
TOWARDS A LIQUID COMPILER

by

Stephen Brooks Davis

Submitted to the

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

October, 1993

(c) Stephen Brooks Davis, 1993

The author hereby grants to MIT permission to reproduce and to

distribute copies of this thesis document in whole or in part.

Signature of Author
Department of Electrical Engineering and
rmnrltr .Sr.i.n. cdber 5, 1993 /

Certified by
Tiiomzs F.- Krbnht- Jr.. krnclpa. Qua ocientist

Accepted by
F.R. Mo ae a t S
Chair, epartment| ittee of Graduate Students

Stephen Brooks Davis

Abstract

Liquid is an architecture for supporting the parallelism of
mostly-functional sequential programs. Under Liquid, memory
becomes a database, and the program becomes a series of
transactions operating on this database. A transaction is
free to reference the database, but can not write to it until
it commits. By constraining the commits to occur in the same
order as if executing sequentially, the memory maintains
sequential consistency. By allowing a transaction to roll
back, the compiler does not need to be conservative in the
presence of aliasing. This work describes progress towards
building a compiler to parallelize Scheme programs. In
particular, the Liquid abstract machine (LAM), and the
transformations from Scheme to LAM are described.

Thesis Supervisor: Thomas F. Knight Jr.
Title: Principal Research Scientist

Liquid

Liquid is an architecture for supporting the parallelization
of sequential programs. In particular, its goal is to
provide architecture support for parallelizing mostly
functional programs. A mostly functional program is one
which makes limited use of side-effects to shared memory
objects. A side-effect occurs when a memory location is
written to after it has already been initialized with an
initial value.

If side-effects do not occur, then execution of different
sections of code can proceed as soon as data dependencies are
satisfied. The order in which these side-effect free
sections execute is not important. However, once side-
effects are permitted, sections executing in different order
can produce different results. Since order is important, a
compiler trying to parallelize a sequential program has to be
conservative in order to guarantee that the parallelized
program generates the same results as the sequential program.

In particular, the compiler has to guarantee that a value is
not read until the correct value is written. This
determination is complicated by the presence of aliasing.
Aliasing occurs when a memory object can be manipulated by
more than one name. For example, a particular memory object
is referred to by names A and B. If a side-effect is
performed on B, then A is side-effected as well. Therefore,
the compiler needs to know that modifying B will result in a
modification of A. But, this can not always be determined
statically. If the compiler can not prove that A and B are
never aliases for each other, it has to assume that they are.

This assumption guarantees that in the cases where A and B
are aliased, the correct result is generated. However, when
A and B are independent, the assumption prohibits taking
advantage of their independence to gain parallelism. What
Liquid provides is the ability to change assumptions. Under
Liquid, when it can not be proved that A and B are always
aliased, assume they are not. If this assumption is proved
false during run-time, roll back computation to that point
and resume.

In order to catch when the assumption has been violated,
Liquid treats the memory system as a database. Under this
abstraction, program execution becomes transactions operating
on the database, and the run-time system guarantees that the
database remains consistent.

To support the database abstraction, the sequential program
is broken up into transactions. A transaction is a potential

1

computation until it commits. Until committing, the
transaction is allowed to reference the database, but can not
side-effect it. All side-effects within the transaction are
delayed until commit.

Each transaction contains a sequence of transactional reads
and writes to the database. Whenever a transactional read is
performed, the run-time system records which transaction has
performed the read and a place to roll back to in the event
that the data read becomes stale. Stale data occurs when a
value is read before the correct value has been written.
Transactional writes are cached by the run-time system until
commit. At commit time, all cached writes actually perform
their side-effects on the database.

To guarantee that the parallelized program produces the same
result as the sequential one, the transactions are committed
in the same order they would occur when executed
sequentially. This guarantees that the memory system
maintains sequential consistency.

This thesis discusses the preliminary work done towards
building a compiler for the Liquid architecture. The
language chosen to parallelize is Scheme. It was chosen
because it is natural to write mostly functional programs in.
Scheme does not provide any constructs for explicit
parallelism, nor was the language designed for parallel
execution.

The current compiler only takes advantage of procedure
parallelism. That is the parallelism available by having
multiple procedures executing simultaneously.

Scheme is translated into the Liquid Abstract Machine (LAM)
representation. LAM provides the support for the transaction
mechanism, and for parallel execution. It is designed to
take advantage of non uniform memory access (NUMA)
architectures. In particular, the goal is to be able to
execute the Liquid abstraction on top of the MBTA
architecture. LAM has developed out of UC Berkeley's
Threaded Abstract Machine (TAM).

2

LAM Specifications

LAM Abstractions

The Liquid Abstract Machine (LAM) is based upon the Threaded
Abstract Machine (TAM) developed at UC Berkeley. It is an
abstract machine representation which takes advantage of non
uniform memory access (NUMA) architectures. Under LAM, there
is a clear distinction between local and remote storage.

The primary difference between LAM and TAM is the
introduction of the transaction abstraction in LAM. Both
support the abstractions of code blocks, frames, inlets,
threads, and quantums.

The changes made for LAM are as follows:
· LISPish parenthesized syntax
· Objects of type generic have a type and value field
· Array and code block data types added
· Send, receive, read, and write support the transaction
abstraction

* Commit instruction added
* Inlets do not fork other inlets

Code blocks are the unit of scheduling in LAM. Each
code block contains declarations, a frame template, a set of
inlets, and a set of threads. Each instantiation of a code
block executes relative to a frame. There is exactly one
frame associated with each code block instantiation. All the
inlets and threads of an instantiation execute relative to
this frame.

A frame is a collection of slots. These slots hold
synchronization information, message data, and temporary
results. The storage required for a frame is statically
determined, but dynamically allocated. A frame resides on a
single processing node, and computation relative to the frame
occurs on the same node. The frame represents a code block
instantiation. In the current implementation, a frame is
assigned a processor and a location on that processor which
can not change during its lifetime.

The inlets are specialized message handlers. Each inlet has
a receive instruction specifying how to interpret the message
and in which frame slots to store the message contents. To
perform computation on the message, the inlet forks a thread.
The message destination is specified by frame pointer and
inlet number. The frame pointer specifies the code block,
and the inlet number the particular inlet within that code
block. Unlike TAM inlets, a LAM inlet can only post a
thread, not another inlet.

3

Threads execute instructions relative to the current frame.
Threads can fork other threads, but can not fork inlets. A
thread executes from the start of the thread to the end. No
instructions are skipped. LAM threads are essentially basic
blocks, except that a thread may fork to multiple threads.

There are two vectors for each code block instantiation used
for scheduling. These are the remote continuation vector
(RCV), and the local continuation vector (LCV). The RCV
holds the threads posted by inlets. The LCV holds the
threads forked by other threads. Each vectors is a queue.
Entries can be added to the RCV at any time, whereas the LCV
receives entries only when the instantiation is the current
frame.

When an instantiation is scheduled for execution, the RCV is
copied to the LCV. The insiantiation remains scheduled until
there are no more threads on the LCV. The period from when
the RCV is copied to when the LCV is empty is a quantum. The
sizes of the RCV and LCV are statically determined. The
RCV's size is equal to the number of inlets, and the LCV's
size to the number of threads in the code block.

Posting a thread within an inlet places the thread onto the
RCV. Thus a posted thread will not execute until the next
quantum. When a thread forks another thread, the forked
thread is placed in the LCV. All threads forked are executed
within the current quantum. Threads only execute when the
frame they execute relative to becomes the current frame.
Inlets execute regardless of whether or not their frame is
the current frame.

The transaction mechanisms have been added to LAM to ensure
that the parallelized sequential program generates the same
results as the sequential version. Towards this end, all
transactional reads record which transaction performed the
read and where to send the rollback message in the event that
the read has read stale data. Stale data occurs when the
read has read before the correct value has been written.
Inlets handle the rollback messages.

Any side-effects to shared objects can not occur until the
transaction performing the side-effect commits. To guarantee
this, all operations which perform a side-effect on a shared
object must be delayed until commit. For transactional
writes, the run-time system caches the write until the
commit. For a message send which will cause the receiver to
perform a side-effect, the delayed send operator needs to be
used. A delayed send message is cached until commit.

4

Lam Data types

The data types supported by LAM are frame-pointer, integer,
generic, array, code-block, sync-type, generic-ptr, and int-
ptr.

Integers are used to represent numeric integers, Booleans,
inlet identifiers, thread identifiers, and transaction
identifiers. Inlet identifiers specify the inlet number
within the code block. Thread identifiers represent the
thread number. A transaction identifier is used by
transactional reads and writes, and the commit operation to
specify which transaction within a code block is performing
the operation.

Generics have two fields: type and value. The generic type
field is used to implement data types not provided by LAM.
The value field can hold any of the LAM data types except
arrays and generics.

The array type allows for the creation of static vectors
within the frame. The declaration for arrays is (array type
size). Where type is any of the LAM data types except for
arrays. Size is the number of elements to allocate.

Code block is used to hold a reference to a code block
object. The only LAM operator which can use an object of
type code block is falloc. This data type has been added to
support Scheme's first class procedures.

The sync-type allows for synchronization within LAM. Synch
slots are only referenced at the beginning of a thread.
Slots which are of sync-type hold an integer value which
specifies the number of times the thread needs to be forked
and/or posted before the thread will be allowed to execute.
Frame slots of type sync-type are initialized when the frame
containing them is created.

Generic-ptr points to a dynamically allocated generic object.
Int-ptr points to a dynamically allocated integer.

LAM operations

message handling

(receive)
(receive (current frame slot 1)

(current_frame slot_2)

(current_frame slotn))

5

The receive operator receives the message and interprets
it based on the types of the frame slots specified.
Receive can only occur in inlets.

(send frame inlet (current_frame value 1)
(currentframe value_2)

(currentframe value n))

Send the message composed of the frame slots value_1,
value 2, ..., value n to the inlet frame/inlet. Frame is
a frame pointer specifying the destination frame, and
inlet is an integer specifying the specific message
handler to execute relative to the frame. The receiving
inlet (frame/inlet) will have a corresponding receive
instruction specifying the same number of frame slots
with the same types as in the send instruction.

(dsend trans-id frame inlet (currentframe value1)
(current frame value 2) ...
(current_frame value_n))

Dsend is a send which is not sent until the commit
instruction for transaction trans-id is issued. Delayed
sends are used when receipt of the message causes a side-
effect to be performed on a shared data object stored in
the destination frame.

arrays

Arrays are allocated storage within the frame. Their size is
statically declared, and can not be dynamically changed. The
only operations which can manipulate arrays are arr-index and
arr-set. These operations manipulate individual elements
within the array vector. There are no operations which work
on an entire array. (array type size) declares a frame slot
as type array with size elements each of type type. The type
can be any of the LAM types except array.

(arr-index destination array index)

Stores the value read from array[index] into the frame
slot destination. Array is a frame slot of type array.
Index is of type integer. Destination must be of the
same type as the elements of the vector array.

(arr-set array index value)

Stores value in array[index]. Array is a frame slot of type
array. Index is of type integer. Value must be of the same
type as the elements of array.

6

generics

LAM generics differ from generics in TAM. A LAM generic has
two fields: type and value. The type field is of type
integer and represents data types built on top of LAM. The
value field of a generic can hold object of any of the LAM
types except array and generic. A type field of 0 is
reserved to specify a generic of type integer. That is, if
the type field contains a 0, then the value field contains an
object of type integer. The value field of a generic is not
statically typed. The "type" of the value field is
determined dynamically based on the contents at run-time.
The LAM run-time system does not make use of the information
contained in the type field.

(set-type destination type-val)

Sets the type field of the generic destination to have
the integer value type-val.

(set-value destination val)

Sets the value field of the generic destination to have
the value val.

(type destination generic)

Stores in destination the type identifier stored in the
type field of generic. Destination is of type integer.

(value destination generic)

Stores in the frame slot destination the value stored in
the value field of generic. The LAM types for
destination and the contents of the value field of
generic must match at run-time.

(make-integer destination int)

Make-integer sets the type field of destination to
integer, and the value field to int. Destination is of
type generic. Int has type integer.

memory operations

Storage allocated by halloc or malloc is a typed dynamically
created array. References of the form mem-ptr[offset]
signify the offset'th entry in the array. The array indices
begin at 0.

Transactional reads provide the memory system with the
identification of which transaction is reading, and where to
send the rollback message when a dependency violation is
detected for this read. A transaction dependency occurs when

7

a committing transaction writes to a location read by a non
committed transaction.

The run-time system caches transactional writes until the
commit instruction is executed. When the commit occurs, the
cached writes side-effect memory.

(malloc type dest size)

Malloc allocates a vector of memory from the same
processing node that is executing the malloc instruction.
Malloc allocates a vector of size elements of type type
from the heap. The pointer to the vector is stored in
the frame slot dest. The type specified can be any of
the LAM data types except array. Size is of type
integer. Dest must be a pointer type (i.e. if type is
generic, then dest is generic-ptr). The allocated vector
may be manipulated by read, tread, lwrite, ltwrite, and
mfree. If the request can not be met, dest will contain
the value 0. Type is a constant symbol specifying the
LAM data type.

(mfree mem-ptr)

Mfree deallocates the storage pointed to by mem-ptr.
Mem-ptr points to memory allocated by malloc. Mem-ptr is
a pointer type.

(halloc type dest-frame dest-inlet size)

alloc allocates storage for a vector with size elements
of type type. alloc attempts to allocate the storage on
the processing node executing the halloc instruction.
However, if the allocation request can not be satisfied
by the current processing node, the memory manager will
allocate the memory from a remote node. The inlet
specified by dest-frame and dest-inlet receives the
pointer to the memory allocated. If the allocation
request can not be met, a value of 0 is sent. Dest-frame
is of type frame-pointer. Dest-inlet is of type integer.
Type is a constant symbol specifying the LAM data type.
The allocated vector can be manipulated by bread, htread,
hwrite, htwrite, and hfree.

(hfree mem-ptr)

Efree deallocates the storage pointed to by mem-ptr.
Mem-ptr points to memory allocated by halloc. Mem-ptr is
a pointer type.

8

(iread type dest mem-ptr offset)

Lread performs a non-transactional reference to memory
allocated by malloc. Lread reads the value stored in
mem-ptr[offset] and stores it in the frame slot dest.
Type specifies the LAM data type of the object stored at
mem-ptr[offset]. Dest has type type. Offset has type
integer. Type is a constant symbol specifying te LAM
data type.

(ltread type trans-id dest mem-ptr offset
roll-frame roll-inlet)

Ltread performs a transactional reference to memory
allocated by malloc. Ltread reads the value stored in
mem-ptr[offset] and stores it in the frame slot dest.
Type specifies the LAM data type which is stored at mem-
ptr[offset]. Dest must be of type type. Roll-frame and
roll-inlet specify the inlet to call if a rollback is
required because the ltread has read stale data. Roll-
frame is of type frame-pointer. Roll-inlet is of type
integer. Trans-id is of type integer and specifies the
transaction identifier. Together roll-frame and trans-id
uniquely define the transaction performing the read.
Offset has type integer. Type is a constant symbol
specifying the LAM data type.

(lwrite type mem-ptr offset value)

Lwrite performs a non-transactional side-effect on memory
allocated by malloc. Lwrite stores value in mem-
ptr[offset]. Type specifies the LAM data type of mem-
ptr[offset]. Value must be of type type. Type is a
constant symbol specifying the LAM data type.

(ltwrite type trans-id mem-ptr offset value)

Ltwrite performs a transactional side-effect on memory
allocated by malloc. Ltwrite stores value in mem-
ptr[offset]. Type specifies the LAM data type of mem-
ptr[offset]. Value must be of type type. Type is a
constant symbol specifying the LAM data type.

(hread type dest-frame dest-inlet mem-ptr offset)

Hread performs a non-transactional split-phase reference
from memory allocated by halloc. Dest-frame and dest-
inlet specify the inlet to send the value of type type
stored at memory location mem-ptr[offset]. Offset and
dest-inlet have type integer. Mem-ptr is a pointer type.

9

Dest-frame is of type frame-pointer. Type is a constant
symbol specifying the LAM data type.

(htread type trans-id dest-frame dest-inlet mem-ptr offset
roll-frame roll-inlet)

Htread performs a transactional split-phase reference
from memory allocated by halloc. Dest-frame and dest-
inlet specify the inlet to send the value of type type
stored at memory location mem-ptr[offset]. Roll-frame
and roll-inlet specify the rollback point for this read.
Together roll-frame and trans-id uniquely determine the
transaction performing the read. Trans-id, dest-inlet,
offset, and roll-inlet are of type integer. Dest-frame
and roll-frame are of type frame-pointer. Mem-ptr is a
pointer type. Type is a constant symbol specifying the
LAM data type.

(hwrite type mem-ptr offset value)

Rwrite performs a non-transactional side-effect on memory
allocated by halloc. write stores value in mem-
ptr[offset]. Type specifies the LAM data type of mem-
ptr[offset]. Value must be of type type. Type is a
constant symbol specifying the LAM data type.

(htwrite type trans-id mem-ptr offset value)

Htwrite performs a transactional side-effect on memory
allocated by halloc. twrite stores value in mem-
ptr[offset]. Type specifies the LAM data type of mem-
ptr[offset]. Value must be of type type. Type is a
constant symbol specifying the LAM data type.

frame operations

(falloc return-frame return-inlet code-block)

Allocates a frame for the code block specified by code-
block. Code-block can either be a constant identifier
for a code block, or a frame slot of type code-block. A
frame will be allocated on a processing node, and inlet 0
of the code-block will be scheduled. Inlet 0 initializes
the synchronization variables in the frame, and returns
the pointer to the newly created frame, to the inlet
specified by return-frame and return-inlet. Return-frame
has type frame-pointer. Return-inlet is an integer.

10

(ffree frame-ptr)

Frees the frame storage for frame-ptr. Frame-ptr is of
type frame-pointer.

commit mechanisms

(commit trans-id)

Perform a commit on the transaction identified by the
current_frame pointer and trans-id.

(reference ref-frame trans-id ident roll-frame roll-inlet)

Adds a read dependency for a reference made by the
transaction specified by ref-frame and trans-id. Ident
is used as the "address" of the reference. This
instruction is for use when a object stored in the frame
can be referenced by other code blocks. In the event
this reference leads to a rollback, the rollback inlet
specified by roll-frame and roll-inlet will be called.
Ref-frame and roll-frame have type frame-pointer. Trans-
id, ident, and roll-inlet have type integer.

(side-effect frame-ptr trans-id ident)

This operations is used in the commit section of a
transaction when a shared data structure implemented on
top of LAM is side-effected.

branching

(post thread-number)

Schedules the thread thread-number to execute in the next
quantum. The thread is queued in the RCV.

(fork thread-number)

Schedules a thread for execution within the current
quantum. The thread is queued in the LCV.

(switch conditional thread-true thread-false)

If conditional is true fork thread-true, otherwise fork
thread-false.

markers

(stop)

Marks the end of a thread or inlet. If there are other
threads in the LCV, then the head of the LCV becomes the

11

executing thread, otherwise the quantum ends and another
code block is scheduled for execution.

(sync sync-slot)

Marks the beginning of a thread. Sync-slot specifies the
number of times this thread must be scheduled for
execution before it is allowed to compute. In the case
where it must only be scheduled to compute once, this
instruction may be omitted from the thread.

data movement

(move destination source)

Copy the contents of frame slot source to frame slot
destination. Source and destination must be of the same
LAM type, and cannot be of type array.

arithmetic operations

(prim-op destination argl arg2)

Prim-op is one of the following operations:

int == integer
ptr == generic-ptr or int-ptr

LAM operation
eq int or ptr equality
ge int or ptr greater than or equal
gt int or ptr greater than
it int or ptr less than
le int or ptr less than or equal
add int or ptr addition
sub int or ptr subtraction
mul integer multiply
div integer divide
and integer logical and
or integer logical or
max integer maximum
min integer minimum

The values for true and false are inherited from the C
implementation of LAM.

LAM false: integer 0
LAM true : Anything other than integer 0

12

Scheme to LAM

Subset of Scheme implemented on top of LAM

Data Types
Integer
Null
Cons
Vector
Procedure (the rest operator has not been implemented)

OQperations
+1 - * / and, or, =, >=, <=, >, <, max, min
cons, car, cdr, pair?, set-car!, set-cdr!, null?
vector?, vector-length, vector-ref, make-vector, vector-set!
set!, and variable references.

How Scheme is artitioned into LAM

Every Scheme procedure becomes a LAM code block. Parallelism
occurs whenever a procedure call is made. Since each code
block is independently scheduled, each code block can execute
in parallel.

Under the current compiler implementation, procedure
parallelism is the only form of parallelism utilized.

Implementation of Scheme Data types

Inteage

Since integer operations are built into LAM no special
representation is needed to support basic Scheme integers.
There is currently no support for bignums.

LAM implements Boolean with the integer data type. This
differs from TAM which has an explicit Boolean data type.

primitive operations

Scheme expression: (rim-Qp opl op2)

Where prim-op is one of the following Scheme operators:
+, -, *, /, =, >=, <=, <, >, max, min, and, or

The corresponding LAM operators are as follows:

13

Scheme p AM
+ add

sub
* mul
/ div

eq
>= qe
<= le
< it
> gt
max max
min min
and and
or or

Frame declarations

(temp_intl integer)
(temp_ int2 integer)
(temp_val integer)
(temp_opl generic)
(temp_op2 generic)
(temp_res generic)

Generated code

(define-thread eval-primop
(fork eval-opl)
(fork eval-op2)
(stop))

thread eval-opl
Evaluates opl to a value of type generic. The
computed value is stored in the frame slot temp_opl,
and then forks thread compute-op.

thread eval-op2
Evaluates op2 to a value of type generic. The
computed value is stored in the frame slot temp_op2,
and then forks thread compute-op.

(define-thread compute-op
(sync (current_frame sync_i))
(value (current_frame temp_intl)

(current_frame temp_opl))
(value (current_frame temp_int2)

(currentframe tempop2))
(lam-prim-op (current_frame temp_val)

(current_frame temp_intl)
(current_frame temp_int2))

(make-integer (current_frame temp_res)
(current_frame temp_val))

(fork cont))

14

Sync_i's initial value is 2. Lam-prim-op is the LAM
mapping of the Scheme rim-op.

Thread eval-primop causes both operands to begin
computing. The operands are evaluated to generic
integers and will be in frame slots temp_opl and
temp_op2 when thread compute-op begins execution.

Thread compute-op performs the primitive arithmetic
operation. It converts the two generic integers into
LAM integers, performs the specified arithmetic
operation, and converts the resulting integer to a
generic integer. The generic integer is returned in
frame slot temp_res to the thread cont.

An object of type null is a generic whose type field is the
integer value null-tag and value field is undefined. Objects
of type null are created by the Scheme expression: '().

null?
Scheme expression: (null? expr)

Frame declaration

(temp_type integer)
(temp_null generic)
(temp_res generic)

Generated code

thread eval-expr
Computes expr to a generic, stores it in temp_null, and
forks thread null?.

(define-thread null?
(type (current_frame temp_type)

(current_frame temp_null))
(eq (current_frame temp_type)

(current_frame temp_type) null-tag)
(make-integer (current_frame temp_res)

(current_frame temp_type))
(fork cont)
(stop))

Thread null? gets the type of the generic temp_null,
comparing it to the null type tag. The Boolean result
is converted into an integer and returned to thread cont
in the frame slot temp_res.

15

The cons cell is made up of two parts: a generic of type cons
(Cons Header), and a heap allocated LAM vector containing two
generics.

Cons Header

I Cons Tag I

generic

Cons Cellndx: Type 1
Arb. Type | Arb. Type |

Arb. Value Arb. Value

_ genenc generic .

hmalloc'd structure

The Scheme operators for manipulating cons cells are cons,
car, cdr, pair?, set-car!, and set-cdr!.

The LAM code generated for each of these operators is as
follows:

cons

Scheme expression: (cons car-exp cdr-exp)

Frame declarations

(temp_ptr
(temp_header
(sync_i
(temp_car
(temp_cdr

generic-ptr)
generic)
sync-type)
generic)
generic)

Generated code

(define-thread make-cons-cell
(halloc generic current_frame get_ptr_inlet 2)
(fork compute_car_thread)
(fork compute_cdr_thread)
(stop))

thread compute_car_thread
Evaluates car-exp to a value of type generic. The
computed value is stored in the frame slot temp_car,
and then thread make cellthread is forked.

thread compute cdr thread
Evaluates cdr-exp to a value of type generic. The
computed value is stored in the frame slot temp_cdr,
and then thread make cellthread is forked.

16

I

(define-inlet get_ptr_inlet
(receive (current_frame temp_ptr))
(post make_cell_thread)
(stop))

(define-thread make cell thread
(sync (current frame synci))
(set-type (current_frame temp_header) cons-tag)
(set-value (current frame temp_header)

(current_frame temp_ptr))
(hwrite generic (current_frame temp_ptr) 0

(current_frame temp_car))
(hwrite generic (current_frame temp_ptr) 1

(current_frame temp_cdr))
(fork cont)
(stop))

Synci's initial value is 3. It is posted by
get_ptr_inlet and forked twice: once each for the car
expression and cdr expression.

Make-cons-cell dynamically allocates a vector of two
generics which serves as a cons cell. After allocated
the cons cell, it forks off computation to evaluate the
car and cdr expressions.

Inlet get_ptr_ inlet receives the cons cell allocated in
thread make-cons-cell.

The thread make cell thread begins executing once the
car and cdr expressions have evaluated to a value, and
storage has been allocated for the cons cell. The
threads purpose is to initialize the cons cell.
Initialization involves setting the generic holding the
cons cell header, temp_header, to type cons with value
containing the pointer to the cons cell.

The cons cell temp_header is returned to thread cont.

car

Scheme expression: (car cons-expr)

Frame declarations

(temp_ptr generic-ptr)
(temp_cons generic)
(temp_res generic)

Generated code

thread eval-car

17

Evaluates cons-expr to a generic value, storing the
result in temp_cons, and then forks thread getcar.

(define-thread get_ car
(value (current_frame temp_ptr)

(current_frame temp_cons))
(htread generic trans x current frame car inlet

(current frame temp_ptr) 0 current_frame
car rollback inlet)

(stop))

(define-inlet car inlet
(receive (current frame temp_res))
(post cont)
(stop))

(define-inlet car rollback inlet
(receive)
(post get_car)
(stop))

Thread get_car gets the pointer to the cons cell from
the cons header temp_cons. It then performs a
transactional read to get the car portion of the cell.

Inlet car inlet receives the generic value representing
the car, and returns it in temp_res to the thread cont.

In the event that the value read from the cons cell is
stale, the inlet car rollback inlet causes the car
portion to be read again. Car rollback inlet is the
rollback point

cdr

Scheme expression: (cdr cons-expr)

Frame declarations

(temp_ptr generic-ptr)
(temp_cons generic)
(temp_res generic)

Generated code

thread eval-cdr
Evaluates cons-expr to a generic value, storing the
result in temp_cons, and then forks thread get_cdr.

18

(define-thread get_ cdr
(value (current_frame temp_ptr)

(current_frame temp_cons))
(htread generic transx current_frame cdr inlet

(current frame temp_ptr) 1 current_frame
cdr rollback inlet)

(stop))

(define-inlet cdr inlet
(receive (current_frame temp_res))
(post cont)
(stop))

(define-inlet cdr rollback inlet
(receive)
(post get_cdr)
(stop))

Thread get_cdr gets the pointer to the cons cell from
the cons header temp_cons. It then performs a
transactional read to get the cdr portion of the cell.

Inlet cdr inlet receives the generic value representing
the cdr, and returns it in temp_res to the thread cont.

In the event that the value read from the cons cell is
stale, the inlet cdr rollback inlet causes the car
portion to be read again. Cdr_rollback inlet is the
rollback point

pair?

Scheme expression: (pair? cons-expr)

Frame declarations

(temp_ type integer)
(temp_header generic)
(temp_res generic)

Generated code

thread eval-cons-expr
Computes cons-expr to a generic value, storing it in
temp_header, and forks thread pair?.

(define-thread pair?
(type (current_frame temp_ type)

(current_frame temp_header))
(eq (current_frame temp_type)

(current frame temp_type) cons-tag)
(make-integer(current_frame temp_res)

(current_frame temp_ type))

19

(fork cont)
(stop))

Thread pair? gets the type of the generic temp_header,
comparing it to the cons type tag. The Boolean result
is converted into an integer and returned to thread cont
in the frame slot temp_res.

set-car!

Scheme expression: (set-car! cons-cell expression)

Frame declarations

(sync_i sync-type)
(temp_ptr generic-ptr)
(temp_header generic)
(temp_val generic)
(temp_res generic)

Generated code

(define-thread car!
(fork eval-cons-cell)
(fork eval-expression)
(stop))

thread eval-cons-cell
Computes the value of the cons-cell argument, leaves
the value in the frame slot temp_header, and forks
side-effect-car !.

thread eval-expression
Computes the value of the expression argument, leaves
the value in the frame slot temp_val, and forks side-effect-car !.

(define-thread side-effect-car!
(sync (current_frame sync_i))
(value (current_frame temp_ptr)

(current_frame temp_header))
(htwrite generic trans_x (current_frame temp_ptr)

0 (current_frame temp_val))
(move (current_frame temp_res)

(current_frame temp_val))
(fork cont)
(stop))

Sync i's initial value is 2.

The thread car! causes the cons-cell and expression
arguments to be evaluated. The cons cell is stored in
temp_header and the new car value in temp_val.

20

Thread side-effect-car! gets the pointer to the cons
cell from the cons header, transactionally writes the
new car value, and returns to the thread cont the new
car value.

set-cdr!

Scheme expression: (set-cdr! cons-cell expression)

Frame declarations

(synci sync-type)
(temp_ptr generic-ptr)
(temp_header generic)
(temp_val generic)
(temp_res generic)

Generated code

(define-thread cdr!
(fork eval-cons-cell)
(fork eval-expression)
(stop))

thread eval-cons-cell
Computes the value of the cons-cell argument, leaves
the value in the frame slot temp_header, and forks
side-effect-cdr!.

thread eval-expression
Computes the value of the expression argument, leaves
the value in the frame slot temp_val, and forks side-
effect-cdr!.

(define-thread side-effect-cdr!
(sync (currentframe sync_i))
(value (current_frame temp_ptr)

(currentframe temp_ header))
(htwrite generic trans _x (current_frame temp_ptr)

1 (currentframe temp_val))
(move (current frame temp_res)

(current_frame temp_val))
(fork cont)
(stop))

Sync_i's initial value is 2.

The thread car! causes the cons-cell and expression
arguments to be evaluated. The cons cell is stored in
temp_header and the new car value in temp_val.

21

Thread side-effect-cdr! gets the pointer to the cons
cell from the cons header, transactionally writes the
new car value, and returns to the thread cont the new
car value.

Vector

A vector consists of a generic of type vector (Vector
Header), and a heap allocated LAM vector.

Vector Size elements
Vector Header In: 1

Vector Tag Integer Tag Arb. Type Arb. Type

Vector Size Arb. Value Arb. Value

generic generic generic generic .

hmalloc'd structure

The Scheme operators for manipulating vectors are: vector?,
make-vector, vector-length, vector-ref, and vector-set!.

vector?

Scheme expression: (vector? expression)

Frame declarations

(temp_type integer)
(temp_res generic)

Generated code

thread eval-vector-exp
Computes expression to a generic value, storing it in
temp_header, and forks thread vector?.

(define-thread vector?
(type (current_frame temp_type)

(current_frame temp header))
(eq (current_frame temp_type)

(current_frame temp_type) vector-tag)
(make-integer (currentframe temp_res)

(current_frame temp_type))
(fork cont)
(stop))

Thread vector? gets the type of the generic temp_header,
comparing it to the vector type tag. The Boolean result
is converted into an integer and returned to thread cont
in the frame slot temp_res.

22

make-vector

Scheme expression: (make-vector int-exp)

Frame declarations

(temp_int integer)
(temp_size generic)
(temp_alloc_size integer)
(temp_ptr generic-ptr)
(temp_header generic)

Generated code

thread eval-int-exp
Computes int-exp to an integer generic, stores it in
temp_size, and forks thread make-vector.

(define-thread make-vector
(value (current_frame temp_int)

(currentframe temp_size))
(add (current_frame temp_alloc size)

(current_frame temp_int) 1)
(halloc generic current_frame get_ptrinlet

(current_frame temp_alloc_size))
(stop))

(define-inlet get_ptr inlet
(receive (current_frame temp_ptr))
(post set_up_vector)
(stop))

(define-thread set_up_vector
(set-type (current_frame temp_header) vector-tag)
(set-value (current_ frame temp_header)

(current_frame temp_ptr))
(hwrite generic (current_frame temp_ptr) 0

(current_frame temp_size))
(fork cont)
(stop))

Thread make-vector allocates a vector of storage one
larger than requested in int-exp. The extra vector slot
stores the size of the vector. The allocated vector
storage is returned to inlet get_ptr_inlet, and
initialized in thread set_up_vector.

In thread set_up_vector the vector header is set to have
vector type and the pointer to the vector storage as .its
value. In the first slot of the vector storage, the
vector size is stored. set_up_vector returns the vector
header temp_header to thread cont.

23

The write in the thread set_up_vector is not
transactional since the vector object is not shared at
creation.

vector-length
Scheme expression: (vector-length vector-exp)

Frame declarations

(temp_ptr generic-ptr)
(temp_header generic)
(temp_size generic)

Generated code

thread eval-vector-exp
Computes vector-exp to a value which is stored in
temp_header, then thread vector-length is forked.

(define-thread vector-length
(value (current_frame temp_ptr)

(current_frame temp_header))
(hread generic currentframe have size inlet

(current_frame temp_ptr) 0)
(stop))

(define-inlet have size inlet
(receive (current_frame temp_size))
(post cont)
(stop))

The thread vector-length gets the pointer to the
dynamically allocated vector, and does a non-
transactional read to get the vector length information.
The read is non-transactional because the size of a
vector can not change after its creation.

Inlet have size inlet receives the vector size read in
thread vector_length and returns it to thread cont.

vector-ref

Scheme expression: (vector-ref vector index)

Frame declarations

(sync_i sync-type)
(temp_ptr generic-ptr)
(temp_vector generic)
(temp_int integer)
(temp_res generic)

24

Generated code

(define-thread vector-ref
(fork evaluate-vector)
(fork evaluate-index)
(stop))

thread evaluate-vector
Computes the vector argument, stores the value in
temp_vector, and forks the thread do-vector-ref.

thread evaluate-index
Computes the index argument, stores the value in
temp_index, and forks the thread do-vector-ref.

(define-thread do-vector-ref
(sync (currentframe sync_i))
(value (current_frame temp_ptr)

(currentframe temp_vector))
(value (current frame temp_int)

(current_frame temp_index))
(add (current frame temp int)

(current frame temp_int) 1)
(htread generic transx current frame vec-ref-inlet

(current_frame temp_ptr)
(current_frame temp_int)
currentframe vec-rollback-inlet)

(stop))

Sync_i's initial value is 2.

(define-inlet vec-ref-inlet
(receive (current_frame temp_res))
(fork cont)
(stop))

(define-inlet vec-rollback-inlet
(receive)
(post do-vector-ref)
(stop))

Thread do-vector-ref takes the pointer to the vector
structure from the vector header temp_vector, computes
the index to reference, and performs a transactional
read to get the vector entry.

Inlet vec-ref-inlet receives the entry contained at
vector[index] and returns it in frame slot temp_res to
thread cont.

25

In the event a roll back occurs because of the vector
reference, the inlet vec-rollback-inlet receives the
rollback request and posts thread do-vector-ref to read
in the new vector value.

vector-set !

Scheme expression: (vector-set! vector index value)

Frame declarations

(sync_i sync-type)
(temp_idx integer)
(temp_ index integer)
(temp_ptr generic-ptr)
(temp_val generic)
(temp_res generic)

Generated code

(define-thread vector-set!
(fork evaluate-vector)
(fork evaluate-index)
(fork evaluate-value)
(stop))

thread evaluate-vector
Computes vector, stores the vector object in
temp_vector, and forks the thread do-vector-set!.

thread evaluate-index
Computes the index argument, stores the value in
temp_index, and forks the thread do-vector-set!.

thread evaluate-value
Computes value, storing it in temp_val, and forks the
thread do-vector-set!.

(define-thread do-vector-set!
(sync (current_frame sync_i))
(add (current_frame temp_idx)

(current_frame temp_index) 1)
(value (current_frame temp_ptr)

(current_frame temp_vector))
(htwrite generic trans x

(current_frame temp_ptr)
(current frame temp idx)
(current_frame temp_val))

(move (current_frame temp_res)
(current_frame temp_val))

(fork cont)
(stop))

26

Sync i's initial value is 3.

Thread do-vector-set! places the new value of value in
vector[index]. The thread can execute once temp_index,
temp_vector, and temp_val have been initialized by the
threads evaluate-index, evaluate-vector, and evaluate-
value respectively. The new value is returned in
temp_ res to thread cont.

losurfu

Closures represent Scheme procedure objects. Closures are
first class objects in Scheme. Once a closure is created it
is never side-effected.

rlncrlln Wi-adr Closure

hmalloc'd structure

Frame declarations

(temp_ptr generic-ptr)
(temp_res generic)
(temp_block generic)
(temp_enc_env generic)

Generated code

(define-thread alloc-closure
(halloc generic current_frame have_closure 2)
(stop))

(define-inlet have-closure
(receive (current_frame temp_ptr))
(post initialize_closure))
(stop))

(define-thread initialize-closure
(set-type (current_frame temp_res) closure-tag)
(set-value (current_frame temp_res)

(current_frame temp_ptr))
(set-value (current _frame temp_block) code_block)
(set-value (current_frame temp_enc_env)

current frame)
(hwrite generic (current_frame temp_ptr) 0

(current_frame temp_block))

27

(hwrite generic (current_frame temp_ptr) 1
(current_frame temp_enc_env))

(fork cont)
(stop))

Thread initialize-closure creates a closure object. The
closure header generic's type is set to closure-tag, and
it's value is a pointer to the dynamically allocated
closure array. The array consists of 2 generics, the
first contains the code block which computes the
procedure, and the second contains the environment where
the procedure was created. The closure is returned in
temp_res to thread cont.

Calling conventions

For a procedure taking N arguments, inlet 6 receives the
first argument, inlet 7 the second, and so on up to inlet
N+5. Inlet N+6 receives the continuation. The continuation
specifies the frame and inlet number to send the resultant
value to.

The first argument is stored in the environment frame at
index offset 0, second argument at index offset 1, and so on
up to index offset N. Each argument is passed as a generic.

Arcument inlet

For 1 <= j <= N

(define-inlet j+5
(receive (currentframe arg_j))
(arr-set (current_frame array_0)

j-1
(current_frame arg_j))

(post kj)
(stop))

Where kj is the thread to execute in response to
receiving this argument. The thread kj depends on the
data dependencies. However, since the current compiler
does not generate a data dependency graph, all arguments
fork to thread 1.

Continuation inlet

(define inlet N+6
(receive (current_frame cont_fp_0)

(current- frame cont inlet_0))
(post kc)
(stop))

28

Where kc is the thread containing the send to the
continuation.

Since each argument is a generic, there is added overhead for
referencing the value field from the generic for use in
computation. However, this overhead is necessary to support
a general call mechanism for Scheme.

By allocating independent inlets for each argument, it
becomes possible to begin computation within the procedure
before all arguments have arrived. For correctness, the
program must synch on the argument variable only before it's
first reference. The independent inlets also provides for
the parallel evaluation of the arguments. Since Scheme does
not place an ordering on the order in which arguments
evaluate, they can all evaluate in parallel. However, from
the point of view of memory accesses, compilation specifies
an arbitrary ordering for commit passing.

Environment secifications

Since Scheme is a statically scoped language, the size of
each environment frame is known statically. Since the subset
of Scheme implemented does not support dynamic creation of
environment entries, the static frame information remains
constant during execution. Also, since the subset does not
provide first class environments, every environment reference
can be statically determined.

Because each frame's size is fixed and statically determined,
storage is statically assigned within the frame allocated to
compute the procedure. Environments are implemented as a
vector of generics.

In each code block, inlets 2 through 5 are set aside for the
environment. An environment parent is specified by the frame
pointer containing the parent environment frame.

Inlet 2 sends to a child environment frame all of its
parents. These parents consist of the current
environment's parents, plus a pointer to the current
environment.

Inlet 3 receives all of the parents for the current
environment frame.

Inlet 4 performs a variable lookup within the current
environment frame.

Inlet 5 performs a side effect on a variable within the
current environment frame.

29

For the purpose of counting frames, the global environment is
at level 0, it's child at level 1, and so on.

Specifications

For an environment frame at level N with M entries in
the frame.

Frame declarations
(frame_ptr 1
(inlet ref 1
(frame_ptr_2
(inlet ref 2
(index_
(index 1

(temp_O
(arg_0
(roll frame 0
(roll inlet_0
(trans 0
(trans 1
(parent_1
(parent_2

(parent N
(array_0

frame-pointer)
integer)
frame-pointer)
integer)
integer)
integer)
generic)
generic)
frame-pointer)
integer)
integer)
integer)
frame-pointer)
frame-pointer)

frame-pointer)
(array generic M))

1) Sending parent list to child environment frame

inlet
(define-inlet 2

(receive (current_frame frame_ptr 1)
(current frame inlet ref_1))

(send (current_frame frame_ptr 1)
(current frame inlet ref 1)
(current_frame parent 1)
(current frame parent_2)

(currentframe parentN)
currentframe)

(stop))

This inlet is called when a child of this environment
frame is created. The child will be at level N+1
within the environment. The receive takes the frame
(frameptr_1) and inlet number (inlet_ref_1) specifying
the inlet to send the N+1 parent frame pointers.

30

2) Receiving parent list from parent environment frame

inlet
(define-inlet 3

(receive (current_frame parentl)
(current_frame parent_2)

(current_frame parent N))
(stop))

Since this environment is at level N within the
environment hierarchy, it receives N parent frame
pointers.

3) Variable reference from environment frame

inlet
(define-inlet 4

(receive (current_frame frame_ptr_2)
(current frame inlet ref 2)
(current frame index 0)
(current frame roll frame 0)
(current frame roll inlet 0)
(current frame trans 0))

(arr-index (current frame temp_0)
(current frame array_O)
(current frame index 0))

(reference (current frame frame_ptr_ 2)
(current frame trans 0
(current frame index 0)
(current frame roll frame 0)
(current frame rollinlet_0))

(send (current_frame frame_ptr_2)
(current frame inlet ref 2)
(current_frame temp_ O))

(stop))

Frame pointer frame_ptr_2 and inlet number inlet ref_2
specify the inlet to return the environment reference.
Index 0 provides the offset within the environment
frame. Frame pointer roll frame 0 and inlet number
roll inlet _0 denote the roTlback point for this
reference. Together frame pointer frameptr 2 and
transaction identifier trans_0 uniquely specify the
transaction performing the reference.

The array-index instruction fetches the value of the
environment variable stored in the environment frame at
index position index 0.

31

The reference instruction logs the read dependency with
the run-time system. The index position within the
environment frame is used as the frame "address"
referenced.

The send returns the environment entry to the reader.

4) Side effect entry in environment frame

inlet
(define-inlet 5

(receive (current frame index 1)
(current_frame arg_0)
(current_frame frame_ptr_3)
(current frame trans 1))

(arr-set (current_frame array_0)
(current frame index 1)
(currentframe arg_0))

(side-effect (current_frame frame_ptr_3)
(current frame trans 1)
(currentframe index_1))

(stop))

Index offset index 1 specifies the environment entry to
replace with value arg_0. Frame pointer frame_ptr 3
and transaction identifier frame_ptr_3 uniquely
determine the transaction performing the side-effect.

The arr-set instruction updates the environment entry
with the new value.

Side-effect informs the run-time system that a write
has occurred on the frame "address" index 1.

variable references

Referencing an entry in the local frame:

Frame declarations

(temp_res generic)

Array_O is defined as (array generic M), where M is the
number of entries in the environment frame.

Generated code

(define-thread reference
(arr-index (currentframe temp_res)

(current_frame array_0)
index const)

32

(reference current frame trans id index const
currentframe rollback inlet)

(fork cont)
(stop))

(define-inlet rollback-inlet
(receive)
(post reference)
(stop))

Thread reference accesses the array holding the
environment frame information directly with the arr-
index instruction. The variable entry is located at
index_const (an integer constant) within the array
array_0. The reference instruction notifies the run-
time system about the read dependency on the
environment entry.

Inlet rollback-inlet is the rollback point for this
read.

Referencing an entry in another frame:

Frame declarations

(parent_i frame-pointer)
(temp_res generic)

Generated code

(define-thread reference
(send (current_frame parent_i) 4

current frame ref inlet
index const
current frame rollback-inlet
trans id)

(stop))

(define-inlet ref-inlet
(receive (current_frame temp_res))
(post cont)
(stop))

(define-inlet rollback-inlet
(receive)
(post reference)
(stop))

Thread reference sends a message to the frame containing
the environment frame requesting the value stored in the
frame at index indexconst (an integer constant). The
value will be returned to inlet ref-inlet. If this
reference leads to rollback, inlet rollback-inlet will

33

restart computation at thread reference. Trans id is an
integer constant specifying the transaction identifier.

Inlet ref-inlet returns the value of the variable
referenced in the frame slot temp_res to thread cont.

set!

Scheme expression: (set! variable value)

thread side-effect
Evaluates value to a generic value, stores it in
temp_val, and forks thread do-side-effect.

Frame declarations

(parent_j frame-pointer)
(temp_val generic)

If the environment frame being side-effected does not
belong to the procedure doing the side-effect:

(define-thread do-side-effect
(dsend trans id

(currentframe parent_j) 5
index_const (current frame temp_val)
currentframe trans id)

(stop))

otherwise:

(define-thread do-side-effect
(dsend trans id

currentframe 5
index const (current frame temp_val)
currentframe trans id)

(stop))

Dsend is used instead of send because environment entries
are shared objects, and side-effects to shared object can
not be modified until commit. Using a send would violate
this protocol.

The thread do-side-effect causes the value of an
environment entry to be updated once the transaction
containing it commits.

Index_const is an integer constant specifying where in
the environment frame the variable being side-effected is
located.

34

The last two values of dsend, current_frame and trans id,
specify the transaction performing the side-effect.
Trans id is an integer constant.

Alternate Environment Implementation

Three environment implementations were considered, before
going with alternate two described below.

Alternate one

Two code blocks are created for every scheme procedure. One
to manage the procedure's environment frame, the other the
procedure's computation.

The advantage of this approach is that the storage for
computation and for environments can be managed
independently. In the event the procedure returns a first
class procedure, the environment frame will need to remain in
existence after the procedure's computation completes. Thus,
the storage required for computation can be freed, leaving
the environment storage around.

By separating the environment frame and procedure's
computation into separate code blocks, each environment
operation requires a message send. Ideally, if the procedure
and environment code blocks reside on the same processing
node, then the message will be low latency. However, under
LAM there is no mechanism for specifying that two code blocks
should be instantiated on the same processor. Therefore,
environment operations are liable to be expensive in terms of
latency.

Alternate two

Combine the management of the environment frame and
procedure's computation into one frame. This way the
environment frame is guaranteed to reside on the same
processor as the one computing the procedure. However, once
computation completes, the storage required for computation
has to remain for as long as the environment frame is
referenced. Thus when computation completes, the frame can
not be freed until there are no references to the environment
frame.

Alternate three

Combine the management of the environment frame and
procedure's computation into one frame, but allow the frame
to be partitioned into two parts. As in alternate two, the
environment frame resides on the same processor as the
procedure's computation. But now, the computation portion of

35

the frame can be deallocated when the procedure completes
computation.

At first glance alternate three appears to be the best
choice. As soon as computation is completed, the unnecessary
storage is freed to be used by another code block. However,
in the current implementation of LAM, once a frame is
allocated it can not be moved. Thus even though we can free
up unneeded storage, memory fragmentation will prevent this
memory from being useful. The freed memory is not in use,
but is likely too small to be of use for any other code
block. Thus, for the time being alternate two has been
chosen, by virtue of its being simpler than alternate three
to implement.

However, in the future it is likely that frames will still be
fixed to the same processor they were allocated, but will be
able to move within that processors storage. This will clear
up the fragmentation problem, making alternate three the
better choice.

Under all three alternatives, garbage collection will be
required to free up the storage allocated for the environment
frames. At this time no garbage collector has been
implemented.

Liquid transactions

A transaction is a collection of inlets and threads in the
same code block whose side-effects are grouped together and
cached until the transaction reaches it's commit point. Once
a transaction is at the commit point, and holds the commit
token, committing takes place. Committing involves sending
each of the cached transactional writes to the memory system,
as well as sending any delayed sends. After all of the
delayed sends and transactional writes have been
acknowledged, the commit is sent to the next transaction.
The commit is sent to transactions in the same order they
would occur if they were executing sequentially on a single
processor. Commits pass through the call tree in a depth
first manner.

Under the current implementation, each Scheme procedure is
mapped into a LAM code block. Because of this a code block
can contain multiple transactions, each of which needs to be
identified for the memory system. A transaction is uniquely
identified by the frame pointer it executes relative to, and
a transaction identifier. All transactions within a code
block are assigned different transaction identifiers.
Transaction identifiers need to be unique within a code block
but not across code blocks. That is code block A can have
transactions labeled 1,2,...,N, and code block B has 1, 2, ...,

36

M. Because a transaction is identified by it's frame pointer
and transaction identifier, there is no ambiguity.

A new transaction is created for each procedure call, at the
merging of conditionals where at least one branch of the
conditional has created a transaction boundary, and at the
end of the code block.

Each thread and inlet within a code block is assigned to
exactly one transaction at compile time. Whenever a
transactional read or write is performed the transaction
performing the operation is identified.

Commit protocol

Every code block has inlet 1 reserved for receiving the
commit token. When inlet 1 receives the commit token, and
computation is at the commit point, the commit instruction
executes causing the commit phase to begin.

The commit phase causes all side effects to become visible to
the memory system. At commit all delayed sends and all
transactional writes to shared memory occur. The run-time
system is responsible for caching these sends and
transactional writes. For each delayed send and write, any
readers of the locations being side-effected will have to
rollback. The only exception is that reads belonging to the
same transaction as the writer do not cause rollback.

As a part of the commit, all references made by the
committing transaction are removed from all dependency lists.

The following describes what the run-time system does when it
executes the commit instruction.

<At node where commit is occurring>
For every transactional write and delayed send belonging to
the committing transaction.

Send the message to make the write or send occur.
Wait for the acknowledgment from each write or send.

Send the commit on to the successor transaction.

<At node where side effected shared object resided>
For each write (at the node the object resides)

Update the value f the shared object.
Send rollback messages to all readers that are not from
the writer's transaction.

Wait for ack from all rollback messages sent.
Send ack back to writer.

After all writes and delayed sends have been completed, the
commit token is passed onto the next transaction.

37

A rollback point is created for each thread which references
a shared object. These rollback points are represented by
inlets. When a read dependency violation is detected, the
memory system sends a rollback message to the rollback inlet.
This will cause computation to resume at the thread which
read it's data value too early.

A dependency violation occurs when a committing transaction
performs a side effect on a shared memory object which later
transactions have already referenced.

Missing from LAM

LAM currently does not provide support for control
speculation. To offer this support, a method of assigning
priorities and to terminate computation needs to be
introduced. The priorities are to allow promising
computations to occur before less promising ones. The
priorities would also enable transactions whose results are
used the earliest, to compute their values before
computations more distant in the call tree. The ability to
kill off computation permits the termination of computations
which have been determined to be unnecessary.

The ability to terminate computations will also be necessary
for the garbage collection phase. The mechanism currently
available is ffree. However, this mechanism is only used to
free up frame storage. It does not terminate any computation
relative to that frame.

In mul-T and STING they have expressed the benefits of being
able to steal computation. In particular, scheduling some
computations on the local node. This is particularly useful
when the value is needed immediately or for load balancing.
However, LAM can not support stealing since it is not
possible to move a frame once allocated.

LAM has no notion of scheduling for locality. The falloc
mechanism magically picks some processor to allocate the
frame on. Once allocated, there are no mechanisms in place
to move the frame to another processing node. Although this
could be added into the run time system, there would be no
mechanism for specifying at the LAM level that two code
blocks should execute near each other.

38

Future Work

Alternate Scheme transformation

The current technique is to compile each Scheme procedure
into a LAM code block. Because of this, each code block may
contain multiple transactions. It is because of these
multiple transactions that the transaction identifier had to
be added to the transactional read and write commands. This
identifier is just one extra piece of information that needs
to be maintained by the run-time system.

An alternative transformation would be to convert the Scheme
program into an equivalent continuation passing style (CPS)
implementation. With CPS each continuation could be mapped
into a code block consisting of exactly one transaction.
Under this scheme the transaction identifiers are redundant,
since the frame pointer would be sufficient to uniquely
identify a transaction.

With CPS, more code blocks would be created, thus a greater
potential for parallelism. However, there is a trade off.
As the number of code blocks increase, the amount of useful
work being done by each code block decreases. Thus the
overhead involved with allocating the frame, scheduling,
sending messages, and committing becomes harder to amortize.
Now that a code block no longer represents a procedure, the
environment frame will be located in a separate frame, thus
data locality decreases.

By making a code block represent one transaction trade offs
have to be made. Simulation is needed to show how expensive
these trade offs are.

Garbage collection

There is currently no garbage collection. The mechanisms for
providing an efficient distributed garbage collection system
for Liquid still need to be worked out.

The garbage collector will need to free up memory which has
been allocated from the heap. Besides the heap allocated
structures of cons cells and vectors, the garbage collector
will need to be able to reclaim frames created by code block
invocations. These frames can be collected when there are no
more references to their environment entries, or when the
frame has been orphaned because of rollbacks.

The orphaned frames can occur when rollback rolls computation
back to before the frames allocation, resulting in a new
frame being allocated. Computation will proceed using the

39

results from the new invocation of the code block, leaving
the previous invocation orphaned.

There are likely to be instances where the orphaned frames
still have computation executing relative to them. The
garbage collection will have to terminate the computation for
these frames by removing any scheduled entries from the LCV
and RCV, and then reclaim the frame storage.

Speculative execution

Speculative execution has been shown to be an important
method for increasing the amount of available parallelism.
However, the problem with speculation is what happens when
side-effects occur in speculatively executed code. If the
speculatively executed code is determined to be needed, then
there is no problem. But, when the code executed is not on
the actual computation path, the side-effects need to be
undone.

Under Liquid, speculatively executed code containing side-
effects does not present a problem. The reason for this is
Liquid's transactional model. Only code which is actually a
part of the computational path will ever receive the commit.
All side-effects by incorrectly executed transactions will
not affect the memory system since the commit will never be
received.

However, the current LAM does not provide sufficient
mechanisms to support speculation. There is no way to
specify which speculatively executed code is more promising
than another. Nor is there a way to terminate speculatively
executed code once it has been determined to be unnecessary.

Multiple commit tokens

At present there is only one commit token which is passed
from transaction to transaction. This is to guarantee that
all side-effect to shared objects occur as they would in the
sequential execution of the program. However, when the
compiler can prove that two transaction blocks are data
independent, it can allow both of the to commit concurrently.

To allow for simultaneous commits, the compiler needs to be
able to send the commit token to more than one successor.
And these multiple commits will need to be able to merge back
to a single token when the compiler can not prove that
concurrent committing is safe.

To send the commit to more than one successor, multiple
commit messages would be sent. A thread which synchronizes
on the number of outstanding commits would provide a way of
merging multiple commits back to a single commit.

40

Bibliography

Andr6 DeHon. Virtual memory and memory viewpoints for
distributed systems. Transit Note 82, MIT Artificial
Intelligence Laboratory, April 1993.

Thorsten von Eicken, David E. Culler, and Klaus Erik
Schauser. TL0 version 2.1: An implementation of threaded
abstract machine (draft). Technical report, University of
California, Berkeley, August 1991.

Marc Feeley. An Efficient and General Implementation of
Futures on Large Scale Shared-Memory Multiprocessors. Ph.D.
thesis, Department of Computer Science, Brandies University,
April 1993.

Marc Feeley and James S. Miller. A Parallel virtual machine
for Efficient Scheme Compilation. In Proceedings of the 1990
ACM Conference on Lisp and Functional Programming, June 1990.

Suresh Jagannathan and James Philbin. A customizable
substrate for concurrent languages. In ACM SIGPLAN '91
Conference on Programming Language Design and Implementation,
June 1992.

Suresh Jagannathan and James Philbin. A foundation for an
efficient multi-threaded scheme system. In Proceedings of
the 1992 Conference on Lisp and Functional Programming, June
1992.

Morris J. Katz. Paratran: A transparent transaction based
runtime mechanism for parallel execution of scheme. Master's
thesis, MIT 1986.

Thomas F. Knight Jr. An Architecture for Mostly Functional
Languages, Chapter 19, pages 500-520. MIT Press, 1990.

Monica S. Lam and Robert P. Wilson. Limits of control flow
parallelism. In 19th Annual ISCA (ACM), pages 46-57, May
1992.

Randy Osborne. Speculative computation in multilisp. In
Proceedings of the 1990 ACM Conference on Lisp and Functional
Programming, pages 198-208, 1990.

James Philbin. STING: An Operating System Kernel for Highly
Parallel Computing. Ph.D. thesis, Dept. of Computer Science,
Yale University, 1992.

Jonathan Rees and William Clinger, editors. The Revised4

Report on the Algorithmic Language Scheme. MIT/AI/Memo 848b,
November 1991.

41

Ellen Spertus. Execution of Dataflow Programs on General-
Purpose Hardware. Master's thesis, MIT, August 1992.

42

