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Abstract
Today's large scale networks such as the Internet emerge from the interconnection of
privately owned networks and serve heterogeneous users with different service needs.
The service providers of these networks are interested in maximizing their profit.
Since the existing pricing scheme cannot satisfy their needs, the service providers are
looking for new pricing mechanisms. However, designing a for-profit pricing scheme
is not a trivial task. The network contains millions of users who have their own
interests and they react differently to price. Given such variety, how should the service
providers charge the network resources to maximize their profit? In the presence of
profit maximizing price, how should we allocate resources among these heterogeneous
users? Will the resulting system suffer from efficiency loss? In this thesis, we will
study these fundamental questions of profit maximizing price.

We make three main contributions: First, we develop a framework to study profit
maximizing prices in a general congested network. We study the flow control and
routing decisions of self-interested users in the present of profit maximizing price. We
define an equilibrium of the user choices and the monopoly equilibrium (ME) as the
equilibrium prices set by the service provider and the corresponding user equilibrium.
Second, we use the framework to analyze the networks containing different types of
user utilities: elastic or inelastic. For a network containing inelastic user utilities, we
show that the flow allocations at the ME and the social optimum are the same. For a
network containing elastic user utilities, we explicitly characterize the ME and study
its performance relative to the user equilibrium at 0 prices and the social optimum
that would result from centrally maximizing the aggregate system utility. Third, we
define Braess' Paradox for a network involving pricing and show that Braess' Paradox
does not occur under monopoly prices.

Thesis Supervisor: Asuman E. Ozdaglar
Title: Assistant Professor

3



4



Acknowledgments

First and foremost, I am deeply indebted to my advisor Professor Asuman Ozdaglar.

Her patient, guidance, encouragement, support, advices, and kindness have been

immensely valuable to me. Professor Ozdaglar does not just guide me through every

step of my research, she also teaches me the skills of critical thinking and technical

writing. Without her, this thesis will never be completed.

I am also indebted to Professor Daron Acemoglu for his valuable time and in-

sightful advices. It is really amazing to see how quickly he generates new ideas and

provides insightful explanations to complicated results.

I am grateful to the faculty in the Laboratory for Information and Decision Sys-

tems (LIDS) to provide an ideal environment and atmosphere for research.

I am grateful to all my friends in LIDS and MIT for their encouragment and

support. A partial list includes Samuel Au, Emmanuel Abbe, Shashi Borade, Chung

Chan, Shenrig Jing, Fulu Li, Shubham Mukherjee, Baris Nakiboglu, Paul Njoroge,

Wanmei Ou, Charles Swannack, Alp Simsek, Alexander Tsankov, and Fang Zhao.

My lifetime buddies in China, Canada, and other places of the world are invaluable

assets to me.

Special thanks to Carmen Ho for her support and encouragement; her compan-

ionship has been invaluable in both my work and personal life.

Words can never express my feelings to my parents, Hai Ping Liang and Yang

Huang, for their love and sacrifice. It is their love, support, and encouragements

accompanying me in walking through each step in my life. This thesis is dedicated to

them. I owe a lot to my grandpas, grandmas, and every other member in my family

for their love and caring.

Last, I want to thank you my Heavenly Father for watching out me from the

beginning to now.

This research was supported by the Massachusetts Institute of Technology De-

partment of Electircal Engineering and Computer Science.

5



6



Contents

1 Introduction

1.1 Motivation .

1.1.1 User-Directed Routing.

1.1.2 Usage Based Profit Maximizing Price ...........

1.2 Preliminaries: Modeling Network, Users, and Service Providers

11

. . . 12

. . . 12

. . . 15

. . . 18

1.2.1 Modeling a Data Network ..........

1.2.2 User Utility and Payoff ............

1.2.3 Wardrop Equilibrium and Nash Equilibrium

1.2.4 Stackelberg Games.

1.2.5 Braess' Paradox ................

1.3 Related Work.

1.4 Contributions of This Thesis .............

2 Model: User Equilibrium, Monopoly Equilibrium,

mum

2.1 Network Model

and Social Opti-

29

29

2.2 Wardrop Equilibrium, Monopoly Equilibrium, and Social Optimum

2.3 Path Pricing versus Link Pricing ....................

3 Inelastic User Utility (Routing with Participation Control)

4 Elastic User Utility

31

33

37

45

7

. . . . . . . . . . .18

. . . . . . . . . . .18

. . . . . . . . . . .20

. . . . . . . . . . .22

. . . . . .. . . . .23

. . . . . . . . . . .24

. . . . .. . . . . .26



4.1 Existence, Essential Uniqueness, and Price Sensitivity ......... 45

4.2 Monopoly Price, Social Optimum, and Performance .......... 50

4.3 Consistency between Path Pricing and Link Pricing .......... 62

5 Braess' Paradox 65

5.1 Classical Braess' Paradox and Generalized Braess' Paradox ...... 65

5.2 Braess' Paradox under Pricing ...................... 68

6 Conclusions and Future Directions 77

8



List of Figures

1-1 A hierarchy of Autonomous Systems (ASes) ............... 13

1-2 a) Inelastic utility as a function of flow rate. b) Elastic utility as a

function of flow rate. ........................... 19

1-3 The original example of Braess' Paradox ................. 23

2-1 A network that the service provider can collect more profit from path

pricing than link pricing. ......................... 34

4-1 A network that violates the monotonicity of flow rates and the mono-

tonicity of link loads ............................ 49

4-2 A simple general network. ........................ 60

4-3 a) Performance of ME over WE at price 0 b) Performance of ME over

Social Optimum .............................. 61

5-1 A generalized Braess' Paradox for which no link can be deleted. ... 68

5-2 An example of Braess' Paradox under pricing. ............. 69

9



10



Chapter 1

Introduction

The Internet is ... built, operated, and used by multitude of diverse economic inter-

ests, in varying relationships of collaboration and competition with each other. This

suggests that the mathematical tools and insights most appropriate for understanding

the Internet may come from a fusion of algorithmic ideas with concepts and techniques

from Mathematical Economics and Game Theory.

-Christos H. Papadimitriou, Algorithms, Games, and the Internet 39]

Today's large scale networks such as the Internet emerge from the interconnec-

tion of privately owned networks and serve heterogeneous users with different service

needs. The service providers of these networks are interested in maximizing their

profit. Since the existing pricing scheme cannot satisfy their needs as we will discuss

in Section 1.1.2, the service providers are looking for new pricing mechanisms. How-

ever, designing a for-profit pricing scheme is not a trivial task. The network contains a

large number of users who have their own interests and they react differently to price.

Given such variety, how should the service providers charge the network resources

to maximize their profit? In the presence of profit maximizing price, how should

we allocate resources among these heterogeneous users? Will the resulting system

suffer from efficiency loss? In this thesis, we will study these fundamental questions

of profit maximizing price in the context of a data network such as the Internet. The
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analysis, however, can be applied to other kinds of large scale network systems (eg.

transportation networks). Our objective is twofold. First, we will develop a frame-

work to analyze and characterize profit maximizing prices. Second, we will use this

framework to study the implications of pricing on various performance results.

In the remaining of this chapter, we first give the motivations behind our frame-

work in Section 1.1. We then review some basic concepts of network design, eco-

nomics, and game theory in Section 1.2. In Section 1.3, we do a high-level survey of

the related literatures. Finally, we briefly outline the contributions of this thesis in

Section 1.4.

1.1 Motivation

Comparing to the existing Internet, our model has two major differences: First, users

have controls on their routing decisions. Second, the service provider charges the users

depending on their usage of the network resources with the objective of maximizing

his profits.

1.1.1 User-Directed Routing

Despite the significant increase in bandwidth, management of congestion is still a

major problem in communication networks. Such management typically involves two

elements: flow control, which is defined as the control of the amount of data sent by

various users, and routing, which is defined as the control of the route choices of data

transmitted in the network. Currently, the Internet has two levels of routing: Inter-

domain routing and Intra-domain routing. The Internet contains a large number of

Autonomous Systems (ASs) and each AS is a local area network under control of

a single entity, typically an Local Internet Service Provider (Local ISP) or a large

organization. Large service providers such as Regional Internet Service Providers

(Regional ISPs) or Network Service Providers (NSPs) provide connections between

the ASs. Finding a path to direct data between the routers within an AS is called

12



Inter-domain Routing

Intra-Domain Routing
in AS A

Figure 1-1: A hierarchy of Autonomous Systems (ASes).

Intra-domain routing and finding a path to send data between ASs is called Inter-

domain routing. Since ASs are under different administrative controls and the Intra-

domain routing is done within an AS, different ASs can use different Intra-domain

routing protocols such as Routing Information Protocol (RIP), Open Shortest Path

First (OSPF), and Interior Gateway Routing Protocol (IGRP). However, for Inter-

domain routing, the ASs work together to delivery the data, therefore, all ASs need

to use the same Inter-domain routing protocol which is Border Gateway Protocol

(BGP). These two levels of routing are illustrated in Figure (1-1).

In today's Internet, both the Inter-domain and Intra-domain routing decisions

are made by the network but not by the users. This, however, has several major

drawbacks [46]:

1. Sub-optimal Routing: Since the routing are not controlled by users, the for-

profit service providers will make the decisions based on their primary concern

which is minimizing their cost but not increasing performance. In effect, this

will lead to a sub-optimal routing. A well known example of this situation is

"hot potato routing" [43] in which the service providers route the data to other

service providers even though that might not be the optimal choice for the

system. For example, we can consider Figure (1-1). Router (A, b) needs to send
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data to a router located in AS B. It finds out that there are two ways to do it:

either through gateway router (A, a) or (A, d). Under the common practice of

"hot potato routing", router (A, b) sends the data to the closest gateway router

(i.e. (A, a)) since this will minimized the Intra-domain routing cost. However,

the cost of sending data from router (A, a) to AS B can be much higher than the

cost of sending data from router (A, d) to AS B. In this situation, the routing

decisions made by (A, a) is sub-optimal.

2. High Configuration and Maintaining Cost: The Internet contains many

local network systems that are operated by different service providers. The

current routing system allows service providers to use their independent policies.

Given such a wide variety of network setting, the system configuration process

is costly and problematic. As a result, misconfiguration frequently disrupts

the network performance. Moreover, these errors are often hard to debug and

might cause serious consequences. [44] For example, we review the incident "AS

7007".[45] In April 1997, a small Internet Service Provider known as AS 7007

misconfigured its router that was connected to the Sprint network. The error

propagated to many large network service providers such as Sprint, ANS, MCI,

UUNet, and caused a significant portion of the Internet to be unreachable for

more than one hour.

3. Lack of Discrimination: Under the current Internet routing protocol, all data

is treated equally. However, the data from different applications or users have

different quality of services (QoS) requirements. The lack of discrimination in

routing decreases the level of services and the service providers' revenue. We

will discuss how users and service providers can benefit from discrimination in

Section 1.1.2.

Due to the above problems of current routing model, numerous papers [ex. 46, 49]

have suggested that some routing decisions should be handed over to users. Such

routing schemes are known as user-directed routing. In user-directed routing, the
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route choices are decided by users and service providers will forward the data based

on users' decisions. This simplifies the routing process and reduces the configuration

and maintaining cost for service providers. By distributing the routing choices to

users, service providers shift the balance of control and therefore they can route the

data in a more reliable manner. User-directed routing also eliminates some of the

sub-optimal routing scenarios such as "hot potato routing". However, since users

are selfish, letting users make their own routing decisions still cannot lead to an

optimal system. We will discuss the efficiency of user-directed routing in section 1.1.2.

Nevertheless, user-directed routing is a promising method to increase the reliability

and performance of the Internet flows.

1.1.2 Usage Based Profit Maximizing Price

As we mentioned in section 1.1.1, many efforts has been dedicated to study the

flow control and routing of the Internet. The standard approach to both of these

controls is the regulation of network traffic in a centralized manner, by a network

manager (planner) with complete information about user needs and command over

user actions, resulting in the so-called system or social optimum. However, in many

real world networks, it is impossible and impractical to regulate the network traffic in

such a central manner. This approach, moreover, assumes that the network manager

knows the preferences of all users in the system and this is unrealistic for most large

scale networks.

Consequently, a recent theoretical literature considers a distributed control paradigm

in which some network control functions are delegated to users and studies the self-

ish flow choices and users' routing behavior in the absence of central planning (see,

among others, [2]-[10]). In these models, users determine their own flow rates and the

routes based on their knowledge of the network condition with goals of maximizing

their own utilities. However, without regulation users do not take into account the

congestion that they cause for the others. Therefore, when operating on their own,

these selfish behaviors typically lead to allocations of traffic that are highly inefficient
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from a system point of view (e.g., too much flow or the wrong routing choices).

In many real world networks information is indeed decentralized and users are

selfish, but they do also face prices and restrictions set by the service provider of

the network. Currently, the dominant pricing scheme in the Internet is flat pricing.

Under this scheme, users pay flat monthly or yearly fees for unlimited access to the

Internet. Flat pricing scheme simplifies the accounting process as well as encourages

usage. However, there is strong momentum in both industry and academia to base

Internet pricing on usage. This due to several drawbacks of flat pricing:

1. Inefficiency: The flat price does not induce users to take into account the

congestion costs that they impose on other users. After paying flat fees, using

the Internet is essentially free. Therefore users will tend to overexploit the

common network resources and this causes the Internet to be congested. This

phenomenon is known as the "tragedy of the commons". With the emerging

flow-intensive Internet applications, the situation is expected to be even worse

in the future. Let's review the P2P file sharing system as an example. A P2P

file share software allows users to download/upload files from/to their peers.

After the user identifies the files in which he is interested, the whole process is

self-contained. Since the price does not depend on the usage, users will leave the

application to run for days. A home DSL user can easily download gigabytes

of data in one week by using a P2P software such as BitTorrent. Currently,

the traffic generated by P2P systems is one of the major sources of congestion

in the Internet. In fact, given the selfish nature of users, the "tragedy of the

commons" is unavoidable under flat pricing. The Internet, therefore, cannot

run efficiently.

2. Lack of Incentive to Invest in Technology: Under flat pricing, the

service providers have limited economic incentives to invest in technology. A

for-profit service provider will upgrade the services only if he expects that doing

so will increase his profit. However, when the price is flat, the returns gained
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from upgrading may not be proportional to the cost. Let's look at a capacity

expansion example. A service provider increases the capacity of his network to

decrease the congestion level and hopes that can attract some new users. How-

ever, he discovers that the performance improvement is marginal since the extra

bandwidth will be quickly consumed by the existing users due to the "tragedy

of the commons" we described previously and since upgrading is expensive, the

service provider does not gain much revenue or may result in a net loss.

3. Lack of Discrimination: All data and users are treated equally under

flat pricing. However, in some situations, discrimination can bring benefits to

both users and service providers. First, different applications have varying QoS

requirements. For example, delay might have little effects on email applications,

but is significant to real-time video applications. Providing different services to

email applications and real-time video applications can increase the performance

of the overall network. However, if users are provided with the same price for

all services, they will select the service with highest quality and then the system

is the same as before. Second, some users are willing to pay more for better

services. Under flat pricing, the movie data can take precedence over the video

conference data sent by a Fortune 500 company even though the Fortune 500

company would be willing to pay more for better services. In this case, price

discrimination can lead to a more efficient allocation of resources and generate

more revenue for the service providers.

Given these downsides of flat pricing, people have proposed that the Internet

pricing should be usage based, where the price charged will depend on the amount of

data that the users sent or/and the quality of the services that they received. Service

providers can charge users based on their objectives. For example, people show that

pricing can be used as means of achieving social optimum in a distributed manner

(ex. [4, 5]), can be used to prevent the "tragedy of the commons" (ex. [35]), or

should be used to induce users to choose the service class that can satisfy their needs
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on QoS (ex. [471). We will outline some of these pricing schemes in Section 1.3.

Despite the differences in objective, these methods use pricing to increase efficiency

of the network system. However, in commercial networks, maximizing profit is the

major goal for the service providers. Even though efficiency is important, we believe

that price is more likely to be used for profit maximizing purpose. Therefore, in this

thesis, we will study for-profit pricing and its effects on the system performance.

1.2 Preliminaries: Modeling Network, Users, and

Service Providers

To study profit maximizing prices, we first need to model the network and the be-

haviors of users and service providers.

1.2.1 Modeling a Data Network

A data network can be modelled as a graph using graph theory. A graph is a collection

of vertices and links connecting some subset of them. Mathematically, this can be

written as G = (V, E) where V denotes the set of nodes and 8 denotes the set of links.

A graph is simple if there are at most one link connecting any two vertices. The links

in the graph can have directions. A graph in which links are undirected is said to

be undirected. Otherwise, the graph is said to be directed. A path p connecting

two vertices v0 and vn in a graph is a sequence of {vo, vl, , vnl, vn) such that

(v0, V1), (V2 , V3 ), " , (Vn1_, vn) are the links of the graph. A link e lies along the path

p if e E {(v0, V1), (v2, V3), ' . , (Vn-1, Vn)}. This can be written as e E p.

1.2.2 User Utility and Payoff

A user in a data network is an entity that uses an application to transfer some data

from one point to another point in the network. We can assume that each user only

uses one application. A user who is using multiple applications can be viewed as
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Figure 1-2: a) Inelastic utility as a function of flow rate. b) Elastic utility as a function
of flow rate.

multiple users, each using one application. We identify each user j with a utility

function uj(Fj), which defines the monetary value to j by sending Fj 0 units of

data. Depending on the application service requirements, the utility function takes

different forms. Shenker [9] categorized applications into two main classes based on

their service requirements: inelastic and elastic applications. Real-time voice and

video applications require a fixed amount of bandwidth for adequate QoS, hence

are inelastic in their demand for bandwidth. Therefore, it is reasonable to model

their utility as a step function, see Figure 1-2(a). On the other hand, traditional

applications such as e-mail and file transfer are elastic; they are tolerant of delay and

can take advantage of even the minimal amounts of bandwidth. The utility function

in this case can be represented as a nondecreasing and concave function, see Figure

1-2(b). Different users might have different utility functions even though they are

using the same type of application, representing different preferences. A user with an

inelastic (elastic) application has an inelastic (elastic) utility function.

Now, suppose a user j sends Fj units of data from a source point s to a destination

point t and receives uj(Fj) utility. He will encounter some cost cj of sending these

data. The cost can come from many different sources1 such as the latencies that

1Mackie-Mason and Varian discuss the different types of costs for Internet in [35]
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the data experiences in the network and the price charged by the service providers

for using the network resources. We assume that these different types of cost are

comparable and the aggregate cost can be compared with the user's utility, then the

net payoff of user j is:

uj(rj) - j

1.2.3 Wardrop Equilibrium and Nash Equilibrium

In the absence of central regulation, users can choose the paths to transmit their

data. Different paths might have different congestion level and prices, and will yield

different costs. When users are selfish, they will pick the paths with the lowest cost

and also they will not take into account the additional congestion caused to other

users. To model these selfish user behaviors, we can use the following two equilibrium

concepts: Wardrop Equilibrium and Nash Equilibrium.

Let's consider a simple network that contains only two vertices v and v2. There

are n directed links e1,"' ,en start from v and end at v2 and J users want to send

data from v to v2 through these links. If user j sends fj > 0 units of data through

link i, then the cost of using link i for user j will be

fjigi(fi),

where fi is the total amount of data travelling on (or the link load of) the link and

gi(fi) is the cost of sending one unit of data on the link when the link load is fi. 2

Denote the vector of flows of user j on the links by fj = [fjl,... fjn] and the vector

of total flows on the links by y = [f, .. , fn]. The payoff of user j is then given by:

v(fj; ) = Uj(rj) - fjigi(fi),

2 For this example, we assume that the cost function gi per unit flow only depends on the link
load fi but not other parameters such as link price. A more complete model will be described in
Chapter 2.
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where Fj = n=l fji. The first term is the utility to user j of sending Fj units of data;

the second term is the total cost of using the links. The link load fi, depends on the

amount of data put on the link by all users. In particular,

J
fi = f (1.1)

j=1

When user j changes the amount of data, fj, that he sends on link i, the link load

fi will change as well. However, if user j is small, he does not anticipate the effect

of his flow on the link loads. Therefore, he takes the unit cost of each link as fixed

and then chooses the routing strategy3 to maximize his payoff. If there exists a set

of routing strategies such that:

1. the link loads are defined by Eq. (1.1), and

2. all users has chosen their strategies to maximize their payoffs given the link

loads,

then this set of strategies is called a Wardrop equilibrium. Mathematically, a set of

strategy {fl, , f } is a Wardrop equilibrium if

fj* C arg max V(fj, ), V j
Of t <fc i

where Ci is the capacity of link i and fi = Ej=l fj. Since each user takes the link

loads as given, at Wardrop equilibrium, the unit cost of all the routes that the user

uses is equal and less than the unit cost of the unused routes. Wardrop equilibrium

is first introduced by Wardrop in 1952 [1] in the context of transportation network.

Wardrop equilibrium relies on the assumption that a user does not anticipate

the effect of his flow on the link loads. For some networks, there are some users

that account for a large portion of the total traffic. In these situations, the small

user assumption is not applicable. A related definition in game theory that does
3 User j routing strategy includes the choice of the total amount of data the he will send, rj, and

the routing choices ,fj's.
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not require the small users assumption is Nash equilibrium. A network is at a Nash

equilibrium if no user has incentive to vary their routing strategies. More precisely,

if we denote the payoff of user j by

V(fj; fl, , fj-1, fj+l,' fJ) = uj(rFj) - E fjgi( f + fj),
i kAj

then f* is a Nash equilibrium if

fj C arg max vj(fj; fl,. fj*, f+l, fJ), j,

where Ci is the capacity of link i and fi = EJ=1 fi. At the equilibrium, each user views

the link costs as functions of the composite routing strategies of all users. Therefore,

instead of taking the link costs as given, they anticipate the effect of their traffic on

the link cost. Thus their payoffs do not only depend on their own routing strategies

but also the routing strategies of all the other users. Standard arguments establish

that Wardrop equilibria are obtained as estimates of Nash equilibria as the number

of users go to oc (see, for example, [13] and [18]).

1.2.4 Stackelberg Games

A commercial data network normally will have two types of participants: service

providers and network users. Service providers own the network resources and will

price the usage of the network for profit. Depending on the prices, users will then

choose their routing strategies to maximize their payoffs. If the prices are fixed and

a user equilibrium (see Section 1.2.3) exists, the system will settle at a equilibrium.

Knowing the behavior of the users, how should the service provider set the prices so

that his profit is maximized? This problem can be formulated as a Stackelberg Game.

In a Stackelberg game, one player acts as a leader (here the service provider who

wants to maximize his profit) and the other players as followers (the selfish users).

The problem is then to find a strategy (how to set the prices) that the leader can

22



fc + 50
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fb +

fe + 10

Ofd

Figure 1-3: The original example of Braess' Paradox.

induce the followers to react in a way that will maximize his profit. The model we

used in this thesis is based on Stackelberg games.

1.2.5 Braess' Paradox

We close this section with a classical example that demonstrates the inefficiency

of selfish routing networks: Braess' Paradox. When a network manager installs a

new link into a network, he expects the congestion level of the network to decrease.

However, is this assumption always true? Let's consider the network in Figure 1-3.

The network contains 4 links: a, b, c, and d. The congestion level of each link is

specified by its latency function:

la(fa) = 10fa, Ib(fb) = fb + 50, lC(fc) = fC + 50, 1d(fd) = 10fd.

A large number of users want to send data from node 1 to node 4 and their aggre-

gate data are 6 units. By symmetry, if the users are selfish, we expect that at the

equilibrium each of two paths to carry 3 units of traffic so that the latency for each

user is 83. (We assume the users are small and the user equilibrium is a Wardrop

equilibrium.) Now, a network manager would like to increase the network capacity
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and he installs a link e between node 2 and node 3:

le(f e) fe + 10.

When link e is first installed, there is no traffic on the link. Thus the latency of path

{a,e,d} is

30 + 0 + 30 = 60,

which is less than latency of path {a, c} and {b, d} (which is 83). Therefore, some

users will choose to send their data through the new path instead of the old one.

This kind of behavior will continue as long as the latency of all the paths are not

equal. Eventually, the system reaches a new equilibrium and all the paths will have

the same latency. At the new equilibrium, each path will carry 2 units of data and

the latency is 92. Adding the new link e actually negatively impact all of the traffic.

We will study Braess' Paradox in more detail in Chapter 5.

1.3 Related Work

It has been known for a long time that selfish behaviors leads to inefficiency in perfor-

mance [36]. There is a recent interest for quantifying this inefficiency, referred to as

the price of anarchy (POA), which is defined as the ratio of the performance of user

equilibrium to the social optimum. In [37], Koutsoupias and Papadimitriou consider

a two-links parallel-link network with users that have fixed demands. The uer equi-

librium is defined as follows: each user chooses the probability that he will route all

of his flow on a given link to minimize the expected delay that he will experience with

the objective of minimizing the delay on the most congested link. They provide a

tight analysis of the ratio of the worst-case Nash equilibrium and the social optimum.

The tight analysis of a parallel-link network with arbitrary number of links is given

by Czumaj and V6cking [38]. A recent paper by Roughgarden and Tardos [8] studies

the POA for a general topology network. They consider the fixed demand routing
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case with the objective of minimizing the total latency experienced by all users. They

show that when the latency functions are linear, the total latency of a user equilibrium

is at most 4/3 of the minimum total latency (that is achieved at the social optimum).

However, for more general latency functions, the total latency at the user equilibrium

can be arbitrary large. Johari and Tsitsiklis [10] consider a different game among

users and define the user equilibrium as follows: each user receives a utility that is

similar to the one we defined in the Section 1.2.2 with objective of maximizing the

total utility received by all the users. They show that the ratio of the total utility

received at any user equilibrium is at least 3/4 of the total utility received maximum

possible aggregate utility.

Using pricing to cope with the inefficiency created by selfish users is not a new

idea. In [4], Kelly considers a model where R users share the network resources and

each user tries to maximize his own utility. He shows that the network manager

can use prices to induce the rate allocation that maximizes the total utility. Similar

results are given by Low and Lapsley in [5] and Yaiche, Mazumdar, and Rosenberg in

[48]. All of them propose a distributed algorithm to achieve the social optimal rate

allocation. Ya'iche, Mazumdar, and Rosenberg in [48] also consider a situation where

each user submits a budget, which represent the maximum amount of money he is

willing to pay. They show that the service provider can use price to achieve a system

optimum subject to the budget constraint. They also give the explicit characterization

of the social optimum price. Orda and Shimkin [47] consider a network that offers

multi-class services and users can choose different service classes in order to maximize

their own performance. They show that in this case the price can be used to induce

the users to choose the service class that can satisfy their needs on QoS. There are

many other works that study pricing as a tool to achieve efficiency. (see [42],[48]

and the references therein) However, with a few exceptions ([7], [13], [14], and [15])

the game-theoretic interaction between users and service providers have largely been

neglected. In [15], He and Walrand propose a fair revenue sharing pricing scheme

for multiple service providers. In [13], Acemoglu and Ozdaglar analyze equilibrium
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flows and routing in a parallel-link network and show how profit-maximizing prices

from the viewpoint of the service provider typically also play the role of efficiently

regulating data transmission. The model used in this thesis is an extension of the

model used in [13].

An important problem in general network topologies is the potential for network

performance to deteriorate as a result of increasing network resources, which is also

referred to as Braess' paradox [16]. An example of Braess' paradox is given in Section

1.2.5. Previous research has focused on the detection of Braess' paradox on specific

network topologies and restrictions on methods of network upgrade for preventing

it (see Chapter 5 for a survey). In [23], Roughgarden shows that designing a large

general network that is free from Braess' paradox is actually NP-hard. In Chapter 5

of this thesis, we will show that Braess' Paradox does not exist when the network is

priced by a profit maximizing service provider.

1.4 Contributions of This Thesis

In this thesis, we analyze the equilibrium of a model that incorporates a self-interested

service provider and study the performance gap between the equilibrium and the

system optimum in a network with a general topology. Analysis of a general network

is considerably more difficult than networks with parallel links. For a given price, we

provide a characterization of the user equilibrium of flow rates and routing decisions

under the standard Wardrop assumption that each user is small (thus ignores the

effect of their decisions on aggregate congestion). Furthermore, we provide a full

characterization of the "monopoly equilibrium", i.e., profit-maximizing prices from

the viewpoint of service provider and the resulting allocations. We show that for the

case of routing with participation control (see Chapter 3, which naturally corresponds

to the inelastic user utilities), the monopoly equilibrium achieves the system optimum.

This result contrasts with pervasive inefficiencies in the routing models with selfish

agents, for example, as in [8]. For the case of elastic user utilities, monopoly pricing
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introduces a distortion and induces users to reduce their flow rates. The performance

of the monopoly equilibrium relative to a situation without prices and to the social

optimal depends on the extent of the congestion effects (externalities). When these are

important, the monopoly equilibrium, which forces users to internalize these effects,

performs relatively well. At the end, we study the effects of profit-maximizing prices

on Braess' paradox, and show that at the monopoly prices, there can never be Braess'

paradox, so for-profit incentives appear sufficient to eliminate this type of paradoxical

outcomes.

The rest of the thesis is organized as follows. Chapter 2 describes the network

topology and user preferences, provides the definition of a user equilibrium, and

monopoly equilibrium. Chapter 3 shows the efficiency of the monopoly equilibrium

in the case of users with inelastic utility. Chapter 4 discusses the monopoly equilib-

rium in the case of users with elastic utility. It first analyzes the sensitivity of the

equilibrium allocations to prices. Then, it defines and characterizes the monopoly

equilibrium, and provides a comparison of the monopoly equilibrium with the social

optimum. Finally, Chapter 5 discusses Braess' paradox under pricing.
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Chapter 2

Model: User Equilibrium,

Monopoly Equilibrium, and Social

Optimum

In this chapter, we will propose a framework that can be used to study decentralized

data networks with many heterogeneous selfish users and service provider charging

prices for bandwidth and data transmission to maximize his profit.

2.1 Network Model

We consider a directed network G = (V, E) where V denotes the set of nodes and £

denotes the set of links. We assume that there are m origin-destination (OD) node

pairs {s1, t},., {S.. , tinM, and we denote the set of OD pairs by W. For each OD

pair {Sk, tk} E W, there are Jk users, belonging to set Jk, that send data from node

sk to node tk through paths that connect Sk and tk. We also denote the set of paths

between Sk and tk by Pk and the set of all paths in the network by P = UkEWPk.

In the absence of central regulation, we assume that each user in the network

is interested in his own payoff. This payoff should reflect the tradeoff between the

utility of sending data and the disutility of incurred delays and monetary costs during
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transmission. We next formalize the user payoff function.

We use the term flow to represent the data stream that the user sends. Let f~pj

denote the flow of user j on path p where j E Jk and p E Pk. Then the total flow

rate of user j will be:

rk,j = E fk,j
PE'Pk

We assume each user j E Jk receives a utility of Uk,j(Fk,j). As we describe in Section

1.2.2, we can classify the users into two categories: users with inelastic and elastic

utility function. Both utility classes can be analyzed within the framework introduced

here.

To model delays incurred during transmission, we assume that each link e has a

flow-dependent latency function le(fe), where

fe = E fk,
k jJk {pleEp,pEPk}

is the total flow (link load) on link e. Let fe = [f,, . , flEl] denote the vector of total

flows on links. The latency cost of sending one unit of flow on path p is given by

E le(f e) (2.1)
eEp

and the latency of sending fj units of flow along path p is given by

le (f e)fkj.
eEp

For the cost of services, we assume that the service provider charges a price qP

per unit of bandwidth for path p. We denote q to be the price vector [ql,.- -, qlPI].

Given the prices set by the service provider, the goal of each user in the network

is to maximize his own payoff. Note that an alternative model is one in which the

service provider charges prices for links rather than paths. However, it can be seen

that the service provider can make more profit by charging prices for the paths. We
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will discuss the difference between link pricing and path pricing in Section 2.3.

We will adopt the following assumptions on utility and link latency functions.

Assumption 1 Assume that for each user j E Jk, the utility function k, is non-

decreasing. For elastic user utility functions, we further assume that the functions

are strictly concave, continuously differentiable, and 0 < uj(O) < oo. We also as-

sume that for each link e, the latency function 1e is continuous and strictly increasing.

We next, define the user payoff function: For a given price q, each user j chooses

fk, = [fklj *' , fk,'k l ] to maximize his payoff function

vkj(fk,j; f ,q)= Uk,j(rk,j)- , (Ele(f)) fkP,j -- qP (2.2)
Pe'Pk ep PEPk

2.2 Wardrop Equilibrium, Monopoly Equilibrium,

and Social Optimum

As is common in traffic equilibrium models used in transportation and communication

networks, we assume that each user is small, thus focus on Wardrop Equilibria, where

the individual user does not anticipate the effect of his flow on the total level of

congestion. [1, 8, 13] This appears as a realistic assumption in today's large-scale

data networks such as the Internet. In fact, in some network, a large user is indeed

a group of small users who have one aggregate utility function. Even though these

small users have the same objective, it is still hard to coordinate them to act as a

single user. In these cases, the small user assumption is still applicable. 1

Definition 1 Let f = [fk,j]jEk,keW denote the vector of flows of all users in the

network. For a given price vector q > 0, a flow vector f* is a Wardrop equilibrium

1In the later sections of this thesis, we will have example in which the network only contains a
small number of users. These users can be thought as group of small users who do not coordinate
with each other.
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(WE) of the user game if

fk,j E arg max vkj(fk,j; f , q), V j E Jk, k E W,
fk,j >O

fe _ y (f*)P,j e .
k jCJk pleEp,pEPk

Hence, each price vector induces a WE among the users. The service provider

(monopolist) chooses the price vector to maximize his profit. The maximization

problem can be written as:

max E qPfP(q), (2.3)
p

where fP(q) is the flow on path p at a WE for a given price vector q. We will show

in later sections that under Assumption (1), problem (2.3) has an optimal solution,

which we denote by q*. We refer to q* as the monopoly price. Let f* = f(q*) be

the flow vector at a WE for price q*. Then we call (q*, f*) the monopoly equilibrium

(ME) of the problem.

To study the performance of the ME, we compare the total system utility at the

equilibrium with the total system utility at the network's social optimum. A flow f

is a social optimum if it maximizes the total system utility:

kEWJE k (rk,j) P le(fe) . (2.4)
kEW jE,.k PEpk eEp

We can view the social optimum as the allocation that would be chosen by a network

planner, which has full information and control over the network. The allocation

at an ME is not necessarily the same as the social optimum. In the following, we

analyze the performance of the ME relative to the social optimum for both inelastic

and elastic user utilities. The different structure of the utility functions introduces

significant differences in the analysis and the resulting performances of these utility

classes.
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2.3 Path Pricing versus Link Pricing

We have used path price in our model. However, in stead of setting a price for each

path, the service provider can set a price, qe, for each link e. Thus the price for a

user to route one unit of data on a path, p, will be the summation of the prices of

the links in that path: ,,ep qe. Therefore, the maximization problem (2.3) can be

rewritten as:

max E (fP(qC)Eq ) (2.5)
p eEp

s.t. - qe > 0, V p E 
eEp

where fP(q:) is the flow on path p at a WE for a given link price vector q. Note

that the price of a link can be negative as long as the price for each of the paths is

nonnegative.

From the service provider viewpoint, there is a clear advantage of using path pric-

ing over link pricing: the service provider can collect more profit.

Proposition 1 Let q and q be the monopoly price vectors under path pricing and

link pricing. Then

fpqp > (fP E qe)
p p eEp

Proof: Let f be a WE under link price q. Now consider the path price vector q

where

qp = qe Vp E p
eEp

Clearly, f is also a WE under the path price q. Therefore, for every feasible solution

(f, qS) of problem (2.5), we can find a feasible solution (f', q) of problem (2.3) such

that:

f = f
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A ... 1. . .... 
B

B' C C'

Figure 2-1: A network that the service provider can collect more profit from path
pricing than link pricing.

and

p, qp eEp P

Hence, the result follows. Q.E.D.

The preceding proposition shows that from the profit maximizing viewpoint, path

pricing is as good as link pricing. To see whether it is better, we can look at the

following example. Let's consider the simple network shown in Figure (2-1). The

network contains two links and three users:

UA(rA) = 160r 5, UB(rB) = 160r 25 ,

uc(Fc) = 160FC2 5 ,

a,(ffb) = l(f ) = 0 fb .

User A sends his data from node 1 to node 3. User B sends his data from node 1 to

node 2. And user C sends his data from node 2 to node 3. Under path pricing, the

ME of this network is

f{a,b} = 1.3865, fI{} = 8.5838, f{b} = 0.2123

q{ab} = 50.9551, q{a} = 6.9792, q{b} = 111.9160

and the total profit is 154.3170. Note that in the ME under path pricing, q{alb} < q{b}.

Now, let's consider the link pricing. Since the path {a, b} contains the path {b} and

the prices of both links can not be negative, q{ab} must be greater than or equal to
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q{b} in link pricing. We find that the ME is

f(ab) = 1.0172, f{a} = 9.0834, f{b} = 0.4595

qa = 6.6349, qb = 56.9093

and the total profit is 151.0518 which is less than 154.3170. Therefore, in this network,

the service provider can get more profit from path pricing. In fact, path pricing is

more flexible than link pricing in that path pricing does not have the restriction that

the price of path {a, b} must be greater than or equal to the price of path {b}. As the

result, the service provider has more freedom not only in setting the prices, but also

in maximizing the usage of his resources. Under certain conditions, the ME under

link pricing scheme is consist with the ME under path pricing scheme which means

the link loads are the same and the prices for the path with positive flow are the same.

Therefore, the maximum profit that can be collected are the same as well. We will

show this consistency in Chapter 4.3 after we give the characterization of monopoly

prices (Proposition 5).
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Chapter 3

Inelastic User Utility (Routing

with Participation Control)

In this chapter, we analyze a network containing users with inelastic utility functions.

When a user has an inelastic utility function, it can be seen from Eq. (2.2) that

at a given price vector, he either sends a fixed amount of data or decides not to

participate in the network. Hence, the problem with inelastic utility functions is a

routing problem, where user j is interested in choosing the paths to send his fixed

amount of data, say tk,j units; but he also has the option of not sending any data

when it is costly to do so. This is also a natural model to study the routing problem in

the presence of service providers since it prevents the service provider from charging

infinite prices. We refer to this problem as the routing problem with participation

control. This problem was studied for parallel link networks in [13]. Here, we extend

this analysis to general networks.

The problem can be modelled using the following utility function for user j

Ukj(X) .= 0 if O < x < tkj,(3.1)

tkj, if x > tk,j,

together with binary variables Zk,j which indicate whether user j chooses to participate
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or not, i.e., Zk,j = 1 if user j decides to send tkj units of data, and Zk,j = 0 if he

decides not to send any data. The user equilibrium of this problem can be defined as

follows.

Definition 2 For a given price vector q > 0, a vector (f*, z*) = (fk*,, Z,j){jEJk, kEW},

is a WE of the routing problem with participation control if for all k and all j E Jk,

(f*,j,z,j) arg max { Ukj(Fk,jZk,j),- - ((le(fe))+ qP)f Pj, (3.2)
(f 4 k,,zk,, {PE'Pk eEp

fe 5E (f*)P,, Ves,
k jEJk peEp,pEPk

where Uk,j is given by Eq. (3.1).

Since the utility function [Eq. (3.1)] is not concave, we cannot guarantee the

existence of a WE for any price vector. In fact, a WE may not exist for some price

vectors. For example, consider a network that consists of one directed link where two

users, A and B, send data through this link. Assume that tA = 1, tB = 1.5, l(x) = 2x.

It can be seen that if the price of the link is 0, a WE does not exist. In the same

example, however, one can also show that the profit-maximizing price set by the

monopolist is 0.5, and at this price, there exists a WE in which A sends his data and

B does not. In the following, we show that at the monopoly price, there exists a WE,

which moreover achieves the social optimum. (i.e., the flow allocations at any ME

and the social optimum are the same). For consistency, we define the social optimum

for the inelastic utility case as a vector (f, z) that maximizes the total system utility:

kEWjEJk ( Pek eEp

Proposition 2 Consider a routing problem with participation control.

1. There exists a monopoly price q, and a WE (f, z) at price q.
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2. A vector (f, z) is a social optimum if and only if there exists a price vector q

such that (q, (f, z)) is an ME.

Proof: To establish this proposition, we first prove two lemmas. The first

lemma gives a characterization of a WE at any price vector and the second one gives

an explicit characterization of the monopoly price. The first lemma is proved by

exploiting the linear structure of problem (3.2).

Lemma 1 For a given price vector q > 0, a vector (fk,j, zk,j)jEJk, kW}, with fk,j > 0,

Zk,j E {0, 1}, is a WE if and only if it satisfies the following conditions:

1. fe = Ek ZjEk EPleEp,pEPk fj V e C £.

2. If Zk,j = 1, ZpEPk fj = tk,j-

3. If Zk,j = 0, fkP = 0 for all p E Pk.

Define the set

k I p E kand -le(fe) + qP <min f1 min - le(fe) + qm}
eEp {MaPkeekm

4. If p ' Pk., then fj = 0, V j E Jk.

5. If minmEpk{EeEm le(fe) + qm} < 1, then Zk,j = 1 for all j C Jk and k.

Proof: The proof of the necessity of conditions (1) - (5) is immediate. We show

that these conditions are sufficient. We rewrite problem (3.2) as:

(f,j, z,j) E arg max { )+tk,j(Zk, j le ( fe) + qP) f}P j (3.4)

s.t. E fkj = tk,j, if Zk,j = 1. (3.5)
pErPk
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Let (fk,j,: k,j){jEJk, kW} be a vector satisfying conditions (1) - (5). To show that

this vector is a WE, we show that for all j,

tk,jZk,j - Pap D w ( (f) + q P) j} > tk3 Zkj Ek k ( le(fe) + q fkj

where

fe Z S E fpj, VenCd
k jEJk pleEp,pGPk

and (fk,j, zk,j) is any feasible solution of problem (3.4). Consider an arbitrary j E Jk.

There are two cases:

Case 1: Zk,j =: Zk,j.

First consider the case Zk,j = 0 and Zk,j = 1. By condition (3), zk,j = 0 implies

that (f)kj 0 V p. Therefore, user j's payoff is 0 at (fkj, zk,j). By condition (5), we

further have

min { le(fe) qm}

Since Zk,j = 1, this shows that user j's payoff is less than or equal to O at (fk,j, Zk,j).

Next assume that Zk,j = 1 and Zk,j = 0. Condition (4) implies that user j's payoff is

greater than or equal to 0 at (fk,j, k,j). However, Zk,j = 0 implies by problem (3.4)

that user j's payoff is less than or equal to 0 at (fkj, Zk,j). Therefore, for both cases,

user j's payoff at (fk,j, k,j) is greater than or equal to his payoff at (fk,j,zk,j).

Case 2: Zk,j = Zk,j.

For the case where Zk,j = Zk,j = 0, user j's payoff is 0 at (fk,j, Zk,j) [cf. condition

(3)] and is less than or equal to 0 at (fk,j,Zk,j). Next, we look at the case where

Zk,j = =kj - 1. By condition (4), it follows that for all paths p such that f > 0, we

have

le(fe) + qP = min {1, min {(le(fe) + q}} 
e~p ETk em

In view of the linear structure of the problem, this shows that user j's payoff at

(fk,j, Zk,j) is greater than or equal to his payoff at (fk,j, Zk,j). Q.E.D.
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For the second lemma, we consider the monopoly problem for the routing problem

with participation control,

max E qPfP
pEP

subject to fP = E fkj,
i GJk

q > 0,

(f , Z) E G(q),

(3.6)

V p C P,

where G(q) is the set of vectors (f, z) that satisfy conditions (1)-(5) of Lemma 1.

Lemma 2 Let (q, (f, z)) be an ME. Then, for all p with fP > 0, we have

qP = 1 -le(fe).
eEp

(3.7)

Proof: Since (f,z) is a feasible solution of problem (3.6), (f, z) is a WE. Let p

be a path in Pk with positive flow (fP > 0). By condition (4) in Lemma 1, we have

p E Pk. Therefore, by condition (3) we have

q + E l (f ) < 1.
eEp

Now, assume qP + eep , l(fe) < 1, then for every p' E Pk with fP' > 0 we have

qP + E le(fe)
eEp

= qP' + E le(fe)

eEp'

< min{1, min 
mypk eEm

l(f e) + qm ), V p' E Pk.

Hence, there exists some e > 0 such that

qP + E l(fe) + < mi 1, min > l(fe) + qm}, Vp' C Pk.
e pt m~TZPk eEm
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Now, let q' = q + e, where em is an PI dimensional vector with value e in the

mth component if m E Pk, and 0 otherwise. We can verify that, given price vector

q', (f, z) satisfies all of the conditions in Proposition 1. Therefore, (f, z) is a WE

at price q'. However, (q', (f, z)) has a strictly higher objective value than (q, (f, z)),

which contradicts the fact that (q, (f, z)) is an ME. Therefore, qP = 1 - p le(fe)

for every p with fP > 0. Now if fP = 0, condition (5) implies qP > 1 - eEp, le(fe).

Q.E.D.

We now return to the proof of Proposition 2. We first consider the following

problem.

max E qPfP (3.8)
pET

7

subject to fP = fj, Vp E P,
jGJk

qP = 1 -E yle(fe), if f = O,
eEp

qP > O, if fp > 0,

(f, Z) E G(q),

where G(q) is the set of vectors (f, z) that satisfy conditions (1)-(5) of Lemma 1. It

can be shown that (q, (f, z)) is an optimal solution of problem (3.6) if and only if

there exists a price q such that (q, (f, z)) is an optimal solution of problem (3.8).

Now, we can rewrite problem (3.8) as

max (1 -le( fe))fp

pEp eEp

subject to fP = fj, V P E 
jeJk

fkj = tk,j, if Zk,j = 1,
PE'Pk

fk,j = 0, V p E Pk, if Zk,j = 0,

fk,j > 0, Zk,j E {0, 1}, j E k,V k,
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or equivalently,

max
fk,j >O,zk,j E{O,1}

subject to

E -S SY lY(fe)fkj
k jGJk EPJk eEp

fP = fkPj, VP CP,
ijJk

S fkj = tk,j, if Zk,j = 1
P , z

fkJ > 0, ZkJ C {0I, V jC Jk,V k.

This problem has an optimal solution (since for each z, the objective function is

continuous and the constraint set is compact). This proves part (1) of Proposition

2. For part (2), we notice that problem (3.9) is the same as the social problem that

maximizes the aggregate system utility as defined by Eq. (3.3). Hence, the result in

part (2) of Proposition 2 follows. Q.E.D.

Proposition 2 shows that the monopolist service provider can achieve the social

optimum in the case of network containing users with inelastic utilities. This result

contrasts with pervasive inefficiencies observed in the routing models with selfish

users, for example, as in [8].
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Chapter 4

Elastic User Utility

In this section, we study a network containing users with elastic utility functions.

4.1 Existence, Essential Uniqueness, and Price Sen-

sitivity

Each price vector q defines a user subgame. Given the price vector, users play this

subgame by choosing the flow rates and path flows that maximize their payoffs. If

a WE exists, then at this WE, no user can increase his payoff by any deviation, so

he does not have any incentive to deviate. We make a further assumption on link

latency functions:

Assumption 2 Assume le(fe) 00 as fe - Ce, where C' denotes the available

capacity on link e.

This assumption on the latency functions serves to guarantee that no individual

has an infinite demand. This assumption could be relaxed by assuming that, for each

j, there exists a nonzero scalar Bj such that u'(Bj) = O, which holds for the inelastic

utility case.
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Proposition 3 (Existence-Essential Uniqueness) Let Assumptions (1) and (2)

hold. For a given price vector q, let the payoff function for each user in the network

be defined as Eq. (2.2). Then for any q > 0, the user game has a WE. Moreover, the

user flow rates and link loads at any WE are unique.

Proof: Given a price vector q, consider the following optimization problem

maximize uk,(Fk) f (x)dx - qPfP
k j eE£ P

subject to Fkj = fPj, Vj E k,k E W
PEPk

e = fk ,j, V Ec 
k jEJk pleEp,pEPk

fP= f,j, V p EPk, k E W
jEJk

f, > 0, V p E Pk,jE Ek, k E W (4.1)

Notice that the first order necessary and sufficient conditions for problem (4.1) are

exactly the same as those for WE at price q. Hence, both problems have the same set

of optimal solutions. By Assumption (1), the objective function of problem (4.1) is

continuous and the feasible set is compact. Therefore, problem (4.1) has an optimal

solution which shows the existence of WE.

Now, consider the objective function of problem (4.1). Let F be the user flow rate

vector [... , k,j, -] and fP be the path flow vector [... , fP, .]. For a given q, since

Uk,j is strictly concave for all k and j and 1e is strictly increasing for all e, the objective

function of problem (4.1) is a strictly concave function of F and fP. Therefore, the

WE under q is unique for F and fp. Since fe = pleCp fP ,the WE is also unique on

fe = [..., fe,...1. Q.E.D.

Essential uniqueness of a WE is important for our analysis, since it implies that

total flows on each path are uniquely defined. This result does not, however, imply

the uniqueness of a WE. In fact, it is easy to establish that when there is one OD
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pair with at least two users with positive equilibrium flows and at least two paths

with positive total flows, then there are infinitely many WEs.1 We use this property

of a WE in proving the following result, which will be essential in our subsequent

analysis.

Lemma 3 Let Assumptions (1) and (2) hold. Given any price q > 0, let f be a WE,

and F be the flow rate at price q. Define fP = Ejk faPj as the flow on path p. Also

define Pk = {p fP > 0, p C Pk} and Jk = {j Fk,j > 0, j E Jk} for every k. Then

1. For every k, if p E Pk and j E k,

u, j(Fk,j)- - le(fe) - qP = 0.
eEp

2. There exists a WE f such that fj > 0 for all p E Pk , j E Jk, and for all k.

Proof: 1) Let p E Pk, and j E Jk. Since Fk,j > 0, there exists some path s such

that fkj > 0, which implies by the first order conditions that

ukj (rk,j) - le (f e) - qS = 0 (4.2)
eEs

and

u, (rk,3 ) - le(f ) - q' < 0, V s' E Pk.
eEs'

Combining the preceding two relations, we obtain

A le(fe ) - qS' > le(f e) - qS, V s' E Pk.
eEs' eEs

Therefore,

s s'k qe(4.3)

1 This is because, for such user game, we can construct a new WE from a given WE by inter-
changing units of user jl's flow on path P1 with E units of user j2's flow on path P2 (where Pi and
P2 belong to the same OD pair and is less than or equal to the minimum of jl's flow on path Pi
and j2's flow on path P2).
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Now, since fP > 0, there exists some j' such that fP > 0. Then,

U ) 
eGp

le(f, ) - qP = 0

and

U ,,(Fk,j,)- le (f,) - q' < 0 V s' C 'Pk.
eEs'

So, we have

-qP = min { E
S' Pk e6s'

le(fe) - qS} (4.4)

From equations (4.3) and (4.4), we get

51 le(fe) - qP = 1 le(fe) - qS
eEp eEs

(4.5)

Substituting equation (4.5) into equation (4.2) yields the result

j (rk,j) - le(fe) - qP = 0.
eEp

2) Let f be a WE at the price q. We construct a new flow f in the following way: If

j ¢ kk or p ¢ Pk, set fj = 0. Otherwise, set

fj= rFk,jf P

EPEPk fP

which is > 0 because j Jk and p E Pk. Now, since

E fj =
jE~,7k

and

rk,j = S fkPj = k,j,
PC'Pk

fP, V p P

Vj Jk, k E W.

f is a WE such that fkj > 0 for all p E Pk , j E Jk, and for all k.
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Figure 4-1: A network that violates the monotonicity of flow rates and the mono-
tonicity of link loads.

It is informative to understand how link loads and users' flow rates change with

prices. There are two natural conjectures in this context: As the price of a particular

path increases, the amount of data transmitted on the other paths increase. Similarly,

the flow rate of each user is a nondecreasing function of the price vector. These results

were proven for networks with parallel links in [13]. The same results do not generalize

to a general network topology, however.

In a general network where there are no prices and users have fixed demands,

improving the latency function of one link (i.e., replacing le(x) with le(x) such that

le(x) < (x) V x for some link e) while keeping the rest unchanged, may cause all

users to encounter higher latency costs. This phenomenon is known as the Braess'

Paradox. We next demonstrate such a counterintuitive phenomenon in a network

with users with elastic utilities. Consider the example in Figure 4-1, where a single

user sends flow from node 1 to node 4. Assume that the user's utility function is

u(F) = 184v/SFr5, and the link latency functions are given by

la(fa) = 10fa, b(fb) = fb, lc(fc) = f,
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ld(fd) = 10fd, le(fe) = fe 1 (fg) = fg

Given the price vector q, where q{ac} = 50, q{bd} = 50, qa,e,d} = 10, q9 = 90, the

path flows at the WE are fac} = fb,d} = fa,e,d} = f{9} = 2. Consider another price

vector where we increase the price of path {a, e, d} to 14. Given , the path flows

at the new WE are fa,c} = fd 3.032, fa,,d 0.792, 1.2721. However,

f{g} < f9g) = 2, and r 8.1281 > F = 8.

This shows that at a higher price vector, the flow on an alternative path decreases

and the total flow rate of the user increases. We will study Braess' paradox in general

networks in more detail in Chapter 5.

4.2 Monopoly Price, Social Optimum, and Perfor-

mance

In this section, we provide an explicit characterization of the monopoly price and com-

pare the system performance at the monopoly equilibrium with the social optimum.

Recall that the monopoly problem is

max qPfP(q),
q>O 

where fP(q) is the flow on path p at a WE for a given price vector q. Under Assump-

tions 1 and 2, we can assume

0 < qP < min Uj(0), V p E Pk, k,

and by an argument similar to the one given in [13], we can show that fP(q) is

continuous in q for all p. Therefore, problem (2.3) has an optimal solution. We now

look at the following proposition which is essential to our analysis.
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Proposition 4 Let Assumptions (1) and (2) hold, and let (q, f) be an ME. Let

P = UkPk where Pk = {plp G Pk, fP > 0}. Then qP > 0, V p E P.

Proof: To arrive at a contradiction, we assume that there exists a path p' E Pk,

and qP' = 0. From Lemma 3, we know that since p' C Pk, there exists some WE such

that for all j E Jk', f/p'j > 0. Since Uk',j is strictly concave and L,,j is continuous,

we can pick an > O0 such that for every j E k,, there exist a 0 < j < fkP,,j satisfies

the following equation.

Notice that for every E p', f) - We define a new price vector as

Notice that for every e c p', f e > Ejgy- j. We define a new price vector q as

ZP = qp + e (le

q = qP + 
eleep,eEp'

(fe) _ le(fe _

jGJk

le (f) - le (fe -

+ , ifp E Pk';

, otherwise.jE j)
j E,7k'

Since is strictly increasing, qP > qP if p E p
7 k' and qP > qP otherwise. Now consider

the flow f that satisfies the following conditions:

{P P_ p
T Jk,j - J,j7

V j E Jk;
(4.7)

otherwise.

Now, we will show is a WE for the price vector . From Eqs. (4.7), we have

if e C p';

otherwise.
(4.8)

(4.9)

{| = f* - Ej EYk, i {?~=" "-f", 

Vj E Jk';

otherwise.
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From Eqs. (4.6), (4.8), and (4.9), we see that for every p E Pk and j E 8k'

uk (k,j) = ukj(rk',j - 5)

= Ukj(rk ,j) + e

< le(fe) + qp + E
eEp

= le(fe) -
eEp ele

= le(fe) 
eEp

E e (le(fe) - l(fe _ E
-p,eip' (j ) k

E (le(fe) _ le(7e)) + P
eleEp,eEp'

= le (e) + P.
eCp

We know ,jf kl~j> 0 iff f,j > 0. Hence, the equality of Eq. (4.10) holds if fkj > 0.

Similarly, for every p E 79k, j E 3fk, and k k'

Uk (k,j) = U4k, (rk,j)

•< le(fe) +qp
eEp

= Ele(f) -
eEp

ep,eEp' (le(fe) - l(f _ E
jEJk

(4.11)le (f) + p.
eEp

Again, the equality of Eq. (4.11) holds if fkj > 0. For price q, Eqs. (4.10) and (4.11)

show that f satisfies the first order necessary and sufficient conditions:

eEp
ep

=0, if f,j >0;

< 0, if k, = 0.
le(e) _p {

Therefore, f is a WE with price q. However, since P' > q and 7' > 0

qP > 0. (4.12)
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Then equation (4.12) together with q > q and qP' = 0

P fP -fP'P + - fP- > E fPqP fPqP.
pop p7pW popEp

Therefore, (f, q) is not an ME and this yields a contradiction. Hence, the result fol-

lows. Q.E.D.

Now, we can derive an explicit characterization of the monopoly prices. Let (f, q)

be a ME and for each k, let k = {1,- , IPk[} be the set of indices of Pk and

{1,. -, IkJ} be the set of indices of Jk. Without loss of generality, we assume that

user 1 CE i: and path 1 E Pk for every k such that Jk Q0. Using the necessary and

sufficient optimality conditions of a WE at a price vector q together with Lemma 3,

we can see that if (f, q) is a ME, then ([fP]epE, [j]jEJ, q) is an optimal solution of

the following problem.

maximize C qPfP (4.13)
pEP

subject to Uk ,(rFk,) - lE( -fP) - qP =0, V k E Pk, k E W (4.14)
eXPk pleEp

Uk(k)- l( Z fP) - q' < 0, V pi P,, k E W (4.15)
eGp~ pep

Uk ,(rk,) - l ( fP) qP= 0, V j Jk- {1},k EC 4.16)
eEpi pleEp

k ,j(rk,j)- le( fP) - qPi < 0, V j jk ,V k E W (4.17)eEpk pleEp

eEpfP k, k le (4.18)

C fP= E rk,j,Vk EW (4.18)
PE:k iEk

Fk,j > O, Vj C Jk,k E W,

fP 0, VpEP,

qP > 0, V p P.

Note that we use the necessary and sufficient optimality conditions for a WE to write
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problem (4.13) in variables ([fP]ppy, [rjlj j, q) instead of variables (fkPj,q) and use

Lemma 3 to eliminate the redundant constraints. This reduction in the dimension of

the feasible set allows us to show that the regularity constraint qualification is satisfied

(i.e., the constraint gradients of problem (4.13) are linearly independent at the optimal

solution). Thus, the nonconvex problem (4.13) admits Lagrange multipliers, which

will be the key in proving the subsequent proposition. This is stated in the following

Lemma.

Lemma 4 The constraint gradients of problem (4.13) at any feasible solution ([fP], [F], q)

are linearly independent.

Proof: Let (fP, F, q) be a feasible solution of problem (4.13). Let Ck be the set

of constraints gradients for OD pair k at (fP, F, q), and C = UkCk. We first show that

the vectors in Ck are linearly independent. Consider the matrix R, where each row

corresponds to a vector in Ck (for simplification, we do not include the entries that

are 0 in all rows).

/ \

U",l 0 Sxl PI -1 . 0

·j .... . ' . .O

M(lpkl-l)xpl :

u ,. 0 0 ...- 1

0 -01 *-. 

NIJkIlxlpl 

O ... UkniJkl -1 ... 0

-1 ... -- 1 T. - A ... nfE- - -\ 1X i'/ I - /

Let ri be the ith row vector of R and ri(x) be the entry in ri corresponding to variable

x. Note that M can be a arbitrary matrix, but N is a matrix with each of its row

equal to vector S.

We first show that the vectors {rl,... ,rlpkI+IJkl} are linearly independent. Let
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ri E {r 2, . jTIrlpklj+l then there exists x such that ri(x) =7 0 but rj =7 0 for

all j i. Therefore, {r2, '-', rlpkl+ljkl are linearly independent. Suppose that rl
can be written as a linear combination of vectors in r2, .. ,rl Pkl+lJkl}. Again, we

let ri C {r2 ,... , rlPkl+Jkl}, then there exists x such that ri(x) 0 but rj(x) = 0
for allj £ i. Therefore, r = 0. However, rl 74 0 and therefore it cannot be

written as a linear combination of vectors in {r2,.. , rlPkl+ljkl}. As a result, vectors

{rl, , T rkl+lJkI } are linearly independent.

We then consider the last row, rlpkl+ljkl+l, of R. We assume it can be written as

a linear combination of the vectors in {rl,..., rIpk+IJk}:

I'PkI IJkl

rlPkl+lkl+l = Ylrl + E yiri + E tjrlPkl+j.
i=2 j=1

For each r, {r2 ..., rlpkl}, 3 x such that ri,(x) 0 but rj,(x) = 0 for all i' 7 j'.

Therefore, yi is 0 for all i = 2, ... , I'Pk and

IJkI

rlpkl+lJkl+l = ylrl + E tjrlpkl+j.
j=l

We also see that

rlPkl+lJkl+l(qP') = 0, and

rk,i(qP ~ ) = -1, if i = 1, Pk + 1,, IPk + IJkl.

Therefore,
IJkI

Y + E tj = 0 (4.19)j=l

However, since each row of N is identical to S, Eq. (4.19) implies all entries in T are

0. This yields a contradiction. Therefore, rpkl+lj7k+1 can not be written as a linearly

combination of the vectors in {r 1,... , rPkl+lJkl}. As a result, the vectors in Ck are

linearly independent.

We next, show that the vectors in C are linearly independent. Let Wk be the
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subspace spanned by the vectors in Ck. We will show Wk n WVk = {O} for k : k'.

Assume there exist a vector w E Wk, Wk,, and w 5 0.

Pk n Pk = 0 if k $ k'. Therefore,

W(Uk j) = , V j; W(Uk, ) = O,V j;

W
/ kI 

Since Jk n jk = 0 and

w(ql) = O, V p. (4.20)

Now, we write w as a linear combination of the gradients of Ck:

IPkI (|k I
w = ylr + yri+ tjrll+j +i trlPkI+Ilk+l.

i=2 j=l 

For each ri, {r2 ,.-, rlpkl } , 3 x such that ri,(x) #7 0 but rj,(x) = 0 for all i' 5# j'.

Therefore, y is 0 for all i = 2,. - , 'kIl. Therefore,

j=1
t r )PkI+)+ trlPkl+lJkl+l 

Also, since

w(qpk) = rk,Pkl+lJkl+l(qP ) = 0;

rk,i(q P ) = -1, for i = 1, |Pk + 1, , ITPk + Ijkl

then,
I 3 I

y/ + tj = 0
j=1

(4.21)

From (4.20), (4.21) and the fact that each row of N is identical to S, we can see

w = [0, .. ,0,T,0, ... ,0]

By applying the same argument to OD pair k', we also have

Sw = [0, ,0, T',0, .. ,0]
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However, since k Z k', T T'. So by contradiction, WknWk, = {O} for k # k'. Since

the vectors in Ck form a basis of Wk, we conclude that the vectors in C are linearly

independent. Q.E.D.

Proposition 5 Let Assumptions (1) and (2) hold. Assume further that ukj is twice

continuously differentiable for each j and k, and e is continuously differentiable for

each e. Let, (f, q) be an ME, then for every path p in Pk, we have

qP ( fe(le)(f )) + -PEf (4.22)
e~p -ZjEak uk j (k,j)

Proof: Let (q, [fP]pcp, [Fj]jEjk) be an optimal solution of problem (4.13). Define

11k to be the set of the indices of the paths in Pk and Ok to be the set of indices of the

paths in P);. By Lemma 4, there exist Lagrange Multipliers for problem (4.13). We

assign A' to the constraints (4.14) and (4.15), k,j to the constraints (4.16) and (4.18),

and finally kj to the constraints (4.17). The Lagrangian function L(q, f, A, u,) can

be written as

L(q, f, A,, = qPfP + A' [U1 (F,1k - S l(f) - qPi]
pET k ilk eEpi

±5 ~ E 11k,j[Uj(j l(f) -E le(fe) qP]
k jEk-{l} eGpk

+ E k,3[ukj(Fk,3)- E l((fk ) _ qpl]
k jk eEpk

-+ E k,l [ fp - E rk,j].
kIf the monopoly price jvector q is not greater than , we can find another monopolyk

If the monopoly price vector q is not greater than 0, we can find another monopoly

price vector q' such that

(q')P = qP, if p P;

(q')P > O, Vp.
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Therefore, without loss of generality we can assume that the ME price vector q satisfies

q > 0. So, for each OD pair k,

OL

dL
aqPT

OL

dqPk

jE k,1 + E jk,
jik1-{1} i¢Jk

O 0- fP = A, V i E , i 1,

(4.23)

(4.24)

(4.25)- 0 +0 = A, if i k.

Recall that P = {p I p E P, fP > 0} and problem (4.13) is defined on P but not P.

Therefore, for each fP E P, we have

-- q- 
m nEZm

m jm-{}

l eeEp ,eEp'

mj + E (m,j
jjcjm

(le )(fe) ) 

) Ie E (ley))'(fe
J eleEpik,eEp1 

Simplifying the preceding equation, we get

qPk - [ 
m LnEIm-1

jEjm-{ 1}

An ( lE (I(f)) +
eIeEp',eEp n

HI-m,j + S fJ E (l), (fe)]
j8J~n i¢eleXpkelp eipj~~~c~~~m i 

Substituting Eqs. (4.25) into the equation above, we have

qP -E E
m nE--1

fp
fm ( E ley (I (fe))

ele~p ,eEpn + fP ( Ee lepiepm
(le)'(fe)) + k,1 0

and then

qPE [( E
eEpik m {njnEYm,eEp}

fPm )
(le)(f e)] lk,1 = 0-
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Therefore,

qP2 - Z fe(le)'(fe) + 1 k, = 0, V k, i EC Zk
e Pk

Also for the set of flow rate variables, we have:

OL
&F1 = 0°-* u"l(Fk1)= 0 -- Uk(k,i)0Pk,l k1

oL
9Fk,j

( AEi / -tk,l = 0, V k,

- -Pk,1 = 0, V j E Jk- 1, k,

OL
- 0 -- (k,juk,j(Fk,i) < 0, V j ,Jk, V k. (4.29)

Since Gk,j O0 for all k and j, and ugj(rFk,j) < 0 for all k and j, Eq. (4.29) implies

that kj = 0 for all k and j. Therefore, summing all the equations in (4.28), we get

kj = k, 1 :E
jEk-1 ijJk-1

1

V,j
(4.30)

From Eqs. (4.27) and (4.30), we obtain

/, k,j +
Eqs. (4.23), (4.24), (4.25), and (4.31) imply that

PEPk

Substituting Eq. (4.32) into Eq. (4.26) we

fe(le)(fe)) + EPeT fP

- jEk U j (rk,j)

Q.E.D.
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(4.26)

(4.27)

(4.28)

1 Vk(¥ A' = [Lk, j k k j)
(4.31)

f = k,l ^ 1 k.
JE-k k

(4.32)

qP == E



--..... A'

Figure 4-2: A simple general network

This proposition shows that the monopoly price is given by two terms: The first

term is the "marginal congestion cost" (which corresponds to a Pigovian tax on the ex-

ternality created by the users[11]). This amounts to charging every user the marginal

increase in congestion by sending an extra unit of data. It is well-known that this

is the price that a network planner maximizing the total system performance would

charge in order to force users to internalize the congestion effects (resulting in the

social optimum) [1213]. The second term is a markup above this given by the profit-

maximizing objective of the service provider. Which of these two terms is dominant

will determine the relative performance of the monopoly equilibrium compared to a

situation without prices and to the social optimum.

Example 1: We consider a simple general network as given in Figure (4-2). We

have two users (A and B) and 4 paths (h, c}, {a, b, c}, {d, b, g}, {(e) in the network.

The utility functions of the users and the latency functions of the links are given by

UA(rA) = 2 00 (rA), UB(rB) = 200(rB)',

le(f) = (fe), 3 V e E E.
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Figure 4-3: a) Performance of ME over WE at price 0 b) Performance of ME over
Social Optimum
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Let Ume, Usocia, and U be the total system utility,

E[ EUk,j(rk,j ) C (le(fe)) fP]
Ik Sjk PEPk eEp

at the monopoly equilibrium, social optimum, and at the WE at 0 prices, respectively.

The plot of the ratios Ume/Uo and Ume/Usocial as a function of different values of a

and p are given in Figures 4-3(a) and (b), respectively.

The results shown in Figure 4-3 are intuitive. The first panel shows that as P

increases, performance of the monopoly equilibrium improves relative to an equilib-

rium without any prices (e.g., as in [13]). This is because higher values of /3 imply

that latencies are more sensitive to link load and thus correspond to greater conges-

tion effects (externalities), which are internalized in the monopoly equilibrium, but

not in the equilibrium without prices. It also shows that performance improves as a

increases. Greater a corresponds to a more linear utility function, and as Eq. (4.22)

shows the markup is smaller when the utility function is less concave, reducing the

monopoly distortions. The second panel is similar, however, it shows that the per-

formance of the monopoly equilibrium relative to social optimal with respect to a is

non-monotonic. The reason why values of oa close to 1 improve the performance of

the monopoly equilibrium is the same as above. However, the monopoly equilibrium

also performs relatively well for very small values of a. This is because, in this case,

even though the markup is substantial, individuals have a very high marginal utility

of data transmission at low flow rates and choose not to reduce their flow rates much

in response to this high markup, thus system performance does not suffer much.

4.3 Consistency between Path Pricing and Link

Pricing

Given the monopoly price characterization, we can show that under certain conditions

the ME under path pricing is consist with the ME under link pricing.
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Proposition 6 In a network, if each path contains at least one link that is not used

by the paths from other OD pair, then the ME (f, q) under path pricing is consist

with the ME (f', qC) under link pricing which means the link loads in both equilibrium

are the same and the prices of the paths with positive flow are the same.

Proof: To see this, we consider a network G satisfying the condition stated above.

Let (f, q) be an ME under path pricing. The service provider can use the following

link price, q:

* For each path p C P in (f, q), let k be the OD pair such that p E 'Pk. Pick one

and only one link e in p which is not used by any path from other OD pairs.

Set its price to be

fe(le)'(fe) + EPE k 1
-jeflk u j (rk,j)

* For each path p ¢ P in (f,q), let k be the OD pair such that p C Pk. Pick a

link e in p which is not used by any path from other OD pairs. Set its price to

be oo.

* For the remaining links, if the link has a positive flow in (f, q), set its price to

be fe(le)'(fe), otherwise, set its price to be oc.

Let f' be a WE under link price q. If a path p E P in (f, q), then in (f', q) its price

is

( l e()'(fi + E kj
eEp eEp -jEJk u j(k,j)

From Proposition (5), we can see that qp = qP for every p E P. Now, if a path p ' P

in (f, q), then in (f', q) its price is oo and its flow is 0. Therefore, f = f' and

p eEp P

Hence, the ME, (f, q), under path pricing is consist with the ME, (f', q) under link

pricing. Q.E.D.
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Chapter 5

Braess' Paradox

In this chapter, we address an important performance problem in general topology

network: Braess' Paradox.

5.1 Classical Braess' Paradox and Generalized Braess'

Paradox

Service providers often face the problem of how to increase the network capacity.

For example, where should they add a new link? One might expect that adding a

new link can always increase or at least does not decrease the performance of the

network. This assumption, however, is not true in a general topology network. The

first example of this counterintuitive phenomenon is given by Braess in 1968 [16] and

therefore known as Braess' Paradox. Braess' Paradox states the counterintuitive fact

that adding a link to a network might cause all users to be worse off than in the

previous equilibrium. This phenomenon is due to the non-cooperative nature of the

selfish users, as each user only wants to minimize his travel cost without considering

the travel costs of other users. Braess' Paradox has been recognized and studied

in different kinds of networks. For example, Hagstrom and Abrams [28] outlined

a characterization of Braess' Paradox in traffic networks. Steinberg and Zangwill
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[33] gave necessary and sufficient conditions for the existence of Braess' Paradox in a

transportation network under limited assumptions. Cohen and Kelly [26] also studied

an example of Braess' Paradox in a queueing network. A detailed survey of research

on Braess' Paradox can be found in [23] and [31].

The observation of Braess' Paradox motivated research in methods of upgrad-

ing the network capacity without degrading network performance. Some proposed

methods were:

1. Multiplying the capacity of each link by some constant factor Oc > 1 [29, 30] or

a link dependent factor a, > number of users [30].

2. Adding a direct link between the source and the destination [29, 30, 32].

3. Increasing the capacity of a direct link [30].

These methods emerged as results of studies in sensitivity analysis. In particular,

methods (1)-(2) are motivated by the sensitivity result that states that the equilib-

rium cost of an OD pair is a monotone non-decreasing function of the corresponding

demand [22, 30, 34]. Method (3) is motivated by the sensitivity result that states

that improving the link latency function on only one link results in a decrease of the

latency on that link [22]. The methods given above have some major drawbacks:

1. A large-scale network contains many users and links, therefore updating the

capacities of all the links or the capacity of a link by a factor that is larger than

the number of users is a very expensive operation.

2. The source and destination usually are very far away from each other or/and

locate in different geographic regions. Therefore, in reality, there are very few

links connecting the source and destination directly and also building such di-

rected links is often infeasible.

The methods proposed above are further constrained by assumptions on link latency

functions or users. However, whether any assumption has been made or not, we can

see that these methods are limited.
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Braess' Paradox can be arbitrarily severe in many networks [23]. Most of the net-

work design problems related to Braess' Paradox, such as the ones mentioned above,

focus on finding ways to avoid this undesired but common phenomenon. Therefore,

in the remainer of this section, we will examine the implications of profit maximizing

prices on Braess' Paradox.

Hagstrom and Abrams [28] gave a definition of Braess' Paradox in a network

without pricing: A Braess' Paradox occurs if there exists some other distribution of

flows for which some flow have improved travel costs and no flow has worse travel

cost than in the equilibrium. This is a generalization of the classical Braess' Paradox

which refers to change in network performance by adding/deleting a link. In [28],

Hagstrom and Abrams showed a network which experiences a generalized Braess'

Paradox but no classical Braess' Paradox. The example is given in Figure 5-1. The

network is similar to the original Braess' Paradox given in Section 1.2.5 but with

different link latency functions:

la(fa) = 10fa, lb(fb) = 10fb + 32, Ic(fC) = 10fC + 32,

Id(fd) = 10fd, le(f,) = f + 10.

A user want to send 6 units of data from node 1 to node 4. Assume the prices of all

the paths are 0, then at the WE, the flow on the paths are:

f{a,c} = f{b,d} = f{a,e,d} = 2,

and the latencies of all the paths is 92. Now consider a new flow distribution where

f{ac} = f{bd} = 2.5, f{a,e,d} = 1.

The latencies of the paths then become

{a'c} = I{bd} = 92, {a,e,d} = 81.
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10fb +

OfC + 32

fe + 10

lofd

Figure 5-1: A generalized Braess' Paradox for which no link can be deleted.

The flow on path {a, e, d} have lower latency cost while the other flow have the same

latency cost. Therefore, the generalized Braess' Paradox exists. However, if any link

is deleted, all flow will experience higher latency cost. Thus, the classical Braess'

Paradox does not occur.

5.2 Braess' Paradox under Pricing

In a network without pricing, at a WE, all flows on the paths that belong to the same

OD pair experience the same latency cost. Therefore we can restate the generalized

definition of Braess' Paradox given above as: A Braess' Paradox occurs in a network

if there exists some other distribution of flows for which some paths have improved

latency costs and no path has a worse latency cost than in the equilibrium. At a

WE with prices, flows on different paths may have different latency costs. Therefore,

there might exist some other flow distribution for which some paths have improved

latency costs and no path has worse latency cost, but some flow which switched from

one path to another has worse latency cost than in the equilibrium. Such a situation

should not be considered as a Braess' Paradox. For an example, let's consider the

network in Figure (5-2).
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d

Figure 5-2: An example of Braess' Paradox under pricing.

A single user sends data from node 1 to node 4.

u(F) = 368V6"Fr° 5

The link latency functions and path prices are as follows:

la(fa) = (fa)2 , b(fb) = 5 fb, C(fC) = 5f c,

ld(fd) (fd)2 le(fe) = 0, q{a,c = 182.5619,

q{b,d} = 182.5619, q{ae,d} = 193.5619

The path flows at the WE are

f{ac} = f{b,d} = 2, f{a,e,d) - 1.

The latency costs of the paths are

{a,c}) = /{b,d} = 19, /{a,e,d} = 18.

We next consider moving 0.5 units of flow from path {a, e, d} to paths {a, c} and
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{b, d}. The resulting path flows are

f{a,c} = f{b,d} = 2.5, f{ae,d} = 0,

and the corresponding latency costs are

l{a,c} = {b,d} = 18.75, 1 {a,e,d} = 12.5.

Hence, the flow that is moved from {a, e, d} to alternative paths experiences a higher

latency cost. It can be seen that there is no flow distribution in which all flows

experience improved latency costs.

We next give two alternative definitions of Braess' Paradox under pricing. The

following notation will be useful in the definitions. Consider two feasible flow distri-

butions f and f such that

Fk,j = rFk,j, V k,j.

Let y = [fP]pcPk,keW be the path flow vector and A be a transformation matrix such

that

Ax = . (5.1)

Hence, Ai,jf j represents the amount of flow that is moved from path j to path i.

Note that there are infinitely many transformation matrices A satisfying Eq. (5.1).

Definition 3 (Strong Braess' Paradox): Let G be a general network. Given a

price q, let f be a WE. Let IP(y) be the latency cost of routing one unit of flow on

path p as defined in Eq. (2.1). A Strong Braess' Paradox occurs if there exists some

other distribution of path flows, 7, and a transformation A such that

rk,j = rk,j,V k,
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lP(f) > lP'(f), for all p, p' with p,p A 0, (5.2)

with strict inequality for some p, p', where Ap,,p is the (p', p) entry of matrix A.

Under condition (5.2), no flow experiences a higher latency cost than in the WE.

For a price vector in which the prices of all the paths that belong to an OD pair

are the same, Definition (3) is consistent with the definition of Braess' Paradox in a

network without pricing. For an example of Strong Braess' Paradox, we can consider

the same network shown in Figure (5-2). The user sends data from node 1 to node

4. The user's utility function, link latency functions, and path prices are given as:

r = 184/-6F0 5

la(fa) = 1ofa, b(fb)= fb, lc(fc) = fc,

ld(fd) = 10fd, le(f e) = fe, q{a,c} = 50,

q{b,d} = 50, q{a,e,d} = 10.

The path flows at the WE are

f{a,c} = f{b,d} = f{a,e,d} = 2.

The latency costs of the paths are

l{a,c} = /{b,d} = 42; /(a,e,d} = 82.

We move one unit of flow from path {a, e, d} to each of paths {a, c} and {b, d} in

order to get a new flow distribution: f{ac} = f{b,d} = 3 and f {aed} = 0. In this flow

distribution, the latency costs of the paths are

l{a,c} = 1{b,d} = 33.
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Each unit of flow experiences a latency cost equal to 33, which is less than the latency

cost at the WE. Note that this price vector is not a monopoly price vector. Later,

we will show that under monopoly prices, Strong Braess' Paradox does not occur.

Conditions in Definition (3) state that when Strong Braess' Paradox occur, at

the new flow distribution, some flows have lower latency cost and no flow has a

higher latency cost. We will next relax these conditions so that some flow may

encounter higher latency costs at the new flow distribution, but on average the latency

encountered by the total flow will decrease. This leads to the following definition.

Definition 4 (Weak Braess' Paradox): Let G be a general network. Given a

price q, let f be a WE. Let P(-y) be the latency cost of routing one unit of flow on

path p under a path flow y and l(y) = [11(f),... ,lIPl(f) be the path latency vector.

A Weak Braess' Paradox occurs if there exists some other distribution of path flows,

7, under price q and a transformation A such that

Fkj =k rFk, V k, j (5.3)

for some p'

IP(Y) > Ap . 1(7), V p, (5.4)

with strict inequality for some p', where Ap is the pth column of A.

Condition (5.2) in Definition (3) imply Condition (5.4) in Definition (4). There-

fore, if Strong Braess' Paradox occurs, then Weak Braess' Paradox also occurs. The

following example shows that the reverse implication is not true. Consider the net-

work in Figure (5-2) with different functions:

r = 368/r °.5
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Ia(fa) = (fa) 2, 1b(fb) = 3fb, IC(fC) = 5fc,

ld(fd) = (fd) 2 le(fe) = 0, q{ac} = 193.4649

q{b,d} = 201.7149, q{ae'd} = 197.2149

The path flows at the WE are f{ac} = 2, f{b,d} = 1.5, f{a,e,d} = 1 and the path

latency costs are:

l{a,c} = 19; 1{b,d} = 10.75; 1{a,e,d} = 15.25.

Next, we move 0.5 units of flow from path {a, e, d} to each of the paths {a, c} and

{b, d} to get a new flow distribution: f{ac} = 2.5, f{b,d} = 2 and f{a,e,d} = 0. In this

flow distribution, the latency costs of the paths are

l{a,c} = 18.75; 1{b,d} = 10; {a,e,d} = 10.25.

We see that

18.75 < 19; 10 < 10.75

0.5 x 18.75 + 0.5 x 10 = 14.375 < 15.25.

Therefore, in this example, Weak Braess' Paradox occurs. However, it can be seen

that there exists no flow distribution in which all flows will encounter lower latencies

than at the WE. Therefore, Strong Braess' Paradox does not occur.

We next show that under monopoly prices, Weak Braess' Paradox does not oc-

cur, which also implies that under monopoly prices, there can be no Strong Braess'

Paradox.

Proposition 7 Weak Braess' Paradox does not occur under monopoly prices.

Proof: We consider a general network G. Let (f, q) be an ME. Suppose that

Weak Braess' Paradox occurs under the monopoly price q. Then there exists another

flow distribution f satisfying Conditions (5.3) - (5.4). Now let us consider the price
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vector q defined by

qP = Uk,j,(Fk,j') - lP() for some j' G Jk, if p E P

qP = 0o, ifp P.

It can be seen that f is a WE at price q. In the following, we will examine the profit

that the service provider makes under price q.

P ~P
p k pEPk

= S f 7 (U jl(Pk,j) - P(7))
k pEPk

( uj,(Fk,z) )- ) E E 7fPlP()
k PEPk k pEPk

= (U j(Fk) S Fk j-, (%) S F )
k jEk

> ( /UjI(fk,jI) E Fk,j)

k jEJk( U j kj') f P'

k P'EPk

5 5 fP' (Uk,j,(rPk,F )
k 'EPk

= fP'qP'
p'

k PEPk pP'Ek

k P'EPk Pk

- E (fP'lp, '1())k p'EPk

-5 E Z (fP' lP'( "))

k p'EPk

l' (a))

The inequality follows from Eqs. (5.3)-(5.4). The service provider can make more

profit by setting price q than q. Therefore, (f, q) is not an ME, which is a contradic-

tion and shows that Braess' Paradox does not occur under monopoly prices. Q.E.D.
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From Proposition 7 we can see that under monopoly prices, the service provider

does not need to worry about Braess' Paradox when he upgrades the network capacity.
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Chapter 6

Conclusions and Future Directions

A major topic in data network research is to characterize and regulate the flows sent by

selfish users so as to increase the efficiency of the system. A number of studies shows

that the service providers may achieve this goal by utilizing some pricing mechanisms.

In reality, however, most networks are owned by for-profit entities and the service

providers are most interested in setting the prices to maximize their profit instead of

improve the efficiency. Therefore, service providers' interest should also be considered

when studying network designs. Unfortunately, with a few exceptions, this issue has

not been addressed in detail.

In this thesis, we proposed a tractable framework that may be used to analyze

a general data network with many heterogeneous selfish users and for-profit service

provider. We show that the user equilibrium for any given price is unique. We also

gave the explicit characterizations of profit maximizing prices that a help of the service

provider to set the prices. More importantly, we find that under a monopoly setting,

the service provider can also increase the efficiency of the system while setting the

prices to maximize his profit. In some important special cases, the monopoly equilib-

rium can even achieve the full information social optimum. Finally, setting monopoly

prices also solve the Braess' Paradox, which is a critical performance problem in many

network systems.

This research provides an unified approach to study flow control and routing in
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the presence of for-profit service provider. The framework is general and can be

applied to different types of large scale commercial networks such as the Internet

and transportation networks. The work in this thesis also open the doors to many

research directions:

1. A natural extension of the model in this thesis is to consider the case of

oligopolistic service providers. Acemoglu and Ozdaglar [40] have shown that

when service providers are competing for users in a parallel-link network, the

user equilibrium can not achieve the social optimum. However, the performance

gap between the user equilibrium and social optimum is bounded by 5/6 and

the bound is tight. One can expect that a similar situation will be observed in

a general network.

2. To apply the framework to a real world network system, we need a decen-

tralized algorithm to calculate the monopoly prices. The problem of finding

monopoly prices is indeed a Stackelberg game and can be approached by using

bilevel programming technique. At the user level, for any given price, the flow

distribution is a solution of the optimization problem of finding the Wardrop

equilibrium. At the service provider level, the monopoly price is a solution

of the optimization problem of finding the price so that at the corresponding

Wardrop equilibrium the profit of the service provider is maximized. Bilevel

programming problem is a hard problem and even the simplest version of it

(which is the linear bilevel programming problem) is NP-hard [42]. However,

with the monopoly price characterization given in this thesis, we might able to

find an efficient algorithm to calculate these prices. Besides the complexity is-

sue, the algorithm also need to be decentralized to have any practical use. Each

path should be able to calculate its own price bases on its local information.

The decentralized algorithms for calculating Wardrop equilibrium [41] can be a

starting point of this future research.
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