]. In their

formulation, each of the m points in set 1 and the n points in set B has a position in Euclidean space and the

distance between each pair of nodes (i, j) for i e A and j e B is known. These distances are assembled into

an m x n matrix, G, and then each entry is scaled by a Gaussian function to be monotonically decreasing in
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distance. Without loss of generality, assume m n. In this kind of pattern matching, the desired result is an

m x n assignment matrix, P, that matches the elements in the first image to the elements in the second image

so that the sum of the squared Gaussian-scaled distances is maximized; that is, P should be an assignment

matrix that maximizes the expression:

E PiGij = tr(P
T G)

ij

Instead of explicitly finding this assignment matrix, the algorithm of [SLH91] finds an approximation: the

orthogonal matrix that maximizes the sum of the squared distances between matched elements (in the case

where m < n, the term 'orthogonal' is taken to mean that the rows of the matrix are mutually orthogonal).

One can then apply a thresholding method to the orthogonal matrix to yield an assignment matrix, but this

result is not guaranteed to be optimal.

It is worth observing that this approach is an extension of the work of Umeyama in [U88], in which

the author matches two graphs with the same number of nodes by finding the orthogonal approximation to

a permutation matrix that minimizes the sum of squared differences between the two adjacency matrices.

Similarly, Almohamad and Duffuaa present a linear programming formulation in [AD93] that finds a doubly-

stochastic matrix P that minimizes the following objective, where A1 and D represent weighted node-node

adjacency matrices of two graphs with the same number of vertices:

The Hungarian algorithm is then applied to the matrix P to obtain an approximation to the optimal

permutation matrix which minimizes this objective. We will return to the Hungarian algorithm in more detail

in Section 6.2.

A different approach to point set matching by Shapiro and Brady in [SB92] uses the intra-image distance

to compare two point sets, rather than the inter-image distance. For each of two point sets I and D, with m

and n features, respectively, matrices A and B are constructed which contain the distance between features

within each point set (analogous to a graph adjacency matrix). The algorithm then computes the eigenvalues
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of each matrix, and associates with each feature a point in the vector space of the eigen-basis. If n > m, the

eigen-basis for point set B is truncated by removing the dimensions corresponding to the n -m smallest eigen-

values. Once each point for each image is represented by a vector in a vector space of the same dimension,

a feature similarity matrix is generated, with the ij'h entry defined by the Euclidean distance between the ith

vector of the first image and the }'h vector of the second. With this similarity matrix, a final step similar to

that in [SLH91] can be applied to identify a permutation matrix that minimizes the sum of squared similarity

scores.

6.2 Maximum weight matching in a bipartite graph

In both [SLH91 and [U88], the authors apply a permutation matrix approximation at the last step, then

use a thresholding method to obtain a (possibly sub-optimal) matching. This kind of approximation is not

strictly necessary, as there exists low time-complexity algorithms for computing the exact maximum weight

matching. In graph theory, this problem is known as the maximum weight bipartite graph matching problem.

We will digress a moment here to discuss this problem, and one algorithmic solution.

A weighted bipartite graph G(V, E) is one in which the nodes of V can be partitioned into two sets A

and B such that every edge joins a node in A and a node in B, and each edge e has an associated weight,

w(e). A natural example of this type of structure is the relationship between consumers and products, where

a weighted edge represents the preference of a particular consumer for a particular product. Often, it is

interesting to identify a one-to-one maximum weight matching between the nodes in A and those in B; i.e.,

select a subset S of the edges in E such that all nodes at either end of edges in S are unique, and such that

the sum of the weights of edges of E is maximized. In our consumer-product example, such a matching

would correspond to matching unique consumers to unique products so as to maximize total preference. A

numerical example is given below in Table 6.2.

One common algorithm for identifying such a maximum weight matching is the Hungarian algorithm,

described by Kuhn in 1955. The Hungarian algorithm computes in 0(n3) time a maximum weight matching

in a bipartite graph where the subsets A and B are of equal size n. Discussion of the details of the algorithm
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1 3 7
3 2 4
4 8 3

Table 6.1: If the ijth entry represents i's affinity for j, the maximum affinity matching between the rows and columns is
given by the bolfaced elements.

are too lengthy to present here; for an interesting summary of the algorithm, see Frank's short report [F04].'

6.3 Using similarity scores for matching

Let us return to the discussion of the point set matching approaches discussed in Section 6.1. Can these same

ideas be used to match abstract graphs? The difficulty in applying these approaches is that there is no natural

'distance' measure for abstract graphs; while point sets are typically embedded in a metric space, graphs are

not. However, a set of node similarity scores, which incorporates the structural information of both graphs,

might provide such a measure. Graph matching algorithms employing this measure may be particularly useful

because they allow us to compare two graphs of unequal size, a task for which few satisfactory algorithms

exist.

We will devote the rest of this chapter to exploring a simple problem: identifying the location of a sub-

graph within a larger graph. Define a graph GA by generating an n x n node-node adjacency matrix .A; each

entry in A7 is set to 'I' with a specified probability p. A set of m n vertices of GA are selected; the subgraph

induced by these m nodes is called GB. Note that GB may not be connected. Next, the node similarity matrix

for the two graphs is computed, using the coupled model described in Chapter 5. Finally, the Hungarian

algorithm is applied to the node similarity matrix to obtain a matching between the nodes of the subgraph and

nodes of the original graph that maximizes the sum of squared matched scores. Observe that, since m < n,

the application of the Hungarian algorithm requires padding the matrix of node similarity scores with extra

entries; these fictitious scores are set to a negative number. A success is counted for every match between a

subgraph node and its original identification in the larger graph. Note that this kind of accounting yields a

lower bound on the success of the matching, since better or equally good matches that don't correspond to the

1
Lovisz and Plummer's text, [LP86], is an excellent reference for many interesting problems in general graph matching tasks, beyond

the weighted bipartite case.
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original identification are marked as failures. An example of this procedure, and the correct subgraph node

identifications, are given in Figure 6.1.

GA

GB

Figure 6.1: An example of a correct matching between the nodes of a graph GA and a subgraph GB, with the correspon-
dences indicated by dashed lines.

We've applied this procedure to graphs with n = 15 and varied the size of the subgraphs and the edge

probability (connectivity) parameter p. 500 subgraphs of the specified sizes were generated for each value of

p, and the average number of successful matches was computed. The results are given below in Figure 6.2.

Matching Success for Subgraphs with Different Initial Connectivities
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Figure 6.2: Subgraph matching performance using the Hungarian method applied to the node scores from the coupled
model.
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Figure 6.2 also depicts the expected proportion of correct matches if the subgraph nodes were randomly

assigned to nodes in the original graph. The computation of this lower bound is similar in concept to the

matching hats problem in introductory probability courses. In this problem, n party guests leave their hats in

a room; after the party, the hats are randomly redistributed. To twist the problem, imagine that a thief steals

n - m of the hats, leaving m remaining. The hats are then distributed randomly to the guests. We would like

to know the expected number of correct matches between guest and hat.

Let Ii be the indicator random variable that takes the value 1 when guest i is matched correctly to her hat,

and 0 otherwise. Then

E [number of correct matches] = E Ii

The linearity of expectation, the symmetry of the guests, and the nature of indicator random variables

allow us to rewrite this expectation as:

E [ii = nP(Ii = 1)

Let us consider an intermediate stage in the hat distribution problem, in which m of the n guests are

selected to have a hat returned to them. Then we can condition the above probability on two events: that

guest i's hat is among the remaining hats, and that guest i is selected to receive a hat. Note that these

conditions are independent, and that unless both of the conditions hold, I; must be 0. Thus,

nP(I = 1) = nP(Ii = I i is selected, i's hat is among them)P(i is selected)P(i's hat is among them)

M 1! n m

Thus, our expected proportion of correct matches for a subgraph of size m is 1 /m, the constant function

of subgraph size plotted in Figure 6.2. It is encouraging that our approach is a substantial improvement over

the random case! Additionally, we can observe some interesting features of the data of Figure 6.2. First,

we see that higher initial connectivities imply lower performance. This is intuitively reasonable; with more
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edges, the probability that two nodes share characteristics (i.e., having both in- and out-edges) increases.

Also observe that the larger the subgraph, the better our ability to match its nodes correctly. Finally, note that

when the subgraph is the entire graph, our procedure performs the matching with 100% accuracy every time.

We pursue this observation further in Section 6.5.

Although we will focus on maximum weight matchings, it is possible to use the node similarity matrix to

obtain a matching using other criteria. In [MGMR02], the authors define their own node similarity measure,

then apply 'filters' to the result to obtain a desired many-to-one or one-to-one matching based on specific

problem heuristics; among these filters are the stable marriage matching criterion and the perfectionist egal-

itarian polygamy criterion.

Before we continue, we should note that Heymans and Singh in [HSO3] generated a maximum weight

bipartite matching on similarity scores as an intermediate step before generating a single matching 'score'

for the similarity of two metabolic networks (see Chapter 4 for a discussion of the [HSO3] scoring system).

We will discuss related work on performing matching in protein interaction networks in Appendix A.

6.4 Improving matching performance

It should not be surprising that the performance results presented in the previous section are not exceptionally

good, especially for the smaller subgraphs. Algorithms that are designed to give good matching performance

incorporate many heuristics, are typically application-specific, and are computationally intensive. We should

not, therefore, expect our simple iterative computation, followed by an application of the 0(n3) Hungarian

algorithm, to outperform these more directed approaches. However, it is worth considering what other pieces

of information we might be able to use to improve the performance of this approach, given the baseline of

Figure 6.2. Here, we discuss several of these improvements.

6.4.1 Penalizing for degree mismatch

If we know a priori that the graph GB is a subgraph of GA, then the in- and out-degree of node a; of GA must

be greater than or equal to the in- and out-degrees of its corresponding node b; of GB. We can incorporate

this extra information by setting the similarity score of two nodes which violate this relationship to a large
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negative number. The results of this modified approach are given in Figure 6.3, where the baseline and

penalized performance are both represented. The data in this figure indicates no perceptible performance

change when penalties are used. Apparently, the node candidates that are removed via penalties are not the

incorrect matches identified by the unpenalized maximum-weight matching.

Matching Performance for Subgraphs of Different Sizes

1 with Connectivity =0.5 and Penalties for Degree Mismatch
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Figure 6.3: Performance after including a penalty4for degree mismatch of subgraphs.

6.4.2 Incorporating local edge similarity scores

Observe that our initial approach to matching did not explicitly use the edge similarity scores; since the node

and edge scores are related by a simple equation, it is not apparent that edge scores can provide us with any

additional information. With a little bit of extra work, however, we might be able to use the edge scores in a

constructive way.

First, recall the definition of the similarity score between two nodes, i and j; xij is simply the sum of

the edge scores of the edges incident to each node. Observe that this simple definition does not reflect the

'macro' similarity of each neighborhood. To restate this, the score x;j is the sum of similarities between

adjacent edges considered pairwise, not a measurement of the global similarity of the neighborhoods.
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In matching, we might want to take into account an extra degree of local similarity. Consider the following

idea. First, compute the node-node similarity score, X1j, for nodes i of GB and node j of GA. Next, look at 0(i),

the set of all outgoing edges of i, and O(j), the set of all outgoing edges of j. Define I(i) and 1(j) analogously

for incoming edges. Next, apply the Hungarian algorithm to the submatrix of the set of edge-similarity scores,

Y, which correspond to the edges in 0(i) and 0(j), and compute the weight of the maximum-weight edge

matching, Omax. Repeat this process with the submatrix of Y corresponding to the sets of edges I(i) and

I(j), yielding a matching weight Imax. Finally, update the node-node similarity score Xj; by:

Xij <- Xij + y(Omax + Imax)

where y is referred to as the edge match multiplier. The Hungarian method can now be applied to this updated

matrix X to determine a node-matching.

Some performance results of this procedure are given below in Figure 6.4. When y = 0, the matching is

performed on the original X matrix. Interestingly, there appears to be an initial improvement in performance

when y is greater than zero, but that effect levels out as y is increased further.

Comparison of Matching Performance for Subgraphs of Different Sizes
with Connectivity = 0.5 and Different Edge Match Mutlipliers
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Figure 6.4: Performance after augmenting the node scores via local matching on the edges.
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It is also worth considering the effect of iterating this process, i.e. updating the node similarity score

matrix X as described above, then recomputing the edge similarity scores Y as follows:

Y <-- BTXAs + BT XAT

The node similarity scores X can be updated again using the Hungarian matching on local edges via the

new edge scores Y. Performance results for a repeated application of this approach are given in Figure 6.5. In

this figure, we have plotted a histogram of the number of correct node matches out of 500 trials for subgraphs

of different sizes. The average number of correctly matched nodes for each number of applications of the

'local Hungarian' and each subgraph size are drawn as vertical lines.

Histogram of Number of Subgraph Nodes Correctly Matched on 500 Trials
(Graph Size = 15 Nodes, Connectivity = 0.5)
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Figure 6.5: Repeated application of the 'local Hungarians' on the edge scores.

In Figure 6.5, we see that the matching performance improves with each application of the node score

update procedure. These performance improvements are strongest for the larger subgraphs. For the 13 node
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subgraph, we also see a change in the shape of the histogram after two applications of the 'local Hungarian'

procedure; the mode of the distribution occurs at 15 nodes correctly matched.

6.4.3 Employing node labels

Often in graph matching applications, there exists side information about the attributes of nodes and edges.

For example, in a protein interaction network, each node represents a unique and known protein. The node

matching procedures that we've discussed thus far have used only graph topology to identify similarities;

including node label information to penalize or reward certain matches may improve performance.

To test the impact of this kind of information, we slightly modify our previous subgraph matching proce-

dure. A set of s node labels is generated and assigned with equal probability to each node in the graph GA.

Once the node similarity matrix between GA and GB has been computed, scores between nodes with different

labels are assigned a large negative weight; the maximum weight matching is then computed.

Performance results for this approach are presented in Figure 6.6. Here, we have plotted a histogram of

the number of correct node matches out of 500 trials for subgraphs of different sizes. The averages for each

number of labels and each subgraph size are drawn as vertical lines.

We might also ask what happens when there are only two node labels, which are distributed with asym-

metric probabilities. In Figure 6.7, we present a histogram of subgraph matching performance for a graph

with two node labels, L E {0, 1}, which are distributed with the probabilities indicated.

As expected, the more evenly the two labels are distributed, the more node identity information is com-

municated and the better the performance.

6.4.4 Using unique labels

In some applications, we may have knowledge about the correct correspondence between two nodes. For

example, if two graphs represent two different images of an object, perhaps there exists a reference node in

each graph that is known to correspond to a specific point on the object. We can then match these two nodes

with confidence. It is interesting to consider how matching performance changes as known correspondences

are taken into account.
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Histogram of Number of Subgraph Nodes Correctly Matched on 500 Trials
(Graph Size = 15 Nodes, Connectivity = 0.5)
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Figure 6.6: Matching performance using 0-5 node labels.
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Histogram of Number of Subgraph Nodes Correctly Matched on 500 Trials
(Graph Size 15 Nodes, Connectivity = 0.5)
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To test this idea with our subgraph matching framework, we first generate a random graph GA with n

nodes, then label s of its nodes with unique identifiers and label the remaining n - s with the same label.

A random subgraph GB is removed, carrying the node labels along. We then compute the node similarity

matrix between GA and GB, then penalize the similarity scores with mismatched labels by setting it to a large

negative number. The Hungarian algorithm is applied to yield a maximum weight matching, and the average

proportion of correctly matched nodes is computed.

In Figure 6.8, each curve represents the performance for a particular value of s as it is varied from 0 to 14

on a 15 node graph.
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Figure 6.8: Matching performance using varying numbers of unique labels.

15

These results imply a fixed improvement in performance for every additional unique label.

6.5 Identifying isomorphisms

The previous sections have focused on using node similarity scores to correctly position a subgraph within

a larger graph. However, it is also useful to be able to identify a correspondence between two graphs of the
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same size that are potentially isomorphic.

Consider the following test. First, a random graph GA with n nodes and connectivity p is generated,

with adjacency matrix 9. Next, a random permutation matrix P is generated, and a new adjacency matrix

B = PLIIP is computed. The node similarity matrix, X, of GA and GB is calculated, and the Hungarian

algorithm is applied to X to find the maximum weight matching. This matching can be represented by an

assignment matrix, C. If C = P, then the algorithm has correctly identified an isomorphism between GA and

GB (there may exist other isomorphisms, but C is certainly one).

This simulation was run for many different choices of n and p and C = P in every trial. Unfortunately, this

naive approach will not always work for graphs with a high degree of symmetry; for example, the cycle graph

with four nodes. This graph and its self-similarity matrix are shown below in Figure 6.9. The self-similarity

matrix of this graph has all entries the same, so any matching is a maximum weight matching, although many

of these matchings are not isomorphisms. At the same time, it is true that a correct isomorphism is among

the set of all maximum weight matchings.

2 3

nodes 1 2 3 4
1 0.250 0.250 0.250 0.250
2 0.250 0.250 0.250 0.250
3 0.250 0.250 0.250 0.250
4 0.250 0.250 0.250 0.250

1 4

Figure 6.9: The 4-cycle graph and its self-similarity score matrix.

This leads us to a conjecture. Let GA and GB be isomorphic graphs. Without loss of generality, we can

assume that their adjacency matrices are the same. If this is not true, then their adjacency matrices are related

by conjugation with a permutation matrix, which yields a conjugated similarity matrix. Denote the similarity

matrix by X. An isomorphic assignment between the nodes of GA and GB can be represented with the identity

matrix. Again, observe that the identity mapping may not be the only isomorphism between GA and GB, but

it is certainly one of them. The weight of this particular matching will be tr(X). The weight of any other

matching is given by tr(PX) where P is the permutation matrix which represents the matching.

What we would like to show, or find a counterexample to, is the following: for any permutation matrix P,
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tr(X) > tr(PX)

where X satisfies the following equation

yX = 5IXAT + JI TXJI + D'XDA + DIXD'

for I a fixed node-node adjacency matrix, DA a diagonal matrix containing the column sums of A, D' a

diagonal matrix containing the row sums of A{, and y a fixed constant required by the normalization (in fact,

y is the dominant eigenvalue of the matrix M = YI ® O + A{T OBT + DA, 9 DB, + DAT 9 DB,).

Observe that tr(PX) is equal to < vec(PT), vec(X) >. If we represent the entire set of (appropriately-sized)

permutation matrices as P, then we can write this question as an optimization problem as follows:

maxp < vec(PT), vec(X) >

s.t. (yI - M)vec(X) = 0

P E P

Proving the conjecture is equivalent to showing that P = I is an optimal solution to this problem.
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Chapter 7

Conclusions and ongoing work

M ANY EXTENSIONS and suggestions have been proposed throughout this thesis; here, we'll pro-

pose a few ideas for future work.

Similarity scores as structural markers and isomorphism detection

The connectivity structure of the graphs GA and GB dictates the similarity score matrices. What kinds

of structural features of GA or GB that can be inferred from patterns in the similarity matrices? In

[BVD04], the authors compute a closed-form solution for their node similarity measure between the

path graph on three nodes and an arbitrary graph. They also discuss some conditions under which their

node similarity matrix will have rank 1. In Section 5.2, we have explored the form of self-similarity

matrices and the node similarity matrices of projective planes. As discussed in Section 5.2.5, one way

of visualizing these methods of calculating similarity is to picture similarity scores as flows on the

product graph of GA and GB. It should be possible to obtain additional structural results using this

connection between flow problems and product graph topology.

We have conjectured in Section 6.5 that if two graphs are isomorphic, then an isomorphic mapping

between their nodes is among the maximum weight matches. Regardless of whether this conjecture

is true or false, the self-similarity matrices of some graphs communicate very little or no interesting

information; see, for example, the bipartite graphs that represent projective planes discussed in Section

5.2.8, whose self-similarity scores are uniform between every node pair. While projections onto the

dominant eigenspace associated with the matrix M do not reveal any interesting structural information,

it is possible that the subspaces associated with the strictly smaller eigenvalues of M do encode such

information (and can be explored by looking at the rate of convergence of the iteration, for example).

For many kinds of graphs, the spectrum of the node-node adjacency matrix is well-characterized (see,
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for example, [CDS80]); using the machinery of spectral graph theory to explore the spectrum of the

matrix M would be very worthwhile. As a first step in this direction, consider the signless Laplacian

matrix, ILI, defined in [vDH03] as:

IL| = D11 + AI

where 1 is the node-node adjacency matrix of an undirected graph GA, and Dq is a diagonal matrix

with the degrees of the nodes of GA on the diagonal. Recall the node similarity score update procedure

from Section 5.2.4:

Xk <-- (& B ±+ y1T 0 DT + DA 0 DBs + DA, DB) Xk-I

(P.B+ D9)xkI

Here, PAD is the node-node adjacency matrix of the product graph of GA and GB and D1AB is diagonal

with the degrees of the nodes of the product graph GAB. Thus, the node similarity scores between

two graphs GA and GB are a projection onto the invariant subspace associated with the Perron root

of the signless Laplacian of their product graph GAB. The signless Laplacian, and its better known

counterpart, the Laplacian L = DA - A, are the central objects of study in many branches of spectral

graph theory.

Utilizing edge scores and considering hypergraphs

As discussed in Chapter 4, the previous work with iterative similarity methods focuses exclusively on

node scoring, largely because it is often the more intuitive object; many real world graphs place the

elements of interest at the nodes, and are not as concerned with the connections between them. We

have exhibited this same bias here - in our discussion of matching, we have only utilized the edge

scores in one of our performance-improving heuristics. Edges are not always of secondary interest!

Indeed, edges are often of principal interest, particularly when a hypergraph structure applies to the
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data. Hypergraphs, as discussed briefly in Chapter 2, arise when one is interested in modeling relation-

ships between groups of objects. One example of a hypergraph structure is the description of chemical

reactions within a cell; a group of molecules is connected with a hyperedge if they all co-participate in

a particular reaction. When comparing two graphs of this type, it is the edges, or reactions, that might

be most interesting to examine.

Iterative types of similarity methods have not yet been applied to hypergraphs, but the extension is not

difficult to imagine: a node i in hypergraph GA is similar to a node in hypergraph GB proportionally

to the similarity of the edges to which i and j belong. Analogously, two hyperedges are similar as the

sum of the similarity of the nodes that they contain. A challenge lies in interpreting these scores, and

finding appropriate applications for this kind of measure.

Applications

One interesting application of graph similarity methods is the identification of functionally similar sub-

graphs within maps of protein interactions within different species. Appendix A discusses the task of

subgraph matching within the yeast interactome. Both node information and matching heuristics have

been applied to this task and have improved matching performance. Using biological network data to

derive meaningful observations is a very active area of research; as one example, Berg and Lissig de-

veloped a probabilistic model of biological network evolution to locate significant repeated subgraphs

which they call motifs [BLO4]. The omnipresence of natural phenomena with a graph structure has

inspired many different applications: Kleinberg's motivation in [K99] was an improved web search

tool, while Blondel et. al [BVDO4] applied their method to automatic synonym extraction from a dic-

tionary graph. Several other applications for iterative similarity methods were discussed in Chapter 4.

Finding additional appropriate applications for this kind of matching might inspire some interesting

new heuristics, or an entirely new approach.
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Appendix A

Protein interaction networks

As a possible application of the graph matching routines that were discussed in Chapter 6, we have explored

some of the publicly available protein interaction data. Although these explorations were quite preliminary,

they certainly informed our perspective on graph-matching issues and are thus worth documenting.

One interesting problem in bioinformatics is the identification of orthologous processes between species;

that is, given a specific biological process in one species, we would like to identify the analogous process

in another species. Often, the processes of interest are involved in metabolism, the collection of all internal

reactions that allow a cell to maintain itself, grow, and eventually die. There are several species that have

traditionally been considered 'model organisms' whose metabolic processes are relatively well-annotated:

the worm C. elegans, the fruitfly and the mouse are among them.

A.1 The S. cerevisiae interactome

We have begun by focusing on another of these model organisms, S. cerevisiae, a budding yeast, and ex-

amining its protein-protein interaction graph or interactome. Our source of data on these interactions is the

Database of Interacting ProteinsTM(DIP), a comprehensive source of protein interaction data culled from sev-

eral other databases and the biological literature [DIP05]. The yeast interactome is constructed by nodes

which represent unique proteins found in yeast cells; two nodes are connected if they have been found to bind

in vitro. Observe that this definition leads to a graph whose edges are undirected. The DIP contains two sets

of yeast interaction data - a full set of all documented interactions, and a core set containing interactions that

have been more reliably validated. The full interactome contains 4741 different proteins, while the core in-

teractome contains 2635 unique proteins. There are 6574 edges in the core interactome, corresponding to an

average connectivity of 0.0019. There are 92 disconnected components in the core interactome (the number
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of eigenvalues at zero of the Laplacian of the graph), and each protein is coded by a unique DIP number. Our

work with the yeast interactome is restricted to this core set.

We would like to be able to identify biologically relevent subgraphs of the interactome; eventually, these

subgraphs could be compared to the interactomes of other species to identify orthologous processes. To ob-

tain these subgraphs, we use the Comprehensive Yeast Genome Database (CYGD), sponsored by the Munich

Information Center for Protein Sequences [CYGD05]. The CYGD catalogs proteins in many ways, one of

which is by participation in known complexes. We considered several complexes which correspond to sub-

graphs of the interactome, including the cytoskeleton (CYT) complex with 73 proteins and the intracellular

transport (TPORT) complex with 95 proteins. Each of these complexes is specified as a list of proteins.

The subgraph of the interactome associated with each complex is obtained by identifying the nodes in the

interactome corresponding to the proteins in the complex list.

There exist a number of pragmatic difficulties that arise when combining data from several different

databases. While the proteins from the DIP core interactome are identified by their DIP number, the proteins

in the CYGD are labeled by their Open Reading Frame (ORF) number. In order to translate between the

two labels, we can use the DIP full interactome as a key, which includes both the DIP and ORF labels.

Interestingly, there exist seven proteins in the core interactome which are not contained in the full interactome

- these are removed from our core graph. Additionally, there are proteins in the CYGD complex lists which

are not represented in the full interactome - seven from the CYT complex and four from the TPORT complex.

These were eliminated from the complex lists.

A summary of the number of proteins and interactions in each of the graphs of interest is given in Table

A.l.

Initial Graphs Post-Editing
proteins interactions proteins interactions

CORE 2635 6574 2628 6556
CYT 73 - 66 185

TPORT 95 - 91 406

Table A.1: Some properties of the yeast interactome and subgraphs.
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A.2 Identifying subgraphs in the interactome

As discussed early in this Appendix, one is often interested in comparing orthologous processes between

different species. Insofar as interesting features of these processes are reflected in the topology of the protein-

protein interaction networks of each species, comparing the structure of these different networks might reveal

some patterns with biological significance. One way of performing this kind of cross-species comparison

is to perform a matching between the interactome of species A and the sub-interactome of species B which

corresponds to a specific function. If this matching identifies a sub-interactome of A that closely aligns with

that of B, we might look for a similar function in species A.

As a first step toward this type of matching, it is worth looking at the performance of a simple subgraph

matching procedure as discussed in Chapter 6. The subgraphs we choose are the TPORT and CYT subgraphs

discussed in the previous section, which correspond to complexes within the yeast cell. Some performance

results of this procedure are given in Table A.2.

no. max. weight of weight of random
matched weight correct match match (std. dev)
correctly

CYT 0 1.0086 4.48e-4 4.17e-4 (4.19e-4)

TPORT 0 0.7225 2.08e-5 6.13e-4 (8.04e-4)

Table A.2: Performance results of subgraph matching in the yeast interactome.

It is not surprising that topology alone is not enough to correctly position these subgraphs within the

interactome; the size of the subgraphs is less than 4% of the size of the entire interactome, so we should

expect performance worse than the 5-node subgraph of the randomly generated 15-node graphs considered

in Chapter 6. It is worthwhile, then, to see if some of the heuristics developed in Chapter 6 will improve

performance here. Since we have the DIP identifications of each node available, one natural augmentation is

the inclusion of node labels. As a first step, we correctly matched a number s of the nodes a priori via their

node labels (with the correctly matched nodes randomly selected), then examined whether this information
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allowed additional nodes to be matched correctly; we found no improvement in matching under this approach.

A more fruitful second approach constrained the neighborhoods of the correctly matched nodes to be matched

to each other. The results from three trials on each of the complex subgraphs is given below in Table A.3.

number of a priori correct matches average final number of correct matches
10 15.2
20 33.0
30 48.8
40 58.6
50 63.6
60 65.4

10 21.3
20 46.0
30 72.3
40 84.7

TPORT 50 88.0
60 91.0
70 91.0
80 91.0

Table A.3: Performance results with a given number of correct matchings and constrained neighborhoods.

It is clear that both node information and local edge information are necessary when matching these

small complex subgraphs within the larger interactome; future work should explore additional methods for

exploiting this information.
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