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Abstract
The high bandwidth requirements of facsimile communication can make it very costly or
even infeasible in environments where these resources are limited. The existing CCITT
Recommendation T.4 standard uses lossless Group 3 compression to reduce the number of
bits by a factor of 6 to 12, depending upon the contents of the document. However, with the
rapidly increasing use of facsimile equipment, a large number of communications services
could benefit greatly from an additional reduction in bandwidth.

This thesis describes the development of such an improved coding technique, called Content-
Adaptive Facsimile Coding (CAFC). It uses a more sophisticated page model that better
represents the types of documents that are typically transmitted via facsimile. Three dif-
ferent coding techniques (Symbol Matching and Substitution, Optimized 2D Run-Length
Coding, and non-compressing Direct Coding) are adaptively applied to different parts of
the page, followed by a stage of arithmetic coding. CAFC achieves compression ratios that
outperform Group 3 by an average of almost 2:1 for most documents and 3:1 for documents
consisting predominantly of typed text (25% improvement over JBIG for text). In addition,
preliminary estimates show that by using concepts from JBIG to replace the run-length cod-
ing, there is the potential for an additional 2:1 improvement for most non-text documents.
Although the algorithm is lossy, there is little perceivable distortion introduced into the
reconstructed images.

In this research, the target application for CAFC is secondary facsimile compression within
Digital Circuit Multiplication Equipment (DCME). The methods developed have the poten-
tial to double the capacity of DCME equipment for facsimile transmissions at the expense
of a very small amount of image distortion. The amount of additional hardware that would
be needed to implement CAFC on DCME facsimile channels is believed to be of the same
order of magnitude as that used on existing speech channels.
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Chapter 1

Introduction

Facsimile (fax) communication has become increasingly popular over the past few years.

As the number of fax pages transmitted each year continues to rise at an astonishingly high

rate, the technique used for encoding the images becomes extremely important.

The biggest problem inherent to facsimile communication is that it requires the transmission

of a tremendous number of data bits. A single bi-level page of a fine resolution CCITT fax

consists of close to four million pixels. Without any source coding, this transmission could

tie up a 4800 bit/s channel for over 13 minutes. To reduce this burden, a facsimile image

compression technique is employed. Most of the more popular facsimile machines and

personal computer (PC) plug-in cards support the CCITT Recommendation T.4 Group 3

[1] standard for document transmission. The Group 3 standard employs a modified form of

Huffman run-length coding to reduce the transmission time by a factor of 6 to 12, depending

upon the contents of the document.

Although the CCITT facsimile protocols were initially designed to be used over the Public

Switched Telephone Network (PSTN), the increasing demand for facsimile communications

has made it available in a more diverse set of environments. Many of these communications

media are very expensive or have severely limited bit-rates, making them economically

infeasible or impractical for facsimile even with the existing compression. For example,

in 1992, the transmission of a single page over a 4800 bit/sec Inmarsat-M mobile satellite
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channel would have taken several minutes and cost between $10 and $20 [2].

This thesis describes the development of a secondary facsimile compression algorithm, in-

tended to further reduce the number of bits per page and thus decrease these bandwidth

requirements even more. The proposed Content-Adaptive Facsimile Compression (CAFC)

technique consists of a more aggressive approach than T.4 Modified Huffman Run-Length

Coding, using a sophisticated page model that is better-suited for the types of documents

that are typically transmitted via facsimile. Unlike Group 3, which applies a single coding

scheme uniformly over the entire page, CAFC makes use of three different techniques, each

applied where it would be most effective to minimize the number of bits needed to repre-

sent the page. The initial goal is to achieve a compression ratio of 20:1, about a factor of

2 greater than that attained by Group 3, with no degradation in the reconstructed image

quality.

Chapters 2-6 explain the fundamental concepts behind CAFC and describe the encoding and

decoding techniques in detail. Chapter 7 discusses the procedures developed for optimizing

the various adjustable parameters of the algorithm. Chapters 8 and 10 summarize the

results of extensive simulations and provide suggestions for future development work. The

remainder of this chapter and Chap. 9 discuss the initial target application for CAFC,

facsimile compression for Digital Channel Multiplication Equipment.

1.1 Facsimile Compression for DCME

Although CAFC could conceivably be used to improve the efficiency of any facsimile image

transmission or storage system, this thesis focuses on its application to Digital Circuit

Multiplication Equipment (DCME) [3]. DCME multiplexes hundreds of analog voice, data,

and fax channels into a single high-speed digital channel for transmission over a satellite

link. To maximize the number of channels that can be operating simultaneously, some form

of bandwidth reduction is applied to each channel prior to multiplexing. Voice and data

channels are digitized and then passed through suitable coders that achieve compression

ratios of 2 or 4. Fax channels are actually demodulated to a digital baseband signal and

then passed directly into the multiplexor. This provides substantial gains compared to

12



transmitting the same signal in the voiceband domain, but unlike encoded voice and data,

Group 3-encoded facsimile is extremely sensitive to bit errors. In some DCME channels,

the bit error rate can approach 10- 3, high enough to severely distort any fax page. In order

to make DCME viable for facsimile communication, it is necessary to use some degree of

Forward Error Correction (FEC). This technique adds redundant bits to the data prior to

transmission so that the receiver can detect and correct most of the errors. FEC virtually

eliminates distortion to the page introduced by channel errors, but it has the undesirable

effect of increasing the number of bits that must be transmitted and thus the required

bandwidth.

The proposed solution to this problem is to add a secondary compression stage using CAFC

prior to the multiplexor and FEC stages. The extra compression would decrease the required

DCME channel bandwidth to a level at or below what it is without FEC and secondary

compression, effectively reversing the negative effects of FEC. Figure 1-1 contains a block

diagram of the envisioned configuration. The fax pages are scanned and encoded with

CCITT T.4 Group 3 coding and then modulated within the facsimile terminal equipment.

The DCME equipment then demodulates the fax signals, applies the secondary compres-

sion and FEC, multiplexes the channels, and transmits everything over a high-speed digital

satellite link. The DCME on the receiving end splits the high-speed input into signals for

each of the incoming channels. The facsimile channels are then passed through an FEC

error-correcting stage and the resulting CAFC-encoded signals are decoded and converted

back to Group 3, removing the secondary compression. Finally, these signals are modu-

lated and routed to the receiving facsimile terminal equipment, ready to be demodulated,

decoded, and printed.

The secondary compression consists of two stages, as shown in Fig. 1-2. At the transmitting

end, the T.4-encoded document must first be decoded with an inverse Modified Huffman

Run-Length coder (T.4- 1) into a raw bitmap, increasing the total number of bits of approx-

imately a factor of 10. Then, the image is compressed using CAFC, reducing the number

of bits by approximately a factor of 20, a net improvement of 2:1. At the receiving end,

the process is reversed. The CAFC-encoded image is expanded to a raw bitmap by an

inverse CAFC coder (CAFC-1), and then the bitmap is encoded using T.4 so that the fax

terminal equipment can receive it, an overall increase of 2:1 in the number of bits. In each

13
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Figure 1-1: Proposed DCME configuration with secondary fax compression.

direction, a sufficient amount of buffering is required to store the intermediary raw bitmap

format. However, because this is a real-time implementation, only a small portion of the

page need be stored as a raw bitmap at any given time. This is desirable feature of the

Group 3 and CAFC algorithms, since it allows the memory requirements and propagation

delay to be minimized. Section 9.2 discusses the issue of propagation delay in real-time fax

implementations.
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Figure 1-2: Secondary facsimile compression over DCME.
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Chapter 2

Overview of CAFC

Bi-level (facsimile) image coding consists of a page model and a coding technique that is ap-

plied to the information contained in the model. Facsimile compression involves applying a

better model and/or coding technique so as to represent the image in fewer bits, effectively

eliminating the redundant information. CCITT Recommendation T.4 Group 3 Modified

Huffman Run-Length Coding [1] models the page as a sequence of black and white hori-

zontal run-lengths. These values are coded using a form of Huffman variable-length coding,

achieving a compression ratio of approximately 10:1. Group 3 is effective because typical

fax documents consist of strings of black or white pixels with unbalanced run-length distri-

butions that can be efficiently entropy-coded with variable-length codewords (see Sect. 4.2).

It may seem that a compression algorithm designed to work well for "typical" documents

but not for all documents would be undesirable since there is a loss of generality and lower

degree of reliability. For example, it is actually possible for a Group 3-encoded image to

contain more bits than the corresponding raw bitmap representation. Unfortunately, what

appears to be a design flaw is actually an essential requirement. It is theoretically impossible

to achieve compression without the use of a model that makes some assumptions about the

contents of the page. In order for a compression algorithm to be effective, it is essential

that this page model be a good match for the documents that are to be compressed. In

fact, this is true when compressing any type of data, not just bi-level images.

15
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I CAFC Encoder I I CAFCDecoder 

Figure 2-1: CAFC block diagram.

It should be evident that the assumptions that can be made about a source of data can

best be determined by the means with which they were created. Many effective speech

compression algorithms, for example, use a model of the human vocal tract to decompose

speech into a set of filter coefficients and some additional excitation information. While it

is not always possible to completely characterize a source, it is often acceptable to make

sensible use of some known properties and develop a conservative model that performs

extremely well when the assumptions are good yet is not completely ineffective when they

are not.

This approach is the basis for Content-Adaptive Facsimile Coding. Facsimile documents

typically consist of a large amount of typed text and some simple line graphics (diagrams),

handwriting, and possibly some dithered bitmaps (grey-scale images converted to bi-level).

CAFC uses a page model that classifies each of these elements as a different type of "fore-

ground content." This representation is useful because each type of foreground content has

its own unique properties and can be modeled and coded most efficiently in a distinct man-

ner. CAFC encodes a document by breaking the page down into its different foreground

contents, encoding each with a technique optimized for the properties of that content, and

then multiplexing all of the encoded data into a single data stream. To decode the im-

age, the data stream is separated back into its different content-specific parts, and then

each content is decoded and combined together to form the reconstructed page. Figure 2-1

illustrates the general flow of data during each of these stages.

16
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The important feature of CAFC is that the individual foreground contents are processed

independently of one another, allowing the use of completely different coding methods. Each

type of content is effectively modeled and coded differently, where the model is adaptively

chosen by some local properties of the source image (hence the name Content-Adaptive

Facsimile Coding). This differs fundamentally from Group 3 coding, which applies the same

model and coding technique to the entire page. It is observed that the various foreground

contents that appear in facsimile documents have significantly different properties, and it

is therefore expected that an adaptive coder will achieve significantly higher compression.

2.1 Contents and Coding Techniques

For small and detailed image material, Group 3 achieves significantly lower compression

ratios than it does on most other documents. Yet, typed text, which fits into this category,

is the most prevalent foreground content in typical facsimile documents. For this reason,

the primary focus of this thesis is the development of a sophisticated Symbol Matching

and Substitution algorithm optimized for compressing typed text. It is expected that this

technique alone will provide most of the compression for CAFC. On the other hand, Group 3

compresses larger and coarser image material very well. For contents with these properties,

such as handwriting and graphics, CAFC applies a run-length coding technique that is

very similar to Group 3, but optimized for the somewhat different run-length probability

distributions present in these contents. The CAFC method also takes into account the

two-dimensional redundancies on the page and employs an entropy coding technique known

as arithmetic coding (AC) to provide additional compression over Group 3. Finally, for

dithered bitmaps, Group 3 is an extremely ineffective coding technique; often, the image

is actually expanded. To prevent this, CAFC directly encodes the pixels as individual bits

without employing any entropy coding.

The CAFC content classifications and associated coding schemes, summarized in Table 2.1,

were carefully selected to not only provide as high a compression ratio as possible, but to

also comprise a compression system that is practical and reliable. All of the algorithms

developed for CAFC can be readily implemented on reasonably inexpensive off-the-shelf

hardware platforms. They are designed to produce reconstructed images of high quality,

17



Foreground Content Coding Technique

Typed Text Symbol Matching and Substitution
Graphics Optimized 2D Run-Length Coding

Handwriting Optimized 2D Run-Length Coding
Dithered Bitmaps Direct Coding

Table 2.1: Foreground content types and associated coding techniques.

probably indistinguishable from the originals. The use of a run-length coding variant as

one of the coding schemes guarantees that the compression ratio achieved by CAFC for any

particular document will not be any lower than it would be with Group 3 coding. Likewise,

the use of Direct Coding where appropriate guarantees that CAFC will never produce a

coded image that is larger than the source. It is possible that a different set of foreground

contents and coding techniques could produce a higher compression ratio and/or better

image quality. Those listed in Table 2.1 were selected based upon the observed performance

of existing facsimile compression techniques on a variety of documents.

Finally, it is necessary to mention that none of the components of Content-Adaptive Fac-

simile Coding are completely original. A number of papers have been written about coding

schemes similar to Symbol Matching and Substitution [4] [5] [6]. An even larger number of

algorithms have been conceived for the efficient lossless two-dimensional coding of facsimile

[7] [8] [9] and for the encoding of dithered grey-scale images [10]. In fact, several standards

have been introduced since Group 3, including two-dimensional Group 3, Group 4, and

JBIG [11]. The content-based nature of CAFC is a relatively new idea that was taken from

some preliminary research performed at Comsat Laboratories [12]. However, that report

describes a hypothetical compression technique at a high level and does not go into sufficient

detail to completely define an algorithm.

The work described in this thesis is an attempt to intelligently combine a number of these

existing ideas into a practical working system that can improve the efficiency of facsimile

transmissions. Each component is individually redesigned and optimized for use in an image

compression system that could be incorporated into a real-time DCME platform. CAFC is

the unique combination of Symbol Matching and Substitution, Optimized 2D Run-Length

Coding, Direct Coding, and Arithmetic Coding in a content-based facsimile coding scheme.
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Chapter 3

Page Modeling and Analysis

As described in the previous chapter, a facsimile page is modeled as a combination of sev-

eral different types of foreground content - typed text, graphics, handwriting, and dithered

bitmaps. To keep things simple, graphics and handwriting are grouped together as a single

content because they have similar properties and share the same coding technique, Opti-

mized 2D Run-Length Coding. To encode a document, the CAFC encoder must scan the

page (a raw bitmap) and divide it into a large number of small regions, each containing an

occurrence of a single content. The CAFC page model specifies exactly what constitutes a

region of a particular content so that the encoder's analysis algorithm can efficiently and

systematically break down the page into its components.

The content classification is performed progressively, as shown in Fig. 3-1. The encoder

first tries to detect instances of typed text, the content with the most efficient associated

coding technique. The basic element of typed text is the symbol, defined as a cluster of black

pixels that is completely surrounded by white pixels. A symbol is essentially a single typed

character: a letter, a digit, a punctuation mark, or part of a character in cases where the

character consists of two or more segments, such as the percent sign (%). The encoder uses

a unique symbol detection/isolation algorithm to locate all such clusters and subsequently

codes them using the Symbol Matching and Substitution technique.

Once all of the symbols have been detected and isolated, the remainder of the page should
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Figure 3-1: CAFC encoder block diagram.

be free of typewritten text. An entropy-based content classifier examines each scan line of

this image and searches for segments that would have unusually high entropies (informa-

tion contents) when represented with the two-dimensional run-length model. These scan

line segments are classified as dithered bitmap fragments because their run-length distri-

butions indicate that they contain a large number of very short run-lengths, a property

of dithered bitmaps. For now, Direct Coding simply inserts these pixels into the encoded

bit-stream without any attempts at compression. All other segments are classified as the

handwriting/graphics content and are coded with the entropy-based Optimized 2D Run-

Length Coder.

It is important to realize that these specifications were chosen to be practical and that the

CAFC encoder may not always be successful at correctly recognizing and categorizing each

instance of a foreground content. For example, a detected symbol will not always turn out

to be a typewritten character; a small handwritten number or part of a bitmap could easily

qualify. Likewise, portions of the page with dense text or graphics might have high enough

run-length entropies that they are classified as bitmaps. However, it is not particularly

important that the CAFC criterion for typed text, handwriting, graphics, and bitmaps

exactly match the perceptual significance of these contents. The primary objective for

CAFC is efficient and reliable compression, not character recognition or accurate content-
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based modeling. As long as the page model exploits the common properties of the majority

of facsimile images, it is accomplishing this objective. Designing a page model that is as

close to the perceptual level as possible is beneficial because it indirectly takes advantage

of these particular properties. In CAFC, this approach works especially well since the

characteristics that are sought out during the content classification are the same ones that

are used to perform the actual coding. For example, the symbol-based model that is used for

typed text allows for very efficient coding via Symbol Matching and Substitution. Similarly,

the criterion that is used for locating dithered bitmap fragments also guarantees that a

classification leading to the optimal coding method is made.

The progressive nature of CAFC is a very important aspect of this approach. Of the three

coding techniques used in CAFC, the Symbol Matching and Substitution coding technique

provides the greatest compression gains. For this reason, the encoder first attempts to

detect symbols in hopes that typewritten text will be discovered, so that Symbol Matching

and Substitution can be applied. Then, after the symbols have been removed, entropy-

based content classifier scans the page for instances where Direct Coding would be most

efficient, most likely dithered bitmaps. Finally, Optimized 2D Run-Length Coding, the

"default" technique, is applied to the remainder of the page, which is assumed to consist

of handwriting and graphics. Thus, by performing the content detection algorithms in this

specific order, the maximal compression can be achieved.

3.1 Symbol Detection and Isolation

The symbol isolator has the specific task of extracting all symbols from an image, making

them available for coding with Symbol Matching and Substitution. The objective is to detect

all isolated instances of contiguous black pixels (clusters of black pixels surrounded entirely

by white pixels) that meet some predetermined minimum and maximum size constraints.

Figure 3-2 contains an example of a portion of an an image where all of the symbols have

been isolated and removed. In this case, the minimum allowed symbol size (widthxlength)

was 2x3 pixels and the maximum allowed symbol size was 40x60 pixels.

The restriction on the maximum size of detected symbols is an important requirement of
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Figure 3-2: Example of symbol isolation.

the symbol isolation algorithm. It is required for a number of reasons, but primarily to

minimize the amount of propagation delay in CAFC so that it may be incorporated into

a real-time facsimile transmission system (see Sect. 9.2). If, while investigating a possible

symbol, the maximum allowable horizontal or vertical dimensions are exceeded, the isolation

is abandoned and the next potential symbol is pursued. Each of the three different isolation

techniques has a unique method for detecting this condition. A minimum symbol size is

also imposed, since Symbol Matching and Substitution would not efficiently code very small

symbols. The maximum and minimum symbol sizes are fixed and determined in advance.

Whenever the symbol isolator successfully locates a symbol, it is immediately removed from

the page (so that it will not be detected again) and is then passed on to the coder. When

the symbol isolation procedure is complete, what remains on the page consists of white

space and clusters that are too small or too large to be symbols.

When encoding an image, the CAFC encoder systematically scans the image from left to
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right and from top to bottom until it encounters a black pixel. The coordinates of this

pixel are used as the starting point for the detection and isolation of a symbol. Because

it is a fairly involved process, three different methods for performing symbol isolation have

been developed: symbol filling, symbol tracing, and symbol windowing. The approaches

differ in terms of their computational burden, memory requirements, and overall ability to

detect all of the symbols in an image. Section 7.1 describes the procedure for evaluating

the performance of each technique and selecting the best one for CAFC. The following

sections explain simplified versions of each of the three approaches. The actual real-time

algorithms that were developed for CAFC are omitted from this discussion because they

are considerably more tedious.

3.1.1 Symbol Filling

With symbol filling, the isolator examines each of the starting pixel's eight adjacent neigh-

bors and selects only those which are black. Then, each of the selected pixels are checked

for adjacent black pixels in the same manner. This procedure is applied recursively until

the entire cluster of contiguous black pixels has been isolated. When a black pixel is de-

tected, it is also marked so that the isolator will not detect it again and get stuck in an

infinite loop. If the rectangular region spanned by the cluster of marked pixels is within the

permitted range of sizes, a symbol has been detected. Otherwise, the pixels are left behind

for subsequent coding by one of the other coding techniques.

Figure 3-3 contains an example of symbol filling. The numbers on each arrow indicate the

order in which the black pixels are detected and marked. In this case, the isolator examines

the neighboring pixels in the clockwise direction, starting with the pixel immediately to the

right. Thus, if the first black pixel is at coordinate (x,y), the isolator examines the eight

neighboring pixels in the following order: (x+l, y), (x+l, y-l), (x, y-1), (x-1, y-1), (x-1, y),

(x-1, y+1), (x, y+1), and (x+l, y+1).

Symbol filling is capable of detecting all of the symbols on the page correctly. However, it

has the disadvantage that it must inspect every black pixel in the symbol, requiring a lot

of temporary storage and processor cycles.
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Figure 3-3: Symbol filling.

3.1.2 Symbol Tracing

The particular order in which the source page is scanned for symbols guarantees that the

initial black pixel will always be on the boundary of a potential symbol. In symbol tracing,

this pixel is used as the starting point for a contour trace. The isolator examines the pixel's

neighbors in a specific order to determine which is the next boundary pixel, moving in a

clockwise direction. The trace continues until the first pixel is encountered once again. If the

size of the traced region is within the permitted range, a symbol is detected, consisting of all

of the black pixels within the boundary. Otherwise, these pixels are marked as non-symbols.

Figure 3-4 illustrates the procedure for symbol tracing. Once again, the numbers on each

arrow indicate the order in which the contour is traced. At each stage of the trace, the

search for the next boundary pixel begins at the pixel one step clockwise from the previous

pixel and proceeds in the clockwise direction. If the current pixel is at coordinates (x, y)

and the search for the next boundary pixel goes past (x+l, y), pixel (x+l, y) is marked.

Likewise, if the search goes past (x-1, y), pixel (x, y) is marked. In the figure, the marked

pixels are designated with an X. After the trace is complete, the detected symbol consists

of all black pixels contained within the horizontal segments formed by the marked pixels.

This technique requires less processing power and memory than symbol filling, but it does

not always produce exactly the same results as symbol filling. The isolated symbol consists
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Figure 3-4: Symbol tracing.

of all black pixels enclosed by the boundary, and it is possible to have scenarios where the

pixels are not all contiguous. This will occur when a smaller cluster, completely surrounded

by white pixels, is enclosed by a contour of black pixels, such as in the character ©. Effec-

tively, a smaller symbol is contained within the larger one. Despite this inconsistency with

the strict definition of a symbol, the performance of the symbol matching and substitution

should not necessarily be any worse than it would with a filling isolator.

3.1.3 Symbol Windowing

Finally, with symbol windowing, a rectangular window centered around the first detected

black pixel is used to surround the symbol. Initially the size of a single pixel, the rectangle

is gradually expanded in the horizontal and vertical directions until all of the pixels on its

four edges are white, or until the window is larger than the maximum allowed symbol size.

At this point, the isolation is complete; if the window is within the permitted size constrints,

a detected symbol is enclosed. Figure 3-5 illustrates an example of this process.

This approach is conceptually the most simple and straightforward and has very small

processing and storage demands. It is similar to symbol tracing in that it can sometimes

isolate "symbols within symbols", but this is not a problem from the coding efficiency

perspective. The difficulty with symbol windowing is that a symbol can only be detected if it

can fit inside of a white rectangular outline. For most typed text this should pose no problem
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Figure 3-5: Symbol windowing.

because each typed character is completely contained within its own rectangular region, but

there may be some fonts or styles (such as italics) where there can be overlap. The isolator

could overlook many of the symbols or possibly group multiple symbols together, resulting

in less efficient coding.

3.2 Dithered Bitmap Detection

Once all symbols have been isolated and removed, the remainder of the page is scanned

by an entropy-based content classifier to detect instances of dithered bitmap fragments.

The classifier is designed to locate portions of a scan line that would actually require more

bits to represent with Optimized 2D Run-Length Coding than with no compression at all
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(Direct Coding). To do this, it makes use of the same run-length statistics as the Optimized

2D Run-Length Coder (see Sect. 4.2) and estimates the entropy of each horizontal run in

the image. Then, it looks for portions of scan lines where the average entropy per pixel is

greater than one. These horizontal segments do not fit the run-length model very well and

are therefore classified as dithered bitmap fragments which pass through the CAFC coder

uncompressed.
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Chapter 4

Coding Techniques

The following sections describe in detail the three coding techniques employed in Content-

Adaptive Facsimile Coding. None of these methods are entirely novel approaches to bi-level

image compression, but rather variations of previously developed methods that have been

improved and optimized for a particular content. They are all designed to produce decoded

content regions that in an error-free environment are either identical to the original or nearly

indistinguishable, so that the reconstructed facsimile images are of high quality.

In terms of compression efficiency, each of the content coders serves a different role. The

Optimized 2D Run-Length Coder, the "default" method, is intended to outperform the

CCITT Recommendation T.4 Group 3 run-length coder in almost every scenario, providing

a high degree of reliability. The other two techniques are used whenever possible to provide

additional compression over Group 3. Symbol Matching and Substitution is especially

efficient for typed text. Direct Coding is used on dithered bitmaps where run-length coding

is especially ineffective.

4.1 Symbol Matching and Substitution

Typewritten text consists of symbols from a fixed set of alphanumeric characters and punc-

tuation marks, and each individual character is typically repeated numerous times on the
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same facsimile page. Although it is possible for small variations to occur as a result of dif-

fering scanner alignments, the symbols representing the multiple occurrences of a particular

character are nearly identical. The resolution of facsimile images is high enough that these

differences are difficult or impossible perceive, so that from the perspective of the person

reading the document, the symbols appear exactly the same. These will be referred to as

matching symbols.

The Symbol Matching and Substitution encoder takes advantage of this type of redundancy

by maintaining a library of all unique symbols that are encountered on the page. Whenever

a particular symbol is detected for the first time, it is added to the library but is left

on the page to be encoded with Optimized 2D Run-Length Coding. However, when the

symbol is recognized as a good match of one that is already in the library, it is considered

to be a duplicate and only the library index need be transmitted. The decoder maintains

an identical library so that when it receives such a message, it can decode it by simply

substituting the matching symbol from the library into the image. Since the library index

requires a much smaller number of bits to represent than the symbol itself, a considerable

compression gain can be realized with this method.

The matching of two symbols, described later in this section, is performed through a com-

parison of their bitmap representations and not their association with a particular letter,

number, or punctuation mark. This makes the process much simpler and does not restrict

it to a particular font, style, orientation, or language. A symbol could even be something

other than a conventional typewritten character, such as a logo, a very small picture, or a

portion of a graphic. And, since items such as these are often repeated in facsimile docu-

ments as well, compression is still possible, making this approach very versatile; the only

requirement is that symbols be repeated on page. Of course, on documents with little or no

repeated characters, or where the text is in many different font sizes, styles, or orientations,

it will fail to detect many matches, and the less efficient Optimized 2D Run-Length Coding

technique will be used instead. It is likely that CAFC will provide the poorest compression

gains for facsimile source images of this nature.

Figure 4-1 contains an example of the effect of symbol matching. It contains a source image

and the corresponding image after all but the first instances of matching symbols have
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Figure 4-1: Example of symbol matching.

been removed, known as the residue. Note that towards the top of the residue, most of

the characters remain intact, while near the bottom, almost all have been removed. This is

because the image is encoded from top to bottom. At the top, the symbol library is initially

empty, so most symbols encountered are new and are added to the library but left on the

page. Towards the bottom, the library is full, so most of the symbols can be successfully

matched and are removed from the image.

Figure 4-2 contains a block diagram of the Symbol Matching and Substitution encoder with

the symbol isolation and detection stage included. The dashed lines indicate the flow of

data and the solid lines indicate the flow of control. The source image, a raw bitmap, is
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scanned by the symbol isolator and the portions of the page that cannot be classified as

symbols are placed in the residue. Then, in a two level comparison process, the encoder

attempts to match each detected symbol with the existing library entries. The first stage is

a crude comparison, where high-level properties or "features" of the symbol are used to help

eliminate unlikely candidates from the search. A feature extraction procedure performs a

few simple operations to obtain these properties, and then a feature matching algorithm

uses them to try and "match" the symbol with the library entry. If the symbol is rejected

because no matches can be made, it is added to the library for future comparisons and

is also appended to the residue so that it may be encoded by one of the other methods.

Otherwise, it enters the second screening phase, a more rigorous template matching process.

Here, an accurate alignment and cross-correlation algorithm is used to compare the source

symbol with the library entry. As before, if no match can be found, the symbol is added

to the library and placed in the residue. On the other hand, if an entry with an equivalent

symbol is located, then the encoding is performed with the corresponding library index

number. This value is passed onto the arithmetic coder/multiplexor, the next stage of the

CAFC encoder.

Symbol Matching and Substitution achieves high compression gains for typed text because

it allows most of the typed characters to be represented as indices into a table rather

than as a two-dimensional arrangement of pixels. Unlike most compression techniques, the

redundancy that is detected and eliminated is based upon macroscopic properties of the

image. That is, rather than searching for correlations between local regions of neighboring

pixels, the encoder examines the entire page for essentially identical occurrences of the same

pattern. This is a fairly involved task, but it is expected to prove worthwhile because it

takes advantage of these previously untapped resources.

4.1.1 Feature Extraction and Matching

When processing documents containing many symbols, a large number of comparisons need

to be made between newly isolated symbols and those already in the library. This can

be a fairly time-consuming process that requires a significant amount of processing power.

Feature matching alleviates this problem by quickly eliminating the unlikely candidates
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Figure 4-2: Symbol matching and substitution encoder (with symbol isolator).

in the library based upon some high-level features of the symbols. Table 4.1 lists some

examples of properties of symbols that can be used during the feature matching process.

In practice, a subset of these are selected for use in the encoder (see Sect. 7.2.

Feature extraction is the process of obtaining the value of a feature on a given symbol. It

is useful to introduce a notation for referring to these values. For symbol s, the value of

the nth feature is denoted as Fn(s). For example, using the numbering in Table 4.1, the

number of black pixels in symbol sl would be F3(sl).

Feature matching is the process of comparing the feature values extracted from two symbols

to determine if they are likely to not match. In order to do this, feature matching makes

use of the "absolute difference" between two symbols for a given feature, defined as follows:

Dn(s1,5 2) = Fn(s1) -Fn ( 2) 
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# Feature Name
1 Width

2 Height
3 Number of Black Pixels
4 Number of White Pixels
5 Number of Horizontal Run-Lengths
6 Number of Vertical Run-Lengths
7 Horizontal Moment (Center of Mass)
8 Vertical Moment (Center of Mass)
9 Average Width

Table 4.1: Potential features for feature matching.

For a given feature, the absolute difference between the two symbols is compared with a

rejection threshold, r,. If D,(s 1 ,s2) r,, then symbols s and 2 are considered mis-

matches and no more comparisons are necessary. Otherwise, the process continues with the

remaining features until there is a mismatch or the list is exhausted. In the latter case,

feature matching is unable to differentiate sl and s2, so template matching procedure is

applied.

The features that are chosen must be very simple so that they can be extracted easily and

rapidly, yet diverse enough so that they are effective at eliminating as many non-matching

library entries as possible. Section 7.2 describes a procedure that has been devised for se-

lecting the optimal set of features and corresponding rejection thresholds. It is important

to note that feature matching by itself does not contribute to the process of image com-

pression. Rather, it provides a mechanism for bypassing many of the symbol comparisons

serviced by template matching, thereby decreasing the necessary computational resources.

Thus, feature matching has an unessential but very practical role in CAFC.

4.1.2 Template Matching

When an isolated symbol and a library entry symbol pass through all the stages of feature

matching process, the template matching algorithm is applied to ensure that the symbols

truly do appear identical before they are officially declared a match. Since CAFC's only

lossy compression technique is Symbol Matching and Substitution, its ability to produce

extremely high quality reconstructed images relies heavily on this final screening process.
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First, template matching adjusts for any slight variation in the positions of the two symbols

that may have occurred during scanning by computing their "centers of mass", defined for

symbol s as follows:

( W-- L-, ,
E_=0 '=O ,)

W-1 L-1 ,

Cy yS) -W-1 --L-1 , , ·

where s(x, y) represents the pixel at coordinate (x, y) within symbol s (1 = black, 0 =

white). W and L are the larger width and length, repectively, of the two symbols; pixels

referenced outside the boundries of a symbol are assumed to be white. Next, the template

matcher computes the square of the cross-correlation, A2, between the two symbols:

A2(1 *S2 ) - 2-°-O . 2L-1 81([/]/2],[y/2])2([/2-c.z(l)+Cz (92)],[y/2-c(a1)+,(aS2)])

16(= },=o - 1(l))(:,o W-= ~2(X,:Y))

This formula takes into account the fact that it is possible for two symbols to be misaligned

by a fraction of a pixel by working within a grid with twice the horizontal and vertical

resolution of the source image. Since a translated coordinate can be fractional as well, each

component is rounded; the notation [x] is used to represent the integer closest to x.

If the cross-correlation distortion A2(S1, 2) is above some established threshold, rt, the

source and library symbols are considered a match, and the efficient coding can take place.

Otherwise, residue coding is necessary.

4.1.3 Library Maintenance

The symbol library is a large data structure that is used to store all of the unique symbols

that have occurred so far in the image. It is initially empty at the top of the page and

gradually fills up as newly-encountered symbols are added. The information stored in each

library entry is listed in Table 4.2. Obviously the most important item is the bitmap repre-

sentation of the symbol itself, necessary for performing comparisons with future potential

matching symbols and for decoder substitution. Also needed is an arithmetic coding ele-
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ment number, a unique identifying integer used during the arithmetic coding and decoding

processes (described in Chap. 5).

bitmap representation of symbol
features of symbol
arithmetic coding element number
total number of appearances.

Table 4.2: Contents of a library entry.

Two additional items may be included in order to reduce the amount of computational

overhead associated with Symbol Matching and Substitution. The first is the numerical

value of all of the symbol's features. Since these will have already been computed before

any new symbol is added to the library, they are readily available for storage. By retaining

this information, it is not necessary to perform feature extraction on these symbols in the

future when comparing them with newly-isolated symbols. The other useful item is the

number of times a symbol has appeared so far on the page. This information can be used

to keep the library sorted in such a manner that the most frequently occurring symbols

are always searched first. This decreases the expected number of comparisons necessary to

match a symbol and decreases the probability of a mismatch.

The library structure is able to support two basic operations: adding a new symbol to the

library and fetching the information from the library back one entry at a time. The same

library structure is shared by both the CAFC encoder and decoder.

4.2 Optimized 2D Run-Length Coding

Run-length coding is a well-known technique that is used in many forms of image com-

pression, especially facsimile. It is based on the observation that for any given scan-line

on a page, there tend to be long "runs" of black and white pixels. These strings of pixels

occur because in typical fax documents, black pixels are clustered together to form items

in the foreground while contiguous white pixels fill the background regions. In run-length

coding, a scan line is encoded as a series of numbers representing the lengths of these runs

rather than as individual pixels, thus resulting in significant compression gains. Figure 4-3

contains an example run-length coding on a portion of a facsimile image scan line. The
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Figure 4-3: Run-length coding of a portion of a scan line.

encoded run-lengths alternate between white and black runs across the scan line.

Another important characteristic of facsimile images is that some run-lengths appear more

frequently than others. For example, one would expect a significantly larger number of

short black run-lengths than long black run-lengths because of the many thin lines (pen

strokes) on the page. A similar effect can be observed for white run-lengths, which occur

most frequently in-between black pen strokes or in association with blank image scan-lines.

Figure 4-4 shows the run-length distributions for both white and black runs on the set of

test documents in Appendix D.

Because the run-length distributions are not flat, a coding scheme that gives an equal num-

ber of bits to each run-length would have some statistical redundancy and would therefore

be sub-optimal. Huffman coding is a technique which takes advantage of these unbalanced

statistics by assigning a variable-length codeword to each run-length. Runs that have a high

probability of occurring are assigned shorter codewords, while runs with appear infrequently

are given longer codewords. The result is a much more efficient coding scheme. The Group

3 standard uses a slightly modified version of Huffman run-length coding that is easier to

implement on limited hardware platforms. It is capable of achieving compression gains on

the order of 6 to 12, depending upon the run-length distributions of the particular image.

Because of its effectiveness, run-length coding was chosen as CAFC's coding technique for

handwriting and graphics. However, two additional modifications were made to increase the

compression ratio even further. The first is the replacement of the Huffman variable-length

coding with a newer technique known as arithmetic coding. Described in more detail in
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Figure 4-4: Run-length statistics for a sample set of images.

Chap. 5, arithmetic coding overcomes some of the limitations of Huffman coding, allowing

it to achieve higher compression gains.

The second improvement on conventional run-length coding is the extension of its model into

two dimensions. Run-length coding is a one-dimensional scheme because it only operates

on runs in the horizontal direction only. In the majority of documents, however, there

are significant correlations between adjacent scan lines in the vertical direction as well. A

number of algorithms have already been developed to exploit these properties [7] [8] [9].

However, since the primary focus of this work has been the development of efficient coding

for typed text, a relatively simple approach has been chosen for this preliminary version.

Rather than run-length coding the residue directly, CAFC run-length codes the difference

between the pixels in adjacent scan-lines. The difference between two pixels is equal to 0 if

the pixels are of the same color and 1 if they are different. Instead of parsing a scan-line

into runs of black and white, it uses information from the scan-line immediately above to

parse the scan-line into runs of Os ("same" runs) and s ("different" runs).

Figure 4-5 shows the 2D run-length distributions for the same set of documents. Clearly,

the peaks are much sharper, indicating that there is a higher degree of redundancy in the

images with this model than with one-dimensional run-length coding. Because of this, the

run-lengths will take fewer bits to represent after passing through the entropy coding stage.

Using the difference between adjacent scan-lines is therefore an extremely simple way of
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Figure 4-5: 2D run-length statistics for a sample set of images.

exploiting the two-dimensional redundancies in images.

The run-length statistics used in Optimized 2D Run-Length Coding are considerably differ-

ent from those used in Group 3 for another reason. Because the images processed by the 2D

run-length coder are residues, they are void of typed text and dithered bitmaps, which have

already been removed and encoded by the other methods. A page without these contents

has somewhat different run-length statistics than those of a complete page.

For both of the above reasons, a new training set is generated consisting of residues of the

original training set. The entropy coding can then be performed more efficiently, taking

advantage of the vertical correlations as well as reduction in content diversity. Even better,

the arithmetic coder used in CAFC is adaptive and automatically updates these run-length

statistics based upon the statistics of the particular image being processed. This is explained

in detail in Sect. 5.3.

Run-length coding achieves compression by eliminating redundancy on a microscopic level,

focusing only on small regions of pixels at a time. This is a good choice for handwriting

and graphics which have little or no repetition throughout a page but have very predictable

local properties.
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4.3 Direct Coding

Direct coding is the straightforward conversion of pixels to bits for dithered bitmap frag-

ments. It does not actually perform any compression and is so simple that it is hardly a

coding scheme at all. Instead, it is used as a preventative measure for unusual instances

when the distribution run-lengths present is so abnormal that the fragment would be oth-

erwise expanded. Scan-line segments that meet this criterion are likely to contain a large

number of very short runs so that it does not fit the run-length model well.
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Chapter 5

Multiplexing and Arithmetic

Coding

The final stage of the CAFC encoder uses arithmetic coding to combine the individual out-

puts from the three different content coders into a single stream of output data. Section 5.1

describes the relationship between the CAFC page model and the order in which contents

are combined in the encoded output stream. Sections 5.2 and 5.3 provide a brief tutorial

on arithmetic coding. Finally, Sect. 5.4 puts these ideas together to explain the specifics of

how arithmetic coding is used to multiplex the individual contents in CAFC.

5.1 Content Multiplexing

According to the CAFC page model, an image consists entirely of the following objects:

symbols, dithered bitmap fragments, and "same" and "different" runs. These page com-

ponents fill up the entire area of the image in the form of horizontal portions of a scan

line. Dithered bitmap fragments and "same" and "different" runs are naturally horizontal

segments. In the case of symbols, the model specifies that the bitmap representation fills

up no space on the page. Instead, the symbol is superimposed over the presumably white

space below it. Since by definition, a symbol must be surrounded by white pixels, this area
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start

Figure 5-1: CAFC multiplexing state diagram.

would most likely consist of "same" runs that go "under" the black symbol.

The CAFC encoder scans the source document from left to right and then top to bottom,

breaking the page down into its content components. After an object is classified, it is

encoded with the appropriate compression scheme and passed on to the multiplexing stage,

which combines the components of the image into a single data stream in the same order

that they were read from the page.

Figure 5-1 contains the state diagram that is used when multiplexing data from the three

individual coding algorithms. The beginning of each scan-line is assumed to begin with a

"same" run. This is true most of the time because the majority of documents have a white

border on the left side of the page. If the line begins with a symbol or dithered bitmap,

a "same" run of length zero is encoded first. Following a same" run can be a "different"

run, a new symbol, a matching symbol, or a dithered bitmap fragment. It could also be

followed by another "same" run if and only if the run ends at the end of the scan-line

(triggering the beginning of a new line). New symbols are always followed by "different"

runs, because the detected starting pixel is always black and the pixel above it must always

be white (since symbols are surrounded by white pixels). Matching symbols, on the other

hand, are always followed by a "same" run, because white pixels run underneath and above
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the symbol. Finally, dithered bitmap fragments are always followed by a "same" run. The

end of the page is reached after the last "same" run on the last scan-line.

The CAFC decoder's demultiplexor uses the same model to separate the data stream back

into three separate components. The Symbol Matching and Substitution decoder can cor-

rectly update its library because new unique symbols are detected in the same order that

they are presented to the receiver, and repetitions of a previous symbol will never appear

before it has been added to the library. Also, real-time facsimile communications is possible

because the page is transmitted from top to bottom, and only a few scan lines of buffering

are required for symbols.

5.2 Arithmetic Coding

This section provides a brief introduction to arithmetic coding (AC). For a more in-depth

explanation, refer to one of the many publications on this topic [13] [14]. Enough background

is presented here to explain the basic principles of arithmetic coding and how it is used by

CAFC to multiplex and entropy-code the encoded contents. In this description, the term

"element" is used to refer to what most of the literature on model-based entropy-coding

defines as a "symbol." This is to avoid the obvious confusion with the definition of "symbol"

that has been used up to this point.

An entropy coder takes as input a stream of elements taken from a fixed alphabet and

converts them to a stream of output bits. A model consists of all of the possible input

elements and their respective probabilities. The encoder applies a model to each input

element to produce an output with the minimal number of bits. Suppose a model contains

N elements named el through eN with probabilities P1 through PN. It is a necessary

condition that the probabilities add up to unity:

EN=ln = 1.

The optimal number of bits necessary to represent element e is equal to -log Pn where

the logarithm is taken to base 2. The optimal number of bits necessary to encode a stream

of M elements x[1] through x[M] is just the sum over all elements:
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optimal number of bits = EM=1 _ log Pz

For example, if a model consists of the letters a, b, and c with probabilities 0.5, 0.3, and

0.2, respectively, then the message "abacab" would require a minimum of -log 0.5 - log 0.3

- log 0.5 - log 0.2 - log 0.5 - log 0.3 = 8.796 bits.

Since each element occurs with a probability of P, the average number of bits required to

encode an element is equal to the following expression:

n= -Pnr log e.

The most straightforward way to convert a stream of elements into bits is to use a unique

fixed-length codeword to represent each possible element. If the coding model contains an

alphabet of N elements, then each codeword would require at least log N bits. In the above

example, this would be log 3 = 1.58 bits, which would have to be rounded up to 2. If a is

encoded as 00, b as 01, and c as 10, the above message would be encoded as 000100100001,

a total of 12 bits. This approach does not take into account the probability of each element

and therefore achieves no compression whatsoever.

A better approach is Huffman coding, which assigns a variable-length codeword to each

element. The codewords are selected so that the shorter codes refer to the most probable

elements and the longer codes refer to the least probable ones. An optimal Huffman coding

scheme for the above example would be to encode a as 0, b as 10, and c as 11. The above

message would be encoded as 010011010, a total of 9 bits. While this is significantly better,

the reductions that Huffman coding achieves can never approach the theoretical limit. This

is due to the restriction that each codeword must be of an integral length. Most of the

time, however, the ideal number of bits for representing a particular run-length falls in-

between two consecutive integers. Because of this, small compromises must be made when

the Huffman codewords are assigned, leading to suboptimal coder performance.

Arithmetic coding avoids this limitation by abandoning the notion of codewords altogether.

Instead, a message is represented by an interval of real numbers between 0 and 1. Based

upon the coding model, each element is assigned a unique range within this interval [0,1]

in such a manner that none of the ranges overlap. Table 5.1 lists the model and associated
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element probability range
a 0.2 [0, 0.2]
b 0.3 [0.2, 0.5]
c 0.5 [0.5, 1.0]

Table 5.1: Example fixed model for alphabet [a, b, c].

subintervals for the previous example.

Initially, the range for the message is the entire interval [0,1]. As each element is encoded,

the range is narrowed to a smaller interval based upon the range of the element. For

example, with the above model, encoding the element a would reduce the range to [0, 0.2].

Encoding another a would further reduce it to [0, 0.04]. In general, if the interval was

previously [, x2] and the element to be encoded has the associated range [yl, Y2], the new

interval is [(x2-xl)Yl + Xl, ( 2 -xl)Y 2 + Xl]. Encoding the entire message abacab produces

the following results:

Initially [0, 1]

After seeing a [0, 0.2]

b [0.04, 0.1]

a [0.04, 0.052]

c [0.046, 0.052]

a [0.046, 0.0472]

b [0.04624,0.0466]

Decoding this message is fairly straightforward. The decoder simply compares the interval

with the ranges in the model to determine which was the first element in the message. It

then "removes" this element from the message by computing a new interval [(x1-yl)/(y2-yl),

(x2-yl)/(y2-yl)] and the process repeats.

As it turns out, the entire message can be uniquely decoded by any number within the

calculated interval. The longer the message, the more bits it takes to represent this number.

For a large number of elements, the number of bits approaches the theoretical minimum.

Thus, arithmetic coding is an optimal technique for encoding a stream of elements if their

associated probabilities are known.
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The implementation of arithmetic coding in a practical system is a bit more complicated. On

a computer system, real numbers are best represented with floating point variables. These

offer fairly limited precision, making them useless for encoding and decoding long messages.

It is much more desirable to use integer arithmetic if possible. In addition, operating on

intervals in the above manner would require an amount of storage proportional to the length

of the message, since the number of bits required to represent the interval is equal to the total

number of encoded bits. Again, this is not feasible for long messages. Fortunately, methods

have been developed for performing arithmetic coding of arbitrarily long messages using

only integer arithmetic. CAFC utilizes such techniques, which are described adequately

elsewhere [13] [14].

5.3 Adaptive Arithmetic Coding Models

At any stage of the coding process, the arithmetic encoder takes as input the element to

encode, a coding model, and the present state of the coder and generates as an output a

stream of bits. The corresponding arithmetic decoder takes as input the stream of bits to

decode, the same coding model, and the present state of the decoder to reconstruct the

element. This structure is extremely flexible because it does not restrict the model to be

fixed over time. After each element is encoded, is possible to revise the model with an

updated alphabet of elements or associated probabilities. As long as the decoder has access

to the new model at each stage, it can generate the correct stream of output elements.

In fact, because there is no coding delay associated with arithmetic coding, the new model

can even be a function of the elements transmitted. In an adaptive arithmetic coder, after

each element is encoded, the probability of that element is increased in the coding model.

That way, the next time the same element appears, it will require fewer bits to encode. The

arithmetic decoder updates its model in the exact same manner based upon the decoded

elements, so that it is always in accordance with the encoder. Adaptive arithmetic coding

works well for encoding streams of elements where the relative probabilities of each element

are fairly constant but unknown, because it eventually "adapts" to the appropriate statistics

after a large enough set of elements has been encoded.
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5.4 Arithmetic Coding Model for CAFC

The arithmetic coder in CAFC serves two major functions. Most importantly, it is the mech-

anism used to actually merge the three independent data streams from Symbol Matching

and Substitution, Optimized 2D Run-Length Coding, and Direct Coding. Furthermore, it

provides additional compression by exploiting the relative probabilities each run-length or

symbol.

As explained in the previous sections, arithmetic coding efficiently represents a sequence of

items from a given alphabet by using information from a model consisting of the alphabet

and probability of occurrence of each entry. In CAFC, there are actually three different

arithmetic coding models, all shown in Table 5.2, where W represents the width of the

image in pixels and N indicates the total number of symbols in the symbol library. The

particular model and element that are used depend upon the state of the encoder and the

content that is to be encoded. A C ModelO is used to encode "same" runs, matching symbols,

or codes to indicate a new symbol (new-symbol), a dithered bitmap fragment (bitmap),

or the end of the page (escape). AC Modell provides the capability of encoding "different"

runs, matching symbols, or a code to indicate a dithered bitmap fragment. Finally, AC

Model2 encodes bitmap fragments as well as a code to signify the end of one (last-pixel).

The complete arithmetic coding state diagram for CAFC is shown in Fig. 5-2. The dashed

boxes represent the contexts of the three different coding models. As the encoder moves

from one state to the next, the element shown in italics along the indicated path is encoded

using the appropriate model. In addition, this is an adaptive coder, and the model(s)

indicated in a typewriter font are updated with an increased probability for the encoded

element. Also, when a new symbol is detected, a new element is created in AC ModelO

and AC Modell for encoding future instances of matching symbols (after the new-symbol

element is encoded).

Performing both the multiplexing and entropy-coding with a single arithmetic coder is

desirable because of its simplicity and flexibility. With the exception of dithered bitmap

fragments, all possible image components are contained within a single alphabet, eliminat-

ing the need for headers or tags to be incorporated into the data stream. The entropy-coding
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Table 5.2: CAFC's three arithmetic coding models.

of run-lengths is no longer integrated with the run-length coding process, as it is in Group

3 Modified Huffman Run-Length Coding. This approach can also take advantage of the

redundancy associated with the relative probabilities of each of the unique symbols con-

tained in the symbol library. For example, on a typical typewritten document, the letter

"e" appears far more frequently than the letter "q." Because CAFC's arithmetic coder is

adaptive, the encoded "e"s will end up taking fewer bits than the encoded "q"s.

Adaptive coders often perform quite poorly at the beginning of the encoding process because

a representative set of statistics has not yet been generated. To help alleviate this problem,

the CAFC elements for run-lengths are initially "weighted" based upon the statistics of a

large collection of sample images. The encoder eventually adapts to the real statistics of the

image (and performs better) after enough of the page has been encoded. More importantly,

it does not initially perform any worse than a non-adaptive run-length coder, which uses

the same predefined statistics for the entire document.
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AC ModelO AC Modell AC Model2

# element # element # element
0 "same" run of 0 0 "different" run of 0 0 a single white pixel
1 "same" run of 1 1 "different" run of 1 1 a single black pixel
2 "same" run of 2 2 "different" run of 2 2 last-pixel

W "same" run of W W "different" run of W

W+1 escape W+1 ------------
W+2 new-symbol W+2-
W+3 bitmap W+3 bitmap

W+4 symbol #1 W+4 symbol #1
W+5 symbol #2 W+5 symbol #2
W+6 symbol #3 W+6 symbol #3

W+N symbol #N W+N symbol #N
+3 +3



end

start

Figure 5-2: Arithmetic coding state diagram.
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Chapter 6

CAFC Decoder

The CAFC decoder reverses the compression process, converting an encoded representation

of a facsimile page back into the form of an image. This process is fairly straightforward,

following directly from the design of the encoder.

The various building blocks of the image reconstruction algorithm are depicted in Fig. 6-1.

A content splitter first separates the encoded data stream back into the basic elements of

its three constituent contents: symbols, "same" or "different" runs, and dithered bitmap

fragments. These are then individually converted back into bitmap form by the appropriate

content decoder, either Symbol Substitution, Optimized 2D Run-Length Decoding or Direct

Decoding. Finally, an Image Constructor combines the decoded image objects together to

form a single reconstructed output page.

The Symbol Matching and Substitution decoder converts a stream of library index numbers

(encoded as AC element numbers) back into symbols to insert into the destination image.

In order to do this, it must maintain its own identical copy of the symbol library. Since at

any given point in time the library consists of symbols which have already been encoded by

another method, this process can be performed adaptively. The CAFC encoder multiplexes

the data from each of the three coding techniques in such a manner that a causal system ex-

ists between the source page and the library. The decoder can capture all new symbols from

the partially generated destination image by applying the same symbol isolation algorithm
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Figure 6-1: CAFC decoder block diagram.

as the encoder. Because both libraries are updated in exactly the same manner based upon

identical images, they should be in accordance at all times. The actual decoding process is

then very straightforward and involves nothing more than a simple table lookup operation.

For each library index number in the encoded data stream, the appropriate symbol bitmap

is extracted from the library and superimposed directly onto the reconstructed output page.

Because the content multiplexing is performed inherently in the arithmetic coding process,

the content splitter is directly implemented with an arithmetic decoder. Each decoded data

item is then passed into one of three different reconstruction algorithms, depending upon its

content. The Symbol Substitutor takes as an input the library index number of an encoded

symbol and performs a table lookup into the symbol library, producing a two-dimensional

bitmap representation of the symbol. The Optimized 2D Run-Length Decoder converts a

given run-length into a run of "same" or "different" pixels to be inserted into the output

image. The Direct Decoder generates a horizontal segment of pixels from a stream of input

bits using each bit as the representation for a single pixel.

All generated image elements are combined together by the Image Constructor. Since in

the CAFC page model, the basic element of each content is a portion of a scan line, the

Image Constructor simply fills up the output page with these non-overlapping segments.

The only exception is typed text symbols, which are two-dimensional and therefore extend

below the scan line segment. Symbols are incorporated into a reconstructed image with a

pixel-wise inclusive OR function that preserves black pixels. They are effectively "placed
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on top of" whatever occupies the space where they belong, which should be a region of

white pixels. The resulting image is the final output of the CAFC decoder, a reconstructed

version of the original source page. If the encoding was done well, the two should appear

almost identical.
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Chapter 7

CAFC Parameter Optimization

The two most important performance measures of any compression algorithm are the

amount of compression it can achieve and the quality of the output generated by the de-

coder. There is, of course, an inherent tradeoff between these properties, and the objective

is usually to develop a technique that meets some standard for one of them while maxi-

mizing the performance of the other. In the case of DCME facsimile communications, it is

more important that the quality of the reconstructed image be high (though not necessarily

perfect). The goal then is to maximize the compression ratio under this constraint.

There are a number of different adjustable parameters in Content-Adaptive Facsimile Cod-

ing which need to be preset in advance. In some cases, the values that are used are not

particularly critical. However, most of the time the overall compression ratio and/or recon-

structed image quality depend very heavily on the selections that are made.

This chapter discusses the various choices that are available in the design of a CAFC coding

system and explains the criteria and procedures that were developed for optimizing the

performance of the coder based upon these parameters. Within each section, the values

that were chosen for the preliminary version of the algorithm are summarized.

52



7.1 Selection of Symbol Isolation Technique

Section 3.1 described the process of symbol isolation and detection for extracting typed

text symbols from a source image. For CAFC, three different approaches were developed,

symbol filling, symbol tracing, and symbol windowing. Since only one symbol isolation

algorithm is needed, the different techniques need to be evaluated so that the best one can

be selected for CAFC.

In terms of compression performance, the most important property of a symbol isolator is its

ability to detect and isolate all of the symbols on a page. Symbol filling and symbol tracing

can both do this (though the results may differ slightly), while symbol windowing cannot.

On the other hand, it is desirable to be able to implement facsimile compression on limited

hardware platforms so as reduce the cost and increase the mobility of such systems. Symbol

windowing requires very little in the way of computational resources, while the other two

techniques require storage space and processor cycles that grow linearly or quadratically

with the size of the symbol.

Table 7.1 summarizes the space and processing power requirements of each of the three

algorithms, as well as their performance at isolating symbols from a large collection of

test images (from Appendix D). As expected, symbol filling was able to detect the most

symbols while symbol windowing detected the fewest. However, the disparity was very

small, indicating that all three algorithms did a perfect or nearly perfect job. And since

symbol windowing requires the smallest amount of storage space, it appears to be the best

choice for symbol isolation.

It is interesting to note that the execution times of the simulations did not vary considerably

when different isolation techniques were used. This indicates that symbol isolation does not

contribute significantly to the total amount of processing power required by CAFC.

Total #
Name complexity Symbols Detected time space

Symbol Filling medium 11011 O(LxW) O(LxW)
Symbol Tracing high 10999 O(L+W) O(L+W)

Symbol Windowing low 10898 O(L+W) O(1)

Table 7.1: Comparison of symbol isolation techniques.
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7.2 Feature Selection and Matching Criteria

The feature matching component of Symbol Matching and Substitution has the important

task of detecting probable symbol mismatches before they are passed onto the more com-

putationally demanding template matcher. As explained in Sect. 4.1.1, this involves the

extraction of a number of high-level features from the symbols. For each feature Fn, the

absolute difference Dn is compared against a rejection threshold r, to determine whether

or not to reject a symbol during a library search, where

Dn(sl,s 2) =1 F(sl) - Fn(S2) I

In the development of a feature matching algorithm, it is necessary to select a set of fea-

tures and a corresponding set of rejection thresholds. These parameters should be selected

so that the feature matcher is effective at eliminating differing symbols and passing match-

ing symbols. While it is certainly undesirable for the feature matcher to incorrectly pass

differing symbols, it is absolutely critical that it not reject matching symbols. The former

would merely result in the need to perform template matching, costing processor time, but

not affecting the compression gain. The latter would lead to the misinterpretation of the

two matching symbols as differing symbols, resulting in the creation of redundant library

entries and severe reduction in the amount of compression that is achieved.

For this reason, the feature matcher should be designed to be very conservative, with re-

jection thresholds set high enough to pass the overwhelming majority of matching symbols.

If P(D,(Ml, M2) = d) is the probability that the absolute difference between feature n of

any two matching symbols M1 and M 2 is equal to d, then the probability of false rejection

for feature n, Pfn, is equal to the following expression:

1- rn-l P(Dn(M1,M 2) = d).

After all NF features have been extracted and tested, the overall probability of false rejection

for the feature matching system, Pf, can be easily computed:
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To make the symbol matching of CAFC as robust as possible, Pf is selected to be very

low, 0.005, so that only 1 in 200 pairs of matching symbols should be falsely considered a

mismatch. To select the 5 best features, the probability of false detection for each feature

should therefore be targeted at 0.025. Using these assumptions, the rejection thresholds are

chosen to be the values that satisfy

0.005 = 1- Er-,' P(Dn(M, M2) = d)

Once the rejection thresholds have been established with this procedure, the chances that a

pair of matching symbols will be falsely rejected should be the same for all of the features.

It is then possible to evaluate the features based upon their ability to correctly reject

two differing symbols. If P(Dn(S1, S2) = d) is the probability that the absolute difference

between feature n of any two differing symbols S1 and S2 is equal to d, then the effectiveness,

en, of feature n is defined as follows:

e = 1 - > -1 P(Dn(S1, S2) = d) ,

where e is just the probability that the feature matcher will correctly reject two differing

symbols. The overall effectiveness of the symbol matcher, e, is a function of the effectiveness

of each feature:

e = 1 -F(-en) 

For CAFC, the features are selected from the list of nine easily-extracted features listed

earlier in Table 4.1. In order maximize the overall effectiveness of the feature matcher in

CAFC, the five features that are selected are those with the five highest en's.

*These equations assume mutual statistical independence between all of the features of a symbol. This
is a crude and inaccurate model, but is still useful for estimating the overall sensitivity and effectiveness of
feature matching.
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Figure 7-1: Statistics of features on test symbols.

In order to determine P(D,(M 1 ,M 2) = d) and P(D,(S, S2) = d), a set of typed text

test images was generated and scanned. The eight pages shown in Appendix C con-

tain 8 repetitions of 78 different characters in 3 fonts, 3 styles, and 3 sizes. To obtain

P(D,(M 1 , M2) = d), all instances of the same symbol are compared with one another using

each of the nine features as a basis. Likewise, P(D,(Si, S2) = d) is generated by comparing

all of the "similar" symbols with one another in the same manner. "Similar" symbols are

differing symbols that are likely to be confused with one another, such as the same character

in two different fonts or styles. Figure 7-1 contains the graphs of P(Dn(M 1 ,M 2 ) = d) and

P(D,(Si, S2) = d), determined from data compiled from these tests.
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# (n) | Feature Name I en
1 Width 2 0.72

2 Height 4 0.50
3 Number of Black Pixels 30 0.66
4 Number of White Pixels 53 0.52
5 Number of Horizontal Run-Lengths 8 0.37
6 Number of Vertical Run-Lengths 4 0.62
7 Horizontal Moment 2 0.49
8 Vertical Moment 3 0.32
9 Average Width 3 0.37

Table 7.2: Feature statistics - rejection threshold and effectiveness.

Using these results, the procedure described above was performed to determine the optimal

rejection threshold and the effectiveness of each feature. As can be seen in Table 7.2, the

five most effective features of a symbol (in order) are its width, the number of black pixels,

the number of vertical runs, the number of white pixels, and its height, with an overall

effectiveness of 0.991. These are the features that were selected for CAFC.

7.3 Template Matching Criteria

The template matching procedure, described in Sect. 4.1.2, also uses a rejection thresh-

old to determine whether or not two symbols are matches. Unlike in feature matching,

however, it is extremely important that the template matcher does not falsely match any

differing symbols. This is because template matching is the final stage in symbol matching,

and any errors made here would result in the incorrect symbol being substituted into the

reconstructed image.

Figure 7-2 shows a sample portion of a page processed with the rejection threshold rt set

at three different values. When rt is on the low side at 0.6, the results are somewhat

embarrassing; the symbol mismatches are numerous and obvious, and almost appear as

typos. When rt is raised to 0.8, only a few errors appear. Finally when rt is close to 1,

there are no errors.
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original

correlation rejection threshold=0.6

correlation rejection threshold=0.8

correlation rejection threshold=0.9

Figure 7-2: Reconstructed images at various template matching thresholds.
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THIS CONTRIBUTION OUTLINES A PROPOSED OBJECTIVE TEST
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rt total symbols unique symbols size(bytes)
0.6 689 84 4028
0.8 689 216 7215
0.9 689 468 11740

Table 7.3: CAFC coding performance at various template matching thresholds

The value of rt also has a significant effect on the performance of Symbol Matching and

Substitution and on the overall compression performance of CAFC. Table 7.3 compares the

total number of unique symbols detected and total number of encoded bytes for the above

image at the different threshold values. The simulation shows that as rt is increased, the

performance drops rapidly. It is therefore important to choose a value for rt that is just

high enough to eliminate any symbol matching errors, but no higher. Through extensive

trial-and-error on a number of different source images, a value of 0.82 was chosen.

7.4 2D Run-Length Coding Initial Model

In order for 2D Optimized Run-Length Coding to be effective, it is important the that

arithmetic coder take full advantage of the disparity in the relative probabilities of each of

the run-lengths through entropy-coding. The arithmetic coder used by CAFC is adaptive

and automatically does this by developing a model containing run-length statistics on the

fly. However, at the top of the page, the arithmetic coder has only collected a very small

amount of data and does not have such an accurate model available.

To compensate for this, the CAFC arithmetic encoder and decoder start off with models

containing run-length statistics that are intended to be representative of the majority of fac-

simile documents. These are generated by encoding the training set images in Appendix D

with 2D Optimized Run-Length Coding. Once collected, the probabilities are scaled down

by a factor of 4 and placed in the initial arithmetic coding model for CAFC. With a scale

factor of 4, the initial run-length statistics are used exclusively at the top of the page and

the adaptively-determined statistics begin to dominate only after half of the page has been

processed, at which point a reasonably good model will have developed.
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Chapter 8

Analysis and Evaluation

This chapter discusses the overall performance of Content-Adaptive Facsimile Coding as

determined by a number of different measures. Through the use of the software implemen-

tation of CAFC described and listed in Appendix E, a large number of simulations were

performed to quantify several important properties of CAFC. Unfortunately, the detection

and coding of dithered bitmaps is missing from this implementation and could therefore not

be evaluated. However, none of the test images used in these tests appear to contain any

instances of this content anyway.

Of primary interest is the amount of compression that is achieved by the algorithm. Without

a reasonably high enough compression ratio, it would be difficult to justify the introduc-

tion of the added complexity of CAFC into a facsimile communication system. Equally

important is the quality of the reconstructed images that are generated by the decoder. To

analyze the performance of CAFC for these measures, a set of test documents is passed

through the encoder and decoder stages so that both the compression ratios and image

quality can be evaluated.

The remaining two properties that are examined here directly affect CAFC's capability

of being incorporated onto a real-world hardware platform. The requirements of CAFC

in terms of computational resources are a direct measure of the cost of implementing it in

hardware. In order for CAFC to be economically feasible, this cost must be low compared to

60



the savings obtained in channel bandwidth. Finally, the amount of coding delay introduced

by CAFC must not be too high or it would be technically impossible to use with the existing

facsimile protocols.

8.1 Compression Gains

The overall compression gain for CAFC was measured by encoding the set of eight standard

CCITT documents included in Appendix A. Table 8.1 lists the size of each of the CAFC-

compressed images in bytes as well as those reported from a number of existing bi-level

image compression algorithms, including Group 3, two-dimensional Group 3, Group 4, and

JBIG. The compression ratios achieved are shown in Table 8.2, and a direct comparison is

made with CCITT one-dimensional Group 3.

The compression ratios for CAFC varied significantly, from roughly 6:1 to 27:1 depending

upon the document. As expected, it outperformed Group 3 in every case by an average

of almost 2:1. Compared to the remaining compression algorithms, however, CAFC did

not fare so well. With the exception of CCITT Image #4, which consists predominantly

of typed text, CAFC performed about as well as G3D2, slightly worse than Group 4, and

about a factor of 2 worse than JBIG. However, this is to be expected, because the majority

of compression gains in CAFC are obtained from Symbol Matching and Substitution, opti-

mized for typed text. On CCITT Image #4, for example, CAFC outperformed the JBIG

standard by over 25%. The Optimized 2D Run-Length Coding in CAFC is not nearly as

sophisticated as the two-dimensional approaches in Group 4 or JBIG, so it is no surprise

Source Image Raw G3D1 G3D2 G4 I JBIG CAFC

CCITT #1 513216 37423 25967 18103 14715 18816
CCITT #2 513216 34367 19656 10803 8545 20980
CCITT #3 513216 65034 40797 28706 21988 38194
CCITT #4 513216 108075 81815 69275 54356 39862
CCITT #5 513216 68317 44157 32222 25877 36903
CCITT #6 513216 51171 28245 16651 12589 27494
CCITT #7 513216 106420 81465 69282 56253 83604
CCITT #8 513216 62806 33025 19114 14278 34640

Table 8.1: Compressed file sizes in bytes for various coding algorithms.
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CAFC:raw CAFC:G3D1
Source Image Compression Ratio Compression Ratio

CCITT #1 27.3:1 2.0:1
CCITT #2 24.5:1 1.6:1
CCITT #3 13.4:1 1.7:1
CCITT #4 12.9:1 2.7:1
CCITT #5 13.9:1 1.9:1
CCITT #6 18.7:1 1.9:1
CCITT #7 6.13:1 1.3:1
CCITT #8 14.8:1 1.8:1

Table 8.2: Relative compression ratios for CAFC

that CAFC cannot compete on documents where this form of coding is predominantly used.

However, the results of this analysis lead to a promising conclusion. It appears that if the

Optimized 2D Run-Length Coder were to be replaced by an approach similar to JBIG,

CAFC could perform as well as JBIG for non-text documents and better than JBIG for

typed documents. Consider the estimates shown in Table 8.3. The eight CCITT documents

are processed with JBIG, CAFC, and CAFC Optimized 2D Run-Length Coding. In ad-

dition, the residues generated from CAFC are processed with Optimized 2D Run-Length

Coding. The compressed file sizes are used to determine how much of each image is encoded

using Symbol Matching and Substitution and how much was encoded using Optimized 2D

Run-Length Coding. Then, based upon the JBIG:CAFC(RL coding only) ratio for each

image, the number of bytes that would be necessary to encode the residue with JBIG is

estimated. This value is added to the bytes required for Symbol Matching and Substitution

to obtain the estimated compressed file size for the revised version of CAFC.

CAFC CAFC (RL Potential CAFC
Source Image JBIG CAFC (RL only) on residue) & CAFC:G3D1 ratio

CCITT #1 14715 18816 27651 16906 10907 (3.4:1)
CCITT #2 8545 20980 20995 20861 8609 (4.0:1)
CCITT #3 21988 38194 42150 36754 20613 (3.2:1)
CCITT #4 54356 39862 95189 30484 25850 (4.2:1)
CCITT #5 25877 36903 47887 33993 21279 (3.2:1)
CCITT #6 12589 27494 28273 27069 12478 (4.1:1)
CCITT #7 56253 83604 96038 75910 52157 (2.0:1)
CCITT #8 14278 34640 34489 34209 14593 (4.3:1)

Table 8.3: Estimated file sizes for CAFC with suggested modification.
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The preliminary calculations suggest that the modified CAFC could either match or beat

the performance of JBIG for almost all documents. This same approach would beat Group

3 by an average of approximately 3.5:1.

8.2 Reconstructed Image Quality

Both the Optimized 2D Run-Length Coder and Direct Coder components of CAFC are

lossless techniques and do not introduce any distortion into the document. Image degra-

dation is only possible with Symbol Matching and Substitution. It is therefore appropriate

to examine reconstructed images containing typed text when evaluating this property of

CAFC.

There are basically two types of distortion that can be introduced into an image by Symbol

Matching and Substitution. The first is the error that is associated with the false matching

two symbols that are actually different. The observable consequences of such a mistake are

the appearance of the wrong character on the page. The second type of distortion results

from errors in the placement of symbols on the reconstructed output image.

Appendix B contains the eight CCITT documents after having been encoded and decoded

with CAFC. Occurrences of the first type of degradation are extremely rare, and most often

occur when the font size is very small and the two mismatched symbols are scanned in

poorly. In such cases, it is difficult for even a human set of eyes to differentiate the symbols,

and such errors are likely to be overlooked. It is also possible, but difficult, to observe slight

variations in the placement of symbols. Careful inspection of the lines of text reveals that

they sometimes "weave" up and down by one or two pixels. This probably occurs because

of the slight differences in the width and height of symbols that have been scanned in from

different portions of the page. Suggestions are made in Sect. 10.2 to correct this problem.

Overall, the quality of the reconstructed images is excellent and is believed to be acceptable

for use in commercial systems.
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8.3 Computational Resources

Compared to Group 3, CAFC is a fairly sophisticated compression algorithm. While Group

3 can be easily coded on a very inexpensive microcontroller without concerns of memory or

speed limitations, CAFC has relatively more demanding hardware requirements.

The most compute-intensive component of the CAFC algorithm is the search through the

symbol library for matching symbols, and in particular template matching. These oper-

ations grow linearly with the size of the library. Thus, images with the largest number

of unique symbols require the most processing time, and images with few unique symbols

require the least. The majority of the memory required by CAFC is needed to store the

bitmap representations of the symbols in the library. Again, documents with many unique

symbols impose the greatest demand.

All simulations were performed on a Hewlett Packard 9000/720 (57 MIPS, 32 Mbyte of

RAM) workstation using the C code contained in Appendix E. Compressing the majority

of documents took approximately 30 seconds, while compressing documents with many

unique symbols (such as CCITT #7) required about 90 seconds. Decoding the images took

approximately half as long. It is believed that a substantial portion of the execution time

is spent reading and writing the image files off of the disk.

The times required to process the images on the workstation are certainly not unreasonable;

they are approximately as long as it takes presently to transmit a page over Group 3 facsimile

terminal equipment. And if the code were rewritten in assembly language on a high-speed

digital signal processor (DSP), the execution times would drop substantially. As the cost

of DSPs and memory chips continues to drop, the feasibility of implementing CAFC as a

hardware add-on to DCME increases. In fact, many of the speech coders presently used in

DCME are of comparable complexity to DCME. It is believed that by 1997, when the next

generation of DCME's are phased in, high-performance facsimile compression will offer a

significant cost advantage.
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8.4 Coding Delay

Finally, it is important to consider the amount of delay that is introduced by a coding

algorithm. For real-time systems such as DCME, it is essential that it be kept to a minimum

(see Sect. 9.2).

Group 3 coding has a delay of a single scan-line, since it is one-dimensional and only

processes one line at a time. CAFC, on the other hand, needs several scan-lines in order to

perform Symbol Matching and Substitution. Fortunately, an upper bound on the coding

delay is inherent to CAFC because of the restriction on the height of a detected symbol. For

CAFC to be able perform encoding and decoding by processing a fixed number of scan-lines

at a time, the symbol isolator must be able to detect a symbol contained within this buffer.

This buffer must be at least one pixel taller than the maximum allowed symbol height.

The maximum symbol height is a completely adjustable parameter. The larger it is, the

more symbols can be isolated, giving CAFC the potential of achieving higher compression

ratios for typed text. The cost is a higher coding delay. However, since the majority of

text is not very large (probably no more than 14pt), there is a point of diminishing returns

where a further increase in the maximum symbol height does not buy much additional

compression. This seems to be in the neighborhood of 20 pixels.

Thus, although the coding delay introduced by CAFC is significantly higher than that of

Group 3, it is bounded and can be adjusted to meet the needs of the system on which it is

to be implemented.
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Chapter 9

DCME Implementation Issues

In order to use Content-Adaptive Facsimile Coding as a secondary compression stage for

facsimile communications over Digital Circuit Multiplication Equipment (DCME) [3], a

number of implementation details must first be worked out.

9.1 Variable Bandwidth Output

One potential difficulty with CAFC is that its compression ratio is not fixed, but can

vary significantly depending upon the nature of the source document. In fact, it can even

be expected to change drastically throughout the transmission of a single page. This is

because the Symbol Matching and Substitution encoder has to build up its library before

it can achieve any compression, which cannot occur until a number of symbols are encoded

with the less efficient Optimized 2D Run-Length coder. The situation appears even worse

when one considers that CAFC is used as secondary compression. That is, the facsimile

input channels to DCME are CCITT Recommendation T.4 Group 3-encoded images that

must first be uncompressed before CAFC is applied. Group 3 is in general less efficient

than CAFC, but the actual disparity between the two techniques varies considerably over

time, especially when the source image contains a lot of typed text. So while the external

facsimile terminal equipment transmits modulated Group 3-encoded data at a fixed rate,
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the two communicating DCMEs must exchange CAFC-compressed baseband data at an

unpredictable rate.

Fortunately, a DCME configuration is an ideal environment for overcoming these sorts of

problems. Because it multiplexes hundreds of channels together into a single high-speed

link, it can allow for the bandwidths of each channel to vary over time, as long as the total

bandwidth remains below the absolute maximum. Under typical conditions, a large number

of facsimile pages are transmitted simultaneously, each sending a different portion of the

page at a given time. The mechanisms in DCME for allowing variable bandwidth channels

are not very straightforward and require a fairly sophisticated controller. However, unlike

most other communications systems, DCME does possess this feature.

Of course, it is impossible to guarantee that the total bandwidth required by all of the

DCME channels will always fall below the capacity of the high-speed link without placing

severe restrictions on the total number of channels. Occasionally the channels are heavily

loaded, and there is simply too much data to transmit in too short of a time span. Conven-

tional DCME systems get around this problem on speech channels by using special coders

that can compress the speech by an additional amount when necessary by sacrificing speech

quality. When the system gets overloaded, a controller selects one or more voice channels

to temporarily produce fewer output bits by increasing the compression, alleviating the

problem. The associated increase in distortion is hardly noticeable because these periods

of simultaneous high channel activity are short and infrequent.

The ability to make a tradeoff between quality and compression gain is thus a valuable fea-

ture to have in a source coder used in DCME. In most equipment today, however, facsimile

and data channels are not equipped with this capability. Instead, they are simply given

priority over voice channels so that only speech signals are allowed to be corrupted during

overload. In the case of data channels, this is necessary to ensure an error-free transmission.

But for facsimile, it is done only because there is no simple way to reduce the number of

bits in a Group 3-encoded document without causing significant distortion to the page. If

a facsimile compression algorithm with a selectable compression threshold could be devel-

oped, the same technique could be applied. CAFC does not provide this feature, nor does

it lend itself to an easy modification so that it can. However, a number of lossy decimation
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and interpolation techniques have been developed which reduce the amount of redundancy

in an image so that additional compression may be achieved [2] [15]. It is possible that the

facsimile page can be preprocessed with such an algorithm before it is encoded with CAFC

to reduce the overall bandwidth when the overload condition occurs.

9.2 Coding Delay

Another important factor in the implementation of a facsimile source coding technique is

the type of system into which it will be incorporated. In a real-time facsimile communica-

tions system, both the transmitting and receiving facsimile terminal equipment are on-line

and in direct communication with each other throughout the duration of the transfer; the

transmitter does not disconnect until the entire document has been received. This differs

from store-and-forward systems, where the document is first obtained from the transmitter,

temporarily stored, transferred at a convenient time, and finally sent to the receiver. Be-

cause neither of the two facsimile terminals is tied up when the document is sent over the

main communications link, store-and-forward systems can tolerate an arbitrary amount of

propagation delay. Secondary facsimile compression can be easily incorporated into these

systems because all processing can be performed while the terminals are off-line. In fact,

since the entire page is available in storage, it is possible to use highly sophisticated com-

pression algorithms that utilize all of the image information. Even processing time is not

a major concern, because the transmission is already delayed by a period of time that is

much longer than it takes to process the document. In contrast, real-time systems cannot

withstand large delays between the transmitter and receiver because the CCITT Recom-

mendation T.30 facsimile protocols do not account for them. At the beginning and end of

the transfer, when two-way handshaking is performed, it is possible for some of the timeout

thresholds to be exceeded, resulting in synchronization problems.

Despite these difficulties, DCME facsimile channels are always real-time systems. There are

a number of specific reasons for this which are beyond the scope of this thesis. However,

secondary facsimile compression can still be incorporated into real-time systems as long as

certain restrictions are placed on the nature of the algorithm. First, the facsimile images

must be transmitted serially from top to bottom as it is with Group 3. This requires both
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the encoder and decoder to be causal systems. Naturally, when generating output, they can

only make use of information from the portion of the page which has been received so far.

Second, the delays inherently introduced from the coding and decoding algorithms should be

minimized to prevent timeouts in the protocol. Finally, the compression and decompression

procedures should not demand too much processing power; this could introduce further

delay into the system or make it too expensive or infeasible to implement.

Content-Adaptive Facsimile Coding is designed to meet all of the above restrictions. The

serial input is processed from top to bottom, and the multiplexing stage ensures that the in-

dividual image components remain in this order in the encoded output. Of the three content

coders, only Symbol Matching and Substitution has the potential for introducing significant

delay into the system. This occurs only when large symbols are encoded, since many scan

lines from the input have to be analyzed before a match can be detected. However, an

upper bound is placed on the delay by imposing a limit on the height of a symbol that can

be detected by the isolator. This restriction does degrade the compression ratio somewhat

because fewer symbols can be detected and encoded with Symbol Matching and Substitu-

tion. Such a tradeoff between delay and loss of compression ratio is a property common to

all source coding techniques, and a judicious choice must be made when establishing the

thresholds so that the desired performance is obtained. Finally, the most compute intensive

stages of CAFC are the symbol isolation and feature/template matching, and they should

not present too much of a challenge for tomorrow's hardware.

9.3 Forward Error Correction

To prevent severe image distortion due to bit errors, Forward Error Correction is applied to

all DCME facsimile channels. The use of FEC drastically reduces the bit error rate (BER)

of a channel, allowing facsimile messages to be reliably transmitted over DCME. It does

so by intentionally introducing redundancy into the data stream so that the receiver can

detect and correct most errors. Despite its effectiveness, it is theoretically impossible for

FEC to eliminate all bit errors in a channel; at best, there will be an occasional corrupted

bit in the message. When this occurs, distortion is introduced into the received facsimile

document. The effect of such an error on the reconstructed page is highly dependent upon
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the properties of the source coding scheme that is used. It is usually the case that image

coders that achieve high compression gains are less tolerant to bit errors than those that

do not. As it turns out, CAFC is extremely sensitive to corrupted data and completely

breaks down when even a single bit error is introduced. This is because the arithmetic

decoder that is used to demultiplex the different contents can no longer correctly decode

the remainder of the message. From the point in time when an error occurs until the end of

the transmission, the reconstructed image is severely distorted in an unpredictable manner.

Group 3 coding, which uses Huffman coding rather than arithmetic coding, suffers from this

difficulty as well. However, the problem is mitigated through the use of special synchro-

nization codes inserted into the data stream at the end of each scan line. When an error

occurs, the entire scan line is corrupted, but the decoder can at least "resync" at the end of

the line and continue decoding normally beginning with the next scan line. Usually, when a

single scan line is omitted from an image, it is difficult or impossible to notice anyway. This

approach works very well, and methods are being investigated to apply similar techniques

to arithmetic coding. Unfortunately, even with the successful incorporation of synchroniza-

tion codes into CAFC, the coding scheme still suffers from a high bit-error sensitivity. The

Symbol Matching and Substitution content coder relies heavily on the equivalence of the

symbol libraries at both ends of the transmission. When a scan line becomes corrupted,

it is possible that the CAFC decoder might not correctly detect a symbol and update its

library. From that point on, all symbols on the remainder of the page are incorrectly de-

coded, producing a significant amount of distortion. Even if the library remains intact, a

corrupted scan line could result in the absence of a library index number and therefore a

missing symbol.

One possible solution to this problem is to insert library synchronization information into

the data stream to help prevent the occurrence of dangerous inconsistencies between the

libraries. Although some symbols would still be corrupted, the majority would remain

intact. Another idea is to selectively use an additional degree of forward error correction

on the most critical portions of the page. This would include areas with new symbols and

areas with a lot of repeated symbols. The vast majority of errors that occur in such regions

would be corrected, decreasing the incidence of image distortion. Both of these possibilities

need to be further investigated. Of course, if all else fails, it is always possible to employ
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a high degree of forward error correction to the entire transmission, lowering the effective

bit-error-rate to some negligible amount. Increased reliability would be obtained at the

expense of additional channel bandwidth.
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Chapter 10

Conclusion and Recommendations

10.1 Summary and Conclusion

This thesis describes the conception, development, and optimization of a novel approach

to bi-level image (facsimile) compression. The objective was to develop a page model that

is more sophisticated than those used in existing compression algorithms. The idea was

to separate the page into its different contents, encode them separately using the coding

technique best-suited for the properties of each content, and then multiplex the compressed

data into a single output data stream.

A model was selected, consisting of three classes of contents: typed text, handwriting and

graphics, and dithered bitmaps. Three different coding techniques were developed to encode

them: Symbol Matching and Substitution, Optimized 2D Run-Length Coding, and Direct

Coding. Particular emphasis was placed on optimizing the performance of Symbol Matching

and Substitution because it appeared to have the greatest potential for compression gains.

Arithmetic coding was selected as the mechanism for both multiplexing the three streams

and performing entropy-coding.

Procedures were developed to optimize the various components of the algorithm, and then

extensive simulations were performed. Preliminary results show that CAFC outperforms

CCITT Recommendation T.4 Group 3 Run-Length Coding by roughly a factor of 2:1 for
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most documents and almost 3:1 for typed text. With some modifications, it is believed that

it could do as well as or better than JBIG for all documents. Although the Symbol Matching

and Substitution component of the algorithm is lossy, the distortion that is introduced is

difficult or impossible to perceive.

Finally, the initial target application, Digital Channel Multiplication Equipment, was ex-

plained and the implementation issues were discussed. CAFC has the potential to be used

in such equipment to effectively double the number of facsimile channels that can be active

simultaneously without any increase in the bandwidth of the high-speed channel. The cost

of such a system would be modest compared to many of the components in existing DCME

systems.

10.2 Improvements to Algorithm

The results of the simulations in Chap. 8 indicate that CAFC has the potential for an

even higher degree of compression and image quality. Based upon these observations, the

following suggestions are made for future work that could lead to significant improvements:

· Set of Contents/Coding Techniques: The page model described in Chap. 3 divides the

page into typed text, handwriting, graphics, and dithered bitmaps. While this may

seem like a logical classification of contents, it is certainly possible that the page could

be decomposed into a different set of contents that lends itself to a more efficient set of

coding schemes. An objective for future work would be to refine the CAFC model so

that the set of contents better represents the page and each content is most efficiently

coded while still maintaining a high degree of reliability and practicality.

· Symbol Matching: An area that should definitely be targeted for improvement is the

symbol matching process, particularly template matching. In order to calibrate the

Symbol Matching and Substitution encoder so that it would not incorrectly match

differing symbols, it was necessary to set the rejection threshold rt fairly high. It

was shown in Sect. 7.3 that even a slight decrease in this parameter would yield a

significant increase in coding performance. Based upon the number of matching sym-

bols that are falsely rejected by the template matcher, it is believed that a much
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more robust algorithm could replace it. One possible approach would be to expand

feature matching to use a much larger number of features and to use a multidimen-

sional decision region that takes into account the statistical correlations between the

features.

· Residue Coding: The focus of this research was on the development of a high perfor-

mance Symbol Matching and Substitution algorithm for the efficient coding of typed

text. Because of this, the techniques that were developed to encode the residue, Op-

timized 2D Run-Length Coding and Direct Coding, cannot compete with some of

the more sophisticated lossless standards such as JBIG, as was shown in Sect. 8.1.

Optimized Run-Length Coding could be replaced by any number of superior two-

dimensional coding techniques, both lossless [7] [8] [9] and lossy [2] [15]. Direct

Coding, which does not perform any compression at all, could be replaced with a

technique designed specifically for dithered images [10] (even JBIG has provisions

for this). By using these approaches to encode graphics, handwriting, and dithered

bitmaps, and using Symbol Matching and Substitution for typed text, a very high

degree of compression would likely be obtained.

* Arithmetic Coding Models: The three arithmetic coding models that are used in

CAFC, described in Sect. 5.4, were designed based upon a number of assumptions and

intuitions about the contents of facsimile documents. A more systematic approach

would be to analyze a large number of training set images and determine the relative

probabilities of runs, new symbols, matched symbols, and bitmap fragments and the

orders in which they occur. Perhaps an improved model could be developed using

this information that could further reduce the number of output bits generated by the

arithmetic encoder.

· Symbol Placement: It was pointed out in Sect. 8.2 that the placement of symbols in

the reconstructed images is sometimes slightly off-center, resulting in lines of typed

text that tend to "weave" up and down by a small amount. A proposed solution to

this problem is to compute the horizontal and vertical moments of each symbol and

to then align each matching symbol about this point in the reconstructed image. This

would require some additional bookkeeping by the encoder, but would have no effect

on the compression performance of the encoder.
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With the above suggestions, as well as modifications targeted for the specific application

(such as those mentioned in Chap. 9 for DCME), Content-Adaptive Facsimile Coding has

the potential to be a highly reliable real-time compression system that would provide sub-

stantial cost advantage for facsimile service providers.
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Appendix A

CCITT Test Images

The following eight facsimile images are the standard set of CCITT test images. They

are intended to be representative sample the types of documents that are transmitted by

facsimile. They are useful for comparing the performance of different facsimile terminal

equipment and coding techniques.

Each page was individually scanned into a facsimile machine, transmitted to a PC-based

fax card, and then saved to a file on the host computer system. All of the images are in

fine mode (200 pixels/inch) but are reduced by 30% along each axis on the following pages.
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Our 1sf. 350/PJC/C 18th Jnuary, 1972.

D. P.W. Cadell,
Manig Surveys Ltd.,
liroyd load,
lReadint,

Dear Pate,

Permit e to introduce you to the facility of faceimile
transmiseon.

In facsimile a photocell is caused to perform a raster scan over
the subject copy. The variations of print density on the document
cause the photocell to generate an nalogous electrical video signal.
This signal is used to modulate a carrier, which is transmitted to a
remote detination over radio or cable coimmications link.

At the remote terminal, demodulation reconstructs the video
signal, which i used to modulate tbe density of print produced by 
printing device. This device is canning in a raster scan synchronised
rith that at the transmitting terminal. As result, a facsimile
copy of the subject docMnt is produced.

Probably you have uses for this facility in your organisation.

Yours sincerely,

P.J. CROSS
Group Leader - Facsimile Research

.6km Md I ESl . . somI
IWM Oa., o v .. n-, M-.

Figure A-1: CCITT test image #1
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Figure A-3: CCITT test image #3
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L'ordrede hlancement et de rdllsation des applications fat i'objet de dicions au plus haut
niveu de Ia Direction Gdarale des T41communicatJon. n'est cortes pa. questlon de
constr'iro co synteme ntip "on bloce main bon au contraire de procider par tapes. pr
pallers m icssfs. Crtls applications dt Ia rentsbilga ne poura tro aswur, e
soront pas ntrprises. Atllm*nt, r treats applications qui oant pu Otro globalement
dfllaes, sixm sot an stde de l1'exploitatlio. six nutres me set vu doner Ia prioritd pour

lour reallontlon.
Chqu application oet confide & an "chef de projet", rewieousble mccesivoment de sa
concopton. de an analys-progrsammation et de mal mime on ouvre done use rgion-pilote.
La gdmnrlaation ultrleure de l'applicaton rdalisi dans cetts rigion-plate depend des
rdeultat obtmse et fait lobjet dune ddcision d Ia Direction Gdmrsle. NIamoins. le
chtef de prjojt dodit dee le ddpart eousddror quo sa activit a usa vocation nationals done
refuser tout perticulerisme regional. eat aid dune 6quipe d'anlyutes-progre.mnours
et ontour, dun "gro°Pe de concptiona" charil de ridiger le document de "drftnittio dos
objectife globaux" ple 1e "caMer des charfs" de l'appction. qul scat adrecsIe pour avis
& tuons les services utltstours poentdals et ux chefs de projot des autres applications.
Le groups de conception comprond S & tO personas reprsentant leo sorvices les plus
divers concrne par l prjoJetst comports oblAgtolremont un bon analyste attachd i lap-
plication.

11 - LIMPDLANTATION GEOGRAPHIQU D'UN RESz AU INFORMATIQUE PERFORMANT

Lorgleatlon de 18ntrerieo franalso des tilcommunlcations repoe eur l'olstnce de
20 rigios. Des calcaaters oat Ut, implante dons ls pasi au molne dane toutes le plus
importantes. Ontroeve ainal ds machines Bull Gamma 30 & Lyon et Maroille, ds GE 425
& Le. Bordeaux. Toulouse et Mntpeller, un GE 43? Masay, entin qulques machines
Bull 300 TI programme al talent rcomenut on seat encore on servico dons lea
rgions de Nancy., Nontes, Limoges. Poitiers et Rouen; ce pare eat seentellement utilisi
por la comptabilt tdldphonique.
Al'avoir, ll plprt dos f ers naesires applications ddrites plus bout peuvent
Stre grds n tmps diffri. un ertin noebre d'ot onx drant ncessirmemt tre ac-

ssbles, volre mi & jour on temps ral: permi c drners e fic nhier commerclal de
abeeis., to fichler deo refsgnement, le ficher des circuits, le fichlbr technique des
abonis coutiondront dos quantits conesldIrables d'lnformatlons.
L volume total d earact6i:s i giror en phase finale esur un ordinateur ayant on charge
quelquo 500 000 abornns a tt ostime & un milard de caractires ou moins. Au moins le
tiers des dondes seront conc rndes par ds traitements on tempe rel.
Aucun des calculateures deumres plus haut no permettalt d'envisager de ttls traitements.
L'lntIUrtlionprogreliv ded toutes lea applications suppose la ereation dum support commun
pour toutes lea Informatione, une vritable "Bnque de donnes"., reparte sur des moyens
de traitement nationux et rgionaux, et qui dvra rester alimentee, mise A jour on perma-
nence, partir de la base de lentrepriese, c'et-&-dLre les chantiers, lea magasins, les
guichets des services d'abooement, lea services de personnel etc.
L'etude de difftrents fichiers & constituor a donc permis de definir les principales carac-
tdritiques du rsoau d'ordinateurs nouveaux A mettre en place pour aborder la rialisation
du systtee informatlf. L'oblgatiUon do faire appel des ordinateurs de trois&me gindraton,
trs puisants etdot6s de volumtneuse mimores de masse. a conduit & en riduire substan-
tiolloment le nombre.
L'implantatlon de sept cntres de alcul Interriglonaux constituera un compromis entre
dune part I dir de rduiro 1e coOt conomique de l'ensmble, de faciliter la coordination
des quipes d'linformatictens; et d'autre part le refus de creer de centres trop Importants
dfflcles a girer t dirigrot posant des probltmes dillcats do scurti. Le rgroupe-
ment des traltemente relatifts pluslteur rgions sur chacun de ces sept centres pormettra
de leur donner une talle relativement honsog.ne Chaque cntre "grera" environ un mil-
lion d'abonnies Ia fin du Vlm Plan.
La mis on place de coo contres a dibuti au dibut do l'annee 1971 : n ordinateur IRIS 50 de
Ia Compagnle Internatlonale pour l'Informstique a te install A Toulouse n fvrier; la
meme machine vient d'Otre mise n service au centre de calcul Interrigional de Bordeaux.

Photo n 1 - Document trbo dense lettre 1, 5mm de haut -
Restitution photo n 9

Figure A-4: CCITT test image #4
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Figure A-5: CCITT test image #5
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Figure A-7: CCITT test image #7
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Appendix B

CAFC-Processed CCITT Test

Images

The eight standard CCITT test documents were encoded with Content-Adaptive Facsimile

Coding. The compressed images were then passed through the CAFC decoder to produce

the following eight reconstructed images. The CAFC parameters that were used are the

ones listed in the file CAFC.h in Appendix E.

All of the images are in fine mode (200 pixels/inch) but are reduced by 30% along each axis

on the following pages.
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Our Ref. 350/PJC/EAC 18th January, 1972.

Dr. P.N. Cudall,
lining Sureys Ltd.,
Nolroyd oad,
leading,
lerko.

Dear Phte,

Permit m to introduce you to the facility of facesimle
transmssion.

rn facsimile a photocell is caused to perform a raster scan over
the subject copy. The variations of print density on the document
cause the pbotocell to enerate n analogous electrical video signal.
Thib sigal i used to modulate a carrier, which is transmitted to a
remote destination over radio or cable comunications link.

At the remote terminal, demodulation reconstructs the video
signal, which is used to modulate the density of print produced by a
printing device. This device is scanning in raster scan synchronised
with that at the transmitting terminal. As a result, facsimile
copy of the subject docuuent is produced.

Probably you have uses for this facility in your organisation.

Yours sincerely,

P.J. CROSS
Group Leader - Facsimile Research
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Figure B-1: CCITT test image #1
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Figure B-3: CCITT test image #3
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dainmies, sizen sont au stads de l'oexploitation, six mutres s nt vu domer la priorit6 pour
lour rSaliation.
Chaque application t confide i un "chef d projet", rspeable mucceeossivement de s
conception, d son anlyse-programmation et de sa mis on oeuvre dns uns region-pilot.
La gndralLsatil ultriweure de l'ppaictio rdalso dlns cttoe rilon-pilots dipnd des
rdsultatc obtnaus t falt lobjt dn dcilon do a Direction G ndrals. Nzunoins. le
chef d projt dot d6e le deport considdrer quo son activit a une vocation nationals donc
reftuser tout prticularism rgional. L esot aid dm, 6quipe d'anlystm-programmeurs
et entourd d'n "group. de onception" chargp de rdiger le docuent de "diftntion dos
objectifo globaux" pl le "chier do charges" d l'application, qui sent adresads pour avil
A tou l services utilimsturs potentils et mm chtefs d projet des autrmc applications.
Le group d conception comprond 6 I 10 personns rprsontant l services lon plus
divers coacerne pr le projetst comport obligaltoirement un bon analyst attaed & 1'ap-
pucation.

1 - L'IMPLANTATION GEOGRAPIQUE D'UN RESEAU INFORMATIQUE PERFORMANT

L'organisation d l'ntropie rale des lecommunicatione repose mur l'existnce de
20 rions. Des calolateurs et t implanes dus le pss*6 au moine dons toutes lo plus
importants. e trourn ansi doe machi s Bull Gamma 30 A Lyon et Mareille, ds GE 425
& Lille. Bordeaux. Toulouse et Montpllwr, an GE 437 & Massy, nfin qulques machines
Bull 300 T progrmnmos cbls 6tlent roenumnmot m smt oencor eon service dons leos
rgionasde Nacy. Ntes, Limoges, Poitiers et Roe; co parc est esomtiellement utilis&
poor la comptabilitd t4lipbaique.
Al'avemir slm plupert dese ficheiors nicossaires em applications d-crites plus hout peavent

tre gd*s on temp. diffdr. un certain nombr d'entr*e ux devroant ncessoirement oStre ac-
cessibles. voles mis our on tempe rel: parmi ceo dorrs le fchir commercial des
abows, richler deos rveigmment, le fichior de ecircuits, 1l fichier tchnique des
abounds contiondront des quntites considerable d'informations.
Le volume total de caractGbse & grer an phase finaole our un ordinateur ayant en charge
quolques 500 000 abonnis a 6t estimd i un milliard de caractres au motns. Au moins le
tiers dos doanes soront concerudens par des tritement en tempo reel.
Aucun des calculteureo dnumrde plum haut no prmnettait d'envisager de tals traitements.
L'ntagration progressive de toutes loee pplicatlons mappose la creatin dun mapport commun
pour touts lea informatione, une vdritable "Banque de donn6es", rpartloe our dosec moyens
de traitement nationaux et rigionaux, t qui devra reter alimntd, mime & jour en perma-
nnace, prtir d la bse de lntreprtis, ct-&-dire les chantiers, le magains, lea
guiciat des service. d'sboasment, le services do perscnnel etc.
L'etude des diffirents fichiers & constituer a done pormis de de#nir lea principaLes carac-
tiritiques du rmeau d'ordinateurs nouveaux a mettre en place pour aborder la realtlsaton
du systime informatllf. L'obligtionde tfalre appol a des ordinateurs de troisibme ganeration,
tris puismant et dote de volumineuoes mdemoires de masse, conduit & en riduire substan-
tiellement le nombre.
L'implantation de sept centres de calcul nterrgtonaux constituera un compromis entre:
d'unepart le desir de redure le cot economique de l'ensemble, de fciliter la coordination
des quips d'informaticlens; et d'autre part le refus de crier des centres trop importnts
difficiles i& gerer et diriger,et posant des problmes dlicats de sdcurite. Le regroupe-
met dos traitements relatife & pluseleurs rgions mar chcun de ce sept centres permettra
de leur donner une taile relativement homogne. Chaque centre "gbrera" environ un mnl-
lion d'obonn&es & la fin du Vltme Plan.
LA mise on place d ces contres a debute au debumt de l'arnnee 1971 un ordinateur IRIS 50 de
Ila Compagnie Internationale pour l'lnformatique a etc installE Toulouse en fdvrer; Ia
mome machine vient d'itre mime on service au centre de calcul interregional de Bordeaux.

Photo n 1 - Document trbs dense lettre 1, 5mm de haut -
Restitution photo n 9

Figure B-4: CCITT test image #4
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Figure B-5: CCITT test image #5
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Figure B-6: CCITT test image #6
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Figure B-7: CCITT test image #7
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Figure B-8: CCITT test image #8
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Appendix C

Typed Text Test Images

In Content-Adaptive Facsimile Coding, symbol matching is used to determine if an isolated

symbol "matches" one that has already been detected and stored in the symbol library. The

first stage of symbol matching, feature matching, is used to eliminate unlikely candidates

early on by comparing high-level properties (or "features") of the symbols.

The following 9 test images were used to determine the effectiveness of a number of features

at differentiating different instances of the same symbol. They contain 8 repetitions of 78

different characters in 3 fonts, 3 styles, and 3 sizes. Section 4.1.1 describes feature matching

and Sect. 7.2 describes the procedure for selecting an optimal set of features in detail.

Each page was individually scanned into a facsimile machine, transmitted to a PC-based

fax card, and then saved to a file on the host computer system. All of the images are in

fine mode (200 pixels/inch) but are reduced by 60% along each axis on the following pages.
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Figure C-1: Typed text image #1 - Courier 8pt

Figure C-2: Typed text image #2 - Courier 10pt

97

A3llel*3eE3Ea&llOtlllVl3Z&lrbilehh1...flllVl.... t 1 ) /tl..l. l 4.i *11b

£L5JlElltIlt&ffFePIllfuvNr P edegglhu·al ugeasWpyeaaJggJTlel/l)J 1 ·i* # ,

!£saqeaat .. U epO.wwSVMz.h...h. ......... Je~j s,, .ffi1(.a ,

R6I.I.III WIfW .dlI 1....ll ..I.....tm.fl. III*.IIL &011

&30~111S 1pgIza3lll@lll!YllikgL·.LL8Il l.. ...tu...a.. s1 fJl%*&tl

!.. ... I..I I VI ..w li.......I ... Ji ...... vuvmliai~ .I/ fi-

!(Pl1?S3ibilJ SI YIf flib. 4 -&,A -k -uPl.g..... StS 9 i3 42'..) 4S'045

',. N..Zen ..... r.r..... ... .. . .. S. .S SISSJ jika.hIl.,.9ICIuw ZLELSIX@IlltWlllllO flw.. h.... .f l lJJli l/..llil..I &'tI8LaeS1EZ.llll'lNlb , .. h~llflll hllll 1 1 14 ...... l.14

!'"U' uulYILI. l......b... ,kSlS SllIelSkS .,ll.4)/llill&'

~LlDlsldlOI l I Wtilalkli tlkk[&lep··rrtvvr ll S ill l·li)~l 'l& 11

~1tll/11fLl!lYIII··" w llill Lrkk~lll

· IC·111lIOI&I MI;IlII~IlI4Jv t 1141I¥VI)1111)l" O " >"/"I f) 4 fll'll*

&3SIU1OlZ~lilO@*8tgT#X~bebedhfilkkimlplls./.#wlli124 II?sSIg/ ( )

*A3OI3IrIt·lglleill OI1UbodehighkmalepgSyvW3llV4S1Tl1tp4. /(2}
%4) (el*$3l5

13083P@DZUN&MNOP@NM~rWFNelabwiIuhhaa-pqr.uvva,.*lSa d OlD b<oaflI t 

44 (443 4

&@SPGe*4 g eZTLUPRSYVIIaraiz.ghkl..-pqr.uy.s *12417814.J(J() X
&iODIlUI&!UU.gIgUUII/ITIIgIiIgilIII&IglII!IIITII133&111311J 11[({ 

'+1 {r&411.-
&UCDEfISUZUEliNOPlhYllfzYlfff~ftfgdelklaijepfqlll~lfll.fllJ45il@So./12 ¢)
~*) (*****gdilikJICOJf41 ZG'lb11 qllfgfV'I I i~Otl L~klIp· · l &ii7 4 

'.4) 1@®Al*.%~)) ( &&llll

&l@PIP*MZJR&MMOP~llflUPVflTIb.dl.ll&31.l.pq....vvlyauz13dss?1t4./[ (3L:D' i31: iUL, .l.. @ TVzT sbd. 4gk·1alp *..t'.. g .·.11,3)4, .. / ] (*)

.4.) { el il*g.&O1 Ee eeIIJILOIOP IgWlb^sLwflllb I, lraV $r $? * it) t ) t }

4ee@De *8ZJ5&MesstUVVfabs-Wt,&afaa1pq..eusv1.OrX1a8s65eS..>11t)

~+) (*554~&3O3UUS3I43l.UI*3guhywavuebe4.4sshsb1..sp. uaS6S*e..i(2 Ii elllllgreIIO I solellRl* rlib14. lllJllll r * *qr */*lLI s$?lS t3 4[J

\) 4.arsS..
LICDIfe EILOIPOaalvIIINvaaaedefed ILk lu uvayIh16lET(/gJ [

%+)2 4'&$lll-SI3O1181111eLll 5 IrQlS9WIYV blisl .lIibS & 1 L4SSII V 1 .1 4 I 1(2 I 

%.41 ('l&9l*&BODUFPO ZJLNProuftrv/rvWySb4. fghJ-Fgp lllk * 1 i 4 I / t ! '( 
%)! Ieie*2O-&lll IiI[1OalI~~1 Ill Illzil{ i llrll I twevsr I *I &171 * I? * ~ { I

,41 DOmJDrrZJX&IWOet gwPf ab~ e OtpbJl1 4pal&gqr I I ¥1fdF41J (1 t · 4 /
4.1 ( ui**llll~

&O)eOx I 1l/OIX dlIPet/fvI/IVI IkePo flkk 3l · ly 4 $ S 

%~)bRB (eI~,JlO-!SW@|x00wT"Xtll~z~g~bS1S

~BTrIirI:~i~I·dlIOIQA. ,V(llW ,,l&.ll. EI2 .. . ., , -I 
&· f}~)J ~lI~PX&NM4)6~ ~ II·· ~l~/J]lll]//l )bI J )P~' Iyfr it·jdflFI · tJ·1,()



Figure C-3: Typed text image #3 - Courier 12pt

Figure C-4: Typed text image #4 - Times Roman 8pt
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Figure C-5: Typed text image #5 - Times Roman lOpt

Figure C-6: Typed text image #6 - Times Roman 12pt
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Figure C-7: Typed text image #7 - Helvetica 8pt

Figure C-8: Typed text image #8 - Helvetica lOpt
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Figure C-9: Typed text image #9 - Helvetica 12pt
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Appendix D

Training Set Images

The following 16 images constitute the training set that was used to calibrate the adjustable

parameters of the Content-Adaptive Facsimile Coder. They are intended to be a fair repre-

sentation of the types of documents that are typically transmitted via facsimile. Included

in this set are pages containing typewritten text (in a variety of sizes, fonts, orientations,

and styles), handwriting in English (from a number of different people), a diagram, and

Chinese writing.

In particular, the training set was used to generate the set of statistics to prime the Opti-

mized 2D Run-Length Coder. This is described in detail in Sect. 7.4.

Each page was individually scanned into a facsimile machine, transmitted to a PC-based

fax card, and then saved to a file on the host computer system. All of the images are in

fine mode (200 pixels/inch) but are reduced by 60% along each axis on the following pages.

102



03 05 3 0:4P 0

j1. f~+.
A i- --

4 A

At +

.Y * 4e 8 1t
tA t. a

i. ;-

X 4 t&t- I rt.

Figure D-1: Training set document #1

03. 05.93 01:24 PM P05

Dam 3M N WA NaW - m

0cm=
__k-ftl . 01AL PAmnB WYB CIf I

FACSIMILE MESSAGE
rTo Oj0u Dulltm

240_, ,d w dc _+ a- Cl
CgglZm mi mm. *cw d -t itn t( 3) tAM

c %lgatLeea '*$II S m C It leged ig I

mncet ce tm- A . Z.

yL~pew t 1 31? ep 1

~e p L: th mmmJr adam # ecice a.& ie 'm f bmiae. lretS eidI.
e eg leau L-ce cle t -Ie me me ,

Tap lm 10 ac I n

0'7:-'" l * ' ,. E edt.: g th. --a fte h e" d. .
Tw' of mlt 1O. PP- Ct

Prm: tae, I_. ! R GS I4ATLd -Ia tou itt , i iea C 6e
fito Wh"tRkMLfOOw SMUlA C5, iiilL -_ i I rdhl mdt 04 .. jO"1UMN aft~f..j4 -K

n**ello"^4*2_e~ tlOuua Srr l~c~~rm

Figure D-2: Training set document #2

103

03.05.93 01:24 PM P02



Figure D-3: Training set document #3

Figure D-4: Training set document #4
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Figure D-5: Training set document #5

07. 07. 92 12:16 PM P06

_ 4 et-sdxaA.;>- cd e44Ic4

A y
4

44--D- 0SAA4.tfi
7 A 

Lt). AIO4W -'t4c-to,4 Aelttc4,"""" ~ '7~"~'- .7,V*119,07.ar ~*/, ., ~,,..,3. -ta -X4, d-., -,

Figure D-6: Training set document #6

105

03. 05. 93 01:24 PI

OalMs "0 C&AW
ToAL PABI rjn= 7U COVD: I

FACSIMILE MESSAGE

ro: siter Dmle it
r t: + i <301) 444cat c1 rb . .11* 01) 414WI

COLWAT Labotle ha dloped tdmk "th Mt 1 1r conpressn tof
h wl " g. TNI oahelogy bee 00 Oeule denoe I n 
rrwnlesdn mu whe oepd wilt alandid ac S 3 t tra0nt.Tabk 1 hI #rls the Iouw tlmlwiWn tlim ov a 2400 b dnaa hmlnnrtl wem frtwo yp d dment: Iwdftn nd yped text

Tabl 1: Tmwdln Te r Stanard G 3roup S F Ton

T1y. fP cm~t fp-.e Doa;m en -Pae Dwnl

Handnritt e 123 e 243 c
Typed Ti 217ee 4S e

COMBAT Lb-oroes ha plmrened compr bn toho h a protype
Facsim kwrace Unl tU) stm thr alotlon In lo bdtrae synsm. The
vteam reduces truemlulon nes a Indaed in Tble 2 blow.

Table : Trmi.sdon Tes with COMSAIr Famml Compn"lon Technology

rpe oDOawoen I-P Doaent -Pae Doument

HmIndwlten 32 c 1 e C
Typed Ted 110 c 230 

l oodd tramhnmlat cmaa duoad c and hcned satot r
COMsATr eaimeb ouetomme. I Men bo em that tsanee t cen o be
rud by otw o mtltmey 4 r h*n . ad by a ar ofmpromatey 2 typed tes

Type of Pat Ud:

DC-vo t OblbgMoylsed- USA
Ij:soa l . 4n-pRvlo-olo4 .odgCIAClDA G.

P08

W IM U t C TI

(a gA~k;iozso



C 
co

ra -g I0 .1

01
!i IL =i

UIPO C) iiH iI

a,~~~~~~~.

" 4* " " * .1 41 

l cE1 5 t;I 
49444444444444~c i

al~~~tlll i~~~

L 

oo 6 w ]i
7.17-I

j I a IL LS ga
,. U '

Figure D-7: Training set document #7

Figure D-8: Training set document #8
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Figure D-9: Training set document #9

Figure D-10: Training set document #10
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Figure D-11: Training set document #11

Figure D-12: Training set document #12
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Figure D-13: Training set document #13
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Figure D-15: Training set document #15

Figure D-16: Training set document #16
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Appendix E

CAFC Software Implementation

This appendix contains the C source code for the software implementation of Content-

Adaptive Facsimile Coding. All of the components of CAFC are supported except for

Dithered Bitmap Detection and Direct Coding. The roles of each module in performing

the various stages of the CAFC algorithm are described in Table E.1. The programs that

perform the encoding and decoding process images in the Intel PCX format. Routines that

greatly simplify the reading and writing these files are contained in the modules described

in Table E.2.

These programs were used to perform most of the parameter optimizations and to generate

the final results in Chap. 8 and Appendix B. Table E.3 lists the programs that were used

to process the training set images in Appendices C and D to generate statistics for feature

selection and Optimized 2D Run-Length Coding.
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FILES FUNCTION DESCRIPTION
CAFC.h CAFC Parameters This include file specifies values for all

CAFC parameters (minimum/maximum
symbol size, symbol isolation method,
features to use, etc.)

CAFCencode. c CAFC Encoding Encodes an image in the PCX file format
using Content-Adaptive Facsimile Coding
(CAFC), producing a binary output file
and a residue image PCX file.

CAFCdecode.c CAFC Decoding Decodes an image that was encoded with
CAFCencode (CAFC- 1). Produces a
reconstructed image PCX file and a
residue image PCX file.

match.c Symbol Matching Contains routines to determine if two
match.h symbols "match" using the feature

matching and feature extraction
algorithms.

features.c Feature Extraction Contains functions to compute the features
features.h of a symbol. Maintains a global set of

features and provides a mechanism to
extract them from a symbol.

library.c Symbol Library Manages a library of symbols, allowing
library.h Management updates and searches to be performed. The

library also contains information necessary
for matching and arithmetic coding.

symbolfilling. c Symbol Library Performs symbol isolation on a buffered
symbol-tracing. c Management PCX image. Each of the three approaches
symbolwindowing. c is implemented separately - symbol filling,

symbol tracing, and symbol windowing.
symbol.c Symbol Contains declarations and procedures to
symbol.h Manipulation facilitate the manipulation of symbols. A

SYMBOL structure is defined and routines
to create and free symbols are provided.

AC.c Arithmetic This module performs general arithmetic
AC.h Coding/Decoding encoding and decoding. It contains

routines for creating and updating source
models and for entropy coding/decoding a
stream of elements (symbols) using these
models.

Table E.1: Summary of CAFC software modules.
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PCXbuffer. c PCX Image Buffering This module provides a buffered interface
PCX_buffer.h to PCX image files. A multiple scan-line

portion of the page is maintained at all
times. This buffer is simply "scrolled" up
to automatically read or write a scan-line.
This interface is useful for real-time
algorithms that need to access several
adjacent scan-lines at a time.

PCXutil. c PCX File Format This module provides a straightforward
PCXutil.h Interface interface for line-oriented reading and

writing of PCX image files.

Table E.2: Summary of PCX file format modules.

2Drl-stats. c 2D Run-Length This program reads a set of PCX images (a
Statistics training set) and determines their 2D run-

length statistics. Produces output data
files that are used by CAFCencode and
CAFCdecode to actually perform the
coding and decoding.

feature-stats. c Feature Statistics Analyzes a large set of test images containing
typed text in a variety of fonts. Generates
statistics on the effectiveness of each feature
at correctly matching symbols. Produces output
files which can then be used to select the best
subset of features.

Table E.3: Summary of statistics gathering programs.
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E.1 Source Code - CAFC Parameters

File CAFC.h:

/******************$*********$********************************************$
Name: CAFC.h
Purpose: This include file contains constants and parameters used by

the CAFC programs.

Last Modified on 5/4/94

/ * facimile page resolution, standard or fine */
#define PAGE_RESOLUTION FINE_MODE 10

/* restrictions on symbol size */
#define MAX SYMBOL HEIGHT
#define MAX_SYMBOLWIDTH
#define MIN SYMBOL HEIGHT
#define MIN_SYMBOL WIDTH

40 /* maximum height of a symbol in pixels */
60 /* maximum width of a symbol in pixels */

2 / * minimum height of a symbol in pixels */
3 / * minimum width of a symbol in pixels */

/ * number of scanlines in buffer, one more than the maximum symbol height */
#define NLINES (MAXSYMBOLHEIGHT + 1)

/* symbol isolation techniques */
#define SYMBOLFILLING 1
#define SYMBOL TRACING 2
#define SYMBOL_WINDOWING 3

#define SYMBOL_ISOLATION SYMBOL_WINDOWING /* selected technique */

/ * feature matching */
#define NFEATURES 5 /* total number of features defined */

#define FEATURES {width, blackpels, vertrun lengths, white pels, height}
#define FEATURENAMES "width","black pels","vert. runs","white pels","height"}
#define FEATURE_MATCHTHRESHOLD {2, 30, 4, 53, 4}
#define FEATURE_EFFECTIVENESS {0.30, 0.34, 0.38, 0.48, 0.5}

/* template matching */
#define TEMPLATE MATCH THRESHOLD 0.82
#define TEMPLATEMAXIMUM SHIFTX 2
#define TEMPLATE MAXIMUM_SHIFT_Y 2

/* 2D run-length coding */
#deflne RL_STATS_WEIGHT 0.25 / * weight of initial run-length statistics */
/ *******************************************************************/

/ * Name of file containing 2D run-length statistics, "" for NONE. */
#define RL_FILENAME "/u/nht/data/rl_stats2D .dat"

E.2 Source Code - CAFC Encoder

File CAFCencode. c:

/ *****************************************************************************
Name: CAFC encode.c
Purpose: Encodes a bi-level image using Content-Adaptive Bi-Level (Facsimile)

Coding. The source image is assumed to be in the PCX file format.
The encoded image is stored in a binary file. The residue image
can be optionally created and stored in a PCX file.
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Usage: CAFC encode PCXsource CAFCdest [ PCXresidue ]

PCXsource -> filename of the source image (in PCX format) 10
CAFCdest -> filename of the destination CAFC-encoded image
PCXresidue -> filename of residue image (optional, PCX format)

To perform the 2D run-length encoding portion of the algorithm,
run-length statistics are read from the data file named in
CAFC.h if specified.

Notes: All CAFC parameters are specified in the file CAFC.h.

Last modified on 5/4/94 20
** ******* ********* ******** ************************ ***************
#include<stdio.h>
#include<stdlib.h>

/ * CAFC include files. */
#include"CAFC. h"
#include"PCX_util .h"
#include"PCX_bu f er .h"
#include" symbol. h"
#include" library. h" 30
#include"features .h"
#include"match. h"
#include"AC. h"
/* Preprocessor code to select to correct symbol filling functions. */
#if SYMBOLISOLATION == SYMBOL-FILLING
# define isolate_symbol symbol filling_isolate
# define remove_symbol symbol fillingremove
# define isolate_scroll symbol fillingscroll
#elif SYMBOL ISOLATION -= SYMBOL TRACING 40
# define isolate-symbol symboltracing_isolate
# define remove_symbol symboltracingremove
# define isolatescroll symbol tracing_scroll
#elif SYMBOL ISOLATION == SYMBOL WINDOWING
# define isolatesymbol symbolwindowing_isolate
# define remove_symbol symbolwindowingremove
# define isolate_scroll symbolwindowingscroll
#endif
/* external symbol-isolation routines */ 50
SYMBOL *isolate_symbol();
void remove_symbol();
void isolate_scroll();

/* buffer containing source scan-lines */
byte **sourcebuffer;

/* destination compressed file (CAFC) */
FILE *CAFCdest;

60
/* residue output file */
PCX FILE *residue;

/* file containing 2D run-length statistics */
FILE *rl;

/* one line of residue */
byte *residue_line;

/ * previous line of residue */ 70
byte *residueprev_line;

/* one line of differences between vertically adjacent pixels. */
byte *diff line;

/ * width of image in pixels */
int maxX;
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/ * the symbol library */
LIBRARY *symbollibrary; 80

/ * arithmetic coding models */
ACMODEL codingmodel0;
AC_MODEL coding_modell;

/ * arithmetic encoder */
ACENCODER encoder;

report errorandabort: 90
Prints out the specified error message and terminates ezecution.

************************************************* ** ********************* *** $
void reporterrorand-abort(message)
char *message;
{ printf(" \nCAFC_encode: %s\n" ,message);

exit(EXITFAILURE);
}

/*******************************************************************
write CAFC: 100

Writes a single bit to the destination CAFC file.
******************************************************* ****** * *******/

void write_CAFC(x)
int x;
{ static unsigned int CAFC_buffer=0; /* internal byte buffer */
static int CAFC_buffer size = 0;

/* Shift new bit into internal buffer. */
CAFCbuffer = (CAFCbuffer << 1) + x; CAFC_buffer_size++;

110
/* If buffer is full, write byte to output file. */
if (CAFCbuffer_size == 8)
{ fputc(CAFC_buffer, CAFC_dest);

CAFC buffer size = 0;
CAFCbuffer = 0;

/*****************************************************************************
RLcode: 120

Perform the 2D run-length coding for a portion of the scan-line.
*** *********** ******** **** * ***** ********** * ********** **

void RL_code(startx, stop_x, start_model)
int startx, stopx, start-model;
{ int pos;

int run;
int i;

/* Compute the difference between the present and previous scan-lines. */
for (i=start-x; i<stop_x; i++) 130

diff_line[i] = ! (((residue_prev_line[i] == WHITE) &&
(residueline[i] == WHITE)) 1

((residueprev_line[i] != WHITE) &&
((residueline[i] != WHITE))));

/* Now scan through line and perform coding. */
pos = start_x;
do
{ /* Detect run of Os (vertically adjacent pixels match). */

run = 0; 140
while ((pos < stop_x) && (diff_line[pos] == 0))
{ pos++; run++; }

if ((run > 0) 11 (startmodel == 0))
{ / * Encode run and update model. */

encode_element (&encoder,&codingmodel0,run);
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updatemodel(&coding_modelO,run,l);
}

/* Detect run of Is (vertically adjacent pixels differ). */ 150
run = 0;
while (( pos < stop_x) && (diff line[pos] == 1))
{ pos++; run++; }

if ((run > ) 11 (startmodel == 1))
{ /* Encode run and update model. */

encode element(&encoder,&coding_modell ,run);
update_model(&coding_modell,run,l);

160
while (pos < stopx);

}

/*********************************************** *************************
CAFC encode

void main(argc,argv)
int argc;
char *argv; 170
{ SYMBOL *detected_symbol; /* symbol detected in image */

LIBRARY *matched_entry; /* symbol matched in library */
int tot_symbols = 0, unique_symbols = 0; /* symbol counts */

int escape, new_symbol; /$ AC elements for new symbol and end of page. */
int stats0,statsl; /* Run-length statistics. */

int pos, lastpos; /* horizontal positions on scan-line */
int i; /* general counter variable */

180

/ * Make sure that the correct number of arguments are provided. */
if ((argc != 3) && (argc != 4))

reporterror_andabort(" Invalid number of arguments.");

/* Open source file, create buffer, and determine width. */
source_buffer = openPCXbuffered(argv[1],NLINES,PAGE_RESOLUTION);
if (source_buffer == NULL)

report_errorandabort("Unable to open source PCX file.");
maxX = buffer_maxX(sourcebuffer); 190

/* Open destination and residue (if specified) files. */
CAFC_dest = fopen(argv[2],"wb");
if (CAFC_dest == NULL)
report error andabort("Unable to create destination CAFC file.");

if (argc == 4)
{ residue = createPCX(argv[3],maxX,PAGE_ RESOLUTION);

if (residue == NULL)
reporterrorandabort("Unable to create residue file.");

} 200

/* Initialize AC models. */
initialize_model(&coding_modelO);
initialize_model(&coding_modell);

/* elements for run-lengths, ESCAPE, and NEW SYMBOL */
for (i=O; i<=maxX; i++)
{ add_element to model(&codingmodelO);

add_elementto_model(&codingmodell);
update_model(&coding_model0,i,1); 210
updatemodel(&codingmodell,i,l);

escape = add}elementtomodel(&codingmodelO);
escape = add_elementto_model(&codingmodell);
escape = add..element to..model(&coding~modell);
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update_model(&coding_modelO, escape, 1);
update model(&coding modell, escape, 1);
newsymbol = add element_to_model(&codingmodelO);
newsymbol = addelementtomodel(&coding-modell);
updatemodel(&coding-modelO, new_symbol, 1);
update_model(&codingmodell, new_symbol, 1); 220

/ * Read run-length statistics, updating encoder models (if specified). */
if (RL_FILENAME[O] != '\0')

rl = fopen(RL_FILENAME,"r");
if (rl == NULL)
reporterrorand_abort("Unable to open run-length statistics file %s.\n",

RLFILENAME);
for (i=O; i<=maxX; i++)
{ fscanf(rl, "%d %d", &statsO, &statsl); 230
updatemodel(&codingmodelO, i, (int) (statsO * RL_STATS_ WEIGHT));
update_model(&coding_modell, i, (int) (statsl * RL_STATS_ WEIGHT));

fclose(rl);

/* Initialize AC encoder. */
open_AC_encoder(&encoder, write_CAFC);

/* Create line to store differences between vertically adjacent pixels. */ 240
diff_line = (byte *) malloc(maxX * sizeof(byte));

/* Create residue line and initialize with first scan-line. */
residue_line = (byte *) malloc(maxX * sizeof(byte));
for (i=O; i<maxX; i++)

residue_line[i] = sourcebuffer[O][i];

/ * Create previous residue line and initialize. */
residue_prevline = (byte *) malloc(maxX * sizeof(byte));
for (i=O; i<maxX; i++) 250

residue_prev_line[i] = WHITE;

/* Initialize symbol library. */
symbol_library = NULL;

/* Encode the image. */
while (! buffer_eof(source_buffer))
{ lastpos = 0; /* 2D run-length coding begins at leftmost pixel. */

/ * Encode a scan-line. */ 260
pos = 0; /* Start scanning from leftmost pixel. */
while (pos < maxX)

/ * Detect a white run by searching for first black pixel. */
while ((pos < maxX) && (residue_line[pos] != BLACK))

pos++;

if (pos < maxX)
{ /* Attempt to isolate a symbol from the page */

detectedsymbol = isolate_symbol(sourcebuffer,pos); 270

if (detected_symbol == NULL) / * If no symbol, skip black run. */
while ((pos < maxX) && (residue_line[pos] != WHITE))

pos++;
else / * Otherwise, try to match it with one in the library. */

{ totsymbols++;

matched entry =
lookup_symbol(symbol_library, detected_symbol, symbolsmatch);

280
if (matched_entry == NULL) /* If no match, detected new symbol. */
{
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/ * Perform run-length coding up to present point. */
RL code(lastpos, pos, 0);
lastpos = pos;

/* Encode new symbol and add to symbol library. */
encode_element(&encoder,&codingmodell ,new_symbol);
update_model(&codingmodell1,new_symbol,l);
symbol_library = 290

addsymbolto_library(symbollibrary, detectedsymbol);
symbol_library->AC_element =

add_element to _model(&coding_modelO);
symbollibrary->AC_element =

add_ element_tomodel(&coding-modell);
update_model(&codingmodel0,symbol_library->AC element,1);
update_model(&c odin el,symbolibrary->ACelement, 1);

/ * find next white pixel */
while ((pos < maxX) && (residue_line[pos] != WHITE)) 300

pos++;

/* Perform run-length coding up to present point. */
RLcode(lastpos, pos, 1);
lastpos = pos;

unique_symbols++;

else /* Otherwise, encode as symbol from library. */
{ . 310

/ * Erase the symbol from the page and from memory. */
remove_symbol(detected_symbol, pos,

sourcebuffer, residue_line);
free_symbol(detected_symbol);

/ * Adjust for symbol shifts. */
pos += matched_entry->symbol->shift - detected_symbol->shift;

/* Perform run-length coding up to present point. */
if (pos > lastpos) 320

RL code(lastpos, pos, 0);
lastpos = pos;

/* Encode element using appropriate model. */
if (pos < 1)

encodeelement(&encoder,&coding_modell,
matched_entry->AC_element);

else if (diff_line[pos - 1] == 0)
encodeelement(&encoder,&coding_modell,

matched_entry->AC_element); 330
else

encodeelement(&encoder,&coding_model0,
matchedentry->AC_element);

/* Update both models. */
update_model(&coding_model,matched_entry->AC element,l);
update_model(&coding_modell,matched_entry->AC_element,1);

}

} 340

RL_code(lastpos, maxX, 0); /* Run-length code to the end of the line. */

/* Write residue line if specified. */
if (argc == 4)

writeline(residue,residue_line);

/* Update previous residue line. */
for (i=0O; i<maxX; i++)

residue-prevline[i] = residue_line[i]; 350
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isolatescroll(source_buffer,residueline);

/ * Encode escape element to indicate end of page. AC coding complete. */
encode_element(&encoder,&coding_modelO,escape);
close_AC_encoder(&encoder);

/* Flush output buffer. */ 360
for (i=O; i<7; i++)

write_CAFC(O);/ * Close files. */
close_buffer(sourcebuffer);
if (argc == 4)

closePCX(residue);
fclose(CAFC_dest);

/ * Print statistics. */ 370
printf("Encoding complete.\n\n");
printf(" %d unique symbols\n" ,uniquesymbols);
printf(" %d total symbols\n",tot symbols);

E.3 Source Code - CAFC Decoder

File CAFC-decode. c:

/ ***********************$**********$****$*********************************
Name: CAFC decode.c
Purpose: Decodes a bi-level image using Content-Adaptive Bi-Level (Facsimile)

Coding. The CAFC-encoded source image is a binary file. The
destination reconstructed image is stored in the PCX file format.
The residue image can be optionally created and stored in a PCX
file.

Usage: CAFC decode CAFCsource PCXdest PCXresidue [ width J
10

CAFCsource -> filename of the source CAFC-encoded image
PCXdest -> filename of the reconstructed image (in PCX format)
PCXresidue -> filename of residue image
width -> width of image in pizels; if omitted, 1728 is assumed

To perform the 2D run-length encoding portion of the algorithm,
run-length statistics are read from the data file named in
CAFC.h if specified.

Notes: All CAFC parameters are specified in the file CAFC.h. 20

Last modified on 1/13/94
*include<s**** tdio.h********** ***** *******
#include<stdio.h>
#include<stdlib.h>

/ * CAFC include files. */
#include"CAFC. h"
#include"PCXut il. h"
#include"PCXbuffer. h" 30
#include" symbol. h"
#include" library. h"
#include"f eatures. h"
#include"match. h"
#include"AC. h"
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/ * Preprocessor code to select to correct symbol filling functions. */
#if SYMBOLISOLATION == SYMBOLFILLING
# define isolatesymbol symbolfilling_isolate
# define removesymbol symbol fillingremove 40
# define isolate_scroll symbolfillingscroll
#elif SYMBOL_ISOLATION == SYMBOL_TRACING
# define isolatesymbol symbol tracingisolate
# define removesymbol symbol.tracingremove
# define isolatescroll symbol_tracingscroll
#elif SYMBOLISOLATION == SYMBOL_WINDOWING
# define isolatesymbol symbolwindowingisolate
# define remove_symbol symbolwindowing remove
# define isolate_scroll symbolwindowing_scroll
#endif 50

/ * external CAFC routines */
SYMBOL *isolate_symbol();
void removesymbol();
void isolatescroll();

/ * Define structure for storing information about decoded symbols. */
typedef struct

{ int pos, line;
int AC_element; 60
short int new;

) SYMBOL_INFO;

/* source file (CAFC-encoded) $/
FILE *CAFC_src;

/ * file containing 2D run-length statistics */
FILE *rl;

/* buffers to store decoded scan-lines and residue */ 70
byte **dest_buffer, **residue_buffer;

/* pointer to the previous scan-line in the output buffer. */
byte *residue_prev_line;

/ * width of image in pixels */
int maxX;

/* the symbol library */
LIBRARY *symbol_library; 80

/* arithmetic coding models */
ACMODEL coding_model0;
AC_MODEL coding_modell;

/ * arithmetic decoder */
ACDECODER decoder;

/* list of all symbols in source buffer */
SYMBOL INFO *symbollist; go
int symbollist_max;
int symbollist_start, symbol_listsize;

/*****************$***************************************************
report_errorand_abort:

Prints out the specified error message and terminates execution.
*********************** ******************************************************
void report_errorand_abort(message)
char *message; 100
{ printf("\nCAFC_decode: %s\n",message);

exit(EXIT_FAILURE);

/*************************~$*********$******$****************$****$******
read CAFC:
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Reads a single bit from the source CAFC file.

int read_CAFC()
{ static unsigned int CAFCbuffer; /* internal byte buffer */ 110

static int CAFC buffer size = 0;

/ * If buffer is empty, fetch another byte from the file. */
if (CAFC_buffer_size == 0)
{ CAFC buffer = fgetc(CAFC_src);

CAFCbuffer size = 8;
}

/ * Shift out a bit from the internal buffer. */
CAFCbuffer_size--; 120
return((CAFC_buffer >> CAFC_buffer size) & 1);

CAFC decode

void main(argc,argv)
int argc;
char *argvo; 130
{ SYMBOL *detected_symbol; /* symbol detected in image */

LIBRARY *matched_entry; /* symbol matched in library */

int element; / * AC element read from CAFC file. */
int escape, new_symbol; / * AC elements for new symbol and end of page. */
int statsO,statsl; /* Run-length statistics. */

int pos, line; /* current horizontal and vertical position */
int dest_buff line; /* current line in output buffer */
int lines_written; / * total number of lines written to output PCX files */ 140
int i, j; /* general counter variables */

/ * Make sure that the correct number of arguments are provided. */
if ((argc != 4) && (argc != 5))

report_error_and_abort(" Invalid number of arguments.");

/* Open source CAFC file. */
CAFC_src = fopen(argv[1],"rb");
if (CAFC_src == NULL)

report_error_andabort("Unable to open source CAFC file. "); 150

/* Determine image width. */
if (argc == 5)

sscanf(argv[4],"%d" ,&maxX);
else

maxX = 1728;
if (maxX < 0)

report_error_and_abort(" Invalid image width. ");

/* Open destination and residue files. */ 160
dest_buffer = create-PCX_buffered(argv[2],maxX,NLINES,PAGE_RESOLUTION);
if (dest buffer == NULL)
report error_andabort("Unable to create destination PCX file.");

dest buff line = 0;
residuebuffer = create_PCX_buffered(argv[3],maxX,NLINES,PAGE RESOLUTION);
if (residuebuffer == NULL)
reporterror_and_abort("Unable to create residue file.");

/* Initialize symbol list. */
symbollist_max = 170

(long) maxX * NLINES / (MIN SYMBOL_HEIGHT + 2) / (MINSYMBOL_WIDTH + 2);
symbollist = (SYMBOLINFO *) malloc(symbollistmax * sizeof(SYMBOLINFO));
symbol-list start = 0; symbollist size = 0;
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/ * Initialize AC models. */
initialize model(&coding_modelO);
initialize model(&coding.modell);

/* elements for run-lengths, ESCAPE, and NEW SYMBOL */
for (i=O; i<=maxX; i++) 180
{ add element to model(&coding modelO);

add element tomodel(&codingmodell);
updatemodel(&codingmodelO,i,1);
updatemodel(&codingmodell ,i,1);

escape = addelementtomodel(&coding-modelO);
escape = addelement to model(&coding-modell);
update_m o del(&codinlmodel), escape, 1);
update model(&codingmodell, escape, 1);
new_symbol = add_elementto_model(&codingmodelO); 190
newsymbol = add element to_model(&coding_modell);
update model(&codingmodel0, new_symbol, 1);
update_model(&coding modell, new_symbol, 1);

/* Read run-length statistics, updating encoder models (if specified). */
if (RLFILENAME[O] != '\0')
{
rl = fopen(RLFILENAME,"r");
if (rl == NULL)
reporterrorand abort("Unable to open run-length statistics file %s.\n", 200

RLFILENAME);
for (i=O; i<=maxX; i++)
{ fscanf(rl, "%d %d", &statsO, &statsl);

update_model(&codingmodelO, i, (int) (statsO * RL_STATSWEIGHT));
update_model(&codingmodell, i, (int) (statsl * RLSTATSWEIGHT));

fclose(rl);
}

/* Initialize AC decoder. */ 210
open_ACdecoder(&decoder, read_CAFC);

/ * Initialize symbol library. */
symbol_library = NULL;

/* Obtain pointer to previous residue scan-line. */
residue_prevline = buffer_prevline(residue_buffer);

/* Decode the image. */
line = 0; / * initialize line number */ 220
lineswritten = 0; /* Initialize # lines written. */
element = decode_element(&decoder,&coding_modelO); /* Decode 1st element. */

/ * Decode until last symbol is reached and all lines have been written. */
while ((element != escape) II (lines_written < line))

if (element != escape)
{

/* Decode a scan-line. */
pos = 0; /* Start at leftmost pizel. */ 230
line++; /* Advance to next scan-line. */

while (pos < maxX)

/* Decode AC element. */
if (element > maxX) /* Is this a repeated symbol? */

/ * If so, add to symbol list for future substitution. */
i = (symbol_liststart + symbol-list_size) % symbollist max;
symbollist size++; 240
symbollist[i].AC_element = element;
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symbollist[i].pos = pos; symbollist[i].line = line;
symbol_list[i].new = 0;

/* Update AC model and decode next AC element. */
update_model(&codingmodelO,element,l);
updatemodel(&codingmodell,element,l);
element = decode element(&decoder,&coding_modelO);

else 250
( /* Decode a run of Os (vertically adjacent pixels same). */

for (i=O; i<element; i++)
( destbuffer[dest_buffline][pos] = residueprevline[pos];
residue_buffer[destbuffline][pos] = residue-prev_line[pos];
pos++;

}

/* Update AC model. */
update_model(&coding-modelO,element,1);

260
/ * If not end of line, decode next element - symbol or run of 1s. */
if (pos >= maxX)

element = decode_element(&decoder,&coding_modelO);
else
{ element = decode_element(&decoder,&coding_modell);

/ * Examine decoded element. */
if (element == new_symbol) / * new symbol? $/

{
/ * Add to symbol list for future isolation. $/ 270
i = (symbol_liststart + symbollist_size) % symbol_list_max;
symbollistsize++;
symbollist[i].ACelement =

add element to model(&coding_modelO);
symbol-list[i].AC element =

add element to model(&coding_modell);
symbolJlist[i].pos = pos; symbollist[i].line = line;
symbollist[i].new = 1;

/* Update AC model and decode nezt element. */ 280
update_model(&codingmodelO,symbolJist i].ACelement,l);
update_model(&codingmodell,symbollist[i].AC_element,l);
update_model(&coding_modell,element,l);
element = decode_element(&decoder,&coding-modell);

/* Decode run of is (vertically adjacent pixels different). */
for (i=pos; i < pos+element; i++)

{ if (residue_prev line[i] == WHITE)
destbuestufferdestbuffine][i] = BLACK;

else 290
destbuffer[destbuffline] [i] = WHITE;
residue buffer[dest buff line][i] =

destbuffer[destbuff line][i];

pos += element;
}

else if (element > maxX) /* Is this a repeated symbol? */
{

/ * If so, add to symbol list for future substitution. */
i = (symbollist_start + symbollist.size) % symbollistmax; 300
symbollist_size++;
symbol list[i].ACelement = element;
symbollist[i].pos = pos; symbollist[i].line = line;
symbol-list[i].new = 0;

/ * Update AC model. */
updatemodel(&coding_modelO,element,1);
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}
else 310

{ /* Decode run of ls (vertically adjacent pixels different) */
for (i=pos; i < pos+element; i++)

( if (residue_prevline[i] == WHITE)
destbuffer[dest_buff line][i] = BLACK;

else
destbuffer[destbuff line][i] = WHITE;
residuebuffer[destbuff line][i] =

dest_buffer[dest_buff-line] [i];

pos += element; 320

/* Update AC model and decode next element. */
update_model(&codingmodell ,element,1);
element = decode_element(&decoder,&codingmodelO);

330
/* Advance to the next destination scan-line. */
if (destbuff line < (NLINES - 1))
{ residue_prev line = residuebuffer[destbuff line];

dest buff line++;

else
{ / * Determine if symbols were marked for isolation or substitution. */

while ((symbollistsize > 0) &&
(symbollist[symbolliststart].line == (lines_written + 1)))

{ 340
if (symbollist[symbol_list start].new)
{ /* Isolate new symbol and add to symbol library. */
detected_symbol =

isolate symbol(residuebuffer,
symbol_list[symbol_list_start].pos);

if (detected_symbol == NULL)
reporterrorand_abort("Maj or internal decoding error.");

symbollibrary =
add_symbolto_library(symbollibrary, detected_symbol);

symbollibrary->AC_element = 350
symbol_list [symbol_list_start] .AC element;

else
{ / * Search library for original version of symbol. */

matched_entry = symbol_library;
while (matchedentry->AC_element !=

symbol_list[symbol_list_start] .AC_element)
matched_entry = matched_entry->nextentry;

/* Copy symbol to destination buffer. */ 360
for (j = 0; j < matched_entry->symbol->maxY; j++)

for (i = 0; i < matchedentry->symbol->maxX; i++)
if (matched_entry->symbol->bitmap[j][i] == BLACK)

dest_bufferlj][i + symbol_list[symbol_list_start].pos -
matched_entry->symbol->shift] = BLACK;

/* Remove request from symbol list. */
symbol_listsize--;
symbol_list_start = (symbol-liststart + 1) % symbollistmax; 370

/* Generate residue, scroll output buffers... */
for (i=O; i<maxX; i++)

if (residuebuffer[O][i] != WHITE)
residue_buffer[O][i] = BLACK;
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}
}

scrollbuffer(dest buffer);
scrollbuffer(residue_buffer);
residue preyline = residue buffer[dest_buff line - 1];
lineswritten++;

380

/ * Close output files. AC decoding complete. */
close ACdecoder (&decoder);
close buffer(dest buffer);
closebuffer (residue buffer);
fclose(CAFC_src);

}

E.4 Source Code - Symbol Matching

File match. h:

Name: match.h
Purpose: This header file contains definitions used by the symbol matching

routines (match.c).

Last Modified on 12/30/93
**** ***** **************** ******** ***************************

/* declarations for symbol matching routines */
int symbolsmatch(); 10
int features-match();
int templates-match();

File match. c:

Name: match.c
Purpose: This file contains routines for matching symbols (feature matching

and template matching).

Contents:
symbols_match(sl, s2) => Determines if two symbols match based upon

feature matching and template matching.
features_match(sl, s2) => Determines if two symbols match based upon

feature matching.
templates_match(sl, s2) => Determines if two symbols match based upon

template matching.

Last modified on 12/30/93
** *********** ************** *************** ***************$*$ **************

#include<stdio.h>
#include<stdlib.h>
#include"CAFC. h"
#include" PCXut i .h"
#include" symbol.h"
#include"features. h"
#include"match. h"
/ * Definition for arrays containing features matching parameters. */
int feature_match thresholdl = FEATUREMATCHTHRESHOLD;
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/ * thresholds to use for matching */
int feature_effectivenessO = FEATURE_EFFECTIVENESS;

/* effectiveness of features */
/ ******************************************$$*$$********************** *30**$ 30

symbols_match:
Determines if the two specified symbols are a good match using
feature matching and template matching. Returns 1 if they are and 0
otherwise.

int symbols_match(sl, s2)
SYMBOL *sl1, *s2;
{

if (features_match(sl, s2))
if (templates_match(sl, s2)) 40

return(1);
else

return(0);

features_match:
Using the CAFC feature matching algorithm, determines if the two
specified symbols are likely to be a good match. Returns 1 if they
are and 0 otherwise. 50

**** ***************************$********************** ****** ****** ***
int features match(sl, s2)
SYMBOL *sl, *s2;
{ int i;

int fl, f2;
int diff;
int eliminated;

eliminated = 0;
i=0; 60

/* Attempt to match the symbols using succesive features. */
while ((i < NFEATURES) && (! eliminated))

/* Extract the features from the two symbols. */
fl = extractfeature(sl,i);
f2 = extract_feature(s2,i);

/* if the abolute difference exceeds the threshold, eliminate. */
diff = (fl - f2); 70
if (diff < 0)

diff = -diff;
if (diff >= feature match threshold[i)

eliminated = 1;
i++;

}
return (! eliminated);

}

/ ***************************$*********************************************** 80
templates match:

Using the CAFC template matching algorithm, determines if the two
specified symbols are a good match. Returns 1 if they are and 0
otherwise.

****$***************** * * ******* *************************************** ******
int templatesmatch(sl, s2)
SYMBOL *sl, *s2;

int x, y, t_x, ty;
int sl_moment_mome momenty,s2 moment_x,s2 momenty; so
int sl tot_black,s2.tot_black;
float correlation;

/ * Compute the "center of mass" for sl to resolution of 1/8 pixel. */
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sl_momentx = 0; sl momenty = 0;
sltot black = 0;
for (x=0O; x < sl->maxX; x++)

for (y=O; y < sl->maxY; y++)
if (sl->bitmap[y][x] == BLACK)

{ sl_momentx += x; 100
slmoment.y += y;
sl_tot_black++;

sl_moment_x = 2 * slmomentx / sl_tot_black;
sl_momenty = 2 * slmomenty / sl_totblack;

/ * Compute the "center of mass" for s2 to resolution of 1/8 pixel. */
s2_momentx = 0; s2_moment.y = 0;
s2totblack = 0;
for (x=0; x < s2->maxX; x++) 110

for (y=O; y < s2->maxY; y++)
if (s2->bitmap[y][x] == BLACK)

{ s2_moment_x += x;
s2_moment y += y;
s2_totblack++;

s2_momentx = 2 * s2_momentx / s2_totblack;
s2_momenty = 2 * s2_momenty / s2_totblack;

/* Make sure symbols are lined up well. */ 120
if ((abs(sl momentx - s2_momentx) <= TEMPLATE_MAXIMUM_SHIFT_X) &&

(abs(slmomenty - s2_momenty) <= TEMPLATE_MAXIMUM_SHIFTY))

/* Now compute the cross-correlation. */
correlation = 0.0;
for (y=0; (y < (sl->maxY*2)); y++)

for (x=0; (x < (sl->maxX*2)); x++)
{ tx = (x - sl_momentx + s2_moment_x)/2;
ty = (y - sl_momenty + s2_moment.y)/2;
if ((tx >= 0) && (ty >= 0) && 130

(tx < s2->maxX) && (ty < s2->maxY))
correlation += (sl->bitmap[y/2][x/2] == BLACK) *

(s2->bitmap[ty][tx] == BLACK);

/* This is actually the square of the correlation... */
correlation = correlation * correlation /

(sl_tot_black * s2_tot_black * 4 * 4);

/ * If correlation is high enough, symbols are considered a match. */ 140
return(correlation > TEMPLATE_MATCH_THRESHOLD);

else
return(0);

E.5 Source Code - Feature Extraction

File features.h:

Name: features.h
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Purpose: This header file contains definitions used by the feature extraction
routines (features.c).

Last Modified on 12/30/93* ****************** ********** ******************* ******* **** /
/* declaration of features */ 10
int width();

int height();
int black-pels();
int whitepels();
int horizrunlengths();
int vert runlengths();
int moment_x();
int momenty();
int average_width();

20
/* arrays that contain the features and feature names */
extern int (*featuresO) ();
extern char *featurenamesn;

/* declarations for feature extraction routine */
int extract feature();

File features.c:

Name: features. c
Purpose: This file contains routines to extract the symbol features

used by Content-Adaptive Facsimile Coding (CAFC).

Contents:
eztractfeature(symbol, f index) => Extracts specified feature from symbol.

definitions for all features used in CAFC
10

Last modified on 12/23/93
***********$****************************** *******************

#include<stdio.h>
#include"CAFC. h"
#include"PCX_util .h"
#include" symbol. h"
#include"f eatures .h"
/* Definition for arrays containing features and feature names. */ 20
int (*featuresf) () = FEATURES; /* functions to compute features */
char *featurenameso = FEATURENAMES; /* corresponding features names */
/ ************************$*************

eztractfeature:
Given a feature index number, extracts the feature from the symbol. If
the feature had been previously extracted, the value is obtained from
the SYMBOL structure. Othertise it is computed and stored away for
possible later use.

************************************* * ********* ***** ************
int extract_feature(symbol, f index) 30
SYMBOL *symbol;
int f index;
{
/* If feature has not already been determined for this symbol, compute it. */
if (! symbol->fknown[findex])

symbol->features[fjindex] = (*features[findex]) (symbol);
symbol->fknown[findex] = 1;
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40
/* Return feature value. */
return(symbol->features[findex]);

I****************************************************************** ********/
/* FEATURES BEGIN HERE */

/* Width of the symbol in pixels. */
int width(s) 50
SYMBOL *s;
( return(s->maxX);
}

/* Height of the symbol in pixels. */
int height(s)
SYMBOL *s;
( return(s->maxY);
}

60
/ * Total number of black pixels in the symbol. */
int black_pels(s)
SYMBOL *s;
{ int x,y;

int tot blackpels;

tot black pels = 0;
for (y=O; y < s->maxY; y++)

for (x=O; x < s->maxX; x++)
totblack_pels += (s->bitmap[y][x] == BLACK); 70

return(totblackpels);
}

/* Total number of white pixels in the symbol. */
int white_pels(s)
SYMBOL *s;
{ int x,y;

int tot white_pels;

tot white pels = 0; 80
for (y=O; y < s->maxY; y++)

for (x=O; x < s->maxX; x++)
tot_white_pels += (s->bitmap[y][x] == WHITE);

return(tot_white els);

/* Total number of horizontal black run-lengths in the symbol. */
int horizrun_lengths(s)
SYMBOL *s;
{ int x,y; 90
int tot runlengths;

tot run lengths = 0;
for (y=O; y < s->maxY; y++)

for (x=0; x < s->maxX; x++)
if (s->bitmap[y][x] == BLACK)

if (x == (s->maxX - 1))
totrunlengths++;

else if (s->bitmap[y][x+1] == WHITE)
tot_runlengths++; 100

return(tot_runlengths);

/* Total number of vertical black run-lengths in the symbol. */
int vert run_lengths(s)
SYMBOL *s;
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{ int x,y;
int tot_runlengths;

110
totrunlengths = 0;
for (x=O; x < s->maxX; x++)

for (y=O; y < s-:>maxY; y++)
if (s->bitmap[y ][x] == BLACK)

if (y == (s-->maxY - 1))
totrun_lerigths++;

else if (s-'>bitmap[y+1][x] == WHITE)
totrun_lengths++;

return(tot-runlengths);
} 120

/ * Horizontal moment of symbol. */
int moment x(s)
SYMBOL *s;
{ int x,y;

int moment, tot_black;

moment = 0; tot_black = 0;
for (x=O; x < s->maxX; x++)

for (y=O; y < s-'>maxY; y++) 130
if (s->bitmap[y][x] == BLACK)

{ moment += x;
tot black++;

}

return(moment/tot, black);

/ * Vertical moment of symbol. */
int moment y(s) 140
SYMBOL *s;
{ int x,y;

int moment, tot_black;

mrloment = 0; totblack = 0;
for (x=O; x < s->maxX; x++)

for (y=O; y < s->maxY; y++)
if (s->bitmap[y][x] == BLACK)

{ moment +:= y;
tot black+-t; 150

}

return(moment/tot.black);

/ * Average width. */
int averagewidth(s)
SYMBOL *s;
{ i:nt y;

inlt left, right; 160
int totwidth;

tot width = 0;

for (y=O; y < s->maxY; y++)
{

left = 0;
while ((left < s->maxX) && (s->bitmap[y][left] == WHITE))

left++;
170

right = s->maxX -- 1;
while ((right > 0) && (s->bitmap[y][right] == WHITE))
right--;

if (right != 0)
tot-width += right - left + 1;
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return(totwidth/s->maxY);
} 180

E.6 Source Code - Symbol Library Management

File library.h:

Name: library.h
Purpose: This header file contains definitions used by the library managment

routines (library. c).

Last Modified on 12/29/93
***************** ******************************$ **$$$ $**$ $**********$******

/ * definition for symbol library type */
typedef struct library_entry 10

{ SYMBOL *symbol; /* the symbol itself */
int n_occurrences; /* number of times it has occurred in document */
int AC_element; /* arithmetic coding element number */
struct library_entry *next_entry; /* pointer to the nezt library entry */

) LIBRARY;

/* declarations for library managment routines */
LIBRARY *add_symbolto_library();
LIBRARY *lookup_symbol();

File library.c:

Name: library. c
Purpose: This file contains routines for manipulating symbol libraries.

The LIBRARY structure is defined in library.h

Contents:
add_symboltolibrary(symbol_library, symbol) => Create new library entry

with specified symbol.
lookup_symbol(symbol_library, symbol, compare) => Search library for

matching symbol.

Last modified on 12/29/93*$******* ***include<stdio.h>********$* *
#include<stdio.h>
#include<stdlib.h>
#include"CAFC. h"
#include" symbol. h"
#include"l ibrary. h"

add symbol tolibrary:
Adds a symbol to a symbol library. Returns a new pointer to the library.

LIBRARY *addsymbol_to_library(symbollibrary, symbol)
LIBRARY *symbollibrary;
SYMBOL *symbol;

10

20
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{ LIBRARY *new_entry;
30

/* Allocate space for the new library entry and initialize. $/
new_entry = (LIBRARY *) malloc(sizeof(LIBRARY));
new_entry->symbol = symbol; /* use specified symbol */
new_entry->noccurrences = 0; /* initially 0 occurrences */

/* Link new entry to symbol library. */
newentry->next_entry = symbollibrary;

/* Return new pointer to symbol library. */
return(new_entry); 40

}

lookup_symbol:
Determines if a specified symbol can be matched to one in a symbol
library. Takes as argments pointers to the symbol library, the
symbol, and a function to perform the comparisons. If a successful
match is made, a pointer to the matching library entry is returned.
Otherwise, NULL is returned. The library is automatically sorted
so that the more frequently-occurring symbols are kept at the beginning. 50

******** ****************** *****************************************
LIBRARY *lookup_symbol(symbol_library, symbol, compare)
LIBRARY *symbol_library;
SYMBOL *symbol;
int (*compare) ();
{ int found;

LIBRARY *libptr; /* pointer to search the library */
SYMBOL *temp_symbol; /* temporary variables */
int temp_int; / * used for swapping */

60
lib_ptr = symbollibrary;

/ * Search symbol library for matching symbol. */
found = 0;
while ((libptr != NULL) && (! found))

if ((*compare) (symbol, lib.ptr->symbol))
found = 1;

else
libptr = lib_ptr->nextentry;

70
/ * If there was a match, return pointer to that entry; otherwise, NULL. */
if (found)

/ * Increment number of occurrences. */
lib ptr- >noccurrences++;

/ * Move to new position in library to keep sorted. */
found = 0;

while (! found) 80
if (symbol_library- > noccurrences <= lib_ptr- >noccurrences)

{ found = 1;

/ * swap the contents of the library entries */
temp.symbol = lib.ptr->symbol;
lib-ptr->symbol = symbol_library->symbol;
symbol_library->symbol = temp symbol;
temp int = lib_ptr->ACelement;
libptr->AC_element = symbol_library->AC_element;
symbol_library->AC_element = tempint; 9so
tempint = lib_ptr->noccurrences;
libptr->n_occurrences = symbol_library->n_occurrences;
symbol_library->n_occurrences = temp_int;

else
symbol_library = symbollibrary->next_entry;
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return(symbol_library);

else loo
return(NULL);

E.7 Source Code - Symbol Isolation

File symbolilling. c:

Name: symbol filling.c
Purpose: Performs the symbol isolation stage of Content-Adaptive Facsimile

Coding using the symbol filling technique.

Contents:
symbol.. filling_isolate(buffer,position,residue_line)

=> Attempts to isolate a particular symbol given
a source buffer and position of reference pixel.

symboljfilling_remove(symbol,position, buffer,residue_line) 10
=> Removes a detected symbol from the source buffer.

symbol filling_.scroll(buffer, residueline)
=> Scrolls the source buffer up one scan-line in

a manner that preserves important side information
used by symbolfilling_isolate and updates the
residue scan-line.

Last modified on 12/17/93
********************************* *** *************** ***** **************** *
#include<stdio.h> 20
#include<stdlib.h>
#include"CAFC. h"
#include"PCXut i l . h "

#include"PCXbuf f er. h"
#include"symbol. h"

/* additional pixel representations (for black foreground) */
#define SYMBOL PIXEL 3
#define NON_SYMBOL 4

30
/* global variables used during isolation */
int left, right, top, bottom; / * boundries of symbol */
byte tag; /* value to use when tagging pixels */
byte **buffer; /* buffer to scan for symbols */
int maxX, nlines; /$ boundries of buffer */

fill: Takes as arguments the coordinates of a black pixel in the source
buffer. Uses a flood-fill algorithm to tag the entire cluster of 40
contiguous black pizels. In the process, determines the maximum
boundries of this cluster. This function is internal to
symbol_filling.c.

The algorithm first tags all contiguous black pixels in the
horizontal scan-line segment consisting of the specified pixel.
Then, it recursively calls itself with the coordinates of all black
pixels immediately above and below this segment.

The following global variables are used and assumed to be preset with 50
the appropriate values prior to the call to this function:

byte **buffer => two-dimensional array of pixels to scan
int maxX, nlines => horizonal and vertical dimensions of this array
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int left, right, => outermost boundries of filled region -- assumes that
top, bottom => initially left=right=x and top=bottom=y
byte tag => value to tag region with** ******$ * ******************* ************ *$** ** *

void fill(x, y)
int x, y; 60
{ int lineleft,lineright; /* boundries of current scan-line */

/* Tag all contiguous black pixels to the left on current scan-line (y). */
line_left = x;
while ((line_left > 0) && (buffer[y][line left] == BLACK))
( buffer[y][line_left] = tag;
lineleft--;

}

/ * Check for special case of left edge of buffer. */ 70
if ((line_left == 0) && (buffer[y][0] == BLACK))

buffer[y][lineleft] = tag;
else

lineleft++; / * line_left gets leftmost tagged pixel. */

/* Tag all contiguous black pixels to the right on current scanline (y). */
if (x == (maxX - 1)) / * If we are already at the rightmost edge, */

line_right = x; /* skip this part. */
else

{ line_right = x + 1; 80
while ((line_right < (maxX - 1)) && (buffer[y][line_right] == BLACK))
( buffer[y][lineright] = tag;

line_right++;
}

/* Check for special case of right edge of buffer. */
if ((lineright == (maxX - 1)) && (buffer[y][maxX - 1] == BLACK))

buffer[y][line_right] = tag;
else

line_right--; / * lineright gets rightmost tagged pixel. */ 90
}

/ * Expand left and right boundries if necessary. */
if (line left < left) left = line left;
if (line right > right) right = line_right;

I* For all black pixels above and below tagged segment, recursively call
fill. Expand top and bottom boundries when necessary. */

for (x = (lineleft - 1); x <= (line_right + 1); x++)
if ((x >= 0) && (x < maxX)) 100
{ if (y > 0)

if (buffer[y - 1][x] == BLACK)
{ if ((y - 1) < top)

top = y - 1;
fill(x, y - 1);

if (y < (nlines- 1))
if (buffer[y + 1][x] == BLACK)

( if ((y + 1) > bottom)
bottom = y + 1; 110

fill(x, y + 1);

}/**$symbol fillingjso

symbolfilling_isolate:
Given a source buffer and location of a reference black pixel,
attempts to isolate a cluster of contiguous black pixels to form
a symbol. If a cluster can be isolated that fits within the allowed 120
size constraints, it is returned in the form of a symbol structure.
Otherwise, NULL is returned.
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Important side information is stored in the buffer so that large
clusters are handled correctly. The caller should not directly access
the buffer. Instead, a seperate one-dimensional array of pixels,
residue-line, should be maintained that contains only the first
scan-line of the buffer. It is automatically updated with the
symbolfilling_scroll function. Detected symbols can be properly
removed from the source image with the symbolfilling_remove function. 130

The following constants must be defined:
MAX_SYMBOL_HEIGHT, MAX_SYMBOL_WIDTH => maximum allowed symbol size
MIN_ SYMBOL_HEIGHT, MIN SYMBOL WIDTH => minimum allowed symbol size** *** *** ******** ********************$*******************************/

SYMBOL *symbol_fillingisolate(source_buffer, position)
byte **source buffer;
int position;
{ int x,y;

SYMBOL *detected_symbol; 140

/* Make sure that pizel in specified position is a possible candidate. */
if (source_buffer[0][position] == BLACK)
{

/ * Assign appropriate values to global variables referring to buffer. */
buffer = source buffer;
maxX = buffer maxX(buffer); nlines = buffernlines(buffer);

/ * Fill contiguous black region with the value SYMBOLPIXEL. */
left = position; right = position; top = 0; bottom = 0; 150
tag = SYMBOL_PIXEL;
fill(position, 0);

/ * If region fits within the symbol size constraints, it is a symbol. */
if (((bottom + 1) <= MAX_SYMBOLHEIGHT) &&

((right - left + 1) <= MAX_SYMBOL_WIDTH) &&
((bottom + 1) >= MIN SYMBOL_HEIGHT) &&
((right - left + 1) >= MIN_SYMBOL_WIDTH))

/* Create a new symbol structure for this symbol. */ 160
detected_symbol = create.symbol(right-left+l, bottom+l, position-left);

/* Copy the symbol to the bitmap field. */
for (y = 0; y <= bottom; y++)

for (x=left; x <= right; x++)
detected_symbol->bitmap[y][x - left] =

(sourcebuffer[y][x] == SYMBOLPIXEL) ? BLACK: WHITE;

else /* otherwise, not a symbol */
detected_symbol = NULL; 170

/* Retag all black pixels as NON-SYMBOL. */
for (y=O; y <= bottom; y++)
for (x=left; x <= right; x++)

if (sourcebuffer[y][x] == SYMBOL-PIXEL)
source buffer[y][x] = NON_SYMBOL;

else
detected_symbol = NULL;

180
return(detected_symbol);

/symbolling************************************e:
symbolfillingremove:

Given a detected symbol, its location, the source buffer, and a
seperate residue scan-line array, erases the symbol from the source
buffer and residue line. This prevents the symbol from being detected
again or from appearing in subsequent residue lines.

· *$*********************************$******************** *******$** 190
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void symbolfillingremove(detectedsymbol, position,
sourcebuffer, residueline)

SYMBOL *detectedsymbol;
int position;
byte **sourcebuffer;
byte *residueline;
{ int x,y;

/ * Erase symbol from source buffer. */
for (y = 0; y < detected_symbol->maxY; y++) 200

for (x = 0; x < detectedsymbol->maxX; x++)
if (detectedsymbol->bitmap[y][x] == BLACK)

sourcebuffer[y][x + position - detected_symbol->shift] = WHITE;

/ * Remove symbol from residueline. */
for (x = 0; x < detected_symbol->maxX; x++)

if (detected_symbol->bitmap[0][x] == BLACK)
residueline[x + position - detectedsymbol->shift] = WHITE;

210
/ *****************************************************************************

symbol filling_scroll:
Scrolls a buffer up by one scan-line. In the process, propogates
down any pizels marked as NON-SYMBOL so that they will not later
be incorrectly isolated. In addition, generates a new residueline.* ****** $** **************************$$********** **************$*

void symbolfilling scroll(source_buffer,residueline)
byte **source_buffer;
byte *residueline;
{ int x; 220

/ * Scroll up buffer and scan next line. */
scroll_buffer (sourcebuffer);

/* Determine dimensions of buffer. */
maxX = buffermaxX(source_buffer);
nlines = buffer nlines(source_buffer);

/ * Propogate down any non-symbols that could not fit in buffer. */
tag = NON_SYMBOL; 230
buffer = source_buffer;
for (x=0; x<maxX; x++)

if (source_buffer[nlines - 2][x] == NON_SYMBOL)
{ if (source_buffer[nlines - 1][x] == BLACK)

fill(x, nlines - 1);
if (x > 0)

if (source buffer[nlines - 1][x - 1] == BLACK)
fill(x - 1, nlines - 1);

if (x < (maxX - 1))
if (sourcebuffer[nlines - 1][x + 1] == BLACK) 240

fill(x + 1, nlines - 1);

/* Generate new residueline. */
for (x=O; x<maxX; x++)

residue_line[x] = (source buffer[0][x] == WHITE) ? WHITE: BLACK;

File symbol-tracing. c:

/***********************************$****************************************
Name: symbol_tracing. c
Purpose: Performs the symbol isolation stage of Content-Adaptive Facsimile

Coding using the symbol tracing technique.
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Contents:
symboltracing isolate(buffer,position,residue_line)

=> Attempts to isolate a particular symbol given
a source buffer and position of reference pixel.

symboltracing_remove(symbol,position, buffer,residue_line) 10
=> Removes a detected symbol from the source buffer.

symboltracing_scroll(buffer, residue_line)
=> Scrolls the source buffer up one scan-line,

updating the residue scan-line.

Last modified on 12/20/93
****include<stdio.h>****** **** **** *****

#include<stdio.h>
#include<stdlib.h>
#include"CAFC. h" 20
#include"PCX_util. h"
#include"PCXbuf f er .h"
#include" symbol. h"

/* additional pixel representations (for black foreground) */
#deflne BOUNDRY 5
#define DOUBLEBOUNDRY 6
#define NONSYMBOL_BOUNDRY 7

/* global variables used during isolation */ 30
int left, right, top, bottom; / * boundries of symbol */
byte **buffer; /* buffer to scan for symbols */
byte *prev_line; /* scan-line immediately preceeding buffer */
int maxX, nlines; /* boundries of buffer */

trace: Takes as arguments the coordinates of a black pixel in the source
buffer. Uses a contour tracing algorithm to tag the outline of
a black cluster in the image. In the process, determines the maximum
boundries of this cluster. Returns 1 if the trace ends on the same 40
pixel that it started. This function is internal to symbol_tracing.c.

The specified pixel is used as a starting point for the trace and
should be on the right or upper boundry of the black object. The
trace is performed in the clockwise direction and ends when the
original pixel is retraced in the same direction or when the upper
or lower ends of the buffer are exceeded. The right and left ends of
each horizontal segment in the object are tagged with the value
provided in the argument boundry_tag or, when this segment is just
one pixel wide, doubleboundry_tag. 50

The following global variables are used and assumed to be preset with
the appropriate values prior to the call to this function:

byte **buffer => two-dimensional array of pixels to scan
byte *prev_line => scan-line immediately preceeding buffer
int maxX, nlines => horizonal and vertical dimensions of this array
int left, right, => outermost boundries of traced region provided here

top, bottom
it*****tra **tartxstto**r**** g,***** $********oubl** **$**ou n***** 60
int trace(start_x, start y, boundrytag, double_boundrytag)
int startx, starty, boundry.tag, doubleboundrytag;
{ int dx, dy, temp; / * direction of trace */

int x, y; / * position of current pixel in trace */
pixel p;

/ * Initialize starting pixel, outermost traced boundries, and direction. */
x = start_x; y = starty; / * starting pixel */
left = x; right = x; top = y; bottom = y; /* outer boundries */
dx = 1; dy = 0; /* initial direction / 70

/ * Trace until starting point is reached in the same direction or
the top (including prev_line) or bottom of the buffer is exceeded. */

while ((! ((dx == 1) && (dy == -1) && (x == startx) && (y == starty))) &&
((y + dy) >= -1) && ((y + dy) < nlines))
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/ * Determine color of pixel in current direction, WHITE if beyond edge. */
if (((x + dx) >= 0) && ((x + dx) < maxX))
if ((y + dy) == -1)

p = prevline[x+dx]; 80
else

p = buffer[y+dy][x+dx];
else

p = WHITE;

/ * If this pixel is white, tag if necessary and rotate clockwise. */
if (p == WHITE)

{
/* Tag the current pixel the direction passes through horizontal. */
if ((dy == 0) && (y >= 0)) 90

if (buffer[y]l[x] == boundry_tag)
buffer[y][x] = doubleboundry_tag; /* If already tagged, use */

else /* double_boundry_tag. */
buffer[y][x] = boundrytag;

/* Rotate clockwise 45 degrees. $/
temp = dx - dy; dy = dx + dy; dx = temp;
dx = (dx > 0) - (dx < 0);
dy = (dy > 0) - (dy < 0);

} 100
else /* Otherwise, we found the next pixel in the trace. */

/* Move in this direction, expanding outer boundries if necessary. */
x += dx; y += dy;
if (x > right) right = x;
if (y > bottom) bottom = y;
if (x < left) left = x;
if (y < top) top = y;

/* Rotate counter-clockwise by 135 degrees to search for next pixel. */ 110
temp = dy - dx; dy = -dx - dy; dx = temp;
dx = (dx > 0) - (dx < 0);
dy = (dy > 0) - (dy < 0);

}
/* Return a I if ending pixel is the same as starting pixel, otherwise 0. */
return((x == start_x) && (y == starty));

****************************$************************************************ 120

symboltracing_isolate:
Given a source buffer and location of a reference black pixel,
attempts to isolate a cluster of black pixels through contour tracing
to form a symbol. If a cluster can be isolated that fits within the
allowed size constraints, it is returned in the form of a symbol
structure. Otherwise, NULL is returned.

Important side information is stored in the buffer so that large
objects are handled correctly. The caller should not directly access
the buffer. Instead, a seperate one-dimensional array of pixels, 130
residueline, should be maintained that contains only the first
scan-line of the buffer. It is automatically updated with the
symbol_tracing_scroll function. Detected symbols can be properly
removed from the source image with the symbol_tracing_remove function.

The following constants must be defined:
MAX_SYMBOL_HEIGHT, MAX SYMBOL WIDTH => mazimum allowed symbol size
MIN SYMBOL HEIGHT, MINSYMBOL_WIDTH => minimum allowed symbol size

*********************************** **************************** * **********/
SYMBOL *symbol_tracing_isolate(source_buffer, position) 140
byte **source buffer;
int position;
{ SYMBOL *detected_symbol;
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int x,y,i;
int in_symbol, valid_symbol, valid_pixel;

/ * Assign appropriate values to global variables referring to buffer. */
buffer = source buffer;
maxX = buffermaxX(buffer); nlines = buffernlines(buffer);
prev_line = buffer_prev_line(buffer); 150

/* Determine position of the pixel farthest to the right in black segment. $/

i = position;
while ((i < (maxX - 1)) && (buffer[0][i] != WHITE))

i++;
if (buffer[0][i] == WHITE)
i--;

/ * Determine if this is a valid starting pixel. It must be BLACK (not tagged
from a previous trace) and its upper right neighbor must be WHITE. */ 160

validpixel = (buffer[0][i] == BLACK);
if (i < (maxX - 1))

if (prev_line[i + 1] != WHITE)
validpixel = 0;

/ * Proceed only if this is a valid starting pixel. */
if (valid_pixel)

/* Trace. Symbol is only valid if trace ends where it started. */
validsymbol = trace(i,0,BOUNDRY,DOUBLEBOUNDRY); 170

/ * Determine if traced region is within the size contraints of a symbol. */
validsymbol &= ((bottom + 1) <= MAX_SYMBOL_HEIGHT) &&

((right - left + 1) <= MAX_SYMBOL_WIDTH) &&
((bottom + 1) >= MIN_SYMBOL HEIGHT) &&
((right - left + 1) >= MIN_SYMBOL_WIDTH);

/ * If region is a valid symbol, proceed. */
if (valid_symbol)

180
/* Create a new symbol structure for this symbol. */
detected_symbol = create_symbol(right-left+1, bottom+1, position-left);

/ * Copy the symbol to the bitmap field. */
for (y = 0; y < detected_symbol->maxY; y++)

for (x=left, insymbol = 0; x <= right; x++)
if (sourcebuffer[y][x] == BOUNDRY)

{ in_symbol = ! in_symbol;
detected_symbol->bitmap[y][x - left] = BLACK;

} 190
else if (source buffer[y][x] == DOUBLEJBOUNDRY)

detected_symbol->bitmap[y][x - left] = BLACK;
else

detected_symbol->bitmap[y][x - left] =
(in-symbol) ? source_buffer[y][x]: WHITE;

else /* otherwise, no detected symbol */
detected_symbol = NULL;

/* Retag all boundry pizels as NON SYMBOLBOUNDRY. */ 200
trace(i,0,NON_SYMBOLBOUNDRY,NONSYMBOL_BOUNDRY);

else
detected_symbol = NULL;

return(detectedsymbol);

/symboltracing**********************************remove: 21*****

symboltracing remove: 210
Given a detected symbol, its location, the source buffer, and a
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seperate residue scan-line array, erases the symbol from the source
buffer and residue line. This prevents the symbol from being detected
again or from appearing in subsequent residue lines.

************************************************************* *************
void symbol_tracingremove(detected_symbol, position,

source-buffer, residueline)
SYMBOL *detectedsymbol;
int position;
byte **sourcebuffer; 220
byte *residue_line;
{ int x,y;

/ * Erase symbol from source buffer. */
for (y = 0; y < detected_symbol->maxY; y++)

for (x = 0; x < detected_symbol->maxX; x++)
if (detected_symbol->bitmap[y][x] == BLACK)

sourcebuffer[y][x + position - detected_symbol->shift] = WHITE;

/ * Remove symbol from residue_line. */ 230
for (x = 0; x < detected_symbol->maxX; x++)

if (detected_symbol->bitmap[0][x] == BLACK)
residue_line[x + position - detected_symbol->shift] = WHITE;

/****************************************************************************
symbol_tracing_scroll:

Scrolls a buffer up by one scan-line and generates a new residue _line.
** **** * ******************** ************************* ***

void symbol tracing_scroll(source_buffer,residueline) 240

byte **source_buffer;
byte *residue_line;
{ int x;

/* Determine buffer width and height. */
maxX = buffer_maxX(source_buffer);
nlines = buffer_nlines(source_buffer);

/ * Scroll buffer up one line. */
scroll_buffer(source_buffer); 250

/ * Generate new residue_line. */
for (x=0; x<maxX; x++)

residueline[x] = (source_buffer[0][x] == WHITE) ? WHITE: BLACK;

File symbol-windowing. c:

Name: symbol_windowing. c
Purpose: Performs the symbol isolation stage of Content-Adaptive Facsimile

Coding using the symbol windowing technique.

Contents:
symbolwindowing_isolate(buffer,position, residueline)

=> Attempts to isolate a particular symbol given
a source buffer and position of reference pixel.

symbol windowing_remove(symbol,position, buffer,residueline) 10
=> Removes a detected symbol from the source buffer.

symbolwindowing_scroll(buffer, residueline)
=> Scrolls the source buffer up one scan-line,

updating the residue scan-line.

Last modified on 12/20/93**********include<stdio.h>****************************** 
#include<stdio.h>
#include<stdlib.h>
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#include"CAFC. h" 20
#include"PCXutil. h"
#include" PCXbuf f er. h "
#include" symbol. h"

symbolwindowing_isolate:
Given a source buffer and location of a reference black pixel,
attempts to isolate a cluster of black pixels by systematically
expanding a rectangular window until its border contains only 30
white pixels. If a cluster can be isolated that fits within the
allowed size constraints, it is returned in the form of a symbol
structure. Otherwise, NULL is returned.

The caller should not directly access the buffer. Instead, a
seperate one-dimensional array of pixels, residue line, should
be maintained that contains only the first scan-line of the buffer.
It is automatically updated with the symbol_tracing_scroll function.
Detected symbols can be properly removed from the source image with
the symbol_windowing_remove function. 40

The following constants must be defined:
MAX_SYMBOLHEIGHT, MAX_SYMBOL_WIDTH => maximum allowed symbol size
MINSYMBOL_HEIGHT, MINSYMBOL_ WIDTH => minimum allowed symbol size

********************************************************** ***** *******
SYMBOL *symbolwindowingisolate(source_buffer, position)
byte **sourcebuffer;
int position;
{ SYMBOL *detectedsymbol;

byte *prev_line; 50
int left, right, bottom;
int left_clear, rightclear, top_clear, bottom_clear;
int x, y;
int maxX, nlines;

/ * Assign appropriate values to variables referring to buffer. */
maxX = buffermaxX(source_buffer); nlines = buffernlines(sourcebuffer);
prev_line = buffer_prev_line(source_buffer);

/* Initialize 3 edges of window (4th is the top, in prev_line). */ o60
left = position; right = position; bottom = 1;

/ * Initialize flags which indicate status of each border. */
top_clear = /* Top edge clear if pixel above is WHITE. */

(prev line[position] == WHITE);
leftclear = 0; /* The left edge is initially not clear. */
right_clear = 0; /* The right edge is initially not clear. */
bottom_clear = 0; /* The bottom edge is initially not clear. */

/* Iterate until edges are clear, top is unclear, or window is too big. */ 70
while ((! (leftclear && rightclear && top_clear && bottomclear)) &&

top_clear && ((right-left-1) < MAX_SYMBOLWIDTH) &&
(bottom < MAXSYMBOLHEIGHT))

/* Expand to the left until left is clear, top is not clear,
or size limit is reached. */

while ((top_clear) && (! left_clear) && (left >= 0) &&
((right-left-1) < MAX-SYMBOLWIDTH))

/* Expand one pixel to the left. */ 80
left--;
/ * Determine if new left border is clear. */
left clear = 1;
if (left > 0)

/ * Left is not clear if any pixel in border is not WHITE. */
for (y = 0; y <= bottom; y++)
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if (sourcebuffer[y][left] != WHITE)
leftclear = 0; 90

/* Check new pixel on top and bottom border and update status. */
top_clear &= (prevline[left] == WHITE);
bottom clear &= (source_buffer[bottom][left] == WHITE);

/* Expand to the right until right is clear, top is not clear,
or size limit is reached. */

while ((top_clear) && (! right_clear) && (right < maxX) && 100
((right-left-1) < MAX_SYMBOLWIDTH))

/* Expand one pixel to the right. */
right++;

/ * Determine if new right border is clear. */
right_clear = 1;
if (right < (maxX - 1))
{ for (y = 0; y <= bottom; y++)

if (source_buffer[y][right] != WHITE) 110
rightclear = 0;

/* Check new pixel on top and bottom border and update status. */
top.clear &= (prevline[right] == WHITE);
bottomclear &= (sourcebuffer[bottom][right] == WHITE);

/* Expand down until bottom is clear, sides are not clear,
or size limit is reached. */ 120

if (top_clear)
while ((! bottom_clear) && (bottom < (nlines - 1)) &&

(bottom < MAXSYMBOL_HEIGHT))
{ /* Expand one pixel down. */

bottom++;

/ * Determine if new bottom, left, and right borders are clear. */
bottom clear = 1;
for (x=left + 1; x < right; x++)

bottom-clear &= (source_buffer[bottom][x] == WHITE); 130
if (left >= 0)

left clear &= (sourcebuffer[bottom][left] == WHITE);
if (right < maxX)

right_clear &= (source_buffer[bottom][right] == WHITE);

/ * If all borders are clear and the window is big enough, make a symbol. */
if (leftclear && rightclear && bottomclear && top_clear &&

((right-left-1) >= MINSYMBOL_WIDTH) && (bottom >= MIN_SYMBOL HEIGHT)) 140

/ * Create a new symbol structure for this symbol. */
detected_symbol = create_symbol(right-left-1, bottom, position-left-1);

/* Copy the symbol to the bitmap field. */
for (y = 0; y < detected_symbol->maxY; y++)

for (x=left+l; x < right; x++)
detected_symbol->bitmap[y][x - left - 1] = sourcebuffer[y][x];

}
else /* otherwise, no detected symbol */ 150

detected_symbol = NULL;

return(detected_symbol);
}

/*****************************************************************************
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symbol windowing remove:
Given a detected symbol, its location, the source buffer, and a
seperate residue scan-line array, erases the symbol from the source
buffer and residue line. This prevents the symbol from being detected 160
again or from appearing in subsequent residue lines.** **** **** ************* ***** ******* ***** **** ** ** *1

void symbol_windowingremove(detected_symbol, position,
sourcebuffer, residue_line)

SYMBOL *detectedsymbol;
int position;
byte **sourcebuffer;
byte *residue_line;
{ int x,y;

170
/ * Erase symbol from source buffer. */
for (y = 0; y < detected.symbol->maxY; y++)

for (x = 0; x < detected_symbol->maxX; x++)
sourcebuffer[y][x + position - detected_symbol->shift] = WHITE;

/ * Remove symbol from residueline. */
for (x = 0; x < detected_symbol->maxX; x++)
residue_line[x + position - detected_symbol->shift] = WHITE;

180

symbol_windowing_scroll:
Scrolls a buffer up by one scan-line and generates a new residue line.*****************************$*************

void symbol windowingscroll(source_buffer,residueline)
byte **source buffer;
byte *residue_line;
( int x, maxX;

/* Determine buffer width. */ 190
maxX = buffer_maxX(source_buffer);

/* Scroll buffer up one line. */
scroll_buffer (source buffer);

/* Generate new residueline. */
for (x=0; x < maxX; x++)

residue_line[x] = source buffer[0][x];

E.8 Source Code - Symbol Manipulation

File symbol.c:

Name: symbol.c
Purpose: This file contains routines for manipulating symbol structures.

The SYMBOL structure is defined in symbol.h

Contents:
createsymbol(mazX, mazY, shift) => Create new symbol structure.
free_symbol(old_symbol) => Deallocate memory used by symbol.
display_symbol(symbol) => Displays ASCII version of symbol. 10

Last modified on 12/30/93
*inc**lude **stdio.h*********** **********
#include<stdio.h>
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#include<stdlib.h>
#include" CAFC. h"
#include"PCXuti 1. h"
#include" symbol .h"

20

createsymbol: Creates new symbol structure and initializes its fields
with the specified dimensions and horizontal shift. Returns
a pointer to the symbol.

SYMBOL *create_symbol(maxX, maxY, shift)
int maxX, maxY, shift;
{ SYMBOL *new_symbol;

int i;
30

/* Create a new symbol structure. */
new_symbol = (SYMBOL *) malloc(sizeof(SYMBOL));

/* Create symbol bitmap. */
new_symbol->bitmap = (pixel **) malloc(maxY * sizeof(pixel *));
for (i = 0; i < maxY; i++)

new_symbol->bitmap[i] = (pixel *) malloc(maxX * sizeof(pixel));

/ * Set dimensions. */
newsymbol->maxX = maxX; 40
new_symbol->maxY = maxY;
new_symbol->shift = shift;

/ * Initially, no features are known. */
for (i=0; i<NFEATURES; i++)

new_symbol->fknown[i] = 0;

return(new_symbol);
}

50

freesymbol: Deallocate memory used by symbol.
******* **************************** ***** /
void free_symbol(old_symbol)
SYMBOL *old_symbol;
{ int i;

/* Free symbol bitmap. */
for (i=0; i < old_symbol->maxY; i++)

free(old_symbol->bitmap[i]); 60
free(old_symbol->bitmap);

/ * Free the symbol structure. */
free(old_symbol);

File symbol.h:

Name: symbol.h
Purpose: This header file contains definitions used by the symbol managment

routines (symbol.c).

Last Modified on 12/30/93
****************************************** ***********************************
typedef unsigned char pixel;

/* definition for symbol type */ 10
typedef struct

{ pixel **bitmap; /* bitmap containing pizel data */
int maxX, maxY; /* dimensions of bitmap */
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int shift; /* horizontal position of first black pizel in first row */
int features[NFEATURES]; /* its features */
int f known[NFEATURES]; / * 1 for features that are known */

} SYMBOL;

/ * declarations for symbol managment routines */
SYMBOL *createsymbol();
void free_symbol();

E.9 Source Code - Arithmetic Coding/Decoding

File AC.c:

/***************************************** * * ********************************

Name: AC.c
Purpose: This file contains routines to perform arithmetic coding and

decoding.

The header file AC.h must be included in any program that uses
these routines. The coding model, represented by an ACMODEL
structure type, contains the number of occurrences of each
possible element (symbol). The model can be changed during
the encoding process, but the same changes must be made at
the decoder to be consistent.

The AC ENCODER and AC_ DECODER structure types contain all of the
necessary state variables for an encoding or decoding process.
This way, multiple encoding and decoding processes can be managed
seperately and simultaneously.

Contents:
initialize_model(model) => Initializes new coding model.
add_ element_to_model(model) => Adds new element to model with

zero occurrences.
update_model(model, element, count) => Increases number of occurrences of

an element in model by count.
open_AC_encoder(encoder,outputfunc) => Begin a new encoding process.
open_AC decoder(decoder,inputfunc) => Begin a new decoding process.
encodeelement(encoder,model, element)=> Encode an element.
decode element(decoder, model, element)=> Obtain nezt decoded element.
closeAC encoder(encoder) => End an encoding process.
close_AC_decoder(decoder) => End a decoding process.

Last modified on 12/21/93
************* ********************* ***** ***** ********************** ***

#include<stdio.h>
#include<string.h>
#include"AC. h"

/***** ****************$**************$************************************

initialize_model: Takes as an argument a pointer to a AC_ MODEL structure
to initialize. Prepares model for use by encoder or
decoder, setting the total number of elements to zero.
Returns a pointer to the model.* *** ** ****************************************************$*******

AC MODEL *initializemodel(model)
AC_MODEL *model;
{ model->n elements = 0; /* Initial

model->totals = NULL; /* Initia
return(model);

}

ly zero elements. */
illy, no counts. */

50
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add element to model:
Adds a new element to the specified AC MODEL structure, initially
with zero occurrences. The count should be increased with
updatemodel before the model is used again. Returns an integer
that should be used to refer to this element on all subsequent
encoding and decoding operations.

$$$$$$$$$$$$**$$$*t$$$$$$$$$$$$$$$$$$$$$$***tt:tt*t$**t*$**$**t*t****t$/* 60
int add_elementtomodel(model)
AC MODEL *model;

/ t Increment the number of elements and the size of the totals array. $/
model->n_elements++;
model->totals = (unsigned long *)

realloc(model->totals,model->n_elements*sizeof(unsigned long));

/* Set the number of occurrences of this element to zero. */
if (model->n_elements == 1) /* If this is first element, total = 0. */ 70

model->totals[0] = 0;
else /* Otherwise, set total to same as previous element. */

model->totals[model->nelements-1] = model->totals[model->n_elements-2];

return(model->n elements - 1);

updatemodel: Increase the number of occurrences of the specified element 80
in the specified model by specified count.

************************************************ $******$********************
AC_MODEL *update model(model, element, count)
AC_MODEL *model;
int element;
int count;
{ int i, new_count, total;

/ * Increase total for specified element and all subsequent elements. */
for (i=element; i < model->n elements; i++) 90

model->totals[i] += count;

/ * If the new total is too high, scale back all counts. $/
while (model->totals[model->n_elements - 1] >= 16384)

/* Divide all counts by 2 to reduce total. $/
total = 0;
count = model->totals[0];
for (i=0; i < model->nelements; i++)

{ new_count = count / 2; 100
if (newcount == 0) /* Make sure that all counts are positive. */

new count = 1;
total += newcount;
if (i < model->n elements)

count = model->totals[i + 1] - model->totals[i];
model->totals[i] = total;

return(model); 110

open_AC encoder: Begin a new encoding process by initializing the state
variables in the specified ACENCODER structure. All
encoded bits are individually passed to the function
provided when they become available.** **tt **tt*tt*tt*t***tttt*****tttt*********t*** t**t***** ***** **** $/
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void open_AC encoder (encoder,outputfunc) 120
AC ENCODER *encoder;
void (*outputfunc) ();

/* Initizlize to full 16-bit range with zero underflow bits. */
encoder->low_range = Ox0000; /* ObOOOOO000000000000 */
encoder->high_range = OxFFFF; /* Oblll1111111111111 */
encoder->underflow = 0;

/ * Store output function pointer. */
encoder->outputfunc = outputfunc; 130

/***************************************************

open_A Cdecoder: Begin a new decoding process by initializing the state
variables in the specified ACDECODER structure. All
encoded bits are obtained from the function provided when
they are needed.
************ ***** **************/

void open_AC_decoder(decoder,input_func) 140
AC_DECODER *decoder;
int (*input func) ();
{ int i;

/* Initizlize to full 16-bit range. */
decoder->low_range = OxO000; /* ObOOOOOOOOOOOOOOO0 */
decoder->highrange = OxFFFF; /* Oblllllllllllll11 */
/* Store input function pointer. */
decoder->inputfunc = input func; 150

/* Fill encoded_bits buffer with encoded bits. */
decoder->encoded_bits = 0;
for (i=O; i<16; i++)

decoder->encoded bits = (decoder->encoded bits << 1) + (*input func) ();

encodeelement: Given an ACENCODER stru************************cture, an AC***************MODEL structure, and
encode_element: Given an AC_ENCODER structure, an AC _MODEL structure, and

an integer referring to an element in the model, encodes 160
the element.

***********************:****** **:*********
void encode element(encoder, model, element)
AC ENCODER *encoder;
AC_MODEL *model;
int element;
{ unsigned long range, base, totalcount;

/* Determine current base and range of encoder. */
base = encoder->lowrange; 170
range = encoder->highrange - encoder->lowrange + 1;

/* Compute new range for encoder based upon element and model. */
total count = model->totals[model->n elements - 1];
if (element > 0)

encoder->low_range =
base + range * model->totals[element - 1] / total_count;

encoder->high range =
base + range * model->totals[element] / total_count - 1;

180
/ * Shift out any matching upper bits in low and high ends of range. */
while ((encoder->low_range >> 15) == (encoder->highrange >> 15))
{

/* Pass output bit to output func. */
(*encoder->output_func) (encoder->high_range >> 15);

/* Pass any underflow bits to outputfunc. */
while (encoder->underflow > 0)
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{ (*encoder->outputfunc) (1 - (encoder->highrange >> 15));
encoder->underflow--; 190

/* Shift low_range and high_range to the left to remove encoded bit. */
encoder->highrange =

((encoder->high_range & Ox7FFF /* b0111111111111111 */) << 1) + 1;
encoder->lowrange =

((encoder->low_range & Ox7FFF /* b01111l1111111111 */) << 1);

/* Determine if there is underflow. */
while (((encoder->lowrange >> 14) == 1) && 200

((encoder->high_range >> 14) == 2))

/ * If so, increment underflow count. */
encoder- >underflow++;

/* Shift out underflow bits in low and high ends of range. */
encoder->highrange =

((encoder->high_range & Ox3FFF /* Ob001O111111llll */) << 1)
0x8001; /* Obl000000000000001 */

encoder- >low_range = 210
((encoder->low_range & Ox3FFF /* ObO1111111111111 */) << 1);

decodeelement: Given an AC DECODER structure and an AC MODEL structure,
returns an integer referring to the nest encoded element
in the input stream.

************************* ** ******** ******* *************** **********
int decode_element(decoder, model) 220
ACDECODER *decoder;
ACMODEL *model;
( unsigned long range, base;

int count, totalcount;
int element;

/* Determine current base and range of encoder. */
base = decoder->low_range;
range = decoder->high range - decoder->low_range + 1;

230
/* Scan through element ranges to determine encoded element. */
total_count = model->totals[model->n_elements - 1];
count =

((decoder->encoded_bits - base + 1) * total_count + range - 1) / range;
element = 0;
while (count > model->totals[element])

element++;

/* Compute new range for decoder base upon element and model. */
if (element > 0) 240

decoder- >lowrange =
base + range * model->totals[element - 1] / total_count;

decoder->highrange =
base + range * model->totals[element] / totalcount - 1;

/ * If upper bits match in low and high ends of range, shift them out
and shift in new encoded bits. */

while ((decoder->low_range >> 15) == (decoder->high-range >> 15))
{

/* Shift low_range and high_range to the left to remove encoded bit. */ 250
decoder->high.range =

((decoder->high_range & Ox7FFF /* b0111111111111111 */) << 1) + 1;
decoder->low range =

((decoder->lowrange & Ox7FFF /* b0111111111111111 */) << 1);

/* Shift out encoded bit in buffer and shift in new one. */
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decoder->encoded_bits =
((decoder->encoded_bits & Ox7FFF /* Ob0111111111111111 */) << 1) +

(*decoder->input_func) ();
260

/ * Determine if there is underflow. */
while (((decoder->low_range >> 14) == 1) &&

((decoder->high-range >> 14) == 2))

/ * If so, shift out underflow bit. */
decoder->high_range =

((decoder->high_range & Ox3FFF /* Ob0011111111111111O */) << 1)
0x8001; /* Ob0OOOO00000000000001 */

decoder->low_range = 270
((decoder->low_range & Ox3FFF /* Ob0011111111111111OO */) << 1);

/* Shift out underflow bit in buffer and shift in new encoded bit. */
decoder- >encoded bits =

(((decoder->encoded_bits & Ox3FFF / Ob001111111111111 1 */) << 1)
(decoder->encoded_bits & 0x8000 /* OblOOOOOOOOOOOOOO0 */)) +

(*decoder->input_func) ();

/* Return the decoded element. */
return(element); 280

}

/ ****** ********* $$***************$********** * **** * **
close.AC encoder: End a coding process. Flushes out remaining bits in

specified ACENCODER structure.
*$ $ $ $ $ $ $$***************$********** ********** $*** $$**** ***** ******/

void close_AC encoder(encoder)
AC ENCODER *encoder;
{ 290
/ * Output high bit (bit 15) in high_range. */
(*encoder->output_func) (encoder->high range >> 15);

/* Output any underflow bits */
while (encoder->underflow > 0)
{ (*encoder->output_func) (1 - (encoder->highrange >> 15));
encoder- >underflow--;

/* Output second highest bit (bit 14) in high_range. */
(*encoder->output func) ((encoder->high_range >> 14) & 1); 300

close AC decoder: End a decoding process.********************************************************** ********* ** ** ****
void close_AC_decoder(decoder)
AC DECODER *decoder;
{ / * Nothing to do! Routine provided for completeness. */

File AC.h:

Name: AC.h
Purpose: This include file contains constants and parameters used by

the arithmetic coding/decoding routines (AC.c).

Last Modified on 12/21/93
Define s t****************************************************$** ***********/

/* Define structure for coding model. */
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typedef struct 10
{ unsigned long *totals; /* Array containing total number of occurrences of

all elements less than or equal to the array
index. Used as upper value in range for
encoding and decoding. */

int nelements; /* Total number of elements in model. */
} ACMODEL;

/* Define structure containing all state variables for arithmetic encoder. */
typedef struct

{ unsigned long low_range, highrange; / * encoding range */ 20
int underflow; / * number of underflow bits */
void (*output_func) (; /* function to absorb encoded bits */

) AC ENCODER;

/* Define structure containing all state variables for arithmetic decoder. */
typedef struct

{ unsigned long lowrange, high_range; /* decoding range */
int (*inputfunc) (); / * function to provide encoded bits */
unsigned long encoded_bits; /* buffer containing encoded bits */

} ACDECODER; 30

/* declarations for the arithmetic coding and decoding routines */
AC_MODEL *initialize_model();
int add elementtomodel();
AC MODEL *update_model();
void openAC_encoder();
void openAC_decoder();
void encode_element();
int decode_element();
void close_AC_encoder(; 40
void close_AC_decoder(;
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