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Abstract
Language identification systems that employ acoustic likelihoods from language de-
pendent phoneme recognizers to perform language classification have been shown to
yield high performance on clean speech. In this thesis, such a method was applied
to language identification of telephone speech. Phoneme recognizers were developed
for English, German, Japanese, Mandarin, and Spanish using hidden Markov models.
Each of these processed the input speech and output a phoneme sequence in their
respective languages along with a likelihood score. The language of the incoming
speech was hypothesized as the language of the model having the highest likelihood.
The main differences between this system and those developed in the past are that
this system processed telephone speech, could identify up to five languages and used
phonetic transcriptions to train the language specific models. The five language,
forced choice recognition rate on 45 second utterances was 71.9%. On ten second
utterances, the recognition decreased to 70.3%. In addition, it was found that
adding word specific phonemes to the training set had a negligible effect on language
identification results.
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Chapter 1

Introduction

As the different nations of the world begin to interact more frequently, language

identification of speech messages is becoming an increasingly important part of digital

speech processing systems. Language identification systems can be used as preproces-

sors in automatic language translators, in systems used by operators to identify the

language of a caller, and in information centers at public airports and train stations.

Language identification performed by running several different language depen-

dent phoneme recognizers has been shown to be successful on clean speech [9, 10].

From the likelihood scores output from each system, the language of the speech can

be determined. This was the language identification method implemented in this

thesis. Phoneme recognizers were developed for each of five languages using hidden

Markov models. Each of these processed the input speech and output the most likely

phoneme sequence along with a likelihood score. The language of the incoming speech

was hypothesized as the language of the model having the highest likelihood. The

purpose of the thesis was to determine the feasibility and performance of a parallel

phoneme recognition system on telephone speech. In addition, this thesis measured

the effect of adding word specific phonemes to each language's training set.

The rest of this thesis is organized as follows. Chapter 2 contains background

information, presenting several language identification systems and their results. The

implementation and results from the baseline system are explained in Chapter 3 and

in Chapter 4, these results are compared to those attained when the system trains

on word specific phonemes as well. Chapter 5 presents the results of using phone-

based acoustic likelihoods to perform five language identification. Finally, Chapter 6

summarizes the results and suggests future research directions
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Chapter 2

Previous Work

2.1 Introduction

Several language identification methods, including a phoneme recognition system

similar to the one used in this thesis, have already been developed and tested in the

past. In this section, a few of the major language identification systems are presented.

Each subsection details a specific language identification system, including the model,

method, type of data, training data, and results. In addition, where appropriate,
observations are made which pertain directly to this thesis.

2.2 Language Dependent Phone Recognition

Lamel and Gauvain [9] developed a language identification system based on phoneme

recognition. Their system processed incoming speech in parallel through a French

phone model network and an English phone model network. The phone models were

three-state, left-to-right, continuous density hidden Markov models with Gaussian

mixture observation densities. The language of the speech was determined to be the

language represented by the phone model network with the highest likelihood score.

A graphic representation of this system is shown in Figure 2.1. Lamel and Gauvain

used four corpora containing read speech to train and test their system. These were

the Base de Donnees des Sons du Francais (BDSONS) corpus and the BREF Corpus

for French speech, and the DARPA Wall Street Journal and TIMIT Corpora for

English speech. They were able to achieve an accuracy rate of 99% with two seconds

of the clean speech. However, this result may not be as conclusive as it first appears

as the speech used for training and testing was not collected in a consistent same

manner.

9



CHAPTER 2. PREVIOUS WORK

Phone Model
Networks

English likelhood score

Input Speech ick language

French likelihood score

Figure 2.1: The Lamel-Gauvain Language Identification System

More recently, Lamel and Gauvain performed language identification on the OGI

Multi-Language Telephone Speech Corpus [12], the same corpus used in this thesis.

Their language specific models were trained without the use of phone transcriptions,

however. They used speaker-independent, context-independent phone models to label

the training data and then used Maximum Likelihood Estimation to estimate the

language specific models. They achieved a 59% accuracy rate for 10-language iden-

tification on ten second utterances. In comparison to their previous French/English

efforts, two-way French/English language identification using this method attained

an accuracy rate of 82%. [4]

Some of the advantages of parallel phone recognition are given below [3]:

* It can take advantage of phonotactic constraints, i.e. the restrictions found on

phoneme sequences for different languages.

* It can easily be integrated into existing recognizers based on phone models.

Of course, this system also has several disadvantages. The main disadvantage to

this system is that it requires phonetically labeled training speech in all languages.

In addition, this type of system can require a great deal of computation.

2.3 Language Independent Phone Recognition fol-
lowed by Language Modeling

Hazen and Zue [6] developed an automatic language identification system which in-

corporated separate models for the phonotactic, prosodic, and acoustic information of

10



CHAPTER 2. PREVIOUS WORK

each language. Their system employs an English front end phone recognizer followed

by n-gram language modeling in each language to be recognized. When trained and

tested using all ten languages of the OGI Multi-Language Telephone Speech Corpus,

they initially achieved an overall system performance of 57% on 45 second utterances

and 46% on ten second utterances on the NIST 1993 evaluation data1. Subsequently,

they have improved performance to 69% on 45 second utterances and 64% on ten

second utterances as reported at the NIST 1994 evaluation.

A recently developed method used at MIT Lincoln Laboratory for language identi-

fication is the Parallel Phoneme Recognition followed by Language Modeling (PRLM-

P) method which involves the use of multiple phoneme recognizers with n-gram lan-

guage models [16]. The sequence of phonemes output from each phoneme recognizer

is compared to n-gram language models computed from training speech for each of the

various languages under consideration. The language with the highest likelihood score

is determined to be the language of the speech. It is not necessary to have a phone

recognizer in each language to be identified; rather, one language model per front end

recognizer per input language is trained, as shown in Figure 2.2. At the 1994 March

NIST evaluation, this system exhibited the best identification performance across

many different test scenarios. For example, OGI telephone speech LID performance

was 80% for 45 second test utterances and 70% for ten second utterances. Average

language pair performance was 95% for 45 second utterances and 92% for ten second

utterances.

2.4 Phonetic-Class-based Approaches

Phonetic-class-based approaches are very similar to phoneme-based approaches. The

main difference is in the type of units that are recognized in each system. In phonetic-

class-based approaches, the objective is the recognition of broad phonetic class ele-

ments (i.e. vowel, fricative, stop, pre-vocalic sonorant, inter-vocalic sonorant, post-

vocalic sonorant, silence or background noise, etc.). The system requires phonetic

11993 and 1994 NIST evaluation techniques and results can be obtained from Dr. Alvin Martin
at NIST in Gaithersburg, MD.
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Figure 2.2: The MIT Lincoln Laboratory PRLM-P System

class labeled data for training. The smaller number of units relative to phoneme-

based approaches makes the recognition faster and more accurate.

House and Neuburg were the first to propose the phonetic-class-based approach [7].

They developed a hidden Markov model for each language. A maximum likelihood

decision rule was then used to hypothesize the language of the incoming speech.

They tested their system on eight phonetic texts of the same fable, each in a different

language. These fables were reduced to four-character alphabets and tested on the

statistical models of each language.

Muthusamy and Cole [11] developed a similar system which segmented the speech

into seven broad phonetic categories and classified the feature measurements from

these categories. They trained and tested their system on the ten languages in the

OGI Multi-Language Telephone Speech Corpus, achieving 66% accuracy on 45 second

utterances and 48% accuracy on ten second utterances at the NIST 1993 evaluation.

2.5 Frame-based Approaches

Frame-based approaches differ from both of the preceding approaches in that they

do not require labeled data for training. Goodman [5] applied this approach to a

very noisy, six language database. He used a formant-cluster algorithm in which

LPC-based formants were extracted and the Euclidean distance measure was used to

determine the closest clusters to the input vector. This distance was accumulated

12
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and the language was determined to be the one with the smallest total distance.

Sugiyama [14] and Nakagawa [13] performed vector quantization classification on

LPC features. Sugiyama investigated the differences between using one VQ code-

book for each language and using a universal VQ codebook for all languages. The

algorithms had a 65% and 80% recognition rate respectively. Nakagawa performed a

different comparison. He investigated the use of a codebook with a continuous HMM

(CHMM), a discrete HMM (DHMM), and an HMM with continuous mixture density

output probability functions (CMDF). The CHMM and CMDF had comparable

performance, with an 86.3% accuracy rate, while the DHMM had worse results, with

a 47.6% accuracy rate.

Zissman used continuous observation, ergodic hidden Markov models with tied

Gaussian observation probability densities in applying this approach [15]. The HMMs

were trained for each language using the mel-weighted cepstra and delta-cepstra

taken from the training speech. The same feature vectors were extracted from the
test speech to test the HMMs. Likelihood scores for each language were generated

from which the language of the incoming speech was determined. Ten language

classification performance on the OGI corpus was 53% on 45 second utterances and

50% on ten second utterances on the NIST 1993 data. Generally, the multi-state

HMMs performed no better than simpler Gaussian mixture classifiers.

13



Chapter 3

Baseline System

3.1 Introduction

A system similar to the Lamel and Gauvain language identification system was de-

veloped as a baseline for this thesis. Phoneme recognizers were developed for English

and Spanish. The baseline system was used to determine the best implementation for

performing language identification. One of the components investigated was the set

of phonemes on which the system was trained. In particular, the effect of the addition

of word specific phonemes was determined. This chapter explains the implementation

and results of the baseline system. The next chapter compares these results to those

obtained when word specific phonemes are included.

3.2 The System

The baseline system was a parallel phoneme recognition system similar to the Lamel

and Gauvain system discussed in Chapter 2. Incoming speech was processed in

parallel through an English phone model network and a Spanish phone model network.

One of the main differences between this system and the Lamel-Gauvain system is

that rather than picking the maximum likelihood score to determine the language of

the speech, the baseline system built here took the difference in the likelihood scores

and used this to sort the messages according to their likelihood of being either English

or Spanish. A graphic representation of the baseline system is shown in Figure 3.1.

The Hidden Markov Model Toolkit (HTK), a toolkit for building continuous den-

sity hidden Markov model based recognizers from Cambridge University and Entropic

Research Laboratory was used to build the phoneme recognizers. Mel weighted cep-

stra and delta cepstra observation streams were processed statistically independently

14
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Phone Model
Networks
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Figure 3.1: The Baseline System

of each other. Each phone model had three emitting states, and each state used

one six component Gaussian mixture model to model the cepstra and another six

component model for the delta cepstra. Diagonal variances were employed. Training

was performed using the Baum-Welsh algorithm. Recognition was performed using

a Viterbi recognizer which produced the most likely phone sequence along with that

sequence's log likelihood score normalized by the number of frames 1. The inter-model

log transition probabilities between two connected phoneme models was defined as:

slog[P(jli)] (3.1)

where s is the grammar scale factor, whose value was set during preliminary tests.

P(j ii) was defined using bigram probabilities determined from the phone labels during

training. The phone networks contained monophones and the top 100 most frequently

occurring right-diphones 2 from the training data for both languages.

3.3 OGI Telephone Speech Corpus

The Oregon Graduate Institute Multi-Language Telephone Speech (OGI-TS) Corpus

was used to train and test the system [12]. It was designed to support research on

automatic language identification and multi-language speech recognition. Each caller

gave up to nine separate responses, ranging from single words and short topic-specific

'For the rest of this thesis, the term "likelihood score" will refer to what are really these
normalized log likelihood scores.

2 A right-diphone is a right context dependent phone model.

15



CHAPTER 3. BASELINE SYSTEM

Table 3.1: Amounts of English and Spanish Training and Testing Data

Language Training Data Testing Dataa

English 27.23 minutes 27.03 minutes
Spanish 26.29 minutes 24.53 minutes

aAlthough it appears that there is more testing data than training data, this is due to the fact
that the silences were removed from the training data whereas they remained in the testing data.

descriptions to 60 seconds of unconstrained spontaneous speech. The utterances

were spoken over commercial telephone lines by speakers in English, Farsi (Persian),

French, German, Japanese, Korean, Mandarin Chinese, Spanish, Tamil, and Viet-

namese. The speech files for each language were divided into 50 training messages,

20 development test messages, and 20 evaluation test messages.

Since the parallel phoneme recognizers used in this system required phonetically

labeled data for training, only the 45 second long "story-before-the-tone" (story-bt)

utterances could be used as these were the only labeled data in the corpus. In order

to get the input speech into a more useful format for training, the 45 second story-bt

utterances were broken down into smaller segments by removing silences and other

superfluous sounds. Thus the original 44 English and 48 Spanish training speech files

were broken into 677 and 806 smaller files respectively, mostly under six seconds in

length. The final amounts of training as well as testing data are given in Table 3.1.

After cepstra and delta cepstra vectors were computed from input files, RASTA [2]

was used as a front-end processor to remove the effects of variable telephone line

channels. In all, these data were used to train 52 English monophones and 38 Spanish

monophones as well as the 100 most frequently occurring diphones in each language.

Testing was carried out according to the NIST April 1993 specification. "45-sec"

utterance testing refers to language identification on the 45 second story-bt utterances

spoken by the development test speakers while "ten-sec" utterance testing is on ten

second cuts from the "45-sec" utterances.

16



CHAPTER 3. BASELINE SYSTEM

Table 3.2: Grammar Scale Factor Values and LID Figures of Merit

Grammar Scale Factor Figure of Merit
s = 1 0.976
s = 3 0.979
s = 5 0.978
s = 10 0.966

3.4 Performance Metrics

Rather than assessing the system by performing language identification between the

two languages, the likelihood ratio output from the baseline system was used to

generate Receiver Operating Curves (ROC) and their Figures of Merit (FOM). This

was preferable since likelihood score biases had been observed in previous tests of

such systems at Lincoln. By taking the difference in the likelihood scores, this bias

problem was eliminated.

Receiver operating curves were generated by plotting the probability of detection,

PD, on the y-axis versus the probability of false alarm, PF, on the x-axis. The area

under this curve is the figure of merit (FOM). For an ideal system, PD = 1 and

PF = 0 so the ROC curve would be two straight lines from (0,0) to (0,1) to (1,1) and

the FOM would be equal to one. The closer a system's ROC curve is to this ideal

curve, i.e. the closer the FOM is to one, the better the system performance.

3.5 Results

The grammar scale factor, s, was set after running some preliminary tests to determine

its effect on language identification. Several different tests were run with the only

difference being this factor. The value of this factor in the various tests along with

the figure of merit from the resulting receiver operating curves are given in Table 3.2.

The receiver operating curves for these tests are shown in Figure 3.2. These data show

that performance was relatively insensitive to s, so s = 3 was used in all subsequent

tests. With s = 3, the baseline system had a 0.979 figure of merit.

17
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Figure 3.2: Receiver Operating Curves for various Grammar Scale Factor Values.
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Chapter 4

Word Specific Phoneme Tests

4.1 Introduction

The inclusion of word specific phone models was investigated in order to determine

whether this would improve the performance of the baseline system. These new phone

models were trained only on occurrences in certain words. For example, the word the

is usually composed of two phones, /DH/ and /AX/. Considering the /DH/ phone, a

general /DH/ phone was trained on occurrences of /DH/ in all words other than the,

such as this and there. A separate phone, /DH-the/ was trained from occurrences

of the. Word specific phone models of commonly occurring words were incorporated

into the baseline system to see how they affected the system's language identification

performance.

In order to incorporate this change into the baseline system, the commonly oc-

curring words needed to be manually tagged in the segmented input data. The top

five most frequently occurring words in English are: [1]

I

* and

* the

to

* that

The top six' most frequently occurring words in Spanish are: [8]

1The sixth word, en, was added to the list after initial tagging of the training data had begun
and it was found to occur as often as the other words in the list.

19
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* de

el

* la

y

· a

en

The word specific phonemes along with the number of occurrences of each are given

in Table 4.1 and 4.2. These tables also show the percentage of all phones which were

included in these words. With the addition of these word specific phonemes, the

original monophone list was expanded from 52 to 76 monophones for English and

from 38 to 52 monophones for Spanish.

4.2 Results

Running on English vs. Spanish data as described in Section 3.3, this word specific

phone system also had a 0.979 figure of merit. The receiver operating curve for this

system is compared to that of the baseline system in Figure 4.1.

The inclusion of the word specific phonemes brought only a small improvement in

language identification perhaps because the word specific phones covered only around

5% of the data. However, to measure the small-scale effectiveness of this change,

further analysis was done. In particular, the number of times the system correctly or

incorrectly detected the word specific phonemes was determined. This was compared

to the phonemes which the baseline system specified. The results of this analysis are

given in Tables 4.3 and 4.4.

These results indicate that the baseline system actually recognized the word

specific phonemes better than the system which was trained on them. In particular,

almost all of the word specific phonemes in both English and Spanish were recognized

by both systems or by neither system. Of the word specific phonemes which were

20



WORD SPECIFIC PHONEME TESTS

Table 4.1: Phonetic Breakdown and Frequency of Occurrences of English Word
Specific Phones

Word Phonetic Frequency in Frequency in Percentage of Percentage of
Transcription Training Data Testing Data All Phones in All Phones in

Training Data Testing Data
I /AY-I/ 77 57 0.3197% 0.8463%

/AE-I/ 3 3

/AH-I/ 4 10

AND /AE-and/ 83 39 0.7687% 1.5720%
/EH-and/ 2 11

/N-and/ 82 50

/VCL-and/ 14 13

/D-and/ 21 17

THE /DH-the/ 247 69 1.8610% 1.6560%

/TH-the/ 4 2
/IH-the/ 22 14
/AX-the/ 104 15
/AH-the/ 48 24

/IY-the/ 64 13

TO /T-to/ 122 36 0.8410% 0.7496%
/AH-to/ 10 1

/AX-to/ 22 7

/IX-to/ 16 2

/UW-to/ 51 16

THAT /DH-that/ 64 24 0.5251% 0.5441%
/AH-that/ 6 3

/AE-that/ 42 14
/CL-that/ 15 2

/T-that/ 11 2

TOTAL 1134 444 4.3155% 5.3680%

CHAPTER 4. 21



CHAPTER 4. WORD SPECIFIC PHONEME TESTS

Table 4.2: Phonetic Breakdown and Frequency of Occurrences of Spanish Word
Specific Phones

Word Phonetic Frequency in Frequency in Percentage of Percentage of
Transcription Training Data Testing Data All Phones in All Phones in

Training Data Testing Data
DE /D-de/ 77 15 1.3790% 1.2650%

/DX-de/ 88 32

/EY-de/ 161 48
EL /EY-el/ 62 27 0.5924% 0.8124%

/L-el/ 78 34

LA /L-la/ 111 44 0.9351% 1.1850%
/AA-la/ 110 45

Y /EY-y/ 17 8 0.6135% 0.7591%
/IY-y/ 126 48

/Y-y/ 2 1

A /AA-a/ 47 9 0.1989% 0.1199%

EN /EY-en/ 98 51 0.8674% 1.3050%
/N-en/ 86 41

/NG-en/ 21 6

TOTAL 1084 409 4.5863% 5.4464%

Table 4.3: Comparison of Recognition Performance for English.

Figure of Merit
Basis Baseline System Word Specific Phone System

Overall . 0.979 0.979

Phone Recognition Performance on "Keywords"
Basis Baseline System Word Specific Phone Systema

Overall 46.8% 40.8%
Recognized by This System Only 10.6% 4.62%
Recognized by Neither System 48.6%

aThis includes recognizing the base phone only, i.e. if the word specific phone system recognized
/AE/ when the actual word was /AE-and/, it was counted as correctly recognizing the phone.

22
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CHAPTER 4. WORD SPECIFIC PHONEME TESTS

Table 4.4: Comparison of Recognition Performance for Spanish.

Figure of Merit
Basis Baseline System Word Specific Phone System

Overall 0.979 0.979

Phone Recognition Performance on "Keywords"
Basis Baseline System Word Specific Phone Systema

Overall 60.9% 59.1%

Recognized by This System Only 7.40% 0.77%
Recognized by Neither System 33.4%

aThis includes recognizing the base phone only, i.e. if the word specific phone system recognized
/EY/ when the actual word was /EY-en/, it was counted as correctly recognizing the phone.

only recognized by one of the systems, the baseline system detected more than the

word specific phoneme system.

4.3 Conclusion and Future Work

Some preliminary experiments were run to determine the effect of adding word specific

phonemes to the training set. The evidence seems to weigh in favor of leaving out the

word specific phonemes especially considering the additional man-hours needed to tag

the word specific phonemes. If we had larger orthographically transcribed databases,

a word spotting or word recognition approach to LID could be pursued. Pursuing

this approach with the current OGI database, which may be too small to train word

specific phone models and is not orthographically transcribed, would be difficult.

24



Chapter 5

Further Experiments Using Acoustic
Likelihoods

5.1 Introduction

This chapter details the development of the complete language identification system

using phone-based acoustic likelihoods (PPR-C)'. Phoneme recognizers were devel-

oped in English, German, Japanese, Mandarin, and Spanish. These were used to

create a language identification system similar to the baseline system. The system was

built and tested to determine the feasibility and performance of a parallel phoneme

recognition system on telephone speech.

5.2 The System

The language identification system developed for these tests was a parallel phoneme

recognition system similar to the baseline system described in Chapter 3. Incoming

speech was processed in parallel through English, German, Japanese, Mandarin,

and Spanish phone model networks. The language of the incoming speech was

hypothesized as the language of the model having the highest likelihood. A graphic

representation of this system is shown in Figure 5.1.

As was done for the baseline system, the 45 second story-bt training utterances

in German, Japanese, and Mandarin were broken down into smaller segments and

the superfluous sounds were removed. The final amounts of training and testing data

for all five languages are given in Table 5.1 along with the number of monophones

trained in each language. The implementation of this system is the same as that of

1PPR-C stands for Parallel Phoneme Recognition performed by Chou.
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Phone Model
Networks

Input Speech l Maxn guage

Figure 5.1: The Langugae Identification System using Acoustic Likelihoods

Table 5.1: Amounts of Training and Testing Data for Five Language Identification
System

Language Training Data Testing Dataa Number of Monophones
English 27.23 minutes 27.03 minutes 52
German 24.45 minutes 26.54 minutes 57
Japanese 23.44 minutes 25.16 minutes 27
Mandarin 17.69 minutes 26.93 minutes 43
Spanish 26.29 minutes 24.53 minutes 38

aAlthough it appears that there is more testing data than training data, this is due to the fact
that the silences were removed from the training data whereas they remained in the testing data.

the baseline system which was detailed in Chapter 3. However, each of the five phone

networks used when testing this system contained only monophones.

5.3 Performance Measures

Five-way language classification was used to assess the performance of the system.

The likelihood scores output from the system were adjusted before language identi-

fication was performed, however, in order to address the bias issue which had been
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noticed in previous language identification tests. This was done by post processing

the raw likelihood scores such that for each recognizer, the mean of the scores from

all messages processed by the recognizer was set to zero. Thus, the adjustment took

the form of a recognizer-dependent addition or subtraction. The resulting likelihood

scores were compared and the language of the model with the highest likelihood score

was hypothesized as the language of the incoming speech. Language identification

performance is given by the ratio of the number of speech files whose language was

correctly identified divided by the total number of files.

5.4 Results

Running according to the NIST 1993 specifications, the PPR-C system attained a

five language recognition rate of 70.3% correct on the ten second utterances. On

the 45 second utterances, this recognition rate increased to 71.9%. Table 5.2 shows

the five language confusion matrix. Table 5.3 compares these results to the results

of Zissman's PRLM-P system which was described briefly in Chapter 2. When

his PRLM-P system was tested on the same five languages, it achieved a language

recognition rate of 75.7% on the ten second utterances and 86.5% on the 45 second

utterances.

Additional analysis was done comparing the two system's two language identifica-

tion results averaged over the ten language pairs. These are also given in Table 5.3.

Once again, we see that the PPR-C system developed in this thesis has slightly lower

recognition scores than Zissman's PRLM-P approach.

These results show that the PPR-C system has lower performance in five language

identification performance to Zissman's PRLM-P system. In particular, Zissman's

PRLM-P five language recognition results on the 45 second utterances are much

higher than those attained by the PPR-C system developed in this thesis.

English/Japanese/Spanish experiments were also performed on the PPR-C system

for further comparison with Zissman's PRLM-P system and his parallel phoneme

recognition (PPR) system. These results are presented in Tables 5.4 and 5.5. These

results show that the PPR-C system has comparable performance with Zissman's
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Table 5.2: Five Language Confusion Matrices

Ten Second Utterances Test
Actual Language Hypothesized Language

English German Japanese Mandarin Spanish
English 47 10 3 1 2

German 12 46 2 0 3
Japanese 1 0 53 1 2

Mandarin 7 14 8 26 4

Spanish 3 6 9 0 36

45 Second Utterances Test
Actual Language Hypothesized Language

English German Japanese Mandarin Spanish
English 12 6 0 0 0

German 1 16 0 0 1

Japanese 0 0 16 0 1

Mandarin 2 6 1 9 1

Spanish 0 5 1 0 11

Table 5.3: Five Language Identification Results

Five-Language Pairs Average
45-sec ten-sec 45-sec ten-sec

PRLM-P 86.5% 75.7% 94.7% 89.2%
PPR-C 71.9% 70.3% 88.0% 86.5%
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Table 5.4: English/Japanese/Spanish Language Pair Identification Results

Two Language Identification
English/Spanish English/Japanese Japanese/Spanish Average
45-sec ten-sec 45-sec ten-sec 45-sec ten-sec 45-sec ten-sec

PRLM-P 97.1% 88.0% 91.4% 90.0% 94.1% 90.1% 94.2% 89.4%
PPR 97.1% 92.3% 94.3% 92.5% 85.3% 87.4% 92.2% 90.7%

PPR-C 97.1% 91.5% 94.3% 90.8% 85.3% 86.5% 92.2% 89.3%

Table 5.5: English/Japanese/Spanish Three Language Identification Results

Three Language Identification
45 second utterances ten second utterances

PRLM-P 92.3% 85.1%
PPR 86.5% 85.1%

PPR-C 82.7% 82.2%

PPR and PRLM-P systems on each of the three language pairs. This should be the

case since the two systems are trained and tested on the same data and are using

basically the same approach.

The results of three language English/Japanese/Spanish identification are given

in Table 5.5. Zissman's PRLM-P system had the best results with his PPR system

performing slightly below that and the PPR-C system having the worst results just

slightly below Zissman's PPR system. The discrepancy between the two PPR systems

could be attributed to the fact that Zissman's PPR system used the monophones plus

the top 100 most commonly occurring diphones from the training data whereas the

PPR-C system used only monophones, though it is not clear why this effect was not

observed in the paired language case.

5.5 Conclusion

The results from the English/Japanese/Spanish experiments validate the PPR-C
system since these results are comparable to those of Zissman's PPR tests. In addition
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both PPR systems had comparable results with Zissman's PRLM-P system. Thus,

for language identification on up to three languages, the method of using phone-based

acoustic likelihoods is good and produces relatively accurate results.

However, the results for the five language tests show larger differences in the

performance between the PPR-C system and Zissman's PRLM-P system. This seems

to indicate that as the language set increases, the PPR-C system may have inferior

recognition capabilities. However, there is some evidence that adding context depen-

dent diphones can improve PPR performance. Therefore future testing should be

performed to measure the effect of using context dependent phone models in PPR

systems.



Chapter 6

Conclusion

This thesis demonstrated that language identification on telephone speech using

phone-based acoustic likelihoods is feasible, but does not yet produce results compara-

ble to other systems. On three language identification, the PPR-C system developed

in this thesis had similar results to Zissman's PRLM-P and PPR systems. However,

for five language identification, the PPR-C system attained a recognition rate of

71.9% correct, much lower than the 86.5% correct achieved by Zissman's PRLM-P

system. Adding context dependent phones to the phone recognizers might improve

PPR performance and should be the subject of future work. Additionally, it was

shown that simple addition of commonly occurring word specific phonemes did not

improve PPR performance. Perhaps with the advent of larger multi-language speech

corpora, word specific modeling approaches will be more appropriate.
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