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Abstract
The distributional approach and competitive analysis have traditionally been used for
the design and analysis of on-line algorithms. The former assumes a specific dis-
tribution on inputs, while the latter assumes inputs are chosen by an unrestricted
adversary. This thesis employs the statistical adversary (recently proposed by Ragha-
van) to analyze and design on-line algorithms for two-way currency trading. The
statistical adversary approach may be viewed as a hybrid of the distributional ap-
proach and competitive analysis. By statistical adversary, we mean an adversary that
generates input sequences, where each sequence must satisfy certain general statistical
properties. The on-line algorithms presented in this thesis have some very attractive
properties. For instance, the algorithms are money-making; they are guaranteed to
be profitable when the optimal off-line algorithm is profitable. Previous on-line al-
gorithms although "competitive", can lose money, even though the optimal off-line
algorithm makes money. Against a weak statistical adversary, our methods yield an
algorithm that outperforms the optimal off-line "buy-and-hold" strategy. Further-
more, it is guaranteed to make a substantial profit when it is known that the market
is active and stable (i.e. there are fluctuations but the upward and downward fluctu-
ations tend to balance each other). In fact, our algorithm even makes money when
the market exhibits a slightly unfavorable trend.

Thesis Supervisor: Mauricio Karchmer

Title: Professor of Mathematics
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Chapter 1

Introduction

In many situations, we are forced to choose between different alternatives without

knowledge of each alternative's future worth. Our choices must be made in an on-

line manner. However, we often have partial information about the future. For

example, we may know that with very high probability, certain statistical properties

are satisfied. When making choices to maximize our future gain, it makes sense to

incorporate such information into these decisions. Similarly, on-line algorithms that

solve these types of problems can gain significantly by including some knowledge

of the future. In the areas of finance, economics, and operations research, we find

examples of this kind of decision making process (e.g. [20, 25, 29, 33]). In this thesis,

we examine a two-way currency trading problem against a statistical adversary [26].

1.1 Techniques for analyzing on-line algorithms

The analysis of on-line algorithms has typically involved either distributional analysis

or competitive analysis. In the former approach, the input is assumed to conform

to a "natural" or "typical" probability distribution. Based upon this distribution,

one seeks strategies with good average case performance. In the latter approach, the

input is generated by an adversary. In this case, one seeks to design on-line algorithms

which compare favorably against the optimal off-line algorithm.

In practice, the premise that a fixed distribution governs the nature of the input

9



is questionable. Moreover, even if the input in question follows a particular fixed

(or stable) probability distribution, it is often difficult to identify or construct a

mathematical model that accurately reflects the true distribution. For instance, a

great deal of effort has been invested in an attempt to identify probability distributions

of currency exchange rates, but there is still no evidence that such distributions exist.

A wide variety of (sometimes conflicting) opinions concerning the existence and/or

nature of such distributions can be found in [7, 10, 12, 21, 22, 23, 28, 32].

The competitive analysis approach first appeared in works on bin packing in the

1970's [14, 16, 17, 34] and then was explicitly formulated in the 1980's [4, 6, 18, 30].

This approach considers input sequences that are generated by an adversary and

measures performance with respect to the optimal off-line algorithm using the same

input sequence. Under this model, one avoids making the assumptions required by

the distributional approach. Instead, the assumption is made that the input will

be strictly adversarial. Specifically, the input sequence is chosen to minimize the

algorithm's overall performance relative to the optimal off-line algorithm. Such a

powerful adversary often does not reflect the nature of the input to many practical

problems.

Indeed, a few researchers have recognized the need for some middle ground ap-

proach that lies somewhere between the pessimistic competitive analysis and the

more optimistic distributional approach. They introduced a number of alternative

approaches [3, 5, 19, 26, 35]. In this thesis we focus on Raghavan's statistical adver-

sary [26]. Here, the underlying idea is to limit the power of the adversary in some way

dependent on the particular problem. Namely, the adversary is required to generate

input sequences satisfying certain (statistical) properties. For example, the adversary

may be required to maintain certain bounds on the number of requests of a certain

type, or to produce input sequences of which certain subsequences must satisfy par-

ticular constraints. The premise of this approach is that input sequences arising in

reality exhibit and conform to certain long-term statistics. Thus, by exploiting such

statistical constraints, the goal is to eliminate the possibility of extremely bad input

sequences, which do not occur frequently in reality. The hope is to show that one can
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place limited and realistic restrictions on an adversary which then allow the on-line

algorithm to perform well.

An important issue regarding the statistical adversary is whether the on-line player

should be allowed to make use of the statistical parameters associated with the ad-

versary. On the one hand, it would be more elegant to seek on-line algorithms that

perform optimally (or well) for all possible choices of the parameters and to use these

parameters only for the analysis (i.e. to express the performance in terms of these

parameters). On the other hand, we may allow our algorithms to use these param-

eters for the purpose of obtaining better performance. We refer to algorithms of

the former type as universal algorithms, and algorithms of the latter type as non-

universal algorithms. Certainly, universal algorithms are more desirable because they

do not assume knowledge of the parameters. However, in the universal approach,

the performances of two different algorithms are likely to depend differently upon the

parameters. In order to decide which algorithm to use, one needs to judge, perhaps

by conducting statistical tests, which algorithm will perform better under the par-

ticular circumstances. By doing so, one is transforming the two universal algorithms

into a single non-universal algorithm. In addition, since a non-universal algorithm is

tuned to the parameters, it can be designed to perform significantly better than the

corresponding universal algorithm.

1.2 Two-way currency trading

In this thesis we use the framework of the statistical adversary to analyze the two-way

currency trading game that is discussed in [11]. Specifically, we consider a discrete

variant of this problem in which the on-line player begins with some money, say

dollars, and is given an opportunity to invest in another currency, say yen, for some

period of time. The player would like to maximize his returns during this time by

taking advantage of fluctuations in the exchange rates by converting back and forth

between dollars and yen. The player assumes that a statistical adversary is controlling

the change in exchange rates. In the following chapters, we will analyze this problem
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for both strong and weak adversaries.

The two-way currency trading problem was first analyzed using traditional com-

petitive analysis. In [11], the authors present a competitive on-line strategy. However,

though this strategy is competitive, it is possible to experience losses although the

off-line strategy might be profitable. Before formally analyzing the problem, we give

an overview of the foreign exchange market.

1.2.1 The foreign exchange market

Financial investors trade currenices as they would other commodities (e.g. stocks and

bonds). In 1993, the daily worldwide volume of currency trading was around $750

billion[27]. One might question whether this volume is due to the growth of inter-

national trade or active currency trading (speculation). The volume of international

trade is less than 1% of the currency trading volume. Over 95% of the transactions

are between financial firms and banks. Therefore, one must conclude that currency

trading is not only an instrument of international trade, but has become a major

source of economic activity and investment.

Before 1973, the foreign exchange market followed a fixed exchange rate scheme.

With fixed exchange rates, the exchange rate was set by the participating govern-

ments. Over time, the exchange rate no longer reflected the actual market price for

various currenices. As a result, currencies often had to be re-valued. In 1973, a

floating exchange rate scheme was enacted. Now, the exchange rate is determined by

market pressures rather than international agreements.

Today, the foreign exchange market is composed of financial firms and government

banks. London, New York, and Tokyo form the major trading centers with additional

smaller trading centers located throughout the world. Because of the overlap in time

zones, the foreign exchange market is active 24 hours a day. Naturally, the volume

of activity will vary depending on which trading centers are open. Unlike most other

investments, there is no fee for performing a foreign exchange transaction. Instead,

the cost of transactions is incorporated into the bid-ask spread. The bid-ask spread

is the difference between the buy and sell exchange rates. Thus, financial firms or
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banks can generate revenue by conducting transactions. In this thesis, transactions

costs will refer to the bid-ask spread.

When investing in foreign exchange, there are two main steps involved: forecasting

and trading. Forecasting is predicting how exchange rates will behave in the future.

Given a forecast, the investor must decide how much to invest and when to invest.

For this, he relies on his trading strategy. If forecasting were perfect, trading would be

trivial. Unfortunately, forecasts are often wrong in direction, magnitude, and timing.

Furthermore, the reliability of forecasts is often unknown. Trading strategies must be

able to handle this uncertainty. Ideally, a trading strategy should be robust enough

to handle faulty forecasts, but still aggressive enough to profit when given accurate

forecasts.

Traditionally, both forecasting and trading have been done by human experts.

The recent trend has been toward computerized trading. Specific algorithms are

being used to both forecast and trade. Most of the emphasis has been on forecasting,

while trading has received scant attention. In this thesis, we examine optimal trading

strategies against a statistical adversary.

1.2.2 Forecasting

Forecasting techniques can be divided into two classes: fundamentals and technical

analysis. Fundamentals rely on basic economic principles such purchasing-power par-

ity and interest rate differentials. They tend to predict long term behavior. Technical

analysis uses historical data to detect patterns and trends. These predictions are

generally short-term and generally cannot be explained by economic principles. Both

techniques have their merits and drawbacks. Fundamentals can give an investor an

economic reason for the forecast, while technical analysis cannot. However, fundmen-

tals sometimes only give a direction of change (either up or down), while technical

analysis can give estimates of the magnitude. In addition, since fundamental are

generally used for long term predictions, it may take years to accurately evaluate

the performance of a fundamental model. On the other hand, short-term techni-

cal analysis models can be evaulated in weeks or months. Moreover, performance is
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the overriding factor, when judging financial models. If a technical analysis model

can consistantly give accurate forecasts, few people will care about the basis of the

underlying theory.

In a survey of major financial trading firms[31], the majority of firms used both

techniques. Although very different in nature, they can often be used in a complemen-

tary fashion. For example, fundmentals can be used to filter out salient currencies,

after which, technical analysis can offer additional analysis and reinforce suspicions.

In essence, the investor is given two different views of the future. One view based

on economics, and the other based on trends and patterns. Fundamentals belongs

to the study of economics and is beyond the scope of this thesis. Technical analysis

provides algorithms for forecasting and, therefore, is in the same spirit of the trading

strategies found in this thesis. The following is a brief summary of technical analysis.

In the 1960's and 1970's, technical analysis was viewed with great skepticism. The

predominate economic theory was that markets were efficient. The market price is a

reflection of all current information, and future prices are solely determined by future

news. Since changes in news are random (or as close to random as anyone can tell),

future price movements should follow a random walk. However, for markets to be

perfectly efficient, some rather unrealistic assumptions must hold. First, it assumes

all players are perfectly rational. Second, all players receive identical information

simultaneously. Third, given the same information, all players calculate the same

optimal strategy and execute concurrently. In reality, there are millions of different

players, some of whom are more rational than others. Information arrives to different

players at different times, 1 and, even given the same information, two rational players

can come to different conclusions based upon their risk aversions and time horizons

(short vs. long term).

Although markets are not perfectly efficient, there is no reason to believe prices

should be predictible. The market could be so close to an efficient market that it

is impossible to tell the difference (e.g. the market inefficienies might cancel each

1Fundamentalists believe the way to beat the market is to get better, more complete information
faster than your competitors.
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other out). A great deal of research has been put into the area of forecasting foreign

exchange rates with unconclusive (often contradictory) results. Some researchers

find evidence of predicatiblity ([9],[15]), while others conclude the opposite([13],[24]).

Some find evidence that daily rates are leptokurtic 2, while others find that in periods

of high volatility, rates are contarian3 . Furthermore, there is evidence that volatility

may or may not be clustered. Though there is no agreement on the exact form of

the exchange rate, the general consensus is the exchange rate sometimes deviates

substantially from the Gaussian random walk.

Many different techniques are used to forecast exchange rates. Some of them are

quite simplistic, while others are very involved. The following is a list of current

techniques in the literature. This list is certainly not exhaustive, and many other

successful techniques may not even be published (for obvious reasons).

Trading Range Break Rule Sell when the price exceeds its last peak, and buy

when it goes below its last trough.

Moving Averages Maintain both a short-term and a long-term average (e.g. three

weeks and fifteen weeks). Sell when the short-term average goes above the long-

term average, and buy when the short-term average dips below the long-term

average. This strategy is very popular. By adjusting the lengths of the short

and long term, one can create a wide variety of different strategies.

Linear regressions Create a time-series regression using the previous exchange rates

as independant variables. After calculating the regression coefficients, predict

the next exchange range and then buy or sell accordingly. This technique is

very flexible. By using absolute values, the regression can predict volatility. In

addition, seasonal adjustments and non-linear indicators can be added. Many

analysts believe that non-linear statistics will greatly improve forecasting. How-

ever, completely non-linear techniques are not currently available.

2 Prices are leptokurtic if they tend to move in the same direction. In other words, if prices are
more likely to go up if they just went up, and more likely to go down, if they just went down

3 Contarian is the opposite of leptokurtic. Prices are more likely to move in the opposite direction.
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Neural Nets Theoretically, neural nets can compute any function and have the abil-

ity to learn the data set. Unfortunately, their implementation is often difficult.

Designing the exact structure of the net is highly subjective. Also, when train-

ing, the net can be trapped into local miminums. Nevertheless, many financial

firms use them as a filter. Neural nets can choose which stocks or currencies

are interesting, and then further analysis can be performed.

1.2.3 Trading

After given a forecast, the investor must now decide how to invest. One obvious

strategy is the buy-and-hold strategy. Given a forecast that the price will increase,

the investor will buy the currency and hold onto it. If the forecast is for the price to

drop, the investor will not buy the currency4 . In this thesis, we will compare optimal

tradings strategies to the buy-and-hold strategy in a statistical adversarial model.

For forecasts that call for sudden short-term changes, the buy-and-hold strategy is

very close to optimal. However, for forecasts that call for gradual long-term changes,

the optimal strategy does exponentially better.

Other trading strategies include Merton's constant rebalanced portfolio[25] and

Cover's universal portfolio[8]. With Merton's strategy, the investor chooses to invest

a constant, fixed percentages of his wealth in each currency. For example, he may

choose to invest 30% in dollars and 70% in yen. As the exchange rate varies, he will

exchange currencies, so that the 30% - 70% ratio is maintained. In universal portfolios,

the investor again splits his wealth among the different currencies. However, past

behavior is used to determine what percentage invested in each currency. Initially,

the investor splits his wealth equally among all currencies. As a particular currency

begins to perform well, relative to other currencies, the percentage invested in that

currency increases. Likewise, as a currency performs poorly, the percentage invested

decreases.

4A more sophisticated investor might sell the currency short.
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1.3 Summary of Results

We begin by considering a statistical adversary that is forced to generate sequences

of exchange rates of a known length, say n, such that the optimal off-line return

on these sequences is larger than a known quantity, HI. We call this adversary the

(n, H)-adversary.

* We present a general scheme that identifies optimal on-line strategies against

statistical adversaries constrained by such (and similar) features. Against each

particular adversary, this scheme yields the optimal on-line strategy in the form

of a dynamic program in terms of the statistical parameters. For usage, one can

then efficiently pre-compute the on-line algorithm for arbitrary choices of these

parameters.

* We identify the optimal on-line strategy relative to the (n, II)-adversary and

show that it is money-making as long as II > 1. Unfortunately, it is shown that

this strategy can only guarantee a very small fraction of the optimal off-line

profit.

* Next we consider stronger adversaries that do not provide the player with either

the value of n or the value of II. Against these adversaries, we show that it is

not possible to design a money-making strategy.

* In contrast, we then consider a weaker adversary in which the player has knowl-

edge of the overall movement of the exchange rates during the n time periods

and a factor a > 1 by which the exchange rate changes (either up or down)

during each time period. We call this new model the fixed fluctuation model.

We then identify and analyze the corresponding optimal on-line strategy. This

strategy exhibits some striking properties.

- Aside from being money-making, this strategy always outperforms the

optimal off-line buy-and-hold strategy.

- When the market is stable and active (i.e. there are fluctuations but the

upward and downward fluctuations tend to balance each other with respect
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to the trading period), this strategy yields exponential profits (in n), even

if the market has a slight unfavorable trend. This is somewhat surprising.

Intuitively, it is reasonable to believe that one should avoid any finan-

cial transactions during stable periods (in comparison, the buy-and-hold

strategy will not make any profit in this situation).

Based on preliminary experimental results, it appears that the fixed fluctuation

model may provide a practical approach to investing strategies.

The rest of this thesis is organized as follows. In Chapter 2 we define the problem,

identify the optimal money-making strategy against the (n, II)-adversary, and derive

some of its properties. In Chapter 3 we introduce the fixed fluctuation model as a

a weaker adversary and find the optimal strategy. In Chapter 4, we discuss various

implemenation issues and give some preliminary results. Finally, Chapter 5 contains

some concluding remarks.
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Chapter 2

Trading Against the Statistical

Adversary

2.1 Definitions and notation

We consider a discrete variant of the two-way trading problem in which the on-line

player is given 1 dollar, and is given the job of maximizing his return over a time

period of n days by exchanging money back and forth from/to yen. With these two

currencies, there is an associated exchange rate sequence E = el , 2,..., where e,

the exchange rate for the ith day, equals the number of yen that can be purchased for

one dollar on that day. The player is required to finish the game with all the money

converted back to the initial currency. We assume that there are no transaction fees

and that the player may trade arbitrary fractions of dollars/yen.

For any strategy S and finite exchange rate sequence E, let Rs(E) denote the

return of S when it begins the game with 1 dollar and exchanges money in accordance

with E. Let OPT denote the optimal off-line two-way trading strategy. Notice that

for a given exchange rate sequence, E, OPT will always convert all available dollars

to yen at all exchange rates which are local maxima in E, and all available yen back

to dollars at all exchange rates which are local minima, with the exception that the

last transaction must be yen to dollars. We say that a trading strategy, S, is a

money-making strategy if for any exchange rate sequence, E, with ROPT(E) > 1,
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then Rs(E) > 1, as well.

2.2 Optimal trading strategies against the statis-

tical adversary

We can specify trading strategies in a "normal form" as follows. Every day, the player

might wish to convert some dollars to yen and/or some yen to dollars. It should be

clear that only one transaction (i.e. dollars to yen or yen to dollars) is sufficient. It is

convenient to conceptualize every such transaction as if the strategy first converted

all yen back to dollars and then converted a fraction, s, of the total available dollars

to yen. Any such transaction can be specified by one number, s E [0, 1]. In this way,

we can specify the activity of any conversion strategy by the sequence sl, 82,...,S

where for each day, i, si is the fraction of dollars that should be converted to yen,

immediately after all available yen are converted to dollars. By the rules of our game,

Sn must be zero.

Suppose that the on-line player knows II, the return of the optimal off-line player

for an n-day game. We now derive the optimal on-line strategy for any n > 2 number

of days. To derive the optimal strategy we require the following observation. Consider

Figure 2-1, which illustrates an exchange rate sequence of 10 days (yen per dollar).

First, notice that the optimal (off-line) return is

( 6 ( e8 e2 e3 e4 e6 e

e5 e7 e9 ! e3 e4 e 5 e7 e9

In general, it can be shown that for any n-day sequence,

n-1
II = I max {1, ei/ei+l }.

i=l

Any conversion strategy "realizes" its dollar profit only on downward runs of the

exchange rate sequence. If II is known at the beginning of the sequence, then on each

20



Figure 2-1: Realization of profit in a 10-day game

day, the on-line player can determine exactly what the optimal off-line profit would

be for an (n - 1)-day sequence starting on that day - that is, if the off-line player

were to start a "new game" consisting of n - 1 days. We illustrate this by referring to

Figure 2-1. Since on day 2 we are not in a downward run with respect to the previous

day, the optimal off-line return must remain at 11 if a new game is to begin at that

moment. On the other hand, on day 3 (knowing only the first three rates) we know

that the off-line player has just realized a factor e2/e 3 of his total dollar return, so

the optimal off-line return must be Il' = II/-2 if a new game were to be started that

moment. In this way, the on-line player knows, after each exchange rate is revealed,

exactly what the optimal off-line return would be if a new game were to be started

that day.

This observation enables a dynamic programming derivation of the optimal on-

line strategy using the Principle of Optimality [2]. In our context it can be stated

as follows: the optimal on-line strategy has the property that, whatever the initial

rate and the initial choice of how many dollars to trade, the remaining trades must

constitute an optimal on-line strategy with regard to the state resulting from the first

trade.

More formally, for n > 2, let R.(II, el) denote the return of the optimal on-line

strategy for an n-day game, given that the first exchange rate is el and that the

optimal off-line return for the entire period is II. When exchange rates are chosen by

an adversary who tries to minimize the optimal on-line return, we have

21
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--- max
fraction of dol-

lars sl to trade

= max min
0<sl<1 e2>a-

total worth in dol-1

min lars after 2nd day . Rn- 1 (updated I, e2)
2nd day rate is revealed 

rate e2

[(e -1) S + 1] R_l (min {1 , e2} e2 (2.1)
., J e1

where the lower bound, -, on possible second day rates, e2, is due to the assumption

that the total off-line return is H. In addition, the following is clearly a boundary

condition:

R2 (H, .)= 11. (2.2)

Thus, (2.1) and (2.2) identify the optimal on-line strategy, which we denote by S*.

The first transaction that S* performs is the purchase of yen with a fraction s of its

dollars, where s is the quantity which maximizes the right hand side of (2.1).

Lemma 1 S* is a money-making strategy.

Proof. We prove by induction on n > 2 that for any IIH > 1 there exists a number

Bn(lH) such that 1 < B(H) < R,(H, .)

Base case (n = 2): Then by (2.2) R2(I,.) = II > 1 and we take B2(H) = R2(In,).

Induction step: By the induction hypothesis on n - 1 for any H > 1 there exists a

number Bn_l(H) with 1 < B-(HII) < R_ 1(H, ). Let II > 1 be given. Consider the

following three cases:

* case (i) el = e2: Then min {I, e2/el}

all 0 < sl < 1. Hence, in this case bl

Rn (II, ).

* case (ii) e < e2: Since e2/el > 1, min

choose e2 arbitrarily high so that ~' --

investment sl. In this case, for all 0 sl

but can be made arbitrarily close to (1

Hence, for any choice of sl < B-I(il)-

bound on R (II,.).

= II, and R(H, el) = R-(II(,e 2) for

d B_ 1( (H) > 1 is a lower bound on

{H, He2/el} = II. The adversary can

O thus diminishing the return on the

< 1, the on-line return is greater than

- s 1)Rn.1 (H,e2) > ( - sl)B- ll)
b2 df (1 - sl)Bn-(II(H) > 1 is a lower

22
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* case (iii) el > e2: Now, for every positive fraction s, (el/e 2 - 1)sl + 1 >

1. If Ile 2/el > 1 then by the induction hypothesis, there exists a number

B_(I(He2/el) with 1 < B_l(I(e2/el) < R~_j(IIe2/ei,e 2) > 1. Otherwise

HIe2 /el = 1 and R._(1e 2 /el,e 2) = 1. In either case, for each positive sl,

b3 df (el/e 2 - )sl + 1 > 1 is a lower bound on Rn(i, .).

Thus, combining the conclusions of the above cases, for any choice of sl < B_ 1 (() -

B(I) tdf min{bl, b2, b3} is greater than one and B,(II) < R,(II, .), which completes

the induction step. 

The task of obtaining a closed form expression for (2.1) seems to be rather hard.

The following lemma provides an upper bound on the return of S* for any II and

n.

Lemma 2 For any I > 1 and n > 2,

1
Rn(H) 1-(1_ - )n- l

Proof. Consider the following restricted version of the (n, II)-adversary. On

each day, i, i > 2, the restricted adversary has two options. either to decrease the

exchange rate by a factor of 1 (i.e. e = ), or to increase the exchange rate by a

very large factor so that the current dollar value of the previous investment, sil- -

is negligible. Notice that once the adversary chooses and acts the first option, there

will be no more downward fluctuations since the optimal off-line player has realized

a return of II dollars. Hence, if this is the case, the game is over.

Denote by /Rn(H) the optimal on-line return against this restricted adversary.

Clearly, R2(H) = . Suppose the on-line player invested on the first trading day

O < s < 1 dollars. Then, if the adversary chooses the first option (i.e. e2 = - ), the

game is over and the on-line return is sII + 1 - s. On the other hand, if the second

option is chosen, then the dollar return on the first investment, s will be arbitrarily

close to zero, and the total on-line return will be arbitrarily close to (1 - s)R_ 1 (II)

as the player can still obtain an optimal return for the rest of his money.
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The on-line player will choose s to maximize his total return, and the adversary,

while knowing the choice of s, will choose one of his options to minimize the on-line

return. Hence, the optimal on-line return can be made arbitrarily close to

R(H) = max min{sHII + 1 - s, (1 - s)R_l((H)}.
0<s<1

Both these quantities are linear functions of s. The first function is increasing and

the second, decreasing. Hence, the on-line player must choose s satisfying

sIH + 1 - s = (1 - s)Rk_(I). (2.3)

Let s* be the solution of (2.3). Thus, kR(I1) = (1 - s*)R_(II). Solving for s* we

obtain
s* = Rn_1(II) - Rn (II(2.4)

- Rsn-1(11) (2.4)

By substituting (2.4) into Rn(IH) = s*H + 1 - s* = s*(I- 1) + 1, and rearranging,

we obtain
1 1 H-1 1

RA(n) H I _ (n)

Thus,

R21 (11) =

1 II-1
Rr'(n) = + -R1(n).

It is easy to see (e.g. by induction on n) that R-l(II) = - (1- ) n-. Hence,

1( 1) = 1(2.5)
Since Rn(H) is the return against the restricted (n, HI)-adversary, it must be an upper

bound for Rn(H, ), the optimal return against the (unrestricted) (n, HI)-adversary. 

Using the approximation (1- ) = (1 -I n e- , for large II, we
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obtain

An(J) enl1 1-e- 
It is not hard to see that

* if = w(n), thene- , - and / (H) n1 .

If II = O(n), then R,(H) = - where c is some positive constant;

* If II = o(n), then Rn(H) approaches 1.

Hence, the optimal return against the (n, H)-adversary can be a minuscule fraction

of the optimal off-line return.

2.3 Games against stronger adversaries

One can think of several meaningful ways to strengthen the original adversary. Here

we consider two stronger adversaries which correspond to the cases where the on-

line player does not know H or does not know n a priori. In either case we prove

the nonexistence of a money-making strategy for non-degenerate strategies. A non-

degenerate strategy is one that makes at least one non-zero transaction.

Lemma 3 For any n > 2, and any non-degenerate on-line strategy S that only knows

n in advance, there is an exchange rate sequence, E = el, e2,... , en for which Rs(E) <

1 and RopT(E) > 1, even if S also knows in advance that there is a positive off-line

profit.

Proof. Let n = 3. We show how the adversary can construct a sequence, E =

el , e2, e 3 for which Rs(E) < 1 and ROPT(E) > 1. Let el be any positive real. If S

does not purchase any yen on the first day, then, since S is non-degenerate, it must

buy some yen on the second day and the adversary can take el > e2 < e3. Clearly,

RoPT(E) can be made arbitrarily large and Rs(E) < 1. Therefore, assume that S

trades sl > 0 dollars on the first day (with rate el). If si = 1, the adversary can take
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any el < e3 < e2 with a clear loss to S and a return of e2/e 3 to OPT. Thus, assume

that sl < 1. Let 6 be any positive real such that 6 < s. For any 0 < < 1 let

s1e1(1 + e)
e2 = s(1 + )--; (2.6)

e3 = e2/(1+ ). (2.7)

First, notice that since < 6, e2 and e3 are positive and hence, well-defined

exchange rates. Also, it is easy to see that e2 > el. Therefore, to perform optimally

from this stage onward, S must convert the remaining dollars to yen on the second

day and all yen back to dollars on the last day. Thus,

Rs(E) < S1el + (1 - )e2 (2.8)
e3

Substituting (2.6) and (2.7) for e2 and e3 in (2.8) respectively, it is not hard to verify

that Rs(E) < 1 - . Clearly, ROPT(E) = e2/e3 = 1 + e.

It is easy to extend this exchange rate sequence to any length n > 3. 

Lemma 4 For any II > 1, and any non-degenerate on-line strategy S that only

knows II in advance, there exists an exchange rate sequence, E = el, e2,... for which

Rs(E) < 1 and RoPT(E) = R.

Proof. Fix A > H. Consider the exchange rate sequence defined by: el = 1, and

ei+l = eiA, i > 1. As S is a non-degenerate algorithm we can assume, without loss

of generality, that it invests some dollars, t, on the first trading day. Otherwise, the

adversary can wait until S invests some amount and then start. Hence, we assume

that t > 0.

After investing t on the first day, the exchange rate rises so that e2 = eA. Then,

S's net worth in dollars is now

t1 e 1 tle+ 1 - t = + 1 - t,Ael A
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and has incurred a loss of

1-( + 1-tl - = tl(1- ).

In order to recover from this initial loss, we claim that on each day i > 2, S

must invest at least E dollars. Otherwise, the adversary will drop the exchange rate,

by a factor II, on the following day thus ending the game with S having a loss (i.e.

Rs(E) < 1) and an optimal off-line return, II. The claim is proven by induction on i.

Base case (i = 2): Let t2 be the dollars invested on the second day. In case of a drop

by a factor of II on the third day (i.e. to the rate ), the gain will be t2(H - 1). This

gain must exceed the previous loss, so

1 t A -1 t1t2(n- 1) > tl( - A) " t2 > - 1 > A

Induction step: On each day where ei = ei-lA, S incurs losses. Therefore, S's wealth

on day i is less than his wealth on day 2. In the case of a drop of II on the (i + 1)th

day, the gain will be t(II - 1). Again, this gain must exceed the sum of all previous

losses (which is at least as large as the first day's loss), so ti > . Therefore, the

induction step is complete.

It follows that once the on-line player has invested t dollars, he must invest a

minimum amount of , on each of the remaining days. This is, of course, impossible.

Once his money runs out, the adversary drops the exchange rate by a factor of II,

and the on-line player ends the game with a loss. 

2.4 Games against weaker adversaries

Against the (n, II)-adversary, the on-line player is forced to invest very small amounts

on most days since the adversary can depreciate most daily investments by increasing

the exchange rate arbitrarily. Theoretically, this can be done until the second to

last day. Such exchange rate sequences are, of course, unrealistic. By imposing

additional suitable constraints it is possible to reduce such threats. For example,
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by requiring that all rates are drawn from the interval [m, M] this threat can be

substantially reduced. There are many other constraints that can be added. In fact,

the possibilities are practically unlimited. We now specify a few.

* maximum daily fluctuation ratio: a number a > 1 such that for every day i, the

next day's rate, ei+l, is in [eia]. Although we measure the time difference

between two successive exchange rates by "days", these time differences may

be of any size (seconds, minutes, etc.), and, in fact, they need not be of a fixed

size.

* minimum and maximum bounds on exchange rates: numbers, m and M, such

that all exchange rates are within the interval [m, M].

* maximum run length: a number p such that there is no monotone increasing

(decreasing) subsequence of consecutive exchange rates of length longer than p.

* number of extrema points: a number k such that the number of minima and

maxima in the exchange rate sequence is k.

* statistical functions of exchange rate sequences: "standard" statistical functions

like mean and standard deviation may be considered.

It is possible to incorporate any (subset) of the above constraints in (2.1) to yield an

optimal on-line strategy against the corresponding, more constrained adversary. For

some of these adversaries, we simply have to replace the bounding interval for possible

choices of e2, which was originally [o, o). Clearly, if we add more constraints, the

resulting strategy must be money-making. Intuitively, by the inclusion of additional

"effective" constraints, one should obtain strategies with superior performance. The

appeal of this scheme is that the users of our strategies may choose their own set of

statistical features and obtain optimal on-line performance against an adversary that

reflects "financial nature" according to their own beliefs.
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Chapter 3

The Fixed Fluctuation Model

3.1 The adversary

Using our scheme, we now derive and analyze the optimal strategy against a weak

adversary that is restricted by a constraint which is, in a sense, a hybrid of the (n, II)-

constraint and the maximum daily fluctuation ratio. This constraint will reduce the

unrealistic threats that can be made by the (n, II)-adversary. The parameters of

the new constraint are (a, m, n) where a represents a fixed ratio between any two

successive exchange rates, m denotes the number of downward changes, and n is

the total number of changes. Since each downward change in the exchange rate

corresponds to a realization of dollar profit, we know that for each exchange rate

sequence conforming with (a, m, n), the optimal off-line profit is am. Notice that n

in this constraint measures the total number of the a-changes whereas in the (n, II)-

adversary, n is the length of the exchange rate sequence. The corresponding adversary

is called the (a, m, n)-adversary.

In practice, daily fluctuation ratios are variable. Thus, to approximate fixed fluc-

tuations the player must dynamically "scale" the time axes by waiting until the

exchange rate fluctuates by ratios close to a and then act as if one "day" has elapsed.

In essence, time axes is being scaled to measure volatility rather than actual physi-

cal time. Instead of having decision points every fixed unit of physical time, decision

points only occur after the exchange rates has moved some fixed amount. Thus, in pe-
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riods of low volatility, time is expanded by having very few decision points. Similarly,

time is compressed during high volatility. A major advantage of fixed fluctuations

is that it considerably simplifies the analysis. In the next section, we give an exact

solution for the optimal strategy. As a by-product, the user may choose a to filter

out insignificant, "noisy" fluctuations (e.g. very small fluctuations must be avoided

when transaction fees are introduced) and to control the number of transactions per

unit of time.

We assume that the on-line player knows (a, m, n). Notice that this constraint

strictly subsumes the knowledge of (n, H) in the previous constraint since II = am .

However, against the (a, m, n)-adversary the player is given additional valuable knowl-

edge. For sequences conforming with (a, m, n), we expect the exchange rate to change

at a rate of 2 -1 (i.e. the forecast). Hence, even knowledge of the ratio may be

extremely valuable as it represents the trend during the period in question. Given the

knowledge of a particular trend (either downward or upward) one can use standard

techniques (via the use of future contracts) to guarantee the profit of the buy-and-hold

strategy. Hence, of particular interest is the case m = n in which exactly half of the

changes are upward and half the changes are downward. If this is the case, we say

that the exchange rate is stable and active.

3.2 The optimal strategy

Let R,(m,n) be the optimal on-line return with parameters a, m, and n. When

the on-line player invests s, his return is either (as + 1 - s)R,(m - 1, n- 1) or

(s + 1 - s)R,(m,n - 1), which correspond to a downward change and an upward

change respectively. The adversary will choose the minimum of these two values.

Hence, the following recurrence identifies the optimal on-line strategy which we call

S**.

R,(O0,n) = 1,

R,(n n) = a'
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Ra(m,n) = max min (as + 1 -s) R(m - 1, n - 1), (+ 1 Rm n
(3.1)

We now derive some interesting properties of the strategy S**. First, notice that

the left operand of the "min" in (3.1) is increasing with s while the right operand is

decreasing with s. Hence, the optimal strategy sets s so that (as + 1 - s). R,(m-

l,n -1) = ( + 1 - s) R,(m, n - 1). Solving for s,

R,(m, n -1)- R,(m - l,n -1)
(a- 1). Ra(m- 1,n -1)-( 1). R(m - 1, n- 1)'

Substituting for s, we obtain

Ra(m, n) = ((a- 1) - -(m-1 - ( n - 1)) + 1) R~(m-1 n-1)(a - 1). (R(m ,n - 1) - R (m -l,n -1))
'+lR,,(m,n- 1)-(m- 1n-1)

Rc(m - 1, n - 1) + Ra(m - l,n - 1)

Setting Rl(m, n) d f I and inverting both sides,- Ra(m,n)

a 1
R-l(m,n) = - 1 Rl(m',n- 1) + a-- R,'(m - 1,n - 1). (3.2)

Set , df 12 " and let B(k; n, p) df Eik=o ()pi(l p)n-i, the partial binomial sum.

The following lemma provides a solution to (3.2).

Lemma 5 Rl (cn, n) = B(n(l - c)- 1; n- 1,1 /3) + an(1-2c)B(cn- 1; n- 1, 1- 3)

Proof. Recall the initial conditions of S** (3.1). For all n,

Rl (O, n) = 1;

Rl'(nn) = a-n

Intuitively, R- (m, n) has no meaning for m > n or m < O0. We now extend R-l (m, n)

to these cases, while still satisfying both the recurrence and initial conditions.
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Let R '(m, n) = 1,m < 0 and R>1(m, n) = Ca(n-2m), m > n. Note that for n = m,

Ca(n- 2m) = Ca-n, so the two conditions combine to R-l(m, n) = Ca(n-2m), m > n.

Claim: The extended R/l(m, n) satisfies the recurrence and the initial conditions.

Proof of claim: By induction on n. For the base case, n = 1, we have R-l(m, 1) = 1

for m < 0, and Rl 1(m, 1) = a(1-2m) for m > 0. The initial conditions R,1 (0, 1) = 1

and R-1 (1, 1) = a- 1 are satisfied. We assume the induction hypothesis for n- 1, and

prove it for n.

1. For m < 0,

R, (m, n)

R (m, n)

= _RZ(m,n - 1) + _R(m- ,n- 1)

= 1 -1 .1
ar+ 1 a+ 1a+1 a+l

-1.

o~ 1-+ -Rl(mn, n-1) + R(m - n -1)
a n-1-2m n-1-2m+2

-- (n-2ma

I

Consider the directed graph in Figure 3-1 . Each node is labeled (x, y) with the

"root" labeled (m, n). The value stored at each node is R-l(x,y). For node (x,y), x

corresponds to the vertical height in the grid. "Leaf" nodes have height 1, and the

"root" has height n. y labels the left-to-right diagonals. The rightmost diagonal is

m, the diagonal immediately below is m - 1, etc. The left most diagonal (a single

node) is labeled m - n + 1.

For a node (x, y), its left child is (x- 1, y - 1) and its right child is (x, y - 1). To
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m-n+2

m-n+1

#/ N

101 
(m-n+l,l

m
(m,n)

m-1

m-2 (m-l,n-l l

, , ,KA A<
1 1 a O a*

(-1,1) (,) (1,1) (2,1)

n

n-i

. n-2

3

2

A 1
-2m+1

(m,1)

Figure 3-1: Directed graph showing the expansion of the recurrence

compute R l(x, y) from its children, we add 1 R- 1 (x-1,y-1) (the contribution of
th e left child) to -1
the left child) to R1 (x, y-1) (the contribution of the right child) (i.e. R (x,y) =

1 R-1(x- 1,y - 1) + R-1 (x, y - 1)). Thus, we can consider each left branch to

be weighed by 4I and each right branch by 4+.

If we expand the recurrence n-1 times, we obtain an expression in Rgl(m, 1), Rl 1(m-

1, 1), Rl(m - 2, 1),... Rj (m- n + 1, 1). The number of times R/ (m - k, 1) occurs

is exactly the number of paths from (m, n) to (m - k, 1), which is (n1l). In addition,

each term is weighed by 1 for each left branch and +1 for each right branch. Each

path to (m - k, 1) has the same number of left and right moves, so the weight of each

path is identical. Therefore,

R1 (m, n) = , [R, 1(x, y)]' [Number of paths]. [Weight of path]
leaf nodes

n-Rl(m - n+l+i1 )
i=0 a

33

I



n- 1 ) - i 1 )(n-l-i)
i 7a+1 a+1

In the second sum, we substitute j for n - 1 - i,

n - 1 a
i )(TT-f

+ - a (2j-2m+1) (
j=0

.1
) (N ) n - -i

jI)( I )i a-- I
n-m-1 n

Z5 ni=o\
a

i )o+1
1 )(n-1 -i)

) ( oH-

+ce(n-2m) (- J 

Using the result of Lemma 5, the next lemma characterizes the performance of

S**.

Lemma 6 For m = cn with c C (0, 1), the following asymptotic relations hold.

* If O < c < , then Ra(cn, n) - 1;

* If / < c < , then R (cn, n) -e(n);

* If < c < 1 - 3, then R, (cn, n) c(2*-l)e*(");

* If 1- < c < 1, then R,(cn, n) Can(2c-1)

Proof. Recall that

= kPi(IP)n i;
= O

= B((1-c)n-l; n-1,1- B) + (1-2)B(cn - ; n - , 1 - ).

34

n-m-1
.=O
i-O

a(2n-2m-2i-) (n
n-1

+ E
/=n-m

a
i Ja + 1

) ( 1 (n-1-i)
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R (m, n)
n-m-1

i=O

B(k; n, p)

R (m,n)
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For the sake of brevity, define

defB1 d B((1 - c)n - 1;n - 1, - )
defB2 = B(cn- 1; n-1,1 -)

To compute the upper bounds on B1 and B 2, we make use of the following Chernoff

bound [1]:

Theorem 1 Let X 1, ... ,X, be n mutually independent random variables with

Pr [X, = 1]

Pr [Xi = 0] = -p.

Let X = X+1 -- .+ Xn. Then for a > O,

Pr [X < pn - a] < e-a 2/ 2p n

B(k; n, p) is simply the probability that at most k successes occur in a series of n

Bernoulli trials with success probability p. We can use this Chernoff bound to bound

B1 + Cn(1-2c)B2. We provide bounds based on the value of c: By the theorem above,

when c > ,

B1 = B(n(1 - c) -1; n -1, 1 - )
< e-(n-1)2(c-f)2/2(1-0)(n-1)

_-(n-1)(c-)2/2(1-/3)

= e-(n)

When c < ,

B1 = B(nc- 1;n-1,/3)
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> - e- (n-1 )2 ( - c)2/2p( n - 1 )

= 1 - e- (n-1 )(-c)2/2

= 1- e-(n);

When c < 1 - P,

B2 = B(nc- 1;n- 1, 1-3)
< e-(n-1)2 (1_0l-c) 2/2(1--,)(n-1)

e-(n-1)(1--c)2/2(1-3)

= e-Q(n)

When c > 1 -/B,

B2 = 1-B((1-c)n-1;n-1,3)

> 1 - e-( n- 1)2 (c-(1- 3))2/2,(n-1)

=1 - e-(n-1)(c-(1-P))2/2P
= 1- e- ( )

We will need tighter bounds than the Chernoff bounds can provide in some of the case

analysis below. The following theorem provides the necessary bounds. The theorem

can be found in [1]:

Theorem 2 For any constants 1 > p > c > O,

B(cn; n, p) = E pi(l p)-i

= 2n(H(c)+o(l))pcn ( _ p)(l-c)n

2 (o() " (1- (1-c)nC I - C I~~~~~

where H(c) = -clog c - (1 - c) log(1 - c) is the entropy function.

Using the above bounds we can now derive bounds on B1 + oan(1- 2 c)B 2 for all values
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of 0 <c < 1.

O < c < : In this case, B1 - 1 as n becomes large. Because the entire sum is at most

1, and an(l-2c)B 2 is positive, B 1 + cn(1-2c)B2 1. Therefore, R(m, n) - 1.

/ < c < 1/2: Here B1 is exponentially small. We wish to show the same for acn(l- 2c)B 2.

Here we will need the tight bound from Theorem 2.

n(1-2-2c)B2 = 1O(n(1-2)B(cn;n, 1 - ))

('1 c C) (1-c)n
-0(n) cn ( 1i) (l-c)n

To determine that this function is exponentially small, we need only show that

V(c, ) = ()c (i-)c < 1. First note that V(,/3) = 1. To complete the

proof, we show that V(c, 3) is strictly decreasing as c increases beyond 3. To

do this we show that the derivative with respect to c of ln(V(c, d)) is negative

for these values of c.

ln'(V(c, i)) = n - 1-n lnc- ln(1 - ) +ln(1 - c) + 1

n ln-ln c-ln(1- )+ln(1-c).

Now, In/ - nc -ln(1 - ) + ln(1 - c) <0 ' 1 < 1. But < 1 and
1-c
1- < 1 for /3 < c < 1/2. So B1 + an(l-2c)B2 - e- ( n)

Therefore, R,(m, n) -- e(n).

1/2 < c < 1 - : In this region, B2 is still exponentially small, so an(l-2c)B2 is an(1-2c)e-i(n).

We need only show that B1 takes the same form. Consider an(2c-1) B1 . We make

a substitution of variables to show that this is exponentially small. Consider

d = 1-c. Then an(2c- 1)Bi = Con(l-2d)B((1 - d) - 1, n - 1 , 1-) for < d < 1/2.

This is precisely the function analyzed in the previous case, which we showed
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to be exponentially small. Thus, B 1 + acn(-2)B 2 - Can(1-2c)e-Q(n). Therefore,

R,(m,n) - an(2c-1)e(n).

c > 1 - 3: B1 is exponentially small. B 2 is moving exponentially close to 1, so B1 +

an(l-2)B 2 -- an(- 2c). Therefore, Ra(m, n) cn(2 c-1).

Return

1.

1.

1.

1.

.
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Figure 3-2: S** vs. buy-ai
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1.01 and n = 500)

The interpretation of Lemma 6 is quite surprising. Consider the behavior of the

optimal buy-and-hold strategy. Buy-and-hold will invest all of its capital when c > 12

On the other hand, when c < it will avoid any transaction. Hence, the return is 1

for c < , and Cn( 2 c -
1

) for c > . In the case where0 < c </3 or 1- < c < 1, S**

asymptotically performs the same as buy-and-hold. However, for / < c < 1 - /, S**

performs exponentially better. In particular, for c = , buy-and-hold will return 1,

while S** yields exponential return. Note that in the case / < c < , the market is

moving unfavorably yet the return is exponential in n. The relative advantage of S**

over buy-and-hold is greatest when the market is perfectly stable (i.e. c = ). This

fact is illustrated in the graph of Figure 3-2.
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Chapter 4

Implementation and Experimental

Results

4.1 Implementation

Before running S** on real data, one must set the parameters n, m, and a. The value

of a may be chosen to capture "significant" changes in the exchange rate sequence.

(e.g. one may choose sufficiently large a to filter out "insignificant" fluctuations). For

a particular choice of n and a, the on-line player may choose a value for m according

to the his beliefs, forecasts (and risk aversion). In any case, it would be unrealistic

to assume that one knows the exact value of n. Let m* be the actual number of

profitable changes among the n changes.

In Figures 4-1 and 4-2 we plot the return of S** as a function of m. At the point

where m = m*, S** obtains a maximum. On the one hand, if S** underestimates

m*, then S** invests conservatively, since it "believes" that the number of remaining

positive changes will be small. As m approaches zero, the return approaches 1, which

is analogous to not trading at all. On the other hand, if S** overestimates m*, S**

invests more "aggressively" as it expects the exchange rate to be favorable. As m

approaches n, the return approaches a 2m *- n. This case is analogous to investing all

the money on the first trading day and converting it back on the last trading day (buy-

and-hold). In both cases (overestimating and underestimating), we see exponential
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convergence to the llmlt cases.

Return
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Figure 4-1: Returns of S** as a function of m/n, m* < 
2

The graph in Figure 4-1 illustrates the behavior when m* < n. In this case, the

off-line buy-and-hold strategy does not invest and receives a return of 1. S** always

exceeds the buy-and-hold return when it underestimates the value of m*. However,

if S** overestimates by too much, it may yield a return less than 1. Therefore, if S**

expects m* < n, then it is safe to underestimate.

A similar phenomenon is shown in Figure 4-2 for m* > n. The off-line buy-and-

hold strategy will buy in the initial period and sell in the final period. Its return will

be a2 m*- n. If we incorrectly overestimate m*, we will always exceed the buy-and-hold

return. However, if we underestimate, then our return may be less than the off-line

buy-and-hold return.

Based upon these graphs, it would appear that we need very accurate predictions

to be successful. If we incorrectly estimate m*, we can obtain returns that are worse

than the off-line buy-and-hold. However, consider what it means for m* to be dif-

ferent than m, where m is our estimate. Then, after n days, the exchange rate will

differ from our expectation by a factor of a (m- m*). It is no surprise that if we expe-
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Figure 4-2: Returns of S** as a function of m/n, m* > 2

rience an unanticipated exponential change in the exchange rate, then the algorithm

will perform poorly. Fortunately, actual exchange rate sequences rarely exhibit this

behavior. In fact, the simple strategy where we assume m = n performs fairly well

on small samples of real data.

4.2 Experimental Results

S** was tested on historical intra-day data for both US dollars vs. Japanese Yen and

US dollars vs. German Marks. The intra-day data consisted of two sets. One set

consisted of the exchange rate at every tick1 (denoted by Set A). Set A contained

exchange rates from October 10, 1993, to November 9, 1993. The other set contained

the exchange rate every six minutes for the year 1992 (denoted by Set B). For both

samples, the choice of a seemed natural. With almost every change, the exchange

rate changed by a factor five points.2 Thus, a was set to 1 + 5 Sinceinitial exchange rate'

five points is small compared to the exchange rate, additive changes of +5 points

1 A tick occurs every time the exchange rate changes, usually between 10-120 seconds.
2A point is the smallest unit used to measure exchange rates.
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approximate multiplicative changes of ac. Decision points were then inserted every

time the rate changed by at least five points (approximately a).

In addition, the size of n has to be chosen. The total number of decision points in

Set A is over 20,000 for US dollars vs. Deutschmarks. It is computationally unfeasible

to set n this high. Thus, n was varied between 100 and 1000, and the entire set was

broken into a series of games of size n. The returns from each trial of size n was then

multiplied together to get the return for the entire sequence. To be completely fair,

m was naively set to for all games.

We then ran S** on the exchange rate sequences and received mixed results. The

following table summarizes four different trial runs (with n = 100).

DM corresponds to the exchange rate of US dollars vs. German Deutschmarks,

and JY to US dollars vs. Japanese yen. The first column gives the return assum-

ing no transactions costs. The second column is the return with a 0.02% cost per

transaction. 3 Recall that in formulating S**, we assumed no transactions costs. Thus,

in the simulations, the transactions are choosen assuming no transaction costs, and

then the transaction costs are subtracted from the return.

In Set A, S** performed extremely (almost absurdly) well. Even with transaction

costs, returns of 33% and 34% were obtained in only one month. However, we should

note that S** trades every tick (which is unrealistic), and the results are for only one

exchange rate sequence. Unfortunately, we have been unable to obtain further tick

data. In Set B, S** performs marginally (4% and 11% returns) under no transaction

costs and poorly with a .02% transaction costs (significant losses of 27% and 11%).

30.02% is valid for large-scale transactions.
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Sample Return Return with transaction costs

DM - Set A 2.23 1.33

JY - Set A 1.67 1.34

DM - Set B 1.04 0.73

JY - Set B 1.11 0.89
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Figure 4-3: Distribution of c in Set A

These results are in stark contrast to the tick data. By examining whether the

assumption c = holds, we can identify the underlying reasons for this difference.

Figures 4-3 and 4-4 show a histogram of c for the individual games4 . In Set A, c is

clustered near 50 percent, while in Set B, c varies widely. Since the tick data closely

satisfies the assumption m = n, S** performed extremely well. However, on Set B,

the assumption no longer holds, and S** performed poorly.

Frequen
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0.'

0.'

0.C

0.

O.,

O.
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30 35 40 45 50
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Figure 4-4: Distribution of c in Set B

4 Recall that to facilitate the computation, the exchange rate sequence is broken into segments
with n- 100.
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Chapter 5

Conclusions

In this thesis, we examined the two-way currency trading problem. By using a sta-

tistical adversary, we struck a middle ground between the distributional approach

and competitive analysis. For a wide variety of strong and weak adversaries, the

optimal on-line stratgey can be calculated via a simple dynamic progam. For on-line

algorithms that are money-making, the (n, II)-adversary is a maximal adversary. Un-

fortunately, against this adversary, the on-line player is guaranteed only a minscule

fraction of the off-line profit.

In the fixed fluctuation model, we derived an exact form for the optimal strategy

and calculated its asymptotic behavior. The optimal strategy always outperforms

the optimal off-line "buy-and-hold" strategy, and in active and stable markets, the

performance is exponentially better. Even in a slightly unfavorable market, the opti-

mal strategy can achieve exponential return. The experimental results on actual data

were mixed. When the data closely satisfied the model's assumptions, the returns

obtained were phenomenally high, even with transaction costs. However, if the data

deviated from the assumptions, the optimal strategy became unprofitable.
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