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Abstract
Human neural threshold tuning curves are estimated by scaling the parameters of
Allen's [1] resonant tectorial membrane model of the cat cochlea. A way to eval-
uate the derived tuning curves using psychophysical data is developed, based on a
psychophysical detection model which relates the physiological tuning curves to psy-
chophysical masking data. A detection criterion, defined by a relationship among
the bandwidth of the frequency tuning curves, expressed as an equivalent rectangu-
lar bandwidth (ERB), the width of the excitation patterns, expressed as an equiv-
alent rectangular spread (ERS), and the psychophysical critical ratio, is explored
and verified using cat data. The detection criterion is then used to test the derived
human curves by making predictions of psychophysical masking and comparing the
predictions to experimental data. The detection model may also provide a deeper
understanding of the frequency resolving properties of the cochlea.
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Chapter 1

Introduction

1.1 Background

Modeling the cochlea has been a goal of hearing research dating before WVegel and

Lane's transmission line model in 1924 [2]. A model of the human cochlea would be

useful in attempts to include auditory models in commercial products such as hearing

aids and speech recognizers. In addition, it would be a valuable tool in further human

auditory research. The biggest roadblock to modeling the human cochlea is the lack

of available physiological data on live human cochleas due to the impracticality of

performing the experiments on living humans. Thus, most cochlear models which

have been quantitatively developed are tested on animal data. This thesis explores

the problem of extrapolating results obtained for cat to human. Then, the problem

of evaluating those results using psychophysical masking data is explored.

1.2 Overview

Four types of data are studied in this thesis (Fig. 1-1): psychophysical and physio-

logical for the cat and psychophysical and physiological for the human. A relation

(represented by the top horizontal arrow) between cat and human psychophysics was

shown by Allen [3] and was the inspiration for this thesis. The idea is that the critical

ratio, a measure of psychophysical masking, is approximately the same in both species
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Figure 1-1: Diagram of relationships among data analyzed in this work.

when the data are normalized to the length of the basilar membrane (Fig. 1-2).

Transforming the cat cochlear model into a human cochlear model (represented

by the bottom horizontal arrow in Fig. 1-1 is the subject of Chapter 2. Developing

the relation between the physiology and psychophysics (represented by the vertical

arrows in Fig. 1-1 is the subject of Chapter 3.

1.2.1 Deriving the Human Model

Chapter 2 deals with the derivation of the human cochlear model. A human cochlear

model will be developed based on Allen's resonant tectorial membrane model [1].

The scope of this portion of the work rests on the assumption that the cat auditory

system and the human auditory system work similarly. Thus, to the extent that the

resonant TM model accurately simulates the cat's neural threshold tuning curves,

then by appropriately scaling the parameters, the corresponding human model can

7
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Critical Ratio for one ear

102 103 1(
freq [Hz]

Bandwidth re %-length
10 I I I I I I I

10 20 30 40 50 60
place [%-length]

70 80 90 100

Figure 1-2: Comparison of cat and human critical ratios. The upper panel shows
critical ratio data from Fletcher [4] (for human) and Costalupes [5] (for cat). The
lower panel shows same data, normalized to percent length along the BM. Adapted
from [3].
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be developed.

1.2.2 Evaluating the Human Tuning Curves

Chapter 3 deals with evaluating the human tuning curves. The first step is to develop

a relation between tuning curves and performance in a psychophysical task. The task

is detection of tones in noise and the performance metric is critical ratio, i.e. the signal-

to-noise ratio at which a tone in wide band noise is just detectable. The proposed

relation between physiology and psychophysics can then be tested directly for cats

because both the physiology and psychophysics have been measured. It can then

be used to predict human psychophysical function from the derived human tuning

curves. To the extent that the predictions match measured human psychophysical

m:rasking, the validity of the method for estimating human physiological tuning curves

is supported.

9



Chapter 2

Deriving Human Tuning Curves

In this chapter, the shapes of human neural tuning curves are estimated from a

physical model of the cochlea. The model is based on Allen's resonant tectorial

membrane model [1], a passive model of the cochlea which includes a "second filter".

This second filter is modeled as a resonance in the tectorial membrane that transduces

a relatively broad basilar membrane response into a sharper neural response.

2.1 The Resonant Tectorial Membrane Model

The cochlea is assumed to be divided into two scalae and filled with an incompressible

fluid. Sound waves enter the ear and travel through the ear canal to vibrate the

tympanic membrane. The tympanic membrane then vibrates the ossicles, which act

as an impedance matcher to transfer sound from the tympanic membrane to the

smaller oval window without a large loss in energy. The last of the three ossicles is the

stapes, whose motion displaces the oval window, which in turn displaces fluid in the

cochlea. The fluid displacement causes a "traveling wave" on the basilar membrane.

The movement of the basilar membrane causes hair cells to shear against the tectorial

membrane and this shearing is the stimulus which sends impulses down the auditory

nerve.

Although controversial, some measured neural responses have been shown to be

more sharply frequency selective than the basilar membrane response [6, 7]. Allen's

10



model accounts for this by introducing a "second filter" or "transduction filter" as

a resonance of the tectorial membrane. This second filter introduces a zero into

the system at a frequency below the characteristic frequency, and thus sharpens the

broader response of the basilar membrane alone. The transduction filter also accounts

for the 7r phase shift found in the phase data of Kim et al. (see [1] for further

information).

Finally, the cochlea is known to have non-linear properties. To account for this,

Allen proposes that the stiffness of the basilar membrane varies with signal level for

several reasons [1, 8]. In this thesis, however, we will deal with a linear model to avoid

the difficulties brought on by nonlinearity. Further work incorporating the nonlinear

properties of the cochlea is an important area for future investigation.

2.1.1 Parameters

The following is a list of parameters which are used in the computer simulation [9],

divided into three groups.

Geometric Parameters

* L, length of the cochlea

* h, height of the organ of Corti

* Wpar, width of the cochlear partition

* Wbm, width of the basilar membrane

* m0 , specific mass of the organ of Corti

* mt, specific mass of the tectorial membrane

Tuning Parameters

*· jcf, the cochlear map

*· z, spectral zero frequency of transduction filter

11



MODEL & SCALED NEURAL DATA vs X at 74 dB SPL

PLACE (cm) 2.2

PHASE
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Figure 2-1: Cat cochlear model output. From Allen [8].
model data and the solid lines are scaled neural data.

2.2

The dashed lines are the

* wp, spectral pole frequency of transduction filter

Damping and Gain Parameters

* (, damping ratio of transduction filter

* rbm, basilar membrane resistance per unit area

* G, shear gain

The cat parameters were chosen by Allen [3] as a best fit to current physiological

data available. A plot of excitation patterns calculated for the cat taken from Allen [8]

is shown in Fig. 2-1. The computer simulation of the model suffers from a known

.artifact at low frequencies (below 300 Hz in the cat) due to the boundary condition

at the helicotrema. In addition, undersampling of the data points in either frequency

or space can also introduce small numerical errors. For these reasons, the data from
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the model is best used in the frequency range from 700 to 104 Hz, where the model

is close to neural measurements.

2.2 Scaling the Parameters

'The model parameters are divided into three groups, according to the method used

to modify them. First, the geometric parameters were scaled by the ratio of the

lengths of the cat and human cochleas. Next, the cat tuning parameters were scaled

by replacing the cat cochlear maps with human cochlear maps in order to rescale the

frequency mapping of the model. Finally, the damping and gain parameters were left

unchanged because there was no obvious reason to alter them.

2.3 Geometric Scaling

Assuming that the human and cat cochleas are essentially scale models of each other,

the geometric parameters can be scaled by the ratio of the lengths of the cochleas.'

The assumed length of the cat cochlea is 2.1 cm, and the assumed length of the human

cochlea is 3.5 cm, so all length parameters were increased by a factor of 3.5/2.1, which

is approximately a scale factor of 1.59.

Organ of Corti height and cochlear partition width

The height of the organ of Corti and the width of the cochlear partition are the

simplest parameters to scale. In the cat, h has a value of 0.1 cm, so the human value

is scaled up to 0.159 cm. Similarly, the cochlear partition width has a value of 0.16

cim in the cat, so the corresponding scaled value is 0.256 cm.

1Some of the parameters in this section have been measured in humans. An alternative approach
would have been to use measured data where it exists.
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Masses

The next items to consider are the mass parameters. These are defined in the model

as specific mass, which is mass per area. These parameters were calculated by mul-

tiplying the height of the structure by the density of the structure [10], so they scale

in only one dimension (height). For the cat, mo is given as 0.04 g/cm 2 and mt is

0.02 g/cm2 . Thus for the human these values are 0.064 g/cm 2 and 0.032 g/cm 2,

respectively.

Width of the Basilar Membrane

The width of the basilar membrane varies with position along the long axis of the

cochlear partition. In this model, it is assumed that the width varies exponentially,

and is described by the function

Wbm(X) = Aexpax (cm). (2.1)

For the cat, A is equal to 0.011, and a is 1.19. For the human, the exponent was left

unchanged so that the variation with normalized position would remain the same,

and the coefficient A was changed to 0.0176 to account for the geometric scaling.

2.4 Frequency Scaling

Some other model elements are estimated from tuning parameters of the cochlea.

The frequency spectrum of the model is then scaled in a manner that is similar to the

previous geometric scaling. The model has three frequency parameters: the cochlear

map, which is the function mapping the frequency to place of the maxima of the tuning

curves; and the maps of the spectral zero and spectral pole of the transduction filter.

14



2.4.1 The Cochlear Map

The Cat Cochlear Map

The cochlear map for the cat was determined by Liberman [11] by measuring audi-

tory nerve fibers' threshold tuning curves, and then labeling them with horseradish

peroxidase (HRP). The HRP stains the fibers and is transported to the synapse at

the hair cell. In this way, the exact location on the basilar membrane which is con-

nected to an auditory nerve fiber can be seen on surface preparations. From this

data, a frequency-to-place function was determined. If fCF represents the character-

istic frequency in Hz and x is the place on the basilar membrane expressed in terms

of percent length from the stapes, Liberman's formula is

fCF = 456(102 1(1-i0) - 0.8). (2.2)

The Human Cochlear Map

One of the earliest attempts to characterize the cochlear map was by Wegel and Lane

in 1924 [2] using just noticeable differences (JNDs) in frequency. Fletcher extended

Wegel and Lane's frequency JNDs, and proposed using masking to determine a coch-

lear map function in 1938 [12]. Greenwood used the critical bandwidth concept to

calculate the cochlear map in 1961 [13], and further revised his calculations of the

human cochlear map in 1990 [14]. Greenwood's equation for the human cochlea,

with fcF representing characteristic frequency in Hz, and x being place expressed in

percent length from the stapes along the basilar membrane, is

fCF = 165.4(10 2 1( 01-) - 0.88). (2.3)

2.4.2 Distortion Products and the Second Cochlear Map

The zero location of the transduction filter is inferred from Allen and Fahey's second

cochlear map [15].

15



Distortion Products

When two tones are presented simultaneously, other tones which are not part of the

stimulus can be heard as a result of nonlinearities in the system. These tones are

known as distortion products. They have been shown to propagate back to the outer

ear where they can be measured [16, 17]. If the two stimulus tones are at frequency fl

and f2, with f2 > fi and f2 fixed, Allen and Fahey (and Wilson [18] and Brown [19])

have shown that as f is varied, the frequency at which the distortion products are

maximum is a function only of f2 and is approximately independent of other variables

such as amplitude and fl.

The second cochlear map

Allen and Fahey [15] showed the existence of a second cochlear map using distortion

product data. This second cochlear map is important because they suggest that it

defines the zero location for the transduction filter.

The second cochlear map is the map of maximum amplitude DPs as a function

of f2. This equation matches the location where the tip meets the tail of the neural

tuning curves, so is also the zero of the second filter, or f. Thus, the two curves are

given by the same equation

fz = 0.08f 2 , (2.4)

in the cat, where f is the zero location for the filter at characteristic frequency fcF.

Using distortion product data from human subjects, and reasoning that tnhe map

derived from the DP data should also describe a second cochlear map in the human,

Allen and Fahey arrive at

fA = 0.5fc4, (2.5)

as the equation for the second cochlear map in humans.

Thus, the zero location f for the human model is given by Eq. 2.5.

16



Table 2.1: Summary of Model Parameters

2.4.3 The Transduction Filter Pole

The final tuning parameter is the pole location of the transduction filter. Unfortu-

nately, we have no intuition for finding a way to calculate it. The location of the

pole was estimated by assuming the same functional form that was used for the zero.

Experimenting with the model showed that changing the location of the pole had an

effect on both the shapes of the simulated tuning curves and on the bandwidths of the

curves. Therefore the pole location was chosen to provide reasonably shaped tuning

curves based on the rather ad hoc criterion of visual aesthetics.

2.5 Results

A summary of the parameters is given in Table 2.1 for both the cat and the human

models discussed in this chapter. Fig. 2-2 shows the human model tuning curves

(actually transfer functions) based on these parameters and for comparison, tuning

curves computed from the cat model are shown in Fig. 2-3. The human tuning

curves essentially look like scaled versions of the cat tuning curves, with differences

in breakpoints of the tails of the curves. These differences represent the constraints

forced by the cochlear model based on the human geometric and tuning parameters.

17

Parameter Cat Value Human Value Units
L 2.2 3.5 cm
h 0.1 0.159 cm
Wpar 0.16 0.256 cm
fcf 456(1021(1-)) - 0.8) 165.4(102 ('-io) - 0.88) Hz
fz 0.08fc. 22 0.5fl. 04 Hz

1.3f. 98 1.15fcl 9 8 Hz

(Z 0.3845e L 0.3845e 
-1.4_ --1.4,

rbm 121.7e L 121.7e g/cm 2 .s

Wbm 0.01e L 0.0176e 1 L cm
3.0_ 3.0,

G 0.5e L 0.5e L

mo 0.04 0.064 g/cm 2

mt 0.02 0.032 g/cm 2



Human model cilia displacement for constant ear canal pressure
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Figure 2-2: Human model transfer functions.
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Model cilia displacement for constant ear canal pressure

102 o103 104
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Figure 2-3: Cat model transfer functions.
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Now that a human cochlear model has been formulated, Chapter 3 deals with

evaluating tuning curves by using them to predict psychophysical masking.
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Chapter 3

Predicting Psychophysical

Performance from Physiological

Models

In this chapter, two psychophysical models for detection of tones in noise are proposed

and analyzed using cat data. Human psychophysical masking is then predicted using

these psychophysical models.

3.1 Definitions

The critical band is the basis for the psychophysical detection models that will be

presented here. It is a concept which does not have a consistent definition in the

literature and is therefore a common source of confusion. It is known that the masking

of a pure tone spreads over a range of frequencies surrounding the frequency of the

tone, and from this idea, Harvey Fletcher formed the original concept of the critical

band [20, 12, 21]. The following are definitions of the critical band measures and

assumptions which are used in this work.

21



3.1.1 The Critical Ratio

The psychophysical performance metric used in the detection models in this chapter

is the critical ratio. The critical ratio is derived from an experiment in which a tone

at frequency f is presented to a subject in the presence of wide-band masking noise.

The tone is raised in level until it is just detectable, and this signal level is called the

detection threshold. The critical ratio is defined as the ratio of tone probe power to

masker spectral level at the detection threshold. If the tone power is expressed as

T2 (f) (Watts) and the noise spectral level as N 2 (f) (Watts/Hz), the critical ratio h

at frequency f is given by

(f) - 2(f ) (Hz). (3.1)

Because the units of critical ratio are Hz, it can be considered a critical bandwidth.

The critical ratio is frequently reported in dB Hz (e.g. 10 log (f)), as it is computed

from a ratio of power measurements. Thus, the critical ratio is a psychophysical

measure of critical bands.

3.1.2 Physiological measures of critical bands

Using either the model or measurements of neural threshold tuning curves, the coch-

lear response H(f,x), which expresses the cochlear filters, can be calculated or mea-

sured.

A frequency tuning curve (FTC) is the frequency response of a single point on

the basilar membrane. The frequency at which a FTC is maximum is called its

characteristic frequency (CF).

On the other hand, the basilar membrane response to a single frequency is called

an excitation pattern (EP). The place at which an excitation pattern is maximum is

called its best place.

In terms of the cochlear response, the cochlear map is the function that maps each

place to its characteristic frequency. This function will be denoted as

fCF = F(x). (3.2)

22



The cochlear map may also be thought of as the function that maps each frequency

to its best place, and this function will be denoted as

XBp = X(f). (3.3)

The ERB. The equivalent rectangular bandwidth (ERB) for a FTC at place x is

defined as the bandwidth of the rectangular filter with the same amplitude as the

peak amplitude of the FTC and bandwidth chosen so its output power is equal to

that of the FTC when driven with white noise. The ERB is thus given by

f (X) =f IH(fx) 2df (Hz). (3.4)
IH(F(Z), X) 12

The ERS. The equivalent rectangular spread (ERS) is defined (analogous to ERB)

as the width of the excitation pattern for an input frequency f. The ERS is given by

A(f-) = fL IH(fx) 2dx (m (3.5)
IH(f,X(f))1 2

3.2 First Psychophysical Detection Model

The first psychophysical detection model is based on two premises: first, that psycho-

physical performance for detection of a tone at frequency f in noise is determined by

the filter with characteristic frequency equal to f, and second, that the signal-to-noise

ratio for that cochlear filter is constant at the detection threshold.

3.2.1 Effect of Cochlear Filters on Signal and Noise

Tone excitation. If a tone with input power T 2(f) at frequency f is presented to

one of these filters at its characteristic frequency, then at place x the signal power

after filtering will be equal to

T2(f,x) = T 2(f)H(f,x)1 2 (W). (3.6)

23



Noise excitation. On the other hand, if the stimulus is wide band noise with

constant spectral level N 2 (f), the power at place x after filtering will be

2 (x) = N2 I H(f,x)12df (W) (3.7)

3.2.2 Detection Criterion

The probe to masker ratio (PMR) c(f, x) at the detector is then given by the ratio

c(f, x) = 2 ' x) (3.8)
2 (x)

Combining this with Eqs. 3.6 and 3.7,

c(f,x) = N2 H(f,x) 2df (3.9)N2 fS IH(f, ) 2 df

From the definition of n, Eq. 3.1, and of if, Eq. 3.4, we get

c(f,x) = f(f) (3.10)

The noise that reaches the detector is the noise spectral level integrated through

the cochlear filter, or equivalently, the noise spectral level multiplied by the ERB of

the filter. The detection criterion is defined as this PMR at the place of maximum

excitation. The critical ratio, (f), is a psychophysical measure, while the ERB,

A (x), is a physiological measure, so Eq. 3.10 summarizes a relationship between the

physiology and the psychophysics.

3.3 Cat Psychophysical and Physiological Data

The psychophysical detection model was analyzed using the cat data described in this

section.
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Cat Critical Ratio (Costalupes 1983)

103
Tone frequency [Hz]

10 4

Figure 3-1: Costalupes' critical ratio data. The original data points
with x's. Data were fit with a 4th-order least squares polynomial.

are indicated

3.3.1 Critical Ratio

Critical ratios were measured in the cat by Costalupes [5]. The experiment consisted

of presenting a tone in wide-band noise, and testing if the cat detected the presence

of the tone. The cats were trained to initiate trials by touching a panel and releasing

when the signal was detected, at which point the cat was rewarded with food. To

reduce false alarms, cats were punished for releasing the panel when there was no

stimulus by a time-out in the experiment. The threshold was taken as the 50%

detection level.

The critical ratio was measured by Costalupes at many different frequencies and

different intensity levels. Although he discovered level dependence in the critical ratio

at high and low intensities, the data presented here (Fig. 3-1) are from the middle

intensity range, where the critical ratio is relatively independent of intensity.
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Figure 3-2: Equivalent rectangular bandwidth. The model ERB is shown in the solid
line. The measured ERBs are shown in the dash-dot line for comparison.

3.3.2 ERB and ERS

We calculated the cat ERB both from neural threshold tuning curves and from the

model described in chapter 2. The results are shown in Fig. 3-2. Subsequent analysis

is based on the ERB calculated from the model, because it is smoother.

Although the ERS could in principle be calculated from neural data, this calcula-

tion requires combining data from many different neurons. Such a procedure is much

more difficult and probably less accurate than the corresponding calculation of the

ERB. Therefore the ERS was computed only from the model. The results are shown

in Fig. 3-3.

26

44

I
1 7



ERS from model

IIII I I I I

0 10 20 30 40 50 60 70 80 90 100
distance from stapes [%-length]

Figure 3-3: Equivalent rectangular spread calculated from the model.
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Figure 3-4: Signal-to-noise (Probe-to-masker) ratio at the detector output. The two
panels shows c as function of either CF or place.

3.4 Evaluation of First Model

Fig. 3-4 shows c calculated from Eq. 3.10 using /c from Fig. 3-1 and Af from Fig. 3-2.

From the plots, c(f, x) varies by about 3 dB along the length of the basilar membrane,

with a minimum at the 1 KHz place (75% distance from stapes).

According to the first model, c(f, x) should be constant. Therefore the original

model is wrong, and it is not true that psychophysical detection occurs for a constant

signal-to-noise ratio in the best cochlear filter.

Besides signal power, other cues may possibly be exploited psychophysically. For

example, salience would suggest that the tone should be less detectable when the

noise "sounds" like a tone. Using this argument, it would be expected that the signal-

to-noise ratio at the detection threshold should decrease with increasing bandwidth

because the noise which passes through a broad filter is less like a tone than is noise

which passes through a narrow filter. This may explain the increase in c at low
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frequencies in Fig. 3-4 but not at high frequencies.

On the other hand, synchrony is also a possible explaination. Above 1 KHz, syn-

chrony decreases due to the low pass effect of the hair-cell and synapse dynamics. [22].

However, this argument fails to explain the upswing below 1 KHz, as it would predict

the curve to be flat there.

While each of these cues explains some of the variation in signal-to-noise ratio,

neither fully explains the variations. In addition, the effects of these cues is difficult

to explain quantitatively.

3.5 Fletcher's Detection Model

An alternative detection model was derived from the work of Harvey Fletcher. This

model assumes that the psychophysical detection threshold results when the signal

to noise-per-length ratio is constant. From a derivation by Allen [23], the signal to

noise-per-length ratio is expressed by

C(f) = c(x, f)dx (3.11)

c , (3.12)

A.
(cm). (3.13)

This equation differs from Eq. 3.10 only by the A/ term.

The interpretation of C is that the brain integrates signals over a patch of neurons

to detect a tone in noise rather than a just looking at the signal from a single neuron

as in the first detection model. This is significant because with a hair cell spacing of

12 ipm, one ERS generally covers a region containing about 40 inner hair cells. Thus

the Fletcher detection model considers all of the information present from the tone

input in the cochlea.
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Figure 3-5: Signal to noise-per-length ratio vs. tone frequency at the detector output.

3.6 Evaluation of Fletcher Model

Since we have data for the terms in Eq. 3.12, we can verify Fletcher's assumption

that C is constant. Fig. 3-5 shows C calculated from the ERB in Fig. 3-2, the ERS

in Fig. 3-3, and the critical ratio in Fig. 3-1. In the middle of the frequency range,

from about 103 Hz to 104 Hz, C seems to be about 1.4 to 1.5% of the length of the

BM.

However, the model fails at low frequencies. This failure may be due to other

cues being used at low frequencies, errors in the cochlear model at low frequencies as

discussed in Section 2.1.1, or something else entirely.
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Figure 3-6: Critical ratio predicted using Fletcher detection model and constant C
[solid] and measured critical ratio [dash-dot].

3.7 Predictions of Human Critical Ratios

Human critical ratios were predicted using the cochlear model tuning curves and

the two detection models discussed in this chapter. Fig. 3-6 shows the prediction

made using the Fletcher detection model, assuming a constant for the the detection

criterion, C. Fig. 3-7 shows the prediction made using the first model, assuming

that c is the same in humans as a function of percent length from the stapes. Both

predictions are reasonably close to the measured critical ratio data from Fletcher

[21, 4] above 1 kHz, but seem to predict values below the actual critical ratio at low

frequencies.
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3.8 Discussion

3.8.1 Validity of Using the Fletcher Detection Model to

Test Tuning Curves

It turns out that the Fletcher detection model is rather insensitive to parameter

variation in the mechanical model, shown in the following derivation by Goldstein [24].

Begin with the frequency tuning curve H(f, Xo), where xo is the characteristic

place of a tuning curve, and f is the frequency of the input tone. Also define the

cochlear map as

f = F(x), (3.14)

and its "inverse" as

x = X(f). (3.15)

An excitation pattern H(fo, x) is related to a frequency tuning curve by

H(fo, x) = H(F(x), X(fo)). (3.16)

Define the area under the excitation pattern as

I(fo) = H(fo, x)12dx. (3.17)

Using Eq. 3.16, this becomes

I(fo) = L IH(F(x), X(fo))I 2dx. (3.18)

Let a = F(x), then

I(fo) = H(ao,X(fo))I 2 da, (3.19)

and because of the narrow-band nature of H, dx/da can be evaluated at fo and
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brought outside of the integral, giving

(fo) d| fi ]tH(o,X(fo)) 2d . (3.20)
da fo

-d (area under tuning curve at X(fo)) (3.21)

Let xo = X(fo). Substituting the original definition for I from Eq. 3.17, replacing

F(x) back in for a, and rearranging, this becomes

dF =fo IH(f, xo)2df (3.22)
dx fo fSL IH(fo, X) 12dx

The numerator and denominator can both be normalized to their peak values, since

they have the same peak value of H(fo, xo) 12, and using the definitions of the ERB

in Eq. 3.4 and the ERS in Eq. 3.5,

dF - Af (xo)
dx Ifo a(o) (3.23)

Thus, combining this equation with equation 3.13,

dF ' (3.24)
dx C

Since the critical ratio is given, Eq. 3.24 shows that in the Fletcher detection model,

the detection criterion C is only sensitive to the slope of the cochlear map, which is

actually a model parameter. Experimenting with the cochlear model by wildly varying

the other parameters confirmed that this was indeed the case. It appears that this

detection criterion is an extremely insensitive test of the cochlear model.

3.8.2 The Cochlear Map

The discussion in the previous section shows that the cochlear map may be an im-

portant piece of data pertaining to relating the critical ratio to tuning curves. The

cochlear map is also important in transforming the cat cochlear model into a human
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model.

The parameter of most interest in Greenwood's function is the exponent, which

is 2.1 in both the cat and the human. This parameter is responsible for the slope

of the map. Since this was shown to be significant in Fletcher's detection model, a

different exponent may invalidate applying this model to humans. In addition, if the

slope of the cochlear map is not in fact the same in both the cat and the human, the

comparison of the critical ratios originally done in Fig. 1-2 will not hold.

However, the slope of the cochlear map may be determined by the critical ratio

if we consider the following. Re-express Greenwood's (or Liberman's) function in the

following form, where L is the length of the cochlea:

F(x) = AeL - b. (3.25)

Rearranging, this becomes

F(x) + b = AexIL. (3.26)

Taking the derivative,
A xL

F'(x)= Le/L. (3.27)

Substituting this back into Eq. 3.25,

F(x) = LF'(x) - b, (3.28)

and at high frequencies, the constant term becomes negligible leaving us with

F(x) LF'(x). (3.29)

Finally, using Eq. 3.24, we see that at in the high frequency range,

F(x) = C (3.30)T

Thus at high frequencies, the cochlear map becomes proportional to the critical ratio.
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3.9 Conclusion

While both detection models, when combined with the tuning curves derived in chap-

ter 2, make predictions of masking which are reasonably close to experimental psycho-

physical data, neither detection model was found to be a rigorous test of the validity

of the tuning curves. The Fletcher detection model is insensitivite to variations in

tuning curve characteristics, and the first detection model is problematic because its

detection criterion is not constant and it is likely that more information is taken into

account than from just one cochlear filter.
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Chapter 4

Conclusion

In this thesis, human neural tuning curves were derived from a model of the cochlea,

and evaluated using psychophysical masking data. The following sections summarize

the results from this work.

4.1 The Human Cochlear Model

There were three types of parameters which were considered when converting the cat

model of the cochlea into a human model: geometric, tuning, and damping.

Geometric parameters were the simplest to convert, because they were simply

scaled from the cat parameters. However, it would be better to use actual measured

anatomical data.

The tuning parameters are used to estimate other mechanical element values.

More convincing tuning data would lead to more confidence in using the cochlear

map. Alternatively, removing the tuning data as inputs to the model and using raw

mechanical data would also be beneficial.

Finally, the damping parameters were not changed when converting the model.

More knowledge of the damping parameters are needed in order to analyze their

effects on the tuning curves predicted by the cochlear model.

The human model for the cochlea presented here shows reasonable tuning curves,

and is only marginally different from cat tuning data if the one considers normalizing

37



to length along the cochlea and normalizing to maximum frequency of hearing for

each species.

4.2 The Detection Models

Two detection models were presented in this thesis which relate tuning curve data to

psychophysical masking, specifically, the critical ratio experiment.

The first model related the signal-to-noise ratio at the neuron which maximally

responded to the frequency of the tone to the critical ratio. This model was evaluated

using actual cat data and it was found that the signal to noise ratio was not constant

across the range of audible frequencies in the cat.

In an effort to explain this variation, a second model, which has been called

the Fletcher detection model, was developed. The detection criterion in this model

represented integration of signal-to-noise ratio over a patch of neurons. This quantity

was assessed and found to be a constant over a range of frequencies in the cat.

Unfortunately, it was shown to be insensitive to most model parameters and therefore

appears to be not useful for testing human tuning curves.

4.3 Future Work

4.3.1 Physiological Basis of the Critical Band

A fundamentally important question which needs to be resolved is the physiological

basis for the bandwidths of the tuning curves. None of the work done here showed

what determines the value of the ERB and the ERS. In order to better formulate

a way to test derived human tuning curves, it would be desirable to identify what

determines the ERB and the ERS in the cochlea.
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4.3.2 Other Psychophysical Data

The critical ratio is just one of the many pieces of psychophysical data available for

the human. In this paper, the critical ratio was used because of the signal detection

model proposed to test the derived human tuning curves.

However, the derived human tuning curve data should also be compared to other

human psychophysical data, including psychophysical tuning curves and critical band

measures other than critical ratio. Psychophysical tuning curves would be a good

test of curves from a mechanical model, since they can be direcly compared to tuning

curves predicted by a cochlear model.

For using other critical band measures, theoretical relationships between the psy-

chophysics and the physical characteristics of the cochlea must be developed before

predictions about these critical bands can be made from the model, and these re-

lationships could be far more complicated than those presented here for the critical

ratio.

4.3.3 Nonlinear Modeling

Since the analysis of the tuning curves involved computing bandwidths of tuning

curves, a major problem which must be taken into account is the compressive nonlin-

earity of the cochlea. At higher sound levels, the tip of the tuning curve is less sharp.

This would then affect the ERB and ERS calculated from those tuning curves, and

could possibly change the conclusions of the previous chapter. Further work therefore

awaits a nonlinear representation of the resonant tectorial membrane model.

4.4 Finale

The work done on the human tuning curves can be used as a framework for future

research in modeling the human cochlea. Of greater interest in the long run might be

the research into the detection models. Fletcher's detection model has been analyzed

using real cat data and so far holds promise as an explanation of the critical ratio.
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