
Automatic Verification of Pipelined
Microprocessors

by

Vishal Lalit Bhagwati

Bachelor of Science, University of California at Berkeley (1992)

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Master of Science

at the

Massachusetts Institute of Technology

February, 1994

© Massachusetts Institute of Technology, 1994

n vED-
Signature of Author

Department of Electrical Engineering and Computer Science

In December 9, 1993
I C'

Certified by

Accepted by

Srinivas Devadas

Associate Professor of Electrical Engineering and Computer Science

0 . - Thesis Supervisor

I "1t jrederic R. Morgenthaler

Chairman, De artmen t Commite on Graduate Students
MAS TI--C

FROM ,,,

4eR8 S0aS_T QAe
- n = o

2

Automatic Verification of Pipelined
Microprocessors

by

Vishal Lalit Bhagwati
Submitted to the

Department of Electrical Engineering and Computer Science

on December 9, 1993 in partial fulfillment of the requirements for the

degree of Master of Science.

Abstract

This thesis addresses the problem of automatically verifying large digital designs at the

logic level, against high-level specifications. In this thesis, a methodology which allows for the

verification of a specific class of synchronous machines, namely pipelined microprocessors, is

presented. The specification is the instruction set of the microprocessor with respect to which

the correctness property is to be verified. A relation, namely the -relation, is established

between the input/output behavior of the implementation and specification. The relation corre-

sponds to changes in the input/output behavior that result from pipelining, and takes into

account data hazards and control transfer instructions that modify pipelined execution. The

correctness requirement is that the -relation hold between the implementation and specifica-

tion.

In this research symbolic simulation of the specification and implementation is used to

verify their functional equivalence. The pipelined and unpipelined microprocessor are charac-

terized as definite machines (i.e. a machine in which for some constant k, the output of the

machine depends only on the last k inputs) for verification purposes. Only a small number of

cycles, rather than exhaustive state transition graph traversal and state enumeration, have to be

simulated for each machine to verify whether the implementation is in -relation with the

specification. Experimental results are presented.

Thesis Supervisor: Srinivas Devadas

Title: Associate Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I benefited greatly from the work of Srinivas Devadas, my advisor, and Filip Van Aelten,

who did ground-breaking work on using string function relations and symbolic simulation for

behavioral verification. Professor Devadas helped me significantly during the frustrating

moments of the research, and encouraged me to undertake difficult problems and solve them

effectively.

I would like to thank the members of the 8th floor VLSI group, my roommates, past and

present, and friends for their extensive support during my work.

This thesis is dedicated to my father, who gave me the inspiration to give the best at what-

ever I undertake, and whose fond memories will live with me forever. Special thanks to mem-

bers of my family for their continuing support to achieve my educational goals.

The work described in this thesis was done at the Research Laboratory of Electronics of

the Massachusetts Institute of Technology.

5

6

Contents
1 Introduction 11

1.1 Context 11

1.2 Previous Work 14

1.3 The Work Described in This Thesis 16

2 String Function Relations 19

2.1 Introduction 19

2.2 Concepts and Notation 20

2.3 The "Don't care times" P-Relation 21

3 Automata Theoretic Verification Procedures 25

3.1 Introduction 25

3.2 Binary Decision Diagrams 26

3.3 Image Computation Using BDD's 28
3.4 Procedures for Verification of Finite State Machines 31

4 Microprocessors as Definite Machines for Verification 33

4.1 Introduction 33

4.2 Definite Machines 33

4.3 Verification Properties of Definite Machines and Microprocessors 34

4.3.1 Verification of Definite Machines 34

4.3.2 Microprocessors as Definite Machines 35

4.3.3 3-relation for Verification of Definite Machines 36

4.3.4 Verification of k-definite machines with variable k 39

4.3.5 Pipelined Microprocessors with Data Hazards 41

5 Verification of Pipelined Microprocessors using Symbolic Simulation 43

5.1 Introduction 43
5.2 Pipelined Microprocessors with fixed k 44

5.3 Pipelined Microprocessors with variable k 46

5.4 Observing Specific Variables for Verification 48

7

5.5 Verification of Pipelined Microprocessors with Interrupts

and Exceptions 49

5.6 Verification of Microprocessors with Dynamically Scheduled Pipelines 52

5.7 Verification of Superscalar Pipelined Microprocessors 54

6 Experimental Results 57

6.1 Introduction 57

6.2 VSM, a simple RISC processor 57

6.3 AlphaO, a simplified AlphaTM 62

7 Conclusion and Future Work 67

Bibliography 71

8

9

10

Chapter 1

Introduction

1.1 Context

Technological advances in the areas of design and fabrication have made hardware systems

extremely large. As faster, physically smaller and higher functionality circuits are designed, in

large part due to progress made in VLSI, their complexity continues to grow. This makes the

design process long and tedious, and error prone. Computer-Aided Design is aimed at alleviat-

ing these two major problems in the design process. The first problem is tackled with synthesis

programs that automate certain design steps. The second problem is addressed by verification

programs that allow a designer to verify the consistency between an initial specification and a

derived implementation.

While much progress has been made in the area of synthesis, verification is still lagging

behind. Simulation has traditionally been used to check for correct operation of hardware sys-

tems, since it has long become impossible to reason about them informally. However, even this

is now proving to be inadequate due to computational demands of the task involved. It is not

practically feasible to simulate all possible input patterns to verify a hardware design. Sym-

11

Introduction

bolic simulation, where symbolic inputs are applied to cover a wider range of input and state

space, is practiced increasingly as well. An alternative to post-design verification is the use of

automated synthesis techniques supporting a correct-by-construction design style. Logic syn-

thesis techniques have been fairly successful in automating the gate-level logic design of hard-

ware systems. However, more progress is needed to automate the design process at the higher

levels in order to produce designs of the same quality as is achievable today by hand. This

leads to the need for independent verification procedures, and this need is recognized in indus-

try.

There are compelling reasons for verifying hardware to be correct at the design stage,

rather than after commercial production and the marketing stage. A comparatively recent alter-

native to simulation has been the use of formal verification for determining hardware correct-

ness. Formal verification is like mathematical proof. Just as correctness of a mathematically

proven theorem holds regardless of the particular values that it is applied to, correctness of a

formally verified hardware design holds regardless of its input values. Thus, consideration of

all cases is implicit in a methodology of formal verification. We consider a formal hardware

verification problem to consist of formally establishing that an implementation satisfies a

specification. The term implementation refers to the hardware design that is to be verified. This

entity can correspond to a design description at any level of hardware abstraction hierarchy.

The term specification refers to the property with respect to which correctness is to be deter-

mined. It can be expressed in a variety of ways - as a behavioral description, an abstracted

structural description, a timing requirement etc. The implementation and the specification are

regarded as given within the scope of any one problem, and it is required to formally prove the

appropriate "satisfaction" relation [Gup92].

The ultimate task in verification is to demonstrate that a designed circuit has a correct

behavior. Such a circuit can be very large, which makes it imperative that the verification pro-

cedure be efficient. The verification task can be split in subtasks, and can be done hierarchi-

cally. For instance, a first subtask may consist of demonstrating that a layout has a certain

Boolean functionality (which can again be divided into extracting the transistor schematics

12

from the layout, and proving that the transistor schematic has a correct Boolean functionality).

The remaining task is then to demonstrate that a logic design produces an intended overall

behavior.

The intended behavior for a synchronous hardware design is not necessarily a specific

input / output mapping. Circuits with different degrees of pipelining, or circuits with different

degrees of parallelism, produce different input / output functions, but may all exhibit satisfac-

tory input / output behavior. Behavioral verification addresses the problem of verifying that a

circuit design exhibits a satisfactory input / output behavior [FVA92]. What constitutes a "sat-

isfactory input / output behavior" depends on the domain of the application.

This thesis considers independent automatic verification of a class of synchronous proces-

sors, pipelined microprocessors, against behavioral specification. Pipelining is an implementa-

tion technique whereby multiple instructions are overlapped in execution. Today, pipelining is

the key implementation technique to make fast CPUs [PH90]. The work to be done in an

instruction is broken into smaller pieces, each of which takes a fraction of the time needed to

complete the entire instruction. Each of these steps is called apipe stage. Thus pipelining takes

advantage of instruction level parallelism to improve the throughput of the microprocessor.

The throughput of the pipeline is determined by how often an instruction exits the pipeline.

The pipeline designer's goal is to balance the length of the pipeline stages. If the stages are

perfectly balanced, then the time per instruction on the pipelined machine - assuming ideal

conditions (i.e. no stalls) - is equal to:

Time per instruction on unpipelined machine / Number of pipe stages.

Under these condition, the speedup from pipelining equals the number of pipe stages. The

difficulty in designing pipelined microprocessors. arises due to control hazards, data hazards

and event handling [PH90]. Complex pipelining techniques such as dynamic scheduling,

superscalar pipelining, hardware branch prediction etc. are used to obtain maximum through-

put in the microprocessor. The design and synthesis of such pipelined microprocessors are

13

Introduction

becoming automated, and computer-aided design tools are required to verify the correctness

properties of such microprocessors.

1.2 Previous Work
Extensive work has been done on the verification of specific input / output mappings.

Although this does not directly address the behavioral verification problem, it does so indi-

rectly by providing procedures that can be used as building blocks in a behavioral verification

system. Two classes of procedures have been developed for verifying that a circuit exhibits a

specific input / output mapping: fully automatic procedures, and procedures that require user

intervention. The second class is commonly denoted with the term "theorem-provers", which

refer to methods of proving theorems. Theorem provers are built from a general purpose back-

bone mechanism, which manipulates symbolic expressions by applying inference rules,

searching for a way to derive a desired conclusion from a given premise. In contrast, automatic

input / output verification procedures are built from representations and routines that are spe-

cifically tailored to the problem at hand. Many of the achievements in theorem proving tech-

niques are being superceded by recent advances in automatic procedures. However, theorem

proving techniques, such as in [Hun85], [Coh88] and [Joy88]), do have strengths that can be

used to advantage for verifying large circuits, namely the allowance for functional abstraction

and proof by induction, but they typically require extensive user interaction.

Procedures for verifying strict input / output equivalence between two Finite State

Machines (FSMs) were introduced in [CBM89] [Bry87]. This involved exhaustively travers-

ing the State Transition Graph of the product of the two machines, using implicit state enumer-

ation techniques. These are also known as symbolic simulation techniques. In symbolic

simulation, the input patterns are allowed to contain Boolean variables in addition to constants

(0, 1, and X). Efficient symbolic manipulation techniques for Boolean functions allow multi-

ple input patterns to be simulated in one step, potentially leading to much better results that

can be obtained with conventional exhaustive simulation. This makes the hardware verifica-

tion problem, which is NP-hard in general, more tractable and therefore attractive, in practice.

14

A way of formalizing behavioral equivalence is through string function relations, intro-

duced by Bronstein [Bro89]. Both the implementation and specification are taken to be syn-

chronous machines which have unique string functions associated with them. These string

functions map sequences (strings) of input values into sequences of output values. Behavioral

equivalence is modeled as a relation between two string functions. Bronstein defined two rela-

tions other than strict input / output equivalence: the a- and P-relations, capturing delay and

stuttering due to pipelining respectively. Bronstein used the Boyer-Moore theorem prover for

the verification of these relations. This allows for the verification of possibly large designs, but

requires sophisticated and extensive user interaction.

Sequential logic verification procedures have been extended to allow for differences in the

input/output behavior of the specification and implementation by Van Aelten et al [AAD91]

[FVA92]. A relation is established between the input/output behavior of the implementation

and specification using string function relations. The relation corresponds to changes in the

input/output behavior that frequently result from a behavioral or sequential logic synthesis

step. It is then possible to automatically verify whether the implementation satisfies the rela-

tion with the specification. The definition of the 3-relation is extended to general pipelined

processors in [FVA92], and the a-relation is subsumed within the extended 5-relation. Sym-

bolic simulation methods based on automata theory are used to verify the p-relation. The cir-

cuit examples used in this work are those associated with digital signal processing.

A method for verification of pipelined hardware is described by Bose and Fisher [BK89].

They describe a symbolic simulation method for verifying synchronous pipelined circuits

based on Hoare-style verification [Hoa69]. To deal with the conceptual complexity associated

with pipelined designs, they suggest the use of an abstraction function, originally introduced

by Hoare to work with abstract data types [Hoa72]. Given a state of the pipelined machine, the

abstraction function maps it to an abstract pipelined state. Behavioral specifications for this

abstract state space are given in terms of pre- and post-conditions, expressed in propositional

logic. By choosing the same domain for the abstract states as the circuit value domain, they are

able to automate both the evaluation of the abstraction function as well as verification of the

15

Introduction

behavioral assertions. Their technique is demonstrated on a CMOS implementation of a sys-

tolic stack. The actual circuit provides inputs to the "abstraction circuit", and the assertions are

verified at the abstract state level by a symbolic simulator.

1.3 The Work Described in This Thesis

The work described in this thesis focuses on independent behavioral verification of a class of

synchronous machines, namely pipelined microprocessors. In my approach, the implementa-

tion to be verified is a pipelined microprocessor, and is described in a high-level language sim-

ilar to BDS [Seg87]. The specification is the instruction set of the microprocessor with respect

to which the correctness property is to be verified. It corresponds to an unpipelined implemen-

tation of the same instruction set, and is also described in BDS. Logic implementations of

these descriptions can be synthesized using a program similar to BDSYN [Seg87]. The cor-

rectness requirement is that a P-relation holds between the implementation and specification.

The p-relation relates a circuit, that processes inputs at certain relevant time points, and pro-

duces outputs at certain relevant time points only, to a circuit of similar functionality that takes

and produces relevant inputs and outputs at all time points.

My strategy of verifying the functionality of the implementation against that of the specifi-

cation involves implicit state enumeration techniques as described in [CBM89]. The pipelined

and unpipelined microprocessor are characterized as definite machines (i.e. a machine in

which for some constant k, the output of the machine depends only on the last k inputs) for ver-

ification purposes. In Chapter 4 it is shown that only a small number of cycles, rather than

exhaustive traversal, have to be simulated for each machine to verify correctness using the 3-

relation. The -relation can be used to model changes in pipelined execution due to data haz-

ards and control transfer instructions. A derivative of the 13-relation, the dynamic p-relation is

developed to verify complex pipelined structures such as interrupt handling, dynamic schedul-

ing, and superscalar pipelines. This makes our methodology viable for large digital systems

with complex pipelines.

16

The thesis is organized as follows. Chapter 2 contains preliminaries on the theory of string

function relations. Chapter 3 describes automata theoretic symbolic simulation methods for

synchronous machines. In Chapter 4, microprocessors are characterized as definite machines,

and their properties that are essential for verification purposes are stated and proved. Chapter 5

contains the methodology used for verifying the pipelined processor implementation against

the unpipelined specification. Verification of advanced pipeline structures, such as interrupt

handling, superscalar pipelines, and dynamic scheduling are also described in Chapter 5. In

Chapter 6, preliminary experimental results are presented. Chapter 7 contains conclusions of

the research and gives directions for future work in this area.

17

Introduction

18

Chapter 2

String Function Relations

2.1 Introduction

There are two fundamental ways of describing deterministic sequential machines with func-

tions. One way is a function taking inputs and present states and producing outputs and next

states. The other way is with a function taking a sequence (string) of inputs and producing a

sequence of outputs, which describes the behavior of a sequential machine for a given initial

condition as described in Bronstein's thesis [Bro89]. Both models have particular merits. The

first model is indispensable for implementing a circuit, and is useful for many manipulations in

the design process, since it is finite. The second model captures more directly the input / output

behavior of a circuit, and is useful for expressing and proving certain properties, but since it is

infinite (it is a mapping from arbitrarily long input streams to equally long output streams), it

seems to be poorly suited for mechanical manipulations. I use both models in my thesis. The

string model is used to define behavioral relations between sequential machines, and to prove

certain properties of these relations by hand. The operational level is used for the bottom-level

mechanized verification work.

19

String Function Relations

This chapter presents the formal correctness requirement we verify, in the form of a rela-

tion between the implementation and the specification. The relation corresponds to changes in

the input/output behavior that frequently result from a behavioral or sequential logic synthesis

step. Formally, we take both the specification and implementation to be synchronous machines

and consider the string functions realized by each of them.

This chapter presents string functions and relations between them. Section 2.2 introduces

strings, string functions, and notation, as they were presented in [Bro89]. Section 2.3 presents

the "don't care times" relation, also known as the P-relation for synchronous machines. Other

primitive relations such as the parallelism relation (y), the encoding relation (8), the input

don't cares relation (), the output don't cares relation (0 are described in detail in [FVA92].

2.2 Concepts and Notation
Consider an alphabet E of values that can appear at the input and output ports of a syn-

chronous circuit. Strings can be defined as finite concatenations of characters in the alphabet.

Formally, the set of strings, E*, is defined as u(i)ieW where w is the set of all natural numbers

including 0. We use variables u, v, ... for characters, and x, y, ... for strings. The empty string is

denoted by e. Useful operations on strings are as follows:

.: Concatenate: f: x v -- C*, concatenate two strings (or a string and a character), the sec-

ond string to the right of the first string. Sometimes the "." will be omitted.

I : Length: Z -e w, a length of the string.

· : Prefix: E* x * {TF), prefix relation on strings.

Defined by: (x < eX x =) and (x < y.u x = y.u orx < y).

L: Last: E e l. the last character of the string.

Defined by: L(x.u) = u (and L(e) = e for totality).

P: Past: Z - Z*, all characters of the string except the last one.

20

Defined by: P(x.u) = x and (P(e) = e for totality).

* t: To the power: I x w - Y.*, which takes a character and a number n, and returns n repeti-

tions of the character,

* 1: At position: l;* x w - X, which takes a string and a number n, and extracts the nth charac-

ter from the string. We will use xli.j as an abbreviation for the string (xi) (xJ).

Synchronous systems are constructed from two kinds of building blocks: combinational

blocks, implementing a string functionf, the string extension of a character functionf, and

registers, which implement a register function Ra that inserts a character a to the left of an

input string and cuts off the right most character (Ra(x.u) = a.x and Ra(e) = £).

It is formally demonstrated in [Bro89] that synchronous systems, composed from these

primitives, in which every loop contains a register, have a unique associated string function

from Y* to 1*. Such systems are denoted as SF, SG, etc., and the corresponding string functions

with F and G. It can be seen that these string functions are length preserving (the output string

has the same length as the input string) and prefix preserving (if x is a prefix of y, the image of

x under the string function is a prefix of the image of y).

As in [Bro89], Greek letters are used for relations between string functions realizable by

synchronous machines. For example, F p G means F is in p relation with G. The "don't care

times" n-relation is of interest to us, and is discussed in Section 2.3.

The alphabets of interest to us contain vectors of Booleans of some length. 0 is used both

for the scalar 0 and for vectors containing all O's. zero is the string function taking arbitrary

strings x and returning 0T I x . Likewise for 1 and one.

2.3 The ":Don't care times" P-Relation
Consider an implementation and a specification, both of them being synchronous systems,

SF and SG respectively, with corresponding string functions F and G. An implementation is

considered correct with respect to a specification, if a certain relation holds between the string

21

String Function Relations

functions of the two machines. The relation verified in this thesis is similar to the "don't care

times" relation, 3, which is defined in [AAD91]. This section presents a formal definition of

the B3-relation.

Specification (G)

X2
- -

x3
p p

Implementation (F)

x1 x 2 x3
* * p

Y1 Y2 Y3

Y1 Y2 Y3
* . a · a -p p

FIGURE 1. The (-relation between F and G

The "don't care times" relation relates implementation / specification pairs such as the one

illustrated in Figure 1. The specification ignores input values at certain time points, and pro-

duces irrelevant outputs at certain time points. In addition, the output stream of the implemen-

tation is delayed with respect to the one of the specification.

To define the (3-relation, a function Relevant, which selects the relevant values in a string,

i.e. omits the ones at "don't care times", has to be defined first.

Definition 23.1 (Relevant): f*x B* - *:

Relevant(e,e) = e

Relevant(x.u,y.v) = Relevant(x,y) ,v = 0

= Relevant(x,y).u ,v = 1

22

x.
U. g po--

1

r_"11

The symbol x represents the string Cartesian product, which combines strings of equal

length. The Relevant-function takes a string over an arbitrary alphabet and a Boolean valued

string, and returns what remains of the first string after deleting all values for which there is a

0 in the corresponding place in the Boolean valued string.

Let G be the specification and F be an implementation. Let H be a function that filters out

the relevant outputs from F and G for verification. Let n be the delay between the output

streams of F and G. Then the [-relation is defined as follows.

Definition 23.2 ([-relation):

Let H be a length and prefix preserving string function from E* to B*, realizable by some

synchronous machine.

F PH, G = xe Y* s.t. IxI n,

Relevant (F(x), Rot n o H(x)) = G (Relevant (xl...(I x I -n), H(xJll...(Il x I - n)))).

This definition says that string functions F and G are in [3-relation if applying F to an input

stream x, and then picking out the relevant output values, gives the same result as applying G

to the relevant input values only. Figure 1 gives an example of applying the [3-relation. Here H

is a modulo-2 counter and n=l.

Because of the delay of the output stream of the implementation, the filtering function H in

the left-hand side of the identity has to be delayed over n cycles. In the right-hand side, the last

n characters of the input string have to be eliminated to make the left-hand side and the right-

hand side strings of equal length.

Design examples where don't care times occur are:

*A pipelined CPU which has delay slots when taking a branch. Because of the pipelining, not

enough information is available for timely execution of a conditional branch. By default the

branch is not taken, and when it later appears that the branch should have been taken, the

pipeline has to be purged during a number of clock cycles. The outputs produced at those

23

String Function Relations

clock cycles are irrelevant. Moreover, for verification of a pipelined CPU versus an unpipe-

lined CPU, the outputs produced by the unpipelined CPU at certain time points may be irrel-

evant when comparing outputs with the pipelined CPU at those time points.

*Implementation / Specification pairs as shown in Figure 2. The controller of the implemen-

tation is not shown. It repetitively sequences through six states, performing all of the opera-

tions of the specification serially. (Taking an input is also considered as an operation.)

x

FIGURE 2.Example of an implementation and specification which are in 13-relation

The "don't care times" relation is inspired by the stutter-relation in [Bro89], but is slightly

different. The (a-relation was defined in [Bro89] in the following way:

F G z' I I z I = Iz' I , V x E , F(x.z')= z.G()

It is almost subsumed by the 1-relation. If only the delay of F with respect to G is impor-

tant, and not the characters in z, then F Pone, I z I G is equivalent to F alzl G.

24

Chapter 3

Automata Theoretic Verification Proce-

dures

3.1 Introduction
This chapter presents an elementary procedure for verification of finite state machines, based

on the finite-automaton model. It verifies the input / output equivalence of two deterministic

finite state machines. This procedure entails a traversal of the state transition graphs of each

machine.

For equivalence checking, a product machine is constructed from the two machines, which

produces an output of 1 if and only if the two machines agree on a given input. The transition

graph of the product machine has to be traversed to see if all states under all input combina-

tions is produce an output of 1.

There are a number of strategies for traversing a state transition graph. Starting from a cer-

tain state, the input combinations leading to a transition out of the state can be enumerated

explicitly (i.e. one by one) or implicitly (i.e. in sets). Likewise, the states in the transition

graph can be enumerated explicitly and implicitly. For implicit enumeration, different repre-

25

Automata Theoretic Verification Procedures

sentations can be used for sets of input combinations or sets of states (e.g. cubes, sum-of-prod-

ucts, binary decision diagrams). Finally, the traversal can be done depth-first or breadth-first.

The methodology that is developed in this work does not commit to any one approach, but the

experiments are done with implicit input and state enumeration, based on BDDs, with breadth-

first traversal. This is currently the most robust and applicable technique.

Section 3.2 presents the binary decision diagram (BDD)-representation for Boolean func-

tions. Section 3.3 presents image computation routines, for computing the set of states reach-

able in one step from a given set of states under certain input conditions. These procedures

perform implicit input and state enumeration, using BDD's, and can be used for breadth-first

traversal. In Section 3.4, a FSM verification procedure is introduced which is used for the

methodology developed in this thesis.

3.2 Binary Decision Diagrams
A binary decision diagram (BDD) for a functionf(xl, x2, x 3,.... x) is a graph with non-termi-

nal vertices annotated with input variables, and terminal vertices annotated with a constant 0

or 1. Figure 3 gives an example of a BDD. All non-terminal vertices have one or more parent

vertices and two children vertices, except for the unique root vertex, which has no parents. The

terminal vertices have one or more parents and no children. The two edges going down from a

non-terminal vertex to their children are annotated with a 0 and a 1. For a given assignment to

the input variables xi, one can go down the decision diagram choosing -edges where a vari-

able has a value 1, and O-edges where a variable has the value 0. The value of the terminal ver-

tex is the value off under the input combination.

An ordered BDD is one where the ordering of the variables is the same along any path

from the top vertex to a terminal vertex. A reduced BDD has no vertex which has a 1- and 0-

edges pointing to the same vertex, or pointing to isomorphic subgraphs. The example BDD in

Figure 3 is both ordered and reduced. Reduced Ordered BDDs (ROBDDs) were introduced in

[Bry86]. They have a number of properties that make them very well suited for verification.

Foremost is the fact that they are canonical, so that equivalence checking between two func-

26

tions is done by checking for isomorphism between the corresponding BDD's which requires

linear time.

FIGURE 3.Reduced ordered binary decision diagram representing f = xlx3 + xlx 2x3

It is not necessary for a Boolean function representation to be canonical to be suitable for

equivalence checking. An alternative way of checking equivalence is to apply the XOR-func-

tion to the outputs of both functions, and to check for satisfiability of the resulting function.

Both operations can be efficiently performed with BDDs. Satisfiability checking requires con-

stant time, and applying a Boolean function to two BDDs requires time proportional to the

product of the sizes of the BDDs to which the function is applied.

The apply-operation is also used to construct the BDD for a given implementation of a

logic function. Starting from the primary input variables (for which the BDDs are trivial),

Boolean functions AND, OR, XOR, XNOR, etc. are applied to BDDs of subfunctions, until a

BDD is obtained for the function corresponding to the implementation's output.

The apply-operation can be performed recursively as follows. To compute fl<op> f2,

given ROBDDsfj andf2 with top vertices vl and v2 respectively, do the following:

1. If vl and v2 are terminal vertices, generate a terminal vertex annotated with value (vl) <op>

value (v2).

27

Automata Theoretic Verification Procedures

2. If v1 and v2 are annotated with the same variable, construct a vertex annotated with the vari-

able, having as O-child the result of applying <op> to the O-children of vl and v2, and as 1-

child the result of applying <op> to the 1-children of vl and v2.

3. If the variables are different, or if one vertex is a terminal vertex, construct a vertex anno-

tated with the variable coming earliest in the variable ordering (i.e. the one that has to

appear first along any path from top to terminal vertex). Say that this variable corresponds

with v1. Give to the constructed vertex as O-child the result of applying <op> to v2 and the

O-child of v1, and as -child the result of applying <op> to v2 and the 1-child of v1.

The size of the ROBDD is critically dependent on the ordering of input variables. To

obtain small BDDs, the variables have to be ordered in such a way that assigning values to the

first m input variables (0 < m < n) can, for the purpose of computingf, be "remembered" with

less information than the detailed assignment (which can take 2m different values). For exam-

ple, for computing the sum of two integers represented as bit vectors, it is advantageous to

interleave the two input vectors, and order the bits from lowest order to highest order. In that

case, the only information to be "remembered" from an assignment to the lower order input

bits, for the computation of the higher order bits, is one carry-bit.

Such variable orderings are not always feasible. For instance, it has been shown that an

ROBDD for a multiplier takes 1(1.09n) space regardless of the variable ordering [Bry91].

Most other practical Boolean functions, however, can be represented efficiently as an

ROBDD.

3.3 Image Computation Using BDD's
Image computations constitute the core of the verification procedures to be discussed in Sec-

tion 3.4. The following is the problem of image computation:

Letfbe a function from Bn to Bm, where B = (0,1 . LetA be a subset of Bn. ComputeftA),

the image of A underf, defined as y E Bm I 3x E Bn s.t. y =f(x) .

28

An elegant method for image computation is the transition relation method, introduced in

[CBM89] and is used for the experiments in this thesis. It works with a BDD representation of

the transition relation R corresponding to the functionf. The transition relation maps inputs

from Bn+m into B. It produces an output of 1 if and only if the vectory composed of the last m

inputs and the vector x composed of the first n inputs are such that y =ffx).

Subsets A of Bn are in one-to-one correspondence with functions from Bn to B. The char-

acteristic function of a set A is a function that returns 1 if and only if the input is an element of

A. The symbol A is used for characteristic functions as well as for sets. Likewise,ffA) is used

for characteristic functions and sets.

The image offlA) consists of y-vectors such that there is an x-vector for which both R and

A are 1. The existential quantification can be computed with the smoothing operator, which is

defined as follows.

Definition 33.1 (Smoothing Operator)

Letf Bn - B be a Boolean function, and x = (xil, ... , xi5) a set of input variables off. The

smoothing off by x is defined as:

Sxf = Sil f... Sxikf

Sxijf=fxij +fij

In this definition fa designates the cofactor off by literal a. For instance fij isf with xi

restricted to be 1, andfj isf with xii restricted to be 0. It can be seen that

(3x I R(x,y) ^ A(x)) SxR(x,y) . A(x))

and therefore

f(A)(x) = Sx(R(x,y) A(x))

Cofactoring with respect to a literal is a trivial operation on BDDs. For instance, cofactor-

ing by xi is done by deleting the x i vertices and attaching their -children to their parents,

29

Automata Theoretic Verification Procedures

reducing the resulting BDD if necessary. Applying OR- and AND- operations can be done as

explained in Section 3.2.

Given the transition relation A(pit, ps t, ns') and a set of states Cips), the next set of states

Ci+l(ps) can be calculated as follows:

Ei(ps, ns') = I r C(ps) n A(pit, ps:, ns')

C'i+l(ns') = Sps Ei

ci+l(ps) - C'i+l(ps) u Ci(ps)

where pit are the set of primary inputs, pst are the set of present state lines, and ns't are the

transition relation inputs, and A(pit, pst, ns't) = 1 if state nst reached on applying pit to pst is

ns't = nst.

The smoothing and AND-operation can be performed simultaneously [BCMD90]. The

resulting procedure has the same recursive and case-structure as the one for the apply opera-

tion. The only difference occurs when the variable corresponding to a newly constructed top

vertex has to be smoothed away. In that case the OR of the left child and the right child is com-

puted. This operation is recursive in itself.

The transition relation method can also be used for inverse image computations, where

outputs y are given, and inputs x have to be found such thatfAx) = y.

An alternative method for image computations, making use of Boolean functionf only,

and not the transition relation R, was introduced in [CBM89]. This method can only be used

for forward image computations, not for inverse ones. A good exposition of the method, as

well as an extensive set of experimental results, can be found in [TSBS90], which reports that

the transition relation method was superior for all the test cases considered.

30

3.4 Procedures for Verification of Finite State Machines

Using the method described above for image computation, one can check the input / output

equivalence of two FSM's. First, construct the product machine, consisting of the original

machines with corresponding outputs feeding XNOR gates, and the XNOR gates feeding one

AND gate. The product machine is such that it produces an output of 1 if and only if the two

component machines agree on a given input.

Second, compute the set of reachable states of the product machine by iteratively comput-

ing sets Ci until Ci+l = Ci . Let so be the initial state of the machine, I the set of inputs under

which we need to find the set of next states, andf the next state function.

Co = (so'l

Ci+ = Ci uf(C i x I)

Ci is the set of states that can be reached in i or fewer steps. The final C, (which is equal to Cn

1) constitutes the set of all reachable states.

With g being the output function, the two machines are equivalent if and only if g(Cn x I)

is a tautology.

31

Automata Theoretic Verification Procedures

32

Chapter 4

Microprocessors as Definite Machines

for Verification

4.1 Introduction

In this chapter, the concept of definite machines is introduced as described in [Koh78]. While

the behavior of some synchronous machines depends on remote history, the behavior of others

depends only on more recent events. The amount of past input and output information needed

in order to determine the machine's future is called the memory span of the machine.

Section 4.2 introduces the concept of definite machines, for which only a small amount of

past input information is needed to determine the machine's output. Section 4.3 describes cer-

tain properties of definite machines that are essential for verification purposes, and these prop-

erties form the most important theoretical basis for the efficient verification methodology

described in this thesis.

4.2 Definite Machines

Definition 4.2.1 (Definite Machine):

33

Microprocessors as Definite Machines for Verification

A sequential machine M is called a definite machine of order R if AX is the least integer, so

that the present state of M can be determined uniquely from the knowledge of the last g inputs

to M.

A definite machine has finite input memory. On the other hand, for a nondefinite machine

there always exists at least one input sequence of arbitrary length, which does not provide

enough information to identify the state of the machine. A definite machine of order IA is often

called a -definite machine. If a machine is Ix-definite, it is also of finite memory of order

equal to or smaller than pg.

The knowledge of any p. past input values is always sufficient to completely specify the

present state of a gI-definite machine. Therefore any gI-definite machine can be realized as a

cascade connection of pg delay elements, which store the last R input values, and a combina-

tional circuit which generates the specific output. This realization, which is often referred to as

the canonical realization of a definite machine is shown in Figure 4. A more detailed treatment

of definite machines is given in [Koh78].

4.3 Verification Properties of Definite Machines and Microprocessors

4.3.1 Verification of Definite Machines

Theorem 4.3.1.1 Given two g-definite machines, let r be the number of possible inputs to

each g-definite machine. Then the two gI-definite machines can be verified with X9 sequences

of length p.

Proof:

We know that the present state of a g-definite machine can be uniquely determined from

the last g inputs. Since the number of possible inputs is x, the number of all possible permuta-

tions of inputs sequences of length is i&. These sequences will enumerate all the unique

states of each of the g-definite machines and the corresponding outputs. If the enumerated

states and outputs of the two machines are equivalent, then the two machines are functionally

equivalent for the set of ng input sequences.

34

Machine M

X I X2 X X

CL

FIGURE 4.Canonical Realization of a g-definite machine

If the machines are not functionally equivalent even if n[t sequences of length P produce

equivalent present states and outputs of the two machines, then there exists a sequence of

length greater than g which produces a different present state or output, or does not provide

enough information to identify the state of either machine. But then it would make the

machine nondefinite and with non-finite input memory. This is a contradiction to the original

assumption of having g-definite machines.

Thus the claim holds true, and two g-definite machines can be verified with ['t sequences

of length g. O

4.3.2 Microprocessors as Definite Machines

We argue in this section that a microprocessor, pipelined or unpipelined, can be approximated

as a definite machine for verification purposes.

A pipelined microprocessor is designed to have k pipeline stages to take advantage of

instruction level parallelism to issue a new instruction every cycle. An unpipelined micropro-

cessor consists of the same stages of execution, except that a new instruction is issued only

after the previous instruction has completed execution.

Assume k is fixed for now, but our argument will hold for variable k, e.g pipelined

machines which need more information for annulling instructions in delay slots created by

control transfer instruction, and for event handling.

35

Microprocessors as Definite Machines for Verification

Each of the pipelined and unpipelined microprocessors are acyclic machines. An instruc-

tion is issued, which performs an operation and changes the state of the machine. This change

could include modifying the instruction pointer, register file or memory, all of which are com-

pletely observable. The only dependencies are because of register file values. But the register

file is completely observable, and differences between the two machine executions can be

detected (using the P-relation as will be shown later). Moreover, in each implementation, there

are k register stages, each of which feed into combinational logic to produce output. The

present state and output of the machine depends only on the previous k inputs and can be

determined uniquely, except for register file dependencies.

Thus microprocessors have finite input memory, and can be characterized as definite

machines for verification purposes.

43.3 -relation for Verification of Definite Machines

Theorem 4.33.1 Two k-definite machines, one an unpipelined machine and the other a pipe-

lined machine can be verified for functional equivalence using the p-relation for synchronous

machines.

Proof:

Let SF be the pipelined k-definite machine, and SG the unpipelined k-definite machine.

Logic transformations are performed on each machine, and string functions are used to filter

out the relevant outputs produced by each machine on relevant inputs for verification using the

3-relation.

We know that for two k-definite machines with p possible inputs, pk distinct sequences of

length k can verify their equivalence. We need to show that given the same input sequences to

the unpipelined and pipelined machines, the same outputs can be obtained but at different

times, and the P-relation can be used to verify their equivalence.

For each machine, k is the latency of each instruction. So for both machines, the first k-i

outputs are irrelevant. n = k-i in PH,n.

36

I

FIGURE S.Logic Transformation SG' to Unpipelined k-definite machine SG

I

FIGURE 6.Logic Transformation SF, to Pipelined k-definite machine SF

Figure 5 shows the logic transformation SG' and string function SHI to filter the relevant

outputs for the unpipelined machine SG. Figure 6 shows the logic transformation SFp and

string function SH2 to filter the relevant outputs for SF (the pipelined machine). For the

unpipelined machine, the inputs change every k cycles after the previous instruction has com-

pleted execution, and outputs are sampled every k clock cycles. For the pipelined machine,

37

Microprocessors as Definite Machines for Verification

inputs change every clock cycle, and outputs are sampled every clock cycle after the first k-I

cycles. Therefore by construction, comparing the outputs of the logic transformations givenpk

input sequences of length k verifies the functional equivalence of the two machines.

We have different string functions SH1 and SH2 for the two machines as shown above. Fig-

ure 7 shows a logic transformation SF' for the pipelined machine SF for which the string func-

tions for both machines are the same, inputs can be changed and outputs can be observed at the

same time for both machines.

SH1 = SH' = 10 ..010...010.01 0
n n n n

FIGURE 7. Logic Transformation S,, to Pipelined k-definite machine Sp

38

The string function SH1 to filter out the relevant inputs and outputs also occurs for each

memory element i.e. the k registers in the pipelined machine. If a 0 is produced by SH1, the

register gets its own value, else it passes its value one register forward. This is a valid logic

transformation, and will not alter the state of the machine when SHi produces a 0 as the rest of

the logic is purely combinational. Moreover the outputs produced at those times are not rele-

vant. Again, by construction, comparing the outputs of the logic transformations given pk

input sequences of length k verifies the functional equivalence of the two machines.

4.3.4 Verification of k-definite machines with variable k

In some pipelined machines, k may vary during execution. For example, after control transfer

instructions, delay slots are created, and instructions in these delay slots have to be annulled.

To effectively annul an instruction, the machine may need information about instructions that

may have executed ahead of it. This may increase the order of definiteness of the machine dur-

ing execution.

Of the k pipeline stages in a pipelined machine, if the target of the current control transfer

instruction is known in stage i, 1 < i < k, and is effective in the next cycle, all instructions

issued and which are currently in stages l...(i-l) have to be annulled. If an instruction in delay

slot q, I < q < (i-I) modifies the state of the machine (i.e. writes registers, modifies program

counter etc., in the case of a microprocessor) in stage j, q < j k, then during stage j, instruc-

tions i-q beyond stage j have to be known to annul the instruction. So now, the machine

becomes max (k, j+i-q)-definite. In the worst case, we have a (2k-l)-definite machine.

Theorem 4.3.4.1 A pipelined k-definite machine, where k varies during execution can be veri-

fied against an unpipelined k-definite machine, using the P-relation for synchronous machines.

Proof:

The same logic transformations as shown in Figure 5 and Figure 6 hold for verifying the

two machines, except SH2 has to be modified not to include the annulled instruction outputs in

the relevant values set for the pipelined machine.

39

Microprocessors as Definite Machines for Verification

Let the control transfer instruction have m delay slots. Then SH2 is modified as follows:

SH2 = 1 1 1 ... 1 (as shown in Figure 6)

except when an instruction is a control transfer instruction, then the next m 1 's are O's, i.e. the

instructions are annulled and outputs are irrelevant. Any incorrect change in state of the

machine, i.e. if any instruction is not annulled, will be detected. So the relevant outputs are fil-

tered out and compared for verifying the functional equivalence of the two machines.

The length of the sequence in the unpipelined machine remains k, while in the pipelined

machine, it is max(k,j+i-q). We may need sequences as long as 2k-1 where k-1 instructions are

annulled. If the xh instruction is a control transfer instruction with i-I delay slots, then

1. InputUnpipelinedMachinel.... = InputPipelinedMachinel ...x,

2. InputUnpipelinedMachinex+ k = InputPipelinedMachinex+ima (k,j+iq) and

3. outputs for InputPipelinedMachinex+1.... +i-I are not relevant.

For instructions for which outputs are relevant, the length of the sequence is k. Therefore,

the number of possible instruction sequences is pk, where p is the cardinality of the instruction

set. But to fill up the i-i delay slots, there would be pi-l possible instruction sequences of

length i-i. Therefore the number of possible instruction sequences becomes x*pk*pi l + pk,

where x is the probability of having at least one control transfer instruction in the original

sequences of length k.

If z is the number of types of control transfer instructions in the instruction set, then

k k-I k-2 2 k-I

x = ()+) +) (1)+((1) + (Z)()

pp

40

43.5 Pipelined Microprocessors with Data Hazards

A major effect of pipelining is to change the relative timing of instructions by overlapping

their execution. This introduces data hazards. Data hazards occur when the order of access to

operands is changed by the pipeline versus the normal order encountered by sequentially exe-

cuting instructions. Consider two instructions i and j, with i occurring before j. The possible

data hazards are as follows:

*Read After Write (RAW): j tries to read a source before i writes it, so j incorrectly gets the

old value.

*Write After Read (WAR): j tries to write a destination before it is read by i, so i incorrectly

gets the new value. This cannot happen in an in-order issue pipeline.

*Write After Write (WAW): j tries to write an operand before it is written by i. The writes end

up being performed in the wrong order, leaving the value written by i rather than the value

written by j in the destination. This hazard occurs in pipelines that write in more than one

stage, or issue instructions out of order.

A more detailed description of data hazards and ways of eliminating them can be found in

[PH90].

RAW hazards are the most common hazards and occur in most pipelined microprocessors.

We will consider only these hazards, since we are evaluating static pipelines, which issue

instructions in order and in which each stage executes in one cycle, precluding WAW and WAR

hazards.

The problem of RAW hazards can be solved with a simple hardware technique called

bypassing (or forwarding), which is described in [PH90]. Bypassing results in feedback from

one stage of a pipeline to one or more stages preceding that one. But this does not alter our

definite machine model of microprocessors for verification purposes, as shown in the follow-

ing theorem.

41

Microprocessors as Definite Machines for Verification

Theorem 43.5.1 Pipelined k-definite machines with bypassing can be verified against

unpipelined k-definite machines using the p-relation for synchronous machines.

Proof:

Bypass paths provide correct register values to be used by instructions during execution,

and thus facilitate correct execution of the microprocessor. Without bypass paths, one would

need to stall the instructions till the source operands become available.

Although bypassing results in feedback from one stage of a pipeline to a stage preceding

that, the dependencies are again due to the register file values, which are observable and are

allowed for verification purposes. Bypass paths just facilitate these register values to be avail-

able at the time when the instructions require them as source operands.

Thus our original model of a definite machine for the pipelined microprocessor is pre-

served, and the technique mentioned in Theorem 4.3.3.1 can be used to verify the two k-defi-

nite machines. L

42

Chapter 5

Verification of Pipelined Microproces-

sors using Symbolic Simulation

5.1 Introduction

In this chapter, the implementation of the methodology for verification of pipelined micropro-

cessors is explained in detail. The methodology is incorporated into sis [SSMS92], a combi-

national and sequential logic synthesis and verification system. The unpipelined specification

and the pipelined implementation are specified in a high-level language BDS. These descrip-

tions are then synthesized into sequential logic using BDSYN, a logic synthesis program, to

obtain slif netlists.

The user has to specify the properties of the machines, which include k to characterize

them as definite machines, and d, the number of delay slots after each control transfer instruc-

tion in the pipelined machine. The user also specifies simulation information for the two

machines, the use of which will be explained in the sequel.

Section 5.2 includes a discussion of verification of pipelined microprocessors with fixed k.

In Section 5.3 verification of microprocessors with variable k is described. Section 5.4

43

Verification of Pipelined Microprocessors using Symbolic Simulation

describes some of the implementation details of observing particular variables during the sym-

bolic simulation of each machine. The basic methodology of verification of simple pipelined

microprocessors is extended to verify more complex machines with interrupts, traps, excep-

tions and also dynamically scheduled pipelines. Section 5.5 describes verification of micropro-

cessors with interrupts, traps and exceptions. Section 5.6 describes a method to verify

microprocessors with dynamically scheduled pipelines. Section 5.7 gives a brief description of

a method to verify superscalar pipelined microprocessors.

5.2 Pipelined Microprocessors with fixed k
In this section we consider verification of pipelined microprocessors with fixed k. The opera-

tions performed by such machines would be simple ALU operations, memory operations with-

out stalls etc. Microprocessors with variable k will be considered in Section 4.2.

The pseudocode of the algorithm for verification of the pipelined implementation with the

unpipelined specification is given in Figure 8.

For each machine, the transition relation is computed for symbolic simulation. To simulate

k sequences of instructions, we need to simulate the unpipelined machine for k2 cycles, and the

pipelined machine for 2k-i cycles.

For each machine, the input specification functions and output filtering functions are com-

puted from the simulation information provided by the user. The input function specifies what

should be the instruction input in a given cycle. For now we are simulating instructions which

do not alter the order of definiteness for the pipelined machine for correct execution. For the

unpipelined machine, instruction i is fetched in cycle k(i-i)+l, and is an input in cycle k(i-

1)+2. At the (k(i-1)+2)th cycle, we cofactor the transition relation outputs with respect to the

inputs such that the cofactored relation corresponds to all instructions that do not alter the

order of definiteness of the machine, for all i, I < i k. For the rest of the cycles, the transition

relation is smoothed with respect to the inputs, since in these cycles, the inputs to the machine

are irrelevant. For the pipelined machine, instruction i is fetched in cycle i, and is an input in

44

cycle i+l. At the (i+l) t h cycle, we again cofactor the transition relation outputs as described

above. Again, for the rest of the cycles, the transition relation is smoothed with respect to the

inputs, since in these cycles, the inputs to the machine are irrelevant. The Boolean formula

which specifies the inputs for cofactoring is provided by the user.

Verify(unpipelinedNetwork, pipelinedNetwork,simulationInfo)

Compute input specification function for pipelinedNetwork;

Compute output filtering function for pipelinedNetwork;

Compute transition relation for pipelinedNetwork;

Simulate the pipelinedNetwork for 2k-1 cycles;

If in a simulation cycle, the output filtering function is 1, sam-
ple the specified variables and add their formulae to the array var-
FormulaeP;

Compute input specification function for pipelinedNetwork;

Compute output filtering function for pipelinedNetwork;

Compute transition relation for pipelinedNetwork;

Simulate the unpipelinedNetwork for k2 cycles;

If in a simulation cycle, the output filtering function is 1, sam-
ple the specified variables and add their formulae to the array var-
FormulaeU;

for (i=1, i < K; i++) {

for (j=l, j < NUM_VARS; j++) {

verifyBddFormulae (varFormulaeU[i] [j], varFormulaeP [i] [j);

if not equal then the two machines are not functionally

equivalent and exit;

FIGURE 8.Algorithm for verifying the functional equivalence of the pipelined and
unpipelined microprocessors

45

Verification of Pipelined Microprocessors using Symbolic Simulation

The output filtering function specifies the cycle in which the variables, which are specified

by the user, need to be sampled for verification. For the unpipelined machine, variables are

sampled every k cycles, while for the pipelined machine, variables are sampled every cycle

after the initial latency of k-I cycles.

Section 5.6 contains a discussion on variables to be observed, and verification of the BDD

formulae of these variables.

5.3 Pipelined Microprocessors with variable k

We modify our methodology for verification of pipelined microprocessors described in Sec-

tion 4.1 to include pipelined microprocessors with variable k. The operations that such pipe-

lined microprocessors can perform would be effective annulment of instructions in delay slots

of control transfer instructions, event handling, and so on, in addition to those performed by

microprocessors with fixed k.

Let d be the number of delay slots for the control transfer instruction. Let instruction Ii be

the control transfer instruction, where I < i < k. The simulation strategy for the pipelined and

unpipelined machines is as follows:

*Pipelined Machine:

In the pipelined machine, instruction i is the input at cycle i+1. So we simulate the

machine for i cycles and compute the set of next states, as described in Section 4.1. We get the

set of reachable states at each cycle and compute the total set of reachable states from the reset

state.

At the (i+l) th cycle, we cofactor the transition relation outputs with respect to the inputs

that specify that the current set of instructions are control transfer instructions. The Boolean

formula which specifies the inputs for cofactoring is provided by the user. We then compute

the set of states reachable from the current total set given the new input. In the next d cycles,

which are the delay slots, we can compute the next set of reachable states by smoothing away

46

the inputs from the transition relation, and thus simulate all possible instructions in the delay

slots. Thus we get the instruction Ii as specified and only the set of states reachable for that

instruction will be accounted for in the new total set of reachable states. The simulation for the

cycles that follow is as described in Section 4.1. We simulate the machine for 2*k-I +d cycles.

This will account for the delay slots in the machine and the verification algorithm will be able

to check for proper annulment.

· Unpipelined Machine:

In the unpipelined machine, instruction Ii is input at cycle k(i-1)+2. So we simulate the

machine for k(i-1)+l cycles and compute the set of next states, as described in Section 4.1. We

get the set of reachable states at each cycle and compute the total set of reachable states from

the reset state.

At the (k(i-1)+2)th cycle, we cofactor the transition relation outputs with respect to the

inputs which specify that the current set of instruction are control transfer instructions. We

then compute the set of states reachable from the current total set given the new input. The

simulation for the cycles that follow is as described in Section 4.1. Thus we get the instruction

I i as specified and only the set of states reachable for that instruction will be accounted for in

the new total set of reachable states. We simulate the machine for k2 cycles.

Certain control transfer instructions, such as conditional branches, sample a value of a sta-

tus register to decide the next instruction address. Since we are following an implicit simula-

tion strategy, all possible values of the status register are considered, and the next set of states

is computed using this information.

The output filtering function for the pipelined machine is modified so as to take into

account the delay slots created by the control transfer instruction in the pipeline and the effect

of annulment of instructions in these delay slots, i.e. sampling of the variable formulae is not

done at the cycles when the instructions in the delay slots would produce outputs. Moreover,

47

Verification of Pipelined Microprocessors using Symbolic Simulation

more than one of 1...k can be a control transfer instruction, and accordingly the next states

computations can be done and the output filtering function can be specified.

Let z be the number of control transfer instructions, and we simulate one control transfer

instruction each time, then the total number of simulations required would be k*z. In this

scheme, in each simulation, any one of the k instructions is one of the z control transfer

instructions. Having more than one instruction as a control transfer instruction in a simulation

is not necessary as the particular instruction execution is verified at all of the possible k

instruction slots. This improves the efficiency of the methodology, since it does not require

simulating all possible combinations of these special instructions.

5.4 Observing Specific Variables for Verification

As mentioned earlier, BDD formulae for variables are to be observed during symbolic simula-

tion of each machine at specific cycles as specified by the output filtering function. The vari-

ables to be observed for the two machines are specified by the user. For each microprocessor

the variables to be observed may include:

1. General Purpose Registers,

2. Instruction Address Register (the Program Counter PC),

3. Memory Location Contents,

4. Address to Register File and Memory for Read/Write,

5. Instruction Register,

6. ALU Operation.

Once the simulation is completed, the ROBDD formulae of all specified variables at each

specified cycle for both machines are obtained. The ROBDD formulae of variables in the pipe-

lined machine at a given cycle are verified with the ROBDD formulae of variables in the

unpipelined machine at the corresponding cycle using combinational verification techniques

as described in [Bry86]. Given two logic functions, checking their equivalence reduces to a

48

graph isomorphism check between their ROBDD's G1 and G2, and can be done in IG11 (= IG21)

time.

5.5 Verification of Pipelined Microprocessors with Interrupts and
Exceptions

I

FIGURE 9. Logic Transformation SG' to Unpipelined k-definite machine SG with Event Handling

I

FIGURE 10.Logic Transformation SF, to Pipelined k-definite machine S with Event Handling

49

Verification of Pipelined Microprocessors using Symbolic Simulation

The methodology for verification of simple pipelined microprocessors can be extended to

verify the functionality of microprocessors with complex control to handle events such as

interrupts and exceptions. These events change the normal flow of instruction execution.

Examples of occurrences of these events in the microprocessor are I/O device request, invok-

ing an operating system service from a user program, breakpoint requested by programmer,

arithmetic overflow or underflow, page fault, memory-protection violation, hardware malfunc-

tions, using an undefined instruction, misaligned memory access etc. These events can be syn-

chronous or asynchronous, user requested or coerced, user maskable or user nonmaskable,

within instructions or between instructions, resumable or terminating. The difficult task of

implementing interrupts occurring within instructions where the instruction must be resumed.

Another program, often called the interrupt handler, must be invoked to collect the state of the

program, correct the cause of the interrupt, and then restore the state of the program before the

instruction can be tried again. Even though such events are rare, the hardware must be

designed so that the full state of the machine can be saved, including an indication of the

event, and the program counter (PC) of the instruction to be executed after the interrupt is ser-

viced. This difficulty is exacerbated by events occurring during the middle of execution, for

many instructions also require the hardware to restore the machine to the state just before the

event occurred - the beginning of the instruction. If the last requirement is met, then the com-

puter is called restartable.

Such events are more difficult to handle in a pipelined machine because the overlapping of

instructions makes it more difficult to know whether an instruction can safely change the state

of the machine. During the pipelined execution of an instruction, it may change the machine

state. Meanwhile, an event can force the machine to abort the instruction's execution before it

is completed. The most difficult events are ones that occur within instructions and those that

must be restartable.

Figure 10 shows the logic transformation applied to verify a pipelined k-definite machine

which contains logic to handle events such as interrupts and exceptions. The interrupt handling

50

logic is designed in such a way so that when an event occurs, it takes the following steps to

save the pipeline state safely:

1. Force a trap instruction into the pipeline on the next instruction fetch.

2. Until the trap is taken, turn off all writes for the faulting instruction and for all instructions

that follow in the pipeline. This prevents any state changes for instructions that will not be

completed before the event is handled.

3. After the event-handling routine receives control, it immediately saves the PC of the fault-

ing instruction. This value will be used to return from the event later. Multiple PC's may be

required to save the state of the machine in the case of delayed branches.

If the pipeline can be stopped so that the instructions just before the faulting instructions

are completed and those after it can be restarted from scratch, the pipelined is said to havepre-

cise interrupts. Ideally, the faulting instruction would not have changed state, and correctly

handling some interrupts requires that the faulting instruction have no effects. For other

events, such as floating-point exceptions, the faulting instruction on some machines writes its

result before the event can be handled. In such cases, the hardware must be prepared to

retrieve the source operands, even if the destination is identical to one of source operands.

Supporting precise interrupts is a requirement in many systems, while in others it is valuable

because it simplifies the operating system interface. At a minimum, any machine with demand

paging or IEEE arithmetic trap handlers must make its interrupts precise, either in hardware or

with some software support. A comprehensive description of events and hardware and soft-

ware techniques for handling them in pipelined microprocessors is given in [PH90].

The verification of such a pipelined microprocessor against an unpipelined microproces-

sor, each characterized as a definite machine, can be done in a similar fashion as is done for

verification of definite machines with variable k to handle branch delay slot instruction annul-

ment. The event is simulated on each machine in each of the k sequences of instructions.

51

Verification of Pipelined Microprocessors using Symbolic Simulation

Theorem 5.5.1 A pipelined k-definite machine with interrupts and traps can be verified against

an unpipelined k-definite machine with interrupts and traps using the p-relation for synchro-

nous machines.

Proof:

Figure 10 shows the logic transformation applied to a pipelined machine with event han-

dling logic for verification against a similar unpipelined machine, whose logic transformation

is shown in Figure 9. SH1 and SH2 are the output filtering functions for the unpipelined and

pipelined machine respectively. Let an event occur when instruction j, 1 < j k, is executing.

When an event is detected, the interrupt handling logic modifies SH1 and SH2 in such a way so

that O's are inserted in positions of the filtering function when the event is being handled, and

when the event handling is completed, the output filtering functions are restored as they would

be under normal execution. This output filtering function is also called the dynamic p-relation,

since occurrences of such events are not known before the instruction is executed, and the out-

put filtering function is changed on the fly during execution of instructions on each machine.

With such a strategy, the verification algorithm will determine whether the pipelined machine

is designed with correct interrupt handling logic.

5.6 Verification of Microprocessors with Dynamically Scheduled
Pipelines

So far we have assumed that our pipeline fetches an instruction and issues it. But in some

cases, so as to handle multi-cycle instructions, the pipeline may be stalled if there is a data

dependence between an instruction in the pipeline and the fetched instruction in the pipeline.

The issuing is ceased until the dependence is cleared. This is called static scheduling. To gain

higher throughput and lower latency for instructions in the pipeline, dynamic scheduling can

be implemented, whereby the hardware rearranges the instruction execution to reduce stalls.

This offers the advantages of handling some cases when dependencies are unknown at compile

time, and of simplifying the compiler. It also allows code that was compiled on one pipeline

52

in mind to run efficiently on another pipeline. These advantages are gained at a signif-

icant increase in hardware complexity. Scoreboarding and Tomasulo's algorithm are

two techniques that are used to reduce the cost of data dependencies, especially in

deeply pipelined machines. Hardware branch prediction is a dynamic technique for

handling branches: to predict whether a branch will be taken, and to find the target

more quickly. A comprehensive description of incorporating such techniques in hard-

ware is given in [PH90].

FIGURE 11.Logic Transformation SF to Dynamically Scheduled Pipelined k-definite machine SF

Figure 11 shows the logic transformation applied to a pipelined machine with a dynami-

cally scheduled pipeline for verification purposes. The verification of pipelined microproces-

sors with out-of-order execution is a very difficult problem with the methodology proposed in

this thesis. In this methodology, the output filtering functions SH1 and SH2 of the unpipelined

and pipelined machines respectively filter out the outputs at appropriate times and the verifica-

tion of state is done using combinational verification techniques assuming in-order execution

of instructions. But in the case of out-of-order execution, the unpipelined machine still exe-

53

Verification of Pipelined Microprocessors using Symbolic Simulation

cutes in-order, while the pipelined machine instructions are issued out-of-order to reduce stalls

due to data and control hazards.

A modified dynamic 1-relation can be used to verify the pipelined machine with dynamic

scheduling against an unpipelined machine. Verification of the state of the two machines dur-

ing instruction execution would not make sense, since the instructions are executed out-of-

order in the pipelined machine. But during execution in the pipelined machine, if the current

set of instructions that have been executed are in-order, although they might be out-of-order

amongst themselves, the state of the machine at that time point can be verified with the state of

the unpipelined machine when this set of instructions have completed execution. For this pur-

pose, the output filtering function or the 1-relation, has to be modified during execution as the

instructions are being scheduled by the scheduler. Using this strategy, it may be the case that

the state of the machines is observed at the very end of the execution of all sets of instructions.

When the states of the two machines are compared at appropriate time points as determined by

the output filtering function, or the -relation, the verification algorithm will determine

whether the pipelined machine is designed correctly to handle dynamic scheduling of instruc-

tions in the pipeline.

5.7 Verification of Superscalar Pipelined Microprocessors
In a superscalar machine, the hardware can issue a small number (usually 2 to 4) of indepen-

dent instructions in a single clock. However, if the instructions in the instruction stream are

dependent or do not meet certain criteria, only the first instruction in the sequence will be

issued. To get this high throughput for the machine, multiple functional units are included.

The verification of superscalar pipelined microprocessors can be done using the methods

described above. The microprocessor can be characterized as a k-definite machine, except that

if q is the order of superscalarity, then instead of k sequences of instructions, we need to issue

kq sequences of instructions to verify that the superscalar microprocessor is functionally cor-

rect. The pipeline scheduler will schedule at most q instructions in a given cycle. The -rela-

54

tion between the two machines has to be modified to successfully verify the functionality of

the superscalar machine.

Let m instructions, 1 < m < q, complete executions at a given time. The output filtering

function of the unpipelined machine SHI is modified so as to sample the state of the machine

after these m instructions have completed execution. This is possible since in-order superscalar

execution is assumed. The output filtering function of the pipelined machine SH2 samples the

outputs when a given instruction completes execution, and determines the value of m. There-

fore, here too, we use the dynamic P-relation to verify the correctness of the superscalar pipe-

lined microprocessor.

55

Verification of Pipelined Microprocessors using Symbolic Simulation

56

Chapter 6

Experimental Results

6.1 Introduction

To demonstrate the feasibility of this methodology, experiments were performed on two pipe-

lined microprocessor designs. Section 6.2 describes experiments performed on VSM, a simple

microprocessor designed for experimental purposes. Section 6.3 described experiments per-

formed on Alpha0 , a simplified AlphaTM, which is more representative of architectures that

exist in industry today.

Experiments on each design showed that the methodology is very sound, but is limited by

the computational power of BDD's. This resulted in a significant condensation of designs, but

enough functionality was retained to show that the methodology can be applied to sophisti-

cated pipelined designs.

6.2 VSM, a simple RISC processor
The first design, VSM, is a simple RISC pipelined microprocessor. Table 1 gives a

description of the instruction set of VSM. Figure 12 shows a schematic diagram of the pipe-

57

Experimental Results

lined VSM, and Figure 13 shows the schematic diagram of the unpipelined VSM. Some

details have been omitted for clarity. The salient features of VSM are as follows:

a. 13-bit single format instructions.

b. 4-stage static pipeline for the pipelined machine.

c. Eight 3-bit general purpose registers.

d. 3-bit ALU operations.

e. One delay-slot after the branch instruction,

f. 5-bit Instruction Address Register (PC).

TABLE 1. VSM Instruction Set

Format <12:10> <9> <8:6> <5:3> <2:0>

Opcode L Ra/Disp Rb/Lit Rc

Instruction Opcode Operation

add 000 If L=0, Rc-<Ra>+<Rb>, else Rc-<Ra>+Lit

and 010 If L=0, Rc-<Ra> AND <Rb>, else Rc-<Ra> AND Lit

br 100 Rc-PC, PC-PC+Disp

or 011 If L=0, Rc-<Ra> OR <Rb>, else Rc-<Ra> OR Lit

xor 001 If L=-0, Rc-<Ra> XOR <Rb>, else Rc-<Ra> XOR Lit

For the VSM, the order of definiteness of the machine, k equals 4, and the number of delay

slots after branch instruction d equals 1. A simulation information file is created for imple-

menting the verification methodology. For the VSM, a sample simulation information file

would like as follows:

Simulation Information File for VSM.

r #Simulate a reset cycle

0 #Simulate all instructions except for control transfer

58

0

1 #Simulate control transfer instructions

0

With the simulation information, inputs for the machine can be determined for selective

simulation of particular instructions. The above information says that a reset instruction is to

be simulated first, followed by a sequence of two sets of all instructions except for control

transfer instructions, followed by a control transfer instruction, and then again a set of instruc-

tions except for control transfer. The unpipelined machine is simulated for k2 +r cycles, where

r is the number of reset instructions, while the pipelined machine is simulated for 2k-l+r+cd

cycles, where c is the number of control transfer instructions. The outputs have to be sampled

at times as specified by the p-relation between the two machines. The output filtering function

for this input specification would be as follows:

UNPIPELINED: 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

PIPELINED: 1 0 0 0 1 1 1 0 1

where a '1' in filtering function implies that at this time point the specific outputs are sampled,

and a '0' in the filtering function indicates that the outputs have to be ignored at that time

point.

The variables observed include:

a. The general purpose registers,

b. ALU operations,

c. Instruction Address Register.

To reduce the number of latches, and thus speed up the symbolic simulation, we experi-

mented with having only one general purpose register in the machine, and observed the read/

write addresses to the register file to emulate the effect of having all eight registers. This

improved the efficiency of our methodology. Simulation time for the unpipelined VSM was

175 sec, while that for the pipelined VSM was 292 sec on a Sun SPARCstation 10. Verification

of variable formulae was done using ROBDD-based combinational techniques [Bry86].

59

Experimental Results

BT

WA Register File WD I

FIGURE 12.The Pipelined VSM

60

-~ ~ ~~ ~ ~ ~ ~~~~~~~

I

A B

Y

BSEL

PC+4

FIGURE 13.The Unpipelined VSM

61

PCSEL

opcode, 1

WASEL

ALl

Experimental Results

6.3 Alphao, a simplified AlphaTM

The second design, Alpha0 , is a subset of the DEC-AlphaTM microprocessor. Table 2 gives

a description of the Alpha0 instruction set. Figure 14 shows a schematic diagram of the pipe-

lined implementation of the Alpha0, while Figure 15 shows a schematic diagram of the

unpipelined implementation of the Alphao. Some details have been omitted for clarity. Specif-

ically, bypass paths are not shown. We initially experimented with a full 32-bit design of the

Alpha0, but limitations in computational capabilities of BDD's compelled us to condense the

design, the features of which include:

a. Load/Store RISC architecture,

b. 32-bit fixed format instructions,

c. 5-stage static pipeline for the pipelined machine,

d. Thirty-two 4-bit registers,

e. 4-bit ALU operations,

f. One delay-slot after each control transfer instruction,

g. 5-bit Instruction Address Register.

TABLE 2. Alohao Instruction Set

Forfmat <31:26> <25:21> <20:16> <15:13> <12> <11:5> <4:0>

Operate Opcode Ra Rb 000 0 Function Rc

Op with Literal Opcode Ra Literal 1 Function Rc

Memory Opcode Ra Rb disp.m

Branch Ra disp.b

Instruction Function etiration

add x10 0x20 Rc - <Ra> + <Rb> I Lit

and OxIl 0x00 Rc - <Ra> AND <Rb> I Lit

br 0x30 Ra +- PC, PC +- <PC> + 4. SEXT (disp.b)

bf 0x39 Update PC, EA-<PC> + 4. SEXT(disp.b), If <Ra>=0, PC+-EA

62

TABLE 2. Alhao Instruction Set

bt 0x3D Update PC, EA-<PC> + 4. SEXT(disp.b), If <Ra> * 0,
PC-EA

cmpeq 0xl0 Ox2D If <Ra> = <Rb>, then Rc - 1 else Rc - O

cmple 0xl0 0x6D If <Ra> <Rb>, then Rc 1 else Rc 0 O

cmplt 0x10 0x4D If <Ra> < <Rb>, then Rc + 1 else Rc 0 O

jmp 0x36 Update PC, EA-<Rb>^ OxFFFFFFFA, Ra-PC, PC+-EA

Id 0x29 EA-<Rb> + SEXT(disp.m), Ra+-Memory[EA]

or Oxll 0x20 Rc - <Ra> OR <Rb> I Lit

sil 0x12 0x39 Rc - <Ra> SLL <Rb>5:0 I Lit 5:0

srl 0x12 0x34 Rc - <Ra> SRL <Rb>5:0 I Lit 5:0

st 0x2D EA-<Rb> + SEXT(disp.m), Memory[EA]-<Ra>
sub 0x10 0x29 Rc -- <Ra> - <Rb> I Lit

xor Ox 1 0x40 Rc +- <Ra> XOR <Rb> I Lit

For the Alphao, k equals 5, and d equalsl. For the Alphao , a sample simulation information

file would like as follows:

Simulation Information for AlphaO.

r #Simulate a reset cycle

O #Simulate all instructions except for control transfer

0

1 #Simulate control transfer instructions

0

0

The above information says that first a reset instruction is to be simulated, followed by a

sequence of two sets of all instructions except for control transfer, followed by a set of control

transfer instructions, followed by a sequence of two sets of instructions except for control

transfer. The output filtering function for this input specification would be as follows:

UNPIPELINED: 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

63

Experimental Results

PIPELINED: 1 0 0 0 0 1 1 1 0 1 1

The output filtering functions for each machine can be modified to verify the functionality

of each machine for interrupt handling as described in Section 5.5. Out-of-order execution can

be verified for the pipelined machine as described in Section 5.6.

The variables observed are the same as for the VSM. We also observed memory read/write

addresses. Again, we used the single general purpose register model for the Alphao to speed up

the symbolic simulation. In order to reduce the complexity of the machine, we simplified the

ALU to have only the and, or, and cmpeq operations, and further have 4-bit operations. The

ALU operations issued by instructions were observed to emulate a fully functional ALU,

while the more complex ALU can be verified using combinational techniques [Bry86]. Simu-

lation time for the unpipelined Alpha(was 23 min, while that for the pipelined Alphao was 43

mn on a Sun SPARCstation 10. Verification of variable formulae was done using ROBDD-

based combinational techniques.

64

BT

RD

FIGURE 14.The Pipelined Alphao

65

BT

Experimental Results

FIGURE 15.The Unpipelined Alpha o

66

Chapter 7

Conclusion and Future Work

The main contribution of this thesis is that a sound methodology for verification of pipelined

processors has been developed. The specification is taken to be an unpipelined implementation

of an instruction set, and the implementation is the pipelined microprocessor to be verified.

Behavioral equivalence is formalized as a relation between the string functions associated with

the implementation and the specification. String functions capture the input / output behavior

of a synchronous machine in a pure form, without reference to the internal state of the circuit.

Although the implementation is pipelined with respect to the specification, the [3-relation

bridges this difference. The methodology is based on verifying the defined -relation using

symbolic simulation, and is used for verification of complex pipelined microprocessors.

Recently a number of procedures have been introduced based on BDD representations and

implicit enumeration techniques, which efficiently perform certain verification tasks. The pri-

mary computation cost in these methods is BDD manipulation, and they cannot be directly

applicable to the verification of large industrial designs. The basic procedures can be used

indirectly, and sufficient conditions for an overall correctness requirement can be derived. As

67

Conclusion and Future Work

was done with the Alphao, described in Chapter 6, non-essential combinational logic that

increases BDD size can be discarded for improved efficiency.

Pipelined microprocessors are characterized as definite machines, and verification proper-

ties of such machines have been developed in this research. This leads to a formulation that if

a microprocessor is a definite machine of order k, then in symbolic simulation, only k

sequences of all possible inputs are required to verify its correctness with another k-definite

machine. The -relation for k-definite machines was developed to verify the correctness of a

pipelined microprocessor against an unpipelined microprocessor. A modified P-relation is used

to verify the correctness of pipelined microprocessors with control hazards. Methods of verify-

ing correctness of complex pipelined structures such as interrupt handling, dynamic schedul-

ing, and superscalar pipelines have been developed using the dynamic -relation, where the

string function relating the input / output behavior of the implementation and the specification

is modified during execution for filtering out the outputs at appropriate times according to the

instruction execution status. This makes the methodology applicable to designs used in indus-

try, at present, and is scalable to industrial designs of the future, because of its flexibility in

handling complex pipelined structures.

The strategy described in this thesis is highly automatic and requires very little user inter-

action. This makes the methodology a valuable tool for all hardware design engineers in indus-

try, at present and in the future. The designer has to provide

a. The descriptions of the specification and implementation,

b. The properties of the machines, such as k, number of delay slots after control transfer

instructions, etc.,

c. List of variable formulae to observed and verified to determine correctness,

d. Variable lists to create BDD formulae to cofactor transition relation outputs to simulate

specific instructions, i.e. the opcodes of these instructions.

Two designs were verified with the methodology described in this thesis. One design is an

experimental RISC microprocessor, VSM. The other design Alphao, is more representative of

68

industrial designs existing in industry today, since it is a subset of the DEC-AlphaTM. Both of

these experiments showed that the methodology can be applied successfully to a number of

pipelined microprocessors, with a variety of simple and complex features.

There are several opportunities for further work. First, more work can be done in develop-

ing better ordering constraints for constructing BDD's given a logic circuit, so that symbolic

simulation can be done efficiently. A second topic of fundamental research would be to

develop better representations of the transition relation of sequential machines, to bypass the

computational limitations of BDDs.

69

Conclusion and Future Work

70

Bibliography

[FVA92] F. Van Aelten. Automatic Procedures for the Behavioral Verification of Digi-
tal Designs. Ph.D. Dissertation, MIT, 1992.

[AAD91] F. Van Aelten, S.Y. Liao, J. Allen, and S. Devadas, Automatic Generation and
Verification of Sufficient Correctness Properties for Synchronous Processors.
In Proceedings of the Int'l Conference on Computer-Aided Design, pages
183-187, November 1992.

[BK89] S. Bose, and A. Fisher. Verifying pipelined hardware using symbolic logic
simulation. In Proceedings of the IEEE Conference on Computer Design,
pages 217-221, 1989.

[Bro89] A. Bronstein. MLP: String-Functional Semantics and Boyer-Moore Mecha-
nism for the Formal Verification of Synchronous Circuits. Ph.D. Dissertation,
Stanford, STAN-CS-89-1293,1989.

[Bry86] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. In
IEEE Transactions on Computers, volume C-35, pages 677-691, August
1986.

[Bry87] R. Bryant. A methodology for hardware verification based on logic simula-
tion. Technical Report CMU-CS-87-128, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, June 1987.

[Bry91] R. Bryant. On the Complexity of VLSI Implementations and Graph Repre-
sentations of Boolean Functions with Application to Integer Multiplication.
In IEEE Transactions on Computers, volume 40, pages 205-213, February
1991.

[BCMD90] J. Burch, E. Clarke, K. McMillan, and D. Dill. Sequential Circuit Verification
Using Symbolic Model Checking. In Proceedings of the 2 7th Design Automa-
tion Conference, pages 46-51, June 1990.

[Coh88] A. Cohn. A Proof of Correctness of the VIPER Microprocessor: The First
Level. In G. Birtwistle and P.A. Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis, pages 111-128. Kluwer Academic Publishers,
1988.

[CBM89] O. Coudert, C. Berthet, and J.C. Madre. Verification of Sequential Machines
Using Boolean Functional Vectors. In IMEC-IFIP Int' l Workshop on Applied
Formal Methodsfor Correct VLSI Design, pages 111-128, November 1989.

[Gup92] A. Gupta. Formal Hardware Verification Methods: A Survey. In R.K. Bray-
ton, E. M. Clarke and P.A. Subrahmanyam, editors, Formal Methods in Sys-
tem Design, pages 5-92. Kluwer Academic Publishers, October 1992.

[PH90] J. Hennessy, and D. Patterson, Computer Architecture A Quantative
Approach, Morgan Kaufman, 1990.

71

[Hoa69]

[Hoa72]

[Hun85]

[Joy88]

[Koh78]

[Seg87]

C.A.R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12:576-580, 1969.

C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica,
1:271-281, 1972.

W. Hunt, FM8501: A Verified Microprocessor. University of Texas, Austin,
Tech. Report 47, 1985.

J. Joyce. Formal Verification and Implementation of a Microprocessor. In G.
Birtwistle and P.A. Subrahmanyam, editors, VLSI Specification, Verification
and Synthesis, pages 129-157. Kluwer Academic Publishers, 1988.

Z. Kohavi. Switching and Finite Automata Theory. McGraw Hill, 1978.

R. Segal. BDSYN: Logic Description Translator. UC Berkeley, UCB ERL
Memo No. M87/33, May 1987.

[SSMS92] E.M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K.Brayton, and A. San-
giovanni-Vincentelli. Sequential Circuit Design Using Synthesis and Optimi-
zation. In Proceedings of the Int'l Conference on Computer Design: VLS in
Computers and Processors. pages 328-333, October 1992.

[TSBS90] H.Touati, H. Savoj, B. Lin, R. Brayton, and A. Sangiovanni-Vincentelli.
Implicit State Enumeration of Finite State Machines using BDDs. In Proc. of
Int'l Conference on Computer-Aided Design, pages 130-133, November
1990.

72

