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SYSTEM DESIGN FOR EXPRESS AIRLINES

by

MICHAEL R. FISHER, JR.

Flight Transportation Laboratory
Massachusetts Institute of Technology

October 9, 1987

ABSTRACT

In this thesis we investigate and analyze express airlines for the pur-
pose of system design. Chapter 1 contains a taxonomy for express carriers
that is built around elemental system components, distinguishable from
one another with a two-variable classification scheme. We describe how
overnight carriers operate, what their basic philosophy of operation is, and
how they might choose to develop their networks to best serve that phi-
losophy. In addition, we present mathematical formulations for several
systems.

Chapter 2 is a review of research into similar problems and of solution
techniques that might be applicable to express system design problems. In
Chapter 3 we focus on the simplest express network problem, the Single-
Hub, Single-Turn System Design Problem, SHP. We develop several models
for SHP, both to expose the structure of the problem and to find a tractable
formulation. The emergent concept of the chapter is the route complex.
Using this approach to route expression, we choose a formulation that is
essentially a set partitioning problem with side constraints.

In Chapter 4 we explore the dualization of the side constraints and
develop a solution procedure. There are three types of complicating con-
straints: aircraft availability, placement (for ferry flights), and column-
joining (for transforming a pure set partitioning problem into a nonbipar-
tite matching problem with side constraints). We use a minimum weight,
nonbipartite matching problem as the core of our solution procedure for
SHP, focusing on obtaining feasible solutions directly from a Lagrangian
relaxation, rather than using branch-and-bound. In Chapter 5 we report
our computational results and offer suggestions for further research.
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Chapter 1

EXPRESS CARRIERS

1.1 Introduction

In the 1970's a new class of air cargo service evolved in the United States,

precipitated by the increasing need for time-critical parcel conveyance. This
new industry is now autonomous with respect to all other categories of air
transport. It specializes in the pickup and overnight delivery of cargo and

is represented by such companies as Federal Express, Emery, Airborne,

DHL, Purolator Courier, and United Parcel Service. Federal Express first
developed the market, and alone of these firms was incorporated solely for

this purpose. The other companies that compete in the time-critical market
all entered from other closely related areas, such as air freight forwarding,

and continue to maintain their strong presences there. The growth of the
industry in terms of annual revenues has been rapid. Federal Express, the
industry leader, drew $3.2 billion in revenues in fiscal 1987, its eleventh

year of operation [A3].

A standard measure of productivity in the analysis of the air cargo in-

dustry as a whole is ton-miles. Using this gauge as an industry-wide norm

today is misleading, however. This is because the overnight services' share

of ton-miles is quite low, although their share of the total revenues is sub-
stantial (see de Neufville, [D2]). The major reason for this anomaly is that
time-critical items are usually very small when compared with the cargo
flown by an air freight carrier such as Flying Tigers, which offers a service
for relatively time-insensitive items. Therefore, a measure of productiv-
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ity that much more accurately reflects the importance of express services
within the industry is annual revenues. Because of this, optimal system de-
sign for these carriers is essential to the efficient performance of a significant

segment of the air transport industry.
The purpose of this paper is to build a foundation for modeling and

designing the different types of systems that could facilitate the services
offered by this multifaceted, burgeoning segment of flight transportation.

We will see that this effort entails addressing some intensely interesting and

challenging operations research problems.
Our focus in this chapter will be on systems whose primary purpose is to

transport cargo for the highest class of service - that is, overnight carriage

and morning delivery of parcels. We properly refer to this as ezpress service,

but we sometimes use the terms overnight, time-critical, or high-priority.
The motivation for this restriction is that we wish to avoid confusion of a
pure express system with any other system that may have been originally
designed for transporting cargo at a slower rate and is now being used to
provide express service as well. This will clarify our exposition.

In keeping with this focus, we will use two types of indicator quantities

that will enable us to characterize the express system under consideration
as being one of five elemental overnight systems. Any actual system is

probably a hybrid of two or more of these or even other, nonexpress, sys-

tems, but our classification will allow us to see the basic building blocks

from which express systems are likely to be formed. The two indicators

are:

1. Xi

2. yij

We define the first indicator as the air cargo that flows through airport
i. The quantity 'yi/ is defined as the air cargo that flows between airport
i and airport j. We use the term air cargo" to emphasize that we are
concerned with cargo transport through an airline network. Thus, we will
assume that any cargo that moves by truck or other means has already
been removed from consideration. We will sometimes refer to this system

characterization scheme as the A - method [Al].
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1.2 The Single-Hub Single-Turn System
We begin our system descriptions with a scenario for the simplest ex-

press operation, that of a single hub. In this type of system, XiA, is very large
for the index i that denotes the hub. All other indicators are quite small
in comparison. Unlike air freight forwarding companies, the express carri-
ers operate their own aircraft, so they can tailor their systems to operate
with the lowest possible cost, while maintaining their service commitments.
Thus, these companies tend toward the use of hubs as sorting and distribu-
tion centers. Typically, for a single-hub carrier the location is somewhere
near the center of the service region, as weighted by business activity. By
using the hub as a break-bulk point, a carrier can serve many more city-
pairs than it could afford to do with direct service. For example, the traffic
demand between St. Louis and Phoenix might not be large enough to jus-
tify a direct flight between the two cities. However, by flying all cargo into
a hub for sorting, and then flying it out from the hub to final destinations,
the carrier can serve such a city-pair. In fact, if n cities are in such a sys-
tem, then all n(n-1)/2 city-pairs can be served with relatively few aircraft.
Figure 1-1 shows a conceptual system map.

The simplest single-hub express system operates in the following man-
ner. If someone wishes to ship a package, a courier stops at the customer's

place of business, picks up the package, and transports it to an assigned
airport later in the day. One of the company's aircraft is parked at the
airport, and[ when enough cargo has arrived, the aircraft is loaded. Later
in the evening, this aircraft and the rest of the fleet begin to converge on
the hub from all points in the system. At the hub, all the cargo is offloaded
from the aircraft and is sorted by destination in a sorting facility. The
aircraft are then loaded, and they depart from the hub very early in the
morning in order to meet the company's delivery commitment. When an
aircraft arrives at an airport in the morning, the appropriate cargo is of-
floaded and sorted, and trucks and vans transport the parcels to their final
destinations. The aircraft stays parked all day at the last stop on its route,
until the evening when the whole process is repeated. Thus, the process
has a period of one day, or, a single-turn.
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An aircraft often has more than one stop to make, both when flying into
the hub and out of the hub. When flying into the hub, an aircraft only picks
up cargo at intermediate stops, and when flying out of the hub, it only drops
off cargo. Express carriers employ these restrictions because onloading and

offloading cargo in the same stop is not considered to be worth the effort
and time that is required. We therefore distinguish between delivery routes
and pickup routes.

Because of the express carrier's delivery commitment, an aircraft on a
delivery route must arrive at an airport before a certain time in the morning,
so that those communities that are served from the airport can be reached
early enough. This time, which may vary from airport to airport, is the
morning or delivery cutoff time. In the evening, aircraft must wait at an
airport long enough for businesses to send as many parcels as they wish.

However, the aircraft must also leave the airport soon enough to complete
its route and arrive at the hub so that sorting can be performed in time
for the morning cutoff times to be met. A balance is therefore required
between meeting the restrictions of sorting time and delivery commitment
on the one hand and generating as much business as possible on the other

hand. Generally speaking, an aircraft will remain at the airport until a
prescribed time, before which it cannot leave. This time is the evening or
pickup cutoff time. Thus, delivery routes are critical with respect to arrival
times, and pickup routes are critical with respect to departure times.

We now state the problem that a single-hub system scheduler faces -
given an aircraft fleet, a set of airport locations, a set of cutoff times, and a

business demand forecast, select the aircraft and design the most efficient
routes that meet all the constraints. A fleet planner faces a similar problem
- given all of the above except a fleet, determine which fleet produces the

most efficient system. This can be accomplished by solving the system
scheduler's problem for several different fleet mixes over a predetermined

planning horizon, and selecting the best fleet. The system planner must
not only deal with route structures and fleet choices, but also with the
locations and sizes of facilities throughout the system. We shall investigate

and mathematically model several different approaches to system design for
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single-hub express carriers. The first of these is the most simple, having one

landing and one takeoff per day per aircraft at the hub. We refer to such a
system as a single-hub single-turn system, SHP. This notation should not be
confused with the particular model or formulation of SHP that we may be

discussing. In the course of this paper we will present several formulations

of SHP. In all cases, those formulations will be denoted in parentheses, e.g.

(SDP).
Rewording the design problem, we have the following given a set of

aircraft from which to choose, a set of airports, a business demand matrix,
a set of cutoff times, and a hub, construct an airline system such that:

1. The demand for pickup and delivery is met at every airport.

2. Aircraft adhere to all cutoff times.

3. All cargo flows through the hub.

4. The system uses only available aircraft.

5. The period of the schedule is one day.

6. The cost is minimized.

We formulate this problem and all other problems in the chapter using a
node-arc technique similar to that used for many network design problems
(see, for example, Magnanti and Wong [M5], or Gavish [G1]). This method

will produce very large and, for the most part, intractable formulations.
However, by taking this finely-grained approach, we hope to appreciate the
richness of the problems and gain insight into what could be more tractable
formulations and solution techniques.

The variables are defined as follows:

1.3 Indices and Index Sets

i,j = node indices, indicating airports served (node 0 is the hub)
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k = route orientation (time period)

k = I2 if delivery (morning)
1 if pickup (evening)

I ° {O,... , n-1} This set represents all airports, including the hub.

I={1,...,n-1}

m = aircraft index, representing individual aircraft. For example, m could
be a tail number.

T(m) = the type of aircraft m, e.g.; B727-100

M = the set of all aircraft, considered individually

A = the set of aircraft types

Constants

n - 1 = number of airports; node n is an artificial sink

ai = cutoff time at node j for time period k,j = 2,..., n- 1i. All times are
in minutes after time zero.

K, = capacity of aircraft m, in pounds

cijm = cost of flying aircraft m from i to j

cim = cost of locating ground equipment for handling aircraft m at node i

6ij = volume to be sent from i to j

di = demand at location i, time period k

n-i
- 6ii,k=2

j=o

n-1
di, ,k = 1

$=o
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gi, = ground time required after landing for aircraft m at node i

hk = hub cutoff time in minutes, time period k

QT(m) = number of aircraft type T(m) available

tijp = time required for aircraft type T(m) to fly from i to j

Decision Variables

aik = delivery (k = 2) or pickup (k = 1) departure time of aircraft m, from
node i, in minutes after time zero

fQ = flow that originates at p and is destined for q that moves from i to
j on aircraft m during period k. Either p or q can be the hub.

fi = E fk = total flow from i to j on aircraft m during period k
pcI° qe1o

= _ f 1, if aircraft m flies from i to j in time period k
Yijm 0, otherwise.

1, if aircraft m lands at node i. This decision
zim = variable models ground equipment necessary for handling the aircraft.

0, otherwise.

We assume that the demand is in pounds for this formulation, even
though, due to containerization, aircraft are bulk, or cube, limited. We shall
consider this to have been factored into the capacities Km. This assumption
is valid because high-priority parcels are usually small and dense enough

to make weight the overriding factor. When we discuss the topic of sorting

facility capacity, we must consider the demand in terms of numbers of

parcels, because this is the way in which these capacities are measured.
We shall interchange the terms node' and 'airport". Any node other

than a hub is a field node. Also, when we discuss the topic of sorting facility

capacities, we sometimes use the term hub" to mean the sorting building
itself. The context will make the meaning clear.

We set ylnm IIYn, m 0 for all il, and yoi_ = Y0,m = 0 for iI.
We assign these values to ensure that the route structure implied by any

13



solution to the problem formulation is operationally consistent.
set Yiim--0 for all iE{0,... n, meM, and k=l, 2.

Our formulation, which we designate (SDP), is

minimize C ~ Cim + Z CimZim
k::=l isI° jI ° msM id mM

subject to

n

msM j=O

fpqk = O,p i,k= 1
Sm O,q i,k=2

I, k = 1,2

} PQfI, iEI, meM

i, jI ° U {n}, mEM, k = 1,2

iEI° U {n}, jEI, meM, k = 1,2

n n

E -m =EYjim = 0
j=O j=O

Z (Yinm - Ynim) = 0
m:T(m)=a

m:T(m)=a iel

iEI, mEM, k = 1,2

aoA, iEI

aoeA

ajm > (atm + tiim + gjm) - (1 -Yjm) 1440

aom > h2 mEM

aim + tiOm < h1 + (1 - yio) 1440

a > 1aim - t icI, mEM

akm + tijm < a + (1 - y2) 1440

aim f>jm o , yt, 1} Zim{O, 1}

jeI, iI, mEM

p, qI °, mEM, k= 1,2

The objective function (1-1) charges an operating cost cm for every

14

We also

(1.1)

E E fk
mM j=O

fPqk 

j=O j-=O

(1.2a)

fYjm < Kmy

Yijm < Zpm

(1.2b)

(1.3a)

(1.3b)

(1.4)

(1.5)

(1.6)

iEI° , jI, mEM, k = 1, 2

iEI, mEM

(1.7a)

(1.7b)

(1.7c)

(1.7d)

(1.7e)

(1.8)



segment i - j flown by aircraft m. We note that dealing with aircraft
results in tijm =# tji,, due to prevailing winds, and therefore cijm # cjim,
since cijm depends on tiim. (Typically, cij, will be determined by factors

such as fuel burn, maintenance expense, and crew cost, all of which are

dependent on tijm.) Therefore, (SDP) lacks symmetry in this respect. A
daily ownership cost is assessed by allocating it to the first segment flown

out of the hub. Thus, costs of the form coim will be quite high in comparison

with other segment costs. A cost cim is assessed for using aircraft m at a

node. This cost covers the purchase of loading/unloading equipment and
other necessary hardware and spare parts.

Constraints (1-2a) are the mass balance equations and provide that the
net flow out of a station in the evening (k=l) and into the station in the
morning (k:=2) matches the demand. We prevent cargo transfer between
aircraft with (1-2b). Constraints (1-3a) are forcing" constraints and ensure
that the cargo flow along a segment does not exceed the total capacity of
the aircraft flying that segment. These constraints also ensure that no cargo

is flown when no aircraft is available (i.e., when jm = 0). We provide for

necessary parts and loading equipment for aircraft m at node i with (1-3b).
Constraints (1-4) guarantee that, for each aircraft, morning or evening,

the total number flown into a city is equal to the total number flown out of
that city. Node n is used as an artificial sink for all flights. We ensure that

the last stops on all delivery routes match the starting points on all pickup
routes, both with regard to airport and aircraft type, with constraints (1-
5). Constraints (1-6) provide that the total number of available aircraft
of type T(m) is not exceeded. In a fleet planning situation where there is

possibly no limit to the number of some particular type available, T(m)
can be set to some very large number.

Inequalities (1-7a) through (1-7e) are all time constraints. Departure
times are guaranteed to be physically feasible by (1-7a) (see Golden and

Magnanti, [G7]). These constraints set the departure time of aircraft m
from node j to be at least as great as its departure time from i (provided
the aircraft departed i, i.e., y,m=1), plus the ground processing time at j,
plus the flying time between i and j. If aircraft m did not land at node i,

15



then the constraint is satisfied for any am > 0. The number 1440 is used
because it is the number of minutes in a day, or the period of the total
schedule. This formulation uses ground times that are aircraft-dependent
and node-dependent to account for possible variations at different airports.
We could have gi,=gj. for all i, j, and m, however.

In constraints (1-7b) we provide that the departure time from the hub
for an aircraft takes place only after the sort is finished. We ensure that

any flight into the hub (e.g. yi,, = 1 for some i $ 1 and some mEM) leaves
i early enough to arrive before the sort, in constraints (1-7c). As with
constraints (1-7a), this inequality is easily satisfied if yio, = 0. Constraints
(1-7d) and (1-7e) enforce pickup and delivery cutoff times, respectively, for

all field nodes. Arrival and departure times and arc flows are non-negative

continuous variables, and service arcs are 0-1 variables, as constraints (1-8)

stipulate.
In today's domestic express systems, time constraints prohibit routes

of many stages. For our application, we will assume that no route longer
than three stages is feasible. This assumption will allow us to specialize

our solution approach in a (potentially) much more effective way, and for
most systems should be a very practical constraint on the problem.

The system that (SDP) models is actually a simplified version of the
problem that is faced by the planner. Additional complexities of an express
system that (SDP) assumes away are landing and takeoff spacing, a posi-
tive lower limit on the numbers of certain aircraft used, and transloading.
In general, transloading is the transfer of cargo from one aircraft to another
at a point away from the hub. Also, we have made some simplifying as-
sumptions about payload-range characteristics and flight plans. We shall
assume that all aircraft involved in the model can fly any distance that any
(SDP) solution requires, at full payload. This usually should present no dif-
ficulty, but it might if small jets are employed, for example. Such aircraft
are limited by payload-range factors, and must stop for refueling on long
flights. Nonetheless, they have the speed required for meeting cutoff times
at distant points, so that without payload-range feasibility constraints, the
model could attempt an invalid assignment.

16



At all times we assume that any cargo that can be carried from origin

to destination by truck has been subtracted from the demand matrix [6i].
We will thus be concerned only with the airside of the system, with two
exceptions. In the next section we discuss a special transloading operation
that uses feeder aircraft. These aircraft are not required to come into the
hub. By treating trucks as feeder aircraft, we may include them in this
special set. Also, trucks that use the hub as their cargo transfer point, just
as aircraft do, may be treated as aircraft.

Our formulation implicitly assumes that the hub has enough sorting
capacity to process all cargo in the system. This is not always the case,

and capacity must be built into the hub as the system grows. While it is
not necessary to include this in our model, more complex system design

problems require explicit consideration of sorting capacity. Therefore, we
defer a discussion of this topic until we develop these formulations.

A final qualification to our approach is that we will not address the sub-
ject of recursively linking periodic (SDP) solutions over a planning horizon.
Realistically, we probably would not have a certain fleet one year and a sig-

nificantly different fleet the next year. Thus, obtaining a set of solutions
that fit together over a planning horizon is a very real problem for the
planner. Our approach will focus on obtaining a solution for one period
only.

Before proceeding with an examination of other systems, we discuss the
nature of constraints (1-5), that we will call the end-node constraints. The
requirement that the last stop on an aircraft's delivery route be the first stop
on the same aircraft's pickup route is actually rather restrictive. Although
most overnight carriers probably prefer that such a matchup occurs, it
might actually be the case that allowing a ferry, or placement, flight from
the last delivery stop to the pickup route start-node would result in an
improved solution. There is time during the day for an aircraft to do
exactly that, since it would have several hours of idle time otherwise. To

model such a flight, which need not adhere to cutoff times, we introduce a

new decision variable, xij,. We let

xija = the number (nonnegative integer) of placement flights from node i

17



to node j of aircraft type a.

We now replace constraints (1-5) with (1-5a) and (1-5b):

(1-5a) E i,.= E ymm iEI, aEA
je °, m:T(m)=a

(d1-b) , zii = Z yJjm jEl, aEA
wito m:T(m)=a

Henceforth, we refer to (1-5a) and (1-Sb) as the placement constraints.

If we use placement constraints instead of (1-5) in (SDP), we must add the
operating cost of flying aircraft type a from node i to node j; the new term

in the objective function is

aeA (i,j)do0zI

Our examination of the placement constraints reveals that, given values for

the y variables, the remaining system is essentially a transportation problem

for each aircraft type aA. To see this, we form two node sets, one for

accommodating delivery flights and one for accommodating pickup fights.

Let J = I and Jo = Io. We can then write the placement constraints for a

given vector y as

E[ xi,= E .nm l,, , aA (1-5a)
jFJ° m:Tm=a

EzXija = E Yljm jiJ, aA (1-5b)
kIO m:Tm=a

For each pair (i,j)EI x J and each index aEA, the variable zija appears

in exactly two constraints, one of the form (1-5a) and one of the form (1-

5b). However, any variable of the form io, or zoji appears in only one

constraint. (We note that this and multiplying (1-5b) by -1 show that the
constraint matrix for the Xij, is totally unimodular.) In addition, for any
given acA, it is possible that

a' = Y Dnm E E l md = 9.
il m:Tm,=a jeJ m:T,-=a

This would occur, for example, if a placement flight originated at the hub to
compensate for a demand imbalance at a node that is a net producer. If not
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for these two exceptions, (1-5a) and (1-5b) would form IAI transportation

problems for any given feasible y-vector. We will now demonstrate that

the special structure of our problem allows us to classify this as a set of
transportation problems anyway. To do this, we elaborate on how the
costs c¢'a are computed for each xii,, and on what the variable zij, means
physically.

Suppose first that i and j represent the same physical location. Then
the cost c, = 0 for each aEA, and setting xia > 0 simply means that an

aircraft of type a sits on the ground at location i=j during the idle daytime
period. Next, suppose that i and j represent different locations, and that
neither index denotes the hub. Then c, is the cost of operating aircraft a
between points i and j, and zxi, > 0 implies that an aircraft of type a flies
from i to j. Such a flight could possibly stop at an intermediate location or
locations, including the hub. Wherever these intermediate points are, they
are chosen so as to minimize the cost of flying from i to j.

Now suppose that either i or j denotes the hub, but not both. (If both,
an aircraft never flies at all, but always sits at the hub.) Suppose first that
i represents the hub. In such a case, we would like for iji, > 0 to imply
that we are ferrying a type a aircraft from the hub to location j. This is
distinct from a placement flight from some other airport to location j that
uses the hub as an intermediate point. We now examine the conditions
under which we would make such a flight.

Figure 1-2 depicts a problem of our kind where the nodes on the left
represent nodes on the delivery side, and the nodes on the right represent
nodes on the pickup side. A node on the pickup side and the node di-

rectly opposite it on the delivery side represent the same physical location.
A delivery node and a pickup node that are directly opposite each other
represent the same physical location. This is a variation of Simpson's [S4]
technique of using different nodes to represent the same airport at different
times of the day. We consider the problem for aircraft type a'. The hub is
the bottom node in each case, and only nodes where there is a supply or

a demand are shown (except the hub). Note that supply exists at the last
node of a delivery route, and demand exists at the first node of a pickup
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route. Arcs are drawn in where flow actually occurs. A horizontal arc de-

notes an aircraft remaining on the ground. In case 1, we set d2, > d1,. Note
that if zii., > 0, then there must be a flight from some delivery node k into
the hub in order to satisfy constraints (1-5a), since d, > d,. Physically,
we can interpret this as a single flight from node k to the hub and then
to node j. But such a flight must be at least as expensive as the cheapest
ferry flight from node k to node j. Thus, dropping the arcs i-j and k-h
replacing them with arc k-j is just as inexpensive.

We would like to guarantee that the cost cj,, is strictly less than cJa,, +

ch, , where i represents the hub on the delivery side, and h represents
the hub on the pickup side. We can accomplish this by judicious allocation

of ownership costs. Up to this point, all placement flight costs have been

operating costs. If we allocate half of the ownership cost of an aircraft to
any flight segment in or out of the hub, whether the flight is a placement

flight or not, the desired strict inequality will hold. Moreover, this technique
gives the model validity and provides a cost-allocation scheme that is at
least intuitively appealing, if not practical, from the standpoint of finding
a solution. We therefore adopt this cost-allocation methodology.

It follows from the above that no zii,, will be positive if i is the hub node
index and d2, > dl,. Also because d2, > dl,, we must have a flow of at least
d2,- d, into the hub node on the pickup side. If this is also the maximum
optimal flow into this node, we will have established the desired result for
the case da, > dl,. But d, - d, must in fact be the maximum flow into
the hub on the pickup side, since any more than this amount would require
flow out of the hub on the delivery side in order to satisfy the constraints.
As we have just noted in the above paragraph, this will not occur in an

optimal solution because of our cost allocation. In case 2, we suppose that
i is the hub and d, < d,. A similar argument yields the desired result.
Also, similar arguments yield the same result if node j is the hub.

From this discussion we see that, given y satisfying all other constraints,

we have the following equivalent transportation problem for each aEA.

minimize E> cija ja
ieo jJe
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subject to
EXZij= 2 Yrm=d.i ieI

jJ °O m:T,.=a

E i.= = djm= i iEJ
ilo m:Tm=a

Erzo jamax(O,d-d.) =d0

I o = max(O, d: - da) = d0

Formalizing the result, we have

Lemma 1.1: For any feasible , constraints (1-5a) and 1-5b) form a
transportation problem for each aircraft type that is used.

This development affords us an opportunity to decompose (SDP) (in-

deed, probably most formulations of SHP) into two parts - the delivery
side" and the pickup side". (See Figure 1-3.) Independent solutions for
each of these problems can then be joined into an overall feasible solution
for the entire problem. We will use this fact and the fact that the constraint
matrix for the sxi,, given , is totally unimodular, thus allowing us to drop
the integrality requirement, in developing a solution procedure. (We note
here that a different formulation of the placement constraints may or may
not have the totally unimodular property.) Also, we will use the end-node
constraints in the original formulation to construct solutions, and we will
compare results.

Additional complexities are possible for the configuration of an express

system. We have made some implicit assumptions about the distribution
and level of demand across the system that have bearing on the suitability
of the model (SDP) for achieving the carrier's goals. At least some aircraft

with jet speed are required to connect all points in the system and to
satisfy the cutoff-time restrictions. If all points served offer enough volume
to justify the use of a large jet, then (SDP) may indeed be the appropriate
model. However, in areas of sparse volume, a superior approach might be
to use less expensive turboprops or small jets to aggregate cargo at a facility
for further transport by other aircraft. We shall refer to aircraft that serve
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a region in this fashion as feeder aircraft. Figure 1-4 shows a conceptual
diagram of a feeder system. All of the constraints that apply to the simple
single-hub problem also apply to the system with feeders. In addition,
we must consider that aircraft designated as feeders need not fly into the
hub. However, the implication of this is that small crew and maintenance
bases, sorting and other facilities may need to be established at outlying
points. Since the startup cost for such a base could be high, and because
the logistics of manning feeder aircraft might require it, the carrier could
choose to establish feeder flights based out of a node only if a minimum
number of such aircraft are used at that node. Also, the node may have
an upper limit to the number of aircraft that it can process. We omit
a node-arc formulation for the single-hub feeder system due to its length
and complexity, but in essence it is quite like (SDP). For this problem, its
intricacies probably dictate starting with a simpler formulation approach.

Relating the feeder system concept to the A- -y classification scheme,
we might be unable to detect whether or not an operation employed feeder
aircraft by simply observing the relative sizes of the Xi. This is because a
feeder by definition would carry a relatively small amount of cargo to its
base. The increment to Xi (that the total amount of such flow would cause)

could be indistinguishable when compared to a nonfeeder flight passing
through node i from even a moderately sized node j. However, if -yi is
positive for several nodes j, a feeder base is likely to exist at node i, since

several routes into i are indicated. Thus, suppose only one Xi is very large
relative to the other Xi (thus representing a single hub), and for certain
nodes k, 'kj is positive, (but not exceptionally large) for a few, up to

several, indices j. Then a single hub system with feeders based at the
nodes k likely exists.

As the number of positive 'yi/'s grows for some node i, but the size of

such iij 's is moderate, Xi itself grows until it likely becomes distinguishably

large relative to other Ak. In this case, the express system has evolved into
a multiple-hub design.
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1.4 Regional Multiple-Hub Systems
The distribution of demand across a system could be such that a multiple-

hub design is preferable to a single hub operation. For example, if the
business activity within a region is substantial, establishing and operating
a hub that is central to the region could be more cost-effective than flying
all of the regional traffic to a single distant hub. Figure 1-5 illustrates a
possible multiple-hub design. In this section we develop a model for the

Regional Multiple-Hub System Design Problem (RDP). In such a system,
one hub is capable of serving all nodes in the network, but one or more

regional hubs each serves the nodes of a region, processing cargo that origi-

nates in and is destined for points within the same region. The operational
constraints that apply to a single-hub also apply to a multiple-hub system.
However, additional complexities arise in the formulation of the regional
multiple-hub system because any regional hub node is a field node with
respect to the principal hub node. Thus, all regional hubs must have their
own pickup and delivery cutoff times in addition to their own sort cutoff
times. This causes the time constraints to become somewhat more compli-
cated. (In a single-hub system, the hub can be thought of as having pickup
and delivery cutoff times equal to the sort departure and sort arrival cutoff
times, respectively.)

A further implication of treating hub nodes as field nodes is that a
pickup flight can start at a hub node, and a delivery flight can end at a
hub node. Indeed, we may have whole flights that only visit hub nodes.
In the single-hub formulation, we insisted on end-node matching on an
aircraft-type basis at field nodes only. In (RDP), we need to extend the
same stipulation to hub nodes as well.

We define IH = {i: i is a hub node}, and I = {i: i is a field node}.
Nodes 0 and n will be used as artificial sinks. We shall assume at first that
all hubs are constructed and are capable of processing all flights and cargo
that any solution demands. We wish to
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Figure 1-5. A Possible Two-Hub System. In this system all
nodes feed into Hub A. Hub B serves nodes on a regional basis.

27



minimize z = , F F C CiimYi, +
keK iIo jeo mrnM

subject to

Z ( f -n
-- 0

n n
;pqk ', kP .. E fit

j=O j=O -{

(fo om foi) = o
mPM

peI qI

Ym < Z.jm

0,
0,

p i, k= 1
qhi, k=2 J

p, q $ i, iEIH

i, jEI U {, n, mEM

iEI U {O, n}, jEIF, mEM, kEK

n

Yjm- E Yi/ =0
j=O

icI, mEM

(y!nm- im) = 

(YOi YOm) = 

iEIF, mEM

iEIH, meM

EIp m:T(m)=
i¢lp m:T(m)=a

Yinm < Qa for all distinct a

E Yim <H 1
ifIH

- (1- m) 1440

a2 > h 2 - (1 - yi,) 1440aimh

28

E E Cim Zim
ilI mrM

iEI

(2 - 1)

(2 - 2a)

p, q, is, mEM (2 - 2b)

(2 - 2c)

(2 - 3a)

(2 - 3b)

m:T(m)=a

E
m:T(mn)=a

(2 - 4)

(2 - 5a)

(2 - 5b)

(2 - 6a)

(2 - 6b)

i, jEI, mEM

iEIH, meM

(2 - 7a)

(2 - 7b)

t fiki = di
j=o Ii ~

n

j=O

a; a(a + ti,, + i .



aim + tij < h + (2-yi - lOn) 1440 iEI, jIH,mM (2 - 7c)

al, a'l ilp, meM (2- 7d)

ai2 + tijm a + (1 - yj,) 1440 iEI, jIp, mEM (2 - 7e)

ai k, f >0, Oj = 0 or 1, i, jI U {O,n},p, qJ, mEM, kEK (2 -8)

We set yio, = -y2i, = yIn. yl,. -0 for all meM and iI. In the
context of our constraint set, the following interpretations of the above
identities hold. The first identity says that delivery routes cannot end at
node 0 and must not pass through node n. The third identity states that
pickup routes cannot end at node n and must not pass through node 0.
We also set y2m - yO,,, = 0 for meM and iIp. This identity states that
delivery routes cannot begin at a field node and pickup routes cannot end
at a field node. Also, y, - yno, m yi/, 0 for all i, k, and m.

Constraints (2-2a) guarantee that the net difference in pickup or delivery
flow through any node is equal to the demand at that node. Transload-
ing during a pickup route or delivery route is prevented by (2-2b). Con-
straints (2-2c) provide that the pickup flow of commodity pq into any hub

i (k ) equals the delivery flow of commodity pq out of the same hub

( ffpq2 ,provided neither p nor q is node i. This physically necessary
j=0

condition is not guaranteed by (2-2a) or (2-2b), since only pickup flow or

only delivery flow appears in any one of these equations. For the single hub

problem this condition is implicitly satisfied by constraints (1-2a), which
are equivalent to (2-2a) with I = {1}.

The forcing constraints (2-3a) and (2-3b) and aircraft conservation con-
straints (2-4) are the same as for SDP. Constraints (2-5a) ensure that an
aircraft begins a pickup route at node i if and only if an aircraft of same
type ends a delivery route at node i. We enforce a complementary condi-
tion for hubs with constraints (2-5b). These state that a pickup route ends
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at a hub if and only if an aircraft of the same type begins a delivery route

out of that hub. The fleet constraints (2-6a) and (2-6b) are essentially the
same as for (SDPF).

We now consider the time constraints (2-7a) through (2-7e). The cycle-

breaking constraints (2-7a) are exactly the same as (1-7a). The hub cutoff
time constraints (2-7b) and (2-7c) each have extra terms to account for the
differences between sort cutoff times and pickup and delivery cutoff times.

In (2-7b) the term (1-y2) 1440 implies that an aircraft on a delivery

route has to wait to depart until the sort-down time for that hub only if
it begins its route from that hub (i.e., y,2 = 1). Thus, an aircraft may
use some hub node as an intermediate stop on a delivery route without
adhering to the hub's departure cutoff time. In all probability, however,
if an aircraft had to wait to depart until the sort-down time at the origin

node A of a delivery route, it could never manage to fly to another hub
B, be processed, and be ready to take off before the sort-down time at B.

This is especially true when one considers that, because as much cargo as

is possible is trucked, hubs are quite likely to be very far apart. It is thus

probable that we could write (2-7b) in exactly the same form as (1-7b)

without unduly constraining the system.
The hub cutoff time constraints (2-7c) require that an aircraft must leave

node i in time to meet the cutoff time at hub j only if it is flying the segment

i - j (i.e., Yl, = 1) and ending its pickup route at hub j (i.e., O = 1).
Constraints (2-7d) and (2-7e) behave exactly as do (1-7d) and (1-7e). We

require that all pickup and delivery cutoff times be adhered to, regardless
of node type.

Some remarks concerning hub cutoff times and hub capacities are now

in order. We once again consider the single-hub, single-turn system, with
a given, built-in, sorting capacity. In a SHP, we know a priori exactly how

much cargo has to be handled by the sorting facility. Given cutoff times
for the hub, it is easy to determine how much capacity is needed to sort
the known amount of cargo. We express capacity as pieces sorted per hour.

Fortunately, the nature of the simple single-hub system in the United States
and the business commitment itself provide us with "good" values for hl
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and h2 , as we will see.

In order to meet the morning cutoff time at some of the extreme points,
aircraft will have to leave by h2 and fly nonstop to these cities. The east-
ernmost cities are potentially the most constraining in setting h2 because
of time zone considerations - when flying east we 'lose" time, while when

flying west we gain" time. Some of the most important eastern cities,

such as New York, Miami, and Boston, are also the farthest away from a

centrally located hub. Thus, if we choose h2 such that these points can
be reached in time by a nonstop flight, many of the interior nodes in the
system can be transit nodes on multiple-stop flights.

Now we consider setting hub cutoff time h1. The westernmost cities are
critical in this regard, because the time loss effect due to flying east forces
these aircraft to leave much earlier in the day, locally, than aircraft in more
easterly time zones. However, setting hl is not quite as clear-cut as setting
h2. As we noted in the beginning of the chapter, there is a tradeoff between
leaving the farthest nodes late and straining the capacity of the hub, and
leaving early and losing business. Generally speaking, aircraft will depart
as late as possible without straining the hub too much". An implication
of this is that all flights must wait until some time at which it is deemed
permissible to leave. For distant cities, leaving any later than this puts
too great a burden on the hub's resources, and aircraft at these points will
leave at exactly the cutoff time.

As the system matures, cutoff times can become quite fixed. There are
two reasons for this. First, customers become used to a given cutoff time
and will be lost if earlier departure times are attempted. Second, because
of this, encroachment on the hub sort time is somewhat irreversible, and
when the absolute limit to constructible sorting capacity is reached, the
system can handle no more traffic through the hub. Since a very high
service level is the real product of the carrier, turning away business for
any reason is singularly injurious. The hub will therefore wish to maintain
a sort capacity at some maximum level, and force schedulers to respect
this. Once we know this level, h1 can be set. In determining h1, we must

consider the arrival rate of cargo at the sorting facility.
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Figure 1-6 shows a step function depicting a given cumulative availabil-
ity of packages to be sorted versus time. Note that this is not a cumulative
graph for arrival of cargo at the airport. The capacity planner must take
into account the different unloading times for various aircraft. For exam-
ple, a DC10-10 and a B727-100 arriving at the airport at the same time
with the same payload might appear at different points on the graph be-
cause a DC10-10 takes longer to unload, thus delaying the availability of
its cargo to be sorted. Graphs of this type are called volume availability
graphs [M10].

The line in Figure 1-6 that intersects the time axis at the point marked
sort-start determines the minimum capacity needed to finish by the time
marked sort-down. The time from sort-start to sort-down is the sort span.
The sort-down time is set by h2, since aircraft must be loaded in time for

the morning launch. However, the sort-start is actually determined by the
slanted line. Notice that the slope of this line is a measure of the change
in total packages available to the facility over the change in time, or, in

other words, a desired sort rate. The line is determined as shown in the
next figure. A vertical line is extended upward from the sort-down point.
Consider the point where this vertical line intersects the graph of the step
function, at point B. Imagine the line as hanging from this point, and
swing it toward the steps at A, as shown in Figure 1-7. The slope of the
slanted line AB thus formed is the minimum capacity needed to meet the
sorting requirements of the given volume availability pattern. To see this,
we consider the nature of the volume availability graph.

From Figure 1-7 we can see that the slope of line AB is equal to the

total volume delivered to the facility divided by the sort span. If we process
packages at this rate, we can finish the sort by the required sort-down time.
However, this is possible only because the packages are available to be sorted

at this time. Suppose we now swing our line farther into the step function
to where the dotted line is in Figure 1-7. As can be seen, we now have an
earlier sort-start time and a lower rate or needed sort capacity. However,
there are periods of time when no packages are available for sorting. If we
take the slope of this line as the sort capacity, we will not be able to finish
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the sort on time, because then our capacity will be such that we must sort
throughout the span in order to finish with the total demand on time. But
the only time we can sort is if packages are available. Thus, no matter how
the facility is constructed, we must be able to sort packages at a rate that
is, on the average, no less than the slope of AB. Because the sort capacity
calculated in this manner is the minimum required, we must consider what
happens if cargo is late. Should this happen, it is possible that the sort
facility will be idle. If we have built only the minimum required capacity
into the facility, then we will not be able to recover. We must therefore
allow for this occurrence and build extra capacity into the facility. This
extra percentage of capacity is called the peaking factor. A rule of thumb
that is used is to add 20% capacity. The same sort-start time is used, and
packages are always sorted if present. In the event of late arrivals, the
peaking factor will allow us to catch up.

It is important to note that the above discussion applies equally well
to a system that uses trucks, vans, or any mix of delivery vehicles. The
reasoning relies on the arrival times of packages at the facility and the
required departure times, not on the system fleet mix or route structure
away from the facility.

In this paper, we will assume that the sort-down time D is the same as
the hub departure cutoff time, minus some small constant tD (say, 15 min-
utes) required to finish loading at least some aircraft to begin the morning
launch. By our discussion, we cannot make such a straightforward assump-
tion for the hub arrival cutoff time relative to the sort-start time, since
aircraft can arrive at the hub significantly later than the sort-start. How-
ever, if we are attempting to relate sort span to our model, it is helpful to
establish a relationship between the sort-start and hub arrival cutoff time.
Thus, we will assume that the hub arrival cutoff time h is equal to the
sort-start time ss plus a constant tA, which could be on the order of 120
minutes. We can treat tA as a constant and solve (SDP). By varying tA
over a small range of values, and then solving (SDP), we can evaluate which
choice is the best.

The previous discussion involving volume availability shows that arrivals
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at the hub need to be spread out over some time period in order for the
sort to function properly. Also, departures from the hub must be staggered
due to airport capacity limitations. We will not address this facet of the
problem in this thesis. Instead, we will assume that these conditions are
met sufficiently well by any solution.

We have assumed a given cumulative cargo arrival pattern, but in actu-

ality any cumulative rate that produces a line AB whose slope is acceptably
less than the hub's designed sorting capacity will suffice. The important
concept is that, given h2 and the existing sort capacity, hl can be deter-
mined. Suppose now that we have some latitude in designing the sort

capacity. For a simple single-hub system, limits on the necessary sorting

capacity at the hub are easily determined with a given h2 - hl , from con-
siderations in our foregoing discussion. However, in a multiple-hub system,

we may have no a priori knowledge of how much cargo must flow through a

hub. Therefore, knowledge of h~ cannot be used to determine the necessary
sort capacity if none or very little exists, and we may wish to test this ca-
pacity as a design variable. If we do not know the minimum allowable level

for the sort spans in a multiple-hub system, we may also wish to consider

the h to be design variables. Alternatively, we might wish to set cargo

flow levels at some fixed A, and calculate a sort capacity from this value.
We may have a good idea of approximately what Xi should be based on
gross demand distribution figures.

We first discuss the topic of designing the capacity of a hub, given

values for the hr. We may broadly decompose the cost for capacity into

two components. The first of these is the startup cost associated with a
facility. This includes possibly buying or leasing land, constructing the
initial facility, constructing ramps or runways, and staffing. The second
component is that of the cost of improvements to the hub. This cost is
not a continuous function, because capacity improvements take the form of
discrete construction or machinery additions.

We divide capacity itself into two contributing components - those from
the sorting facility and those from ramps and runways. The contribution
from the sorting facility is easily translated into sorting capacity. We need
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only consider that sorting capacity is expressed in terms of pieces/hour.
Therefore, we divide the flow for each commodity at a hub by the aver-
age weight-per-piece for that commodity. Unfortunately, there is no direct

translation of ramp space into cargo-handling capability. As an extreme
example, 10 Dassault-20 Falcon Fanjets require more ramp space than a
McDonnell Douglas DC10-30, yet combined they can carry only about half
the revenue payload. (The related topic of runway capacity is potentially
much more complex, and we will not discuss this here.) We can achieve
the desired expression of ramp space, in addition to those that relate cargo
flow to sorting capacity. We give the following definitions.

Constants

Ai = present parking area at hub i

B = the sort capacity at hub i, multiplied by the sort span

NfR = total number of ramp improvements possible or under consideration

NS = total number of sorting facility improvements possible or under con-
sideration

Ai, = parking area increase from improvement a at hub i

Bip, = sort capacity increase resulting from improvement P at hub i

c? = cost of ramp improvement a at hub i

cs = cost of sorting improvement at hub i

P, = total space needed for parking aircraft m

Wp = the average weight per piece of commodity pq

Decision Variables

z=R _ 1 if ramp improvement a is made at hub i
ia= 0 if not

s 1J1 if sorting improvement 3 is made at hub i
z= 0 if not
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The decision variables z and ziS could represent improvements that
are mutually exclusive. For example, one hub improvement might be to
build an additional sort building and fill half of the space inside with sort-
ing equipment. The additional space could be filled with equipment later,
thus freeing funds for interim investments. Another improvement might
be to build the same additional building and fill it completely with sorting
equipment. Clearly, both improvements will not be made. We shall insist
that at most one ztiR and at most one z is chosen, and that these variables
represent configurations that are realizable.

We can now state the regional hub problem with improvements. We
wish to

2

minimize z = E Ciijm/, + E C ¢iZim +
k=1 ije meM idp m-M

(NR Nis

WM =1 =1

subject to (2-2) through (2-7e), and
am, xf > y,,m zz = or 1 (2-8')

meM jl a=l
IPQl NS

m < Bi + E Bipz iEIH (2-9b)
pEI gp1 mM Wq p=
NR

Z .< 1 iSI, (2-lOa)
a=l
Ns

E 4 < iEIH (2-lob)
p=l
Constraints (2-9a) are the forcing constraints for relating parking re-

quirements to available ramp space. As can be seen, as long as the total

parking requirements are less than the available space, we need not add
NR

any improvements(i.e., zR = 0). We must begin considering improve-

ments, however, as soon as A. is exceeded for any hub i. It is possible that
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A = 0 for some cases, where we are testing a node i for its potential benefit

as a hub, and have not yet begun operations there. A similar discussion
applies to constraints (2-9b), where we relate cargo flow to sorting capacity.

We note that constraints (2-9a) are an approximation to an actual sit-
uation. In order for the constraints to be physically valid, the regions of
available and potential ramp space must be reasonably" convex, so that if
the constraint is satisfied, then the aircraft selected can, in fact, be parked.
We shall assume that this is the case. Constraints (2-10a) and (2-10b)
enforce any mutual exclusiveness relationships among improvements for

parking and sorting, respectively.
The addition of these constraints to (RDP) creates a very imposing

formulation. However, there is the strong likelihood that the number of
potential improvements at any hub is small. Moreover, the number of
potential hubs itself is likely to be small. It is therefore a reasonable hope
that the problem is manageable and that a detailed analysis can be carried
out for all or nearly all possiblities.

We are now in a position to treat the hub cutoff times h as decision
variables. The capacities in constraints (2-9a) are expressed in terms of

packages. We must therefore first know the sort span s4 - before we can
determine these constants from the sort rates that are given by the various
improvements under consideration. Since we no longer have the sort span
as a given value, we must use the rates given by facility improvements

to express constraints (2-9b). Let R be the presently-existing sort rate
available at hub i, and let Rp be the rates available from improvements.
We have

- )S < s) + ERspz] (2- 9b')
peI gel RMM =1

hi = + tA (2- 9c')

= + tD (2 - 9d')
With this modification, we can both relate cargo flow to sort capacity

and express the h as decision variables. Using (2-9b') we can shrink sD -ss
for any hub i and properly assess the cost for doing so, or if the time

39



constraints permit, we can enlarge the span and possibly forstall a costly
improvement. The hub cutoff times expressions (2-9c') and (2-9d') derive
from our earlier discussion on volume availability.

We have yet to discuss the matter of airport capacity. Usually the only

nodes of concern are hubs, since other airports will have very few aircraft

flying in and out. Moreover, these flights are at off-hours so that obtaining

a slot is not too difficult. Fortunately, hubs are used in the middle of the
night, so that the carrier can essentially land and take off freely. However,
it is possible that the carrier's operations reach the airport's capacity limits
even though they are virtually the only ones. In this event, the carrier may
wish to consider runway and taxiway additions or improvements. This
technique could be used as an alternative to opening a new hub.

Reformulating (SDP) or (RDP) to include runway improvements is
much more complicated than allowing for parking or sorting facility im-
provements. In this case, we must invoke separation rules for takeoffs and

landings to relate airport capacity to the schedule. We do not include a
formulation for this problem. However, the number of possible runway ad-
ditions at a hub is quite likely to be very small, or even zero. Thus, we
may be able to enumerate the possiblities and analyze each separately.

This concludes our discussion of the Regional Multiple-Hub System De-
sign Problem. We have considered (RDP) with hub cutoff times given and
sufficient sorting capacity, parking space, and airport capacity assumed.
We then reformulated the problem using design variables for sorting ca-
pacity and ramp space. Next we recast the sorting capacity constraints
to allow hub cutoff times to be decision variables, and finally discussed

the introduction of runway design variables. We now consider a method

of dealing with dense systems that departs from the regional hub design
strategy.

1.5 The Jet Bleed and Trunk Hubs
When the entries of the business demand matrix [ii] grow large relative

to the capacities of available aircraft, it becomes attractive to consider
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the use of direct, or jet bleed, service between nodes i and j. We use

the term bleed" since a route that does not pass through a hub can be
said to bleed the cargo flow off from the main sorting facility. A hub
being pushed to its limits quite possibly could benefit from a substantial
diversion of cargo. It might also be the case that further construction at
the hub is not possible, and that another hub or some form of bypass is
required. Figure 1-8 illustrates a single-hub system overlaid with bleed
routes. For our discussion, we shall assume that direct service that can be
accomplished by truck has been determined, and that the matrix [i] has
been revised accordingly. It is possible to discern a jet bleed system using

the A - indicators, but the distinction is subtle. Suppose that the yii are
moderately-sized, but using previously discussed criteria the only property
that we can deduce about the system at hand is that it is a single-hub
system. Thus, the tests for feeder bases and regional hubs are negative.
Then the following test will determine if a jet bleed is in force. Suppose

that Al is the flow through the hub. If the hub processes all cargo we must
have

A1 = E ij.
i,jri

If the sum above is greater than A,, then a jet bleed is the only possibility
remaining for explaining the cargo diversion. So far, we have been modeling

a system that is segmented with respect to time and with respect to route
function. Thus, aircraft make deliveries only in the morning and pickups
only at night. When considering bleed flights, we no longer insist that a
route be purely delivery or purely pickup. Furthermore, we allow cyclic
routes.

We may consider the bleed system to be a limiting case of a second type

of multiple-hub system. The new design arises in a mathematical sense as
the yii grow large. We refer to it as the trunk multiple-hub system, so

named for the trunk flights between hubs. It would be easy to include this
design type with regional multiple-hubs under the one general classification
of multiple-hub systems. However, there are some marked distinguishing
characteristics between the two types, relative to the A--y indicators. First,
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the regional hub concept grows out of the feeder system design as the
Ai increase beyond some threshold value. The internodal traffic rates yij
remain low througout this evolution, though. In the trunk hub system, the
-yij become large along with the Ai.

A second distinguishing characteristic between the two system types
is the route classification scheme. With feeder and regional hub systems,
we can always classify a route as either pickup or delivery. For jet bleed
and trunk hub systems, there are routes that are in-between" pickup and
delivery. In the former operation, these are the bleed routes, and in the
latter system they are the trunk flights. This new type of route can be
thought of as corresponding directly to the significant increases in the -yi.

A third differentiating aspect of trunk hub systems is that the service
that a carrier offers can be inferred at least in part from observing the 'yij
and the relative locations of i and j. If nodes i and j are very distant from
each other, then the amount of flow -yi is not likely to be morning delivery
express cargo. This is because the time required to sort the cargo twice
(at i and j), plus the time required to fly from i to j, is likely to render
the highest delivery service prohibitive. Thus, a flow of 'yii between distant
nodes is indicative of a different product offering by the carrier, possibly a
late next-day service or a second-day service. In the next sections of this
chapter we discuss system design from the perspective of facilitating these
additional services.

Just as a large distance between i and j (for example, from New York
to Denver) implies lower priority services, short distances for -Yij (say New
York to Chicago) are more likely indicative of a system designed for express
cargo, since the time for two sorts plus transit might be small enough.

The final difference between the two hub system types is that of the
probable fleet mix employed by each. The regional hub system behaves in
a way that keeps the flow of cargo between any two points relatively small.
Thus, smaller aircraft are best suited for such an operation. On the other
hand, the trunk hub system acts to consolidate cargo and create large flows
between certain pairs of nodes. In this case, large aircraft such as A300's,
MD-11's, or even B747's are called for. Table 1-1 summarizes our discussion
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interrelating the cargo flow parameters Ai and -ij, the system type, and the
fleet mix.

With this we conclude our discussion of U.S. domestic airline systems
specialized for morning express cargo. In the interest of focusing our de-

velopment, we omit formulations for the jet bleed and trunk-hub systems.
Next, we consider how such systems can accommodate other classes of ser-

vice.

1.6 Lower Priority Products
If a carrier offers a service that guarantees delivery a day or more later

than the highest-priority service, the system must still satisfy the demand,
but some flexibility in operations is allowed. For example, Federal Express

offers a service that guarantees delivery a day after the highest priority (P1)
service. Because of this, if there is not room for priority-two (P2) cargo on

a flight, it can be left on the ground and carried on the following night.

To formulate the system with P2 cargo we introduce new variables for
P2 flow and for P2 cargo that remains on the ground overnight.
Decision Variables

f",Q = P1 flow with the usual interpretation

,eP? = P2 flow with the usual interpretation

A' = the amount of commodity pq that is P2, and that is left on the
ground at p on day t.

Constants

6' = P1 demand

62 = P2 demand

The problem as stated below will be understood for day . We have

a recursive formulation for t = 1,.. ., 7, where day 7 is Sunday. Because

there would be no pickups or very little demand in the case of Sunday
pickup operations, it is quite unlikely that any cargo would be left on the
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A - Classification Scheme for Express Systems

Table 1-1. Classification Scheme for Express Systems
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ground that day. Thus, we can set A' = 0 for initial conditions. We now
formulate the Single-Hub System Design Problem (SDP2) with P2 flow.

2minimize z = " I Cii.,m,', + Z cimZim,
k=1 il jfI mnM idr mEM

subject to

( i~- = -~ i ra i= , k= 
("k. fpk -f =- q, k=2 (3 -2a)

w jM x ji 1 0 otherwise

,6, -p + 1 i = p,k = 1
ZeE- >ek _E= 6P +At -A i = q, k = 2 (3 - 2b)

MM jeI ie )10 otherwise

II(f + 0I??k) <Km i, U {0, n}, mEM (3- 3)
pcI q
and (1 - 4a) through (1 -9)

We have formulated the problem for second day delivery, but other pos-
sibilities exist. Even lower-priority products could be offered, for example,
and the formulation of such a system would be an extension of constraints
(3-2b). A product with more complex implications is a next-day" (ND)
service that guarantees delivery by the end of the next business day (5:00
p.m.), instead of a 12:00 noon or 10:30 a.m. delivery commitment for the
highest-priority service.

There are a number of operational options for ND service. First, we
could include ND cargo along with P1 as part of the same system with
possible ND route extensions that meet later allowable cutoff times. Figure

1-9 illustrates such a possibility. If ND demand became high enough, it
might be appropriate to evaluate special ND flights. These aircraft could

both depart later from points along pickup routes and arrive later at points
along delivery routes than their counterpart aircraft with P1 cargo. How-
ever, a more attractive solution for heavy ND demand, and also for heavy
P2 demand, could be a double-turn system.
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1.7 Double-Turn Systems

The systems that we have discussed thus far all have the property that
hub-based flights come into and depart from the hub exactly once in a
twenty-four hour period. As we mentioned earlier the operation of landing
at a hub, exchanging cargo, and taking off, is referred to as a turn. Thus,
the systems we have been analyzing are single-turn systems. The discussion

of the previous section indicates that it might be economically desirable to
design a system that entails more than one turn.

The feasibility of such a system arises from the fact that many aircraft
spend at least 12 continuous hours on the ground at a field station in a

single-turn system. While aircraft utilization for a high-priority carrier

must be thought from a different perspective than for a passenger carrier
(i.e., revenues do not necessarily increase with utilization), we nonetheless

should note that this amount of time can offer the planner some extra
freedom in system design. As an example, consider the P2 service of the

last section, which guarantees the delivery of parcels one day later than P1

service. The limitations of a single-turn system under heavy P2 demand
are easily seen. If we cannot move P2 cargo even after leaving some of

it on the ground and waiting until the next day, then we must purchase
additional aircraft. However, we can use a double-turn system and avoid

this capital expenditure. The operation takes place during the idle period
of a single-turn system. We choose a set of nodes, fly the previous night's

excess P2 demand in this set to the hub, perform a sort, and fly back out
to the field. It is not necessary during this turn to exhaust all the excess
P2 on the ground at all points. It is only necessary to process enough of it

so that the following night's P1 flights can handle the remainder.

We now formulate the double-turn system for P2. As a preface, we note

that the P2 double-turn system formulation can be modified quite easily to
handle the next-day (ND) service we discussed in the previous section. We

use the same variables for P2 flow that we defined in the last section, with
one exception. We define

AP = amount of P2 destined for q that is left on the ground at p in the
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first turn.

We use k = 3 for second-turn pickup routes and k = 4 for second-turn

delivery routes. We omit the time constraints, but they are essentially the
same as for (SDP).

Although we need not insist that second-turn flights exhaust all excess
P2, we present a formulation that insists that they do, for simplicity. The
extension to a recursive formulation analogous to (SDP2) is straightforward
but cumbersome. We now state the formulation of the Single-Hub Double-

Turn System Design Problem for P2 (SDDP2).

4

minimize z = E E E iimi + E E CiZim
k=1 I jl mM ifdpr mM

(4 - 1)

subject to

fsm fim - 51
mwM j=O 00

i=q,k= 1
i=q,k=2 
otherwise

n 

- E i =
md j=O

62 - p,

6 + ,
O

i = p, k = 1
i q,k = 2
otherwise I

p, qEI, iEIp

i =p,k=3 3
i=q,k=4
otherwise

P
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49

mEM j=O

meM j=O

p, qEI, EIp (4 - 2a)

msM j=O
nW =Vijm F

IMM j=O

(4- 2b)

k= p, qEI, iEIp (4 - 2c)

(4- 2d)

(4 - 2e)

(4 - 3a)

(4- 3b)



ki7m Zjr ifIU{On},jcIp,k= 1,...,4,mEM (4-3c)

n n

EY-j m" Yyim =O icI,k=1, ... ,4,mEM (4 - 4)
j=o j=o

E ,n+- E yri = iIFp,k = 1 or 3 (4 - 5)
,nM

E Yin- EY3i, > O idIF (4 - 5b)
meM meM

E, E 5yi,, < Na V distinct types a plus time constraints (4 - 6)
m:T(m)=a irIp

a.ftN, 8., Am, > .m,Zim = O or 1 (4 - 7)
i, jI U {O, n}, p, qI, meM, k = 1,..., 4

Constraints (4-2b) determine the excess P2 cargo from the first turn
and (4-2c) require that the second turn deliver the excess. The flow in turn
1 is capacitated by (4-3a) and in turn 2 by constraints (4-3b). The only

other constraint set that differs significantly from the (SDP2) formulation
is (4-5b). They effectively force the endpoints of the second-turn routes to
be a subset of the endpoints of the first-turn routes.

By treating .~.~k as a flow variable for the ND problem, we can model

such a system with the same formulation. There will, however, be a much
more tightly constrained second turn, since arrivals on delivery segments

will have to occur in time to meet the next day" delivery commitment. It
is likely that a double-turn system for ND service would be better applied

to a multiple-hub network, due to the need for a short turn span.
We have noted that the topic of hub facility design is important for

multiple-hub systems, where some nodes have not yet been established
as hubs. The double-turn system potentially has a significant impact on
necessary hub capacity for any system, as can be seen by examining the

hub capacity constraints. The principle constraints dealing with capacity
for (MDDP2) are
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pEI qfI j=O MEwM =
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We recall that a double-turn system implies fewer aircraft and fewer
parcels per turn than for a single-turn system that gives the same service.
Thus, there is a concomitant potential for less needed ramp space and less
needed sorting capacity, respectively. This potential is illustrated by the
above constraints. However, in a double-turn system that is completely
dominated by the first turn, the savings may not be realized.

With this we conclude Chapter 1. We have identified and discussed five

elemental system types for express cargo. They are

1. Single-Hub

2. Feeder

3. Regional Multiple-Hub

4. Jet Bleed

5. Trunk Multiple-Hub

Using the indicator values Ai and 'yij we have seen that the pure form of

each of the above systems can be characterized, as well as the probable
fleet makeup deduced. We have also discussed other product offerings by

overnight carriers within the framework of the express system. In addition,
we formulated several of these systems quantitatively.

The remainder of this thesis focuses on the single-hub single-turn prob-
lem. We discuss related problems and present a literature review in Chapter
2, and we investigate additional formulations in Chapter 3, searching for
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one that seems likely to yield to efficient solution methods. Having decided

on a formulation, we develop a solution approach in Chapter 4. Chapter

5 reports on the computational results of our approach and suggests fu-

ture avenues for research in this extremely rich area of applied operations

research.
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Chapter 2

RELATED PROBLEMS AND
OPTIMIZATION-BASED
SOLUTION METHODS

2.1 Transportation

Conceptually and physically, the simple single-hub system design prob-

lem (SDP) resembles a sort of two-staged Multiple-Vehicle Routing Problem

(MVP). First, on the "delivery side", all points must be visited by at least
one aircraft from the hub, and the correct amount of cargo must be deliv-
ered to each point. Once this is accomplished, the first stage is finished.

The second stage occurs on the pickup side" when all points are visited

again by at least one hub-bound aircraft. Paralleling the delivery opera-

tions, the correct amount of cargo must be picked up at each point. The

problem is not two independent routing problems because delivery route
endpoints must match pickup route origin points. Also, we sometimes may

require more than one vehicle to visit a node, whereas the classical MVP

requires that each node be visited by exactly one vehicle. Moreover, we

are solving more than merely a capacitated vehicle routing problem with

time constraints because of the complication of locating auxiliary equip-
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ment at appropriate stops. There is thus an aspect of facility location even
in (SDP).

The literature on multiple-vehicle routing problems is immense in scope

and continues to grow. Gavish and Graves [G2] have formulated many

variants of the Traveling Salesman Problem (TSP) and relate some new
formulations to past ones. Magnanti [M1] gives a thorough overview of
vehicle routing and scheduling problems in various settings. He presents

different formulation approaches for MVP and discusses a number of solu-

tion approaches, focusing especially on Lagrangian Relaxation and Benders
Decomposition. Magnanti and Wong [M5] have shown that many classical
combinatorial problems, including TSP, the Vehicle Routing Problem, and
the Facility Location Problem, are variants of the Fixed Charge Network
Design Problem. Bodin, et. al. [B4] have an comprehensive survey of the
state of the art in vehicle routing and crew scheduling. See also Golden

and Assad [G5], for a discussion of new developments.

Fisher, et al. [F2] address a single-hub truck routing problem for a
liquefied gas company. The problem is very much like (SDP) except that the
only operations made are deliveries. All of the liquefied gas is supplied by

the hub. However, multiple deliveries are allowed at many nodes, and there
are different vehicle capacities to contend with as well as time constraints.

Yet another variant of the vehicle routing problem is one that includes
backhauling, which allows the dual functions of pickup and delivery in [G6].)

The design problem for the feeder system (SDPF) obviously contains
a facility location problem as one aspect. Tansel, Francis, and Lowe [T1]

provide an excellent survey of facility location problems on networks. Our

problem, however, is concerned more with locating facilities simultaneously

with the determination of service arcs. We may recast a facility location

problem as part of an overall network design problem by representing the
potential facility node i as a directed arc (i',i"). All arcs in the original
network of the form (a, i) become arcs of the form (a, i'), and arcs of the
form (i, b) become arcs of the form (i", b). Of course, our problem allows

multiple service arcs, so we have arcs of the form (i,j, m), where i and j

are nodes and m is an aircraft. Nonetheless, this may represent a viable
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avenue of formulation to explore, and others have done so successfully (see
Wong [Wi], for example).

O'Kelly [01] has written one of the few papers on locating interacting
hub facilities, which addresses our Trunk Hub Problem. The Trunk Hub
Problem is also similar in some respects to a problem that was studied
by Singhal [S5]. His paper deals with a truck routing and load planning
problem for a major parcel delivery company, in which parcels often pass

through more than one sort (hub) before proceeding to their final desti-
nations. Briefly, the load planning problem is to determine how much of
a given truck-load each hub must sort, and from where that load is to
come. The problem also contains elements of the alernative-priority prod-
ucts which we have discussed. There are significant differences, however.

One point of departure is the fact that a truck travels only one leg from a

field node to a hub. Our model allows an aircraft to make multiple stops
at a field node before (in the case of pickup routes) it reaches a hub. Also,
it is possible that only lower-priority products could pass through more
than one hub. The (RDP) formulation is aimed primarily at high-priority
products which might not have the time to pass through more than one
sort. A case in point is a past Federal Express study of the possiblity of
establishing multiple hubs instead on the single hub at Memphis. The plan
was to establish a system in which packages would often go through two

sorts. This plan was abandoned as being too complex and expensive at the
time [H2]. Thus, our considerations will focus on systems that have only one
sort for any parcel. Nonetheless, we wish to emphasize that the load plan-

ning problem is quite important for trucking (see Powell and Sheffi [P1])

and rail freight (see Assad [A2]).

Within the airline industry itself, it appears that very little has been
done that resembles the situation for express carriers. Simpson [S4] is
one of the earliest to exploit the mathematical concept of a network and

relate it to passenger airline system design. The problem in the case is
significantly different from ours, however. Possibly the closest situation to
the high-priority case is that of another cargo carrier, Flying Tiger. Marsten
and Muller [M7] model the network design and fleet planning problems for
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Flying Tiger in a succession from the single-hub case to the muliple-hub

case, and finally to a double-turn case. Moreover, as is stated in their

problem definition, for a single-turn system, aircraft leave outlying nodes

in the evening with cargo that is to be delivered in the morning. Their

double-turn system has a second turn during daylight hours, just as for the

express carriers. There are, however, some significant differencs.

First, the design of the network, in terms of permissible service arcs,

is determined a priori by management to the extent that any node has a

unique path to any hub (if it has a path to a hub). This simplifies the

problem to a very great degree. The second major difference is that not

all of the demand must be carried. The objective function of the problem

formulation is to maximize profit. Conceivably, this could mean not serving

a demand point at all. This demonstrates a major philosophical difference

between the two types of business that is reflected in the design problem.

As we have noted, the overnight carrier must handle all the demand because

fast, highly reliable service is its product. Customers cannot be served only

some of the time.

Interestingly, this facet of Flying Tiger's operation provides a type of

logical link between scheduled passenger airlines and express cargo carriers.

That is, scheduled passenger carriers generally allow for some business lost

due to insufficient capacity. (One rare exception to this is the Eastern

Airlines Shuttle, where every effort is made never to turn passengers away.

Here, as with the express systems, the product is reliability.)

2.2 Communications

Figure 2-1 shows a possible pickup route structure for the Single-Hub

System Design Problem with Feeders (SDPF). Alternatively, this might

be the structure of a centralized data communications network. In such a

diagram the arcs of the graph could represent data links, each with some

capacity. A computer could be at the center of the network and terminals

could be located at the nodes. Such networks are described in Schwartz [S2],

for example. The principle difference between a communications network
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Figure 2-1. Pickup Routes of a Single-Hub Feeder System
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of this type and a system design for (SDP) or (SDPF) is the travel time
between points. We elaborate on this point to illustrate the relationship
between the two problems.

A reasonable approach to attacking (SDP) is to solve the pickup and
delivery sides separately. Then, if constraints (1-5) are satisfied, we have
a feasible solution to SDP. In another vein, the method of Hinson and
Mulherkar [H3] was to reduce the whole problem to a symmetric" system
that was constrained so that any one-sided" solution automatically solved
the pickup and delivery sides simultaneously. In either case, the solution

process (i.e., a solution of either pickup side or the delivery side or a solu-

tion of the symmetric problem) would involve solving only a single-sided"

problem. Now let tij, 0 for all i,j, and m. An immediate consequence

is that time constraints are unnecessary, so (1-7a) through (1-7e) may be

discarded. Because we are now solving a single-sided system, the cost of

ground equipment for a particular aircraft at a station can be absorbed into
the cost of a service arc, and we can then discard constraints (1-3b). More-
over, if we are doing fleet planning with no limit on aircraft availability,
(1-6) may be dropped. This leaves the following system:

minimize z = C ii 4im
i,j,vm

subject to

n n

E E fm- E f m = d iEI (1-2a)
meM j=O meM j=O

fim • Kmy!l4m ijEI U {O,n},mEM (1- 3a)

j=o j=O

fim > Yi = O or 1, i,jIUO,n},mM (1 -8)

This formulation is very similar to Gavish's formulation [G1], of a special
case of the one-terminal Telpak problem (see Rothfarb and Goldstein [R3]),
where line capacities can be purchased in bauds. The major difference is
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that instead of (1-4), Gavish has

. E jm = 1 il.
j=O m"M

We will not develop this line of thought further, but we note that the
wide variety of express systems could allow for a number of similar com-

parisons. (See for example, Mirzaian [M9].)

2.3 Solution Methodologies

The design problems that we have formulated are of a very complex

nature, and to our knowledge, no formulations have been given for any of

them. However, the related classical problems in transportation that we

have noted are all NP-complete. Lenstra and Rinnooy Kan [L2] offer a con-
cise overview of NP-complete problems in vehicle routing and scheduling.

Among these are the Traveling Salesman Problem and Multiple Vehicle
Routing Problem. Many related problems in the area of network design
are also NP-complete. For example, the Budget Network Design Problem

is NP-complete. (This problem puts a limit on the total number of arcs
that can be included in any feasible solution; see Johnson, Lenstra, and

Rinnooy Kan [J1]).

The apparent intractability of most variants of TSP and network design
problems only naturally leads one to consider the use of heuristics. Indeed,

such approaches have been very popular in the past and will doubtless con-

tinue to be. However, in recent years, researchers have made much progress

in the development of optimization-based methods. Moreover, heuristics in

and of themselves have limitations. Wong [W1] has shown that the problem

of finding a heuristic for the Budget Nework Design Problem (BNDP) that

always comes within a factor of N(l - ') of the optimal solution, where N is
the number of nodes and 0 < < 1, is NP-complete. Thus, it is quite sig-
nificant that getting reasonably good" BNDP solutions is no easier than
getting optimal solutions, from the standpoint of computational complexity
theory. Extensions of this result to other network design variants should
come as no surprise. Furthermore, as Magnanti [M1] points out, heuristics
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have other disadvantages, including the difficulty of sensitivity analysis and
the possible compounding of the inaccuracies of input data and heuristic
solutions.

Another reason for investigating optimization-based procedures for our
problems is that many of these approaches, such as Lagrangian Relaxation,
generate solution bounds as part of the process. Thus, we can often stop
with an intermediate solution with a guarantee as to its closeness to opti-
mality. We therefore shall discuss some of the recently exploited algorithms

for obtaining optimal results to problems that are related to ours.

2.4 Lagrangian Relaxation
One of the most popular techniques for solving large-scale linear mixed-

integer programming problems is price-directive decomposition, or Lagrangian

relaxation. One of the earliest successful uses of the technique was on the

Traveling Salesman Problem, by Held and Karp [Hi], in 1971. Use of the

technique has since grown to include a number of applications. Cornuejols,

Fisher and Nemhauser [C3] have used the technique on an uncapacitated
facility location problem. Singhal [S5] used Lagrangian relaxation in ad-
dressing the load planning problem that we described earlier. Gavish [G1]

has used it quite successfully on a number of capacitated spanning tree
problems, and Srikanth and Gavish [G3] used the technique on the Mul-
tiple Traveling Salesman Problem. This list is far from complete, and the
number of applications can be expected to grow substantially.

Fisher [F1] has a survey article on the methodology, explaining the
theory behind it, its uses, and prospects for future development and ap-
plications. Additional treatments can be found in Shapiro [S3] and Mag-
nanti [M1]. For an illustration of the method, see Appendix A.

There is, in general, a tradeoff between competing relaxations involving
the ease of solving the relaxation and the size of the duality gap. Since we

generally use Lagrangian relaxation for a branch-and-bound routine, reduc-
ing the duality gap can lead to more efficient peformance in this stage of our
total solution technique. The result might be better overall performance.
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Also, as Fisher et al. [F2] have found, a Lagrangian solution that is close to
optimal can be modified in many instances to be a feasible solution to the
original problem with a near-optimal objective value. Thus, we can possi-

bly terminate our procedure at such a point with an acceptable solution.
It is clear from these considerations that carefti planning is appropriate in
choosing a good relaxation, although we might only be able to find the best

relaxation empirically.
There are, broadly speaking, three methods for determining an optimal

u for the Lagrangian dual. These are subgradient optimization, column
generation, and multiplier adjustment techniques. Subgradient optimiza-
tion has been used in many applications of Lagrangian relaxation to both
classical and practical problems. Among the applications mentioned ear-
lier in this section, Singhal [S5], Srikanth and Gavish [G3], and Gavish [G1]
have reported excellent results using subgradient optimization. Gavish and
Graves [G2] used the technique on the Lagrangian relaxation that produces
the 1-arborescence that we describe in Appendix A.

Convergence can be slow, however, as Fisher et al. [F2] discovered in
using the subgradient procedure on the truck routing problem for the lique-
fied gas company, which we have outlined. Their preliminary results showed
that subgradient optimization resulted in good solutions, but that too much
computer time was used. They report, however, that their efforts produced
insights into the nature of good solutions that allowed them to short-cut the
subgradient procedure through the development of a multiplier adjustment
technique.

Multiplier adjustment methods are tailored to exploit the richness of a
particular application. A sequence of multipliers is generated by the rule

Ui+l = i + tid,

where ti is a positive scalar, and d, is a direction, chosen from a small
set of directions along which the directional derivative of Z*(u) is simple
to determine (see Fisher [F1). Erlenkotter [Eli has used a multiplier ad-
justment procedure to achieve quite dramatic results in conjunction with a
dual ascent procedure on the uncapacitated facility location problem.
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Shapiro [S3] gives a treatment of a generalization of the primal-dual
simplex method called the primal-dual ascent algorithm, which is used to
solve the Lagrangian dual. This is an example of a column generation
approach to finding an optimal Lagrange multiplier. Marsten [M6] also
reports successful applications of a method called BOXSTEP.

This completes our discussion of Lagrangian relaxation. We now dis-

cuss now another method of addressing large-scale optimization, that of

resource-directive decomposition.

2.5 Benders Decomposition
Benders Decomposition is a method of dividing up a formulation by

removing variables that "complicate' the problem, instead of complicating
constraints as in Lagrangian relaxation. Developments of the principle can
be found in the texts of Lasdon [L1] and Shapiro [S3]. To date, the tech-

nique has not shown the promise of Lagrangian relaxation when applied
to vehicle routing problems (see Magnanti [M1]). However, success has
been reported in applying the method to other variants of network design
problems. Geoffrion and Graves [G4] have applied the technique success-

fully to problems of multicommodity distribution system design. In the
area of network design, Magnanti, Mireault, and Wong [M2] have used the

technique to solve some of the largest problems on record. Also, Richard-

son [R2] solved some aircraft routing problems for QANTAS Airlines with

Benders Decomposition. We must remark that the aircraft routing problem
solved by Richardson is not geometrically similar to ours. Nonetheless, the

problem is one of a vehicle routing flavor, and it makes sense to consider

the method's applicability to our problems. For an illustration of Benders
Decomposition, see Appendix B.

For Benders Decomposition to be applied effectively, a straightforward

approach may not suffice. Gavish [G1] found that such a tactic led to
relatively-poor performance. However, it appears that some problem for-
mulations do not lend themselves in any original way to solution using
Benders' method. Gavish and Graves [G2] demonstrate that Benders De-

62



composition applied to their formulation of TSP offers no theoretical com-
putational advantage over the standard formulation that Dantzig, Fulk-
erson, and Johnson [D1] produced. Gavish and Graves demonstrate that
Benders Decomposition, applied to the formulation of TSP that we gave
earlier, results in Benders cuts that are merely the subtour-breaking con-
straints given by Dantzig et al. [D1]. Magnanti [M1] shows a similar result.
However, these are also straightforward applications, and it could be that
using techniques such as the generation of pareto-optimal cuts would pro-
duce more meaningful results. One new development that brings together
Lagrangian relaxation and Benders Decomposition in a unified manner is
cross decomposition. (See Van Roy [V1] and Van Roy [V2].) In any event,
it is clear that the best approach is a synthesis of methods such as branch-
and-bound, Benders Decomposition, and pareto-optimal cut generation,
together with heuristics that take advantage of the special structure of the
problem (see Magnanti et al. [M2]). One such heuristic uses linear pro-

gramming duality theory as its basis. We discuss this technique next.

2.6 Dual Ascent
Some other recent developments in addressing problems related to ours

have produced promising results. One of the most exciting is that of dual
ascent. Methods of dual ascent are heuristics that take advantage of the
special structure of the dual formulation of the LP relaxation of a primal
problem. By designing a heuristic judiciously, very-quickly-obtained, tight
lower bounds to an integer or mixed-integer primal can be used quite effec-
tively in a branch-and-bound procedure.

The principle of dual ascent relies on the fact that for a minimization
in an integer programming problem F, the LP relaxation of F, LPF, is
such that v(F) > v(LPF), where v(*) is the optimal value of problem *.
By LP-duality theory, v(LPF) = v(DLPF), where DLPF is the LP dual
of LPF. Moreover, if WD is the value for any feasible solution to DLPF,
then WD < v(DLPF), since DLPF is a maximization problem. Thus, a
quickly-obtained value for WD could be useful as a lower bound in a branch-
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and-bound procedure for F.
From the foregoing discussion, it is evident that the ultimate purpose of

using a dual ascent heuristic is the same as for using Lagrangian relaxation,

that is, for branch-and-bound routines. In fact, it often happens that, as
with Lagrangian relaxation, a dual ascent solution is not only close to op-
timal, but also is nearly feasible (and can be made so with manipulation)
or actually feasible for the original problem. Erlenkotter [El] has achieved
excellent results on the uncapacitated plant location problem with a dual as-
cent algorithm that interacts with a dual adjustment algorithm. Wong [W2]
has achieved similar results in both speed and solution quality with a dual
ascent algorithm for the Steiner Tree Problem on directed graphs. Mag-
nanti et al. [M2] have incorporated a dual ascent algorithm in their Benders
Decomposition approach to network design. In many cases, their dual as-
cent routine was able to find an optimal solution, rendering the Benders
Decomposition unnecessary. Other successful uses of dual ascent include
database location in computer networks, by Fisher and Hochbaum [F3],
and dynamic plant location, by Van Roy and Erlenkotter [V3].

As we have noted, a dual ascent solution is often nearly feasible and can
induce a feasible primal solution of excellent quality. In fact, Wong's [W2]
approach includes the generation of a primal feasible solution. Magnanti et
al. [M2] also use such a technique. Importantly, if WF is the value of a pri-
mal feasible solution for F, then Wp > v(F) > V(LPF) = (DLPF) > WD.
Thus, both upper and lower bounds can often be generated as integral
parts of dual ascent heuristic, increasing the effectiveness of the approach
for branch-and-bound. Moreover, if W = WD, then we have proved opti-
mality of the generated solution. This was quite often the case for many
of the previously mentioned results (see, for example, Wong [W2] and Er-
lenkotter [El]). Indeed, as Fisher [F1] points out, it would be particularly
beneficial to understand which properties of combinatorial problems give
rise to good approximations in the LP relaxation.

Fisher [F1] also points out that the development of dual methods for
solving such LP's by taking advantage of their special structure would be
singularly constructive. These exact methods of solution are represented by
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such methods as those developed in Schrage [S1] and Miliotis [M8]. In con-
cluding this section, we must also mention that the recent discovery of a new
polynomial-time algorithm for solving linear programs by Karmarkar [K1]
could have a very positive influence on the dual ascent approach. This
could be especially true for those problems where a dual ascent heuristic
will not, in general, yield tight bounds.

2.7 Cutting Planes
Recent years have seen the method of cutting planes applied to TSP

and facility location problems. Cutting planes that define facets for the
polytope of the formulation have been used in conjunction with branch-
and-bound by Grotschel and Padberg [G8] and Crowder and Padberg [C3]
to solve very large symmetric TSP's. Guignard [G9] has applied a facet-
generating cutting-planes approach to a simple facility location problem,
showing how to identify some of the most important facets. Crowder and
Padberg [C3] use their technique in conjunction with a branch-and-bound
procedure, providing another example of an approach where a synthesis of
methods yields a superior overall methodology.

2.8 Summary

In this chapter we have reviewed the literature with respect to problems
that are similar to ours and with respect to optimization-based solution
approaches that have been effective in solving related problems. We have
not surveyed any of the well-known heuristic methods for obtaining good
feasible solutions to vehicle routing problems. Such techniques should not
be eliminated as viable approaches, however, and we shall consider these in
our later development where appropriate. Methods that are representative
of these heuristics are Clarke-Wright savings approaches, k-opt algorithms,
and sweep algorithms. Descriptions of these techniques can be found in
Golden and Magnanti [G7].

An important point that was mentioned in this chapter is that a syn-
thesis of methodologies is proving to be a very powerful way of attacking
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previously unassailable problems. Magnanti et al. [M2] make this point in
their report on applying Benders Decomposition to network design. In-
deed, their synthesis of approaches enabled them to solve some very large

problems. Fisher et al. [F2] have used a similar tactic in addressing their
problem in multiple vehicle routing. A central premise in this is that many
problems, especially real-life ones, simply are not amenable to solution by

generalized techniques. In order to profitably attempt a solution to these
problems, the richness of the application at hand must be properly reflected
in the design of the algorithms and overall procedures. This will be our
approach in subsequent chapters, because the problems that we have for-
mulated are are not only rich in structure, but are not, to our knowledge,
quite like any problem thus far appearing in the popular literature.
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Chapter 3

THE SINGLE-HUB,
SINGLE-TURN PROBLEM

Virtually any system for an express carrier will have one or more hubs

that provide the sorting function and act as bases for aircraft that serve
a specified region. In fact, no matter what the overall network structure
is, simple single-hub designs will comprise natural elemental subsystems.

For this reason, a proper assessment of the total system must include an
evaluation of each single-hub component.

In this chapter, we propose and analyze different formulations for the
Single-Hub System Design Problem, SHP. Although formulation (SDP) is

very finely-grained and exhibits much of the problem's structure, because
of its complexity we need another, more tractable, formulation. We inves-

tigate several models, not only as part of a search for a solution method,

but also in an effort to expose the richness of the problem.

3.1 Additional Formulations and Benders De-
composition

Our first approach to remodeling SHP entails absorbing all time con-
straints and flow conservation constraints into a route bundle decision vari-
able. A route bundle describes a route, a type of aircraft flying that route,
and the quantity of that aircraft type on the route. We also employ a flow
variable in our new formulation, thereby creating a path-flow model, which
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we designate (PF).

The variable definitions are:

m = a subscript that designates both the type and quantity of aircraft
being employed:

Tm = type, Nm = quantity

Example: Let type 1 = B727-200, and

type 2 = MD-80

Then a possible assignment of values for m is

m T Nm
1 1 1

2 1 2

3 2 1

4 2 2

If m = 3 then the aircraft type is the MD-80, and the quantity is 1.

k = a superscript that denotes the period, or function, of a route bundle,
a flow variable, etc. If k = 1, the period (i.e., function) is "pickup".

If k = 2, the period is "delivery".

R = the set of all routes in period k that include node i.

Sr = the set of stops on route r.

Fi = the set of pickup routes whose starting point is node i.

Li = the set of delivery routes whose last stop is at node i.

K,m = the total capacity of N, aircraft of type T,m.

crm,, = the cost of using route bundle 1k.I

cij, = the per-unit operating cost of ferrying aircraft type a from node i to
node j.

dik = the demand at node i during period k.

I = the set of node indices, excluding the hub.
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I° = the set of node indices including the hub.

A = the set of aircraft type indices.

Q, = the quantity of aircraft type a available.

The decision variables are:

OA: _ { 1 if route r is flown by N, aircraft of type T, during period k
trm 0 otherwise

We let grk, denote the actual route bundle for which rm is a decision
variable.

zija = an integer variable that denotes the number of placement flights of
aircraft type a from node i to node j.

/rm, = amount of cargo picked up (k = 1) or delivered (k = 2) by route
bundle Prk at node i. Node i must be a stop on route r.

Using these definitions, the new formulation, (PF), is

minimize V = k m Zr, crmrr + Ea 'i Ej CijaXija (PF-1)

subject to

E E -,ym = d iEI, k = , 2 (PF-2)
m reRi

Kmmr> >. 7, for appropriate r - m, k = 1,2 (PF-3)

Z Z Nmlm < Qa aEA, k = 1,2 (PF-4)
m:Tm=a r

E > Nmrm -E ija = 0 i , aA (PF-5a)
m:Tm=a reLi jCI °

Z Nm Orm E pqa = 0 qEl, aA (PF-5b)
m:Tm =a reF I0

'Ym > 0, -m 0 or 1, ij, > 0, integer (PF-6)
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By convention, the indices r and m appear only in combinations that
are physically allowable, that adhere to operational rules, etc. For example,
a carrier could have a restriction on wide-body aircraft making multiple-
stop flights, and such an r - m combination would not be permitted. The
technique of forming route bundles thus allows us to incorporate many
peculiarities of a system into our model that might be difficult to formulate
within the (SDP) framework. Constraints (PF-2) ensure that the cargo flow
on all routes that include node i satisfies the demand at node i. Constraints
(PF-3) are capacity constraints for each route bundle, both ensuring that
no aircraft carries more than its capacity allows, and that no flow occurs

unless the appropriate route bundle is operational (i.e., k = 1). Thus,
these are forcing" constraints. We model aircraft quantity limitations
with constraints (PF-4). The last set of constraints, (PF-5a) and (PF-5b),
model placement flights. These appear much as they do in formulation

(SDP), and we can infer the same property about them concerning their
modeling a transportation problem for each aircraft type.

This reformulation achieves a reduction in complexity over (SDP) first
because it subsumes all time constraints into the route bundle decision
variables mv' Also, these same variables satisfy the flow conservation con-
straints for aircraft and the forcing constraints for aircraft facilities, (1-4)
and (1-3b). Finally, the route bundle variables incorporate the flow conser-
vation constraints for cargo (1-2b).

Although (PF) greatly simplifies modeling the single-hub problem, we
still face an enormous mixed-integer linear programming problem, one with
a column and a row for each route bundle decision variable. Also, in choos-
ing to streamline our model in this fashion, we implicitly create a formidable
subproblem in generating route bundles. Therefore, if we do address formu-
lation (PF), we must be judicious about which route bundles we consider
directly, and we must design an efficient procedure that constructs appro-
priate variables as we need them.

Although we might, for example, successfully use a column-generation
approach tailored to (PF), we first apply Benders Decomposition. Our
motivation is twofold: first, we still seek a more tractable formulation, and
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second, the process may yield added insight into the problem's structure.

To simplify our exposition, we use matrix notation. Let b be the vector

of route bundle variables, y the vector of flow variables, F the coefficient

matrix for q, A the coefficient matrix for y, b the right-hand side vector, and

c the vector of route bundle costs. Also as a simplification for exposition,

we temporarily disregard the placement constraints, which allows us to
separate the pickup problem from the delivery problem. Therefore, suppose
that we are solving the pickup problem only. Formulation (PF) is now

minimize co

subject to
Fo + Al b

The Benders restricted master problem for this reformulation is

minimize z

subject to

z > c + (b - F)T ui , iEJi

(b- F)Tui < O, jcJ2

b a feasible route

The ui here are extreme points or extreme rays of the cone

R = {utilusA < O, ui > 0),

and the sets J1 and J2 are indices for subsets of R. The usual development
of Benders Decomposition includes a cost term for y in the objective, say

gy, and the ui in the inequalities z > co + (b- Fq)Tui are extreme points of
the polytope S = {ui uiA < g, ui > O}. Since, in our case, g = O, S = R.

The Benders subproblem for (PF) also differs from its usual structure.
The subproblem in its primal form is
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minimize g-y

subject to

Ar > b-Flo

- > 0,

where 4 is a given route bundle vector. Since g is 0 , the primal reduces to
finding a feasible solution to the constraints. If the primal is feasible, then
by linear programming duality theory the dual maximum objective value
is zero. The dual problem (D) is

maximize u(b - FO)

subject to

uA < O

u>0
If we use the dual as the subproblem for the restricted master, we either

verify optimality or generate extreme rays for the constraints, since dual
boundedness implies primal feasibility and thus optimality.

An examination of the feasible solutions for (D) reveals that we can ex-
press the restricted master problem in a simpler, more intuitively appealing
form. We illustrate our discussion with the example shown in Figure 3-1.

This figure depicts a small system consisting of a hub and two airports.
Two aircraft types are available, type 1 with a capacity of 50 units and
type 2 with a capacity of 100 units. The demands are shown next to each
node. (Recall that we are considering a pickup problem.) We will consider
four route bundle variables, shown in Figures 3-la - 3-1d. Formulation (PF)
applied to this system yields the mixed-integer linear program (E) shown
in Table 3-1, where we have simplified the subscripting. The route bundle
decision variables have only a single subscript, and the cargo flow variables
have two, one for the node and one for the route bundle.
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minimize 
i=l

rjl = 501

= 501

> 0o

> 0

> O>_o

I -- il

I

10004 1

-4 [

-'k4 > O

> -2

> -[

b

OE (o, 1}, zi > 0

Table 3-1. Example Pickup Problem (E)
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We want to examine the behavior of the function u(b - F$) for a
given , where uA < 0 . Because the term b - Fb has eight rows,
we will consider A to have eight rows also, the last two of which are zero,

in order to form the vector u with consistent dimensions. Thus, each u
has dimensions 1 x 8. We now determine the form of all solutions to the

system uA < , u > . To do this, we build a set U of u-vectors that
serves as a generator set for all solutions to this system. We begin the
vector construction with u1.

Suppose first that a 1" appears in position 1 of ul. This means that at
least a "1" must also appear in positions 3 and 5, because position 1 in the
vector ul corresponds to row 1 of (E) - there are two positive entries in this
row, 'Yl and 'Yis, and these variables also appear, with a "-1" coefficient,
in rows 3 and 5 respectively. Thus, to obtain u'A < 0, there must also be
at least a 1" in positions 3 and 5. Since u1 = [1,0,1,0,1,0,0,0] implies

ulA < 0 , we set ua to this value. By analogous reasoning, we let u2 =
[0, 1, 0,1, 1, 1, 0, 0] and us = [1,1, 1, 1, 1, 1,0, O0] . Note that for the general

pickup problem, if a "1" appears in position i of u, and row i in formulation
(PF) is a (PF-2) constraint, then at least a '1" must appear in each position
of uk that corresponds to a row of (PF) in which a variable from row i
appears. We designate any 0-1 vector uk that we form using this rule as

type (i). Thus, there are three type (i) vectors associated with the example
problem (E).

Now suppose that u has no positive terms in any position that corre-
sponds to a (PF-2) constraint. For our example problem (E) and the set
U, we construct six vectors having this property. First, for each row i in
(E) that is a (PF-3) constraint, we form a u-vector with a '1" in position i
and zeros elsewhere. There are four of these u-vectors associated with (E),

one for each of rows 3, 4, 5, and 6 (the first one being [0,0,1,0,0,0,0,0]). We

label these vectors us through U7 respectively. For the pickup problem in
general we classify such a u-vector as type (ii). Finally, we construct two

more vectors for U in exactly the same manner, one each for constraints 7

and 8 of (E), and label them u8 and u9 respectively. Because rows 7 and 8

in (E) are (PF-4) constraints from (PF), we classify these u-vectors as type
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(iii). This completes our construction of the set U.
There are nine vectors in U: three type (i) vectors, four type (ii) vectors,

and two type (iii) vectors. Any two of the type (i) vectors and all of the
type (ii) and type (iii) vectors are linearly independent, so all solutions
to the dual of the Benders subproblem for (E) can be generated from U,
since A has eight rows. We now show that we can completely determine the

behavior of the objective function u(b- F$) for any feasible u by observing

only the elements of U.

We have observed that the special character of our application dic-

tates determining the nature of extreme rays to the subproblem dual.
This amounts to determining when u(b - Fg) is positive. Our search ex-
amines three classes of feasible solutions to the dual; the first of these
classes contains all feasible solutions formed from type (i) and type (ii)
u-vectors. For our example problem, such a solution ii has the form U =
[il, 2,a 3,1, 6,e,O,O]. Since iU is feasible, uiA < 0 and Ui > 0, so the

following conditions apply:

ui > 0, 3 > i1, is > max (i, i 2)

u 2 > 0, U4 2, 6 > max (l, U2).

The validity of these inequalities is easily verified by inspection.

Let m = max (l, u2), and let satisfy all of the above constraints
with equality. Suppose that m = Ui. Then = 2 us + (21 - U2)u1 +
( 1 - ' 2)u7. Now if (b - F$) > 0 for some $, then at least one of the
terms Ul2 (b-F0), ( -u2 ) . ul(b - F), and ( 1 -U2) u7(b-F$)
must be positive. Of these terms, only the first two can ever be positive
since ax-a 2 > 0 and u?(b-F$) < 0 for any . This can be
verified by direct calculation of each of these expressions, where b - F =

[50, 50,-501, -50, -1004, -1004, -2 + I + -1 + + ]. Thus,
u(b - F) > 0 implies that either ut(b - F$) > 0 or u(b - F) > O, or
both. We note that ux and us are type (i) u-vectors and that u7 is a type
(ii) u-vector. If we assume that m = u2, we obtain a similar result, namely
that if U is a linear combination of nonnegative multiples of type (i) and
type (ii) vectors, only type (i) vectors can cause f(b - F) to be positive.
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We have restricted the terms us through ff6 of Gu, but only for illustrative

purposes. If u° is a solution in class one such that u° = l,u ° = u2, and
u° > a, it follows from the form of b - F that u°(b - Fk) < u(b - Fq).
Thus, u°(b- F) > 0 implies that u(b- F$) > 0, which in turn implies that
u'(b - F) > 0 for some type (i) vector u. It therefore suffices to require
that uk (b- Fr) < 0 for all type (i) vectors uk in order that u(b-F) < 0 for
any feasible solution u in the first class. It is straightforward (but tedious)
to show that the previous statement is true for the general problem (PF).

We now examine the nature of the constraints that are generated when-
ever uk(b - F$) > 0 for a type (i) vector in the general case. Recall that

a type (i) u-vector is a 0-1 vector with at least one 1" in a position that
represents a (PF-2), or demand, constraint. For each 1" that appears in
such a position i, a "1" also appears in every position that represents a

(PF-3) constraint that contains a variable in row i. Thus, if a 1" appears

in position i of uA, and yj appears in rows i and m of (PF), then a 1"

also appears in position m of us. Since every flow variable y, appears in

exactly two constraints, one a (PF-2) constraint and the other a (PF-3), or

capacity, constraint, construction of uk is quite straightforward. There are

as many (PF-2) constraints as there are nodes in the problem, so if there
M

are M nodes, there are () type (i) u-vectors, one for each subset S of
n=l

I.

As we have noted, we require that uk(b - F') < 0 for all type (i) u-
vectors uk. The form of these constraints results from the fact that if u is
constructed from a subset S of I, then ukb = E di, and ukF4 = E K,,,rm

US rm:rcRs
where Rs = Uis R. and R is the set of all routes that pass through node
i. The constraints themselves are

E Kmrm>Ed, forallSCI. (B-2)
rm:rcRs iS

We note that the number of (B-2) constraints is quite large for most realistic
problems.

We now consider the second class of feasible solutions u for our example

problem, those having the form u = [0,0,0,0,0,0, a7, U8], where Ui7 and 8
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are arbitrary nonnegative numbers. Obviously, u = 7 u8 + s u 9, so

for any solution 0 to the restricted master problem we have u(b - F) =

7 .u8(b-Fo')+auu 9 (b-F0'). Thus, u(b-F4) > 0 only if u8(b-F) > 0 or
u9(b - Fq) > 0, or both. The constraints that apply to the master problem
are u8(b - F$) < 0 and u9(b - Fq) < 0. These two inequalities are quite
easy to express - they are simply the last two constraints of (E).

It is straightforward to extend this discussion to the general case. We
obtain the result that any feasible solution b to the restricted master must
adhere to the fleet availability constraints. Thus, the next set of extreme
rays generates the constraints

Z : NmSbrm , acA (B-3)
m:T,,=a r

The third class of feasible solutions to the subproblem dual for our ex-
ample allows positive entries in all positions of u. However, these solutions

are always linear combinations of types (i), (ii), and (iii) u-vectors, and
we have already explored how these vectors behave in our example and in

the general case. Thus, the third class generates no new constraints for the

restricted master problem.
We are now in a position to formulate the full master problem that

results from applying Benders decomposition to formulation (PF). Since the
only extreme point in question is the zero vector, the Benders constraints

of the form z > c + u'(b - F) reduce to the single constraint z > c.
Summarizing, we have the following formulation of the Benders master
problem.

minimize z= crmkrm (B-1)
r,m

subject to

E KO,r a Ed, forall S C I (B-2)
r,m:rR,. isS

(B)

E >NmOrm < Q. for all aA (B-3)
m:Tm=a r

rm = 0 or 1 (B-4)
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It is immediate that constraints (B-2) are a logical aggregate of con-
straints (PF-2) and (PF-3) from formulation (PF). They say that the ca-
pacity offered at every subset of nodes must be at least as great as the
demand at those nodes. This property is obviously necessary for any feasi-
ble solution, and, in the absence of fleet quantity constraints, formulation
(B) implies that it is sufficient as well. We shall refer to this property as the
demand-sum property, and the constraints that express this requirement as
the demand-sum constraints.

The combinatorial nature of the demand-sum constraints is reminiscent
of Benders-derived constraints for other problem formulations in the field
of combinatorial optimization. For example, Gavish and Graves [G2] derive
the subtour-breaking constraints for the Traveling Salesman Problem for-
mulation of Dantzig, Fulkerson, and Johnson [D1] by applying Benders de-
composition to an assignment-based formulation of the problem. Magnanti
[M1] applies Benders decomposition to a commodity-flow-based formula-
tion of the capacitated multiple-vehicle routing problem and shows that
the Benders subproblem generates constraints that enforce vehicle capacity
restrictions and prohibit subtours. In fact, Magnanti's application can be
viewed as a generalization of Gavish and Graves' work.

Although formulation (B) is simple and conceptually attractive, it is
still a huge 0-1 integer programming problem. If we adopt a straightforward
approach to Benders decomposition in this setting, we would likely restrict
(B) to all of constraints (B-3) and several of constraints (B-2). The Benders
subproblem is easily solved in its dual form, given an integer solution to
the restricted master problem. We simply trace out each route bundle,
adding the demands of nodes that are visited only by that route bundle.
If the total capacity of the route bundle is greater than this sum, then we
have satisfied (implicitly or explicitly) a constraint of the Benders master
problem. If not, we can add the appropriate constraint to the restricted
master. Once we have performed this test for each route bundle in the
trial solution, we make another pass. This time we perform the test for
each pair of route bundles that intersect, adding the demands at nodes
that are visited by either or both of the route bundles in the pair. After
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all intersecting pairs of route bundles have been tested, we make another

pass, this time checking for sets of three route bundles that intersect, and
so on. While the theoretical worst-case behavior of this approach might
not be very good, the empirical performance would probably be quite nice,

since route bundle intersections are likely to be relatively infrequent or

uncomplicated.
The Benders approach nevertheless faces some significant obstacles in

the restricted master problem. First, as the problem grows, we face an
increasingly-large integer programming problem. Obviously, the number
of route bundles could be quite large, and it would be desirable to handle

implicitly as many of these as possible. Second, there is the problem of

route bundle generation - we need to know what constitutes a good route
bundle and how to construct one.

Desrosiers, et al. [D4] address a special case of these two difficulties in
a set partitioning formulation of a routing problem with time-window con-

straints. Their approach uses a Dantzig-Wolfe type of decomposition, where

the subproblem is a shortest-path problem with schedule constraints [D5].
They solve their restricted master problem as a linear program, adding cuts
to encourage integer solutions. A major factor in the effectiveness of their

approach was the high probability of obtaining an integer solution to the
LP.

Although Desrosiers, et al. enjoyed considerable success with their tech-

niques, they addressed a smaller, more-structured formulation than (B). We
could conceivably tailor their general approach to our needs, but first we
investigate our own set partitioning formulation for the single-hub problem.

The sequence (SDP) to (PF) to (B) exhibits a formulation pattern that
is progressively less granular in nature. A set partitioning formulation to
the single-hub problem could be viewed as a logical termination of this suc-

cession. As we did in applying Benders decomposition to (PF), we consider

only one side of the problem and discard the placement constraints for the
time being. Thus, suppose that we are addressing the pickup problem with
a set partitioning model.

We essentially subsume all constraints from formulation (SDP), with
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the exception of the fleet availability constraints, into the decision variable
o. Since the 6,m in formulations (PF) and (B) modeled route bundle de-
cisions, it is logical that aj should represent an even more complex entity.
Obviously, ai must denote a decision on a route or set of routes that com-
pletely serves any node that it serves, if we are to adopt a set-partition
approach. We refer to such an aircraft-route structure fl (that ai denotes
a decision about) as a route complex, and we let

1 if route complex j serves node i
ai = l0 otherwise

Also, N i is the quantity of aircraft type a that route complex j uses,
c; is the cost of route complex j, and Q is the quantity of aircraft type a
available. The formulation is

minimize E cyoi (SP-1)
$'J

subject to
aia= 1, icI (SP-2)

jfJ

jNoarj < Q., aA (SP-3)
3jJ

(SP)

ao = 0 or 1 , jJ (SP-4)

Obviously, this is not a true set-partitioning formulation because of the
side constraints (SP-3), but these constraints are few in number and will
often not be binding in many practical situations.

We now develop the concept of a route complex and present a working

definition. Obviously, multiple aircraft are required whenever the demand
at a node is greater than the capacity of the largest available aircraft.
However, such a technique is also desirable in other situations, as Figure
3-2 depicts. Consider the three nodes A, B, and C, each with a demand of

60 units, and one available aircraft type with a capacity of 90 units. Letting
H be the hub, we see that the routings B-A-H and C-A-H allow only two
aircraft to satisfy the pickup demand at the three nodes. It is impossible
to represent these routings as two separate route complexes in (SP), since
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alone neither completely serves the nodes it visits. Therefore, we use the

entire structure to form a route complex. Should this complex be chosen
for a solution, no other routes are necessary for nodes A and B.

It is interesting to note that, although the route complex in Figure 3-2

is potentially optimal, especially if the fixed costs of aircraft operation are

high, such a structure is specifically prohibited in the classical capacitated-
vehicle-routing problem. (See, for example, Magnanti, [M1].) Our models

must allow for such an option, however, since an actual system could de-

mand it.
A further desirable property of a route complex is that it be indivisible

in some sense. For example, Figure 3-3 shows a situation where node D

has been added to the previous system. We assign a demand of 90 to D
and construct the routings B-A-H, C-A-H, and D-H. We might build a
route complex from these three routes, but we could also build two route
complexes, one consisting of D-H and the other consisting of B-A-H and C-

A-H. Certainly, using two complexes for this example instead of one could

produce a lower objective value for the overall, larger, problem. However,

it is not possible to further divide these two route complexes.
The foregoing examples suggest a rule that combines with the demand-

sum property to yield a working definition of a route complex. Let nf =
{/r,,} be a set of route bundles, and let S consist of each node that at
least one member of nI visits. Also, let Sr be the set of nodes that route
bundle /,rm visits, and for any subset ik of fl, let S = U S,,. Thus,

rm,,,:O.cb
Sb consists of every node that some member of b visits. Finally, if ,,,EfiS,

then set r,,m to 1; otherwise, let ,rm = O. We define nf to be a route complex
provided:

a) If f contains more than one route bundle,

E d, > E Km.rm
ias, rm:,.c

for each nonempty proper subset *b of fn.

b) The demand-sum property holds for each subset T of S:

: Krm > E di
rm:rfeR iT
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Aircraft capacity = 90

Figure 3-2. Two Aircraft Serving Three Nodes
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We note that this includes the case T = S. RT has the same definition

here as in formulation (B).

Part (a) of this definition guarantees that a route complex has the de-
sired indivisibility property, as Figure 3-3 illustrated. Part (b) ensures that
a route complex completely satisfies the demand at each node it visits. The
two parts of the definition exhibit a complementarity that is analogous to
necessity and sufficiency with respect to satisfying demand. Part (a) says
that each subset of route bundles is necessary (in that the greater-than
relation is true for all route subsets except nf itself), and part (b) says that
the set of route bundles that visit any given subset of nodes is sufficient.

We can infer additional properties about the structure of a route com-
plex. Suppose that we view the graph formed from a route complex when

all arcs incident to the hub are deleted. Figure 3-4 depicts such a graph,
where each route bundle is represented by a uniquely-drawn line, Km rep-
resents the capacity of the route bundle, and the demand at each airport
appears next to the corresponding node. In addition, for any route bundle
that has only one stop, we delete its total capacity from the demand of
the node it serves. Figure 3-5 shows this transformation. We term the
structure that Figure 3-5b represents a modified route complez. We note
that properties (a) and (b) in the definition of a route complex apply to
a modified route complex. The following lemma demonstrates that many
route complexes need not be considered.

To obtain this result, we assume the triangle inequality holds for any
three airports with respect to the flight costs. This should be true in most
practical situations for flight costs, even though it may not be true for flight

times. For example, due to prevailing winds, it could take more time to fly
from Boston to Denver nonstop than to fly from Denver to Hartford nonstop
and then from Hartford to Boston. However, if cycle costs are sufficiently

high, the one-stop Denver-Hartford-Boston trip will cost more than the
nonstop Boston-Denver trip. We thus assume the triangle inequality and
prove the following lemma.

Lemma 3.1:

An optimal modified route complex contains no (undirected) cycles.
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Figure 3-3. A Possibility For Two Route Complexes
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Figure 3-4. The Transformed Route Complex of Figure 3-2

86



Proof:
Suppose that a modified route complex contains a cycle. Figure 3-6

shows an example of such a cycle, where route bundles, demands, and
capacities are pictured using the same convention as in Figure 3-4. Since a
route complex satisfies the demand-sum property, it is possible to make a
feasible assignment of the demands to route bundles. Figure 3-7 illustrates
such a feasible assignment.

In Figure 3-8, we perform a similar assignment of node demands, but
we do so only for nodes that are not in the cycle, and in a way such that

an overall feasible assignment exists. Once the assignment is made, we

subtract the total demand assigned to a route bundle from the capacity of
that route bundle. We then remove any arc from the graph that is not in
the cycle in question. As with a modified route complex, property (b) of

the route complex definition applies to the remnants of the route bundles
in the cycle.

Now, if any node in the cycle has only one route bundle through it, we
erase the node and collapse the arcs on either side of it so that only one

arc remains where there were two. In addition, we decrease the capacity of
the corresponding route bundle by the weight of the node. We repeat this
operation for all such nodes in the cycle. Figure 3-9 illustrates the proce-

dure. What remains is a cycle in which each arc represents a different route

bundle. Again, property (b) applies to the arcs of this cycle. Consequently,

a feasible assignment of node demands to arcs (route bundles) exists for

this cycle.

Let dl,...,d, represent the demands at nodes 1,..., n of the cycle,
respectively. Number the arcs of the cycle so that arc k is between nodes k

and k + 1, for k = 1, .. , n-1; arc n will then be incident to nodes 1 and n.
Because a feasible demand assignment exists, we can partition dk at each

node k into two nonnegative quantities dkl and dk2, where dkl + d2 = d,
dk4 is the amount assigned to arc k1 from node k (arc n if k = 1), and dk2
is the amount assigned to arc k2 from node k. The total demand assigned
to arc k, for k = 1, . .. ,n - 1, is dk2 + dk+l,l = Dk, and the total demand
assigned to arc n is dll + dn2 = Dn.
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Figure 3-6. A Cycle in a Modified Route Complex
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We now consider the set {dll, dl2, d21,..., dn2}.
Let d* = mink, d, and suppose that dk'j, = d*.
We then adjust all d,i as follows:

f dkl-d',if j'=14 i (A d *l+d*,if j'=2

dk2 +d*,if j'= 1

42 d2 2 -d-,if j'=2

After this adjustment, each dki is still nonnegative, dkl + dk2 = dk for all

k, d42 + dk+l, 1 = Dk for k = 1,..., n - 1 and d + d 2 = D. Thus, the new
values of dik, represent a feasible demand assignment. However, at least
dk',' is now zero, indicating that no demand from node k' is assigned to one
of the arcs incident to node k. But this means that it is not necessary for
the corresponding route bundle to visit node k'. There are two implications
of this - first, it is unnecessary for the cycle to exist in order to satisfy the
demand at all nodes in the route complex, and second, one route bundle
has one less node to visit, thus implying a cheaper route bundle by the
triangle inequality, and thus a cheaper route complex. We have shown that
any modified route complex that contains a cycle can be improved, and this

completes the proof.
Lemma 3.1 has implications for a route complex approach to solving

SHP. It says that many route complexes contain no cycles, and, if one
does, two arcs of the cycle must be incident to the hub node. Equivalently,
all cycles in any directed graph of a set of pickup (or demand) routes must
pass through one node, namely the one representing the hub.

3.2 Building Route Complexes - Some Ex-
amples

In this section we illustrate the construction of route complexes for one
field node and for two field nodes, respectively. We begin with an example
for one field node, and we will term each route complex that we construct
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Figure 3-7. Assigning the Node Demands of Figure 3-6 to
Route Bundles
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ASSIGNED ROUTE
NODE DEMAND DEMAND BUNDLE

A 60 60 1
10 1

B 70 60 4
20 1

C 80 60 2
30 2

D 60 30 3

E 30 30 3
30 3

F 60 30 4
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Figure 3-8. Isolating the Cycle
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Figure 3-9. Collapsing Arcs in the Cycle
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an order-one route complex, or simply a 1-plez. In general, we will call

a route complex that covers n nodes an order-n route complex, or an n-
plez. Suppose that we are constructing complexes for the delivery side of

the problem at node i. We assume that we have two aircraft types, a and
/, with capacities of 30 and 90 units, respectively. Node i has a delivery
demand of 200 units.

Constructing 1-plexes is quite simple. If we list the order-one route

complexes for node i as ordered pairs, with the first element of the pair
giving the number of a-type aircraft and the second element the number
of -type aircraft, there are four such pairs: (7,0), (4,1), (1,2), and (0,3).

Now add node j to the problem, with a delivery demand of 70 units. Con-

structing order-two route complexes is considerably more complicated that
building 1-plexes. To begin, lemma 3.1 implies that at most one two-stage

route exists in any 2-plex for i and j. This follows by considering that a
two-stage route traverses either the sequence Hub-i-j or Hub-j-i; two of
either sequence or one of each produces the undirected cycle i-j-i, which

lemma 3.1 shows can be improved. See Figure 3-10.

Since each of the above sequences is possible for each of the two aircraft

types, there are four combinations of route and aircraft that can comprise
the two-stage route of a 2-plex for this example. Because the total demand
between the two nodes is 270 units, we must allocate some of this demand

to one-stage routes at i and j. It is apparent that there are many ways of
doing this. To facilitate this effort, we construct a type of 1-plex that leaves

demand at its field node. The two-stage route will satisfy this remainder.
For example, node j has two 'natural" complexes of this type; writing these
as ordered pairs using the above convention, these are (1,0) and (2,0). The

partial 1-plez (1,0) leaves 40 units of demand unsatisfied at node j, and (2,0)
leaves 10 units. In addition to these 'natural" partial 1-plexes, we will use
the empty 1-plex (0,0). Thus there are three partial 1-plexes associated
with node j. Listing the partial 1-complexes for node i is similar, but more
work, since node i has a large demand. The list is (0,0), (1,0), (2,0), (3,0),

(4,0), (5,0), (6,0), (1,1), (2,1), (3,1), (0,1), and (0,2).
An example of a 2-plex for nodes i and j is the triple (ij, (2, 0)i, (0, 0)j),
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Sequences HUB-i-j and HUB-j-i

produce the Cycle i-j-i

Figure 3-10.
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where Plij represents an 6-type aircraft flying from the hub to i and then
to j, and (2,0)i and (0,0)j, represent the partial 1-plexes at nodes i and j
respectively. The two-stage aircraft delivers 20 units to node i and 70 units
to node j, which represent in turn the unsatisfied demands of (2,0)i and
(0,0)j. See Figure 3-11.

If we count the possibilities for ordered triples that identify distinct 2-
plexes in this example, there are four possiblities for the first element (the
number of two-stage route possibilities), twelve for the second element (par-
tial 1-plexes for node i), and three for the third (partial 1-plexes for node
j). Thus, 144 possible 2-plexes exist for this simple example. Obviously,
not every ordered triple represents a valid 2-plex. For example, (3ji could
possibly never represent a valid two-stage route due to time constraint vio-
lations in the two stage route. The empty 1-plex for node i will never be a
component of a 2-plex since it leaves 200 units of demand unsatisfied, and
the largest aircraft available for the two-stage route has a capacity of only
90 units. Also, certain elements in combination are invalid, as in replacing
Pfij with aij in the previous triple.

Although many two-stage routes and partial 1-plexes in combination
will not form valid 2-plexes, there will still be an extremely large number
of valid 2-plexes for many real-life problems. Thus, we must be judicious

about handling them. Holding a place in storage for each one could be
excessive. Conversely, constructing all 2-plexes from scratch every time we
wish to examine them could be computationally excessive. A middle ground
could be to store all combinations of city-pairs and aircraft types for which
two-stage routes are time-feasible. Then, when a solution algorithm calls
for an examination of 2-plexes, load feasibilities for combinations of the
appropriate 1-plexes can be checked. Such an aproach could be especially

important when dealing with 3-plexes, for in this case explicit storage and
explicit construction could very quickly become prohibitive.
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3.3 Route Complexes of Higher Order

Up to this point we have considered route complexes of order two or
less. In this section we discuss higher order route complexes. As we noted

earlier, we are assuming that the time constraints hold route lengths down
to three stages or less. However, a route complex can be of arbitrarily high

order, even if no route is longer than two stages.

Nonetheless, we will limit our consideration of route complexes to those
of order three or less, for two reasons. First, the cost structure could dictate

using extra aircraft on very short routes (and thus smaller route complexes).
Thus, we might expect only a small number of large route complexes in an
optimal solution, with a small attached cost savings relative to the optimal
solution without them. The second reason is operational. For example,
an order-three route complex containing only two-stage routes introduces
operational complications, since the load at one node must be split among
extra aircraft. (See Figure 3-12.) Possibly more importantly, the addi-
tional multiple-stage routes required by higher order route complexes make
recovery more difficult in the event of an aircraft failure, since the recovery

aircraft would be more likely to have to fly a multiple-stage route.

In addition, there is no uniformity of operational difficulty even among
route complexes of the same order. Thus, we may wish to exclude some

route complexes of order p while allowing others of order p. We briefly

elaborate on this aspect of route complexes.
Figure 3-12 shows the three basic forms of a 3-plex formed from two-

stage routes. We will sometimes refer to these as star 3-plexes to distinguish
them from ones formed with a 3-leg route. There are three forms since

there must be at least two two-stage routes to connect the complex and
no more than two two-stage routes or a cycle results, which lemma 3.1
shows is unnecessary; For our discussion, suppose that the route complexes

represent pickup routes.
The most preferable of the three route complexes from an operational

standpoint is 3-12a. The reason is that none of the three field nodes need
any information about the amount of cargo at any other node in order to
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load their aircraft; they each simply fill all one-stage aircraft first and load
the remainder of the cargo on their respective two-stage aircraft. Least
preferable of the three is 3-12c, since node B must have load information

from both of nodes A and C on a nightly basis to insure that it does not
overload one of its two-stage aircraft. Figure 3-10b depicts a route complex
in which node B needs the load information from node A only, unless the
two-stage route from node C leaves node B before the other two stage route
leaves node B. (In that case, node B needs no load information.) However,
in a tightly time-constrained system, two-stage routes will often have to
start soon after the pickup cutoff times, so the route through B and A will
likely depart before the flight from C arrives at B. Thus, 3-10b is a second

choice operationally behind 3-12a.

Based on the above ordering, we may wish to bar route complexes of

form 3-12c from consideration, depending on whether or not our system
has an accurate and dependable information transfer network.

This is an important factor, since a high degree of reliability is necessary
for the survival of any overnight system. One implication of our discussion is

that a planner should carefully determine what is operationally acceptable
and use this as a guide in structuring solutions to any aircraft selection and
routing problem. Another implication is that the route complex approach
represents a viable means of excluding undesirable route systems, since the
programming required to enforce the restrictions just discussed should be
relatively simple.

We now conclude Chapter 3. We have investigated several formulations
and found that a set partitioning (with complicating constraints) approach
appears attractive. In the next chapter we analyze the complicating con-
straints with respect to Lagrangian relaxation. Our focus will be on ob-
taining feasible solutions directly, without using branch-and bound.
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Chapter 4

AN ANALYSIS OF THE
COMPLICATING
CONSTRAINTS - FORMING
A SOLUTION APPROACH

In this chapter we discuss the complicating constraints for SHP when it is
formulated using a route complex approach. We first generalize our model
to discuss dualization of the placement constraints. In conjunction with this
we outline how to extract a nonbipartite perfect matching problem from the
set partitioning constraints when only 1-plexes and 2-plexes are included.
After this we examine the aircraft availability constraints in some detail,
especially for very simple cases. Finally, we briefly discuss the inclusion of

order-three route complexes.
Rather than aggregating and analyzing all of the complicating con-

straints at the outset, we will deal with each in turn. Our reasons for this
approach are fourfold. First, the problem with all three constraint types
is quite complex, and getting even a good solution with a reasonably tight
lower bound could be quite time-consuming. However, such an approach
may not always be needed. For example, in a highly symmetric system
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the placement constraints could be unnecessary - solving a symmetric"

problem could yield a solution that is excellent as it stands, or one that
can be made viable with a few adjustments. Another possibility is that a
system has no aircraft availability constraints, and system planners have
discovered that route complexes of order three or greater do not offer any

substantial improvement over solutions formed from 1-plexes and 2-plexes.

In this case, the single-hub problem becomes two matching problems, with
placement flights inducing the only complicating constraints. Each of the
above situations could arise in either an operational or long-range planning

scenario. Thus, examining the problem with each type of complicating con-
straint in isolation, and developing an efficient solution method for each,
could have important implications for the airline system planner.

The second reason for approaching SHP as we propose is that we might

expose more of the problem's special structure, leading to a better solution

technique for the overall problem. As an example, if the aircraft availability
constraints in isolation can be dualized and the problem solved relatively
quickly via subgradient optimization, we may wish to decompose the prob-
lem accordingly. That is, given a problem, we might wish to dualize all

constraints except the availability constraints, leaving behind two match-

ing problems with side constraints (the availability constraints). We would
then solve each of these two problems completely, and recalculate Lagrange

multipliers for the placement (and other) constraints. Such a decomposi-
tion strategy could be superior to one that dualizes all constraints initially,
leaving behind two pure matching problems. We shall in fact examine just

such a strategy.

A third reason for treating each constraint set separately is that we can

compare the resultant systems in this way. Planners could quite possibly
wish to compare solutions with and without the availability constraints in
force to see what the system would use if it could. Another likely occur-

rence is that one would wish to compare systems with and without higher
order route complexes. If order-3 complexes do not offer a significant im-

provement over lower order complexes, operational considerations of the
type discussed in the last chapter and high computational overhead might

102



induce the planner to restrict the system accordingly. This would simplify
the problem greatly, especially if the availability and placement constraints
yield to an efficient solution technique.

Our fourth reason for studying the constraint types separately is that
each resulting problem is interesting in its own right. Each has received
attention in the past, in some form, although the present application does
have its own uniqueness. This fact warrants a separate examination of each

type of subproblem.
We wish to establish at this point that our intention is to rely directly

on Lagrangian relaxation to produce feasible solutions, forgoing branch-
and-bound. This is a departure from the traditional basic philosophy of

Lagrangian relaxation (See Fisher [F1]), although it is often the case that
the branch-and-bound is not needed, even if provided. We shall apply an
optimization-based approach to a realistic subset of the overall problem for
which a large amount of the structure remains after constraint dualiza-
tion. We hope that this will empirically justify our Lagrangian relaxation
strategy. In addition to this hope, we will focus on theoretical justifica-
tion for attempting to obtain feasible solutions directly from the Lagrange
multipliers.

4.1 Dualizing the Placement Constraints
We can model an instance of SHP by forming the set of all feasible route

systems, S, where S contains no placement flights. For example, if Y is

a set of routes that solves a particular problem's delivery side, and if yz

solves the same problem's pickup side, then y = (yl,Y2)eS. If the vector

x represents placement flights, then we can express SHP in the form of a

mixed integer program in z and y, since we have established that we can

drop the integrality requirement for the placement constraints when SHP
is suitably formulated. Thus, by defining the vectors b, c, and d, and the
matrices A and B appropriately, SHP is expressible as

min c + dy

subject to

103



(MIP) A + By = b

> 0, S finite

Obviously, with suitable vectors and matrices, (MIP) could model many
systems. It is natural to try dualizing the placement constraints of (SDP)
using Lagrange multipliers. We adopt the convention of denoting a La-
grangian relaxation of a problem (P) by (LRPu), where u is the Lagrange
multiplier. The dualized constraints will either be stated explicitly or will
be clear from context. If we consider two or more distinct relaxations
formed by dualizing different constraints in the same problem, we will de-
velop the appropriate notation at that time. Also, v(P) will denote the
optimal value of any problem (P), and any other usage of v will be stated
or clear from context. Finally, w(LRP) denotes the optimum value of the
Lagrangian dual.

For our purposes, (MIP) is two set partitioning problems with side
constraints. The two set partitioning problems are the pickup and delivery
problems, respectively. The side constraints are the aircraft availability
constraints (if any) and the end-node or placement constraints, whichever
is used. For the present, we assume that the pickup and delivery problems
with availability constraints are easy to solve, and we discuss dualizing the
placement constraints.

We can rewrite (MIP) as

v = min min c + dy
yeS Az=b-By, >O

If S represents the convex hull of S, and v is the optimal value of (MIP),
then

v = K + min min c + dy,whereK > 0.
yeS Az=b-B,z>O

Taking the linear programming dual of the inner minimization, we ob-
tain

v= K + min max dy + u(b-By)
VeS uASc

= K+ max min dy+ u(b - By)
uA_5c yes"
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where the reversal of the max and min operators utilizes linear program-
ming duality theory. Because the inner minimization is over a polyhedron,
for any u the optimum will be at an extreme point of S', which is always

an element of S. Thus, Sc can be replaced with S to obtain

v= K + max mindy + u(b-By).
uA<c yeS

Consider now the effect of including the term (c - uA)x, where x > 0,
in the inner minimization. Since c - uA > 0, the above product will always
be zero at the optimum for any given u. Thus,

v = K+ max min dy + u(b-By) + (c-uA)x
uA<c veS,z>O

= K + max min cx + dy + u(b- By - Ax)
uA<c ycS,zO

= Ko + max v(LRMIP,)
uA<c

Since the inner minimization above is valid only for u such that uA < c,

v = K + w(LRMIP)

where Ko is the duality gap.

This development shows that

Ko + w(LRMIP) = K + min cx + dy
yeS

subject to

Az+By = b

z>O
Since S c is the convex hull of the finite set S, every yESC can be expressed

as a convex combination of the members of S. Suppose that the cardinality
of S is M, and denote the members of S by yt, where 1 < t < M.

Then we can reformulate the above problem as

M
minimize cx + d tyt

t=1
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subject to
M

Az+B tyt = b
t=l

M

it =1
t=1

z > O,At >0

Rearranging terms, this system is seen to be a linear program with m+ 1
rows (where b is m x 1) and many columns.

M
minimize c + E At (dyt)

t=1

subject to
M

Az+> Et(B) = b
t=l

(MIPC)

t=l
z > O, At > 0

We designate the above LP as (MIP ") because it represents the con-
vexification of (MIP). To see this, we note that w(LRMIP) is equal to vC,
where vC is the optimal value to (MIP)'s convexification. (See, for example,

Magnanti, Shapiro and Wagner [M3].) Since vC = w(LRMIP)= v(MIP'),
we may treat (MIP)' as the convexification of (MIP).

At this point, we wish to demonstrate that any optimal solution to
(MIP) may be considered a basic feasible solution to (MIP').
Lemma 4.1:

Let (MIP) and (MIP') be as stated, and suppose that x is n x 1, y is p x
1, b is m x 1, n > m, and all other matrices have conformable dimensions.
Also, suppose that the rows of A are linearly independent. Then if yES
and the system

Ax = b-By °

has a feasible basic solution x°, (O°, y) yields a basic feasible solution in
(MIP0 ).
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Proof:
Since A has m linearly independent rows, (MIP)C has m + 1 linearly

independent rows. Thus, a basis for (MIP)' has m + 1 columns. Let y' be
an element of S, and set X, to 1. Then, for t r, it follows that Xt = 0.
Now consider the system

(TP) A = b-By'
x >O

If (TP) has a basic feasible solution, a basis AB has m columns since A
has m linearly independent rows. Thus, the columns containing AB and the
column containing y' in (MIP') are all linearly independent and so form a

basis for (MIPS). Since y' was arbitrarily chosen, the lemma is proven.
The single-hub single-turn problem has the interesting property that a

set of placement flights exists for any feasible set of pickup routes and deliv-

ery routes. Thus, when expressed in the form of (MIP), a feasible x exists
for any yES. Moreover, the constraint matrix A, for a suitable formulation

of SHP [see Chapter 1], is nonsingular, as can be seen by inspection. Thus,
lemma 4.1 applies and any solution (to any formulation) of SHP is repre-

sented as a basic feasible solution to (MIPC). This includes any optimal
solution to (MIP), and so a zero duality gap is possible.

We could use formulation (MIPC) to solve the Lagrangian dual via col-
umn generation. First, we solve the relaxed problem

min dy - uBy
1'8

for some initial u°, where uA < c. We then solve a restricted version of
(MIPC) that contains only one column of the form By, namely the solution
to the relaxation. The dual variables from the solution to the restricted
form of (MIP)' provide a new vector u to use in solving the relaxation. We
continue iterating between the relaxation and (MIP)', using only columns
of the form Byt that can be generated from known solutions to the re-
laxation. This process is essentially Dantzig-Wolfe decomposition, which
usually converges slowly. Researchers have developed other techniques us-
ing the simplex method, including the dual simplex method (Fisher [F5])
and variants of the primal-dual simplex method (Fisher and Shapiro [F7],
Fisher, Northup, and Shapiro [F6], and Marsten [M6]).
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An attractive alternative with a number of successful applications is
to employ dual ascent heuristics. In particular, Erlenkotter [El] enjoyed
marked success using this approach for the uncapacitated facility location
problem. Fisher, et al. [F2] had excellent results with this method for real-
life capacitated multiple-vehicle routing problem. Also, Wong [W2] was
very successful with the Steiner tree problem on a graph, and many others.
(See Magnanti, Mireault, and Wong [M2].)

One of the most popular methods for solving the Lagrangian dual is
subgradient optimization. (See Shapiro [S3].) However, at each iteration
this method requires that we project the Lagrange multiplier ui onto the set
{u: uA < c} of dual feasible solutions in a nontrivial way.

Before we decide which method is appropriate for determining the La-

grange multiplier u, we first seek to ascertain how the structure of the
problem itself can guide us. We rewrite (MIP) below as the mixed integer

linear program (F).

minimize cx + dy

subject to
Bly = b

(F)
Ax + B2y = b2

> O, yY

Formulation (F) partitions all of the complicating constraints into the
set

{(XI y): A + B2 = b2, x > O, yY)

Thus, the relaxation (LRFu) below is easily solvable.

minimize cz + dy + u(b2 - A- B2 y)

subject to

Bly = bl

> O, yEY
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The associated Lagrangian dual is

max v(LRFu)
uA<c

A straightforward application to this problem of any of the methods
discussed above does not take advantage of all the problem's underlying
structure. As lemma 1.1 shows, given , formulation (F) reduces to IAI

transportation problems, one for each aircraft type a. It would be po-
tentially beneficial computationally if we could use information from the

solutions of these transportation problems to determine new Lagrange mul-

tipliers u. This makes intuitive sense also, since the dual variables of these

transportation problems represent the per-unit value of having a certain
aircraft type at a given node. Thus, we might expect good feasible solu-
tions to result. The theorem below formalizes this idea further for (MIP)
in general. We first define (SMIPQ) as

minimize cx

subject to

Ax =b-B9

x <O.

(This is the set of transportation problems given y.)
Theorem 4.2

An optimal solution (, y) for the Lagrangian relaxation relative to the
constraints Ax+By = b that is feasible (and hence optimal) in (MIP) exists

if and only if any associated optimal Lagrange multiplier u is dual optimal

in (SMIPQ).
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Proof:
Suppose that (, y) is feasible in (MIP), and let U be an associated

optimal Lagrange multiplier; that is, (, y) solves

min cx + dy + (b- By - Ax)

(LRMIPU) yes

x>O

where v(LRMIPu) = max v(LRMIPu). Rearranging the objective of (LRMIPi),
uA<e

we obtain mindy + u(b - By) + (c - A)x. Since uA < c and x >
0, (c - A)z = 0 at the optimum, so (c - A)i = 0. Because u is fea-

sible in uA < c,i is feasible in (SMIP), and (c - A)i = O, and
i satisfy the complementary slackness conditions for linear programming
optimality. Thus, u is dual optimal in (SMIPy). This proves sufficiency.

Now suppose that a is an optimal Lagrange multiplier for max v (LRMIPu),
uA<c

and that u is dual optimal in (SMIPy), where y is optimal in (LRMIPU).
Since (c - A)z = 0 for any optimal solution of (LRMIPU), it follows that
v(LRMIPU) = d + u(b - Ba). Moreover, u solves max.A< u(b - B),
since it is dual optimal for (SMIPy). Any set of optimal dual variables
for maxuA< u(b - By) is feasible and optimal in min cx, which is.4z=b-B,zO
(SMIP.). If we designate such an optimal solution , then (,9) is op-
timal for the Lagrangian dual, since (c - A)i = 0 by complementary
slackness. Moreover, (, ) is feasible in (MIP). This establishes necessity

and completes the proof.
Although it is not true that all dual optimal u for (SMIPy) are op-

timal for maxv(LRMIPu), it is true that any optimal satisfies uA < c
uAc<e

and this is dual feasible, even if Ko > 0. This fact along with Theorem
4.2 provides incentive for using dual optimal variables from (SMIPy) to
generate the next Lagrange multiplier. The recently developed technique
of cross decomposition (see Van Roy [V1] and [V2]) provides a framework

to do this. We will use cross decomposition to address the placement con-
straints, and develop the particulars of our approach later in the chapter.
For a description of cross decomposition, see Appendix C.
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As an alternative to cross decomposition, we could use subgradient op-

timization to perform the Lagrangian relaxation. We choose cross decom-
position because of the great success Van Roy had with the method and
because of the natural way in which the transportation subproblems arise in

our application. We will also test the end-node constraints as a substitute
for the placement constraints, and we will use subgradient optimization for
the relaxation. Feasible solutions arise easily in this setting as well, sim-

ply by solving the transportation subproblems implied by the pickup and

delivery solutions.

4.2 Setting Up the Matching Problem

We consider once again formulation (F), where Bly = bl are the set

partitioning constraints, Ax + B2y = b2 are all other constraints, and y is
the set of all other route complex vectors. Thus, bl is a column of l's, and
if the constraints Ax + B2y = b2 are dualized, a set partitioning problem
remains. This relaxation is a problem whose solution is in fact a pickup
solution and a delivery solution. Without the complicating constraints
there are thus two set partitioning problems, and so we can solve each
separately.

Initially, we assume that each of the set partitioning problems is poly-

nomially solvable. Thus, B1 and B1 below contain no column with more
than two 1's. We can formulate the relaxation as

min cz + dy + u(b2 - B2y- Az)

subject to

B lyl =;

(LRFu) BI2y2 = i

(Y, Y2 )EYIXY2 = Y

where B1 = ( i B ),y = (, Y),I is a 1-vector, and (LRFu) is the
Lagrangian relaxation of F relative to Ax + B2y = b2. We can transform
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(LRFu) into two distinct minimum weight nonbipartite perfect matching
problems using a technique suggested by Magnanti [M1]. For a discussion

of current matching algorithms see Ball and Derigs [B2]. For examples of

other applications of matching algorithms see Ball, et al. [B1] and Bertossi,
Carreresi, and Gallo [B3] for other applications of matchings to vehicle
routing and scheduling. We now outline the problem transformation.

Our restrictions on B' and B2 imply that any column from either ma-
trix contains either one 1 or two l's, and that the other entries are zeros.
Some of the columns will be duplicated; this occurs whenever more than

one route complex exists for the same set of cities. As an example, suppose

that one route complex serves cities i and j on the pickup side with one

DC10-10, and another route complex serves the same two cities with one

B727-200 and one B727-100. Within formulation (F), the columns repre-
senting these route complexes would be distinct, due to the aircraft avail-
ability constraints and the placement constraints. However, when these
constraints are dualized, the remainders of these two columns are identical,
with a 1 in the rows for i and j and zeros elsewhere. Because of this, only

the cheaper of the two columns need be included when solving the relaxed

problem. Thus, dualizing constraints Ax + B2y = b2 results in an imme-
diate column compression. Once we have compressed the columns of the

relaxation in the manner just described, we can transform the problem into
two matching problems. We consider the pickup side, and assume that B1

is the appropriate coefficient matrix. Thus, we wish to solve

min(d - uB2)lyl

subject to

(PM) B1l= i

where (d - uB2 )l is the part of d - uB 2 containing only coeficients of yl.
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If there are n cities in the system including the hub, then there are
n -1 rows in (PM), each row representing a field node. To set (PM) up as
a matching problem, we first create a graph G of n -1 nodes. Each column
in B1 containing two 1's corresponds to an arc in G and vice versa. Thus,
if a column has a 1 in positions kl and k2, then nodes k and k2 have an
undirected arc between them. We assign a weight to this arc equal to the
cost of the column. Next, we create a reflection graph G' that is an exact
duplicate of G. For reference, we number the nodes of G' n through 2n- 2.

The reflection of node kEG in G' is node k + n - 1. Thus, if nodes kl and
k2 in G have an arc between them, nodes kl + n - 1 and k2 + n - 1 have a
reflection arc between them in G'. All arcs in G' have zero weight.

We now link G and G' together using the columns in B1 that contain
exactly one 1. There must be n - 1 of these columns, for otherwise some

field node is not being served. Consider any one of these columns, and

suppose that it has a 1 in row k. We then construct an undirected arc
between node k in G and node k + n - 1 in G', and we assign a weight to
this arc equal to the cost of the column. Having carried out this operation
for each such column of B1, we complete our construction of the graph for

which we wish to find a minimum weight perfect matching (MWPM). We
denote this graph as H. Figure 4-2 shows the construction of H from a
given matrix Bl and the associated cost vector.

We now show that solving the matching problem for H also solves (PM).
Lemma 4.3:

Solving the MWPM problem for H produces an optimal solution for
(PM) and vice versa; the columns from B1 that are in the (PM) solution
correspond to those arcs in the MPWM solution for H that have at least
one end in G.

Proof:
Let 9i be any feasible solution to (PM). A corresponding perfect match-

ing of equal cost exists in H by the following mapping. If a column con-

taining two l's is in the solution 91, choose the corresponding arc in G and

its reflection arc in G' to be in the perfect matching. Similarly, if a column
with exactly one 1 is in the solution 9, then choose the corresponding arc
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in H. Note that every time a node in G is covered, its reflection node in G'

is covered. Since the solution l of (PM) results in exactly one 1 for each

row, each node of G covered exactly once, and thus a perfect matching of

equal cost results for H. A similar argument constructs a solution Y1 for

(PM) that has the same cost as any perfect matching for H. This completes

the proof.
The integer programming formulation that we solve for the transformed

relaxation has 2n - 2 rows and 2N - n + 1 columns, where N is the num-
ber of colunms in (PM). There are presently matching codes that run in

O(VI EI log E) and O(IV13) time, where IVI is the number of vertices and

IEI is the number of edges. For example, see Ball and Derigs [B2]. These
codes not only have excellent worst-case bounds, but empirically run very

fast. Since a large practical single-hub problem typically contains no more

than 100 nodes, the corresponding matching problem will usually contain
no more than 200 nodes, which is moderately sized. We would thus expect

run times on this phase of our decomposition procedure to be quite fast.
An alternative method for transforming (PM) is to add a single row to

B1 and B1 that contains a 1 in each column where exactly one 1 already

appears, and zeros elsewhere. The resultant coefficient matrices each have
columns all of which contain exactly two l's. The right-hand side for the

extra row is 0, and the relation is greater-than-or-equal-to. This corresponds
to a degree-constrained subgraph problem, which has been investigated by
Urquhart [U1].

We have seen that the Lagrangian subproblem, where each route com-

plex covers at most two nodes, is polynomially solvable as two nonbipartite

MWPM problems. We now examine the Benders subproblem

minimize c + d.

subject to

(TPw) Ax = b - B2 i

where is given. The constraints of (TPP) consist of the fleet availabil-
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ity constraints and the placement constraints. For now we will consider
only the placement constraints, deferring dicussion of the fleet availability

constraints until later. Therefore, we assume that we have essentially un-

limited numbers of all aircraft types under consideration. The second type
of constraint in the Benders subproblem is the placement constraint. We
take these to have the form

xZ ; = A Z Y2 -ic if °
jsJ° freL

$jlo rL

where Li is the set of delivery side route complexes that have at least one

stop at node i, 1N2 is the number of type a aircraft in delivery route com-
plex r whose last stop is at node i, and Fj and N.-, have similar definitions
for the pickup side. Lemma 1.1 applies to this formulation of the placement
constraints. Thus, the subproblem (TP.) decomposes as Al transportation
problems, efficiently solvable by a large number of methods.

The resultant matrix A in the above formulations is totally unimodular.
Thus, extreme point solutions to (TP.) are integral, and we can maintain
the model's integrality (i.e., integral numbers of aircraft and flights) and
justify using cross decomposition, by treating all z variables as linear.

Even though the transportation problem in general is easy to solve, we

can simplify the solution in our own application. It is intuitively apparent
that an aircraft should remain at an airport after finishing its delivery flight
if there is a demand for that aircraft's type on a pickup flight originating at
the same airport. The lemma below justifies this assumpion and potentially
greatly reduces the transportation problem a priori. We again assume that
the triangle inequality holds with respect to flight costs.
Lemma 4.4:

Let the pickup and delivery flights be given for some instance of SHP,

such that all demands and cutoff times are met. In the resulting placement
flight problem, suppose that aircraft type a has a supply of p at node j,
and a demand of q at node j', where j and j' represent the same airport.
Then arc j - j' has a flow of r = min(p, q) in the optimal placement flight

117



solution.
Proof:

Consider any other proposed flow assignment out of j and into j'. In
order to effect such a proposal, there must be flow on arcs of the form n1 l-j'
and j - n'. Figure 4-3 depicts this situation.

For any arc nl-nl let c(n.-n') be the cost per unit flow for that arc. By

the triangle inequality assumption, c(nl - j') + c(j- n') > c(n1- n). Since
c(j-j') = 0, it is also true that c(nl-j') + (j- n) > c(nl-n2) + c(j-j').
Let fi be the flow on nl-j', and let f2 be the flow on j-n'. Then the above
inequality shows that reassigning a flow of f = min(fi, f2) from nl -j' and
j- n to j - j' and n1 - ni improves the proposed solution. But this shows
that flow should not exist both on j - n and nl - j', implying that the
optimum flow across j- j' is r = min(p, q). This proves the lemma.

The implication of lemma 4.4 is that we can solve a (potentially sig-
nificant) portion of the placement flight problem trivially before calling

the transportation problem algorithm. Thus, the transportation algorithm
need only work on that part of the problem that actually requires flying air-

craft. If little flying is called for, we can obtain a significant computational

savings.

4.3 Constructing the Lagrangian Dual
In the cross decomposition algorithm we have the option of using an

efficient cutset of (TPQ), (see Appendix C) where I is the current solution
of (TPy). We now examine the method of Van Roy [V2] relative to our

own problem.

We reformulate the Lagrangian dual to better illustrate the logic of the
dual cut procedure. Using (F), the relaxed problem (LRFu) is

min cz + dy + u(b2- B2y- Az)
(:,1)'(XY)

subject to

Bly = b,
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where X and Y are finite sets of integer vecors. The Lagrangian dual is

then

max min (c - uA)x + (d- uB2 )y + ub2
- (,,)(X,Y)

subject to

Bly = bl

Since (X, Y) is finite, this is equivalent to

max w

subject to

(MD) w < (c - uA)st + (d - uB2 )yt + ub2 tETD,

where TD is the index set {t: (z t,y t)(X,Y),Blyt = bl}. The dual of (MD)

is

minimize At(ct + dy)
teTD

subject to

At (A t + B2yt) = 
teTD

(DMD)

E Xt =1
tcT

A > 0

From earlier we know that (MIP') (where B - B2) and (DMD) have

the same optimal value.
The dual cut generation procedure finds a basis TPO for the cuts of

TP9 by using to generate a feasible solution A to (DMD9) with the

same objective value as (TP.). We know that v(MD) < v(DMD.),

since (DMD) is the dual of (MD). Further, v(TPy) = v(MD') by cross
decomposition theory, so v(MDy) = v(TP.) = v(DMD : X = ,) >
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v(DMD-) > v(MDO). Hence is dual optimal for (MD'), and thus the
basic indices of X define an efficient custet for (TPy). That is, {(xt, y) : t
is basic in A}, where y' , generates an efficient cutset for (TPy).

Van Roy shows that his dual cut generation algorithm is quite efficient

and generates O(m) cuts, where m is the number of basic z variables.

This is done each time the Benders subproblem (TPQ) is solved, so that
the number of constraints in the restricted Lagrangian master problem (or
columns in the dual) grows as O(m).

We propose to adapt Van Roy's dual cut algorithm to our own problem,
as well as his dual improvement heuristic, which we discuss next.

4.4 Determining Lagrange Multipliers from
the Benders Subproblem

The Benders subproblem (TPy) is a set of transportation problems and
is consequently highly degenerate. Thus, multiple dual optimal solutions
are inevitable, and we must choose the best", or at least a good, Lagrange
multiplier from among these. The theory of cross decomposition provides
a guide for doing this. (See Appendix C.)

Cross decomposition theory states that the Benders restricted master
problem for (F), where the only constraints are those formed by t2, is equiv-
alent to (MD) restricted to ui. Thus, a good Lagrange multiplier would be
one that produces a "high" value of the restricted master relative to other
dual optimal solutions of (TPQ). Formalizing this idea, we say that a Ben-
ders cut utb + (d - ut)By v dominates' the cut u'b + (d - u')By v
if u'b + (d - u')By < u'b + (d - ut ')By for all y with at least one strict
inequality for some P. A cut is said to be strong' or pareto-optimal if no

other cut dominates it. Thus, a strong cut corresponds to a good Lagrange
multiplier.

Magnanti and Wong [M4] show how to obtain a pareto-optimal cut for
any mixed integer LP, and present an efficient algorithm for finding such a

cut for the uncapacitated facility location problem. Van Roy [V2] exhibits
a procedure for strengthening a cut for the capacitated facility location
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problem. Each uses essentially the same dual ascent method to optimize
their respective objective functions. We will devise a cut-strengthening
algorithm based on the same dual ascent principle. In addition, we will
rely on the fact that (TPP) is block-diagonal to decompose the problem and
combine the individual dual solutions to create a single Lagrange multiplier
vector. Magnanti and Wong [M4] justify this technique in constructing
pareto-optimal cuts for Benders decomposition.

Our algorithm first decomposes (TPP) by aircraft type and repeats the
procedure for each type in the fleet. We consider (TPya), the restriction
of (TPP) to aircraft type' a.

minimize E cij ija
i¢I0 jEJ °

subject to

(Tija = P j

(TPya)

ija c,= Si I
joJo

It is well established that the above formulation is "weak", in that
the number of required Benders cuts using this formulation strategy is, in
general, greater than many other less compact formulations. (See Magnanti
and Wong [M4].) By recasting (TPpa) as a "stronger" formulation, we
decrease the number of Benders cuts needed for convergence. Not only
should such a reformulation provide us with a means for finding a strong
cut, but we also improve the tightness of the Lagrangian relaxation. (See
Appendix C, Theorem C.)

The Benders subproblem of the capacitated facility location problem is a
transportation problem, as is (TPya) without the two fleet availability con-
straints. We will concentrate on strengthening the transportation problem
formulation, so for the moment we will ignore the availability constraints.
The principle difference between the facility location transportation sub-
problem and our transportation subproblem is that the set of customers
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in the former is fixed, which translates into the demand side of the trans-
portation subproblem being fixed. In our problem both the source and the
demand sides of the subproblem may vary from iteration to iteration. We
will address this peculiarity by using a highly redundant primal formulation
that allows us to treat the dual ascent in two parts, first with the demand
side assumed fixed and then with the source side assumed fixed.

We introduce the new transportation problem formulation with some
notation. We let Lim represent the set of indices of route complexes that

have m aircraft of type a ending their delivery routes at node i. The
constant M/ will denote the set of all such m for each iI. Thus fr aircraft
type alpha in the example of 1-plex construction at the end of chapter 3,
M2 = {7, 4, 1, O}. We define F,m and define M! similarly for pickup routes.
Finally, we let

z, = E i for each jJ and

z2 = E yg for each iIl.
pcLi

Note that since E yj < 1, m is a 0-1 variable for every j-m combi-

nation. The same applies to the z,m variables. We now state a stronger for-
mulation for the transportation subproblem for aircraft a, (STPa), where
each z-variable is given by summing the proper components of .

minimize 1 E ( j + Zmx)
ij m,k

subject to

: Cti:mL = Z~ i iI, meMi2
jcJO ,,nMH

Zmijk - ik i ,meM i
jeJ ° , keM
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(II)

xi, ,j = k jeJ, kEMj
icl ° mmM?2

E Z kxi,.jk = m2 iJI mcMi

jeo, kMl

ximi k > 0 for all i,j,k,m

The decision variable limjk denotes the portion of m aircraft of type a
that ferry from node i to node j, for I = 1 or 2. As we have noted, the z

Mi
variables are either 0 or 1. Moreover, for I = 1 or 2, we have E m < 1 for

m=l
every node i due to the way in which Zm is defined. From this it follows that

m = sia if and only if m2m = si., and m = rja if and only if ml = r. .

Otherwise, mnt, = 0 for k = 1 or 2 and any node i. From this we can
conclude that constraint set (I), given z, is equivalent to

E :Xij = rja jJ
iclo

E ijat = sia iEI
jsJo

XijZ, < r. jJ, iEI

An analogous property holds for constraint set (II). It is evident from

this reasoning that each of the constraint sets (I) and (II) define the same
set of transportation problem solutions as (TP^a). We thus halve the
objective function value to obtain the true cost.

The dual of (STPa) is

maximize E V+E; (m+(m) Um -E Z Wimjk
j,k i,m i,m,j,k
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+ 2E i2m"m
i,m

+ , (lk j) A -
j,k imik

V1

3k

+kuLm -Wlmjt < kcjj i,m,j,k

k% j,k

k,m l -Wmk < k co i,m, k

Vi2 +MU -j < rmcI i,m,j,k

2Vim

M2C -W2 < mcmusk Womk 2 mCo

wm1 2,wiij > 0 for all i,m,j,
Ws-M,mkWimpt 

We can easily obtain an initial feasible solution for (DSTPa) by solving

(TPga) and making an assignment of the resultant dual variables. The
dual of (TP.a) is

maximize E ivi + E rJO
iCIO jeJo

subject to

vi +tUj S ci i,jcJ

vi < cio iI

•j Co jJ

An assignment of any optimal solution (u*, v*)

that optimizes its objective is
to the variables of (DSTPa)

125

subject to

<1 mc2 mc i, m

and k.



vI 4- k u

1 1 *

2 in

Uim 2 

m 2 - 0WMlmi W;,ni O

To strengthen the Benders cuts associated with (DSTPa) and thereby im-
prove the current Lagrange multipliers we will attempt to increase the
coefficients of all 2'k and zm that are currently zero. Thus, if ,2m = O, we

have formulation (SC) below, in which we

maximize mu/m - E
k

subject to
vl + klm - w,j k < kci j,k

kULm Wimjk < kcro

where we hold vil constant. We will adapt Van Roy's algorithm for strength-
ening Benders cuts to our problem. We omit the details for this and the
generation of efficient cuts, but the adaptations are straightforward. The
only significant difference is that for Van Roy's application the demand

nodes are given at the beginning of the problem. For our problem both
source and demand for the transportation subproblems can change from
iteration to iteration. Thus, when creating the efficient set of cuts, we first
treat the source nodes as given and create the cuts, then treat the demand
nodes as given and create another set of cuts. Both sets together comprise
an efficient cutset. When strengthening the Benders cuts to improve the
Lagrange multipliers, we increase coefficients for both zjt and i,2m that are

zero. For further details, see Van Roy [V2].
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4.5 The Aircraft Availability Constraints and
the Symmetric Problem

In this section we focus on obtaining feasible solutions to the single hub
problem relative to the aircraft availability constraints. To this end we can
implicitly guarantee a solution to the placement constraints by creating
a symmetric problem. That is, we solve a single problem that solves the
delivery problem by flying the indicated routes outward from the hub and
solves the pickup problem by flying the indicated routes into the hub. Al-
ternatively, we could ignore the placement constraints and solve the pickup
and delivery sides separately, to assess our handling of the availability con-
straints. Eventually we must solve each side separately relative to the avail-
ability constraints in order to address the overall problem, but we introduce
the symmetric solution strategy at this point because it is computationally
useful. Our technique for satisfying the availability constraints will apply in

either case. As in previous sections, we limit the candidate route complexes

to those that cover at most two cities.

To create a symmetric solution, we first adjust the demands at each
field node i. We define new demands di and d! for every i, where di = =

max {dl, d}. Second, we require that any route adhere to all cutoff times
both outbound from the hub and inbound to the hub. Thus, all solutions
will be symmetric. There are two potential drawbacks to this technique
as a practical method of obtaining solutions. First, we may induce a sig-

nificant degree of suboptimality in any solution obtained, especially if the

actual demands and time constraints skew the true problem. Second, and
potentially more serious, we may induce infeasibility in the problem if the

availability constraints are tight. However, availability constraints are often
loose enough to permit feasibility, and thus a symmetric solution potentially
represents a first cut at a good or even optimal solution.

Regardless of whether we solve the symmetric problem or the pickup
and delivery sides separately, let y' represent the mth route complex, and
let N,' be the number of type a aircraft that route complex m uses. Also,
let q, be the available number of type a aircraft. We can then write the
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aircraft availability constraints as

E Ny m < qa aEA
m

We begin our analysis of dualizing these constraints by considering the

simplest case, where IAI = 1. We could create a greater degree of freedom

in multiplier adjustment by adopting a finer-grained formulation strategy,
as we did in adding the extra constraints to the placement flight problem.
However, in this instance such an approach may not be necessary. Lemma

3.1 provides a means of studying the structure of route complexes that will

aid us in our determination. The following lemma applies the principle of
acyclic modified route complexes to our current problem.
Lemma 4.5:

Suppose that the single-leg (order-one) route complexes for nodes i and

j that use only aircraft type a require m1 and m2 aircraft, respectively.
Then any order-two route complex containing i and j (using only type a
aircraft) requires ml +m2 - 1 aircraft, provided such a route complex exists.
Proof:

We first suppose that an order-two route complex for i and j exists
(e.g. time constraints allow it). Then by lemma 3.1 we may assume that

the 2-plex has exactly one two-stage route, flown by a single aircraft that

visits i and j, in the route complex. If there is more than one aircraft on
a two-stage route, we obtain a cycle and can improve the route complex

using the same number of aircraft. Figure 4-4 illustrates this. (There must
be at least one aircraft on a two stage route in order to "hold" i and j
together.) We now ascertain how many aircraft are on single-stage routes

in the route complex.
Let il and 2 be the number of single-stage routes to i and j, re-

spectively, in the 2-plex Clearly, m > ml and m2 > 2, for otherwise the
two-stage route would be unnecessary and the 2-plex would violate part (a)
of the route complex definition. However, because only one aircraft flies a

two-stage route, there must be less than an aircraft load for it to carry at
both i and j. Thus, rml > ml - 1 and m'n2 > m2 - 1. These two inequalities
combined with the previous two show that ml = m _ 1 and m2 _ 1.
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Therefore, the total number of aircraft in the order-two route complex con-
taining i and j is l + 2 + 1 = m - 1 +m2 - 1 + 1 m + m2 - 1, and
the proof is complete.

Applying lemma 4.5 to a special case, we can guarantee a zero duality

gap when the single aircraft availability constraint is dualized. Let (RC2)

denote either a symmetric or one-sided (pickup or delivery) single-aircraft-

type route complex formulation of the single-hub problem in which all route
complexes are order-two or less. We then have the following result .

Proposition 4.6:
Suppose that an instance of (RC2) is a pure set partitioning problem

when the aircraft availability constraint is dualized. Then the Lagrangian
relaxation (LRRC2u) with respect to this constraint has a zero duality gap,
with an associated optimal aircraft availability-feasible solution, provided
a feasible solution exists for (RC2).

Proof:
The proof is trivial if removing the constraint produces a feasible so-

lution. Suppose then that an infeasible solution results when the avail-
ability constraint is ignored. The penalty term in the objective function

of (LRRC2u) is u (-Ny -), where u > 0. We consider how the

solution of (LRRC2u) changes as u increases linearly.

A count of the aircraft in any solution is expressible as the sum of
aircraft in order-one route complexes plus the sum of aircraft in order-two
route complexes. To this end let Mi be the number of aircraft in the 1-plex
that covers node i, and let Mjk be the number of aircraft in the 2-plex that
covers nodes j and k. Let O be the set of nodes covered by 1-plexes in some

solution y, and let T be the set of node pairs covered by 2-plexes in the same

solution. The total number of aircraft in y is m = E M + E Mj,. By
icO (jk,)T

lemma4.5, E Mi, = Z (Mi +M- 1),som=Mi- IT, where I is
(j,l)cT (j,k)cT t,

the index set of all field nodes. Thus, the number of aircraft in any solution
is dependent only on the number of 2-plexes as opposed to which 2-plexes.

We now claim that for u large enough, we maximize the possible number of

2-plexes in any solution to (RC2). Let ci and c i be the costs of the 1-plex
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For the two aircraft to be able to pick up the loads WI and WJ at
I and J respectively, it must be the case that WI + WJ < 2 * C, where
C is the capacity of each aircraft. But then either WI < C or WJ C;
in the first case, figure b) is an alternate, cheaper solution than a),
and in the second case figure c) is a cheaper solution. The total load
on each aircraft after the pickup at the node at the head of each arc
is shown next to the arc.

Figure 4-4. Improving a Route Complex With a Cycle
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covering node i and the 2-plex covering nodes j and k, respectively. We

can then express the cost of any solution as

v= ec,+Miu + E cj +Mjku -qu
ifO (j,k)cT

= ei ,+Mu + , cj, + (Mi + Mk - l)u - qu by lemma 4.5
iO (ij,k)T

= Ic,+ Z, cik +uM-ITlu-qu.
i,O (j,k),T sd

Since u E M and -qu are part of the cost for any solution, it follows
tel

that the optimal solution minimizes

'= c + Z Cj -ITI
ito - (,k)cT

Thus, for u large enough, we maximize the size of T in an optimal

solution to a relaxed problem. Since the number of aircraft in any solution
is Mi - ITI, choosing u this large minimizes the number of aircraft in

any possible solution to (RC2). Such a solution must be therefore feasible

relative to the availability constraint, since we have assumed that a feasible
solution to (RC2) exists.

We have shown that increasing u from zero in a continuous fashion

results in optimal solutions to the relaxation that use decreasing num-
bers of aircraft, and that a feasible solution eventually results. To com-
plete the proof, we need only show that there exists > 0 such that

u ( NY - q)= 0, where y* is the set of route complexes in the

optimal solution to (LRRC2u). To do this, we show that we can increase

ITI in increments of 1 as u increases from zero.
If, at every solution change in performing the algorithm, the number of

2-plexes increases by one, there is nothing to prove. For, at some point,

the Lagrangian penalty term in the objective function will then equal zero,
since we have shown that we eventually arrive at a feasible solution. Thus,

suppose that the number of 2-plexes increases by more than one at some
change in the solution. Let 2 be the largest u that does not actually force

this change, and let T' be the set of 2-plexes in the new solution as u

increases from i.
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We consider a matching problem to demonstrate our result. The graph
that we will use is the symmetry graph that we constructed at the beginning
of this chapter. Since the MWPM solution for this graph represents an
optimal solution to (LRRC2u), we will observe what happens to the solution
when u becomes larger than U. Figure 4-8 shows a graph of this type where

the bold edges are in the old optimal matching, and the jagged edges are
in the new optimal matching.

We have seen that, in the new solution, the number of edges representing

order-two complexes (we call these edges 2-edges or 2-arcs) increases. Thus,

the number of order-one complexes (represented respectively by -arcs)

must decrease. The implication for node 1 in Figure 4-5 is that some

jagged 2-arc must be incident to another node that is already covered by
a bold 2-arc (node 2 in the example). If we traverse this arc to its other
incident node (node 3), we see that a jagged 2-arc must cover it in the new

matching. Continuing in this way, we can trace a path of 2-arcs that is
alternating in bold and jagged edges. The path begins with node 1' (node
l's reflection node), goes to node 1, then to node 2, etc. in Figure 4-5.

Because our constructed alternating path begins at a reflection node,
it must end at this same node. This must occur, since otherwise the path
would turn back in on itself at some intermediate node. However, this
would imply that two edges from the same matching are incident to each
other, which cannot occur. Therefore, the path must at some point turn
back to node 1'. The only way for this to happen is that the path must
traverse another 1-arc at some node (node 6 in Figure 4-5). As we have

seen previously, in the graph that we have constructed it is always possible

to consider any matching to be symmetric in 2-arcs; that is, reflection arcs

have zero cost. Consequently, when our alternating path next traverses

a 1-arc, we may duplicate the preceeding path of 2-arcs with a path of

reflection 2-arcs. This creates an alternating cycle, as Figure 4-8 shows.

Thus, every solution change as u increases involves alternating cycles of the

type just described, each one traversing exactly two 1-arcs, and containing
two distinct paths of 2-arcs.

Consideration of the paths of 2-arcs shows that each one contains exactly
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Original graph

Reflection graph

Figure 4-5. Finding Alternating Cycles in the Symmetry
Graph
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one more edge from the new matching than from the old matching. This
corresponds to one more order-two route complex in the new solution that
in the old solution for each alternating cycle of this kind. For u = tu, the
new and old matchings have equal value, so for any of these alternating
cycles the sum of the bold edge costs equals the sum of the jagged edge
costs. Thus, we can create a sequence of optimal solutions for (LRRC2u)
in which the number of order-two route complexes in the solution increases
by one each time, until an optimal solution is reached that is also optimal
for u slightly greater than ui. This shows that we can create the desired
sequence of solutions and completes the proof of Theorem 4.4.

Derigs [D3] refers to the alternating cycle that we constructed in the
proof above as a negative alternating cycle. It is so named because of the
relative costs of the edges in the cycle. Let ro and r be the edges of
alternating cycle r; let ro be those that are in the incumbent matching
and r those that are not in the matching. Also, let c(ro) and c(r) be
the sums of the edge costs in ro and r.. We define the cost of the cycle
to be c(r) = c(r.) - c(r). An alternating cycle r is negative if c(r) < o.
The following result applies to any perfect matching.

Theorem 4.7 (Derigs)
A perfect matching is minimal if and only if it admits no negative al-

ternating cycle.

Using Theorem 4.7, we can narrow the search for alternating cycles as
u increases from its value at a solution change. Consider any alternating
cycle consisting only of 2-arcs (with nonzero costs cii). In calculating the
cost of such a cycle, each term Miu appears once with a positive sign
and once with a negative sign. Also, u itself appears equally often with
positive and negative signs. We see this in the cost of an edge, which is
ci + Miju = ci, + (Mi + M - 1)u. Thus, the cost of any cycle of this
kind depends on the original costs cii and not on the value of u. It follows
that no alternating cycle of 2-arcs ever becomes negative as u increases.
We express the important implication of this for our problem in the lemma
below.

134



Lemma 4.8
As u increases from zero in (LRRC2u), the only alternating cycles rela-

tive to the incumbent optimal solution that become negative contain 1-arcs.
Derigs [D3] uses the negative alternating cycle concept as a foundation

to devise a shortest augmenting path algorithm for MWPM problems. (An
augmenting path for a matching is an alternating path that begins and
ends with arcs that are not in the matching.) We calculate the cost of an
augmenting path exactly as we do the cost of an alternating cycle. We

will adapt the notion of a shortest augmenting path to (RC2) to determine
exactly when an alternating cycle becomes negative and which arcs in the

incumbent optimal solution of (LRRC2u) change. Consider an optimal
solution to (LRRC2u) when u = 0 and the corresponding optimal matching
in the appropriate symmetry graph. We now remove all reflection nodes

from the graph, leaving only original nodes and 2-arcs between original

nodes. Any original node that was covered by a 1-arc is now left exposed.

Our aim is to find the shortest alternating (i.e., augmenting) path between
every pair of exposed nodes.

Consider any alternating path p between two arbitrary exposed nodes

1 and A + 1 and let c be the cost of any 2-arc between nodes k and 1.

Let Mki be the number of aircraft in the corresponding route complex. As
before, let M, be the number of aircraft in the order-one route complex
that covers node i; also, let ci be the cost of that route complex and the

corresponding 1-arc. Finally, let ) be the number of arcs in an augmenting
path p between nodes 1 and A + 1. Then with Lagrange multiplier u, the

cost of p is
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C(P) = E (C,2j,, 2 + M2 ;_l,,2 u)
i=l

_ E (C2*,21; + M2i,2 + u)
i=l

2(x+1)

= E 2;2;- Z C2;,2;+. +(M1 + MA+ 1-)
s=l i=1

c' + (M + MA+ - )u.

The term (M1 +Mx+1- 1)u results from applying lemma 4.5 and noting
that the Mi telescope". Thus the coefficient of u in c(p) is independent of
the actual path and depends only on the first and last nodes.

The path p is part of an alternating cycle r in the symmetry graph that
consists of the reflection arcs of p and 1-arcs between the ends of the two

paths. Since the arcs of the reflection path have zero cost, the cost of the

cycle r is given by

c(r) = c(p) - (c1 + Mu + CA+ + MA+lu)

=C -Cp 1 - C+I- U

We note that the coefficient of u is entirely independent of the number
of aircraft involved, and that the costs of any two alternating cycles of this

type differ only by the arc costs of the respective paths. Therefore, among

all alternating cycles r that contain an augmenting path p between nodes

1 and A + 1, the one whose cost becomes negative first is the one with the

smallest c. It follows that finding the appropriate path for each exposed
node pair (when all 1-arcs are removed from the symmetry graph) will
allow us to determine exactly how and when to alter the initial optimal
matching as u increases from zero. The steps below outline a suitable
overall algorithm for (RC2).
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(RC2) Solution Procedure

1. Obtain an optimal matching for (LRRC2u) when u = 0. If the avail-

ability constraint is satisfied, stop; this solution is optimal and feasi-
ble. Otherwise, do step 2.

2. Remove all reflection nodes (if any remain) from the symmetry graph,

and find the shortest augmenting path between all pairs of exposed
original nodes. Do step 3.

3. Calculate c(r) for each path, and find the smallest of these. Do step 4.

4. Augment the matching for the reduced symmetry graph using the
shortest augmenting path chosen in step 3. Do step 5.

5. If the availability constraint is satisfied with equality, stop. The
present matching and 1-arcs that cover the still-exposed nodes com-
prise the optimal solution. If the availability constraint is not satisfied
and more than one exposed node exists, repeat step 2. Otherwise,
stop; no feasible solution exists.

It is clear that the above procedure is quite efficient, with the possible
exception of finding the shortest paths. First, constructing the route com-
plexes is O(n2 ), and solving (LRRC2=o) is O(nS). Finding the smallest of

all shortest paths (once all c(r) have been found) is O(n2 ) , and augmenting

the matching each time is 0(n). Steps 2 through 5 are repeated at most 
times. It only remains to show that we can find the shortest alternating
paths efficiently to conclude that the entire procedure is polynomially solv-
able. In fact, a modification to the Floyd-Warshall all-pairs shortest path
algorithm accomplishes this.

Briefly recalling the algorithm, it proceeds at the kth step by finding the
shortest path between nodes i $ k and j $ k using only nodes 1 through
k. To do this it uses the formula

d = min {d1, d1 + d1},
where d is the length of arc i- j if it exists and oo otherwise. The

algorithm maintains a path matrix [rj.] that is updated by the formula
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k if d i > dim + di

rt. -l otherwise

For a graph with n nodes, the final shortest path from i to j is given
by the sequence (ri,, r, . ..rcj).

Our proposed modification is as follows. Since we wish to have an

alternating path, we will allow an intermediate node k to be considered

in the path between i and j only if the arcs of the path incident to k are
alternately in and out of the current matching. More formally, let g = r -

and h = r 1. Then if exactly one of the arcs k-g and k-h is in the current
matching, we allow node k to be considered as a possible intermediate node

in the shortest alternating path between i and j. Otherwise we skip over k
as a possibility.

The modification guarantees that any path constructed will be alternat-

ing, and it does not prevent any alternating path from being constructed.
Thus, the modified Floyd-Warshall algorithm will accomplish the desired
task, in O(ns ) time, provided all shortest alternating paths are well-defined.
Lemma 4.8 guarantees that this is the the case, by showing that succes-
sive optimal solutions of (LRRC2u) involve no negative alternating cycles

consisting only of 2-arcs. Since a shortest alternating path between two

nodes in the reduced symmetry graph is well-defined provided no negative

alternating cycles exist, we conclude that the modified Floyd-Warshall algo-

rithm will work properly. We can now state the computational complexity

result.
Theorem 4.9:

Problem (RC2) is polynomially solvable, in O(n') time, where n is the

number of field nodes.

Proof:
The most time-consuming steps of the (RC2) solution algorithm are 1

and 2, and these are O(n3 ) each. Since step 2 is repeated at most times,
the entire process is O(n), and this completes the proof.

It is of interest to note that any method used for obtaining an optimal
Lagrange multiplier will result in an optimal feasible solution to (RC2). We
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assume for the purpose of discussion that ITI as defined earlier increases

in increments of 1 as u increases continuously and that the availability

constraint cannot simply be ignored, but that a feasible solution to (RC2)
does exist. Let u* be the smallest optimal value for u. We have already

seen that us produces a feasible solution to (RC2). By lemma 4.6, as

u increases from us the next forced change in solution occurs when an

alternating cycle with a 1-arc in it goes negative, if any change occurs at

all. If such a change does occur, say at u = u, the term u ( Nm -q)

becomes negative, and continues to decrease until another solution change
occurs as u increases. Since the Lagrangian dual is concave, we can infer

that v(LRRC2u) < v(LRRC2u) for all u > u. A similar argument shows
that v(LRRC2u) < v(LRRC2u) for all u < u*. Thus, the optimal set of

Lagrange multipliers is {u: u* < u < u}. Moreover, any u in this set will

produce a feasible solution to (RC2).
The implication of the above discussion is that we could use a method

as simple to program as subgradient optimization or an ascent algorithm
with a binary search on u to solve the Lagrangian dual and obtain a feasible

solution to (RC2) at optimality. This makes subgradient optimization an
attractive method to try for a problem with more than one aircraft type.

We cannot directly extend our development for a single aircraft type to

the same problem with multiple aircraft types, since we are then dealing

with a symmetry graph that has multiple edges. Although we only choose
the cheapest edge out of all edges between two nodes i and j as part of the

matching problem, varying the Lagrange multipliers could cause a solution
change other than by rotating all the edges of a negative alternating cycle.

The solution could change from a simple switching of two of the multiple

edges between a single pair of nodes. This switch could involve a 1-arc

or a 2-arc. Consequently, a straightforward application of the concepts of

negative alternating cycles and shortest augmenting paths will not address
the problem adequately.

Because the subgradient optimization method is attractive for (RC2),
we will use it for problems involving multiple aircraft types. We will use a

single availability constraint for each aircraft type, since this technique is
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quite sufficient for solving (RC2) optimally and efficiently. Moreover, the

subgradient optimization method is easily extendable to problems involving
route complexes of order greater than two. Obviously, dualizing only the
availability constraints for a problem of this complexity leaves behind a
relaxation that is itself Np-complete. Thus, we must devise a strategy for
dealing with set partitioning problems in which a column can have more
than two l's. This is the topic of the next section.

4.6 The Column-Joining Constraints

In adding 3-plexes to SHP we destroy the special matching structure
that we have been able to address. We propose to remedy this by introduc-

ing a new set of constraints to the problem, first researched by Nemhauser

and Weber IN1]. Any column of B1 containing three l's will now appear as

two nonzero columns, the sum of which equals the original column. In ad-

dition, a new constraint will "join" the two columns together. For example,

if ym' represents a 3-plex, we replace it in the set partitioning constraints
with y"l and yI2; that is, if b is the column coefficient of ym in B 1, we

split b into columns bm' and b2, where b = bl + m2 bl and b 2 are
both nonzero columns of O's and l's, and bmlyml + bm2ym2 substitutes for

bmym in the set partitioning constraints. Furthermore, we add the column-
joining constraint y1ml = yn2 to the problem. Finally, we replace ym in all
other problem constraints with (yl + yi 2). If we dualize all constraints

of the form yml = y2, we can retain the underlying matching structure.
We will investigate the effect of adding 3-plexes to the problem by solv-

ing a number of symmetric problems with and without 3-plexes and with
no availability constraints. We will use subgradient optimization for mul-

tiplier determination. Hopefully, we will obtain feasible solutions directly,

with convergence of the Lagrangian dual. In the absence of convergence

after a reasonable number of iterations, we will retain all 3-plexes for which

the column-joining constraint is satisfied, and solve the remaining problem
using only orders one and two route complexes. It is our hope that the
incremental improvement afforded by 3-plexes will be small. This will give
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us the opportunity to much more easily create good solutions, since we
may then include only the two lowest order types of route complexes in our

formulation. In such an event, only the placement (or end-node) and the
aircraft availability constraints would remain. Moreover, we could save a

significant amount of computer workspace by not having to store 3-plexes.
Although we have discussed dualizing complicating constraints only by

individual type, any real problem is likely to contain more than one (or all)
of the three types of constraints just discussed. Thus, we must be prepared
to devise a strategy that can transcend these type boundaries. In the next
chapter, we design a solution approach for combining the aircraft availabil-
ity and placement/end-node constraints. While subgradient optimization is
naturally suited to addressing all complicating constraints simultaneously,
such is not the case with cross decomposition, which is tailored for mixed

integer constraints. We will investigate and compare strategies based on

these two techniques.
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Chapter 5

COMPUTATIONAL
RESULTS, CONCLUSIONS,
AND SUGGESTIONS FOR
FUTURE RESEARCH

In this chapter we detail our computational tests and report on the results.
In our development to this point, the minimum weight nonbipartite perfect
matching algorithm has evolved as the principal system design tool, appli-
cable to every facet of the single-hub, single-turn problem that we discussed

in the last chapter. We will organize our test design around this fact, at
each step treating SHP as a matching problem with side constraints. We
have identified three distinct types of complicating constraints. They are

a. Aircraft availability

b. Column-joining

c. Placement and end-node

We performed our computational tests using a PL/1 program on an
IBM 3090R processor under CMS at Federal Express Corporation. For the
matching subproblems we used a FORTRAN 77 routine written by Profes-
sor Ulrich Derigs of the University of Bayreuth, Bayreuth, West Germany.

His code runs in O(IVI3 ) time, where IVI is the number of vertices in the
graph. (See Ball and Derigs, [B2].) When using cross decomposition we
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solved the restricted Lagrangian dual using a revised simplex code writ-
ten by Professor James Ho of the University of Tennessee, Knoxville. All

data was obtained from the Federal Express Corporation. For many of

the larger test problems, run times were slow due to multiple calls to an
inefficient transportation algorithm, which we coded in PL/1. An efficient

transportation algorithm should produce much shorter run times for these
problems.

We now review our computational results, drawing conclusions based

on the empirical evidence and suggesting avenues for further research. We

first discuss the dualization of the aircraft availability constraints using
subgradient optimization.

Tables 5-1 through 5-4 contain our results for varying degrees of con-

straining aircraft numbers for each of four systems. The systems con-
tain 14, 27, 41, and 81 nodes, respectively. Each system is symmet-

ric and is allowed four aircraft types. We used the subgradient formula

u = max (u + t N/ y' k - , where uk is the ath compo-

nent for the kth subgradient, N.' is the number (quantity) of aircraft type
a used by route complex m, yj' is the kth 0-1 decision variable for route
complex m, and q is the number of aircraft type a available.

The scalar tk is calculated from the formula

k (\ - (k))t: =m

where z' is an estimate of the optimal value, and z (uk) is the optimal value
of the relaxed problem using the subgradient uk. The scalar )k is reduced
by a factor r if the value of z (wk) has not improved after a set number of
iterations. (See Fisher, [F1].) Through experimentation we found that the
algorithm seemed to perform best when r was in the range 0.65 to 0.78,
multiplying AX by r after three iterations without an improvement of at
least 0.2 percent. We set A0 to 2.

In each of these four tables, the column marked '1ST" contains the
optimal fleet numbers for unconstrained availabilities. The other columns
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14

AVAIL FINAL AVAIL FINAL

14

AVAIL FINAL

14

AVAIL FINAL

B727-100
B727-200
DC10-10
DC10-30

4

1 3

8 3

2 3

UNCONST.:

BEST BD.:

FINAL FEAS.:

LAMBDA DEC.:

% OF OPT.

ITER.:

TIME:

10
3
3
3

3

4

3

340,468

352,936

352,936

.65

100

51

:04

7

3
4
3

340,468

345,746

345,746

.72

100

23

:03

7 -- 10 10
3 --

4 --
3 --

340,468

345,090

none

.72

0

100

:07

OSCILLATION

Table 5-1. Constrained Fleet Case A
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# NODES:

AIRCRAFT: 1st

3

3
3

3

3
3

340,468

352,926

352,926

.72

100

126

:10

14



record the availabilities and the best solution obtained for different con-

strained systems. Throughout this chapter, if no specific limit appears for
an aircraft type when running aircraft-constrained cases, then that aircraft
type is unconstrained in availability. We recorded the costs for the uncon-

strained run and, for each constrained system, the best lower bound ob-
tained and the best feasible solution obtained. The row labled LAMBDA

DEC" records the r value for that system, and % of OPT" contains the
value (BEST BD./FINAL FEAS.) * 100.

Our general methodology for constraining the fleet was to first allow the
system to have as many aircraft of each type as the algorithm wished to give
it. Based on the resultant quantities of aircraft used, we then constrained
the fleet to force different quantities to be used. For example, in the 14-
node system shown in Table 5-1, the unconstrained fleet contains 4,1,8 and

2 units of aircraft types 1 through 4 respectively. In the next two runs,

we constrained types 2 through 4 to be 3, 3, and 3 respectively, and 3, 4,

and 3 respectively. In each case, not only was the duality gap zero, but the

optimal Lagrange multipliers also produced an optimal feasible solution.
We then constrained the following two runs to be exactly the optimal

fleet numbers of the previous two runs. In one case we achieved convergence,

although 2- times the number of runs was required to obtain the same fleet
numbers. The other run oscillated wildly with respect to the aircraft used in
successive iterations, and no feasible solution resulted after 100 iterations.
We discontinued the run because of the oscillation present, even though we
allowed the previous, completely constrained, run to go further. Also, we
tried only one initial value of A.

The runs for the other three systems, shown in Tables 5-2 through
5-4, proceeded in much the same manner, with similar results. In gen-
eral, we can draw the following conclusions. The Lagrangian relaxation for

the single-hub single-turn problem with respect to the aircraft availability
constraints is very tight, almost always having a duality gap of zero and
producing optimal feasible solutions directly from the optimal Lagrange
multipliers. Subgradient optimization proved to be quite adequate for most
of the problems tested, but showed some instability with respect to r-values

145



# NODES:

AVAIL FINAL AVAIL FINAL

B727-100
B727-200
DC10-10
DC10-30

12

2

11 4

3 3

UNCONST.: 635,255

BEST BD.:

FINAL FEAS.:

LAMBDA DEC.:

% OF OPT.:

ITER.:

TIME:

685,906

685,906

.65

100

44

:09

25 25

6

25

6

4

3

4
3

4
3

635,255

685,906

685,906

.72

25 25

6
4
3

6

4
3

635,255

685,906

685,906

.72

100

42

:07

100

44

:08

NOTE: FOR LAST CASE, NOT A SINGLE FEASIBLE SOLUTION WAS
100 ITERATIONS FOR LAMBDA DEC = .65 OR .78.

Table 5-2.

OBTAINED AFTER

Constrained Fleet Case B
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41

1st AVAIL FINAL

41

AVAIL FINAL

41

AVAIL FINAL

41

AVAIL FINAL

41

AVAIL FINAL

B727-100
B727-200
DC10-10
DC10-30

UNCONST.:

BEST BD.:

FINAL FEAS.:

LAMBDA DEC:

% OF OPT.:

ITER.:

TIME:

16 20 25 25 25 25 25
5 6 11 11 -- 11 11 11

10 4 4 4 3 4 -- 3 3 3 3

2 5 3 2 3

621,613

630,167

630,167

.72

100

7

:05

621,613

644,460

662,972

.65

97.2

100

:39

-- 2 2 2 2

621,613

644,463

none

.65

100

:39

621,613

662,972

662,972

.72

100

621,613

662,972

662,972

.72

100

31 8

:14 :06

Table 5-3. Constrained Fleet Case C
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81

1st AVAIL FINAL

81

AVAIL FINAL

81

AVAIL FINAL

81

AVAIL FINAL

81

AVAIL FINAL

B727-100
B727-200
DC10-10
DC10-30

UNCONST.:

BEST BD.:

FINAL FEAS.:

33
8

36 36 33 31 33 33 31

15 15 12 15 15 15 14 15 --

11 6 6 6 6 6 6 6 6

4 5 5 5 5 5 5 5 5

1,164,772

1,173,250

1,173,250

1,164,772.

1,173,250

1,173,250

1,164,772

1,173,053

1,176,797

1,164,772

1,174,353

1,174,353

6

5

1,164,772

1,175,167

none

LAMBDA DEC:

% OF OPT.:

ITER.:

TIME:

.72

100

27

:33

Table 5-4.

.72

100

20

:26

.72

99.7

100

1:36

.65 .65, .72, .78

100

79

1:24

100

MUCH OSCILLATION
RELATIVE TO OTHER

CASES.

Constrained Fleet Case D
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for certain problems. In a practical setting, one might have to adjust these
values as well as the fleet constraint numbers to achieve optimal solutions.

A possible difficulty is that some desired fleet constraints could induce too

much instability to obtain a good feasible solution. However, our results
do indicate that judiciously setting the critical parameters will circumvent
this snag.

We now turn to a discussion of the results of dualizing the column-

joining constraints for 3-plexes. All problems studied were symmetric with
no availability constraints. We used subgradient optimization just as before.
Route complexes of orders one, two, and three formed the columns. Thus,
the problems were essentially set partitioning problems that we transformed
into matching problems with side constraints. Tables 5-5 and 5-6 display
the results.

The fleet compositions for an initial feasible solution and the final so-
lution appear for each case, along with the initial feasible bound, the un-
constrained solution, the best lower bound obtained, and the cost of the
best solution. The number and type of 3-plexes in the best solution are
recorded in the row marked 3-PLEXES". Also, the number of candidate
3-plexes, the number of initial column-joining infeasibilities, and the final
number of column-joining infeasibilities appear in the following three rows,

respectively.

In the first table we show the results for four different two-aircraft sys-

tems. In each case we obtained feasible solutions that were extremely close

to optimal, thus showing empirically that the duality gap relative to these
constraints is quite small. When optimality was achieved, a feasible solu-
tion resulted, as happened with the aircraft availability constraints. When
we stopped a run short of optimality, we kept all 3-plexes whose column-

joining constraints had both been chosen and resolved the remainder of the
system using only 1-plexes and 2-plexes. As can be seen, this produced
excellent feasible solutions, the largest duality gap being no more than 0.5
percent.

It is of special interest to note that our initial feasible bound, which
we obtained by solving the system with no 3-plexes, was always reasonably
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14

1st FINAL

27

1st FINAL

41

1st FINAL

81

1st FINAL

B727-100
DC10-10

ITER.:

FEAS. BD.:

UNCONST.:

BEST BD.:

FINAL FEAS.:

5 4 14 12

11 11 16 16

100

341,115

308,111

332,984

333,288

73

658,723

609,150

643,977

643,977

3-PLEXES:

MATCHING COLS.:

INITIAL INFEAS.:

FINAL INFEAS.:

FINAL % OPT.:

IMPROVEMENT
OVER 1st FEAS.:

TIME:

1 STAR

40

6

1

99.9

2.3

:04

2 STARS 1 3-LEG, 3 STARS

30592

9

0

100.0

2.2

:07

20

3

3 3-LEGS, 6 STARS

761

38

4

99.599.7

1.5

:30

2.4

1:29

Table 5-5. Inclusion of 3-Plexes, Two Aircraft Types
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# NODES:

AIRCRAFT

26 24

13 13

150

655,309

556,059

643,234

645,188

50 45
16 17

100

1,221,254

1,066,243

1,185,456

1,191,763



14

1st FINAL

27

1st FINAL

41

1st FINAL

81

1st FINAL

B727-100
B727-200
DC10-10
DC10-30

4 3 12 12

1 0 2 2

8 10 11 8

2 1 3 5

43

FEAS. BD.:

UNCONST.:

BEST BD.:

FINAL FEAS.:

340,468

297,365

332,655

332,655

3-PLEXES:

MATCHING COLS.:

INITIAL INFEAS..

INFAL INFEAS.:

FINAL % OPT.:

IMPROVEMENT
OVER 1st FEAS.:

TIME:

2 STARS

49

9

0

100

2.3

:08

3 STARS

119

14

0

100

1 3-LEG, 1 STAR

338

40

0

100

0.4 ·0.9

:12

2 3-LEGS, 2 STARS

761

74

6

99.5

0.3

1:20 6:51

Table 5-6 Inclusion of 3-Plexes, Four Aircraft Types
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# NODES:

AIRCRAFT:

ITER.:

16 14

5 6

10 10

2 2
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621,613

512,079

615,822

619,054

25

635,255

567,152

629,168

629,168

33 33

8 9

11 10
4 4

285

1,164,763

986,399

1,155,177

1,160,854



close to the best possible 3-plex solution. The best improvement was in
the 81-node case, where the maximum possible improvement was only 2.9

percent. Nonetheless, as Table 5-5 shows, a reduction in the total number

of aircraft accompanied the inclusion of 3-plexes in the final solution, for

each case. In the 81 node system, a total of nine 3-plexes were present

in the final feasible solution, saving four aircraft. Thus, even though the
improvement over the initial feasible solution was only 2.4 percent, this
represents a daily savings of almost $30,000.

Table 5-6 shows the results for the same four systems with four available

aircraft types. As with the previous cases, we observed excellent best feasi-

ble solutions. However, the cases for 41 nodes and 81 nodes show very little

improvement from 3-plexes in the solution. This small change is accompa-

nied by almost no decrease in the total number of aircraft used. It thus
appears that the larger fleet mix has some implied advantages. Because it
Ufits' a given system better than a smaller fleet mix, it allows a very good

solution to result from a relatively simple route network. Not only is this
computationally attractive, since we can potentially eliminate the burden

of including 3-plexes among the candidate columns, it is also operationally

attractive for the reasons that we discussed at the end of chapter 3.
To further test the validity of our results for the 81-node system, we

extended our series of runs to include ten more symmetric problems, five
pickup side problems, and five delivery side problems. All data for these

runs was identical to the data for the original 81-node system, except that
we used different cargo demands for each run. We ran each problem for

400 iterations. For the symmetric problems, the average 2-plex system was
within 0.8% of the best possible 3-plex system, and the average best feasible
3-plex system obtained was 0.5% better than the 2-plex system. For the
pickup and demand problems, the averages were 3.7% and 1.3%, and 1.6%
and 1.1% respectively.

We can argue, then, that leaving 3-plexes out of the problem formula-
tion is not only computationally beneficial, but can often result in excellent

feasible solutions, although the quality of the solutions is largely data de-
pendent. One might contend that 1.3% of a million dollars (approximately)
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daily expenditure is certainly worth saving. However, these solutions were

obtained only after 400 iterations at significant computational cost. As

we have discussed, we can obtain very good solutions without including

3-plexes. An alternative to applying an optimization-based approach for
including 3-plexes might be to optimize over all lower-order route complexes

and then heuristically swap in any 3-plexes that improve the solution. We

might in this way capture some of the possible incremental improvement
at a low computational cost.

It is intuitive that an increasingly varied fleet mix results in an in-

creasingly simple optimal system. In the extreme case we have an aircraft

tailored to each node, with only single-aircraft 1-plexes in the optimal route
network. However, this notion is essentially counterintuitive to the expecta-
tion that increasing the number of aircraft types increases the combinatorial
difficulty of obtaining an excellent feasible solution.

For the remainder of this chapter we discuss the results for asymmetric
solutions. As we have indicated, we tested two methods for tying the deliv-

ery and pickup sides of a system together. We first discuss the placement
constraints. In Table 5-7 we show the results for runs on four different

systems for one, two, and four aircraft types in the fleet. Each aircraft type
is unconstrained in availability in all cases.

In the two "FIRST' columns we recorded the costs of the first feasible

solution and the first relaxation, which is just the cost of the first feasi-
ble solution minus the placement flight costs. The first %" column is a
measure of how close these two numbers are. For the largest system of 81

nodes this percentage grows larger as the number of aircraft types grows
smaller. This would be expected for any large system, principally for the

same reason that 3-plexes offer a minimal improvement in the presence of

many aircraft types. That is, with more aircraft types, a better "fit" is pos-
sible for each node; thus, a load imbalance, consisting of a large difference

between the supply and the demand at a node, will often result in different
aircraft types being assigned to the supply and demand sides for the same
node, forcing placement flights in the network.
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# NODES/
# AC TYPES

14 ,1

27,1

41,1

81,1

14,2

27,2

41,2

81,2

14,4

27,4

41,4

81,4

ITER. TIME

50 :25

30 :45

75 4:25

25 8:15

75

75

150

75

100

75

135

45

:37

1:34

6:44

14:30

1:10

1:50

8:34

11:13

FIRST FEAS.

434,967

840,404

744,446

1,346,136

427,844

714,308

730,615

1,276,495

398,179

733,842

673,742

1,285,086

FIRST BD. %

404,655 93.0

776,597 92.4

699,062 93.9

1,272,018 93.2

315,946

614,850

582,325

1,096,247

305,497

587,035

563,961

1,060,722

73.8

86.1

79.7

85.9

76.7

80.0

83.7

82.5

BEST FEAS.

432,830

833,216

725,401

1,336,518

356,928

648,004

609,927*

1,170,653*

350,598

661,824

609,675*

1,165,498

BEST BD. % TRANS$

419,090 96.8 22702

805,041 96.6 45876

711,209 98.0 20515

1,301,325 97.4 49485

326,580 91.5 32148

626,819 96.7 22215

595,768 97.7 12785

1,115,859 95.3 61288

313,700 89.5 22384

598,750 90.5 58034

575,903 94.5 13053

1,071,243 91.9 78788

Table 5-7 Asymmetric Solutions, Unconstrained Fleets
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The two BEST" columns contain the costs of the best feasible solu-
tion and the best Lagrangian lower bound obtained during the run. The

second "%" column measures the closeness of these two numbers, and the
'TRAN$" column is the placement flight costs for the best feasible solution.

The dual improvement heuristic did very little to improve the optimal
transportation subproblem dual solutions, and the full values of the dual
variables caused very large fluctuations in the aircraft numbers for resultant

successive feasible solutions. We can see how this happens by considering

formulation (SC) in chapter 4. Solving for Wimjk in this formulation, we

obtain an objective function that is piecewise linear in the only decision

variable, u. That is, we wish to maximize maximize - max[, +
jk

ku,_m -kaci], where Ofk is fixed. The slope of this function for any segment
is A = m- E k, where (JxK)+ ={ (j,k): V + kul - tcii > O} 

(jk)(J,K)+
Thus, if A > 0 we increase ut1 until A becomes nonpositive, and if A < 0

we decrease um until A becomes nonnegative.

Because of our initial assignment of values for vil and u2m, we start

with (JxK)+ = {}. Thus, we increase um until A becomes nonpositive.

For any aircraft type, cii = 0, since this is the cost of simply remaining on
the ground. Our transportation algorithm, which solved (TP~ca), always
returned optimal values for vi and ui such that the constraint vs + ui ci
was tight for all i, and such that both vi and ui were fairly large in absolute
value (several hundred up to several thousand).

The effect of constraint tightness for all cii is that whenever Oly + ku,n -

kcii becomes positive for one kEM! as u, increases, it becomes positive for

all kEMl. Thus, A becomes negative as soon as tlm undergoes any increase

whatsoever, in most cases. This prevents any meaningful improvement of
the initial optimal dual soluion. The effect of the large absolute values of vi
and ul is that, usually one side of (i.e., delivery or pickup) of a solution has

very positive optimal dual variables, and the other side has very negative
optimal dual variables. Therefore, the succeeding run with these (mostly
unimproved) dual values as Lagrange multipliers results in very different

fleets for the pickup and delivery sides of the problem, when multiple air-
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craft types are used, and different end-nodes for the pickup and delivery

sides of the problem. These solutions have very large placement flight costs

and are expensive overall. The next solution using these dual variables
will then tend to oscillate back in the other direction with respect to fleet

composition and route end-nodes.
Experimenting with scaling the dual variables down, we found that using

the following formula for generating the k + l' t Lagrange multipliers seemed
to work well. We set

v"+t = (1-8) v + ads

where vol is the k + li Lagrange multiplier for node i, aircraft type a, and
side p (i.e.. pickup (demand) or delivery (supply)), d pi is the appropriate

dual variable in the corresponding transportation problem, and s is the
scaling vector. We initialized with vp = 0.

For one aircraft type we found s = .5 to be a good scaling factor, and
for the other fleet mixes we found s = 0.015 to work well. There was still

a certain amount of fluctuation, but we were able to take advantage of
this by observing that the pickup side of a given solution would cause the
generated Lagrange multipliers to adjust the following solution's delivery
side accordingly. Thus, combining the pickup side of solution k with the

delivery side of solution k + 1 would often result in superior solutions. The

same held true for the delivery side of solution k and the pickup side of

solution k + 1. Therefore, we checked these pairings at every iteration. An

asterisk appears by the cost of any best feasible solution that was produced
in this way. The same convention is used in the remainder of the tables for

this chapter.

In solving the restricted Lagrangian master problem after cycling oc-
curred, infeasible Lagrangian multipliers often resulted. That is, we ob-

tained values of u for which uA < c was not true. We corrected this

situation by adding the appropriate constraints to the restricted master
problem. Thus, if fi and i, were such that ui + vj > cii, we added the
constraint ui + vi < cij to the master problem and then resolved it.

Table 5-7 shows that, although the proven bounds are all (with one ex-

ception) within 10% of optimum, our results for dualizing these constraints
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using cross decomposition are not as tight as for the other two constraint

types. Moreover, the placement flight costs are high in many cases. For
example, the cost of $78,788 for the four-aircraft-type, 81-node system is a
substantial daily expenditure for a company. This amount could represent
about 10 to 15 placement flights, and this number of zero-cargo flights could

be quite difficult to sell to management or operations personnel such as pi-
lots. Nonetheless, if the numbers represent good solutions, management
should be aware of this fact.

Table 5-8 displays the results for some asymmetric systems with con-

strained fleets. The best fleet composition for each case is shown, and any

limits on aircraft types are shown in parentheses. No number in paren-
theses indicates no limit. The GAP" numbers represent how close the
first feasible solution is to the initial bound and how close the best feasible

solution is to the best bound, respectively. To obtain solutions, we ran
each side (pickup and delivery) of the problem separately using Lagrangian
relaxation until an aircraft-feasible solution occurred, and then allowed five
more iterations to improve on this unless the feasible solution occurred on
the first iteration. We formed the bounds from the best solution values

on each side. Where two or more aircraft types were constrained, we used

subgradient optimization to achieve feasible aircraft numbers. When only
one type was constrained, we established an interval [0, A] for the single

availability constraint such that = A would yield a feasible solution, and

used a simple binary search to find a good value for AX. We allowed four

aircraft types in all cases.

As might be expected, the final solution values for two constrained air-

craft types are not as low as for the unconstrained cases, except for the

27-node case. The 27-node problem proved to be very difficult to obtain

a good asymmetric solution for, in almost all instances, because of large

load imbalances. Apparently constraining the fleet as we did directed the
algorithm toward a better portion of the feasible region.

The anomalous behavior of the 27-node case was repeated for all systems
examined when one aircraft type was constrained. That is, for every case,

the lowest feasible costs occurred when a limit was put on one aircraft
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only. The bounds obtained were generally good, with all four cases being

within 7.6% of optimum. However, the lower feasible costs indicate that

the placement dual variables alone are not enough to properly drive the
algorithm toward the best feasible solution. In a practical setting, some
kind of additional search based on restricting the aircraft quantities may
be necessary if placement dual variables are used. The apparent fact that

the placement dual variables by themselves do not direct feasible solutions
across the boundaries of aircraft types is evidenced by the results of Table

5-7, where we see that the best feasible solutions obtained have sharper
lower bounds for fewer types in the fleet.

In Tables 5-9 through 5-12 we present the results of asymmetric runs
based on the end-node constraints. Because these constraints do not truly
model the problem, in that placement flights were not modeled, the resul-
tant values of the Lagrangian do not represent true lower bounds on the
optimum value. For these bounds we use the values from Tables 5-7 and

5-8 where appropriate. We include the best Lagrangian bounds from the
end-node constraints to show how tight this particular relaxation is.

In all cases we used subgradient optimization on the end-node con-
straints. Tables 5-9 and 5-10 show the results for systems with two aircraft
types and four aircraft types, respectively. In each table we used two differ-
ent lambda-decrementing r-values, 0.5 and 0.85. When r = 0.5 we allowed

seven iterations for improvement and when r = 0.85 we allowed four itera-
tions for improvement. We defined improvementn to be an increase of 0.2

percent in the Lagrangian.
For both values of r the resultant best feasible solutions showed signifi-

cant improvement over cross decomposition with the placement constraints.
The algorithm actually converged (relative to the end-node constraints) for
a few of the cases. The results were somewhat better overall for r = 0.85,
but the general tightness of the bounds for both r-values indicates robust-
ness relative to this parameter. Not only were the best feasible solutions
better than in Table 5-7 for these cases, but the costs for placement flights

were far lower as well. As we mentioned earlier, this could make the solu-

tions much easier to sell to management and operations personnel. We did
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not complete runs for one-aircraft type systems using the end-node con-
straints because none of these had feasible solutions with zero placement
flights. The Lagrangians were thus highly unstable.

Tables 5-11 and 5-12 display the results for constrained fleets. The for-

mat for fleet composition and constrained availabilities is the same as in

Table 5-8. We initially attempted to handle the availability constraints
as we did when using cross decomposition, but this proved to be inferior

to simply dualizing both the availability and end-node constraints simul-
taneously. We used an r-value of 0.85, applied every four iterations with

no improvement, defined as we did earlier. These constrained runs were

rather sensitive to these values. As with the unconstrained availability runs,
we obtained generally excellent bounds. Interestingly, we encountered some

of the same anomalous behavior for one constrained aircraft type as we pre-

viously described for the placement constraints and one constrained type.
Thus, it appears that, although the end-node constraint approach produced
much better feasible solutions than the placement constraint approach, the
Lagrange multipliers produced from these constraints alone were not suffi-
cient to direct the algorithm to the best feasible solutions in all cases. Thus,
some sort of search based on constraining aircraft availabilities might be
called for. Nonetheless, the difference in the 81-node system, about 0.9

percent for an r-value of 0.85, could be quite tolerable without any type of
search, especially in long-range planning exercises.

Table 5-12 shows the results for runs of two or more constrained air-
craft types. These also are significantly superior to their counterparts using
placement constraints. An interesting pair of runs is the 81-node system
constrained 32, 00oo, 6, 5, and 0o, oo, 6, 5 respectively. Though the best

solution in each case contained 32, 10, 6, and 5 units respectively, the lat-

ter run was clearly better. Thus, although Table 5-11 shows that some
constraining can benefit the search for a good feasible solution, this com-
parison shows that too much constraining, even with the 'correct" limits,
can be detrimental, given the same lambda-decrementing scheme. Likewise,

the 81-node system constrained 32 oo, 6, oo did not fare quite as well as

the run constrained oo, oo, 6, oo (Tables 5-12 and 5-11 respectively), even
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AIRCRAFT #

B727-100:

B727-200:

DC10-10:

DC10-30:

BEST BD.:

BEST FEAS.:

GAPS (%):

TRANS$:

# NODES:

TINE:

ITER:

325,215

329,494

98.7, 95.6

7,829

14

:41

54

615,052

619,979

99.2

11,646

27

3:01

110

584,744

587,587

99.5, 98.0

3,310

1,096,898

1,099,010*

99.8, 97.9

6,492

41

14:03

75

81

44:08

140

Table 5-11. Asymmetric Solutions One Constrained Aircraft
Type

163

9

0

3 (3)

4

8 (10)

3

7

6

17

4

6 (6)

30

9

6 (6)

4 6



AIRCRAFT #

9 (10)

2

6 (6)

31 (32)

8

6 (6)

6

6 (6) 6 (6)

BEST BD.:

BEST FEAS.:

326,796

339,425

614,002 1,095,602

643,279 1,101,941

583,858 1,099,571

588,611 1,119,612

96.3, 92.3

13,181

14

95.4, 93.1

32,538

27

99.4, 97.1

11,484

81

99.2, 97.2

3,154

41

36:27 43:15

155 175

Table 5-12. Asymmetric Solutions, Constrained Fleets
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B727-100:

B727-200

DC10-10

DC10-30

5 (6)

3

3 (3)

14 (15) 32

4

6

7

10

32 (32)

10

6 (6)

4 5 (5) 5 (5)

GAPS (%):

TRANS$:

# NODES:

1,097,295

1,129,891

TIME:

98.2

19,815

81

1:20

ITER:

97.1

32,582

81

100

4:10

125

32:15

120

8:20

100



though the latter run produced a result feasible with respect to the former
availabilities. Still, the difference here is only about 0.3 percent, quite likely

acceptable for many applications.

5.1 Conclusions and Suggestions for Further
Research

We conclude overall that the route complex approach is a viable method
of solution for the single-hub, single-turn problem SHP. Not only does it

allow us to exploit the efficiently solvable structure of the problem - in the
form of the minimum weight nonbipartite perfect matching problem - it
also allows us to easily screen any operationally undesirable routes from
consideration. The latter point is especially important in view of the fact
that many operational constraints could be quite cumbersome to formulate
mathematically, but simple to enforce programmatically.

The aircraft availability constraints and the end-node constraints re-
sponded well to dualization using subgradient optimization, both sepa-
rately and together. Our results using cross decomposition on the place-

ment constraints were inferior to subgradient optimization on the end-node
constraints. It is possible that applying subgradient optimization to the
placement constraints would produce better results. However, this partic-
ular type of constraint may not have as tight a relaxation as the end-node
constraints.

The oscillation that occured when we used the unscaled dual variables
from the transportation subproblem solutions as Lagrange multipliers may
well indicate the presence of a nonzero duality gap. Consider any optimal

Lagrange multiplier, u'. If there is no duality gap, we know from The-

orem C.3 (Appendix C) that there exists an optimal solution (z*,y*) to
the Lagrangian relaxation for u* that is feasible in the unrelaxed problem.
Further, Theorem 4.2 shows that u must be a dual optimal solution to
the transportation subproblems associated with (z*, y'). However, if all
unscaled dual optimal solutions result in a significant oscillation, greatly
differing end-nodes and fleets for the pickup and delivery sides result. The
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cost of the transportation subproblems would then be very high, given our

cost structure (outlined in Chapter 1) and the fact that many placement
flights would have to occur. It is very unlikely that such a solution, even

if feasible, is optimal. If the solution is not optimal, then it can only mean
that the duality gap is positive.

We wish to emphasize that we tried but one heuristic to improve the
optimal transportation subproblem dual variables. It could well be that
some other technique would improve these dual variables and thereby avoid

the oscillation. If this is the case, the duality gap could indeed be zero.

Another possibility is that a different formulation of the placement con-
straints could produce a zero duality gap. (One conclusion is almost cer-

tainly true, nevertheless - formulation (TPycx) of chapter 4 has a positive
duality gap, since any dual optimal solution is likely to cause oscillation
from one relaxation to the next. This is because of constraint tightness for
vi + ui < cii = 0 and large absolute values for v; and ui, which we discussed

earlier in this chapter.) Also, we should not rule out the possibility that the
placement constraints, dualized with subgradient optimization or another
technique, could produce quite excellent feasible solutions. Moreover, as

we have noted, it is the placement constraints' dualization that provides a
lower bound for our solutions. Thus, even if we abandon these constraints
as a means of finding feasible solutions, we may wish to retain them to
benchmark whatever alternative we choose.

Dualizing the column-joining constraints via subgradient optimization
was successful, first because the duality gap was extremely small, and sec-

ond because we found that in many cases the incremental improvement
offered by 3-plexes in a solution is very low. Thus, if there is a good mix of

aircraft in a fleet and the time constraints are tight enough to hold route
lengths down, -plexes and 2-plexes are enough to provide a very good

solution. This would be especially true if the demands at the individual
nodes were high enough to prevent aircraft from taking on more than two
nodes' worth of cargo, so that route lengths were held down by this fac-

tor as well. The particulars of the problem at hand are very important in
making such determinations, and must be considered or even investigated
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in detail before rendering these judgments.
We found the aircraft availability constraints to be sensitive in some

instances to the levels of availability and the r-values chosen, even when
a known optimal feasible solution existed. This sensitivity carried over
when asymmetric problems were availability-constrained; we found that a
much smaller range of r-values would produce good solutions for the end-

node constraints with the availability constraints than for the end-node
constraints alone. Thus, some care should be exercised when constraining
a fleet - in general, if the algorithm automatically holds an aircraft's usage
to an acceptable level, then we should probably not constrain that type.
Again, however, the individual problem must be considered. It is possible

(and we have seen examples to support this) that some constraining of
aircraft types actually improves the feasible solution obtained or the speed
with which a solution is obtained. Further study into this property could
prove enlightening.

As we stated early on, our intention throughout our employment of
Lagrangian relaxation has been to obtain feasible solutions directly, without
using branch-and-bound. This departure from what has usually been the
ultimate intent of Lagranian relaxation - to provide bounds for using in
a branch-and-bound - has proven largely successful. Our effort was made
possible largely by the fact that most of the problem's structure remained
after we dualized the complicating constraints.

We have taken the approach of designing an optimization-based algo-
rithm to solve a subset, albeit a significant one, of the original problem.
We have shown empirically by expanding the subset problem to include

larger route complexes (i.e., 3-plexes) that the subset approach appears to
be justified. Also, operational considerations such as those discussed at the
end of Chapter 3 further lead us to accept such a strategy.

The richness and newness of the problems that we have discussed and
addressed suggest a myriad of research opportunities. Within the confines
of the single-hub single-turn problem SHP, several areas are open. One is
the area of route complexes, their generation and storage, and the prof-
itability of higher order complexes. In our application, for example, it was
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impossible to explicitly store all 3-plexes. We were forced to store a list of

triples for which some 3-plex existed, and regenerate the route complexes
whenever we wished to scan all of them. It could be productive to find

out beforehand if some route complexes would never be needed, or to de-

velop an efficient means of constructing them dynamically, as in column

or facet generation. With respect to the profitability of higher order route
complexes, it would be beneficial to have some sort of an estimate of the

incremental improvement these n-plexes represent. A probability study in
this area might be quite useful.

It could also prove fruitful to investigate other avenues of route genera-
tion. Although the route complex approach worked well for our application,
its success was heavily dependent on factors that we mentioned earlier -
time constraints, demand distributions, etc. If, for example, SHP had
much looser time constraints and much smaller demands at the nodes, a
completely different strategy could be appropriate.

Another area of SHP that would be useful to research is alternatives

for formulating and handling the placement constraints. As we have men-
tioned, applying subgradient optimization is one obvious possibility. Also,

dealing with multiple constraint types is an eventuality for many real prob-
lems, and we did not address any combination involving the column-joining
constraints in this thesis. Although we showed that 3-plexes and higher or-
der route complexes were probably often not needed for excellent solutions,
such may not always be the case. Also, it is quite possible that other types
of constraints than those presented in this thesis could arise. One exam-
ple is that a carrier may wish to force a certain number of some aircraft
type into a solution. This type of constraint would be identical to the air-
craft availability constraint, except that the relation would be equality or
greater-than-or-equal-to instead of less-than-or-equal-to.

In addition to further research within the single-hub single-turn problem
area, little research has been done on any of the other problems that we have
described, as far as we are aware. Thus, each of the areas of regional hubs,

bleeder systems, trunk hubs, feeder systems, double-turn systems, and all
variations on these systems comprise totally new research opportunities. In
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general, express system design is not only an untouched research prospect,

but one that is addressable with current techniques.
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APPENDIX A

To illustrate the method of Lagrangian relaxation, we shall apply it to a
formulation of the Traveling Salesman Problem (TSP). This formulation is

due to Gavish and Graves [G2]. We wish to

n n

minimize z =x cyi (i)
i=li=1

subject to
n

Yii = ni - 1,.., (ii)
i=l

E Yi = 1 i-1,. .., n (iii)
j=1

n n

. j;- E fii =1 i= 2,...,n (iv)

fi < (n- )i i = ,... n (v)

yi = or l,fi,>O j= 2,...,n,i j

The idea of Langrangian relaxation is to express one or more of the

problem constraints as part of the objective function. This is called du-
alization of the constraints. Ideally, dualization removes constraints that
complicate the problem (complicating cornstraints), leaving behind a prob-
lem that is relatively easy to solve, and for which the optimal solution is

close to the optimal solution for the original problem.
For TSP, let us dualize the constraints (v). To do this, we proceed as

follows. First, we attach Lagrange multipliers u = (ui) to the constraints
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and express them as part of (i). The problem then becomes (TSP')
n n sn n

minimize Z(u) =Z cqjyij+ iui,, [fi - (n- 1)yji] (i)
i=lj=l i=lj=l

subject to

Yi=l j=,. n (ii)
i-1

(iii)
j=l

Efj _ Efi= 1 i = 2,...,n (iv)
ijoi jsi

yii =O or , fi >0 

We require that ujii > O for all i and j. We rewrite Z(u) as
n n n n

Z(u) =E cijYii+ E uijfij
i=lj=l i=lj=l

where ci = cii - (n - 1)uij. The resulting problem TSP' immediately de-
composes into two easily solved problems. The first is a matching problem

over the variables yii with cost coefficients ci, and the second is a minimum
cost-flow problem with flow variables fii and per unit arc flow costs uii.

If Z* is the optimal value for TSP, and Z*(u) is the optimal value for

TSP' with Lagrange multipliers u, then Z* > Z*(u). This is because if

(f, ) = [(hi), (Yit)] is feasible for TSP, then it is obviously feasible for
TSP'. Moreover, the conditions uij > 0 and fii < (n - 1) i imply that

n n n fn n 

ES ci ij >E cij iz+ E uij [fi; - (n -)jy 
i=lj=1 i=lj=1 i=lj=1

Thus, Z* > Z*(u). Indeed, this is true for a Lagrangian relaxation
of any mathematical program with suitable restrictions on the Lagrange
multipliers. (In this case, uij > suffices. See Fisher [F1] for further details.)

We would like to choose the Lagrange multipliers so that we obtain the
largest possible value of Z'(u), in light of the above inequality. That is, we

wish to
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max Z*(u). (D)

The problem D is referred to as the Lagrangian dual. If we denote the
solution value to D as ZD, we have that Z > ZD, since Z ° > Z*(u) for any

u. In general, Z* > ZD, and the difference is called the duality gap.
It is possible that dualizing a different set of constraints can reduce a

duality gap. For example, Gavish and Graves [G2] have dualized all of

constraints (iii) except for the case i = 1. This results in a subproblem

which is equivalent to finding a minimum cost 1-arborescence. This is a

directed spanning tree with a root at node 1, in addition to a single arc
directed into node 1. Golden and Magnanti [G6] also discuss using a 1-
arborescence in this context. There is a good algorithm for this problem,
and thus, this competing relaxation might be better for our purposes than
TSP'.

Subgradient optimization has been widely used for determining an op-
timal solution to the Lagrangian dual, and its convergence is guaranteed
under suitable conditions. The method is based on the result that for any
continuous, concave function g, there is at every point a vector y such that
g(x) g(-) + ( - X)y. The vector y is called the subgradient of g at

X, and is a generalization of the gradient. It turns out that if, in TSP',

(f,) = [(), (i)] is optimal for , then = -(n - 1)9 is a sub-
gradient of Z*(u) at ui. This is so because, if (f, ) is optimal at ui, then
Z'(u) + (u - i)i = C + + - . However, for any other u, (f, )
may not be optimal. Thus, if (f, y) is optimal for u, it follows that

Z*(u) = Cy + u(f - (n - )y) < C + u(f- (n - 1)9)
= c + = Z'(U) + ( - )i.

Moreover, Z*(u) is a continuous, concave function of u. This can be

seen by considering that if (f, Y) is optimal for U = aul + (1 - a)u 2, where
o < a < 1, it follows that

Z* [ul + (1 - a)u2 ]
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= Cy + [atU + (1 - a)u2] [f - (n-l)]

= aCul + CLJ [f(- (n -) ] + (1- a)Cu2 + (1- )u2 [7-(n - ) ]

> aZ'(U1) + (1 - ) Z'(u 2).

Because Z* (u) may not be differentiable everywhere, methods of ascent
requiring smoothness are not suitable. However, we may use the subgradi-
ent to our advantage in much the same manner that the gradient is used
to optimize everywhere-differentiable functions. The algorithm generates
successive solutions according to the rule

xi+l = Zxi + ii, i = O...

The term O' is quite often defined by

9, = Ai [zD - z' (Ui)]

where yi is any subgradient of g at z'. Ideally, ZD is the optimal value to the
Lagrangian dual. However, we may not be able to obtain Zo exactly, and an
upper bound will suffice. The term Xi is chosen so that 0 < Xi < 2. In our
case, we would obtain successive values of u', where -y' = (f - (n - 1)yi)
and (fe, y) is the optimal solution to TSP' using u', with the relation

Ui'+1 = U + e' [fi - (n-l)y].

In general, convergence of the subgradient optimization method is guar-

anteed provided -- 0 and 9 - oo. In practice, however, the above
k=o

definition for 8i is popularly used, and the value of AX is halved after a set

number of iterations if no improvement results. Note that this halving does
not satisfy the convergence criteria given, but it has generally performed
well in practice. More detail can be found in Fisher [F1] or Shapiro [S3].
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APPENDIX B

Our discussion is derived from Magnanti, Mireault, and Wong [M2], and

Magnanti and Wong [M5]. Because these researchers have had success

in applying Benders Decomposition to the Fixed Charge Network Design

Problem (NDP), we shall illustrate the method using this problem.
The problem is to select arcs Yij for a network such that flows f. can be

routed according to demand and supply stipulations. Here f represents
the flow of commodity k over arc i- j, where i- j is in some set of arcs A,

and Q is the set of commodities. Both Yij and f have costs attached to
them. We let O(k) be the origin and D(k) the destination for commodity
k, with O(k)EN and D(k)EN, where N is the node set. The flow and arc
construction costs are c and cii, respectively, and Kii is the capacity of

arc i - j. The formulation is then

minimize Z = E cfi + E cijYi' (vii)
kcQ i-jcA i-jeA

subject to
dk if i= O(k)

E. fk- -d" if i = D(k) iN, keQ (viii)
jeN IcN 0 otherwise

fi. I< K -yij i - jeA (ix)
k4Q

f; > 0,yi = 0 or 1 (x)

Let us consider the dual of NDP, DNDP. Moving terms to the left in

(viii) and multiplying (viii) and (ix) by -1 produces the following dual

formulation.
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maximize z = (u()-uk)) d k (xi)
keQ

subject to

u - Uk - vij < c for all kQ, (i,j,)EA (xii)

Kiiv i < cii for all (i,j,)EA (xiii)

ui unrestricted, vij O0. (xiv)

If we consider that the conservation of flow constraints (viii) contains a

redundant equation for each commodity k, then we may set ukO( = O. The
objective (xi) then becomes

maximize z = dk u(k
CQ

Now suppose we have a set of values for y = (yi). Given these values,

NDP becomes a multi-commodity flow problem where constraints (ix) have

become bundle constraints. If Kii > d, then NDP has become QI
ikQ

separate shortest-path problems, one for each commodity k. If we denote
the value of the subproblem formed by a particular y as S (y), then it follows
from LP duality theory that the value of the optimum solution to the dual
of the subproblem is a lower bound on S(y). This is to say that

S(y) > E (dkUt(k)) - E (viKjyi) for all dual - feasible ui, vj
kEQ (ij)Af

(Note that here we have formed the objective function of the dual to
the subproblem of NDP, which has a set value for y. This gives us the term

- viiKijyij in the objective function, since we have not moved this term
to the left as we did to formulate DNDP.) If we let u = (u/) and v = (vii),

then we have that
S(y)= minimum z

z (du4(k))- E (viiKiYiYi) for all feasible (u,v)
kfQ (ij)A
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We know that the optimal value to NDP is the minimum of the fixed
costs cijyij plus S(u), and thus, for NDP (and DNDP), our optimum is
found by solving problem MP below.

C* = minimum z
subject to

z E ciiYii + (dku(k)) - (viKiqYi,) for all feasible (u, v)
(ij),A hQ (i,j),A

The decision variables here are z and y. This is called the master prob-

lem and Benders decomposition solves it in the following manner.
We restrict the feasible (u, v)'s to a small subset of all possible feasible

values, and solve the resulting restricted master problem, yielding a solution
value . We then solve the NDP subproblem using the resulting y value,
say V. This produces a set of values for u and v, (, v). If it then happens

that

> ECij E+C (d D - E (VUijKii),
(i,j)cA kQ (i,j),A

we have solved MP. This follows from the fact that S(V) is the largest value

of E (dku(,)) - E (vijkijyi) for all feasible (u, v). If (,V) does not
kCQ (i,j),A

solve MP, then we add the constraint, or Benders cut", formed by these
vectors, to the restricted master problem and start over.

An additional consideration is that V might not allow a feasible solution
in the subproblem of NDP. This would occur if a path of sufficient capacity
did not exist between O(k) and D(k) for some commodity k. If this occurs,

then there is a cut set C that separates O(k) from D(k). Suppose we still
need a capacity dk to flow the remainder of commodity k. We then add the
feasibility constraint

E Kijy >d
(i,j)C

to the restricted master problem and proceed as described earlier.

Although the procedure for Benders decomposition just outlined is guar-
anteed to converge, it often does so quite slowly. Magnanti and Wong [M4]
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have shown that the convergence may be accelerated by generating the

Benders cut creatively. They have shown that it is possible to generate

a cut that is superior in the following sense. If we find (u', v') such that

du' + v'Ky > du- + VKy for all y, and for which strict inequality holds for

at least one y, then du' + v'Ky dominates or is stronger than di- + vKy.
An undominated cut is said to be pareto-optimal. (Here d = (dk) and
K = (Kij)- )
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APPENDIX C

Cross Decomposition /
Cross decomposition is a fusion of Benders decomposition and Lagrangian

Relaxation into a unified algorithm for solving mixed integer linear pro-
grams. Van Roy (see [V1] and [V2]) developed the technique, in which
both the Benders and Lagrangian subproblems pass information to each
other and to the master problems in a cohesive, computationally efficient
manner. Applications of the technique to problems in capacitated facility
location resulted in solutions ten times more quickly obtained than from
several recently developed algorithms. In our exposition of this material,
we focus on obtaining good feasible solutions, notably in the case of a zero

duality gap.
Consider problem (Q) below, where x is an m x 1 continuous, real-valued

vector, y is an n x 1 integer vector, b is p x 1, and c, d, A, and B are vectors

and matrices of conformable dimensions.

min cx + dy

(Q)

subject to
Ax+ By = b
x > O, yfZ C Rn

We divide the constraints of (Q) into two sets, one with pi rows and the

other with p2 rows, where pi + 2 = p. We also define [bi b, [B 1

B,and [ Al - A, where Al has Pi rows, A 2 has p2 rows, etc. Also,

we assume throughout that the sets {(x, y) : x > O, yeZ, Alx + B1y = b}
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are nonempty and bounded. For our development, y and Ax + B2y = b2

are complicating variables and constraints, respectively. Thus, (SQP) and

(SDi) below are easily solved problems.

(SQ9)

minimize cx

subject to
Ax = b- B

x>O

(SDi)

minimize

subject to

cx + dy + u2 (b2 - A 2x- B2y)

Alx + Bly = b

x > O yeZ

In Benders decomposition, we solve

(Q): min min cx + dy -minv(SQy)
yEZ z>O yCZ

subject to

- min
VyEZ

subject to

Ax + By = b

max u(b - By) + dy

uA < c

= min max ut(b-By) + dy
yEZ tCEQ

= min
yEZ,v

V

(MQ)
subject to utb + (d- utB)y < v tEEQ,

where EQ is the index set of extreme points of {u : uA < c}. In our nota-

tion, (MQ) is the full Benders master problem and (SQy) is the Benders
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subproblem. (Notice that we are not considering extreme rays, for the

purpose of exposition.)
In Lagrangian Relaxation, we solve

(D) max min c + dy + u2(b2 - A2z - B2y)- max v(SD,, 2)
u2 >O0,yVC u2

subject to Alx + Bly = bi

=max w
U2

(MD)
subject to cXt + dyt + u2(b2 - A2Xt - B2yt) > w, tED

where ED is the index set of the extreme points of the convex hull of the
set {(x, y): xz > 0, yEZ, Alx + Bly = bh). The duality gap is v(P) - v(D).

Van Roy has shown that the Benders subproblem (SQY), where yEZ, is

equivalent to a certain restricted form of the Lagrangian master problem

(MD), where the constraints of the restricted master are generated from
Q. Likewise, he has shown that the Lagrangian subproblem (SDa2) is

equivalent to a restricted Benders master problem, where the constraints of
the restriction are generated from u2. We now define precisely this notion of

equivalence and detail how the constraints of the restricted master problems
are generated.

Definition C.1
A problem (Q) is equivalent to (Q') with respect to a subset of primal

and/or dual variables U if the optimal solutions of (Q), given U, are optimal

for (Q') and vice versa.

Thus, problem (Q) and its full master (MQ) are equivalent with respect
to y, and problems (D) and (MD) are equivalent with respect to u2. As

Van Roy [V1] notes, the definition includes both primal and dual variables,
so that any linear program and its dual are equivalent with respect to
any subset of primal and dual variables. To show how we generate the

constraints for the restricted master problems, we introduce the following
definitions.

Ti 2 ({All indices t: ut = (t, 2) is an extreme point of {(u1 , 2) : u1A 1 <
c - ii2A2}}.
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Ta2 {All indices t: ut = (,a 2) is an extreme point of {u : uA < c}}.

We further define (MQi 2) as the restriction of (MQ) to constraints
generated from indices of Ti. We define Ty, T, and (MD') similarly.

Figure C-1 illustrates that TU2, C Tu 2. For any index t, if tT 2 and

tE Tu 2, then t EQ. Thus, Tu 2 C EQ only if Ta 2 = Tu2. However, any

index of T' 2 represents a feasible point of {u: uA < c}, so even if t EQ,
ut can be expressed as a linear combination of points whose indices are in

EQ : t = Akjk, E An = 1, Ak > 0. Thus, the constraint generated by
k1EQ AEQ

ut is redundant in the full master problem (MQ). Even so, we do have the

following sequence of inequalities:

v(MP : tETa2) < v(MPU) v(MP : tTU2) < v(MQ).

Thus, (MPa 2) generates a (potentially) better value than (MP : tTa 2).
An analogous relationship exists for T" and T'. Thus, v(MD : tET9) >
v(MD) v(MD : tT) > v(MD). We are now in a position to state the
main theoretical results.

Theorem C.1 (Van Roy)
a.) The restricted Benders master problem (MQu2) is equivalent to

the Lagrangian subproblem (SDu2) with respect to y, and v(MQu 2) =
v(SDu2 ).

b.) The restricted Lagrangian dual (MDy) is equivalent to the Benders
subproblem (SQy) with respect to u2, and v(MDy) = v(SQy).

Theorem C.1 unifies Benders decomposition and Lagrangian relaxation
in a way that lays the foundation for solving many mixed integer linear
programs very efficiently. In fact, the next theorem shows that if the du-
ality gap elative to the constraints A2x + B2y = b is zero, then optimality
is potentially verifiable in only one iteration of the cross decomposition

algorithm.
Theorem C.2 (Van Roy)

Let (x*,y*) and ut be optimal solutions of (Q) and (D), respectively.

Then (a), (b), and (c) are equivalent:
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Tu2 = {2,5}

Tu = {2}

3

Example showing that Tu2 c Tu2 .

Figure C-1. Example Showing That T 2 _ Tu2
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(a) The Lagrangian relaxation relative to the constraints A2X + B2y = b
has no duality gap.

(b) There is an optimal dual solution ui of (SQy*) such that v(SDU2) =
v(SQY*)..

(c) There is an optimal primal solution (, y) of (SDu;) such that
v(SQy) = v(SDu;).

Theorem C.2 gives strong motivation to use the dual variables of (SQy*)
as Lagrange multipliers, since with a zero duality gap at least one opti-

mal Lagrange vector u2 is part of a dual optimal solution u = (, u2) for

(SQy*).
The next corollary shows that in fact any optimal multiplier u suffices

to produce an optimal feasible solution to (Q), in the case of a zero duality
gap. Moreover, we demonstrate that any optimal feasible solution has an
optimal Lagrange multiplier when v(Q) = v(D).
Corollary C.3:

Let v(Q) = v(D); also let (,y*) be optimal in (Q), and let u be

optimal in (D). Then
(a.) There exists an optimal feasible solution (, y) of (Q) that is optimal

in (SDu;).
(b.) There exists u2 such that (z*,y') is optimal in (SDu2).

Proof:
(Part (a.)) By part (c) of Theorem C.2 there is an optimal solution

(x, ) of (SDu;) such that v(SQy) = v(SDu;). Since v(SDu;) < v(Q) <
v(SQ.), any optimal primal solution I of (SQ.) provides an optimal feasi-
ble solution (, ) to (Q). If is feasible in (Q), then Ax' = b - B. Thus,
(&, y) is optimal in (SDu*), since

v(SDu;) = cx° + d? + u(b-B- Axz) < ci + dy + u;(b-B. - A)

= cx + d = v(SQ/).
Since v(SDu;) = v(SQ), part (a) is proven.
(Part (b.)) By part (b) of Theorem C.2 an optimal dual solution of

(SQy*) exists such that v(SDU2) = v(SQy*). Since v(SQy'*) = cx*+dy' =
cx' + dy* + u2(b - By- Ax*) > v(SDa 2 ), it follows that (*, y') is optimal
in (SDi 2). This proves part (b).
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Corollary C.3 allows us to refine our characterization of optimality with
a zero duality gap. Each feasible optimal solution (*, y*) of (Q) is optimal

in (SDu') for some u;, and any optimal solution u; of (D) has an associated
feasible solution (z*, y*) of (Q) as an optimal solution of (SDu*). In a very
real sense then, using dual optimal solutions to the Benders subproblem will
not 'eliminate" all optimal feasible solutions to (Q) from consideration, so
that if there is no duality gap we will not simply end up with an optimal
multiplier u2 and no associated feasible solution.

Given this and earlier information about optimal Lagrange multipliers,
we have further reason to use the Benders subproblem dual optimal vari-
ables as part of the Lagrangian dual solution process. For, there is not only

an excellent physical interpretation for these variables, but also an excellent
theoretical interpretation as well, as Theorem C.1 shows. The important

implication of this theorem is that passing information back and forth be-
tween the subproblems (SQy) and (SDu) can accelerate the convergence
of either a Lagrangian Relaxation or Benders Decomposition. Thus, alter-
nately solving (SQu) and (SDu) seems like a reasonable strategy. However,
even with a zero duality gap we could never guarantee convergence. Cycling

could occur unless we take preventative measures. We must consequently

incorporate an additional techinique that is known to converge. The fol-

lowing lemma provides us with a test for convergence and a guide for using

the appropriate master problem or subproblem when necessary.
Lemma C.4 (Van Roy)

(a.) If u° is dual optimal for (SQy°), and (, Y) is optimal for (SDu°),

then (zo,yo) $ (, ) unless v(SQy o) = v(Q).

(b.) If ( 0 ,yo) is optimal for (SDuo), and d is dual optimal for (SQy°),

then u° ui unless v(SDu °) = v(Q).
Suppose that we iterate between the problems (SQy) and (SDu). Let

uk and (xk,yk) be the dual and primal solutions respectively at iteration
k. As an example, let us solve (SQyk) first. The dual optimal solution uk

of (SQyk) is then used to generate uk+ . That is, we set u 4+ l = uk4, and
then solve (SDtu4+l). We then set y+2 = yk+1, where (zk+l,yk+) solves
(SDuk+l), and so on. Thus, we shall solve (SQyk), (SDUk+l),(SQyk+2),
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(SDu+),... By lemma C.4, yk : yk+l unless we have attained optimal-

ity. Since our construction sets yk+2 = yk+l, the earliest possible replication
of a primal solution short of optimality is if yk = yk+3. Similar comments

apply to a sequence of dual solutions.
We can now state the basic decomposition algorithm. We let VD and

vQ be respectively the best values of (SDu) and (SQy) obtained so far.
Similarly, w0 and po represent the current values of the restricted dual and
primal master problems, respectively.
Cross Decomposition Algorithm

Step 1: Initialization

Set the iteration counter k 0- O. Also, set vQ = wo = +oo,
and set VD = po = -oo. Initialize the primal and dual master problem
constraint index sets, TQ = TD = (). Set oo - 1, 6 - 0, and select u.

Step 2: (a) Set k - k + 1. Solve (SDUt), and let (Xk, yk) be an

optimal solution. Set TD = TD U {k}, and a - a + 1.
(b) If VD < v(SDu), then set VD - v(SDu),

If VD > WO, then (D) is solved and set 6 = 1.

If VD > VQ, then (, Y) constitutes an optimal solution of (Q).
Convergence test: If a = 4, then go to step (4b).
Othewise, set yk+l ' yk, and go to step (3).

Step 3: (a) Set k k + 1. Solve (SQyk), and let xk and uk

be optimal primal and dual solutions. Set T -- TQ U {k},
and a - a+ 1.

(b) If vq > v(SQyK), then set VQ V(SQY),
(',-) + (z,yk), and a c 1.
If VQ > VD or VQ > p0, then (, y) is optimal in (Q).

(c) Convergence test: If 6 = 1, then go to step (4b);
otherwise, if a = 4, then go to step (4a);
otherwise, set u+ 1 - uk and go to step (2).

Step 4: (a) Solve the restricted dual master problem (MDT,),
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and let (O, Ut+ l) be an optimal solution.
Set 6 O- 0, and a - 1.

(b) Solve the restricted primal master problem (MQTQ)
and let (po,yk+ l ) be an optimal solution.
Set a +- 1.

If VQ _ Po, then (, -)
is an optimal solution of (Q); otherwise, go to step (3).

The cross decomposition algorithm as presented will converge by virtue of
lemma C.4 and the fact that Benders decomposition and Dantzig-Wolfe

decomposition are finite. However, we can enhance the algorithm's perfor-

mance significantly by generating constraints more judiciously. To do this,

we introduce the concept of an efficient cutset.
Definition C.2

An efficient cutset TE for a problem (M) is a set of cuts (constraints)

such that

(a) v(M) =_ v(M tETe) = v(M);

(b) v(M:tETs - t ) v(M) for any tTE.

In the general case, one would like to find efficient cutsets for Tuk and

Tyk at each iteration of the algorithm. If we can do this in a computation-

ally inexpensive way, we would expect faster convergence.
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