
A Degree-Optimal, Ordered Peer-to-Peer Overlay
Network

by

Kevin C. Zatloukal

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005

(® Massachusetts Institute of Technology 2005. All rights reserved.

Author--
Department of Electrical Engineering and Computer Science

February 22, 2005

Certified by w-'
/ David R. Karger

Professor of Computer Science
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students
MASSACHUSETTS INSTIT'riE

OF TECHNOLOGY

OCT 2 1 2005

LIBRARIES
_ ____ __~~~~

I~AC\E
I--- -, ·

2

A Degree-Optimal, Ordered Peer-to-Peer Overlay Network

by

Kevin C. Zatloukal

Submitted to the Department of Electrical Engineering and Computer Science
on February 22, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract
Peer-to-peer overlay networks are structures for organizing nodes, routing traffic, and
searching for data in a distributed system. Two of the most important theoretical
advancements in this area were the development of degree-optimal and ordered net-
works. Prior to this work, it was not known whether both properties could be achieved
simultaneously. This thesis presents Family Trees, the first peer-to-peer overlay net-
work that is both degree-optimal and ordered. We develop Family Trees theoretically,
proving correctness and bounds on their performance. We also describe how Family
Trees can be optimized to improve latency and discuss the results of an experimental
study showing that Family Trees provide good performance in practice.

Thesis Supervisor: David R. Karger
Title: Professor of Computer Science

3

4

Acknowledgments

I would like to thank David Karger for advising and supporting me in this work.

I would also like to thank Nick Harvey for suggesting this problem, developing Family

Trees along side me, carefully reviewing this thesis, and providing much feedback,

encouragement, and friendship.

Finally, I would like to thank Margaret Zatloukal for her endless support, patience,

and love throughout this work.

5

6

Contents

1 Introduction

1.1 Peer-To-Peer Overlay Networks

1.2 Ordered Networks .

1.3 Degree-Optimal Networks

1.4 Contributions

2 Background: SkipNet

2.1 Definitions .

2.2 Lookup Operations

2.3 Update Operations

2.4 Conclusions

3 Application: Mobile Entity Location

3.1 Introduction.

3.2 Design.

4 Family Trees

4.1 Definitions

4.2 Estimating n .

4.3 Global Properties

4.4 Lookup Operations

4.4.1 Congestion

4.5 Update Operations

9

10

11

13

14

15

15

19

25

26

29

29

31

37

37

40

42

47

55

57

..

.....................

.....................

......................

...........

...........

.

.

.

.

..

............................

............................

............................

............................
I

4.6 Conclusions 60

5 Family Trees In Practice 61

5.1 Experimental Setup 61

5.2 Optimizing for Latency 64

5.3 Verification of Theoretical Results 78

5.4 Name-Constrained Lookups 85

5.5 Conclusions 88

6 Conclusions 89

8

Chapter 1

Introduction

The development of peer-to-peer overlay networks was one of the most important in

the last decade of research into organizing nodes in a distributed system. Accordingly,

they have been given a great deal of attention. A large number of distinct systems have

been developed (such as [23, 21, 22, 29, 12, 1, 13, 18]), each further advancing the state

of the art in various respects. Two of the most important theoretical advancements

were the development of degree-optimal [13, 18] and ordered [12, 1] networks. Prior to

this work, it was not known whether both properties could be achieved simultaneously.

This thesis presents Family Trees, which is the first peer-to-peer overlay network that

is both degree-optimal and ordered.

The rest of this chapter provides background and motivation for a degree-optimal,

ordered network1 . Chapter two provides more background by describing SkipNet [12],

the first ordered network with efficient lookup performance. Chapter three further

motivates ordered networks by describing an application that takes advantage of their

unique features. Chapter four gives the theoretical development of Family Trees, in-

cluding proofs of correctness and performance bounds. Chapter five addresses Family

Trees in practice, including optimizations to improve latency as w-ell as results of an

experimental study. We conclude in chapter six.

1Throughout the rest of this thesis, we will often shorten the long and awkward term "peer-to-peer
overlay network" to simply "network".

9

1.1 Peer-To-Peer Overlay Networks

Peer-to-peer overlay networks are structures for organizing nodes, routing traffic, and

searching for data in a distributed system. Peer-to-peer networks have numerous

practical applications. The most important of these has been to the implementation

of distributed hash tables (DHTs), which provide a distributed storage layer over the

nodes of the network. DHTs implemented using peer-to-peer overlay networks can

offer significant advantages due to the fact that all nodes are equal peers:

1. Availability: They are robust to individual node failures and lack single points

of failure. As a result, they are also more resistant to denial-of-service attacks.

2. Distributed Storage: They utilize the storage space of all the individual

nodes of the network. They also do so in a way that balances the storage evenly

across the nodes.

3. Low Congestion: They spread the load of requests and associated network

traffic evenly across the nodes.

DITs implemented using peer-to-peer overlay networks clearly improve upon central

storage in terms of availability and total capacity. They also improve upon other

distributed storage implementations such as those using Scalable Distributed Data

Structures [17], which do not guarantee low congestion. Implementations using peer-

to-peer overlay, networks have also provided features such as caching of documents

throughout the network [6, 4], which reduces retrieval load and latency and also

provides redundancy in case of node failure.

Another application of peer-to-peer overlay networks is to multicast, which is

useful in many distributed systems. Multicast could be implemented directly in the

Internet; however, this is would require updating numerous (hardware) routers that

are already deployed. In contrast, it is easy to implement multicast in peer-to-peer

overlay networks because the routing is controlled by the application (software).

Peer-to-peer overlay networks provide features such as distributed storage and

multicast that would be useful building blocks for many distributed systems. Indeed,

10

shared storage and the ability to send messages between nodes and groups of nodes

are perhaps the two fundamental building blocks of Internet applications.2 Thus, it

seems likely that, over time, peer-to-peer overlay networks will become a basic service

provided by every distributed applications platform. However, before they are widely

deployed, there are some additional issues that must be addressed.

1.2 Ordered Networks

Most of the prior peer-to-peer overlay networks such as Chord, Pastry, Tapestry,

Koorde, and Viceroy are unordered in the sense that each node is identified by a key

that is effectively a random number. These networks take advantage of randomness

to create a routing structure over the nodes that assures that all messages are routed

efficiently: in at most O(log n) hops, where n is the number of nodes in the network,

with high probability.

Despite their simplicity and elegance, unordered networks are lacking in some

important respects:

1. They cannot restrict the storage of documents or the network traffic for a request

to stay within a given administrative domain.3

2. They cannot gracefully survive an administrative domain becoming discon-

nected from the network (i.e., a network partition). Typically, the nodes outside

that domain will continue to function, albeit with significant but temporary per-

formance degradation. However, the nodes inside that domain may be cease to

function all together [12].

3. Thev cannot efficiently enumerate all nodes in the network within a particular

administrative domain.

2 Distributed Data Structures [10] were also motivated by the belief that providing distributed
storage would make Internet applications easier to write.

3It is possible to achieve the storage restriction in some P2P networks, such as Chord [5], but
only with extra overhead and lookup times proportional to the size of the entire network rather than
the size of that domain.

11

All of the failures mentioned above relate to the fact that unordered P2P networks

are (purposefully) ignorant of the structure of administrative domains. However, in

practice, this knowledge is extremely important.

The service must be able to gracefully survive a domain being disconnected from

the rest of the network, which is a common type of network failure. For example,

if two internet service providers (ISPs), A and B, decide to partner in providing a

DHT-based service, it would be unacceptable if A's users could not perform lookups of

documents stored on A's servers because B lost network connectivity and vice versa;

each ISP needs to be able to guarantee service based on its own servers. Similarly, for

managing the storage and network resources, it is important for ISP A to know that

certain DHT lookups will be satisfied using the resources under its control. It would

also be important to be able to efficiently enumerate all clients within ISP A, for

example, to send a message to all of its users or to initiate an upgrade their software.

Skipnet [12] and Skip Graphs [1] are peer-to-peer networks that can route messages

based on keys from an ordered domain. In particular, they can use domain names

[19] as keys. This allows these networks to fix problems 1-3 above. And since the

similarity between two node's domain names (i.e, the number of matching sub-parts)

is highly correlated with the network distance between the two nodes, lookups in

the ordered space typically have substantially lower latency than lookups that are

ignorant of network distance.

Ordered networks also have the ability to do unordered lookups, so they can pro-

vide the same distributed storage and low congestion as unordered networks. How-

ever, since they also include knowledge of administrative domains, they can provide

features lacking in unordered networks, fixing problems 1-3 above. Such features will

be critical for peer-to-peer overlay networks to become a basic service provided by

every distributed applications platform. These additional features can also be lever-

aged to provide more advanced applications built on top of that service. We will see

an example of such application in chapter three.

12

1.3 Degree-Optimal Networks

Prior to this work, unordered networks still had an advantage over ordered networks

in terms of resources. The main resource needed for routing is "pointers" between

nodes in the network. By pointer, we mean the collection of resources needed both to

send messages and to make routing decisions. This includes memory to store the IP

address of the node pointed to as well as to cache various information about the node

that is useful for routing decisions (such as its ID and round-trip delay). In some

real-time scenarios, it may be advantageous to maintain an open TCP socket for

each pointer so that messages may be sent reliably without incurring the connection

penalty for each message. An implementation may also want to send periodic pings

along each pointer so that it can detect a machine failure before it causes delay to

any message being routed. Thus, the resources consumed by a pointer may include

network bandwidth.

Chord, Tapestry, Pastry, and SkipNet can build routing tables that contain only

O(log n) pointers per node. In contrast, Koorde [13, 26]4 and Viceroy [18] have routing

tables with only 0(1) pointers per node. These networks still guarantee that each

message takes at most O(log n) hops. But since they use only 0(1) pointers per node

they are degree-optimal. In addition to the theoretical importance of this discovery,

degree-optimal networks also offer practical advantages:

1. All other things being equal, it is clearly preferable to use less resources. A

reduced number of pointers means less memory usage and less maintenance

traffic in the network.

2. Even when more resources are available, degree-optimal networks are preferable

since they use up less of the resources for the basic protocol, thus leaving more

resources available for other uses. These resources could be used to store extra

pointers that reduce lookup latency and provide redundant routing paths. We

'A constant degree network based on de Bruijn graphs was independently and simultaneously
developed in these two papers (published at the same workshop). Another such network was in-
dependently developed in [8]. For simplicity, we will use just the name "Koorde" to refer to this
construction.

13

will see in chapter five that we can continue to reduce lookup latency as more

resources are made available. A degree-optimal network can offer competitive

performance to networks with higher degree when more resources are available

but can still operate when less resources are available.

3. Fewer pointers means that less nodes are affected when another node joins or

leaves the network (by choice or by crash). Each pointer that fails when a node

crashes may cause a timeout during a later search, causing extra delay for that

message.

For peer-to-peer overlay networks to become a basic service for distributed appli-

cations, the implementations will need to leave as many resources as possible available

to the application. It is important to keep in mind that the application may partic-

ipate in many networks at once, and of course, the application will most likely have

its own needs for memory and network bandwidth.

1.4 Contributions

Prior to this work, it was not known whether it was possible to create a network that

is both ordered and degree-optimal. The main contribution of this thesis is the first

degree-optimal, ordered network, called Family Trees. In chapter four, we describe

the structure of this network and formally prove its correctness and performance

guarantees. In chapter five, we show how Family Trees can be optimized to improve

latency, and we present the results of an experimental study confirming the practical

benefits of Family Trees.

A secondary contribution of this thesis is the application of ordered networks given

in chapter three. In particular, we will describe how ordered networks can be used

to perform mobile object location better than previous systems. This application

further underscores the importance of the additional features provided by ordered

networks to application developers.

14

Chapter 2

Background: SkipNet

This chapter provides background by introducing SkipNet1 , the first ordered peer-

to-peer overlay network with efficient lookup performance2. We will first define the

routing structure of SkipNet. Then, we will see how the lookup and update operations

are performed. We will mostly omit proofs as they are similar in spirit to what we

will see in chapter four. Formal proofs can be found in [12].

2.1 Definitions

Each node in a SkipNet network has two identifiers. First, it has a name ID, a friendly

name, which can be of any ordered type. Domain names like theory. csail. mit. edu

are a common choice for name IDs. Second, each node has a numeric ID, which

is an infinite sequence of random bits, each chosen uniformly and independently

Equivalently, we can think of the numeric ID as the binary expansion of a random

real number in the range [0, 1). If X is a node, then we will denote its name ID and

numeric ID b X.NAMEID and X.NuID, respectively.

As we will see in section 2.2, nodes can be looked up by either their name or

1 The routing structure of SkipNet was independently invented in [1] and called Skip Graphs. In
this thesis, we will use the name SkipNet, but we could equally well have called them Skip Graphs.
However, the SkipNet work focused more on the practical aspects of the structure, which are central
to our discussion of how ordered networks improve the manageability of the network.

:2Earlier networks were able to perform ordered lookups but not with any worst-case guarantee
on their performance.

15

numeric ID. The former operation allows nodes to send messages to each other using

their friendly names. The latter operation (or rather, finding the closest node by

numeric ID) can be used to implement a distributed hash table. For each key-value

pair (K, V), we hash K into a string of pseudo-random bits, which we also interpret

as a real number R in the range [0, 1). We store (K, V) at the node whose numeric ID

is closest to R.3 To look up a value, we hash the key and retrieve the value from the

node with closest numeric ID. The hashing function ensures that each node receives

an equal fraction of all the key-value pairs in expectation. (Better guarantees can

be made by using virtual nodes [14] or more sophisticated techniques such as [15].

However, these are also built on top of the lookup by numeric ID operation.)

VWe have defined a numeric ID to be an infinite sequence of binary digits, which

we can interpret as a random real number in [0, 1). We could equally well define a

numeric ID to be an infinite sequence of digits in some other base. The structure and

algorithms described below can all be generalized to an arbitrary base. In practice,

it is common to use a higher base in order to improve performance (by a constant

factor). In this thesis, however, we will stick to base 2 (binary digits) for a couple of

reasons. First, base 2 is a little easier to describe and think about. Second, using a

larger base increases the number of pointers per node by a constant factor. Since we

are interested in structures with a small number of pointers per node (ideally, a small

constant), base 2 is the most interesting case for us.

While a numeric ID can be an "infinite sequence" in principal, this would not be

practical to implement. In practice, we can generate bits on demand. We will only

need to have enough bits at any time so as to distinguish each node's numeric ID

from that of every other node. The following proposition shows that O(lg n) bits are

enough, where n is the number of nodes in the network.

Proposition 2.1.1. With high probability, each node in a SkipNet network needs to

store only O(]g n) bits of its numeric ID.

Proof. Let X and Y be nodes. The probability that X and Y choose the same first
3NVe will define "closest" in section 2.2.
4See the footnote in chapter four for a definition of "with high probability".

16

(c + 2) g n bits is 1/2(c+2) ln = 1/nc+ 2. Thus, the probability that any node chooses

the first (c + 2) lg n bits the same as X is (n - 1)/nc+2 < 1/n c+1 , and the probability

that any node needs more than (c + 2) Ig n bits is less than n/n+l = I/nc.]

In order to route traffic in the network, each node must have pointers5 to some of

the other nodes. As with in-memory data structures, the layout of these pointers must

be carefully designed to support efficient and correct lookup operations. Different

peer-to-peer overlay networks organize their pointers in different ways, which gives

each network unique properties.

The structure of SkipNet is inspired by skip lists [20]. In fact, it is important to

note that any dictionary data structure, such as binary trees or skip lists, could be

used to implement name ID lookup over a distributed set of nodes. However, such an

implementation would have poor congestion: if we choose two nodes at random and

have one lookup the other, the request would be routed through the root node6 with

probability .. Thus, the root node would quickly become a bottleneck and prevent

further scaling. The key insight of SkipNet is to make every node be a root node

so that congestion is spread evenly over the network. We will now see how this is

accomplished.

In both skip lists and SkipNet, each pointer exists at a particular "level". A

pointer at level i points to a node that would be roughly 2i positions away if the

nodes were in a list sorted by name ID. By following a pointer at the appropriate

level, we will see that we can roughly halve the distance to the destination in one

hop, which means that we can find the destination in O(lg n) hops.

In skip lists, every node has pointers at level 0. (These link the nodes into a circular

doubly-linked list.) Pointers at level 1 should point two nodes away on average. A

skip list creates these pointers by selecting half of the nodes at random, and linking

those nodes into a list. SkipNet, in contrast, creates two lists: if bit 0 of the numeric

ID is 0, the node is placed in the first list, and if it is 1, the node is placed in the

second list. This way, both of the lists have pointers that point two nodes away in

5 See section 1.3 for more information on "pointers".
6In a skip list, the "root node" is the node with the highest level.

17

LevelO: A B C D ELEv O:
01 110 101 001 010

Level 1: B C
110 101

Level 2 B

Levl11 3:
Level 3:

A B C D E

011 1100 101 001 010

A D E B C
011 0010 010 110 0 101

D A E B C

001 O011 010 110 101

D E A B C

I001 010 011l 110 101t,
rl~

Figure 2-1: Cormpares the process of building skip lists and SkipNet. Each node is a
rectangle containing a name ID (letter) and numeric ID (3 bits). The dark horizontal
lines show which nodes are in the same list at each level. In the skip list, at each
successive level, we include only those nodes whose next numeric ID bit is 1. In
SkipNet, we create two lists at the next level: one for those nodes whose next bit is 0
and one for those whose next bit is 1.

expectation. To build a skip list, we continue taking half of the list until we get a

single list containing just the root node. To build SkipNet, we continue splitting each

list in half until each node is in a list by itself. Figure 2-1 demonstrates the two

constructions..

In both structures, we can see that a pointer at level i points roughly 2i positions

away. However, in SkipNet, every node has pointers at high levels (every node is a

root node in this sense). Thus, when a search is started at node X, we can use X's

high-level pointers in order to advance half way to the destination, rather than having

to use the high-level pointers of a single root node. As a result, congestion is spread

evenly over the network (assuming that the source and destinations of lookups are

spread evenly).

Above, we mentioned that skip lists could be used to perform lookups by name

ID over a distributed set of nodes (although this would have poor congestion). Of

course, we could also use SkipNet or Family Trees as an in-memory dictionary data

18

structure. For that reason, we have also referred to ordered networks as "distributed

dictionaries" [27]. Such an implementation may be advantageous in situations with

many concurrent readers and writers. In a skip list, the congestion of the root node

would translate into long wait times in order to get a write lock on that node. The

low congestion of SkipNet and Family Trees could potentially improve performance

in this situation. However, since our focus has been on distributed implementations,

we will not discuss in-memory implementations any further.

The construction of SkipNet given above described all of the necessary pointers.

Let's now define them formally. Consider any node X. For each level i, X has pointers

into the circular, doubly-linked list of nodes whose numeric IDs start with the same

first i- 1 bits as X's. We will denote X's pointers into this list as X.LEvELPREV[i]

and X.LEVELNEXT[i]. We define the level-0 list to be sorted by name ID. And since

all other lists are sublists of that one, they are sorted by name ID as well. Lastly,

note that, once we get to a list where X is the only node present, there is no need

to maintain any pointers. Thus, it follows from Proposition 2.1.1 that each node in

a SkipNet network has (lgn) pointers with high probability. We will denote by

X. LEVELMAX the last value of i for which we have pointers.

2.2 Lookup Operations

Surprisingly, the simple structure described in the previous section is capable of per-

forming efficient; lookups by either name or numeric ID. The principle behind this

is the fact that each list gives partial information about both name and numeric

ID. Suppose we have found our way to node X in a list at level i. We have par-

tial information about numeric IDs because we have narrowed down the space to

just those matching the first i - 1 bits of X.NuMID. And we have partial informa-

tion about name IDs because know that X is the closest node to all names between

X.LEVELPREV[i].NANAMEID and X.NAMIEID.

The key to understanding the lookup algorithms is notice that we gain more infor-

mation about numeric IDs as we move to higher levels and we gain more information

19

LOOKUP-BY-NAME-ID(X, value)
1 for level = X.LEVELMAXto 0

2 do if value < X.LEVELPREV[level].NAMEID
3 then return LOOKUP-BY-NAME-ID(X.LEVELPREv[level], value)
4 if X.LEVELNEXT[level].NAMEID < value
5 then return LOOKUP-BY-NAME-ID(X.LEVELNEXT[level], value)
6 return X

Figure 2-2: LOOKUP-BY-NAME-ID finds the node whose name ID is closest to the
given value. If the given value is not equal to any node's NAMEID, then of the nodes
whose NAMEID)S fall just before and just after the value, this will return the one
whose NAMEID is closest to the start node.

about name IDs as we move to lower levels. At the highest level, we have identified a

single node that matches a given numeric ID prefix, but we have no information at all

about its position by name ID. At the lowest level, we know the exact position of the

node by name ID, but we have not restricted the numeric IDs at all. The principle for

both lookup algorithms is the same: start at the levels where we have no information

and move, one level at a time, until we have complete information. If we can advance

to the next level in O(1) hops, then lookup takes at most O(lg n) hops all together.

Next, we will discuss each of these algorithms in more detail.

To lookup bv name ID, we need to find the node whose NAMEID is closest to the

value given. To do this, we will maintain the invariant that, when we are at level i,

we are at the closest node in the level list to the value given. Formally, we should be

at the node X such that the lookup value falls between X.LEVELPREV[i].NAMEID

and X.NAMEID. It is easy to start this invariant: we pick i to be the level where the

start node is in a list by itself. (Then, every value falls in the range described.) When

we decrease i by 1, the invariant may be violated at the current node. To fix it, we

have to move in the level list to find the closest node to the lookup value. Because the

list at level i is a random sublist of the one at level i - 1, it is not hard to show that

this takes 0(1) hops in expectation.' Once we get down to level 0, we have found the

destination node.

71M1oving to the closest node may take O(lg n) hops in bad cases. We cannot guarantee less than
O(lg n) hops with high probability. However, these bad cases will happen at most a small number
of times over the whole lookup process, with high probability. Thus, it can be shown that a lookup
takes O(lg n) hops with high probability.

20

Figure 2-2 shows pseudocode for this operation. It differs from what we just

described in two respects. First, it does not keep track of i explicitly. Instead, each

node processing the lookup request simply recomputes i, which is called level in the

pseudocode. This is computed by finding the highest level for which the invariant

does not hold. If no such level exists, then we are at the destination node. If such a

level is found, then the request is forwarded toward the closest node in that level list.

As mentioned above, this will take only 0(1) hops in expectation. Below, we will

discuss the second difference between the pseudocode and our previous description.

The second difference from what we just described is discussed below.

Lookup by name ID has another important property: locality. If the destination

node is nearby, then level will be a small value initially. In particular, if the start and

destination nodes are D positions apart, then the same argument from above shows

that this operation takes O(lgD) hops. If D is a small value, then this can be a

substantial improvement.

The locality of lookup by name ID is actually strict locality in the following

sense. Let's denote the start and destination nodes by dest and start, respectively.

If dest.NAMEID < start.NAMEID, then every node X that receives the lookup request

will satisfy

dest.NAMEID < X.NAMEID < start.NAMEID.

In other words, the request will never be sent to any node whose name ID is not

between those of the start and destination nodes. The invariant described above

assures us that d'est.NANMEID < X.NAMEID, and since each intermediate node node

will only forward to a node that is closer the destination, we know that X.NAMEID <

start. NAMEID. Unfortunately, the invariant described above does not ensure strict

locality when start.NAMEID < dest.NANIEID. If we changed the invariant to require

that the lookup value fall between X.NANIEID and X.LEVELNEXT[i].NAMEID, then

we would get strict locality in this case but not the previous case. The pseudocode in

Figure 2-2 gets strict locality in both cases by instead maintaining the invariant that,

of the two nodes in the level list whose name IDs are closest to the lookup value, we

21

are always at the one closer to the start node.

Strict locality is extremely important from an administrator's perspective. For ex-

ample, suppose that the name IDs are domain names and that the start and destina-

tion nodes are a. mit. edu and z. mit. edu, respectively. If we order domain names by

comparing them lexicographically after reversing the sequence of parts (so a. mit. edu

becomes edu.mit.a), then we know that every node whose name ID is ordered be-

tween a.mit. edu and z.mit. edu must end with .mit. edu. This means that every

node that receives the request will also be within MIT, which gives us some assur-

ances. First, it gives us some measure of security: none of the lookups will be seen

by nodes outside of MIT. More importantly, it assures us that the message will be

routed correctly as long as the MIT network is functioning and nodes within MIT

are working. If Harvard loses network connectivity, users at MIT will not be affected

in such lookups. Furthermore, if there is a problem with some node processing the

request, it must; be a node within MIT, which our administrator's can log into and

fix. If Harvard nodes were failing, MIT's administrators would not necessarily be able

to fix the problem.

Now, we turn to lookup by numeric ID. Here, the idea is to start at level 0,

where nothing is known about numeric IDs, and move to successively higher levels

until we reach the (hopefully) unique node that matches the most bits of the lookup

value.8 To increase the level by 1, we need to find a node X in the level list such that

X.NuNMID[i] = value[i], where "[i]" denotes the ith bit. With probability , the node

we are already at will satisfV this. Otherwise, we need to forward to another node.

The expected number of hops needed to find a node whose numeric ID that matches

the next bit of the lookup value is O(1). 9

Figure 2-3 shows pseudocode for this operation. As before, we do not maintain

the level i explicitly. Instead, each node computes this by calling MATCH-LENGTI

8 AIost peer-to-peer overlap networks route to the node whose numeric ID is closest modulo 1 to
the given value. It is not necessary to route to this node. All that is required is that we always route
to the same node for a given value and that we spread the load evenly. The technique described
here has both properties.

9'Again, we cannot guarantee less than O(lg rn) hops with high probability. However, the O(lg n)
cases will occur rarely. Thus, it can be shown that, over the course of whole lookup, at most O(lg n)
hops occur all together.

22

LOOKUP-BY-NM-ID(X, value)
7 level - MATCH-LENGTH(X.NuMID, value)
8 return LooKUP-IN-LEVEL-LIST(X, level, value,nil)

LOOKUP-IN-LEVEL-LIsT(X, level, value, list)
9 if X.NuMID [level] = value [level]

10 then return LOOKuP-BY-NuM-ID(X, value)
11 if X = FRONT(list)
12 then return CLOSEST(list, value)
13 else list - ADD-TO-BACK(list, X)
14 return LOOKUP-IN-LEVEL-LIST(X.LEVELNEXT[level], level, value, list)

MATCH-LENGTH(value , value2)
15 for i =O0to oo
16 do if value1 [i] f: value2 [i]
17 then return i

Figure 2-3: LOOKuP-BY-NuM-ID finds the node whose numeric ID is closest to the
given value. The closest node is chosen from those nodes whose numeric IDs match
the most bits of the value. The deterministic procedure to choose from amongst these
is encapsulated in the function CLOSEST.

which counts the number of bits that match, and stores the result in the variable

level Next, it calls LooKUP-IN-LEEL-LIsT, which tries to find a node matching the

levelth bit of valuae If one is found, then the request is forwarded to that node. In

case one is not found, LOOKUP-IN-LEVEL-LIsT builds up a list (in the variable called

list) of all the nodes in this level list. Once we get back to the first node in the list, we

know that we have a complete list of all the nodes that match the maximum number

of bits of value The call to CLOSEST deterministically chooses one of these to return.10

Unlike name ID lookups, those by numeric ID have no locality whatsoever. Since

the numeric IDs are chosen uniformly at randomly, the destination is chosen uniformly

at random. For a given start node, the expected distance to the destination is the

average distance from that node to all others. If the network has nodes spread out

all over the world, it could take a few seconds on average to send a message to the

destination node.1l (This is even ignoring the time required for all of the extra O(lg n)

m1 Again, we only require that it choose deterministically and spread the load evenly. The standard
technique of picking the closest modulo 1 will work fine here. That is, we pick the node with the
largest numeric D that is less than or equal to value, unless there are no such nodes, in which case
we pick the node with the largest numeric ID overall.

lThough this will undoubtedly improve as network connectivity across the world is increased, the

23

hops performed during the lookup.) It would be better if there were a way to restrict

the numeric ID lookup to a subset of nodes that are not too far away. This is indeed

possible, as we will see below.

Perhaps the most powerful lookup operation on an ordered network is one that

combines both name and numeric IDs. Specifically, we can perform a lookup by

numeric ID but; constrained to a specific the subset of nodes whose name IDs fall

within a certain range.l2 For example, we could constrain the search to only those

nodes with names that end with mit. edu. Even though this may be a large number

of nodes, the total lookup time will be substantially faster than if we had to send

messages around the world.

The key to performing a name-constrained numeric ID lookup is to notice that,

if we removed all nodes outside of the given range, we still get a perfectly valid

SkipNet. In fact, we get the same distribution of possible shapes for the network of

nodes within the range regardless of whether the other nodes are present. (The only

minor difference is that the code above assumed circularly linked lists. We need to

use non-circular lists for property to hold. But that adds only minor complication to

the algorithms from above.) Thus, to perform a name-restricted numeric ID lookup,

starting from a node within the range, we just perform the normal numeric ID lookup

but pretend that any nodes outside the range aren't there! If we start at a node outside

the range, then we first perform a name ID lookup to find a new starting node that

is within the range.

We have seen that SkipNet can perform lookups by both name and numeric ID.

Both operations are simple and have guarantees of O(lg n) hops with high probability.

The name ID lookups have strict locality to the name ID range between start and

destination nodes. Numeric ID lookups have no locality normally, but with Skip-

Net, they can be restricted to just the nodes of a particular domain. These locality

properties impact both the performance and the administrative manageability of the

network. It is also possible to show that these operations spread the load from lookup

fact that the speed of light is bounded means that sending messages across the globe will always be
much more expensive than sending messages to nearby nodes.

12 In SkipNet, this is called "constrained load balancing".

24

requests evenly across the network. (We will see proofs of this for Family Trees in

chapter four.) In the next section, we will see how nodes can join and leave the

network.

2.3 Update Operations

To join a new node Z into the network, we need to fill in the values of Z's pointers

and update any nodes that now need to point to Z. Conceptually, all we are doing is

linking Z into each of the level lists in which it belongs. To find Z's place in the level

0 list, we sin-ply perform a LOOKUP-BY-NAME-ID. Next, we find Z's place in the

level 1 list for nodes whose numeric IDs start with Z.NuMID[O]. Then, we continue

moving up to the level list that matches the next bit of Z.NuMID until we get to a

list containing Z alone.

We have seen already this process of moving upward, one level at a time, into the

list that matches a particular bit: this is exactly what we did in LOOKUP-BY-NUM-

ID. It is important to note that, each time we move up a level, we will reach one

of the two closest nodes to Z.NAMEID in that list. This holds because we started

at the closest node in the previous level and moved up at the first node encountered

that matched in the next bit. Thus, the JOIN procedure is identical to numeric ID

lookup on the bits of Z.NuMID except that, each time we reach a new level, we link

Z into the linked list. The same arguments as for numeric ID lookup show that this

procedure requires O(lg n) hops with high probability.

Pseudocode for this operation is shown in Figure 2-4. JOIN-LEVEL links Z into a

level given one of the nodes closest to Z. One tricky part is lines 20-23, which set X

to be the node before Z and Y the node after. Lines 24-26 simply link Z into this

list. Then, we call JOIN-NEXT-LEVEL to find one of the closest nodes to Z in the

next level. This proceeds just as in LOOKUP-BY-NUMERIC-ID. Once we find that

we have circled the level list, we know that the next higher level list we are searching

for is empty at which point the JOIN is completed.

To delete a node X from the network, we just need to remove it from all of

25

JOIN(X, Z)
18 X +- LOOKUP-BY-NAME-ID(X, Z.NAMEID)
19 return JOIN-LEVEL(X, Z, 0)

JOIN-LEVEL(X, Z, level)
20 if Z.NAMEID < X.NAMEID or
21 X.LEVELPREV [level] .NAMEID < Z.NAMEID
22 then X - X.LEVELPREV [level]
23 Y - X.LEVELNEXT [level]
24 Z.LEVELPREV [level] - X
25 Z.LEVELNEXT [Ilevel] - Y
26 X.LEVELNEXT [level]]- Y.LEVELPREV [level] Z
27 return JOI[N-NEXT-LEVEL(X, Z, level, nil)

JOIN-NEXT-LEVEL(X, Z, level, list)
28 if X.NuMID [level] = Z [level]
29 then return JOIN-LEVEL(X, Z, level + 1)
30 if X = FRONT(list)
3:1 then return Z
32 else list- ADD-TO-BACK(list, X)
3:3 return JOIN-LEVEL(X.LEVELNEXT[level], Z, level, list)

Figure 2-4: JOIN adds the new node Z into the network. The request starts at the
node X already in the network.

LEAVE(X)
34 for level = 0 to X.LEVELMAx
35 do X.LEVE:LPREV [level] .LEVELNEXT X.LEVELNEXT [level]
36 X.LEVELNEXT [level] .LEVELPREV - X.LEVELPREV [level]

Figure 2-5: LEAVE removes node X from the network by unlinking it from each level
list of which it is a member.

the level lists to which it belongs. This simply requires, for each level i, updating

X.LEvELPREv[i] and X.LEVELNEXT[i] to point to each other instead of to X. For

the sake of completeness, the pseudocode of this operation is shown in Figure 2-5. It

is easy to see that this procedure requires O(lg n) messages with high probability.

2.4 Conclusions

In this chapter, we have seen the design of SkipNet, the first ordered peer-to-peer

overlav network with efficient lookup performance. We have seen how to perform

26

lookups by name ID and numeric ID and how to perform a name-constrained lookup

by numeric ID. We have also seen how nodes can join and leave the network. All of

these operations are simple, elegant, and efficient, requiring O(lgn) hops with high

probability.

We can now see how SkipNet resolves each of the problems with unordered net-

works that were identified in chapter one:

1. SkipNet can constrain the storage of documents to a particular domain by

choosing the host at which to store the document using name-constrained nu-

meric ID lookups. And as mentioned above, it also guarantees that the lookup

request will only be routed through nodes within that domain, which means

that the lookup request will only generate traffic in the underlying network of

that domain (i.e., only its routers and cables will be used).

2. SkipNet can gracefully survive a network partition. Lookups for names inside

the disconnected domain will not notice the failure at all since the lookups

are only routed through notes whose names are between those of the start

and destination, all of which are inside the disconnected domain. Lookups for

numeric IDs that are constrained to that domain will also not notice the failure

for the same reason.

3. SkipNet can efficiently enumerate the nodes within a particular domain. This

can be done by looking up a name in that domain and then iterating through

the level-0 list. However, it is also possible to multicast to all of the nodes in

a domain by applying the standard skip list range query algorithm to SkipNet.

Thus, we can send a message to all nodes in a particular domain in the time

O(lg R + lg D) where R is the distance (in the level-0 list) of the start node

from the nearest node in that domain and D is the distance from one side of

the domain to the other.

As discussed in chapter one, these features significantly improve the manageability of

the network for administrators. Thus, ordered networks with these features are much

more likely to see substantial deployment in practice.

27

One advantage that unordered networks have over SkipNet is the amount of re-

sources required. While each SkipNet node requires O(lgn) pointers, the unordered

Koorde and Viceroy networks require only 0(1) pointers per node. In chapter four,

we will introduce Family Trees, which are an ordered network that uses only 0(1)

pointers per node. But first, in chapter three, we further motivate ordered networks

by looking at an application that takes advantage of the name-constrained numeric

II) lookup, which is not available on unordered networks.

28

Chapter 3

Application: Mobile Entity

Location

3.1 Introduction

A mobile entity location system is a distributed system that maintains a name to

location mapping. The names can come from an arbitrary domain (not necessarily

ordered). The locations are assumed to be positions in a hierarchical network of

some sort. Clients can notify the location system of their own location, which may be

changing frequently, and they can query the location of other clients. We assume that

clients can use the location identifier that is returned by a query to send a message

to the location in the network to which it refers.

It is fairly easy to come up with examples where such systems would be useful.

In a cellular phone network, we might want a location system where the names are

phone numbers and the locations are the network addresses of cell towers. In order to

call another cell phone, we need to query the system for the location of phone whose

number we want to call (i.e., which cell tower it is at). Once we have the location,

we can send messages to that phone in order to initiate a phone call.

WNe might also want such a system for a peer-to-peer phone and instant messaging

application like Skype [2]. In this system, clients that are behind firewalls cannot

receive incoming connections from other clients. To overcome this limitation, the

29

client connects to a nearby "super-node", which is a client that is not behind a

firewall. The firewall will allow two-way communication between the client and super-

node because the client initiated that connection. To call a client that is behind a

firewall, we look up the domain name of the super-node to which it is connected in a

location system. We send the message to the super-node (who can receive connections

from arbitrary addresses), who will then forward it to the client behind the firewall.

Location systems differ from basic distributed hashtables because they have very

strong locality requirements. Specifically, if the client performing the query is in the

same subdomain as the location that the query would return, the system must not

send messages outside of that subdomain. In a distributed hashtable, the record for a

given client could be stored on the other side of the world from their actual location.

If another client tried to look up that clients location, they might have to wait several

seconds for the query to complete, which is unacceptable if the client is nearby the

location being queried.

For example, in a cell phone network, users expect a local call to be connected

instantaneously., whereas they understand that an international call to the other side

of the earth may have a noticeable delay. The cellular network is likely to have a

hierarchical organization to it, which is directly reflected in location identifiers. In

the past, phone numbers were location identifiers and reflected the hierarchy of the

underlying phone system: each number consisted of a country code, area code, three-

digit part, and four-digit part, each of which corresponded to a physical space. To

allow for mobile entities like cellular phones, we separate the names (phone numbers)

from location identifiers and introduce a location system to map between them. How-

ever, the user still has the expectation that a call to another user in the same physical

region will be completed very quickly. Furthermore, strict locality to physical parts

of the phone network is helpful to administrators of the network who must allocate

physical resources in proportion to the number of customers in a given area.

For Skype. we can use the domain names of the super-nodes as locations. \While

these are not guaranteed to match the underlying location, they often correlate well.

Domain names often identifr the countrv correctly, and sometimes even more than

30

this. For example, two clients with Verizon DSL are likely to be given domain names

that reflect the local region in which they reside. (And the fact that they are both

Verizon customers identifies the general part of the country they are in.) Thus,

locality using domain names is likely to have good response times for users. However,

it would also be possible to build our own system for determining hierarchical network

locations. For example, we could determine the distances between a large set of core

network routers and approximate these distances with a tree metric [7]. Then, we

could assign each client a location by using the location in the tree of a nearby router

(which we could find by performing a trace-route to a server across the network).

Locality with these locations is likely to correlate strongly with low latency. Many

other techniques are possible for generating hierarchical locations. In the remainder

of this chapter, we will assume that each client knows its location.

3.2 Design

A simple location system that meets the strict locality requirement works as follows

[24]. \Ve have a set of servers that are organized as a tree. The leaf nodes in the tree

are servers where clients can be located. Each hierarchical location identifier of the

form a.b.c. ., identifies a leaf node by the path from the root to that node: from

the root, we descend to child a, then to a's child b, then to b's child c, and so on.

Figure 3-1 shows part of a tree with two clients: N at a.b.c and l at a.e.f. At each

server, we maintain a map that records, for each client located in the subtree rooted

at that server, the name of the child node whose subtree it is in. For example, since

client N is located at a.c, the root's map has N mapped to a, a's map has N mapped

to b, and b's map has N mapped to c. Server c also knows that N is located there

and records the relevant information about how to communicate with N.

If client AI tries to find NV, the query starts at a.e.f. This node checks its map

to see if N is located there as well, but since it is not, it forwards the request to its

parent, a.e. Server a.e looks in its map, and since N is not found, forwards to its

parent, a. Server a looks in its map and finds N mapped to b, so it forwards the

31

Figure 3-1: Shows the subdomain of location tree containing locations starting with a.
This subdomain contains two clients: client N is at location a.b.c and client Al is at
location a.e.f. The root node (the parent of a) is not shown.

request to its child a.b. Server a.b looks in its map and finds N mapped to c, so it

forwards the request to its child a.b.c. Server a.b.c finds that N is located there, so it

sends its own location a.b.c back to the source node a.e.f, who can use this to send

a message to a.b.c. In this case, clients N and AM are both in subdomain a, and we

can see that no messages were sent outside of that subdomain. It is easy to see that

this holds true generally, so we have the strict locality that is required.

When a client moves locations, we perform a similar process. The server for the

new location sends the request upward until it reaches a server whose map contains

that name. The server forwards the request down toward the old location, so that each

server along that path can remove the name from its map. Then the server updates

its map to contain the name of the child from which the update came. Each server

that forwarded the request to its parent does the same. We can see that updating a

client's location takes the same amount of time as performing a lookup of the client's

old location from its new location. Since clients typically move only a short distance

away, updates are usually very efficient.

The main problem with this simple design is that it is not scalable. Since the

root node has a map containing every client's name, it will quickly run out of space.

Furthermore, if there are many "long distance" queries, the root node will quickly

become a bottleneck.

32

Previous systems have fixed this problem by replacing the servers at higher levels

with clusters of servers. The problem with this approach, however, is that it requires

careful layout of physical resources. The administrators of the network need to care-

fully watch the use of the network and add more machines to various clusters before

they become bottlenecks. Aside from the management headache this causes, it is also

unable to keep up if client behavior shifts quickly.

We can solve this problem by using distributed hash tables. Specifically, each

location server participates in a DHT for each prefix of its hierarchical location iden-

tifier. For example, the server with a.b.c participates in three DHTs: one for prefix

a.b, one for prefix a, and one for the empty prefix. Each DHT maps client names to

the next part of the location identifier of that client. For example, if client N is at

a.b.c, then the DHT for prefix a.b maps N to c, the one for a maps N to b, and the

one for the empty prefix maps N to a.

This solves the scalability problem because the number of nodes in each DHT is

equal to the number of locations. Since each location can support some maximum

number of users, the number of names stored in each DHT should be proportional to

the number of nodes (i.e., the number of names is < Cn, where n is the number of

nodes in the DIIT and C is the maximum number of clients per location). Further-

more, the system scales naturally on its own. As we add more locations, the affected

DHTs each get more nodes.

This approach also maintains strict locality. The DHT for a given prefix contains

only nodes whose locations begin with that prefix, so all messages sent to perform

the DHT lookup will stay within that prefix.

The problem. with this approach is that it is less efficient. For example, suppose

that the location hierarchy is a perfect tree of height k. Now suppose that we perform

a lookup from the very first location for a client at the very last location. Then,

we will perform lookups over subdomains containing 1, 2, 4, ... , 2
k-1, 2

k , 2
k-1,

... , 2, and I nodes. The total number of hops needed to perform this lookup is

O(Z>=1 lg 2 i) = O(k2). Whereas, in the original system, it was only O(k) hops.

VWe can improve the performance of this system by using SkipNet, an ordered

33

network. In a SkipNet implementation, the name IDs are the hierarchical locations.

To perform a DHT lookup of name N, we hash N to a bit string B and perform a

numeric ID lookup on B. This request will be routed to the node whose numeric ID is

closest to B, and this node will record the value corresponding to key N (if N is in the

map). Instead of maintaining multiple separate DHTs, we can put all servers into a

single SkipNet network and implement each individual lookup as a name-constrained

numeric ID lookup. For example, to look up N in the subdomain a.b, we perform a

numeric ID lookup on the hash of N that is constrained to be within nodes whose

name IDs begin with a.b. SkipNet will find the node within that subdomain whose

numeric ID is closest to the hash of the key, which is where the value would be stored.

Furthermore, it will honor the name constraint, and thus maintain strict locality.

The key to improving the performance of the lookups is the following observation.

Suppose that we are performing a lookup for N starting from location a.b.c. We first

perform a lookup constrained to a.b and then a lookup constrained to a. In the first

lookup (constrained to a.b), we move upward through the levels, ignoring nodes not

in subdomain a.b until we reach a level list containing only a single node. This is

where the location of N would be stored if that client were located in this subdomain.

Suppose that N is not found. Our next lookup would be for the same key but would

expand the name constraint to all of a. If we started a new lookup back from. our

original location, it would most likely follow exactly the same path as the last search.

The key point is that we can just as well start off the next search from where the last

one ended since that node satisfies the name constraint. Once we have performed the

lookup for the largest subdomain, where N is finally found in the map (in this case,

a), if we look back over the sequence of lookups, it would look exactly the same as

if we had just performed a single lookup constrained to that largest subdomain. So

rather than performing O(lg2 n) hops (where n is the number of nodes in the largest

sub-domain), we, have only performed O(lg n).

Actually, there is one minor difference between this sequence of lookups and a

single lookup constrained to the largest sub-domain. For each subdomain, at the

highest level, there may have been multiple nodes, in which case, we would have

34

had to walk through this list to find the closest matching numeric ID. However,

this is only 0(1) hops per level in expectation, so the total number of hops for the

whole sequence is still O(lg n) in expectation. Furthermore, even though we can only

guarantee O(lg n) hops at the highest level of each subdomain with high probability,

we can guarantee that, over the whole sequence of lookups the total number of hops

is O(lg n) with high probability.

Once we have found a mapping for N, we now need to perform lookups that are

more constrained. Imagine that, instead of starting at a.b.c looking for the location

of N, say a.e.f, we had started at a.e.f and looked for the location of N, which was

a.b.c. In that case, we would move upward through the levels, expanding the name

constraint each time N is not found, until we reach the destination for the lookup

constrained to subdomain a. The key is to notice that we can perform the downward

lookups (increasingly restrictive) just by simulating the upward sequence in reverse.

Each time we add a part to the name constraint, we need to move down levels until

a node satisfying that constraint is found. At each level, we find the node that is

closest to satisfying the constraint, and if it does not satisfy the constraint, we move

down another level. Thus, we can see that this will take O(lg n) time as well, with

high probability.

We have now seen that we can use SkipNet to implement a mobile entity location

system. It can scale gracefully and automatically as new locations are created. This

location service is easy to implement using name-constrained numeric ID lookups. As

we have seen, they are a very useful operation in practice. Furthermore, we showed

how a sequence of expanding or contracting set of name constraints with hierarchical

names can be optimized to perform as just a single lookup. The resulting system

achieves O(lg n) hops per query, where n is the number of nodes in the smallest

subdomain containing both the source and the destination locations.

35

36

Chapter 4

Family Trees

In this chapter, we introduce Family Trees1 , the first peer-to-peer overlay network

that is both degree-optimal and ordered. We begin by defining the routing structure

of Family Trees. Then, we will examine some of their global properties. Finally, we

will show the algorithms for lookups and updates to the network and provide formal

proofs of their correctness and performance.

4.1 Definitions

As we saw in chapter two, each SkipNet node is linked into lists at O(lg n) different

levels. To reduce the number of pointers to 0(1), Family Trees link each node into

only one of these list. The resulting structure also resembles Viceroy [18] and the

butterfly network [16] on which it is based. As in Viceroy, nodes in Family Trees

are separated into approximately lgn levels; nodes at level i will have pointers to

nodes approximately 2 lg n positions away in the ordered list of names. However, we

generate these pointers by separating the nodes at level i randomly into 2i separate

ordered lists, in a manner similar to SkipNet. The resulting data structure has a

natural analogy to a genealogical family tree, as will be made clear shortly. Figure 4-

1 shows an example instance of a family tree.

As in SkipNet, each Family Tree node has name and numeric IDs. Next, each

]An earlier version of this chapter was published in [27].

37

Level 2 Lists

Level 1 Lists

Level 0 List

Name ID List 00000 00010 00001 10000 10010 10001 01000---

Numeric ID List 00000 00001 00010 00100 00101 00110 01000

Figure 4-1: An example family tree with 24 nodes. Each node, denoted by a square,
has a name ID, numeric ID, and level. Level 0 nodes are connected into a single
list. The level 1 nodes are divided into two disjoint, interleaved lists: nodes whose
numeric IDs start with a 0, and nodes whose numeric IDs start with a 1. At level 2,
there are four lists: nodes join the list given by the first two bits of their numeric ID.
All of these level lists are sorted by the name IDs of the nodes. Nodes also maintain
pointers to their parents, one level higher: white pointers denote a mother, and black
pointers denote a father. Nodes also point to their first child, one level lower. Lastly,
all nodes belong to a list sorted by name IDs and a list sorted by numeric IDs.

node X has a level, denoted X.LEVEL. As with SkipNet, there are 2i different lists

at level i. X will be linked into just one of these lists, the one containing nodes that

match the first X.LEVEL bits of X's numeric ID. Each node X chooses X.LEVEL

uniformly at random from {0,..., Llg noJ - 1}, where no is an estimate of n. We must

use an estimate for two reasons. First, it is unlikely that n can be precisely computed

in a manner that is efficient in both time and congestion. Second, it is helpful that

different nodes produce different estimates of n so that nodes are not all alerted to

the presence of a new level simultaneously: if we computed n exactly, then every node

would need to update its level when n reached the next power of 2.

We will discuss the method of estimating n in section 4.2. In the remainder of

this subsection, we will define all of the pointers on a node. These pointers are the

only resources required by each node beyond its name ID, numeric ID, and level.

Each Family Tree node X has nine pointers. The first six pointers link each node

38

into three circularly linked lists. The X.NAMEPREV and X.NAMENEXT pointers

link X into a list containing all nodes sorted by name ID. The X.NuMPREv and

X.NUMNEXT pointers link X into a list containing all nodes sorted by numeric ID.

The X.LEVELPREV and X.LEVELNEXT pointers link X into the single level list in

which it participates: that is, the list at level X.LEVEL containing nodes that have

the same first X.LEVEL bits in their numeric IDs as X. As in SkipNet, each level list

is sorted by name ID.

Additionally, there are pointers between levels. X.MoTHER points into the list of

nodes with level equal to X.LEVEL + 1, with numeric ID matching the first X.LEVEL

bits of X.NuMID, and with (X.LEVEL +)-th numeric ID bit equal to 0. Of these

nodes, X.MOTHER points to the node whose name ID is closest but less than X's,

or it points to NIL if no such node exists. X.FATHER is defined identically except its

(X.LEVEL + 1)-th bit must be 1.

Lastly, X.FIRSTCHILD points into the list of nodes in level X.LEVEL - 1 whose

numeric IDs match the first X.LEVEL - 1 bits of X.NuMID. Amongst these nodes,

X.FIRSTCHILD points to the node whose name ID is closest but greater than X's, or

it points to NIL if no such node exists.

For example, consider the node with name ID "N" in Figure 2-1, which we will

denote N. Node N is linked into the list sorted by name ID and the list sorted by

numeric ID. Since N has chosen level 1, it belongs to one of the two level 1 lists,

according to the first bit of its numeric ID. This bit is 0, so N belongs to the same

level 1 list as "B", "H", and "T". The first child of N is "O" because this is the next

name after "N" in the sole level 0 list. Node "R" is also a child of N. Node "M" is

the closest node to "N" in the level 2 list corresponding to numeric ID prefix 00, so

node "M" is N.MOTHER. Similarly, node "G" is N.FATHER as it is the closest node

to "N" in the level 2 list with prefix 01.

39

4.2 Estimating n

In order to choose a level, each node must estimate n. For this, we use the estimation

procedure of Viceroy. Let X be a node and Y be its successor in numeric ID space.

(The last node in the list will take the first as its successor.) Then, regarding the nu-

meric IDs as real numbers in [0, 1), we estimate n as no = 1/d(X.NuMID, Y.NuMID),

where d(x, y) =y - x mod 1. The expected value of d(X.NuMID, Y.NuMID) is !

since there are n nodes in the network, so the average value of n0o should normally

be close to n. However, this estimate may be substantially incorrect. Thankfully,

we only need the log of this estimate. We will now show that every node estimates

lg no = O(lg 1,) with high probability. 2

Proposition 4.2.1. Every node estimates no such that lg(n/(c + 2) n n)J < Llg noJ <

[(c + 2) lg nJ, for any constant c, with high probability.

Proof. First, we will argue the lower bound. Let d = 1/(n/(c+2) In n) = (c+2) In n/n.

For a node X. to estimate n smaller than 1/d, every other node must have chosen a

numeric ID outside of the range of length d after X.NuMID. 3 The probability that

X estimates ri this small is (1 - d)' - l = (1 - d)n/(l - d) < n(1 - d) < nexp(-dn) =

n exp(-n(c + 2) In n/n) < n exp(-(c + 2) In n) = l/nc+l. Thus, the probability that

any node estimates n this small is less than n/nC+l = 1/nc.

Now, we argue the upper bound. Let d = 1/nc+2. Fix a node X. The probability

that some other node Y has a numeric ID within the range of length d after X.NuMID

is d. Thus, the probability that X estimated n > 1/id is at most (n - 1)d = (n-

1)//n c + 2 < ll/nc+ . Thus, the probability that any node estimated n > 1/d is less

than /nz+l == 1/1C

We have shown that the desired bounds hold without the floors. Taking the floor

of the estimate and both bounds can only increase the probability that the bounds

hold (if it was true before, then it is true with the floors), so the proof is complete.

2Throughout this thesis, we say that X is "O(f(n)) with high probability" to mean that there
exists an a > 0 such that Pr(X > caf(n)) < 1/n c for any c > 1 and for sufficiently large n.

31f X.NuAMID is near to 1, then this range will be in two pieces: one at the end of [0, 1) and one
at the beginning.

40

An advantage of this method for estimating n is that each node's estimate is

only dependent on the distance to its successor in the numeric ID list. Thus, each

node needs to change its estimate only when its successor changes, which will make

insertions and deletions efficient. We will discuss this aspect further in section 4.5.

A notable disadvantage of this method is that it makes the levels dependent on

the numeric IDs. Furthermore, the levels themselves are not independent. If X has a

level of i, then we know that there is some node whose numeric ID falls at most 1 /2i+1

after its own. This means that some other node estimated no < (n - 1)/(1 - 1/2i+1)

and thus has a level at most lg(n - 1)/(1 - 1/2i+1)] - 1. Clearly, this is a small

amount of dependence: we have only shown that some node estimated no to be

slightly less than what we would expect to be its average value. However, even this

small amount; of dependence complicates analysis. And as we have seen the levels of

more and more nodes, the amount of knowledge about the levels of the remaining

nodes increases. This issue of dependence also exists for Viceroy, although it was not

discussed explicitly in their analysis.

To handle this difficulty, we use the following approach. Proposition 4.2.1 shows

that every node X estimates n. reasonably with high probability, where reasonably

means that Pr(X.LEVEL = i I X estimated n reasonably) is within a constant fac-

tor of 1/lgn. This yields a bound on Pr(X.LEvEL = i) as follows. In general,

if .E is some event that holds with high probability and F is any other event, we

can bound Pr(F) using Pr(FIE) and an additional error term. Specifically, we have

I Pr(F) -Pr(FIE)I < 1/nc. As long our probability and expectation bounds introduce

no more than nc' such error terms, for some fixed a, we can use Pr(F) and Pr(FIE)

interchangeably while only introducing an error term of 1/nc- - l. By choosing suit-

ably large c, this error term disappears in the O-notation. In the analysis below, we

can assume that all nodes estimate n within the bounds of Proposition 4.2.1 whenever

convenient because we will not need to introduce more than O(n) error terms. Thus,

we will ignore error terms in the proofs below in order to keep the explanations clear.

To simplify notation, we will let the c in Proposition 4.2.1 be fixed and define the

following notation for the upper and lower bounds.

41

Definition 4.2.1. The minimum level estimate is Lmin = Llg(n/(c + 2) Inn)J and

the maximum level estimate is Lma = (c + 2) Ig n .

4.3 Global Properties

Now that all data held by each node has been defined, we examine some global

properties of Family Trees.

Proposition 4.3.1. If all name IDs, numeric IDs, and levels are given, then the

Family Tree has only one possible shape.

Proof. Since we do not allow duplicates, the name ID list has only one possible

shape. Similarly, the numeric ID list has only one possible shape. Each node belongs

to exactly one level list according to its level and the relevant bits of its numeric

ID. Each such list is sorted, so they can have only one shape. Lastly, the MOTHER,

FATHER, and FIRSTCHILD pointers are completely determined by the shape of the

level lists. O

Corollary 4.3.1. The probability that a Family Tree has a given shape is independent

of history.

Proof. By Proposition 4.3.1, the current shape of the data structure depends only on

the name IDs, numeric IDs, and levels of the items currently in. the dictionary. The

name IDs and numeric IDs themselves are clearly independent of history. As long

as each node chose its level by estimating n using its current successor (not a past

successor), then the probability distribution of the levels is independent of history.

We will ensure that this is true by having a node choose a new level whenever its

successor changes. O

The above properties are important because they imply that we can analyze each

operation on the Family Tree independently of all the operations that occurred before.

If this were not the case, we would have to consider all sequences of operations in our

analysis, which would complicate matters significantly.

42

Next, we turn to properties of Family Trees that will be useful in analyzing the

performance of search and update operations. For all operations, it is necessary to

bound the number of levels in the data structure since it may be necessary to visit

all of them. Thanks to our earlier proposition, we can bound this very tightly.

Theorem 4.3.1. The data structure has no more than (c + 2) lgn levels with high

probability.

Proof. By Proposition 4.2.1, no node estimated lg no larger than this. Hence, no node

could have chosen a level larger than this. O

Since the nodes at level L are separated randomly into 2L lists, the expected

length of these lists is roughly n/2L lg n.4 The following result shows that, at all but

the highest levels, the actual length is within a constant factor of this expected length

with high probability.

Theorem 4.3.2. Every list at level L lgn - 2 Iglgn - lg(c(c + 2)) is of length

O(n/2L lgn) with high probability. Every list at a higher level is of length O(lgn)

with high probability.

Proof. We first look at levels L < lg n -2 lg Ig n -lg(c(c+ 2)). We will prove the lower

bound; the upper bound is similar. Let be the expected length of the list. For any

L in this range, we can see that u > n/2LLmax = clg n. Then, for any 6 E [0, 1), we

have Pr(X < (1 - 6)/) < 22-62/ /2 < 1/n 62 /2, by the Chernoff bound.

For levels higher than this, the Chernoff bound is not useful because the mean is

o(lg n). However, it is clear that the probability of being in such a list is smaller than

the probability of being in the list at level lg n - 2 Iglg n. Thus, we can bound the

length of those lists by the length of the list at lg n - 2 lg lg n, which is O(lg n) as we

saw above. O

An important issue for our algorithms is whether the list at a given level is empty

or not. Empty lists could be problematic because they mean that any higher levels

(if present) are disconnected from other levels (since their child pointers are NIL).

"Recall again that we are ignoring lower order terms due to the dependence between levels.

43

The following theorem shows that we can rule out the possibility of empty lists for

all levels up to nearly Lmin.

Theorem 4.3.3. Let L = lg n - 2 lglg n - 2 lg(c + 2). Every list in the family tree

with level at most L is non-empty with high probability.

Proof. The probability that a list at level k is empty is at most (1-1/(2k(c+2) lg n))n.

If k < L, then this bound is at most (1- (c+2) lgn/n) < e- (c+2)lgn = 1/nc+2. Next,

observe that the total number of lists in levels 0 to L is at most 2L+1 < 2n. Thus,

applying a union bound over all lists yields the desired result. O

The preceding discussions focused on properties of the levels and their lists. Next,

we will look at properties that hold for arbitrary individual nodes in a family tree. Let

X be a node in a family tree. Both X.FIRSTCHILD and X.LEVELNEXT.FIRSTCHILD

point to nodes in the same list (at level X.LEVEL - 1). Consider the number of nodes

in this list whose name IDs fall between X.NAMEID and X.LEVELNEXT.NAMEID.

This is an important concept, so we give it a name.

Definition 4.3.1. Let X be a node. Let L be the level list containing X.FIRSTCHILD.

We denote by CHILDREN(X) the sublist of £ containing all nodes Y such that

X. NAMEID < Y.NAMEID and Y.NAAEID < X.LEVELNEXT. NAMEID.

Intuitively, we would expect every node to have about two children since the lower

level list is about twice as long. The following theorem shows that the expected length

is indeed a constant.

Theorem 4.3.4. For any node X, ICHILDREN(X)[is 0(1) in expectation and O(lg n)

with high probability.

Proof. Consider the process of traversing the name ID list, starting at X, and choosing

a numeric ID and level for each of the nodes. Let C denote the list at level X. LEVEL- 1

containing X's children. Our goal is to count the number of nodes that are chosen to

belong to C before choosing X's successor in its level list. This process is a sequence

of trials with three outcomes: on a "success", we have chosen X's successor; on a

44

"failure", we have added a new node to C; otherwise, we have a "retry", indicating

an unrelated node. Equivalently, we can eliminate the "retry" outcome by thinking

of each trial as continuing until the first success or failure. Since there are now only

two possible outcomes, it is a Bernoulli trial. Call a success in the Bernoulli trial

a "heads" and a failure in the Bernoulli trial a "tails". The remainder of the proof

bounds the number of tails before the first heads.

First, we must bound the probabilities of success and failure in the three-outcome

trial. Let k =- X.LEVEL - 1. For the probability of success (finding X's successor in

its level list), we have

Pr(success)

Pr(success)

> 1/2 klLmax = 1/2k+l(c + 2) lgn

< 1/2k+1Lmin = 1/2 k+1 lg(n/(c + 2) In n)

For the probability of failure (finding another node in C), we have

Pr(failure)

Pr(failure)

> 1/2kLmax = 1/2k(c + 2) lgn

< 1/2kLmi, 1 /2klg(n/(c + 2) inn)

Using these, we can bound the probability of a tails. Let Pr(failure) = a/2k lgn.

Then we have

Pr(tails) = Pr(failure)/(Pr(failure) + Pr(success))

< (a/2k lgn)/(a/2klggn + 1/2k+l(c + 2) lg n)

= a/(a + 1/2(c + 2))

= 1/(1 + 1/2(c + 2)a)

To get an upper bound for Pr(tails), we apply an upper bound for (a. By definition of

a, we have < lg n/ lg(n/(c + 2) In n). For sufficiently large nr, we can bound a < 2.

Thus, for sufficiently large n, we can bound Pr(tails) by some constant p < 1. Then,

the expected number of tails before the first heads is less than p/(1 - p) = 0(1) as

45

this follows a negative binomial distribution. This shows that the expected number

of children is 0(1).

To complete the proof, we compute a high probability bound on the number of

children. The probability that we see at least k tails before a heads is pk. If we let

3 = l/p, then picking k = clogo 2 1gn gives a probability of 1 //3cl° ga21gn - 1/nc. O

Having defined the children of a node, we now define the parents.

Definition 4.3.2. For any node X, let PARENTS(X) = {Y I X C CHILDREN(Y)}.

A slight variation on the proof of Theorem 4.3.4 yields the following result.

Theorem 4.3.5. For any node X, PARENTS(X)I is 0(1) in expectation and O(lgn)

with high probability.

The previous theorems examined the level lists. We now focus on the name ID

list and the numeric ID list, both of which contain every node. The next theorem

shows that no matter where we are in the name ID or numeric ID list, there is always

a nearby node that is at a given level (provided that level is not too large).

Theorem 4.3.6. The distance in the name ID list (or numeric ID list) from a node

X to the nearest node at level L E {O,..., Lin, - 1} is O(lgn) in expectation'and

O(lg2 n) with high probability.

Proof. As in the proof of Theorem 4.3.4, imagine traversing through the name ID

list (or numeric ID list) and choosing the level of each node as we encounter it. The

expected distance to a node at level L is

E[distance] < Z°° i(1- 1/Lmax)i-l(1/Lmin)

= (/Lmin)Z0i i(l-l /Lmax<)

- (1/Lmin)/(1 -(1 - 1/Lmax))2

= Lmax/Lmin

O(lg n)

46

The probability that there are no level i nodes within a distance of kLma, is less

than (- 1/Lmax)kLm= < e- k. If we choose k = c Inn, then there are no level i nodes

within a distance of c(c + 2) lg n In n = O(lg2 n) with probability less than 1/nc. a

Another variation on the proof of Theorem 4.3.4 yields the following result, which

counts the number of "descendants" of a given node.

Theorem 4.3.7. Let X be a node at level L. The number of nodes whose name ID is

between X.NAMEID and X.LEVELNEXT.NAMEID is 0(2 Llgn) in expectation and

0(2 L lg2 n) with high probability.

4.4 Lookup Operations

In this section, we will describe the lookup operations and analyze their performance.

In the next section, we will consider update operations.

The LOOKUP-BY-NAME-ID operation searches from a start node to find the

node whose NAMEID is closest but less than or equal to a given destination name.

Figure 4-2 contains the pseudocode for this operation. For the sake of simplicity, we

have assumed that the destination name is greater than the start node's name. The

other case is similar.

While similar in spirit to the LOOKUP-BY-NAME-ID algorithm of SkipNet, the

Family Tree version must deal with much added complication. As in SkipNet, the

plan is to start at a high level and move downward. Each time we move down a level,

we further narrow in on the position of the destination.

In SkipNet, every node is at both high and low levels, so we can begin moving

downward immediately from the highest level in the start node. In Family Trees,

however, the start node may not be at a high level. Or the start node may be at

too high of a level. Even if we move immediately down to the child node, we may

advance far past the destination. WVe solve both problems by first searching through

the name ID list for a nearby level 0 node. This is accomplished by the call to

LINEAR-SEARCfH-FOR-LEVEL-O.

47

LOOKUP-BY-NAME-ID(start, dest)
37 X- LINEAR-SEARCH-FOR-LEVEL-O(start, dest)
38 X FIND-CLOSEST-AT-LEVEL-O(X, dest)
39 X LINEAR-SEARCH-FOR-DESTINATION(X, dest)
40 return X

LINEAR-SEARCH-FOR-LEVEL-O(X, dest)
4:1 while X.NAMENEXT NIL and

4:2 X.NAMENEXT.NAMEID < dest and
43 X.LEVEL > 0
44 do X .- X.NAMENEXT
45 return X

FIND-CLOSEST-AT-LEVEL-O(X, dest)
46 left - X.NAMEID
47 while true
48 do if X.LEVELNEXT = NIL or
49 dest < X.LEVELNEXT.NAMEID
50 then break
51 P - X.IMOTHER or X.FATHER at random
52 if P i' NIL
53 then X P
541 else break
55 X +- LEVEL-SEARCH-BY-NAME-ID (X, left)
56 while true
57 do if X.LEVEL > 0
58 then X -- X.FIRSTCHILD
59 else break
60 X e-- LEVEL-SEARCH-BY-NAME-ID (X, dest)
61 return X

LEVEL-SEARCH--13Y-NAME-ID(X, name)
62 while X.LEVELNEXT y7 NIL and
63 X.LEVELNEXT.NAMEID < name
64 do X -- X.LEVELNEXT
65 while X.LEVELPREV 4 NIL and
66 name < X.NAMEID
67 do X +-- X.LEVELPREV
68 return X

LINEAR-SEARCH-FOR-DESTINATION(X, dest)
69 while X.NAMENEXT y! NIL and
70 X.NAMENEXT.NAMEID < dest
71 do X -- X.NAMIENEXT
72 return X

Figure 4-2: LOK-BY-NANIE-ID finds the node whose name ID is closest to the given
destination.

48

Once we have found a level 0 node, we use parent pointers to move up to a high

level. We continue to advance until we get to a level high enough that the next

node in that level list is beyond the destination. This is where the SkipNet lookup

would start. From here, we can move down levels in a manner analogous to SkipNet.

Both the upward and downward parts are performed by FIND-CLOSEST-AT-LEVEL-

0. This routine starts at the closest level 0 node to the start node and finishes at the

closest level 0 node to the destination. Each time we move up or down a level, we

call LEVEL-SEARCH-BY-NAME-ID to make sure we stay at the node closest to the

name in question. On the way up, we stay at the node closest to the name ID of the

level 0 node at which we started. On the way down, we stay at the node closest to

the lookup value. The lookup switches from upward to downward movement when

we reach a high enough level that the closest node to the start name ID is also closest

to the lookup value. (At the highest level, the list would contain only a single node,

so this would be satisfied trivially.)

In SkipNet, the lookup ends when we reach the bottom level since every node

is in the level 0 list. However, in Family Trees, this list contains only the level 0

nodes. We find the node that is closest overall by again searching through the name

ID list, which contains all nodes. This search is implemented in LINEAR-SEARCH-

FOR-DESTINATION. The correctness of the algorithm is assured by this last linear

search. Even if FIND-CLOSEST-AT-LEVEL-0 left us far from the destination, this

linear search will make sure we return the correct node.

Next. let's analyze the performance of this algorithm. Theorem 4.3.6 shows that

LINEAR-SEARCI-FOR-LEVEL-0 requires O(lgn) hops in expectation and O(lg 2 n)

hops with high probability. Since the number of levels is O(lg n) with high probability,

the two loops in FIND-CLOSEST-AT-LEVEL-0 will execute no more than O(lgn)

times. Each iteration of the loops makes 0(1) hops except for the call to LEVEL-

SEARCH-BY-NAME-ID. Each node traversed in this call is a parent of the sucessor of

the node reached by the previous iteration. Thus, the total number of hops is 0(1) in

expectation and O(lg n) with high probability by Theorem 4.3.5, and the total number

of hops for LEVEL-SEARCH-BY-NAMIE-I D is O(lgn) in expectation and O(lg n)

49

with high probability.5 Lastly, the analysis of LINEAR-SEARCH-FOR-DESTINATION

is identical to that of LINEAR-SEARCH-FOR-LEVEL-0 since the number of hops is

just the distance from the destination to the closest node at level 0. Thus, we have

shown that LooKUP-BY-NAME-ID requires O(lg n) in expectation and O(lg2 n) hops

with high probability.

Note that the pseudocode presented in Figure 4-2 is sequential. A distributed

implementation would execute various portions of that code at different nodes. As

a practical nmatter, distributed nodes would cache the name IDs of their neighboring

nodes. Using this cache, the distributed search algorithm can determine that a node

is beyond the destination without accessing it. We will assume that such caching

occurs for the analysis below.

Next, we will show that Family Tree name ID lookups have good locality. First,

recall that the algorithm begins by finding a nearby level 0 node. To see why this

first phase is important for locality, suppose that the start node is at a high level and

that the destination name is very close to that of start node. In this case, the start

node's LEVELNEXT and FIRSTCHILD pointers are both likely to point well beyond

the destination node, so traversing them would result in poor locality. Instead, we

find a nearby node at level 0 where the expected distance to its successor in the level

list is as small as possible.

The two linear searches performed in the name ID lookup algorithm have strict

locality. They will never access any node whose name ID is not between those of the

start and destination nodes. However, the upward part of the algorithm in FIND-

CLOSEST-LEVEL-0, as written, could access a node outside this range when it follows

a parent pointer. W\e could achieve strict locality here as well by adding a second

mother and father pointer that point to the node whose name ID is closest but greater

than the node in question. This would allow us to determine that we have reached

the highest level necessary without stepping outside the range between the start and

destination nodes. We would similarly need to add a child pointer that points to the

SThere is slack in this part of the argument. It can be shown that LEVEL-SEARCH-BY-NAMIE-ID
requires O(lg n) hops with high probability. However, since this would not improve the bounds for
the algorithm overall, we omit the more complicated argument.

50

node whose name ID is closest but less than the node in question. So with three

additional pointers, we could get strict locality.

However, even without these additional pointers, we have locality in a probabilistic

sense. Specifically, we can show that the expected maximum distance that we will

step outside the range from the start to destination nodes is O(D), where D is the

distance between the start and destination nodes in the name ID list. We will argue

this for the upward part of the algorithm. The argument for the downward part is

symmetric.

First, by Theorem 4.3.7, the expected distance from the leftmost node traversed

at level j to start is 0(2J lg n). We can bound the expected maximum distance of all

nodes traversed up through level j by the expected sum of these distances. Since these

distances increase geometrically, this sum is also 0(2i Ign). Next, we can condition

the expected maximum distance on the highest level reached, which will be j for

the previous calculation. Define h to be the smallest value such that D < 2h lg n.

Intuitively, we would expect that the highest level reached is h or higher. A short

calculation that shows that the probability that the highest level reached is h + i is

at most 1/ 2i(i-1)/2. Since these probabilities decrease exponentially faster than the

conditioned maximum distances increase, the expected maximum distance is O(D).

Next, we turn to lookups by numeric ID. Again, the algorithm is similar in spirit

to that of SkipNet but with added complication. The pseudocode of this operation,

shown in Figure 4-3, is shorter than that of name ID lookup because it reuses several

of those routines.

As with name ID lookups, we must first find a level 0 node. This is accomplished as

before by a call to LINEAR-SEARCH-FOR-LEVEL-0. Then, we move upward according

to the bits of the lookup value. As with name ID lookup, a SkipNet lookup complete

once we reach the top-most list, whereas in Family Trees, the top-most list only

contains the closest node in that level, not the closest node overall. To find the true

destination, we perform a linear search in the numeric ID list by calling LINEAR-

SEARCH-BY-NUM- ID.

The pseudocode adds a bit more complication by allowing finite sequences of bits

51

LOOKUP-BY-NUM-ID(start, bits)
73 name -- start. NAMEID
74 X - LINEAR-SEARCH-FOR-LEVEL-O(start, name)
75 while true
76 do if X.LEVEL = I bits I
77 then return X
78 if bits [X.LEVEL] = 0
79 then P - X.MOTHER
80) else P X. FATHER
8:1 if P =: NIL

82 then break
83 X - L]EVEL-SEARCH-BY-NAME-ID(P, name)
84 X- LINEAR-SEARCH-BY-NUM-ID(X, bits, I bits |)
85 if bits < ox
86 then X - LEVEL-SEARCH-BY-NAME-ID(X, name)
87 return X

LEVEL-SEARCH-BY-NUM -ID(X, value)
88 while X.LEVELNEXT 4 NIL and
89 X.LEVELNEXT.NUMID < value
90 do X -- X.LEVELNEXT
91. while X.LEVELPREV NIL and
92 value < X.NuMID
93 do X -- X.LEVELPREV
94 return X

Figure 4-3: The LOOKUP-BY-NuM-ID function finds the node whose numeric ID is
closest to the given value.

52

to be looked up. Any real input can always be considered to be infinite by appending

zeros. These finite sequences are used in the case where we want to find the closest

node in a particular level. The level is given by the length of bits. We can see that

the pseudocode will terminate early in this case. This behavior will be used for the

update operations discussed in the next section.

Lastly, let's analyze the performance of this algorithm. The last subsection

showed that LINEAR-SEARCH-FOR-LEVEL-0 requires O(lgn) hops in expectation

and O(lg2 n) with high probability. The upward part of this algorithm is identical to

that of name ID lookup (except that the parent choices are given), so the same time

bounds apply. The performance of the last part of the algorithm, LINEAR-SEARCH-

BY-NUM-ID, depends on the level reached in the second phase. By Theorem 4.3.3,

we will reach at least level k = lg n- 2 lglgn - 21g(c + 2) with high probability.

This leaves a range of size at most 1/ 2 k = lg2 n. lg 2(c + 2)/n in numeric ID space to

be searched, so the expected number of nodes we will traverse in LINEAR-SEARCH-

BY-NuM-ID is O(lg2 n). Since this is Q(lg n), the Chernoff bound implies that the

number of nodes we will actually search within a constant factor of its expected

length with high probability. Putting this all together, we have shown that numeric

ID lookup reqcui:res O(lg2 n) hops with high probability.

To get a bound on the expected number of hops in LINEAR-SEARCH-BY-NUM-

ID, we need to do a little more work. First, notice that if we get to level Lmin,

the expected number of nodes we will search is (c + 2) in n. For higher levels, the

expected number of nodes can only be smaller. Thus, if we get to a level this high,

the expected number of hops is O(lg n). So now, our only worry is for levels between

lgn -2 lg lgn -2 1g(c + 2) and Lmi = lg n- lg Inn - lg(c + 2). We can compute

the expected value in these cases by conditioning on the last level we reach. We will

53

write each such level as Lmin - k, where k ranges from 0 to lg[(c + 2) lg n].6

E[hops]

lg[(c+2) lg n]

E Pr (Lmin + k is last level) E [hops I Lmin + k is last level]
k=O

Next, we can use the fact that the probability that the last level is L, which is the

probability that none of the levels up to L are empty but level L + 1 is, is no more

than the probability that level L + 1 is empty. Thus, we can see that the expected

number of hops is

lg[(c+2) lgn] n

E[hops] < E (1 - 2Lmin-k+lLma x 2Lmill-k

k=Olg[(c+2) Ig n] 2(ln2/2)

< E 1- t(c + 2) Inn
t=2k=1

(c+2) lg n

< S exp(-(ln2/2)t)t(c + 2)lnn,
t=1

O(lg n)

This last part follows since

that LOOKUP-BYE-NUM-ID

with high probability.

f1 ° te - t integrates to a constant. Thus, we have shown

requires O(lgn) time in expectation and O(lg2 n) time

As we saw in chapter two, SkipNet also supports name-constrained numeric ID

lookups, which as we saw in chapter three, is a very useful operation. It is not at

all clear that Family Trees can support this operation. We will address this issue

in detail in chapter five after we have discussed modifications to these algorithms to

improve their performance in practice.

'We should take the floors of these numbers to make sure they are integers. However, this only
affects lower order terms that disappear in the O-notation. So we will ignore these sorts of issues
for clarity in this argument.

54

4.4.1 Congestion

Another important property of SkipNet lookups is that they spread the load of re-

quests evenly across the network, assuming that the requests themselves are spread

evenly. This is in contrast to, say, a balanced binary tree, where half of all paths from

one node to another go through the root node. In this section, we will make these

notions precise and prove that Family Trees share the same property.

We define the congestion at node X to be the probability that a search operation

with source S and target T, chosen uniformly at random, traverses X. For example,

the congestion at the root node of a balanced binary tree is at least (~)2/() = O(1).

Congestion of (-)(lgn/n) is optimal when the nodes have constant degree because

(lg n) nodes must be traversed in most search paths. The theorem below shows

that Family Trees achieve the optimal bound.

This definition of congestion at a node is a probability where the unknown random

variables are the numeric IDs and levels of all nodes in the data structure, the random

bits used in the search itself, and the choice of S and T. If we imagine exposing the

random bits used by every node in the data structure, then we could look at the

congestion of the Family Tree, which is defined to be the maximum congestion at

any node. (Note that this is a probability on the unexposed random variables.) The

maximum congestion at any node in the network is important theoretically and in

practice. The following theorem also shows that the congestion of a Family Tree does

not deviate much from the congestion at an arbitrary node.

Theorem 4.4.1. The congestion at any particular node in a Family Tree is O(lg n/n).

The congestion of the Family Tree is O(lg2 n/n) with high probability.

Proof. We will analyze LooKUP-BY-NAME-ID. The analysis for LOOKUP-BY-NUNM-

ID is nearly identical. Let X be any node in the family tree. X could be traversed

during any of the four parts of the search algorithm: (1) linear search for a level 0

node, (2) moving up to a high level, (3) moving down to the closest level 0 node, and

(4) linear search for the destination. Wie will consider each in turn and show that, in

each, the probability that X is traversed is O(lg n/n) in expectation and O(lg2 n/n)

55

with high probability 7 .

To be traversed in the first part, X must lie between S and the closest level 0 node

to the right of S. Theorem 4.3.6 showed that this distance is O(lg n) in expectation and

O(lg2 n) with high probability. Thus, the probability that X lies between a randomly

chosen S and its closest level 0 node is O(lg n/n) in expectation and O(lg2 n./n) with

high probability.

For the node X to be traversed in the second part (upward movement), both

of the following conditions must hold. First, the X.LEVEL random parent choices

must match the corresponding bits of X's numeric ID. This occurs with probability

1/2XLEEL. Second, S must be between X and X.LEVELNEXT.FIRSTCHILD. Since

all. nodes traversed in the upward search are before S, we will not traverse X if S

is before it.8 If S is after X.LEVELNEXT.FIRSTCHILD, then the closest node to S

in the previous level is to the right of X.LEVELNEXT, so the parent of that node

will be X.LEvELNEXT or further to the right. WVle can use two applications of Theo-

rem 4.3.7 to bound the number of nodes between X and X.LEVELNEXT.FIRSTCHILD

as 0(2 x LE VEL lg n). Thus, the probability that a randomly chosen S is in this set is

0(2 X LEVEL ig n1/n) in expectation and 0(2 x. LEVEL lg 2 n/n) with high probability. Since

these two conditions are independent, we can multiply them to show that the probabil-

ity that X is traversed in the second phase is O(lg n/n) in expectation and O(lg2 n/n)

with high probability.

The analysis of the third part (downward movement) is symmetric to that of the

second, and the analysis of the fourth part is identical to that of the first. Adding

together the congestion due to each phase, we obtain a bound of O(lg n/n) in expec-

tation and O(lg2 n/n) with high probability. 0

7By "in expectation" and "with high probability", we are referring to the outcome when the
structure of the Family Tree is revealed, which is still a probability over the randomness used in the
search and the choice of start and destination. The expected value of this probability is identical to
the probability when no information is known, which is our definition of congestion at the node.

'We ignore the case where S is before X but the closest level-O node is after X. This is coun-
terbalanced by the analogous case where S is between X and X.LE'VELNEXT.FIRSTCHILD but the
closest level-0 node is not, which we do include in the probability.

56

4.5 Update Operations

In this section, we describe the insert and delete operations and analyze their perfor-

mance. Analogous congestion bounds follow immediately from the definitions of the

operations.

Pseudocode for joining a new node into the network is shown in Figure 4-4. Most

of the work required is accomplished by calls to the search operations described in

section 4.4. Finding the predecessor of the new node in the name ID list is a simple

matter of calling LOOKUP-BY-NAME-ID. Once this predecessor has been found, link-

ing the node into this doubly-linked list just requires updating four pointers. Inserting

the new node into the numeric ID list is identical except that the call is instead made

to LOOKUP-BY-NUM-ID. These two parts are accomplished by the calls to. After

this, it remains to set the level list pointers and the inter-level pointers.

In order to choose a level for the new node X, we must first compute the estimate

e : [lg nJ. To do this, we subtract the numeric IDs of X and its successor (mod

1) and find the first non-zero bit. This will be found before the (clg n)-th bit with

high probability. Next, we choose X.LEVEL uniformly at random from {0O,..., - 1}.

Once X has a level, we perform a LOOKUP-BY-NUM-ID, using just the first X.LEVEL

bits of X.NuMID, to find the predecessor of X in its level list. (See section 4.4 for

more information on numeric ID lookups using finite seqeunces of bits.) Similarly,

we! can find X.FIRSTCHILD by performing a LOOKUP-BY-NUM-ID using just the

first X.LEvEL -- 1 bits of the numeric ID. We then enumerate all the children of X

and update their appropriate parent pointers to point to X. We handle X.hIoTHER

and X.FATHER similarly. It is worth noting that most of these calls to LOOKUP-BY-

NuM-ID will be retracing the steps of other calls. It would be a simple matter to

remove this in a real implementation. However, we have written each call as separate

to simplify both the pseudocode and its analysis.

Lastly, we turn to the predecessor of X in the numeric ID list. As mentioned in

the proof of Corollary 4.3.1, we must allow this node to re-estimate n and choose a

new level. This ensures that the shape of the Family Tree is independent of history.

57

JOIN(X)
95 pred LOOKUP-BY-NAME-ID(X, X.NAMEID)
96 ADD-TO-NAME-ID-LIST(X, pred)
97 pred =: LOOKUP-BY-NuM-ID(X, X.NUMID)
98 ADD-TO-NUM-ID-LIST(X, pred)
99 ADD-TO-LEVEL(X)

100 REMOVE-FROM-LEVEL(pred)
101 ADD-TO- LEVEL(pred)

ADD-TO-LEVEL(X)
102 X.LEVEL +- RANDOM(O, ESTIMATE-N(X)-- 1)
103 pred -- LOOKuP-BY-NUM-ID(X, X.NuMID [1... X.LEVEL])
104 ADD-TO-LEVEL-LIST(X, pred)
105 X.MOTHER +-- LOOKUP-BY-NUM-ID(X, X.NuNID [1... X.LEVEL] + [0])
106 X.FATHER t- LOOKUP-BY-NUM-ID(X, X.NuMID [1... X.LEVEL] + [1])
107 ADD-CHIILD(X.MOTHER, X)
108 ADD-C HILD(X.FATHER, X)
109 X.FIRSTCHILD - LOOKUP-BY-NUM-ID(X, X.NUMID [1... X.LEVEL - 1])
110 ADD-PARENT(X.FIRSTCHILD, X)

ADD-CHILD(X, child)
:11 if X.NAMEID < child.NAMEID < X.FIRSTCHILD.NAMEID

112 then X.FIRSTCHILD = child

ADD-PARENT(X, parent)
11L3 while X : parent .LEVELNEXT.FIRSTCHILD
114 do if parent.NAMEID < X.NAMEID
115 then if X.MOTHER = parent.LEVELPREV
116 then X.MOTHER - parent
117 if X.FATHER = parent.LEVELPREV
118 then X.FATHER - parent
119 X - X.LEVELNEXT

ESTIMATE-N(X X)
120 before ,- X.NUMID < X.NUNMNEXT.NUNID
121 for i - to oc
122 do b *- X.NuMID [i]
123 b2 - X.NUMNEXT.NUMID [i]
124 if before
125 then b -- b2 - b
126 else b -- b1 +1- b2
127 if b = 1
128 then return i
129 if b:--= 2
130 then return i - 1

Figure 4-4: JOI:N adds a new node into the network. The three ADD-To-*-LIST
functions, which simply add a node into a linked list, have been omitted for the sake
of brevity.

58

LEAVE(X)
131 REMOVE-FROM-NAME-ID-LIST(X)
132 REMOVE-FROM-NUM-ID-LIST(X)
133 REMOVE-FROM-LEVEL(X)
134 REMOVE-FROM-LEVEL(X.PREV)
135 ADD-TO-LEVEL(X.NUMPREV)

REMOVE-FROC)m--LEVEL(X)
136 REMOVE-FROM-LEVEL-LIST(X)
137 REMOVE-CHILD(X.MOTHER, X)
138 REMOVE-CHILD(X. FATHER, X)
139 REMIO'VE-PARENT(X.FIRSTCHILD, X)

REMOVE-CHILD(X , child)
140 if X.FIRSTCHILD = child
141 then X.FIRSTCHILD = child.LEVELNEXT

REMOVE-PARENT(X, parent)
142 while X parent .LEVELNEXT.FIRSTCHILD
143 do if X.NMOTHER = parent
144 then X.MOTHER - parent.LEVELPREV
145 if X.FATHER = parent
1,46 then X.FATHER - parent.LEVELPREV
147 X -- X.LEVELNEXT

Figure 4-5: LEAVE removes a node from the network. The three REMOVE-FROM-*-
LIST functions, which simply remove a node from a linked list, have been omitted for
the sake of brevity.

Note that the predecessor's numeric ID does not change, only its level does, so the

re--estimation process does not cascade to other nodes. The procedure for estimating

n and choosing a level was described in the previous paragraph. The procedure for

removing this node from its old level is described in the next subsection.

It is easy to see that the running time of JOIN is dominated by the six calls to

search operations. We argued above that computing the estimate of lg n takes O(lg n)

time with high probability. The only other work is updating the pointers. There are

only nine outbound pointers. The number of inbound pointers is O(lgn) with high

probability by Theorem 4.3.4 and Theorem 4.3.5. Thus, the total time required is

O(lg n) in expectation and O(lg2 n) with high probability.

The algorithm for separating a node from the network is even simpler. Pseudocode

59

is shown in Figure 4-5. No lookups are required for this operation. First, we remove

the node from the name ID, numeric ID, and level lists. Removing from the level also

requires updating any children and parents that may have been affected. Lastly, we

must allow the predecessor of the removed node to re-estimate n and choose a new

level, so that, the structure of the network stays independent of history. As mentioned

above, the re-estimate process does not cascade to other nodes.

The only significant work done by this algorithm is in iterating parents and chil-

dren. As we have already seen, the number of such nodes is O(1) in expectation and

O(lg n) with high probability. Thus, this algorithm requires 0(1) hops in expectation

and O(lg n) hops with high probability.

4.6 Conclusions

In this chapter, we have seen the design of Family Trees, the first ordered peer-to-

peer overlay network that uses only 0(1) pointers per node. We have seen that

Family Trees can perform name ID and numeric ID lookups. Name ID lookups have

locality, which can be made strict with the addition of three more pointers. All

of the operations (lookups and updates) are efficient, requiring only O(lgn) hops

in expectation and O(lg2 n) with high probability. And all of the operations have

optimal congestion in expectation.

In the next section, we will look at the performance of Family Trees in a practical

setting. In addition to confirming the theoretical work in this chapter, we will also look

optimizations for practical use and look at the issue of performing name-constrained

numeric ID lookups in Family Trees.

60

Chapter 5

Family Trees In Practice

In this chapter, we will look at results of experiments studying the performance of

Family Trees on actual networks. We begin with an overview of the experimental

setup. Second, we look at how to optimize Family Trees to reduce the total latency

of lookups (rather than the number of hops) and show experimental results demon-

strating their effectiveness. Third, we look at experiments that verify the theory of

the previous chapter, specifically the asymptotic performance of name and numeric

ID lookups in terms of hops per query and congestion in the network. Fourth, we

look at whether Family Trees can implement name-constrained numeric ID lookups.

We conclude in the last section.

5.1 Experimental Setup

For our experiments, we implemented the Family Tree and SkipNet protocols on top

of a network simulator. We used the p2psim network simulator [9] developed at

MIT. This allowed us to run, on a single machine, experiments that simulated large

numbers of nodes connected by a vast network.

A central concern in any simulated network is the model used to generate the

network. Previous simulations have used models such Transit-Stub [28], Mercator

[25] and King [11]. It is important to note, however, that these models differ only

in -the latencies seen in the network. It is assumed that the underlying network is

61

connected (any node can send to any other), so only the delay in sending can vary

from one model to another. 1 Only the results of section 5.2 are dependent on these

latencies. Thus, the results of every other section are unaffected by the differences

between these models.

Unlike simulations of unordered networks, however, we also require that our net-

work model generate friendly names for each node. Since none of the models men-

tioned above generates these names, we had to do so ourselves. However, these models

are not all equal with respect to how well they facilitate the generation of names. For

our experiments, we choose the Transit-Stub model because it provides the most help

for generating names.

The Transit--Stub model directly simulates the hierarchy of the Internet. It starts

with a random graph, which models the interconnections between transit networks

in the Internet. Each of these nodes is then replaced with a random graph, which

becomes a transit network. Each node in a transit network is then connected to

some number of stub domains, which are also random graphs. Each stub domain is

intended to model the network of an organization (such as a university or company),

with nodes being its routers. The individual machines of that organization would be

connected to the router nodes.

Transit-Stub does not model the hierarchy within an organization. The network of

a large organization most likely does not look like a random graph. A university, for

example, probably has networks for each building or department, which are connected

together by a university-wide transit network. The network within a department may

be separated into floors or groups.

Our intention is to model the hierarchy that shows through in domain names,

which we use as name IDs. Realistically, we can expect to see at most four levels of

hierarchy in practice, with levels corresponding to organizations, departments, groups,

and machines. In order to generate names of this form, we make one change to our

interpretation of the Transit-Stub models. These models only include a single level of

:If the network models the bandwidth between connections, then that too could vary. However,
we ignored bandwidth constraints, which were almost certainly not violated, in our study.

62

hierarchy in the stub domains (hosts are underneath routers). To get a second level,

we interpret all stubs attached to the same transit node as being part of the same

organization, with each individual stub domain corresponding to a department. In

this manner, we can generate name IDs for each node with up to four parts: transit

node (organization), stub domain (department), stub node (group), and machine. If

only a single stub domain is connected to a transit node, then names within that

organization will have only three levels of hierarchy.

It is clear that name IDs will better correlate to latencies when all four levels

of hierarchy are present. However, it is important to note that this correlation will

not degrade much when only three levels are present. This is because the level that

is most likely missing is the group level. If this level is removed from the domain

names, then the names will not correlate well with distances between members of

the same department. However, these distances are very small compared to the

distances between departments and between organizations. Thus, removing this level

reduces the correlation of names and distances by only a small amount, so general

performance, when measured in terms of latency, will likewise degrade by at most a

small amount.

In our experiments, we used the tsOO sample model provided with the Transit-

Stub model generators. This model includes only a single transit domain. Since

the hierarchy of the transit domain is not reflected in domain names, using a single

random graph for the transit layer is a worst case for us. The model includes (on

average) four organizations. Each organization has (on average) three departments.

(Since there are four organizations, often one of them will have have only a single

department and, hence, only three levels of hierarchy.) Each department includes (on

average) four groups. This gives a total of 96 stub nodes (routers). We assign 1000

hosts to these routers uniformly at random.

Each result presented below is averaged over 40 trials with those parameters. The

ts100 sample model includes 10 instances. We ran each experiment four times against

each instance (for a total of 40 trials) in order to average over the randomness that

is present in each trial (even with the same parameters).

63

Some other simulations (such as [12]) have been run on networks with as many as

100, 000 nodes. In our case, the choice of 1000 nodes was due mostly to the speed of

the simulator and the large number of trials (40) that we wanted to average the results

over. However, it is important to note that the advantage of Family Trees grows as

n gets larger. The gap between 2 lg n and 9 (the numbers of pointers in SkipNet and

Family Trees, respectively) grows as n gets larger. Furthermore, the high probability

bounds that we proved in the last chapter hold with higher probability as n gets

larger. Thus, 1000 nodes is more of a "worst-case" for Family Trees than the 100, 000

node networks that some others have tried, so it made a good choice for our study.

5.2 Optimizing for Latency

Experimental evaluations of peer to peer networks typically focus on latency as the

most important criterion. The number of hops per request is also very important

because (1) each hop directly consumes network and CPU resources and (2) it gives

a (weak) bound on the lookup latency by multiplying the number of hops by the

maximum point-to-point latency. However, it seems quite possible that latency will

become a problem for practical applications long before network bandwidth and CPU

resources. Furthermore, a latency of number of hops times the maximum point-to-

point latency would almost certainly not be acceptable in a real application, given

that each hop could take over a second to deliver across the Internet. Thus, if Family

Trees are to see practical use, we must show that their latency per request compares

favorably to those of other networks.

In this section, we will look at what changes are necessary in order to achieve

good performance in terms of latency. We will focus on numeric ID lookups for two

reasons. First, since unordered networks cannot perform name ID lookups, there is

less need for comparison. Second, all of the techniques we optimizations we describe

can also be applied to name ID lookups.

Recall that the results of this section are (the only results) dependent on the

model used to generate the network. As described above, we will use the Transit-Stub

64

model. However, similar experiments of SkipNet [12] tried both the Transit-Stub and

the Mercator models and found similar results on both. Given the similar structure

of Family Trees and SkipNet, we would expect the results of this chapter to apply to

the Mercator model as well.

Next, we will begin describing our optimizations for latency. Recall that the

numeric ID lookup algorithm consists of three parts. In the first part, we search for a

nearby level-O node. In the second part, we move up levels trying to match as many

bits of the query ID as possible. In the third part, we search through the numeric

ID list to find the node that is truly closest. We will discuss each part in turn to see

how it can be optimized for latency.

The first part of numeric ID lookup, searching for a level-O node, can be eliminated

very easily. We simply cache a pointer to this node. Every lookup (both numeric

and name ID) will most likely go through this node, so we can save O(lg n) hops and

the associated latencies by jumping directly to that node. To keep the pointer up to

date, we have two options: we could refresh the pointer every so-many requests or we

could require any new level-O node to notify every node between it and the previous

level-O node in the name ID list. Either of these options changes the performance of

the lookup, join, and leave algorithms by only a constant factor (in terms of hops).

Thus, we can see that the first part of the lookup is easy to eliminate.

The second part of numeric ID lookup, moving upward through the levels, cannot

be eliminated. Essentially, the same process is performed by SkipNet, Pastry, and

Tapestry. However, these other networks have an advantage over Family Trees. Each

of their nodes can process any request: each node can route a request regardless of

the size of the prefix match between the query bits and the current node's numeric

ID. In Family Trees, however, each node can only route requests at its level, so it can

only route a request whose prefix match is exactly LEVEL bits. This gives SkipNet

and the other networks a boost in performance because, each time the request is

forwarded, the size of the prefix match will increase by at least 2 with probability .

This decreases the number of expected hops by a constant factor, which also translates

into an improvement in latency. To make Family Trees competitive, we must find a

65

way to decrease our hops in the second part of the algorithm by a constant factor as

well. We will look for a way to decrease hops by adding more pointers.

We have now seen two instances where additional pointers are used to decrease

hops and latencies: Family Tree nodes caching the nearest level-O node and SkipNet

nodes being in multiple level lists. However, it is generally true that we can decrease

hops and latencies by adding more pointers. We will now look at a more general ways

to trade off space (pointers) for time (latency) in Family Trees and SkipNet.

In Family Trees, we have one pointer to a parent node with next numeric ID bit

0 (mother) and one pointer to a parent with next bit 1 (father). In SkipNet, one of

these parent nodes will be the node itself and the other we find by looking through

nearby nodes in the level list. It would be useful in SkipNet to cache the pointer

to the other parent since the hops required to find it would otherwise be performed

on every lookup.2 However, instead of maintaining just 1 pointer for each parent,

we could maintain k pointers to parents of each gender (mother and father) that are

close to the current node (2k pointers all together).

How will these pointers help us? First of all, when we need to forward a request to

a parent, we can send it to the closest of the k nodes we found. This reduces latency

while still ensuring that each hop matches another bit of the query ID, so we are still

guaranteed correctness and O(lg n) hops. Of course, we could find the closest k during

JOIN but only record the truly closest node. We need to maintain all k, though, in

order to help other nodes efficiently find their own closest k. The algorithm for doing

this comes from Pastry [3]. We start out by finding a single level-0 node very close

to ourselves. This node will have pointers to k close level-i nodes with first numeric

ID bit 0 and k close level-i nodes with first bit 1. If we are a level-0 node, then these

are the pointers we need. If not, we take the k that match the first bit of our numeric

ID, contact the closest of these, and construct a list of 2k level-2 nodes: k with bit

prefix x0 and k with bit prefix xl, where x is the first bit of our numeric ID. If we are

a level-i node, then these are our pointers. Otherwise, we continue on like this until

we reach our level. The kev to the effectiveness of this heuristic is that, when we get

2 This is vet another instance of decreasing latency by adding pointers.

66

2.25

2.25

2.2

2.15

2.1

= 2.05

2
:1.95

1.95

1.9

1.85

1.8

I 7'

1 2 3 4 5 6 7
k

Figure 5-1: Shows the relationship between the number of pointers (k) used in the
Pastry heuristic and the average stretch of a lookup. The other line shows stretch
with normal SkipNet pointers but caching the other parent.

k nodes that are close to a node that is close to us, one of those k nodes is likely to

be close to us as well. This can be proven formally if the triangle inequality holds. It

doesn't in practice, but this heuristic is still effective.

Thus, we have a seen our first general way to trade off space for time: by increas-

ing k, we maintain more pointers, but we will decrease the latency of each request.

Figure 5-1 shows the effect of increasing k on the performance of lookups in a SkipNet

network.3 The vertical axis is not latency but relative delay penalty or stretch, which

is the actual latency of routing the lookup divided by the true latency between the

source and destination. (This measure actually overestimates the penalty because it

does not include the time for the response message, which can be sent directly to the

source. A stretch of 1 + would be 1 + 25 if we included the response. It is important

to note that this transformation would not affect our comparisons of different algo-

rithms.) We can see in Figure 5-1 that increasing k continues to decrease the stretch,

: 3As noted above, the results would be equivalent for Pastry and Tapastry since the numeric ID
lookup algorithms are the same.

67

~A

2.3

2.25

2.2

2.15

2.1

. 2.05
0

2a) 2

1.95

1.9

1.85

1.8

1.75
1 2 3 4 5 6 7

k

Figure 5-2: Shows the effectiveness of sampling from the name ID list and the Pastry
heuristic as functions of k.

although there are diminishing returns.

The other line in Figure 5-1 shows the stretch when we just cache the parent that

we would find using the normal SkipNet lookup algorithm, that is, the parent whose

name ID is closest to that of the child. The figure shows that this pointer outperforms

a single pointer generated using the Pastry heuristic. This is true even though we are

allowing the Pastry heuristic to cheat: at level 0, they are finding the true closest k

nodes, even though this is impossible to achieve exactly in practice. 4 Thus, we can

see that, if we are going to cache only a single pointer, we are best off just caching

the normal SkipNet parent and not implementing the Pastry heuristic at all.

This fact also demonstrates that name IDs correlate well (though not perfectly)

with latency. We know from Figure 5-1 that sampling more nodes (larger k) allows

us to find nodes that are closer to us and decrease stretch. However, the node that

-In the experiment, we are finding them by checking against every other node. This would be too
slow in practice, so some additional heuristic would have to be used to find this node. The second
heuristic would certainly degrade the performance of these pointers. Though, it would remain true
that increasing decreases stretch.

68

A~

is closest amongst these k is likely to be close in name ID. This suggests another

approach to finding the closest parent: simply look at the closest k nodes by name

ID in the parent list. Figure 5-2 shows effectiveness of this approach as we increase

k. We can see that this approach is just as effective as the Pastry heuristic. It

should be mentioned that, in the experiment, we are actually sampling k nodes in

each direction in the name ID list, for a total of 2k nodes. However, we have afforded

the Pastry heuristic even more: it is generating the k closest nodes at the next level

by retrieving from 2k next-level nodes from each of the k nodes. Thus, the Pastry

heuristic is sampling roughly 2k2 pointers. Given this, we can see that sampling the

name ID list is much more efficient while being just as effective.

In fact, sampling in the name ID list has an even more important advantage: we

no longer need to record all k pointers. Instead, we just record the node that is closest.

Thus, k becomes only a constant factor on the cost of JOIN. For any value of k, we

maintain only 3 lg n pointers per node. This is a unique advantage that SkipNet (and

Family Trees) have over Pastry and Tapestry since the latter do not record name IDs.

In Family Trees, we have another simple way to trade of space for time: instead

of just keeping pointers to two parents (one of each gender), we could keep pointers

to ancestors in higher levels. For example, if we keep pointers to grandparents, then

we can advance by 2 levels per hop, decreasing the number of hops per request by a

factor of 2. If we keep pointers to great grandparents, we can decrease the number

of hops per request by a factor of 3. However, the further we advance per hop, the

more pointers we must maintain: if each pointer points to a node t levels above the

current one, then there are 2t different ancestor lists that we must point to. Thus, t

must be a verv small constant. (For nodes in high levels, these pointers may point to

levels that are empty. In that case, we substitute pointers from lower levels.)

This is an optimization that Family Trees can use to take advantage of the fact

that each Family Tree node requires fewer pointers for the basic routing protocol.

Even in a network with only 1000 nodes, SkipNet will need 3 lg n 30 pointers per

node for basic routing, while Family Trees need only 9. If we allow both protocols to

use 30 pointers per node, then Family Trees have 21 extra pointers to work with. For

69

3.2

3

2.8

2.6

a 2.4
i0

2.2

2

1.8

1.6
1 1.5 2 2.5 3 3.5 4 4.5 5

t

Figure 5-3: Shows the relationship between t used in the Pastry heuristic and the
latency of a lookup (normalized so that 1 is the average point-to-point latency of the
network).

the optimization just described, we could choose t = 4 (for 16 pointers), for example,

and still have room to spare. This would allow the lookup algorithm to advance 4

levels per hop, which with 1000 nodes, means just 2.25 hops per lookup on average

to reach the top level!

Figure 5-3 shows the improvement in latency achieved by increasing t. Again, we

see diminishing returns. This is due to the fact that we need to take at least two

hops in all cases, the latter of which will have very high latency. As we increase t, we

can remove many of the other hops (which actually have much lower latency), but

we cannot eliminate the last two.

We actually see slightly worse performance with t = 5 than t = 4. This is most

likely due to the fact that most lookups require only 2 hops in both cases, but when

t =- 5, the first; hop we make is to a node that is at a higher level and usually further

away than when t = 4. In other words, we see improvement (with diminishing

returns) as we increase t until we reach the point where we can traverse in 2 hops.

70

Then, increasing t actually increases latency. If we increased t to the point where we

could advance to the top level in only 1 hop, then latency would decrease again.5

Now that, we have seen how to eliminate the first part of numeric ID lookup

(finding a level-O node) and how to improve the performance of the second part

(moving upward through the levels), all that remains is to look at the last part (linear

search through the numeric ID list). This part is undoubtedly the worst performing

in terms of latency. We know that we will take approximately lg n hops. But since

these hops are between neighbors in the numeric ID list, they are essentially hops

between random nodes in the network. In other words, the expected latency of each

hop is equal to the average latency in the network. It is important to remember that

the total latency of a lookup in SkipNet is only about 1.7 times the average latency

in the network. Thus, even if we removed all latency in the first two parts of the

algorithm, we could only afford to take 1.7 hops on average in the numeric ID list

(instead of the gn hops that are expected). In short, this part of the algorithm is

simply incompatible with low latency. If we want Family Trees to have low latency,

then we must eliminate it all together.

To describe how we will do this, we need a bit of terminology. We will refer to

the set of nodes that believe they are at the top-most level, according to their own

estimate of lg n, as top nodes. At the end of the second part of a numeric ID lookup,

we normally end up at a top node. The destination node will normally be between

that top node and the next closest top nodes in the numeric ID list. In particular,

we should end up at the top node that shares the most numeric ID bits with the

destination. We will refer to that as the top node of the destination. In general,

everv node can assign itself a top node in this manner. Finally, we will refer to each

set of nodes whose top node is the same, along with the top node itself, as a cluster.

Viewed this way, the purpose of the second part of the lookup algorithm is to find

A\lore generally, we see performance improvement when t is increased so that the number of hops
needed to reach the top is decreased. However, when t is subsequently increased but before the next
drop in number of hops, we will see see performance degradation due to being at higher levels for
each hop. Since the number of levels is not fixed but random, we will see both effects occurring to
some degree as t increases. It is only when the number of hops becomes very small (around 2) that
the worsening effect outweighs the improvement effect.

71

the cluster containing the destination. And the purpose of the third part is to find

the destination node within that cluster. Since the nodes of the cluster are randomly

chosen, linear search is just about the worst algorithm we could possibly use. We

could imagine other approaches like doing a second lookup over just these nodes.

However, this would still require about lg lg n high-latency hops, whereas we need to

compete with SkipNet's 1.7. The approach we take is remove the restriction that the

lookup must be routed to a particular node within the cluster. Instead, we will let all

nodes of the cluster share responsibility for all keys (and their values) that are routed

to nodes in that cluster.

There are many ways in which the nodes of a cluster could share responsibility

for the keys. For example, we could make all nodes have copies of the keys, but only

store the value (or the document) at the node in the cluster with closest numeric ID.

The top node could forward each request received to the appropriate node within the

cluster. This would require lg n pointers in the top node, which is less than the 3 lg n

pointers needed by a SkipNet node, but we would then no longer be degree optimal.

Furthermore, this would still require another high latency hop, which would make it

hard for us to compete with SkipNet.

The approach we take is to store all keys and values at every node in the cluster.6

This approach has several advantages. First, it means that we don't (normally) need

any more hops once we reach a cluster: in other words, the third part of the algorithm

has been eliminated. Second, we can replace any parent pointer that points to a top

node with a pointer to the node in that cluster that is closest to the node in question.

This requires a lg n times as many requests in JOIN, but it will drastically reduce the

latency of the last (and slowest) hop. Third, if the number of keys being stored is

Q('n) (which it almost always will be), then the expected number of keys at each node

is !Q(n lg n), which means that the number of keys at each node is within a constant

factor of its expected value with high probability. This should eliminate the need to

use virtual nodes [14] or more sophisticated techniques such as [15] to ensure load

"When a new key-value pair is inserted at a node, we can forward it around the cluster. If we
require each insert to be atomic, then we would need to delay the response while the nodes within
the cluster communicate (which will take O(lg n) hops).

72

balance. Fourth, because each key is stored at lg n nodes that are randomly chosen,

the probability that they will all fail is negligible (1/nC), so every key is assured to

survive random node failures with high probability.

If an extra factor of O(lgn) on the space requirements is a problem, we could

instead have nodes just maintain a fixed size cache and revert to linear search for

cache misses. This would allow us to trade off between time and space. However,

this does mean that we would need to resort to other techniques like virtual nodes to

ensure load balance. And we will almost certainly need to maintain multiple copies

of each key anyway to make sure it survives random node failures. In our study, we

will assume that disk space will be sufficient such that every node can store all keys

for the cluster.

Clustering also eases the implementation of Family Trees in a few ways. We link

the top nodes into their own list sorted by numeric ID. Then the top nodes can look at

their neighbors to know exactly how many bits are needed to distinguish its numeric

ID from the those of other top nodes. It can use this as its choice of the number

of levels. The expected number of levels, computed in this manner, will be roughly

lg n - lg lg n. The top node then sets its level to this value. Each node in the cluster

chooses a random level between 0 and this value minus 1. In a normal Family Tree,

each node chooses a level between 0 and lg n - 1 (on average), which means that

many of them end up in levels beyond lg n - lg lg n, where they will most likely never

be reached. This approach places more structure on the Family Tree, making it easier

to ensure correct lookup algorithms as optimizations are added. Another effect of this

is that each level has roughly lg n/(lg n - glg n) times as many nodes as it would

have in a normal Family Tree. This has the advantage that it makes empty level lists

less likely, especially when n is small, which means Family Trees should perform more

smoothly for small n. The disadvantage is that these nodes can increase the number

of hops needed per lookup, as we will see in the section 5.3.

We performed one further optimization in our implementation. The second part of

numeric ID lookup identifies a cluster whose numeric IDs match the maximum number

of bits of the key. However, there may be multiple clusters that maximally match.

73

The expected number of matching clusters is a small constant. In our implementation,

we chose a small increase in space over a small increase in latency: we allowed all of

the maximally-matching clusters to share responsibility for those keys. We allowed

SkipNet to use this optimization as well.7 (However, the increase in latency that we

would get if we forwarded to the cluster whose numeric IDs were closest modulo 1

would likely be fairly small using our clustering approach since we would be forwarding

to the closest of the nodes in the other cluster.)

To implement this optimization, each cluster maintains a bit vector that records,

for each i from 0 to the number of levels, whether the cluster is maximally-matching

for a key that matches that many bits of its numeric ID. We can say "its numeric

ID" because all of the nodes in the cluster should share the prefix of the top node's

numeric ID of length equal to the number of levels.8 It is important to note that this

is O(lgn) bits, the size of one pointer, say, so this is only 0(1) words of space. This

bit vector is important because sometimes a cluster will receive a request for key that

should have been routed elsewhere. This often occurs when a level list on the path

to the intended cluster was empty. In these cases, each cluster needs to know that it

is not the intended destination, which it can determine by examining the bit vector.

If it is not the intended destination, then it will forward the request to next cluster

(in the numeric ID list) in the direction of the destination.

We have now seen all of the numeric ID lookup algorithm, optimized for latency.

The last two optimizations described remove the linear search of the numeric ID list

in every case except where pointers are missing from the level lists. Next, we will

compare the latencies of lookups in Family Trees and SkipNet. We will first compare

their performance without the optimization of routing to the closest node in the

7This optimization is one reason why our stretch values for SkipNet look better than what they
reported.

"Because each cluster node falls between its top node and the next closest top node by numeric
ID, it must share more bits with its top node than the other tope node. However, the number of
levels chosen by the top node is the maximum of the number of matching bits with the top node
before and the top node after. Thus, a cluster node may match more bits than the previous top node
but less than the next top node. Normally, this will not occur. For the purposes of this algorithm,
each cluster node will defer to the numeric ID of the top node if its bits differ over the relevant
prefix.

74

1

8

6

4

2

A

0 5 10 15 20
latency

Figure 5-4: Shows the stretch of Family Tree and SkipNet numeric ID lookups as a
function of the latency between the start and destination nodes. The latencies are
first normalized so that 1 is the averaged latency in the network and then multiplied
by 10.

cluster. We will look at that optimization subsequently. For the first comparison, we

just route every request to the top node of the appropriate cluster.

Comparing the performance of this algorithm to that of SkipNet lookups is com-

plicated by the fact that the performance of Family Trees is highly affected by the

latency from the start to destination nodes. Figure 5-4 shows Family Trees with t = 4

versus SkipNet.' While SkipNet's performance seems to have little correlation with

this latency, the performance of Family Trees is highly affected. To see why, note

that each Family Tree lookup starts out by forwarding to the nearest level-O node. If

the destination is very close, the nearest level-0 node could actually be farther away.

In addition, while the level-i lists in SkipNet have n/2 i nodes (on average), the level-i

lists in Family Trees have fewer, roughly n/2i lg n nodes. Thus, for nodes that are

separated by O(i]gn) nodes in the name ID list, almost every hop between levels in a

'The numbers shown in the figure are from just one experiment with each algorithm. However,
the trends shown were consistent across many runs.

75

SkipNet -
Family Tree ---x---

',,,

't---. a"'-`-~.-----
n

.--- ----- ~

3.5

3

2.5

C
e 2
(U

1.5

0

n 1
1 1.5 2 2.5 3 3.5 4 4.5 5

t

Figure 5-5: Shows the latency of numeric ID lookups for Family Trees with and without
clustering, as functions of t.

Family Tree will be relatively large.

We can see in Figure 5-4 that SkipNet outperforms Family Trees for lookups where

the latency between the start and destination less than 0.8 times the average in the

network. When the latency between the start and destination is larger than this,

Family Trees have the advantage. Their stretch in this range is about 1.6 compared

to 1.7 for SkipNet. In practice, we are less concerned with the stretch of lookups

when the latency between start and destination is small since these are already fast.

So it seems fair to say that Family Trees are competitive with SkipNet.

Lastly, we look at performance when we route to the closest node in the cluster.

It is no longer useful to look at stretch since we are changing the destination node.

Instead, we will look directly at latency. Figure 5-5 shows the latencies of lookups, as

functions of t, with and without clustering. We can see that, without clustering, the

latency values are about the same as the stretch we saw earlier. The latency value

shown is the query latency divided by the average latency in the network, while stretch

is the query latency divided by the actual latency between the start and destination

76

Without Clusting -
With Clustering ---x---

I~~~~~~~~~~~~~~~~~'d *

Ixx

---- '-x ------------- ----- i------------------------- a~
,%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

nodes. Since the average value of the distance between the start and destination is the

average value in the network, these values are very similar. Thus, clustering decreases

the latency to about what we would see for a stretch of 1.0, a huge improvement over

both SkipNet and Family Trees without clustering.

It is also possible for SkipNet to implement the clustering technique just described.

In fact, SkipNet can implement an even stronger form. With only 0(1) pointers, a

Family Tree node can emulate the top node of its cluster. This just takes two extra

pointers: each node in the cluster needs pointers to the previous and next top nodes

in the numeric ID list. If each node has these, then any pointer to the top node

can be replaced with a pointer to any other node in the cluster. Unfortunately, with

only 0(1) pointers, a Family Tree node cannot emulate the other O(lg n) nodes in

the cluster. That would require O(lg n) pointers per node: each node would need to

record the LEVELNEXT and LEVELPREV pointers of every other node in the cluster.

In SkipNet, however, this emulation is possible.

In SkipNet, we can do the following. We form clusters of nodes as in Family

Trees. The nodes are connected into a list sorted by numeric ID. Each estimates

lg a (by looking at its successor's numeric ID) and chooses a random level to decide

if it is a top node. Then, each node finds the neighboring top node whose numeric

ID matches the most bits of its own. All nodes with the same top node (a cluster)

should have the same prefix in their numeric IDs, which includes all of the bits that

will be relevant for routing.10 Next, we determine the LEVELNEXT and LEVELPREV

pointers in the usual manner, except that we skip over nodes in the same cluster and

we replace whatever node would then be found by the closest node in its cluster. As

we can see, since all the nodes in the cluster are identical with respect to routing,

we can optimize every pointer to point to the closest node in the cluster. In Family

Trees, each node can only emulate the top node of its cluster, so we can only replace

pointers to top nodes with pointers to the closest node in the cluster.

Figure 5-6 shows the sort of improvement we can expect from this type of clus-

tering (full clustering) over the clustering of Family Trees (partial clustering). The

1 "If they do not match, the nodes defer to the top node's numeric ID bits.

77

3.5

3

2.5

u
C
D 2

1.5

1

1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 5-6: Shows the latency of numeric ID lookups for Family Trees with no clus-
tering, partial clustering, and full clustering, as functions of t.

experiment was done by allowing Family Tree nodes to cheat and emulate other nodes

of their cluster. Since Family Trees with t = 4 and SkipNet, both without clustering,

have comparable performance, we should expect SkipNet to perform as well or better

than what is shown here (for t = 4 or t = 5). In particular, SkipNet should achieve

an average latency of 0.6 (or perhaps a little less) times the average latency in the

network. This is quite an improvement over the normal 1.7.

In this section, we have seen how Family Trees can be made very efficient in terms

of latency. In particular, they can be competitive with a latency-optimized SkipNet,

even without clustering. However, applying the technique of clustering to SkipNet

would give performance beyond what Family Trees can offer.

5.3 Verification of Theoretical Results

In this section, we look at how the size of the network affects performance. In particu-

lar., our goal is to verify the theoretical results of the previous chapter, which bounded

78

the performance in terms of hops per request and the congestion in the network by

functions of the network size n. These bounds are important in practice as well: if

hops per request or congestion is growing too quickly, then the algorithms will not

scale to large network sizes. Even though good performance and congestion were

proven, there are still some practical questions. For example, the hidden constants

in the O-notation and high probability assumptions of the theoretical results could

be hiding unreasonably large constants. The results of this section show that perfor-

mance and congestion are good for small networks and grow slowly (as predicted) as

the network size increases.

Our experiments will focus on lookups by name and numeric ID. As we saw in the

previous chapter, the JOIN and LEAVE algorithms perform only a trivial amount of

work except for a constant number of lookups. Thus, our experimental results showing

good performance of the lookup algorithms immediately imply good performance for

JOIN and LEAVE.

We first examine lookups by name ID. Figure 5-7 shows a plot of the average

number of hops per lookup for networks of size n = 100, 200,..., 1000. For each

network of size n, we perform approximately 20 lookups per node in each trial and

then average over 40 trials as described in section 5.1. For networks with less than

1000 nodes, say 100i nodes, we used only the first 96i/10 stub nodes in the network

so that the entire network is scaled down as n decreases (rather than just using less

hosts over the same number of routers).

The dashed curve in Figure 5-7, which was fitted by linear regression, is the

function 8. 17(lg n - 3.16 Ig lgn + 3.58). The form of this function is complicated by

several matters. First, some parts of the algorithm have performance proportional

to lg n and others lg n, - lglgn. Second, some parts have arguments that are not n,

but n/c for some constant c: the average distance between the nodes (in the name

ID list) is only a fraction of n. But the most significant complication comes from the

fact that we force all nodes in a cluster to choose levels between lg n - lg lg n. The

result is that each level list has lg n/(lg n - lg lg n) times as many nodes as it would

otherwise, which increases the number of sideways hops needed within each level list.

79

35

30

25

o 20

15

10

1;
100 200 300 400 500 600 700 800 900 1000

network size

Figure 5-7: Shows the actual and predicted number of hops per name ID lookup as a
function of the network size n. The error bars on the actual numbers are one standard
deviation.

While this extra factor tends to 1, it adds lower order terms into the growth of the

function.

Figure 5-7 shows that name ID lookups are demonstrating O(lg n) hops per request

with a hidden factor of around 8. From the pseudocode of the last chapter, we

might expect a constant factor closer to 5 or 6. The increase is again most likely

due to the extra nodes in each level list. Nonetheless, 8 is not a particularly large

constant. Growth on the order of 8 lg n should not cause scalability problems for any

reasonable values of n. Thus, these numbers confirm the practicality of Family Trees

for performing name ID lookups.

Figure 5-7 also has error bars showing one standard deviation away from the

mean. We can see in the figure that the confidence intervals increase in size as

gets larger. For each n, the 95% confidence interval extends (1.83 ± 0.1)lgn from

the mean. These results match well with the theory. We saw in the previous chapter

that we could not guarantee that the number of hops would be within some fixed

80

amount of the expected value with good probability. Instead, we showed that, for

any probability p, there was some constant factor c such that the number of hops

would not be more than c times the expected value (clgn) with probability p. The

experimental results show that the theoretical bound was not lacking: as n increases,

the probability of being within a fixed distance from the expected value goes to 0.

Indeed, the experimental results demonstrate the theoretical one: the probability of

staying within a fixed constant factor stays roughly the same as n increases.

To see the congestion in the network, we look at the number of requests per

node. We saw in the previous chapter that the probability of a random request going

through a given node is O(lg n/n). If we perform m requests, then the expected

number of requests at a given node will be O(m lg n/n). We will look at n/mrn times

the number of requests at a given node, which should be O(lg n). In fact, the average

value of this will be exactly the same as the average number of hops because both

averages produce the same sum: one just sums over nodes and the other sums over

requests.l Thus, a more informative metric about requests per node is its standard

deviation, which is plotted in Figure 5-8. The (dashed) fit curve, also produced by

linear regression, is the function 6. 11 (lg n - 3.53 lg lg n + 4.48), about of the number

of hops per lookup.

It is clear from the figure that the distribution of requests is not uniformly random.

If, for each request, we simply picked 25 nodes at random, the standard deviation of

the plotted value would be about 1.2. However, we should not expect the distribution

to be uniform. For example, level-0 nodes will receive more than the average number

of requests because O(lg n) nearby nodes will send every request through them first.

On. the other hand, nodes in the top-most levels will receive less than the average

number of requests because lookups for nearby nodes will not need to go up that

high.

These deviation, however, are substantially better than what we would see for a

routing structure with poor congestion. For example, in a perfect binary tree with

l-Actually, the former is about 1 more than the latter because there is always one more request
than hop.

81

17

16

15

14

0

100 200 300 400 500 600 700 800 900 1000
network size

Figure 5-8: Shows the standard deviation of the number of name ID requests per node,
as a function of the network size n, along with the predicted values.

1000 nodes, if we performed a number of requests so as to achieve the same average

valueTM , the standard deviation would be around 80, instead of 17 for the Family Tree.

The improvement over a binary tree becomes even clearer if we look further out in

the tails of the distribution. For example, both the binary tree and the Family Tree

have 90%0 of the nodes with values less than 50 (about 2 times the average value).

However, while the Family Tree has 95%o of nodes less than 55, the 95-th percentile for

the binary tree is at 100. The 99-th percentile for Family Trees and binary trees are

around 65 and 375, respectively. And finally, the maximum value for Family Trees

and binary trees are around 100 and 1000, respectively. Thus, Fanlilv Trees show

substantial in-lprovement in congestion over binary trees. Similar results would be

seen for Skip Lists and other traditional data structures.

Next, we turn to numeric ID lookups. Figure 5-9 shows the same plot as in

Figure 5-7 but for numeric ID lookups. This time the dashed curve is the simpler

function lg n -- lg lg n + 1. This is number of hops we should expect: it is the expected

12The average lookup in a binary tree would perform about 3/5 as many requests as in a Family
Tree, so we must perform 5/3 as man- lookups to get comparable numbers.
Tree, so we must, perform 5/3 as many lookups to get comparable numbers.

82

I~~~~~~~~~~~~~

9

8.5

8

7.5

7

6.5
co0

6

5.5

5

4.5

4

E

:K
/
/

T T

' I

Predicted -------
l l l l l l l l l l

10 O 200 300 400 500 600 700 800 900 1000
network size

Figure 5-9: Shows the actual and predicted number of hops per numeric ID lookup
as a function of the network size n. The error bars on the actual numbers are one
standard deviation.

number of levels needed to get to an empty list plus the one hop to a nearby level-

0 node.13 As we saw in section 5.2, we are skipping the linear search through the

numeric ID list that was described in the algorithm of the previous chapter. Thus,

the only significant work is moving up through the levels. Also note, that unlike name

ID lookups, we do not get any benefits of locality: every lookup must go all the way

to the top-most level. This is why we do not have a negative additive constant.

The error bars in Figure 5-9 differ from those in Figure 5-7 in that they do not

appear to be growing with n. This can also be understood from the theory. While

the linear searches in the name and numeric ID lists were only shown to take O(lg2 n)

hops with high probability, the upward movement in numeric ID lookup takes as

manv hops as levels, and there are O(lgn) levels with high probability. For this

reason, we should expect the number of requests per numeric ID lookup, now that

we have eliminated the two linear searches, to be more tightly clustered around the

13The number of hops should be one less than the number of levels, but the implementation
artificially chooses the number of levels one larger than needed, which cancels that out.

83

A

I
, I ___ - _

t7c--J
1_-~T

..]- X ..
1

I ,l

t 1
I

L Artijl -

8.5

8

7.5

7

Cr
.o

a, 6.5
o0)

0

6

5.5

5

A r

100 200 300 400 500 600 700 800 900 1000
network size

Figure 5-10: Shows the standard deviation of the number of numeric ID requests per
node, as a function of the network size n, for two independent experiments, along
with the predicted values.

mean than those of name ID lookups, which still include a linear search in the name

ID list.

The results for congestion during numeric ID lookups, shown in Figure 5-10, are

similar to those for name ID lookups. The dashed fit curve is the function 1.66 lg n -

3.65 lg lg n + 3.79, which is only slightly larger than the average number of hops per

lookup and still a slowly growing function of n.

Thus, we have seen that the number of hops per lookup and the congestion in the

network are slowly growing functions of n as predicted by the theory. Futhermore, the

algorithms perform well even for small values of n. And since the hidden constants

are reasonably small, we should not see scalability problems in practice.

84

5.4 Name-Constrained Lookups

As we saw in t:he second chapter, if we take a range of name IDs [a, b] and pretend

that all SkipNet nodes whose names aren't in this range disappeared, the remaining

nodes form a completely normal SkipNet. This means that we can perform a numeric

ID lookup constrained to nodes over just that range. As we saw in chapter three,

the name-constrained numeric ID lookup is very useful in practice. Furthermore,

any time a sub-domain becomes disconnected from the network, we are essentially

performing name-constrained lookups (as long as the names used are domain names),

so the ability to perform such lookups efficiently shows that SkipNet can efficiently

survive a sub-domain disconnect.

Unfortunately, Family Trees do not share this property. If we remove all nodes

whose name IDs are not in the range [a, b], the Family Tree formed by the remaining

nodes is "incorrect" in two respects. First, each node estimates its level incorrectly.

In particular., the estimates are too large, which means that the levels are sparser

than they should be, and the odds of finding an empty level (which prevents further

routing) are increased. Second, the numeric ID list is now disconnected. This means

that, if we encounter an empty level and do not reach the intended cluster during the

upward part of a numeric ID search, we have no way of finding the right node.14

We can fix these problems in the special case in the case where the name IDs are

hierarchical (with only 0(1) parts) and we are only concerned with constraining the

names to a particular sub-domain (i.e., to nodes with names of the form Cl .C2 .' Ck.*,

where the cis are fixed values). In our experiments, we used domain names, which are

hierarchical and have at most 4 or 5 parts in practice. These are the most important

type of name IDs, so this will allow Family Trees to perform name-constrained numeric

ID lookups for the most important cases in practice.

To fix the second problem (a disconnected numeric ID list), we create an additional

numeric ID list for each prefix of name IDs. For name IDs with four parts, the nodes

will participate in 4 numeric ID lists. The first list is the normal (unconstrained)

l"lTVe could enumerate the nodes in the name ID list and check every node's numeric ID, but this
would be hopelessly inefficient

85

numeric ID list. Next, is the sublist containing only nodes with name IDs of the form

cl.*. Similarly, we have a list for cl.c 2.* and C1 .C2 .C3.*. These additional lists require

6 extra pointers per node.

To get an acceptable theoretical solution to the first problem (levels being too

sparse), we could insert each node into multiple different Family Trees, one for each

prefix of its name ID. This would require 15 extra pointers per node, in addition to

those for the constrained numeric ID lists. It is not clear, however, that sparse levels

are a real problem in practice. For example, suppose that a sub-domain containing

V nodes were disconnected. (If n = 1000, the sub-domain contains only 32 nodes.)

In the resulting network, each level list would have a length of roughly /'/2 i lg n

instead of //'2i lg v. But since lg / = lg n, each level list is only half as full

as it should be. As a result, we expect to reach an empty list only 1 level before

we would normally. This increases the expected number of nodes searched in the

numeric ID list by only a factor of 2. For an arbitrarily small sub-domain, the linear

search can be made arbitrarily large relative to the size of the sub-domain. However,

for such small domains, even a linear search will be fast since there are so few nodes.

Theoretically. we can get bad performance in some cases. For example, if the sub-

domain contains lgk n nodes, then we will end up searching lgk-l n nodes, which is not

particularly efficient for large k. Nonetheless, it is not clear that this will translate

into poor performance in practice. Thus, in our implementation, we simply ignored

the problem of sparse levels and let experiment be the final judge.

One final problem is that we cannot use our normal clusters for name-constrained

searches since these are based on the unconstrained numeric ID list. However, we

can make separate clusters for each constrained numeric ID list. This only requires

2 pointers for each name ID prefix.15 This optimization was not implemented in our

experiments, however, so the results show "full price" for these lookups.

Figure 5-11 shows the average number of hops per request, with error bars at one

standard deviation. The x axis is the number of parts of the name ID that were

1 5This can be reduced to just a single pointer if we are willing to forward every request that does
not reach the correct destination to the top node of the cluster before it can be forwarded to the
next cluster.

86

18

16

14

12

10

00
S

8

6

4

2

0
0 1 2 3

constraint size

Figure 5-11: Shows the average number of hops per request, with error bars at one
standard deviation, for numeric ID lookups with various amounts of the name ID
constrained.

constrained in the search. So x = 0 is a normal numeric ID lookup. (Recall that clus-

tering and shared responsibility between clusters are turned off in this experiment.)

Figure 5-12 shows the average latency of these requests. In both figures, we see that

as the constrained sub-domain gets smaller, the performance of the lookup improves.

In all cases, the number of hops and latency look quite reasonable. Thus, these results

show that Family Trees can perform name-constrained numeric ID lookups efficiently

in the most important practical cases at the expense of 0(1) more pointers per node.

As in SkipNet, these name-constrained numeric ID lookups will be unaffected by

a sub-domain disconnect as long as the constraint is completely inside or outside of

the disconnected sub-domain. These results also imply that name ID lookups within

a disconnected domain should perform well. Such lookups would only suffer from the

problem of having levels that are too sparse. But as we saw above, this theoretical

problem does not seem to translate into poor performance in practice. Thus, we

can see that Family Trees can also perform better than unordered networks when a

87

I
i
i
II

i 1I
i

i

8

6

5

c)C
() 4
M

3

2

1

n
0 1 2 3

constraint size

Figure 5-12: Shows the average latency per request for numeric ID lookups with var-
ious amounts of the name ID constrained.

sub-domain becomes disconnected from the network.

5.5 Conclusions

In this chapter, we have seen that Family Trees are a practical peer-to-peer overlay

network. We have shown that their performance in practice matches the theoretical

expectations fairly well. The hidden constants in the theory are not unreasonably

large. 'e have also seen that Family Trees can be optimized very aggressively to

achieve performance in terms of latency that is competitive with the SkipNet, Pastry,

and Tapestry (although we also discovered that SkipNet could also be optimized to

improve its performance even further). Lastly, we have seen that Family Trees can

perform name-constrained numeric ID lookups in the most important practical cases

at the expense of 0(1) more pointers per node. This ability greatly increases their

usefulness in practice.

88

Chapter 6

Conclusions

Peer-to-peer overlay networks are an important tool for organizing nodes in a dis-

tributed system. They are highly available because they lack single points of failure.

They distribute the load of requests and network traffic evenly across the system so

that bottlenecks do not form. They can provide distributed storage over the nodes

of the network. And they can efficiently multicast to nodes in the network. These

features are extremely useful for building distributed systems. Indeed, peer-to-peer

overlay networks could become a standard service provided by every distributed ap-

plications platform.

Ordered networks were an important advancement in peer-to-peer systems. They

allow lookups using "friendly names" rather than IP addresses (without resorting

to a less scalable, external system like DNS). They often can gracefully survive an

administrative domain being disconnected from the rest of the network. They can

restrict the storage of documents or the network traffic for a given request to a

particular administrative domain. And they can efficiently find all nodes within a

particular administrative domain. These features greatly enhance the manageability

of the peer-to--peer network, which increases the likelihood that such systems will see

major deployments in practice.

These features also translate into additional operations available to applications,

including range queries and name-constrained lookups. These operations extend the

set of applications that are easy to build on top of the system. We saw in chapter three

89

that ordered networks can easily be used to implement a mobile entity location system.

Furthermore. we saw how SkipNet, the first ordered network with efficient lookup

performance, can be optimized to provide optimal efficiency for such a system. This

application underscores the usefulness of ordered networks for developing applications.

Degree-optimal networks were another important advancement in peer-to-peer

systems. Such networks use only a constant number of "pointers" per node to im-

plement routing. Hence, these networks can be implemented on systems with only a

very small amount of available resources. VWhen more resources are available, they

can be used to further improve the performance of the system. Or the additional

resources can be left for use by the application, which undoubtedly has its own need

for memory and network resources.

Thus, ordered and degree-optimal networks provide features that are useful to ap-

plications. This thesis presented Family Trees, the first peer-to-peer overlay network

that is both ordered and degree-optimal. Prior to this work, it was unknown whether

both properties could be achieved by the same system.

In chapter four, we presented the theory of Family Trees. We defined their struc-

ture and the algorithms for implementing their operations. We proved the correctness

of these operations. Ve also proved that Family Trees are efficient: all of their op-

erations require O(lg n) hops in expectation and O(lg2 n) hops with high probability.

Furthermore, we proved that all of these operations maintain optimally low congestion

in the network.

In chapter five, we discussed Family Trees in practice. ~We described our own

implementation of Family Trees on top of the p2psim network simulator. Our imple-

mentation included several optimizations to improve practical performance in terms

of latency. We showed the results of experiments demonstrating that Family Trees

can achieve very good practical performance. Family Trees perform suitably when

few resources are available, but as more resources are provided, they can be used to

further improve the performance of the system. Even in a network of 1000 nodes,

Family Trees are competitive with existing SkipNet implementations when both sys-

tems are given equal resources, but Family Trees can continue to operate when less

90

resources are available. (We also described how some of our optimizations could be

applied to SkipNet to improve their performance even further.) We showed the results

of experiments verifying the theoretical bounds on performance in terms of the size

of the network. These demonstrated that the network and CPU utilization as well as

congestion grow slowly with the size of the network. Lastly, we described how Family

Trees can implement name-constrained lookups in the most important practical cases,

and we showed experimental results demonstrating their good performance.

This thesis has provided an important advancement to the study of peer-to-peer

networks, with the development of Family Trees. They are an advancement to the

theory of peer-to-peer networks as the first system that is both ordered and degree-

optimal. They are also a practical and efficient system, suitable for use in real-world

applications.

91

92

Bibliography

[1] James Aspnes and Gauri Shah. Skip Graphs. In 14th ACM-SIAM Symposium

on Discrete Algorithms, January 2003.

[2] Salman A. Baset and Henning Schulzrinne. An analysis of the skype peer-too-

peer internet telephony protocol, 2004. http://arxiv.org/abs/cs/0412017.

[3] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Row-

stron. Topology-aware routing in structured peer-to-peer overlay

networks. In Microsoft Technical Report #MSR- TR-2002-82, 2002.

http: //www.research.microsoft.com/-antr/PAST/location.pdf.

[4] Yan Chen, Randy H. Katz, and John Kubiatowicz. Dynamic replica placement

for scalable content delivery. In Proceedings of the 1st International Workshop

on Peer-to-Peer Systems, March 2002.

[5] Russ Cox, Athicha NMuthitacharoen, and Robert T. Morris. Diminished chord: a

protocol for heterogeneous subgroup formation in peer-to-peer networks. In Pro-

ceedings of the 3rd International Workshop on Peer-to-Peer Systems, February

2004.

[6] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.

Wide-area cooperative storage with cfs. In 18th ACM Symposium on Operating

Systems Principles, October 2001.

93

[7] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on ap-

proximating arbitrary metrics by tree metrics. In Proceedings of the 35th Annual

A CM Symposium on Theory of Computing, pages 448-455, 2003.

[8] Anh-Tuan Gai and Laurent Viennot. Broose: A Practical Distributed Hashtable

based on the De-Bruijn Topology. In Proceedings of the Fourth IEEE Interna-

tional Conference on Peer-to-Peer Computing, August 2004.

[9] Thomer M. Gil, Frans Kaashoek, Jinyang Li, Robert Morris, and

Jeremy Stribling. p2psim: a simulator for peer-to-peer protocols, 2004.

http://www.pdos.lcs.mit.edu/p2psim/.

[10] Steven D. Gribble, Eric A. Brewer, Joseph H. Hellerstein, and David Culler.

Scalable. distributed data dtructures for internet service construction. In Pro-

ceedings of the Fourth USENIX Symposium on Operating Systems Design and

Implementation, October 2000.

[11] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: a tool to

estimate latency between any two internet hosts, from any internet host. In

Proceedings of A CM SIGCOMM, November 2002.

[12] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and

Alec Wolman. SkipNet: A Scalable Overlay Network with Practical Locality

Properties. In USENIX Symposium on Internet Technologies and Systems, March

2003.

[13] 1I. Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal

distributed hash table. In Proceedings of the 2nd International Workshop on

Peer-to-Peer Systems, February 2003.

[14] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R. Panigraphy.

Consistent hashing and random trees: Distributed caching protocols for relieving

hot spots on the World Wide Web. In Proceedings of the 29th Annual ACM

Symposium on Theory of Computing, pages 654-663, MlIay 1997.

94

[15] David R. Karger and Matthias Ruhl. Simple efficient load balancing algorithms

for peer-to-peer systems. In Proceedings of the 16th Annual ACM Symposium on

Parallelism in Algorithms and Architectures, pages 36-43, 2004.

[16] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures:

Arrays, Trees, Hypercubes. Morgan Kaufman, 1992.

[17] W. Litwin, I. A. Neimat, and D. A. Schneider. Lh* - a scalable distributed data

structure. ACM Trans. on Database Systems, 21(4), 1996.

[18] D. lMalkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emu-

lation of the butterfly. In Proceedings of the 21st Annual ACM Symposium on

Principles of Distributed Computing. ACM, July 2002.

[19] P. Mockapetris. Domain names - concepts and facilities, 1987.

http://www.ietf.org/rfc/rfc1034.txt.

[20] William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. In

Workshop on Algorithms and Data Structures (WADS), 1989.

[21] S. Ratnasa:my, P. Francis, \I. Handley, R. Karp, and S. Shenker. A Scalable

Content-Addressable Network. In Proc. of ACM SIGCOMM. August 2001.

[22] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object loca-

tion and routing for large-scale peer-to-peer systems. In International Conference

on Distributed Systems Platforms (Middleware), November 2001.

[23] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. Chord: A scalable Peer-To-Peer lookup service for internet applications.

In Proc. of ACM SIGCOMM, August 2001.

[24] Andrew S. Tanenbaum and Maarten van Steen. Distributed Algorithms. Prentice

Hall, Upper Saddle River, New Jersey, 2002.

95

[25] Hongsuda Tangmunarunkit, Ramesh Govindan, Scott Shenker, and Debora Es-

trin. The impact of routing policy on internet paths. In Proceedings of IEEE

INFOCOM 2001, April 2001.

[26] Udi Weider and Moni Naor. A simple fault tolerant distributed hash table. In

Proceedings of the 2nd International Workshop on Peer-to-Peer Systems, Febru-

ary 2003.

[27] Kevin C. Zatloukal and Nicholas J. A. Harvey. Family trees: an ordered dictio-

nary with optimal congestion, locality, degree, and search time. In Proceedings

of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, 2004.

[28] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhattacharjee. How to model

an internetwork. In Proceedings of IEEE INFOCOM 1996, April 1996.

[29] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An

Infrastructure for Fault-Resilient Wide-area Location and Routing. Technical

Report UCB//CSD-01-1141, U. C. Berkeley, April 2001.

96

