
A LANGUAGE FOR INTERACTIVE SPEECH DIALOG

SPECIFICATION

by

Ira Scharf

S.B., Massachusetts Institute of Technology
(1989)

SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

(Ira Scharf, 1994
All Rights Reserved.

The author hereby grants to M.I.T. permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author
Department of

Certified by

Certified by

Accepted by

I

Electrical Engineeringand Computer Science
May 12, 1994

Christopher M. Schmandt
/- . n _ Thesis Supervisor

J. Robin Rohlicek
9 (44/ ompaqiA Thesis Supervisor (BBN)

F. R. Morgenthaler

Chrman, Departer Committee on Graduate Students

Wol u1NSTIIDTE

I~n

A Language for Interactive Speech Dialog
Specification

by

Ira Scharf

Submitted to the Department of Electrical Engineering and
Computer Science on May 12, 1994 in partial fulfillment of

the requirements for the degree of Master of Science

Abstract

Developing a complex spoken dialog application for speech recognition systems using
currently available tools requires careful coordination of three separate components: the
recognition grammar, the interpreter for the recognition output, and the dialog control
logic. Each of these components is an integral part of an interactive speech application;
however specifying each one separately makes building speech applications cumbersome,
time consuming, and error prone. This thesis describes a language which allows the
specification of dialog structure and interpretation in one concise manner. As part of
this thesis a compiler for the language has been developed which generates a recognition
grammar and application code to control the dialog flow and recognition parsing from
this common specification.

Thesis Supervisor: Christopher M. Schmandt
Title: Principal Research Scientist, MIT Media Laboratory

Thesis Supervisor: J. Robin Rohlicek
Title: Division Scientist, Bolt Beranek and Newman Inc.

Acknowledgments

Many people have contributed their efforts and ideas to this work, and I would not

consider it complete without gratefully acknowledging their contributions.

I would first like to thank Robin Rohlicek, my thesis advisor at BBN, for his guidance

and encouragement. Over the course of this project I have benefited tremendously from

his knowledge, clear thinking, and pleasant nature.

I would also like to thank Chris Schmandt, my thesis advisor at MIT, for all his help

and support.

Many of my colleagues in the BBN Speech Group provided a great deal of help along

the way. In particular, I would like to thank Will Sadkin for his advice on numerous

implementation issues; Larry Denenberg for some very helpful design suggestions; and

Bruce Papazian for his many ideas about what a dialog specification language should

look like. Others in the group who provided many helpful suggestions include Mike

Vande Weghe, Dan Ellard, Sue Hamilton, and Kristin Kupres.

I would like to thank Bolt Beranek and Newman Inc for funding this research,

and particularly John Makhoul and Mike Krasner for sponsoring this program from the

onset. This work was conducted at the Speech Products Group of BBN Laboratories, in

association with the MIT Media Laboratory.

Finally, I would like to thank my family, for helping me reach this point.

To my parents

Contents

Abstract 2

Acknowledgements 4

1 Introduction 9

1.1 Definition of Problem . 9

1.2 Today's Solution 9

1.2.1 Deficiencies of Current Practice 10

1.3 Overview of New Approach 12

1.4 Outline of the Thesis 14

2 Background 16

2.1 IVR Systems 16

2.1.1 Application Generators for IVR Systems 17

2.2 Speech Recognition Systems 18

2.2.1 Capabilities of the HARK Speech Recognition System 19

2.3 Integrating Speech and IVR Systems 22

2.3.1 Limitations of Extending Current IVR Application Generators . . 24

3 Functional Description 26

3.1 State Machine Model 26

3.2 Dialog State Inputs 27

3.2.1 Speech Inputs 27

3.2.2 Dynamic Control of Valid Speech Inputs 29

3.2.3 Application Event Inputs 32

5

CONTENTS

3.3 Dialog State Transitions

3.3.1 Application Control of Dialog Stat

3.4 Handling of User Feedback Within the Di;

3.5 Assigning Actions and Prompts to State T

te Transitions

alol

ran

gig
.

sitions
.

.

.

.

.

.

.*

.

.

.

.

.
m l ~ l l w e e l l·

· · e · l O * WI·· *····e·e

!m··ml····m~

3.5.1 Conditional Actions and Prompts . .

3.6 Dynamic Expansion of Non-Terminals . . .

3.7 Global State

4 Implementation

4.1 Dialog Compiler.

4.1.1 Language Parser

4.1.2 Code Generation

4.2 Dialog Manager

4.3 Speech Application.

4.3.1 Activating the Current Dialog State .

4.3.2 Registering Speech Input . . .

4.3.3 Registering Application Event Inputs

4.4 User Supplied Library

5 Using the Language

5.1 Dialog Definition

5.2 State Definition

5.3 Prompts

5.4 Speech Input

5.4.1 Dynamic Activation of Speech

5.5 Application Events .

5.5.1 Special Reserved Event Labels

5.6 Action Functions .

5.6.1 Conditional Actions

5.7 Next State.

5.7.1 Conditional Next.

5.8 Summary of Input Components

. . .

* . .

. . .

* . .

Inputs

.. .

. ..

. ..

. ..

6

34

. 34

35

36

37

38

40

42

42

42

43

49

50

50

50

51

52

53

53

54

56

58

60

62

62

65

66

68

69

70

.

.............
.

CONTENTS

6 Sample Application: A Voice Dialer

6.1 Description of the Application

6.2 Designing the Dialog

6.3 Implementing the Dialog Specification

7 Future Directions

7.1 Graphical User Interface

7.2 Interactive Development Environment

7.2.1 Dialog Simulation

7.2.2 Prompt Manager

7.3 Parameterized States

7.4 Talk Ahead

7.5 Integrating Speech into a Graphical User Interface

A Voice Dialer Application Source

B BNF Grammar for the Dialog Specification Language

71

71

72

75

81

.. 81

.. 82

. . 82

. . 82

.. 83

.. 84

. . 87

90

7

..

.

.

.

.

.

.

.

109

List of Figures

1.1 Existing Development Methods for Spoken Dialog Systems.

1.2 Overview of the Development Environment Using the Dialog Specifica-

tion Language

2.1 Example IVR State Diagram

2.2 Example Grammar Structure .

2.3 Grammar Structure With Labeled Arcs . .

2.4 Grammar Structure With Defined Regions

2.5 Grammar With Rejection.

3.1 Single Dialog State

3.2 Application Control Flow

4.1

4.2

4.3

4.4

5.1

5.2

5.3

Top Level Structure of the Generated

Single State Subgrammar

Dialog State Table

Compiler Generated Output Files . .

Grammar.

. . . .

11

13

17

20

21

21

23

27

28

44

45

46

48

Dialog Definition Command

State Definition Command

Dialog State Showing Transition Prompts

6.1 Simple Two State Dialog.

6.2 Four State Dialog

7.1 Banking IVR Application

7.2 Grammar with Talk Ahead Enabled . . .

8

54

55

57

73

74

85

86

..

................................
..

...

..................................

..................................

Chapter 1

Introduction

1.1 Definition of Problem

Developing a complex spoken dialog application using today's tools requires coordination

of three separate components: the recognition grammar, the interpreter for the recognition

output, and the dialog logic control. Each of these components is an integral part

of an interactive speech application; however specifying each one separately makes

building speech applications cumbersome, time consuming, and error prone. An aid

to development of a spoken dialog application, an application generator, is the focus of

this thesis. Central to this application generator is a specification language which allows

the application developer to specify all three components of the application in a single

place using a common syntax. This dialog specification language provides a dramatically

more efficient method for rapidly developing complex spoken dialog applications, and

alleviates many of the inconsistencies prevalent using today's tools.

1.2 Today's Solution

Many speech recognition systems can be configured to accept a restricted syntax, specified

in some form of grammar. The grammar improves recognition accuracy by not allowing

the recognizer to consider syntactically invalid hypotheses. Once the grammar is specified

it is also the responsibility of the application developer to build an application which

9

CHAPTER 1. INTRODUCTION

can effectively parse the outputs from the recognizer and execute appropriate actions,

including changes in the state of the dialog, based on what the user spoke.

The paradigm of specifying the grammar and the actions separately is adequate only

for the simplest of speech applications. More complex applications, however, require

intricate logic to control an ongoing dialog with the user. For example, an interactive

user dialog might require different parts of the grammar to be enabled at different times in

the dialog, depending on what information the application is expecting from the user. The

application must keep track of the state of the dialog in order to interpret the recognition

output correctly.

Given the complexity of such spoken dialog applications, the task of implementation

is often divided among several different developers or teams. A human factors expert, for

instance, may be more qualified to define the recognition grammar, while other segments

of the application relating to controlling the dialog, communicating with the recognizer,

and interpreting the recognition output, are usually built by a team skilled in software

engineering. The overhead involved in integrating these segments, possibly developed

by different groups, can add to the complexity of the system.

1.2.1 Deficiencies of Current Practice

Using current techniques the dialog logic is spread throughout the application. The gram-

mar file defines only the structure of the sentences to be recognized by the application.

Within the application the developer writes a parser to interpret the recognized word

string, a dispatcher to execute the appropriate actions for each interpreted recognition,

and a state machine to control the flow of the dialog. The implementation of each segment

is naturally dependent upon the implementation of each of the other segments. Figure 1.1

shows a typical software development environment for spoken dialog systems using the

current development model.

The main problem with the existing model is that the logic of the dialog is now spread

between these three separate segments, allowing room for inconsistencies to develop as

the syntax or dialog flow are modified. When changes are made it is critical that all areas

of the application maintain consistency with each other. If, for example, the developer

adds a new word sequence to the grammar, it may be necessary to update the application

10

CHAPTER 1. INTRODUCTION

I

Grammar Compiler

Recognition
output

Dialog Parser
Control

Logic User Developed

Application Code

r

11

-- ----- - - - -- - - - -- - - - -- - - - -- - - - -- - - -

Recognition
Grammar

C Compiler Development
Environment

Run Time
Processes

Figure 1. 1: Existing Development Methods for Spoken Dialog Systems

----------------------------- -----

CHAPTER 1. INTRODUCTION

code as well to reflect the change. Moreover, there is no single place to look for a concise

representation of the dialog flow, or to determine which actions are executed for each

valid phrase in the grammar.

Using such a development environment spoken dialog applications are difficult to

design, implement, and modify. Each change to the system must be carefully considered

for its potential impact on other segments of the application. Iterations of dialog designs to

improve the human-computer interface are best accomplished using a dialog simulator,

rather than the actual system, because of the cumbersome methods for modifying the

flow of the dialog in the application; usually only the final dialog is implemented in

the application. In short, the current development process is tedious, time consuming,

and prone to errors resulting from inconsistencies within the separate modules of the

application.

1.3 Overview of New Approach

This thesis describes a high-level dialog specification language which allows a speech

application builder to specify in one place the structure and logic of the dialog, the

allowable or interpretable spoken utterances, and the specific actions to take for each

utterance. From this single specification a speech grammar file, a recognition output

parser, and a dialog tracker are generated automatically using a compiler that has been

built as part of this thesis project.

The design goal for the specification language is to define dialog information and

interpretation in one concise, efficient manner. The entire dialog can generally be

expressed in one file. Using the compiler for this language the generated grammar,

parser, and dispatcher are guaranteed to be consistent since they are all derived from the

same source. This common specification allows the dialog to be treated as one consistent

unit.

Figure 1.2 shows the development environment using the application generation

system described in this thesis. Using the dialog specification language this integrated

environment alleviates the need for the developer to maintain pieces of the dialog across

various segments of the application. The developer specifies the dialog flow, prompts,

12

CHAPTER 1. INTRODUCTION

0\

Dialog Cc

'i
Grammar Compile

]l

mpiler

C Compiler Development
Environment

Run Time
Processes

Speech
---- ~\ Application

Figure 1.2: Overview of the Development Environment Using the Dialog Specification
Language

Dialc

Specific

Generated

Application
Code

.;... ., - - .
.- ~· .. {..n......... .s>.W. .n··· .<. ·A.;-..--.

., ---.--
.......... ::·':;':' ''''

)g

ation

..........

13

CHAPTER 1. INTRODUCTION

actions, and dialog transitions all within the dialog specification. The dialog compiler

reads the specification file and automatically generates the necessary segments of the

application which are involved in maintaining an interactive user dialog. The only

modules of code the developer is required to provide are the custom functions which

implement specific actions that are executed during the course of the dialog. These

modules are referenced in the dialog specification and linked in automatically by the

dialog compiler as the application is built.

Using a single dialog specification, applications now become much easier to specify

and implement. In addition to having one common specification, as discussed above, the

dialog language makes it easier to define higher level aspects of dialog in a consistent

manner. For example, particular features of the dialog such as help messages, rejection

of syntactically invalid utterances, and backup or "undo" can be handled in a consistent

manner throughout the dialog. Additional features, such as "talk ahead", the ability for

an experienced user to respond ahead of the prompts, now also become much easier to

incorporate into the dialog.

1.4 Outline of the Thesis

The next chapter provides background information on the fields of speech recognition

systems and application generators for voice dialog systems. This material should be

particularly helpful to those not familiar with the state of the art in these fields for

understanding the work done in this thesis.

Chapter 3 contains a functional description of the dialog specification language. It

includes a discussion of the various features contained in the language and of the factors

which contributed to its design.

Chapter 4 contains a detailed discussion of the implementation of the language and

the associated compiler.

Chapter 5 provides a detailed description of the language syntax, intended to be used

as a User's Guide for the language.

Chapter 6 goes through a sample application implemented using the dialog specifica-

tion language.

14

CHAPTER 1. INTRODUCTION 15

Chapter 7 outlines some directions for future related work and describes possible

improvements to the language which were not within the scope of this thesis.

Chapter 2

Background

This chapter provides some important background information relating to the fields

of speech recognition, interactive telephone systems, and application generators. This

chapter is intended to present enough material so that those who are not familiar with

these fields can nonetheless follow and understand the work presented in this thesis.

2.1 IVR Systems

This thesis focuses on interactive telephone applications to demonstrate the suitability of

a dialog specification language in developing complex spoken dialog systems, although

spoken dialogs are applicable to a wider range of systems and situations. This type of

application is often referred to as an Interactive Voice Response (IVR) system. Current

IVR applications use voice prompts to conduct a spoken dialog with the user and allow

the user to communicate back to the computer by using the twelve DTMF touchtone

keys on a telephone keypad. Using touchtone keys the user can traverse through voice

prompts and menus to access a variety of functions, for example retrieving information

from a particular database.

IVR applications are often modeled as state machines. Each state represents a

particular point in the dialog and the touchtone keys are used to control the transitions

to other states. Figure 2.1 shows how a menu based IVR application can be modeled as

a series of states and transitions. Each time the user presses a touchtone key the dialog

16

CHAPTER 2. BACKGROUND

Figure 2.1: Example IVR State Diagram

transitions to a new menu until the user has reached the information or function they

were looking for.

2.1.1 Application Generators for IVR Systems

A large number of application generators exist today for building telephone IVR systems.

Many of these systems adhere to the state machine model described above to represent

the application call flow and the dialog transitions. Application generation systems are

particularly helpful in building IVR systems since they provide the system developer a

simple means to specify an arbitrarily complex dialog.

Some IVR application generation systems which are currently available include Me-

diasoft's Interactive Voice System (IVS) generation facility and Infologue's V.A.S.E.

system. Both of these systems provide a graphical user interface (GUI) for defining

the state machine and the call flow, however they also allow an escape to some high

17

CHAPTER 2. BACKGROUND

level language (such as C) to express more complicated logic. The events which drive

the IVR state machine are the twelve DTMF touchtone inputs, plus a handful of other

system events such as timeout and hangup. These systems as yet do not handle the

integration of recognized speech inputs.

A more automated class of application generators are the ROLM Call Process De-

veloper [Rol89], and ATS's VoiceMagic [Luh91]. These systems are designed to build

standard applications by asking the developer to define a few options from a predeter-

mined set of choices. Application generators of this type are useful for building only

the simplest classes of applications. Applications which require specialized or custom

features may force the developer to modify the generated code by hand, which often can

more tedious and time consuming then writing the entire application from scratch.

Other types of IVR system building tools include simple script languages which

provide basic functions for application developers using English like syntax, which is

then interpreted at run time. Script languages are designed generally for a specific type of

application and do not generalize well to a broader class of problems. While providing a

relatively simple interface, such systems also lack the ability to express more complicated

application logic.

Some specialized high level languages exist, for example Fante [Ren92], however

such languages have their limitations, and as [Luh91] remarks, "sometimes even inter-

mediate vendor programming languages are insufficient to get down to the nitty-gritty of

a particular IVR application." The limitations of special purpose high level languages

arises from the tradeoff between the ease of use of the language and its flexibility. BT

Laboratories has developed a dialog constructor for speech-based applications [TWW93],

however it's purpose is primarily for dialog design and evaluation, and it cannot be used

to generate the application which implements the dialog.

2.2 Speech Recognition Systems

There are a wide range of speech recognition systems available today offering a variety of

features and capabilities. Simple speech recognition systems provide only limited vocab-

ulary, isolated word, speaker dependent recognition. Such limitations of the recognition

18

CHAPTER 2. BACKGROUND

system place constraints on the capability of applications built around them. Examples of

these simple recognition systems available today include Verbex Listen, VCS, and VPro.

A more sophisticated class of speech recognizers can provide continuous speech,

medium to large vocabulary, real-time, speaker independent recognition. Included in this

category of recognizers is the BBN HARK recognition system, as well as IBM ICSS,

and the TI Dagger recognition system. This thesis has been developed using the BBN

HARK recognizer, and the next section outlines some of the key capabilities provided

by this system.

2.2.1 Capabilities of the HARK Speech Recognition System

One of the important features of the HARK recognizer is that the configuration of the

recognizer can be dynamically modified at run time. Part of the recognizer's configuration

is the recognition grammar. The HARK recognizer relies on a phrase structured grammar

definition to evaluate possible recognition theories.

A tool for building the grammar specification is provided with HARK and is called

the HARK Prototyper. The Prototyper uses a modified Backus Naur Form (BNF) syntax

to express the recognition grammar. A grammar is written as a series of rules; each rule

consists of an an expression, or formulation, bound to a unique non-terminal symbol.

The following is an example of a Prototyper definition.

$DIGIT one two I three I four I five

six seven I eight nine I zero

$PHONE_NUMBER : $DIGIT*

STOP : phone $PHONE_NUMBER

phone home

phone my office

The symbols preceded by $ are non-terminals. To the right of each non-terminal

the expression can be a sequence of other non-terminals and terminals. Terminals in the

19

CHAPTER 2. BACKGROUND

Grammar
START node

Grammar
END node

Figure 2.2: Example Grammar Structure

Prototyper grammar are valid words for recognition. The structure pictured in Figure 2.2

shows a representation of the grammar built from the specification in the example.

The Prototyper provides several features for building a grammar which can be dy-

namically modified at run time. The arcs in the grammar, for example, can be labeled

in the Prototyper specification, so that at run time the weights (costs) of the arcs can be

modified. Setting the weight of an arc in the grammar to zero inhibits the recognizer

from considering any theories in that section of the grammar.

In figure 2.3, A, B, and C are labeled arcs in the grammar. The weights of those

arcs can be manipulated at run time to enable or disable those particular sections of the

grammar.

The Prototyper has an additional capability which allows any group of words in the

grammar to be defined as a contiguous region, and assigned a region number. Each word

in the grammar has an associated region number, and these region numbers are returned

by the recognizer with the recognition result. In figure 2.4, region 1 contains all the phone

number digits, and region 2 contains the words phone my office. Since the region

numbers associated with each word are returned with the recognition they can often be

important in helping the application interpret the recognition result by identifying which

areas of the grammar were traversed during recognition.

Words in the grammar can be annotated with special tags which are also returned with

the recognition output. Tags can be used to code the semantic meaning or interpretation

20

CHAPTER 2. BACKGROUND 2

Grammar
END node

Grammar
START node

Figure 2.3: Grammar Structure With Labeled Arcs

Grammar
END node

Grammar
START node

region 2

Figure 2.4: Grammar Structure With Defined Regions

1

CHAPTER 2. BACKGROUND 22

of a word directly in the grammar. Consider the following example.

$VOLUME : raise the volume/VOLUME_UP

increase the volume/VOLUME_UP

volume up/VOLUME_UP

In this example of a grammar fragment, the tag VOLUME_UP is returned with the

recognition result when any of the three utterances listed are recognized, implying that

their meaning to the application is the same. A well written application would not need

to look at the exact words returned in the recognition result, simply at the tag, in order

to determine how to process the command.

A typical output from the HARK recognizer might look as follows.

utterance: [SILENCE] raise the volume VOLUME_UP [SILENCE]

regions: -1 1 1 1 -1

Tags associated with words are separated by a vertical bar I from the words. The region

numbers for each word are returned in a separate list following the list of words.

The HARK Prototyper can automatically build a section into the grammar used for

rejecting out of set utterances. This "alternate grammar" is a special subgrammar which

is placed in parallel with the rest of the grammar to aid the recognizer in filtering out

utterances which are out of set. Figure 2.5 shows the typical placement of this alternate

grammar in the grammar. If the recognition theory goes through the alternate grammar

then the recognizer returns an indication that the utterance was out of set, or rejected.

For more information on particular features and capabilities of the HARK recog-

nizer, refer to the HARK Recognizer System Integrator's Guide [BBN94] and the HARK

Prototyper User's Guide [BBN93].

2.3 Integrating Speech and IVR Systems

The integration of speech recognition into IVR type applications will undoubtedly have a

tremendous impact on the usability of such systems. Input to an IVR system is currently

limited to the twelve keys on the telephone keypad. Integrating speech recognition can

CHAPTER 2. BACKGROUND

Grammar
END node

Figure 2.5: Grammar With Rejection

provide the user with a more natural, open-ended interface to the system. The dialog

need not be as structured as with existing applications, and users will be able to access

information much quicker with speech than with traditional DTMF touchtone inputs.

Speaker verification can also be introduced into applications which may require secure

access [Luh91].

Integrating speech into IVR applications will place a tremendous demand on the tools

used to generate applications. Specifying the valid inputs in a speech application is not

as simple as specifying one of twelve keys on a touchpad. In addition, speech systems

should be able to reject invalid command syntax. With touchtone IVR systems, the user

is limited to entering only one of 12 valid keys, or pressing nothing. This results in 13

possible inputs which should be considered at each level in the dialog. Speech input,

however, can include an arbitrary set of valid utterances, and the set of valid inputs can

change at each step in the dialog. An application building tool for a speech enabled IVR

system must be capable of handling these additional intricacies.

23

CHAPTER 2. BACKGROUND

2.3.1 Limitations of Extending Current IVR Application Generators

A class of IVR application generation tools claim to integrate speech into their systems

as well as the DTMF touchtone inputs. The speech input, however, is very basic; most

systems only accept the speech equivalents of the twelve touchtone keys - i.e., "say

one, two ..." plus possibly a few extra keywords like "help", or "balances".

These systems employ very simple speech recognition systems, in which the entire

vocabulary for the application is active at all times. The recognizer is not controlled by

the application and the active vocabulary is not dependent on the state of the application.

This limits the recognition to very small vocabulary systems, and hinders the recognition

accuracy.

More robust speech recognition systems exist today, including those in use in the

research environment. Because the vocabulary for such systems can contain any arbitrary

spoken utterance, there are no generic application builders for large vocabulary speech

recognition systems. The application state machine logic must be hand coded using some

general purpose high level language, like C. In addition, any changes to the recognizer

configuration during run time, affected by the application state, must be done explicitly

by the application. The parsing of the recognition output must also be hard coded into the

application, and carefully implemented to be consistent with the recognition grammar.

In addition, many of the existing IVR application builder tools only allow the de-

veloper to specify simple tree structured logic to model the dialog. They are not

designed to allow the developer to specify intricate branching and complex dialogs for

their applications. Even now, without the added intricacies of a speech dialog, certain

complicated IVR applications cannot be built with existing tools because of these inherent

limitations. While speech has the potential to provide tremendous benefits to existing IVR

applications, it is clear that current tools for building applications will not be sufficient. A

new generation of tools is required giving the developer the capability to specify intricate

dialogs between human and machine.

Prior to this work, no spoken dialog application generator has been developed that

addresses all of these issues. The tools available today will be simply inadequate for

building the complicated interactive speech systems of tomorrow. Even today, those

developers on the leading edge of speech application development are forced to tediously

24

CHAPTER 2. BACKGROUND 25

code their applications in C, or some other general purpose programming language,

for lack of an alternative, and at great cost. Once speech applications become more

common, the need for rapid development of such systems will grow quickly. A dialog

specification language will be the critical component for prototyping and developing

complicated systems of this type.

Chapter 3

Functional Description

This chapter presents a functional description of the dialog specification language. It

provides an overview of the features of the language and the factors which influenced

its design. A more detailed discussion of the language implementation is covered in the

next chapter on implementation.

3.1 State Machine Model

Using the dialog specification language, a spoken language dialog is modeled as a

sequence of transitions between a defined set of states. Each state represents one point in

the dialog where the user can supply input, and the transitions between states comprise

the flow of the dialog. The dialog state model is similar to an IVR system state model,

shown in figure 2.1, except the transitions can be triggered by speech input, not only

touchtone input.

States transitions are input driven - the dialog remains in its current state until an

input, usually a speech input, triggers the transition into another state. Dialog states can

be considered wait states. The dialog state machine waits in a particular state until one

of the expected inputs is received, and the input determines which state to move to next.

A more detailed model of a dialog state is shown in figure 3.1. Each state consists

of an inbound arc, a list of inputs, and one outbound arc for each of the listed inputs. In

the dialog specification language it is possible to specify actions and prompts which are

26

CHAPTER 3. FUNCTIONAL DESCRIPTION

OUTBOUND ARCS

INBOUND ARC

STATE

INPUTS

Figure 3.1: Single Dialog State

executed on the transition arcs either into or out of a state. The choice of outbound arc,

and its associated actions and prompts, is determined by the particular input received.

The control flow of the application is dictated by the flow of the dialog state machine.

The actions associated with state transition arcs are part of the code supplied by the

developer. The state machine calls those user functions at the appropriate time in the

dialog. A flowchart showing the application control flow coming into a state and leaving

a state is shown in figure 3.2.

3.2 Dialog State Inputs

States can contain two different types of inputs, speech and application events. Speech

inputs are spoken by the user and returned to the application by the recognition system.

Application event inputs can be any other source of input received by the application.

3.2.1 Speech Inputs

Each state has a list of possible grammar specifications, or spoken phrases, which are

accepted in that state. In the current implementation, the spoken phrases are defined in

the state in the same syntax as HARK Prototyper rules [BBN93]. In the simplest case,

each spoken phrase is associated with a single arc leaving the state, and this outbound

27

Prompts
Actions

CHAPTER 3. FUNCTIONAL DESCRIPTION

I- - -

I

I
I
I
II

II

II

II

I
I

I

I

I

I

Il - -
l

I I

INBOUND ARC

JND ARC

Figure 3.2: Application Control Flow

28

CHAPTER 3. FUNCTIONAL DESCRIPTION

arc can be assigned actions and prompts which will be executed if that input is received.

More complicated control of the dialog flow is discussed in section 3.3.

3.2.2 Dynamic Control of Valid Speech Inputs

At any point in the dialog, the recognizer considers a certain set of recognition inputs

as valid at that time. By limiting the number of valid inputs the recognizer has a easier

time choosing a possible match for the user's input. For example, if the current dialog

state is asking for a confirmation, then there may only be three valid inputs at that state:

yes, no, and cancel. Limiting the choice of inputs helps the accuracy of the recognition

system.

When a state specification is written, it is assumed that any time that state is active

in the dialog all inputs in that state are also active. The state specification describes a

static structure which does not change at run time.

Sometimes, however, it is desirable to alter the set of active speech inputs in a state

dynamically during run time. The dialog may progress to a point where the application

knows that certain inputs may not be valid at that time, at the user would be unlikely

to say them. In such a situation, one approach would be to simply leave the static state

definition alone and ignore the few extra inputs which are active but are actually not valid.

This would be reasonable if our speech recognition system were capable of delivering

100% accurate recognition results. In such a case it wouldn't be of concern that the

recognizer was listening for a few additional inputs that were not likely to be spoken,

because the recognizer would only return what the user actually spoke.

Speech technology, however, is not yet at the stage where we can count on 100%

accurate recognition. Even the most constrained recognition problems still must assume

a marginal error rate in recognition accuracy.

The most potentially damaging type of recognition error for the application is a

substitution error, where the user speaks an utterance that is in set, and the recognizer

returns a different in set response. One way for the application to minimize substitution

errors is to constrain the set of valid inputs as much as possible. If there are extraneous

inputs active in the grammar, the recognizer is more likely to return one of those inputs

erroneously. If those extra inputs are removed from consideration we have effectively

29

CHAPTER 3. FUNCTIONAL DESCRIPTION

increased the recognition accuracy by reducing potential errors.

The dialog specification language supports dynamic enabling and disabling of speech

inputs. This feature allows the application to control when certain inputs are enabled and

to dynamically modify the configuration of the recognition grammar.

Certain dialog states may have several possible choices for speech inputs, however

based on information available at run time the application can determine that some of

those choices are not valid some of the time. Consider the following example of an

automated dialer application, where the user has asked the system to call his friend Ben

Bitdiddle. The computer looks up Ben in the Rolodex database and finds that Ben has

two numbers listed, home and office. The computer then queries the user as to which

one is desired. The dialog might look like this:

User: Please call Ben Bitdiddle.

Computer: Which number please?

User: Office.

Computer: Dialing Ben Bitdiddle at the office.

The dialog in this example has traversed two states - the first where the user gives

his initial request, and the second where the computer gets additional information about

which number to call. The specification for the second state might be written as follows

(leaving out the actions to take for each input):

(define-state WHICH_NUMBER

(prompt "Which number please?")

(input "home"

"office"

"fax"
"pager

"car phone"))

The specification for this example dialog state has to be generic enough to accept

other types of phone numbers when appropriate. Some entries in the database may have

a car phone number listed, or possibly a fax number. Here the specification allows for

30

CHAPTER 3. FUNCTIONAL DESCRIPTION

five possible valid types of numbers, even though Ben Bitdiddle only has two, home and

office.

What if the user asks the system to call Ben on his car phone? The application

has already determined that Ben does not have a car phone. Either the user asked for

a number which did not exist, or the recognition was inaccurate and heard car when

the user may have said office. A simple solution to this problem would be to pass the

recognition result to the application and allow the application to determine if the result

was valid at that time. If the user asked for an invalid choice, the application could

request that the user make a different selection. If the user was incorrectly recognized,

then the frustrated user would have to repeat his original choice.

The dialog specification language provides a mechanism which allows the application

to dynamically control which recognition inputs are valid in a given dialog state. The

mechanism involves augmenting the dialog specification with function predicates which

are called at run time to determine if a particular recognition input should be active at that

time. This gives the application complete flexibility in enabling or disabling particular

utterances depending on particular application state. Here is an example of what the

augmented dialog specification might look like:

(define-state WHICH_NUMBER

(prompt "Which number please?")

(input "home"

(enable homephonep())

"office"

(enable office_phonep())

" fax"
(enable fax_p())

"pager"

(enable pagerp())

"car phone"

(enable car_phone_p())))

The predicate

whatever internal

functions are written by the application developer. They can access

application state necessary in order to return appropriate values to

31

CHAPTER 3. FUNCTIONAL DESCRIPTION

control the grammar. In this case, any predicate which returned a value of true would

enable that input as valid, returning a value of false would disable the input. Going

back to the example of calling Ben Bitdiddle, the application would look up Ben in the

Rolodex and determine that only a home number and an office number were on file.

In this case the predicates home_phonep () and off ice.phone_ p () would return

true, while the rest would return false.

For any inputs which do not need to be accessed and dynamically set by the application

the predicate can be omitted, which leaves the input enabled whenever that state is active.

If, for example, every name in the Rolodex file always has a home phone number, then

the home_phone_p () predicate is not necessary, and that enable option can be omitted.

This approach can also be easily extended to allow the functions to return any floating

point number, which would be set as the bias, or probability that the input is expected.

For simplicity, however, the current implementation will assume the enable functions are

predicates.

3.2.3 Application Event Inputs

In many applications, speech input is not the only form of input available to the user.

Applications may also allow the user to type requests to the keyboard or mouse click

graphical buttons in addition to providing speech input. Telephone applications may

allow touchtone input along with speech.

The dialog specification language provides an easy mechanism to specify any other

type of input available in the application right along with speech inputs, and to specify the

same actions and dialog transitions which can be specified for speech input. The dialog

language supports a concept of application events. Application events can be any events

which occur within the application, possibly from other input sources, and are reported

to the dialog manager in a similar fashion as recognition events are reported. This allows

the application developer to specify both speech and non-speech events directly in the

dialog specification. This unified specification makes it very easy to design an entire

mutli-modal application using a single specification.

Application events can be a very powerful and flexible tool for the application devel-

oper. They provide the ability to define applications which accept many different forms

32

CHAPTER 3. FUNCTIONAL DESCRIPTION

of input and have the entire dialog flow still specified in one place. These application

events are fully integrated into the dialog state machine and can affect the dialog flow in

exactly the same way as speech input.

Consider the following example which shows a sample telephone application where

touchtone input is integrated directly with speech input.

(prompt "Say listen or touch 3 to hear your messages")

(input "listen"

(next LISTEN_MESSAGES))

(event "TOUCHTONE_3"

(next LISTEN_MESSAGES))

When the application dialog is in this state, the user has the option of either speaking

"listen" or touching the number 3 to listen to their messages. It is clear by the specification

that they will both have the exact same effect.

Application events can also be used to control the dialog in different ways than the

speech input. Consider the following example.

(prompt "Speak the name of the person you wish"

"to call or touch any button to cancel")

(input "[call] $NAME"

(action lookup_name($1))

(next DIAL_NAME))

(event "ANY_TOUCHTONE"

(prompt "Canceled")

(next MAINENU))

This example shows how a touchtone can be used by the user to cancel the request to

dial, while speaking the name of a person will dial that person. In both cases, the event

labels, TOUCHTONE3 and ANYTOUCHTONE, are arbitrary, and defined by the

application developer. It is expected that the application will monitor the event sources

and inform the dialog manager when such an event has occurred.

33

CHAPTER 3. FUNCTIONAL DESCRIPTION

3.3 Dialog State Transitions

The transitions from one state to the next are defined for each input listed in the state.

Every input, both speech inputs and application events, must have a state transition

defined, although inputs may have their transition defined back to the same state, which

is the default if no other state transition is given.

3.3.1 Application Control of Dialog State Transitions

The dialog specification language supports a powerful feature which allows the application

to dynamically control dialog state transitions. Instead of defining state transitions which

will always occur after the given input or event is received, it is possible to also define

state transitions which are conditioned upon the result of some application dependent

expression, that could in turn depend on the spoken utterance.

This conditional transition capability gives the application developer the flexibility to

branch to different states depending on the value of specific application state. Consider

the following two dialog examples derived from a typical voice mail application interface:

Example 1:

Computer:

User:

Computer:

User:

Computer:

User:

Computer:

Example 2:

Computer:

User:

Computer:

Good Morning, You have 3 new messages.

Play back message number 1.

Message 1 ...

Skip remaining new messages.

You have 5 old messages.

Play back message 3.

Message 3 ...

Good Morning, You have no new messages.

You have 1 old message.

Play message.

Message 1 ...

34

CHAPTER 3. FUNCTIONAL DESCRIPTION

In the first example, the user has both new messages and old messages. The dialog

from the computer should indicate that there are new messages and allow the user to

access them. In the second example, the user has dialed in and has no new messages.

Here the dialog must take a slightly different course, indicating that there are no new

messages and that the user is only able to access old messages.

The application should be able to use this type of information dynamically to affect

the flow of the dialog. Since the information is known only at run time, the language

specification provides a mechanism for specifying dynamic control of dialog transitions.

3.4 Handling of User Feedback Within the Dialog

Accepting speech input to the application is only half of an interactive dialog. Providing

voice, text, or graphical feedback to the user is a critical component of the dialog. A

dialog specification language must provide sufficient mechanisms to allow the developer

to easily include prompts and other feedback within the dialog.

Voice prompts can be specified for digital playback in numerous formats. Two of

the most common formats for providing voice feedback are either digitized audio files

or machine synthesized speech. Digitized audio files are recorded by the developer

and maintained as separate files as part of the application. Whenever a new prompt is

incorporated into the application, it is necessary to record an audio file containing that

prompt. Synthesized speech, on the other hand, is usually generated from text strings

(text-to-speech synthesis) or phoneme strings.

In the framework of the dialog states we can see that applications may require

feedback to the user both upon entering a particular dialog state as well as during the

transition out of a state. The dialog language will support prompting the user at both of

these stages. Looking at our previous example:

(define-state WHICH_NUMBER

(prompt "Which number please?")

(input "home"

(prompt "Dialing home")

"office"

35

CHAPTER 3. FUNCTIONAL DESCRIPTION

(prompt "Dialing office")))

The prompt command which comes right after the state definition specifies the

prompt to play upon entering the state. This prompt will be played before the recognizer

is told to start listening for input. Additional prompts can be defined for each input by

specifying the prompt command after the input. These prompts will be played if that

particular input is recognized, during the transition to the next dialog state.

Sometimes it is necessary to generate a prompt which is dependent on information

known only at runtime. For example, consider the specification for the NEWMESSAGES

state (continuing the voice mail example). If the application determines that the user has

new messages the dialog will transition into the NEWMESSAGES state. The prompt for

this state will say "You have N new messages", where N is the number of new messages

received today. Since the number of messages is only known at run time, it cannot be

statically defined in the dialog specification. Instead, the language syntax allows variable

strings to spliced into the prompt dynamically from the return values of function calls.

Here is an example:

(define-state NEW_MESSAGES

(prompt "You have " (num_messages()) " new messages.")

(input "play message $MESSAGE_NUM"

"reply message $MESSAGE_NUM"))

In this example, the function nummessages () will return a string containing the

English word corresponding to the number of new messages, for example "three". This

string is then dynamically spliced into the prompt string before it is sent off to the speech

synthesizer.

Prompts can also be conditional, based on expressions evaluated at run time. This

feature is discussed in further detail in section 3.5.1.

3.5 Assigning Actions and Prompts to State Transitions

Each transition in the dialog specification can be assigned any number of actions or

prompts to be executed each time the state machine traverses that arc. Actions can be

36

CHAPTER 3. FUNCTIONAL DESCRIPTION

any routine defined by the user and referenced in the dialog specification. The dialog

state machine will call the user routines at the appropriate points in the dialog.

Prompts are similar to actions, but they are treated as a special case by the dialog

specification language. Prompts define feedback which gets returned to the user, either in

the form of text, digitized audio, or synthesized speech. Prompts can be assigned to any

arc in the dialog so they can be issued to the user at the appropriate time in the dialog.

Figure 3.1 shows the inbound and outbound transition arcs for a state. Prompts and

action functions can be assigned to either the inbound or outbound arcs of a state.

Prompts and actions assigned to the inbound transition arc of a state will be executed

before the state waits for any input. Prompts assigned to the inbound arcs are most often

used to query the user before the a response from the user is expected. Actions assigned

to these arcs can be used to initialize parts of the application state when the dialog enters

a particular state.

On the outbound arc, prompts and actions are executed only when a specified input is

received. Both types of state inputs, speech and application events, can have prompts and

actions attached to their outbound transition arcs. The actions can be used to control the

application in any number of ways in response to a particular input. Outbound prompts

are often used to provide a confirmation to the user of the input received.

3.5.1 Conditional Actions and Prompts

An additional feature is the ability to decide on a prompt or action based on the result

of a function or expression evaluated at run time. Consider the following enhancement

to the previous example:

(define-state NEW_MESSAGES

(cond-prompt

("MSG == 0 "You have no new messages.")

("MSG == 1" "You have one new message.")

(&default "You have" (num_messages())

"new messages."))

(input "play message $MESSAGE_NUM"

(enable new_messages_po))

37

CHAPTER 3. FUNCTIONAL DESCRIPTION

"reply message $MESSAGE_NUM"

(enable new_messages_ ())))

Here the initial prompt for the NEWIMESSAGES state is decided at run time. The

application variable MSG is tested to determine the number of new messages. If the

value is 0, the prompt will indicate there are no new messages. If the value of MSG is

1, the prompt will indicate one message, otherwise the prompt will indicate the correct

number of messages as returned by the nuamessages () function. There are condition

commands for actions and for prompts and they can be used interchangeably with the

normal action and prompt commands.

This type of dynamic control is crucial in the dialog specification in order to build

applications which can produce flexible interactive dialogs. Without this type of dynamic

interaction between the dialog and the application, the dialog language would be useful for

building only very simple applications with static user dialogs. Providing these features

as part of the dialog specification results in a powerful application generation tool capable

of building complex dialogs which are adaptive to numerous run time conditions.

3.6 Dynamic Expansion of Non-Terminals

When an action function is registered on a particular input the application developer

knows that the function will only be called when that input has been received. When the

inputs are relatively simple grammar rules usually no more information about the input

received is needed by the application except the knowledge that the input was received.

Since the dialog manager handles parsing the input to determine which action to call,

generally the application does not need to do any more parsing on the input.

For more complex speech inputs, however, it is useful for the application to get

particularly interesting pieces of the recognized input passed in as arguments to certain

action functions. Consider the following slightly more complicated example of a dialog

state specification.

(prompt "Who would you like to call")

(input "Call $NAME at $LOCATION")

38

CHAPTER 3. FUNCTIONAL DESCRIPTION

In this example, the non-terminals $NAE and $LOCATION are specified elsewhere

in the grammar by the application developer and expand into a list of possible names and

telephone locations, respectively. When an action function is invoked from this particular

input, it may not be enough for the function to simply know that the input was received.

The application may need to know exactly which name and location were specified by

the user.

The dialog specification supports the dynamic expansion of non-terminal grammar

expressions, and can pass in to a function the substring of the recognition text which

corresponded to a particular non-terminal. Such arguments are passed to action functions

in the following manner:

(prompt "Who would you like to call")

(input "Call $NAME at $LOCATION"

(action dial_number($S1, $2)))

In this example, the special labels $1 and $2 refer to the first and second non-terminal

expression specified on the input line, respectively. When the function dialnumber ()

is called, those arguments will be expanded to the string of words which correspond to

the part of the recognition string containing the name and location, respectively. For

example, if the user says "Call John Smith at the office", the action dial_number(

"John Smith", "the office") will be executed.
These special labels refer only to the non-terminals specified on the input line to

which this function is attached. You can specify any $n as an argument, where n can

go as high as the number of non-terminals specified on that input. The syntax of using

numeric labels to reference the non-terminals, instead of symbolic names, was chosen in

order to disambiguate the reference in the case where two or more non-terminals with

the same name appear in one input, as in the following example:

(prompt "What reservation would you like to make")

(input "Reserve a flight from $CITY to $CITY"

(action reservation_origin($1)

(action reservation_destination($2)))

39

CHAPTER 3. FUNCTIONAL DESCRIPTION

In this example, the non-terminal $CITY occurs twice in the input. For example,

the user might say "Reserve a flight from Boston to New York". The application must

be able to distinguish between the two cities given by the user. Using numeric labels

each occurrence of the non-terminal can be unambiguously referenced and passed as an

individual argument to an action function, as shown in the example.

3.7 Global State

The dialog specification language supports a feature known as the global state. A dialog

can have a global state defined in addition to all the other states in the dialog. The global

state is a state which is always active in the dialog, and can be thought of as being

"superimposed" over each of the other states. While the global state can never be the

current state in the dialog, it is active at all times along with the current state.

Using a special definition, the global state can be defined with the same components

as a normal state. The global state can have actions and prompts defined on its inbound

and outbound transitions, and can include both speech and application event inputs.

The global state is used to define speech inputs and application events which should

always be active in the dialog. For example, perhaps the input "help" is always allowed

in the dialog and plays a general help message to the user. Instead of defining the input

"help" in each state definition, it can be defined in the global state and it will remain

active throughout the dialog.

Similarly, application events can be defined globally as well. For example, the event

RESET might need to be globally defined in the dialog to handle events occurring in the

application which would require the dialog to be reset to the top level. Specifying the

event in the global state allows it to be active at all times.

When an input is received by the dialog manager, it checks to see if the input is

defined in the current state. If so, the dialog chooses the transition defined in the current

state. If the input is not defined in the current state, the dialog manager checks the global

state. If the input appears in the global state then the dialog chooses the transition defined

there. For application events, the definitions in the current state always take precedence

over definitions in the global state. Therefore, if the same event is defined in the current

40

CHAPTER 3. FUNCTIONAL DESCRIPTION

state and in the global state, the transition defined in the current state is chosen. For

speech inputs, however, if the same input is defined in the current state and in the global

state, the choice of transitions may be arbitrary. The reason has to do with the way the

recognition grammar is constructed, and the probabilistic method the recognizer uses to

choose a path through the grammar. For this reason, care should be taken to specify

global speech inputs which are unique in the dialog.

A global state definition for the two inputs mentioned above might look as follows:

(define-global-state

(input "help"

(prompt-file help.wav))

(event "RESET"

(next TOP)))

These global inputs are active in the dialog at all times, concurrent with the inputs of

the current state. Prompts and actions which are defined on the inbound arc of the global

state are executed before the prompts and actions on the current state's inbound arc.

The global state definition is merely a convenience of the language. All the func-

tionality provided by the global state definition could also be achieved by copying the

definitions of the global state into each of the other states in the dialog. The single global

definition simply makes it easier to specify global aspects of the dialog.

41

Chapter 4

Implementation

The implementation of this thesis project consists of two major components. The dialog

specification parser component, also referred to as the dialog compiler, compiles the

dialog specification into generated application code and recognizer configuration files.

The dialog manager component controls the flow of the dialog state machine at run time.

Calls to the dialog manager are embedded into the top level application to control the

flow of the dialog.

4.1 Dialog Compiler

The dialog compiler parses the dialog specification and compiles it into application code

and a HARK recognition grammar file. It is responsible for generating the application

which implements the spoken dialog specified by the user. The dialog compiler itself is

composed of two segments - the language parser and the code generator. Each of these

segments is discussed in further detail in the following two sections.

4.1.1 Language Parser

The language parser is the segment of the dialog compiler which reads in the dialog

specification and parses it into a series of language rules. The language parser is built

using the Unix utility called yacc [Joh78]. Yacc is a tool which, given a BNF style

grammar for a language, will construct a parser which is capable of parsing and analyzing

42

CHAPTER 4. IMPLEMENTATION

the specific syntax of the language.

Before the parser can analyze a language specification the input must be tokenized;

each lexical component must be separated and identified. The tokenizer, or lexical

analyzer, for the dialog specification language is built with the Unix utility lex [LS78].

Given a list of tokens, lex builds a tokenizer for the language which serves as a front-end

to the yacc generated parser. Yacc and lex are designed to be used together to construct

a complete language syntax parser.

The constructed parser is actually a push-down automaton, or stack machine. As the

parser analyzes its input, it traverses through language syntax states and executes user-

definable actions which have been attached to various rules in the language grammar

[SF85]. These user-definable functions which are executed during the parsing phase of

compilation form the basis for the code generation segment of the compiler, discussed in

the next section.

The actual BNF grammar for the dialog specification language, used by yacc to

build the language parser, is a bit tedious to follow and not particularly helpful to this

discussion, however it has been included in Appendix B for the interested reader.

4.1.2 Code Generation

As the dialog language input is being parsed, the code generation segment of the compiler

assembles the output application code and the recognition grammar. In all, a recognition

grammar and five application source files are output from the code generation phase of

the compiler.

Generating the Recognition Grammar

The grammar which is generated by the dialog compiler is carefully constructed and

annotated with "tags" and "labels" to assist the application code in manipulating the

grammar during run time and in parsing the recognition output. All of the speech inputs

specified for a particular state are placed in their own subgrammar, corresponding only

to that state. The top level of the grammar contains each of these state subgrammars

configured in parallel with each other; figure 4.1 shows the top level construction of the

generated grammar. Building a separate subgrammar for each state allows the application

43

CHAPTER 4. IMPLEMENTATION

Grammar
START node

Grammar
END node

Figure 4.1: Top Level Structure of the Generated Grammar

to activate only the particular subgrammar which corresponds to the state that the dialog is

currently in. All other subgrammars are switched off in order to improve the recognition

accuracy. When the dialog makes a transition to a new state, the application can switch

off the previous subgrammar and switch on the new one. The subgrammars can be

switched on and off by labeling the arcs entering each of the subgrammars from the top

level.

Within each state subgrammar, the inputs for that state are again placed in parallel

with each other. For any given state, all the inputs specified in the dialog specification are

considered equally likely when that state is active. In order to support dynamic enabling

and disabling of particular inputs at run time, the arc entering each input is also given

a unique label. During run time the application can switch on and off various inputs

within a state depending on how those inputs were specified in the dialog specification.

Figure 4.2 shows a typical state subgrammar with each of the arcs entering the specific

inputs labeled.

Labeling arcs in the grammar at compile time provides the application with a mech-

anism for manipulating those arcs at run time. Specifically, the application can change

the weight or penalty of a particular labeled arc at run time. Assigning an arc the weight

of zero effectively switches off that portion of the grammar. No recognition theories

will be expanded past an arc whose weight is zero, and this portion of the grammar will

now be considered inactive. Similarly, if the weight of an arc is set to one, then that

44

CHAPTER 4. IMPLEMENTATION

Figure 4.2: Single State Subgrammar

portion of the grammar becomes active. The weight of an arc can actually be set to any

value between 0 and 1, which can be used to make certain subgrammars more likely than

others, however the dialog compiler does not use this capability, and assumes all active

subgrammars are equally likely.

Grammar labels are compiled into the grammar and can be used to reference particular

subgrammars and inputs in the grammar. They are not returned by the recognizer,

however, as part of the recognition result, and therefore cannot be used by the application

to aid in parsing the recognition output. Instead, the dialog compiler uses a mechanism

called tags to assist the generated application in parsing the result returned from the

recognizer. The dialog compiler places a special tag at the end of every input in the

grammar. This tag is returned by the recognizer as part of the recognition result.

When the dialog manager is informed that a recognition result has been received, the

actual string returned by the recognizer as the recognition result need not be parsed for

the dialog manager to execute the appropriate actions for that input. The dialog manager

only needs to look at the special tag placed in the grammar for that input. That tag

corresponds to an entry in a table of callback functions which was constructed by the

dialog compiler during the compilation phase. The table contains the names of generated

functions which will execute all the specified actions for that input and transition the

dialog to the appropriate next dialog state. Using this mechanism, the dialog compiler

can effectively leave notes for itself, in the form of tags, in the grammar. These notes

are then used to reference particular functions listed in the table which is also built by

the dialog compiler. This alleviates the need for the dialog compiler to store in a table or

45

CHAPTER 4. IMPLEMENTATION

State Initialize Speech Input Table Event Input Table
Function

TagO101 ctionO1014 nextO101 EventO1OlictionE10) nextEO101

1 i nit 0 l TagO102 ction010 next0102 EventO102ictionE 10 nextEO102

TagO103 tionO10 nextO103 I IEvent103ctionE10° nextEO103

TagO201 ction0201 nextO201 Event0201 ctionE201 nextE0201

2 initO2 TagO202 lction0202 nextO202 Event0O202ctionE20 nextE0202

TagO203 jaction020 nextO203 EventO2031ctionE20 nextE0203

TagO301 ctionO301 nextO301 EventO301 ctionE30f nextE0301

3 initO3 TagO302 ctionO30O nextO302 EventO30 ctionE30 nextE0302

TagO303 ctionO303 next0303 IEvent0303ctionE301 nextE0303

Figure 4.3: Dialog State Table

similar structure any information about the exact input strings which were built into the

grammar. By using recognition tags the application keeps no information about exactly

what words are expected back from the recognizer for a particular input. Figure 4.2

shows how tags are used to annotate input phrases in the grammar.

The recognition grammar generated by the dialog compiler is placed in a file called

gen_grammar. hg. The format of the generated grammar is HARK Prototyper format,

and is intended to be input directly to the HARK grammar compiler.

Generating the Application Code

The dialog specification is represented in the application by an internal state table coded

in C. Each entry in the state table contains three components:

* Initialization Function

* Speech Input Table

* Application Event Input Table

Figure 4.3 shows the construction of a dialog state table.

The initialization function is the name of a function which gets called each time the

dialog state machine enters that state. The initialization function is generated by the

46

CHAPTER 4. IMPLEMENTATION

dialog compiler, and contains all the actions and prompts specified on the inbound arc

for that state.

The speech input table and the application event input table are each lookup tables

which contain a list of symbolic tags. Under each tag in the table is the name of an action

function and the name of a next function. The action function, which is generated by the

dialog compiler, executes all the user specified actions for a particular input. One action

function is generated for each input listed in the state. The next function, also generated

by the compiler, contains the prompts specified on the outbound arc for a particular input,

and also the name of the next state the dialog should move to when this input is received.

One next function is also generated for each input listed in the state.

The symbolic tags in the input tables are used for looking up the correct functions

to call when a particular input is received. The tags are slightly different for the speech

input tables and for the application event input tables.

For speech input tables, the symbolic tags correspond to unique tags attached to each

speech input line in the recognition grammar. The dialog compiler generates these unique

tags as it constructs the recognition grammar, and places there tags in the speech input

table. The recognizer returns the tag associated with each input along with the recognized

word sequence. The dialog manager uses the tag to look up the recognized phrase in the

speech input table for the current state. This determines which action functions to call

and which state to advance the dialog to next.

In the application event input table, the symbolic tags are exactly the labels used in

the dialog specification to identify the event. When the dialog manager is informed that

an event has occurred, it looks up the event label in the application event input table to

determine which action functions to call and also which state to advance the dialog to

next.

Figure 4.4 shows the output files which are generated by the dialog compiler. The

dialog state table is built by the compiler and placed in a file called state_table.h.

The speech input tables and application event input tables for each state, referenced in

the dialog state table, are placed in a file called input_table.h.

All of the initialization functions, action functions, and next functions for each state in

the dialog specification are generated by the compiler in a file called dialog_gen. c,

with an associated header file called dialog_gen.h. Finally, the global definitions

47

CHAPTER 4. IMPLEMENTATION

gen_grammar.hg

Recognition

Grammar

State Table Input Table

Definition Definitions

state_table.h input_table.h

Generated

Functions

dialog_gen.c

dialog_global.h

[Global

Definitions

Generated

Functions

Header File

dialog_gen.h

Figure 4.4: Compiler Generated Output Files

48

S

CHAPTER 4. IMPLEMENTATION

defining symbolic constants for each of the state names are placed in a file called

dialog_global. h.

4.2 Dialog Manager

The dialog manager is responsible for controlling the dialog state machine at run time.

The dialog manager uses the state table generated by the dialog compiler to determine

which actions to execute and which state transitions to make when input is received.

The dialog manager maintains the current dialog state. When input is received by the

application the dialog manager looks up the symbolic tag of the input in the appropriate

input table and executes the functions listed. The current state is then updated to reflect

the dialog transition.

Upon entering each state, the dialog manager executes the initialization function for

the state. This function includes the actions and prompts which were specified on the

inbound arc for that state. These actions and prompts are executed before the state begins

waiting for input.

Figure 3.2 shows the flow of control in the dialog manager as it processes a dialog

state.

There are three functions within the dialog manager which are accessed by the

application to drive the dialog state machine. The dialog manager does not control

the main loop of an application, therefore it exports three subroutines which are called

by the application at appropriate points in the application main loop to inform the dialog

manager of key events.

The three subroutines exported by the dialog manager for access by the application

are listed below.

* activate_current_dialog_state ()

* process-dialog (HFIEVENT hevent)

* trigger_dialog_event (char *EventTag)

These routines are described in more detail in the next section.

49

CHAPTER 4. IMPLEMENTATION

4.3 Speech Application

The top level speech application is constructed by the application developer and integrated

with the dialog manager using the three subroutines listed above. The application controls

the setup and interaction with the speech recognizer, and with all other input sources in

the system. An event driven application loop, with asynchronous communication to and

from the various input sources, is the type of top level application used for this thesis

project to demonstrate and test the dialog manager. The dialog manager subroutines are

general, though, and can be integrated with many other types of top level applications,

depending on the style and methodology of the application developer.

Since the dialog manager does not handle the interaction with the speech recognizer

or other sources in the application, nor does it control the application's main loop, the

dialog manager must be called at certain points in the application in order for the dialog

state logic to be processed correctly. The three subroutines mentioned above provide

the interface between the application main loop and the dialog manager. The following

sections detail the specific points in the application where the dialog manager must be

called.

4.3.1 Activating the Current Dialog State

In order to activate the current dialog, which entails executing all the initialization

functions and prompts specified on the arc entering the state, the dialog manager must

be called just before the application tells the recognizer to start listening for input.

The activate_current_dialog_state () routine is called from the main loop

of the application immediately before the application sends the command to the recognizer

to start listening for speech. When this routine is called, the dialog manager looks up

the initialization function for the current state and executes it. The initialization function

contains the actions and prompts which were specified on the inbound arc for the state.

4.3.2 Registering Speech Input

Since the application is handling the communication with the speech recognizer, the

application will receive the results of the recognition when the user speaks an utterance.

50

CHAPTER 4. IMPLEMENTATION

The application does not necessarily need to look at the recognition result, it simply needs

to pass it along to the dialog manager.

The process_dialog (HFI:_ VENT hevent) routine is used by the application

to register the speech input with the dialog manager. The argument hevent passes to

the routine a special identifier used by the HARK recognizer to identify an event returned

by the recognizer. Using this event identifier, the dialog manager can ask the HARK

recognizer interface library information pertaining to the event.

If the event passed to process_dialog is a RECOGNITIONJEVENT, the dialog

manager gets the recognition result and looks up the special tag returned with the word

sequence in the speech input table. The dialog manager executes the appropriate action

and next functions for that input and returns control back to the main loop.

If the event is a RECOGNITION_FAILEDEVENT then the dialog manager queries

the HARK interface library for the reason why recognition failed. There are two reasons

why the recognition may have failed.

1. No speech / timed out

2. Speech rejected / no valid trace though the grammar

The first reason indicates that no speech was received and the recognizer timed out.

In this case the dialog manager looks up the special tag %TIMEOUT in the application

event input table. This entry in the table is generated by the compiler if the specification

contains a %TIMEOUT event, indicating which actions to perform if the recognizer

times out.

If the second reason is given for recognition failure, the dialog manager looks up

the special tag %REJECTED. This tag is placed in the application event input table by

the compiler if the state specification includes a %REJECTED event listed, indicating

which actions to perform if the recognizer gets a rejected recognition response.

4.3.3 Registering Application Event Inputs

Application events are registered with the dialog manager in a manner similar to speech

inputs. Application events can correspond to any input source in the application. Since

51

CHAPTER 4. IMPLEMENTATION

the application handles all interaction with these input sources the dialog manager only

needs to know when the events occur, and not how the application got the event.

The trigger_dialog_event (char *EventTag) routine is used by the appli-

cation to register application events with the dialog manager. The argument EventTag

is a string corresponding to the label used to identify the event in the dialog specification.

The dialog manager looks up the event label in the application event input table for

the current state and executes the appropriate action and next functions for that event.

Control of the application is then returned back to the main loop.

4.4 User Supplied Library

The one remaining segment of the application which has not yet been discussed is the

library of user-defined functions provided by application developer. This library contains

definitions for the user functions referenced in the dialog specification. The dialog

manager will execute these functions at the appropriate point in the dialog based on

their specification within the dialog state definitions. The user simply needs to supply

these functions in a file called user.c so the dialog manager can find them. This

library is linked in with the generated application code to build the executable speech

application.

52

Chapter 5

Using the Language

This chapter presents a User's Guide to the dialog specification language. It provides

a detailed description of the valid commands supported by the language and the proper

syntax for using them.

5.1 Dialog Definition

The first definition in the dialog specification is the definition of the dialog itself. The

dialog definition command defines the scope within which all subsequent dialog state

definitions are contained. The definitions within the scope of the dialog definition form

the dialog specification. Any definitions outside the scope of the dialog definition are

not considered part of the dialog, and will either be ignored or rejected by the dialog

compiler.

A dialog is defined using the define-dialog command, and consists of a dialog-name

followed by a list of state definitions. The dialog-name is used as a reference name for

the dialog, and the dialog state definitions, discussed in the next section, comprise the

main part of the dialog specification. Figure 5.1 shows the format and syntax of the

dialog definition.

The dialog definition command is specified in the following way:

(define-dialog dialog-name

state definition

53

CHAPTER 5. USING THE LANGUAGE

Figure 5.1: Dialog Definition Command

state definition ...)

The dialog-name should be an alpha-numeric symbol containing no embedded whites-

pace, however underscores are allowed. To improve readability, a convention of using

only uppercase letters for the dialog name is suggested.

5.2 State Definition

The define-state command is used to specify a state definition. Similar to the dialog

definition command, the state definition command consists of a state-name followed by

a list of internal state definitions.

States can be defined in the dialog in any order. It is not necessary for the definition

of a state to appear in the specification before a reference is made to it. A state with

the name TOP must be defined somewhere in the dialog to designate the state where the

dialog begins.

Each state in the dialog represents a particular point in the interaction between the

user and the computer. The specification of a dialog state, therefore, should completely

specify the components of this interaction. These components include how the user is

prompted, what user responses are valid, what actions to take for each response, and

(define-dialog dialog-name
(define-state state-name

(define-state state-name

)- -

- 2~~~_

54

CHAPTER 5. USING THE LANGUAGE

Figure 5.2: State Definition Command

which state the dialog should advance to next. Figure 5.2 shows the overall structure and

format of the define-state command.

The state definition command is specified in the following way:

(define-state state-name

state component

state component ...)

The components listed in the state definition can be any number of the following

items:

* Prompts

* Actions

* Speech Inputs

* Application Events

* State Transitions

As discussed in Chapter 3, the dialog language supports the specification of both

speech and non-speech inputs within each state. In this way an application can be

(define-dialog dialog-name
(define-state state-name

(prompt ...)
(action ...)

(define-input

(define-event

)))~~~~~--

55

CHAPTER 5. USING THE LANGUAGE

specified which accepts speech input as well as other forms of input, including key-

board, mouse, and touchtone. Non-speech inputs are defined in the dialog language as

application events.

Each of these components will be discussed in more detail in the following sections.

5.3 Prompts

Prompts are the used in a dialog to generate feedback to the user, either in the form of

voice responses, text messages. or both. Three types of prompts are supported by the

dialog specification language.

* Text prompts

* Digitized voice prompts

* Synthesized speech prompts

Since each of the prompt types are handled differently by the dialog compiler as the

application code is generated, there are three different prompt commands, corresponding

to each of the different types of prompts. The supported prompt commands are listed

below:

(prompt-text "text string")

(prompt-file digitized-speech-file)

(prompt-synth "speech synthesis string")

In the overall dialog specification, prompts can be included in two different places.

They can be included in the beginning part of the state definition to define prompts which

are to be presented to the user before the user begins speaking. These are the prompts

which get assigned to the inbound arc of the state and are useful for prompting the user

for information before the recognizer starts listening for input.

They can also be included as part of the definition for particular speech inputs or

application events to specify feedback to the user once that input or event has been

received. These types of prompts are assigned to the outbound transition arcs of a state

56

CHAPTER 5. USING THE LANGUAGE

OUTBOUND ARCS

INBOUND ARC

prompt:
"Please speak an

STATE: TRANSLATOR

INPUTS:

yes

no

thank you

11merc

Figure 5.3: Dialog State Showing Transition Prompts

and are used for confirmation or other feedback which occurs after the user has said

something. The three different prompt commands can each be used in either of the two

places in the dialog.

Consider the following example of a simple English to French translator which shows

how prompts can be defined on both the inbound and outbound transition arcs of a state.

(define-state TRANSLATOR

(prompt-text "Please speak an English phrase")

(input "yes"

(prompt-text "oui")

"no"

(prompt-text "non")

"thank you"

(prompt-text "merci")))

Figure 5.3 shows a representation of the TRANSLATOR state. The initial prompt

is assigned to the inbound arc, and the input prompts are assigned to the appropriate

outbound arcs.

Often it is desirable to return feedback to the user in more than one form. For example,

some applications might want to print a text prompt to the screen while digitized speech

is being played from the speaker. Since the three prompting commands can be mixed

57

CHAPTER 5. USING THE LANGUAGE

and used interchangeably it is possible to specify both commands one after the other.

This will have the effect of providing both types of feedback simultaneously.

Multiple prompts of the same type can be specified using one prompt command.

Each command will accept a single prompt or a list of prompts, separated by whitespace.

This allows multiple prompt strings or speech files to be issued using a single prompt

command. For example, both of the following commands are valid:

(prompt-file welcome.wav menu.wav)

(prompt-text "Welcome" "Please speak your request")

Prompts are always issued to the user in the same order they are specified in the

dialog specification. Functionally, it makes no difference whether multiple prompts are

specified in a single prompt command or multiple commands are used instead, it is simply

a matter of style.

The dialog manager uses the HARK speech recognizer to play out the audio prompts

and this is critical to the synchronization of prompts and speech input. The HARK

recognizer is designed to start listening for speech only after it has completed playing

out all pending audio prompts. This prevents the recognizer from listening to the prompt

output and falsely recognizing speech. The dialog manager automatically uses HARK

for all the audio playback. If a different mechanism is required for audio playback then

the timing issues need to be resolved so that the audio output device and the speech

recognizer are synchronized with each other.

5.4 Speech Input

Speech inputs are specified in the dialog specification using the define-input command.

This command is specified in the following way:

(define-input "speech-input-rule" input components

"speech-input-rule" input components

"speech-input-rule" input components ...)

The speech-input-rule follows the same syntax as the HARK Prototyper grammar

rule. The input components can include any number of actions and prompts which are

58

CHAPTER 5. USING THE LANGUAGE

associated with that input, and a dialog transition specification for each speech input.

The define-input command will accept multiple inputs listed under the same command

as shown above. More discussion on the input components will be provided in the next

sections.

Since the speech input rule can be any arbitrary Prototyper grammar rule, it must be

surrounded by quotes in the dialog specification. The dialog compiler will embed the

speech rule directly into the recognition grammar during the compilation of the dialog

specification.

Here is an example of a HARK Prototyper definition which defines a particular

subgrammar and contains five grammar rules:

$TELEPHONE_NUMBERS : home

office

fax machine

car phone

pager

Using the dialog specification language, those input rules would be specified in the

following format:

(define-input "home"

"office"

"fax machine"

"car phone"

"pager"

Each input is specified within quotes and on a separate line. The vertical bar notation

is not necessary in the dialog specification to separate inputs. The dialog input line can

be any valid Prototyper rule, and the rule can be as complex as desired. Care should

be taken, however, if using the vertical bar operator within an input expression. Speech

input rules which contain the vertical bar notation to define alternate paths in the grammar

59

CHAPTER 5. USING THE LANGUAGE

must be properly parenthesized so as to insure that the input line will be expanded to

have only a single endpoint in the recognition grammar. For example, the input line

"call I dial"

may cause problems for the dialog manager because the rule can be treated as two

separate expressions within the grammar. By surrounding the expression with parenthesis

the input rule becomes perfectly valid in the dialog specification, as shown.

"(call I dial)"
Other prototyper constructs may be used freely as part of the input specification. This

includes using non-terminals defined elsewhere, using optional square bracket notation,

and using the * and + notations to denote grammar loops. The following are examples

of valid input specification lines.

"n (call I dial) $PHONENUM"

"buy $STOCK at $PRICE"

In these examples, the non-terminals $PHONE-NUM, $STOCK, and $PRICE can be

defined elsewhere by the user.

The list of input components following each input in the specification can be used to

define a number of items associated with that input. The particular components which

can be specified for an input are:

* predicate functions to enable/disable inputs dynamically

* action functions to execute when input is received

* next dialog state

* prompts to issue when input is received

Each of these components is specified directly below the input to which it refers. The

following sections describe in more detail the exact syntax of each of the available input

components.

5.4.1 Dynamic Activation of Speech Inputs

Dynamic control of inputs can be accomplished in the dialog specification by using the

enable command as an option to any of the inputs. The syntax of this command is as

60

CHAPTER 5. USING THE LANGUAGE

follows:

(enable predicate-function)

If the enable option is present after an input, the dialog manager will call the predicate-

function each time that state becomes active. If the function returns true (1), the input it

refers to will remain active at that particular point in the dialog. If the function returns

false (0), then the input will be switched off in the grammar only for the current pass

through the state, and the recognizer will not consider the input valid.

The enable option causes the predicate-function to be called each time the dialog

reaches that state. Therefore the predicate function, provided by the application developer,

can be written to test some application state each time through the dialog to determine

if an input should be active at that time. Any input can have an enable option attached

to it, and there is no limit to the number of inputs in each state which can have enable

options. If more than one enable command is specified for any input, then only the last

one specified has any effect; all others are ignored. If no enable option is specified for

an input then that input is always active.

The example given below shows how the dialog can take advantage of information

within the application to constrain the grammar dynamically at run time. The specification

for a state where some of the inputs are dynamically enabled might look as follows:

(prompt-text "Which number please")
(input "home"

"office"

"fax machine"

"car phone"

(enable car_phone_p())

"pager"
(enable pager_p())

The predicate functions carphonep () and pager_p() should be written to test

internal application state and return true if the respective speech inputs should remain

active during that pass through the state. The dialog manager will test these functions

each time the dialog reaches the state and activate those inputs only when appropriate.

61

CHAPTER 5. USING THE LANGUAGE

5.5 Application Events

Application events are registered with a particular state in the dialog using the define-

event command. This command is identical in every way to the define-input command,

except that instead of specifying speech input, the application developer provides a unique

event label. The event label is later used by the application to inform the dialog manager

when the event has occurred. The same input components can be specified for application

events as for speech inputs. The only option which is not available for events is the enable

command, simply because this command only applies to speech input.

The event definition command is specified in the following way:

(define-event "event-label" input components

"event-label" input components

"event-label" input components ...)

The event-label can be any alphanumeric symbol, containing any amount of whites-

pace, underscores, or other special characters, and should be enclosed in quotes as shown

above. For clarity and consistency, a convention of using uppercase alphanumerics with

no whitespace is recommended for event labels. Since labels are treated as strings they

will not conflict with any state names in the dialog specification or with the dialog name.

Any number of events can be specified using a single define-event command, much

the same as the define-input command.

5.5.1 Special Reserved Event Labels

The are a few event labels which are reserved by the dialog manager and have special

meaning. The following is a list of these reserved event labels and how they are

interpreted by the dialog manager.

1. %TIMEOUT - This special label is used to define what should be done in the

dialog in the event that the speech recognizer times out. This event occurs if the

user is prompted for speech input, the recognizer starts to listen, and the user says

nothing within a specified amount of time. Often the appropriate way for the dialog

62

CHAPTER 5. USING THE LANGUAGE

to handle a recognition timeout is to reprompt the user, or to automatically play a

help message or list of choices.

This example shows how the %TIMEOUT event can be used to have the appli-

cation play a list of choices for the user if they time out, and then reprompt for

their request.

(prompt-text "Please speak your request")

(input "account balances"

(next BALANCES)

"mortgage rates"

(next MORTGAGE)

"cd rates"
(next CD))

(event "TIMEOUT"

(prompt-text "You can get information

on your account balances,

mortgage rates or cd rates"))

The recognition timeout event will automatically be detected by the dialog manager

when it is informed of the outcome of the recognition.

2. %REJECTION - This special label is used to define what should be done in

the dialog if the speech recognizer cannot decode a particular utterance. This

event will occur in a number of different situations depending on exactly how the

speech grammar is constructed. It means that the user spoke an utterance that the

recognizer could not interpret or match with any of the inputs in the grammar -

either because the utterance was completely out of the valid set of utterances, or

because the recognizer simply could not understand the utterance. When such an

event occurs it is generally appropriate to inform the user that the utterance was

not understood and to prompt them to repeat it.

Let's add a handler for rejection to the previous example. If the person speaks an

utterance which is not understood by the recognizer we will inform them to speak

more clearly and try again.

63

CHAPTER 5. USING THE LANGUAGE

(prompt-text "Please speak your request")

(input "account balances"

(next BALANCES)

"mortgage rates"
(next MORTGAGE)

"cd rates"

(next CD))

(event "TIMEOUT"

(prompt-text "You can get information

on your account balances,

mortgage rates or cd rates")

"%REJECTION"

(prompt-text "Sorry, I did not understand

you. Please speak clearly

and try again."))

3. %NULL - This label is used only in special cases where there are no real speech

inputs or application events which are to occur in a particular state. Sometimes, to

help in the organization of a dialog into states, it is desirable to have a state which

waits for no inputs, but simply executes some actions or prompts immediately, and

then continues to the next state.

If the %NULL event is defined anywhere in a state, then all speech inputs and

application events in that state will be ignored. The only options which will

be executed will be those attached to the %NULL event. For this reason, any

state which has a %NULL event defined should have no other speech inputs or

application events defined.

The following example shows how the %NULL event can be used to define a state

which simply plays a welcome prompt to the user, and waits for no input.

(define-state TOP

(prompt-text "Welcome to the AnyTown Bank")

(event "%NULL"

64

CHAPTER 5. USING THE LANGUAGE

(next NAIN_MENU)))

(define-state MAIN_MENU

(prompt-text "Please speak your request")

(input

Organizing the states in this manner allows the dialog to return to the MAINMENU

state from other points in the dialog without having the user hear the welcome

message over again. The TOP state is only traversed once per caller.

It is possible to define any actions, prompts, or state transitions following a %NULL

event. They will be executed according to the same rules as any other application

event or speech input, the difference being that the dialog manager will not wait

for any input before executing those options. The dialog will transition directly to

the next state and, if it is not a %NULL state as well, will wait for input there.

5.6 Action Functions

One of the most important features of the dialog specification language is that it allows

actions associated with a particular input to be defined lexically adjacent to the definition

of the input itself. This not only makes it easier to design the application dialog, but also

makes it easier to visualize the flow of control in the application with respect to dialog

states.

Actions for particular inputs, either speech inputs or application events, are specified

in the dialog using the action command. Action commands should appear in the dialog

specification after the particular input they are associated with, as part of the input

components.

The action command is specified as follows:

(action action-function)

The action-function refers to a user defined routine will be called by the dialog

manager each time the appropriate input is received. This provides the application

65

CHAPTER 5. USING THE LANGUAGE

developer a mechanism to directly register a function to be called on a particular input,

without requiring that the application developer write any code to parse or otherwise

check the input. If a function is registered on a particular input it will only be called

when that input is received.

The following example illustrates the use of the action command. Each input in the

definition has an action function registered to dial the particular number requested by the

user.

(prompt-text "Which number please")

(input "home"

(action dialhome())

"office "

(action dial_office())

"fax machine"

(action dial_fax())

"car phone"

(action dialcar())

"pager"
(action dial_pager()))

Multiple action commands may be specified under any given input and they will be

executed in the same order in which they are specified.

5.6.1 Conditional Actions

The conditional action command allows the specification of actions which are dependent

on run time application state. Conditional actions are specified with the cond-action

command in the following way:

(cond-action ("C-expr" action-function)

("C-expr" action-function)

("C-expr" action-function) ...

(&default default-action-function))

66

CHAPTER 5. USING THE LANGUAGE

The conditional action command works much the same as the cond function in

Lisp. Each C-expr is evaluated in order until one evaluates to true. The action-function

associated with that expression is executed, and no other C-expressions are evaluated. If

no C-expr in the list evaluates to true, then the action-function associated with the special

&default tag will be executed. If no default is given, and no expression returns true,

then the command does nothing.

The conditional action command is specified along with the options to any speech

input or application event. Any number of cond-action commands can be specified for

a given input, intermixed with any number of regular action commands. All actions

will still be executed in the proper order, whether or not they were part of a conditional

command.

The following example shows how the cond-action command might be used in a

dialog specification.

(prompt-text "Please enter your 4 digit id")

(input "$4_DIGIT_NUM"

(action verify_id($1))

(cond-action

("idfound_p()" lookup_info($1))

(&default register_new_user($1)))

(next MAIN_MENU))

In the example, the predicate id_found.p () is tested as part of the conditional

statement, after the function verify_id () is called from the previous action command.

If the predicate returns true then the user's id has been located in the database and the

user is verified. If the predicate returns false, the application calls a function to register

the new user.

The C-expr can be any valid C-language expression which evaluates to a boolean

value. It can refer to any internal application functions or variables which are provided

by the application developer and which will be called by the dialog manager to test the

condition.

67

CHAPTER 5. USING THE LANGUAGE

5.7 Next State

Once a particular input has been received and some action has been taken the dialog

should advance to the next logical state in the dialog. The dialog specification language

was developed especially to make such dialog state transitions very natural to specify.

The command used to specify the state transition from a particular input is the next

command. It is specified as one of the input components for either speech inputs or

application events in the following way:

(next next-state)

This defines the dialog transition to next-state when the particular input has been

received. The state specified as next-state must be the name of a state which is de-

fined somewhere else in the dialog specification. State names are case-sensitive, and a

convention of using uppercase alphanumerics for state names is suggested. States need

not be defined before they are referenced; the definition of a particular state can appear

anywhere in the dialog specification. If next-state is not defined in the dialog then an

error will result.

The next command may be specified anywhere in the list of options for an input,

however the transition to the next state always happens after all the prompts and actions

for that input have been executed. Transitioning to the next state is always the last thing

to occur from any input.

Following is an example illustrating the use of the next command in a state definition.

(define-state TOP

(prompt-text "Would you like directions"

"or information on ticket prices")

(input "directions [please]"

(next' DIRECTIONS)

"ticket prices [please]"

(next TICKETS)))

Only one next command is permitted for each input. If multiple next commands are

attached to a particular input then only the last one specified will be considered. The

others will be ignored. If no next command is given for an input then the default is for

68

CHAPTER 5. USING THE LANGUAGE

the dialog to stay in the same state. If the dialog should loop back to the same state after

an input is received then no next command need be specified for that input.

5.7.1 Conditional Next

The conditional next command provides the application with the ability to dynamically

control state transitions at run time. Transitions need not be statically defined in the

dialog. A transition can be dependent on internal application state which is tested each

time through the state.

The conditional next command is called cond-next and has almost the identical syntax

as the conditional action.

(cond-next ("C-expr" next-state)

("C-expr" next-state)

("C-expr" next-state) ...

(&default default-next-state))

As with the conditional action, the cond-next command will test each C-expr in

succession until one evaluates to true. The dialog will then transition to the state

associated with that expression. If no expression returns true, then the default state,

defined using the special &default tag, will be chosen. If no expression returns true and

no default is specified then the dialog will remain in the current state.

Only one next or cond-next command may be specified for any speech input or

application event. If multiple next commands are specified, then only the last one will

have any effect; the others will be ignored.

The following example shows how the conditional next command can be used to

direct the dialog transitions based on internal application state.

(prompt-text "Please speak your name and password")

(input "user $USER password $PASSWD"

(action verify_user($1, $2))

(cond-next

("passwordok ()" MAIN_MENU)

(&default INVALID_USER)))

69

CHAPTER 5. USING THE LANGUAGE

Again, the expression used for C-expr can be any valid C language expression

which evaluates to a boolean value. The functions referred to in the expression must

be provided by the application developer and will be called by the dialog manager to test

the conditional.

5.8 Summary of Input Components

Following is a summary of the input components which have been discussed in the

preceding sections and some information on how they interact with each other.

1. Enable function, specified with the enable command, is tested before the recognizer

starts listening for input in a given state. If the function returns false, the input

to which the enable is attached will be disabled for that pass through the state.

Otherwise the input is enabled. The default for any input without an enable function

specified is for the input to remain active.

2. Action functions, specified with the action command, are executed immediately

after the input is received. All action functions specified for an input will be

executed in the order they are specified.

3. Next State, specified with the next command, defines the next state the dialog will

transition to upon receiving the input. Only a single next command is allowed per

input, and if none is given the dialog will remain in the same state. The transition

is always the last thing to happen after an input is received, no matter where the

next command appears in the list of options.

4. Prompts, specified with any of the three prompt commands, define feedback which

should be presented to the user after receiving an input. Multiple prompts can be

defined and will be issued in the order they are specified. All prompts, however,

will be issued only after the action commands for that input are executed, no

matter where they are specified in the list of options. It is not possible to interleave

prompts with action functions using the dialog specification language. All actions

will be invoked before any prompts are issued.

70

Chapter 6

Sample Application: A Voice Dialer

It is instructive at this point to present a complete application which was designed and

developed entirely using the dialog specification language. This sample application is

a Voice Telephone Dialer, which allows a user to speak a telephone number to dial, or

speak a predefined name to reach some registered service.

6.1 Description of the Application

The application implements a voice dialing system. From the main menu, the user is

allowed to say one of the following functions to dial out:

* digit dial phone number

* speed dial name of service

The application will confirm which number is being dialed and then place the call.

The interface allows the user to speak the entire command from the main menu, or just

say the keywords digit dial or speed dial and the system will prompt them for the

remaining information.

Before getting to the main menu, the system might require the user to authenticate

themselves by speaking a unique 4-digit PIN number. The system will look up the PIN

number and check that it corresponds to a valid user. If the PIN number is not verified

the user will not be allowed access to the system.

71

CHAPTER 6. SAMPLE APPLICATION. A VOICE DIALER

Since this is an application we would like first time users to be able to use without

much advance instruction or training, it is important that the application provide appropri-

ate context dependent help at each level of the dialog. Context dependent help indicates

to the user what functions are available and what the user is allowed to say at each point

in the dialog.

A typical dialog between the application and the user might look something like the

following.

Computer: Welcome to the Voice Dialer.

Please enter your 4-digit PIN number.

User: 1234

Computer: How may I help you?

User: help

Computer: The functions available from the main menu are

digit dial and speed dial.

User: digit dial 555 1212

Computer: Dialing 555 1212

6.2 Designing the Dialog

The dialog specification language provides an intuitive interface to express an application

in terms of dialog states. Breaking the problem down into states makes it easier to think

about the flow of the dialog, and about which features should be available to the user at

each stage.

Figure 6.1 shows what a simple 2 state model of the dialog might look like. In this

example, the first state, GETID, is used to prompt the user for their PIN number. The

dialog will loop back into that state until a valid PIN number is spoken. If the PIN has

been verified, the dialog advances to state MAINMENU from where the user can access

the available features of the system.

Since this simple model has only two dialog states, all of the options to the user

must be made available in one of these two states. The GETID state serves a very

72

CHAPTER 6. SAMPLE APPLICATION. A VOICE DIALER

Figure 6.1: Simple Two State Dialog

specific purpose, to prompt for and verify the user's PIN number. The MAINMENU

state provides the remaining system features.

From the main menu the following spoken commands are allowed:

* digit dial phone number

* speed dial name of service

* help command name

* help

Speaking one of the dial commands instructs the system to call the specified number

for you. Speaking the help command plays the appropriate help file and returns back to

the main menu.

Now, let's enhance the simple 2 state application to add a little more flexibility to

the system. It might be desirable to allow the user to say only the keywords digit dial

or speed dial and have the system prompt them for the remainder of the information.

Figure 6.2 shows a more advanced 4 state version of our application.

In addition to the initial two states, there are now two additional states in the system

- a state for digit dialing and a state for speed dialing. If, for example, from the main

GET_ID

INPUT:
4-digit-PIN

if (verified)
else

MAIN_MENU

INPUT:
digit dial number
speed dial service
help

73

CHAPTER 6. SAMPLE APPLICATION: A VOICE DIALER

TID -

INPU'
4-d

if
e

r:
tigit-PIN

f(verified)
Ise

I_MENU

r:
dial number
d dial service

dial
d dial

INPU
digit
speed
digit
speec
heln

Figure 6.2: Four State Dialog

74

DIGIT_DIAL

INPUT:

number to dail SPEED_DIAL

INPUT:

service to dial

GE

MAIl

C-,

I

CHAPTER 6. SAMPLE APPLICATION: A VOICE DIALER

menu the user says digit dial, the dialog will transition to the DIGITDIAL state, which

prompts the user for the number to call.

From the main menu, the allowable commands are as follows. The two new com-

mands show the states where the dialog will transition to if those commands are spoken.

* digit dial phone number

* speed dial name of service

* digit dial : next state - DIGITDIAL

* speed dial: next state -, SPEEDDIAL

* help command name

* help

We have reached a point in the discussion of the application design where it would

be helpful to start expressing the dialog flow in the syntax of the dialog specification

language. The next section builds the dialog specification for this application, explaining

in detail each of the necessary steps, until the entire system has been specified.

6.3 Implementing the Dialog Specification

Let's start by building the dialog state definitions for the states designed in the previous

section. The first state is the GETID state. The definition for this state might begin as

follows:

(define-state GET_ID

(prompt-file say-id.wav)

(prompt-text "Please speak your 4-digit PIN.")

The first line defines the name of the state, GETID. Following the state definition we

have two commands to issue the initial prompts in this state. The prompt-fie command

specifies the name of a pre-recorded audio file that we want the dialog manager to

75

CHAPTER 6. SAMPLE APPLICATION: A VOICE DIALER

play out at this point in the dialog. Presumably, the file specified here, say-id.wav,

contains the digitized form of the text prompt specified in the command directly below.

If the user will not be looking at a screen when using this application the prompt-text

command may not even be necessary. In our sample application, however, we will always

output both digitized speech prompts along with text prompts. Often the text prompts

are useful for monitoring the application while running, or for debugging the dialog. It

is the responsibility of the application developer to insure that each digitized prompt file

contains a recorded version of the text prompt associated with it.

The prompts specified above will be issued to the user each time the dialog enters

the GETJD state. Once the prompts are played, the dialog needs to know what speech

inputs to listen for. Continuing with the state definition, we add the definitions for valid

speech inputs in this state:

(input

"$PIN_4DIG"

(action set_user_id($1))

(cond-next

("verify_user_id()" MAIN_MENU)

(&default GET_ID))

"help"

(prompt-file help-in-get-id.wav)

(prompt-text "You are being asked to enter your

4-digit Personal ID Number.")

(next GET_ID))

The GETID state allows only two possible speech inputs, either a 4-digit PIN number

or the word help. Let's carefully go over the specification for each of these inputs. The

first input specification looks like this:

"$PIN_4DIG"

This refers to a non-terminal expression defined elsewhere in the grammar which

expresses the subgrammar for a 4-digit PIN number. Remember that input specification

lines can be any valid HARK Prototyper grammar specification. Here we are referencing

the non-terminal expression $PIN_4DIG. This non-terminal should be defined by the

76

CHAPTER 6. SAMPLE APPLICATION: A VOICE DIALER

application developer in the user supplied grammar library. We will see where this

definition is included later.

The next line in the dialog specification registers a function to be called when the

PIN number input is received.

(action setuserid($1))

The function set_user_id stores the user id number into an internal application

variable for later access. This function is provided by the application developer in a

special C file called user. c. The dialog manager knows to look in that file to find any

user defined functions referenced in the dialog specification. The argument passed to the

function, specified as $1, refers to the part of the recognition result which corresponds

to the first non-terminal in the input line. The $1 notation is a place-holder. When the

input $PIN_ADIG is received by the dialog manager, its string value will be expanded

and passed as an argument to set_user_id. For example, if the user speaks the id

"1234", the action function will be invoked with the following argument.

(action set_user_id("ONE TWO THREE FOUR"))

The function is able to translate the string into a digit sequence and look up the PIN

number in its database.

The next line in the dialog specification defines the dialog transition from this state.

The dialog will advance to the specified next state after the actions for the input have been

invoked. In this case, a conditional next statement is used to direct the dialog transition.

The dialog should transition to one state if the PIN number is valid, and another if the

PIN number is not valid.

(cond-next
("verify_user_id " MAIN_MENU)

(&default GET_ID))

This conditional next statement specifies two possible transitions. If the function

verify_user_id returns true, or the integer value 1, the dialog will continue to the

state MAINMENU. If the predicate function returns false, the default definition is for

the dialog to remain in the state GETID. This is noted by the special label &default,

which indicates what to do if none of the previous conditions return true.

77

CHAPTER 6. SAMPLE APPLICATION A VOICE DIALER

The conditional next command specifies exactly the dialog logic we want at this point.

If the user enters a valid PIN number we want them to gain access to the main menu.

If they do not enter a valid number then we want to continue to reprompt for the PIN

number until a valid one is given.

The second input to this state is a little more straightforward. The "help" input line

specifies that the user is allowed to speak the word "help" within this state to get more

information. If the help input is received, the dialog manager will play out the help audio

file, along with its corresponding text, and then return back to the GETID state. The

next state specification

(next GETID)

tells the dialog to stay in the GET-ID state. Once the user has listened to the help

message, the dialog loops back into the same state and reprompts the user to enter their

PIN number. In this case, the next command could have been omitted since the next

dialog state is the same as the one the dialog is currently in. For any input, if the next

command is omitted, the default is for the dialog to remain in the same state it is currently

in.

The next state definition in the dialog is the definition for the MAINMENU state.

This state should include the inputs which allow the user to access the dialing features

of the system. The definition of the MAINMENU state begins with a prompt, asking

the user to speak their request.

(define-state MAIN_MENU

(prompt-file main-prompt.wav)

(prompt-text "Please speak your request")

The beginning of this state definition is much like the previous state definition.

The name of the state is defined as MAINMENU and the first two commands in the

definition specify the initial prompt, in both text and digitized speech formats. The prompt

"Please speak your request" will be issued to the user each time the dialog enters the

MAINMENU state.

The input specification for the main menu is partially shown below:

(input "digit dial $TEL_7DIG"

78

CHAPTER 6. SAMPLE APPLICATION: A VOICE DIALER

(action play_digit_response (PLAY_DIAL, $1))

(next TRANSFER_OUT)

"digit dial"

(next DIGIT_DIAL)

"speed dial pizza"

(prompt-file x-pizza.wav)

(prompt "Ringing Pizza Hut.")

(next TRANSFER_OUT)

"speed dial taxi"

(prompt-file x-taxi.wav)

(prompt "Ringing Yellow Cab.")

(next TRANSFER_OUT)

"speed dial"

(next SPEED_DIAL)

"help"

(prompt-file help-main.wav))

The input specification defines the possible spoken commands available to the user

from the main menu, as described in the previous section. In addition to the speech input

specification, the main menu contains the following event input specification as well:

(event "% TIMEOUT"

(prompt-file help-main.wav)

"RESET"

(next TOP)

"%REJECTION"

(prompt-file help-main.wav))

The event specification for this state defines three possible events. The %TINEOUT

event indicates what should be done if the user does not speak when prompted. In this

case the timeout event triggers a help prompt to be played out. The absence of a dialog

transition specification implies that the dialog should return back to the same state after

the prompt is played. The -REJECTION event specifies what to do if the user speaks

79

CHAPTER 6. SAMPLE APPLICATION: A VOICE DIALER 80

a command which is not understood by the recognizer. In this case the rejection event

also triggers the playing of a help prompt, and the dialog returns back to the main menu

state. Finally, the RESET state is a user defined application event label used to reset the

dialog back to the top level state. This event may be triggered by the application when,

for example, the user hangs up on the system or is connected to another number.

The remaining state definitions follow the same format as the ones previously de-

scribed. Appendix A contains a complete listing of the dialog specification for the voice

dialer application. Following the dialog specification listing are listings of the six output

files which were generated by the dialog compiler when the voice dialer specification

was compiled.

Chapter 7

Future Directions

This chapter describes some of the enhancements which can be made to this system,

which, due to time and resource limitations, were not included within the scope of this

thesis. It also outlines some future directions for additional work in this field.

7.1 Graphical User Interface

Many commercially available application generation systems provide some type of graph-

ical user interface to their system to improve the usability of the tool. Graphical

interfaces aid the application developer by providing a means to visualize the application

control flow, interdependencies among components, and a variety of other aspects of the

application.

The application development process using the dialog specification language would

benefit from the addition of a graphical user interface (GUI). One aspect of the graphical

interface might be a graphical state editor. Instead of specifying the dialog specification

using the current text syntax, a GUI built over the language might allow the developer

to draw the dialog state diagram using boxes to represent states and lines to represent

transitions between states. The pictorial representation of the dialog states could be

interpreted automatically into the proper text syntax for the language. The developer

would be able to click the mouse on a particular state and edit the inputs and actions for

that state.

81

CHAPTER 7. FUTURE DIRECTIONS

7.2 Interactive Development Environment

A more complete interactive development environment could be provided that would

offer additional services to the developer to aid in the design and development of spoken

dialog systems. Two such services which would enhance the development environment

are a dialog simulator, and a voice prompt manager.

7.2.1 Dialog Simulation

The dialog specification language provides a convenient syntax for specifying the flow of

a spoken dialog application. Often, however, a dialog design might have to go through

several iterations before it reaches its final form. Many human factors issues come

into play in the design of a dialog which often cannot be anticipated during the initial

development cycle of the application.

A dialog simulator is a utility that would take a dialog specification and simulate

the flow of the dialog, without executing any of the application functions. The dialog

simulator may not even require interfacing with a speech recognizer; initial dialog

simulations could be done entirely using text instead of voice inputs, although for realistic

simulations voice input would be preferred. This would allow the developer to iterate

over the design of the dialog, getting a real sense of the "look and feel" of the dialog,

without having to construct the entire application. The prompts to the user might also be

text instead of voice, so that the dialog could be refined to its final state before any of the

voice prompts were recorded. Depending on the size of the system, recording digitized

prompts can be a large task in itself, and therefore finalizing the design of the dialog

prior to recording prompts can result in a substantial time savings.

7.2.2 Prompt Manager

A complex interactive dialog application may require a fair number of recorded voice

prompts to use for feedback at various points in the dialog. The command syntax of the

dialog specification language supports playing back recorded voice prompts. However,

the application developer must provide the name of the prompt file in the specification

so the dialog manager knows which prompt to play.

82

CHAPTER 7. FUTURE DIRECTIONS

When designing a dialog, and even when simulating a dialog under development, it

is often easier to deal with the prompts as text, rather than as file names. Embedding

file names into the specification can make it difficult to iterate through the dialog design

because often the file names alone do not provide enough detail as to the exact words

recorded in the file.

A helpful utility is one which could manage the recording of the voice prompts in the

system. The developer would specify all the prompts as text. Before compiling the dialog

specification, the prompt manager could replace the text prompts with automatically

generated file names. The prompt manager would then prepare a table mapping file

names to text transcriptions, and could easily manage the collection of each of the voice

prompts.

Prototype dialogs could be developed using only text prompts. Once the dialog was

in its final form, the prompt manager would convert the text prompts to digitized files,

insuring that all the necessary prompts were recorded.

7.3 Parameterized States

A powerful enhancement to the dialog specification language would be the ability to

define parameterized, or generic states. A parameterized state is one in which not all

the definitions are constant. For example, instead of having fixed definitions for all the

transitions from a state, some may be defined as variables. The value of the variables

are passed into the state from the state it was called from.

Parameterized states can be thought of more like subroutine calls rather than static

transitions. When a parameterized state is entered, the state which called it must pass in

values for the undefined variables in the state.

Consider the following example of a confirmation state. The confirmation state

prompts the user to say yes or no, and then proceeds to the next state accordingly.

The static definition for such a state may look as follows:

(define-state CONFIRM

(prompt "Is this correct?")

(input yes"

83

CHAPTER 7. FUTURE DIRECTIONS

(next CONFIRM_YES)

"Ino"

(next CONFIRM_NO)))

This state may be useful in the dialog in several different places, for example

to confirm a phone number entry, or a date, or any number of things which require

confirmation. If the transition states CONFIRMYES and CONFIRMNO are fixed then

we cannot call this state from different places in the dialog. A separate copy of the state

needs to be defined for each place in the dialog where confirmation is required. However,

if the transition states were allowed to be variable the dialog specification could access

this state from various places in the dialog and maintain the correct context of the dialog.

A reference to a parameterized state could directly include the assignments for all

variables in the state. A call to such a state might look as follows:

(next CONFIRM

(CONFIRM_YES = MAIN_MENU,

CONFIRM_NO = RETRY))

This reference indicates that if the CONFIRM state is called from this point then if

the user says yes the dialog should progress to the main menu. If the user answers no

the dialog goes to a retry state. From other parts in the dialog these transitions may be

defined differently.

In addition to parameterizing the transitions from a state, it is also possible to support

parameterized actions and prompts as well.

7.4 Talk Ahead

"Talk ahead" is an advanced dialog feature which permits an experienced user of a system

to speak a command or a series of commands ahead of the prompts. In a typical IVR

application, for example, the system can contain many levels of voice prompted menus

which the user must traverse in order to reach the desired information.

Figure 7.1 shows an example of a simple menu structure for an IVR application

designed for phone banking. From the main menu the user is given a list of broad

84

CHAPTER 7. FUTURE DIRECTIONS

Figure 7.1: Banking IVR Application

categories to choose from - such as "accounts", "mortgages", or "car loans". When the

user chooses one of those categories the dialog advances to another state and presents the

user with a more specific list of choices. For example, if the user chose "accounts" from

the main menu, the next menu asks the user to choose "savings"or "checking". From

there the user may go through yet another menu asking "balances" or "recent activity".

In a touchtone based IVR application, where the user presses telephone touchtone

keys to select choices, it is often possible for an experienced user to enter an entire

sequence of numbers quickly before waiting for the prompts. An experienced user, for

example, may know that the sequence [1 - 2 - 1] is the right sequence to get to checking

account balances. If users access the same information frequently they can remember the

appropriate sequence of key presses and not have to wait to hear the prompts.

In a speech based IVR system, however, it is more difficult to provide this capability

to the user. The speech recognizer is based on a phrase structured grammar which is

modified dynamically to reflect only the valid inputs of the current dialog state. This

85

CHAPTER 7. FUTURE DIRECTIONS

Grammar
START node

Grammar
END node

Figure 7.2: Grammar with Talk Ahead Enabled

means that the recognizer will only accept choices from the current menu. When the

dialog explicitly changes state, the recognizer is then reconfigured to accept speech input

from the next menu.

A "talk ahead" feature for this system allows the user to speak "account checking

balances" as one command from the main menu, and traverses through the dialog states

as if each command were given as a separate utterance. The experienced user can give a

single command from the main menu and reach the desired information without having

to listen to three levels of menu prompts.

Implementing such a feature into the dialog specification language requires a special

capability of the speech recognizer which allows any two arbitrary nodes in the grammar

to be dynamically "wired together". Using this capability, the dialog compiler would be

able to "chain" several states together in the grammar, effectively allowing the inputs for

those states to be chained together in a series as one spoken utterance.

Figure 7.2 shows an example of the top level grammar for such an application with

the talk ahead grammar wires installed. From the main menu, only STATE 1 is considered

active, however the dashed line in the grammar, or wire, provides an alternate path from

the end of STATE 1 to the beginning of STATE 2. If the user chains commands from

the two states together, the recognizer will follow the wired path through the grammar.

Likewise, the wire from STATE 2 to STATE 3 allows those inputs to be chained together

as well.

86

CHAPTER 7. FUTURE DIRECTIONS

In the dialog specification, an additional command in the definition of a state would

indicate to the dialog compiler that two states are to be "wired" together. The syntax for

such a feature might look as follows:

(define-state MAIN_MENU

(enable-talk-ahead ACCOUNTS)

(input "accounts"

(next ACCOUNTS)

"mortgages"

(next MORTGAGES)

ncar loans n

(next CAR_LOANS)))

(define-state ACCOUNTS

(enable-talk-ahead CHECKING SAVINGS)

(input "checking"

(next CHECKING)

"savings"

(next SAVINGS)))

7.5 Integrating Speech into a Graphical User Interface

There are many GUI building toolkits available which provide a fast means of implement-

ing graphical interfaces for applications. These GUI builders often allow the developer

to draw a representation of the GUI as it should be presented to the user. The graphical

representation of the GUI is then interpreted by the GUI builder which generates the

appropriate application code to implement the specified graphical interface.

The paradigm for specifying a graphical interface usually involves associating callback

functions with various application events. Consider for example, a graphical dialog box

containing two buttons, ok and cancel. The developer can associate a different callback

function to each of the button events. When the user clicks the mouse on one of the two

buttons, a button event is generated which causes the appropriate callback function to be

87

CHAPTER 7. FUTURE DIRECTIONS

invoked.

The dialog specification language uses a similar paradigm for specifying a speech

interface for an application. Action functions, like callbacks, are registered with specific

speech inputs in the dialog specification and are invoked when that speech input is

received.

Since the dialog specification already supports application event inputs as part of the

dialog along with speech inputs, it would require no extension of the language to be

able to specify a fully speech enabled graphical interface using the dialog specification

language. Graphical application events can be listed within a state definition along with

corresponding speech inputs. This would allow the user to then either click the mouse

to choose an option, or to speak the option. Both methods would have the same effect

on the flow of the application.

The dialog specification for the simple confirmation dialog box discussed above might

look as follows:

(define-state CONFIRM_BOX

(prompt "Please confirm or cancel selection")

(input "ok"

(action do_choice())

(next CHOICECONFIRMED)

"cancel"

(action cancel_choice())

(next CHOICE_CANCELED))

(event "OK_BUTTONEVENT"

(action do_choice())

(next CHOICE_CONFIRMED)

"CANCEL_BUTTON_EVENT"

(action cancel_choice())

(next CHOICE_CANCELED)))

Both the speech input "ok" and the ok-button event have the same registered callback

and the same state transition. The application will respond in the same way whether the

user selects a choice with voice or with the mouse.

88

CHAPTER 7. FUTURE DIRECTIONS 89

The capability of enabling a graphical interface with speech input using an integrated

specification language is a powerful enhancement to current GUI builder tools. Speech

input in a graphical interface can be used to select fields on a form, choose options from

a list, or even input text into a text window, for example to select a filename.

Appendix A

Voice Dialer Application Source

This appendix includes the full dialog specification for the voice dialer sample application

presented in chapter 6. Following the listing of the dialog specification are listings of

each of the files generated by the dialog compiler from this specification. Six files are

generated by the compiler - the first one listed is the HARK recognition grammar file,

the remaining files are C application source and header files which implement the spoken

dialog application defined by the dialog specification.

90

APPENDIX A. VOICE DIALER APPLICATION SOURCE 91

voicedialer. dlg

(define-dialog VOICEDIALER

(define-state TOP
(prompt-file welcome. wav)
(prompt "Welcome to the Voice Calling Demo")
(define-event "%ULL

(next GET_ID)))

(define-state GET_ID
(prompt-file say-id.wav)
(prompt "Please speak your 4-digit id")
(define-input "$PIN_4DI"

(action set_user_id($l))
(cond-next

("verify_userid() " MAIN_HENU)
(&default REPROMPT_ID))

"help"
(prompt-file help-in-get-id.wav)
(next GET_ID))

(define-event "%TIMEOUT"
(prompt-file help-in-get-id.wav)

"RESET"
(next TOP)))

(define-state REPROMPT_ID
(prompt-file not-valid-id.wav)
(prpt "Sorry, that id number is not valid")
(define-event "%NULL'

(next GET_ID)))

(define-state MAIN_MENU
(prompt-file main-prompt .wav)
(prompt "How may we hlp you")
(define-input digit dial $TEL_7DIG"

(action play_digit_response(PLAY_DIAL, $1))
(action waitfortouchtone))
(next TRANSFEROUT)

*digit dial'
(next DIQGIT_DIAL)

"speed dial pizza"
(prompt-file x-pizza.wav)
(prompt "Ringing Pizza Hut.")
(action wait_for_touchtone())
(next TRANSFER OUT)

"speed dial taxi"
(prompt-file x-taxi. wav)
(prompt "Ringing Yellow Cab.")
(action wait_for_touchtone ())
(next TRANSFEROOUT)

"speed dial rental car"
(prompt-file x-rental.wav)
(prompt "Ringing Hertz Rental Cars.")
(action wait_for_touchtone())
(next TRANSFER_OUT)

"speed dial road service"
(prompt-file x-garage.wav)
(prompt "Ringing Jerry's Garage.")
(action wait_for_touchtone())
(next TRANSFER_OUT)

"speed dial police"

VOICE DIALER APPLICATION SOURCE

(define-event

(prompt-file x-police.wav)
(proapt "Ringing the Police.")
(action wait_for_touchtone())
(next TRANSFER_OUT)

"speed dial hospital"
(prompt-file x-hospital.wav)
(prompt "Ringing the Hospital.")
(action wait_fortouchtone())
(next TRANSFER_OUT)

"speed dial"
(next SPEED_DIAL)

"help"
(prompt-file help-main.wav)

"menu"
(prompt-file help-menu.wav)

"help digit dial"
(prompt-file help-digit-dial.wav)

"help speed dial"
(prompt-file help-speed-dial.wav)
(prompt-file help-speed-dial-list.wav))

"%TIMEOUT"
(prompt-file help-main.wav)

"RESET"
(next TOP)

"%REJECTION"
(prompt-file help-main.wav)))

(define-state TRANSFEROUT
(define-event "TOUCHTONE"

(next MAIN_MENU)
"RESET"

(next TOP)))

(define-state DIGITDIAL
(prompt-file number.wav)
(prompt "Number please")
(define-input "$TEL_7DIG"

(action playdigit_response(PLAYDIAL, $1))
(action wait_for_touchtone())
(next TRANSFEROUT)

"help"
(prompt-file help-in-digit-dial.wav)

"cancel"
(prompt-file cancelled.wav)
(next MAIN_MENU))

(define-event "TIMEOUT"
(prompt-file help-in-digit-dial.wav)

"RESET"
(next TOP)

"%REJECTION"
(prompt-file try-again.wav)
(prompt "Please try again")))

(define-state SPEED_DIAL
(prompt-file names-short-l.wav)
(prompt "Name please")
(define-input "pizza"

(prompt-file x-pizza.wav)
(action wait_for_touchtone())
(next TRANSFER_OUT)

"taxi"
(prompt-file x-taxi.wav)

APPENDIX A. 92

VOICE DIALER APPLICATION SOURCE

(define-event

(action wait_for_touchtone())
(next TRANSFER_OUT)

"rental car"
(prompt-file x-rental.wav)
(action wait_for_touchtouhtone())
(next TRANSFER_OUT)

"road service"
(prompt-file x-garage.wav)
(action wait_for_touchtone())
(next TRANSFEROUT)

"police"
(prompt-file x-police.wav)
(action wait_for_touchtono())
(next TRANSFEROUT)

"hospital"
(prompt-file x-hospital.wav)
(action wait_for_touchtouhton())
(next TRANSFER_OUT)

"help"
(prompt-file help-in-speed-dial.wav)

"list"
(prompt-file help-speed-dial-list.wav)

"cancel"
(prompt-file cancelled.wav)
(next MAIN MENU))

"%TIMEOUT"
(prompt-file help-in-speed-dial.wav)

"RESET"
(next TOP)

"%REJECTION"
(prompt-file try-again.wav)
(prompt "Please try again")))

APPENDIX A. 93

)

APPENDIX A. VOICE DIALER APPLICATION SOURCE

gengramar. hg

Application GOramar - achine Generated
<START> $TOP;
$STAT00: NULL;
$STATE01: INPUT0100 $NT010001 _8ILETNCE/TAG0100

I INPUT101 help _8ILNCE_/TAG010 1

$STATE02: NULLI
$STATE03: INPUT0300

INPUT0301
INPUT0302
INPUT0303
QINPUT0304
INPUT0305
INPUT0306

OINPUT0307
8INPUT0308
INPUT0309
INPUT0310
*INPUT0311
OINPUT0312

ONULL;
*INPUT0500
8INPUT0501
*INPUT0502

SINPUT0600
INPUT0601

*INPUT0602
*INPUT0603
OINPUT0604
OINPUT0605
*INPUT0606
OINPUT0607
OXINPT0608

$TOP : *STATE00
I OBTATE01
I OTATE02
I "TATE03
I 8STATE04
I 08TATE05
I 9STATE06

digit
digit
speed
speed
speed
speed
speed
speed

speed· ?--^
(p--d
· p-id

·p-d

(p--d

dial
dial
dial
dial
dial
dial
dial
dial
dial

$_NT30001 _SILENCEJTAGO300
SIENCE/TAG0301
pizza _SILEMCE_/TAG0302
taxi _ILENCEI/TAGO303
rental car _SILENCEJ/TAG0304
road service _SILENCE_/TAG0305
police _SIL!NCE/TAG0306
hospital _SILENCE_/TAG0307
_SILNCE/TAG0308

help _SILENCE_/TAG0309
menu _SILENC_/TAO0310
help digit dial _SILENCE_/TAG0311
help speed dial _SILENC/TAG3031 2

$_T050001 _ILENCE_/TAG0500
help _SILZNCE_/TAG0501
cancel _SILZNCE _ /TAG0502

pizza _SILENCE_/TAG0600
taxi _SILENCE_/TAG0601
rental car _SILNC_/TAG0602
road service _SILENCZE/TA0603
police _SILENCE_/TAG0604
hospital _SILENCE/TAGO605
help _SILENCE_/TAG0606
list _SILENCE_/TAG0607
cancel _8ILENCE/TAG0608

$STATE00
$STATE01
$STATE02
$STATE03
$STATE04
$STATE05
$STATE06

Non-Terminal Expansions
$_IT010001: $PIN_4DIG (:region-l);
$_NT030001: $TEL7DIG (:region-1)
$_NT050001: $TL7DIG (:region-l})

94

$STATE04:
$STATE05:

I
$STATE06:

APPENDIX A. VOICE DIALER APPLICATION SOURCE

dialog_global.h

/*** Global Definitions - Machine Generated ***/
#define TOP 0
#define GETID 1
#define REPROMPTID 2
#define MAIN-MENU 3
#define TRANSFEROUT 4
#define DIGITDIAL 5
#define SPEED_DIAL 6

extern int CURRENT_STATE;

extern char NonTerminalWords[251[256];

95

APPENDIX A. VOICE DIALER APPLICATION SOURCE

state_table.h

/*** State Table Definitions - Machine Generated ***/
#include <stdio.h>
#include "dialog_global.h"
#include "dialog_gen.h"
#include inputtable.h"

struct StateTableType {
int StateID;
DialogCallbackProc InitProc;
EventType *Inputs;
EventType *Events;

} StateTable[] - {

(0, initOO, InputTable00, EventTable00},
(1, init0l, InputTableOl, EventTableO}l),
(2, initO2, InputTableO2, EventTableO2},
{3, init03, InputTable0O3, EventTable03)},
(4, initO4, InputTable04, EventTable04)},
{5, initO5, InputTable05, EventTable05),
{6, init06, InputTable06, EventTableO6},
(-1, NULL, NULL, NULL}

96

APPENDIX A. VOICE DIALER APPLICATION SOURCE

input_table.h

/*** Input Table Definitions - achine Generated ***/
typedef void (*DialogCallbackProc) ()I

typedef struct eType (
char
DialogCallbackProc
DialogCallbackProc

} EventType;

*LookupTag;
ActionProc;
NextProc;

EventType InputTableOO]
(NULL, NULL, NULL}

EventType EventTableOO]
("%NULL", actionEO000,
{NULL, NULL, NULL)

nextEOOOO}000),

EventType InputTableOl[] {
{"TAGO100", action0100, next0100},
{"TAGO101", actionO101, nextO101),
(NULL, NULL, NULL)

};

EventType EventTableOl[] - {
("%TIMEOUT", actionEO100, nextEO100),
("RESET", actionEO101, nextEO101},
(NULL, NULL, NULL)

};

EventType InputTableO2[] - {
(NULL, NULL, NULL)

EventType EventTableO2[]
{"%NULL", actionE0200,
(NULL, NULL, NULL)

});

nextE0200),

EventType InputTable03[] - {
{"TAG0300", actionO300, nextO300),
({"TAG0301", action0301, nextO301),
({"TAG0302", actionO302, nextO302),
{"TAG0303", actionO303, nextO303),
{"TAG0304", actionO304, nextO304),
{"TAG0305", actionO305, nextO305),
{"TAG0306", actionO306, nextO306),
({"TAG0307", actionO307, nextO307),
{"TAG0308", actionO308, nextO308),
{"TAG0309", actionO309, nextO309),
("TAG0310", action0310, next0310),
{"TAG0311", action0311, nextO311},
({TAG0312", action0312, next0312),
(NULL, NULL, NULL)

EventType EventTable03[] - (
("%TIMEOUT", actionE0300, neoxtE0300)},
{"RESET", actionE0301, neoxtE0301),
{"%REJECTION", actionE0302, nextE0302),

97

APPENDIX A. VOICE DIALER APPLICATION SOURCE 98

(NULL, NULL, NULL)
};

EventType InputTableO4[1 {
(NULL, NULL, NULL)

EventType EventTable04[] - (
{"TOUCHTONE", actionE0400, nextE0400),
{"RESET", actionE0401, nextE0401),
{NULL, NULL, NULL)

EventType InputTable05[l] {
{"TAG0500", actionO500, nextO500},
{"TAG0501", actionO501, nextO501),
{"TAG0502", actionO502, nextO502},
(NULL, NULL, NULL)

EventType EventTableO5[] - {
("%TIMEOUT", actionE0500, nextE0500),
({"RESET", actionE0501, nextE0501),
("%REJECTION", actionE0502, nextE0502),
(NULL, NULL, NULL)

EventType InputTable06[] - {
("TAGO600", actionO600, nextO600),
{"TAG0601", actionO601, nextO601),
("TA0O602", actionO602, nextO602},
({"TAGO603", actionO603, nextO603),
("TAG0604", actionO604, nextO604),
("TAG0605", actionO605, nextO605),
{"TAGO606", actionO606, nextO606),
("TAG0607", actionO607, nextO607),
("TAG0608", actionO608, nextO608),
(NULL, NULL, NULL)

EventType EventTableO6[] = (
({"%TIMEOUT", actionE0600, nextE0600),
("RESET", actionE0601, nextE0601),
("%REJECTION", actionE0602, nextE0602),
(NULL, NULL, NULL)

});

APPENDIX A. VOICE DIALER APPLICATION SOURCE

dialog_gen. h

Definitions - achine Generated ***/
action0000()
nextzOOO();
initOO();
action0100();
nextO10();
action0101();
next0101();
actionE0100()
nextZ0100();
action0101()
nextZ0101()
init01();
actionZ0200();
nextZ0200();
initO2();
action0300();
next0300()
actionO301();
next0301();
actionO302 ();
nextO302();
action0303();
nextO303();
action0304();
nextO304();
action0305();
next0305();
action0306())
nextO306();
actionO307();
nextO3O7();
action0308();
nextO308();
action0309();
noxt0309()i
action0310();
next0310();
action0311();
nextO3ll()
action0312 ()
next0312();
action0300 ()
next0300()
actionE0301()
nextZO301();
actionZO302();
nextE0302();
initO3();
actionEO400();
nextZO400();
actionZO401())
nextE0401();
initO4();
actionO0500();
next0500()
action0501();
nextO501();
action0502()
nextO502()s

99

/*** Dialog
extern void
extern void
extern void
extern void
extern void
extrxn void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
oxtern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
xtern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void

APPENDIX A. VOICE DIALER APPLICATION SOURCE 100

extern void actione0500();
xtern void naxtE0500();

extern void aotionZ0501()
xtern void next0501();
cxtern void actionZO502();
xtern void nextZ0502();
xtern void initO5();
xtern void action0600()0

extern void next0600()0
extern void action0601();
extern void next0601()
oxtern void actionO602();
extern void next0602();
extern void action0603();
extern void noxt0603();
extern void action0604();
extern void nextO604()
oxtern void action0605()s
extern void next0O605()
extern void actionO606();
extern void nxctO606();
extern void action0607();
extern void nextO607();
extern void action0608()s
extern void next0608();
extern void action0ZO600();
extern void next0Z600();
extern void actionZO601();
extern void nextIO601();
extern void actioneO602();
extern void next0602();
extern void initO6();
extern void init_grainar();

APPENDIX A. VOICE DIALER APPLICATION SOURCE 101

dialoggen. c

/*** Dialog outines - Machine Generated ***/
#include dialog_global .h

#include "ueor.h"

void actionE0000()

void nextZ0000()

gra ar_diabl(state_arc (CURRENT_STATE));
CURRENT.STATE - GETID;

void initOO()

granar_enable(state_arc (CURRENT_STATE));
play_wavfile ("wlcome.wav");
printf(Welccme to the Voice Calling Demo\n)

void action0100()

Jet_uger_id(NonTezminalWords Cll);
)
void next0100()

grmmar_diuable(state_arc(CURRENTSTATE));
if (verify_uer_id())

CURRNT_STATE - MAIN_MENU;
else CURRENT_STATE - REPROMPT_ID;

void action0101()

(

void nextOl01()

gra mrr_disable (tate_arc (CURRENT_STATE))
play_wavfile (help-in-get-id.wav");
CURRENTSTATS - GET ID;

void actionE0100()

void nextE0100()

gra ar_disable (tateo_arc(CURRENT_STATE));
play_wavfile("hlp-in-get-id. wav')

void actionE101()

)
void nxtE0101()

granar_d4iable(statearc(CURRMT_STATZ));
CURRENTSTATE TOP;

void init01()

grannar-nable (tateoarc(CURRENTSTATE));
play_wavfile("sy-id .av)j
printf("Ploeao peak your -digit id\n'")

APPENDIX A. VOICE DIALER APPLICATION SOURCE 102

void actionO200 ()
(

void nextE0200()

granar_disable(state_arc(CURRENTSTATE));
CURRENT__TATE - GETID;

void initO2()

gra arenable (stat_arc (CURRENT_STATE))
play_wavfile("not-valid-id.wav");
printf("Sorry, that id number is not valid\n");

void action0300()

play_digit_response(PLAY_DIAL, NonTerminalWords1]),
wait_for touchtone ()

void next0300()

graamar_disable (tate_arc(CURRENT_STATE))
CURRENTSTATE - TRANSFER_OUT;

void action0301()

(

void next0301()

gramar_diable (stat-_arc (CURRENTSTATZ));
CURRENTSTATE - DIGIT_DIAL;

void action0302()

waitfor_touchtone()

void next0302()

gramuar_diable (state_arc (CURRZNT_STATE));
play_wavfil("x-pizza.wav");
printf("Ringing Pizza Hut.\nn);
CURRENT_STATE TRANSFEROUT;

void actionO303()

wait_fortouchtono ()

void nxt0303()

gramardilable(tate_arc(CURRENT_STATE));
play_wavf le("x-taxi .wav")
printf("Ringing Yellow Cab.\n")j
CURRENT_STATE - TRANSFEROUT;

void action0304()

wait_for_touchtone ()

void nxt0304()

gra=ardiaable(state_arc(CURRENT_STATE));

APPENDIX A. VOICE DIALER APPLICATION SOURCE 103

play_wavfi1 ("x-rental .wav");
printf("Ringing Hertz Rental Car. \n");
CURRENTTATE - TRANSFER-OUT;

void action0305()

wait_for_touchtone()

void nxt0305()

grmmar_diable(statearc(CURRZNTSTATE));
play_wavfile (x-garage. wav")
printf("Ringing Jerry' Garage.\n);
CURRZNmT_STATZ - TRANSFER_OUT;

void action0306()

wait_for_touchtone();

void next0306()

gramar_ddisable (state_arc (CURRENTTATE))
play_wavfile("x-polic .wav");
printf ("Ringing the Police.\n")j
CURRENT_STATE - TRANSFZROUTI

void action0307()

wait_fortouchtone ();

void next0307()

grumar_diaable(state_arc(CURRENT_STATE));
play_wavfile ("x-hospital.wav");
printf ("Ringing the Hospital. \n");
CURRENT_STATE TRANSFER_OUT;

void action0308()

)
void nextO308()

graar_disable(s tate_arc(CURRENT_STAT));
CURRENTSTATE - SPEED_DIAL;

void action0309()

void next0309()

gram mr_disable (tate_arc(CURRENT_STATE));
play_wavfile(help-main.wav");

void action0310()

(

void noxt0310()

grammar_diuable(state_arc (CURRENT_STATE));
play_wavfile(help-menu .wav");

void action0311()

APPENDIX A. VOICE DIALER APPLICATION SOURCE 104

void nxtO311()

grammar_disable(stat_arc(CURRZNTSTATZE))
play_wavfile (help-digit-dial wav");

void action0312()

{

void nxtO312()

grarmar-disabl (statt_arc(CUURRZNT_STAT));
play_wavfile("help-speed-dial .wav")
play_wavfile("help-speed-dial-list .wav);

void actionu0300()

}
void nxtZ0300()

grmmar_dimable(tate_arc(CURRENT__STATE));
play_wavfile("help-main.wav");

void actioE03010()

(

void nextE0301()

grammar_disable(state_arc(CURRNTSTAT))
CURRENT_STATE TOP;

void actionE0302()

void noxtE0302()

gramar_disable (tate_arc(CURRZNT_STAT));
play_wavfile(" help-main.wav);

void init03()

gran r_enable(state_aroc(CURRSNT_STATE))
play_ wavfil("main-prompt. wav");
printf("How may we help you\n");

void actionZ0400()

void nxtE0400()

grammar_disable(stat_arc (CURRENT_STATE));
CURRENT_STATE - MAIN_RMNU;

void actionE0401()

void noxtE0401()

granar_disable(state_arc(CURRENTS TATE));
CURRENT_STATE TOP;
)

APPENDIX A. VOICE DIALER APPLICATION SOURCE 105

void init04()

gramar_enable (state_arc(CURRT__STAT))

void action0500()
{
play_digit_ramponsa(PLAYDIAL, NonTerminalWord[l])
wait_for_touchtone ()

void next0500()

grman r_disable (tats_arc(CURRENTSTATE))
CURRENT_STATE - TRANSFER-OUTi

void action0501()
{

void nextO501()

granmr_disable(state_arc(CURRENT_STATZ));
play_avfile("help-in-digit-dial .av");

void action0502()

)
void nextO502()

gra niar_disable (tate_arc(CURRENT_STATE));
play_wavfile("cancelled.wav");
CURRENTSTATE - AINMENU;

void actionE0500()

}
void nextE0500()

gramar_disable(stat_arc(CURRENT_STATE));
play_wvfile(help-in-digit-dial .wav');

void actionEO501()

void nextE0501()

grrna r_diuable(state_arc(CURRENT_STATE))I
CURRENT_STATE - TOP;

void actionE0502()

}
void nxtE0502()

graar_disable(statearc(CURRENT_STATE))
play_wavfile("try-again.wav")I
printf("Please try again\n");

void init05()

granar_enable(state_arc(CURRENT_STATE))
play_wavfile("number.wavm");
printf ("Number please\n);
)

APPENDIX A. VOICE DIALER APPLICATION SOURCE 106

void action0600()

wait_for_touchtone ()

void nxt0600()

(
grauar_diable(stat_arc(CURRENT_TATZ))
play_avf ile (nx-pizz. wav)
CURRENTSTATE - TRANSFEROUT;

void action0601()

wait_fortouchtone();

void next0601()

gramar_disable(state_arc(CURRENT_STATE))
play_wavfil("x-taxi .av);
CURRENT_STATE - TRANSFER.OUT;

void action0602()

wait_for_touchtone()i

void next0602()

gramar_diable(state_arc(CURRENTSTAT))!
play_wavfil ("x-rental .wav");
CURRENT_STATE - TRANSFEROUT

void action0603()

wait_for_touchtone ()

void next0603()

gramar_diable(state_arc(CURRNTSTAT))
play_wavfil (" x-garage .wav)
CURRENT_STATE - TRANSFER_OUT;

void action0604()

wait_for_touchton()

void next0604()

gra=ar_digable (tatoarc(CURRNTSTATZE))
play_wavfilo(x-polic .wav")I
CURRENT_STATE - TRRNSFEROUT;

void action0605()

wait_for_touchtone ()

void next0605()

granar_disable (state_arc (CURRENTSTATE))
play_wvfileo(x-hospital .wav")
CURRENTSTATE - TRANSFER_OUT;

void action0606()
{

APPENDIX A. VOICE DIALER APPLICATION SOURCE 107

void nxt0606()

gramr_disable (tato_arc(CURRZNT_TATZ));
play_wavfile("help-in-peed-dial .wav")

void action0607()
{

void next0607()

granar_di4able(state_arc(CURRENT_TATE));
play_wavf le("hlp-speed-dial-lit. wav-);

void action0608()

(

void nextO608()

grmmar_diable(statarc(CURRETT_STATZ));
play_wavf le(cancelled.wav");
CURRENTSTATE - MAINWMENU;

void actionE0600()

{

void nextE0600()

grammr_diable (state_arc(CURRZNT_STATE));
play_wavfile("help-in-speed-dial .wav);

void actionE0601()

}
void nxt0601()

granur_disable (tato_arc (CURRENT_STATE));
CURREZT_STATE - TOP;

void action0602()

void nxtE0602()

grauar_diable(state_arc(CURRENT_STATE));
play_wavfile("try-again.wav");
printf("Please try again\n");

void init06()

grammar_enable(tat_arc(CURRENT_STATE));
play_wavfile(namrs-short-l .wav");
printf("Name please\nl)

void init_granar()

gramar_diuabl (statearc (0));
grainar_disable (tate_arc(1));
grammardisable(statearc(2));
gra-ar_disable(state_arc(3));
gran ar_disable(state_arc(4));
gramur_disable(state_arc(5));

108APPENDIX A. VOICE DIALER APPLICATION SOURCE

grammar_disable(state_arc(6));

}

Appendix B

BNF Grammar for the Dialog

Specification Language

This appendix includes the BNF grammar which was used to build the language parser

for the dialog specification language. The language parser was constructed using the

Unix utility yacc and this grammar specification.

%
/* ** */

/* dialog_parer.y --
parter for dialog pecification language.

*/
/* *** */

%union (/* stack type */
int tokj
char syml128];

%token <tok> TOK_ERROR
%token <tok> TOK_DXALOG
%tocen <tok> TOK_STATE, TOK_GLOBAL_STATE
%token <tok> TOK_PROMPT_TEXT, TOKPROMPT_FIL
%token <tok> TOKINPUT, TOKEVENT
%token <tok> TOKJ_ XT, TOK ACTION
%token <tok> TOKCONDNXT, TOKCOND_ACTION
%token <tok> TOK_NABLE
%token <tok> TOKLPAREN, TOK_RPAREN
%token <tok> TOKCOIMA, TOK_PERIOD
%token <tok> TOK_DEFAULT
%token <tok> TO_NAXE, TOK_TAo
%token <tok> TOK_INT, TOK_RiAL
%token <sym> TOK_STR, TOK_SYM
%token <tok> TOK_NONT

109

APPENDIX B. BNF GRAMMAR FOR THE DIALOG SPECIFICATION LANGUAGE1 10

%type <gym> testexp
%type <sym> function prompt wavfila
%type <gym> arg expr
%type <sym> string ymbol

%start dialog

dialog TOK_DIALOG symbol states TOR_RPAREN
{ GenDialog($2); }

states :tate states

I

state : TOK_STATZ symbol

I TOkGLOBAL_STATE

items TOM_RPAREN
(GnState($2) }

item TOK_RPARUE
{ GenOlobalState ()

items : item item

item
I

I

TOKPROMPT_TEXT pretextprompts TOK_RPAREN
TOK_PROMPT_FILE prefileprompts TOK_RPAREN
TOK_INPUT inputs TOK_RPAREN
TOK_EVENT vents TOK_RPAREN

pretextprompts: pretextprompts prompt
(GonPrePrompt(PROMPTTEXT, $2),)

posttextprmts: posttextprompts prompt
(GenPostPrompt(PROPTTCT, $2); }

prefileprompt: prefileprompts prompt
(GenPrePrompt(PROMPT_FILE, $2) })

I

postfileprompts: postfileprompts prompt
({ enPostPrompt(PRONPT_FILE, $2)1 }

prompt : string (strcy($$, $1) EMEDFUNCTION - 0o)
I wavfile strcpy($$, $1); EMBED_FUNCTION - O; }
I TOK_LPAREN function TOK_RPAREN

({ trcpy($$, $2) EMBED_FUNCTION - 1)

wavfile symbol { strcpy($$, $1) })
I symbol TOK_PERIOD symbol (trcpy($$, $1);

strcpy($$+strlen($$), ".");

APPENDIX B. BNF GRAMMAR FOR THE DIALOG SPECIFICATION LANGUAGE1 11

strcpy($$+strlen($$), $3))

inputs : input input.

input : string options

evonts oevent events

I

event : string option

options : option options

{ OGninput($1) }

{ Genvenvt($))

i

option :TOK_EWABLE iabolexpr TOK_RPARN
ITOKACTXON action TOK_RPAREN
TOK_NEXT next TOKRPAREN

ITOSKPROMPTTEXT pott-xtprmt TOK_RPAREN
ITOK_PROKPT_FIL poutfileproqpts TOKRPAREN
ITOKCOND_ACTION actioncond TOK_RPAREN

{ GnActionCodClose())
| TOKCONDNEXT nextcond TOK_RPAREN

enable_expr: expr

(onNextCondClose();

(GenEnable($1); }

action : actionfnc

actionfnc: function (GenAction($l); }

actioncond: actioncond actioncondex

I

actioncondex: TOK_LPAREN expr function TOK_RPAREN
{ GenCondAction($2, $3))

function: symbol TOKLPARZN args TOK_RPARN
({ trcpy($$, $1); }

args

I

args TOk_COUA arg { ArgAppend($3);
arg (ArgApend($1)l }

arg : ymbol
I TOkNNONT

{ trcpy($$. yytext))
(trcpy($$, yytext))

next : ymbol

}

{ GerNext ($1) }

APPENDIX B. BNF GRAMMAR FOR THE DIALOG SPECIFICATION LANGUAGE1 12

nextcond: nextcond nextcondex

nextcondex: TOK_LPAREN

expr :string
ITOKDEFAULT

symbol :TOK_SYM
i

string : TOKSTR

expr symbol TOK_RPAREN
{ GenCondNext($2, $3);)

{ strcpy($$, $1); }
(strcpy($$, yytext); }

{ strcpy($$, yytext);

{ yytext strlen (yytext) - 1] = 0;
strcpy($$, yytext + 1);)

Bibliography

[BBN93] BBN Systems and Technologies, Cambridge, MA. HARK Prototyper User's

Guide, March 1993.

[BBN94] BBN Systems and Technologies, Cambridge, MA. HARK Recognizer System

Integrator's Guide, January 1994.

[BN93] Christopher Baber and Janet M. Noyes, editors. Interactive Speech Tech-

nology: Human Factors Issues in the Application of Speech Input/Output to

Computers. Taylor and Francis, 1993.

[Joh78] S. C. Johnson. Yacc: Yet Another Compiler-Compiler, 1978.

[LS78] M. E. Lesk and E. Schmidt. Lex: A Lexical Analyzer Generator, 1978.

[LS93] Eric Ly and Chris Schmandt. Chatter: A conversational learning speech

interface. Technical report, Speech Research Group, MIT Media Laboratory,

1993.

[Luh91] Rick Luhmann. IVR trends. Teleconnect, 9(9):106-112, September 1991.

[Nie93] Jacob Nielsen. Noncommand user interfaces. Communications of the ACM,

36(4):82-100, April 1993.

[Pap93] Bruce Papazian. Management of errors in spoken language system dialogues:

A literature review. Technical report, Bolt, Beranek, and Newman, Inc., 1993.

[Per87] J.F. Perkins. Application software tools in speech technology. In Official

Proceedings of SPEECH TECH '87, pages 78-80, April 1987.

113

BIBLIOGRAPHY

[RE89] Teresa L. Roberts and George Engelbeck. The effects of device technology

on the usability of advanced telephone functions. In Proceedings of the ACM

SIGCHI '89, pages 331-337, 1989.

[Ren92] The Renaissance Group, Inc., San Jose, CA. Arch Technical Reference Man-

ual, December 1992.

[Ro189] Rolm, Santa Clara, CA. PhoneMail Release 4: Implementation and Admin-

istation Guide to Basic Features, June 1989.

[SF85] Axel T. Schreiner and George H. Friedman. Introduction to Compiler Con-

struction with UNIX. Prentice Hall, Inc., 1985.

[TWW93] Mike Tate, Rebecca Webster, and Richard Weeks. Evaluation and prototyping

of dialogues for voice applications. In Interactive Speech Technology: Human

Factors Issues in the Application of Speech Input/Output to Computers, pages

157-165. Taylor and Francis, 1993.

[VP85] R.S. Van Peursem. Do's and dont's of interactive voice dialog design. In

Official Proceedings of SPEECH TECH '85, pages 48-56, April 1985.

[WME93] Cathleen Wharton, Monica Marics, and George Engelbeck. Speech recog-

nition vocabulary scoping for automated call routing. In Proceedings of the

Human Factors and Ergonomics Society, pages 240-243, 1993.

114

