
An Architecture Study of a
Byzantine-Resilient Processor

Using Authentication

by

Anne L. Clark

Submitted to the

Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements
for the degree of

Master of Science

at the ENGM S A E TTS _N STITeTE
Massachusetts institute ofr Iecnnology

June 1994

© Anne L. Clark, 1994
All rights reserved

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

RkrlA ail

Lak8*&Ia
The author hereby grants to MIT permission to reproduce and to I U@i''LtB:_

distribute publicly copies of this thesis document in whole or in par .- ''

Signature of Author
Anne L. Clark

Department of Electrical Engineerin and Computer Science, May 6, 1994

Certified by
Certified b Stephen A. Ward

Thesis Supervisor, Massausetts Institute of Technology

Approved by .
Richa'Yd E. Harper

Thesis Supervisor, Charles Stark Draper Laboratory
fh,

Accepted
FRauate Students

rajiuate Students

g6

/

2

An Architecture Study of a
Byzantine-Resilient Processor

Using Authentication

by

Anne L. Clark
Submitted to the Department of Electrical Engineering and Computer Science

on May 6, 1994 in partial fulfillment of the
requirements for the Degree of Master of Science in

Electrical Engineering and Computer Science.

ABSTRACT

This architecture study provides the ground work for implementing a new generation of
Byzantine resilient processors using authentication. The use of authentication allows a
significant reduction in the theoretical requirements necessary for providing Byzantine
resilience, or the ability to continue correct operation in the presence of arbitrary or even
malicious faults. This decrease in requirements led to a goal of providing a system which
combines the stringent standards embodied by Byzantine resilience with the lower costs
necessary to make the system viable for more markets than previous Byzantine resilient
processors.

A layering scheme is proposed which can be placed between the user and hardware.
These layers consist of protocols which provide the basic building blocks of the
architecture. The proposed authentication protocol which provides the digital signatures
used to verify the origin and contents of messages is a public-key protocol using 32-bit
Cyclic Redundancy Codes (CRC's) to encode the message with 32-bit modular inverse
key pairs to sign and authenticate the CRC. An interactive consistency protocol
responsible for correctly distributing single-source data between processors is built using
the SM(m) algorithm from [LSP82] with improvements suggested in [Dol83]. A voting
protocol responsible for generating a group consensus value guaranteed to be the same on
all nonfaulty processors suggests exchanging unsigned messages and then using a full-set
majority vote choice() function to calculate the group consensus value. Finally, the
proposed synchronization protocol needed to provide synchronized virtual clocks on all
nonfaulty processors is placed on top of a full message exchange (FME) known as a
From_all exchange to read the clocks on other processors. A time adjustment is then
calculated using a technique suggested in [LM84].

Thesis Supervisor: Stephen A. Ward

Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I thank Dr. Richard Harper for his support and guidance throughout the writing of
this thesis. A true Southern gentleman, Rick's clear sightedness and sense of humor kept
everything moving in the correct direction and smoothed all of the rough spots. The last
two years of working for him have been a true pleasure.

I thank Dr. Stephen Ward for his contributions. His supervision guaranteed that
this thesis would be up to the high standards of MIT.

Many thanks to everyone else in the Fault-Tolerant Computer Group at CSDL:
Jay Lala (even if your tie always found all of the problems), Carol (for the Saturday
conversations which made being at work on the weekend all right), Gail (for your
patience in teaching me C and all of the Emacs short cuts), and Florie (for the scissors,
pens, stapler, typewriter, etc., and most importantly, the smile every morning).

Last but definitely not least, thanks to all of the people who made MIT such a fun
experience: Ashok (the cutest and cuddliest), Chris (I would have gone crazy without the
company and card games), Maria (did we really spend Friday nights doing the
recycling?!!), Rob (you still need to relax), Jeff and the rest of the Air Force crowd, and
all of my friends in Edgerton Hall.

This thesis was prepared at The Charles Stark Draper Laboratory, Inc., under Internal
Research and Development Project No. 521: Digital Signatures for Fault Tolerant
Computing.

Publication of this thesis does not constitute approval by Draper or the sponsoring agency
of the findings or conclusions contained herein. It is published for the exchange and
stimulation of ideas.

I hereby assign my copyright of this thesis to the Charles Stark Draper Laboratory, Inc.,
Cambridge, Massachusetts.

Anne L. Clark

Charles Stark Draper Laboratory hereby grants permission to the Massachusetts Institute
of Technology to reproduce and distribute this thesis in whole or in part.

5

�vz-�-

To Mom, Dad, David, and Steven - For the love and support.

6

1. Introduction ... 13

1.1. Problem Statem ent .. 13

1.2. Objective ... 14

1.3. General Approach ... 14

2. M otivation .. 17

2.1. O verview ... 17

2.2. Fault-Tolerance Requirem ents .. 17

2.3. Cost and Perform ance G oals ... 19

3. Fundamental Building Blocks 21

3.1. O verview ... 21

3.2. A uthentication ... 22

3.3. Interactive Consistency ... 24

3.4. V oting.. 25

3.5. Synchronization .. 26

4. Authentication 29
4.1. Overview ... 29

4.2. Authentication Requirements 29

4.3. A uthentication Protocols ... 34

4.4. Key G eneration ... 38

4.5. Cyclic Redundancy Codes (CRC's) .. 39

4.6. Protocol Im plem entation Results .. 44

5. Interactive Consistency ... 49

5.1. O verview ... 49

5.2. Interactive Consistency Requirements .. 49

5.3. Byzantine Agreement Algorithms .. 52

5.4. Interactive Consistency Design Issues .. 53

5.5. Final Protocol Design ... 59

6. Voting 73

6.1. Overview ... 73

6.2. Voting Requirements .. 73

6.3. Voting Algorithms and Design Issues .. 76

6.4. Final Protocol Design .. 80

7

7. Synchronization ... 87

7.1. Overview 87

7.2. Synchronization Protocols .. 87

7.3. Synchronization Design Issues 90

7.4. Final Protocol Design .. 95

8. Conclusions and Recommendations ... 105

8.1. Overview ... 105

8.2. A Byzantine-Resilient Architecture using Authentication 105

8.3. Topics for Further Research .. 108

Appendix A 64-Bit Modular Inverses .. 111

Appendix B.

B.1.

B.2.

B.3.

Clock Synchronization Proof of Correctness 113

Overview ... 113

Schneider's Formal Model of the System ... 113

Formal Definition of our Clock Synchronization Protocol 115

A ppendix C. G lossary of N otation .. 119

References 121

8

LIST OF FIGURES

Figure 2.1 Information processing in a Byzantine resilient system 19

Figure 3.1 Architecture layers.. 21

Figure 3.2 Detecting a "two-faced" clock ... 25

Figure 4.1 Evenly distributed signature and message spaces 31

Figure 4.2 Undetected fault with a non-host-specific signature 32

Figure 4.3 Detected fault with a host-specific signature .. 32

Figure 4.4 Undetected fault with a non-message-specific signature 32

Figure 4.5 Detected fault with a message-specific signature .. 33

Figure 4.6 Undetected fault with a non-time-specific signature 33

Figure 4.7 Detected fault with a time-specific signature .. 34

Figure 4.8 Approaches to private-key authentication ... 35

Figure 4.9 Example of CRC encoding [RG88] .. 39

Figure 4.10 LFSR circuit for the CRC-16 generator polynomial 42

Figure 4.11 Message encoding performance overhead .. 46

Figure 5.1 Connectivity requirement .. 50

Figure 5.2 Protecting against an increasing number of simultaneous faults 51

Figure 5.3 Message passing using SM(m) .. 52

Figure 5.4 Using nested signatures to isolate faults ... 55

Figure 5.5 Generating nested signatures ... 57

Figure 5.6 Proposed message format using 64-bit signatures .. 58

Figure 5.7 "Two-faced" clock with incorrect sequence number record keeping 59

Figure 5.8 Interactive consistency exchange buffers .. 61

Figure 5.9 From_a message passing and buffer space at end of rounds 62

Figure 5.10 From_all message passing and buffer space at end of rounds 66

Figure 5.11 Nested signature performance overhead ... 71

Figure 5.12 Broadcast message passing performance overhead 71

Figure 6.1 Minimal configuration fulfilling interactive consistency requirements 74

Figure 6.2 Examples of incorrect and correct choice functions 74

Figure 6.3 Example of a voting protocol ... 76

Figure 6.4 Voting exchange buffers ... 80

Figure 6.5 Voting message passing and buffer space at end of round 81

Figure 6.6 Comparison of voting performance overheads ... 85

Figure 7.1 An abstract picture of clock synchronization .. 88

Figure 7.2 Synchronization fault with authentication .. 92
Figure 7.3 Task frame behavior... 96

9

Figure 7.4 Application and required synchronization frames 97

Figure 7.5 Message transmission delays and message delay error. 98

Figure 7.6 Comparing the different time references. ... 101
Figure 7.7. Virtual time- vs. task execution-based synchronizations 103

Figure 8.1 Layering scheme for the proposed architecture .. 106

Figure B. 1 Placing bounds on r and rm ... 116

10

LIST OF TABLES

Table 3.1 Theoretical requirements forf-Byzantine resilience 23

Table 4.1 List of varying length generator polynomials ... 45

Table 4.2 Implementation properties of CRC initialization .. 45

Table 4.3 Signing/authenticating performance overhead ... 47

Table 6.1 Interactive consistency vs. voting requirements ... 75

Table 7.1 Comparison of convergence functions [Sch87] .. 93

Table A. 1 List of 64-bit modular inverses used in the implementation 111

Table A.2 List of other 64-bit modular inverses ... 112

Table B. 1 Bounds on parameters specifying clock synchronization subproblems........ 118

11

12

1. Introduction

1.1. Problem Statement

Mission- and life-critical computing systems are demanding increasing levels of

reliability. Current allowable failure probabilities range from 10-4 to 10-6 per hour for

mission-critical functions and 10-6 to 10-10 per hour for vehicle-critical and crew-safety

functions [HL91]. As a result, the traditional method of designing fault-tolerant

processors using a failure modes and effects analysis (FMEA)-based approach has

become extremely costly and time-consuming. To guarantee a certain reliability, these

systems not only have to show that the probability of a modeled fault occurring is within

parameters, but that the chances of an unpredicted fault is also within bounds. An

alternative to this technique avoids making a priori assumptions by allowing faults to act

in any manner, up to and including malicious and intelligent behavior. Such a system is

called "Byzantine resilient," or capable of withstanding Byzantine faults.

Making an architecture Byzantine resilient provides the ability to mask, or

continue operation in the presence of, a specific number of faults. The requirements for

such fault-masking involve lower bounds based on the number of faults that the designer

wishes to protect against. These bounds determine how many processors must be in the

system, what the connectivity between the processors must be, and how many times

information must be exchanged between processors. An additional requirement that the

individual processors be synchronized to within a known skew prevents one processor

from deadlocking the system.

Theoretically, af-Byzantine resilient processor which uses an authenticated

protocol (i.e., a protocol where messages are signed with digital signatures to allow the

detection of certain faults) has definite advantages over those using unauthenticated

protocols. These advantages include a decrease by a factor off in the number of

processors, the ability to eliminate of voting of entire messages, and a reduction in

required message passing and connectivity. The problem is that these advantages do not

necessarily translate into a faster, more efficient architecture when implemented. For

example, the increased message length due to signatures could seriously affect latency.

Before a processor providing Byzantine resilience using authentication can be designed

and implemented, a study is required to investigate the fault-tolerance issues involved in

such a computer architecture, to identify and propose solutions for the main functional

blocks needed for implementation, and then to implement sections of the architecture to

make decisions based on performance issues and to pinpoint areas needing optimization.

13

1.2. Objective

There are certain practical issues relating to an architecture's Byzantine resilience

and multiprocessing which must be resolved: authentication, interactive consistency,

voting, fault-tolerant clock synchronization, and the performance of the proposed

architecture. The proposed architecture is centered around a method of signing messages

that provides unforgeable signatures which (1) allow detection of any alteration of the

message's contents and (2) can be authenticated by any processor in the system. A

cryptographic scheme must be chosen to balance the needs of data integrity against

performance. Interactive consistency (a process where all nonfaulty processors agree on

a vector, y) between the processors must be provided through a fault-tolerant distributed

decision algorithm. A voting protocol is needed to check for faults by exchanging

congruent information, that is, data which are the same on all nonfaulty processors. Fault

tolerance issues require that the clocks on all nonfaulty processors be synchronized to

within some known skew in order to guarantee termination of tasks [FLP83]. Finally,

performance issues involved in all of the proposed solutions (i.e., added latency due to

message signatures) must be taken into account. The objective of this thesis is to identify

and evaluate solutions to these problems.

1.3. General Approach

The first step in any computer design is to examine the motivations behind

developing the architecture. These motivations heavily influence any decisions which

must be made and therefore need to be thoroughly understood. Their relative importance

to each other must be clearly stated in order to settle any tradeoffs which appear during

the design process. Most importantly, any conflicts must be resolved before any other

work is done.

Once the motivations behind designing the system are understood, the architecture

needs to be split into its functionality blocks (i.e., interactive consistency,

synchronization, etc.). These functionality blocks provide abstract layers which are the

interface between the user and the system's hardware. The requirements for each block

must be outlined and then a thorough study of the theoretical work in each specific area

done. Once a solid foundation has been achieved, a selection process is performed in

order to choose algorithms that not only fit the problem being studied, but are also

14

realistically implementable. The tradeoffs involved in actually implementing the

protocols must then be examined in the context of the rest of the system.

Once the individual blocks are designed, an implementation needs to be done to

get a more accurate picture of how the architecture performs. Any design tradeoffs that

remain within the architecture can be tested to show the performance advantages and

disadvantages of each side of the issue This information can be combined with the

individual capabilities of each choice to make a final decision. These measurements can

then be compared to other Byzantine resilient processors to give a clear idea of what will

be gained and what will be lost if the architecture is later consummated.

15

16

2. Motivation

2.1. Overview

The Charles Stark Draper Laboratory has been heavily involved in fault-tolerant

computing since digital computers first began to become a vital part of guidance,

navigation, and control systems. Starting with the Fault-Tolerant Multi-Processor

(FTMP), a project sponsored by NASA in parallel with the software-implemented fault-

tolerance (SIFT) program, Draper Laboratory began investigating the issues associated

with designing fault-tolerant computers to be used for controlling aircraft [HLS87]. A

number of generations of processors have followed the FTMP in providing highly

survivable systems. These systems were specially developed to provide extremely

reliable, real-time embedded capability for critical operations. The architecture proposed

in this thesis encompasses the next step in this progression.

This processor plans to provide the same high level of fault-tolerance and to

support the same type of applications as its predecessors. The main difference comes

from the use of authentication and the corresponding decrease in the requirements

necessary to provide the required reliability. These savings have been extended into an

attempt to cut the costs involved in such a specialized piece of equipment without

seriously impacting performance.

2.2. Fault-Tolerance Requirements

The traditional method of designing fault-tolerant systems is to use a failure-mode

and effects analysis (FMEA)-based approach. This technique analyzes likely failure

modes of the system, predicts the probability of their occurring, and then designs the

system to protect against those that are found to be likely to appear. The reliability of

such a system is based on the probability of an unanticipated fault occurring. With

reliability requirements of life- and mission-critical systems falling to less than 10-9 per

hour, this approach has become both extremely expensive and unrealistic. A way of

mathematically proving that a system will continue to operate in the presence of faults is

needed.

The need for fault-masking protocols was reaffirmed when certain strange and

totally unanticipated failure modes were observed. At least one in-flight failure of a

triplex digital computer system was traced to an apparently Byzantine fault and the lack

of architectural safeguards against such faults [MG78]. Also in circuit-switched network

17

studies at Draper, a failure mode was observed in which a faulty node responded to

commands addressed to any node [HL91]. Finally, a failed processor sending different

information to other processors was observed in the SIFT computer [Pal87]. Such faults

occurring in a system which is not designed to withstand them would be catastrophic.

The realization that designers could never protect against all possible failure

modes resulted in what has become known as the Byzantine General Problem. The

terminology and the theoretical foundation for work in this area comes from a paper by

Lamport, Shostak, and Pease [LSP82] where they state:

Reliable computer systems must handle malfunctioning components that give

conflicting information to different parts of the system. This situation can be

expressed abstractly in terms of a group of generals of the Byzantine army

camped with their troops around an enemy city. Communicating only by

messenger, the generals must agree upon a common battle plan. However, one or

more of them may be traitors who will try to confuse the others. The problem is

to find an algorithm to ensure that the loyal generals will reach agreement.

The generals correspond to processors while the messengers represent interprocessor

links. [LSP82] and papers that followed [Dol83, DS83, DDS84] provide a set of

requirements (lower bounds and protocols) which if obeyed make a system f-Byzantine

resilient, guaranteeing correct operation in the presence off arbitrary faults.

These requirements are necessary to guarantee the correct dissemination of single-

source information, vital for the operation of the overall system. Internal tasks such as

synchronization depend on the assumption that a certain set of the collected information

is accurate. Information taken from external interfaces comes from redundant sources to

prevent a single point of failure and must be utilized by the system. Figure 2.1 illustrates

a common example of information processing used for controlling an aircraft. Redundant

sensors A, B, and C deliver data such as wind speed and altitude to each of the processors

in the system. The processors then use a fault-tolerant exchange protocol to distribute the

input information so that each nonfaulty processor now has a correct set of the sensor

readings. Each processor performs any required filtering and computations before

performing a second fault-tolerant exchange to decide which command to deliver to the

redundant system effectors. If the guidelines are followed, there is no way forf or fewer

faults to corrupt the flow of information between the remaining nonfaulty processors.

18

Fault-Tolerant
Input Exchange

Sensor A

Sensor B

Sensor C

Fault-Tolerant
Computation

_ __o-"
/

Fault-Tolerant
Output Exchange

EffectorA

EffectorB

Effector C

Figure 2.1 Information processing in a Byzantine resilient system.

2.3. Cost and Performance Goals

The previous Byzantine resilient systems at Draper have mainly been designed as

hard real-time embedded systems to be used on aerospace vehicles. Hard real-time

systems are characterized by the presence of hard deadlines where failure to meet a

deadline must be considered a system fault [SAE91]. This requirement places very

specific performance demands on the system. These demands must in turn be balanced

with the need to keep the system small so that it can be placed in the tight space of the

vehicle. Since the systems were built mostly for military or space projects, a premium

was placed on achieving high-throughput combined with fault-tolerance instead of

reducing costs. This need for high performance resulted in architectures which

implemented as much functionality as possible in hardware, often times proprietary, and

were highly optimized for a specific platform.

In this generation of processor, an attempt is being made to lower the cost of our

system and thus make it available to a wider customer base. Authentication is used in the

architecture because of its ability to lower the requirements in the amount of hardware

needed to make the system Byzantine resilient. For example, the number of processors

needed to protect against one Byzantine fault drops from four to three. These changes are

discussed in more detail in Chapters 3 and 5, but reducing the number of processors by

19

II

even one is a huge improvement. A secondary goal is to build the system with multi-

platform capability. If the system runs on a variety of different processors, the user can

then choose a package depending on the amount of money they are willing to spend and

the level of performance desired.

These goals place a number of constraints on the structure of our architecture.

Any use of specialized and/or proprietary equipment must be avoided due to both their

high cost and compatibility problems. In fact, as much as possible of the system's

functionality should be implemented in software. If the individual protocols needed to

implement the required fault-tolerance are written in a high-level programming language

and placed as layers between the user and hardware, porting the system from platform to

platform is greatly simplified. One of the important purposes behind this thesis is to

examine the effect that these policies have on the overall system.

Each protocol has a number of different design options which must be examined

to find the one which fits the best with these goals. A great deal of throughput is often

sacrificed when functions are done by software instead of hardware. Different solutions

to problems need to be tested to determine which helps the system's performance the

most. Once all of the design issues are resolved, the resulting architecture must be

studied to find the sections which should be optimized, either by writing processor-

specific assembly code or adding additional hardware.

20

3. Fundamental Building Blocks

3.1. Overview

The proposed architecture has been designed using the concept of layers. The

layers serve as an interface between the user and hardware which provide the desired

Byzantine resilience. The use of software to implement the needed functionality removes

any dependence on specific hardware to build the system. The only contact that the

layers have with the hardware is through system calls which manage the reading of

physical clocks and I/O for sending and receiving messages. Each layer consists of one

or two protocols which are responsible for sending all necessary information to the user.

Figure 3.1 provides an abstract view of how these layers fit together.

Figure 3.1 Architecture layers.

The layer placed directly beneath the Application Layer is responsible for all

communications between the individual processors. Two protocols are implemented in

this Message Passing Layer. The interactive consistency protocol oversees the exchanges

used to distribute single-source information in a manner which masks possible faults. At

the end of an interactive consistency exchange, all nonfaulty processors have a

"consistent" copy of the data (the definition of consistency is discussed in Section 3.3).

21

The voting protocol is used to gather and compare sets of data in order to reach a group

consensus value which is the same on all nonfaulty processors. This layer depends on

system calls to hardware to process messages and information garnered from the lower

layers.

There are two layers found below the Message Passing Layer. The first is the

Authentication Layer which provides the digital signatures to be appended to the end of

all messages. The authentication protocol within this layer directs the signing and

verifying of messages and is responsible for detecting active faults which affect the

contents of a message. The second layer is the Synchronization Layer which provides

virtual clocks, built on top of the system's hardware clocks, which are synchronized to

within a known skew. The clock synchronization protocol found in this layer is

responsible for starting synchronization intervals and adjusting the system's virtual clocks

to keep them synchronized. The protocol uses the Message Passing Layer to read the

virtual clocks on other processors and system calls to read a processor's own hardware

clock while fulfilling its functions.

The protocols found within these layers are the building blocks which form this

architecture. Each one must be completely specified and designed before any

implementation work can begin. The rest of the sections in this chapter give a general

outline of each protocol. Chapters 4, 5, 6, and 7 then give an in-depth description of each

problem and the final proposed solutions for each.

3.2. Authentication

Authentication forms the foundation upon which the rest of the architecture is

built. All of the other protocols are affected in some way by its presence. The

restrictions on the types of undetected faults which authentication provides allow a

reduction in the requirements necessary for interactive consistency. The presence of

signatures provides a new method of achieving group consensus. However, the need for

all data to be signed before it can be sent to other processors constrains the options

available for synchronization. The authentication protocol must therefore be the first one

to be designed.

Authenticated protocols were developed when the need for secure computer

communications first became apparent. Users realized that they required an efficient

method of verifying the identity of those sending them messages. Protocols were

designed to provide a wide-range of services from the establishment of secure interactive

communications between principals on different machines to authenticated one-way

22

communications for mail systems and signed communications where the origin and

contents of a message could be authenticated by a third party [NS78]. Uses for this last
function were seen from the very beginning of work in the field of Byzantine resilience.

The first Byzantine resilient algorithm using authentication appeared in [LSP82].
The authors realized that the ability to append a signature to the end of all messages and

allow the receiver to verify the original sender and contents of the message made certain

powerful assumptions about faults possible. Faults can be classified as either passive or

active. Passive faults have no effect on the contents of the message and usually involve

messages being delayed or blocked. Active faults are directly connected to the contents

of the message. For example, a processor trying to masquerade as another processor or a
noisy link corrupting messages are active faults. The use of authentication allows the

designer to assume that all active faults are detected through checking the signatures and
therefore do not need to be masked by a separate message passing protocol (i. e., an

interactive consistency protocol). This assumption makes a drastic reduction in the

complexity of Byzantine resilient systems possible.

Unauthenticated Protocols Authenticated Protocols

Number of processors [LSP821 3f + 1 2f + 1

Connectivity [Dol83] 2f + 1 f + 1

Communication Rounds [DS83] f + 1 f + 1

Messages [DS83] O(n') o(nf)

Voting Required [LSP82, DS83] Yes No

Synchronization [DDS84] Yes Yes

Table 3.1 Theoretical requirements forf-Byzantine resilience.

The use of digital signatures allows a reduction in both the hardware and

communications necessary to provide Byzantine resilience. Table 3.1 compares the

theoretical requirements for unauthenticated and authenticated protocols as a function of
f, the number of faults which the system protects against. The number of processors and

the connectivity between them is reduced by a factor off. The same amount of

communication rounds are needed, but the number of messages which are sent within
each round has fallen. The final difference is that the processors no longer have to
perform a vote on the entire message since the signatures provide an encoded version
which can be compared instead. The effect these changes have on a Byzantine resilient
architecture is the main motivation behind this thesis.

23

3.3. Interactive Consistency

An architecture's claim of Byzantine resilience depends on the protocol used to

provide interactive consistency. This protocol is utilized whenever data appears on only

one processor. Such single-source information must by exchanged using fault-tolerant

message passing techniques to provide congruent copies, or data which is the same, on all

nonfaulty processors. Common examples of single-source data are a reading from one

redundant sensor or the value of a processor's local clock. A more exact definition of

interactive consistency is a set of processors agreeing on a piece of information

originating from a single source in such a way that the following Byzantine Agreement

conditions are fulfilled:

Agreement: If any nonfaulty processor decides value V, then all nonfaulty

processors decide V.

Validity: If a nonfaulty processor starts with an initial value V, then V is the only

allowable decision by all other nonfaulty processors.

Termination: All nonfaulty processors decide on a value V within a known

amount of time.

The value V which is agreed upon by all nonfaulty processors is considered to be

"consistent." If the processors perform the same operation on this consistent data, they

are considered to be operating "congruently."

Obtaining interactive consistency in the absence of faults is a trivial problem since

the sender simply has to transmit its data to the other processors. Once Byzantine faults

are introduced, the process becomes much more complicated. Figure 3.2 illustrates our

problem in the presence of a commonly discussed Byzantine fault, a "two-faced" clock.

In this scenario, a faulty processor sends a different value to each of the other processors.

In Figure 3.2(a), faulty processor A sends signed messages containing conflicting data to

the nonfaulty processors B and C. Authentication does not help to discover this fault

since the two varying messages correspond to their signatures. If the protocol were to

stop at this point, B and C have no way of realizing that they have inconsistent, or

differing, information. The second round of message passing shown in Figure 3.1 (b) is

needed between B and C in order to discover the problem. After the second round, B and

C each have a set of two different messages which have verified as originating from A

and therefore, upon noticing a disagreement, each chooses the same default value.

24

X.Ax

(a) An undetected fault. (b) Fault discovered.

Figure 3.2 Detecting a "two-faced" clock.

A protocol must be designed to implement the required message passing and

provide interactive consistency in the presence of Byzantine faults. It is vital for the

architecture to guarantee that after an exchange, the information on nonfaulty processors

is consistent. If a fault were to occur that caused conflicting data to be accepted on

nonfaulty processors, the actions of the processors could diverge, causing a failure of the

entire system.

3.4. Voting

The second protocol in the Message Passing Layer is known as the voting

protocol. This protocol is responsible for calculating a group consensus value which is

guaranteed to be the same on all nonfaulty processors. Periodic exchanges are performed

when processors are expected to be acting congruently, or performing the same

operations on identical data. The goal of these exchanges is to gather a set of values

containing an element from each processor to be used in calculating the group consensus

value. These voting exchanges are employed mainly by Fault, Detection, Isolation, and

Recovery (FDIR) tasks to detect faults.

Voting exchanges result in a set of data with elements from each processor and a

group consensus value. Since the processors are expected to be acting on congruent

information, the data from nonfaulty processors should be the same as the group

consensus value. FDIR tasks generate fault symptoms by comparing the group consensus

value to every element in the data set and marking every processor which provided

noncongruent data as faulty. Voting exchanges are also used just before an output to

filter any computational faults.

25

F

The voting protocol is designed after the interactive consistency protocol because

it is constrained by interactive consistency requirements. The fault tolerance claims of

the entire architecture rest on the correctness of the interactive consistency protocol so the

voting protocol must be structured to fit with the other protocol. Also, any requirements

added by the new protocol are not allowed to come into conflict with the interactive

consistency requirements. The design of the voting protocol must be done to

complement the interactive consistency protocol.

3.5. Synchronization

One of the most important and complicated requirements for reliable real time

systems is the need for synchronized processors. In fact, Fischer, Lynch, and Paterson

show in [FLP83] that it is impossible to make an asynchronous system resilient against

even one fault. If one processor stops sending messages, the rest of the system could

deadlock. The other processors have no way of deciding whether the faulty processor has

failed or is simply far behind the rest. The normal solution to this problem of using time-

outs implies, by it very presence, some form of synchronization.

Other technical problems were discovered in the advanced fighter technology

integration (AFTI) F-16 program [Mac88]. The digital flight control system (DFCS) was

designed so that the three computers in the triply redundant system were not

synchronized. The designers believed that computer synchronization introduced a single-

point failure caused by electromagnetic interference (EMI) and lightning. The AFTI F- 16

program found that the asynchronous aspect of the architecture introduced errors in the

inputs due to time-skewed sampling by the different processors. An even more serious

problem became apparent in the verification process. The system became untestable in

that testing for each of the possible time relationships between individual processors was

impossible. This attempt at asynchronous operations only served to reinforce the need

for synchronization.

Synchronization requires that each nonfaulty processor have some idea of "real"

time within a known skew of all other nonfaulty processors. A clock falling outside of

this skew bound is considered a processor fault. Fault containment considerations make

it necessary for each processor to have its own local independent clock. Using one global

clock makes synchronizing the processors trivial, but also introduces a single-point

failure. The problem is that no matter how accurate the individual clocks are, they still

tend to drift apart over time. Clock synchronization protocols are used to correct for this

drift.

26

Clock synchronization protocols implement virtual clocks in a way which should

be invisible to the user. The method used to synchronize the clocks must be chosen based

on the overall characteristics of the architecture. Another important consideration is the

amount of overhead introduced by the protocol. In the SIFT computer, twelve out of

sixty-six slots in each major frame were dedicated to clock synchronization and

redundancy management, an overhead of 18% [PB86]. A protocol which avoids a large

amount of overhead when the system is busy is preferred.

27

28

4. Authentication

4.1. Overview

The Authentication Layer provides a service upon which the rest of the

architecture rests. Its authentication protocol uses digital signaturing techniques to allow

a recipient to verify the authenticity of a received message with high probability. These

signatures are used by the protocol to isolate the many types of active faults which can

occur within the system. There are requirements, both theoretical and practical, which

must be fulfilled by these signatures. The technique used to calculate the signatures must

also be flexible and comprehensive enough to detect events varying from messages

arriving late and outside real-time constraints to an intermediate processor repeatedly

transmitting a message. On the other hand, latency is added to message processing every

time a message is signed and verified, adversely affecting performance. The signaturing

function must therefore be chosen carefully to meet all requirements while accounting for

these problems.

Authentication protocols are defined by the type of signaturing scheme which is

employed. The most common types of protocols are based on methods using key-pairs to

sign and then verify a message. These protocols are classified into two groups, private-

key authentication and public-key authentication. In private-key authentication, a sender

generates signatures using a private-key; any receiver which wants to verify the

message's authenticity must also have access to the private key. On the other hand,

public-key authentication makes use of key-pairs where the sender signs the message

using a private key, while the receiver applies a public key related to the private key to

verify authenticity. Designing the final authentication protocol for this thesis involves

analyzing the advantages and disadvantages of these two protocol types, selecting the

best for this architecture, and incorporating a signaturing scheme which fulfills all of the

requirements mentioned in the next section. Finally, the machinery necessary for signing

and verifying messages needs to be build in order to investigate the performance issues

involved in authentication.

4.2. Authentication Requirements

Before work on designing the authentication protocol can begin, the many

requirements which must be met by the signatures need to be examined in detail. The

signaturing scheme is an integral part of any authentication protocol. The integrity of the

29

individual signatures determines the reliability of the entire system, since the architecture

may not protect against undetected active faults which have defeated the authentication

protocol. Such an undetected active fault could cause a catastrophic system failure. At

the same time, attempts to make the scheme more robust often result in poorer

performance. There are two main issues which need to be investigated with these factors

in mind. The architecture's claim of being Byzantine resilient depends heavily on

theoretical assumptions about signatures. Decisions about how strictly these assumption

will be upheld must be made. Also, these assumptions need to be translated into

implementation requirements for the signatures.

All Byzantine resilient algorithms using authentication assume the ability to

generate signatures such that

Al: A sender's signature cannot be forged by another process.

A2: Any alteration of the sender's message can be detected.

A3: The receiver can readily verify the authenticity of a sender's signature-

message pair.

These assumptions can never be totally guaranteed in an actual implementation due to the

structure of digital signatures. Digital signatures consist of a finite number of bits which

can always be generated randomly by a processor. The signaturing scheme must be

optimized to provide the needed amount of security without affecting the rest of the

system.

Even though assumption Al cannot be ensured, it is possible to make forging the

signature extremely difficult. The probability of a processor forging a sender's signature

by random attempts decreases as the number of bits in the signature increases. For

example, if we assume that a processor generates messages at the rate of 106 per hour,

and a probability of system failure of 10-10 per hour is desired, then the probability of

forging a signature needs to be 10-16 per message. The signature would need to consist

of at least 53 bits to provide a probability of forgery of 10-16. This is only a lower bound

for the number of bits in the signature since this assumes random attempts to forge a

signature. Assuring unforgeability to malicious attempts may require a greater signature

length.

Similarly, assumption A2 cannot be guaranteed with unity probability since the

generation of an n-bit signature for a k-bit message, where n<k , implies that there exists

a signature which corresponds to at least two messages (and probably even more). Thus,

a processor may change the contents of a message with a finite probability that the

30

changed message's signature is identical to the original message's signature. If we

assume that the signaturing scheme uniformly distributes signatures over the message
space, that is for all signatures v in the signature space Q, vi is the signature for exactly

2*-" messages, we can estimate the probability that a processor can undetectably corrupt

a message, leaving the signature unchanged, to be 2-". Figure 4.1 shows an example of

such a distribution. If a 2-bit signature is appended to an 8-bit message, there are only

22, or 4, signatures to represent the 28, or 256, possible messages. If a message is

corrupted, there is a 2-2 (14) probability that the new message falls into the message

space corresponding to the same signature. To provide a probability of undetectable

corruption of 10-16 per message would again necessitate a signature of 53 bits and a

"spectrally white" signaturing scheme.

Message
Space

Signature -
Space _ _ -

-a,_
_ _ - - - -

_

4. n-bits -

4-k-bits -I.

Figure 4.1 Evenly distributed signature and message spaces.

The security required by signatures is determined by the level of intelligence we

are willing to attribute to faults. For many applications, we can assume that faulty

processors may exhibit malicious behavior, but not to the extent of a malicious

cryptoanalyst, particularly in cases in which we are using authentication to protect against

random hardware failures in fast hard real-time applications. Therefore, our signaturing

scheme need not be cryptographically secure but only robust against randomly malicious

31

a

a

a

m m mm-

_ _ _m __m _ _ _

U
_ .

_ro _ o _ _
m _m _m _U

_m _ m_ _

:· _ _m lm

_mmm

l m m

_m _ _m _

_ m

: m[m

_ _*_ m_

_mmm

_ __m

m m [e

_ _ _m _

i

behavior. Due to the malicious nature of some hardware failures we still need to exercise

some caution in determining a signaturing scheme.

Considerations other than the security of the signatures must be taken into account

in designing a signaturing scheme. Certain information must be provided in all

signatures to vitiate the many different types of active faults. First of all, signatures must

be host-specific to prevent one processor from masquerading as another. In the flawed

example shown below, processor B pretends to be processor A and sends "A says go",

signing it with S. If the signatures are not host-specific, processor C would accept the

message as coming from processor A.

Figure 4.2 Undetected fault with a non-host-specific signature.

Host-specific signatures keep a processor from being tricked as to the origin of the

message. Replaying the above scenario with host-specific signatures, if B sends the

message "A says go" and appends Sb to it, C will realize that the message did not

originate from A.

Figure 4.3 Detected fault with a host-specific signature.

Also, signatures must be message-specific in order to prevent an intervening

processor from corrupting a message and then appending a correct signature to it. In the

flawed example shown below, processor A sends "A says go" and signs it with Sa. If the

signatures are not message-specific, processor B could corrupt the message to "A says
stop," append Sa to it, and C would accept the corrupted message as authentic.

Figure 4.4 Undetected fault with a non-message-specific signature.

32

Message-specific signatures keep a processor from copying another's signature and

appending it to a corrupted message. Replaying the above scenario with message-

specific signatures, if B corrupts the message from "A says go" to "A says stop" and
attempts to append Sa to it, C will detect that the signature and the message do not match

and discard the message.

Figure 4.5 Detected fault with a message-specific signature.

However, even with host- and message-specific signatures, an intermediate

processor can still erroneously and undetectably repeat a message-signature pair. In the

flawed example shown below, processor A sends "A says go" followed by "A says stop."

Processor B can erroneously save the first message and transmit it twice, absorbing the

second message without C being any the wiser, since both messages received by C

authenticate.

Figure 4.6 Undetected fault with a non-time-specific signature.

To eliminate this possibility, a monotonically increasing sequence number can be

attached to each message by the sender. The sequence number introduces a varying

message component which ensures that a relaying processor cannot undetectably replay a

saved copy of a message. Such replays would be rejected by the receiver because they

have identical sequence numbers. Sequence numbers also ensure that, when a source

intentionally transmits two identical messages, the signatures will differ because the

signature, which is calculated with respect to the message and the sequence number, has a

spectrally white dependence on both the message and the sequence number.

33

A says go, 1,

A says stop, 2
1 A says go, 1, Sa,2

, says go, 1, Sa, 1

Figure 4.7 Detected fault with a time-specific signature.

4.3. Authentication Protocols

Authentication protocols are responsible for the mechanics of signing messages at

the sender and verifying their authenticity at the receiver. There are two basic approaches

to authentication used by such protocols, private-key authentication and public-key

authentication. Private-key authentication is the traditional type of cryptosystem which

has been used for centuries where anyone who wants to verify a message needs to know

the key used by the signer. On the other hand, public-key authentication is of more

recent origin (at least within this century), first suggested by Diffie and Hellman in

[DH76]. Diffie and Hellman proposed using key pairs where one key is utilized to sign

the message and the other key is used to verify both the sender and the message itself.

There are advantage and disadvantages to both types which need to be weighed before the

final protocol can be designed.

4.3.1. Types of Authentication Protocols

The approach for an authentication protocol implementing private (secret) keys
uses a signaturing function, v = Sk (M), which generates a signature v for the message M

based upon a key k. Every participant that wishes to authenticate messages from a sender

must possess k, the key the sender used to sign the message. A receiver i verifies a
message from a sender j by computing Sk (M) using the sender's key and comparing that

signature with the signature appended to the message. One problem with private key

authentication is that the authentication key must be identical to the key used to sign the

message. Hence a receiver which is able to authenticate a message from a sender j is also

able to forge outgoing messages with j's signature. Two methods may be used to prevent

this scenario from occurring.

The first method is to use pair-wise common keys. Each sender j has a different

key for each other node in the system. A receiver i has the key that each sender uses to

sign messages sent to i. (See Figure 4.8(a).) Thus in the worst case, a faulty node can

34

only forge messages to itself. This solution creates a number of key management

problems and precludes the ability to broadcast information to all participants without

attaching a separate signature for each potential recipient.

The second method to prevent a receiver from forging a message is to

compartmentalize the receiver from the transmitter (See Figure 4.8(b).). By this, we

mean that the designer must insure that no propagation of key information from receiver

to transmitter is possible through the use of hardware isolation/protection mechanisms.

One method for doing this would be to only allow the transmit key to be set on power-up.

Again, this method creates a number of key management problems; however unlike the

previous method, it does allow a node to broadcast messages without attaching a separate

signature for each potential recipient.

artnent
laries

(a) Pairwise secret key system. (b) Compartmentalized single key system.

Figure 4.8 Approaches to private-key authentication.

In public-key cryptosystems each participant i has an encoding function which
generates a n-bit representation of the message, M, as well a signing function Di and an

authenticating function Ei with the following properties:

35

Transmitter

Receiver

'4
'4
'4
'4
'4
'4
'4
'4
'4
'4'4
'4'4
'4
'4
'4
'4
'4

Transmitter

k, 1~~~~~~~~~~~~~~~~~4
4. N~~~~~~~~~~~~~~~~'

k N

Receiver
t'4''' ''''vx'x''''4s

Com
Bouw

X

L.4

~~~""~~~~~""~~~~~~"`~~~~~""·""4~~~~~~~~%

i

-00

i
P
Pr

i



BI: E(Di(M#)) = M#.

B2: Both Ei and Di are easy to compute.

B3: Di cannot not be inferred from knowledge of Ei with any reasonable

effort.

The nomenclature for the functions may be confusing, but it comes from the original

public-key proposal in [DH76] which envisioned the public keys being used to send (and

therefore encode) messages which could only be read (and therefore decoded) by a

receiver with the private key. We have renamed the functions to correspond to their uses

in our design, but have kept the original symbols. To apply the public-key cryptosystem
scheme to a public key authentication system, sender i encodes the message M, such

that M, is a n-bit number representative of M,,e,. The spectrally white encoding function

is common knowledge; computation of a CRC over the message is an acceptable
algorithm. The sender then uses its private signing function Di on M# to calculate the

signature. The receiver uses the authenticating procedure E, which is common

knowledge for all i, to verify the message. To be specific, for processor A to send a

message to processor B, the following steps are taken:

1. A computes M# = Encode(M,ext).

2. A computes the signature SA = DA(M#).

3. A sends (Mtext,S,) to B.

4. B computes M# = Encode(Mx,).

5. B strips off SA and computes EA(SA).

6. If EA (SA) = M#, then the message is authentic.

While public-key signature systems do not need secret keys, and broadcasts are possible,
they do require the availability of suitable functions Ei and Di which possess properties

Bl-B3. The public-key authentication method does eliminate the problems associated

with key management and allows efficient broadcasts.

4.3.2. Proposed Protocol Design

The decision about which type of authentication protocol to employ needs to be

made based on how authentication will be used by the system. This protocol is placed in

a low level layer beneath the message passing protocols. It is necessary for the

36



processors to be able to broadcast message to the other processors without incurring

performance hits. Also, remember one of the goals behind this architecture is to

implement as much as possible, if not all, of the functionality in software in order to cut

costs. Avoiding problems with key management or the need for hardware

isolation/protection mechanisms is therefore desired. These factors made public-key

authentication the obvious choice for this system.

The final proposed protocol is a public-key cryptosystem based on Cyclic

Redundancy Codes (CRC's) and modular inverses. CRC's provide a spectrally white

means of encoding the message which is relatively simple to either code in software or

build in hardware. From the evaluation discussed previously in Section 4.2, the number

of bits necessary to make the probability of forgery adequate for our applications

necessitates a CRC of greater than 53 bits. For ease of implementation, this would

require a CRC length of 64 bits (the closest multiple of a byte to 53). The signing and

authenticating functions use modular inverse keys which are two numbers, P and P- (P

inverse), for which P P-' mod 2" = 1 is true where 2" is a very large number. P acts as

the private signature key while P-l is the public signature key. Several examples of

modular inverses are:

13.5mod2 5 = 1

1033 569mod2 1n = 1

9294586028090703467 350969587744990515 mod 2 = 1.

The signing function, Di(M#), is P M# mod2" while the authenticating function, Ei(Si)

is Si P-' mod2" where 2" is the number of possible signature configurations (and n is

the number of bits in the signature) and M# is a n-bit representation of the message. B 1

from the previous section is fulfilled since

Ei(Di(M.)) = (P M# mod 2" ). p-i mod 2" = M#, (P. P-' mod 2") = M#

(Please note that (x mod 2")mod 2" = xmod 2").

B2 is also upheld because both Ei and D, contain only n-bit multiplication and modulus

functions. The steps necessary to infer Di from E, are discussed in the next section, but

do require a large amount of effort, satisfying B3.

The protocol uses a combination of these functions to provide its signatures and

then authenticate its messages. When processor A sends a message to processor B, the

following steps are taken:

37



1. A computes M# = CRC(Mext).

2. A computes the signature SA = DA (M#) = P M# mod 2'.

3. A sends (M,e,, SA) to B.

4. B computes M# = CRC(Mext).

5. B strips off SA and computes EA(SA) = SA P-' mod 2.

6. If EA (SA) = M#, then the message is authentic.

4.4. Key Generation

The signing function Di and the authenticating function Ei require a pair of

modular inverse keys, P and P-', for each processor in the system. P is used by Di as the

private key and is assigned to only one processor. P-' acts as the public key for Ei and a

table of all public keys is maintained on every processor. The only key management

required by these pairs is at compilation time when the private key initialization routines

for each individual processor are placed in separate files to ensure isolation.

The key pairs are generated using an extended version of Euclid's algorithm found

in [Knu69]. Euclid's algorithm is a famous method for finding the greatest common

denominator (gcd) of two numbers, u and v. Knuth extended it to calculate two more

integers, u' and v', such that

u-u'+v v'= gcd(u,v), (4.1)

at the same time gcd(u,v) is being found. In order to use this algorithm, we note that if

P P-'mod2 n =1 (4.2)

(the definition of modular inverses), then by the definition of the mod function,

P P-' = 2 v' + 1, or (4.3)
p. p-1+ 2n v'= 1 (4.4)

where v' is some constant. Therefore if 2" is substituted for v and a prospective n-bit

private key is chosen at random for u, Knuth's algorithm solves

P. P-' + 2" . v' = gcd(P,22"). (4.5)

38



If gcd(P,2") • 1, then we know that P is not co-prime with respect to 2" and must try

another key. Also, we must discard P-' if it is negative. Otherwise, we may use the key

pair, P and P-'. Appendix A contains a list of 64-bit modular inverses generated with

this technique.

4.5. Cyclic Redundancy Codes (CRC's)

Cyclic Redundancy Codes, or CRC's, provide the encoding function which is a

vital part of our public-key authentication protocol. Encoding functions are responsible

for calculating a message-specific sequence of bits which are spectrally white and can be

used to detect errors within the actual message. CRC's are a fast and efficient method

which are well known for their ease of implementation, both in hardware and software.

While not cryptographically secure, the probability of a faulty process randomly forging

the correct signature decreases as the CRC length increases, at a rate of 2-n for a n-bit

CRC.

CRC's come originally from finite field theory. Sequences of bits are defined as

binary polynomials, where each bit represents a coefficient. For example, the five-bit

sequence, 10101, would be associated with the fourth order polynomial,
r(x) = 1+ 0 .x + 1 x 2 + O .X 3+ 1 .X4 = 1+ x 2 + X4 . When a message is represented by

such a polynomial, the CRC of the message is defined as the remainder of the modulo-

two division of the message polynomial by a particular CRC generator polynomial

[Gal90]. Figure 4.9 shows an example of how a CRC is generated. The CRC-16

generator polynomial, g(x) = 1 + x 2 + x15 + x16, is used to encode the message 101011.

The remainder of the modulo-two division, s(x), is 0111110100000000 which becomes

the CRC.

xS x2+ x
x16 +x1 5 + 2+ 1 [ x2 1+x2 0 + +x18 ++x1 6

x21 + x20 + + x7+ x5

X1 8 + X16 + X7 + X5

x18 +x1 7 +x4 +x 

x17 +x16 + + X5 + 4 +x2

x17 +x16 + x 3 + x
x7+ x5 +x4+ x3+ x2+x

S(X)= x7 +x5 + x4 +x3 +x2 +x

Figure 4.9 Example of CRC encoding [RG88].

39



The following sections are a condensed overview of the CRC techniques used for

this protocol. If the reader wishes a more in-depth look into the subject, an article by T.

V. Ramabadran and S. S. Gaitonde, titled "A Tutorial on CRC Computations," [RG88] is

highly recommended. The most important component in implementing CRC's is the

generator polynomial since this polynomial solely determines the error detection

properties of CRC's. A detailed explanation of these capabilities and how a 64-bit

generator polynomial was derived is found below. This is followed by a description of

possible implementation techniques.

4.5.1. Error Detection and Generator Polynomials

The error detection capability of a CRC is controlled by the choice of generator

polynomial. The issues involved can be better understood if a corrupted message is
represented by the (n + k)" order polynomial, r(x) = v(x) + e(x), where v(x) is the

original message of k bits of data with a n-bit signature and e(x) contains the bits in error

(e(x) = 0, if the message is uncorrupted). The message is examined for errors by

dividing r(x) by the generator polynomial, g(x), and checking for a zero remainder. The

only way errors can go undetected is if the error polynomial, e(x), is also divisible by

g(x).
Generator polynomials can be specifically tailored to detect certain kinds of

errors. Consider a single error pattern represented by e(x) = x' for some i,

0 < i < n + k -1. If g(x) has more than one nonzero term, it does not divide e(x) evenly

and therefore detects all single bit errors. More errors can be detected by using a

generator with (1 + x) as a factor. The resultant CRC's will then also have (1 + x) as a

factor which always leads to an even number of terms. If g(x) and v(x) have even parity,

all odd number errors are detected. Now, consider a double error pattern
e(x) = x' + x = x(l + xi-') for some i, O i n + k - 2 andj, i +1 < j < n+ k -1. If g(x)

does not have x as a factor and if it does not evenly divide [1 + xi-'] for

1 < j- i < n + k -1, we can detect all double errors.

Another class of important errors is known as burst errors. A burst error of length

b is any error pattern for which the number of bits between the first and last error is b.
Let the generator polynomial be of the form g(x) = 1 + g1x+...+gn_x" - 1 + x n where the

coefficients g,g 2 ,...,g,, can be either 0 or 1. In other words, g(x) has a degree of n and

is not divisible by x. Any burst error of length n or less can be represented as

e(x) = x'(1 + ex+...+en,,x" - ') for some i, 0 < i < k, where the coefficients e,e 2 ,. .. ,e_

40



can be either 0 or 1. Such a polynomial is not evenly divisible by g(x), and therefore a
burst of n bits can be detected. Now consider a burst error of length (n + 1) represented

by e(x) = x(1 + elx+...+en_lx,_l + ex"). Of the 2-' possible error patterns of this form,

only one, e(x) = x'g(x), is undetectable. Therefore, the probability of an undetected burst

error of length (n + 1)is only 2- n-1) . A similar analysis finds that the fraction of

undetected burst errors of length greater than (n + 1) is 2 - .

The above description covers only one of the many capabilities that CRC's can

provide. Generator polynomials can also be chosen to allow certain errors to actually be

corrected. The problem is that deriving these error-correcting codes becomes very

complicated and time-consuming when expanded to a large number of bits. CRC's

normally do not go beyond 32 bits (16 bits is the most common length). In order to test

the viability of using 64-bit signatures for the reliability reasons mentioned in Section

4.3.2, a 64-bit generator polynomial needs to be derived. Since the only purpose for

CRC's in this proposed architecture is to detect errors and thus active faults, determining

the generator polynomial concentrated only on error detection properties. The optimal

structure of such a n-bit generator polynomial is

s(x) = (x + 1)(1 + pix+...+pn_x- ), (4.6)

where the (1 + pIx+...+p_, x-' ) term is a primitive polynomial. A polynomial of degree

m is primhitive if and only if it divides Xn -1 for no n less than q - 1 and is an

irreducible polynomial in that it is not divisible by any polynomial of degree less than m
but is greater than zero [PW72]. The (x + 1) term allows the polynomial to detect all odd

number errors while the (n - 1)"' order primitive polynomial increases the size of

messages for which double errors can be detected. E. J. Watson in [Wat62] compiled a

list of primitive polynomials of degree n, 1 < n < 100. The primitive polynomial of
degree 63 multiplied by (x + 1) gives the following generator polynomial:

s(x) = (x + 1)(1 + X63) = 1 + x2 + X63 + X64. (4.7)

4.52. CRC Implementation Techniques

One of the main advantages of using CRC's to encode messages is the ease of

implementing the function. Traditionally, CRC's have been done in hardware using a

simple shift register to process the data bit by bit. Software implementations though have

41



found handling the message on a byte- or even word-level to be easier and faster. This

section gives a simplistic description of how to compute CRC's in hardware. A much

more in-depth look into the issues involved in hardware implementation can be found in

[Gal90] or [Lee81]. Software CRC algorithms are then covered in more detail since the

proposed architecture involves one of these choices.

Generating CRC's in hardware can be done using very basic, low-level circuitry.

The computation of CRC's involves the modulo-two division of the message by a

generator polynomial in order to calculate the remainder. The hardware equivalent of a

modulo-two division is a linear feedback shift register (LFSR). Figure 4.10 shows the

LFSR circuit for the CRC-16 generator polynomial. To encode the message, the circuit is

first initialized with a seed value, usually all zeros or ones for error detection purposes.

The message is then fed into the register from the right, bit by bit. The bits remaining in

the register when the message has gone completely through are the CRC. Decoding

operates in the same manner, with the message and appended CRC being entered into the

register. If the remainder is zero, no errors have occurred. The biggest advantage of

using hardware for calculating CRC's is in performance. Messages can be encoded by a

shift register "on-the-fly", or in parallel with other processing, causing little extra delay.

The problem is that specific hardware dedicated to generating CRC's goes against our

design and cost goals of providing a software-based architecture.

g(x) =16 +X15 + 2 + Message for encoding
Message + CRC for decoding

Figure 4.10 LFSR circuit for the CRC-16 generator polynomial.

The technique used by a LFSR to process the message bit by bit is easily

performed in software. The problem is that the sequential nature of software prevents

generating the CRC with computation on-the-fly. A delay is present, adding to

performance overhead, whenever a message is signed and verified. Even worse, this

delay increases as the size of the message grows. This latency has caused software

42



algorithms to move away from processing data bit by bit to handling it as bytes or even

words. Generating CRC's in larger blocks speeds up performance by decreasing the

number of times CRC operations are needed.

Using bytes and words instead of bits removes a number of unnecessary steps in

finding a CRC, but the calculations that are left still take time. A faster alternative is to

precompute the values for different seeds and place them into a CRC lookup table. The

largest timing overhead is therefore moved to a one-time delay during initialization.

Once the table values have been computed, the CRC for a message is calculated using

constant size blocks with the following steps:

1. Initialize a CRC register the size of the desired digital signature to all

zeros.

2. EXOR the input block with the value in the register.

3. Shift the CRC register once to the right for each bit in the input block.

4. Look up the value corresponding to the block in the CRC register and

EXOR the CRC register with it.

5. Repeat steps 2 to 4 until the end of the message is reached.

This technique requires only shifts, a table lookup, and two EXOR's for each block of

data.

The different options for using CRC lookup tables balance performance

requirements against storage capabilities. The number of entries in the lookup table

depends on the block size used by the algorithm, requiring 2' entries for a e-bit block. A

bytewise table algorithm requires twice as many lookups as an algorithm using short

words (16 bits), but only needs 256 (28) entries versus 65,535 (216) entries. If memory is

a definite restriction, a reduced lookup table can be used. The reduced lookup table

contains an entry for each bit in a data block where that bit equals one and the other bits

are zeros. The values found in the full tables are then calculated using sums of the entries

in the reduced table, depending on which bits are set in the seed. This method requires e

entries for a e-bit block, but utilizes additional operations to calculate the CRC, meaning

performance suffers.

With the fall in the price of memory, cost constraints no longer solely determine

how much memory is available in systems. In the proposed architecture, the main limiter

on the amount of memory is the small space requirement associated with embedded

systems. This change in emphasis has allowed designers to balance performance issues

against memory requirements, instead of concentrating solely on saving memory. Of the

43



CRC lookup table options mentioned above, the reduced lookup table method uses the

least memory, but has definite performance problems. On the other hand, the space

occupied for tables with word-sized or greater blocks seems excessive. The optimal

balance of memory versus performance thus appears to be using byte-size blocks.

4.6. Protocol Implementation Results

The use of authentication introduces a new form of performance overhead to

message passing which must be thoroughly explored. Every time a message is

exchanged using authentication, it is signed by the sender and then verified by the

receiver. This process has a constant adverse effect on the performance of the system.

Therefore, the entire authentication layer needs to be implemented in software so the

various performance issues can be examined. This implementation was completed using

the C programming language and then run on a Sun workstation. Overhead

measurements were taken using timer system calls at points in the code. The use of these

calls added to the timing results, but an assumption is made that the extra overhead is

constant over the various runs.

The main determiner of the amount of overhead added by authentication is the

length of the signatures. Up to this point, the only time signature lengths were introduced

as a factor was in the discussion of signature security (See Section 4.2). In the example

given, it was found that a signature needs to consist of at least 53 bits to provide a

probability of forgery of 10-'6/message. In support of this conclusion, a 64-bit CRC

generator polynomial was derived in Section 4.5.1. The issue of signature length now

needs to be examined with performance in mind. The final decision on what length of

signature to use must balance both security and performances requirements.

The authentication protocol is built using three functions. The encoding function

generates CRC's which act as a n-bit representation of a k-bit message, where n < k. A

signing function then signs this CRC with a private key found on only one processor to

complete the digital signature. When the message reaches the receiver, the encoding

function is used again to generate the CRC of the data. The appended signature is then

combined with a public key related to the sender's private key by an authenticating

function to verify the origin and contents of the message. Constructing these functions

implements the entire protocol.

The first step in measuring performance is to implement the encoding function

using the varying length generator polynomials shown in Table 4.1. These generator

polynomials were chosen to span, in multiples of a byte, from 8 to 64 bits. The LRCC-8

44



polynomial is a LRC (Longitudinal Redundancy Code) normally used for simple parity

checks such as a mod-2 sum of bytes. The CRC-16 polynomial is used all over the

world, found in such protocols as the Bisync (binary synchronous) protocol, while the

Ethernet polynomial is employed in local area networks [RG88]. Implementing the

protocol's functions with these polynomials allows a comparison of the performance

tradeoffs involved in the different lengths of signatures.

Title Generator Polynomial

LRCC-8 x8 + 1

CRC-16 x16 + x + x2 + 1

Ethernet x32 + x26 + X23 + x22 + xl6 + 2 + X1l
+X10 +X8 +X7 + X + 4 +2 + + 1

64-bit X64 + X63 + x2 + 1

Table 4.1 List of varying length generator polynomials.

The various implementation techniques for generating CRC's are discussed in

Section 4.5.2. The final choice for this architecture is a CRC lookup table using one-byte

input blocks. This method fulfills the requirement of implementing functionality in

software while providing the best balance of performance optimization versus memory

needs. An important property of using these CRC lookup tables is that a large amount of

performance overhead is moved to an initialization period when the entries in the CRC

lookup table are calculated. Table 4.2 compares the different properties of varying

generator polynomials during this CRC initialization interval. The performance overhead

due to initialization remains relatively constant for the first three generator polynomials.

The only significant time difference comes when the generator polynomial is lengthened

to 64 bits. Determining the memory overhead involves multiplying the number of entries

in the table (256) by the number of bytes in each entry. This means that memory

Generator Initialization Memory Probability of Forgery

Polynomial Overhead (usec) Overhead (Bytes) (per message)

LRCC-8 620 256 .0039

CRC-16 650 512 .000015

Ethernet 629 1024 2.33x10- '0

64-bit 795 2048 5.42x10-20

Table 4.2 Implementation properties of CRC initialization.

45



overhead is doubled each time the generator polynomial is extended by a byte. The

probability of forgery is simply the probability that a digital signature is randomly forged

correctly, or 2-" for a n-bit signature. This means that there is a exponential decrease in

the probability of forgery as the length of the signature grows.

The most important performance overhead in generating CRC's is the time needed

to actually calculate the final CRC for each message. This time is dependent on the

length of both the signature and the message. Section 4.5.2 describes the steps necessary

to encode a message using a CRC lookup table. Figure 4.11 plots the timing

measurements for generating varying length signatures for k-bit messages, with k

increasing exponentially at a rate of 2i for i = 1...10. Two important facts are apparent

from this graph. First of all, the time necessary to generate CRC's of all lengths increases

linearly as the messages become longer. Secondly, the overhead associated with CRC's

of 8, 16, and 32 bits is basically the same while the overhead for the 64-bit CRC's jumps

significantly higher, becoming almost twice as much at points. This result is explained

by the fact that the machine used to run the CRC code operates on 32-bit long word

boundaries. The arithmetic for 32 bits or less involves the same operations, while the 64-

bit operation take twice as many computations.

700 .

I~~~
I I

I-- - - - -- 

0 1 25 8 1 640 76 96 . 102: 128 / '
128 256 384 512 640 768 896 10224

uenerator rolynomuals

-a-" LRCC-8

O CRC-16

:--- Ethernet

-- 64-Bit

Bytes

Figure 4.11 Message encoding performance overhead.

The only difference between the signing and authenticating functions are the keys

used in generating the final result. Both functions are implemented using a combined

46

60C

500

, 40C

. 300

20(

10(

_-



multiply and modulus function. The signing function multiplies a n-bit CRC by a n-bit

private key, keeping the last n-bits as the final signature. The authenticating function

takes this signature and multiplies it by a n-bit public key, keeping the last n-bits to

compare with the CRC of the message to verify its origin and contents. For the first three

digital signature lengths, the code for these functions is very simple. When a variable of

a specific length is assigned the product of two variables of the same length, a modulus

function is implied. Therefore, the only code needed is a multiplication statement. This

technique works so long as the signature length is equal to or less than the machine's

word boundaries. Implementing the 64-bit signing/authenticating function on a machine

operating on 32-bit boundaries is more complicated. Long multiplication must be carried

out in units of 16-bits, with careful tallying of the carries. Table 4.3 shows the overheads

for the different signing/authentication functions. Once again, the overhead associated

with digital signatures of one, two, and four bytes is relatively equal. The added

complexity of the 64-bit function is confirmed by the significant amount of extra

overhead involved.

Generator Polynomial Signing/Authenticating

Overhead (usec)

LRCC-8 18

CRC-16 20

Ethernet 20

64-bit 56

Table 4.3 Signing/authenticating performance overhead.

Deciding the best signature length for use in the proposed architecture involves a

tradeoff between reliability and performance. As the example in Section 4.2 shows, any

decision based completely on minimizing the probability of a forged signature going

undetected would choose a length of 64 bits. The problem is that the process of

generating the 64-bit signature has definite performance problems on today's computers.

It is perfectly reasonable to expect a processor to be able to perform 32-bit multiplication

in one line of code, but 64-bit multiplication is part of the future. The performance

overhead introduced by authentication, found with every message exchanged, is too

significant to be ignored. The optimal choice for signature length is therefore 32 bits

which has a probability of forgery of 2.33xl0 - '/message while minimizing the amount

of time needed to sign and authenticate messages. In addition to using the 32-bit

signature length, the operations used by the functions making up the authentication

47



protocol need to be optimized as much as possible. The computations needed by each

routine are simple enough to make writing their code in the assembly language of the

processor upon which the system is running viable.

48



5. Interactive Consistency

5.1. Overview

The interactive consistency algorithm is found in the Message Passing Layer, the

layer responsible for distributing all data between processors. Specifically, this protocol

implements exchange functions which pass single-source information to all nonfaulty

processors such that the Byzantine Agreement conditions discussed in Section 3.3 hold in

the presence of Byzantine faults. The final design needs to balance the goal of providing

a low-cost architecture against having reasonable performance capabilities.

This chapter first examines in detail the many requirements which must be

fulfilled by the interactive consistency protocol. The next step is to explore the

algorithms which provide the desired properties and any design issues associated with

implementing the algorithms. The final section contains an outline of the final proposed

protocol design, including algorithms for the routines which make up the protocol.

5.2. Interactive Consistency Requirements

An accusation leveled against Byzantine resilient architectures is that the level of

complexity necessary to mask possible faults is too expensive and complicated.

Surprisingly, the requirements needed to provide interactive consistency in the presence

of Byzantine faults are quite straight forward. First of all, the designer chooses the

number of faults,f, that the system needs to be able to withstand. Once this decision is

made, the requirements are unambiguous functions of this parameter. The only other

factor that affects these results is whether or not digital signatures are used. Since

authentication is an integral part of this design, all of the bounds discussed below assume

that messages are signed.

The amount of hardware necessary in a Byzantine resilient system is determined

byf. When authentication is used, it is possible to reach interactive consistency among

all nonfaulty processors so long as the total number of processors in the system, N, is
such that N > f [LSP82]. This bound is usually increased to N > 2f + 1 to provide a

majority of nonfaulty processors. Without a majority, the system operates correctly in

that the Byzantine Agreement conditions given in Section 3.3 are fulfilled, but there is no

way of telling from outside the system which processors are correct. An additional

hardware requirement is that there always exist at least one path between a pair of

nonfaulty processors that does not depend on a faulty processor. For a system using the

49



majority processor bound of N > 2f + 1, this means that each processor must be

connected to every other processor by at least f + 1 disjoint paths. Figure 5. l(a) shows

how one fault could prevent interactive consistency with the correct number of processors

but not enough connectivity. With only one path between processors A and C, a faulty

processor B could block delivery of messages between the two nonfaulty processors. The

configuration shown in Figure 5.1(b) solves this problem by adding a second path

between processors A and C which bypasses processor B.

(a) Connectivity of one. (b) Connectivity of two.

Figure 5.1 Connectivity requirement.

The third interactive consistency requirement must be provided by the message

passing algorithm implemented by the protocol. Each interactive consistency exchange

must consist of at least f + 1 rounds, where rounds are defined as an interval of time in

which processors chosen by the algorithm transmit messages to other processors and all

processors read any values arriving on their links [DS83]. This requirement is necessary

to mask faults such as the "two-faced" clock shown in Figure 3.2. The sender fault is not

detected until the second round when the nonfaulty processors exchange the values that

they received in the first round. Also, if the fault is not at the sender, the f + 1 rounds

guarantee that at least one correct message will arrive at the other nonfaulty processors

over the (f + 1)th disjoint path from the sender. The final requirement says that all of the

nonfaulty processors must be synchronized to within a known skew of each other. The

mechanics of providing synchronized clocks are implemented by the clock

synchronization protocol discussed in Chapter 7. For now, the interactive consistency

protocol is designed assuming that the synchronized clocks are present.

The number of faults that the system must mask determines the size and

complexity of a Byzantine resilient system. The first fault scenario which must be

examined is a specific number of faults occurring simultaneously. This is the quantity,f,

which provides the lower bounds described above. Increasingf is an expensive

50

_



proposition. Designing a system to mask two simultaneous faults instead only one

requires five processors with a connectivity of three versus three processors and a

connectivity of two. Figure 5.2 illustrates the difference in complexity caused by

increasing the number of simultaneous faults that are protected against by just one.

(a) One fault. (b) Two simultaneous faults.

Figure 5.2 Protecting against an increasing number of simultaneous faults.

One of the main advantages of using an authenticated protocol for interactive

consistency is the graceful manner in which the system can degrade. If fact, the protocol

fulfills tie Byzantine Agreement conditions even if only one processor remains

nonfaulty. If the surviving processor gets conflicting data, it simply chooses a default

value. In a practical system which needs to provide information to external entities (i.e.,

directions to a flight control system), more care is needed. First of all, the original system

must contain enough processors to meet the majority processor bound of N > 2f + 1. If

more thanf simultaneous faults occur, the system fails. Iff or fewer faults appear at the

same time, each faulty processor and its adjoining links need to be isolated from the rest

of the system. The goal is to always keep a majority of nonfaulty processors. So long as

more than one processor remains nonfaulty, majority decisions can still be made if

another processor becomes faulty. When only two processors are left and they are in

conflict, additional steps, usually external, are needed to decide which processor is faulty

and remove it from the system.

One of the motivations behind designing the subject system is to provide a low-

cost alternative to pre-existing Byzantine resilient systems. This need for low-cost

pushes the design towards using the minimal configuration shown in Figure 5.2(a). If a

processor becomes faulty, it can be removed from the system while the remaining two

processors continue to provide interactive consistency. If another processor starts

51



exhibiting faulty behavior, the sole nonfaulty processor will continue to operate correctly,

but the fault must be isolated before any external decisions can be made.

5.3. Byzantine Agreement Algorithms

Lamport, Shostak, and Pease provided an algorithm, called SM(m), for achieving

Byzantine Agreement using authentication in [LSP82]. This algorithm has since been

optimized and expanded for different situations, but is still the foundation of work in this

area. The algorithm is given below exactly as found in [LSP82]. The commander refers

to the processor which is actually sending the message while the lieutenants are the

processors receiving the message. Basically, in the first round, the general signs his

message and sends it to all of his lieutenants. The lieutenants then add their signatures

and relay the message to everyone who has not signed it yet. The algorithm is stated
more precisely below, letting x:i denote a value signed by processor i and Vi be the final

set of values.

(a) First round. (b) Second round.

Figure 5.3 Message passing using SM(m).

Algorithm SM(m) [LSP82]

Initially, Vi = ( .

(1) The commander signs and sends his value to every lieutenant.

(2) For each i,

(A) If Lieutenant i receives a message of the form v:O from the commander

and he has not yet received any order, then
(i) he lets Vi equal {v};

(ii) he send the message v:O:i to every other lieutenant.

52



(B) If Lieutenant i receives a message of the form v:O: jl: 2: ...: i and v is not

in the set Vi, then

(i) he adds v to Vi;

(ii) if k < m, then he sends the message v:O:jl:j2 :...:jk:i to every

lieutenant other than j,..., j.

(3) For each i: When the Lieutenant i will receive no more messages, he obeys the

order, choice(Vi).

An improved version of this algorithm developed by Dolev and Strong in [DS83]

uses certain characteristics of digital signatures to give a specific instantiation for the

choice() function used in deciding the final value. Authentication allows a processor to

discover whether a message has been corrupted since leaving the sender and restricts

undetected faults to passive ones such as a failure to relay messages. The new algorithm

discards all messages that:

1) do not match their signatures,

2) do not have the sender as the first signature, or

3) carry values the same as those already seen.

If, during (f + 1)"' round, a processor extracts a value, the otherf processors are faulty

and all of the nonfaulty processors now receive a correct value. If at the end of f + 1

rounds, a processor has only extracted one value, all of the nonfaulty processors have that

value. If any of the nonfaulty processors have extracted two values, all of the nonfaulty

processors have extracted two and decide on a sender fault.

5.4. Interactive Consistency Design Issues

The actual implementation of the above algorithm and decision-strategy must take

into account a number of different issues. The information provided by the interactive

consistency protocol can be used for other purposes than simply fulfilling the Byzantine

Agreement requirements. If the design is done correctly, much of the data needed by a

Fault Detection, Identification, and Recovery (FDIR) task to detect where faults are

occurring can be recovered from the message passing intervals. Also, a greater emphasis

needs to be placed on performance issues other than the total number of messages sent by

the protocol, taking into account the strengths and weaknesses of the architecture. These

issues bring to light some design options which need to be examined. Decisions must be

53



made on the type of message passing to be used, the number of signatures which are

appended to messages, the format for each message, and how to keep track of sequence

numbers.

5.4.1. Message Passing

Much of the work in developing new Byzantine resilient protocols has been in

finding algorithms which use the least number of messages to achieve agreement. An

example of such an optimization is found in SM(m) where, after the first round, the

processors only relay a message to those that have not already signed it. In previous

Draper Byzantine resilient systems, the time taken by a message passing protocol is

determined by the number of rounds utilized. Since the processors are all connected via

disjoint paths with separate message processing hardware provided for fault tolerance, the

number of messages within a given round do not affect the latency of the overall system.

So long as the lower bound of f + 1 rounds is met by the protocol, little can be done to

optimize the speed of the interactive consistency exchanges. Therefore, in these

hardware-based architectures, the extra hardware required to decide which processors

need to send messages each round actually hurts performance. Instead, a broadcast

protocol, where each processor automatically sends a message to all other processors and

then only uses those messages that it needs, requires less overhead and provides more

flexibility to the system.

Broadcast protocols have a number of advantages over the sending of messages

on a point-to-point basis suggested by SM(m). In a mission-critical system where the

sender is trying to distribute important information, every attempt must be made to

overcome what may be a transient fault. A broadcast protocol allows the system more

versatility in recovering from a sender fault as well as isolating faults. For example, if the

nonfaulty processors all receive corrupted data from the sender in the first round and then

valid data in the second, the fault is probably transient and the default decision should be

to request retransmission of the information. The added information could also be used

for FDIR. For example, if the sender receives a null message in the second round, FDIR

would know that either a sender fault has occurred, or the fault is in the relay processor.

While the advantages from the extra information provided by a broadcast protocol

are also present in a software-based architecture, the performance payoff does not

necessarily translate. When the message processing for each link is done in separate

hardware, the work can be completed in parallel. In software, the processing tasks for

each message must be completed sequentially. Therefore, the number of messages sent

54



during a round has some kind of adverse effect on performance. Whether this added

latency outweighs the benefits provided by a broadcast protocol is a question that must be

answered by the implementation.

5.4.2. Signature Configuration

Another design tradeoff between performance and extra information is deciding

the number of signatures to append to messages. The SM(m) algorithm uses "nested

signatures," where each relay processor places its own signature on the end of the

message, to perform message reducing optimizations. The processors check the

signatures already included in the message to decide which processors to relay the

message to in the next round. In a small fully connected system such as the proposed

minimal configuration, these extra signatures are not really needed for the correct

operation of the protocol. So long as the sender signs the message and each processor

can tell where every message comes from, the algorithm still provides consistency. The

decision about whether to use nested signatures must be based on other issues.

(a) Isolating a sender fault.

(i) O:A OA:B(

(b) Isolating a relay fault.

Figure 5.4 Using nested signatures to isolate faults.

The prime advantage in using nested signatures appears when a fault occurs. If

the fault is active, such as data corruption, the added signatures can be used to help isolate

the location of a fault. The receiving node can attempt to pinpoint where the problem

transpired by peeling off the signatures and checking them against the message until it

reaches one that does not match. Figure 5.4 shows how a processor would try to discover

where a fault has occurred. In Figure 5.4(a), the message is corrupted by the sender,

processor A, and then correctly relayed by processor B. When processor C receives the

message and attempts to authenticate it using the two signatures, processor A's signature

fails to verify the contents of the message, while processor B's signature is correct. Since

55



processor B's signature is correct, processor C then knows that the fault occurred before

the message arrived at processor B and therefore must have happened at processor A. In

Figure 5.4(b), the message is sent correctly by processor A and then corrupted by

processor B. When processor C receives the message and attempts to authenticate it

using the two signatures, neither one of the signatures verifies if the data corruption

occurs before processor B's signature. Processor C then knows only that the fault

occurred at or before processor B. This information can be used by a FDIR task to help

determine the overall status of the system.

The main disadvantage of nested protocols is the effect on performance. For a

system of N processors, each message has (N - 1) signatures to authenticate by the last

round. When combined with the added latency of signing and sending longer messages,

these effects could become prohibitive. There are steps that can be taken to reduce the

time needed for processing the extra signatures using the technique shown in Figure 5.5.

If the CRC calculated in verifying the received message is kept, a new CRC can be

generated using the old CRC as a seed and then feeding any additional bytes such as the

last signature through the generator. In Figure 5.5(a), the CRC for the first signature is

generated using all zeros for the initial seed value and then feeding the majority of the

message, including the message header, data, and previous trailer information, through

the register. In Figure 5.5(b), the CRC for the second signature is generated using the

previous CRC for its initial seed value and then feeding the first signature and any

additional trailer information through the register. This same trick can be used to speed

up verifying multiple signatures.

An option that could utilize the advantages of both nested and single signatures is

to provide different levels of service within the operating system. Since the main purpose

of the architecture is to provide a real-time Byzantine resilient system, the default would

be having a single signature from the sender. This option avoids the extra penalties of

signing, sending, and verifying multiple signatures and yet still provides the needed

consistency. If a fault is detected or upon a periodic basis, the system could move up a

level to using nested signatures. The chief purpose of these messages would be to isolate,

and hopefully recover, a faulty processor (or link) before another fault occurs. The new

messages would take longer to process, but would provide more information for FDIR,

making the entire process of recovering from faults faster. A third level of service could

be provided for applications where speed is more important than fault tolerance, by

removing authentication. This level would not be able to survive malicious faults though

and the system would basically become a triply redundant processor.

56



CRC for Message Header
Signatfr 00100100100 C +Message

Signature O + Previous Trailer
Initial CRC Register Information

(a) Generating first signature using all zeros for the seed.

CRC for Signature 0
Signature CR0 1 1 + AdditionalTrailer Information

CRC Register after processing
CRC for Signature 0

(b) Generating second signature using previous CRC for the seed.

Figure 5.5 Generating nested signatures.

5.4.3. Message Format

The format of each message must be designed to incorporate a number of

different options. The choice() function used by the interactive consistency protocol uses

CRC's as its arguments to generate its final value. All of the information necessary to

fulfill the implementation requirements for the interactive consistency protocol and to

perform synchronization must be included in the message without affecting this choice()

function. Finally, the format must be ordered so that the nested signaturing scheme

discussed in the previous section can be performed. All of these requirements must be

combined in such a way that the added length to the message is minimized, since

processing the extra information is added to the overhead.

All of the needed information must be placed in either a header which precedes

the actual data or a trailer which is appended to the end of the message. Figure 5.6 shows

a format using 64-bit signatures which fulfills all of the necessary conditions. The only

information which is placed in the header is the message's size and type (i.e., From_a,

From_all, Voting, etc.). This information is invariant in that it is the same on every

processor. This means that CRC's of the headers and data for each copy of a message

received by the processor can be compared by the choice() function. All of the variant

information, which is processor-specific, is placed in the trailer. This includes a sequence

number to fulfill the time-specific authentication requirement mentioned in Section 4.2 as

well as a timestamp for use in synchronization. After the timestamp, a processor ID is

placed in the trailer to identify which processor is generating the signature which follows.

This part of the trailer can be expanded to include as many processor ID's and signatures

as necessary.

57



4- Byte -
Mess ge Size Messa Type D

Data (c nt.) ... Sequenc Number

Sequence N mber (cont.)

Time tamp

Timestp (cont.) Pros ID

Sign turel 

Signatur 1 (cont.) Pro ID

Sign re2

Signatur 2 (cont.) Add ional Proc. ls and Signaturs ...

Figure 5.6 Proposed message format using 64-bit signatures.

The important characteristic of this format is that it is possible to authenticate

each nested signature without having to process any byte in the message more than once.

A message is authenticated in three steps. First, the CRC of the invariant information is

calculated using zeros for a seed. This information is saved for use as an argument of the

choice() function and then placed as the seed to generate the next CRC. The sequence

number, timestamp, and processor ID for the first signature are then fed through the CRC

generation routine to get the CRC for authenticating the first signature. The first

signature and the second processor ID are then feed through the CRC routine, using the

previous CRC for a seed, to get the CRC needed to authenticate the second signature.

This process can be expanded to more signatures if required and minimizes the overhead

necessary for authenticating nested signatures.

5.4.4. Sequence Numbers

In Section 4.2, the rationale behind placing sequence numbers in each message to

prevent a relay processor from undetectably repeating an old message is explained.

Generating these sequence numbers is an easy operation which can be done by any

monotonically increasing function. Each processor keeps a record of the last sequence

number that it used and a table with the last sequence number that it received from every

other processor in the system. The structure of the interactive consistency protocol

though forces the system to take some care in recording sequence numbers from other

processors. The problem is that within each interactive consistency exchange, each

processor can receive from one to f + 1 copies of the same message from the sender, due

58



to other processors relaying their own copies. If a processor updates its sequence number

table as soon as it gets the first message, it would then reject every other copy as invalid.

This could cause the protocol to not operate correctly with certain faults. Figure 5.7

shows the protocol reaching an incorrect result with the "two-faced" clock fault

mentioned in Chapter 3. During the first round, processors B and C receive valid but

different messages, both with a sequence number of 1, from processor A . Since they

update processor A's entry in their sequence number table when these messages arrive,

the messages received in the second round are found to be invalid because of their old

sequence numbers. Without these second round messages, processors B and C agree on

different values, which goes against the Byzantine Agreement requirements. The

solution is to keep a record, separate from the sequence number table, of the largest

authentic sequence number to arrive during an exchange. At the end of the exchange, this

number can then be used to update the sequence number table.

Seq_number[A] = 0 Seq_number[A] = 0 Seq_number[A] = 1 Seq_number[A] = 1

(a) First round. (b) Second round.

Figure 5.7 "Two-faced" clock with incorrect sequence number record keeping.

5.5. Final Protocol Design

Now that the various requirements and design issues have been examined, an

interactive consistency protocol capable correctly and efficiently distributing single-

source in the presence of Byzantine faults must be designed. The interactive consistency

protocol that was chosen to be implemented in our architecture is based on the extension

of SM(m) suggested by Dolev and Strong. Three separate uniprocessor exchange

routines, one for each processor, are provided to distribute single-source information. A

fourth function is used when each processor has a different version of the same data (i.e.,

each processor reads its redundant sensor). This From_all routine completes the steps

necessary for all three of the uniprocessor Fromprocessor exchanges in two round

59



instead of the six required to carry out each exchange individually. The implementation

needs to include two exchange formats:

1) exchanges with nested signatures and the point-to-point message passing

used by SM(m), and

2) exchanges with only the sender's signature broadcast message passing.

The performance effects of using nested signatures or broadcasts can then be examined to

decide whether the advantages given by the extra information outweigh the costs of

providing it.

A exchange routines were designed assuming that the synchronization layer was

already in place. The details of synchronization are discussed in Chapter 7, but the basic

purpose of the protocol is to provide synchronized clocks which fulfill the following

conditions [Sch87]:

Virtual Synchronization: Local clocks, (t), on each processors are

synchronized to within a known skew, 6, such that:

q (t) - p(t) < , for 0 < t. (5.1)

Virtual Clock Rate: Local clocks, (t), drift from real time at a rate bound by a

constant, 3, such that:

_ < p(t+ )-(t) < 1+3, for 0<t. (5.2)

The maximum message transmission delay constant, F,,, is combined with the skew, 6,

to determine the length of the individual rounds within the algorithms. This time limit is

only an estimate. The length of the rounds in the actual implementation are also

influenced by the time that is takes for the messages to be processed after they arrive.

Each processor uses a buffer space to process out-going and incoming messages.

This buffer space consists of a 3x3 array of individual buffers, each containing memory

to store a message, its arrival time, and associated CRC's, as well as a Verify Flag (VF).

Figure 5.8(a) shows a single buffer. The Verify Flag (VF) is set when a message is

correctly authenticated and is used at the end of the exchange to decide on the final value.

The arrival time of a message at the processor is saved for use in synchronization. There

60



are two classes of CRC's which are also stored: invariant CRC's, which are CRC's of

only the header and message and are the same on all processors, and variant CRC's which

include noncongruent information such as sequence numbers, timestamps, and processor

ID's. The invariant CRC's are used by the choice() function to decide on a final value at

the end of an exchange, while the variant CRC's are used to speed up the process of

calculating nested signatures (See the previous section for a discussion of this technique).

Figure 5.8(b) shows a simplified version of the entire buffer space. Each processor has

space for its own out-going message during first round and incoming messages from the

other two processors. A space for each uniprocessor interactive consistency exchange is

needed because the multiprocessor interactive consistency exchange (From_all)

implements all three of the exchanges at once.

(a) Individual buffer.

From A From B FromC

Processor A Message Buffer VF Message Buffer VF Message Buffer IVF

Processor B Message Buffer VF Message Buffer VF1 Message Buffer VF

Processor C Message Buffer VFI Message Buffer VF Message Buffer IVF

(b) Interactive consistency buffer space.

Figure 5.8 Interactive consistency exchange buffers.

The following sections contain descriptions of both the uniprocessor (Froma,

From_b, and From_c) and multiprocessor (From_all) routines which implement the

interactive consistency protocol. The algorithms outline the steps taken within each

function with a strict separation between the two message passing rounds. In the final

implementation, this separation will not be so sharp, because the routine must be able to

handle messages from the second round arriving early while still rejecting late messages

from the first round. Various details of how nested signatures are computed are included

as well as how the choice() function given by Dolev and Strong is carried out by

comparing the invariant CRC's of the messages. The provided algorithms are for the

61

Message Buffer

Message Buffer (cont.)

Message Buffer (cont.) VF
Arrival lime Invariant CRC Variant CRC



most complicated form of the implementation: interactive consistency exchanges with

nested signatures and broadcasts.

5.5.1. Uniprocessor Interactive Consistency Exchange ( From_a, From_b, and From_c)

Single-source exchanges are used when only one processor has single-source

information to distribute. Figure 5.9 shows the message passing during and the buffer

space after a From_a exchange using nested signatures and broadcasts and with no faults.

In the first round, the sender (processor A) transmits a signed message to the other

processors while the other processors send out signed NULL messages. When received,

only the sender's messages are authenticated (setting the VF flag if the message verifies)

X.A

Processor A

Processor B

Processor C

Processor A

Processor B

Processor C

Processor A

Processor B

Processor C

X:A

Processor A Processor A

From a From b From c From a From b From c

XA 4

O:B

O:C

Processor B

From a From b From c

X:A 41

O:B

O:C

Processor C

From a From b From c

X:A /

O:B

O:C

Processor A

Processor B

Processor C

Processor A

Processor B

Processor C

Processor A

Processor B

Processor C

X:A 4

X:A:B 

X:A:C 

Processor B

From a From b From c

X:AB 

X:A:C 1 1 

Processor C

From a From b From c

X:A:C 

X:A:.B 

O:C 1

(a) First round.

Figure 5.9 From_a message passing

(b) Second round.

and buffer space at end of rounds.

62



while the NULL messages are ignored. In the second round, each processor adds its own

signature to the end of the sender's message and transmits it to the other processors. The

processors only authenticate messages which are not from the sender, but have the

sender's signature as the first signature. When the message passing is done, each

processor has at least two verified copies of the message whose invariant CRC's (saved

from the authentication process) can be compared to protect against sender faults.

5.5.1.1. Uniprocessor Interactive Consistency Exchange Algorithm

On processor i,

First round:

Begin first round at local time, 'i(tgin)

Send messages:

Erase all buffers.

If (Sender)

Place message in correct buffer, leaving room for header at

the beginning.

Fill in header (Message size and message type (From_sender)).

Place sequence number, timestamp, and processor ID in trailer.

Compute variant CRC and sign with private key.

Place signature in trailer.

Send message to all other processors.

Receive messages:

While ( I (t)- -(tbin )1< (6 + rmaix))

If (Receive message)

Place in correct buffer (using the link that the

message arrives on and the message type).

if (Message from sender, has valid sequence

number, has only one signature, and is of the correct

type)

I

63



Authenticate signature, saving invariant and

variant CRC's.

if (Message verifies)

Set VF flag.

Get and save arrival time.

Second Round:

Begin second round at local time, i (tbegn + 6+ Fmu).

Send messages:

If (Have message from sender)

Fill in additional trailer information for second signature

(processor ID) on the end of message.

Compute second signature using CRC based on variant

CRC from first round plus processor ID and first signature

and then signing with private key.

Send message to all other processors.

Receive messages:
While (( Iij(t) - Ci(tgi)l> ( + Fr.)) and

(Iei (t) - ¢ (tbEgi)I < 2(3 + r.x))

If ( Receive message),

If (Message from sender)

Dump message.

Else

Put in correct buffer.

64



If (Message has two signatures, has a valid

sequence number, its first signature is from

sender, and is of correct type)

Authenticate message, saving

invariant CRC.

If (Message Verifies)

Set VF flag.

Get and save arrival time.

Message Processing:

Choose correct final value using VF flag and invariant CRC's:

If (Only 1 verified message)

Choose message.

If ((2 verified messages) and (CRC1 = CRC2))

Choose either message.
if ((2 verified messages) and (CRC1 CRC2))

Choose default (NULL).

5.5.2. Multi-Source Interactive Consistency Exchange (From_all)

The multi-source interactive consistency exchange is used when each processor has

noncongruent information which needs to be distributed (i.e., readings from redundant

sensors). The algorithm basically implements a From_a, From_b, and From_c at the

same time, only taking two rounds instead of the six needed to do each individually.

Three buffer spaces with room for three messages are used to keep the information

separate. Figure 5.10 shows the message passing during and the buffer space after a

From_all exchange using nested signatures and broadcasts and with no faults.

65



X:A

From a

Processor A Processor A

From b From c From a From h From c

X:A I

X:B 4

X:C `

Processor B

From a From b From c

X:A 

X:B 

1 1 c 

Processor C

From a From b From c

X:A I

X:B 4

i X:C 4

(a) First round.

Processor A

Processor i

Processor C

Processor A

Processor B

Processor C

Processor A

Processor B

Processor C

X:A 4
X:A:B I X:B:A _ X:C:B [4
X:A:C 4 X:B:C 4 X:C:A 4

Processor B

From a From b From c

X:A:B I X:B:A I X:C:A 4

X:B 4

X:A:C X:B:C I X:C:B `4

Processor C

From a From b From c

X:A:C ` X:B:A I XC:A `

X:A:B 4 X:B:C 4 X:C:B 4

(b) Second round.

Figure 5.10 From_all message passing and buffer space at end of rounds.

Multiorocessor Interactive Consistencv Exchansie Aleorithm

On processor i,

First Round:

Begin first round at local time, C,(ti,,).

Send messages:

Erase all buffers.

66

Processor A

Processor B

Processor C

Processor A

Processor B

Processor C

Processor A

Processor B

Processor C

5.5.2.1. -~~~~~~-~~~~~~-~~~~~~-~~~~ ~ 7 I 
1

I 11~-- -- ~ 

X:A

X

._ _ . , . .,,



Place message in correct buffer leaving room for header at the

beginning.

Fill in header (Message size and message type (From_all).

Place sequence number, timestamp, and processor ID in trailer.

Compute variant CRC and sign with private key.

Place signature in trailer.

Send message to all other processors.

Receive messages:
While ( I i(t) - (tbgi )1< (3 + rmax))

If (Receive message)

Place in temporary buffer.

If(Message is from the original sender, has a valid

sequence number, is of the correct type, and only

has one signature)

{

Place in correct buffer in correct buffer

space (use processor ID of first signature to

choose buffer space).

Authenticate signature, saving variant and

invariant CRC's.

If(Message Verifies)

Set VF flag.

Get and save arrival time.

Second Round:

Begin second round at local time, i(tbgi + + r ).

Send messages:

for( Each processor, i)

67



If (Have message from processor i)

{

Fill in additional trailer information for 2nd

signature (processor ID) on the end of message.

Compute second signature using CRC based on

variant CRC from first round plus processor ID and

first signature and then signing with private key.

Send message to all other processors.

Receive messages:
While (( I(t) - ai(tbegi)l> (S + rm.x)) and

(I i (t)- i (tbegin)l< 2(3 + rmX ))

If ( Receive message)

{

Place message in temporary buffer.

If (Message is not from the original sender, has a

valid sequence number, and is of the correct type)

Place in correct buffer, using processor ID's

from the two signatures.

Authenticate message, saving invariant

CRC.

If (Message Verifies)

Set VF flag.

Get and save arrival time.

Else

Dump message

}

68



Message Processing:

Choose correct final value for each sender:

for (Each processor)

{

If (Only 1 verified message from sender)

Choose message.

If ((2 verified messages from sender) and (CRC1 = CRC2))

Choose either message.
if ((2 verified messages from sender) and (CRC1 CRC2))

Choose default (NULL).

5.5.3. Implementation Results

Certain questions about the interactive consistency protocol cannot be answered

until part of the architecture is implemented in code. The protocol design suggested that

two exchange formats be implemented in order to investigate the tradeoffs of using

nested signatures instead of only the sender's signature or using broadcast versus point to

point message passing. Both nested signatures and message broadcasts provide more
information to the system, especially for FDIR. The problem is that both techniques

adversely affect the performance of the system. An implementation can be used to
examine the extent of this added overhead. This implementation was completed using

the C programming language and then run on a Sun workstation. Overhead

measurements were taken using timer system calls at points in the code. The use of these
calls added to the timing results, but an assumption is made that the extra overhead is

constant over the various runs.

The final implementation differs from the exchange algorithms of the previous

section in one important way. The algorithms have a strict separation between the
responsibilities of the two rounds in that the relay messages are not sent nor accepted

until the second round begins. In the actual implementation, messages are relayed and

processed as soon as they arrive. A check is made on incoming messages to remove late
arriving messages from the previous round, but early arriving messages do not affect the

outcome of the message exchange. The reasoning behind this filtering is explained in
depth in Chapter 7, but in brief, the only way a faulty processor can undetectably affect

the timing of the message exchanges is to hold onto messages, making them late.

69



The performance overhead introduced by nested signatures is present throughout

all of the interactive consistency exchanges, while the issue of using broadcast message

passing is only relevant for the single-source exchanges. For this reason, the performance

measurements are taken using the single-source From_a routine. Also, there is one area

in the implemented protocol where the effects of the extra message processing are readily

apparent. This point occurs during the first round of message passing while the

processors are waiting for messages to arrive. When a message is received, the processor

authenticates the signature(s), appends a second signature if nested signatures are being

used, and then relays the message to one or two processors, depending on whether

broadcasts are being employed. The routine must be able to finish processing the first

round messages before the round ends. The performance overhead measurements

therefore concentrate on this part of the exchange.

With the optimizations explained in Section 5.4.2 for generating nested

signatures, using a nested protocol should add very little to the overhead of processing

messages. When messages arrive, they are authenticated by generating a variant CRC of

the header, message, and the first part of the trailer (which contains the sequence number,

timestamp, and the originating processor's ID), multiplying the signature by a public key,

and comparing the two results. In the buffer shown in Figure 5.8(a), a space has been

provided to save this variant CRC. Generating a second signature involves using this

variant CRC for a seed and feeding the first signature and the relay processor's ID

through the encoding function, before signing it with the relay processor's private key.

With the message format shown in Figure 5.6, this means that only 12 additional bytes

need to be processed. Figure 5.11 shows the performance overhead involved in

processing a message which arrives from the sender during the first round. An interesting

result is that the time needed to receive the message, add the second signature, and then

send the new message to the relay processor remains constant for varying length

messages. As expected, little of the total overhead is spent adding the second signature.

When compared to the time needed to send messages which takes close to 500

microseconds, the 60 or so microseconds of nested signature overhead is insignificant.

The total overhead is greater than the sum of these three measurements due to the time

needed to authenticate the first signature, plus scheduling on the Sun workstation.

The use of broadcast message passing has two major effects on the part of the

protocol being examined. First of all, each relay processor must be able to handle two

messages during the first round, a message containing data from the sender and a NULL

messages from the other relay processor. The NULL messages are not authenticated, but

they cannot be dumped because the receiving processor must check to be sure that the

70



2500

2000

1500

1000

50C

7

II

1
II

I!

I

0

0 128
I- - -

t 256 384 512 640 768 8961024
Bytes

Figure 5.11 Nested signature performance overhead.

message is not an early second round message. Secondly, once the sender's message has

been authenticated, the relay processor must send it to both processors instead of just to

the other relay processor. Figure 5.12 shows the performance overhead involved in

processing a message from the sender when broadcasts are being used. The effects of

having to send this second message are immediately obvious. The system call overhead

attributed to sending messages has increased from the 500 microseconds found with the

point to point message passing used in Figure 5.11 to around 700 microseconds. Once

again, the total overhead is greater than the sum of these three measurements due to the

time needed to authenticate the first signature, plus scheduling on the Sun workstation.

2500

2000

1500

1000

500

0

I-- ' -I I

III ill II! III ... I.. I_ II!
0 128 256 384 512 640 768 896 1024

Bytes

Figure 5.12 Broadcast message passing performance overhead.

71

--

i- .

-I

- - Total Performance Overhead

- Nested Signature Overhead

System Call Overhead
I (Receiving)

-e- System Call Overhead
(Sending)

u

-00

Total Performance
- Overhead

_ System Call Overhead
(Receiving)

System Call Overhead
' (Sending)

64 c--
�

c--

__

�
r

4 e104~I.W."P . . . .
.7.

Try -... TTT ..

I

I

- - - . . -- I - - --- : ': I



A number of conclusions can be drawn from the above performance

measurements. First of all, any optimizations which can be done on the I/VO system calls

need to be incorporated into any final implementation. These system calls provide the

interface between the Message Passing Layer and the system's hardware and are used

constantly. The drag on the system when two messages are sent by the broadcast

protocol is significant. Secondly, any optimizations which reduce the overhead of

processing messages during the exchange need to be used. The point to point message

passing suggested by SM(m) should be used when implementing the single-source

interactive consistency exchanges. Also, even though the use of nested signatures has a

minor effect on performance overhead, they still only need to be used by FDIR tasks.

72



6. Voting

6.1. Overview

The second protocol found in the Message Passing Layer is the voting protocol.

This protocol is responsible for generating a "group consensus value," a value which is a

function of the different versions of the piece of data on different processors. Since the

processors are supposed to be operating congruently, in the absence of faults, the group

consensus value is the same as the value found on a single nonfaulty processor. Fault,

detection, isolation, and recovery (FDIR) tasks use the voting protocol on a periodic basis

to generate fault symptoms and detect faults. A voting exchange is also used before

values are output externally to filter out any computational errors.

The first step in designing this protocol is to discuss the requirements of the

voting exchange and how they interface with the requirements from the interactive

consistency protocol. Once the final requirements for the system are known, the voting

algorithm can be examined and any design issues resolved. The final step is to combine

the requirements and design options into an efficient final protocol design.

6.2. Voting Requirements

The requirements for the voting protocol are a combination of guidelines

originating from the voting protocol itself and constraints placed on the architecture by

the interactive consistency protocol. The system's claim of being Byzantine resilient rests

on fulfilling the requirements discussed in Section 5.2, so the voting requirements must

not be allowed to conflict with them. Also, the goal of low-costs makes implementing

the voting protocol with the minimal interactive consistency configuration shown in

Figure 6.1 a top priority. First of all, the requirements specific to the voting protocol

must be explored. Then, each of the interactive consistency requirements must be

examined in terms of these voting requirements to show that the two lists are not in

violation of each other.

In contrast to the interactive consistency protocol, where the main emphasis is on

message passing, the most important element of the voting protocol is its choice()

function. This function is responsible for calculating a group consensus value from a set

of data gathered from all of the processors. The only requirement is that the function

calculate the same value on all nonfaulty processors. This is an important point since the

voting protocol is not required to be Byzantine resilient in that the sets of data on

73



Figure 6.1 Minimal configuration fulfilling interactive consistency requirements.

nonfaulty processors do not need to be consistent. Figure 6.2 illustrates two different

choice functions calculating a group consensus value from data collected with processor

A acting as a two-faced clock and sending different values to processors B and C. Even

though the sets of data vary on the different processors, a "correct" choice() function

generates the same group consensus value on all nonfaulty processors. In Figure 6.2(a),

the choice function simply uses the value from processor A as its group consensus value.

This function does not operate correctly since with processor A being faulty, the

nonfaulty processors B and C have generated different group consensus values. In Figure

6.2(b), the choice function calculates a value which is equal to a majority of elements

within the set. This function does operate correctly since even with processor A being

faulty, the nonfaulty processors B and C both generate the same group consensus value.

Va=choice(l, 1, 1) Va= choice(l, 1, 1)

=1 =1I

1 1

1

B) C1 (m
Vb = choice(l, 1, 1) V c = choice(O, 1, 1) Vb = choice(l, 1, 1) V = choice(O, 1, 1)

= I =0 =I =I
(a) Incorrect choice function. (b) Correct choice function.

Figure 6.2 Examples of incorrect and correct choice functions.

74



The hardware requirements for voting depend heavily on the structure of the

protocol. There is no lower bound on the number of processors needed in the system.

Basically, the choice() function is tailored to handle the number of processors present and

the number of faults allowed. The easiest solution is to make certain that there is always

a majority of nonfaulty processors. There are choice() functions which operate correctly

without a strict majority, but their design and implementation is complicated. The

connectivity and number of rounds requirements are determined by the type of data sets

which are desired. If the protocol wants to have consistent sets of data on each processor,

the constraints are the same as for the interactive consistency protocol (a connectivity of

f + 1 with f + 1 rounds). If there is no need for consistent data sets, the voting protocol

can be completed in one round, so long as there is a direct link between every processor.

In other words, the system must be fully connected. The final requirement of having

synchronized clocks is necessary to terminate the voting exchange when a processor

becomes faulty and fails to send a message.

The requirements placed on the proposed architecture by the interactive

consistency protocol are compared to those imposed by the voting protocol in Table 6.1.

The two protocols are not in conflict over the minimum number of processors since the

number of processors can be chosen to fulfill the interactive consistency requirement and

the voting protocol then designed around that specified number. The number of rounds

used by bach protocol have no effect on each other, so only the connectivity requirement

can come into conflict. The pros and cons of demanding consistent data sets are

discussed later in this chapter, but for now, the design is examined on the basis of the

more stringent requirement of being fully connected.

Requirements Interactive Voting

Consistency

Number of processors 2f + 1 None

Connectivity f + 1 Consistency Req.: f + 1
No Consistency Req.: Fully connected

Communication f + 1 Consistency Req.: f + 1

Rounds No Consistency Req.: 1

Synchronization Yes Yes

Table 6.1 Interactive consistency vs. voting requirements.

In the previous chapter, it was decided that the minimum configuration shown in

Figure 6.1 fits all of the hardware requirements for making a system -Byzantine resilient

75



while fulfilling our desire for a low-cost implementation. The three processors meets the

majority processor bound of N > 2f + 1 and still allows flexibility in deciding on a

choice() function. The configuration also has a connectivity of two and is fully

connected, leaving the decision about which type of data sets are desired open.

6.3. Voting Algorithms and Design Issues

The voting protocol is used when the processors are expected to be acting

congruently and therefore performing the same operations on identical data. Exchanges

are performed to provide a group consensus value which is the same on all nonfaulty

processors. The algorithm directing the operation of the protocol can be split into two

sections: 1) the message passing necessary to collect data from all processors and 2) the

choice() function which uses the gathered data to provide the group consensus value.

Figure 6.3 gives a general outline of the steps necessary to calculate fault symptoms from

the viewpoint of processor A. Processors B and C send a copy of their data to processor

A, providing processor A with a set of three copies of the data. A choices function then

calculates the group consensus value. Finally, the group consensus value is used by the

FDIR task on processor A to generate a fault symptom which points to a fault on

processor C.

A's view
Va = 001 Step 1: Gather set of values from all processors.

V= {001, 001, 0111

Step 2: Compute a gup consensus value.
Va = choice(001, 001, 011)

= 001

Step 3: Generate fault syndromes.

)o % /C
Proc.A Proc. B Proc. C

(Faulty)

Figure 6.3 Example of a voting protocol

The actual mechanics of collecting the data set and calculating the group

consensus value must now be designed. Whether or not the data sets on each of the

processors are consistent determines what operations the group consensus value can be

used for. The presence of authenticating capability adds a new dimension to the format

76



of individual messages which also needs to be explored. Finally, the different types of

choice() functions must be examined to find the best fit for this architecture.

6.3.1. Consistency of Data Sets

At the end of message passing during a voting exchange, each processor has a set

of data consisting of copies from every processor in the system. The protocol must then

arrive at the same group consensus value on all nonfaulty processors even if the data sets

on the processors are not consistent. Having consistent data sets though makes the results

of the exchange much more powerful, but the added constraint also adversely affects

performance. As in many of the interactive consistency design options, this issue is a

tradeoff between more information and speed.

The relationship between the data sets found on the nonfaulty processors

determines the scope of the voting exchange. The operations which can be performed

using the data sets are severely limited if the data sets are not guaranteed to be consistent.

Inconsistent information can cause processors to act noncongruently. This is not a fault if

the information is only used locally on a single processor with no decisions made from

the results (i. e., updating a log to show if a fault has been detected). If any system-level

actions involving all of the nonfaulty processors are desired, the data sets must be

consistent to make sure that operations using the information are congruent and the

processors do not diverge.

The main problem with requiring consistent data sets is in the length of time taken

to complete the exchange of information. In order to distribute the information correctly,

the message passing in the voting protocol becomes an instantiation of the multi-source

interactive consistency From_all routine described in Chapter 5. This exchange takes
f + 1, or in our proposed system, 2, rounds to complete. On the other hand, the exchange

can be completed in only one round if the consistency requirement is lifted and the

system is fully connected. This means that the exchange is completed at least twice as

fast as the interactive consistency version.

This performance speed-up from using an one-round exchange definitely

outweighs any advantages gained through making the data sets consistent. The voting

protocol is meant to be used as a quick check for detecting faults and filtering out

computational errors. Implementing the exchange as an interactive consistency routine

negates any advantage of having a separate protocol. The best solution is to implement

an one-round exchange and then take care to perform interactive consistency exchanges

when the data sets are needed for congruent operations.

77



6.3.2. Authentication of Messages

The authentication layer provides the option of signing the voting messages with

digital signatures. Whether or not the signatures are actually required depends on the

decision discussed above about providing consistent data sets. If the protocol implements

an interactive consistency algorithm to distribute the information, authentication is

needed in order to provide consistent data within the hardware constraints of the system

(2f + 1 processors with a connectivity of f + 1). If the one round exchange is used, the

issue becomes more complicated. Authentication is not needed because there is no

guarantee that the data on each processor is consistent. Since the goals of an one-round

exchange can be achieved with or without authentication, the decision must be

performance-based.

Signing messages allows a significant optimization of the choice() function.

Authentication allows faster implementation of the function for long messages since the

signatures can be used as the function's arguments instead of messages, with the added

probability of making an incorrect decision due to a forged signature being only 2 for a

n-bit signature. This decrease in the size of the elements in the data sets allows the group

consensus value to be calculated using n-bit arithmetic instead of having to process the

entire message. The problem is that a definite delay is added for the signing and

verifying of messages which could dominate performance for short messages, making

unauthenticated message passing a better choice. An option is to decide whether to sign a

message or not depending on message length, but the delay of actually making the

decision could once again outweigh any speed advantage that is gained.

6.3.3. Choice() Functions

Choice() functions in voting protocols play the important role of calculating a

group consensus value which is guaranteed to be consistent on all nonfaulty processors.

A secondary role of the exchange is to generate fault symptoms for FDIR. These

functions must operate correctly even when the data sets provided by message passing are

not consistent themselves. The many different types of choice() functions need to be

discussed and their advantages and disadvantages examined. Then, architectural and

performance issues must be taken into account before selecting the best choice() function

for the proposed system.

78



Choice() functions fall into two main categories: those which operate on the entire

set of data at the same time and those which perform a series of pairwise comparisons.

The most common method in the first category is to perform a strict majority vote and

choose the value which is contained in over half the set. Abstractly, this is done on a bit

by bit basis, but actual implementations are usually on a byte or word level. Another

possible "voting" scheme is to use a plurality choice() function where fifty percent of the

set do not need to be equal to the final value, just a sufficiently "large" number of the set

(plurality). This mechanism is most useful though for systems involving a large number

of divergent hosts and does not seem relevant for the small number of processors

involved in this project (probably, only three processors). If either one of these functions

are used, a second step is needed in the protocol to generate the fault syndromes. Each

value in the set must be compared to the group consensus value. If there is a difference,

the processor from which the value came from is assumed to be faulty. The second type

of choice() function carries out individual pairwise comparisons on the set. Each value

from another processor is compared to the host's value. If more than one of these values

are different from the host's value, the non-host values are then compared to decide

whether the host or the other processors are faulty. If the system assumes that only one

fault can occur at a time, this second step is not necessary and the host is assumed to be

faulty only if its value differs from more than one other value. If only one other value is

different from the host's copy, the processor that sent the incorrect version is assumed to

be faulty. In a large system trying to protect against more than one fault, this method is

not cost-effective. In a system with N processors, the worst case is when (N - 1) values

differ from the host. This algorithm could use up to (N -1)! comparisons to pinpoint

where the faulty processor is. This method has an advantage though over full-set voting

in that the fault syndromes can be found as the group consensus value is computed. In

systems which are only protecting against one fault, only (N - 1) comparisons are need

which could be faster than a function which uses a full-set vote and then N comparisons

to get the fault syndromes.

The fact that there are very few theoretical requirements for voting algorithms

allows the design of a protocol to allow for characteristics of the overall architecture as

well as performance issues. If the system is implemented totally in software as planned,

the comparison choice() function has definite performance advantages since it only takes

one line of code to generate the group consensus value (calculating the fault syndromes

would require more) compared to the larger amount needed for full-set voting. This

performance advantage can be made negligible to non-existent with the addition of extra

79



hardware to perform votes and comparisons in parallel. The problem is that the

specialized hardware would increase the cost of the proposed system.

6.4. Final Protocol Design

Now that the various requirements and design issues have been examined, a

voting protocol which can generate a group consensus value quickly and efficiently must

be designed. The message passing section of the protocol is carried out in one round

where each processor sends its copy of the data out on all of its links and then waits for a

message from every other processor in the system. Synchronized clocks which fulfill the

virtual synchronization and clock rate conditions described in Section 5.5 are once again

assumed to be present with the maximum message transmission delay, rmax' and skew,

6, determining the estimated length of the round. The implementation needs to include

two different exchange formats:

1) an old-fashioned exchange with unsigned messages and a full-set majority

vote of the messages as the choice() function and

2) an exchange which signs its messages and uses pairwise comparisons of

authenticated signatures as its choice() function.

The performance tradeoffs between the two options can then be examined to decide

which is the best for the proposed architecture.

Message Buffer

Message Buffer (cont.)

Message Buffer (cont.) VF

Arrival lime Invariant CRC I Variant CRC

(a) Individual buffer.

Processor A Processor B Processor C

I Message Buffer IVFI Message Bufifer IVF Message Buffer FI

(b) Voting buffer space.

Figure 6.4 Voting exchange buffers.

80



Each processor uses a buffer space to process out-going and incoming messages.

This buffer space consists of a lx3 array of the same buffer used by the interactive

consistency protocol and shown in Figure 6.4(a). The Verify Flag (VF) and Invariant

CRC space are used in the authenticated voting version by its choice() function. The

slots for the arrival time and variant CRC's are holdovers from the interactive consistency

protocol and are not used by this exchange. Figure 6.4(b) shows a simplified version of

the entire buffer space. The buffer space is much smaller than the one used by the

interactive consistency protocol, since only one message from each processor needs to be

stored.

The following section contains a description of the voting exchange routine. The

algorithms outline the steps taken within each function. Various details of how the

messages are authenticated as well as how the choice() functions for both exchange

formats are carried out are included.

6.4.1. Voting One-Round Exchange

This routine is carried out in two distinct phases. First of all, data sets are

gathered containing a copy of data from every processor. Then, a choice() function is

ProcessorA'sbufferspace X:B:C 

Processor A Processor B Processor B

Processor A's buffer space X:A I X:B 4 X:C | 1 

Processor A Processor B Processor B

Processor B's buffer space X.A 4 X:B I 4 I X:C 4

Processor A Processor B Processor B

Processor C's buffer space X:A X:B X:C 

Figure 6.5 Voting message passing and buffer space at end of round.

81



used to calculate the group consensus value. Figure 6.5 show the message passing during

and the buffer space after an one-round exchange using authentication with no faults. At

the end of the message passing round, each processor has a message from the other two

processors which has been authenticated.

Ad1 1 Voting Exchange Aleorithm

On processor i,

Begin round at local time, ~C(tb,,i ).-

Send messages:

Erase all buffers.

Place message in correct buffer leaving room for

If(Authenticated version)

{

header at the beginning.

Place sequence number and processor ID in trailer.

Compute and save invariant CRC.

Compute variant CRC and sign with private key.

Place signature in trailer.

}

Send message to all other processors.

Receive messages:
While (I cl (t)- (tbg,)I < (6 + rmax))

If(Receive message)

Place in correct buffer.

Vote messages:

If(Authenticated voting)

{

For( j=0; j < (Number of processors); j++)

82

V._s · · 1 l·s. ~ - --- ~-~r -- ·-----
· �-C-



If (i j)

Compute and save invariant CRC.

Compute variant CRC and authenticate message

with public key.

If(Message authenticates)

{

Set verify flag (VF).

Compare messages using verify flags (VF) and invariant CRC's to

calculate the group consensus value.

If(Non-authenticated voting)

{

for(j = O0; j < message size; j++)

Compare bytes of the three messages to calculate group

consensus value.

6.4.2. Implementation Results

The design of the voting protocol cannot be completed until sections of the

protocol's functionality are implemented. This implementation is needed to answer a

number of questions whose decisions are totally dependent on performance. Two

different exchange formats have been proposed. The first option exchanges unsigned

messages and then does a full-set majority vote on the messages to generate a group

consensus value while the second choice signs its messages and uses pairwise

comparisons of authenticated signatures. Both of these designs fulfill the requirements

for the protocol, so a decision must be made based on the amount of performance

overhead needed to process messages with the two techniques. An implementation was

83



completed using the C programming language and then run on a Sun workstation,

Overhead measurements were taken using timer system calls at points in the code. The

use of these calls added to the timing results, but an assumption is made that the extra

overhead is constant over the various runs.

Both of the design options process messages in two steps. First of all, the

message is prepared and then sent to every other processor in the system. Then, the set of

messages collected through the message passing is entered into a choice() function. The

message preparation for the first design option is simple since the only step required is

the addition of a header with the message's size and type. Once the set of messages is

gathered, the choice() function simply needs to vote blocks of the messages until the ends

of the messages are reached. On a machine using long word boundaries, the fastest way

to implement this routine is to examine the messages in blocks of 32 bits. Implementing

the second design option is more complicated. In addition to adding the header to the

beginning of the message, a digital signature has to be generated and appended to the end

of the message. Once the messages are gathered, the choice() function authenticates the

messages from the other processors and compares the invariant CRC's of the verified

signatures to the invariant CRC of its own message.

Determining the performance overhead introduced by each design choice involves

examining the amount of time spent processing messages in functions not duplicated by

the other option. First of all, the additional time needed by the option using

authentication to sign its message needs to be measured. Then, the time spent in the

system calls used to send and then receive messages has to be measured since each

options is exchanging different length messages (the option using authentication has

longer messages due to the digital signatures). Finally, the time spent actually processing

the messages within the choice() function needs to be measured.

Two important results can be seen from the performance overhead comparison of

the two design options shown in Figure 6.6. First of all, two different overheads are

plotted for each option: one line accounting for all of the performance overheads and

another line showing the performance overhead without the time taken up by the I/O

system calls. Over 800 microseconds are needed to send the two messages to the other

processors, approximately 400 microseconds/message. The receiving system call used

closer to 100 microseconds for each message, which is less than for sending messages,

but still a significant amount. Secondly, there is an obvious difference in the times

needed by the two options. The extra computations needed to generate and then sign

CRC's means that the time taken to just append the signature to the message is longer

than the time required to vote the messages after they are received. When the overhead

84



of authenticating the signatures of messages from other processors is included, this

difference becomes even more pronounced. Therefore, the voting protocol needs to be

implemented without digital signatures and using a full-set majority vote choice()

function. Even with all of the optimization made to reduce the overhead introduced by

authentication, the process is still slower than the voting of a message.

., sn .33)V

3000

2500

, 2000

_ 1500

1000

500

O

Bytes

Figure 6.6 Comparison of voting performance overheads.

85

W. No Authentication

No Authentication
- (System call overhead

removed)

- Authentication

Authentication
i-- (System call overhead

removed) j



86



7. Synchronization

7.1. Overview

The Synchronization Layer is responsible for providing synchronized virtual

clocks to the Message Passing and Application Layers. The synchronization protocol

within this layer bounds the drift between the virtual clocks on different processors so

that their ideas of real time are always within a known skew of each other. These virtual

clocks are implemented on top of the hardware clocks in a way which makes

synchronization invisible to the user. The synchronization protocol for this system is the

last protocol to be designed since certain facets of the design are constrained by decisions

made in implementing the rest of the architecture. The amount of synchronization

possible is dependent on the specific protocol and parameters of both the protocol and

system.

This chapter first gives a general outline of synchronization protocols and then

discusses the various design issues involved in implementing a protocol with this

architecture. The final choice of protocol is then described in detail with a discussion on

how to bound important protocol parameters.

7.2. Synchronization Protocols

Many clock synchronization protocols have been suggested over the years for

dealing with different problems or optimized for specific cases. At first, evaluating the

different routines was very difficult Subtle variations in the model and assumptions used

to define each protocol complicated any attempt at making comparisons. Adding to the

confusion, clock synchronization protocols were split into three different classes:

interactive convergence protocols, interactive consistency protocols, and diffusion/flood

protocols. This changed in 1987, when Fred Schneider presented a general paradigm

from which all of the above categories of clock synchronization protocols could be

derived [Sch87].

72.1. Schneider's Clock Synchronization Paradigm

Schneider's generalized paradigm placed the study and development of clock

synchronization protocols on a totally new footing. The protocols can now be compared

using his model of the problem and the advantages and disadvantages of each protocol

87



isolated. The paradigm also pinpoints three subproblems which define each and every

clock synchronization protocol. Protocols can be custom-designed based on the needs

and characteristics of each system. Most importantly, so long as the new protocol

adheres to the model and assumptions underlying the paradigm, proving that it is correct

is greatly simplified.

Schneider defines a system as a collection of processors with virtual clocks. Each

virtual clock is implemented using a hardware clock and a reliable time source (RTS)

which calculates an adjustment value for the hardware clock using a convergence

function. A formal definition of each of these components is found in Appendix B where

the correctness of the protocol is proved. In general, hardware clocks are viewed as

counters which start from some fixed initial value and monotonically increase by

increments of one with a rate which must be within a fixed constant, known as the

hardware drift rate of the clock, of the rate at which real time passes. Virtual clocks are

implemented on top of these hardware clocks so that they also are monotonically

increasing with a fixed virtual drift rate. The RTS is an abstraction which is responsible

for generating an event at a specific real time which in turn causes the processors to

resynchronize their clocks. The RTS then provides an adjustment value to each processor

for use in implementing its virtual clock. If the protocol works correctly, the virtual

clocks on all nonfaulty processors are always within a known skew of each other.

Processors read the vitual do cks of the other processors and
clculte new adjustment with CFO.

I rIu t I

]
. . A I 4 Proc, detcs I

Proc. A-

Proc. B -

PRoc. C-

_ _

I

---

Itm

Round i

Figure 7.1 An abstract picture of clock synchronization.

88



Schneider provides a clock synchronization paradigm which outlines the steps

involved in each synchronization interval. Figure 7.1 gives an abstract picture of these
events. The RTS generates a synchronization event at a real time, tRTS. This event is

only an abstraction of when the synchronization interval would begin on the processors if

their virtual clocks were completely synchronized to real time. Instead, each processor
then "detects" the synchronization event when their virtual clock reaches its idea of tRrs .

All of the nonfaulty processors must detect the synchronization event within a known

skew of each other, but it is entirely possible for a fast processor, like processor B in

Figure 7.1, to detect the synchronization event before the RTS has even generated it.

Each processor then reads the virtual clocks of the other processors and calculates a new

adjustment for its virtual clock using a convergence function (CF). The synchronization

interval ends on each processor when it adds the new adjustment to its hardware clock.
Restating the paradigm more precisely, let i be the number of the current round, adjp be

the adjustment added to the hardware clock for each processor, p, Cp be the virtual clock

of each processor, p, cp be the hardware clock of processor, p, and t be the real time at

which each processor p detects the event [Sch87]:

i:= 1;
adj ° := 0; adj~ := 0;

do forever
detect event generated at time t+;

ti~= real time now;

adjp+ := CF(pC (t+) c (tP)) - tP+

od

The above paradigm leaves three important areas unspecified. Different
implementations of the "detect event generated at time t ~" determine when and how

often the system resynchronizes. The method that a processor uses to read the virtual

clocks on other processors must be chosen to mesh with other characteristics and

requirements of the system. Finally, the convergence function used in many way decides

the accuracy and precision of the overall protocol. The solutions for these three

subproblems totally define a clock synchronization protocol.

89



7.3. Synchronization Design Issues

Decisions made in the rest of the design constrain and shape the possible

synchronization protocols for this architecture. The use of authentication to provide
interactive consistency with only 2f + 1 processors and f + 1 communication links,

wheref is the number of Byzantine faults which the system can tolerate, places

restrictions on the design of the clock synchronization protocol. The trade-off which

allows fewer processors and links in the system requires that all single-source information

passing between the processors (i. e., a processor's virtual clock value) be signed and then

verified using unforgeable signatures. This immediately rules out protocols using analog

information, such as the phased-locked clocks proposed in [KSB85] where knowledge of

all other clock pulses is necessary. Only protocols which use digital message passing

techniques can be integrated into an authentication-based system. The algorithm which is

used for interactive consistency plays a major role since the protocol needs to exchange

individual clocks. In effect, the synchronization protocol needs to be built on top of this

algorithm. These factors must be kept in mind when examining the different

implementation options for Schneider's subproblems.

7.3.1. Detecting an event generated at time, ts

There are two basic ways of generating and detecting a synchronization event

based on increments of real time [Sch87]. The first option depends on the assumption

that the virtual clocks are already synchronized to within a known skew. For some

predefined value, R, each processor waits until its virtual clock reads a multiple of R

before starting the next synchronization interval. Since the clocks are synchronized, the

slowest nonfaulty processor must decide to resynchronize within a known skew of the

fastest nonfaulty processor's action. This method is used for implementations which

already have access to the information needed to resynchronize their clocks. A good

example of this is the technique used by the phase-locked clocks found in [KSB85] where

each clock can monitor the clock pulses of the other clocks in the system and adjust

themselves accordingly. A second way to generate the synchronization event is to have

each processor broadcast a message when its virtual clock reads a predefined value and to

resynchronize when such a message is received from a correct processor. This method is

used in all of the protocols which employ Byzantine Agreement (BA) message passing to

synchronize [HSSD83, LL83, LM84, ST85].

90



Babaoglu and Drummond suggest another way to schedule synchronization events

in [BD87]. They wanted to use information collected from ordinary communications to

synchronize clocks. Instead of waiting for a predefined amount of time and then

resynchronizing, their protocol uses a communication step called a Full Message

Exchange (FME) as its event. A FME requires that each processor sends a message to all

other processors. The arrival times of the messages are recorded and a new clock is

started using the average of these times. The only time a specific synchronization round

is needed is when a predefined period passes without a FME. This is an excellent

solution to the overhead problem commonly associated with synchronization protocols.

When the system is busy, synchronization data is "piggybacked" on messages carrying

other information. The only synchronization overhead involved is the time necessary to

adjust the virtual clocks. The only time that a specific slot has to be allocated to

synchronization is when the system is idle and the extra overhead does not matter. The

problem with the protocol as specified in BD87] is that since it only uses information

from one round of messages, it is not Byzantine resilient. The protocol therefore needs to
be modified to use f + 1 rounds of information before it can provide the desired fault-

tolerance.

7.3.2. Reading virtual clocks on other processors

Since processors only have access to their own local clock time, they need a

mechanism for reading the virtual clocks on all other processors so the convergence

function can compute a new adjustment. The architectural constraint imposed by the use

of authentication plus hardware limitations prevents a processor from reading all of the

other virtual clocks simultaneously. This means that the convergence function cannot

directly use values read from other processors as its clock arguments. Instead, each

processor must approximate a virtual clock on another processor by reading the

difference between the two clocks and adding it to its own [LM84]. Each processor

therefore needs to keep a current table of the differences between its own virtual clock

and the virtual clocks on other processors.

The way these differences are obtained is an integral part of each clock

synchronization routine. The most basic techniques for finding the differences using

Byzantine Agreement (BA) message passing rounds were described by Lamport and

Melliar-Smith in [LM84]. The first two algorithms in the paper do not place any
requirements on how clocks are read and thus 3f + 1 processors are needed to provide

synchronization. The third protocol though is an extension of the SM(m) algorithm found

91



in [LSP82] and discussed in Chapter 6. In general terms, the protocol sends virtual

clocks which have been signed instead of messages. The algorithm accounts for the time

that a message takes to be signed, sent, received, and verified at its destination by adding

the product of a message transmission delay constant, , and the number of times the

message has been relayed to the clock. Since authentication is used, a faulty processor

cannot corrupt the value of a clock and thus set the clock forward; it can only delay

sending the value and in effect, set the clock back. Figure 7.2 illustrates how a faulty

processor can set a clock back by holding onto a message. The actual message

transmission delay between two processors i and j (not counting the delay added by the
fault) is represented by the variable, yij. In the faulty example, processor C has no way

of telling that the relay message from processor A has been delayed by the faulty
processor B and would therefore use (yc + delay) as one of the approximations for

processor A's virtual clock. Similar clock reading schemes are used by the protocols of

[HSSD83], [LL83], and [ST85], except the number of messages needed is reduced by

having each processor periodically broadcast its virtual clock, instead of waiting for a

request [Sch87].

Proc.

Proc.

Proc.

.~........ Correct Synhnocication in t £_Coirect~ Synch on icion D. |Synchnication IntervalInterval with B faulty

Figure 7.2 Synchronization fault with authentication.

7.3.3. Convergence Functions

A convergence function (CF) uses the virtual clocks of all processors in the

system to calculate a new adjustment to a specific processor's hardware clock. Such a

function does not guarantee that the virtual clocks on different processors will have the

same value. The only requirement is that the new virtual clocks provided by the

convergence function are closer together than the old virtual clocks. All convergence

functions must have two basic properties [Sch87]. The first requirement is that the

92



convergence function (CF) on processorp be monotonically non-decreasing in its last N

arguments such that:

If (Vi: 1 i N:xi < y,), then CF(p,x,,...,xN) CF(p,yl ,...,y,).

This property is needed to make sure that the values from the RTS do not decrease. The

convergence function (CF) must also be translation invariant so that values on different

processors and at different times can be compared. Translation invariance means that:

CF(p,x, V ... IXN + ) = CF(P,x,,...,x--,XN)+ V.

Mahaney and Schneider provided a means of comparing the different convergence

functions in [MS85] when they defined their functions in terms of precision and accuracy.

Table 7.1 is directly reproduced from [Sch87] (with small changes to keep variables

within this thesis consistent) and compares the different convergence functions found in

previous literature using these measures. The fault-tolerance degree,f (k in [Sch87]),

specifies the number of significantly differing clock values resulting from faulty

Table 7.1 Comparison of convergence functions [Sch87].

93

1 Assumes digital signatures.



processors that the function can use and still generate valid results. Values within a set

skew, 6, of each other are considered to be correct. The error involved in reading the

clocks is quantified as e. The precision of a function, (§, e), determines how close the

values obtained by two different computations of a convergence function with varying

arguments will be, so long as at least N - f arguments are correct. The accuracy, a(o),

specifies how close a final value obtained with N - f correct values is to the "correct"

real time.

The first four functions in Table 7.1 come from some of the earliest work in

Byzantine resilient synchronization protocols. Most of the derivations of precision and

accuracy limits for these function can be found in [MS85]. CFE is presented and

analyzed in [LM85] with their interactive convergence algorithm and is the average of all
clocks which are no more than a skew from a processor's own clock. CFFCA is an

extension of CFEA suggested in [MS85] where all clocks which are within a skew of

N - f other clocks are averaged.

The next two convergence functions come from [DLPSW83] and are described as

fault-tolerant, because thef highest andf lowest values are discarded. The worst case

fault scenario in synchronization is thatf of the clock values have been corrupted by

faulty processors to either all be slow or all be fast. It is possible for intermediate values

to be corrupted, but they would not cause the convergence function to return an invalid
result. CFMd takes the midpoint of the range spanned by the function's remaining

arguments while CFA,, averages the leftover arguments. These first four functions do not

place any requirements on how messages are sent and therefore have a high fault-

tolerance degree in the table. If authentication is used, this fault-tolerance degree would

fall to (N -.

The last four convergence functions in Table 7.1 are based on different interactive
consistency algorithms. CFCCA uses a cheaper message passing protocol known as

Crusader's Agreement to disseminate its clock and thus provides a lesser degree of fault
tolerance [MS85]. The final two functions, CFSE1 and CFwSE2, use an optimized

form of Byzantine Agreement, known as Fireworks Agreement, where all correct

processors agree on the value of a single correct clock by causing all to terminate the

protocol at approximately the same (real) time. Both Crusader's and Fireworks

Agreement are cheaper protocols in terms of performance, but they also provide a weaker
form of fault tolerance than Byzantine resilience. CFByz first appears in the CSM(m)

algorithm found in [LM84] and uses authentication and the fact that clocks can only be

set back by faulty processors to select its value. Since the use of digital signatures

94



prevent faulty processors from setting a clock forward, CFByz chooses the (f + 1)'

greatest clock. Note from Table 7.1 that the precision of this function is independent of
the skew between the clocks. Instead, the precision is a function of A, the maximum

clock reading error between two clocks. This maximum clock reading error accounts for

both the error introduced by the mechanics of reading another processor's virtual clock

and drift between processors.

7.4. Final Protocol Design

The Synchronization Layer is placed between the Application and Message

Passing Layer and the system's unsynchronized hardware clocks. The layer was the last

part of the architecture to be designed, because it depended heavily on the structure of the

interactive consistency protocol. Since a processor's virtual clock is single-source

information, the method used to disseminate its value between the other processors needs

to be Byzantine resilient. The best and certainly the easiest solution to this problem is to

extend the interactive consistency mechanism to handle synchronization.

The clock synchronization protocol used in this proposed design is derived from

ideas in [LM84] and [BD87]. Chapter 6 describes the implementation of a From_all

message passing routine which distributes single-source information from every

processor in the system using the SM(m) algorithm in [LSP82]. Lamport and Melliar-

Smith show how to implement a clock synchronization protocol using the above

algorithm in [LM84]. The only major difference between their protocol and the our

proposed version comes from the observation that a From_all provides a Byzantine

resilient form of the FME suggested by Babaoglu and Drummond in [BD87]. The final

protocol uses information gleaned from a regular From all to perform synchronization,
only employing a specialized synchronization exchange called From_all_sync when a

predefined amount of time passes without a From_all.

In the next section, a more in-depth description is provided to show that the

protocol follows the steps required by Schneider's clock synchronization paradigm.

Then, the extension needed for the Initial Synchronization (ISYNC) period required to

synchronize the clocks to within the required initial skew when the system is first started

is discussed. Finally, a methodology for calculating the precision of the protocol is

explained.

95



7.4.1. Description of the Clock Synchronization Protocol

Schneider's paradigm states that clock synchronization protocols are completely

defined by their solutions to the three subproblems described earlier in this chapter. Our

protocol implements two different types of synchronizations: "no-cost" synchronization,

where timing information is piggybacked on other messages, and "required

synchronization," where a special message passing exchange is performed just to

distribute synchronization data. The timing of synchronization events and the type of

synchronization used is highly variable, depending on the tasks being run by the system.

Both types of synchronization use the Byzantine Agreement technique described by

[LM84] in their CSM(m) algorithm to read the virtual clocks on other processors.
Finally, since a Byzantine Agreement protocol with authentication is utilized, CFByz is

used to calculate the new time adjustments. Outlining the solutions to each one of these

subproblems provides an in-depth description of the whole protocol.

Before the protocol can be discussed in detail, a description of the task

environment is required. Currently, only two tasks are assumed to be running: a

generalized application task and when necessary, a required synchronization task. The

different tasks are periodically allocated frames, or intervals of (virtual) time, in which

the task is assumed to complete all of its operations. The application task is given R

virtual seconds to finish, while the required synchronization task receives S virtual

seconds. At the end of this (virtual) time, an interrupt goes off sending the processor to

the next task. Within each frame, the task operates nondeterministically, in that it

completes each instruction in order but not at predetermined virtual times. This means

that tasks on different processors may execute at different rates. Figure 7.4 illustrates

how the same task frame running on three different processors might look in terms of the

Processor A

Processor B

Processor C

irtual time)

irtual time)

irtl.nl timp.)
%'c \' Id a l . l l;

6 (Real time)

Figure 7.3 Task frame behavior.

96



virtual time on each processor. The frame start and end occurs at the same virtual time

due to an interrupt going off, but since execution rates on the processors vary, the same

operation within the task happens at different virtual times. The only requirement is that

the operations be performed on each processor within a known skew of (real) time.

The time at which a synchronization event is generated is determined by the

placement of Fromall exchanges within the task. At the beginning of each application

frame, an interrupt based on the processor's virtual clock is set to jump to a required

synchronization frame in which a special synchronization From_all_sync exchange is

performed. If the application does a From_all exchange during its frame, it adjusts its

virtual clock using no-cost synchronization. Since synchronization has already been

done, the required synchronization frame is not necessary and the interrupt is reset to

jump to an application frame. Figure 7.4 illustrates how the tasks might be scheduled on

a processor. During the first two application frames, a From_all exchange is carried out,
so the next frame is also an application frame. In the third application frame, no

From_all exchanges are performed, so a required synchronization frame with a

Fromallsync exchange follows. This design should cause a significant reduction in

overhead, since specific frames are not needed for synchronization when the machine is

busy. The only time synchronization engenders a large overhead is when the system is
idle and multi-source interactive consistency exchanges (another cause of overhead

problems) are not present.

Frnm allexchane Frnm all .vnr exchane.

'(t) (Virtual time)
Application irames

Required Synchronization Rames

Figure 7.4 Application and required synchronization frames.

Once the processors have decided to synchronize, they must read the virtual

clocks on all of the other processors. These virtual clocks are approximated using the
processor's own virtual clock and the time difference between the two clocks. The time

differences are collected during either a From_all exchange if no-cost synchronization is

being performed or a From_all_sync if required synchronization is needed. The only

97



difference between the two routines is that no actual message is sent during a

From_allsync exchange, just the header and trailer of a zero-byte message. Each

message is given a timestamp using the virtual clock of the sender. The arrival time of

each message is also recorded according to the receiving processor's virtual clock. An

estimation of the time difference between two processors is calculated using the

following equation:

p, [q] = T - p (tar,,iva) - ry, (7.1)

where 'rp[q] is an estimation of the difference between the virtual clocks on processors p

and q as seen by processor p, T is the timestamp in the message from processor q,
p (tarri,) is the message's arrival time according to processor p's virtual clock, r is the

number of the current round within the exchange (1 or 2), and y is the message

transmission delay constant. The message transmission delay constant, y, is an

estimation of amount of time needed to sign, send, receive, and authenticate a message.

Figure 7.5 shows the different message delays and the message delay error. The (virtual)

time needed to process a message is bounded by the constants, Fmm, and Fmax. The

message delay error, Ar, is the difference between the minimum and maximum delays,

rm,, and rax,,, while y is the average of IFm and Fmax. The error of introduced by

using y to estimate the actual message delay is therefore bounded by ±At2.

Start sending message Ar

/

~Fmm

Fml ~ 4 rmaI

c(t) (Virtual time)

rIl,' : Minimum tansmission delay

y : Message transmission delay constant

Fmax : Maximum tansmission delay.

AF : Message delay eror

Figure 7.5 Message transmission delays and message delay error.

98

-0 IBM.

I1 ,



Once estimations of the difference between all of the virtual clocks have been

collected, convergence functions (CF) are used to calculate a new time adjustment for a

processor's hardware clock. In this implementation, the convergence function, CF.yz, is

used within the interactive consistency exchange. During the message passing, each
processor gathers f + 2 estimations of the difference between its own virtual clock and

every other processor's virtual clock, with the difference between a processor's clock and
itself being set to zero. CF z, is applied to these arguments and returns the (f + 1)'h

greatest difference. Once an estimation of every processor's virtual clock has been made,

the processor has a set of N virtual times, one from each processor in the system which

are used to calculate the new time adjustment. A convergence function such as CFF4 can

then be used to generate this time adjustment.

7.42. Initial Synchronization (ISYNC)

The problem of initially synchronizing the clocks when the system first starts is

much more complicated than the issue of resynchronizing clocks which are already

within a skew of each other. The designer can assume that all processor will start within

a given interval of time, ,u, such that

ci'(0) < # for i = 1... .N, (7.2)

but this interval must be a large amount of time. Much more care is needed to guarantee

that messages sent by another processor during previous round do not overlap into a new

round. The algorithm which is used during the system's Initial Synchronization (ISYNC)

period is an extension of one found in [LL83].

Lundelius' and Lynch's ISYNC algorithm adds an additional step to each message

passing round. ISYNC rounds still consist of (virtual) time intervals when messages are

sent and then each processor waits long enough to guarantee that all of the messages from

other processors have arrived. The difference is that each processor then waits for a

second interval to be certain that new messages are not received by other processors in

their first waiting period and then sends a READY message to all other processors

indicating that it is prepared to begin the next round. However, if a processor receives
f + 1 READY messages before it completes its second waiting interval, it ends the

interval early and sends its own READY message. The extra message passing guarantees

that no clock values from the previous round will be received after a processor has begun

a new round. The number of ISYNC rounds required to bring the system's virtual clocks

99



within a desired skew is determined by the precision of the convergence function, CF.yz,

and the synchronization protocol. This process is discussed in the next section.

7.4.3. Determining the Precision of the Synchronization Protocol

Determining the precision of a clock synchronization protocol involves finding

the maximum amount of skew which can occur between the virtual clocks in the system,

assuming that the clocks were synchronized before the last resynchronization period.

This maximum skew places a lower bound on the desired skew parameter, 8, around

which the clock synchronization protocol is designed. The process of deriving this

precision must take into account characteristics of both the protocol itself and the system

(and therefore hardware) on which it is running. An assumption is made that the protocol

operates "correctly." A proof of the correctness of the proposed protocol, based on a

proof provided in [Sch87], is found in Appendix B. Actually finding a realistic value for

the lower bound of 8, or 8m, is a separate process.

The worst skew between virtual clocks happens just before a resynchronization

interval. Therefore, deriving the precision of the clock synchronization protocol is done

in two steps. First of all, the worst-case precision of the virtual clocks immediately after

a resynchronization must be found. Then, the maximum amount of drift which can occur

before the next resynchronization interval needs to be added. The maximum amount of

skew found just before the resynchronization interval is the sum of two values such that

(6 E) + = m <8 , (7.3)

where r(8, e) is the precision of the convergence function (and therefore the virtual

clocks immediately after the protocol makes its time adjustment) and is the maximum

amount of drift in (real) time between resynchronizations.

Before any of these parameters can be derived, the different time frames of

reference need to be explained more thoroughly. These different frames of reference

complicate the concept of clock synchronization. Each frame of reference is layered on

top of one another, and they tend to drift apart when left alone. The sole purpose of clock

synchronization is to continuously drag these frames back together.

There are four frames of reference which must be taken into account when

analyzing this protocol. The first three are standard to all clock synchronization

protocols. First of all, a Newtonian, or real time (t), frame is assumed. Real time is not

directly observable, but is more of an abstraction around which the other frames are built.

100



The second time frame, known as hardware time (c(t)), is linked to real time by the

hardware drift rate condition which says that:

0<-p< C(t) - C(t) +p, for 0 < t, (7.4)

where ic is the hardware clock tick width and p is the hardware drift rate. For most

hardware clocks based on crystal oscillators at constant temperature, the hardware drift

rate, p, is around 10-4 [Se4ec]. The third time frame, known as virtual time ((t)), is

layered on top of hardware time. Virtual time drifts from hardware time due to error in

reading the counter which is implementing the virtual clock. At any one time, the virtual

clock can be up to half of one least significant bit (lsb) of the virtual clock away from the

hardware clock.

Figure 7.6 illustrates how these three time references would look on a [sesecl

coordinate system. Real time does not drift on this coordinate system so it is represented

by the line which intersects the (1 sec, 1 sec) point. Hardware time can drift from real

time at p [Se/ec] which is represented by the solid l i nesbg away from the real

time line. At 1 second, the only guarantee is that hardware time is within ±p seconds of

real time. Added to this uncertainty is the virtual time drift which provides the dashed

lines bordering the hardware time bounds. At 1 sec elapsed (real) time, virtual time is
guaranteed to be within + 2lsb seconds of hardware time. This combined drift continues

to widen as real time passes, unless a clock synchronization protocol is used to bring the

virtual clocks closer together again.

Hardware, vi
time (sec)

ke, t

ware time bound

:lock drift

1 sec Real time (sec)

Figure 7.6 Comparing the different time references.

101



The last time frame of reference is required due to the way tasks run within their

frames. Task operations are not deterministically scheduled to occur at specific virtual

times. The task simply executes each instruction in order as the task reaches that point in

its routine. Task execution rates may vary on the different processors due to such

intangibles as the processor's temperature, error state, age, or other characteristics,

causing each processor to reach the same event at different virtual times. Since no-cost

synchronization is carried out in conjunction with an application task performing a

From_all exchange, the virtual time at which synchronization is done can therefore be

different on each processor. This is a significant change from previous designs where

synchronization intervals were scheduled to begin at the same virtual times on each

processor [HSSD83, KSB85, LL83, LM84, PB86, Sch87]. Figure 7.7 illustrates the

difference that this makes in message passing. In Figure 7.7(a), processors i and j send
messages when their virtual clocks reach their idea of the real time, t,,d. These events

occur on the two processors at the same virtual time (relative to the specific processor)
but at the different real times, t,,.di and t,,.di . When processor j receives the message at

virtual time, , (t,i,), the (virtual) time difference between when processor i sends the

message and when processor j receives it is simply the transmission delay, yij. In Figure

7.7(b), processors i and j send their messages when their virtual clocks reach their idea of
different real times (t8 ,,di and t,,i.dj, respectively). These events not only happen at

different real times, but at different virtual times on each processor. This task execution
drift adds a term, ij, to the (virtual) time difference between when processor i sends the

message and when processor j receives it. The task execution frame of reference has one

major difference between it and the hardware and virtual time frames of reference. The

task execution drift is reduced to zero every time a new frame is begun, because each

frame boundary is deterministically scheduled using an interrupt. Therefore, the task is

begun at the same virtual time on each processor. In order to quantify this drift, the

designer needs to find a maximum bound, 4, for the number of instructions/application

frame (assuming that R > S) by which the tasks can differ. The time length of the frame

(R seconds for an application frame) can be used to translate this drift into the virtual time

frame of reference.

Once these time frames of reference are understood, the process of determining

the precision of the clock synchronization protocol can begin. The first step is to

determine the skew between the virtual clocks immediately after a resynchronization by
quantifying the precision of the convergence function. Our proposed protocol uses CFy z

which guarantees that virtual clocks are within 2A, twice the maximum clock reading

error, of each other. Therefore, the important parameter which must be quantified is A.

102



Tiv

Processor i I 
Cj .(tndj.i) ( t)

Processorj j t .(t)

(a) Message passing with virtual time-based synchronizations

(i(ts,j i) = j(t,,dj) and t.d, * t,,ad.j).

Processor i 4k
Ci (t,,.d j) Ci ( t)

Processor j
t ri) j (t.i ) ej (t)

(b) Message passing with task execution-based synchronizations
( i(t.,,i) * j(tdj) and t,,,i *: t.,,j).

Figure 7.7. Virtual time- vs. task execution-based synchronizations.

The maximum clock reading error, A, is made up of the maximum amount of

message delay error which is possible plus the maximum amount of task execution drift

which can occur. Message delay error, Ar, is shown in Figure 7.5. The error is

composed of the variable time which is needed by both the sender and the receiver to

process a message. In order to get a realistic value for this parameter, the designer must

determine the minimums and maximums for the following times:

1) the time needed to sign the message, to include generating the CRC and

multiplying the CRC by the private key (signing time),

2) the time needed to send the message (sending time),

3) the time needed for the message to travel to the receiving processor

(propagation delay),

103



4) the time needed for the receiver to realize that a message has arrived and to

collect the message (receiving time), and

5) the time needed to authenticate the message, to include generating the CRC

and multiplying the CRC by the public key (authentication time).

The estimated message delay is guaranteed to be within + A/ 2 of the actual delay. In

previous designs, the maximum message delay error would be the same as the maximum

clock reading error. In our proposed protocol though, task execution drift must be

accounted for. In Figure 7.5, the different times are in terms of one processor's virtual

clock. In order to guarantee that every processor has reached its own virtual time when it

sends messages, the message delay error must be corrected for worst-cast task execution

drift. This worst-case drift occurs at the end of an application frame. At this point, the

task execution drift is bounded by R%/ virtual seconds, where R is the length of the

application frame in virtual seconds, m is the maximum number of instructions in the

application frame, and D is the bound on execution drift in terms of instructions per

frame. Therefore, the worst-case precision of the protocol after a resynchronization is

max, (3,E)= )2(AFr+ R/m). (7.5)

Once a value for rmax (6, e) is known, finding the precision of the clock

synchronization protocol involves correcting for the maximum amount of drift which can

occur between the clocks before the next resynchronization. The worst-case scenario for

the time between resynchronizations is when an application synchronizes its virtual

clocks at the very beginning of one application frame and then does not perform a

From_all exchange during the next application frame. This means that the clocks are not

resynchronized until the end of the following required synchronization frame, an interval

bounded by 2R + S virtual seconds. The virtual clocks can therefore drift a total of

,=2*p (2R+S)+(2lsb)+S/m, (7.6)

with the SDm term added for task execution drift since the resynchronization occurs at

the end of the required synchronization frame. Using Equation (7.3), the lower bound for

achievable skew is thus

in 2Ar + 2 p(2R + S) + (Y2 1sb)+ (2R + S))m. (7.7)

104



8. Conclusions and Recommendations

8.1. Overview

This architecture study provides the groundwork for implementing a new

generation of Byzantine resilient processors using authentication. A layering scheme is

proposed which can be placed between the user and hardware. These layers are made up

of protocols which provide the basic building blocks of the architecture. The final design

proposed for each protocol is described in the following section. The final section

discusses topics which still need to be researched before the system can be fully

implemented.

8.2. A Byzantine-Resilient Architecture using Authentication

The proposed architecture is built around the use of digital signatures to

authenticate the origin and contents of messages. The use of authentication allows a

significant reduction in the theoretical requirements necessary for providing Byzantine

resilience, or the ability to continue correct operation in the presence of arbitrary or even

malicious faults. This decrease in the requirements led to the goal described in Chapter 2

of providing a system which combines the stringent standards embodied by Byzantine

resilience with the lower costs necessary to make the system viable for more markets than

previous Byzantine resilient processors.

An investigation of the basic building blocks required by the proposed

architecture is found in Chapter 3. The result of this investigation is the layering scheme

shown in Figure 8.1. These layers are designed to be placed between the user and the

system's hardware, keeping the mechanics involved in providing Byzantine resilience

invisible to the user. Each layer is composed of one or two protocols responsible for

providing services for the layer. The design of these protocols is described in Chapters 4,

5, 6, and 7 and serves to specify the proposed architecture.

Chapter 4 covers the design of the authentication protocol, the fundamental

building block upon which the rest of the architecture rests. First of all, an in-depth study

of the theoretical and practical requirements which must be fulfilled by the protocol is

done in Section 4.2. The two different options for authentication protocols, private-key

and public-key authentication, are described with the reasoning behind choosing public-

key protocol for this proposed architecture in Section 4.3. The design of the protocol is

105



Figure 8.1 Layering scheme for the proposed architecture.

then broken into the three functions required by public-key authentication: the encoding,

signing, and authenticating functions. The encoding function generates a n-bit

representation of the message for the signing function to sign with a private key to get the

digital signature. The authenticating function uses this signature and a public key related

to the private key to provide a result which can be compared with an encoded n-bit

representation of the received message to authenticate the message. A method for

generating private and public key pairs using modular inverses is described in Section

4.4. This is followed in Section 4.5 by a discussion of the issues involved in using Cyclic

Redundancy Codes (CRC's) to implement the encoding function. The final design of the

authentication protocol proposes employing a 32-bit CRC generator polynomial to

encode the message with 32-bit modular inverse keys used by the signing and

authenticating functions. A 32-bit CRC does not provide the reliability imparted by the

64-bit generator polynomial derived in Section 4.5.1, but its implementation requires less

performance overhead to authenticate messages. A corollary to the decision to use the

faster 32-bit CRC is the suggestion that the functions in the authentication protocols be

optimized as much as possible by implementing them using the assembly code of the

specific processors upon which the system is running.

106



The interactive consistency protocol found in the Message Passing Layer is

described in Chapter 5. This protocol is responsible for distributing data between

processors in a way which satisfies the Byzantine Agreement conditions found in Section

3.3. The protocol provides the Byzantine resilience for the entire system as it prevents

faulty processors from influencing the data on nonfaulty processors. Section 5.2

investigates the requirements placed on a system using authentication which desires to

provide interactive consistency. This discussion is followed by a description of

Byzantine Agreement algorithms in Section 5.3 which concentrates on the SM(m)

algorithm from [LSP82] and the improvements suggested in [DS83]. The following

section examines the various design issues involved in implementing this algorithm

which are then incorporated into the final protocol design provided in Section 5.5.

Section 5.5 describes the structure of four routines which make up the design of the

protocol: three single-source exchanges (From_a, From_b, and From_c) and a multi-

source exchange (From_all) which distributes data from all of the processors. An

implementation of parts of the protocol in Section 5.5.2 resulted in a final design proposal

for the interactive consistency protocol which employs the point to point message passing

of the SM(m) algorithm without the algorithm's use of nested signatures. An additional

result of this study is the realization of the amount of performance overhead taken by the

I/O system calls used to send and receive messages and the need for optimization of these

routines in any final implementation.

The second protocol of the Message Passing Layer is the voting protocol

discussed in Chapter 6. This protocol is responsible for generating a group consensus

value which is guaranteed to be the same on all nonfaulty processors. The first step in

designing the protocol, found in Section 6.2, involved examining the requirements of the

voting protocol and making certain that they did not conflict with the requirements set by

the interactive consistency protocol. Section 6.3 describes the basic voting algorithm

with its message passing interval and choice() function, followed by an investigation of

the design issues involved in implementing these sections of the protocol. Section 6.4

describes the structure of a routine which implements the voting protocol. An

implementation of parts of this routine in Section 6.4.2 resulted in a final design proposal

for the voting protocol which exchanges unsigned messages and then uses a full-set

majority vote choice() function to calculate the group consensus value.

The synchronization protocol discussed in Chapter 7 implements the final layer of

the architecture, the Synchronization Layer. This protocol provides the synchronized

clocks which are needed to guarantee that tasks will terminate even when a processor

becomes faulty and stops sending messages. In Section 7.2, the clock synchronization

107



problem is split into three subproblems using a paradigm found in [Sch87]. The solutions

to these subproblems completely specify a clock synchronization protocol. The design

issues involved in implementing the subproblems are discussed in Section 7.3. Section

7.4 describes a method for synchronizing clocks which minimizes the amount of

performance overhead needed by the protocol. Two forms of synchronization are

proposed: no-cost synchronization and required synchronization. The no-cost

synchronization is performed using information which has been "piggybacked" on the

messages of a normal multi-source interactive consistency Fromall exchange. Required

synchronization is only needed when an application frame finishes without performing a

From_all exchange. When this occurs, a required synchronization frame is allocated for

a Fromall_sync exchange. Once approximations of the virtual clocks on other

processors are gathered, a time adjustment is calculated using a technique suggested by

the CSM(m) algorithm from [LM84]. The final part of the chapter, Section 7.4.3,

describes the how to determine the precision of the synchronization protocol, taking into

account characteristics of both the protocol itself and the system (and therefore hardware)

on which it is running. This process must account the different types of drift present in

the system, including task execution drift which is a problem not present in previous

clock synchronization protocols.

8.3. Topics for Further Research

There are a number of areas which need to be researched before this architecture

can be fully implemented. This study only examines the protocols which make up the

basic building blocks of the architecture. Many more features need to be added to the

design before the final system can be built.

The most obvious area which needs to be worked on is the Application Layer.

The scheduling paradigm used in Section 7.4.1 to describe the clock synchronization

protocol is far too simplistic for any full implementation. Issues such as preemptive

scheduling have to be examined. Also, a Fault Detection, Isolation, and Recovery

(FDIR) task needs to be designed which makes use of the special characteristics of this

architecture. For example, one of the decisions made in designing the interactive

consistency protocol is to not use nested signatures during regular exchanges. FDIR

could turn on a nested signature feature to help isolate where a fault has occurred.

An additional area which needs to be examined is the relationship between the

architecture layers and the hardware upon which they are running. A constant theme

resulting from the performance overhead measurements is the necessity of optimizing the

108



I/O system calls which are used to send and receive messages over the links connecting

the processors. The time spent in these system calls increases the message processing

overhead during each message exchange. It is important that this message processing

overhead be kept low, because it determines how long the rounds within each exchange

have to be to make sure no messages are dropped. Another area which is dependent on

the hardware is the precision of the clock synchronization. Section 7.4.3 describes the

steps needed to determine this quantity, but the process needs to be verified using actual

hardware.

109



110



Appendix A 64-Bit Modular Inverses

Private Signature Key (P) Public Signature Key (P-L)

Channel A. E7767EDF DD6BOAA9 6A6FFF29 DFCF3999

Channel B 300FEC3E 66358FED 6A554369 724D25E5

Channel C 80FDOOBF 6AA91DFB 4DEE4FB 4816533

Table A. 1 List of 64-bit modular inverses used in the implementation.

Number Private Signature Key (P) Public Signature Key (P-')

1. 9C1E8A09 615B 11EB 53170A9C EDD38EC3

2. 89E1143E 72908DE5 15791CE 3567E7ED

3. F795B5A2 3931E005 6FFOB378 6B4FECCD

4. 1FF06382 C836B5B5 6DF4AEBD 5142509D

5. 8C79563D B40701D7 507FF3C7 F04081E7

6. F44A41EE 42F13DC9 5EA41492 27216C79

7. 3811B26 7F04F271 5D91E9B2 37388E91

8. EEECFE42 D516023B 6C66FD3B 4CC386F3

9. F290151B 771CCFDF 2F366CB6 8F47AC1F

10. E45697F9 7687760B 5507BB2A D278E5A3

11. 89D2143 ECFF2F3D 3E24754B 5067A015

12. A75E386F A1E71E43 E165F06 A0539E6B

13. F6E2FC72 64A95DF1 721B5D3D C4E5F311

14. AOC76A8C 6D6AB859 5737DBB5 5F790FE9

15. E32623C6 28E15553 21F4BE57 5BC1B6DB

16. 3BC330AD B095EC6F 7A66AAE8 6940F28F

17. E022AE85 4AB669A9 663AE420 10F04A99

18. C61C94FE 2BA18883 6AED9721 14B9062B

19. B8B66F5D 627067E7 75CC1313 8855BBD7

20. 95694E7C 588COACF 5A90010C 6286BC2F

21. 96529F8D FDC508E5 6407D85D 786374ED

22. 1CC59F7F FF59489 7DD04763 7FD221B9

23. B77DC52F 6E2143B1 5CA750A1 A5012551

24. AE677A59 8027C49 5F579CD1 1FOA35F9

25. BBE13B79 65670CE5 FEF94F8 CDB3DOED

111

Number



26. C787CD21 928AOA8F 7EB7CA01 83A9D46F

27. DFC61DDB 7C881655 6852A610 299C36FD

28. 2A49A338 1B9E3CD7 3B58ACB8 EBB476E7

29. 14A7E74C D 115D5AD 7C1342A9 DC505625

30. 458014C7 EFC1CC39 41546A5C 36126209

31. 9EDAED4D 9F510EBB 43768199 A7DA0673

32. 56C28594 552D3373 2B8F9744 C6CA29BB

33. D711FA5 62C6DF39 341D21EB DF8C5F09

34. A960A010 E33B73EF 5D50D2BD 8561BOF

35. 869D6590 CD16AODF 70276BOF BlSlB1F

36. 36F8E37 D655D2DB 296ECA85 D3A3D953

37. 5C8D 10E 4A5AOC15 1BE9B869 5323633D

38. C4CABCC1 54EA1DF 7A55A8FF 6FAE5A1F

39. C32B7D71 A7864A29 959COC1 6C88F219

40. 1F351E66 F33A1059 5772D503 674437E9

41. 25BE4471 2EC32645 7D552145 EAF8FC8D

42. 57758D69 9390DB1D 642B67E1 3F28BF35

43. 4C167AFB C3836C5 5DCAC7E2 FE23D80D

44. 54EF6434 392EA25 6B9A2E6A 869521AD

45. 8C190FEE 30EDC787 73EAAOOB 9EA94E37

46. C5D8D71E 4E5FFDA7 242DBC7B B9AODA17

47. B5463794 19D93187 7F94D135 9AFDC437

Table A.2 List of other 64-bit modular inverses.

or

112

Ailhii Rianntijrp. (P-1)'INumber Private Si onntiirp. TC.v (PI



The actual clock synchronization protocol is represented in the model by the

reliable time source (RTS). The three subproblems from the paradigm are formally
defined by the functions performed by the RTS. First of all, the RTS is responsible for
generating the synchronization event. This function is formalized in terms of r,, rax,

and 13 as [Sch87]:

RTS1: The RTS generates synchronization events at real times t, trs... such

that

(tT = 0) A (Vi: < i:rm < tR - tRT < r.)

and the real time t at which processor p detects the event produced at trsT

satisfies

(t = ) A (i:O < i:O < tp- RTS a).

Secondly, the RTS reads the virtual clocks on the rest of the processors and uses a

convergence function to provide a new time adjustment, or

RTS2: At t, processor p obtains a value Vp that can be used in adjusting c to

lie consistent with the Virtual Synchronization (B.3) and Virtual Drift Rate (B.4)

conditions.

B.3. Formal Definition of our Clock Synchronization Protocol

The most important step in using Schneider's proof for a specific clock
synchronization protocol is in showing that the protocol fulfills certain assumptions.

These assumptions characterize the three subproblems of his paradigm and provide the
only structure for the actual model. Once a protocol has been defined in terms of the

required variables, it can replace the RTS within the model and therefore use the proof to

demonstrate the correctness of its operation.

The first subproblem, generating the synchronization event, is mathematically
described by RTS1. Providing bounds for the variables, r, rmax, and /3, shows how the

protocol fulfills this first function of the RTS. The parameters, r and rx, are the

lower and upper bounds for the (real) time interval between when the first nonfaulty
processor decides to resynchronize each time, while P bounds the (real) time which can

elapse between when the first and last nonfaulty processor resynchronizes. The proof of
correctness accounts for hardware clock drift, but any variables which depend on events

115



occurring on separate processors must account for task execution drift and virtual clock

drift. In Section 7.4.3, a bound on the greatest amount of task execution drift which can

occur within an application frame was found to be R/%, where (I is a bound on

execution drift in terms of instructions per application frame, R is the frame time in

(virtual) seconds, and m is the maximum number of instructions in the application. This

factor needs to be added (for upper bounds) to the (virtual) time necessary for the interval

to be completed on one processor with respect to its virtual clock. Correcting for virtual
clock drift is simply a matter of dividing this new interval by (1 + 3) for a lower bound or

by (1-/5) for an upper bound.

Figure B.1 Placing bounds on rn and r,.

Placing bounds on rm, and rmax for the proposed clock synchronization protocol

involves examining the scheduling of resynchronizations. Figure B. 1 illustrates rmj, and

r.x for our protocol, in terms of one processor's virtual clock. Since resynchronizations

occur every time there is a From_all exchange, rmm is simply the least amount of (real)

time necessary to carry out one From_all exchange. A lower bound for rmm can be

calculated by assuming that each round of the From_all exchange must be long enough

for all of the other processors reach the point of sending their messages and then for the

message to be processed. A lower bound on the length of a message passing round does

not correct for task execution drift, since the drift is returned to zero at the beginning of

every frame (due to the scheduled interrupts), not at the end of synchronization intervals.

Since the From_all exchange uses two message passing rounds, a lower bound for rmm is

rm >) (B.5)
(1 +) '

where Fn is a lower bound on message transmission delay.

On the other hand, rmax is taken when a From_all exchange occurs at the

beginning of an application frame, followed by an application frame without a From_all

116



Appendix B. Clock Synchronization Proof of Correctness

B.1. Overview

One of the most important results of using Schneider's clock synchronization

paradigm to design a protocol is the ease of proving correct operation. In [Sch87],

Schneider provides a proof of clock synchronization which, except for certain general

assumptions, leaves solutions for his three subproblems open. Once a specific protocol is

cast in term of these assumptions, the proof can be used to show that a protocol satisfies

the correctness conditions. A number of corrections to Schneider's clock synchronization

proof are suggested by Shankar in [Sha9 1]. Shankar redefined certain components in the

system to remove the reliable time source (RTS), but these changes did not affect the

actual proof. The differences between Schneider's and Shankar's results come from

algebra errors and some latitude in Schneider's arguments which are removed in the new

version [Sha91]. For reference, Appendix C contains a list of each of the variables used

in this analysis with a definition of each.

In the following section, a more detailed description of Schneider's model is given

with the definitions necessary for understanding the proof. Our clock synchronization

protocol is then represented in terms of the assumptions about the three subproblems used

in the proof. Once it is shown that our protocol fulfills these assumptions, it follows that

the clock synchronization protocol operates correctly . The details of proving the

individual theorems can be found in [Sch87] and [Sha91].

B.2. Schneider's Formal Model of the System

Before the clock synchronization proof can be discussed, the components making

up the system need to be defined and mathematically characterized. One of the problems

in analyzing the various clock synchronization protocols found in the literature is that the

models used in the proofs vary depending on the author. Before any comparison of two

protocols can be done, the differences in the models have to be accounted for. The proofs

are hard enough to understand without having to deal with this extra complication.

Schneider attempts to provide a model which is general enough to be used for all of these

protocols. The system provided by the model is made up of virtual clocks implemented

by a reliable time source (RTS) on top of hardware clocks. Correct operation of these

components is defined as fulfilling certain requirements presented in terms of

mathematical bounds.

113



Every processor has its own physical clock responsible for providing an idea of

real time. The hardware clock on a correct processor is assumed to implement a function
cp(t) on processor p which maps a real time t to a clock time. The initial value of each

hardware clock is bounded by a constant fp such that

0 < c(0) < u. (B.1)

The hardware clocks are implemented as counters which increase by one in response to

periodic events known as ticks. The width of these ticks may vary as the clock advances,

causing the clock's value to drift from real time. The amount that a hardware clock varies

from real time must be bounded by

0<l-p< (t + c) - c(t) <+p, for 0 < t, (B.2)
K

where is the hardware clock tick width and p is the hardware drift rate. If a hardware

clock conforms to these assumptions, it is considered to be nonfaulty. No such

assumptions are made about faulty clocks.
Clock synchronization protocols implement a virtual clock function p (t) on

processor p which maps a real time t to a virtual clock time. The requirements for

nonfaulty operation provide the correctness conditions which the proof must show a

protocol fulfilling. First of all, the difference between virtual clocks on correct

processors p and q must be bounded so that

Virtual Synchronization: jcq(t) - p(t)l < S, for 0 < t, (B.3)

where shows how closely the virtual clocks are synchronized. Also, the virtual clock
must advance at a rate bounded by a virtual clock drift rate ip so that

Virtual Drift Rate: 0<1-p < r +, for 0 < t, (B.4)

where ik is the virtual clock tick width and p is the virtual clock drift rate. It is

important to note that this virtual drift condition relates virtual time to real time, instead

of the relationship between virtual and hardware time used in Section 7.4.3.

114



exchange. The parameter, rma, encompasses the (real) time interval between the end of

the From_all to the end to the required synchronization frame's From_all_sync exchange
(See Figure B.1). An upper bound for rmax can be found by assuming that the first

From_all exchange is completed instantaneously while the From_allsync exchange uses

the entire required synchronization interval. Finding this bound using frame boundaries

removes the need to correct for task execution drift (tasks are assumed to complete before

the end of the frame and task execution drift is returned to zero at the frame boundaries

by the scheduled interrupts.). The resulting bound (correcting for virtual clock drift) is

rmx <(2R + S) (B.6)

The final parameter used to describe clock synchronization event generation is P.

Since p is an upper bound on the (real) time which can elapse between when the first and

last nonfaulty processor resynchronizes, the parameter must account for the largest

amount of task execution drift possible. When the fastest nonfaulty processors decides to

resynchronize, the slowest nonfaulty processor's virtual clock must be within ( + R% )

real seconds of the fastest nonfaulty processor's virtual clock. Thus, the slowest

nonfaulty processor might task as long as S R% real seconds until it reaches its
1-A

resynchronization point.

Specifying the remaining subproblems has already been covered in previous

sections. The second subproblem involves reading virtual clocks on other processors.

The only assumption made about this process is that an upper bound, A, can be placed

on the error involved in reading another processor's clock. An explanation of how to

quantify A is found in Section 7.4.3. The resulting bound is

< A+ R/m, (B.8)

where Ar is the message delay error and RP/ is a correction term for task execution

drift. The final subproblem involves a convergence function which is described in terms

of precision, ir, and accuracy, a . A comparison of the different precision and accuracy

of the various convergence functions can be found in Table 7.1. Since this protocol uses
CF., both the precision and accuracy of the function are 2A.

117



rin 2( +rm)

(1 + )

rmax (2R + S)

13 S+Rm

A A + R%

7Cf~ ~2A

a 2A
Table B. 1 Bounds on parameters specifying clock synchronization subproblems.

118



Appendix C. Glossary of Notation

This glossary contains a list of the notation used throughout this thesis. The numbers in

parentheses after each definition show the section of the thesis in which the variable is

defined.

adjp Adjustment added to processor p's hardware clock to implement its

virtual clock. (7.2.1)

cp(t) Value of p's hardware clock at real time t. (B.2)

cp(t) Value of p's virtual clock at real time t. (B.2)

Di (M#) Signing function (P M, mod 2') which uses a private key, P, for

processor i to sign a message M#. (4.3.1)
Ei(Si) Authenticating function (Si . P-1 mod 2) which uses the public key, p-',

for the private key on sender i to authenticate the signature, SA. (4.3.1)

e(x) Polynomial representing errors in a corrupted message. (4.5.1)

e Number of bits in the block size used to feed data through a CRC

generation function. Also, the number of bits in each entry of a CRC

lookup table.(4.5.2)

f Fault-tolerance degree, specifies the number of Byzantine faults masked

by the architecture. (7.3.3)

g(x) Generator polynomial for calculating CRC's. (4.5)

k Number of bits in a message. (4.2)

MIx, A k-bit message to be signed or verified. (4.3.1)
M# A n-bit representation of M,. (4.3.1)

m Maximum number of instructions in an application frame. (7.4.3)

N Total number of processors in the system. (7.3.3)

n Number of bits in a digital signature. (4.2)
p Modular inverse of P-', used as a private key by Di(M#). (4.3.2)

p-' Modular inverse of P, used as a public key by E (Si). (4.3.2)

rmax Maximum real time between synchronizations. (B.2)

r.Wn Minimum real time between synchronizations. (B.2)

R Length of an application frame in (virtual) seconds. (7.4.1)

S Length of a required synchronization frame in (virtual) seconds. (7.4.1)

Si Signature appended to the end of a message sent by processor i. (4.3.1)

Sk (M) Signaturing function which generates a signature for the message M

based upon a private key k. (4.3.1)

119



s(x) Polynomial representing a CRC. (4.5)

t Real time. (7.4.3)

xi Polynomial representing a bit in the ihs bit position. (4.5)

a Accuracy of a convergence function, specifies how close a final value
obtained with N - f correct values is to the "correct" real time. (7.3.3)

JO Bound on the real time between when the first and last nonfaulty

processor resynchronizes. (B.2)

Virtual skew, maximum allowable difference between the virtual clocks.

(B.2)

(D Bound on the maximum amount of task execution drift in terms of

number of instructions/application frame. (7.4.1)

Gil Actual amount of task execution drift between processors i andj. (7.4.1).

Frmax Maximum message transmission delay. (7.4.1)

From Minimum message transmission delay. (7.4.1)

Ar Message delay error. (7.4.1)

Yi Actual message transmission delay between processors i and j. (7.3.2)

7 Estimated message transmission delay constant. (7.4.1)

K Hardware clock tick width, fixed (real) time interval between ticks of the

hardware clocks. (B.2)

- Virtual clock tick width, fixed (real) time interval between ticks of the

logical clocks. (B.2)

A Maximum clock reading error between any pair of processors. (7.4.3)

/t Range of initial values of the hardware clock. (B.2)

X Precision of a convergence function, determines how close values

obtained by two different computations of a convergence function with

varying arguments will be, so long as at least N - f arguments are

correct. (7.3.3)

p Hardware clock drift rate, rate at which the hardware clocks drift from

real time. (B.2)

Virtual clock drift rate, rate at which the logical clocks drift from real

time. (B.2)

,p[q] Estimation of the difference between the virtual clocks on processors p

and q as seen by processor p. (7.4.1)

Maximum amount of total drift in (real) time between

resynchronizations. (7.4.3)

120



References

[BD87]

[DDS84]

[DH76]

[DLPSW831

[Dol83]

[DS83]

[FL82]

[FLP83]

[Gal901

[HL91]

[HLS87]

O. Babaoglu and R. Drummond, "(Almost) No Cost Clock

Synchronization," Proc. Seventeenth International Symp. on Fault-
Tolerant Computing, July 1987.

D. Dolev, C. Dwork, and L. Stockmeyer, "On the Minimal Synchronism

Needed for Distributed Systems," IBM Research Rept. RJ 4292 (46990),

May 8,1984.

W. Diffie and M. E. Hellman, "New Direction in Cryptography," IEEE

Trans. on Information Theory, Vol. IT-22, No. 6, November, 1976.

D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,

"Reaching Approximate Agreement in the Presence of Faults," Proc.

Third Symp. on Reliability in Distributed Software and Database

Systems, 1983.

D. Dolev, "The Byzantine Generals Strike Again," Journal of

Algorithms, Vol. 3, 1983.

D. Dolev and H. R. Strong, "Authenticated Algorithms for Byzantine

Agreement," SIAM Journal of Computing, Vol. 12, No. 4, November

1983.

M. Fischer and N. Lynch, "A Lower Bound for the Time to Assure

Interactive Consistency," Information Processing Letters, Vol. 14, No. 4,

13 June 1982.

M. J. Fischer, N. A. Lynch, and M. S. Paterson., "Impossibility of

Distributed Consensus with One Faulty Process," Journal of the ACM,

Vol. 32, N. 2, Apr. 85.

R. Galetti, "Real-Time Digital Signatures and Authentication Protocols,"

Master of Science Thesis, Massachusetts Institute of Technology, 1990.

R. E. Harper and J. H. Lala, "Fault-Tolerant Parallel Processor," Journal

of Guidance, Control, and Dynamics, Vol. 14, No. 3, May-June 1991.

A. L. Hopkins, Jr., J. H. Lala, and T. B. Smith III, "The Evolution of

Fault-Tolerant Computing at the Charles Stark Draper Laboratory, 1955-

85," Dependable Computing and Fault-Tolerant Systems, Vol. I: The

Evolution of Fault-Tolerant Computing, Springer-Verlag, Wien, Austria,

1987.

121



[HSSD83] J. Halpern, B. Simons, R. Strong, and D. Dolev, "Fault-Tolerant Clock

Synchronization," Proc. 3rd ACM Symp. on Principles of Distributed

Computing, 1983.

[Knu69] D. Knuth, The Art of Computer Programming. Vol. 2: Seminumerical

Algorithms, 1969.

[KSB85] C. M. Krishna, K. G. Shin, and R. W. Butler, "Ensuring Fault Tolerance

of Phase-Locked Clocks," IEEE Trans. on Comp., Vol. C-34, No. 8,

August 1985.

[Lee81] R. Lee, "Cyclic Code Redundancy," Digital Design, July 1981.

[LL83] J. Lundelius and N. Lynch, "A New Fault-Tolerant Algorithm for Clock

Synchronization, "Proc. 3rd ACM Symp. on Principles of Distributed

Computing, 1983.

[LM84] L. Lamport and P. M. Melliar-Smith, "Byzantine Clock

Synchronization," Proc. 3rd ACM Symp. on Principles of Distributed

Computing, 1984.

[LM85] L. Lamport and P. M. Melliar-Smith. "Synchronizing Clocks in the

Presence of Faults," Journal ofACM, Vol. 32, No. 1, Jan. 1985.

[LSP82] L. Lamport, R. Shostak, and M. Pease, "The Byzantine Generals

Problem," ACM Transactions on Programming Languages and Systems,

Vol. 4, No. 3, July 1982.

[Mac88] D. A. Mackall, "Development and Flight Test Experiences with a Flight-

Crucial Digital Control System," NASA Technical Paper 2857, Nov.

1988.

[MG78] D. L. Martin and D. Gangsaas, "Testing of the YC-14 Flight Control

System Software," Journal of Guidance and Control, Vol. 1, No. 4, July-

August, 1978.

[MS85] S. R. Mahaney, and F. B. Schneider. "Inexact agreement: Accuracy,

Precision, and Graceful Degradation." Proc. Fourth ACM Symp. of

Principles of Distributed Computing, 1985.

[NS78] R. M. Needham and M. D. Schroeder, "Using Encryption for

Authentication in Large Networks of Computers," Xerox Report CSL-

78-4, Sept. 1978.

[Pal87] D. L. Palumbo. Personal communication, NASA Langley Research

Center, Hampton, VA, Sept. 1987.

122



[PB86] D. L. Palumbo and R. W. Butler, "A Performance Evaluation of the

Software-Implemented Fault-Tolerance Computer," Journal of Guidance

and Control, Vol. 9, No. 2, March - April, 1986.

[PSL80] M. Pease, R. Shostak, and L. Lamport, "Reaching Agreement in the

Presence of Faults", Journal of ACM Vol. 27, No. 2, 1980.

[PW72] W. W. Peterson and E. J. Weldon, Error-Correcting Codes. Second

Edition. Cambridge, MA: MIT Press, 1972.

[RG88] T. V. Ramabadran and S. S. Gaitonde, "A Tutorial on CRC

Computations," IEEE Micro, Vol. 8, No. 4. August, 1988.

[RH89] J. Rushby and F. von Henke, "Formal Verification of a Fault Tolerant

Clock Synchronization Algorithm," NASA Contractor Report 4239,

1989.

[RKS90] P. Ramanathan, D. D. Kandlur, and K. G. Shin, "Hardware-Assisted

Software Clock Synchronization for Homogenous Distributed Systems,"

IEEE Trans. on Computers, Vol. 39, No. 4, April 1990.

[SAE91] SAE/AS-2A Subcommittee RTMT Statement on Requirements for Real-

Time Communication Protocols (RTCP), Issue #1, SAE ARD50007,

August 2, 1991.

[Sch87] F. Schneider, "Understanding Protocols for Byzantine Clock

Synchronization," Department of Computer Science, Cornell University,

Technical Report 87-859, August 1987.

[Sha91] N. Shankar, "Mechanical Verification of a Schematic Byzantine Clock

Synchronization Algorithm," NASA Contractor Report 4386, 1991

[ST85] T. K. Srikanth, and S. Toueg, "Optimal Clock Synchronization," Proc.

4th ACM Symp. on he Principles of Distributed Computing, August,

1985.

[Wat62] E. J. Watson, "Primitive Polynomials (Mod 2)," Mathematics of

Computation, No. 16, 1962.

123


