Content-Adaptive Bi-Level (Facsimile) Image Coding
by
Neil H. Tender

S.B., Massachusetts Institute of Technology (1993)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1994
© Neil H. Tender, MCMXCIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute copies
of this thesis document in whole or in part, and to grant others the right to do so.

Department of Electrical Engineering and Computer Science
May 13, 1994

e - . . .

Certified by .. ;... pnpwzaccc oo mp. g wa://f T IR
~ o /" David H. Staelin

Professor of Electrical Engineering

Thesis Supervisor

Certified By . -« v eeeee v me e 5)

...............

Dr. Forrest Tzeng
Comsat Laboratories
Company Supervisor

Accepted by................ N e e e e
\ \) Frederic R. Morgenthaler
Committee on Graduate Students

WITHRAWN
MASSA?@% INSTITUTE
MIT TSR ARIES

H1Iypammea

Content-Adaptive Bi-Level (Facsimile) Image Coding
by
Neil H. Tender

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 1994, in partial fulfillment of the
requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

The high bandwidth requirements of facsimile communication can make it very costly or
even infeasible in environments where these resources are limited. The existing CCITT
Recommendation T.4 standard uses lossless Group 3 compression to reduce the number of
bits by a factor of 6 to 12, depending upon the contents of the document. However, with the
rapidly increasing use of facsimile equipment, a large number of communications services
could benefit greatly from an additional reduction in bandwidth.

This thesis describes the development of such an improved coding technique, called Content-
Adaptive Facsimile Coding (CAFC). It uses a more sophisticated page model that better
represents the types of documents that are typically transmitted via facsimile. Three dif-
ferent coding techniques (Symbol Matching and Substitution, Optimized 2D Run-Length
Coding, and non-compressing Direct Coding) are adaptively applied to different parts of
the page, followed by a stage of arithmetic coding. CAFC achieves compression ratios that
outperform Group 3 by an average of almost 2:1 for most documents and 3:1 for documents
consisting predominantly of typed text (25% improvement over JBIG for text). In addition,
preliminary estimates show that by using concepts from JBIG to replace the run-length cod-
ing, there is the potential for an additional 2:1 improvement for most non-text documents.
Although the algorithm is lossy, there is little perceivable distortion introduced into the
reconstructed images.

In this research, the target application for CAFC is secondary facsimile compression within
Digital Circuit Multiplication Equipment (DCME). The methods developed have the poten-
tial to double the capacity of DCME equipment for facsimile transmissions at the expense
of a very small amount of image distortion. The amount of additional hardware that would
be needed to implement CAFC on DCME facsimile channels is believed to be of the same
order of magnitude as that used on existing speech channels.

Thesis Supervisor: David H. Staelin
Title: Professor of Electrical Engineering

Company Supervisor: Dr. Forrest Tzeng
Company: Comsat Laboratories

Acknowledgments

There are so many people to thank, I don’t know where to begin! I did my thesis work at
both Comsat and MIT and interacted with so many people; it is hard to select only a few
to acknowledge. Let me start by thanking the numerous people whose names cannot fit in
this small space. You know who you are!

Mom and dad, I cannot begin to count the number of ways which you helped me get through
it all. You have truly always been there when I needed you, ready to do anything in your
power to make things go well for me. There are no words powerful enough to express
my gratitude. And Kim, whenever I start feeling old, you make me feel young again by
reminding me our our experiences growing up together.

I know that my beloved Grandma Saire, wherever she may be right now, is watching over
me saying “That’s my MIT boy!” I could never imagine a grandmother more proud, and
there is no question that it is her dignity that has kept me going over the years. She will
never be forgotten.

Jon and Jason, we’ve been together all along, from our freshman “quad” to the completion
of our masters theses. It’s hard to believe just how many things have changed and even
harder to believe how many have stayed the same. We have gone through so much together;
thanks for being there when I needed you!

To my many other friends from MIT: Steve, who is constantly reminding me how nice
Maryland is; Karl and Dave, who always enjoy a good “jam” and have kept the music
flowing; Marcie, Teresa, and Tracy, who keep track of whose birthday we need to celebrate
next. You have all been an important part of my college years.

When working on a project intensely, it is important to take breaks. For helping me
occasionally forget about my thesis altogether, I have to give credit to my friends who
are not from MIT, particularly Arthur, Duane, Paul, Becky, and Jenisa. Thank you for
reminding me that work is not the only part of life.

Sometime back in the Spring of 1993 I cracked open a fortune cookie that promised “You
will soon get something you have always wanted.” Well, that fortune came true. During
my final eight month 6A assignment, I learned about something far more important than
fax compression — physical fitness. I started running regularly and eating healthy and got
in shape for the first time in my life. I would like to thank all of my running partners who
helped me make one of the biggest changes in my life: Dad, Frank, Udaya and Rod, Jeff,
and more recently, Jon.

I would like to thank all of those who made the whole 6A experience possible. My advisor at
MIT, Professor Staelin, and all of my former Comsat advisors, Forrest Tzeng, Rod Ragland,
and Udaya Bhaskar, have helped make my assignments incredible learning experiences.
Thanks also to the many people at Comsat who have contributed in their own ways. Finally,
I would like to thank Professor Papadopoulos, my undergraduate thesis advisor, who always
makes everything so fun and exciting, reminding me just why I went into engineering in the
first place.

Contents

1 Introduction

1.1

2.1

3.1

3.2

4.1

4.2
4.3

5.1
5.2
5.3
5.4

Facsimile Compressionfor DCME

Overview of CAFC

Contents and Coding Techniques

Page Modeling and Analysis

Symbol Detection and Isolation
311 SymbolFilling
312 SymbolTracing 0.
313 SymbolWindowing. v i ittt
Dithered Bitmap Detection

Coding Techniques

Symbol Matching and Substitution,
4.1.1 Feature Extraction and Matching
4.1.2 Template Matching. 0.,
4.1.3 Library Maintenance,
Optimized 2D Run-Length Coding
Direct Codingt i i i it e e

Multiplexing and Arithmetic Coding

Content Multiplexing i .
ArithmeticCoding i i e e e
Adaptive Arithmetic CodingModels
Arithmetic Coding Model for CAFC

11
12

15
17

19
21
23
24
25
26

28
28
31
33
34
35
39

CAFC Decoder

CAFC Parameter Optimization

7.1 Selection of Symbol Isolation Technique
7.2 Feature Selection and Matching Criteria
7.3 Template Matching Criteria
7.4 2D Run-Length Coding Initial Model

Analysis and Evaluation

81 CompressionGainso i
8.2 Reconstructed Image Quality
8.3 Computational Resources
84 CodingDelay

DCME Implementation Issues

9.1 Variable Bandwidth Qutput
92 CodingDelay
9.3 Forward Error Correction

10 Conclusion and Recommendations

10.1 Summary and Conclusion

10.2 Improvements to Algorithm

Bibliography

A

B

CCITT Test Images
CAFC-Processed CCITT Test Images
Typed Text Test Images

Training Set Images

CAFC Software Implementation

E.1 Source Code — CAFC Parameters
E.2 Source Code—- CAFCEncoder
E.3 Source Code— CAFCDecoder

49

52
53
54
57
59

60
61
63
64
65

66
66
68
69

72
72
73

76

78

87

E4
E.5
E.6
E.7
E.8
E.9

Source Code — Symbol Matching 126

Source Code — Feature Extraction 128
Source Code — Symbol Library Management 132
Source Code — Symbol Isolation 134
Source Code — Symbol Manipulation 144
Source Code — Arithmetic Coding/Decoding 146

List of Figures

1-1
1-2

3-5

4-1
4-2
4-3
4-4
4-5

5-1
5-2

Proposed DCME configuration with secondary fax compression. 14
Secondary facsimile compressionover DCME. 14
CAFC block diagram. o i vt ittt ittt e e et e 16
CAFC encoder block diagram.oouvevnnnnn.. 20
Example of symbol isolation. 22
Symbolfilling. e 24
Symboltracing. e e 25
Symbol windowing. e 26
Example of symbol matching.0 0. 30
Symbol matching and substitution encoder (with symbol isolator). 32
Run-length coding of a portionof ascanline. 36
Run-length statistics for a sample set of images.. 37
2D run-length statistics for a sample set of images. 38
CAFC multiplexing statediagram. 00, 41
Arithmetic coding state diagram. 48
CAFC decoder block diagram. 50
Statistics of features on test symbols. Lo, 56
Reconstructed images at various template matching thresholds. 58
CCITT test image #1« o v i i i e e e e et e e et e e 79
CCITT test image #2« t i i i it e e e e e e e e e e e e e e 80
CCITT test image #3 i i it e e e e e e e e 81

A-4
A-5
A-6
A-7
A-8

B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8

D-1
D-2
D-3
D-4
D-5
D-6
D-7
D-8

CCITT testimage #4 o o o v v i i i et e e e e e 82

CCITT test image #5 . . .« v v v v o i e e e e e e e e i e e 83
CCITT testimage #6« o o i i i i i i it i e e e 84
CCITT test image #7 o o v i i i ittt et e it e e e 85
CCITT testimage #8 o o i i i i it it i e e 86
CCITT test image #1t i i i it et et e et e e 88
CCITT test image #2 o ot i ittt et e e e e i e e e 89
CCITT testimage #3 o o i it it e e e e e e it e e e 90
CCITT testimage #4 o o i i i ittt et e e i it e e 91
CCITT test image #5 . . . v v v v v it e e e e e e e e e e e e 92
CCITT test image #6 v i i i i i et et e e et as 93
CCITT test image #7 o o o i i i it et et e i i 94
CCITT testimage #8 o i i i i i i et 95
Typed text image #1 — Courier 8pt 97
Typed text image #2 - Courier 10pto 97
Typed text image #3 —Courier 12pt 98
Typed text image #4 — Times Roman 8pt 98
Typed text image #5 — Times Roman 10pt 99
Typed text image #6 — Times Roman 12pt 99
Typed text image #7 — Helvetica 8pt. 100
Typed text image #8 — Helvetica 10pt 100
Typed text image #9 — Helvetica 12pt 101
Training set document #1 oo 103
Training set document #2 103
Training setdocument #3 o o oL, 104
Training set document #4 104
Training set document #5 o e 105
Training set document #6 L oL 105
Training set document #7 106
Training set document #8 o e 106

D-9 Trainingsetdocument #9 107

D-10 Training set document #10 i 107
D-11 Training set document #11, 108
D-12 Training set document #12 108
D-13 Training set document #13 109
D-14 Training set document #14 i . 109
D-15 Training set document #15 i e 110
D-16 Training set document #16 110

List of Tables

2.1

4.1
4.2

5.1
5.2

7.1
7.2
7.3

8.1
8.2
8.3

E.1
E.2
E.3

Foreground content types and associated coding techniques.

Potential features for feature matching.

Contents of a libraryentry.

Example fixed model for alphabet [a, b,c].
CAFC'’s three arithmetic codingmodels.

Comparison of symbol isolation techniques.
Feature statistics — rejection threshold and effectiveness.

CAFC coding performance at various template matching thresholds

Compressed file sizes in bytes for various coding algorithms.
Relative compression ratios for CAFC

Estimated file sizes for CAFC with suggested modification.

Summary of CAFC software modules.
Summary of PCX file format modules.

Summary of statistics gathering programs.

10

18

57

Chapter 1

Introduction

Facsimile (fax) communication has become increasingly popular over the past few years.
As the number of fax pages transmitted each year continues to rise at an astonishingly high

rate, the technique used for encoding the images becomes extremely important.

The biggest problem inherent to facsimile communication is that it requires the transmission
of a tremendous number of data bits. A single bi-level page of a fine resolution CCITT fax
consists of close to four million pixels. Without any source coding, this transmission could
tie up a 4800 bit/s channel for over 13 minutes. To reduce this burden, a facsimile image
compression technique is employed. Most of the more popular facsimile machines and
personal computer (PC) plug-in cards support the CCITT Recommendation T.4 Group 3
[1] standard for document transmission. The Group 3 standard employs a modified form of
Huffman run-length coding to reduce the transmission time by a factor of 6 to 12, depending

upon the contents of the document.

Although the CCITT facsimile protocols were initially designed to be used over the Public
Switched Telephone Network (PSTN), the increasing demand for facsimile communications
has made it available in a more diverse set of environments. Many of these communications
media are very expensive or have severely limited bit-rates, making them economically
infeasible or impractical for facsimile even with the existing compression. For example,

in 1992, the transmission of a single page over a 4800 bit/sec Inmarsat-M mobile satellite

11

channel would have taken several minutes and cost between $10 and $20 [2].

This thesis describes the development of a secondary facsimile compression algorithm, in-
tended to further reduce the number of bits per page and thus decrease these bandwidth
requirements even more. The proposed Content-Adaptive Facsimile Compression (CAFC)
technique consists of a more aggressive approach than T.4 Modified Huffman Run-Length
Coding, using a sophisticated page model that is better-suited for the types of documents
that are typically transmitted via facsimile. Unlike Group 3, which applies a single coding
scheme uniformly over the entire page, CAFC makes use of three different techniques, each
applied where it would be most effective to minimize the number of bits needed to repre-
sent the page. The initial goal is to achieve a compression ratio of 20:1, about a factor of
2 greater than that attained by Group 3, with no degradation in the reconstructed image

quality.

Chapters 2-6 explain the fundamental concepts behind CAFC and describe the encoding and
decoding techniques in detail. Chapter 7 discusses the procedures developed for optimizing
the various adjustable parameters of the algorithm. Chapters 8 and 10 summarize the
results of extensive simulations and provide suggestions for future development work. The
remainder of this chapter and Chap. 9 discuss the initial target application for CAFC,

facsimile compression for Digital Channel Multiplication Equipment.

1.1 Facsimile Compression for DCME

Although CAFC could conceivably be used to improve the efficiency of any facsimile image
transmission or storage system, this thesis focuses on its application to Digital Circuit
Multiplication Equipment (DCME) [3]. DCME multiplexes hundreds of analog voice, data,
and fax channels into a single high-speed digital channel for transmission over a satellite
link. To maximize the number of channels that can be operating simultaneously, some form
of bandwidth reduction is applied to each channel prior to multiplexing. Voice and data
channels are digitized and then passed through suitable coders that achieve compression
ratios of 2 or 4. Fax channels are actually demodulated to a digital baseband signal and

then passed directly into the multiplexor. This provides substantial gains compared to

12

transmitting the same signal in the voiceband domain, but unlike encoded voice and data,
Group 3-encoded facsimile is extremely sensitive to bit errors. In some DCME channels,
the bit error rate can approach 103, high enough to severely distort any fax page. In order
to make DCME viable for facsimile communication, it is necessary to use some degree of
Forward Error Correction (FEC). This technique adds redundant bits to the data prior to
transmission so that the receiver can detect and correct most of the errors. FEC virtually
eliminates distortion to the page introduced by channel errors, but it has the undesirable
effect of increasing the number of bits that must be transmitted and thus the required

bandwidth.

The proposed solution to this problem is to add a secondary compression stage using CAFC
prior to the multiplexor and FEC stages. The extra compression would decrease the required
DCME channel bandwidth to a level at or below what it is without FEC and secondary
compression, effectively reversing the negative effects of FEC. Figure 1-1 contains a block
diagram of the envisioned configuration. The fax pages are scanned and encoded with
CCITT T.4 Group 3 coding and then modulated within the facsimile terminal equipment.
The DCME equipment then demodulates the fax signals, applies the secondary compres-
sion and FEC, multiplexes the channels, and transmits everything over a high-speed digital
satellite link. The DCME on the receiving end splits the high-speed input into signals for
each of the incoming channels. The facsimile channels are then passed through an FEC
error-correcting stage and the resulting CAFC-encoded signals are decoded and converted
back to Group 3, removing the secondary compression. Finally, these signals are modu-
lated and routed to the receiving facsimile terminal equipment, ready to be demodulated,

decoded, and printed.

The secondary compression consists of two stages, as shown in Fig. 1-2. At the transmitting
end, the T.4-encoded document must first be decoded with an inverse Modified Huffman
Run-Length coder (T.471) into a raw bitmap, increasing the total number of bits of approx-
imately a factor of 10. Then, the image is compressed using CAFC, reducing the number
of bits by approximately a factor of 20, a net improvement of 2:1. At the receiving end,
the process is reversed. The CAFC-encoded image is expanded to a raw bitmap by an
inverse CAFC coder (CAFC™!), and then the bitmap is encoded using T.4 so that the fax

terminal equipment can receive it, an overall increase of 2:1 in the number of bits. In each

13

DCME #1 DCME #2
Bl —\ Se— 5B
] Voice
voice E¢ Coders > Coders >§
channels T3 > «—» < > >3
@4 e ™ > (ADPCM) oI
< Daa 0 | Dam
data - ¢ Pl Coders high-s peed - 7’| Coders _’E
channels oo g P optimizd > saellite ok < | optimimd P>
ADPCM) ADPCM|
seco ndary econ
facsimile E« comerens wo[®LFEC FEC Jf 2oty Lobsoen -»Q
chan nels h
@i modem ”‘“"'.‘Ym FEC \ FEC 'md'gn -@

Figure 1-1: Proposed DCME configuration with secondary fax compression.

voice
cha nnels

data
cha nnels

facsimile
cha nnels

direction, a sufficient amount of buffering is required to store the intermediary raw bitmap

format. However, because this is a real-time implementation, only a small portion of the

page need be stored as a raw bitmap at any given time. This is desirable feature of the

Group 3 and CAFC algorithms, since it allows the memory requirements and propagation

delay to be minimized. Section 9.2 discusses the issue of propagation delay in real-time fax

Content-Adaptive
Facsimile Coding
(CAFC)

CAFC-encoded
image

(~200 Kbit/page)

Inverse Content-
Adaptive Facsimile
Coding (CAFC")

CAFC-encoded
image

implementations.
T.4-encoded . raw
facsimile image Inverse Modified bitmap
=~ Huffman Run-Length Coding
(T4")
(~400 Kbit/page) (~4000 Kbit/page)
Secondary Coder
T.4-encoded
reconstructed raw
facsimile image Modified bitmap
~¢—————— Huffman Run-Length Coding
(7.4)
(~400 Kbit/page) (~4000 Kbivpage)
Secondary Decoder

(~200 Kbit/page)

Figure 1-2: Secondary facsimile compression over DCME.

14

Chapter 2

Overview of CAFC

Bi-level (facsimile) image coding consists of a page model and a coding technique that is ap-
plied to the information contained in the model. Facsimile compression involves applying a
better model and/or coding technique so as to represent the image in fewer bits, effectively
eliminating the redundant information. CCITT Recommendation T.4 Group 3 Modified
Huffman Run-Length Coding [1] models the page as a sequence of black and white hori-
zontal run-lengths. These values are coded using a form of Huffman variable-length coding,
achieving a compression ratio of approximately 10:1. Group 3 is effective because typical
fax documents consist of strings of black or white pixels with unbalanced run-length distri-

butions that can be efficiently entropy-coded with variable-length codewords (see Sect. 4.2).

It may seem that a compression algorithm designed to work well for “typical” documents
but not for all documents would be undesirable since there is a loss of generality and lower
degree of reliability. For example, it is actually possible for a Group 3-encoded image to
contain more bits than the corresponding raw bitmap representation. Unfortunately, what
appears to be a design flaw is actually an essential requirement. It is theoretically impossible
to achieve compression without the use of a model that makes some assumptions about the
contents of the page. In order for a compression algorithm to be effective, it is essential
that this page model be a good match for the documents that are to be compressed. In

fact, this is true when compressing any type of data, not just bi-level images.

15

recon-
structed
image

| content | | content |

-~ 1 —p{ text toxt 141 i
| typed | L= | | Zoo® | ttyped ,

text) text)

I | | [
source .L page [~ content raphics] | I =TT content = |
i | analysis 2 . coder | encoded | decoder 2 . ~p{synthesi '-I"’
image (graphics data stream (graphics

| | I I

I content e l I oman] | CONtent '

| > 3 1 coder [| I = o I 3 L I

| (bitmap) | | (bitmap) |

| CAFCEncoder | I CAFCDecoder |

Figure 2-1: CAFC block diagram.

It should be evident that the assumptions that can be made about a source of data can
best be determined by the means with which they were created. Many effective speech
compression algorithms, for example, use a model of the human vocal tract to decompose
speech into a set of filter coefficients and some additional excitation information. While it
is not always possible to completely characterize a source, it is often acceptable to make
sensible use of some known properties and develop a conservative model that performs
extremely well when the assumptions are good yet is not completely ineffective when they

are not.

This approach is the basis for Content-Adaptive Facsimile Coding. Facsimile documents
typically consist of a large amount of typed text and some simple line graphics (diagrams),
handwriting, and possibly some dithered bitmaps (grey-scale images converted to bi-level).
CAFC uses a page model that classifies each of these elements as a different type of “fore-
ground content.” This representation is useful because each type of foreground content has
its own unique properties and can be modeled and coded most efficiently in a distinct man-
ner. CAFC encodes a document by breaking the page down into its different foreground
contents, encoding each with a technique optimized for the properties of that content, and
then multiplexing all of the encoded data into a single data stream. To decode the im-
age, the data stream is separated back into its different content-specific parts, and then
each content is decoded and combined together to form the reconstructed page. Figure 2-1

illustrates the general flow of data during each of these stages.

16

The important feature of CAFC is that the individual foreground contents are processed
independently of one another, allowing the use of completely different coding methods. Each
type of content is effectively modeled and coded differently, where the model is adaptively
chosen by some local properties of the source image (hence the name Content-Adaptive
Facsimile Coding). This differs fundamentally from Group 3 coding, which applies the same
model and coding technique to the entire page. It is observed that the various foreground
contents that appear in facsimile documents have significantly different properties, and it

is therefore expected that an adaptive coder will achieve significantly higher compression.

2.1 Contents and Coding Techniques

For small and detailed image material, Group 3 achieves significantly lower compression
ratios than it does on most other documents. Yet, typed text, which fits into this category,
is the most prevalent foreground content in typical facsimile documents. For this reason,
the primary focus of this thesis is the development of a sophisticated Symbol Matching
and Substitution algorithm optimized for compressing typed text. It is expected that this
technique alone will provide most of the compression for CAFC. On the other hand, Group 3
compresses larger and coarser image material very well. For contents with these properties,
such as handwriting and graphics, CAFC applies a run-length coding technique that is
very similar to Group 3, but optimized for the somewhat different run-length probability
distributions present in these contents. The CAFC method also takes into account the
two-dimensional redundancies on the page and employs an entropy coding technique known
as arithmetic coding (AC) to provide additional compression over Group 3. Finally, for
dithered bitmaps, Group 3 is an extremely ineffective coding technique; often, the image
is actually expanded. To prevent this, CAFC directly encodes the pixels as individual bits

without employing any entropy coding.

The CAFC content classifications and associated coding schemes, summarized in Table 2.1,
were carefully selected to not only provide as high a compression ratio as possible, but to
also comprise a compression system that is practical and reliable. All of the algorithms
developed for CAFC can be readily implemented on reasonably inexpensive off-the-shelf

hardware platforms. They are designed to produce reconstructed images of high quality,

17

[Foreground Content | Coding Technique l

Typed Text Symbol Matching and Substitution

Graphics Optimized 2D Run-Length Coding

Handwriting Optimized 2D Run-Length Coding
Dithered Bitmaps Direct Coding

Table 2.1: Foreground content types and associated coding techniques.

probably indistinguishable from the originals. The use of a run-length coding variant as
one of the coding schemes guarantees that the compression ratio achieved by CAFC for any
particular document will not be any lower than it would be with Group 3 coding. Likewise,
the use of Direct Coding where appropriate guarantees that CAFC will never produce a
coded image that is larger than the source. It is possible that a different set of foreground
contents and coding techniques could produce a higher compression ratio and/or better
image quality. Those listed in Table 2.1 were selected based upon the observed performance

of existing facsimile compression techniques on a variety of documents.

Finally, it is necessary to mention that none of the components of Content-Adaptive Fac-
simile Coding are completely original. A number of papers have been written about coding
schemes similar to Symbol Matching and Substitution [4] [5] [6]. An even larger number of
algorithms have been conceived for the efficient lossless two-dimensional coding of facsimile
[7] [8] [9] and for the encoding of dithered grey-scale images [10). In fact, several standards
have been introduced since Group 3, including two-dimensional Group 3, Group 4, and
JBIG [11]. The content-based nature of CAFC is a relatively new idea that was taken from
some preliminary research performed at Comsat Laboratories [12]. However, that report
describes a hypothetical compression technique at a high level and does not go into sufficient

detail to completely define an algorithm.

The work described in this thesis is an attempt to intelligently combine a number of these
existing ideas into a practical working system that can improve the efficiency of facsimile
transmissions. Each component is individually redesigned and optimized for use in an image
compression system that could be incorporated into a real-time DCME platform. CAFC is
the unique combination of Symbol Matching and Substitution, Optimized 2D Run-Length

Coding, Direct Coding, and Arithmetic Coding in a content-based facsimile coding scheme.

18

Chapter 3

Page Modeling and Analysis

As described in the previous chapter, a facsimile page is modeled as a combination of sev-
eral different types of foreground content — typed text, graphics, handwriting, and dithered
bitmaps. To keep things simple, graphics and handwriting are grouped together as a single
content because they have similar properties and share the same coding technique, Opti-
mized 2D Run-Length Coding. To encode a document, the CAFC encoder must scan the
page (a raw bitmap) and divide it into a large number of small regions, each containing an
occurrence of a single content. The CAFC page model specifies exactly what constitutes a
region of a particular content so that the encoder’s analysis algorithm can efficiently and

systematically break down the page into its components.

The content classification is performed progressively, as shown in Fig. 3-1. The encoder
first tries to detect instances of typed text, the content with the most efficient associated
coding technique. The basic element of typed text is the symbol, defined as a cluster of black
pixels that is completely surrounded by white pixels. A symbol is essentially a single typed
character: a letter, a digit, a punctuation mark, or part of a character in cases where the
character consists of two or more segments, such as the percent sign (%). The encoder uses
a unique symbol detection/isolation algorithm to locate all such clusters and subsequently

codes them using the Symbol Matching and Substitution technique.

Once all of the symbols have been detected and isolated, the remainder of the page should

19

Symbol matched symbol?

Detection/
Isolation

raw
bitmap

Symbol Matching
and Substitution
Coder

Optimized 2D Arithmetic
Run-Length Coder

entropy-based bitmap / graphics?
content classifier

| dictionary indice:

residue
bitmap

CAFC-encoded
image

run-length codes

raw bitstream

e ot

Figure 3-1: CAFC encoder block diagram.

be free of typewritten text. An entropy-based content classifier examines each scan line of
this image and searches for segments that would have unusually high entropies (informa-
tion contents) when represented with the two-dimensional run-length model. These scan
line segments are classified as dithered bitmap fragments because their run-length distri-
butions indicate that they contain a large number of very short run-lengths, a property
of dithered bitmaps. For now, Direct Coding simply inserts these pixels into the encoded
bit-stream without any attempts at compression. All other segments are classified as the
handwriting/graphics content and are coded with the entropy-based Optimized 2D Run-
Length Coder.

It is important to realize that these specifications were chosen to be practical and that the
CAFC encoder may not always be successful at correctly recognizing and categorizing each
instance of a foreground content. For example, a detected symbol will not always turn out
to be a typewritten character; a small handwritten number or part of a bitmap could easily
qualify. Likewise, portions of the page with dense text or graphics might have high enough
run-length entropies that they are classified as bitmaps. However, it is not particularly
important that the CAFC criterion for typed text, handwriting, graphics, and bitmaps
exactly match the perceptual significance of these contents. The primary objective for

CAFC is efficient and reliable compression, not character recognition or accurate content-

20

based modeling. As long as the page model exploits the common properties of the majority
of facsimile images, it is accomplishing this objective. Designing a page model that is as
close to the perceptual level as possible is beneficial because it indirectly takes advantage
of these particular properties. In CAFC, this approach works especially well since the
characteristics that are sought out during the content classification are the same ones that
are used to perform the actual coding. For example, the symbol-based model that is used for
typed text allows for very efficient coding via Symbol Matching and Substitution. Similarly,
the criterion that is used for locating dithered bitmap fragments also guarantees that a

classification leading to the optimal coding method is made.

The progressive nature of CAFC is a very important aspect of this approach. Of the three
coding techniques used in CAFC, the Symbol Matching and Substitution coding technique
provides the greatest compression gains. For this reason, the encoder first attempts to
detect symbols in hopes that typewritten text will be discovered, so that Symbol Matching
and Substitution can be applied. Then, after the symbols have been removed, entropy-
based content classifier scans the page for instances where Direct Coding would be most
efficient, most likely dithered bitmaps. Finally, Optimized 2D Run-Length Coding, the
“default” technique, is applied to the remainder of the page, which is assumed to consist
of handwriting and graphics. Thus, by performing the content detection algorithms in this

specific order, the maximal compression can be achieved.

3.1 Symbol Detection and Isolation

The symbol isolator has the specific task of extracting all symbols from an image, making
them available for coding with Symbol Matching and Substitution. The objective is to detect
all isolated instances of contiguous black pixels (clusters of black pixels surrounded entirely
by white pixels) that meet some predetermined minimum and maximum size constraints.
Figure 3-2 contains an example of a portion of an an image where all of the symbols have
been isolated and removed. In this case, the minimum allowed symbol size (widthxlength)

was 2x3 pixels and the maximum allowed symbol size was 40x60 pixels.

The restriction on the maximum size of detected symbols is an important requirement of

21

£ T
o= -u[‘l’.+# f+zMI

Et cstte phase est biea I'opposé de /¢()),

N _ ~ Tata® .

Ry / - A un déphasage constant prés (sans importance)
et & un retard T, prés (inévitable).

: signal mtile S(7) traversant un tel filtre adapté

' - d:u: Aln u:':ie (f(u)n)rund Te ?ixonht.l:‘ un dépha-

de Ia porteuse) un signal transformée

Fua. 2 de-pF%':ier eat réelle, constante entre fp et fo+Af

et nolls de part et d'autre de fp et de fo+Af, c'eat-

irdire un sigaal de_fréquencs porteuss fo+ 412 et

original

v

typed text removed

Figure 3-2: Example of symbol isolation.

the symbol isolation algorithm. It is required for a number of reasons, but primarily to
minimize the amount of propagation delay in CAFC so that it may be incorporated into
a real-time facsimile transmission system (see Sect. 9.2). If, while investigating a possible
symbol, the maximum allowable horizontal or vertical dimensions are exceeded, the isolation
is abandoned and the next potential symbol is pursued. Each of the three different isolation
techniques has a unique method for detecting this condition. A minimum symbol size is
also imposed, since Symbol Matching and Substitution would not efficiently code very small

symbols. The maximum and minimum symbol sizes are fixed and determined in advance.

Whenever the symbol isolator successfully locates a symbol, it is immediately removed from
the page (so that it will not be detected again) and is then passed on to the coder. When
the symbol isolation procedure is complete, what remains on the page consists of white

space and clusters that are too small or too large to be symbols.
When encoding an image, the CAFC encoder systematically scans the image from left to

22

right and from top to bottom until it encounters a black pixel. The coordinates of this
pixel are used as the starting point for the detection and isolation of a symbol. Because
it is a fairly involved process, three different methods for performing symbol isolation have
been developed: symbol filling, symbol tracing, and symbol windowing. The approaches
differ in terms of their computational burden, memory requirements, and overall ability to
detect all of the symbols in an image. Section 7.1 describes the procedure for evaluating
the performance of each technique and selecting the best one for CAFC. The following
sections explain simplified versions of each of the three approaches. The actual real-time
algorithms that were developed for CAFC are omitted from this discussion because they

are considerably more tedious.

3.1.1 Symbol Filling

With symbol filling, the isolator examines each of the starting pixel’s eight adjacent neigh-
bors and selects only those which are black. Then, each of the selected pixels are checked
for adjacent black pixels in the same manner. This procedure is applied recursively until
the entire cluster of contiguous black pixels has been isolated. When a black pixel is de-
tected, it is also marked so that the isolator will not detect it again and get stuck in an
infinite loop. If the rectangular region spanned by the cluster of marked pixels is within the
permitted range of sizes, a symbol has been detected. Otherwise, the pixels are left behind

for subsequent coding by one of the other coding techniques.

Figure 3-3 contains an example of symbol filling. The numbers on each arrow indicate the
order in which the black pixels are detected and marked. In this case, the isolator examines
the neighboring pixels in the clockwise direction, starting with the pixel immediately to the
right. Thus, if the first black pixel is at coordinate (x,y), the isolator examines the eight
neighboring pixels in the following order: (x+1, y), (x+1, y-1), (x, y-1), (x-1, y-1), (x-1, y),
(x-1, y+1), (x, y+1), and (x+1, y+1).

Symbol filling is capable of detecting all of the symbols on the page correctly. However, it
has the disadvantage that it must inspect every black pixel in the symbol, requiring a lot

of temporary storage and processor cycles.

23

Figure 3-3: Symbol filling.

3.1.2 Symbol Tracing

The particular order in which the source page is scanned for symbols guarantees that the
initial black pixel will always be on the boundary of a potential symbol. In symbol tracing,
this pixel is used as the starting point for a contour trace. The isolator examines the pixel’s
neighbors in a specific order to determine which is the next boundary pixel, moving in a
clockwise direction. The trace continues until the first pixel is encountered once again. If the
size of the traced region is within the permitted range, a symbol is detected, consisting of all

of the black pixels within the boundary. Otherwise, these pixels are marked as non-symbols.

Figure 3-4 illustrates the procedure for symbol tracing. Once again, the numbers on each
arrow indicate the order in which the contour is traced. At each stage of the trace, the
search for the next boundary pixel begins at the pixel one step clockwise from the previous
pixel and proceeds in the clockwise direction. If the current pixel is at coordinates (x, y)
and the search for the next boundary pixel goes past (x+1, y), pixel (x+1, y) is marked.
Likewise, if the search goes past (x-1, y), pixel (x, y) is marked. In the figure, the marked
pixels are designated with an X. After the trace is complete, the detected symbol consists

of all black pixels contained within the horizontal segments formed by the marked pixels.

This technique requires less processing power and memory than symbol filling, but it does

not always produce exactly the same results as symbol filling. The isolated symbol consists

24

Figure 3-4: Symbol tracing.

of all black pixels enclosed by the boundary, and it is possible to have scenarios where the
pixels are not all contiguous. This will occur when a smaller cluster, completely surrounded
by white pixels, is enclosed by a contour of black pixels, such as in the character ©. Effec-
tively, a smaller symbol is contained within the larger one. Despite this inconsistency with
the strict definition of a symbol, the performance of the symbol matching and substitution

should not necessarily be any worse than it would with a filling isolator.

3.1.3 Symbol Windowing

Finally, with symbol windowing, a rectangular window centered around the first detected
black pixel is used to surround the symbol. Initially the size of a single pixel, the rectangle
is gradually expanded in the horizontal and vertical directions until all of the pixels on its
four edges are white, or until the window is larger than the maximum allowed symbol size.
At this point, the isolation is complete; if the window is within the permitted size constrints,

a detected symbol is enclosed. Figure 3-5 illustrates an example of this process.

This approach is conceptually the most simple and straightforward and has very small
processing and storage demands. It is similar to symbol tracing in that it can sometimes
isolate “symbols within symbols”, but this is not a problem from the coding efficiency
perspective. The difficulty with symbol windowing is that a symbol can only be detected if it

can fit inside of a white rectangular outline. For most typed text this should pose no problem

25

[o]e @

1. Start on any top pixel.

[o]o @

2. Expand to the left.

3. Expand to the right.

4. Expand to the bottom. 5. Expand to the left. 6. Expand to the right.

7. Stop when rectangular border
is all white pixels.

Figure 3-5: Symbol windowing.

because each typed character is completely contained within its own rectangular region, but
there may be some fonts or styles (such as italics) where there can be overlap. The isolator
could overlook many of the symbols or possibly group multiple symbols together, resulting

in less efficient coding.

3.2 Dithered Bitmap Detection

Once all symbols have been isolated and removed, the remainder of the page is scanned
by an entropy-based content classifier to detect instances of dithered bitmap fragments.
The classifier is designed to locate portions of a scan line that would actually require more

bits to represent with Optimized 2D Run-Length Coding than with no compression at all

26

(Direct Coding). To do this, it makes use of the same run-length statistics as the Optimized
2D Run-Length Coder (see Sect. 4.2) and estimates the entropy of each horizontal run in
the image. Then, it looks for portions of scan lines where the average entropy per pixel is
greater than one. These horizontal segments do not fit the run-length model very well and
are therefore classified as dithered bitmap fragments which pass through the CAFC coder

uncompressed.

27

Chapter 4

Coding Techniques

The following sections describe in detail the three coding techniques employed in Content-
Adaptive Facsimile Coding. None of these methods are entirely novel approaches to bi-level
image compression, but rather variations of previously developed methods that have been
improved and optimized for a particular content. They are all designed to produce decoded
content regions that in an error-free environment are either identical to the original or nearly

indistinguishable, so that the reconstructed facsimile images are of high quality.

In terms of compression efficiency, each of the content coders serves a different role. The
Optimized 2D Run-Length Coder, the “default” method, is intended to outperform the
CCITT Recommendation T.4 Group 3 run-length coder in almost every scenario, providing
a high degree of reliability. The other two techniques are used whenever possible to provide
additional compression over Group 3. Symbol Matching and Substitution is especially
efficient for typed text. Direct Coding is used on dithered bitmaps where run-length coding

is especially ineffective.

4.1 Symbol Matching and Substitution

Typewritten text consists of symbols from a fixed set of alphanumeric characters and punc-

tuation marks, and each individual character is typically repeated numerous times on the

28

same facsimile page. Although it is possible for small variations to occur as a result of dif-
fering scanner alignments, the symbols representing the multiple occurrences of a particular
character are nearly identical. The resolution of facsimile images is high enough that these
differences are difficult or impossible perceive, so that from the perspective of the person
reading the document, the symbols appear exactly the same. These will be referred to as

matching symbols.

The Symbol Matching and Substitution encoder takes advantage of this type of redundancy
by maintaining a library of all unique symbols that are encountered on the page. Whenever
a particular symbol is detected for the first time, it is added to the library but is left
on the page to be encoded with Optimized 2D Run-Length Coding. However, when the
symbol is recognized as a good match of one that is already in the library, it is considered
to be a duplicate and only the library index need be transmitted. The decoder maintains
an identical library so that when it receives such a message, it can decode it by simply
substituting the matching symbol from the library into the image. Since the library index
requires a much smaller number of bits to represent than the symbol itself, a considerable

compression gain can be realized with this method.

The matching of two symbols, described later in this section, is performed through a com-
parison of their bitmap representations and not their association with a particular letter,
number, or punctuation mark. This makes the process much simpler and does not restrict
it to a particular font, style, orientation, or language. A symbol could even be something
other than a conventional typewritten character, such as a logo, a very small picture, or a
portion of a graphic. And, since items such as these are often repeated in facsimile docu-
ments as well, compression is still possible, making this approach very versatile; the only
requirement is that symbols be repeated on page. Of course, on documents with little or no
repeated characters, or where the text is in many different font sizes, styles, or orientations,
it will fail to detect many matches, and the less efficient Optimized 2D Run-Length Coding
technique will be used instead. It is likely that CAFC will provide the poorest compression

gains for facsimile source images of this nature.

Figure 4-1 contains an example of the effect of symbol matching. It contains a source image

and the corresponding image after all but the first instances of matching symbols have

29

THIS CONTRIBUTION OUTLINES A PROPOSED OBJECTIVE TEST
METHODOLOGY FOR ASSESSING THE PERFORMANCE OF 16-KBIT/S CODECS IN
A MANNER THAT IS COMMENSURATE WITH THE ENVISAGED APPLICATIONS
OUTLINED BY SG XVIII TD 1.41 OUTLINING IN THE TERMS OF REFERENCE
OF THE AD HoC GROUP ON 16-KBIT/S SPEECH CODING [1].

SINCE MUCH_OF THE SUBJECTIVE TEST METHODOLOGY WILL BE
CONTRIBUTED BY SG XII OR BY THE JOINT WORK OF SG XII WITH THIS
GROUP, ONLY OBJECTIVE MEASUREMENTS ARE ADDRESSED IN THIS
CONTRIBUTION.

THIS CONTRIBUTION IS THUS STRUCTURED IN TWO SECTIONS, _
WHERE SECTION 2 OUTLINES VARIOUS TYPES OF SIGNALS WHOSE IMPACT ON
THE PERFORMANCE OF A CANDIDATE 16-KBIT/S CODEC NEEDS TO BE
CHARACTERIZED, AND SECTION 3 OUTLINES AN OBJECTIVE MEASUREMENT
METHODOLOGY WHICH INCLUDES TESTS APPROPRIATE FOR EACH TYPE OF
SIGNAL OUTLINED IN SECTION 2.

original
THI v ULN APRO § BJECTIV
GY F P F M 0 16k / D N
M R W s
U LI SGXVI TO .4
H A H 6 -K C []
E E Y
N I
G . S I
I
TH
2 TYP
E
ZE T 3 U
N
residue

Figure 4-1: Example of symbol matching.

been removed, known as the residue. Note that towards the top of the residue, most of
the characters remain intact, while near the bottom, almost all have been removed. This is
because the image is encoded from top to bottom. At the top, the symbol library is initially
empty, so most symbols encountered are new and are added to the library but left on the
page. Towards the bottom, the library is full, so most of the symbols can be successfully

matched and are removed from the image.

Figure 4-2 contains a block diagram of the Symbol Matching and Substitution encoder with
the symbol isolation and detection stage included. The dashed lines indicate the flow of

data and the solid lines indicate the flow of control. The source image, a raw bitmap, is

30

scanned by the symbol isolator and the portions of the page that cannot be classified as
symbols are placed in the residue. Then, in a two level comparison process, the encoder
attempts to match each detected symbol with the existing library entries. The first stage is
a crude comparison, where high-level properties or ”features” of the symbol are used to help
eliminate unlikely candidates from the search. A feature extraction procedure performs a
few simple operations to obtain these properties, and then a feature matching algorithm
uses them to try and “match” the symbol with the library entry. If the symbol is rejected
because no matches can be made, it is added to the library for future comparisons and
is also appended to the residue so that it may be encoded by one of the other methods.
Otherwise, it enters the second screening phase, a more rigorous template matching process.
Here, an accurate alignment and cross-correlation algorithm is used to compare the source
symbol with the library entry. As before, if no match can be found, the symbol is added
to the library and placed in the residue. On the other hand, if an entry with an equivalent
symbol is located, then the encoding is performed with the corresponding library index
number. This value is passed onto the arithmetic coder/multiplexor, the next stage of the

CAFC encoder.

Symbol Matching and Substitution achieves high compression gains for typed text because
it allows most of the typed characters to be represented as indices into a table rather
than as a two-dimensional arrangement of pixels. Unlike most compression techniques, the
redundancy that is detected and eliminated is based upon macroscopic properties of the
image. That is, rather than searching for correlations between local regions of neighboring
pixels, the encoder examines the entire page for essentially identical occurrences of the same
pattern. This is a fairly involved task, but it is expected to prove worthwhile because it

takes advantage of these previously untapped resources.

4.1.1 Feature Extraction and Matching

When processing documents containing many symbols, a large number of comparisons need
to be made between newly isolated symbols and those already in the library. This can
be a fairly time-consuming process that requires a significant amount of processing power.

Feature matching alleviates this problem by quickly eliminating the unlikely candidates

31

o

_____ = symbol

feature
extraction

L

feature
matching

‘(no masih)

add symbol

to library

librar)7
indices

A

I fe atures
[

-
i

Y

A

symbol
library

Y

! symbols

template
1 matching

(no match)

P

library index, end

horizontal offset

. ymbol | T T T TTTTTo==S P residue
!)umap detectionfisolation }(no symbol) » ond

Figure 4-2: Symbol matching and substitution encoder (with symbol isolator).

in the library based upon some high-level features of the symbols. Table 4.1 lists some

examples of properties of symbols that can be used during the feature matching process.

In practice, a subset of these are selected for use in the encoder (see Sect. 7.2.

Feature extraction is the process of obtaining the value of a feature on a given symbol. It
is useful to introduce a notation for referring to these values. For symbol s, the value of

the nth feature is denoted as F,(s). For example, using the numbering in Table 4.1, the

number of black pixels in symbol s; would be F3(s;).

Feature matching is the process of comparing the feature values extracted from two symbols
to determine if they are likely to not match. In order to do this, feature matching makes

use of the “absolute difference” between two symbols for a given feature, defined as follows:

Dy (s1,52) =| Fn(s1) — Fu(s2) | -

32

| # | Feature Name |

1 | Width

Height

Number of Black Pixels

Number of White Pixels

Number of Horizontal Run-Lengths
Number of Vertical Run-Lengths
Horizontal Moment (Center of Mass)
Vertical Moment (Center of Mass)
Average Width

OO O WO

Table 4.1: Potential features for feature matching.

For a given feature, the absolute difference between the two symbols is compared with a
rejection threshold, r,. If Dy,(s1,82) > 7y, then symbols s; and ss are considered mis-
matches and no more comparisons are necessary. Otherwise, the process continues with the
remaining features until there is a mismatch or the list is exhausted. In the latter case,
feature matching is unable to differentiate s; and sz, so template matching procedure is

applied.

The features that are chosen must be very simple so that they can be extracted easily and
rapidly, yet diverse enough so that they are effective at eliminating as many non-matching
library entries as possible. Section 7.2 describes a procedure that has been devised for se-
lecting the optimal set of features and corresponding rejection thresholds. It is important
to note that feature matching by itself does not contribute to the process of image com-
pression. Rather, it provides a mechanism for bypassing many of the symbol comparisons
serviced by template matching, thereby decreasing the necessary computational resources.

Thus, feature matching has an unessential but very practical role in CAFC.

4.1.2 Template Matching

When an isolated symbol and a library entry symbol pass through all the stages of feature
matching process, the template matching algorithm is applied to ensure that the symbols
truly do appear identical before they are officially declared a match. Since CAFC’s only
lossy compression technique is Symbol Matching and Substitution, its ability to produce

extremely high quality reconstructed images relies heavily on this final screening process.

33

First, template matching adjusts for any slight variation in the positions of the two symbols
that may have occurred during scanning by computing their “centers of mass”, defined for

symbol s as follows:

cas) = 2113‘ 1m0 24(2)

==:) EV;O a(z,y) ’

(s) y:?)l EL;; ys(z.y)
= SWeTT o -
cy Z.’n:ﬂ Ey:() a(:z,y)
where s(x, y) represents the pixel at coordinate (x, y) within symbol s (1 = black, 0 =
white). W and L are the larger width and length, repectively, of the two symbols; pixels

referenced outside the boundries of a symbol are assumed to be white. Next, the template

matcher computes the square of the cross-correlation, A?, between the two symbols:

X2(s1,89) = it 25 alle/2ly/2)sa(lz/2=ca(o1) e (s2)] ly/2—cy(o1) ey (o2)
1o 16(o Lorca 1@y o 22(2:9))

This formula takes into account the fact that it is possible for two symbols to be misaligned
by a fraction of a pixel by working within a grid with twice the horizontal and vertical
resolution of the source image. Since a translated coordinate can be fractional as well, each

component is rounded; the notation [z] is used to represent the integer closest to z.

If the cross-correlation distortion A?(sy,ss) is above some established threshold, r;, the
source and library symbols are considered a match, and the efficient coding can take place.

Otherwise, residue coding is necessary.

4.1.3 Library Maintenance

The symbol library is a large data structure that is used to store all of the unique symbols
that have occurred so far in the image. It is initially empty at the top of the page and
gradually fills up as newly-encountered symbols are added. The information stored in each
library entry is listed in Table 4.2. Obviously the most important item is the bitmap repre-
sentation of the symbol itself, necessary for performing comparisons with future potential

matching symbols and for decoder substitution. Also needed is an arithmetic coding ele-

34

ment number, a unique identifying integer used during the arithmetic coding and decoding

processes (described in Chap. 5).

bitmap representation of symbol
features of symbol

arithmetic coding element number
total number of appearances.

Table 4.2: Contents of a library entry.

Two additional items may be included in order to reduce the amount of computational
overhead associated with Symbol Matching and Substitution. The first is the numerical
value of all of the symbol’s features. Since these will have already been computed before
any new symbol is added to the library, they are readily available for storage. By retaining
this information, it is not necessary to perform feature extraction on these symbols in the
future when comparing them with newly-isolated symbols. The other useful item is the
number of times a symbol has appeared so far on the page. This information can be used
to keep the library sorted in such a manner that the most frequently occurring symbols
are always searched first. This decreases the expected number of comparisons necessary to

match a symbol and decreases the probability of a mismatch.

The library structure is able to support two basic operations: adding a new symbol to the
library and fetching the information from the library back one entry at a time. The same

library structure is shared by both the CAFC encoder and decoder.

4.2 Optimized 2D Run-Length Coding

Run-length coding is a well-known technique that is used in many forms of image com-
pression, especially facsimile. It is based on the observation that for any given scan-line
on a page, there tend to be long “runs” of black and white pixels. These strings of pixels
occur because in typical fax documents, black pixels are clustered together to form items
in the foreground while contiguous white pixels fill the background regions. In run-length
coding, a scan line is encoded as a series of numbers representing the lengths of these runs
rather than as individual pixels, thus resulting in significant compression gains. Figure 4-3

contains an example run-length coding on a portion of a facsimile image scan line. The

35

900000000 eee O
S N A

black run of 4 white run of 5 black runof3 white run of 2

Figure 4-3: Run-length coding of a portion of a scan line.

encoded run-lengths alternate between white and black runs across the scan line.

Another important characteristic of facsimile images is that some run-lengths appear more
frequently than others. For example, one would expect a significantly larger number of
short black run-lengths than long black run-lengths because of the many thin lines (pen
strokes) on the page. A similar effect can be observed for white run-lengths, which occur
most frequently in-between black pen strokes or in association with blank image scan-lines.
Figure 4-4 shows the run-length distributions for both white and black runs on the set of

test documents in Appendix D.

Because the run-length distributions are not flat, a coding scheme that gives an equal num-
ber of bits to each run-length would have some statistical redundancy and would therefore
be sub-optimal. Huffman coding is a technique which takes advantage of these unbalanced
statistics by assigning a variable-length codeword to each run-length. Runs that have a high
probability of occurring are assigned shorter codewords, while runs with appear infrequently
are given longer codewords. The result is a much more efficient coding scheme. The Group
3 standard uses a slightly modified version of Huffman run-length coding that is easier to
implement on limited hardware platforms. It is capable of achieving compression gains on

the order of 6 to 12, depending upon the run-length distributions of the particular image.

Because of its effectiveness, run-length coding was chosen as CAFC’s coding technique for
handwriting and graphics. However, two additional modifications were made to increase the
compression ratio even further. The first is the replacement of the Huffman variable-length

coding with a newer technique known as arithmetic coding. Described in more detail in

36

white runs black runs

0.4 +~— 04 +- —r
0.35 1 0.38 1
0.3 E 0.3f E
0.25 E 0.25}
§ 0.2 1 g 0.2}
(=9 a
0.151 1 0.15f
0.1 E 0.1
o.0s} o.0s} 1
o A P c A
(o] 10 20 30 40 o] 10 20 30 40
tength of run length of run

Figure 4-4: Run-length statistics for a sample set of images.

Chap. 5, arithmetic coding overcomes some of the limitations of Huffman coding, allowing

it to achieve higher compression gains.

The second improvement on conventional run-length coding is the extension of its model into
two dimensions. Run-length coding is a one-dimensional scheme because it only operates
on runs in the horizontal direction only. In the majority of documents, however, there
are significant correlations between adjacent scan lines in the vertical direction as well. A
number of algorithms have already been developed to exploit these properties [7] [8] [9].
However, since the primary focus of this work has been the development of efficient coding
for typed text, a relatively simple approach has been chosen for this preliminary version.
Rather than run-length coding the residue directly, CAFC run-length codes the difference
between the pixels in adjacent scan-lines. The difference between two pixels is equal to 0 if
the pixels are of the same color and 1 if they are different. Instead of parsing a scan-line
into runs of black and white, it uses information from the scan-line immediately above to

parse the scan-line into runs of 0s (“same” runs) and 1s (“different” runs).

Figure 4-5 shows the 2D run-length distributions for the same set of documents. Clearly,
the peaks are much sharper, indicating that there is a higher degree of redundancy in the
images with this model than with one-dimensional run-length coding. Because of this, the
run-lengths will take fewer bits to represent after passing through the entropy coding stage.

Using the difference between adjacent scan-lines is therefore an extremely simple way of

37

“same" runs “different" runs

04 v 04
0.35F E 0.35H
0.3 b 0.3
Q.25 b 0.25 iy
& i
8 o2 0.2
0.15} 0.15
0.1 0.1
0.05 0.058
o — -y o N -
(o] 10 20 30 40 o 10 20 30 40
length of run length of run

Figure 4-5: 2D run-length statistics for a sample set of images.

exploiting the two-dimensional redundancies in images.

The run-length statistics used in Optimized 2D Run-Length Coding are considerably differ-
ent from those used in Group 3 for another reason. Because the images processed by the 2D
run-length coder are residues, they are void of typed text and dithered bitmaps, which have
already been removed and encoded by the other methods. A page without these contents

has somewhat different run-length statistics than those of a complete page.

For both of the above reasons, a new training set is generated consisting of residues of the
original training set. The entropy coding can then be performed more efficiently, taking
advantage of the vertical correlations as well as reduction in content diversity. Even better,
the arithmetic coder used in CAFC is adaptive and automatically updates these run-length
statistics based upon the statistics of the particular image being processed. This is explained

in detail in Sect. 5.3.

Run-length coding achieves compression by eliminating redundancy on a microscopic level,
focusing only on small regions of pixels at a time. This is a good choice for handwriting
and graphics which have little or no repetition throughout a page but have very predictable

local properties.

38

4.3 Direct Coding

Direct coding is the straightforward conversion of pixels to bits for dithered bitmap frag-
ments. It does not actually perform any compression and is so simple that it is hardly a
coding scheme at all. Instead, it is used as a preventative measure for unusual instances
when the distribution run-lengths present is so abnormal that the fragment would be oth-
erwise expanded. Scan-line segments that meet this criterion are likely to contain a large

number of very short runs so that it does not fit the run-length model well.

39

Chapter 5

Multiplexing and Arithmetic
Coding

The final stage of the CAFC encoder uses arithmetic coding to combine the individual out-
puts from the three different content coders into a single stream of output data. Section 5.1
describes the relationship between the CAFC page model and the order in which contents
are combined in the encoded output stream. Sections 5.2 and 5.3 provide a brief tutorial
on arithmetic coding. Finally, Sect. 5.4 puts these ideas together to explain the specifics of

how arithmetic coding is used to multiplex the individual contents in CAFC.

5.1 Content Multiplexing

According to the CAFC page model, an image consists entirely of the following objects:
symbols, dithered bitmap fragments, and “same” and “different” runs. These page com-
ponents fill up the entire area of the image in the form of horizontal portions of a scan
line. Dithered bitmap fragments and “same” and “different” runs are naturally horizontal
segments. In the case of symbols, the model specifies that the bitmap representation fills
up no space on the page. Instead, the symbol is superimposed over the presumably white

space below it. Since by definition, a symbol must be surrounded by white pixels, this area

40

| end of >~ end
scan-line

dithered
" " bitmap
start s::::le fragment
matching
» symbol

.
“'different" new
— run symbol

Figure 5-1: CAFC multiplexing state diagram.

would most likely consist of “same” runs that go ”"under” the black symbol.

The CAFC encoder scans the source document from left to right and then top to bottom,
breaking the page down into its content components. After an object is classified, it is
encoded with the appropriate compression scheme and passed on to the multiplexing stage,
which combines the components of the image into a single data stream in the same order

that they were read from the page.

Figure 5-1 contains the state diagram that is used when multiplexing data from the three
individual coding algorithms. The beginning of each scan-line is assumed to begin with a
“same” run. This is true most of the time because the majority of documents have a white
border on the left side of the page. If the line begins with a symbol or dithered bitmap,
a “same” run of length zero is encoded first. Following a “same” run can be a “different”
run, a new symbol, a matching symbol, or a dithered bitmap fragment. It could also be
followed by another “same” run if and only if the run ends at the end of the scan-line
(triggering the beginning of a new line). New symbols are always followed by “different”
runs, because the detected starting pixel is always black and the pixel above it must always
be white (since symbols are surrounded by white pixels). Matching symbols, on the other

hand, are always followed by a “same” run, because white pixels run underneath and above

41

the symbol. Finally, dithered bitmap fragments are always followed by a “same” run. The

end of the page is reached after the last “same” run on the last scan-line.

The CAFC decoder’s demultiplexor uses the same model to separate the data stream back
into three separate components. The Symbol Matching and Substitution decoder can cor-
rectly update its library because new unique symbols are detected in the same order that
they are presented to the receiver, and repetitions of a previous symbol will never appear
before it has been added to the library. Also, real-time facsimile communications is possible
because the page is transmitted from top to bottom, and only a few scan lines of buffering

are required for symbols.

5.2 Arithmetic Coding

This section provides a brief introduction to arithmetic coding (AC). For a more in-depth
explanation, refer to one of the many publications on this topic [13] [14]. Enough background
is presented here to explain the basic principles of arithmetic coding and how it is used by
CAFC to multiplex and entropy-code the encoded contents. In this description, the term
“element” is used to refer to what most of the literature on model-based entropy-coding
defines as a “symbol.” This is to avoid the obvious confusion with the definition of “symbol”

that has been used up to this point.

An entropy coder takes as input a stream of elements taken from a fixed alphabet and
converts them to a stream of output bits. A model consists of all of the possible input
elements and their respective probabilities. The encoder applies a model to each input
element to broduce an output with the minimal number of bits. Suppose a model contains
N elements named e; through ey with probabilities P, through Py. It is a necessary

condition that the probabilities add up to unity:
Zﬁ:l P, n=1.

The optimal number of bits necessary to represent element e, is equal to — log P,, where
the logarithm is taken to base 2. The optimal number of bits necessary to encode a stream

of M elements x[1] through x[M] is just the sum over all elements:

42

optimal number of bits = Efn'[=1 —log Py, -
For example, if a model consists of the letters a, b, and ¢ with probabilities 0.5, 0.3, and
0.2, respectively, then the message “abacab” would require a minimum of -log 0.5 - log 0.3

- log 0.5 - 10og 0.2 - 1log 0.5 - log 0.3 = 8.796 bits.

Since each element occurs with a probability of P,, the average number of bits required to

encode an element is equal to the following expression:
SN ~Palog Py .

The most straightforward way to convert a stream of elements into bits is to use a unique
fixed-length codeword to represent each possible element. If the coding model contains an
alphabet of N elements, then each codeword would require at least log N bits. In the above
example, this would be log3 = 1.58 bits, which would have to be rounded up to 2. If a is
encoded as 00, b as 01, and c as 10, the above message would be encoded as 000100100001,
a total of 12 bits. This approach does not take into account the probability of each element

and therefore achieves no compression whatsoever.

A better approach is Huffman coding, which assigns a variable-length codeword to each
element. The codewords are selected so that the shorter codes refer to the most probable
elements and the longer codes refer to the least probable ones. An optimal Huffman coding
scheme for the above example would be to encode a as 0, b as 10, and ¢ as 11. The above
message would be encoded as 010011010, a total of 9 bits. While this is significantly better,
the reductions that Huffman coding achieves can never approach the theoretical limit. This
is due to the restriction that each codeword must be of an integral length. Most of the
time, however, the ideal number of bits for representing a particular run-length falls in-
between two consecutive integers. Because of this, small compromises must be made when

the Huffman codewords are assigned, leading to suboptimal coder performance.

Arithmetic coding avoids this limitation by abandoning the notion of codewords altogether.
Instead, a message is represented by an interval of real numbers between 0 and 1. Based
upon the coding model, each element is assigned a unique range within this interval [0,1]

in such a manner that none of the ranges overlap. Table 5.1 lists the model and associated

43

| element | probability | range |

a 0.2 [0, 0.2]
b 0.3 0.2, 0.5
c 0.5 0.5, 1.0]

Table 5.1: Example fixed model for alphabet [a, b, c].
subintervals for the previous example.

Initially, the range for the message is the entire interval [0,1]. As each element is encoded,
the range is narrowed to a smaller interval based upon the range of the element. For
example, with the above model, encoding the element a would reduce the range to [0, 0.2].
Encoding another a would further reduce it to [0, 0.04]. In general, if the interval was
previously [z1, z2] and the element to be encoded has the associated range [yy, ys], the new
interval is [(ze-z1)y1 + 1, (Z2-71)y2 + z1]. Encoding the entire message abacab produces

the following results:

Initially [0, 1
After seeing a [0, 0.2]
b [0.04, 0.1]
a [0.04, 0.052]
c [0.046, 0.052]
a [0.046, 0.0472]
[0.04624, 0.0466]

Decoding this message is fairly straightforward. The decoder simply compares the interval
with the ranges in the model to determine which was the first element in the message. It
then “removes” this element from the message by computing a new interval [(z1-y1)/(y2-41),

(z2-y1)/(y2-y1)] and the process repeats.

As it turns out, the entire message can be uniquely decoded by any number within the
calculated interval. The longer the message, the more bits it takes to represent this number.
For a large number of elements, the number of bits approaches the theoretical minimum.
Thus, arithmetic coding is an optimal technique for encoding a stream of elements if their

associated probabilities are known.

44

The implementation of arithmetic coding in a practical system is a bit more complicated. On
a computer system, real numbers are best represented with floating point variables. These
offer fairly limited precision, making them useless for encoding and decoding long messages.
It is much more desirable to use integer arithmetic if possible. In addition, operating on
intervals in the above manner would require an amount of storage proportional to the length
of the message, since the number of bits required to represent the interval is equal to the total
number of encoded bits. Again, this is not feasible for long messages. Fortunately, methods
have been developed for performing arithmetic coding of arbitrarily long messages using
only integer arithmetic. CAFC utilizes such techniques, which are described adequately
elsewhere [13] [14].

5.3 Adaptive Arithmetic Coding Models

At any stage of the coding process, the arithmetic encoder takes as input the element to
encode, a coding model, and the present state of the coder and generates as an output a
stream of bits. The corresponding arithmetic decoder takes as input the stream of bits to
decode, the same coding model, and the present state of the decoder to reconstruct the
element. This structure is extremely flexible because it does not restrict the model to be
fixed over time. After each element is encoded, is possible to revise the model with an
updated alphabet of elements or associated probabilities. As long as the decoder has access

to the new model at each stage, it can generate the correct stream of output elements.

In fact, because there is no coding delay associated with arithmetic coding, the new model
can even be a function of the elements transmitted. In an adaptive arithmetic coder, after
each element is encoded, the probability of that element is increased in the coding model.
That way, the next time the same element appears, it will require fewer bits to encode. The
arithmetic decoder updates its model in the exact same manner based upon the decoded
elements, so that it is always in accordance with the encoder. Adaptive arithmetic coding
works well for encoding streams of elements where the relative probabilities of each element
are fairly constant but unknown, because it eventually “adapts” to the appropriate statistics

after a large enough set of elements has been encoded.

45

5.4 Arithmetic Coding Model for CAFC

The arithmetic coder in CAFC serves two major functions. Most importantly, it is the mech-
anism used to actually merge the three independent data streams from Symbol Matching
and Substitution, Optimized 2D Run-Length Coding, and Direct Coding. Furthermore, it
provides additional compression by exploiting the relative probabilities each run-length or

symbol.

As explained in the previous sections, arithmetic coding efficiently represents a sequence of
items from a given alphabet by using information from a model consisting of the alphabet
and probability of occurrence of each entry. In CAFC, there are actually three different
arithmetic coding models, all shown in Table 5.2, where W represents the width of the
image in pixels and N indicates the total number of symbols in the symbol library. The
particular model and element that are used depend upon the state of the encoder and the
content that is to be encoded. AC Model0 is used to encode “same” runs, matching symbols,
or codes to indicate a new symbol (new-symbol), a dithered bitmap fragment (bitmap),
or the end of the page (escape). AC Modell provides the capability of encoding “different”
runs, matching symbols, or a code to indicate a dithered bitmap fragment. Finally, AC

Model2 encodes bitmap fragments as well as a code to signify the end of one (last-pixel).

The complete arithmetic coding state diagram for CAFC is shown in Fig. 5-2. The dashed
boxes represent the contexts of the three different coding models. As the encoder moves
from one state to the next, the element shown in italics along the indicated path is encoded
using the appropriate model. In addition, this is an adaptive coder, and the model(s)
indicated in a typewriter font are updated with an increased probability for the encoded
element. Also, when a new symbol is detected, a new element is created in AC Model0
and AC Modell for encoding future instances of matching symbols (after the new-symbol

element is encoded).

Performing both the multiplexing and entropy-coding with a single arithmetic coder is
desirable because of its simplicity and flexibility. With the exception of dithered bitmap
fragments, all possible image components are contained within a single alphabet, eliminat-

ing the need for headers or tags to be incorporated into the data stream. The entropy-coding

46

| AC Model0 | AC Modell [AC Model2 |

element # element # element

0 ”"same” run of 0 0 ”different” run of 0 0 a single white pixel
1 ”same” runof 1 1 “different” run of 1 1 a single black pixel
2 ”same” run of 2 2 “different” run of 2 2 last-pixel

W ”same” run of W W “different” run of W

W+1 escape W+l -ccmmmceaa s
W+2 new-symbol WH+2 -ccemeeeao -
W+3 bitmap W+3 bitmap

W+4 symbol #1 W+4 symbol #1

W+5 symbol #2 W+5 symbol #2

W+6 symbol #3 W+6 symbol #3
W+N symbol #N W+N symbol #N

+3 +3

Table 5.2: CAFC’s three arithmetic coding models.

of run-lengths is no longer integrated with the run-length coding process, as it is in Group
3 Modified Huffman Run-Length Coding. This approach can also take advantage of the
redundancy associated with the relative probabilities of each of the unique symbols con-
tained in the symbol library. For example, on a typical typewritten document, the letter
“e” appears far more frequently than the letter “q.” Because CAFC’s arithmetic coder is

adaptive, the encoded “e”s will end up taking fewer bits than the encoded “q”s.

Adaptive coders often perform quite poorly at the beginning of the encoding process because
a representative set of statistics has not yet been generated. To help alleviate this problem,
the CAFC elements for run-lengths are initially “weighted” based upon the statistics of a
large collection of sample images. The encoder eventually adapts to the real statistics of the
image (and performs better) after enough of the page has been encoded. More importantly,
it does not initially perform any worse than a non-adaptive run-length coder, which uses

the same predefined statistics for the entire document.

47

AC Model 0

(create new
element for

new e
symbol
gﬁggtg [T |
newr symbol| bitmap bit's AC
element {] s element
number number (O or 1)
dithered .
end <— g bitmap single
eleinent N fragment pixel
nuinber —jRdate 1)
last-pixel
element
number
start single
pixel
lengthh
of run
sym’bol ‘s;“‘ .
elemen dithered
| __number || matching bitmap
symbol fragment
{update 0.1) update 0,1)
bitmap
element number AC Model 2
AC Model 1

Figure 5-2: Arithmetic coding state diagram.

48

Chapter 6

CAFC Decoder

The CAFC decoder reverses the compression process, converting an encoded representation
of a facsimile page back into the form of an image. This process is fairly straightforward,

following directly from the design of the encoder.

The various building blocks of the image reconstruction algorithm are depicted in Fig. 6-1.
A content splitter first separates the encoded data stream back into the basic elements of
its three constituent contents: symbols, “same” or “different” runs, and dithered bitmap
fragments. These are then individually converted back into bitmap form by the appropriate
content decoder, either Symbol Substitution, Optimized 2D Run-Length Decoding or Direct
Decoding. Finally, an Image Constructor combines the decoded image objects together to

form a single reconstructed output page.

The Symbol Matching and Substitution decoder converts a stream of library index numbers
(encoded as AC element numbers) back into symbols to insert into the destination image.
In order to do this, it must maintain its own identical copy of the symbol library. Since at
any given point in time the library consists of symbols which have already been encoded by
another method, this process can be performed adaptively. The CAFC encoder multiplexes
the data from each of the three coding techniques in such a manner that a causal system ex-
ists between the source page and the library. The decoder can capture all new symbols from

the partially generated destination image by applying the same symbol isolation algorithm

49

Symbol
Substitution
: Content Image
1mage Splter Optimized 2D Constructor | 4, '°°°“;.t'“°‘°d
Run-Length Decoder raw bitmap

Figure 6-1: CAFC decoder block diagram.

C AFC -encoded

as the encoder. Because both libraries are updated in exactly the same manner based upon
identical images, they should be in accordance at all times. The actual decoding process is
then very straightforward and involves nothing more than a simple table lookup operation.
For each library index number in the encoded data stream, the appropriate symbol bitmap

is extracted from the library and superimposed directly onto the reconstructed output page.

Because the content multiplexing is performed inherently in the arithmetic coding process,
the content splitter is directly implemented with an arithmetic decoder. Each decoded data
item is then passed into one of three different reconstruction algorithms, depending upon its
content. The Symbol Substitutor takes as an input the library index number of an encoded
symbol and performs a table lookup into the symbol library, producing a two-dimensional
bitmap representation of the symbol. The Optimized 2D Run-Length Decoder converts a
given run-length into a run of “same” or “different” pixels to be inserted into the output
image. The Direct Decoder generates a horizontal segment of pixels from a stream of input

bits using each bit as the representation for a single pixel.

All generated image elements are combined together by the Image Constructor. Since in
the CAFC page model, the basic element of each content is a portion of a scan line, the
Image Constructor simply fills up the output page with these non-overlapping segments.
The only exception is typed text symbols, which are two-dimensional and therefore extend
below the scan line segment. Symbols are incorporated into a reconstructed image with a

pixel-wise inclusive OR function that preserves black pixels. They are effectively “placed

50

on top of” whatever occupies the space where they belong, which should be a region of
white pixels. The resulting image is the final output of the CAFC decoder, a reconstructed
version of the original source page. If the encoding was done well, the two should appear

almost identical.

51

Chapter 7

CAFC Parameter Optimization

The two most important performance measures of any compression algorithm are the
amount of compression it can achieve and the quality of the output generated by the de-
coder. There is, of course, an inherent tradeoff between these properties, and the objective
is usually to develop a technique that meets some standard for one of them while maxi-
mizing the performance of the other. In the case of DCME facsimile communications, it is
more important that the quality of the reconstructed image be high (though not necessarily

perfect). The goal then is to maximize the compression ratio under this constraint.

There are a number of different adjustable parameters in Content-Adaptive Facsimile Cod-
ing which need to be preset in advance. In some cases, the values that are used are not
particularly critical. However, most of the time the overall compression ratio and/or recon-

structed image quality depend very heavily on the selections that are made.

This chapter discusses the various choices that are available in the design of a CAFC coding
system and explains the criteria and procedures that were developed for optimizing the
performance of the coder based upon these parameters. Within each section, the values

that were chosen for the preliminary version of the algorithm are summarized.

52

7.1 Selection of Symbol Isolation Technique

Section 3.1 described the process of symbol isolation and detection for extracting typed
text symbols from a source image. For CAFC, three different approaches were developed,
symbol filling, symbol tracing, and symbol windowing. Since only one symbol isolation
algorithm is needed, the different techniques need to be evaluated so that the best one can

be selected for CAFC.

In terms of compression performance, the most important property of a symbol isolator is its
ability to detect and isolate all of the symbols on a page. Symbol filling and symbol tracing
can both do this (though the results may differ slightly), while symbol windowing cannot.
On the other hand, it is desirable to be able to implement facsimile compression on limited
hardware platforms so as reduce the cost and increase the mobility of such systems. Symbol
windowing requires very little in the way of computational resources, while the other two
techniques require storage space and processor cycles that grow linearly or quadratically

with the size of the symbol.

Table 7.1 summarizes the space and processing power requirements of each of the three
algorithms, as well as their performance at isolating symbols from a large collection of
test images (from Appendix D). As expected, symbol filling was able to detect the most
symbols while symbol windowing detected the fewest. However, the disparity was very
small, indicating that all three algorithms did a perfect or nearly perfect job. And since
symbol windowing requires the smallest amount of storage space, it appears to be the best

choice for symbol isolation.

It is interesting to note that the execution times of the simulations did not vary considerably
when different isolation techniques were used. This indicates that symbol isolation does not

contribute significantly to the total amount of processing power required by CAFC.

Total #

Name complexity | Symbols Detected time space
Symbol Filling medium 11011 O(LxW) | O(LxW)
Symbol Tracing high 10999 O(L+W) | O(L+W)

Symbol Windowing low 10898 O(L+W) 0O(1)

Table 7.1: Comparison of symbol isolation techniques.

53

7.2 Feature Selection and Matching Criteria

The feature matching component of Symbol Matching and Substitution has the important
task of detecting probable symbol mismatches before they are passed onto the more com-
putationally demanding template matcher. As explained in Sect. 4.1.1, this involves the
extraction of a number of high-level features from the symbols. For each feature F,,, the
absolute difference D,, is compared against a rejection threshold r,, to determine whether

or not to reject a symbol during a library search, where

Dy (s1,82) =| Fu(s1) — Fu(s2) | .

In the development of a feature matching algorithm, it is necessary to select a set of fea-
tures and a corresponding set of rejection thresholds. These parameters should be selected
so that the feature matcher is effective at eliminating differing symbols and passing match-
ing symbols. While it is certainly undesirable for the feature matcher to incorrectly pass
differing symbols, it is absolutely critical that it not reject matching symbols. The former
would merely result in the need to perform template matching, costing processor time, but
not affecting the compression gain. The latter would lead to the misinterpretation of the
two matching symbols as differing symbols, resulting in the creation of redundant library

entries and severe reduction in the amount of compression that is achieved.

For this reason, the feature matcher should be designed to be very conservative, with re-
jection thresholds set high enough to pass the overwhelming majority of matching symbols.
If P(Dy,(My, M;) = d) is the probability that the absolute difference between feature n of
any two matching symbols M; and M, is equal to d, then the probability of false rejection

for feature n, Pfy, is equal to the following expression:
1- X0y P(Da(My, M) = d)

After all N features have been extracted and tested, the overall probability of false rejection

for the feature matching system, Pf, can be easily computed:

54

Pf=1-T125(1~-Pfa) .*

To make the symbol matching of CAFC as robust as possible, Pf is selected to be very
low, 0.005, so that only 1 in 200 pairs of matching symbols should be falsely considered a
mismatch. To select the 5 best features, the probability of false detection for each feature
should therefore be targeted at 0.025. Using these assumptions, the rejection thresholds are

chosen to be the values that satisfy
0.005 = 1 — Y720 P(Dy (M1, Mp) = d) .

Once the rejection thresholds have been established with this procedure, the chances that a
pair of matching symbols will be falsely rejected should be the same for all of the features.
It is then possible to evaluate the features based upon their ability to correctly reject
two differing symbols. If P(D, (S}, S2) = d) is the probability that the absolute difference
between feature n of any two differing symbols S; and S5 is equal to d, then the effectiveness,

en, of feature n is defined as follows:
en=1—Y70 P(Da(51,8:) =d) ,
where e,, is just the probability that the feature matcher will correctly reject two differing

symbols. The overall effectiveness of the symbol matcher, e, is a function of the effectiveness

of each feature:
e=1-T1"5(1-e,) .*
For CAFC, the features are selected from the list of nine easily-extracted features listed

earlier in Table 4.1. In order maximize the overall effectiveness of the feature matcher in

CAFGC, the five features that are selected are those with the five highest e,’s.

*These equations assume mutual statistical independence between all of the features of a symbol. This
is a crude and inaccurate model, but is still useful for estimating the overall sensitivity and effectiveness of
feature matching.

55

makohing symbols sleviler symixls maiching symbole slmitar symbols maiohing symbols ‘smiler symbols
Oj an o o7 07 DJ‘
Sas Paof os Sasl HT ol
|-
g“ E‘“ 04} gﬁﬁ gﬁé §u
o2} a2} 0.!‘\ 02 o2 o9
o1 all /\ oy o1 V\‘ 0.1 /\ o)
§ |% * 20] l: * 0 § IG‘ * 20 [F!h';?ﬂﬂ;' W‘ % 2 s I: 1§ e
Symbol Width Symbol Height # Black Pixels
maiching symbols Similar symbols makhing symbols Slmiler symbols maiching symbols similer symbols
os| os) osf nﬂ os| u‘
07 o7] 7] o:J 7} 7]
Tod Tos %o Tos fos Tos
g iaﬁ g)) g
= 0.5 - =08 o llj‘ =05 kS 0.5}
gu g“ 4 iﬂ.‘ EM gﬂ.l
02 (¥ o2l \ o2 02 02|
White Pixels # Horizontal Run-Lengths # Vertical Run-Lengths
maiohing symbols Similer symbols: Maishing symbols slrriler symbsols matohing symbols slrrilar symbols
ﬂ.Ii 0.8 0.9 Il.l‘ 0.8 ﬂ."
gu Sod| ;u Eu gu Eu
g
z 0“ =05 = ﬂﬂ = 0.8 0.5 z 0.5]
Em E« E&u iu gM g’“
Moment (Horizontal) Moment (Vertical) Average Width of Symbol

Figure 7-1: Statistics of features on test symbols.

In order to determine P(D,(M;,M3) = d) and P(D,(S1,S2) = d), a set of typed text

test images was generated and scanned. The eight pages shown in Appendix C con-

tain 8 repetitions of 78 different characters in 3 fonts, 3 styles, and 3 sizes. To obtain

P(D, (M, M2) = d), all instances of the same symbol are compared with one another using

each of the nine features as a basis. Likewise, P(D, (S}, S2) = d) is generated by comparing

all of the “similar” symbols with one another in the same manner. “Similar” symbols are

differing symbols that are likely to be confused with one another, such as the same character

in two different fonts or styles. Figure 7-1 contains the graphs of P(D,(M;, M;) = d) and

P(Dy(S1,52) = d), determined from data compiled from these tests.

56

(n) | Feature Name |7n | en |
1 Width 2]10.72
2 Height 4 |0.50
3 Number of Black Pixels 30 | 0.66
4 Number of White Pixels 53 | 0.52
5 Number of Horizontal Run-Lengths | 8 | 0.37
6 Number of Vertical Run-Lengths | 4 | 0.62
7 Horizontal Moment 2 | 0.49
8 Vertical Moment 3 10.32
9 Average Width 3 }0.37

Table 7.2: Feature statistics — rejection threshold and effectiveness.

Using these results, the procedure described above was performed to determine the optimal
rejection threshold and the effectiveness of each feature. As can be seen in Table 7.2, the
five most effective features of a symbol (in order) are its width, the number of black pixels,
the number of vertical runs, the number of white pixels, and its height, with an overall

effectiveness of 0.991. These are the features that were selected for CAFC.

7.3 Template Matching Criteria

The template matching procedure, described in Sect. 4.1.2, also uses a rejection thresh-
old to determine whether or not two symbols are matches. Unlike in feature matching,
however, it is extremely important that the template matcher does not falsely match any
differing symbols. This is because template matching is the final stage in symbol matching,
and any errors made here would result in the incorrect symbol being substituted into the

reconstructed image.

Figure 7-2 shows a sample portion of a page processed with the rejection threshold r; set
at three different values. When r; is on the low side at 0.6, the results are somewhat
embarrassing; the symbol mismatches are numerous and obvious, and almost appear as

typos. When r; is raised to 0.8, only a few errors appear. Finally when r; is close to 1,

there are no errors.

57

THIS CONTRIBUTION OUTLINES A PROPOSED OBJECTIVE TEST
METHODOLOGY FOR ASSESSING THE PERFORMANCE OF 16-KBIT/S CODECS IN
A MANNER THAT IS COMMENSURATE WITH THE ENVISAGED APPLICATIONS
OUTLINED BY S6 XVIII TD 1.4 OUTLINING IN THE TERMS OF REFERENCE
OF THE AD HOC GROUP ON 16-KBIT/S SPEECH CopING [1].

SINCE MUCH OF THE SUBJECTIVE TEST METHODOLOGY WILL BE
CONTRIBUTED BY SG XII OR BY THE JOINT WORK OF SG XII WITH THIS
GROUP, ONLY OBJECTIVE MEASUREMENTS ARE ADDRESSED IN THIS
CONTRIBUTION.

THIS CONTRIBUTION IS THUS STRUCTURED IN TWO SECTIONS, .
WHERE SECTION 2 OUTLINES VARIOUS TYPES OF SIGNALS WHOSE IMPACT ON
THE PERFORMANCE OF A CANDIDATE 16-KBIT/S CODEC NEEDS TO BE
CHARACTERIZED, AND SECTION 3 GUTLINES AN OBJECTIVE MEASUREMENT
METHODOLOGY WHICH INCLUDES TESTS APPROPRIATE FOR EACH TYPE OF
SIGNAL OUTLINED IN SECTION 2.

original

THIS CONTRIBUTION OUTLINES A PROPOSEQ OBJECTIVE TEST
METNOOOLOGY FOB ASSESSING TNE PERFORMANCE OF 16-KBIT/S CODECS IN
A MANNER THAT IS COMMENSURATE uxru TNE ENVISAGEO APPLICATIONS
OUTLINED BY SG XVIII TD 1.41 OUTLINING IN TNE TERMS OF REFERENGE
OF THE A0 HOC GROUP ON 16-KGIT/S SPEECN CooIng [1].

SINCE MUCH OF TNE SUBJECTIVE TEST HETHOOOLOGY WILL BE
CONTRIBUTEO BY SG XII OR BY TNE JOINT WORK OF SG XII WITH TNIS
GROUP, ONLY OBJECTIVE MEASUREMENTS ARE AODRESSEO IN TNIS
CONTRIBUTION.

THIS CONTRIBUTION IS THUS STRUCTUREO IN TWO SECTIONS,)
WNERE SECTION 2 OUTLINES VARIOUS TYPES OF SIGNALS WHOSE IMPACT ON
TNE PERFORHANCE OF A CANOIDATE 1G-KBIT/S COOEC NEEOS TO BE
CHARAOTERIZEO, ANO SECTION 3 OUTLINES AN OBJECTIVE MEASUREMENT
HETHOOOLOST WHICN INCLUOES TESTS APPROPRIATE FOR EACN TYPE OF
SIBNAL OUTLINEO IN SECTION 2,

correlation rejection threshold=0.6

THIS CONTRIBUTION OUTLINES A Pnorossn OBJECTIVE TEST
METHODOLOGY FOR ASSESSING THE PERFORMANCE OF 16-KBIT/S CODECS IN
A MANNER THAT IS COMMENSURATE WITH THE ENVISAGED APPLICATIONS
OUTLINED BY SG XVIII TD 1.41 OUTLINING IN THE TERMS OF REFERENCE
DF THE AD HOC GROUP ON 18-KBIT/S SPEECH CODING Cil.

SINCE HUCH DF THE SUBJECTIVE TEST METHODOLOGY WILL BE

CONTRIBUTED BY SG XIT OR BY THE JOINT WORK OF SG XII WITH THIS
GROUP, ONLY OBJECTIVE MEASUREMENTS ARE ADDRESSED IN THIS
CONTRIBUTION,

THIS CONTRIBUTION IS THUS STRUCTURED IN TWO SECTIONS,)
WHERE SECTION 2 OUTLINES VARIOUS TYPES OF SIGNALS WHOSE IMPACT ON
THE PERFORMANCE OF A CANDIDATE 16-KBIT/S CODEC NEEDS TO BE
CHARACTERIZED, AND SECTION 3 OUTLINES AN OBJECTIVE MEASUREMENT
METHODDLOGY WHICH INCLUDES TESTS APPROPRIATE FDR EACH TYPE OF
SIGNAL OUTLINED IN SECTION 2.

correlation rejection threshold=0.8

THIS CONTRIBUTION OUTLINES A PROPOSED OBJECTIVE TEST
METHODOLOGY FOR ASSESSING THE PERFORMANCE OF 16-KBIT/S CODECS IN
A MANNER THAT IS COMMENSURATE WITH THE ENVISAGED APPLICATIONS
OUTLINED BY SG XVIII TD 1.41 OUTLINING IN THE TERMS OF REFERENCE
OF THE AD HoC GROUP ON 16-KBIT/S SPEECH CODING [1].

SINCE MUCH OF THE SUBJECTIVE TEST METHODOLOGY WILL BE
CONTRIBUTED BY SG XII OR BY TRE JOINT WORK OF SG XII WITH THIS
GROUP, ONLY OBJECTIVE MEASUREMENTS ARE ADDRESSED IN THIS
CONTRIBUTION.

THIS CONTRIBUTION IS THUS STRUCTURED IN TWO SECTIONS,)
WHERE SECTION 2 OUTLINES VARIOUS TYPES OF SIGNALS WHOSE IMPACT ON
THE PERFORMANCE OF A CANDIDATE 16-KBIT/S CODEC NEEDS TO BE
CHARACTERIZED, AND SECTION J OUTLINES AN OBJECTIVE MEASUREMENT
METHODOLOGY WHICH INCLUDES TESTS APPROPRIATE FOR EACH TYPE OF
SIGNAL OUTLINED IN SECTION 2.

correlation rejection threshold=0.9

Figure 7-2: Reconstructed images at various template matching thresholds.

58

[r: | total symbols | unique symbols | size(bytes) |

0.6 689 84 4028
0.8 689 216 7215
0.9 689 468 11740

Table 7.3: CAFC coding performance at various template matching thresholds

The value of r; also has a significant effect on the performance of Symbol Matching and
Substitution and on the overall compression performance of CAFC. Table 7.3 compares the
total number of unique symbols detected and total number of encoded bytes for the above
image at the different threshold values. The simulation shows that as r; is increased, the
performance drops rapidly. It is therefore important to choose a value for r; that is just
high enough to eliminate any symbol matching errors, but no higher. Through extensive

trial-and-error on a number of different source images, a value of 0.82 was chosen.

7.4 2D Run-Length Coding Initial Model

In order for 2D Optimized Run-Length Coding to be effective, it is important the that
arithmetic coder take full advantage of the disparity in the relative probabilities of each of
the run-lengths through entropy-coding. The arithmetic coder used by CAFC is adaptive
and automatically does this by developing a model containing run-length statistics on the
fly. However, at the top of the page, the arithmetic coder has only collected a very small

amount of data and does not have such an accurate model available.

To compensate for this, the CAFC arithmetic encoder and decoder start off with models
containing run-length statistics that are intended to be representative of the majority of fac-
simile documents. These are generated by encoding the training set images in Appendix D
with 2D Optimized Run-Length Coding. Once collected, the probabilities are scaled down
by a factor of 4 and placed in the initial arithmetic coding model for CAFC. With a scale
factor of 4, the initial run-length statistics are used exclusively at the top of the page and
the adaptively-determined statistics begin to dominate only after half of the page has been

processed, at which point a reasonably good model will have developed.

59

Chapter 8

Analysis and Evaluation

This chapter discusses the overall performance of Content-Adaptive Facsimile Coding as
determined by a number of different measures. Through the use of the software implemen-
tation of CAFC described and listed in Appendix E, a large number of simulations were
performed to quantify several important properties of CAFC. Unfortunately, the detection
and coding of dithered bitmaps is missing from this implementation and could therefore not
be evaluated. However, none of the test images used in these tests appear to contain any

instances of this content anyway.

Of primary interest is the amount of compression that is achieved by the algorithm. Without
a reasonably high enough compression ratio, it would be difficult to justify the introduc-
tion of the added complexity of CAFC into a facsimile communication system. Equally
important is the quality of the reconstructed images that are generated by the decoder. To
analyze the performance of CAFC for these measures, a set of test documents is passed
through the encoder and decoder stages so that both the compression ratios and image

quality can be evaluated.

The remaining two properties that are examined here directly affect CAFC’s capability
of being incorporated onto a real-world hardware platform. The requirements of CAFC
in terms of computational resources are a direct measure of the cost of implementing it in

hardware. In order for CAFC to be economically feasible, this cost must be low compared to

60

the savings obtained in channel bandwidth. Finally, the amount of coding delay introduced
by CAFC must not be too high or it would be technically impossible to use with the existing

facsimile protocols.

8.1 Compression Gains

The overall compression gain for CAFC was measured by encoding the set of eight standard
CCITT documents included in Appendix A. Table 8.1 lists the size of each of the CAFC-
compressed images in bytes as well as those reported from a number of existing bi-level
image compression algorithms, including Group 3, two-dimensional Group 3, Group 4, and
JBIG. The compression ratios achieved are shown in Table 8.2, and a direct comparison is

made with CCITT one-dimensional Group 3.

The compression ratios for CAFC varied significantly, from roughly 6:1 to 27:1 depending
upon the document. As expected, it outperformed Group 3 in every case by an average
of almost 2:1. Compared to the remaining compression algorithms, however, CAFC did
not fare so well. With the exception of CCITT Image #4, which consists predominantly
of typed text, CAFC performed about as well as G3D2, slightly worse than Group 4, and
about a factor of 2 worse than JBIG. However, this is to be expected, because the majority
of compression gains in CAFC are obtained from Symbol Matching and Substitution, opti-
mized for typed text. On CCITT Image #4, for example, CAFC outperformed the JBIG
standard by over 25%. The Optimized 2D Run-Length Coding in CAFC is not nearly as

sophisticated as the two-dimensional approaches in Group 4 or JBIG, so it is no surprise

| Source Image [Raw [G3D1 [G3D2 | G4 [JBIG [CAFC |

CCITT #1 | 513216 | 37423 | 25967 | 18103 | 14715 | 18816
CCITT #2 | 513216 | 34367 | 19656 | 10803 | 8545 | 20980
CCITT #3 | 513216 | 65034 | 40797 | 28706 | 21988 | 38194
CCITT #4 | 513216 | 108075 | 81815 | 69275 | 54356 | 39862
CCITT #5 | 513216 | 68317 | 44157 | 32222 | 25877 | 36903
CCITT #6 | 513216 | 51171 | 28245 | 16651 | 12589 | 27494
CCITT #7 | 513216 | 106420 | 81465 | 69282 | 56253 | 83604
CCITT #8 | 513216 | 62806 | 33025 | 19114 | 14278 | 34640

Table 8.1: Compressed file sizes in bytes for various coding algorithms.

61

CAFC:raw CAFC:G3D1
Source Image | Compression Ratio | Compression Ratio
CCITT #1 27.3:1 2.0:1
CCITT #2 24.5:1 1.6:1
CCITT #3 13.4:1 1.7:1
CCITT #4 12.9:1 2.7:1
CCITT #5 13.9:1 1.9:1
CCITT #6 18.7:1 1.9:1
CCITT #7 6.13:1 1.3:1
CCITT #8 14.8:1 1.8:1

Table 8.2: Relative compression ratios for CAFC

that CAFC cannot compete on documents where this form of coding is predominantly used.

However, the results of this analysis lead to a promising conclusion. It appears that if the
Optimized 2D Run-Length Coder were to be replaced by an approach similar to JBIG,
CAFC could perform as well as JBIG for non-text documents and better than JBIG for
typed documents. Consider the estimates shown in Table 8.3. The eight CCITT documents
are processed with JBIG, CAFC, and CAFC Optimized 2D Run-Length Coding. In ad-
dition, the residues generated from CAFC are processed with Optimized 2D Run-Length
Coding. The compressed file sizes are used to determine how much of each image is encoded
using Symbol Matching and Substitution and how much was encoded using Optimized 2D
Run-Length Coding. Then, based upon the JBIG:CAFC(RL coding only) ratio for each
image, the number of bytes that would be necessary to encode the residue with JBIG is
estimated. This value is added to the bytes required for Symbol Matching and Substitution

to obtain the estimated compressed file size for the revised version of CAFC.

CAFC | CAFC (RL Potential CAFC
Source Image | JBIG | CAFC | (RL only) | on residue) | & CAFC:G3D1 ratio
CCITT #1 | 14715 | 18816 27651 16906 10907 (3.4:1)
CCITT #2 8545 | 20980 20995 20861 8609 (4.0:1)
CCITT #3 | 21988 | 38194 42150 36754 20613 (3.2:1)
CCITT #4 | 54356 | 39862 95189 30484 25850 (4.2:1)
CCITT #5 | 25877 | 36903 47887 33993 21279 (3.2:1)
CCITT #6 | 12589 | 27494 28273 27069 12478 (4.1:1)
CCITT #7 | 56253 { 83604 96038 75910 52157 (2.0:1)
CCITT #8 | 14278 | 34640 34489 34209 14593 (4.3:1)

Table 8.3: Estimated file sizes for CAFC with suggested modification.

62

The preliminary calculations suggest that the modified CAFC could either match or beat
the performance of JBIG for almost all documents. This same approach would beat Group

3 by an average of approximately 3.5:1.

8.2 Reconstructed Image Quality

Both the Optimized 2D Run-Length Coder and Direct Coder components of CAFC are
lossless techniques and do not introduce any distortion into the document. Image degra-
dation is only possible with Symbol Matching and Substitution. It is therefore appropriate
to examine reconstructed images containing typed text when evaluating this property of

CAFC.

There are basically two types of distortion that can be introduced into an image by Symbol
Matching and Substitution. The first is the error that is associated with the false matching
two symbols that are actually different. The observable consequences of such a mistake are
the appearance of the wrong character on the page. The second type of distortion results

from errors in the placement of symbols on the reconstructed output image.

Appendix B contains the eight CCITT documents after having been encoded and decoded
with CAFC. Occurrences of the first type of degradation are extremely rare, and most often
occur when the font size is very small and the two mismatched symbols are scanned in
poorly. In such cases, it is difficult for even a human set of eyes to differentiate the symbols,
and such errors are likely to be overlooked. It is also possible, but difficult, to observe slight
variations in the placement of symbols. Careful inspection of the lines of text reveals that
they sometimes “weave” up and down by one or two pixels. This probably occurs because
of the slight differences in the width and height of symbols that have been scanned in from
different portions of the page. Suggestions are made in Sect. 10.2 to correct this problem.

Overall, the quality of the reconstructed images is excellent and is believed to be acceptable

for use in commercial systems.

63

8.3 Computational Resources

Compared to Group 3, CAFC is a fairly sophisticated compression algorithm. While Group
3 can be easily coded on a very inexpensive microcontroller without concerns of memory or

speed limitations, CAFC has relatively more demanding hardware requirements.

The most compute-intensive component of the CAFC algorithm is the search through the
symbol library for matching symbols, and in particular template matching. These oper-
ations grow linearly with the size of the library. Thus, images with the largest number
of unique symbols require the most processing time, and images with few unique symbols
require the least. The majority of the memory required by CAFC is needed to store the
bitmap representations of the symbols in the library. Again, documents with many unique

symbols impose the greatest demand.

All simulations were performed on a Hewlett Packard 9000/720 (57 MIPS, 32 Mbyte of
RAM) workstation using the C code contained in Appendix E. Compressing the majority
of documents took approximately 30 seconds, while compressing documents with many
unique symbols (such as CCITT #7) required about 90 seconds. Decoding the images took
approximately half as long. It is believed that a substantial portion of the execution time

is spent reading and writing the image files off of the disk.

The times required to process the images on the workstation are certainly not unreasonable;
they are approximately as long as it takes presently to transmit a page over Group 3 facsimile
terminal equipment. And if the code were rewritten in assembly language on a high-speed
digital signal processor (DSP), the execution times would drop substantially. As the cost
of DSPs and memory chips continues to drop, the feasibility of implementing CAFC as a
hardware add-on to DCME increases. In fact, many of the speech coders presently used in
DCME are of comparable complexity to DCME. It is believed that by 1997, when the next
generation of DCME’s are phased in, high-performance facsimile compression will offer a

significant cost advantage.

64

8.4 Coding Delay

Finally, it is important to consider the amount of delay that is introduced by a coding
algorithm. For real-time systems such as DCME, it is essential that it be kept to a minimum

(see Sect. 9.2).

Group 3 coding has a delay of a single scan-line, since it is one-dimensional and only
processes one line at a time. CAFC, on the other hand, needs several scan-lines in order to
perform Symbol Matching and Substitution. Fortunately, an upper bound on the coding
delay is inherent to CAFC because of the restriction on the height of a detected symbol. For
CAFC to be able perform encoding and decoding by processing a fixed number of scan-lines
at a time, the symbol isolator must be able to detect a symbol contained within this buffer.

This buffer must be at least one pixel taller than the maximum allowed symbol height.

The maximum symbol height is a completely adjustable parameter. The larger it is, the
more symbols can be isolated, giving CAFC the potential of achieving higher compression
ratios for typed text. The cost is a higher coding delay. However, since the majority of
text is not very large (probably no more than 14pt), there is a point of diminishing returns
where a further increase in the maximum symbol height does not buy much additional

compression. This seems to be in the neighborhood of 20 pixels.

Thus, although the coding delay introduced by CAFC is significantly higher than that of
Group 3, it is bounded and can be adjusted to meet the needs of the system on which it is

to be implemented.

65

Chapter 9

DCME Implementation Issues

In order to use Content-Adaptive Facsimile Coding as a secondary compression stage for
facsimile communications over Digital Circuit Multiplication Equipment (DCME) [3], a

number of implementation details must first be worked out.

9.1 Variable Bandwidth Output

One potential difficulty with CAFC is that its compression ratio is not fixed, but can
vary significantly depending upon the nature of the source document. In fact, it can even
be expected to change drastically throughout the transmission of a single page. This is
because the Symbol Matching and Substitution encoder has to build up its library before
it can achieve any compression, which cannot occur until a number of symbols are encoded
with the less efficient Optimized 2D Run-Length coder. The situation appears even worse
when one considers that CAFC is used as secondary compression. That is, the facsimile
input channels to DCME are CCITT Recommendation T.4 Group 3-encoded images that
must first be uncompressed before CAFC is applied. Group 3 is in general less efficient
than CAFC, but the actual disparity between the two techniques varies considerably over
time, especially when the source image contains a lot of typed text. So while the external

facsimile terminal equipment transmits modulated Group 3-encoded data at a fixed rate,

66

the two communicating DCMEs must exchange CAFC-compressed baseband data at an

unpredictable rate.

Fortunately, a DCME configuration is an ideal environment for overcoming these sorts of
problems. Because it multiplexes hundreds of channels together into a single high-speed
link, it can allow for the bandwidths of each channel to vary over time, as long as the total
bandwidth remains below the absolute maximum. Under typical conditions, a large number
of facsimile pages are transmitted simultaneously, each sending a different portion of the
page at a given time. The mechanisms in DCME for allowing variable bandwidth channels
are not very straightforward and require a fairly sophisticated controller. However, unlike

most other communications systems, DCME does possess this feature.

Of course, it is impossible to guarantee that the total bandwidth required by all of the
DCME channels will always fall below the capacity of the high-speed link without placing
severe restrictions on the total number of channels. Occasionally the channels are heavily
loaded, and there is simply too much data to transmit in too short of a time span. Conven-
tional DCME systems get around this problem on speech channels by using special coders
that can compress the speech by an additional amount when necessary by sacrificing speech
quality. When the system gets overloaded, a controller selects one or more voice channels
to temporarily produce fewer output bits by increasing the compression, alleviating the
problem. The associated increase in distortion is hardly noticeable because these periods

of simultaneous high channel activity are short and infrequent.

The ability to make a tradeoff between quality and compression gain is thus a valuable fea-
ture to have in a source coder used in DCME. In most equipment today, however, facsimile
and data channels are not equipped with this capability. Instead, they are simply given
priority over voice channels so that only speech signals are allowed to be corrupted during
overload. In the case of data channels, this is necessary to ensure an error-free transmission.
But for facsimile, it is done only because there is no simple way to reduce the number of
bits in a Group 3-encoded document without causing significant distortion to the page. If
a facsimile compression algorithm with a selectable compression threshold could be devel-
oped, the same technique could be applied. CAFC does not provide this feature, nor does

it lend itself to an easy modification so that it can. However, a number of lossy decimation

67

and interpolation techniques have been developed which reduce the amount of redundancy
in an image so that additional compression may be achieved [2] [15]. It is possible that the
facsimile page can be preprocessed with such an algorithm before it is encoded with CAFC

to reduce the overall bandwidth when the overload condition occurs.

9.2 Coding Delay

Another important factor in the implementation of a facsimile source coding technique is
the type of system into which it will be incorporated. In a real-time facsimile communica-
tions system, both the transmitting and receiving facsimile terminal equipment are on-line
and in direct communication with each other throughout the duration of the transfer; the
transmitter does not disconnect until the entire document has been received. This differs
from store-and-forward systems, where the document is first obtained from the transmitter,
temporarily stored, transferred at a convenient time, and finally sent to the receiver. Be-
cause neither of the two facsimile terminals is tied up when the document is sent over the
main communications link, store-and-forward systems can tolerate an arbitrary amount of
propagation delay. Secondary facsimile compression can be easily incorporated into these
systems because all processing can be performed while the terminals are off-line. In fact,
since the entire page is available in storage, it is possible to use highly sophisticated com-
pression algorithms that utilize all of the image information. Even processing time is not
a major concern, because the transmission is already delayed by a period of time that is
much longer than it takes to process the document. In contrast, real-time systems cannot
withstand large delays between the transmitter and receiver because the CCITT Recom-
mendation T.30 facsimile protocols do not account for them. At the beginning and end of
the transfer, when two-way handshaking is performed, it is possible for some of the timeout

thresholds to be exceeded, resulting in synchronization problems.

Despite these difficulties, DCME facsimile channels are always real-time systems. There are
a number of specific reasons for this which are beyond the scope of this thesis. However,
secondary facsimile compression can still be incorporated into real-time systems as long as
certain restrictions are placed on the nature of the algorithm. First, the facsimile images

must be transmitted serially from top to bottom as it is with Group 3. This requires both

68

the encoder and decoder to be causal systems. Naturally, when generating output, they can
only make use of information from the portion of the page which has been received so far.
Second, the delays inherently introduced from the coding and decoding algorithms should be
minimized to prevent timeouts in the protocol. Finally, the compression and decompression
procedures should not demand too much processing power; this could introduce further

delay into the system or make it too expensive or infeasible to implement.

Content-Adaptive Facsimile Coding is designed to meet all of the above restrictions. The
serial input is processed from top to bottom, and the multiplexing stage ensures that the in-
dividual image components remain in this order in the encoded output. Of the three content
coders, only Symbol Matching and Substitution has the potential for introducing significant
delay into the system. This occurs only when large symbols are encoded, since many scan
lines from the input have to be analyzed before a match can be detected. However, an
upper bound is placed on the delay by imposing a limit on the height of a symbol that can
be detected by the isolator. This restriction does degrade the compression ratio somewhat
because fewer symbols can be detected and encoded with Symbol Matching and Substitu-
tion. Such a tradeoff between delay and loss of compression ratio is a property common to
all source coding techniques, and a judicious choice must be made when establishing the
thresholds so that the desired performance is obtained. Finally, the most compute intensive
stages of CAFC are the symbol isolation and feature/template matching, and they should

not present too much of a challenge for tomorrow’s hardware.

9.3 Forward Error Correction

To prevent severe image distortion due to bit errors, Forward Error Correction is applied to
all DCME facsimile channels. The use of FEC drastically reduces the bit error rate (BER)
of a channel, allowing facsimile messages to be reliably transmitted over DCME. It does
so by intentionally introducing redundancy into the data stream so that the receiver can
detect and correct most errors. Despite its effectiveness, it is theoretically impossible for
FEC to eliminate all bit errors in a channel; at best, there will be an occasional corrupted
bit in the message. When this occurs, distortion is introduced into the received facsimile

document. The effect of such an error on the reconstructed page is highly dependent upon

69

the properties of the source coding scheme that is used. It is usually the case that image
coders that achieve high compression gains are less tolerant to bit errors than those that
do not. As it turns out, CAFC is extremely sensitive to corrupted data and completely
breaks down when even a single bit error is introduced. This is because the arithmetic
decoder that is used to demultiplex the different contents can no longer correctly decode
the remainder of the message. From the point in time when an error occurs until the end of

the transmission, the reconstructed image is severely distorted in an unpredictable manner.

Group 3 coding, which uses Huffman coding rather than arithmetic coding, suffers from this
difficulty as well. However, the problem is mitigated through the use of special synchro-
nization codes inserted into the data stream at the end of each scan line. When an error
occurs, the entire scan line is corrupted, but the decoder can at least “resync” at the end of
the line and continue decoding normally beginning with the next scan line. Usually, when a
single scan line is omitted from an image, it is difficult or impossible to notice anyway. This
approach works very well, and methods are being investigated to apply similar techniques
to arithmetic coding. Unfortunately, even with the successful incorporation of synchroniza-
tion codes into CAFC, the coding scheme still suffers from a high bit-error sensitivity. The
Symbol Matching and Substitution content coder relies heavily on the equivalence of the
symbol libraries at both ends of the transmission. When a scan line becomes corrupted,
it is possible that the CAFC decoder might not correctly detect a symbol and update its
library. From that point on, all symbols on the remainder of the page are incorrectly de-
coded, producing a significant amount of distortion. Even if the library remains intact, a
corrupted scan line could result in the absence of a library index number and therefore a

missing symbol.

One possible solution to this problem is to insert library synchronization information into
the data stream to help prevent the occurrence of dangerous inconsistencies between the
libraries. Although some symbols would still be corrupted, the majority would remain
intact. Another idea is to selectively use an additional degree of forward error correction
on the most critical portions of the page. This would include areas with new symbols and
areas with a lot of repeated symbols. The vast majority of errors that occur in such regions
would be corrected, decreasing the incidence of image distortion. Both of these possibilities

need to be further investigated. Of course, if all else fails, it is always possible to employ

70

a high degree of forward error correction to the entire transmission, lowering the effective
bit-error-rate to some negligible amount. Increased reliability would be obtained at the

expense of additional channel bandwidth.

71

Chapter 10

Conclusion and Recommendations

10.1 Summary and Conclusion

This thesis describes the conception, development, and optimization of a novel approach
to bi-level image (facsimile) compression. The objective was to develop a page model that
is more sophisticated than those used in existing compression algorithms. The idea was
to separate the page into its different contents, encode them separately using the coding
technique best-suited for the properties of each content, and then multiplex the compressed

data into a single output data stream.

A model was selected, consisting of three classes of contents: typed text, handwriting and
graphics, and dithered bitmaps. Three different coding techniques were developed to encode
them: Symbol Matching and Substitution, Optimized 2D Run-Length Coding, and Direct
Coding. Particular emphasis was placed on optimizing the performance of Symbol Matching
and Substitution because it appeared to have the greatest potential for compression gains.
Arithmetic coding was selected as the mechanism for both multiplexing the three streams

and performing entropy-coding.

Procedures were developed to optimize the various components of the algorithm, and then
extensive simulations were performed. Preliminary results show that CAFC outperforms

CCITT Recommendation T.4 Group 3 Run-Length Coding by roughly a factor of 2:1 for

72

most documents and almost 3:1 for typed text. With some modifications, it is believed that
it could do as well as or better than JBIG for all documents. Although the Symbol Matching
and Substitution component of the algorithm is lossy, the distortion that is introduced is

difficult or impossible to perceive.

Finally, the initial target application, Digital Channel Multiplication Equipment, was ex-
plained and the implementation issues were discussed. CAFC has the potential to be used
in such equipment to effectively double the number of facsimile channels that can be active
simultaneously without any increase in the bandwidth of the high-speed channel. The cost
of such a system would be modest compared to many of the components in existing DCME

systems.

10.2 Improvements to Algorithm

The results of the simulations in Chap. 8 indicate that CAFC has the potential for an
even higher degree of compression and image quality. Based upon these observations, the

following suggestions are made for future work that could lead to significant improvements:

¢ Set of Contents/Coding Techniques: The page model described in Chap. 3 divides the
page into typed text, handwriting, graphics, and dithered bitmaps. While this may
seem like a logical classification of contents, it is certainly possible that the page could
be decomposed into a different set of contents that lends itself to a more efficient set of
coding schemes. An objective for future work would be to refine the CAFC model so
that the set of contents better represents the page and each content is most efficiently
coded while still maintaining a high degree of reliability and practicality.

e Symbol Matching: An area that should definitely be targeted for improvement is the
symbol matching process, particularly template matching. In order to calibrate the
Symbol Matching and Substitution encoder so that it would not incorrectly match
differing symbols, it was necessary to set the rejection threshold r; fairly high. It
was shown in Sect. 7.3 that even a slight decrease in this parameter would yield a
significant increase in coding performance. Based upon the number of matching sym-

bols that are falsely rejected by the template matcher, it is believed that a much

73

more robust algorithm could replace it. One possible approach would be to expand
feature matching to use a much larger number of features and to use a multidimen-
sional decision region that takes into account the statistical correlations between the
features.

Residue Coding: The focus of this research was on the development of a high perfor-
mance Symbol Matching and Substitution algorithm for the efficient coding of typed
text. Because of this, the techniques that were developed to encode the residue, Op-
timized 2D Run-Length Coding and Direct Coding, cannot compete with some of
the more sophisticated lossless standards such as JBIG, as was shown in Sect. 8.1.
Optimized Run-Length Coding could be replaced by any number of superior two-
dimensional coding techniques, both lossless [7] [8] [9] and lossy [2] [15]. Direct
Coding, which does not perform any compression at all, could be replaced with a
technique designed specifically for dithered images {10] (even JBIG has provisions
for this). By using these approaches to encode graphics, handwriting, and dithered
bitmaps, and using Symbol Matching and Substitution for typed text, a very high
degree of compression would likely be obtained.

Arithmetic Coding Models: The three arithmetic coding models that are used in
CAFC, described in Sect. 5.4, were designed based upon a number of assumptions and
intuitions about the contents of facsimile documents. A more systematic approach
would be to analyze a large number of training set images and determine the relative
probabilities of runs, new symbols, matched symbols, and bitmap fragments and the
orders in which they occur. Perhaps an improved model could be developed using
this information that could further reduce the number of output bits generated by the
arithmetic encoder.

Symbol Placement: It was pointed out in Sect. 8.2 that the placement of symbols in
the reconstructed images is sometimes slightly off-center, resulting in lines of typed
text that tend to “weave” up and down by a small amount. A proposed solution to
this problem is to compute the horizontal and vertical moments of each symbol and
to then align each matching symbol about this point in the reconstructed image. This
would require some additional bookkeeping by the encoder, but would have no effect

on the compression performance of the encoder.

74

With the above suggestions, as well as modifications targeted for the specific application
(such as those mentioned in Chap. 9 for DCME), Content-Adaptive Facsimile Coding has
the potential to be a highly reliable real-time compression system that would provide sub-

stantial cost advantage for facsimile service providers.

75

Bibliography

[1] CCITT Recommendation T.4, “Standardization of Group 3 facsimile apparatus for

document transmissions,” 1988.

[2] R. Ragland, N. Tender, and S. Dimolitsas, “Facsimile compression for Inmarsat-M,”

tech. rep., COMSAT Laboratories, December 1992.

[3] INTELSAT Earth Station Standard (IESS-501), “Digital circuit multiplication equip-

ment specification,” December 1992.

[4] W. K. Pratt, P. J. Capitant, W. Chen, E. Hamilton, and R. Wallis, “Combined sym-
bol matching facsimile data compression system,” Proceedings of the IEEE, vol. 68,

pPp. 786-796, July 1980.

[5] O. Johnsen, J. Segen, and G. L. Cash, “Coding of two-level pictures by pattern match-
ing and substitution,” The Bell System Technical Journal, pp. 25613-2545, October
1983.

(6] D. M. Silver and D. A. H. Johnson, “Facsimile coding using symbol-matching tech-
niques,” IEEFE Proceedings, vol. 131, pp. 125-129, April 1984.

[7] F. W. Mounts, E. Bowen, and A. N. Netravali, “An ordering scheme for facsimile
coding,” The Bell System Technical Journal, vol. 58, pp. 2113-2129, November 1979.

[8] J. W. Woods, “Two-dimensional delta-mod facsimile coding,” IEEE Transactions on
Communications, vol. COM-26, pp. 936-939, June 1978.

[9] J. L. Mitchell and G. Goertzel, “Two-dimensional facsimile coding scheme,” tech. rep.,
IBM Thomas J. Watson Research Center, 1979.

76

[10] T. Usubuchi, T. Omachi, and K. linuma, “Adaptive predictive coding for newspaper
facsimile,” Proceedings of the IEEE, vol. 68, pp. 807-813, July 1980.

[11] R. Aravind, G. Cash, D. Duttweiler, H. Hang, B. Haskell, and A. Puri, “Image and
video coding standards,” AT&T Technical Journal, pp. 67-72, January/February 1993.

[12] F. Tzeng, “Content-based super-compressive facsimile coding,” tech. rep., COMSAT
Laboratories, September 1990.

[13] M. Nelson, The Data Compression Book. San Mateo, CA: M&T Publishing, 1992.

[14] I. Witten, R. Neal, and J. Cleary, “Arithmetic coding for data compression,” Commu-
nications of the ACM, vol. 30, pp. 520-540, June 1987.

[15] M. Ismail and R. Clarke, “Adaptive block/location coding of facsimile signals using
subsampling and interpolation for pre- and postprocessing,” IEEE Transactions on

Communications, vol. COM-29, pp. 1925-1933, December 1981.

77

Appendix A

CCITT Test Images

The following eight facsimile images are the standard set of CCITT test images. They
are intended to be representative sample the types of documents that are transmitted by
facsimile. They are useful for comparing the performance of different facsimile terminal

equipment and coding techniques.

Each page was individually scanned into a facsimile machine, transmitted to a PC-based
fax card, and then saved to a file on the host computer system. All of the images are in

fine mode (200 pixels/inch) but are reduced by 30% along each axis on the following pages.

78

THE SLEREXE COMPANY LIMITED

SAPORS LANE . BOOLE - DORSET - BH25 $ER
TELEPHOME B00LE (945 13) 51617 - Tmiax 123456

Our Ref. 350/PJC/RAC 18th January, 1972.

De. P.N. Cundall,
Mining Surveys Ltd.,
Holroyd Rosd,
Reading,

Berks.

Dear Pate,

Permit me to introduce you to the facility of facsimile
transuission.

In facsimile a photocell is caused to perform a raster scan over
the subject copy. The variations of print demsity on the document
cause the ph 11 ¢o g an analogous slectrical video signal.
This signal is used to modulate & carrier, which is transmitted to a
Temote destination over a radio or cable commumnications link.

At the remote terminal, demodulation recomstructs the video
signal, vhich is used to modulate the density of print produced by a
printing device. This device is scanning in a raster scan synchronised
with that at the transmitting terminal. As a result, a facsimile
copy of the subject document is produced.

Probably you have uses for this facility in your organisation.

Yours sincerely,

194,
P.J. CROSS
Group Leader - Facsimile Research

Registered {n England: No. 2088
Raglatered Office: 00 Viesra Lane, Nford. Essex.

Figure A-1: CCITT test image #1

79

Figure A-2: CCITT test image #2

80

Mot directsur

SOCHTE ANONYME A CAMTAL OF 390008 P CLASSEMENT PACTURE a-n-15
a.”uq"m Adr, 1: :-n:vurm
m-.u-‘:'lnxm LYY 73‘;7:7“| % l H\W
:‘::—m-m Vowe comenande du T4e2edumes 438
Notre ofire A7 /B7 “© Pt 12
[] [] ® [
LIVRAXSON FACTURATION
5, rue XYZ 12, rue ABCD BP 15
99000 VILLE 99000 VILLE
DOMICILIATION BANCAINE DU VENDRUR PAYS D'ORIGINE PAYS DE DESTINATION
CODE BANGUE CODE OUNCHEY COMPYE CLIENT Tonomons De LvaaoN DATE 74..03-03
TRANFONTS UCENCE D'DXPORTATION NATUME DU CONTRAT (monnele)
omans DOSTIMATION MOOE r
CONDITIONS DIt PAIEMENT ».)
Pays 1 Btat 2 Alr
MARCUBS T NUMSROS NOMBAE 7 NATURE DES COUS : NOMEN- | MASSE NETTE| VALEUR
MANKE AND NUMBERS DENOMINATION DE LA MARCRANDISE CLATURE | neT WEIGHT VALUE
MUMBER AND KING OF PACKAGES: trArz‘ncu MASSE SAUTE
DRICRIPTION OF GOODS ooy DIMEMSIONS
U 123/4%| 5 kg 1& &
7%.21.556.44.2 A 1 Composants - Jrac R
OUANTITE | W €T NeF. DENIGNATION QUANTITE PRIX MONTANT
COMMANDAR | DE L'ASTICLE LIVREE ONTAIRE TOTAL
£ ot ETUNITE | yurypmice | TOTAL
OQUANTITY QUANTITY AMOUNT
ORDENED DELIVERED
Ao it AND UNTT
AP~-809 | Cirouit intégré 2 104,33 F 208,66 ¥
13 88-14 Connecteur il 10 83,10 1 831,00
25 2107 Composant indéterminé 20 15,00 F 300,00

Costs Débours Inclus Non Inchs

Packing Embalisges 92,1%
Fraight Traneport

Tosel Iwolos smount | Montant totsl de e fecre 1431, 80
Inataliment Acomptes

NET TO 94 PAID NETY A MOLER 1431,80

Figure A-3: CCITT test image #3

81

- 34 -

L'ordrede lancement et de réalisation des applications fait 1'cbjet de décisions au plus haut
niveau de la Direction Générale des Télécommunications. Il n'est certes pas question de
construire ce systéme intégré “en bloc" mais bisn au contraire de procéder par étapes, par
paliers successifs. Certsines applications, dont la rentabilité ne pourra étre assurée, ¢
seront pas entreprises, Actuellement, sur trente applicstions qui ont pu étre globalement
définien, sixen sont su stade de l'exploitation, six autres se sont vu domner la priorité pour
lsur réslisation,

Chaque application est confiée & un "chef de projet’, respoussble succesaivement de sa
conception, de son analyse-programmation et de sa mise en oouvre dans une région-pilote.
La généralisation ultérieure de l'spplication réalisée dans cette région-pilote dépend des
résultats obtenus et fait l'objet d'une décision de la Dir Générale. Néanmoins, le
chet de projet doit dds le départ considérer que son activité a une vocation nationale donc
refuser tout particularisme régional, Il est aidé d'une équipe d'analy

et entouré¢ dun "groupe de conception" chargé de rédiger le document de "dm!m dn
objectifs globaux" puis le "cshier des charges” de l'application, qui sont adressés pour avis
A tous les services utilisateurs potentiels et aux chefs de proht des autres applications.
Le groupe de conception comprend 6 A 10 per les services les plus
divers concernés par le projet,et comports ohummmm un bon analyste attaché A I'ap-
plication.

I - L'IMPLANTATION GEOGRAPHIQUE D'UN RESEAU INFORMATIQUE PERFORMANT

L'organisation de l'entreprise francaise des télécommunications repose sur l'existence de
20 régions. Des calculateurs ont été implantdés dans le passé au moins dans toutes les plus
importantes, Ontrouve ainsi des machines Bull Gamma 30 A Lyon et Marseille, des GE 425
a Lille, Bordeaux, Toulouse et Montpellier, un GE 437 3 Massy, eafin quelques machines
Bull 300 T A programmes ciblés étalent récemment ou sont encore en service dans les
régionsde Nancy, Nantes, Limoges, Poitiers et Rouen ; ce parc est essentiellement utilisé
pour la comptabflité téléphonique.
Al'avenir, sila plupart des fichiers nécessaires sux applications décrites plus haut peuvent
otre gérés en temps différé, un certain nombre d'entre eux devront nécessairement étre ac-
cessibles, voire mis A jour en temps réel : parmi ces derniers le fichier commercial des
abormés, ls fichier des remseignements, le fichier des circuits, le fichier technique des
abonnés contiendront des quantités considérables d'informations,
Le volume total de caractdres A gérer en phase finale sur un ordinateur ayant en charge
3! 500 000 abonnés a été estimé A un milliard de caractires au moins, Au moins le
tiers des données seront ¢es par des trai en temps réel,
Aucun des calculateurs énumérés plus haut ne permettait d’envisager de tels traitements.
L'intégration progressive de toutes les appllcnhm suppose la création d'un support commun
pour toutes les informations, une véritable "Banque de données”, répartie sur des moyens
de traitement nationaux et régionaux, et qui devra rester alimentée, mise 2 jour en perma-
nence, i partir de la base de l'entreprise, c'est-a-dire les ch s, les magasi les
guichets des services d'abonnement, les services de personnel etc,
L'étude des différents fichiers & constituer a donc permis de définir les principales carac-
téristiques du réseau d'ordinateurs nouvesux i mettre en place pour aborder la réalisation
du systéme informatif, L'obligation de faire appel A& des ordinateurs de troisidme génération,
trés puissants et dotés de volumineuses ires de , a duit 4 en réduire substan-
tisllement le nombre.
L'implantation de sept ceantres de calcul Interrégionaux constituera un compromis entre :
dtune partle ﬂ‘lh‘ de rldul.rc le cott é { de 1" ble, de faciliter la coordination

des équipes d'infor 4 et d'autre part le refus de créer des centres trop importants
diffictles A gérer et & diriger,et posant des problémes délicats de sécurité, Le regroupe-
ment des traitements relatifs & plnmu- régions sur chacun de cu sept centres permettra
de leur donner une taille rel ge Chagque centre "geérera” environ un mil-
ljon d'abonnés A la fin du Viame Plan,

Lamise en place de ces centres a débuté au début de l'année 1971 : un ordinateur IRIS 50 de
la Compagnie Internationale pour l'Informatique a été installé 2 Toulouse en février ; la
méme machine vient d'8tre mise en service au centre de calcul interrégional de Bordeaux.

Photo n®* 1 - Document trés dense lettre 1,5mm de haut -
Restitution photo n* 9

Figure A-4: CCITT test image #4

82

ou)
. T 1.0

i'd

r.-r.w.—nz,’l (ova Ty > T)

(voir fig. 4),

Po. 4

telle ligne A retard est donnde par :

',
9-—2=L1'.df

- Lo T
’ 2‘[7'0"'2'- hsivil

Etmphullnbhal'oppuide/‘_(__f_), _
4 un déphasage constant prés (sans importance)
ot & un retard T, prés (indvitable).

L ad 2("

-

tpe)

T vim
Af « § iy
Teflps

Ia premidre A I'instant O est la fréquence basse f;,
qui met on temps 7, pour traverser. La fréquence /

entre & |’imnu-u-j,){.f.u clle met un temps

To—-U-13) T pour traverser, ce qui la fait ressortir
A Uinssant 7. éwslement. Ainsi donc. lo sienal Sin

Figure A-5: CCITT test image #5

83

g ron ¥

1
. 5 0 -] E B8 Q

MMg.(mhM)m

, = @ Ga = 35B G, = 25dB
E=——s x5 s
Polats calkealis D (Q, G,) pour
Gywe G, =28 G,~35dB
® n A ~ dans Is partie mootante
x [] + -~ dans Iz partie descondante

—— — e e v—

Courbes asmms s s o= samme D (0, G,)
Pouse 3

TOME V — Questien 18/XII, Annexs 6

Figure A-6: CCITT test image #6

84

QO— SHMK

K

QU2 HENKRENO (~-D) CECC NN (MENR B
B R RBERMY OO~E" VO—RR) €] PuoY ~HDEH-»" MKk
SHEREHCRERVREUS LT v ¢ MK OmT O v~ mK o WR G
K0° MmN FEWEEEEEREELIE- 0"
CU—HHCREREY QUL (HEWERENKS) VOO~ (BENEE
SGEY) ©R0° QUMY monwlom—n Yy TREKKNNEEE
REWEN, 2EMo’ HLh~ocnlC Y -~WEWiiNge va’ Higy’
"AREWERENKS, vOrRBRENCE GRKERUNC .20 £ R0° OO
=1 BOvroonl CHEC VN QUL UEH 056 vV MW
e

Wb DUEY ~ovel (AT EDEYNRERVILC L VU
8 EHERURcERHRENULLCL BRvSVRHCOORE UM
P U NEVO—REFY QUSERVOU—HRERI LMY 1§~ ERHLIEN
O RNBYPHY ~cooRuid k-t ROEPHS ~oowl’ A
Ta—N HeEYHN 0ol NIV AN N L

QUL VOOV~ RO INEC Y ERWEKMECRE VU HNBU0 S
VWRER VREER U AVRMESZ R OMER NSO b wBvoK
$URIY WERCOWERESE | KL< 00 OO—C BRI
O CHRIES 1%L 4o BB BN R %> W B 0°

QU—HRY HHE U m—D P YRCHLUUMT Y m—D P YECW
- WHCKIE - ME - HHCHMBLNS Kool [wuATvauch |
#E2" CRMadE’ HOAEAN m—-0 P YCHRM m—0 DY 3
Rr2ZEWHCEHRRN:" daunlt’ ~a0olVO—RFRECHY REY
RN oRM R oo fHLC LR ILEn—0 * Y TENVRNOLSE
32 0

DEIBRE ~owokomuBitie L KEREEWE S ~N 20’ KYW
WERECOPLR 4D HMRY (CRUEEE VYN~ OO~~R I CEHN
SRS L0 URYS T QO CHEIRK BHRTORCNKBES 0
WE 2 OBk EHR IR KHEKEAMI IS ZRAN - KRR &
WEACHNUREC VD CRNC H U IR FSARRRS ~=DCRUN
SiMEi g SRROY HER YERCKIRA v

L OV BHEIN ~owolCRNERUR I T -~ L ER
UNVUDRLRLV50° HERMNPH QU VUG S gy I’
AR RERANCRNRER LU VRO QU K- o1~k
S~ RAUCKHENME HCUUBHDEC AL OUC 50"

iR

RO HEKRAN HiEHHLEL VoM PO SRV vk
SCHRCMAVHEIHAENKEEEL U FRO LY 30°) PERVRED
P00 OO CHRY PgulRslativie’

EENEREEERKN(OU—EE)S WHRUSWEUEE oRE WE
LMSEHCEML O 5 VRS DRG0 VB A0, (=
COVHKY N -—FRE—~otd)

TCREEETAENS OHRCML LML C v RISEM L NS HY
UROHELRTORBEISABEREY S oWKEES RN MR LY
WUNKENC KERUC 5 VBRSO S Rulali oo LM s
WHAMELNGR005°, (ER~wo)

ORI Y Wi’ REKFACKELND 0 VCHEKWKMECENR
UOSVERD &0 BRI VR0, (ER~ooi)

Lk~ ordb ok oogot) 3 R0 THD, % RANKEEC Avis &0
Kou-C" Wmton' "E(Recommendation) v ¥V 20" OU~HKE
BE- ommn BEHE A ABRVAUMIDCHCO P CUE X' W
ERE WEREZROEAVER R ORMDC V028 VR0 S0 vopnly
BIEOVD REEREC S WNEREZCH v’ HEANERRROVYC TN
KB o AERE VSN O WELCOEBCHBMMLNSOREUY W
CHOMMEY | wei)e M) uRLSESY ERSEEREMCS)
VRPONIRERNI® HoRm (HUaEi) ¥ BENEGES ~cROwE
RMEFOSERLC Y BKAEMBEKEF 026 L’ KERS—-N
2 P KAERNEVHORL O n 040" + WK § X o W~ MUg S W
RUBEAY VE 4 r U0 R WERIVHBRIKEFF0 ORRT M OO~
RCHEEYN P AURCCRREMEVSEH OO~RHENRREY” v6
HuPECHIEMECNBREN SOUD2 N0°

DCMEY Wy WEREZ-CVCHORECH VY BRIHCEEWS
© VRN L oMLY S r e S KHAMEC KW M LSS RF 010
R’ My VEUHSHREC0CE MEC W r MRS S AEmMEXE
4 HEACHMRME | DUEESIRL OV IREUNTEN R0

Figure A-7: CCITT test image #7

85

memorandum

~ AP Sorgac |™ G.V Snit
xo.s.mMﬁ m&s%?zw

™ om6 2041 | wan, I-T-H

s\@ F?\ Rc\m\. 8%&6 ﬂuon:‘ap.&? e
reduced €o Ll.gsle...c .mez.« ..\.: ?}.a..&
@q communicalioa n.ﬂam@f. Howrr , i can
be jsa?& yaned alio some cafa musC emaca
A QZ—%P«M 4%73 “\\ov n.nog\.ﬁ ,we E?m\&du
purch an engineening .&9&.\4 or wealror Asp .

] tak we sheuld ralie that
?NQP 42% \“Peaer..hﬂ m..dst.:_.,—:.oaa are meded &
vRIrcome os” ﬂ?&sﬁ. o.?s\egm\a e dafa
g!)skw\o.mﬂo). We ned _duénh. calo QJ@P.&
Co ghﬁ.ga..g.

m‘_d oo}).am\n N

At

Figure A-8: CCITT test image #8

86

Appendix B

CAFC-Processed CCITT Test

Images

The eight standard CCITT test documents were encoded with Content-Adaptive Facsimile
Coding. The compressed images were then passed through the CAFC decoder to produce
the following eight reconstructed images. The CAFC parameters that were used are the

ones listed in the file CAFC.h in Appendix E.

All of the images are in fine mode (200 pixels/inch) but are reduced by 30% along each axis

on the following pages.

87

THE SLEREXE COMPANY LIMITED

SAPORS LANE - BOOLE - DORSET - BH2S SER
TELRPHONE BOOLX (945 13) 51617 - Tmax 123456

Our Ref. 350/PJC/EBAC 18th January, 1972.

Dr. P.N. Cundall,
Mining Surveys Ltd.,

Dear Peste,

Permit me to introduce you to the facility of facsimile
transmission.

In facsimile a photocell is caused to perform a raster scan over
the subject copy. The variations of print demsity on the document
cause the photocell to generate an analogous electrical video signal.
This signal is used to modulate a carrier, which is transmitted to a
remots destination over a radio or cable communications link.

At the rewots terminal, demodulation reconstructs the video
signal, vhich is used to modulate the density of print produced by a
printing device. This device is scanning in a raster scan synchronised
with that at the transmitting terminal. As a result, a facsimile
copy of the subject d is produced

Probably you have uses for this facility in your organisation.

Yours sincerely,

174
P.J. CROSS
Group Leader - Facsimile Research

Registersd in England: No. 2088
Reglatersd Offices 80 Vieara Lane, Iiford. Esaex,

Figure B-1: CCITT test image #1

88

Figure B-2: CCITT test image #2

89

Mot directeur

SOCHTE ANOHTME) CAPTIAL 08 3093 F CLARSEMENT TACTUN Exmieie 15
6. ’-m'm Adr. 1: 'o.mmu ,
o : : it DATE
Télex : m;.m : TIMNSTERSY NW 229%u ’ nuvgo m&q‘n’
:‘:umrum - Vetre csmmands & 7He2-2umere 438
Newe ofre 7\7/B7 ® Pho1-tumis 12
) e o .
LIVRAISON FACTURATION
5, rue XYZ 12, rue ABCD BP 15
99000 VILLE 99000 VILLE
DOMICILIATION BAMCAIRE DU VENDRUR FAYS D'ORIGINE PAYS DE DESTINATION
COOE BANOUE CODE GUICHET COMPTE CLIENT TONOMIONS DE LUIVRASON DATE 74-03-03
TRANIIORTS UICENCE D'DXPORTATION NATURE DU CONTRAT (monnele)
omaiNg DRSTIMATION wooe
CONDITIONS DE PANMENT f&-—-. .
Pays 1 Btat 2 Adr
MARGUSS £7 NUMEROS NOMSRS £Y NATURE DES COLIS : NOMEN. | MASSE NETTE| VALEUS
MANKS AND NUMEERS DENOMINATION DE LA MARCHANDISE QATURE | wer weiGHT | vAWE
NUMBER AND KING OF PACKAGES: STATITICAL | Looce nire
DEICAPTION OF GOODS No. nnmm:
U 123/4] ke | 1400 X
21. 45, 1 eants
74.21.456.54.2 A Compo: ke b R
QUANTITE N ST ME. DESIGNATION QUANTITE PRI MONTANT
CcoMMANDEE | DE LARTICLE UvRix e AL
Er et ET UNITE | iy price TOTAL
QUANTITY OUANTITY A
ORDENED : SELIVERED AMOUNT
ANO UMIT yreirre=
2 AP-809 [cirouit inté 2 |104,33 71208,66
10 88-T4 Connecteur o 10 83,10 1 831,00
25 2107 Composant indétersiné 20 15,00 H 300,00
Coets Débours inclue Nea inciue
Facking Embalisges 92,14
Fraight Traneport
ingursnce Assurances
Total invaics smount | Montart total de le tactwe 1431, 80
Instaliment Acomptes
NET TO 88 PAID WET A RéOLER 1431,80

Figure B-3: CCITT test image #3

90

- 34 -

L'ordre de lancement et de réalisation des applications fait 1'abjet de décisions au plus haut
niveau de la Direction Générale des Télécommunications. L1 n'est certes pas qumm de
construire ce systtme Inmégré “en bloc" mais bien au ire de procéder par ¢ par
paliers successifs., Certaines applications, dont la rentshilité ne pourra étre u-nréo ™
seront pas entreprises. Actuellement, sur trente applications qui ont pu étre globalement
définies, sixen sont au stade de 1'exploitation, six autres se sont vu donner la priorité pour
leur réslisstion.

Chaque application est confiée & un "chef de projet’, responsable successivement de sa
conception, de son analyse-programmation et de sa mise en oeuvre dans une région-pilote.
La généralisation ultérieure de l'spplication réalisée dans cette région-pilote dépend des
résultats obtenus et fait 1'objet d'une décision de la Direction Générals. Néanmoins, le
chet de projet doit dds le départ considérer que son activité a une vocation nationale donc
refuser tout particularisme régional. Il est aidé d'une équipe d'analystes-programmeurs
et entouré d'un "groupe de conception" chargé de rédiger le document de "définition des
objectifs globaux" puis le "cahier des charges” de I'application, qui sont adressés pour avis
A tous les services utilisateurs potentiels et aux chefs de projet des autres applications.
Le groupe de conception comprend 6 4 10 per représent: les services lss plus
divers concernés par le projet,et comporte cbligatoirement un bon analyste attaché 3 1'ap-
plication,

I - L'IMPLANTATION GEOGRAPHIQUE D'UN RESEAU INFORMATIQUE PERFORMANT

L'organisation de 1'entreprise francaise des télécommunications repose sur 1'existence de
20 régions. Des calculateurs ont té implantés dans le passé au moins dans toutes les plus
importantes. On trouve ainsi des machines Bull Gamma 30 A Lyon et Marseille, des GE 432§
A Lille, Bordesux, Toulouse et Montpellier, un GE 437 A Massy, enfin quelques machines
Bull 300 TI A programmes ciblés étaient récemment au sont encore en service dans les
régions de Nancy, Nantes, Limoges, Poitiers et Rouen ; ce parc est essentiellement utilisé
pour la ptabilité t€léphoniq
Al'avenir, sila plupart des fichiers nécessaires aux applications décrites plus haut peuvent
otre gérés entempa différé, un certain nombre d'entre sux devront nécessairement étre ac-
cessibles, voire mis A jour en temps réel : parmi ces derniers le fichisr commercial des
abonnés, le fichier des remseignements, le fichier des circuits, le fichier technique des
abonnés contiendront des quantités considérables d'informations.
Le volume total de caractdrvs i gérer en phase finale sur un ordinateur ayant en charge
g 500 000 abonnés a été estimé A un milliard de caractires au moins. Au moins le
mrl des données seront concernées par des traitements en temps réel.
Aucun des calculateurs énumérés plus haut ne permettait d'envisager de tels traitements.
L'intégration progressive de toutes les applications suppose la création d'un support commun
pour toutes les informations, une véritable "Banque de données", répartia sur des moyens
de traitement nationaux et régionaux, et qui devra rester alimentée, mise 2 jour en perma-
nence, A partir de la base de l'entreprise, c'est-i-dire les chantiers, les magasins, les
guichets des services d'abonnement, les services de personnel etc.
L'étude des différents fichiers i constituer a donc permis de définir les principales carac-
téristiques du réseau d'ordinateurs nouveaux A mettre en place pour aborder la réalisation
dusystéme informatif, L'obligation de faire appel i des ordi s de troisidme génération,
trés pulssants et dotés de volumineuses mémoires de masse, a conduit i en réduire substan-
tiellament le nombre.
L'implantation de sept centres de calcul interrégionaux constituera un compromis entre :
d'une partle désir de réduire le coat & ique de 1° ble, de faciliter la coordination
des équipes d'informaticlens; et d'autre part le refus de créer des centres trop importants
difficiles A gérer et A diriger,et posant des problémes délicats de sécurité. Le regroupe-
ment des traitements relatifs i plusieurs régions sur chacun de ecl sept e:ntrel permettra
de leur donner une taille relativement homogéne. Chaque centre "gérera" environ un mil-
lion d*abonnés A la fin du VIdme Plan,
Lamise en place de ces centres a débuté au début de 1'année 1971 : un ordinateur IRIS 50 de
la Compagnie Internationale pour l'Informatique a été installé & Toulouse en février ; la
méme machine vient d'¢tre mise en service au centre de calcul interrégional de Bordeaux.

Photo n* 1 - Document trés denge lettre 1,5mm de haut -
Restitution photo n* 9

Figure B-4: CCITT test image #4

91

TI“"'
s _ o Tat.n
r 7" \
/ N
o 2

Dans oo cas, ie filtre adapté pourra dtre constitud,
conformément & la figure 3, par Ia cascade :

— d'un filkre de tranefert umité pour

S f+4/ # de tramsfert quasi nel
.{':I{'l;; Jo+A/, fikre nnodihnp:h pm
des composants lo traversant ;

J=—{=7-

Mo}

.—ﬂm:dvld'md.ﬁanlqu(umdiw
Hve ayant un temps propagation
décroissant lindairement avec la frég

telle ligne i retard est donnée par :

,--z.f:r.df

.- -zx[r.+§]f+g %;‘

Et cette phase est bien I'opposé de /&(/),
A un déphasage constant prés (sans importance)
et & un retard 7, prés (inévitabie).

fréquence porteuse /fo+4//2 et
dontl\nvdapplhfmindiqﬁeila'ﬂms.
ouron-wdmmumunpum).
et le signal S,(1) correspondant obtenu & la sortie
du filtre adapté. On pread le nom de récep

A compremion d'impulsion donné A ce genre de
« largeur » (& 3 dB) du signal com-
& 1/Af, le rapport de compression

i
§
fe

1'expression :
Tem r.+u.—n§ weT,>T)

(voir fig. 4),

T

(X1
Eveloppe do
g
Koaiagpe du B(1)
de groupe T, P
s]
] » |)
P
At oS iz

Tatlme

On saisit physiq fe phé éne de com-
Ppression en réalisant que Jorsque le signal (1) eatre
dans lu ligne & retard (LAR) Ia fréquence qui entre
Is premiére A Pinstant 0 est la fréquence basse £,,
qui met un temps T, pour traverser. La fréquence f

entre A l'instant ¢ -U’-jo)%c(elic met un temps

To—(/ - 1o I pour traverser, ce qui la fait ressortir
A I'instant 7. éralement. Ainsi donc. Je signal S0

Figure B-5: CCITT test image #5

22 QUISTIONS — COMMISRION XII
-
) “'T}
o Kf“
[
»
» .
-t..x
n
»
%
) L
3 7 E.’,
1/
ce s337
[. [2)) % a
G, (eesmis subjectifs
Courbes sdapsies O+ &7 e BB G, = 2348
log x =} -]
Poiats calonlds D (Q. G,) pour
Gy=m= G,=25 G,=35dB
) n A ~ daos I partie montante
x ® + ~ dans la partie descondante

—l—--l—A
cu-h--_-_.-._paz.o.)
Foums 3

TOME V — Quastisn 18/XII, Asnexs 6

Figure B-6: CCITT test image #6

93

(ST o N -1

Qe

QU2 HEWKRWNEE (~~D) CRIC CEMER (WRYE Hik
R WREAEN OO~ DO—) €| PV ~RDEEP-» Kk
SHERBEHCRERORRUREHY v CRARHVEIT Ok~ MK HE
K0° MUWY FERCWIEEE RN E 0"

QOU—HFCENY QO—L (AENEEEXKYN) VOO~ (HAEWeR
EWmY) PR0° QO~LD ~onwlan—n > U TREXERWERS
HERRY; REMes’ 2R on0lC Y S WHWEHANG un’ B’
"AEWEREGRS, VO REWENNC EEER VNS LoEbKet OO
—EN EOv~onNnl CHNC VN QUL U 0-5¢ 4w\ Ny
@

WO QUEY ~onol N UKSERMRESEULLC L OO
Y ERECUROERMIERN L LC BAng VREE OOmuM
P ELUSEFRY VO UOURERI LN R EYHNVIEN
2 KNERHY ~cvol Ul —hs—F RoOEHEN ~aowl o
T—N BeBHHD ~oool’ KAV ALNPESV LS

QO VOV~ ROEINCH FEWKARCRER VvuliN®u 2
VWERER VWEER AV RESUREOMERS BT Pl RV
HUBIY WERCUWRESE | REEL <00 OO~ SRR L0
O—ECHRES QS U O RERME R TS0 REBL <O °

VO HEE 4 r ' mM—D MY RCHL UM v m—D Y ECW
8- WHCRME - ME - FHCMBONS O Ul | wBat vanet |
HE2" wCRMAE” QORBAY m—n *YCHRM m—p > H
NeoZWE/RHN 2" LY ~0wol} COO~RLERCEL" MEY
RN o RMUR woo BT LR HLam—p N Y EENVRNOUE
oo’

DEIDRL ~onotamBitied O KEMEENEL N 2 n’ KR
WERECORIL 4O HORY (CHECERYUMD~' OO~ % CEN
ARSHROURYS QO CHIEIRY BHEZORVRRT LRSSy
AT £ -] 3100 BT ST BT T T TR TN W A
BEHCHHUZ " VD CRNRS F2 /S CCHRRSS ~RDCHUE
SIS MLSRBOV MER HEECKICA LV

25 OV C BRI ~owol CHRNERHR N I~k - VER
WHULIRLASEY 30" HEMEAME R DU VOGS gL’
A RERNNCRHRERL) vy QU~RRNEN->" 3~k
S—RUCKENME UL BHD (P KOuE IR

HIg

DN SN HREHMLRECVOY PO CRRENS0T vl
SCERCHMH VIR NEREWRREEL IFR ISV 10 v OPKTORED
PRODBLN DO—HFCHRHY PEuLsuist 3ot

HENTWREESKEN (OO~ S NI 4SWEURE oRE WE
BUDTHCRRUC 2 PEHD K4S MRVRES 0) vaHEVE0, (~
VUYL~ o)

TP I o G ARG MU e ® v S0 S Fm & S IRIE S Y
UROBL R oRNE R SEEERERY AL oWKMBCRMN ML LY
MU EEEEC oSN O 2 VHROT XD MBIWEH 00 44r LI KM b 48
WRHADVESMD.045°) (ER~oog)

THOHEREURES i RERCKELMT v vCHAZWKRUCER
UOIWERD &0 BEvRacvibag’, (ER~oo)

Yo puif~ooil 3 L0 TR, V2 NANAKES Avis &0
BRou->¢Ct" Kmvy r@ia(Recommendation); v f & 30° QU~EEE
R opmln FEHE U A HRRVAUSISQURO P NEER ¥R W
MRT WHARSHEOHAOER R ORV2C Y5008 RS0 20 yammy
s OV KEERECY WERECH va’ GHAMERRROV ST
KB o ABEBNSLH 26 KELROEBCHBI UL 0BOUY
CHOMBRE | wung Tm) UL EESHEFREMEN)
LVRVASIRERMI® oM (weuRf) ¥ RFNELLS ~cRoeR
RMESOENLC LY KEEMRURER 0o Zawh KERS-N
2OKEEREIWHWE 204 r 0 0B Y EBPRY & Ric 8~ MITC W
[USERY VMo BN OV MRVEF R0 O/RT Y VO~
HRCREY P RUBTCCRRBMECSEH VU—HRERERER vE
#uHEECHEMECERRE 40N N0*

NERRY My WEESZXEL-CVCHECRECH VY BEIHCREVS
£ VRN S o HENE Y 2 nar S KHEC KPS D MF R0
Rt MU A CRIOHBELOC L MG~ UMACH S HRRENKG
7' EEHCMRIE | OBRESREVOYHRELER 0"

Figure B-7: CCITT test image #7

94

memorandum

" AL Spuggs | ™ GV Smik
™ or0204d | un, - T-F1

S\@ FS\.\ Rpm\. .bh.vo ﬂon?ﬁp.&aﬂ. s
3&5& & Stos:\-ee.ﬂ ««3 ..%n Wn\x\ramg
aq ommunicalioa a.q.mm)«. R.(?G‘..Rma can
be enﬂ.\au.? .gom alio some clala. muslremaia
ta Q;ﬂb‘.’n 4?.3 mv 089.)\&0 ,we oﬂ:{m\\ﬂ.un
mu::eh an ergiaeeiny ?S« or wealhor Aap.

) ik we sheudd reafcre Ghat
«.mar 48&&\ .«Pﬁ.rkﬂ W.Fs(.:.,:..gn are needed &
PUICOMe oUy w?&.)& o o\egn\ g e dafa
commnicotins | Wh. nad T B gt
E\? CONQIASIOA .
f
\?4 commeals N

At

[

Figure B-8: CCITT test image #8

95

Appendix C

Typed Text Test Images

In Content-Adaptive Facsimile Coding, symbol matching is used to determine if an isolated
symbol “matches” one that has already been detected and stored in the symbol library. The
first stage of symbol matching, feature matching, is used to eliminate unlikely candidates

early on by comparing high-level properties (or “features”) of the symbols.

The following 9 test images were used to determine the effectiveness of a number of features
at differentiating different instances of the same symbol. They contain 8 repetitions of 78
different characters in 3 fonts, 3 styles, and 3 sizes. Section 4.1.1 describes feature matching

and Sect. 7.2 describes the procedure for selecting an optimal set of features in detail.

Each page was individually scanned into a facsimile machine, transmitted to a PC-based
fax card, and then saved to a file on the host computer system. All of the images are in

fine mode (200 pixels/inch) but are reduced by 60% along each axis on the following pages.

96

y2OIBIIBETER /UL I L 80N

IR AT VA SRR A AR 2 AN 1 1)

LRIEEETAIe /LI Nn) (%% 008

LA R R L VAR RN AR A 1]

13 1810 et

ZR0223456080ca /(0 e) ("2 %000

1000parssurwaysd i BE1 00 /1 LINsb e 0l

13180verhatane

ar/1 (N0)t 0% 000

SLTARNRATI AT LI 1])

v CASKRAY SRR LI []

23688700/ L2 I\ (3 000

Pe0IINERET SR/ LI LIV (4R 000

YA SRR ATIRAT AT 1]

75O LEIESETEPCI IOV IV NS

LZARERATENLI LS I]

[YASR+ AT XA Y]]

DL PR RN L P SN P AR N Al I]]

LEYESNRALINAL Id

Arcorr (120
2
1
' 2834
PYY
] wETIabedalphal 'y rreser

SILRCINON LTRSS

LR R ARY AT A]

y81334SET88er/ 1) ER N0 L0RATER

ITAR AR AR LY L [

[EL PR VAR AT L2]]

Figure C-1: Typed text

image #1 — Courier 8pt

NI (*6 000~ QRSTUVEXY WAYS0322456700<>/()(}
" x| 56T
Vo) (eaAgNO~ PEFSILIIEETINC /LI C)
Vo1 (Pan088e ovNXY otuveys 0123456780/ 110)
ax \4L 1 fgbk 1}
N4l Lo b et * ys0133498780<>/(1()
50320456700 <> /L3 L)
1e)(va~pde- v 1y 3ILBETIB0 >/ ()0}
by o ° \J ys0133456780<>/
Ns){cargee=~ »711¢)
¥ 11311 2Py
Ao} ivasgto- 27034}
] .
Aed(tanspo~ ys8123486700¢>/101)
Hebd funkl xye0183456700<>/
Ne) (SR Ehe~ <>/ 1)0)
vYNXY fahrs COVNRyaPIRIESETEICH/)]
Ne)(vas TovNay t y39133458783 >/ 111)
\e)(*artdon < ¥ 8123456980 <> /L3 1)
4 rovwx [uvwayee133486788
Nel (a8 0~ ¥ PUrstuvvaysd133¢s6Tasersi)()
detghin 0133686780<>/() ()
\$) (TR Y <>/{)
EYs01034867094»/13()
1)t
f,”.... - bl fainhd GrosNYVAYS 0323088703/ [1 1)
hodetgh vy yEI123464700 /1Y ()
APttty
3 radLRILSETOR /UM LD
No)(carhde.
% NNOPOREFUVARYSabedotohXinnoperetuy €rede
Ve a"g00~ ¥] ayat12148 >/7L1¢)
aRasTvERY 80123486788 en/11{)

Ned(*arBoe~

NeJLtargne-

Lobkl

Y KILFETIRCHILIC)

\e)(*argon~

1] ys 82224567803 /71) ()

Figure C-2:

Typed text image #2 — Courier 10pt

97

ABCDEFGEIIKLENOPQRSTOVWAY tghkl wxys0123436789
<>/ [1()\¢) (*a 48]
ABCDAVEEITRLNNOPORSTUY yR0123456789
4.1t|¢»\o»¢-.- 46-

<;/lll)\v)l'l‘tli-

UYNXYZadodelghkl SEUVWXYE0123456789

A IJKL Q UVHXY £ohkl q: ys0123456789
€S/ LTI\ (&840~

HASTY | (18 v
7110\ o) (sa+408 0123436789

Alcuronﬂmnmrgn'wvnrnbeuuhunapcu: UVWXYE0133456789
<>/L1(I\v) (*a 8H

::snn:“x.:nulgvouwvnu badetghkl Q xys012345678¢
ABCDRPON :nﬂnorgnmuu b wzys0123456789
/701 tI\e) (Pargee-

4lcn.nn:nuuo'snlwvuruhuounn-nopqru uvwxys0133456709
<>/LI0I\e) (*6"84

::ﬂm?-xgnuugnunwxnnca.:gn lmnopgratuvwxys01323456789
>

ARCDE QRITOVWEY é otuvWRYs 0123456709
ABCDEFGNIU. rgnlﬂwuxr:.hadotunllmopqu:uvwxylo.l 23456789

oln()\ﬂ ¢'0‘“

<>/L1(I\) ('i"’
uﬁﬂﬂmluugrouwvwxuned-tqnu-nopqn:uvunousunu
<> -}

ABCDEFOXIIKLENROPORBPUVNX! L'} wvzys0123456789
<2/ L1E3\e) (*aA 490~

ucurau.mmcrguwvwx YEabodefghklmnopqrstuvways0123456789
/LI INe) ("6 818~

A I IRLUN UVNXYZabodefghkinnopqgracuvwxys0123456789
</ () IINe) [*RA 448~

sy 1 YCUvWEYE0123456789
<vlllll\0)('l‘ill-
ABCDERFOHIJRL rgllﬂ!m?tlbal'l'hkllaopqutuwxylolaadl‘7l’
/(] r)\eu'vn
- ABDCDEFGRIJELMNOPORSTUVWIYEabodefghkl gratuvexys0133456789

€/ (1(I\e) (*a* 408~

G/U1CIS) (Pasbdn-
AJcnlrdlltJ’n&nnorgnlwvvxvnbnd-uhkuaapvrn uvwxys0323456789
</{I{INe) (*& 08

ABCDEFGRI .'nn.llloDilll'vv.l!!ubud-!'nlllnogqu tuvwxys0123456789

/11 {)\e} (%080

JKL QRe! 1 grstw ru03133436789
<>/ t14)I\s) (*ar 088
Alt.'blrclhvlumargnlﬂnrlﬂtlnbci':vnkllnepwr-:uv-s.vl”l:"."’l!
<>/{1{I\e) (*a 40~

sodefahki

(1] =Y 33456789

Figure C-3: Typed text image #3 — Courier 12pt

MNOPQRITUVWX ~:::||.uu-ou-
MNOPQRETUY

1A 11\){tased0-
Hine)trarsse.

[LA

LT L

onire ’ HReisass0s
NI A8 0~
A MNOPQRITUY HNeN AL IO
ons Mimuepyesrevway wrsse
wx 1A

Q HiveC

iy 1E0Vve Mo
Q! e AL

LMROPQ. wx 10 0Ve SO RAS
ADCREFSEIJELNNOPQRITUY WR' HRe)(a*g0 0
L ¥

Alﬁll'lllllbﬂl.“ﬂl;ﬂ‘:“l'
AR PONIIZLMNGPQ

Figure C-4: Typed text image #4 — Times Roman 8pt

98

Asens QRITUYWX y 10N
B QRITUYWXY 182kl ¥ {HHNe)
;‘._ QRITUYWXY y T8I/ IINT 04"
QRITUYWXY LEO T HPANS (LT
e o QRITUY [1] y 1H)*)
:gl FORIJKLMNOPQRETUVYWXYRAS Y A L o
Q'I.C.L * QRITUVWXY 9 MNeNe
QRETUVWXY mine
(*arse0- nine
;” QRETUYWRY AU
AA‘I.C.DIIOIF“" QRITUVWXY 4367189 > /(M) (*a
ABRCDEFGEIJK! QRITUYWIYZab $6780<r/T1{)}\e)
(*arsse-
;'._ QASTUVYWRY] 1y i) Ar
Q,-". QRITUVWXY VR
l“l‘ll.- QRETUVW ofgh bl {21 H (1{)\e)
g;. QRITUYWKY 36709 <> /LI \0)(* AN
”"G.D‘l!olllll.-n—. QRITUVWXY (] el e
DEYORIIK QRETUVWXY dofgh ki nisvwsy L)
QRETUVWRY TaR e/ IIN ISR
210 HUIKL QRITOVWXY Wil
Fravr 4 Q OVWXY retuvway TI{\e)
f:gnumunnnrunwnr' 780 <>/ 1IN)24
QRATUYWXY 89111 NN &
ARCORY Q! vYway]
(*assee~
426 QRSTUYWEY 136780 <22V H* RS

Figure C-5: Typed text image #5 — Times Roman 10pt

ABCDEFOHIIKLMNOPQRITUVWXYZebodefghkimnopq y 436789
Jaicasiee. "
POR! VWXYZaked] vwxys812345678
e ogasrvy s
NOPQRST! XYZabeod, 1720123456789 <> /|
MROREER i Gkore 7t . bt
ABCDEBFOBIIXLMNOPQRITUVW. ways0133456789
L I
PQRETUVWXY, L { q vywsy 5678
e carrurverassdusmmmserermareercarase 3470
S edershkl ‘
(\+)(* &7 S0Q~ o e 'y 789<>/(
GHIJK| WXY Zabodsl ywxys0
A[ﬁgarw.g LMNOPQRETUVWXY . y50123456739¢
FGHIJ K] : 4) v
ABCREFGEIIKLMNOPQRITUVWX » . y
CDEFGRIJKLMNG vwx) 122456780 <>/
4ACPEIGRIIKLNNOPQRETU VWY " o/
ABCDEFGHIIXLMNOPQRETUVWXY Zsbodelghkl: Pq wxys0123456709<
siihacassee K
FGHIJKLMNOPQRSTUVWXYZab YWy 2345478
N T . .
Alllt\:f,l’ﬂllltl-llﬂorﬂllﬂlval'zcbadohhlluu"nuvvm.lﬂ“‘"!<>I[
ARCOREQEIKLUNOPQRITUVWXY 730123456789
;l:’élg& l“l.lllo: STUVWXY: . .
= » vwayat123486
S<>if)) IO T Yt v v
ABCDEPORITELUNOPQRITUVW LY Tabedefeh 720123456789 <>/
e -argogn Horars ' jadtad
ABCDEFGHIIKLMNOPQRSTUVWXY! vways@123456789<
SAROCEAe- ° ¢ Y
BIIKLMNOPQRSTUVWIYZsbedetyhkinnopqrets vways1 2345678
e
A FOGHIJKLMNOPQRSTUY! dodefghki 123456789<>/l
ABCDEFOUIIKLMNOPQRSTUYWIY P yE0123456789 <>/l
ABCDREGH WXY Zabedofghkl vwxye0123456789
iy ‘Axmguorquruv P y $6789¢
lx%uuorqll'ruvwxv dofghk qratavwaysét
"T:'Em‘m;‘: Hh 96789 <>/
BFGRIIKLMNOPQRSTUVWX. bed: Y 234, 89 <>,
AeREIR S LMnora T 4hkimnopy <A
ABCDEFOHIIXLMNOPQRITUVWXYZabodelshti wxys0123456789¢
BT T) Q rUywKy v
OPQRETUYV t suvwsy
'oltm\omiﬂin e d b
DRFGHIJKLMNOPGRITUVWXY Zabed ’ y20123456789 <>/
it ot 5

Figure C-6: Typed text image #6 — Times Roman 12pt

99

YYWXYIa AN

) y Hiehibe os
ABOBEPANIKLNNOPARET ¥ YIWXYE: 15\ed1*54020

] xYxs
ARGBEPANIIKLMN wavi 9
ABOOEFQNI/KLUNOPORSTYYWXY.
ABGDBFONIIKLUNOPORSTY VWXYZS Al anse
AncoiraxicLusrons u"lvui-l-l,Ill-luqnlnnn"mllukbllll
1R P180¢807004 5 11110)1 4088
UKL y M) ("t
WIIRA Jire)reasre-
Ao L YWXYEs I
Avgl MKLK rUYWRYZeh odel xyad Gy AT
ABODEFRHIINLUN 018, s
- v Lo)(*8A00@~
MIIKL O aeanhre-
eI vwx Mo} aree e~
HIIKLUNOPOR STU VWX YEe Atnadieassee.
HIJKLENOPANSTUVEXYE HINe)(82000~
ARODRRRNIIRINROPORET Mid\eltassene

Figure C-7: Typed text image #7 — Helvetica 8pt

SODEEAHIJKLMNOPQRITUVWRY 2 y iy
)('Au
“w.“ HIKLENOPOARSTUYWRY q v (L)
(grn.lrw---‘ STUVWXY XZ0123480 700 <>/f)(}\s
a_ ‘OP.IM HIJKLMNOPQRS TUVWXY q YZ0123480780 <>/(1{1\¢
\A&gﬂ:ﬂl_ﬂn RS TUYWXY ! Y no
)a‘gfﬂl‘n:_mmuuoronnuvwx . y 80<r/ll(INe
,A‘ggy.nouunuuonnnuvwxv « y20128400780 >/[){)\+
CORFAHIJKL STUVWXY: Y 20<>/|
mm HiskLunOPON a0
fﬂfff;’. NISKL QRBTUVIWXY ” y20128480700 <2 /[} (]
ﬁgms'v.oman---.-..-mmu y20123458700 <r/[){Ns
‘A‘l) &Q‘cuunu TUVWXYZab 9 y o0 <>/03)
;(gg‘n.l JKL QASTUVWXY dofy re ys018 20 er/())Ve
'A‘!:D'IF.GHIJKLMNOPOIQTUVWIV se /)N
DEFQRIJKL QRSTUYWKYZabe q yE 123488700 >/1()
QNETUVWXY yE01204007
ﬁgﬁ:l'nuununoronnuvwxv bodety Py y20123450788 <>/l }i\s
LLE HISKLENOPOROTUVWXY L] wEysei20484780>/(}{)

lMHK""OPOH' TUVWXYZDo# e lghRIMROPQIsINYWXY RO IRBSEBTHO /)¢

ﬁ! P.l‘uuuuuuoron"uvwxr b . y20128458 780 >/[}I\e
HIJKLMNOPORSTUY WX TEO1204087

\0)('.‘... ReTy h

"g AD'I'F.I.IM.IKL TUYWXY . XySO 123488780 <>/ (J{}\e

ARgDERaHIKL QRETUVWXY ¢ o yE0139488 780 > /1) {Ne

\A.n.g““_ Kt QRBTUYWX yso

ﬁg‘oo‘?mannnoranruvwx. i y20123488700 2 /(1M

Figure C-8: Typed text image #8 — Helvetica 10pt

100

Alensnmanuuorouwvwxy g
/)&

PArstuvwxyz012945887

ABODEFEOHIS KLH'IO'OI"I‘UVVﬁ‘“
T80/} \e)(*aASE
AlODlFOHMKLMMOPOROWVWXYZ bodelgh

qretuvwxyz012348¢

80>/TJ{ e) (A
|cberem.|m.uuorunlfuvmnr'

PQratuvwxyz01284867

l‘“’llﬂ*)(‘ "

Qrstuvwxyz01284807

JKLINOPOISWV'EV 9!
1.'1»’[]()\#)(' KA,
ABODEF OH‘IJKLMNDPOR'WVWXYI"‘

PAreluvwRys012845¢

89 >/lINe)(*4780 O~

4587

pqralvvwxyso i

AlODlFOHIJKLMNOPOR.TI‘VWXV' bodef,
S0H/[JIN+)(* arS#

yR01234567

ABCDEFGMIJ KLINOPDIOTIWWA' b
1..4’["()\0)(“

atuvwxyx0123488

BCDEF! OMIJKLHNOPOR‘WVWXVI‘_‘ defghki
”o/ﬂl)lﬂ(*RASE @~

Pq Xyz0123466¢7

DIFGHIJKLHNOPORUI UVwWXY
:':e’lllﬂ\ﬂ(' AR @

PQretuvwyz012848567

EFGH UJKLHNOPORSWVWX"' b
78811\)(* 444

qratuvwxyz0123456

ADDD!FGHIJ LMNOPMITUVWX YZab /
803 /(I)"

1284867

(4 Xy

onlmmm.uuomnlruvwxv' bodeighkl!
»«»nm\«w
lennuunnuonnruvwm

P ywxyz01234507

1uomu\ Y*ArS

stuvwxy

mAMIJKL A"IOPORITUVWX YZ

Pq wAyE01234507

l)c»lﬂl}\o)(aA82 0 "
ABODEBGHIJKLMNOPQRETUVWXYZabodelg
9NN} (*8AS8 @

parstuvwxyz01234887

AIODIFGHIJKI.IIIOPOl.'I'UV'll’lhbldﬂlllklmllull‘lﬂl"lvllil“il

"“ >IN (&

DI‘FGHMKLHNOFORITUVWX YT f
l'<pl"{ll¢){
ABCDEFQHIJ KLMNOFOIIT\WWXY'

Pq wKys012345¢7

Citblml\ﬂ('

wxyz012345067

W POII‘I'UWKv
f.lolll(]\t)(' &44

num.unoranruvwxvz-nu!amm.opqmuvmyxouuu7

”‘»’IIH?*N

lGDIFGHHKLI‘NOPQI.TUVVIK‘I' b
l.c-lll(]h)('
| X

1294587

parsty 3 4

A NKLHNO’OB--uv-uu]
1”(#[](]\0)(

PQrstuvwxysd

‘.ODEFGHMKI.“NOPQR STUVYWXYZab
S0/} Ne) (8280 @~

234887

PG 4

101

Figure C-9: Typed text image #9 — Helvetica 12pt

Appendix D

Training Set Images

The following 16 images constitute the training set that was used to calibrate the adjustable
parameters of the Content-Adaptive Facsimile Coder. They are intended to be a fair repre-
sentation of the types of documents that are typically transmitted via facsimile. Included
in this set are pages containing typewritten text (in a variety of sizes, fonts, orientations,
and styles), handwriting in English (from a number of different people), a diagram, and

Chinese writing.

In particular, the training set was used to generate the set of statistics to prime the Opti-

mized 2D Run-Length Coder. This is described in detail in Sect. 7.4.

Each page was individually scanned into a facsimile machine, transmitted to a PC-based
fax card, and then saved to a file on the host computer system. All of the images are in

fine mode (200 pixels/inch) but are reduced by 60% along each axis on the following pages.

102

03. 05. 93 01:24 PM PO2

A oW e A wo§ 4
2;4;‘5*'-);"11‘3’_"‘
R T -
c a2 ¢F R
wThme A
«rmﬁn%;‘igqgw
efz.imi,;g;**z.
TR AN S S
“arvy,;q:;&-x—
et 0y
M-?‘.‘%%é‘;i.
A B S 1
PO R I
ﬁ:\.l”;éyi—z'ﬁai
& W OR BT

Figure D-1: Training set document #1

03. 05. 93 01:24 PM PGS
Data: YUY 237 PM UBA Enst Const Thew
© comsar

Labyralurios

TOTAL PACGES DNCLULING THIS COVER: 1
FACSIMILE MESSAGE

h‘“’ 1 (301) 4284534
”
B oermation ® 41(01) A284283

oonsar haw p £het will n-il the cenpsessien
ianiosoans watas 4a r gy vt 2
o tumrent Lrenesiosisn Cimss
mrnlllluhhmmnnun—m:-w of dooumantses
Rendepitton o

ad typed somk.
Yebie 1: Tiane fos Qsovp 3
fype of Decwment 1-Page Decumest 2-Pege Docwment
Kandwzicten 249 soe
Typed fext n'lm 435 mac

CONEA? i
m-hn- Tavarfase wlt tFIU) mystem fes applicetica in & lu data~tete
systam. The system reduces tranmissiee times as iadissted ia Tabls 2 belew.

Table 3: Transmissica Times with CONEAT's

Type of Document 1=Page Decunsat 2-Foge Dosvnent
Rendwritten 32 xes [d
Typed Toxt. 210 se0 230 »eo

Reduced tsasmissien times can vesiize raduced costs and Snssessed savinee for
muo L4084R11¢ CUSLOMRES . nun‘ Se seen that trensnissicn ccete omn b
un-l-uu,

nﬁuli"hand
ot 2 fex typod tem. 3f -

From: Roderiok?. OOMSAT Laboraories - i

Figure D-2: Training set document #2

103

03.05. 93 01:24 PM P06

© cousar
TOTAL PAGES INCLUQING THIS COVRR: 1

FACSIMILE MESSAGE

Te t Spiros Dimolitens
r-na.nncotl B4 o

b that will it the
ssicn of mu-tu images. This h‘nm’ t!:.“

mnnhl of rea. hl.n' 'tl ssiom timee
greup 3 8 trensmissions.
m- 141 the times over a 2400

bit/s data channel rate system for two types of documents:
icten and typed text.

Takle 1 L Times tor Group 3 ie
Type of Dooument 3=-Page Document 2-Fage Document

Sandvricten 123 sec 243 sec
Typed Teat 217 aec 488 sec

COMSAT has inmp) in &

prototype racsinile Interface Onit (FID) -yuu for nmimm in

a uu ats-~rate aystem. The syscam zeduces t. tivas as
cated in Table 2 below,

Tabla 2: Transmission Times with COMSAT's Facsinile Compressiocn

Type of Document 1-Page Document 2-Page Document
Handwritten 32 sec 1 sec
Typed Text 110 ssc 230 mec

Beduced tzansmission times can reslize reduced costs and incrsased
savings for COMSAT's facsimile customers. It can be sean that
transmission costs osn be reduced by a he:n ef approzimetely

for handwritten text, and by a factor of l-tdy 2 for t,ypod

:'::.oﬂ’am Used: M Casin fI«PL')

Prowe Roderick L Ca
Comyat Drive
Tol & +1{300) 204403 ~ Pz & +1(301) 4384534 B-Mall. 1d@CID.COMSATCOM

Figure D-3: Training set document #3

03. 05. 93 01:24 PM P07
Datet 3193 $043 PM URA Bast Conet The
© comsnr

TOTAL PAOES INCLUDING THIS COVER: §

FACSIMILE MESSAGE

To
Contact} lm&.nhﬂﬂl)m

OOUBATL p
This e the ! ol ok
e P =
Tabie ©
Type of Document 1-Page Docuresnd 2-Page Decment
Handwithen
Typed o Hem -1
COMBATL a Sechnology Unk
e olow. -
Tabie #:
Type of Document 1-Page Doament 2-Page Document
Toates) 2%
ni-
and ::uwu l'n-unvn-numl

h.ﬂ-ﬂbh—:l‘d“ e ually of the resuling
remaing intelighle.

Type of Fomt Used: QA .
ot s O
e o S e

Figure D-4: Training set document #4

104

03. 05. 93 01:24 PM P08
Datee 3193 §:43 PM USA East Coust Thme

© covswr
TOTAL PAGES INCLURING THIS COVER: 1
FACSIMILE MESSAGE
Te

Spiros Dimclitsny
Pacsimlle #: + 1 (301) 4284534
Comact | Infarmetion Telophons #: o1 (301) 428.4388

COMBSAT Laboratoriss has developed technology thet wil pemit the compresaion ot
faceimile images. muummmmumm e In
transmission imes when compared wih standard group 3 tra lons.
Table 1 Hiusirates the current 890N times Over a 2400 bit's dala channei e
system for two fypes of documents: hancwritten and fyped text.

Table 1: Tranemission Times for Standerd Group 3 Facsimile Transmission

Type of Dx 1-Page 2-Page Document
Hanclwritien 123 sec 243 s0c

Typed Text 217 sec 456 soc
COMBAT L has

p gy in & prototype
Facsimile ¥marface Unk (FIU) system hrn;::iﬂbn in & low data-rate systam. The
systemn reduces transtmission times as | led In Table 2 below.

Table 2: Transmission Times with COMSAT'S Faceimiie Compression Tochnology

Type of 1-Page 2-Page Document
Handwritten 32 sec 81 00¢
Typed Text 110 sec 230 se0

Reduced transmission timee can realize reduced cosis and increased for
COMSAT's facsimile customers. R osn be seen that transmission coats can
nouudbjlho:’vdlpp‘r.oxmw4hrmmun and by a factor of

Type of Poak Used: %é;} lid dio ,z#—)

Prom: Reoderick J. %mmrum-mmcm
Comsat Drive Qarksburg. Maryland - USA
Tl #: +1(301) 4284492 — Fox £: +1(301) 4284534 E-Mad) Adiress: od@CTD.COMSAT.COM

Figure D-5: Training set document #5

07. 07. 92 12:16 PM P06

S dlovsrnsit s by gonssiod sZfot ot pne
asscal oo & fncoimid, Jut e, y -
ey AT bl il thuriz,
The appliocdion, adlewnisy J'*"“."Mlmcmm
u‘m“"*ﬂ}“*.‘f““"“&w
MMML‘"M%MMQ,&"&

%aufa 3 Jacsmale deals %W‘mew.‘ detumenT
over thon publl peblicl bl 4ok, o STH]
4 4 s ool fort o G Lo, scvmmind
G bt frimol by sl it sz ¢ Zotaed
:‘m*”(m)"f(‘”‘jhm(mm
o b -spnl PrIesliad ayrad), V. 27 w10 auntheg

20,6800, 9200 auct Ko 67/ A Agh bl mtssge
eghots] el 3006214 (ales cplomatty 2400 /)l

drw gate MCQWW/

Figure D-6: Training set document #6

105

COMBAT LAgS ~ 2

o7

06/21793

VI STy K00 Sy £661 ‘9T Se :poveq = _mwm_w
.3
SLETS 68078 (9pio pue ¢ $23Y) Ippy PHOM PIM m_ mmr
S6TIS v3403 (8 - ¢ S98y) sownf
sTLLS 56778 Anpy MYVAXTHSEEH
S6ENS 691 © - £ 93) PO
S6S1S S6°¥LS anpy :NOINTNOA SONIN
0SLIS 057178 (8-¢ s98vy) PO
00728 05°97$ ynpy SUSpIED Yosng
TTRVID U Kihoy —YRg

*12rG X9 ‘UBAIIING oNlopuLLIeg
40 ‘ £20¥ 1x0 ‘yny etbren
‘6815 e ‘A2ROYS LAY 16D OpK Jod

sejes jeyoLL Wwewubisuo)
uoneioossy sashojdwz 1¥YSWOID

07:54 AM

Figure D-7: Training set document #7

July 17,1992

07. 30. 92

for

ivities on the "PAX G
date, and the second schedule and budgetary
g this project.

106

0 our \p
6502-089) during the moath of June. The first

s
e
P

e o #

19 ink
containe p
].Q

Mhmwmwunmummehnmmumhmmqu

Mr. Herbert L. Holiey
Standard-M*

R)

Figure D-8: Training set document #8

. datn

07. 07.92 12:16 PM PO2

This documert is baing menervted so ot 1+ cag b
véed as a facsimile 2, Chart of horduritten gagis)

characters Ctect.

The quII:nffM Felewant to s chart, encompo £5o5

the dransmission of gFouP 3 Bx tn o sterecand-
Borvard mede over low-ratz digifal soteltnt> UnksCi.e.
less fhan 2490 hfz,r)_ The qu/.‘mf;,,, th mind (S
grop 3 wver INMARSAT 4 Standord - service,

G(Wf 3 farsimile deals with the Hrapsmissron, oF
documents aver the araley r./lvhc s witch ed

telephene petioerk, or PTSN, a5 it 15 vsvally retered
4o, Grop 3 fucsimil recommepdatrons cap be

fourd (n relevadt interndficrel standards .
reconmerdations, potably The CCZTT
FC(‘MmeaJp'halS T30 (frv*fbcds),": % (mJiq];

V.21 (oodoliton schemes dor low - speed procedire)P
signals), V.27ter ard V.24 (modilation schemes Tor
Tre higher speed message signals)

Wwith fqarJ 1> the transmission gpeal.s emp/a/.-J,
these are 242 4Po0 7200 0rd R bl For Hhe
I‘.AJ}, ff‘ed) mes3og¢ Syrels, and 300 bit’s (alsg
Oyhonnlly 24¢0 bf‘f'/f) for the lpws -rate h"’)a’iqu,‘,;g

(o* procedvral s rjnq/;),

Figure D-9: Training set document #9

017. 07.92 12:16 PM P08

et et d.va i
2rglost; (e).

\The ST p 1l T e Qs oot

e y ?' W j ..a—-r;a'm arel-
feteoard wradt. mm)-mmc' e stite Loida!
. . é" " s # l : JM -) ‘ :Z - , N V.

W;&w x NMMSJTAM'- mﬁ@ ad

Auirtiaa; Zte CCTTT
‘ %), T CCoteny),
'f"/(‘ﬂ—*ww,ﬂ . L »a
2igtador), V. 3%en ot V. 59 Cru , b
At Adhprspeid Ssserse wigraba)

2% 25 he Lrppomiosbdx fgpteta,
st Bes 1400, 4 880, V30D v To20 Ak mz;(;b .
XGaUA \Froaanse ; and\Joo Lija (abes

zfz‘u 404 ,m)’f)m e s A Sapchabinlin,

Figure D-10: Training set document #10

107

07, 07.92 12:44 PM P02

\/oioeé’-&ub
PRocELINY

£
CoNTRoL

FACSIMILE

Voice
CoDiNG

Cobint s
FraTocoLs
MoBiLe Awxcéss
PERFORMANCE

72 koitfs _m
24 kbit)s U
Lz kbﬂ#&

DcME PERFORM.

EVALUATIoN

s tm

Figure D-11: Training set document #11

07. 30. 82 07:54 AM P04
29 INTRODNCTION
bl i T a moble rtork.
The here lo P y ped by Dr.
Nnmm-ﬁh*&n—nhhhndnmﬂa;*nnnqhdwdhu
" 2 facaianle lrages: maxiuion difformece
mmﬁ»q&—.ﬁ— focuees P of & low-cast
Inturéecy urdt (PIU) scitble for faceimle comemanication between low-power mobile eatth
ﬁ&mmumdmﬁamnuhmpmnyﬁuuphonuﬂﬂhmm*u
::u ;ﬁ: n_-q-u Jhesdroeyhbe o o desigrad *
malchy 32 1o 1 were ©
thu aligorithms ofiar

mm::wmumynhuanm degradation whea
gﬁ:nﬁu facsimile coding, which only ‘compression rethos of the order of

‘The basic hiss behind the. algocithens is the solective removal of pixot Information
CaTT T,

hpﬂnﬂwﬂhﬁn

lereth cod Jonet A coding
L

prioe 10 u_uumuiguw.
21 MAXIMUM DIFFRENCES

The muximocn d{fcrences gunmn-lsnhnnhunpu-hﬂ

::; d%abﬁ;ﬂﬂ ﬁ*mr@hdhtwupuunlu‘ lﬂnﬂﬂb

dimenaion. in addition, a second H d with

hﬁum:nuumuuuwn&ﬂnﬂunmm-mmhﬂmqmuw peirs
me”ﬂwmﬁuhﬂmdhmhﬁﬂﬂ’duﬂiwnnum&n

of 4401 when compared 40 the uncoded bit-tmage

his baske two-stage verticolly
Norizansal bit reduciion wﬂﬁhhﬂﬂhﬁnﬂ“DJhunmﬁﬂﬁlhﬁ
wncoded o the

wsed were not fully re-optioized, the 16401 <dmmuwmwunnuauu&
-1 compression efficiency gein (ever the T30 coded facaimile inage).
M“uﬁuﬁnlmmwndh employod which uillizes informaden in ¥e

lgorithm §s
w*nuuMwmuu&uuquﬂm.nn
0 the originel document a6 possible.

22 ANALYSIS-BY-SYNTHREIS
Mﬂwqthtnh-umnu-am-qw--nm-u-uq-u-n
Mkﬁmn'umm re. However,. y

anh‘ 1 0 decoder.

Figure D-12: Training set document #12

108

07.30. 92 0T7:54 AM P03

20 INTRODUCTION
This report describes work Gone in order 1o raduce the tranemisslon

of faceimile images while igibility in o
mobile samilite communications network, The research herelna

bdu(qu.brduﬂﬁe of facaimil

maximim differences and analysis-by-synthests. These techniques focuses

mmmuﬂm«-wmmmu;u(muthh

.ummmwu oint-to-multip

Both marimum differences ududym—by- thesis mabholndnhvh;n
with

tely when compared with original (uncoded
image) and m.m anyludu the intelligibility refention of hand-

written lnu’n. offer hgh and

only litte qu-my when with

f:cmﬂc‘n facsimile coding, which only offers «mpmdon ratios of the order
120

The basic idea behind the compression algorithms is the selective removal of
from an that d

code). The
wwamﬁmmmwwu,gm

mnﬂﬁminphmmﬂd m-ue?n;mcamwmm
coding) prioe 10 transmission over the digital channel.

2.1 MAXIMUM DIFFERENCES

vertical d with the fisst one. This
anwumwwﬁnnnulwwua\m”h
of vertically ad| lines (as derivad from the first stage of vertical
comprasslon) reducing the overall number of lines requiring coding
(dmmmmww-md&»lﬂmmmwu
uncoded bitima;

Figure D-13: Training set document #13

07.30. 92 07:54 AM P02

2.0 INTRODUCTION

research
devcloped'bybr smmmmmmmm
COMsA 'l'lwy ch to reduce

P
facaimile i -

dl/}bmwn W These tec) focuses on
ﬂulmglemmhﬂmoh interéace unit suitable for

low-power mobile ssrth stations
and fixed earth siations for both point-to-point and point-to-
multipoint tranemiselons.

Both mzlmum differences and analysis-| by-aynf;mk are cable of
wlthoriglml(umodedlmqe)ndwuodnlpudm the
intelilgibility retention of hand-written images. These

oﬁermghncmmdhn gfuhlymdmlylmh-mmul

uality d
gcdmﬂecpdlng.wlichmlyo[knmnpr«donnﬁmofduuduof
R2tol.

Thebaﬂcwe-bdﬂnd the ¢ n algorithms is the salective

the function oﬁl\e"m en

e ey s o

the “run-lengths” used to l:u-lveu\c RI.C.:oddc) Thmmmhng

of the pdf its ¢ P
dﬂemk m&a&mmdm&m‘mlmmuxglh

mmgmgmumw using variable- hmﬁ-\m-lmsm

coding) prior to h'aumﬁdonom!hedlghlchnmd

Figure D-14: Training set document #14

109

07. U7.82 12:16 PM P03

Thes documanet 4 50&3 3%”‘#&4(Ao Mt
it cam be weed at o test chant
hamdwriios bna,(b»&. charactors (text).

Ths opplication rsburert o Uis eheart
heomparset the Hamdmirttan oJ, M 3
fox 4n a dtve and {vm-t moda rver
Loo rate digital Aatdlibe linds (it lesd Han
2hoo I-H'/;). The A-f’P"c—cd’v‘on n wmind A

y,wf 3 over wmmrsaths Stmadad-C Sowsa.

Garnp-3 facsimile deals .M e tranimis
~Sien oql. downins aver tr awnk /Ju.b(‘«_
s..,nm‘;u;«u{aw rehoet, o STN,MJA’
b wma A..‘om.l, -~ c’;w 3 facsimifo]

fconmindating, witatly U CcrTT Recommin
~daling T30 (pret), T4 (L.a(o‘v), V.2l
(modetolivn Schemes for e diqhes soendl
J r
Miriage ajw;).
e !ujml & Ue Prarsnissio, Spade
ed, e are 2400, 4100, 2200 and 9600
bit/e for the 'La:’k Spaed mtadoge J'}jhu's.

Figure D-15: Training set document #15

07. 07. 82 08:04 AM POt

, 8 loh
nojse feedback, and mn APC with resdul\\Npotform
the coding of speech at 4.8-kbivs uting code

Diginl Circuit Muddplication. In this area,

cuslomers. These Include & 64-kbis digital \\geh

X dolta moduletion (SIDEL) X

120-Mbits division meltiple scoes (TDMA) setwo
low-rate encodin,

::-:‘u.m commurtications over i o
St

using storc and forward and real-time techriques.

Speoch lons. The bas d » wodd<class

facili asting of an voice

mgnm:&m.wmwhwumw
boca used K0 3

fa whic! AT has Jong

Figure D-16: Training set document #16

110

Appendix E

CAFC Software Implementation

This appendix contains the C source code for the software implementation of Content-
Adaptive Facsimile Coding. All of the components of CAFC are supported except for
Dithered Bitmap Detection and Direct Coding. The roles of each module in performing
the various stages of the CAFC algorithm are described in Table E.1. The programs that
perform the encoding and decoding process images in the Intel PCX format. Routines that
greatly simplify the reading and writing these files are contained in the modules described

in Table E.2.

These programs were used to perform most of the parameter optimizations and to generate
the final results in Chap. 8 and Appendix B. Table E.3 lists the programs that were used
to process the training set images in Appendices C and D to generate statistics for feature

selection and Optimized 2D Run-Length Coding.

111

[FILES

| FUNCTION [DESCRIPTION

CAFC.h

CAFC Parameters

This include file specifies values for all
CAFC parameters (minimum/maximum
symbol size, symbol isolation method,
features to use, etc.)

CAFC_encode.c

CAFC Encoding

Encodes an image in the PCX file format
using Content-Adaptive Facsimile Coding
(CAFC), producing a binary output file
and a residue image PCX file.

CAFC_decode.c

CAFC Decoding

Decodes an image that was encoded with
CAFC.encode (CAFC~1). Produces a
reconstructed image PCX file and a
residue image PCX file.

match.c
match.h

Symbol Matching

Contains routines to determine if two
symbols “match” using the feature
matching and feature extraction
algorithms.

features.c
features.h

Feature Extraction

Contains functions to compute the features
of a symbol. Maintains a global set of
features and provides a mechanism to
extract them from a symbol.

library.c Symbol Library Manages a library of symbols, allowing
library.h Management updates and searches to be performed. The
library also contains information necessary
for matching and arithmetic coding.
symbol filling.c Symbol Library Performs symbol isolation on a buffered
symbol_tracing.c Management PCX image. Each of the three approaches
symbol windowing.c is implemented separately — symbol filling,
symbol tracing, and symbol windowing.
symbol.c Symbol Contains declarations and procedures to
symbol.h Manipulation facilitate the manipulation of symbols. A
SYMBOL structure is defined and routines
to create and free symbols are provided.
AC.c Arithmetic This module performs general arithmetic
AC.h Coding/Decoding | encoding and decoding. It contains

routines for creating and updating source
models and for entropy coding/decoding a
stream of elements (symbols) using these
models.

Table E.1: Summary of CAFC software modules.

112

PCX.buffer.c
PCX.buffer.h

PCX Image Buffering

This module provides a buffered interface
to PCX image files. A multiple scan-line
portion of the page is maintained at all
times. This buffer is simply “scrolled” up
to automatically read or write a scan-line.
This interface is useful for real-time
algorithms that need to access several
adjacent scan-lines at a time.

PCXutil.c
PCX_util.h

PCX File Format
Interface

This module provides a straightforward
interface for line-oriented reading and
writing of PCX image files.

Table E.2: Summary of PCX file format modules.

2Drl_stats.c

2D Run-Length | This program reads a set of PCX images (a
Statistics training set) and determines their 2D run-
length statistics. Produces output data
files that are used by CAFC_encode and
CAFC.decode to actually perform the

coding and decoding.

feature.stats.c

Feature Statistics | Analyzes a large set of test images containing
typed text in a variety of fonts. Generates
statistics on the effectiveness of each feature

at correctly matching symbols. Produces output
files which can then be used to select the best
subset of features.

Table E.3: Summary of statistics gathering programs.

113

E.1 Source Code — CAFC Parameters

File CAFC.h:

/***********t****t#******#***t****#******t*#*#****#***##*****#**********#*#***#

Name: CAFC.h
Purpose: This include file contains constants and parameters used by
the CAFC programs.

Last Modified on 5/4/94

********t***#**#*****t*t****#****#******#*#****##*#*#*#*#******#**t*****#*****/

/ * facimile page resolution, standard or fine */

#define PAGE_RESOLUTION FINE_MODE

/ ¥ restrictions on symbol size */

#define MAX SYMBOL _HEIGHT 40 /* mazimum height of a symbol in pizels */
#define MAX SYMBOL WIDTH 60 /* maezimum width of a symbol in pizels */
#define MIN_ SYMBOL HEIGHT 2 /* minimum height of a symbol in pizels */
#define MIN SYMBOL WIDTH 3 /* minimum width of a symbol in pizels */

/¥ number of scanlines in buffer, one more than the mazimum symbol height */

7##define NLINES (MAX_SYMBOL _HEIGHT + 1)

/¥ symbol isolation techniques */
#define SYMBOL _FILLING 1
#define SYMBOL_TRACING 2
#define SYMBOL WINDOWING 3

#define SYMBOL_ISOLATION SYMBOL_WINDOWING /* selected technique */

[* feature matching */
##define NFEATURES 5 /* total number of features defined */

#define FEATURES {width, black pels, vert_run_lengths, white_pels, height}

#define FEATURE NAMES {"width","black pels","vert. runs","vwhite pels","height"}
#define FEATURE MATCH_THRESHOLD {2, 30, 4, 53, 4}

#define FEATURE_EFFECTIVENESS {0.30, 0.34, 0.38, 0.48, 0.5}

/* template matching */

#define TEMPLATE_MATCH_THRESHOLD 0.82
#define TEMPLATE MAXIMUM SHIFT X 2
#define TEMPLATE MAXIMUM_SHIFT.Y 2

/* 2D run—length coding */
#define RL_STATS_WEIGHT 0.25 /* weight of initial run—length statistics */

/************#*****t**#**#********#********l**********#**************t***/

/* Name of file containing 2D run—length statistics, ”” for NONE. */
#tdefine RL_FILENAME "/u/nht/data/rl_stats2D.dat"

10

20

30

40

E.2 Source Code — CAFC Encoder

File CAFC_encode.c:

/*****#*********#t*****###******#*t#t*tl*#***#*t**#**I**##*#************I****#

Name: CAFC encode.c
Purpose: Encodes a bi—level image using Conteni— Adaptive Bi— Level (Facsimile)
Coding. The source image is assumed to be in the PCX file format.

The encoded image is stored in a binary file. The residue image
can be optionally created and stored in a PCX file.

114

Usage:

CAFC_encode PCXsource CAFCdest [PCXresidue |

PCXsource —> filename of the source image (in PCX format)
CAFCdest —> filename of the destination CAFC—encoded image
PCXresidue —> filename of residue image (optional, PCX format)

To perform the 2D run—length encoding portion of the algorithm,
run—length statistics are read from the data file named in

CAFC.h if specified.
Notes: All CAFC parameters are specified in the file CAFC.h.
Last modified on 5/4/94

*****#**4’#****#**-****#***********#*#*****##*#**I**************#********#*****I

#include<stdio.h>
#include<stdlib.h>

/* CAFC include files. */
#include"CAFC.h"
#include"PCX_util.h"
#F#include"PCX_buffer.h"
H n [1}
Jincuderoybol b
#include::featgrg.s .h"
#include"match.h"
#include"AC.h"

/¥ Preprocessor code to select to correct symbol filling functions. */
#Fif SYMBOL _ISOLATION == SYMBOL _FILLING

define isolate_symbol symbol filling isolate

define remove_symbol symbol filling remove

define isolate_scroll symbol filling scroll

#telif SYMBOL _ISOLATION == SYMBOL_TRACING

define isolate_symbol symbol_tracing isolate

define remove_symbol symbol tracing remove

define isolate_scroll symbol_tracing scroll

#telif SYMBOL _ISOLATION == SYMBOL_WINDOWING
define isolate_symbol symbol_windowing isolate

define remove_symbol symbol_windowing remove

define isolate_scroll symbol_windowing_scroll

#endif

/¥ ezternal symbol—isolation routines */
SYMBOL *isolate_symbol();

void remove_symbol();

void isolate_scroll();

[* buffer containing source scan—lines */
byte **source_buffer;

[* destination compressed file (CAFC) */
FILE *CAFC._dest;

/¥ residue output file */
PCX_FILE *residue;

/* file containing 2D run—length statistics */
FILE *1l;

/* one line of residue */
byte *residue line;

/ * previous line of residue */
byte *residue_prev _line;

/ * one line of differences between vertically adjacent pizels.
byte *diff line;

[* width of image in pizels */
int maxX;

115

Y/

10

20

30

40

50

60

70

/ * the symbol library */
LIBRARY *symbol library;

[* arithmetic coding models */
AC_MODEL coding model0;
AC_MODEL coding modell;

* arithmetic encoder */

AC_ENCODER encoder;
[EEE R R R R ERRRR R RR R R R R R RN R RRRRRRRRE AR RRRRRRRRRRRRARRRRR

report_error_and_abort:

Prints out the specified error message and terminates ezecution.
******#**********************#********#**********t***************************/
void report_error_and_abort(message)
char *message;

{ printf("\nCAFC_encode: %s8\n" message);
exit(EXIT_FAILURE);

KAkdk Ak Kk dk Rk kdok ek kkfokk ok kkk ko dok ok k ok kkokodk ok ke dkkk ok ok ke kAo ke deok ok ok Kk ko ok ok k&

write CAFC:
Writes a single bit to the destination CAFC file.
R i
void write_CAFC(x)
int x;
{ static unsigned int CAFC buffer=0; /* internal byte buffer */
static int CAFC_buffer_size = 0;

/* Shift new bit into internal buffer. */
CAFC_buffer = (CAFC_buffer << 1) + x; CAFC_buffer_size++;

/¥ If buffer is full, write byte to output file. */
if (CAFC _buffer_size == 8)
{ fputc(CAFC_buffer, CAFC_dest);
CAFC _buffer_size = 0;
CAFC_buffer = 0;
}
}

FAe R A A e e e e e Fe e 3 3 e e e e e e e e e A 3 3¢ e e e e e e e e e e e Y 3 3 3 e e e e e e e e e e e 3 e 3 e e e e e e e e e e e e 3 A A 3k e e e e e

RL_code:

Perform the 2D run—length coding for a portion of the scan—line.
T
void RL_code(start_x, stop_x, start_model)
int start_x, stop_x, start_model;

{ int pos;
int run;
int i;
/* Compute the difference between the present and previous scan—lines. */
for (i=start_x; i<stop_x; i-++)

diff linefi] = ! (((residue_prev_line[i] == WHITE) &&

(residue line[i) == WHITE)) ||
((residue_prev _line[i] = WHITE) &&
((residue_line[i] != WHITE))));

/* Now scan through line and perform coding. */
pos = start_x;

do
{ /* Detect run of 0s (vertically adjacent pizels match). */
run = 0;

while ((pos < stop_x) && (diff_line[pos] == 0))
{ pos++; run++; }

if ((run > 0) || (start_model == 0))
{ /* Encode run and update model. */
encode_element(&encoder,&coding_model0,run);

116

80

90

100

110

120

130

140

update model(&coding model0,run,1);

/* Detect run of 1s (vertically adjacent pizels differ). */
run = 0;

while ((pos < stop_x) && (diff_line[pos] == 1))

{ pos++; run++; }

if ((run > 0) || (start_model == 1))

{ /* Encode run and update model. */
encode_element(&encoder,&coding_modell,run);
update_model(&coding modell,run,1);

while (pos < stop_x);

KA AR R RN AR AR AR NN e A e Y e A Fe e e e e e e e e e e Y A e e e e e e e Yo e 3 e N e e e e e e e e e e e ¥k

CAFC _encode
]
void main(argc,argv)
int argc;
char *argv[);

{ SYMBOL *detected_symbol; /* symbol detected in image */

LIBRARY *matched entry; /* symbol matched in library */

int tot_symbols = 0, unique_symbols = 0; /* symbol counts */

int escape, new_symbol; /* AC elements for new symbol and end of page. */

int stats0,statsl; /* Run—length statistics. */
int pos, lastpos; / * horizontal positions on scan—line */
int i; /* general counter variable */

/* Make sure that the correct number of arguments are provided. */
if ((arge != 3) && (arge != 4))
report_error_and_abort("Invalid number of arguments.");

/* Open source file, create buffer, and determine width. */
source_buffer = open_PCX _buffered(argv[1], NLINES,PAGE_RESOLUTION);
if (source_buffer == NULL)
report_error_and_abort("Unable to open source PCX file.");
maxX = buffer_maxX(source_buffer);

/* Open destination and residue (if specified) files. */
CAFC_dest = fopen(argv(2],"wb");
if (CAFC_dest == NULL)

report_error_and_abort("Unable to create destination CAFC file.");
if (argec == 4)
{ residue = create_PCX(argv[3],maxX,PAGE RESOLUTION);

if (residue == NULL)

report_error_and_abort("Unable to create residue file.");

[* Initialize AC models. */
initialize_model(&coding_model0);
initialize_model(&coding_modell);

[* elements for run—lengths, ESCAPE, and NEW_SYMBOL */

for (i=0; i<=maxX; i++)

{ add_element_to_model(&coding model0);
add_element_to_model(&coding model1);
update_model(&coding model0,i,1);
update_model(&coding modell i,1);

escape = add_element_to_model(&coding model0);
escape = add_element_to_model(&coding modell);

117

150

160

170

180

190

200

210

update_model(&coding model0, escape, 1);
update_model(&coding modell, escape, 1);

new_symbol
new_symbol

= add_element_to_model(&coding_model0);
= add_element_to_model(&coding_modell);

update_model(&coding model0, new_symbol, 1);
update_model(&coding modell, new_symbol, 1);

/* Read run—length statistics, updating encoder models (if specified). */
if (RL_FILENAME[(] != ’\0’)

rl = fopen(RL_FILENAME,"r");
if (rl == NULL)

report_error_and_abort("Unable to open run-length statistics file %s.\n",

RL_FILENAME);

for (i=0; i<=maxX; i++)

{ fscanf(xl,

"%d %d", &stats0, &statsl);

update_model(&coding model0, i, (int) (stats0 * RL_STATS_ WEIGHT));
update_model(&coding_modell, i, (int) (statsl * RL_STATS WEIGHT));

fclose(rl);

/¥ Initialize AC encoder. */
open_AC_encoder(&encoder, write_CAFC);

/ * Create line to store differences between vertically adjacent pizels. */

diff line = (byte *) malloc(maxX * sizeof(byte));

[* Create residue line and initialize with first scan—line.

residue_line

*

= (byte *) malloc(maxX * sizeof(byte));

for (i=0; i<maxX; i++)
residue_line[i] = source_buffer[0][i];

[* Create previous residue line and initialize. */
residue_prev_line = (byte *) malloc(maxX * sizeof(byte));
for (i=0; i<maxX; i++)

residue_prev_line[i] = WHITE;

[* Initialize symbol library. */
symbol library = NULL;

/* Encode the image. */
while (! buffer_eof(source_buffer))

{ lastpos =

0; /* 2D run—length coding begins at leftmost pizel. */

/* Encode a scan—line. */
pos = 0; /* Start scanning from leftmost pizel. */
while (pos < maxX)

/* Detect a white run by searching for first black pizel. */
while ((pos < maxX) && (residue_line[pos] != BLACK))
pos++;

if (pos < maxX)
{ /* Attempt to isolate a symbol from the page */
detected_symbol = isolate_symbol(source_buffer,pos);

if (detected_ symbol == NULL) /* If no symbol, skip black run. */
while ((pos < maxX) && (residue_line[pos] != WHITE))
pos++;

else

[* Otherwise, try to match it with one in the library. */

{ tot_symbols++;

matched_entry =

if (matched_entry == NULL) /* If no match, detected new symbol.

{

lookup_symbol(symbol library, detected_symbol, symbols_match);

118

Y/

220

230

240

250

260

270

280

/* Perform run—length coding up to present point. */
RL_code(lastpos, pos, 0);
lastpos = pos;

/¥ Encode new symbol and add to symbol library. */
encode_element(&encoder,&coding modell,new_symbol);
update_model(&coding modell,new_symbol,1);
symbol library =
add_symbol_to_library(symbol library, detected_symbol);
symbol library—>AC_element =
add_element_to_model(&coding_model0);
symbol library—>AC_element =
add_element_to_model(&coding modell);
update_model(&coding model0,symbol library—>AC _element,1);
update_model(&coding_modell,symbol library—>AC _element,1);

/¥ find next white pizel */
while ((pos < maxX) && (residue_line[pos] |= WHITE))
pos++;

/¥ Perform run—length coding up to present point. */
RL_code(lastpos, pos, 1);
lastpos = pos;

unique_symbols++;

else /* Otherwise, encode as symbol from library. */
{ .
/* Erase the symbol from the page and from memory. */
remove_symbol(detected symbol, pos,
source_buffer, residue_line);
free_symbol(detected_symbol);

/* Adjust for symbol shifts. */
pos += matched_entry—>symbol—>shift — detected_symbol—>shift;

/ ¥ Perform run—length coding up to present point. */
if (pos > lastpos)

RL_code(lastpos, pos, 0);
lastpos = pos;

/* Encode element using appropriate model. */
if (pos < 1)
encode_element(&encoder,&coding modell,
matched_entry—>AC _element);
else if (diff line[pos — 1] == 0)
encode_element(&encoder,&coding modell,
matched_entry—>AC_element);
else
encode_element(&encoder,&coding model0,
matched_entry—>AC_element);

/* Update both models. */
update_model(&coding model0,matched_entry—>AC _element,1);
update_model(&coding modell,matched_entry—>AC _element,1);

}

RL_code(lastpos, maxX, 0); /* Run—length code to the end of the line. */

/* Write residue line if specified. */
if (argec == 4)
write_line(residue,residue_line);

/* Update previous residue line. */

for (i=0; i<maxX; i++)
residue_prev_line[i] = residue_line]i];

119

290

300

310

320

330

340

350

isolate_scroll(source_buffer,residue_line);

}

/* Encode escape element to indicate end of page. AC coding complete. */
encode_element(&encoder,&coding_model0,escape);
close_AC_encoder(&encoder);

/¥ Flush output buffer. */ 360
for (i=0; i<7; i++)
write_CAFC(0);
/ * Close files.*/
close_buffer(source_buffer);
if (arge == 4)
close_PCX(residue);
fclose(CAFC_dest);
/¥ Print statistics. */ 370
printf("Encoding complete.\n\n");
printf(" %d unique symbols\n" unique symbols);
printf(" %d total symbols\n",totsymbols);
}
E.3 Source Code — CAFC Decoder
File CAFC_decode.c:
R L
Name: CAFC decode.c
Purpose: Decodes a bi—level image using Content— Adaptive Bi—Level (Facsimile)
Coding. The CAFC—encoded source image is a binary file. The
destination reconstructed image is stored in the PCX file format.
fTi"he residue image can be optionally created and stored in a PCX
le.
Usage: CAFC _decode CAFCsource PCXdest PCXresidue [width |
10
CAFCsource —> filename of the source CAFC—encoded tmage
PCXdest —> filename of the reconstructed image (in PCX format)
PCXresidue —> filename of residue image
width —> width of image in pizels; if omitted, 1728 is assumed
To perform the 2D run—length encoding portion of the algorithm,
run—length statistics are read from the data file named in
CAFC.h if specified.
Notes: All CAFC parameters are specified in the file CAFC.h. 20
Last modified on 1/13/94
KERRERRERARERRRERRRRRRERR R R AR R R R R R R R IR R R R R RRRRERERR R R ERRRRRR A
#include<stdio.h>
#include<stdlib.h>
/¥ CAFC include files. */
#include"CAFC.h"
#include"PCX_util.h"
#include"PCX_buffer.h" 30

#include"symbol.h"
#include"library.h"
#include"features.h"
#include"match.h"
#include"AC.h"

120

/* Preprocessor code to select to correct symbol filling functions. */
#if SYMBOL ISOLATION == SYMBOL FILLING

define isolate_symbol symbol filling isolate

define remove_symbol symbol filling remove

define isolate_scroll symbol filling scroll

#elif SYMBOL_ISOLATION == SYMBOL_TRACING

define isolate_symbol symbol tracing isolate

define remove_symbol symbol_tracing remove

define isolate_scroll symbol_tracing scroll

#elif SYMBOL_ISOLATION == SYMBOL_WINDOWING
define isolate_symbol symbol windowing isolate

define remove_symbol symbol_windowing remove

define isolate_scroll symbol_windowing scroll

#endif

/* external CAFC routines */
SYMBOL *isolate_symbol();
void remove_symbol();

void isolate_scroll();

/* Define structure for storing information about decoded symbols. */
typedef struct
{ int pos, line;
int AC_element;
short int new;
} SYMBOL_INFO;

/* source file (CAFC—encoded) */
FILE *CAFC_src;

[* file containing 2D run—length statistics */
FILE *1];

/¥ buffers to store decoded scan—lines and residue */
byte **dest_buffer, **residue_buffer;

[* pointer to the previous scan—line in the output buffer. */
byte *residue_prev _line;

[* width of image in pizels */
int maxX;

/* the symbol library */
LIBRARY *symbol library;

/¥ arithmetic coding models */
AC_MODEL coding model0;
AC_MODEL coding modell;

/* arithmetic decoder */
AC_DECODER decoder;

/* list of all symbols in source buffer */
SYMBOL _INFO *symbol list;

int symbol list_max;

int symbol list_start, symbol list_size;

/*******************#****#*#*#************t******#**###***********************

report_error_and_abort:
Prints out the specified error message and terminates ezecution.
M
void report_error_and_abort(message)
char *message;
{ printf("\nCAFC_decode: %s\n" ,message);
exit(EXIT_FAILURE);

LR LR L S a2 e iR e e I R Y Y R Y P Y S Y R e T2]

read CAFC:

121

40

50

60

70

80

90

100

Reads a single bit from the source CAFC file.
e
int read CAFC()

{ static unsigned int CAFC_buffer; /* internal byte buffer */
static int CAFC_buffer _size = 0;

[* If buffer is empty, fetch another byte from the file. */
if (CAFC_buffer_size == 0)
{ CAFC_buffer = fgetc(CAFC_src);
CAFC_buffer _size = 8;
}

/ * Shift out a bit from the internal buffer. */
CAFC buffer_size——;
return((CAFC_buffer >> CAFC_buffer size) & 1);

KEKKKRKKRERKRRERKERRKERRKRKRER KNI AN KA A T J 3 3 e e e 3 33 3 e 2o e o o 3 3 e e e e o 3 e e e 3 e e o 3 3 e ke

CAFC _decode
e i)
void main(argc,argv)
int argc;
char *argv();

{ SYMBOL *detected_symbol; /* symbol detected in image */

LIBRARY *matched entry; /* symbol matched in library */

int element; /* AC element read from CAFC file. */

int escape, new_symbol; /* AC elements for new symbol and end of page. */
int stats0,statsl; /* Run—length statistics. */

int pos, line; /¥ current horizontal and vertical position */

int dest_buff line; /¥ current line in output buffer */

int lines_written; [* total number of lines written to output PCX files */
int i, j; / ¥ general counter variables */

/* Make sure that the correct number of arguments are provided. */
if ((arge != 4) && (arge != 5))
report_error_and_abort("Invalid number of arguments.");

/* Open source CAFC file. */
CAFC src = fopen(argv[l),"rb");
if (CAFC_src == NULL)
report_error_and_abort("Unable to open source CAFC file.");

/ * Determine image width. */
if (argec ==
sscanf(argv[4],"%d" ,&maxX);
else
maxX = 1728;
if (maxX < 0)
report_error_and_abort("Invalid image width.");

/* Open destination and residue files. */
dest_buffer = create_PCX_buffered(argv|2],maxX ,NLINES,PAGE_RESOLUTION);
if (dest_buffer == NULL)

report_error_and_abort("Unable to create destination PCX file.");
dest_buff line = 0;
residue_buffer = create_PCX_buffered(argv([3],maxX,NLINES,PAGE RESOLUTION);
if (residue_buffer == NULL)

report_error_and_abort("Unable to create residue file.");

/[* Instialize symbol list. */
symbol list_max =

(long) maxX * NLINES / (MIN_ SYMBOL HEIGHT + 2) / (MIN_SYMBOL_WIDTH + 2);
symbol list = (SYMBOL_INFO *) malloc(symbol_list_max * sizeof(SYMBOL_INFO));
symbol list_start = 0; symbol list_size = 0;

122

110

120

130

140

150

160

170

/ * Initialize AC models. */
initialize_model(&coding_model0);
initialize_model(&coding modell);

/* elements for run—lengths, ESCAPE, and NEW_SYMBOL */
for (i=0; i<=maxX; i++) 180
{ add_element_to_model(&coding_model0);

add_element_to_model(&coding modell);

update_model(&coding_model0,i,1);

update_model(&coding modell,i,1);

escape = add_element_to_model(&coding_model0);

escape = add_element_to_model(&coding_modell);

update_model(&coding model0, escape, 1);

update_model(&coding modell, escape, 1);

new_symbol = add_element_to_model(&coding model0); 190
new_symbol = add_element_to_model(&coding modell);

update_model(&coding_model0, new_symbol, 1);

update_model(&coding modell, new_symbol, 1);

/ * Read run—length statistics, updating encoder models (if specified). */
if (RL_FILENAME][0] != *\0?)

{

rl = fopen(RL_FILENAME,"r");

if (rl == NULL)
report_error_and_abort("Unable to open run-length statistics file %s.\n", 200

RL_FILENAME);

for (i=0; i<=maxX; i++)

{ fscanf(z], "%d %d", &stats0, &statsl);
update_model(&coding_model0, i, (int) (statsO0 * RL_STATS_WEIGHT));
update_model(&coding modell, i, (int) (stats1 * RL_STATS_ WEIGHT));

fclose(xl);

/ * Initialize AC decoder. */ 210
open_AC_decoder(&decoder, read_CAFC);

/ * Initialize symbol library. */
symbol library = NULL;

/¥ Obtain pointer to previous residue scan—line. */
residue_prev_line = buffer_prev_line(residue_buffer);

/* Decode the image. */

line = 0; /* initialize line number */ 220
lines_ written = 0; / * Initialize # lines written. */

element = decode_element(&decoder,&coding model0); /* Decode 1st element. */

/* Decode until last symbol is reached and all lines have been written. */
while ((element != escape) || (lines_written < line))

if (element != escape)
] * Decode a scan—line. */
pos = 0; /* Start at leftmost pizel. */ 230
line++; /* Advance to nezt scan—line. */

while (pos < maxX)

/* Decode AC element. */
if (element > maxX) /* Is this a repeated symbol? */

/* If so, add to symbol list for future substitution. */

1 = (symbol list_start + symbol list_size) % symbol list_max;

symbol list_size++; 240
symbol list{i]. AC_element = element;

123

symbol list[i].pos = pos; symbol list(i].line = line;
symbol listi].new = 0;

/ * Update AC model and decode next AC element. */
update_model(&coding model0,element,1);
update_model(&coding_modell,element,1);
element = decode_element(8decoder,&coding_model0);
}
else
{ /* Decode a run of 0s (vertically adjacent pizels same). */
for (i=0; i<element; i++)
{ dest_buffer[dest_buff line][pos] = residue_prev_line[pos];
residue_buffer[dest_buff line][pos] = residue_prev_line[pos];
pos-+-+;

/* Update AC model. */
update_model(&coding_model0,element,1);

/ * If not end of line, decode nezt element — symbol or run of 1s. */
if (pos >= maxX)
element = decode_element(&decoder,&coding model0);
else
{ element = decode_element(&decoder,&coding modell);

/* Ezamine decoded element. */
if (element == new_symbol) /* new symbol? */
{
/¥ Add to symbol list for future isolation. */
i = (symbol list_start + symbol list_size) % symbol list_max;
symbol_list_size++;
symbol list[i]. AC_element =
add_element_to_model(&coding model0);
symbol list[i}. AC_element =
add_element_to_model(&coding_modell);
symbol list[i].pos = pos; symbol list[i].line = line;
symbol list[i].new = 1;

/* Update AC model and decode nezt element. */
update_model(&coding model0,symbol list[i]. AC_element,1);
update_model(&coding modell,symbol list[i]. AC_element,1);
update_model(&coding modell,element,1);

element = decode_element(&decoder,8coding modell);

/ * Decode run of 1s (vertically adjacent pizels different). */
for (i=pos; i < pos+element; i++)
{ if (residue_prev_line[i] == WHITE)
dest_buffer[dest_buff line][i] = BLACK;
else
dest_buffer[dest_buff line][i] = WHITE;
residue_buffer[dest_buff line][i] =
dest_buffer[dest_buff line]]i];

pos += element;

else if (element > maxX) /* Is this a repeated symbol? */
{

/* If so, add to symbol list for future substitution. */
i = (symbol list_start + symbol Jist_size) % symbol list_max;
symbol list_size++;
symbol list[i]. AC_element = element;
symbol list[i].pos = pos; symbol list(i].line = line;
symbol list[i].new = 0;

/* Update AC model. */
update_model(&coding model0,element,1);

124

250

260

270

280

290

300

}

else

{ /* Decode run of 1s (vertically adjacent pizels different) */

for (i=pos; i < pos+element; i++)

{ if (residue_prev line[i] == WHITE)
dest_buffer[dest_buff line][i] = BLACK;

else

dest_buffer[dest_buff line][i] = WHITE;

residue_buffer{dest_buff line][i]
dest_buffer[dest_buff line][i];

pos += element;

}
/* Update AC model and decode nezt element. */
1);
element = decode_element(&decoder,&éotiing_modelﬁ);

update_model(&coding modell,element

}
}
}
}

/* Advance to the nezt destination scan—line. */

if (dest_buff line < (NLINES — 1))

{ residue_prev_line = residue_buffer[dest_buff line];

dest_buff line++;
else

{ /* Determine if symbols were marked for isolation or substitution. */

while ((symbol list_size > 0) &&

(symbol list{symbol list_start].line == (lines_written + 1)))

if (symbol list{[symbol list_start].new)

{ /* Isolate new symbol and add to symbol library. */

detected_symbol =
isolate_symbol(residue_buffer,

symbol list[symbol list_start].pos);

if (detected_symbol == NULL)

report_error_and_abort("Major internal decoding error.");

symbol library =

add_symbol_to_library(symbol library, detected_symbol);

symbol_library—>AC_element =

symbol list[symbol_list_start]. AC_element;

else

{ /* Search library for original version of symbol. */

matched_entry = symbol_library;
while (matched_entry—>AC_element

symbol list[symbol list_start].AC_element)
matched_entry = matched_entry—>next_entry;

/* Copy symbol to destination buffer.

for (j = 0; j < matched_entry—>symbol—>maxY; j++)
for (i = 0; i < matched_entry—>symbol—>maxX; i++)
if (matched_entry—>symbol—~>bitmap]j][i] == BLACK)
dest_buffer[j][i + symbol list[symbol_list_start].pos —
matched_entry—>symbol—>shift] = BLACK;

}

/ * Remove request from symbol list. */
symbol list_size——;

symbol list_start = (symbol list_start + 1) % symbol list_max;

/* Generate residue, scroll output buffers... */

for (i=0; i<maxX; i++)
if (residue_buffer[0][i] = WHITE)
residue_buffer[0][i] = BLACK;

¥/

125

310

320

330

340

350

360

370

scroll_buffer(dest_buffer);
scroll_buffer(residue_buffer);
residue_prev_line = residue_buffer[dest_buff line — 1J;
lines_written++;
} 380

}

/ * Close output files. AC decoding complete. */
close_AC_decoder(&decoder);
close_buffer(dest_buffer);
close_buffer(residue_buffer);

fclose(CAFC _src);

E.4 Source Code — Symbol Matching

File match.h:

[FEERRR AR AR AR RE R EERR R R R R RRRRRRRRERR
Name: match.h
Purpose: This header file contains definitions used by the symbol matching

routines (match.c).

Last Modified on 12/30/93

*4‘**#-************#*#***#**********#*t******##*****#*#*#*****#****#*#*********/

/* declarations for symbol matching routines ¥/

int symbols_match(); 10
int features_match();

int templates match();

File match.c:

/ KKK KRKF KKK RERF KRR FRIRIARAAIF AT AAN AN AN e F A A3 e e e e e 3 A A e 3o e e e 3k 3 e e e o Ak e e e e 3k ok 3 e e ok

Name: match.c
Purpose: This file contains routines for matching symbols (feature matching
and template matching).

Contents:
symbols_match(s1, s2) => Determines if two symbols match based upon
feature matching and template matching.
features_match(s1, s2) => Determines if two symbols match based upon
feature matching. 10
templates_match(sl, s2) => Determines if two symbols match based upon
template matching.

Last modified on 12/30/93

*n****nu*un*Mnu:k*n*nnuu*tuu*uuuu*u#****tu*un*uuﬂn*/

#include<stdio.h>

#include<stdlib.h>

#include"CAFC.h"

#include"PCX_util.h" 20
#include"symbol.h"

#include"features.h"

#include"match.h"

/ * Definition for arrays containing features matching parameters. */
int feature_match_threshold[] = FEATURE MATCH_THRESHOLD;

126

* thresholds to use for matching */
int feature_effectiveness[] = FEATURE_EFFECTIVENESS;
/* effectiveness of features */
Ao o e e e e e e 3 e e A e e e e e e e e e e oo e e o e e 3 e e 3 3k e e 3 e e Fe e e 3 e o e 3 3 A e e e e e e e e 3 e 3 3 e e 3 A e 3 3 3 3 3 e g K e
symbols_match:
Determines if the two specified symbols are a good match using
feature matching and template matching. Returns 1 if they are and 0
otherwise.
HEEEREREREERRRRREERR R R RRR R RERRRERERR SRR R AR AERR R RRRRERRERRR |
int symbols_match(sl, s2)
SYMBOL *s1, *s2;

if (features_match(sl, s2))
if (templates_match(sl, s2))
return(1);
else
return(0);

FAERRARAFIRRARRRATRRAIRIRERRNARIANATRRARERARRR TR IR RRRRAFR KR RERREER R TR
features_match:
Using the CAFC feature matching algorithm, determines if the two
specified symbols are likely to be a good match. Returns 1 if they
are and 0 otherwise.
B R RA AR |
int features_match(sl, s2)
SYMBOL *sl1, *s2;
{ int i;
int f1, f2;
int diff;
int eliminated;
eliminated = 0;
i=0;
/* Attempt to match the symbols using succesive features. */
while ((i < NFEATURES) && (! eliminated))

/* Exztract the features from the two symbols. */
fl = extract_feature(sl,i);
f2 = extract_feature(s2,i);

/¥ if the abolute difference exzceeds the threshold, eliminate. */

diff = (f1 — £2);
if (diff < 0)
diff = —diff:

if (diff >= feature_match_threshold[i])
eliminated = 1;
i++;

return (! eliminated);

FA TR ERRAAN AN A A A A A Fe R e e e Y Y e 3 3 e e e e oo e e e e 3 e 2 e e e e e e e e e e e e 3 e e e e 3 e e o e e e e 3 e A A A A Kk

templates_maitch:
Using the CAFC template matching algorithm, determines if the two
specified symbols are a good match. Returns 1 if they are and 0
otherwise.
FERRR R R R R AR R RN RR R R R RRRARIARR |
int templates_match(sl, s2)
SYMBOL *sl, *s2;

int x, y, t_x, t_y;

int s1_moment_x,s1_moment_y,s2_moment_x,s2 moment_y;
int s1_tot_black,s2_tot_black;

float correlation;

[* Compute the "center of mass” for sl to resolution of 1/8 pizel. */

127

30

40

50

60

70

80

90

sl_moment_x = 0; s1_moment_y = 0;
s1_tot_black = 0;
for (x=0; x < sl—>maxX; x++)
for (y=0; y < s1->maxY; y++)
if (s1—>bitmap[y][x] == BLACK)

{ s1_moment x += x;
sl_momenty +=y;
s1_tot_black-++;

sl_moment_x = 2 * s1_moment_x / sl1_tot_black;
sl_moment_y = 2 * s1_moment_y / s1_tot_black;

/¥ Compute the "center of mass” for s2 to resolution of 1/8 pizel. */

s2_moment_x = 0; s2_moment_y = 0;
s2_tot_black = 0;
for (x=0; x < s2—->maxX; x++)
for (y=0; y < s2—>maxY; y++)
if (s2—>bitmap[y][x] == BLACK)

{ s2_moment _x += x;
s2_moment y +=y;
s2_tot_black++;

s2_moment_x = 2 * s2_moment_x / s2_tot_black;
82_moment_y = 2 * s2_moment_y / s2_tot_black;

/¥ Make sure symbols are lined up well. */

if ((abs(s1_moment_x — s2_moment_x) <= TEMPLATE_MAXIMUM_SHIFT X) &&
(abs(s1_moment_y — s2_moment_y) <= TEMPLATE MAXIMUM SHIFT_Y))

/* Now compute the cross—correlation. */
correlation = 0.0;
for (y=0; (y < (s1—>max¥*2)); y++)
for (x=0; (x < (s1—>maxX*2)); x++)
{ tx = (x — s1_moment_x + s2_moment_x)/2;
= (y — sl_moment_y + s2_moment_y)/2;

/ * This is actually the square of the correlation...

if ((tx >=0) && (ty >=0) &&

(tx < s2—>maxX) && (t_y < s2—>maxY))

correlation += (s1—>bitmaply/2][x/2] =
(s2—>bitmap[t_y][t_x] == BLACK);

correlation = correlation * correlation /

/ * If correlation is high enough, symbols are considered a match. */

(s1_tot_black * s2_tot_black * 4 * 4);

¥/

= BLACK) *

return(correlation > TEMPLATE MATCH_THRESHOLD);

}
else

return(0);

100

110

120

130

140

E.5

Source Code — Feature Extraction

File features.h:

R Y Ny T I I,
Name:

features.h

128

Purpose: This header file contains definitions used by the feature eztraction
routines (features.c).

Last Modified on 12/30/93

t**4’#t*tt**t#******ttttt*t##t**t#*#**t*t###*******#********************/

/* declaration of features */ 10
int width();
int height();
int black_pels();
int white_pels();
int horiz_run_lengths();
int vert_run_lengths();
int moment_x();
int moment _y();
int average width();
20
[* arrays that contain the features and feature names */
extern int (*features[]) ();
extern char *feature_names[];
| * declarations for feature extraction routine */
int extract_feature();
File features.c:
[EEEREEERR R R R R R R R R R RN R AN
Name: features.c
Purpose: This file contains routines to extract the symbol features
used by Content— Adaptive Facsimile Coding (CAFC).
Contents:
extract_feature(symbol, f index) => Extracts specified feature from symbol.
definitions for all features used in CAFC 10
Last modified on 12/23/93
HRERRRRRRRRRRRRAERERRRRERERRRRRRR AR R AR AR R R R AR AR AR RRRR R AR AR KRR RERR IR |
#include<stdio.h>
#include"CAFC.h"
Finclude"PCX_util.h"
#include"symbol.h"
#include"features.h"
[* Definition for arrays containing features and feature names. */ 20
int (*features[]) () = FEATURES; / * functions to compute features */
char *feature names]] = FEATURE NAMES; /* corresponding features names */
HRAIEERRERAEIEKERE R EERRERRR R I I TRRER S RERRRERREERERRRERTERRRFRIEEEREREREERRAN R
eztract_feature:
Given a feature indez number, eztracts the feature from the symbol. If
the feature had been previously eziracted, the value is obtained from
the SYMBOL structure. Otherwise it is computed and stored away for
possible later use.
M]
int extract_feature(symbol, f_index) 30

SYMBOL *symbol;
int f index;

/ * If feature has not already been determined for this symbol, compute it. */
if (! symbol—>f known|[f index])

symbol->features[f_index] = (*features[f index]) (symbol);
symbol—>f knownlf index] = 1;

129

}

/* Return feature value. */
return(symbol—>features[f_index]);

*t*****##*'k**********#*#******#**********#*##*************************t****/

/* FEATURES BEGIN HERE */

/* Width of the symbol in pizels. */
int width(s)

SYMBOL *s;

{ return(s—>maxX);

/* Height of the symbol in pizels. */
int height(s)

SYMBOL *s;

{ return(s—>maxY);

/* Total number of black pizels in the symbol. */
int black_pels(s)
SYMBOL *s;
{ int x,y;
int tot_black_pels;

tot_black_pels = 0;
for (y=0; y < s—>maxY; y++)
for (x=0; x < s—>maxX; x++)
tot_black_pels += (s—>bitmap[y][x] == BLACK);
return(tot_black_pels);
}

/* Total number of white pizels in the symbol. */
int white_pels(s)
SYMBOL *s;
{int x,y;
int tot_white_pels;

tot_white_pels = 0;
for (y=0; y < s—>maxY; y++)
for (x=0; x < s—>maxX; x++)
tot_white_pels += (s—>bitmap[y][x] == WHITE);
return(tot_white_pels);

}

| * Total number of horizontal black run—lengths in the symbol. */
int horiz_run_lengths(s)
SYMBOL *s;
{int x,y;
int tot_run_lengths;

tot_run_lengths = 0;
for (y=0; y < s—>maxY; y+-+)
for (x=0; x < s—>maxX; x++)
if (s—>bitmap[y][x] == BLACK)
if (x == (s—>maxX — 1))
tot_run_lengths++;
else if (s—>bitmaply](x+1] == WHITE)
tot_run_lengths++;
return(tot_run_lengths);

}

/* Total number of vertical black run—lengths in the symbol. */
int vert_run_lengths(s)
SYMBOL *s;

130

40

50

60

70

80

90

100

{ int x,y;
int tot_run_lengths;

tot_run_lengths = 0;
for (x=0; x < s—>maxX; x++)
for (y=0; y < s—>maxY; y++)
if (s—>bitmap[y][x] == BLACK)
if (y == (s—>maxY — 1))
tot_run_lengths++;
else if (s—>bitmap[y+1][x] == WHITE)
tot_run_lengths++;
return(tot_run_lengths);

/ * Horizontal moment of symbol. */
int moment_x(s)
SYMBOL *s;
{ int x,y;
int moment, tot_black;

moment = 0; tot_black = 0;
for (x=0; x < s—>maxX; x++)
for (y=0; y < s—>maxY; y++)
if (s—>bitmaply|[x] == BLACK)
{ moment += x;
tot_black++;
}

return(moment/tot_black);

/¥ Vertical moment of symbol. */
int moment_y(s)
SYMBOL *s;
{ int x,y;
int moment, tot_black;

moment = 0; tot_black = 0;
for (x=0; x < s—>maxX; x++)
for (y=0; y < s—>maxY; y++)
if (s—>bitmap[y][x] == BLACK)
{ moment +=y;
tot_black++;

}

return(moment/tot_black);

| * Average width. */
int average_width(s)
SYMBOL *s;
{int y;

int left, right;

int tot_width;

tot_width = 0;
for (y=0; y < s—>maxY; y++)

left = 0O;

while ((left < s—>maxX) && (s—>bitmap|y][left] == WHITE))

left++;
right = s—>maxX -~ 1;

while ((right > 0) && (s—>bitmap[y][right] == WHITE))

right——;

if (right != 0)
tot_width += right — left + 1;

110

120

130

140

150

160

170

}

return(tot_width/s—>maxY);
} 180

E.6 Source Code — Symbol Library Management

File library.h:

[FERRERR R R R RSN A RN
Name: library.h
Purpose: This header file contains definitions used by the library managment

routines (library.c).

Last Modified on 12/29/93
B

/* definition for symbol library type */
typedef struct library_entry 10
{ SYMBOL *symbol; /* the symbol itself */
int n_occurrences; /* number of times it has occurred in document */

int AC_element; /¥ arithmetic coding element number */
struct library_entry *next_entry; /* pointer to the nest library entry */
} LIBRARY;

/¥ declarations for library managment routines */
LIBRARY *add_symbol_to_library();
LIBRARY *lookup_symbol();

File library.c:

RN RAANA AR YRR e e e de Y o 3 3o e e e e e e e e e e Yo 3 Yo 3 3 e 3 3¢ e e e e e e 3 3 e e A e 3 3 e o e e e e e e e e Kk KKk

Name: library.c
Purpose: This file contains routines for manipulating symbol libraries.

The LIBRARY structure is defined in library.h

Contents:
add_symbol_to_library(symbol library, symbol) => Create new library entry
with specified symbol.
lookup_symbol(symbol_library, symbol, compare) => Search library for 10

matching symbol.
Last modified on 12/29/93

Fkkokkk Kk dkokkk kK *****************t***#*#****#*******4’**#**********************/

#include<stdio.h>

#include<stdlib.h>

#include"CAFC.h"

#include"symbol.h"

#include"library.h" 20

L e e P T e P P T2 L]

add_symbol_to_library:

Adds a symbol to a symbol library. Returns a new pointer to the library.
R e
LIBRARY *add_symbol_to_library(symbol library, symbol)

LIBRARY *symbol library;
SYMBOL *symbol;

132

{ LIBRARY *new_entry;

/* Allocate space for the new library entry and initialize. */
new_entry = (LIBRARY *) malloc(sizeof(LIBRARY));

new_entry—>symbol = symbol; /* use specified symbol */
new_entry—>n_occurrences = 0; /¥ initially 0 occurrences */

/* Link new entry to symbol library. */
new_entry—>next_entry = symbol library;

/ * Return new pointer to symbol library. */
return(new_entry);

}

Ak g 2 e 3 3 e o 3 e e 3 e 3 e e 3 e e 3k e e 3 e A e 3 3 e e 3 e e 3 e 3k e e 3 e Je 3k e A e e 3 e 3 3 e 3¢ 3k e e 3o e 3 e A 3 e 3 3 Je 3 e e 3 K 3 e ke Xk ke Kk

lookup_symbol:
Determines if a specified symbol can be matched to one in a symbol
library. Takes as argments pointers to the symbol library, the
symbol, and a function to perform the comparisons. If a successful
match is made, a pointer to the matching library entry is returned.
Otherwise, NULL is returned. The library is automatically sorted
so that the more frequently—occurring symbols are kept at the beginning.

*****4*************#***#*#*******t**#**It********#***************#**********t/

LIBRARY *lookup_symbol(symbol library, symbol, compare)
LIBRARY *symbol library;
SYMBOL *symbol;
int (*compare) ();
{ int found;
LIBRARY *lib_ptr; /* pointer to search the library */
SYMBOL *temp_symbol; /¥ temporary variables ¥/
int temp_int; / * used for swapping */

lib_ptr = symbol library;

/ * Search symbol library for matching symbol. */
found = 0;
while ((lib_ptr != NULL) && (! found))
if ((*compare) (symbol, lib_ptr—>symbol))
ound = 1;
else
lib_ptr = lib_ptr—>next_entry;

/* If there was a match, return pointer to that entry; otherwise, NULL. */
if (found)

| * Increment number of occurrences. */
lib_ptr—>n_occurrences++;

| * Move to new position in library to keep sorted. */
found = 0;

while (! found)
if (symbol library—>n_occurrences <= lib_ptr—>n_occurrences)
{ found = 1;

/* swap the contents of the library entries */
temp_symbol = lib_ptr—>symbol;

lib_ptr—>symbol = symbol_library—>symbol;
symbol_library—>symbol = temp_symbol;

temp_int = lib_ptr—>AC_element;

lib_ptr—>AC_element = symbol_library—>AC_element;
symbol library—>AC_element = temp_int;

temp_int = lib_ptr—>n_occurrences;
lib_ptr—>n_occurrences = symbol_library—>n_occurrences;
symbol library—>n_occurrences = temp_int;

else
symbol library = symbol library—>next_entry;

133

30

40

50

60

70

80

90

return(symbol library);

else 100
return(NULL);

E.7 Source Code — Symbol Isolation

File symbol £illing.c:

/*********tI**#*#*#**********t*t******#***##t#***#***t**t***#*****************

Name: symbol_filling.c
Purpose: Performs the symbol isolation stage of Content— Adaptive Facsimile
Coding using the symbol filling technique.

Contents:
symbol_filling_isolate(buffer,position, residue_line)
=> Attempts to isolate a particular symbol given
a source buffer and position of reference pizel.
symbol_filling_remove(symbol,position,buffer,residue_line) 10
=> Removes a detected symbol from the source buffer.
symbol filling_scroll(buffer,residue_line)
=> Secrolls the source buffer up one scan—line in
a manner that preserves tmportant side information
used by symbol filling isolate and updates the
residue scan—line.

Last modified on 12/17/93
*i********************#******************************#************#**********/
#include<stdio.h> 20
#include<stdlib.h>

#include"CAFC.h"

#include"PCX_util.h"

#include"PCX_buffer.h"

#include"symbol.h"

/¥ additional pizel representations (for black foreground) */
#define SYMBOL_PIXEL 3
#define NON_SYMBOL 4

30
/¥ global variables used during isolation */
int left, right, top, bottom; /* boundries of symbol */
byte tag; / * value to use when tagging pizels */
byte **buffer; /¥ buffer to scan for symbols */
int maxX, nlines; /* boundries of buffer */
[FEEERERRAAEAR R RRRERRERERREERE R R R R REEREEREEERRERRRRRERRRRRRERERFRRRRRRRRRA A
fill: Takes as arguments the coordinates of a black pizel in the source
buffer. Uses a flood—fill algorithm to tag the entire cluster of 40
contiguous black pizels. In the process, determines the mazimum
boundries of this cluster. This function is internal to
symbol_filling.c.
The algorithm first tags all contiguous black pizels in the
horizontal scan—line segment consisting of the specified pizel.
Then, it recursively calls itself with the coordinates of all black
pizels immediately above and below this segment.
The following global variables are used and assumed to be preset with 50

the appropriate values prior to the call to this function:

byte **buffer => two—dimensional array of pizels to scan
int mazX, nlines => horizonal and vertical dimensions of this array

134

int left, right, => outermost boundries of filled region —— assumes that
top, bottom => initially left=right=z and top=boitom=y
byte tag => value to tag region with
e
void fill(x, y)
int x, y; 60
{ int lme left line_right; /* boundries of current scan—line */

/¥ Tag all contiguous black pizels to the left on current scan—line (y). */
line_left = x;

while ((lme left > 0) && (buffer[y][line left] == BLACK))

{ buffer[y][line_left] = tag;

ine_left——;

[* Check for special case of left edge of buffer. */ 70
if ((line_left == 0) && (buffer[y][0] == BLACK))

bufferfy}[line_left] = tag;
else

line_left++; /* line_left gets leftmost tagged pizel. */

/* Tag all contiguous black pizels to the right on current scanline (y). */
if (x == (maxX — 1)) /* If we are already at the rightmost edge, */
line_right = x; /* skip this part. */
else
{ line_right = x + 1; 80
while ((line_right < (maxX - 1)) && (buffer|y][line_right] == BLACK))
{ buffer[y][line_right] = tag;
line_right++;

[* Check for special case of right edge of buffer. */
if ((line_right == (maxX — 1)) && (buffer[y][maxX — 1) == BLACK))
buffer[y][line_right] = tag;
else
line_right——; /* line_right gets rightmost tagged pizel. */ 920

/* Ezpand left and right boundries if necessary. */
if (line left < left) left = line_left;
if (line_right > right) right = line_right;

[* For all black pizels above and below tagged segment, recursively call

fill. Ezpand top and bottom boundries when necessary. */
for (x = (line_left — 1); x <= (line_right + 1); x++)

if ((x >= 0) && (x < maxX)) 100

{if (v >0)

if (buffery — 1][x] == BLACK)
(i (0~ 1) < fop)
ﬁll(x, y— l),

if (y < (nlines — 1))
if (buffer[y + 1)[x] == BLACK)
{if ((y + 1) > bottom)
bottom =y + 1; 110
fill(x, y + 1);

}
}

HEETRAIIFRITREFRAAI NIRRT RN AN e 3 3 2o e 3 3 e 2 3 3 3 Y o e 3 e e N e e 3 e e 3 3 e e 3 e e 3 3 o e e 3 2 e e

symbol_filling_tsolate:
Given a source buffer and location of a reference black pizel,
attempts to isolate a cluster of contiguous black pizels to form
a symbol. If a cluster can be isolated that fits within the allowed 120
size constraints, it is returned in the form of a symbol structure.
Otherwise, N ULL is returned.

135

Important side information is stored in the buffer so that large
clusters are handled correctly. The caller should not directly access
the buffer. Instead, a seperate one—dimensional array of pizels,
residue_line, should be maintained that contains only the first

scan—line of the buffer. It is automatically updated with the
symbol filling_scroll function. Detected symbols can be properly
removed from the source image with the symbol_filling_remove function. 130

The following constants must be defined:

MAX SYMBOL_HEIGHT, MAX_SYMBOL_WIDTH => mazimum allowed symbol size

MIN SYMBOL_HEIGHT, MIN_ SYMBOL_WIDTH => minimum allowed symbol size
R
SYMBOL *symbol filling isolate(source_buffer, position)
byte **source_buffer;
int position;
{ int x,y;

SYMBOL *detected_symbol; 140

/* Make sure that pizel in specified position is a possible candidate. */
if (source_buffer[0][position] == BLACK)

[* Assign appropriate values to global variables referring to buffer. */
buffer = source_buffer;
maxX = buffer_maxX(buffer); nlines = buffer_nlines(buffer);

/* Fill contiguous black region with the value SYMBOL_PIXEL. */

left = position; right = position; top = 0; bottom = 0; 150
tag = SYMBOL _PIXEL;

fill(position, 0);

/* If region fits within the symbol size constraints, it is a symbol. */
if (((bottom + 1) <= MAX SYMBOL _HEIGHT) &&
((right — left + 1) <= MAX_SYMBOL_WIDTH) &&
((bottom + 1) >= MIN_SYMBOL _HEIGHT) &&
((right — left + 1) >= MIN_SYMBOL _WIDTH))

/* Create a new symbol structure for this symbol. */ 160
detected_symbol = create_symbol(right—left+1, bottom+1, position—left);

[* Copy the symbol to the bitmap field. */
for (y = 0; y <= bottom; y++)
for (x=left; x <= right; x++)
detected_symbol—>bitmap(y][x — left] =
(source_buffer[y][x] == SYMBOL_PIXEL) ? BLACK : WHITE;

else /* otherwise, not a symbol ¥/
detected_symbol = NULL; 170

/ * Retag all black pizels as NON—SYMBOL. */
for (y=0; y <= bottom; y++)
for (x=left; x <= right; x++)
if (source_buffer[y][x] == SYMBOL _PIXEL)
source_buffer[y][x] = NON_SYMBOL;

else
detected_symbol = NULL;

180
return(detected_symbol);
FERRFERIRRTRRRTRREERRR AR R AR TR EIRRF KRR AF KRN AR AT AR TR R TR RARRR KRR AR RRAE KRN K
symbol_filling_remove:

Given a detected symbol, its location, the source buffer, and a
seperate residue scan—line array, erases the symbol from the source
buffer and residue line. This prevents the symbol from being detected
again or from appearing in subsequent residue lines.
e 190

136

void symbol filling remove(detected symbol, position,
source_buffer, residue_line)

SYMBOL *detected_symbol;

int position;

byte **source_buffer;

byte *residue_line;

{int x,y;

/* Erase symbol from source buffer. */
for (y = 0; y < detected_symbol—>maxY; y++)
for (x = 0; x < detected symbol—>maxX; x++)
if (detected_symbol—>bitmap[y][x] == BLACK)
source_buffer[y][x + position — detected_symbol—>shift] = WHITE;

/ * Remove symbol from residue_line. */
for (x = 0; x < detected_symbol—>maxX; x++)
if (detected_symbol—>bitmap[0][x] == BLACK)
residue line[x + position — detected symbol—>shift] = WHITE;
}

Ao e e sk e o 3 3 e e e e 3 3 3 e e e e e 3k 3 e e e o e e N 3 e e e e e e e e e e e A 3 e e 2 e e e Ao e e e e A A e e o de e e e ok A e ek kK

symbol_filling_scroll:
Scrolls a buffer up by one scan—line. In the process, propogates
down any pizels marked as NON—-SYMBOL so that they will not later
be sncorrectly isolated. In addition, generates a new residue_line.
********#**#***##*t***#t#*##*##*t**#**###***##********t**#*#*#****#*#***#****/
void symbol filling scroll(source_buffer,residue_line)
byte **source_buffer;
byte *residue_line;
{ int x;

/¥ Scroll up buffer and scan next line. */
scroll_buffer(source_buffer);

/ * Determine dimensions of buffer. */
maxX = buffer_maxX(source buffer);
nlines = buffer_nlines(source_buffer);

/¥ Propogate down any non—symbols that could not fit in buffer. */
tag = NON_SYMBOL;
buffer = source_buffer;
for (x=0; x<maxX; x++)
if (source_buffer{nlines — 2][x] == NON_SYMBOL)
{ if (source_buffer[nlines — 1]{x] == BLACK)
fill(x, nlines — 1);
if (x > 0)
if (source_buffer[nlines — 1][x — 1] == BLACK)
fill(x — 1, nlines — 1);
if (x < (maxX — 1))
if (source_buffer[nlines — 1][x + 1] == BLACK)
fill(x + 1, nlines — 1);
}

/* Generate new residue_line. */
for (x=0; x<maxX; x++)
residue_line[x] = (source_buffer[0][x] == WHITE) ? WHITE : BLACK;

200

210

220

230

240

File symbol_tracing.c:

/ FFR AR Ao e RN A e e e e ok e e e e e o Ak e e e e e o e e e e e A e e e e o e 3 3 e e e e 3 3 e e e e e e Fe Yo 3o e e e 3 A e e e K ¥ A K Kk

Name: symbol_tracing.c
Purpose: Performs the symbol isolation stage of Content— Adaptive Facsimile
Coding using the symbol tracing technique.

137

Contents:
symbol_tracing isolate(buffer,position,residue_line)
=> Attempts to isolate a particular symbol given
a source buffer and position of reference pizel.
symbol_tracing_remove(symbol,position,buffer,residue_line)
=> Removes a detected symbol from the source buffer.
symbol_tracing_scroll(buffer,residue_line)
=> Secrolls the source buffer up one scan—line,
updating the residue scan—line.

Last modified on 12/20/93

HRRRRRRRRR R AR RRRREERRRE AR ERRRERREERERERERREREREERRERRERRRERRRRR |
#include<stdio.h>

#include<stdlib.h>

#include"CAFC.h"

#include"PCX_util.h"

#include"PCX_buffer.h"

#include"symbol.h"

/¥ additional pizel representations (for black foreground) */
#define BOUNDRY 5

#tdefine DOUBLE BOUNDRY 6

#define NON_SYMBOL_BOUNDRY 7

/ * global variables used during isolation */
int left, right, top, bottom; /* boundries of symbol */

byte **buffer; /¥ buffer to scan for symbols */
byte *prev _line; | * scan—line immediately preceeding buffer */
int maxX, nlines; /* boundries of buffer */
[FEREERRRRRRRRRR SR RRERERRRERERERRRRRRRRRE R R AR R IR RRRRERRRRRR IR R ERRR RN KRN
trace: Takes as arguments the coordinates of a black pizel in the source
buffer. Uses a contour tracing algorithm to tag the outline of
a black cluster in the image. In the process, determines the mazimum
boundries of this cluster. Returns 1 if the trace ends on the same
pizel that it started. This function is internal to symbol_tracing.c.

The specified pizel is used as a starting point for the trace and
should be on the right or upper boundry of the black object. The
trace is performed in the clockwise direction and ends when the
original pizel is retraced in the same direction or when the upper

or lower ends of the buffer are exceeded. The right and left ends of
each horizontal segment in the object are tagged with the value
provided in the argument boundry_tag or, when this segment is just
one pizel wide, double_boundry_tag.

The following global variables are used and assumed to be preset with
the appropriate values prior to the call to this function:

byte **buffer => two—dimensional array of pizels to scan

byte *prey_ line => scan—line immediately preceeding buffer

int mazX, nlines => horizonal and vertical dimensions of this array

int left, right, => outermost boundries of traced region provided here

top, bottom

FERREEE R R AR ARARAEREEREEEREERERERERERREREEERERRERRN |
int trace(start_x, start_y, boundry_tag, double_boundry_tag)
int start_x, start_y, boundry_tag, double_boundry_tag;
{ int dx, dy, temp; /* direction of trace */

int x, y; /* position of current pizel in trace */

pixel p;

/¥ Initialize starting pizel, outermost traced boundries, and direction. */
= start_x; y = start_y; /¥ starting pizel */

left = x; right = x; top = y; bottom = y; /¥ outer boundries */

dx =1;dy = 0; /¥ initial direction */

| * Trace until starting point is reached in the same direction or
the top (including prev_line) or bottom of the buffer is ezceeded. */
while ((! ((dx == 1) && (dy == ~1) && (x == start_x) && (y == start_y))) &&
((y + dy) >= —1) && ((y + dy) < nlines))

138

10

20

30

40

50

60

70

| * Determine color of pizel in current direction, WHITE if beyond edge. */
if (((x + dx) >=0) && ((x + dx) < maxX))
if (v + dy) == —
p = prev _line[x-+dx];

else
p = buffer[y+dy][x+dx];
else
p = WHITE;

/ * If this pizel is white, tag if necessary and rotate clockwise. */

if{(p == WHITE)

| * Tag the current pizel the direction passes through horizontal. */
if ((dy == 0) && (y >=0))
if (buffer[y][x] == boundry_tag)
bufferfy][x] = double_boundry_tag; /* If already tagged, use */
else | * double_boundry_tag. */
buffer[y][x] = boundry_tag;

/* Rotate clockwise 45 degrees. */

temp = dx — dy; dy = dx + dy; dx = temp;
= (dx > 0) — (dx < 0);

dy = (dy > 0) — (dy < 0);

else /* Otherwise, we found the nexzt pizel in the trace. */
t /* Move in this direction, expanding outer boundries if necessary. */
x +=dx; y +=dy;
if (x > right) right = x;
if (y > bottom) bottom = y;
if (x < left) left = x;
if (y < top) top = y;

/ * Rotate counter—clockwise by 135 degrees to search for next pizel. */
temp = dy — dx; dy = —dx — dy; dx = temp;
= (dx > 0) — (dx < 0);
) dy = (dy > 0) — (dy < 0);

/* Return a 1 if ending pizel is the same as starting pizel, otherwise 0. */
return((x == start_x) && (y == start_y));

HRKRKRKKKKRRR KRR FRRA KKK KKRRIFGRRR KRR AN TN Fe 3 e e Je A3 Yo 3 e o 3o e e ok 333 e ok ok

symbol_tracing_isolate:
Given a source buffer and location of a reference black pizel,
attempts to isolate a cluster of black pizels through contour tracing
to form a symbol. If a cluster can be isolated that fits within the
allowed size constraints, it is returned in the form of a symbol
structure. Otherwise, NULL is returned.

Important side information is stored in the buffer so that large

objects are handled correctly. The caller should not directly access

the buffer. Instead, a seperate one—dimensional array of pizels,
residue_line, should be maintained that contains only the first

scan—line of the buffer. It is automatically updated with the
symbol_tracing_scroll function. Detected symbols can be properly
removed from the source image with the symbol_tracing_remove function.

The following constants must be defined:

MAX_SYMBOL_HEIGHT, MAX_SYMBOL_WIDTH => mazimum allowed symbol size

MIN_SYMBOL_HEIGHT, MIN_SYMBOL_WIDTH => minimum allowed symbol size
u*****nnu*unnuunuutn*u*u:uuu*n*uu*nuunu**nuuuu/
SYMBOL *symbol_tracing_isolate(source_buffer, position)
byte **source_buffer;
int position;
{ SYMBOL *detected_symbol;

139

80

90

100

110

120

130

140

int x,y,i;
int in_symbol, valid_symbol, valid_pixel;

/* Assign appropriate values to global variables referring to buffer. */
uffer = source_buffer;

maxX = buffer maxX(buffer); nlines = buffer_nlines(buffer);

prev_line = buffer_prev_line(buffer);

| * Determine position of the pizel farthest to the right in black segment. */
1 = position;
while ((i < (maxX — 1)) && (buffer{0][i] != WHITE))
i++;
if (buffer[0][i] == WHITE)

i——:

| * Determine if this is a valid starting pizel. It must be BLACK (not tagged
from a previous trace) and its upper right neighbor must be WHITE. */
valid_pixel = (buffer[0][i] == BLACK);
if (i < (maxX - 1))
if (prev_linefi + 1] != WHITE)
valid_pixel = 0;

/ * Proceed only if this is a valid starting pizel. */
if (valid_pixel)

/* Trace. Symbol is only valid if trace ends where it started. */
valid_symbol = trace(i,0,BOUNDRY,DOUBLE_BOUNDRY);

| * Determine if traced region is within the size contraints of a symbol. */

valid_symbol &= ((bottom + 1) <= MAX_SYMBOL _HEIGHT) &&
((right — left + 1) <= MAX SYMBOL_WIDTH) &&
((bottom + 1) >= MIN_ SYMBOL HEIGHT) &&
((right — left + 1) >= MIN_SYMBOL_WIDTH);

/* If region is a valid symbol, proceed. */
if (valid_symbol)

/* Create a new symbol structure for this symbol. */
detected_symbol = create symbol(right—left+1, bottom+1, position—left);

/* Copy the symbol to the bitmap field. */
for (y = 0; y < detected_symbol~>maxY; y++)
for (x=left, in_symbol = 0; x <= right; x++)
if (source_buffer[y][x] == BOUNDRY)
{ in_symbol = ! in_symbol;
detected_symbol—>bitmap[y][x — left] = BLACK;

}
else if (source_buffer[y][x] == DOUBLE_BOUNDRY)
detected_symbol—>bitmap[y]{x — left] = BLACK;
else
detected_symbol—>bitmap(y][x — left] =
(in_symbol) ? source_buffer[y][x] : WHITE;

else /* otherwise, no detected symbol */
detected_symbol = NULL;

/ * Retag all boundry pizels as NON_SYMBOL_BOUNDRY. */
trace(i,0,NON_SYMBOL_BOUNDRY,NON_SYMBOL_BOUNDRY);

}
else

detected_symbol = NULL;
return(detected_symbol);

e e e e e e e e A e e e e e oAk e e e e o A 3 e e e 3 3 e e e 2k 3 Y 3 e e e A 3 3 e e e e 3 3 e e e e 3k 3 3 3y e e e 3 3 e e 3¢ X 3 3 e e

symbol_tracing_remove:
Given a detected symbol, its location, the source buffer, and a

140

150

160

170

180

190

200

210

seperate residue scan—line array, erases the symbol from the source
buffer and residue line. This prevents the symbol from being detected
again or from appearing in subsequent residue lines.
R e
void symbol_tracing remove(detected_symbol, position,
source_buffer, residue_line)
SYMBOL *detected_symbol;
int position;
byte **source_buffer;
byte *residue_line;
{int x,y;

/ * Erase symbol from source buffer. */
for (y = 0; y < detected_symbol—>maxY; y++)
for (x = 0; x < detected_symbol—>maxX; x++)
if (detected_symbol—>bitmap[y][x] == BLACK)
source_buffer[y][x + position — detected_symbol—>shift] = WHITE;

/ * Remove symbol from residue_line. */
for (x = 0; x < detected_symbol—>maxX; x++)
if (detected_symbol—>bitmap|0][x] == BLACK)
residue_line[x + position — detected_symbol—>shift] = WHITE;

}

Ao e 3NN o e e e e e e e e e e 3 o o N A e e e e e e A e A e e A e e e e e e e N A A AN A A e e e N e e e N A A A A AN AN KK e e KN Ak

symbol_tracing_scroll:
Scrolls a buffer up by one scan—line and generates a new residue_line.
#‘***#******/
void symbol_tracing scroll(source_buffer,residue line)
byte **source_buffer;
byte *residue_line;
{ int x;

/* Determine buffer width and height. */
maxX = buffer_maxX(source_buffer);
nlines = buffer_nlines(source_buffer);

/* Scroll buffer up one line. */
scroll_buffer(source_buffer);

/¥ Generate new residue_line. */
for (x=0; x<maxX; x++)
residue_line[x] = (source_buffer[0][x] == WHITE) ? WHITE : BLACK;

220

230

240

250

File symbol_windowing.c:

/ FRRRRRARAKN AR A A RRN AN AR J e e e e e e e e Y 3 3 e 3 e e e e e e 3 e e e e 3 e e e 3 e e 3 e e 3 3 3 e 3o e 3 e 3

Name: symbol windowing.c
Purpose: Performs the symbol isolation stage of Conteni— Adaptive Facsimile
Coding using the symbol windowing technique.

Contents:
symbol_windowing_isolate(buffer,position,residue_line)
=> Attempts to isolate a particular symbol given
a source buffer and position of reference pizel.
symbol windowing_remove(symbol,position,buffer,residue_line)
=> Removes a detected symbol from the source buffer.
symbol_windowing_scroll(buffer,residue_line)
=> Scrolls the source buffer up one scan—line,
updating the residue scan—line.

Last modified on 12/20/93
e

#include<stdio.h>
#include<stdlib.h>

141

10

#include"CAFC.h"
#include"PCX_util.h"
#include"PCX_buffer.h"
#include"symbol.h"

A e e e e e A e e e e e 3 e e e e e e 3 e e e e e 36 3 e e e e e e e e e e e 3k e e e e e 2 3 3 e e e ok 3 3 3 e e e e 3k 3k e o e ok ok ke ek ke ok ok

symbol_windowing_isolate:
Given a source buffer and location of a reference black pizel,
attempts to isolate a cluster of black pizels by systematically
ezpanding a rectangular window until its border contains only
white pizels. If a cluster can be isolated that fits within the
allowed size constraints, it is returned in the form of a symbol
structure. Otherwise, NULL is returned.

The caller should not directly access the buffer. Instead, a
seperate one—dimensional array of pizels, residue line, should

be maintained that contains only the first scan—line of the buffer.

It is automatically updated with the symbol_tracing_scroll function.
Detected symbols can be properly removed from the source image with
the symbol windowing remove function.

The following constants must be defined:
MAX_SYMBOL_HEIGHT, MAX SYMBOL_WIDTH => mazimum allowed symbol size
MIN_SYMBOL_HEIGHT, MIN_SYMBOL_WIDTH => minimum allowed symbol size
n*****uu*uu*n*unu*unuuuuutuun*uuun*uu*uuunuuu/
SYMBOL *symbol_windowing isolate(source_buffer, position)
byte **source_buffer;
int position;
{ SYMBOL *detected_symbol;
byte *prev line;
int left, right, bottom;
int left_clear, right_clear, top_clear, bottom_clear;
int x, y;
int maxX, nlines;

[* Assign appropriate values to variables referring to buffer. */
maxX = buffer_maxX(source_buffer); nlines = buffer_nlines(source_buffer);
prev_line = buffer_prev_line(source_buffer);

[* Initialize 3 edges of window (4th is the top, in prev_line). */
left = position; right = position; bottom = 1;

/¥ Initialize flags which indicate status of each border. */

top_clear = /* Top edge clear if pizel above is WHITE. */
(prev_line[position] == WHITE);

left_clear = 0; /* The left edge is initially not clear. */

right_clear = 0; /* The right edge is initially not clear. */

bottom_clear = 0; /* The bottom edge is initially not clear. */

[* Iterate until edges are clear, top is unclear, or window is too big. */

while ((! (left_clear && right_clear && top_clear && bottom_clear)) &&
top_clear && ((right—left—1) < MAX SYMBOL_WIDTH) &&
(bottom < MAX_SYMBOL_HEIGHT))

/* Ezpand to the left until left is clear, top is not clear,
or size limit is reached. */
while ((top_clear) && (! left_clear) && (left >= 0) &&
((right—left—1) < MAX_SYMBOL_WIDTH))

/¥ Ezpand one pizel to the left. */
left——;

/ * Determine if new left border is clear. */
left_clear = 1;
if (left > 0)

/* Left is not clear if any pizel in border is not WHITE. */
for (y = 0; y <= bottom; y++)

142

20

30

40

50

60

70

80

if (source_buffer[y][left] != WHITE)
left_clear = 0;

/ * Check new pizel on top and bottom border and update status. */
top_clear &= (prev_line[left] == WHITE);
bottom _clear &= (source_buffer[bottom][left] == WHITE);
}
}

/* Ezpand to the right until right is clear, top is not clear,
or size limit is reached. */
while ((top_clear) && (! right_clear) && (right < maxX) &&
((right—left—1) < MAX_SYMBOL_WIDTH))

/ * Ezpand one pizel to the right. */
right++;

/ * Determine if new right border is clear. */
right_clear = 1;
if (right < (maxX — 1))
{ for (y = 0; y <= bottom; y++)
if (source_buffer[y][right] != WHITE)
right_clear = 0;

/* Check new pizel on top and bottom border and update status. */
top_clear &= (prev_line[right] == WHITE);
bottom _clear &= (source_buffer[bottom][right] == WHITE);
}
}

/ * Ezpand down until bottom is clear, sides are not clear,
or size limit is reached. */
if (top_clear)
while ((! bottom_clear) && (bottom < (nlines — 1)) &&
(bottom < MAX_SYMBOL_HEIGHT))
{ /* Ezpand one pizel down. */
bottom++;

/ * Determine if new bottom, left, and right borders are clear. */
bottom_clear = 1;
for (x=left + 1; x < right; x++)
bottom clear &= (source_buffer[bottom|[x] == WHITE);
if (left >= 0)
left_clear &= (source_buffer[bottom][left] == WHITE);
if (right < maxX)
right_clear &= (source_buffer[bottom][right] == WHITE);
}
}

/¥ If all borders are clear and the window is big enough, make a symbol. */
if (left_clear && right_clear && bottom_clear && top_clear &&
((right—left—1) >= MIN_SYMBOL_WIDTH) && (bottom >= MIN_SYMBOL_HEIGHT))

/* Create a new symbol structure for this symbol. */
detected symbol = create_symbol(right—left—1, bottom, position—left—1);

[* Copy the symbol to the bitmap field. */
for (y = 0; y < detected_symbol—>maxY; y++)
for (x=left+1; x < right; x++)
detected_symbol—>bitmap[y][x — left — 1] = source_buffer{y][x];

else /* otherwise, no detected symbol */
detected_symbol = NULL;

return(detected_symbol);

/ FHRE KRR R RKRKERIKI KKK KRR I RN RN KK RE TR KRB REERRE KT TR T KT RE KRN KR

143

90

100

110

120

130

140

150

symbol windowing_remove:
Given a detected symbol, its location, the source buffer, and a
seperate residue scan—line array, erases the symbol from the source

buffer and residue line. This prevents the symbol from being detected 160
again or from appearing in subsequent residue lines.

R e L

void symbol_windowing_remove(detected_symbol, position,

source_buffer, residue_line)

SYMBOL *detected_symbol;

int position;

byte **source_buffer;

byte *residue _line;

{ int x,y;

170

/ * Erase symbol from source buffer. */
for (y = 0; y < detected_symbol—>maxY; y++)

for (x = 0; x < detected symbol—>maxX; x++)

source_buffer[y][x + position — detected_ symbol—>shift] = WHITE;

/* Remove symbol from residue_line. */
for (x = 0; x < detected_symbol—>maxX; x-++)

residue_line[x + position — detected_symbol—>shift] = WHITE;

} 180
EREREERERRRRER RN RNk bk kb kIR F R AR IR RRREI RN RN RF R
symbol_windowing scroll:

Serolls a buffer up by one scan—line and generates a new residue_line.

R]

void symbol_windowing scroll(source_buffer,residue _line)

byte **source_buffer;

byte *residue line;

{ int x, maxX;

/ * Determine buffer width. */ 190
maxX = buffer maxX(source_buffer);
/* Scroll buffer up one line. */
scroll_buffer(source_buffer);
/* Generate new residue_line. */
for (x=0; x < maxX; x++)
residue_line[x] = source_buffer[0][x];

E.8 Source Code — Symbol Manipulation

File symbol.c:

[FERR AR AR R R RERRRRERRRRERRRRRRRRRRRRRRRR

Name: symbol.c

Purpose: This file contains routines for manipulating symbol structures.

The SYMBOL structure is defined in symbol.h

Contents:
create_symbol(mazX, mazY, shift) => Create new symbol structure.
free_symbol(old_symbol) => Deallocate memory used by symbol.
display_symbol(symbol) => Displays ASCII version of symbol. 10

Last modified on 12/30/93
*******#************************************#**********#******************#**/

#include<stdio.h>

144

#include<stdlib.h>
#include"CAFC.h"
#include"PCX_util.h"
#include"symbol.h"

T N T T St T
create_symbol: Creates new symbol structure and initializes its fields

with the specified dimensions and horizontal shift. Returns

a pointer to the symbol.
FERERREEEREA I RERRERR R R AR RRRRER R RRRRRRRRRRRARRERRRRRRRRERRRRRRS

SYMBOL *create_symbol(maxX, maxY, shift)
int maxX, maxY, shift;
{ SYMBOL *new_symbol;
int i;
/* Create a new symbol structure. */
new_symbol = (SYMBOL *) malloc(sizeof(SYMBOL));

/* Create symbol bitmap. */
new_symbol—>bitmap = (pixel **) malloc(maxY * sizeof(pixel *));
for (i = 0; i < maxY;i++)

new_symbol—>bitmap[i] = (pixel *) malloc(maxX * sizeof(pixel));

/* Set dimensions. */
new_symbol—>maxX = maxX;
new_symbol—>maxY = maxY;
new_symbol-—->shift = shift;

/* Initially, no features are known. */
for (i=0; i<NFEATURES; i++)

new_symbol—>f known[i] = 0;

return(new_symbol);

KRR RFRRKERIERIRFEFRRKRKIF NSRRI RREIINRA AN Ae R Je Y e e e 3 e Y 3 e o 3 e e e 3 2 e e e e 3 e e

Jree_symbol: Deallocate memory used by symbol.
e

void free_symbol(old_symbol)

SYMBOL *old_symbol;
{ int i;
/ * Free symbol bitmap. */
for (i=0; i < old_symbol—>maxY; i++)
free(old_symbol—>bitmapli]);
free(old_symbol—>bitmap);

| * Free the symbol structure. */
free(old_symbol);

20

30

40

50

60

File symbol.h:

HREAKRTNFAENRAARAI AN AN A 3 e e 3 e e e 3 020 3 3 e e e e e o e e 3 e e e 3 e e e e 3 o e 3 e e e e e e o e e

Name: symbol.h
Purpose: This header file contains definitions used by the symbol managment
routines (symbol.c).

Last Modified on 12/30/98
M
typedef unsigned char pixel;
/¥ definition for symbol type */
typedef struct
{ pixel **bitmap; /* bitmap containing pizel data */
int maxX, maxY; /* dimensions of bitmap */

145

10

int shift; /* horizontal position of first black pizel in first row */
int features]NFEATURES]; / * its features */
int f known[NFEATURES]; /* 1 for features that are known */

} SYMBOL;

/* declarations for symbol managment routines */
SYMBOL *create_symbol();
void free_symbol();

20

E.9 Source Code — Arithmetic Coding/Decoding

File AC.c:

/*****#*********************##*******************#*************#****##****#*#*

Name: AC.c
Purpose: This file contains routines to perform arithmetic coding and
decoding.

The header file AC.h must be included in any program that uses
these routines. The coding model, represented by an AC_MODEL
structure type, contains the number of occurrences of each
possible element (symbol). The model can be changed during

the encoding process, but the same changes must be made at

the decoder to be consistent.

The AC_ENCODER and AC DECODER structure types contain all of the
necessary state variables for an encoding or decoding process.

This way, multiple encoding and decoding processes can be managed
seperately and simultaneously.

Contents:
tnitialize_model(model) => Initializes new coding model.

add_element_to_model(model) => Adds new element to model with
zero occurrences.

update_model(model, element,count) => Increases number of occurrences of
an element in model by count.
open_AC_encoder(encoder,output_func) => Begin a new encoding process.
open_AC_decoder(decoder,input_func) => Begin a new decoding process.
encode_element(encoder,model,element)=> Encode an element.
decode_element(decoder,model,element)=> Obtain nezt decoded element.
close_AC_encoder(encoder) => End an encoding process.
close_AC_decoder(decoder) => End a decoding process.

Last modified on 12/21/98

*********************t******#***t*#****t*****t*******#***#*#******#**********/

#include<stdio.h>
#include<string.h>
#include"AC.h"

/*****************#*****************#******t#*#*****#*t***#**t************#***

tnitialize_model: Takes as an argument a pointer to a AC_MODEL structure

to initialize. Prepares model for use by encoder or

decoder, setting the total number of elements to zero.

Returns a pointer to the model.
L
AC_MODEL *initialize_model(model)

AC_MODEL *model;

{ model—>n _elements = 0; /* Initially zero elements. */
model—>totals = NULL; /* Initially, no counts. */
return(model);

146

10

20

30

40

50

FRAIRAA RN A AN AR A RARA KA A R RA AT R AN AN e A e AT R e e e e e e e 3 e e e e e e e o e 2 e e e e e e e

add_element_to_model:
Adds a new element to the specified AC_MODEL structure, initially
with zero occurrences. The count should be increased with
update_model before the model is used again. Returns an integer
that should be used to refer to this element on all subsequent
encoding and decoding operations.
M L
int add_element_to_model(model)
AC_MODEL *model;

/* Increment the number of elements and the size of the totals array. */
model—>n_elements++;
model—->totals = (unsigned long *)

realloc(model —>totals,model—>n_elements*sizeof(unsigned long));

] * Set the number of occurrences of this element to zero. */

if (model—>n_elements == 1) /* If this is first element, total = 0. */
model—>totals[0] = 0;

else /¥ Otherwise, set total to same as previous element. */
model—>totals[model—>n_elements—1] = model—>totalsimodel—>n_elements—2];

return(model—>n_elements — 1);

KKK KRIKTRKKRE AR KRAFTRKKA I KA AR AR A e e o 3 3 3 3 e 2 e e o e e e e e e e e e 2 3 o o o 3 3 e 2 o o e e e sk o e

update_ model: Increase the number of occurrences of the specified element
in the specified model by specified count.

i]
AC_MODEL *update_model(model, element, count)
AC_MODEL *model;
int element;
int count;
{ int i, new_count, total;

/* Increase total for specified element and all subsequent elements. */
for (i=element; i < model—>n_elements; i++)
model—>totals[i] += count;

/* If the new total is too high, scale back all counts. */
while (model—>totals[model—>n_elements — 1] >= 16384)

/* Divide all counts by 2 to reduce total. */
total = 0;
count = model—>totals[0];
for (i=0; i < model—>n_elements; i++)
{ new_count = count / 2;
if (new_count == 0) /* Make sure that all counts are positive. */
new_count = 1;
total += new_count;
if (i < model—->n_elements)
count = model—>totalsfi + 1] — model—>totals]i];
model—>totals[i] = total;

}

return(model);

FHEKRRERRREIRREREREEREREERRIERRTRRRFERRERRRRE RN ERRFERRREERREERARER AT RN E RN K
open_AC_encoder: Begin a new encoding process by initializing the state

variables in the specified AC_ENCODER structure. All

encoded bits are individually passed to the function

provided when they become available.
L

147

60

70

80

920

100

110

void open_AC_encoder(encoder,output_func) 120
AC_ENCODER *encoder;
void (*output_func) ();

[* Initizlize to full 16—bit range with zero underflow bits. */
encoder—>low_range = 0x0000; /* 0b0000000000000000 */
encoder—>high range = OxFFFF; /* 0b1111111111111111 */
encoder—>underflow = 0;

/* Store output function pointer. */
encoder—>output_func = output_func; 130

ERERRRRRFRERR IR R R RN R AR R Rk ARRR R AR RRRRERRR IR R R AR R R R KR
open_AC _decoder: Begin a new decoding process by initializing the state
variables in the specified AC_DECODER structure. All
encoded bits are obtained from the function provided when
they are needed.
FERRRRRERRRRRREREEERERRRR SRR RERRRRRRRR R AR RRR R AR R R AR RRRRRRRRRRRRRARRR |
void open_AC_decoder(decoder,input_func) 140
AC_DECODER *decoder;
int (*input_func) ();
{ int i;

/* Initizlize to full 16—bit range. */
decoder—>low_range = 0x0000; /* 0b0000000000000000 */
decoder—>high range = OxFFFF; /* 0b1111111111111111 */

/* Store input function pointer. */
decoder—>input_func = input_func; 150

/* Fill encoded_bits buffer with encoded bits. */
decoder—>encoded_bits = 0;
for (i=0; i<16; i++)
decoder—>encoded_bits = (decoder—>encoded_bits << 1) + (*input_func) ();

T P Y P P P T I TP T T T T
encode_element: Given an AC_ENCODER structure, an AC_MODEL structure, and
an integer referring to an element in the model, encodes 160
the element.
FERRRRRRRR R RRRERRRRRR AR ERR R R AR R R R R R R AR R R RRRRRRERAE
void encode_element(encoder, model, element)
AC_ENCODER *encoder;
AC_MODEL *model;
int element;
{ unsigned long range, base, total_count;

/* Determine current base and range of encoder. */
base = encoder—>low_range; 170
range = encoder—>high range — encoder—>low_range + 1;

/* Compute new range for encoder based upon element and model. */
total_count = model—>totals[model—>n_elements — 1};
if (element > 0)
encoder—>low_range =
base + range * model—>totals[element — 1] / total_count;
encoder—>high _range =

base + range * model—>totals[element] / total count — 1;
180

/* Shift out any matching upper bits in low and high ends of range. */
while ((encoder—>low_range >> 15) == (encoder—>high_range >> 15))

/* Pass output bit to output_func. */
(*encoder—>output_func) (encoder—>high range >> 15);

/* Pass any underflow bits to output_func. */
while (encoder—>underflow > 0)

148

{ (*encoder—>output _func) (1 — (encoder—>high range >> 15));
encoder—>underflow——;

}
/ * Shift low_range and high_range to the left to remove encoded bit. */
encoder—>high _range =

({(encoder—>high range & Ox7FFF /* 0b0111111111111111 *[) << 1) + 1;

encoder—>low_range =
((encoder—>low_range & Ox7FFF /* 0b0111111111111111 */) << 1);

| * Determine if there is underflow. */
while (((encoder—>low_range >> 14) == 1) &&
((encoder—>high range >> 14) == 2))

/* If so, increment underflow count. */
encoder—>underflow++;

| * Shift out underflow bits in low and high ends of range. */
encoder—>high range =
((encoder—>high range & 0x3FFF /* 0b0011111111111111 */) << 1) |
0x8001; /* 0b1000000000000001 */
encoder—>low_range =
((encoder—>low_range & 0x3FFF /* 0b0011111111111111 */) << 1);

}
}

Kk RREKRAN KKK RK KKK KKK RKKERRREK TN RRRFTEURRKK R RREKR RN KKK KR F Nk K Kk

decode_element: Given an AC_DECODER structure and an AC_MODEL structure,

returns an integer referring to the next encoded element
in the input stream.

#***##***********#*****t*#*#****#*****#************#******************#/

int decode_element(decoder, model)
AC_DECODER. *decoder;
AC_MODEL *model;
{ unsigned long range, base;

int count, total count;

int element;

/* Determine current base and range of encoder. */
base = decoder—>low_range;
range = decoder—>high range — decoder—>low_range + 1;

/* Scan through element ranges to determine encoded element. */
total_count = model—>totals{model—>n_elements — 1J;
count =

((decoder—>encoded_bits — base + 1) * total_count + range — 1) / range;
element = 0;
while (count > model—>totals[element])

element++;

/* Compute new range for decoder base upon element and model. */
if (element > 0)
decoder—>low_range =
base + range * model—>totals[element — 1] / total_count;
decoder—>high _range =
base + range * model—>totals[element] / total_count — 1;

[* If upper bits match in low and high ends of range, shift them out
and shift in new encoded bits. */
while ((decoder—>low_range >> 15) == (decoder—>high range >> 15))

/ * Shift low_range and high_range to the left io remove encoded bit. */
decoder—>high _range =

((decoder—>high range & Ox7FFF /* 0b0111111111111111 */) << 1) + 1;

decoder—>low_range =
((decoder—>low_range & Ox7FFF /* 0b0111111111111111 */) << 1);

/* Shift out encoded bit in buffer and shift in new one. */

149

190

200

210

220

230

240

250

decoder—>encoded_bits =
((decoder—>encoded_bits & Ox7FFF /* 0b0111111111111111 */) << 1) +
(*decoder—>input_func) ();

}

/* Determine if there is underflow. */
while (((decoder—>low_range >> 14) == 1) &&
((decoder—>high range >> 14) == 2))

[* If so, shift out underflow bit. */
decoder—>high range =
((decoder—>high_range & 0x3FFF /* 0b0011111111111111 */) << 1) |
0x8001; /* 0b1000000000000001 */
decoder—>low_range =
((decoder—>low_range & 0x3FFF /* 0b0011111111111111 */) << 1);

| * Shift out underflow bit in buffer and shift in new encoded bit. */
decoder—>encoded_bits =
(((decoder—>encoded_bits & 0x3FFF /* 0b0011111111111111 */) << 1) |
(decoder—>encoded_bits & 0x8000 /* 0b1000000000000000 */)) +
(*decoder—>input_func) ();

/ * Return the decoded element. */
return(element);

P R T Ry T Y P P P P P L R T T A P R R PR

close_AC _encoder: End a coding process. Flushes out remaining bits in
specified AC_ENCODER structure.

*************************#********#********#*****#*************#********i****/

void close_AC_encoder(encoder)
AC_ENCODER . *encoder;

/* Output high bit (bit 15) in high_range. */
(*encoder—>output_func) (encoder—>high_range >> 15);

/ * Output any underflow bits */

while (encoder—>underflow > 0)

{ (*encoder—>output_func) (1 — (encoder—>high range >> 15));
encoder—>underflow——;

}
/ * Output second highest bit (bit 14) in high_range. */
(*encoder—>output_func) ((encoder—>high range >> 14) & 1);

}

RAKAKKEKRRKKKKKERRIRKKKE KK RRERERE KRR R R T KKK F R KKK KR KRR R KKK TFRE KRR KRk KK X

close_AC_decoder: End a decoding process.
HHERER AT RE R ERE R R ERER R AR ERER AR R R R R R R R ER R R R R R RRRERRR AR |

void close_AC_decoder(decoder)

AC_DECODER *decoder;
{ /* Nothing to do! Routine provided for completeness. */

260

270

280

290

300

File AC.h:

/I****#***#*#****#****************#*********#***********t***#*********#********

Name: AC.h
Purpose: This include file contains constants and parameters used by
the arithmetic coding/decoding routines (AC.c).

Last Modified on 12/21/98

t**#*******#**t****t#**********#***#***#****#***#***********#*#*********/

/* Define structure for coding model. */

150

typedef struct
{ unsigned long *totals; /* Array containing total number of occurrences of
all elements less than or equal to the array
indezx. Used as upper value in range for
encoding and decoding. */
int n_elements; /* Total number of elements in model. */
} AC_MODEL;

/ * Define structure containing all state variables for arithmetic encoder. */
typedef struct
{ unsigned long low_range, high _range; /* encoding range */
int underflow; [* number of underflow bits */
void (¥output_func) (); /¥ function to absorb encoded bits */
} AC_ENCODER;

/ * Define structure containing all state variables for arithmetic decoder. */
typedef struct
{ unsigned long low_range, high range; /* decoding range */
int (*input_func) (); / * function to provide encoded bits */
unsigned long encoded_bits; / * buffer containing encoded bits */
} AC_DECODER;

/ * declarations for the arithmetic coding and decoding routines */
AC_MODEL *initialize_model();

int add_element_to_model();

AC_MODEL *update_model();

void open_AC_encoder();

void open_AC_decoder();

void encode_element();

int decode_element();

void close_AC_encoder();

void close_AC_decoder();

10

20

30

40

151

