
Mesh Modification Using Deformation Gradients

by

Robert Walker Sumner

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 

c© Massachusetts Institute of Technology . All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

 December 

Certified by .
Jovan Popović

Assistant Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students



Mesh Modification Using Deformation Gradients

by

Robert Walker Sumner

Submitted to the Department of Electrical Engineering and Computer Science
on  December , in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Computer-generated character animation, where human or anthropomorphic characters are animated
to tell a story, holds tremendous potential to enrich education, human communication, perception,
and entertainment. However, current animation procedures rely on a time consuming and difficult
process that requires both artistic talent and technical expertise. Despite the tremendous amount
of artistry, skill, and time dedicated to the animation process, there are few techniques to help with
reuse. Although individual aspects of animation are well explored, there is little work that extends
beyond the boundaries of any one area. As a consequence, the same procedure must be followed
for each new character without the opportunity to generalize or reuse technical components. This
dissertation describes techniques that ease the animation process by offering opportunities for reuse
and a more intuitive animation formulation. A differential specification of arbitrary deformation
provides a general representation for adapting deformation to different shapes, computing semantic
correspondence between two shapes, and extrapolating natural deformation from a finite set of
examples.

Deformation transfer adds a general-purpose reuse mechanism to the animation pipeline by
transferring any deformation of a source triangle mesh onto a different target mesh. The transfer
system uses a correspondence algorithm to build a discrete many-to-many mapping between the source
and target triangles that permits transfer between meshes of different topology. Results demonstrate
retargeting both kinematic poses and non-rigid deformations, as well as transfer between characters
of different topological and anatomical structure. Mesh-based inverse kinematics extends the idea
of traditional skeleton-based inverse kinematics to meshes by allowing the user to pose a mesh via
direct manipulation. The user indicates the class of meaningful deformations by supplying examples
that can be created automatically with deformation transfer, sculpted, scanned, or produced by any
other means. This technique is distinguished from traditional animation methods since it avoids the
expensive character setup stage. It is distinguished from existing mesh editing algorithms since the
user retains the freedom to specify the class of meaningful deformations. Results demonstrate an
intuitive interface for posing meshes that requires only a small amount of user effort.

Thesis Supervisor: Jovan Popović
Title: Assistant Professor of Electrical Engineering and Computer Science





Acknowledgments

I wish to express sincere gratitude to my advisor, Jovan Popović, for his guidance over the past four
years. His teaching, his enthusiasm, and his graciousness have been invaluable.

I’m indebted to my co-authors Matthias Zwicker and Craig Gotsman for their help with mesh-
based inverse kinematics. This project was my first experience with collaborative research and it was
a tremendously positive one. Our goals were not premeditated but born from a collective effort of
four people meeting once a week to talk about research. These meetings were my favorite part of the
week and I’m thrilled by the end result.

I am grateful for the suggestions that my committee members, William Freeman, Frédo Durand,
and Michael Garland, offered about this dissertation. I’d like to thank Daniel Vlasic, Charles Han and
Shuang You for their help with deformation transfer. Daniel was instrumental in an earlier version
of the system. Thanks also to Sivan Toledo for his assistance with the numerical solution used by
mesh-based inverse kinematics. I’m grateful for discussions with Mario Botsch and Mark Pauly that
helped me to better understand the context of my work and identify a missing component in the
numerical formulation. Eric Chan and Jiawen Chen also deserve thanks for patiently helping me with
the code to draw a square and pick some points which I secretly had trouble writing on my own.

Many people have influenced me in this journey. I would like to thank Julie Dorsey for advising
me during my first years at MIT and supporting my in-depth study of lichens. She also supported my
petition to add a soda fountain machine to the graphics lab, for which I am also thankful.

The three summers I spent working at Pixar Animation Studios influenced my graduate research
greatly. Thanks to Tony DeRose and Dirk Van Gelder for introducing me to the articulation system
used at Pixar and helping me to appreciate the scope of this aspect of animation. Brad Andalman,
Sudeep Rangaswamy, Susan Fisher, Wayne Wooten, John Alex, and the others I worked with made
the job feel more like a vacation than anything else. My great friends Tasha Harris and Wendell Lee
showed me how real animators work and I’m still in awe of what they can do.

Jessica Hodgins invited me to join her research group as undergraduate, started me along the
animation path, and still looks after me today. I attribute much of my academic ethics to her and
greatly value the support she has offered over the years. Jessica and James O’Brien advised me on
my first academic research of simulating sand, mud, and snow, or, as we called it, the “dirt” project.
David Brogan, Nancy Pollard, Deborah Carlson, Victor Zordan, Wayne Wooten, Ron Metoyer, and
the others in Jessica’s Animation Lab taught me what to expect from graduate school and treated me
like I was already there.

Cynthia Allen recognized potential in me after just a short meeting when I was an undergraduate
and convinced Ken Perlin to invite me to spend a summer with the graphics group at NYU. I’d like to
thank Cynthia for making it happen and Ken for supporting me then and in subsequent years. Ken,
Cynthia, Athomas Goldberg, Jon Meyer, Clilly Castiglia, and the others in the NYU Media Research
Lab showed me how graphics is done in New York City.

One of the most valuable aspects of graduate school has been the friendships I’ve formed within
the MIT Graphics Group. My office mates over the years—Aseem Agrawala, Aaron Isaksen, and
Rob Jagnow in the beginning, Sara Su in the middle, and John Alex, Tilke Judd, and Jingyi Yu at the



end—made each day an adventure. Mok Oh and Frédo Durand imparted some of their finesse at
handling tricky situations. In recent years, Daniel Vlasic, Tom Buehler, and I, with much help from
Paul Green, Jonathan Regan-Kelley, Yeuhi Abe, Tilke Judd, Bennett Rogers, Robert Wang, and Sara
Su, developed a social force that has left a permanent mark on Cambridge. Everyone, including Barb
Cutler, Justin Legakis, Matt Peters, Max Chen, Jan Kautz, Sylvain Paris, Matthias Zwicker, Soonmin
Bae, Jiawen Chen, Eugene Hsu, Olivier Koch, Addy Ngan, Peter Sand, Kevin Der, Howard Chan,
Wojciech Matusik, and Kari Pulli has contributed to make the MIT CGG one of which I am proud to
be an Alumnus. Finally, Bryt Bradley, Adel Hanna, and Tom Buehler deserve special mention since
they are not only friends but provided valuable services that kept the lab running.

Of course, friendships extend well beyond MIT. Andrew Elliott provided emotional support during
much of my time in Cambridge. Annie Choi always reminded us how hip computer science is. Ana
Jaklenec protected me from Daniel when he got rowdy. Eitan Grinspun provided professional advice
and, together with Victor Zordan and Paul Kry, we went on several unprofessional adventures. Wilmot
Li and Mira Dontcheva kept me both grounded and immensely entertained when I was out of town.

Finally, I’d like to thank my family for supporting me throughout this process, before it, and after.
My mom Mary, my father Evans, and my brother Billy provide a foundation in my life on which I
know I can always depend.



Contents

1 Introduction 11

2 Character-Animation Pipeline 17

. Modeling . 

.. Geometric Representations . 

.. Modeling Tools . 

. Rigging . 

. Animation . 

.. Keyframe Animation . 

.. Motion Capture . 

.. Physics-Based Character Animation . 

3 Deformation Transfer 45

. Deformation Representation . 

.. Displacement Fields . 

.. Deformation Gradients . 

.. Summary . 

. Correspondence . 

. Transfer . 

.. Integration . 



.. Optimization . 

.. Reconstruction Error . 

. Numerics . 

.. Linearity . 

.. Solution . 

. Analytic Derivation . 

. Results and Discussion . 

.. Kinematic Poses . 

.. Non-rigid Deformations . 

.. Animation Retargeting . 

.. Dissimilar Characters . 

.. Detail-Dependent Deformations . 

4 Correspondence 81

. Template Fitting . 

. Triangle Pairing . 

5 Mesh-Based Inverse Kinematics 95

. Principles of MIK . 

.. Feature Vectors . 

.. Linear Feature Space . 

.. Nonlinear Feature Space . 

. Numerics . 

.. Gauss-Newton Algorithm . 

.. Cholesky Factorization . 

. Results and Discussion . 

6 Conclusion 111

. Contributions . 

. Future Directions . 

7 Bibliography 117



List of Figures

- The contributions in this dissertation . 

- Barr-style deformations . 

- Free-form deformation . 

- Skeleton-subspace deformation . 

- Overview of deformation transfer . 

- The transfer problem is demonstrated on a bending line 

- Deformation gradient mapping . 

- Boundary-based deformation gradients versus isomorphic dissection 

- Source deformation gradients are used to deform the target mesh 

- Linear system construction for identical topology 

- Linear system construction for different topologies 

- The nonzero structure of A>A for the lion mesh 

- Horse poses transfered to a camel . 

- Cat poses retargeted onto a lion . 

- Mismatched reference poses . 

- Collapsing horse transferred to the camel . 

- Transferred facial expressions . 

- Galloping horse animation retargeted to the camel 



- Horse poses mapped onto a flamingo . 

- Horse poses mapped onto an elephant . 

- Self-intersections are not prevented by deformation transfer 

- Inflating a 2 shape . 

- Inflating a 3 shape . 

- Overview of the correspondence system . 

- Grid-based spatial binning algorithm . 

- Results from template fitting . 

- Template-fitting as a stand-alone application . 

- Visualization of the triangle pairings . 

- Correspondence comparison with Kraevoy and Sheffer [] 

- A simple demonstration of MIK . 

- Rotation correction . 

- Three-way interpolation . 

- Using MIK to pose a bar . 

- Posing the lion mesh . 

- Posing a simulated flag . 

- Galloping horse and elephant animations . 

- MIK solve time versus number of examples . 

- A horse/tree transfer is ambiguous . 



Introduction 1
Animators bring fictional characters to life through movement. Their central task is to make a character

act with personality and style, and thereby tell a story. The animation process begins in the modeling

stage with the construction of a three-dimensional (3) digital representation of a character’s shape.

The 3 model can be created with software tools or sculpted out of clay and scanned. The end result

of modeling is a static shape that must be instrumented with so-called rigging controls to change its

posture, bulge muscles, change facial expressions, and generate other necessary deformations. The

rigging stage is critical since these controls determine the full range of deformation that will be seen

in the final result. During the animation stage, the animator uses the rigging controls to create

continuous movement by reposing the character over the course of the animation.

Although this process is effective, all aspects of it are challenging and labor intensive. The rigging

procedure is perhaps the most expensive stage in the animation pipeline since it requires both artistic

talent and technical expertise. Crafting the deformations required for lifelike movement is an artistic

endeavor, while building the rigging controls to achieve these deformations is inherently technical.

Once a rigging control has been designed, specializing it for a particular character’s shape often involves

time consuming parameter tuning in order to ensure that the generated deformations are acceptable

for all control settings. The rigging process is tolerated because it is an essential component of the

animation pipeline. It allows the user to parameterize the space of meaningful deformations so that

the character can be animated efficiently.



Despite the tremendous amount of artistry, skill, and time dedicated to the animation process,

there are few techniques to help with reuse. In order to reuse a deformation created for one shape

on another, the specific parameters that control the deformation must be adapted to the new shape.

Hand-sculpted alterations made during modeling have no inherent parameterization and are not easily

adapted. For most rigging controls, re-tuning the parameters is just as time consuming as starting

from scratch. Special-purpose transfer algorithms can adapt some forms of rigging and associated

animation, but may fail in the common case were a variety of rigging techniques are used in tandem.

As a result, the work spent modeling, rigging, and animating a character cannot be reused after its

planned application.

Current research in character animation addresses individual aspects of the animation pipeline, but

does not extend beyond the boundaries of any single stage. As a consequence, the global procedure

remains unchanged. The modeling, rigging, and animation phases must be followed, in order, to

create a character and make it move. With no general method of reuse, the entire process must

be repeated from scratch for each new character. The rigid procedure for character animation and

the absence of reuse algorithms are significant problems in computer animation addressed in this

dissertation.

Challenges

Shape deformation plays an essential role throughout the animation pipeline. Editing tools employ

deformation algorithms to sculpt a character’s shape, rigging controls parameterize meaningful de-

formations, and animators use the rigging controls to create continuous deformations over time. The

deformations employed by animation range from those that are primarily skeletal in nature (e.g.,

bending at the elbow) to ones that are non-rigid (e.g. facial expressions, cloth). To accommodate this

wide range, a generic reuse mechanism must provide some way to represent arbitrary deformations

without making domain-specific assumptions that would limit its applicability.

In order to effectively reuse the motion of one shape to deform another, deformations must be

applied to semantically similar components: the legs of one character should deform like the legs

of the other, the head like the head, the tail like the tail, and so on. To resolve all ambiguities, this

association should continue to the smallest geometric entities. For example, when triangle meshes

represent a character’s shape, reuse should ensure that individual triangles are deformed appropriately.



Differences in mesh topology must also be considered in order to accommodate characters that have

a different number of triangles, number of vertices, connectivity, or genus.

In order to escape the traditional animation pipeline, alternate methods are required to specify the

meaningful deformations of a character and create animation using this specification. Example data

demonstrating prototypical deformations is a convenient specification, but requires some technique

to generalize from the given examples.

Contributions

The research I present in this dissertation eases the animation process by adding a general-purpose

reuse mechanism to the animation pipeline and breaking the traditional modeling-rigging-animation

sequence so that animators can skip the time-consuming rigging stage and specify the class of mean-

ingful deformations through examples. A differential specification of arbitrary deformation provides a

representation to transfer deformation between disparate meshes, compute semantic correspondence,

and extrapolate natural deformations from a collection of examples. These topics are discussed below

and summarized in Figure -.

Deformation Transfer. Deformation transfer retargets any deformation of a source character onto

a different target character. Since this algorithm makes no assumptions about the method used

to deform the source shape, it adds a general-purpose reuse mechanism to the animation pipeline.

Deformations from hand-sculpted alterations made during modeling or individual poses produced

with rigging controls can be reapplied to new characters. An animation sequence can be retargeted

by applying the transfer algorithm frame-by-frame. This functionality allows an entire database of

animations to be compiled and retargeted onto new characters when needed.

In order to support a completely general specification of deformation, my algorithm uses a

representation based on the deformation gradient tensor field. Used in continuum mechanics, this

quantity is a differential specification designed to represent large deformations. Since change in shape

is most naturally specified as a differential quantity, deformation gradients are an appropriate choice

for the transfer problem. A deformation gradient is the 3 × 3 Jacobian matrix of a global function

that maps points from R
3 to R

3. Since this function is defined for volumes and characters used in

animation are often represented as triangulated surfaces, I propose a boundary-based approximation



of the deformation gradient tensor field on a triangle mesh. Each per-triangle deformation gradient

encodes the change in orientation and stretch induced by the deformation on the triangle. Taken as

a whole, the per-triangle deformation gradients can represent any mesh deformation regardless of its

origin or complexity.

Deformation transfer employs a discrete correspondence, discussed below, that associates triangles

of a source mesh with those of a different target mesh in order to indicate which triangles should

deform similarly. This mapping makes the transfer algorithm broadly applicable since the source and

target need not have the same topology or even anatomical structure. Per-triangle source deformation

gradients encode the change in shape of the source mesh from a reference pose to a deformed pose.

The transfer algorithm constructs these source deformation gradients, relates them to the target mesh

via the correspondence map, and reconstructs a deformed target from this differential specification of

deformation. The reconstruction process is expressed as a quadratic optimization problem so that the

reconstructed target mesh will mimic the source deformation as closely as possible in a least-squares

sense. The resulting normal equations are efficiently solved using sparse Cholesky factorization.

After factoring, transferring a new deformation to the target mesh only requires performing the

backsubstitution step.

Correspondence. A correspondence algorithm relates semantically similar mesh components to

one another using a user-guided template-fitting procedure to find a partial parameterization of one

mesh with respect to the other. The user controls the process through the specification of marker

points at matching features on each mesh. The fitting procedure deforms one mesh to match the

shape of the other. This deformation is formulated as an optimization problem using the same

deformation gradients that enable deformation transfer. The algorithm is applied iteratively until a

close match in shape is achieved. Since only a partial parameterization is required, the procedure

can handle situations where a strict parameterization does not exist: the two meshes need not be of

the same genus, and the algorithm is robust to topological “errors” where connectivity is improperly

specified.

Once a close match in shape is found, a discrete correspondence map is extracted by searching

for pairs of triangles whose centroids are in close proximity. This pairing indicates the parts of the

two shapes that should deform similarly and provides a versatile specification of correspondence since



it supports a general many-to-many mapping. The generality enables transfer between meshes of

different topology or even gross anatomical structure.

Mesh-Based Inverse Kinematics. Mesh-based inverse kinematics (MIK) extends the idea of tra-

ditional skeleton-based inverse kinematics to meshes by allowing the user to pose a mesh via direct

manipulation. With MIK, the user avoids the time-consuming rigging stage and instead indicates

the class of meaningful deformations using examples. The examples can be scanned, hand-sculpted, or

designed with deformation tools from any stage of the animation pipeline. Because of the versatility

with which examples can be created, MIK simplifies posing tasks even when traditional animation

or editing methods do not apply. Furthermore, this work builds upon deformation transfer since the

required example deformations can be automatically transferred from another mesh.

Once these examples are given, the user can select and drag any subset of mesh vertices to produce

a meaningful change in shape. Although the user retains complete freedom to precisely specify the

position of any vertex, most tasks only require moving a few. As a result, MIK achieves meaningful

mesh deformations and pose changes in an intuitive manner with only a small amount of work by the

user. The animator can pose an object by moving only a few vertices or bring it to life by keyframing

these vertex positions. Furthermore, the user always retains the freedom to choose the class of

meaningful deformations for any mesh.

In MIK, a feature vector of deformation gradients is computed for each user-given example

deformation. A nonlinear span of these feature vectors defines a feature space of appropriate mesh

deformations. When the user displaces a few mesh vertices, MIK positions the remaining ones

to produce a mesh whose feature vector is as close as possible to the feature space. This procedure

ensures that the reconstructed mesh meets the user’s constraints exactly while it best reproduces the

example deformations.



Deformation Gradients

Deformation Transfer Correspondence

Mesh-Based Inverse Kinematics

Figure -: An overview of the contributions in this dissertation is depicted above. Deformation transfer
adds a general-purpose reuse mechanism to the animation pipeline by transferring any deformation of a
source triangle mesh onto a different target mesh. The transfer system uses a correspondence algorithm
to build a discrete many-to-many mapping between the source and target triangles that permits transfer
between meshes of different topology. Mesh-based inverse kinematics allows the animator to skip
the time consuming rigging stage and instead specify the class of meaningful deformations through
examples. The examples can be created automatically with deformation transfer, sculpted, scanned,
or produced by any other means. Each of these algorithms employs the same differential specification
of deformation based on the deformation gradient tensor field from continuum mechanics.



2Character-Animation Pipeline

Character animation is divided into three stages—modeling, rigging, and animation—that must be

followed, in order, to create a character and make it move. Animating a new character requires

starting the process over at the beginning. The research presented in this dissertation aims to provide

a degree of compatibility in the animation process that previously did not exist. My work allows

disparate characters to be related to one another so that changes in one, whether hand sculpted

alterations made during modeling, individual poses produced with rigging controls, or movement

made by manipulating the controls over time, can be transferred to the other. I show how to break

the modeling-rigging-animation sequence so that artists can leverage the ease with which a character’s

shape is modeled and avoid the difficulties inherent in the rigging process.

Naturally, these contributions are best understood in the context of current animation procedures.

This chapter presents the three primary stages in the character animation pipeline. Each stage entails

a different set of goals and challenges. I describe the issues involved and discuss the substantial amount

of related research in these areas.

2.1 Modeling

The first step in animation is generating a digital representation of the character to be animated.

The shape creation process is variously called modeling, sculpting, or mesh editing, and a variety of



techniques exist to accomplish it. In computer animation, sculpting a character out of real clay or

other materials is still a common technique since it gives artists a highly expressive medium with which

they are well trained. The physical model of the character, called a “maquette,” is scanned to create

a digital representation. While sculpting from real clay has been perfected over thousands of years,

newer modeling techniques work directly with a digital representation. The format used to represent

a character’s shape influences the type of modeling operations that can be performed. Thus, I first

summarize common formats used to represent digital geometry and then describe modeling tools

used to sculpt a character’s shape.

2.1.1 Geometric Representations

Digital representations of geometric objects are abundant. Since each representation has advantages

and disadvantages, the choice of which one to use should be governed by the requirements of the

application for which it is needed. Triangle meshes are one of the most common and widely used

formats because of the ease with which triangle mesh data can be acquired using 3 scanners. A

triangle mesh consists of a sequence of vertices V = (v1, v2 . . . vn) and faces F = (f1, f2 . . . fm).

Each vertex is a position in 3 space and each face is a sequence of three vertex indices indicating how

the vertices are connected to form a triangle. The union of all triangles represents the surface of an

object. The topology of the mesh refers to the mesh structure: the number of vertices and faces as

well as their connectivity. In contrast, the shape of the mesh is determined by the positions of the

vertices.

Meshes are often acquired through 3 scanning. While scanned meshes include fine details, they

require a large amount of storage to do so. Since each face of a polygon mesh is planar, many faces

are required to faithfully reproduce high-frequency surface detail. As a result, meshes with hundreds

of thousands of triangles are commonplace. The large storage and complexity in terms of number of

vertices and faces required to reproduce fine-scale features are disadvantages of triangle meshes.

One common topological consideration with respect to triangle meshes is whether or not a given

mesh is a manifold. A manifold with boundary is a surface in which the neighborhood of every point

is topologically equivalent to a disc, for interior points, or a half-disc, for boundary points. In order for

a triangle mesh to be manifold, every interior edge must have exactly two incident triangles and every

boundary edge must have exactly one. In addition, triangles which share a given vertex must form a



closed loop around that vertex, or a single fan for boundary vertices [Garland ]. Many algorithms

require meshes that are manifold with boundary. Others require manifold meshes (with no boundary)

which are called watertight. Still other algorithms restrict the genus, or, informally, the number of

holes in the mesh. Unfortunately, triangle mesh data generated by scanning systems is notoriously

“messy” and often non-manifold. Repairing such meshes is an active area of research (cf. [Ju ;

Sharf et al. ; Nooruddin and Turk ; Liepa ]). However, the algorithms presented in this

dissertation do not require manifold surfaces or place restrictions on the mesh genus.

Another consideration with meshes is parameterization. A parameterization is a mapping

P : R
2 → R

3 from 2 points in the plane to 3 points on the surface. Triangle meshes provide

no explicit parameterization and computing one is non-trivial. Because of their importance in tex-

ture mapping and mesh processing, computing high-quality parameterizations has received much

attention. For the purposes of my research, so-called cross-parameterization [Kraevoy and Sheffer

] or inter-surface mapping [Schreiner et al. ] is more important. These methods compute

a parameterization of one triangle mesh with respect to another. This type of parameterization is

discussed in Chapter  as it relates to mesh correspondence.

Although I consider triangle meshes to be the most appropriate representation for the presented

research, it is important to consider other representations that are actively used in modeling and

animation. Triangle meshes have two advantages over polygon meshes, in which each face is a planar

polygon with an arbitrary number of vertices. First, every face in triangle mesh has the same number

of vertices, which simplifies implementation. Second, each triangle is, by definition, planar, unlike in a

general polygon mesh where faces may become non-planar due to programming or precision errors.

On the other hand, some surfaces are better approximated by non-triangular faces [Dong et al. ;

Cohen-Steiner et al. ].

A parametric surface is a mapping of the flat 2 plane to a curved 3 surface that takes the form:

r(u, v) = x(u, v)̂ı + y(u, v)̂ + z(u, v)k̂.

Thus, parametric surfaces admit a natural parameterization, which is one of their primary advantages.

NURBS surfaces are a common parametric representation [Piegl ] that generalize B-spline curves

to surfaces. NURBS have been widely used in computer-aided design applications since they can



succinctly represent many smooth shapes, are efficient to evaluate, and support a variety of geometric

operations important to designers. Since a single NURBS surface, or “patch,” must be topologically

equivalent to a sheet, cylinder, or torus, complex shapes are modeled by stitching together many

patches. A collection of NURBS patches stitched together in this way is analogous to a polygon mesh

where each patch represents a curved portion of the object. The primary drawback of NURBS surfaces

is the difficulty in maintaining smoothness across patch boundaries. Creases where NURBS patches

join are often unavoidable [DeRose et al. ]. Nonetheless, many animation tools employ NURBS

patches to model the complex shapes of animated characters.

Subdivision surfaces provide the flexibility of polygon meshes yet still naturally represent smooth

surfaces [DeRose et al. ]. A subdivision surface is comprised of a polygonal base mesh and a set

of subdivision rules that indicate how the base mesh should be subdivided. Each step of subdivision

divides the mesh polygons into finer ones by adding new vertices and displacing them. Iteratively

applying the subdivision rules to the base mesh yields a mesh of increasing smoothness. Thus, a coarse

base mesh with a small number of vertices can represent a smooth object in the limit of the subdivision

procedure. Sharp features can be represented by adding special “crease” rules to the subdivision

scheme that cause some mesh edges to be only partially subdivided.

Subdivision surfaces are flexible since the base mesh is a polygon mesh that can be created

or modified using any mesh editing tools. The limit surface generated after repeated subdivision

is smooth without the continuity problems that are common with NURBS representations. This

flexibility and guaranteed smoothness makes them well suited for animation and has resulted in their

widespread adoption in recent years [Zorin and Schröder ]. Like triangle meshes, subdivision

surfaces give no explicit parameterization of the 2 plane. However, a parameterization of the limit

surface to the base mesh is a natural consequence of the subdivision procedure. Since any triangle

mesh can be used as a base mesh for subdivision, the algorithms in this dissertation are compatible

with subdivision representations.

Point-based representations [Zwicker et al. ] use 3 points to represent a continuous surface.

In essence, a point-based surface is a polygon mesh with the connectivity information removed and

hence is sometimes called a “meshless” representation. Point-based surfaces simplify many geometric

operations such as editing, deformation, surface completion, and resampling. However, they require

more sophisticated algorithms for other tasks including normal estimation and surface extraction.



An implicit surface is defined as the isosurface of a 3 scalar function:

f(x, y, z) = constant.

One advantage of implicit surfaces is their ability to represent surfaces of complex and changing

topology. Thus, they are a natural choice in situations such as fluid simulation where topological

changes are common. When topological changes are not required, implicit surfaces may be a

hindrance since preventing a change in topology can be difficult. Distance and inside/outside queries

are efficient with implicit surfaces. Often, the implicit function represents the distance to the surface

so that the distance from a point in space to the surface is computed by simply evaluating the

function at that point. With other representations, distance queries are more difficult to implement

efficiently.

I choose triangle meshes to represent geometric objects for the research presented in this disserta-

tion over other options for several reasons. On the practical side, triangle meshes are, in my opinion,

the simplest representation with which to work. They do not require complex data structures for

storage, for display, or for other tasks such as normal estimation. Because of 3 scanners, mesh data

is abundant. Triangle meshes provide the highest degree of compatibility since any other represen-

tation can be converted to a triangle mesh: polygon meshes and subdivision surfaces at any level of

refinement can be triangulated [O’Rourke ], parametric surfaces can be sampled in parameter

space to generate a triangle mesh at any resolution, implicit surfaces can be triangulated using efficient

polygonization algorithms [Lorensen and Cline ; Bloomenthal ], and triangulated surfaces

can be extracted from point-based representations [Curless and Levoy ]. Due to this high level

of compatibility, they are well supported by commercial software which facilitates the generation of

example meshes with which to test the presented algorithms.

From a technical standpoint, the algorithms in my dissertation deal with the deformation of

geometric objects. Since each triangle is a piecewise linear approximation of the object’s shape, it

is possible to extract the effect of the deformation on a single triangle as an affine transformation.

In contrast, a single affine transformation may not be able to capture the change that a general

polygon or entire NURBS primitive undergoes during deformation. At the other extreme, point-based

representations provide too little information to compute such a transformation for each point. With



implicit surfaces, the concept of deformation is ill-defined since there is no clear correspondence

between surfaces extracted from different implicit functions.

On the other hand, some aspects of using triangle meshes are cumbersome. For example, the

correspondence algorithm in Chapter  relies on a compatible-closest-point computation. Efficient

implementation of this query with triangle meshes requires precomputing a spatial-binning data struc-

ture and performing a complicated breadth-first search for each query. Furthermore, the efficiency of

the deformation transfer (Chapter ), correspondence (Chapter ), and mesh-based inverse kinematics

(Chapter ) algorithms depends on the number of vertices that comprise the mesh. Performance

suffers with densely sampled meshes.

2.1.2 Modeling Tools

Once the choice of how to represent geometric objects has been made, the actual shape of the character

must be sculpted. This process may involve creating the character’s shape from “scratch” (sometimes

called ab initio design [Zorin et al. ; Kobbelt et al. a]) or modifying an existing version created

earlier or acquired by a scanner.

When building a shape from scratch, tools focus on the creation of smooth surfaces. For example,

geometric primitives such as spheres and cylinders can be combined to make more complex shapes,

NURBS patches can be stitched together to form a smooth surface, and variational techniques yield

smooth surfaces that interpolate user-specified control points [Welch and Witkin ; Sorkine and

Cohen-Or ]. Teddy, one of the most well known research efforts exploring novel interfaces for

ab initio design, “inflates” hand-drawn sketches to create smooth 3 shapes [Igarashi et al. ].

Early work in modeling focuses on space deformations that generate large-scale changes by modifying

only a few parameters. Space deformations merge well with the shape design process as they easily

accomplish scales, twists, bends and other modifications that are required when sculpting from scratch.

Because of the increasing prevalence of mesh representations, recent research focuses on sculpting

tools for meshes that provide more flexibility than space deformations. Editing a scanned mesh entails

different requirements than ab initio design. Meshes acquired with 3 scanners are extremely detailed

and may contain hundreds of thousands or even millions of vertices. When editing these meshes, the

focus shifts from creating smooth shapes to detail preservation: low-frequency changes to the mesh

should preserve the high-frequency details. Detail preservation is a necessary consequence of the



complexity of scanned meshes. Generating a broad change in shape by moving every vertex individually

would be tedious and inefficient. Mesh editing tools allow edits at different frequencies to be created

more efficiently. Two major categories of detail-preserving editing techniques are multiresolution

methods and differential representations. In this section I first discuss space deformations and then

these two mesh editing techniques.

Space Deformations

Space deformations deform solid or surface primitives by remapping the space in which the primitives

are embedded. They can be applied to any of the geometric representations defined in Section ...

In 3, a space deformation is defined by a global function U : R
3 → R

3 where

U(p) = U(p1, p2, p3) =













U1(p1, p2, p3)

U2(p1, p2, p3)

U3(p1, p2, p3)













.

Barr [] is the first to use this type of function as a modeling tool. He refers to U as a “globally

specified deformation” and proposes several examples including functions for twisting, bending, and

tapering. Barr demonstrates how to construct a chair using six primitives and seven bends. These

deformations are still in use today and are incorporated into present-day modeling and animation

software as so-called nonlinear deformers [Alias ]. Figure - shows several examples of these

deformations.

Barr also defines a “locally specified deformation” to be the 3 × 3 Jacobian matrix of U:

J =
∂U
∂p

=















∂U1

∂p1

∂U1

∂p2

∂U1

∂p3

∂U2

∂p1

∂U2

∂p2

∂U2

∂p3

∂U3

∂p1

∂U3

∂p2

∂U3

∂p3















. (.)

The matrix J indicates how differential vectors are transformed by the function U. If some surface is

embedded in the space operated on by U and the vector t is tangent to the surface before deformation,

then the vector Jt will be tangent to the surface after deformation. If the vector n is normal to the

surface before deformation then | J | J−1>n is normal to the surface after deformation, where | · |



Figure -: A box (far left) is deformed by several Barr-style deformations.

Figure -: Manipulating the vertices of a free-form deformation lattice induces a deformation on the
enclosed space.



indicates the determinant. Barr also defines a procedure to convert a locally specified deformation

of a primitive back to a global specification via integration. Starting from some arbitrary origin

(the constant of integration), the differential changes are integrated across the primitive to find the

global deformed positions. This procedure requires J to actually be the Jacobian matrix of some space

deformation. As Barr notes, his description of deformation is completely general. For this reason, it

forms the basis of the deformation representation I use for the algorithms presented in this dissertation.

Although Barr’s global and local deformations are well suited for algebraic operations such as

bending, twisting, and tapering, his method does not provide an interface for more general sculpting

operations. Free-form deformation (FFD) is an alternate space deformation technique with a long

history in graphics. In the original formulation of Sederberg and Parry [], FFD is a mapping from

R
3 to R

3 determined by a trivariate tensor product Bernstein polynomial. A 3 parallelepiped lattice

forms the control points of the polynomial so that deforming the lattice points induces a deformation

on the enclosed space. Figure - shows an example. An important property of FFD is that the

generated deformations are independent of the complexity of the object being deformed. Sederberg

and Parry easily sculpt a rod into the shape of a telephone handset using three FFD lattices.

FFD has been extended in many ways. Greissmair and Purgathofer [] extend the original

formulation to trivariate B-Splines. Coquillart [] provide an extended set of lattices while Mac-

Cracken and Joy [] allow lattices of arbitrary topology. Hsu [] allows the user to manipulate

the embedded object directly rather than indirectly via the lattice control points. The change in control

point positions is solved for automatically to match the surface point change.

The WIRES framework of Singh and Fiume [] borrows the idea of deformations controlled by

polynomial curves from the FFD setting (where the curves are encoded as trivariate tensor products)

but removes the tensor setting. Instead, object geometry is bound to curves drawn on its surface.

Subsequent manipulation of the curves induces a space deformation that is applied to the geometry

according to a distance function.

Multiresolution Mesh Editing

Multiresolution editing techniques allow the user to edit highly detailed mesh representations. As

opposed to space deformations, multiresolution methods address mesh detail directly: the user should

be able to decide at which scale to alter a mesh. Details encoded in higher frequency bands should



be preserved. Multiresolution methods achieve detail-preserving edits at varying scales by generating

a hierarchy of simplified meshes together with corresponding detail coefficients. When the user

changes the mesh at a coarse resolution, finer scale details are preserved. The original formulation by

Lounsbery, DeRose, and Warren [] extends multiresolution analysis based on wavelets to polygon

meshes in order to achieve not only multiresolution editing but also compression, continuous level-of-

detail, and progressive display/transmission. This representation consists of a base mesh together with

a sequence of detail coefficients that indicate how to recover the input mesh from repeated subdivision

of the base. This scheme suffers from two primary problems. First, since it is based on subdivision,

the original mesh must have so-called subdivision connectivity or, equivalently, be semi-regular: each

sub-region of the input mesh that corresponds to a single face of the base mesh must have the same

connectivity that results from repeated subdivision of the face. In order to edit arbitrary meshes,

researchers have proposed remeshing strategies to enforce the required connectivity (cf. [Eck et al.

; Lee et al. ; Kobbelt et al. b; Boier-Martin et al. ]). However, remeshing is sometimes

undesired as it yields only an approximation of the original geometry. Second, once the desired

connectivity has been achieved, low frequency edits are restricted to the vertices of the simplified mesh

at the proper resolution for that frequency. However, these vertices may not align with features that

the user wants to change.

To address these problems, Kobbelt and colleagues [Kobbelt et al. ; Kobbelt et al. a]

propose geometric simplification (i.e., smoothing) as opposed to topological simplification. Discrete

fairing [Kobbelt ] is used to create a smoothed version of the mesh with the same topological

structure. Detail coefficients store vertex displacements between the smoothed and original surface.

The authors propose an editing interface which has been used by many subsequent applications. The

user selects an arbitrary support region on the mesh, or region of interest (ROI). The support region

will be modified by the user while the rest of the mesh remains unchanged. Next, the user marks a

handle region within the support. The handle can be manipulated by the user by applying translations,

rotations, or other transformations. When the user selects the support region, it is smoothed subject

to continuity constraints with the handle and the remainder of the mesh. Detail coefficients are then

computed. As the handle is moved, the smoothed surface is updated and the details are added to

reconstruct the edited shape. Botsch and Kobbelt [] extend this method to allow continuous

control of the mesh continuity at the handle and support region borders.



The idea of using vertex displacements to store mesh details is well explored. Zorin and col-

leagues [] extend the original multiresolution method of Lounsbery, DeRose, and Warren []

to use detail coefficients based on displacements rather than wavelets for meshes with subdivision

connectivity. Guskov, Sweldens, and Schröder [] remove this restriction in their work on mul-

tiresolution signal processing. Guskov and colleagues [] and Lee, Moreton, and Hoppe []

develop mesh representations based on displacement vectors. Kobbelt, Bareuther, and Seidel []

remove the restriction of any hierarchal structure linking different levels of detail in a multiresolution

framework: each level can have an arbitrary vertex connectivity. Detail information is found by casting

rays from vertices in one level to the next to compute normal offsets. By providing a parameterization

[Kraevoy and Sheffer ; Schreiner et al. ] of one base mesh with respect to a different one

(with a different geometry and/or connectivity), the details can be transferred to the new mesh. This

form of transfer precipitates the expression transfer work of Noh and Neuhmann [Noh and Neumann

] which uses a parameterization to transfer vertex displacement vectors from one face mesh onto

another. The length and orientation of the vectors are corrected using heuristics based on the local

vertex neighborhood.

Differential Representations for Mesh Editing

The modeling tools discussed so far focus on the Cartesian representation of geometry: a shape is

defined by the Cartesian positions of its vertices or control points. Since the goal of many mesh editing

applications is detail preservation, it is advantageous to represent a shape in terms of these details.

Differential representations store information about the local shape properties of a mesh, such as

curvature, scale, and orientation. By representing a mesh in terms of these details, editing operators

can be developed that strive to preserve them.

Perhaps the most widely used differential representation is that of Laplacian coordinates, which

are also known as differential coordinates or δ-coordinates. (For detailed information, see Sorkine’s

recent survey [].) Laplacian coordinates were first used by Alexa for morphing [; b; b]

and by Lipman and colleagues [] for mesh editing. In this framework, a mesh is represented as the

difference of each vertex and a weighted sum of its neighbors. If the weights are chosen to be the so-

called cotangent weights [Meyer et al. ] then each Laplacian coordinate approximates the surface

normal and mean curvature. The linear operator L which extracts the Laplacian coordinates from the



Cartesian representation of a mesh is a square matrix with one row and column for each vertex that

discretizes the Laplace-Beltrami operator for triangulated -manifolds [do Carmo ]. Extracting the

Laplacian coordinates amounts to applying the linear operator (i.e., matrix multiplication); converting

back to Cartesian coordinates involves inverting L. Mesh editing is achieved by fixing some vertices as

constraints controlled by the user when reconstructing the Cartesian positions. This method is efficient

since the resulting normal equations need to be factored only once, after which the factorization can

be reused to reconstruct the edited surface via backsubstitution.

A persistent problem with the Laplacian representation its lack of rotation invariance. The

reconstruction procedure strives to preserve the global orientation of the Laplacian coordinates,

and, therefore, to preserve the orientation of local features. As a result, local features experience

shearing in an attempt to maintain their global orientation when the mesh is reconstructed. More

natural deformations result from rotating the features. Indeed, the multiresolution methods discussed

previously achieve natural deformations by computing detail coefficients in local frames that rotate as

the surface deforms. In Laplacian editing, Lipman and colleagues [] solve the Laplacian system

and then smooth the result to obtain estimates of the changes in surface orientation. Then, they

explicitly rotate the Laplacian coordinates by these amounts and re-solve to obtain the final result.

Sorkine and colleagues [Sorkine et al. ; Lipman et al. a] find the optimal transformation of each

Laplacian coordinate which requires linearization of the rotation constraint in order to maintain a linear

reconstruction procedure. Yu and colleagues [] extend Poisson-based gradient field manipulation

techniques which have proven successful for image manipulation [Fattal et al. ; Pérez et al. ;

Agarwala et al. ] to mesh editing. As in the image manipulation algorithms, Yu and colleagues

solve a problem of the form

∇2f = ∇ · w, (.)

subject to Dirichlet boundary conditions. In this equation, ∇2f = ∂2f
∂x2

1

+ ∂2f
∂x2

2

+ ∂2f
∂x2

3

is the Laplacian

of f with respect to the three coordinates x1, x2, and x3, and ∇ · w = ∂w1

∂x1

+ ∂w2

∂x2

+ ∂w3

∂x3

is the

divergence of the vector field w defined on the mesh. The unknown f represents one of the three

scalar coordinate functions defined on the mesh. Discretizing this partial differential equation for

triangle meshes leads to the same linear operator L, and solving it finds the mesh deformed according

to the guidance field w [Sorkine ]. The advantage of the Poisson framework is that the guidance

field w may be easier to specify than devising a way to transform the Laplacian coordinates directly.



Yu and colleagues [] compute the guidance field by using geodesics to propagate transformations

induced by handle vertices, while Zayer and colleagues [] propose a harmonic field for computing

the guidance field more naturally.

Other researchers have searched for rotation invariant mesh representations. The pyramid coordi-

nates of Sheffer and Kraevoy [] are invariant under rigid transformations. In this representation,

only lengths and angles are used to represent the mesh, giving it the desired invariance. However, the

algorithm to reconstruct the Cartesian representation from the pyramid coordinates is nonlinear and,

in their implementation, too slow for interactive mesh editing. Lipman and colleagues [b] present

a mesh representation invariant to rigid transformations based on the first and second fundamental

forms discretized for triangle meshes. This method also stores only lengths and angles. However, their

reconstruction algorithm requires only linear solves. First, a linear system is solved to find the local

frames at each vertex, and then a different system is solved to reconstruct the Cartesian coordinates

of the vertices from the frames. The method of Lipman and colleagues [b] as well as the Poisson

framework [Xu et al. ] also permit shape interpolation.

Other advancements in mesh editing address more sophisticated modeling metaphors. Nealen

and colleagues [] provide a sketch-based interface. The user marks the support region and then

draws a screen space curve that indicates the desired change in silhouette. Soft positional constraints

are derived from this curve and used to solve a Laplacian system for the deformed mesh. Llamas and

colleagues [] present a two-handed interface for deriving 3 space deformations, while Igarashi and

colleagues [b] develop a technique for deforming 2 shapes using a multiple-point input device.

2.2 Rigging

After the shape of a character has been designed, it must be instrumented with a set of controls that

allow the animator to deform the character into different poses. The modeling techniques discussed

in the previous section are not appropriate for animation since the numerical criteria employed by

modeling tools does not encode the animator’s high-level knowledge about how a character should

deform. For example, when manipulating a character’s leg, it should bend only at the hip, knee,

and ankle—not in an arbitrary location. The restricted set of meaningful deformations determines

the mesh kinematics, or how the mesh vertices are allowed to move. The kinematics includes the



animator’s semantic knowledge about which deformations are appropriate for the mesh in question.

Since modeling tools do not address mesh kinematics, a process called rigging is used instead.

During rigging, a character’s shape is augmented with a set of controls that approximate the char-

acter’s kinematics. These controls include both gross skeletal changes that determine the character’s

posture as well as more subtle deformations such as muscle bulging and facial expressions. The rigging

controls are like the strings of a marionette: they are used by the animator to make the character

move. The rigging process is one of the most important but also expensive steps in the production

pipeline. These controls determine the final shape that the viewer will see. Thus, the quality of the

deformations generated by the character’s rigging has a tremendous influence on the quality of the

final animation. Furthermore, since rigging is solely responsible for deforming the character’s vertices,

every nuance of expression that the animator requires to convey the story—from the bending of joints

to subtle facial motion such as furrowing the brow—must be captured by the rigging controls.

The most common form of rigging is skeleton-subspace deformation (SSD), which is sometimes

referred to as “skinning” or “enveloping.” This algorithm, although unpublished, is included in almost

all animation software packages and used, in some form, in most character animation generated

for film, television, and video games. Weber [] gives an excellent practical over of SSD. As the

name implies, SSD addresses skeletal deformation and begins with the construction of a kinematic

skeleton. A skeleton has the topological structure of a tree and consists of a collection of nodes

(“joints”) connected by edges (“bones”) that approximates the character’s true anatomical skeleton.

The skeleton is usually built manually by the artist, although some automatic techniques exist [Wade

and Parent ; Katz and Tal ; Liu et al. ; Thorne et al. ]. The bones of the skeleton

typically have a fixed length and the joints approximate real joints with either one (e.g., elbow, knee),

two (e.g., wrist, ankle), or three (e.g., neck, shoulder, hip, waist) rotational degrees of freedom. The

skeleton can be posed via forward kinematics in which values for the joint rotations are selected

manually, or via inverse kinematics in which positions for the end effectors are specified and the joint

angles are found automatically [Zhao and Badler ; Grochow et al. ].

In order to deform a character’s mesh using SSD, the skeleton is first placed in a bind pose which

matches the kinematic configuration of the mesh. Then, the mesh vertices are associated with the

joints of the skeleton through a collection of vertex weights. These weights indicate how the position

of each vertex should be influenced by the posture of the skeleton. A posed vertex position is given by



a weighted sum of its position in the local frame of each joint:

ṽi =

|J|
∑

j=1

wi,jMjBjvi, (.)

where ṽi is the posed position of vertex i, vi is its unposed position, J represents the set of skeletal

joint frames, Mj is the concatenation of joint frame transformations for the posed skeleton from the

root to joint j, and Bj is a matrix that expresses the undeformed vertex in the frame of the joint’s bind

pose. The parameter wi,j indicates how vertex i is influence by joint j. The weights for a given vertex

are typically restricted to be positive and to sum to one. The initial weighting may be calculated using

distance heuristics, and software packages often provide a “painting” interface for additional tuning

[Alias ]. If these weights are carefully selected, a gradual bend will occur at the joints.

SSD formalizes the space deformations of Barr [] (Section ..) in a way that makes them

appropriate for kinematic animation. Barr’s formulation includes global bends parameterized by

bending angle and bending rate. SSD computes a bending transformation for each joint parameterized

by angle (but not rate). The global nature of Barr’s deformations, which becomes unmanageable for

kinematic animation, is traded for a hierarchical structure and explicit weighting. The hierarchical

structure imposed by SSD allows changes in joints close to the root to automatically influence the

extremities. The weighting allows the user to manage which parts of the mesh are influenced by which

transformations.

The main advantage of SSD is speed. In most situations, a vertex will have nonzero weights for at

most four joints. Thus, only a few matrix-vector multiplications are required to compute each posed

vertex position. Furthermore, this algorithm can be implemented entirely on commodity graphics

hardware [Lindholm et al. ; Fernando and Kilgard ]. While SSD is simple and fast, it is also well

known for artifacts such as the “collapsing elbow” (Figure -). Unfortunately, the user may struggle at

length to remove these artifacts and never arrive at an acceptable result. No amount of weight tuning

can solve these problems since, in many cases, the desired deformation does not lie in the space of

deformations spanned by the SSD algorithm [Lewis et al. ]. This space is unclear and not easily

explored since the user only has indirect control over the mesh shape via the weights. In response,

Mohr, Tokheim, and Gleicher [] make the tuning process easier by visualizing the space of possible

deformations and allowing the user to directly manipulate vertices within this space.



Figure -: An arm mesh (Left) is posed using skeleton-subspace deformation. SSD performs the gross
skeletal deformation but suffers from collapsing artifacts near the elbow when the arm is bent (Middle)
which become more noticeable when the arm is twisted (Right).

In order to generate deformations outside the space of those spanned by SSD, Lewis and col-

leagues [] and Sloan and colleagues [] develop a hybrid method that combines traditional SSD

with shape interpolation, allowing the user to sculpt corrections to the character’s shape at arbitrary

kinematic poses. During character setup, the artist adjusts the joint parameters to pose the mesh

using naı̈ve SSD. Then the shape of the mesh can be altered using any mesh modeling tools to repair

artifacts like the collapsing elbow or to add more details such as muscle bulges. These alterations

are stored and associated with the character’s kinematic pose. During runtime, the hand-sculpted

changes are interpolated using radial basis functions based on the kinematic configuration of the

skeleton. EigenSkin [Kry et al. ] finds a reduced basis for the alterations that can be evaluated

on graphics hardware. While not using SSD per se, Allen, Curless, and Popović [] augment a

skeletal model with displacements derived from range scans of a human torso while Sand, McMillan,

and Popović [] compute displacements from silhouette information taken from video of an actor.

These hybrid techniques use the skeleton to encapsulate the mesh rotations and add linear offsets in

the rotated frames. In this way, they address similar issues as mesh editing algorithms [Lipman et al.

; Sorkine et al. ; Lipman et al. a; Sorkine ] which must find some way to compute

rotations so that features are transformed in a natural fashion.

The quality of SSD can also be improved by adding additional parameters to the model which

are automatically tuned to best reproduce user-supplied examples. With multi-weight enveloping,

Wang and Phillips [] extend traditional SSD by allowing each vertex to weigh each entry in each

joint frame matrix independently. Thus, every vertex has twelve weights per joint rather than one.



They show how to solve for these weights using a least-squares fitting procedure so that the resulting

deformations approximate a user-provided training set. Mohr and Gleicher [] address a similar

problem. They use traditional SSD as their articulation model but augment the skeleton with additional

heuristically chosen joints, as suggested by Weber []. Then, they use a user-provided training set

to solve for both the vertex weights and the bind pose positions. Other methods provide different

interpolation schemes in order to reduce artifacts [Kavan and Žára ; Kavan and Žára ].

As an alternative to SSD, researchers generalize free-form deformation (Section ..) to address

rigging and animation problems. Chadwick, Haumann, and Parent [] use a skeleton to influence

the control points of a FFD lattice in order to induce a deformation on a character’s mesh. This layered

approach in which the FFD lattice loosely represents muscle and fatty tissue precipitates the more

involved anatomical models discussed below. Singh and Kokkevis [] develop a hybrid deformation

algorithm that bears resemblance to both FFD and multiresolution modeling. A deformer object is

computed as a simplified approximation of a character’s mesh. The mesh vertices are bound to the

deformer object based on Euclidean distance, after which a change in the shape of the deformer is

propagated to the mesh.

Another important class of animation techniques extends FFD with physical simulation to gen-

erate dynamic deformations. Faloutsos, van de Panne, and Terzopoulos [] provide a dynamic

generalization of traditional FFD [Sederberg and Parry ]. Capell and colleagues [b] apply the

finite element method (FEM) to a control lattice defined using volumetric subdivision [MacCracken

and Joy ]. The same authors [Capell et al. a] apply this technique to skeletal-driven deforma-

tion by using a skeleton to infer constraints in the FEM simulation. This allows traditional skeletal

animation to generate dynamic effects. Capell and colleagues [] extend their work beyond skeletal

deformations to a complete physically-based rigging system.

While procedural techniques such as SSD compute approximate deformations very quickly, more

realistic skin deformations can be generated by modeling the anatomical structures underneath it at a

much higher computational cost. Anatomical models of the human head for facial animation have an

extensive history. Kähler [] gives a historical review of this literature as part of his dissertation on

the subject. For the human body, Chen and Zeltzer [] develop a physically-based model of muscles

and compare their simulations to real muscle experiments. Wilhelms and Van Gelder [Wilhelms and

Gelder ; Wilhelms ] present an anatomically-based model of animals that includes bones,



muscles, and tissue. Scheepers and colleagues [] develop a muscle model of the human arm

and torso. Teran and colleagues [] focus on numerical aspects of muscle simulation in order to

improve computational efficiency. The actual geometric shape of the muscles and other anatomical

structures can be created by hand [Scheepers et al. ; Aubel and Thalmann ], constructed

semi-automatically to conform to the 3 shape of a mesh [Wilhelms and Gelder ; Wilhelms ;

Pratscher et al. ], or built from medical data such as MRI scans [Chen and Zeltzer ] or the

visible-human data set [hong Zhu et al. ; Hirota et al. ; Teran et al. ].

Some rigging methods rely completely on shape interpolation. In blend-shape animation, motion

is generated by varying the blending weights in the linear combination of a collection of example

meshes in topological correspondence. This technique is a standard approach for facial animation that

has been used for twenty years [Lewis et al. ]. Its compatibility with modern graphics hardware

helps to maintain its popularity today. The success of blend shapes for facial animation as well as

methods that build linear [Blanz and Vetter ; Zhang et al. ] or multilinear [Vlasic et al. ]

models of facial expressions suggests that facial deformations are primarily linear in nature. Linear

models of full body shape variation are also successful [Allen et al. ] but require a more complicated

representation in order to accommodate kinematic deformations [Seo et al. ; Anguelov et al. ].

One important property of blend shape animation is that it can be retargeted onto a new character by

replacing each shape with a corresponding example of the new character in the same pose or making

the same expression. For example, Bregler and colleagues [] develop a system to capture 2

cartoon sequences using blend shape animation. Retargeting the animation onto a different character

requires replacing each pose of the blend shape model with a drawing of the new character. They

also demonstrate that kinematic deformations of 2 graphics can be reproduced using blend shapes if

the space is densely sampled. However, when applying their method to 3 characters, they opt for a

skeletal representation.

Ngo and colleagues [] present a formalism of the concept of rigging. They note that the config-

uration space of a shape—the space spanned by its degrees of freedom (e.g., mesh vertices)—contains

nonsense shapes in much higher proportion than meaningful ones. They propose to parameterize a

shape by modeling precisely the portion of its configuration space that is meaningful. To represent this

subspace, they use a cross product of simplicial complexes which can accommodate arbitrary topology.

Each vertex in the complex is associated with a point in the shape’s configuration space. Points inside



a simplex indicate interpolation via Barycentric weights. While Noh and colleagues propose building

the complex by hand, Kovar and Gleicher [] provide an easier mechanism for constructing it in

which the user is asked to classify a series of drawings as valid or invalid. Once the complex is build,

the user is free to select any position (or sequence of positions to create an animation) within it and is

guaranteed to get a meaningful result. Similarly, a SSD skeleton or other rigging control described in

this section is used to parameterize the space of meaningful mesh deformations—the mesh kinematics.

2.3 Animation

Once a character has been modeled and rigged, it is ready for animation. Animating a character is

the process of setting the values of the rigging controls over time in order to create the illusion of

movement. More stylized motion is usually created using keyframing in which the rigging controls

are set at key moments in time. The values of the controls at in between frames are interpolated

by the computer. Keyframing gives the artist full creative control over the resulting animation but,

as a consequence, burdens the artist with generating every required nuance of motion. When more

realistic motion is appropriate, the movement of a real actor can be digitized in a motion capture

studio. Motion capture returns skeletal motion that can be used to deform a mesh via SSD or other

skeleton-based rigging methods. Physics-based animation, which entails simulation of the physical

laws that govern the character’s movement, can generate realistic motion from sparse constraints and

generalize captured motion. However, the difficulty of controlling physical simulations can pose a

problem when artistic requirements demand a particular effect. Indeed, in both motion capture and

physics-based animation, the artist gives up control in order to simplify the animation process. Much

of the research in these areas focuses on regaining the lost control without sacrificing the benefits.

2.3.1 Keyframe Animation

Keyframe animation extends the process of traditional hand-drawn animation to the computer-

generated setting. In traditional animation, a character is drawn in key poses that capture the overall

action of the scene and its timing. Once the key poses have been established, the ones in between are

drawn in a process aptly named “inbetweening” [Johnston and Thomas ]. An analogous procedure

is followed in computer-generated animation. The values for the rigging controls are set at key points



in time and the values in between are computed by the animation software. Spline interpolation is

most often used for this purpose since it gives the animator control over continuity at the keyframes,

which is necessary to achieve the proper timing of movement. When generating keyframe animation,

an animator works much like a sculptor. First the gross motion is mapped out by setting keyframes,

say, for the global translation of the character. Then, little by little, more details are added. The

animator constantly “scrubs” through the motion generated so far to get an idea of what should be

animated next. The end result is fluid movement with both exaggerations and subtleties that, if done

properly, mask the deliberate intentions of the animator and make it seem as if the character is acting

on its own volition [Johnston and Thomas ].

Because of the strong correspondence between hand-drawn and computer-generated animation,

it is no surprise that the same fundamental principles that guide the art of hand-drawn 2 animation

apply to its 3 counterpart. Lasseter [] enumerates the principles perfected by the Walt Disney

Studio [Johnston and Thomas ]—squash and stretch, timing, anticipation, staging, follow through,

overlap, slow in / slow out, arcs, exaggeration, secondary action, and appeal—and describes how to

apply them in the computer generated setting. Although the roots of these principles are in art, they

are surprisingly applicable to technical research in computer graphics. For example, the principle of

squash and stretch says that objects in motion should be flattened or elongated to emphasize action

and speed. However, the volume of the object must remain constant during these changes. Both the

space deformations of Barr [] and free-form deformation [Sederberg and Parry ] described in

Section .. provide the facility to generate squash and stretch. However volume preservation has

long been and continues to be an active area of research [Sederberg and Parry ; Lee et al. ;

Rappoport et al. ; Hirota et al. ; Botsch and Kobbelt ; Angelidis et al. ].

Timing is a critical aspect of animation that conveys weight, size, speed, resistance, and force,

permits anticipation, follow through, overlap, and reaction, and even suggests mood [Whitaker and

Halas ]. In response to the importance of timing, researchers investigate intuitive interfaces to

specifying it. Terra and Metoyer [] develop a mechanism to re-time keyframe animation by “acting

out” the desired timing using a 2 sketching interface. Thorne, Burke, and van de Panne [] provide

a complete authoring system for computer-generated animation based on sketching that includes a

“cursive alphabet” for motion specification. Tokens in the alphabet are mapped to keyframe animation

sequences which are re-timed to match the speed with which the curves are drawn.



Igarashi, Moscovich, and Hughes [a] present an alternative to temporal keyframing in order

to accommodate performance-driven animation. In spatial keyframing, key poses are associated with

positions in 3 space rather than positions in time. Poses at other points in space are computed using

radial basis interpolation. An animation is generated interactively by drawing a path through the 3

domain. This method is quite similar to shape interpolation techniques that allow the user to place

shapes at arbitrary locations in an abstract space [Lewis et al. ; Sloan et al. ]. The spatial

keyframing method restricts the space to three dimensions and interpolates transformations rather

than vertex positions. In cartoon capture [Bregler et al. ], a subset of n hand-selected examples

from an existing animation form an n-dimensional space. A path through this space (analogous to the

path drawn interactively in spatial keyframing) is found automatically in order to reproduce the rest of

the animation. Replacing the n examples with n new ones of a different character in the same poses

retargets the animation to the new character. Likewise, replacing the poses used in spatial keyframing

with ones of a new character would retarget any recorded animations created with this method. James

and Twigg [] solve a problem similar to that of cartoon capture where deformations are controlled

by SSD rather than shape interpolation. In order to approximate an animation provided as a sequence

of mesh poses, a collection of bones and SSD weights are found, as well as a set of bone transformations

for each animation frame. This transformation sequence can be thought of as a “path” through the

SSD parameter space analogous to the path found for cartoon capture. However, the similarities do

not extend to transfer since there is no simple way to transfer a SSD animation onto a new character.

The animator’s overarching goal is to imbue a character with personality and style in order to

tell a compelling story. The character should appear as if all of its actions are the result of its own

decisions and thought processes [Lasseter ]. In the research community, two notable attempts

at creating autonomous characters that act and react under their own volition and with their own

personality and style (or appear to, at least) are the Improv system of Perlin and Goldberg [] and

the Gertie system of Loyall and colleagues []. These systems present authoring tools to generate

believable characters that respond to each other and to user input according to their personality and

mood while always staying true to the author’s goals and intentions. In essence, these tools are

designed to create an autonomous computer-generated “Kermit the Frog” or “Bugs Bunny” that acts

appropriately even though the puppeteer or animator is not in direct control. Both systems provide

an animation component responsible for movement and a behavior component that encapsulates



a character’s personality and decision making process. Improv uses a behavior scripting language

suitable for non-programmers that allows the author to craft complex non-deterministic behavior and

account for communication with other characters. Gertie provides a more full-featured language

designed to process, evaluate, and react to concurrent action.

Neff and Fiume [] provide an alternative authoring environment for expressive animation that

formalizes the separation between actions (such as waving) and style so that the two can be authored

independently. The same action will be performed differently by characters authored with different

styles. This system builds upon the authors’ earlier work on modeling the expressiveness conveyed by

muscle tension and relaxation [Neff and Fiume ], on interactive tools to edit the activation time,

range of motion, and extent of joints in an animated sequence [Neff and Fiume ], and on exploring

expressive variations in posture [Neff and Fiume ]. While some of these methods rely on dynamic

simulation (discussed below in Section ..), they are included here to emphasize their focus on the

aesthetic aspects of character animation.

Chi and colleagues [] develop tools to modify animated motion based on theoretical results in

classifying human movement. Motions are modified based on traits in two categories: effort involves

the level of tension and control, the sense of urgency, and the level of impact, while shape rates the

motion on being horizontal, vertical, and forward/backward. The authors develop algorithms to

change existing motions along these dimensions.

When skeletal rigging such as SSD is used, keyframe animation involves selecting angles for the

joints of the skeleton at key points throughout the animation. Inverse kinematics (IK) allows the

animator to pose the skeleton by directly positioning its extremities (e.g., hands and feet). The joint

angles required to satisfy the positional constraints are found automatically [Zhao and Badler ].

However, IK is a classic example of an underdetermined problem: many different joint configurations

are valid possibilities to meet the user’s constraints. In any IK implementation, some mechanism is

required to select one out of the many valid configurations. Grochow and colleagues [] propose

to resolve this ambiguity in a way that respects a character’s style. Their system uses a training set

of skeletal poses to learn a probability distribution function (PDF) over the space of all poses. Based

on this PDF, their algorithm selects the most likely pose that meets the user-supplied constraints. By

using a training set with examples of a particular style, the IK solution will exhibit the same style when

new poses are created.



2.3.2 Motion Capture

Motion capture is the process of recording the time-varying kinematic configuration of a real actor as

he or she performs a task or action. Modern motion capture technology [Vicon ] uses reflective

markers which are attached to the actor’s body at various positions. Cameras placed around the

workspace are used to recover the 3 positions of the markers over time. From these positions, the

joint angles of a kinematic skeleton are estimated at each frame. The result is an animated skeleton

performing the same action as the actor. Thus “motion,” in the context of motion capture, refers

to the recorded skeletal animation. The strength of motion capture is the relative ease with which

realistic motion can be generated. The recorded data exhibits the same nuances and style as the

performer which makes the motion appear natural and believable. The drawback of motion capture

is the difficulty of modifying the data once it has been recorded. Motion capture data represents the

exact action performed during the recording session and is appropriate only for a kinematic skeleton

that matches the proportions of the actor. Research in this area focuses on generalizing the captured

data so that it can be applied in a wider variety of situations. These efforts include editing the motion

capture data to easily generate smooth kinematic changes over time, retargeting the data to fit the

proportions of a different sized skeleton, combining small segments of motion to generate a wide

array of complex actions, and modifying the style in which an action is performed. In short, just as

with triangle meshes, as soon as the data is available, people want to edit it.

Early work applies signal processing techniques to filter, displace, and warp motion curves [Brud-

erlin and Williams ; Witkin and Popović ]. These methods permit simple kinematic changes,

such as making a walking character duck through a doorway, by adding smooth displacements. How-

ever, excessive work is required for complex alterations. Gleicher uses an optimal trajectory method

to edit motion capture data [Gleicher ] and retarget it to a new skeleton with identical structure

but different limb lengths [Gleicher a]. The optimal trajectory formulation (discussed also in

Section ..) permits arbitrary constraints at any point in time and can accommodate more complex

kinematic changes. However, the entire animation must be solved for in one global optimization

problem so that the motion at earlier points in time can anticipate constraints which will become

active later. Instead of optimal trajectory, Lee and Shin [] use a hierarchical curve fitting proce-

dure that allows constraints to be enforced without discontinuities. Monzani and colleagues []

employ an intermediate skeleton and an ease-in/ease-out procedure for constraints. Le Callennec and



Boulic [] demonstrate how to prioritize constraints to avoid problems that arise with competition.

When constraints on end effectors are explicitly defined throughout time rather than being turned on

and off at discrete moments, solutions based on inverse kinematics permit “online” motion retargeting

where the output is computed frame-by-frame without global knowledge of future constraints [Choi

and Ko ; Shin et al. ; Meredith and Maddock ]. These methods are especially useful in

performance driven animation where future constraints are not known. Gleicher presents a compre-

hensive overview of constraint-based kinematic methods including much of the research described in

this paragraph [].

The methods discussed so far are kinematic in nature. Superior results are achieved with algorithms

that employ physics to guide motion adaptation, albeit at a much higher computational cost. The

use of optimal trajectory techniques with constraints to enforce physics has been well explored. Most

research concentrates on ways to manage the complexity of human motion [Popović and Witkin

; Liu and Popović ; Safonova et al. ; Abe et al. ; Sulejmanpašić and Popović ].

Alternatives to optimal trajectory formulations are dynamic tracking which employs forward dynamics

to track recorded motion in a physically realistic way [Zordan and Hodgins ; Nancy S. Pollard

], dynamic filtering which modifies recorded motion to increase physical realism [Tak et al. ;

Yamane and Nakamura ; Shin et al. ; Tak and Ko ], and force-based editing which modifies

estimated forces to achieve new goals [Pollard and Behmaram-Mosavat ]. The general approach

of physics-based animation is discussed in more detail in Section ...

Motion editing and adaptation methods generalize specific motions to meet new constraints. In

contrast, motion graph methods create new motions by resequencing existing ones [Kovar et al.

; Lee et al. ; Arikan and Forsyth ]. Given a database of motion capture data, a graph is

formed by identifying segments of motion that can be plausibly blended. A walk through this graph

generates continuous movement by transitioning between the different segments. The transitions

can be computed using algorithms for motion blending [Perlin ; Rose et al. ; Park et al.

; Kovar and Gleicher ]. Given a motion graph, specific goals such as path following can be

accomplished by searching for the proper graph traversal. Computing the traversal interactively may

require precomputation [Lee and Lee ] or careful graph design [Gleicher et al. ]. The expected

quality of the results from using a given motion graph for navigation in a particular environment can

also be estimated [Reitsma and Pollard ].



One of the strengths of motion capture is its ability to reproduce the nuances of style that make

human motion look natural. Since style strongly influences perception, it plays an important role

in animation. Unuma, Anjyo, and Takeuchi [] demonstrate that adjusting frequency bands in

recorded motion can alter its perceived emotional content. Rose, Cohen, and Bodenheimer []

explicitly model style by scoring captured motions according to their style content and then blending

between them. Brand and Hertzmann [] and Hsu, Pulli, and Popović [] develop automatic

ways to learn the style exhibited in motion capture data and then retarget it to novel inputs.

2.3.3 Physics-Based Character Animation

In physics-based animation, motion is computed by simulating the physical laws that govern movement

in the real world. Research in this area strives to generate realistic motion such that a physical

replica of the animated object or character would move in the same way as the computer-generated

version. Indeed, many of the techniques discussed in this section have their roots in the study

of robot locomotion [Raibert ; Raibert and Hodgins ]. In physics-based animation, physical

parameters such as mass, force, velocity, and torque determine object motion indirectly via simulation.

The difference between this scenario and keyframe animation is obvious when considering a simple

example where a character drops a ball. In keyframe animation, the ball will hover motionless in

space unless the animator explicitly keyframes its movement. In physics-based animation, the ball will

fall to the ground under the force of gravity and bounce back up again. Simulation can be extremely

advantageous when the resulting motion matches the user’s expectations. However, it can be just as

frustrating when even a small change is required. The mapping between the simulation inputs and

the generated motion is complex, making any particular change difficult to achieve.

Although physics-based animation focuses on realism and keyframe animation often focuses on

expressive and caricatured motion, the two are not opposites. In fact, much of the art of traditional

animation is grounded in physics. When creating expressive animation by hand, some of the properties

an animator must consider include an object’s weight, how it will react when a force is applied, inertia,

momentum, reaction forces, gravity, center of mass, friction, and drag [Whitaker and Halas ]. The

expressiveness of traditional animation involves understanding the physical movement of an object

and then deliberately exaggerating the essential properties of that movement to an extreme [Whitaker

and Halas ].



This strong connection to physics is evidenced in optimal trajectory methods, dubbed “spacetime

constraints” by Witkin and Kass []. This formulation casts animation as constrained optimiza-

tion where the trajectories of the character’s degrees of freedom throughout the animation are the

unknowns. The user models the physical properties of the character such as its shape, mass, how

it is articulated, and how it is actuated (e.g., by using its muscles to create torques at its joints).

Constraints on the character’s position at different moments in time specify the goals of the animation

and an objective function such as energy conservation indicates how the character should accomplish

the goals. An optimization procedure automatically finds an animation that must obey the laws of

physics, that must satisfy all constraints, and that minimizes the objective. Witkin and Kass []

demonstrate that, when optimal trajectory methods are applied to ballistic motion, principles from

expressive animation such as squash-and-stretch, anticipation, and follow-through naturally emerge.

During the flight phase of a jump, a character’s motion is determined solely by its momentum and the

force of gravity. In order to land in a particular position, the character must anticipate that goal before

leaving the ground and adjust the takeoff accordingly. Since optimal trajectory methods solve for the

entire animation sequence at once, they are able to resolve this anticipation such that constraints at

any point in time can have a global influence. The optimal way for an articulated “Luxo” lamp to jump

from one spot to another is to crouch down in anticipation of the jump, propel itself into the air by

stretching out its body completely, and then tuck in at landing to absorb the impact. Furthermore, by

increasing the mass of the lamp’s base, an exaggerated version of the jump is created where the base

appears excessively heavy [Witkin and Kass ].

The optimal trajectory formulation, while effective, has limitations with regard to complexity,

interactivity, and goal specification. The optimization problem is highly nonlinear and rapidly grows

in complexity with the number of degrees of freedom and the length of the animation. Since the entire

animation is solved for at once, all constraints and objectives must be specified ahead of time with no

chance for unexpected user interaction. Finally, while a simple task such as an energy-conserving jump

is easily specified, more complicated movements or specific styles are difficult to encode mathematically.

In order to cope with the nonlinear nature of the problem, Ngo and Marks [] promote a global

search that explores a wider range of trajectories when trying to find the best one. Cohen [] divides

the large problem into small “windows” which cover smaller ranges of time as well as subsets of the

character’s full degrees of freedom. This reduces the complexity and accommodates user input since



the entire motion is not solved for at once. Other researchers mitigate the complexity of human motion

using a simplified character model [Popović and Witkin ], a hierarchical wavelet representation of

character motion [Liu et al. ], an alternative constraint formulation [Liu and Popović ; Fang

and Pollard ; Abe et al. ], or dimensionality reduction [Safonova et al. ]. Sulejmanpašić and

Popović [] demonstrate that proper scaling of the constraint equations allows efficient simulation

of human motion without simplification, reformulation, hierarchical representation, or reduction. In

order to relieve the burden of inventing an appropriate objective function for every desired class of

motion, many of these and other techniques [Rose et al. ; Popović and Witkin ; Abe et al. ;

Sulejmanpašić and Popović ] address motion adaptation (see Section ..) rather than generating

the motion from scratch. Liu, Hertzmann, and Popović [] describe how to learn the physical

parameters of a character such as its muscle preferences from motion capture data in order to generate

physical motions in different styles.

A different approach for physics-based animation combines forward dynamics with a general

control procedure, or controller, that encapsulates a desired action or behavior such as running or

balancing [van de Panne et al. ]. The controller examines the current state of the character (e.g.,

its kinematic configuration, external forces, etc.) and decides how to apply torques at the joints in

order to reach a desired goal state or to satisfy criteria pertinent to the motion that the controller is

designed to generate. For example, a balance controller may decide to apply torques to the character’s

knees in order to adjust the center of mass [Wooten ]. A controller can be thought of as a model

of the character’s instinctual reflexes that produce coordinated body movement for a particular task

[Popović and Witkin ]. Controllers allow the character to react to unexpected forces that might

be generated interactively by the user. Work in this area is derived from research in robot locomotion

[Raibert ; Raibert and Hodgins ] where sensors on the robot provide input to the controller

and torques are produced by actuators. Raibert and Hodgins [] present simulated versions of actual

robots that they built. A parallel can be drawn between this setting and the “straight-ahead” technique

from hand-drawn animation. Unlike keyframe animation where an entire sequence is planned ahead

of time using key poses, straight-ahead animation involves drawing one frame right after the next

in sequence [Blair ]. The animator must decide at each frame how the shape should evolve in

order to produce the desired result. In controller-driven animation, the control procedure makes an

analogous local choice about how to update the character’s state.



Controllers have been hand-designed for many specific tasks including, among others, running

and vaulting [Hodgins et al. ], bicycling [Brogan et al. ], leaping, tumbling, landing, and

balancing [Wooten ], diving [Wooten and Hodgins ], and swimming [Yang et al. ].

However, designing controllers by hand is difficult and requires a significant amount of tuning for

each new behavior and for each new character. Hodgins and Pollard [] describe an algorithm to

automatically adapt existing control systems to new characters. In order to develop a more varied

repertoire of dynamic actions, research has focused on composing simple controllers to create more

complex aggregate actions [van de Panne et al. ; Wooten ; Faloutsos et al. a; Faloutsos

et al. b]. Other methods augment forward dynamic simulation with motion capture to handle

impact, collision, and response [Zordan and Hodgins ; Komura et al. ; Zordan et al. ] and

to transition between simulation and motion capture [Shapiro et al. ].

Algorithms for the control of physics-based animation are both challenging and especially important

since, by the very nature of simulation, the animator has relinquished much of her control over the

resulting motion. Popović and colleagues [] allow direct manipulation of rigid body simulations at

any point during the animation timeline. A new motion is immediately found that meets the modified

constraints. Subsequent work [Popović et al. ] provides a motion sketching interface to design

rigid-body motion using a mouse or hand gestures. Kondo, Kanai, and Anjyo [] extend keyframe

control to elastic objects, although the resulting deformations are only loosely based on physics.

For actuated characters, simulations can be controlled by interactively selecting from a collection of

predefined controllers or by mapping the degrees of freedom of an input device to the character’s

degrees of freedom [Laszlo et al. ; Zhao and van de Panne ]. Laszlo, Neff, and Singh []

provide predictive feedback that looks into the (simulated) future and displays the possible results of

control decisions. Finally, a recent focus on control algorithms for fluid simulation allows fluids to be

animated as if they were characters [Treuille et al. ; Fattal and Lischinski ; McNamara et al.

; Shi and Yu ].



Deformation Transfer 3
Shape deformation plays a critical role in the animation pipeline. Sculpting tools are used to deform a

character’s shape to match the artistic vision of the designer. Rigging controls are created to param-

eterize the character’s meaningful deformations, and values for these controls are either keyframed,

captured, or simulated in order to create continuous deformation over time. Creating these deforma-

tions requires a tremendous amount of artistic and technical expertise. The vast amount of research

that aims to assist the user in each of these tasks attests to their difficulty. Despite the importance of

deformations in the animation process and the amount of artistry, skill, and time required to create

them, there are few techniques to help with reuse. The work spent designing a deformation typically

cannot be reused after its planned application.

Deformation transfer—the contribution discussed in this chapter—reuses any deformation of a

source mesh by transferring it onto a different target mesh [Sumner and Popović ]. Figure -

shows an overview of the transfer process. The deformation of a source mesh is specified by a reference

pose S and a deformed pose S̃ where the mesh topology (number of vertices, number of triangles,

and connectivity) remains the same but the vertex positions have been changed. Given a matching

reference pose T of a target mesh with a different topology, the goal of deformation transfer is to apply

the exhibited source deformation to the target in a natural way and produce a deformed target T̃ .

This problem presents several challenges. When editing tools are used to sculpt a mesh’s shape,

they leave behind no persistent history of the changes that have taken place. The many intermediate



?

Reference Source Deformed Source

Reference Target Deformed Target

PSfrag replacements

S S̃

T T̃

Figure -: An overview of the deformation transfer problem. We are given a source mesh in both
a reference pose S and a deformed pose S̃. The challenge of deformation transfer is to apply the
exhibited deformation of the source onto a different target mesh T in order to create a deformed
version of the target T̃ .

operations used to arrive at the final version are usually discarded to conserve space. Although rigging

controls often define a procedural equation for mesh deformation, the procedure may depend on

many parameters. The control must be specialized for each character’s shape by carefully tuning

these parameters in order to achieve a desired result. The parameters selected for one character will,

in general, not be appropriate for another. Re-tuning the rigging parameters is likely to be just as

time consuming as starting from scratch. The problem is compounded in the common case where

several different rigging controls are used in tandem. Designing automatic adaptation methods for

all forms of rigging and their combinatorial combinations is impractical. Furthermore, other shape

deformations are not procedural in nature and instead employ complex numerical simulations. In

light of the breadth of deformation algorithms used in the animation process, the first challenge

in the transfer problem is one of deformation representation. We require a representation of mesh

deformation that is independent of the algorithm that produced the deformation in the first place. In

order to be maximally general, it should not depend on any particular modeling procedure or rigging

algorithm.



When discussing the idea of deformation transfer, intuitively we know that the legs of the target

mesh should deform like the legs of the source, the head of the target like the head of the source, the tail

like the tail, and so on. However, current geometric representations have no concept of legs, head, or

tail. Since mesh topology almost always differs between characters, it is not clear how deformations of

one mesh should be transferred to a different one. Thus, the second challenge is one of correspondence.

We require some method to make precise the mapping between the source and target and define

which parts of the two shapes should deform similarly.

The final challenge is transfer. Given our representation of deformation and of correspondence,

we must develop an algorithm to transfer deformations of one character onto another via the cor-

respondence. The transfer procedure should be efficient and broadly applicable to the variety of

deformations and characters used in animation. Since there are many ways to represent deformation

and to specify correspondence, it is important to choose ones that are amenable to transfer. My

solutions to these three challenges are tightly coupled, with the single purpose of adding reuse to the

animation process.

3.1 Deformation Representation

In order to reuse shape deformations we need some way to represent the deformation that will

be transferred. This requirement is related to the issue of geometric representation discussed in

Section ... Here, however, we address the change in the shape’s geometry, rather than the geometry

itself. The representation should be general enough to accommodate the wide variety of methods

used in animation to create deformations. A general representation will allow any deformation to be

transferred, whereas assumptions made about the form of the deformations will necessarily limit the

applicability of the overall method.

3.1.1 Displacement Fields

One possible representation is a displacement field that encodes the positional change of each source

vertex. Noh and Neumann [] use this approach to transfer facial expressions from one face

mesh to another. Each expression is encoded with vertex displacements that define the differences

between the reference face and the expression face. Expressions are transferred by applying the source



A. Source deformation.
B. Transfer using

displacement vectors.

C. Transfer using

deformation gradients.

Figure -: The transfer problem is demonstrated on a bending line. (A) A horizontal line is bent
downward and represents the source deformation. Vertex displacements are shown in gray. (B) If
the displacements are copied directly to a shorter target line, the result is distorted in an unnatural
fashion. (C) Deformation transfer creates a more a natural result by transferring differential changes:
the change in length and orientation of each segment of the source line is applied to the target. (The
line shown was deformed using my system.)

displacements to the target mesh. While this method works for the relatively small deformations of

facial expressions, it does not extend to the general case of full-body poses. Indeed, other displacement-

based algorithms account for full-body deformation in a domain-specific way by, for example, using

skeleton-subspace deformation [Lewis et al. ; Sloan et al. ; Kry et al. ].

The limitations of a displacement-based approach are best understood by considering the overall

goal of deformation transfer: extract the change in shape exhibited by the source and apply it to

the target. Change is most naturally represented as a differential quantity. Displacements encode

the change in Cartesian coordinates but do not indicate how differential vectors have been modified.

Consequentially, applying displacement vectors to another shape does not preserve differential changes.

For example, if a character bends its arm at the elbow, displacement vectors do not discover the fact that

the arm has rotated. Applying these vectors to another character does not result in rotation. Figure -

illustrates the failure of a displacement-based transfer algorithm for the simple case of a bending

line. Noh and Neumann [] employ heuristics to mitigate the artifacts seen in Figure - B. Their

method adapts the length and orientation of displacement vectors based on differences in local shape

properties of the reference source and reference target faces. However these corrections are limited.

By considering differential changes, my algorithm permits the transfer of large-scale deformations

without the need of heuristics. The line in Figure - C is deformed with my transfer implementation

and faithfully reproduces the source deformation.



Reference

Configuration

Deformed

Configuration

PSfrag replacements
p

dp

U(p)

(∂U
∂p)dp

Figure -: A point p in
the reference configuration is
mapped to the deformed con-
figuration by the deformation
function U. Likewise, a differ-
ential vector dp is mapped by
the deformation gradient ∂U

∂p .

3.1.2 Deformation Gradients

Our objective is to encode shape deformation using a differential specification so that we can develop

a reuse algorithm that transfers differential changes. Continuum mechanics deals with the behavior

of materials subjected to external forces [Lai et al. ]. Because solids deform when under load,

the field of continuum mechanics provides tested methods for representing large deformations. The

so-called deformation gradient provides precisely the representation we need. Consider a solid object

in both a reference configuration and a deformed configuration (Figure -). Points in the reference

configuration are denoted by column vectors of their Cartesian coordinates p = [p1 p2 p3]
>.

The position of p after deformation, denoted as p̃ = [p̃1 p̃2 p̃3]
>, is determined by the function

U : R
3 → R

3 so that

p̃ = U(p) =













U1(p1, p2, p3)

U2(p1, p2, p3)

U3(p1, p2, p3)













. (.)

The deformation of an infinitesimal vector dp within the solid is determined by the deformation

gradient ∂U
∂p . Since U maps from R

3 to R
3 and varies with position, its gradient is a second-order

tensor field:

∂U
∂p

=















∂U1

∂p1

∂U1

∂p2

∂U1

∂p3

∂U2

∂p1

∂U2

∂p2

∂U2

∂p3

∂U3

∂p1

∂U3

∂p2

∂U3

∂p3















. (.)



The deformation gradient determines how dp changes as a result of the deformation U, yielding

dp̃ = (∂U
∂p)dp. It encodes the change in orientation, scale, and skew that differential vectors within a

solid have undergone. Because the deformation gradient encodes both rigid rotation and stretching,

it is an appropriate choice to represent the large deformations we wish to transfer.

Equation . is the Jacobian matrix of U, making this formulation identical to Barr’s [] local

deformations discussed in Section ... Barr uses the deformation gradient in the context of geometric

modeling in order to update tangent and normal vectors after a deformation has been applied. In this

setting, the function U is known explicitly and the deformation gradient at a particular point is found

by computing the partial derivatives analytically and then evaluating them at the point. Barr’s setup

limits the class of deformations to those that are easily expressed analytically such as bends, twists, and

stretching along predefined axes.

Simplicial Dissection

In the more general case where there is no analytic formulation, U can be discretized via a simplicial

dissection (triangulation in 2 or tetrahedralization in 3) of the shape. Each vertex i of the simplicial

complex is mapped by U from its initial position vi in the undeformed configuration to its deformed

position ṽi. Since points within each simplex are determined by a linear interpolant, the deformation

gradient tensor field is piecewise constant with one constant tensor Jj for each simplex j. These

tensors are referred to as the deformation gradients. Thus, each simplex acts like a differential volume

whose edge vectors (as well as all other vectors within the simplex) are transformed by its deformation

gradient. In 3, every simplex is a tetrahedron (tet) with four vertices. If these four vertices have

indices {i1, i2, i3, i4}, then the deformation gradient transforms the three independent edge vectors

of the tet according to:

Jj(vi2 − vi1) = ṽi2 − ṽi1

Jj(vi3 − vi1) = ṽi3 − ṽi1

Jj(vi4 − vi1) = ṽi4 − ṽi1

. (.)

We can rewrite this expression in matrix form

JjVj = Ṽj , (.)



where the 3× 3 matrices Vj and Ṽj contain the undeformed and deformed edge vectors, respectively,

as columns:

Vj = [vi2 − vi1 vi3 − vi1 vi4 − vi1]

Ṽj = [ṽi2 − ṽi1 ṽi3 − ṽi1 ṽi4 − ṽi1]
. (.)

By solving Equation . for Jj we obtain a closed form expression for the deformation gradient:

Jj = ṼjV−1
j . (.)

Geometrically, the columns of Jj are the basis vectors (i.e., edge vectors) of the deformed tet expressed

in the undeformed tet’s basis. If both the undeformed and deformed vertex positions are known, the

deformation gradients can be computed by evaluating Equation ..

Isomorphic Dissection

In continuum mechanics, the deformation of a solid is usually not known a priori but instead evolves

with time according to a physical simulation. The problem formulation involves discretizing an object

in its reference configuration and then performing some calculation to determine its deformation. De-

formation gradients are used because they provide a way to measure physical quantities such as stress.

Implicit in this setting is a correspondence between the undeformed and deformed configurations that

allows deformation gradients to be computed for each simplex using Equation ..

Our setting is different since we start with two shapes: a mesh in both a reference pose and

a deformed pose. We wish to encode the known deformation of the boundary using deformation

gradients. But, since deformation gradients are defined for solids, they do not immediately apply when

only the boundary is known. Discretizing the interior is more complicated in this case. Although the

boundaries of the two meshes are in one-to-one correspondence, independent tetrahedralization of

each mesh will not result in correspondence within their interiors.

Alexa, Cohen-Or, and Levin [] address this problem in the context of shape interpolation.

Given the boundary of two shapes in correspondence, they use deformation gradients to compute

interpolation sequences that maximize the local rigidity within the interior. In order to employ

deformation gradients in this context, the authors suggest an isomorphic simplicial dissection of the



two shapes. That is, their algorithm finds a dissection of the interiors of both shapes such that the

resulting vertices and simplices are in one-to-one correspondence. Once the isomorphic dissection

has been found, deformation gradients can be computed for each corresponding pair of simplices

by evaluating Equation .. In 2, the two shapes are defined by polygons in one-to-one boundary

correspondence. An isomorphic dissection is computed using the method proposed by Aronov, Seidel,

and Souvaine []. In this algorithm, each polygon is first triangulated independently, which can

always be accomplished without adding any additional so-called Steiner vertices in the interior. Then,

both shapes are mapped to a convex n-sided polygon (where n is the number of boundary edges) so

that the two individual triangulations are overlaid on top of one another. Any intersections of the

triangle edges are computed in this configuration. The intersections are then mapped back to each

of the original polygons in order to yield the isomorphic dissection. Alexa and colleagues extend

this algorithm to 3 for genus zero triangle meshes. Both meshes are individually tetrahedralized

and mapped to a convex n-sided polyhedron. Intersections of the overlaid tetrahedralizations are

computed and then mapped back to each mesh. In this case, the intersection computation may

result in four-, five-, or six-sided shapes that must subsequently be tetrahedralized. Both 2 and 3

isomorphic dissection algorithms require iterative refinement in order to improve the quality of the

dissection and prevent numerical problems in later computations. The refinement must be performed

in such a way that the isomorphism is not invalidated.

While isomorphic dissection provides one method to extract deformation gradients from bound-

ary representations, it has many disadvantageous. We are primarily concerned with 3 meshes. Even

without the requirement of isomorphism, generating any solid dissection of a 3 mesh is a nontrivial

task and computing high-quality tetrahedralizations is an active area of research [Alliez et al. ].

Dissecting a mesh requires that it be manifold and watertight. This strict requirement is violated

by many meshes used for animation in practice and limits the ultimate applicability of the transfer

method. Many tetrahedralization methods only approximate the connectivity of the input mesh. This

complicates the isomorphic dissection algorithm described above since it relies on one-to-one bound-

ary correspondence. In fact, it is impossible to tetrahedralize some triangle meshes (even though they

are manifold and watertight) without modifying the boundary [Shewchuk ]. Unlike triangulation,

tetrahedralization usually requires adding Steiner vertices which makes it more difficult to map the

shape to a convex polyhedron. The 2 isomorphic dissection algorithm of Aronov, Seidel, and Sou-



vaine [] adds O(n2) additional vertices for an n-sided polygon. While no bound is proven for the

3 extension, the complexity of tetrahedralization suggests that it will be greater. The performance

of subsequent computations depends on the number of vertices, so adding extra ones is undesirable.

Reusing an animation involves transferring the deformation exhibited in each frame. If an isomorphic

dissection must be computed for every new source deformation, the performance of repeated transfers

is greatly reduced. Isomorphic dissection does not scale to multi-way dissections because the number

Steiner vertices quickly becomes prohibitively large. While transfer only requires the pairwise extrac-

tion of deformation gradients, the mesh-based inverse kinematics algorithm described in Chapter 

requires multi-way extraction.

Boundary-Based Approximation

In light of these difficulties, I propose a boundary-based algorithm to approximate the deformation

gradient tensor field on a triangle mesh without the need to tetrahedralize its interior. This method

computes one deformation gradient for each triangle that maps the triangle’s edge vectors from their

reference configuration to their deformed configuration. Each deformation gradient is a 3× 3 matrix

and thus has nine degrees of freedom. When working with a tetrahedralization, the image of the

three independent tet edge vectors under the deformation function fully determines these degrees of

freedom: each vector provides three equations, giving nine in total. However, a 3 triangle has only

two independent edge vectors, yielding an underdetermined system of equations. These two vectors

alone do not establish how the space perpendicular to the triangle deforms. For the source mesh, the

algorithm resolves this problem by explicitly modeling the transformation of the perpendicular space,

while for the target mesh, it finds the least norm transformation.

Source Deformation. When representing the source deformation, it is important to have control

over the transformation of the space perpendicular to each triangle. This ensures that portions of

the target mesh which are not in perfect alignment will deform appropriately when the deformation

is transferred. In order to extract the source deformation, we compute a fourth “auxiliary” vertex

for every triangle, essentially promoting the triangles to tets. If a triangle’s vertices have indices



{i1, i2, i3}, we assign the new vertex index i4 and compute its position according to

vi4 = vi1 +
(vi2 − vi1) × (vi3 − vi1)

√

∥

∥(vi2 − vi1) × (vi3 − vi1)
∥

∥

, (.)

where‖·‖ is the l2 norm. This formula places the new vertex in the perpendicular direction and ensures

that the perpendicular space rotates with the triangle and scales in proportion to the change in triangle

edge length. An analogous computation is performed to compute the position of the deformed vertex

ṽi4 . With the auxiliary vertices, the per-triangle deformation gradients can be computed in closed

form by applying Equation .. Thus, the source deformation gradient tensor field is approximated on

the surface of the mesh without requiring dissection of the interior. While the source poses must be

in one-to-one correspondence, they need not be manifold, watertight, or of a particular genus. Since

no dissection is required, this technique naturally extends to the case where many deformed source

meshes are given.

Target Deformation. In the original formulation [Sumner and Popović ], the target deformation

is represented using the same procedure of promoting each triangle to a tet through the addition of

a fourth vertex. However, adding extra vertices to the target is disadvantageous since it increases the

complexity of later computations in the same way that additional Steiner vertices do in an isomorphic

dissection. However, since the target deformation is not being transferred, we only care about what

actually happens to the target triangles themselves and not the perpendicular space. This allows us to

derive an expression for the per-triangle target deformation gradients that does not require an extra

vertex. If triangle j has vertices with indices {i1, i2, i3} then

JjWj = W̃j , (.)

where Wj and W̃j are 3 × 2 matrices containing the two undeformed and deformed triangle edge

vectors as columns, respectively:

Wj = [vi2 − vi1 vi3 − vi1]

W̃j = [ṽi2 − ṽi1 ṽi3 − ṽi1]
. (.)



Figure -: The result of the boundary-based method proposed in this dissertation is visualized by the
red boundary line while the as-rigid-as-possible interpolation [Alexa et al. ] is visualized by the
black triangulation. The body of the snake and the trunk of the elephant deform in a similar, locally
rigid fashion for both methods. However, the boundary-based method is numerically much simpler
as it only considers the boundary rather than the isomorphic dissection of the interior.

We wish to solve Equation . for Jj . This problem is underdetermined since Jj is a 3×3 matrix with 

unknowns, and Wj and W̃j are each 3× 2 matrices, giving only  equations. However, the minimum

norm solution to the underdetermined problem can be found by computing the QR factorization of

Wj [Golub and Loan ]:

Wj = Qj





Rj

0



 =
[

Qjα Qjβ

]





Rj

0



 = QjαRj . (.)

Rj is a 2 × 2 upper triangular matrix and Qj is a 3 × 3 orthogonal matrix. The minimum norm Jj is

given by

Jj = W̃jR−1
j Q>

jα. (.)

In Figure -, I compare my boundary-based deformation gradient representation to the full

isomorphic dissection proposed by Alexa, Cohen-Or, and Levin [] for 2 shape interpolation. The

details of this interpolation algorithm are discussed in Chapter  in the context of mesh-based inverse

kinematics. The interpolation sequence using my algorithm is generated with no additional vertices

at a far lesser computational cost. It behaves reasonably despite ignoring the interior.



3.1.3 Summary

I propose deformation gradients as a representation of deformation because they naturally capture

differential shape changes. To avoid the complexity of isomorphic dissection, I develop a boundary-

based approximation of the deformation gradient tensor field where one deformation gradient is

computed for each triangle. Each of the per-triangle deformation gradients encodes the change in

orientation, scale, and skew induced by the deformation on that triangle. Taken as a whole, the

deformation gradients can represent any mesh deformation regardless of its complexity or origin.

For the source deformation where both the undeformed and deformed vertex positions are known,

Equation . is used to compute the deformation gradients using an auxiliary fourth vertex. The

deformation gradients that encode the unknown target deformation are related to the target vertices by

Equation .. This representation gives precise control over the deformation of the space perpendicular

to the source triangles and ignores it when searching for a deformed target shape.

3.2 Correspondence

The goal of deformation transfer is to transfer the deformations exhibited by a source mesh onto a

different target mesh. Conceptually, the desired result is clear: the head of the target should deform

like the head of the source, the legs of the target like the legs of the source, the tail like the tail, and

so on. A digital representation of a character as a triangle mesh has no concept of head, legs, or

tail. Even if such semantic information were available, the relationship of finer scale details—down

to individual triangles—would remain ambiguous. Thus, some means is required to indicate how the

source triangles should be related to the target triangles.

If the mesh structure of the source and target is identical so that there is a one-to-one correspondence

between the source and target triangles, it is immediately clear which parts of the two shapes should

deform similarly: triangle j in the target mesh should deform like triangle j in the source. While

this setting simplifies the transfer problem, it is unrealistic and overly restrictive. Few meshes are in

one-to-one correspondence with one another. And, when they are, it is almost certainly the case that

they were designed from the start with this correspondence as a requirement.

In order to make deformation transfer applicable in a wide range of settings, my transfer algorithm

does not require one-to-one correspondence. The source and target are free to have different numbers



of vertices and triangles, as well as a different connectivity. They need not even have the same

genus.

In order to cope with these differences, the user must indicate how the source and target are related

to one another by supplying a mapping M between the source and target triangles. This mapping is a

discrete pairing of triangle indices:

M = {(s1, t1), (s2, t2), . . . , (s|M|, t|M|)}. (.)

A pair (sj , tj) indicates that the target triangle with index tj should deform like the source triangle

with index sj . Since there are no restrictions on M, this mapping allows transferred deformations to

originate from any region of the source mesh. In most cases, M is a general many-to-many mapping,

but it can also be bijective (one-to-one and onto), surjective (onto), or not-onto. Thus, one triangle of

the target may be paired with several triangles of the source, and vice versa. In fact, this generality is

required to enable transfer between meshes of different tessellations.

For the remainder of this chapter, we assume that M has been supplied by the user. In the next

chapter, I describe my correspondence algorithm which allows M to be easily generated by identifying

matching feature points on the source and target meshes.

3.3 Transfer

After adopting deformation gradients to represent mesh deformation and a discrete triangle pairing to

identify correspondence, we have all the necessary ingredients for transfer. Our strategy is to extract

the per-triangle deformation gradients from the source, map them through the correspondence M,

and use them to reconstruct a deformed target shape (Figure -). To derive this procedure, we first

consider the case where the source and target have identical mesh topology. Thus, there is a one-to-one

triangle correspondence between the source and target which obviates the need for the explicit triangle

associations given in M with the understanding that each triangle j of the target should deform like

triangle j of the source. After developing the algorithm in this setting, transfer between meshes with

different structure only requires a minor change.

The deformation of the source vertices from their positions in the reference pose S to their

positions in the deformed pose S̃ is encoded with one deformation gradient for each triangle. If the



S
o

u
rc

e
Ta

rg
e

t

A B C

Reference

Figure -: We encode a source deformation with one deformation gradient for each triangle and relate
this specification to the target through a user supplied triangle correspondence. The deformation
gradients indicate the ideal change in orientation and scale of the target triangles. This change is
visualized in (A) by transforming the edge vectors of each target triangle by one corresponding source
deformation gradient while fixing the triangle’s position in place. Since deformation gradients are a
differential specification, they do not encode how the target triangles should be positioned relative to
their neighbors. Deriving the new positions from the source, as shown in (B), gives a disconnected
shape. In general, it is impossible to achieve a connected mesh by translating the deformed target
triangles since consistency requirements are not enforced. Deformation transfer obtains the result in
(C) by solving an optimization problem for a deformed target mesh whose per-triangle deformation
gradients are as close as possible to the corresponding ones of the source.

source has n vertices and m triangles, Equation . is evaluated once per triangle, yielding an ordered

set S = {S1 . . . S|S|} of source deformation gradients such that |S| (the number of elements in S) is

equal to m.

Applying these deformation gradients to the target shape requires the complimentary operation:

given the target reference pose T and the set S, we wish to find a deformed target T̃ where each

triangle j ∈ 1 . . . m has undergone precisely the change in orientation and stretch specified by Sj .

We refer to this process as reconstruction since we recover the Cartesian representation of the mesh

from the differential specification of deformation. The reconstruction algorithm forms the core of

deformation transfer.

3.3.1 Integration

Equation . relates the deformation gradient to the edge vectors of the target triangle before and

after deformation: JjWj = W̃j . If we use the vertex positions of triangle j in the target reference

pose T to build Wj and evaluate SjWj , then the columns of W̃j are the edge vectors of triangle j in

T̃—the deformed target pose which we wish to recover. However, the edge vectors themselves do not

provide the global positions of the vertices. In fact, because the deformation gradient representation



stores only differential properties, it is invariant to translation. Therefore, we must specify the position

of one vertex arbitrarily. Then, the positions of the neighboring vertices can be found by evaluating

Equation . and adding the deformed triangle edge vectors to the fixed position. By repeating this

process incrementally, all vertex positions can be discovered. In essence, this procedure integrates the

differential changes specified by each deformation gradient over the mesh and the fixed vertex serves

as the constant of integration.

This procedure is a discrete version of the method proposed by Barr [] to recover global

positions from a locally specified deformation. As Barr notes, it is valid only if the deformation

gradients are the gradients of some global mapping of the domain. This condition is necessary for

path independence when the differential changes are integrated over the mesh. If this condition is not

met, the deformation gradients will be inconsistent and the recovered vertex positions will depend on

the particular set of edges chosen in the integration procedure. The mesh will have artifacts where

parts of it do not “meet up” because neighboring vertices were recovered using different paths. The

deformation gradients in S are a consistent representation of the source deformation because they are

computed from a deformed source mesh. However, they are most likely inconsistent with respect to

the target since the target triangles differ from those of the source in size and shape. For large meshes,

numerical precision prevents an accurate reconstruction even when a consistent set of deformation

gradients is supplied because small errors are compounded as the integration procedure works across

the mesh. Thus, reconstruction artifacts are unavoidable with this algorithm.

3.3.2 Optimization

In order to accurately recover a deformed target mesh, all vertices must be solved for simultaneously

rather than one at a time. Optimization provides a framework to perform this computation in a way

that prevents precision error from accumulating and distributes error due to inconsistent deformation

gradients throughout the mesh rather than concentrating it in one place. Since the deformation

gradients in S are inconsistent with respect to the target reference pose T , there is no deformed

target T̃ whose deformation gradients perfectly match those in S. Thus, we treat S as the set of

ideal deformation gradients and define a new set T = {T1 . . . T|T|} of actual ones. The optimization

procedure finds the vertex positions of T̃ that define the set of deformation gradients T which are as

close as possible to the ideal ones in S. This computation is expressed by minimizing the difference



between the matrices specified in S and T:

min
ṽ1...ṽn

m
∑

j=1

∥

∥Sj − Tj

∥

∥

2
F

.

subject to ṽk = c.

(.)

Since each Tj , j ∈ 1 . . . m, can be expressed in terms of the deformed target vertices ṽ1 . . . ṽn using

Equation ., the minimization is over these deformed vertex positions. The matrix norm ‖·‖F is

the Frobenius norm, or the square root of the sum of the squared matrix elements. In the objective

function, this norm evaluates to zero when Tj is equal to Sj . Thus, minimizing the sum over all j

finds the mesh T̃ whose deformation gradients are as close as possible to the ideal ones. Because, as

discussed earlier, deformation gradients are invariant to translation, there are infinitely many solutions

to this optimization which admit the same minimum: all translations of one optimal solution are also

optimal. The constraint ṽk = c fixes the position of one vertex and makes the solution unique.

In the general case where the source and target have different topologies, the correspondence map

M indicates which triangles of the source and target should deform similarly. It allows us to properly

relate the deformation gradients in S to those in T even though |S| 6= |T|:

min
ṽ1...ṽn

|M|
∑

j=1

∥

∥Ssj
− Ttj

∥

∥

2
F

.

subject to ṽk = c.

(.)

This modified objective function sums over each pair of corresponding triangles specified in M.

Solving this optimization problem finds the deformed target vertices ṽ1 . . . ṽn such that each target

triangle has deformed as similarly as possible to the corresponding source triangle or triangles. This

formulation allows transfer between meshes with different topology since the correspondence map

can encode the proper triangle associations. If one target triangle corresponds to several source

triangles, the minimized error will include the sum of the norm of the difference between the target

deformation gradient and all corresponding source gradients. The result will always be the overall

best set of vertices taking into account all correspondences.



3.3.3 Reconstruction Error

When the ideal deformation gradients provide a consistent representation of deformation with respect

to T , the optimization procedure finds a deformed target shape where each triangle’s change in

orientation and stretch exactly matches the ideal specification. For example, if we transfer the source

deformation gradients back onto the same source reference mesh so that T = S, then deformation

transfer perfectly recovers the deformed source such that T̃ = S̃. If the per-triangle gradients in S are

not consistent with respect to T , then no deformed target mesh exists whose deformation gradients

in T match those in S exactly. In this case, the ideal deformation is only approximated. The minimum

found will be a positive number that represents the error incurred when reconstructing the deformed

mesh T̃ from the set of source deformation gradients S.

This value, called the reconstruction error, indicates how well each target deformation gradient

matches each corresponding source deformation gradient. However, since the target deformation

gradients are found via a least norm QR formulation and the source are computed by explicitly

modeling the perpendicular space, the reconstruction error will always be high. The optimization

correctly finds the vertex positions that determine the in-plane transformation of each target triangle,

but it has no control over the transformation of the perpendicular space. As a result, the perpendicular-

space component never matches. The found vertex positions of the deformed target shape are correct

since, by definition, each target triangle forms a plane and the transformation of space perpendicular

to this plane has no effect on the triangle’s vertices. However, the value of the objective function at the

minimum is difficult to interpret when it includes the perpendicular-space error and is not an accurate

measure of the success or failure of the transfer procedure. We can eliminate the perpendicular-space

error in order to obtain a more meaningful measure.

This error is eliminated by modifying the source deformation gradients to include only components

that transform the plane of the corresponding target triangle. When the meshes are in one-to-one

correspondence (Equation .), the source deformation gradient Sj for triangle j is applied to the edge

vectors of the undeformed target triangle j via SjWj . The original undeformed target triangle and this

new deformed one capture the portion of Sj that acts on the target triangle’s plane. Thus, computing

the least norm deformation gradient for this undeformed/deformed pair using Equation . yields

a new source deformation gradient S′j specialized for the plane of target triangle j. The complete

equation is:



S′j = SjWjR−1
j Q>

jα = SjPj . (.)

When the correspondence map is used (Equation .), the indices sj and tj are substituted:

S′sj
= Ssj

Wtj R−1
tj

Q>
tjα

= Ssj
Ptj . (.)

The matrices Pj = WjR−1
j Q>

jα and Ptj = Wtj R−1
tj

Q>
tjα

select only the components of Sj and Ssj
,

respectively, that transform the plane of the target triangle and find the minimum norm solution for

the remainder of the matrix.

With these modifications, the reconstruction error can be interpreted as a measure of how well

the source deformation is transferred to the target. Lower reconstruction errors indicate that the

source deformation gradients, when mapped through the correspondence, provide a largely consistent

specification of deformation. In this case, the deformed target is expected to mimic the source

deformation faithfully. If the reconstruction error is high, the deformed target poorly approximates

the source deformation and artifacts are expected.

3.4 Numerics

The optimization problem in Equation . is written in an intuitive way. The objective function sums

the difference between the deformation gradients of each pair of corresponding source and target

triangles. Minimizing this sum finds a deformed target shape whose deformation gradients match

the corresponding ones of the source as closely as possible. However, while this formulation provides

intuition about the problem, it does not lend itself to an efficient solution. Thus, we exploit the linearity

of the deformation gradient representation to rewrite the objective function as a linear system. In this

form, we can apply the manifold techniques from linear algebra to solve the system efficiently.

3.4.1 Linearity

The objective function minimized by deformation transfer is based on the per-triangle target deforma-

tion gradients. Equation . relates these gradients to the undeformed and deformed mesh vertices.

The undeformed vertices v1 . . . vn are used to build Wj (which is then factored into Qjα Rj) and the



deformed vertices ṽ1 . . . ṽn determine W̃j for each triangle j. Each matrix element in the deformation

gradient Tj is a linear function of the deformed vertices ṽ1 . . . ṽn. Since the relationship between the

deformation gradients and the deformed vertices is linear, it can be expressed as a linear system. This

allows us to develop a linear operator for a target mesh with n vertices and m triangles that maps the

deformed vertices to the per-triangle deformation gradients. Inverting this operator in a least squares

sense provides an equivalent formulation of deformation transfer. To derive these formulas, we first

pack all deformed vertices and all deformation gradients into two tall column vectors.

The deformed vertices ṽ1 . . . ṽn are stacked into one 3n × 1 column vector x:

x1 =

















x1

x2
...

xn

















x2 =

















y1

y2
...

yn

















x3 =

















z1

z2
...

zn

















x =











x1

x2

x3











. (.)

Thus, x1, x2, and x3 are each n × 1 column vectors containing the x-, y-, and z-coordinates of the

vertices, respectively. The 3n× 1 column vector x stacks all three so that the x-coordinates come first,

the y-coordinates second, and the z-coordinates third.

Similarly, all deformation gradients T1 . . . Tm are unrolled and stacked into one 9m × 1 column

vector f :

f1 =

















T1(1, :)
>

T2(1, :)
>

...

Tm(1, :)>

















f2 =

















T1(2, :)
>

T2(2, :)
>

...

Tm(2, :)>

















f3 =

















T1(3, :)
>

T2(3, :)
>

...

Tm(3, :)>

















f =











f1

f2

f3











.

(.)

The notation Tj(k, :) indicates the kth row of Tj , which is a 1 × 3 row vector. Thus, f1 is a 3m × 1

column vector whose first three entries are the three elements in the first row of T1, second three

entries are the three elements in the first row of T2, and so on. The vectors f2 and f3 are build in the

same fashion and stack the second and third rows of the deformation gradients, respectively. Finally,

f is a 9m × 1 column vector containing all unrolled and concatenated deformation gradients in the

prescribed order.



Given these definitions, the calculation Tj = W̃jR−1
j Q>

jα for j ∈ 1 . . . m can be replaced by the

linear system:

Gx = f . (.)

The linear operator G is a 9m × 3n matrix whose coefficients depend on the target reference pose

vertices v1 . . . vn and come from the R−1
j Q>

jα term in Equation .. G is sparse with a repeated block

structure:

G =











A

A

A











. (.)

The 3m × n submatrix A is sparse with three nonzero entries in each row. Expanding Equation .

reveals that A multiplies x1, x2, and x3 to give f1, f2, and f3:











A

A

A





















x1

x2

x3











=











f1

f2

f3











. (.)

This structure indicates that the computation is separable in the spatial dimension. Individual equations

(i.e., rows of G) involve only the x-coordinates, only the y-coordinates, or only the z-coordinates and

never mix the coordinates together. Each application of A maps the x-, y-, or z-coordinates to the

first, second, or third rows (in vectorized form) of the deformation gradients. The separability allows

us to define the n × 3 matrix X = [x1 x2 x3] and the 3m × 3 matrix F = [f1 f2 f3] and write

Equation . in a more succinct form:

AX = F. (.)

Deformation transfer deals with the case where the source deformation gradients are already

known but the deformed target vertices are not. If we assume again that the source and target have

the same topology, and use the set of source deformation gradients S = {S1 . . . S|S|} to build F, then

Equation . expresses deformation transfer as a system of linear equations. A is build from the target

reference pose T and X contains the unknown vertices of the deformed target T̃ . Solving this system

for X finds T̃ . Figure - shows how to setup the linear system AX = F in this case. When the source

and target meshes have different topologies, only bookkeeping changes are required to incorporate



PSfrag replacements

vi1

vi2

vi3

PSfrag replacementsṽi1

ṽi2

ṽi3

Undeformed target triangle j. Deformed target triangle j.

Tj = W̃jR−1

j Q>
jα =





| |
ṽi2 − ṽi1 ṽi3 − ṽi1

| |





[

a b c

d e f

]

1 2 . . i2 . . i3 . . i1 . . n

1


























































































































































































— ṽ>
1

—


















































































































 S>
1















































































2 — ṽ>
2

—
:

...
. . . — ṽ>i2 — ...:

— ṽ>i3 —
3j a d (−a − d) :



 S>j



3j + 1 b e (−b − e) — ṽ>i1 —
3j + 2 c f (−c − f) :

— ṽ>n — =

...
...

. . .



 S>m





3m

A X F
3m × n n × 3 3m × 3

Figure -: Linear System Construction for Identical Topology. If the source and target have identical
topology with n vertices and m triangles, the linear system AX = F in Equation . has the structure
shown above. Each target triangle j ∈ 1 . . . m contributes 3 rows to A. The entries in these rows
are the values that multiply the deformed target vertices in Tj = W̃jR−1

j Q>
jα (Equation .). The

coefficients in the three rows for triangle j are shown, where the 6 elements of the 2×3 matrix product
R−1

j Q>
jα are represented by the symbols a, b, c, d, e, and f . Since this triangle has vertex indices

{i1, i2, i3}, the coefficients are entered into columns i1, i2, and i3. Each group of three rows of the
matrix F contains the transposed source deformation gradient S>j that represents the ideal differential
change of target triangle j.



PSfrag replacements

vi1

vi2

vi3

PSfrag replacementsṽi1

ṽi2

ṽi3

Undeformed target triangle tj . Deformed target triangle tj .

Ttj = W̃tj R−1

tj
Q>

tjα =





| |
ṽi2 − ṽi1 ṽi3 − ṽi1

| |





[

a b c

d e f

]

M = {(s1, t1), (s2, t2), . . . , (s|M|, t|M|)}

1 2 . . i2 . . i3 . . i1 . . n

1


























































































































































































— ṽ>
1

—


















































































































 S>s1















































































2 — ṽ>
2

—
:

...
. . . — ṽ>i2 — ...:

— ṽ>i3 —
3j a d (−a − d) :



 S>sj



3j + 1 b e (−b − e) — ṽ>i1 —
3j + 2 c f (−c − f) :

— ṽ>n — =

...
...

. . .



 S>s|M|





3|M|

A X F
3|M| × n n × 3 3|M| × 3

Figure -: Linear System Construction for Different Topologies. If the source and target have
different topologies, the linear system AX = F in Equation . has the structure shown above. Each
pair j ∈ 1 . . . |M| of corresponding source and target triangle indices in the map M contributes 3
rows to A. The entries in these rows are the values that multiply the deformed target vertices in the
equation Ttj = W̃tj R−1

tj
Q>

tjα
. The coefficients in the three rows for pair j, (sj , tj), are shown, where

the 6 elements of the 2×3 matrix product R−1
tj

Q>
tjα

are represented by the symbols a, b, c, d, e, and f .
Since triangle tj has vertex indices {i1, i2, i3}, the coefficients are entered into columns i1, i2, and i3.
Each group of three rows of the matrix F contains the corresponding transposed source deformation
gradient S>sj

that represents the ideal change for target triangle tj .



the correspondence map M into the construction of A, X, and F. Figure - describes these changes.

Subsequent equations do not differentiate between the construction for one-to-one correspondence

and the construction using M but are valid for both.

3.4.2 Solution

Since A has more rows than columns, the linear system in Equation . is overdetermined. This fact

reflects the consistency requirement discussed in Section .: for an arbitrary (inconsistent) set of ideal

deformation gradients, there is no deformed target mesh whose actual deformation gradients match

them. However, we find the mesh that matches them as closely as possible by solving the linear system

in a least-squares sense. Because the computation is separable, the least-squares formulation can be

written as three independent optimization problems for the columns of X:

min
xi

‖Axi − fi‖2
2, i ∈ 1 . . . 3

subject to ṽi
k = ci

(.)

The notation ṽi
k = ci indicates that the ith component of ṽk is constrained to equal the ith component

of c. Equation . is equivalent to the summation formulation in Equation . if the construction

for identical topology is used or in Equation . when using the construction for different topology.

The multiplication Axi computes the target deformation gradients T = {T1 . . . T|T|}, the subtraction

Axi − fi subtracts the actual target deformation gradients and the ideal source ones, and the l2

norm ‖·‖2 performs the function of both the Frobenius norm and the summation. Although the

computation has been reordered, the objective function in Equation . (or, more precisely, the sum

of the three objective functions) evaluates to exactly the same value as in the summation formulation.

Equation . describes three linearly constrained quadratic optimization problems that can be

solved separately, one by one. Each solution is found in two steps. First, the constrained optimization

problem is transformed into an equivalent unconstrained one. Then, the minimum is found by taking

the derivative of the objective function with respect to the unknowns and setting it equal to zero.

The constraint ṽi
k = ci is enforced by treating the constrained vertex as a constant rather than a

free variable. If we assume, without loss of generality, that k = n so that the constrained vertex has



index n, then we form the equivalent unconstrained optimization problems:

min
x̂i

‖Âx̂i − f̂i‖2
2, i ∈ 1 . . . 3. (.)

The modified matrix Â is void of column n and x̂i is void of element n. The removed column is

multiplied by the constrained value and subtracted from fi, yielding f̂i = fi − ciÂ(:, n). Although

constraining one vertex is required in order to resolve the translation invariance, any number of

vertices can be constrained in this manner. Each constraint removes one variable from xi and deletes

the column in A that multiplies it. The result of this multiplication is subtracted from fi. Vertex

constraints give limited control over the transfer process. For example, in Figure - (Section .),

constraints on the hoofs of a galloping camel are used to enforce ground contact.

Once the constrained optimization problem has been transformed into an unconstrained one, it is

solved by expanding the matrix norm in the objective function, taking the derivative with respect to

xi, and setting the derivative equal to zero. For notational simplicity, the hats (̂) are not included in

the following formulas. All of the matrices and vectors should, however, be properly built to handle

any constrained vertices.

Expanding the matrix norm gives

‖Axi − fi‖2
2 = (Axi − fi)

>(Axi − fi)

= x>i A>Axi − x>i A>fi − f>i Axi − f>i fi

= x>i A>Axi − x>i A>fi − (f>i Axi)
> − f>i fi

= x>i A>Axi − 2x>i A>fi − f>i fi.

(.)

Taking the derivative of this expression with respect to xi yields

d
dxi

(

x>i A>Axi − 2x>i A>fi − f>i fi
)

= 2A>Axi − 2A>fi. (.)

Finally, setting the derivative equal to zero gives the normal equations:

A>Axi = A>fi. (.)

Minka [] gives a thorough discussion of vector and matrix derivatives.



Lower triangular factorPermuted

, nonzero elements , nonzero elements , nonzero elements

PSfrag replacements A>AA>A

Figure -: The nonzero structure of the matrix A>A for the lion mesh from Figure - is shown on
the left. The mesh has , vertices and , triangles. One vertex constraint is used, so A>A has
dimensions , × ,. An entry apq in A>A is nonzero if vertex p and vertex q are neighbors
or if p = q. Prior to factorization, A>A is permuted using METIS [Karypis and Kumar ] to
reduce nonzero fill-in. Both A>A and the permuted version, shown in the center, have , nonzero
elements. The lower triangular factor of the Cholesky factorization, shown on the right, is computed
using TAUCS [Toledo ] and has , nonzero elements. Transferring a source deformation to
the lion involves performing backsubstitution with the factored matrix using a right-hand side derived
from the source.

A>A is an n × n sparse matrix, where n is the number of unconstrained vertices. An element apq of

A>A is nonzero only if target vertices p and q are neighbors or p = q.

Care must be taken in order to solve Equation . efficiently. Because A>A is symmetric and

positive definite, we can apply Cholesky factorization and then solve for each right-hand side by

reusing the factorization during backsubstitution. In fact, since the elements of A depend only on the

target reference pose T and correspondence map M, A>A can be factored once and reused for any

new source deformation. This permits an entire animation sequence to be retargeted efficiently since

the factored system is reused to transfer the deformation in every frame. However, naı̈ve factorization

will not preserve sparsity in the factored system. As a result, a permutation algorithm must be used

in order to reduce nonzero fill-in. Botsch, Bommes, and Kobbelt [] discuss the performance of

possible matrix reorderings as well as many practical issues related to solving sparse linear systems.

The nonzero structure of A>A before and after permutation as well as its lower triangular factor for

the lion mesh in Figure - is shown in Figure -.

I have experimented with three direct sparse matrix solvers including UMFPACK v. [Davis



], PARDISO included with Intel MKL v. [Intel ], and TAUCS v. [Toledo ]. UMFPACK

performs LU-decomposition, while PARDISO and TAUCS perform Cholesky factorization. COLAMD

[Davis et al. ] is used for fill-reducing reordering with UMFPACK and METIS [Karypis and Kumar

] is used for reordering with PARDISO and TAUCS. In my informal experience, all three packages

show comparable performance. A recent technical report by Gould, Hu, and Scott [] provides a

formal comparison of these and other sparse direct solvers.

3.5 Analytic Derivation

An appropriate specification of deformation is essential to the success of deformation transfer. The

choice to use deformation gradients is motivated by their application in continuum mechanics to

represent large deformations that include both rigid rotation and non-rigid stretching. An approx-

imation of the deformation gradient tensor field on the surface of a mesh avoids the drawbacks of

simplicial dissection. Since the source deformation gradients are inconsistent with respect to the

target shape, reconstructing the Cartesian representation of a mesh from the modified deformation

gradients is naturally expressed as a variational problem in order to cope with the inconsistencies as

well as possible precision errors.

In contrast to a variational formulation, mesh representations based on equations in strong form

produce successful results for mesh editing and interpolation. In these methods, the Laplace equation,

the Poisson equation, or the first and second fundamental forms are discretized on the mesh and solved

to generate an edited or interpolated result (Section ..). A closer connection between these methods

and deformation gradients is discovered by considering the continuous analog of the reconstruction

problem used in deformation transfer.

The function U : R
3 → R

3 defined in Equation . maps points of an undeformed surface Ω to

their deformed positions. The deformation gradient tensor field ∂U
∂p is written as

∂U
∂p

=













(∇U1)
>

(∇U2)
>

(∇U3)
>













, (.)

where the gradients of the three coordinate functions U1, U2, and U3 form the rows of the matrix.



The deformation transfer reconstruction problem for identical connectivity in Equation . can be

rewritten in continuous form yielding:

min
U

∫∫

Ω

∥

∥

∥

∥

∥

∥

∥

∥









(∇U1)
>

(∇U2)
>

(∇U3)
>









−









s>1
s>2
s>3









∥

∥

∥

∥

∥

∥

∥

∥

2

F

= min
U

∫∫

Ω

∥

∥

∥

∥

∥

∥

∥

∥









(∇U1)
> − s>1

(∇U2)
> − s>2

(∇U3)
> − s>3









∥

∥

∥

∥

∥

∥

∥

∥

2

F

. (.)

The sum over each triangle in the original equation is replaced by an integral over the surface. At

each point on the surface, the difference between the deformation gradient and a “guidance function”

expressed as a matrix composed of the three rows s>1 , s>2 , and s>3 is computed. The guidance function

corresponds to the source deformations. Both the deformation gradient and guidance function vary

with position on the surface. Equation . is equivalent to

min
U

∫∫

Ω

(

‖∇U1 − s1‖2
2 + ‖∇U2 − s2‖2

2 + ‖∇U3 − s3‖2
2

)

, (.)

where the Frobenius norm of the matrix is replaced by the sum of the Euclidean norms of three vector

expressions. Since each of the three terms in the sum must be positive, the entire expression achieves

its minimum when the individual terms are minimized:

min
U

∫∫

Ω

‖∇U1 − s1‖2
2 min

U

∫∫

Ω

‖∇U2 − s2‖2
2 min

U

∫∫

Ω

‖∇U3 − s3‖2
2 . (.)

This decomposition is expected since we know the problem is separable in the three spatial dimensions.

Each of these variational problems has a corresponding strong form [Weinstock ]:

∇2U1 = ∇ · s1 ∇2U2 = ∇ · s2 ∇2U3 = ∇ · s3, (.)

where constraints in the original formulation (Equation .) serve as Dirichlet boundary conditions

on the partial differential equations.

This derivation demonstrates that the deformation gradient reconstruction problem can be re-

formulated as a Poisson equation. The Laplacian of the deformation coordinate functions makes

up the left-hand side and the divergence of the guidance function comprises the right-hand side.



Mesh Vertices Triangles

Horse , ,

Camel , ,

Cat , ,

Lion , ,

Face , ,

Head , ,

Flamingo , ,

Elephant , ,

Table .: The number of vertices
and triangles for the meshes used in
the examples.

Example
Permutation & Per-pose

factorization computation

Horse/Camel . s . s
Cat/Lion . s . s
Face/Head . s . s
Horse/Flamingo . s . s
Horse/Elephant . s . s

Table .: Timing results on a .GHz Pentium IV
machine. The second column includes the precom-
putation time to permute and factor A>A and the third
column includes the time to compute A>fi and solve
for xi, i ∈ 1 . . . 3, using backsubstitution.

A comparison with Equation . suggests an equivalence between deformation gradients and the

Poisson mesh editing method [Yu et al. ; Xu et al. ]. Understanding the precise rela-

tionship as well as any connections to other mesh algorithms may lead to improvements on both

sides.

3.6 Results and Discussion

To demonstrate both the success and limitations of deformation transfer, I present results in a variety

of situations. Examples include the transfer of key poses that are primarily kinematic in nature as

well as the opposite extreme of completely non-rigid deformations. Pose transfer naturally extends

to animation by transferring the deformation exhibited in each frame. I challenge the technique with

characters that are more dissimilar where forming an adequate correspondence is difficult. Finally, I

show that deformations that depend on fine-scale surface details are poor candidates for my method.

Table . lists geometric information about each model, and Table . gives timing results for each

example. None of the source and target meshes in these examples share the same number of vertices,

triangles, or connectivity. Deformation transfer is extremely fast. For example, in the horse/camel

transfer, the camel mesh has , vertices yielding a , × , normal equations matrix (with

one vertex constraint). In this case, reordering and Cholesky factorization requires . seconds and

solving for each retargeted pose takes only . seconds on a .GHz Pentium IV machine.



Reference
Ta

rg
e

t
S

o
u

rc
e

Output

Figure -: Deformation transfer copies the deformations exhibited by a source mesh onto a different
target mesh. In this example, deformations of the reference horse mesh are transfered to the reference
camel, generating seven new camel poses. Both gross skeletal changes as well as more subtle skin
deformations are successfully reproduced.

Reference

S
o

u
rc

e
Ta

rg
e

t

Output

Figure -: Cat poses retargeted onto a lion.

3.6.1 Kinematic Poses

Figure - shows deformations of a horse transferred onto a camel. The reference horse mesh, shown

in the gray box, is deformed into seven key poses. The key poses are primarily kinematic in nature,

although they also include more subtle skin deformations like stretching near the joints. The input to

the algorithm is the reference horse mesh, the seven deformed horse poses, the reference camel mesh,

and the correspondence between the two reference meshes. Given this data, deformation transfer

generates seven new camel poses by transferring the source deformations onto the reference camel

mesh. Both the gross skeletal changes as well as the more subtle skin deformations are faithfully

reproduced. Figure - demonstrates a similar set of deformations. Here, key poses of a cat are

retargeted onto a lion. Even extreme changes where the cat lies down and curls its body are perfectly

matched by the lion.



Reference
Ta

rg
e

t
S

o
u

rc
e

Output

Figure -: Deformation transfer copies the change in shape from the source to the target and thus
requires matching reference poses. If the posture of the reference meshes does not match, the result
is unnaturally distorted. The same transfer with matching meshes is shown in Figure -.

Since deformation transfer copies the change in shape induced by the deformation, the source

and target reference meshes should have the same kinematic pose when skeletal deformations are

retargeted. If transfer is applied to reference poses that do not match, the results are undesirable and

distorted, as demonstrated in Figure -. This example includes the same seven source poses as shown

in Figure - but replaces the source reference pose with one in which the horse’s legs are bent and

tail, body, and neck are arched. The output camel poses are unnaturally distorted. This restriction

limits the applicability of deformation transfer to cases where matching kinematic poses of the source

and target are available. However, in many cases, the source poses are generated via some form of

rigging. The source mesh can be reposed using the rigging controls to match the posture of a given

target shape. Source deformations can then be copied onto the target.

3.6.2 Non-rigid Deformations

While the deformations in Figures - and - are primarily skeletal in nature, Figure - demonstrates

the effectiveness of deformation transfer on non-rigid deformations. Here, the horse collapses as if it

were made of a rubber sheet. Its legs buckle and its entire body falls to the ground, folding on top of

itself. The deformations are transferred to the camel, and its body buckles and collapses similarly.

In Figure -, facial expressions of a real person, acquired with a 3 scanning system, are transferred

onto a digital character. A great deal of expressiveness—especially around the eyes and nose—is

captured and adapted to the target head. This type of transfer might be used when a digital stand-in

must replace a real actor, or to map the facial expressions of a voice actor onto an animated character.



Reference
S

o
u

rc
e

Ta
rg

e
t

Output

Figure -: The horse deformation, collapsing as if it were made of a rubber sheet, is transferred to
the camel.

Reference

S
o

u
rc

e
Ta

rg
e

t

Output

Figure -: Scanned facial expressions are cloned onto a digital character.

Reference

Ta
rg

e
t

S
o

u
rc

e

Output

Figure -: An entire animation can be retargeted by transferring the deformation in each frame to
the target shape. In this example, six frames from a longer horse gallop animation are transferred to
the camel. Because deformation transfer is linear, temporal consistency in the source deformation
yields a temporally coherent output animation.



Since the scanned data is in the form of face masks and the target mesh consists of an entire head and

neck, the mapping between the source and target triangles is not onto. Only a subset of the target

triangles (those of the front of the face) are listed in the correspondence. The deformation of the

remaining target triangles is minimized by mapping them to the identity matrix.

3.6.3 Animation Retargeting

Deformation transfer can also retarget deformations that vary continuously through time. Figure -

shows a gallop gait transferred from the horse to the camel. An animation of the collapsing motion

from Figure - is also transferred to the camel. In order to resolve the global positioning of the

camel over time and to enforce foot/ground contact, I extracted the positions of one vertex on each

foot of the horse over time, performed an overall scaling to better match the larger size of the camel,

and added vertex constraints to match a vertex on each camel foot to these positions. Deformation

transfer then copies the horse deformation onto the camel while simultaneously satisfying the vertex

constraints. Because deformation transfer is a linear operation, temporal consistency of the source

animation and vertex constraints results in a temporally coherent target animation.

The use of constraints in animation retargeting brings up another limitation of deformation

transfer. The optimization problem is unique up to a global translation and requires at least one vertex

position to be specified by the user. When retargeting only key poses, as in Figures - and -, it

is easy to resolve the global position by fixing one vertex in place. However, when retargeting an

entire animation sequence, the position must be specified at each point in time. A positional constraint

specified only during selected intervals (such as during ground contact) will result in “popping” artifacts

when the constraint becomes active. Since the overall shape of the horse and camel is similar, it is

easy to derive appropriate constraints for the camel by a global scaling of the horse mesh. But, if two

meshes have very different proportions, it may be more difficult to formulate an acceptable constraint.

One approach to this problem is to directly address the temporal dimension in the retargeting

process in order to enforce temporal coherence as well as reduce the global positioning problem

to the specification of positional constraints only during key events such as foot/ground contact.

Gleicher [b] uses this approach to retarget skeletal motion to new skeletons with different bone

lengths. However, a formulation of deformation transfer as an optimal trajectory problem would

increase the numerical complexity of the optimization considerably.



3.6.4 Dissimilar Characters

I designed deformation transfer for the case where there is a clear semantic correspondence between

the source and target. Anatomically similar meshes have an obvious mapping (i.e., legs to legs, head to

head, etc.). I challenge this assumption by mapping the horse poses onto more dissimilar characters.

Figure - shows transfer onto a flamingo mesh. The correspondence is ambiguous as the flamingo

has only two legs, no tail, and a beak. I map the flamingo’s legs to the horse’s front two legs, the

flamingo’s body to the entire horse’s body including its tail, and its beak to the horse’s head. Building

this mapping pushes the limits of the correspondence system described in Chapter . But, once the

correspondence has been adequately specified, the flamingo faithfully deforms like the horse. However,

a real flamingo’s hips bend in the opposite direction of a horse’s front hips, which demonstrates a

reason why deformation transfer between anatomically different meshes may not be appropriate.

In Figure -, I transfer the horse poses onto an elephant mesh. Although the horse and elephant

are both quadrupeds, both the gross shape and the topology of the two meshes are quite different.

The elephant has enormous ears, a long curved trunk, and five times as many vertices and triangles.

For this example, a different method is used to compute the triangle associations [Kraevoy and Sheffer

]. As with the flamingo, once the proper correspondence is specified, the transfer algorithm works

well. Although the generated elephant deformations look plausible, the horse/elephant transfer

demonstrates that the formulation does not prevent self-intersections. In the fifth and seventh output

poses (enlarged in Figure -), the elephant’s trunk intersects its leg.

3.6.5 Detail-Dependent Deformations

When the nature of the source deformation is highly dependent on specific details of the source shape

that are not present in the target, deformation transfer performs poorly. Consider the 2 example in

Figure -. The reference source shape is “inflated” to form a circle. When this deformation is trans-

ferred to a similar but different target shape, the result looks nothing like inflation. Figure - shows

an analogous example in 3. In the top row, the cat mesh is inflated using a nonlinear algorithm that

attempts to make every portion of the mesh locally as flat as possible. The middle row shows the result

of deformation transfer onto the lion mesh. The lion mesh increases in size and seems to inflate, but

does not have the balloon-like characteristics of the source deformation. The lion’s feet become overly



Reference

Ta
rg

e
t

S
o

u
rc

e

Output

Figure -: Horse poses mapped onto a flamingo. The correspondence is less obvious because the
flamingo has only two legs, no tail, and a beak.

Ta
rg

e
t

S
o

u
rc

e

Reference

Output

Figure -: Horse poses mapped onto an elephant. The elephant’s enormous ears and trunk make
the correspondence difficult.

Figure -: The fifth and seventh output poses from Figure - are enlarged to show that deformation
transfer does not prevent self-intersections.



distorted, and other parts of the body have an exaggerated angular appearance. Running the nonlinear

inflation deformer directly on the reference lion mesh yields a result truer to the source deformation.

In both Figures - and -, deformation transfer fails because the nature of the deformation depends

on fine scale surface details of the mesh. Since these details differ between the source and target,

directly transferring the change in source shape to the target does not produce the desired result.

Deformed Source Reference Target Deformed Target

(Output)

Reference Source

Figure -: The 2 source shape is inflated to form a circle. When the deformation is transferred onto
a different target shape, the deformed target does not appear inflated.

Reference

S
o

u
rc

e
Ta

rg
e

t
Ta

rg
e

t

Output from deformation transfer.

Output from nonlinear inflation deformer.

Figure -: (Top) The cat mesh is inflated using a nonlinear inflation deformer. (Middle) When these
deformations are transferred to the lion mesh, the output appears distorted and does not capture the
balloon-like nature of the source deformation. (Bottom) Applying the nonlinear inflation algorithm
directly to the lion mesh reproduces the characteristics of the source deformation more faithfully.





Correspondence 4
Different characters created for computer animation rarely share the same mesh topology. Some

meshes require a fine tessellation in order to represent small geometric features, while others use

triangles more sparingly to encode flatter regions. Furthermore, large scale differences may exist in

the gross anatomical structure of two characters. Because of these differences, correspondence is an

integral component of the deformation transfer algorithm described in the previous chapter. Reusing

existing animations on new characters requires some way to relate the mesh structure of one character

to the structure of another. In this chapter, I discuss my solution to the correspondence problem

which enables deformation transfer between disparate meshes.

The need for correspondence is not unique to deformation transfer. In fact, it stretches across

numerous problem domains in computer graphics and vision. Many applications require a one-to-one

correspondence in mesh structure and resample all input meshes to achieve the same connectivity.

These applications include, among others, statistical models of shape variation in human faces [Blanz

and Vetter ; Vlasic et al. ] or body shape [Allen et al. ; Seo and Magnenat-Thalmann ;

Seo et al. ; Allen et al. ; Anguelov et al. ], shape interpolation [Alexa et al. ], shape

blending [Kraevoy and Sheffer ], and texture and detail transfer [Praun et al. ]. Nonrigid

registration of 3 scans must find a correspondence between points on one scan and points on another

[Anguelov et al. ]. Multiresolution employs correspondence to relate detail coefficients between

different levels of resolution even when each level has an arbitrary vertex connectivity [Kobbelt et al.



]. Expression cloning [Noh and Neumann ] requires correspondence between a source

and target face mesh. In computer vision, the correspondence problem has a long history ranging

from stereo imaging [Scharstein and Szeliski ] to object recognition and retrieval [Berg et al.

].

Because correspondence is addressed in so many different domains, there are a variety of ways to

approach it. Perhaps the most formal method is a parameterization of two meshes with respect to

each other in the form of a bijective mapping between all points on one mesh and all points on the

other. This function is referred to as a cross-parameterization [Kraevoy and Sheffer ] or inter-

surface mapping [Schreiner et al. ]. Techniques to compute such a bijection are robust to large

shape differences and require little user input. However, they can only be applied when a bijection

actually exists. Thus, the input meshes must be manifold and of the same genus. This requirement

restricts the candidates for deformation transfer. For example, the camel mesh (Figure -) has pierced

ears, making it genus two and therefore incompatible with the horse. Furthermore, both the horse

(Figure -) and cat meshes (Figure -) have connectivity “errors” that make them non-manifold.

Unfortunately, topological problems such as these are commonplace and limit the applicability of

parameterization-based algorithms.

Template fitting is a common approach to bring meshes into one-to-one correspondence [Blanz

and Vetter ; Allen et al. ; Seo and Magnenat-Thalmann ; Anguelov et al. ]. A

single template mesh is constructed that approximates the features of a collection of meshes not in

correspondence. For example, if the collection consists of human faces, the template could be a

“generic” face with gross facial features such as eyes, nose, and mouth but without details specific to

a particular individual. During fitting, a copy of the template is repeatedly deformed to match the

shape of each mesh in the collection. The meshes are discarded and replaced by the deformed copies

of the template. Applying such a procedure in deformation transfer to bring the source and target

into one-to-one correspondence simplifies transfer by obviating the need for a correspondence map.

However, changing the mesh structure may not be an option in practical situations due to design

requirements. In other cases, template fitting may not be appropriate because of large disparities in

the source and target mesh shape. For example, in Figure -, the source is a “face mask” comprising

only the front part of the face, while the target represents the entire head. Finding a common topology

for these two meshes would be difficult.



A different approach finds a set of discrete correspondence pairs by solving a combinatorial

optimization problem. A probabilistic formulation of this approach maximizes the joint probability

of all possible matching pairs of points using a model based on local geometry and the proximity

of the matched pairs [Anguelov et al. ]. In computer vision, correspondences within images

are found using integer quadratic programming [Berg et al. ], min-cut and max-flow algorithms

[Boykov and Kolmogorov ], and belief propagation [Sun et al. ]. The strength of these

formulations is their expressiveness. A discrete correspondence can express arbitrary matchings

between two shapes regardless of topological differences. However, combinatorial optimization is

difficult to perform efficiently. For example, integer quadratic programming is NP-Complete and

domain-specific knowledge must be incorporated to find an approximate solution [Berg et al. ].

In order to be maximally general, deformation transfer employs a discrete triangle paring for

correspondence. The correspondence map M, discussed in Section ., associates triangles of the

source and triangles of the target by storing pairs of source and target triangle indices:

M = {(s1, t1), (s2, t2), . . . , (s|M|, t|M|)}. (.)

A pair (sj , tj) indicates that the target triangle with index tj should deform like the source triangle

with index sj . Since only triangle indices are involved, differences in genus or errors in the vertex

connectivity pose no problem. No restrictions are placed on the type of mapping that M represents.

It can be, and almost always is, a general many-to-many mapping. A single target triangle can be

included in the mapping again and again, each time paired with a different source triangle, and vice

versa. This flexibility allows meshes of different structure and tessellation to be related to each other.

When the source contains features whose deformation should not be reproduced on the target, the

source triangles can be left out of the correspondence altogether. For example, the map used to

generate the horse/flamingo transfer in Figure - matches the horse’s front legs with the flamingo’s

legs and simply ignores the horse’s back legs. Special source index tags can be used to indicate that a

target triangle should deform according to some canonical deformation gradient such as the identity

transform. This technique is used in the map for the face/head transfer of Figure -. The target’s

face is matched with the source face, while the remaining target triangles that comprise the rest of the

head and neck are paired with the identity transform so that their deformation is minimal.



A B C

Figure -: An overview of the correspondence system. (A) The user selects marker points, shown as
yellow circles, on the source and target characters that indicate matching features. (B) Using a template
fitting algorithm, the camel mesh is deformed to match the shape of the horse while preserving its
original mesh structure. (C) Once the two meshes have a similar shape, a discrete correspondence is
computed by searching for pairs of source and target triangles whose centroids are in close proximity.
After selecting an arbitrary colormap for the horse mesh, the discrete mapping is visualized by assigning
each camel triangle the color of its corresponding horse triangle. If a camel triangle corresponds to
multiple horse triangles, only one is used for the visualization.

While the format of the source/target correspondence is discrete, the algorithm I propose to

compute it uses a template fitting procedure to find a continuous deformation of one mesh into the

other. The source and target meshes play the roles of template and destination during fitting. An

iterated closest point algorithm with regularization controlled by user selected marker points fits the

template mesh to the destination. In this process, the template retains its original mesh structure but

its vertices are moved so that its shape resembles that of the destination. The deformed template mesh

provides an approximate parameterization of the template with respect to the destination since each

template vertex is mapped to a position in space near the destination shape. Once the deformation is

computed, triangle pairings in M are found by searching for template and destination triangles whose

centroids are in close proximity. Thresholds on distance and surface properties give additional control

over the final triangle pairing. The correspondence process is summarized in Figure -. The template

fitting and triangle pairing algorithms are described in more detail in the following two sections.



Finding the correspondence map for two new characters using this procedure is an interactive

process that requires about one hour of a user’s time. Typically, the user begins by adding marker

points at obvious features such as the feet, hands, tail, joints, and face. Once an initial set of markers

is chosen, the correspondence system executes the fitting algorithm and computes a tentative triangle

pairing. The user can judge the quality of the resulting correspondence map by visualizing the paired

triangles as in Figure - C or by examining the results of deformation transfer. The correspondence

of regions that exhibit artifacts can then be refined by adding additional markers.

4.1 Template Fitting

The first stage in deriving a correspondence between the source and target meshes is a template fitting

procedure that deforms one mesh, called the template, to match the shape of the other, called the

destination. The roles of the source and target as template and destination are interchangeable. Either

the source mesh is deformed to match the shape of the target, or the target is deformed to match the

shape of the source. The choice of which mesh serves as template and which as destination is left to

the user. In many cases, the mesh with more vertices makes a more suitable template since it has more

degrees of freedom with which to express deformation.

The template fitting algorithm solves a minimization problem similar to the one used for defor-

mation transfer, but it is designed to deform one mesh into the other, rather than deforming it like

the other deforms. The user controls the deformation by supplying a set of marker points specified

as pairs of template and destination vertex indices. Each pair indicates that the template vertex, after

deformation, should match the position of the destination vertex. These markers are enforced as

constraints in the minimization. The objective function contains one term that enforces deformation

smoothness, one that prevents over smoothing, and one that moves the template vertices to the surface

of the destination mesh. These terms are similar to those used by Allen, Curless, and Popović []

for registering human body shapes. However, the optimization I present uses the same numerical

framework based on deformation gradients employed by deformation transfer.

Similar to the procedure followed by deformation transfer in Section ., we let T = {T1 . . . T|T|}
be the set of per-triangle deformation gradients that define the template mesh deformation. Deforma-

tion smoothness, ES , indicates that the deformation gradients of adjacent triangles should be equal:



ES =

|T|
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Tj −





∑

k∈adj(j)

1

|adj(j)|Tk





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

F

. (.)

Here, adj(j) is the set of triangles adjacent to triangle j and |adj(j)| is the number of adjacencies. Note

that this term is minimized when the change in deformation across the surface, and not the surface

itself, is smooth. For example, regardless of the surface smoothness, any affine transformation applied

to all triangles minimizes ES .

Deformation identity, EI , is minimized when all deformation gradients are equal to the identity

matrix:

EI =

|T|
∑

j=1

||Ti − I||2F . (.)

This term prevents the optimization from generating a drastic change in shape in order to achieve

optimal smoothness.

The closest valid point term, EC , indicates that the position of each vertex of the template mesh

should be equal to the closest valid point on the destination mesh. Assuming the template has n

vertices, this term has the form:

EC =
n

∑

i=1

||ṽi − ci||22. (.)

In this equation, ci is the closest valid point on the destination mesh to template vertex i. When

computing the closest valid point, vertex normals of the template mesh are compared with triangle

normals of the destination mesh and a difference in orientation of less than ◦ indicates a valid point.

This validity test results in better matches in regions such as the lips or fingers where opposite facing

surfaces are in close proximity.

Care must be taken to implement the closest valid point query efficiently since a naı̈ve imple-

mentation that tests every triangle greatly retards the performance of the correspondence system.

Because the validity requirement is binary, it cannot be incorporated into a distance metric. As a

result, standard closest-point algorithms are not applicable. I use a grid-based spatial binning algo-

rithm to accelerate the closest valid point computation. A 3 grid of fixed resolution is built that

surrounds both the template and destination mesh. The triangles of the destination mesh are scan

converted into the grid by storing in each cell the indices of all triangles whose bounding box overlaps

the cell. A hash table allows efficient storage of the grid contents. To perform a query, a breadth-



Figure -: In order to perform the closest valid point query efficiently, the triangles of the destination
mesh, shown on the left, are scan converted into a 3 grid. The occupied grid cells, shown on the
right, are represented using a hash table. A closest valid point is found by performing a breadth first
search of the grid data structure starting at the query location.

first search over the grid is initiated at the cell in which the query location resides. As each cell is

encountered in the search, the closest point on every triangle whose index is stored in the cell to

the query location is computed and the validity of this point is tested. If the validity test passes and

the distance is smaller than that found in previous computations, this point is stored as the current

closest valid point. The search continues until a valid point is found and all closer triangles have been

tested. If no valid point exists within a distance threshold, the query is rejected and the associated

term is removed from the summation in Equation .. Figure - visualizes the spatial-binning data

structure.

The deformed template vertices ṽ1 . . . ṽn are found by minimizing the weighted sum of the three

terms ES , EI , and EC subject to the marker constraints:

min
ṽ1...ṽn

wSES + wIEI + wCEC .

subject to ṽtk = mk, k ∈ 1 . . . m

(.)

In this equation, wS , wI , and wC are weights, tk is the template vertex index for marker k, mk is the

position of marker k on the destination mesh, and m is the number of markers. Equation . is a linearly

constrained quadratic optimization problem. Like Equation . of deformation transfer, it results in a

linear system of normal equations. Because the smoothness term compares the deformation gradients

of adjacent triangles that may not lie in the same plane, deformation in the perpendicular direction is

important and the fourth vertex formulation [Sumner and Popović ] should be used.



Example
Number of Average target

markers correspondences

Horse/Camel  .

Cat/Lion  .

Face/Head  .

Horse/Flamingo  .

Horse/Elephant  .

Table .: This table includes statistics about the correspondence computation for the deformation
transfer examples including the number of markers used for each source/target pair in the template
fitting procedure and the average number of source triangles with which each target triangle is paired
in the discrete correspondence map.

The final deformed template mesh is found by solving Equation . repeatedly in two phases.

At the onset of the computation, the closest valid points are not meaningful since the template and

destination are not aligned. Thus, in the first phase, we ignore the closet valid point term by using

weights wS = ., wI = ., and wC =  and solve the problem to find a deformed template mesh.

The marker points of the deformed mesh will match exactly since they are specified as constraints,

and the rest of the mesh will be carried along by the smoothness and identity terms. We use this initial

estimation to compute a set of valid closest points. Then, in the second phase, we solve the same

problem increasing wC each time and updating the closest points after each iteration. Preserving

wS = . and wI = . while increasing wC in four steps from . to . produces good results

in all tests. Each time the minimization problem is solved, the template mesh is deformed from

its original undeformed state. Since wC increases, the template mesh more closely approximates

the shape of the destination after each iteration. Figure - shows results from the template fitting

procedure for examples used in deformation transfer and Table . lists the number of markers used

in each example.

The template fitting algorithm works best when the template and destination are similar in

shape so that fitting requires only small deformations. The horse/camel, cat/lion, and face/head

examples in Figure - fall into this category and the deformed templates closely match the destination

shapes. When substantial shape differences exist, more extreme deformations are required to fit the

template to the destination. The deformation smoothness term (Equation .) fights against these

large deformations by favoring only gradual changes in shape. For example, in order to deform the

flamingo model into the horse, the flamingo’s “S”-shaped neck must be unbent to match the horse’s



Template mesh Destination mesh
Deformed template

after first phase

Deformed template

after second phase

Figure -: The results of the template fitting procedure used to generate the correspondence for the
horse/camel, horse/flamingo, horse/elephant, cat/lion, and face/head examples are shown above.
The first and second columns indicate which mesh is used as the template and which as the destination.
The yellow circles are the user-selected marker points. The third column shows the deformed template
after the first phase where the smoothness and identity terms are used but the closest valid point term is
ignored. The last column contains the final result after the second phase of fitting where the template
approximates the shape of the destination mesh. Wireframe rendering is disabled in the last row
because the tessellation of the face mesh is so dense that it completely obscures the surface.



Figure -: The template-fitting component of the correspondence system provides a self-contained
application to bring meshes into one-to-one correspondence. Five scans from a database of  are
shown above in the first row. The second row shows a “face mask” template fitted to each scan [Vlasic
et al. ].

straight neck. Many markers along the neck are required to force this unbending. Likewise, in the

horse/elephant example, the elephant’s long trunk and big ears must be compressed to conform to

the horse’s head.

Although I designed the template fitting algorithm as one component of the correspondence

system for deformation transfer, it can be used in other domains as a self-contained application to

bring meshes into one-to-one correspondence. It was used in this way to build two databases of face

meshes that include different individuals making different expressions [Vlasic et al. ]. A template

“face mask” was deformed to match raw scans acquired with a 3 scanner. The first database contains

 individuals each making  expressions, for  meshes in total. The expressions of one individual

in the database comprise the source deformations in Figure -. The second database contains 

subjects performing  visemes each in  different expressions, yielding  meshes in total. The top

row of Figure - shows five raw scans acquired for the second database, and the bottom row shows

the template fitted to each scan.



Figure -: Triangle pairings are visualized by selecting arbitrary colormaps for the source meshes,
shown in the top row, and assigning each triangle of the target meshes, shown in the bottom row, the
color of one of its corresponding source triangle.

4.2 Triangle Pairing

Once the template mesh has been deformed to match the shape of the destination, the triangle

pairing component of the correspondence system builds the map M by comparing the proximity and

orientation of triangles of both meshes. This method uses a compatibility criterion similar to the one

in the closest valid point query of the previous section. Two triangles are compatible if their centroids

are within a certain threshold of each other and the angle between their normals is less than ◦. This

compatibility test prevents two nearby triangles with disparate orientation (e.g., triangles from the

upper and lower lips of a face) from entering the correspondence. For each triangle of the deformed

template, the pairing algorithm computes the closest compatible triangle (if any) of the destination

mesh and adds the pair to the correspondence list. Likewise, for each triangle of the destination, the

algorithm computes the closest compatible triangle of the deformed template and adds that pair. A

spatial grid data structure similar to the one described in the previous section accelerates the distance

queries. This process builds a many-to-many mapping that ensures all triangles of both meshes,

subject to the compatibility restriction, are listed among the correspondences. Since both the source

and target meshes can play the roles of template and destination, the actual order of the two indices

in each pair may need to be reversed so that the source index comes first and the target second.

Figure - visualizes the computed triangle correspondence for the five examples in Figure -. The



This dissertation Kraevoy and Sheffer []

Figure -: The per-triangle correspondences computed using the output from my template fit-
ting method are compared with those computed using the output from the cross-parameterization
algorithm of Kraevoy and Sheffer [].

source meshes are shown in the top row and the target meshes in the bottom. An arbitrary colormap

is selected for the source meshes and each target triangle is assigned the color of its corresponding

source triangle. If a target triangle corresponds to multiple source triangles, only one is used in the

visualization. The white region of the head mesh in the bottom right indicates that those triangles

correspond to nothing. A special tag is inserted into the correspondence map for each white triangle

indicating its deformation should be minimal.

Table . indicates the average number of source triangles associated with each target triangle in the

correspondence maps used by deformation transfer. Since the camel, flamingo, and elephant meshes

are all more detailed than the horse mesh, this average is close to . indicating that the target triangles

usually match only one source triangle. In the cat/lion and face/head examples, the target shape

has fewer triangles that the source and the average is higher because each target triangle frequently

matches several source triangles. The face/head example is an extreme case as the face mesh has

roughly twice as many triangles in a much smaller area. The head mesh triangles far from the face

have zero matches, while the ones that comprise the face have, on average, . matches. The overall

average is ..

Because template fitting is independent of triangle pairing, the triangle pairs can be computed

using the output of a different fitting algorithm. Figure - compares results from my template fitting

procedure to those from the cross-parameterization algorithm of Kraevoy and Sheffer []. The



wireframe meshes show the elephant mesh deformed by each algorithm to match the shape of the

horse. The colored meshes visualize the resulting per-triangle correspondence mappings. Before

cross-parameterization could be applied, connectivity errors in the horse mesh had to be repaired

by hand to achieve a manifold mesh. With these repairs, cross-parameterization produces a better

deformed elephant mesh than my algorithm due to the significant shape differences between the

elephant and horse. However, the triangle pairings appear similar in most parts of the body. The

horse/elephant transfer in Figure - uses the correspondence map built from the output of Kraevoy

and Sheffer’s technique.





Mesh-Based Inverse Kinematics 5
Character rigging is a time consuming process that requires both artistic talent and technical expertise.

In striving to make animation easier and more efficient, the rigging requirement is exactly what we

want to abolish. This task is difficult, however, since rigging plays an essential role in the animation

pipeline. It allows the user to vastly reduce the degrees of freedom of a mesh and carefully design a

reduced space of meaningful deformations that incorporates the user’s semantic knowledge about how

the character should move. Since this space encodes the movement of mesh vertices, I refer to it as the

mesh kinematics. Once the mesh kinematics has been determined via rigging, animators can quickly

generate motion that brings a character to life.

In contrast to rigging, mesh editing techniques allow the user to sculpt a mesh’s shape with no

complex setup or parameter tuning. The intuitive interface employed by many editing algorithms lets

the user make a broad change in mesh shape by repositioning only a few vertices. The remaining

ones are positioned automatically to satisfy some general criterion such as detail preservation. How-

ever, detail preservation or other general criteria cannot capture mesh kinematics, since the class of

meaningful deformations varies from mesh to mesh and may even depend on the context in which a

character is manipulated. Thus, mesh editing methods are effective for sculpting details but do not

create deformations that respect the mesh kinematics. For example, when manipulating a properly

rigged character’s leg, it will bend only at the knee, hip, and ankle. These restrictions are difficult to

enforce using existing editing techniques.



Output

Output

Example Bend 

Example Bend 

Figure -: A simple demonstration of MIK. (Top row) Two examples are given, shown in green
in the left column. By fixing one cap in place and manipulating the other end, the bar bends like the
examples. (Bottom row) If a different example bend is provided, MIK generates the new type of
bend when the mesh is manipulated.

I have developed an algorithm for posing meshes that requires no rigging controls or parameter

tuning, provides direct manipulation of mesh shape using the intuitive interface employed by editing

techniques, and generates deformations that respect the mesh kinematics [Sumner et al. ]. When

the user selects and positions any subset of mesh vertices, my method produces a meaningful defor-

mation automatically. Complex pose changes are accomplished intuitively by manipulating only a few

vertices. Since kinematic changes are created via direct manipulation of the mesh analogously to tra-

ditional skeleton-based inverse kinematics for posing skeletons, I call this general problem mesh-based

inverse kinematics, and my example solution MIK.

MIK relies on examples to indicate the space of meaningful deformations. As an alternative

to character rigging, which is time consuming and difficult, and a general objective (e.g., detail

preservation), which cannot encode semantic knowledge about an arbitrary object’s movement,

MIK generalizes user-provided examples to learn the mesh kinematics. Using the learned space, it

generates new shapes that respect the deformations exhibited by the examples, yet still satisfy vertex

constraints imposed by the user. Although the user retains complete freedom to precisely position any

vertices, most tasks only require manipulating a few. The animator can pose an object with minimal

effort or bring it to life by keyframing vertex positions. Furthermore, the user always retains the

freedom to choose the class of meaningful deformations for any mesh, as demonstrated by Figure -.

Since this class is specified by examples, MIK simplifies posing tasks even when traditional animation



or editing methods do not apply.

MIK examples can be scanned, hand-sculpted, designed with free-form modeling tools, or

computed with arbitrarily complex procedural or simulation methods. The freedom to use any mesh

editing or deformation algorithm greatly eases example creation. Skeleton-based deformation tools

can create gross kinematic changes. Artifacts typical of these tools can be touched up with mesh

editing algorithms. Additional details such as muscle bulges or wrinkles can be added, as well as any

tweaks required to make each particular example match the vision of the artist. Creating a handful of

examples in this way is much easier than character rigging since rigging must ensure that the mesh

looks good in every pose. Rigging controls must be carefully tuned to generate the best possible

deformations since tweaks and “fix ups” that efficiently repair particular problems of a single example

are less effective when artifacts exist in a continuous range of poses. Furthermore, due to their

generality, rigging controls cannot easily provide the rich class of deformations afforded by sculpting

techniques. These reasons make MIK an attractive alternative to traditional character rigging.

MIK builds upon deformation transfer (Chapter ) through the use of examples and extends

it by allowing the user to create novel poses and animations. Since deformation transfer retargets

any deformation of one mesh onto another, it provides an effective means of example creation.

Constituent poses of a source character can be automatically transferred onto a target to provide

the example collection required by MIK. Although deformation transfer can only transfer existing

deformations, MIK uses the transferred target poses to create new deformations or animation.

MIK and deformation transfer also share the same numerical foundation of deformation

gradients. Internally, MIK represents each example with a feature vector of deformation gradients

that describes how the example has deformed relative to a reference mesh. The feature space, defined as

a nonlinear span of the example feature vectors, describes the space of meaningful deformations. When

the user displaces a few mesh vertices, MIK positions the remaining ones to produce a mesh whose

feature vector is as close as possible to the feature space. This ensures that the reconstructed mesh meets

the user’s constraints exactly while it best reproduces the example deformations. The calculations

required to extract the example feature vectors are identical to those employed by deformation transfer,

and the MIK reconstruction algorithm extends the one used by deformation transfer by finding the

optimal nonlinear feature vector combination.



5.1 Principles of MIK

MIK uses the example meshes provided by the user to form a space of meaningful deformations.

The definition of this space is critical as it must include deformations representative of those exhibited

by the examples even far from the given data. The key to designing a good space is to extract,

from each example, a vector of features that encodes important shape properties. MIK uses

deformation gradient feature vectors that encode the change in shape exhibited by the examples on a

triangle-by-triangle basis.

The simplest feature space is the linear span of the feature vectors of the example poses. Although

this space is not what we will ultimately use, I describe it first because it is simple, fast, and may

still be valuable in applications where linearity assumptions are sufficient [Blanz and Vetter ;

Ngo et al. ] or where artifacts can be avoided by dense sampling [Bregler et al. ]. A more

powerful nonlinear span is required in the general case when the natural interpolation of the example

deformations is not linear (e.g., for rotations).

An edited mesh can be reconstructed from a feature vector by solving a least squares problem

for the free vertices while enforcing constraints for each vertex that the user has positioned. The

error incurred by fixing some vertices as constraints will propagate across the mesh, rather than being

concentrated at the constrained vertices. MIK couples the constrained reconstruction process

with a search within feature space so that it finds the position in feature space that has the minimal

reconstruction error.

5.1.1 Feature Vectors

An obvious and explicit way to represent the geometry of a triangle mesh is with the coordinates of its

vertices in the global frame. However, this representation, while simple and direct, is a poor choice

for any mesh editing operation as the coordinates in the global frame do not capture the local shape

properties and relationships between vertices [Sorkine et al. ].

For manipulating meshes, it is more useful to describe a mesh as a vector in a different feature

space based on properties of the mesh. The components of the feature vector relate the geometry

of nearby vertices and capture the short-range correlations present in the mesh. Since our goal is to

encode the space of mesh deformations, deformation gradients (Section .) are a natural choice and



comprise the feature vectors used by MIK.

Given a mesh in a reference pose S and a deformed pose S̃, the per-triangle deformation gradients

are extracted using the same procedure employed by deformation transfer to compute the set of source

deformation gradients: Equation . is applied once for each triangle after computing a fourth vertex

using Equation .. All per-triangle gradients are unrolled and concatenated into a single feature vector

f using the layout specified in Equation .. If S and S̃ both have n vertices and m triangles, f is a

9m × 1 column vector.

Mapping a feature vector f back to a Cartesian representation x involves solving the optimization

problem:

min
x

‖Gx − f‖2
2.

subject to ṽk = ck, k ∈ 1 . . . p

(.)

This formula mirrors Equation . but has not been separated in the spatial dimension. The unknown

deformed vertices are stacked in x following Equation .. G is a 9m × 3n matrix that extracts

deformation gradients using the QR formulation in Equation .. As shown in Equation ., G is

block diagonal with the 3m×n matrix A repeated three times. Since the meshes used by MIK have

the same topology, A is constructed according to Figure -. The constraints ṽk = ck, k ∈ 1 . . . p, fix

the position of p vertices so that they are treated as constants in the optimization.

5.1.2 Linear Feature Space

A feature space defines the space of desirable deformations. The simplest feature space is the linear

span of the features extracted from the example meshes. A member f of this space is parameterized

by the coefficients in the weight vector w:

f(w) = Mw, (.)

where M is a matrix whose columns are the feature vectors f i, i ∈ 1 . . . l, corresponding to the l

example meshes.



In practice, MIK computes the mean f̄ and uses the mean centered feature vectors f̄ i:

Mw = f̄ +
l−1
∑

i=1

wif̄
i. (.)

Note that the linear dependence introduced by mean centering implies using l − 1 example features

and weights instead of the l features and weights used in the non-centered linear combination.

Given only a few specified vertex positions, linear MIK computes the pose x∗ whose features

are most similar to the closest point Mw∗ in the linear feature space:

x∗, w∗ = argmin
x,w

‖Gx − Mw‖2
2.

subject to ṽk = ck, k ∈ 1 . . . p

(.)

This equation replaces the feature vector f in Equation . with a linear combination of example

features Mw. Because the linear space extrapolates poorly, this metric can be further augmented to

penalize solutions that are far from the example meshes:

x∗, w∗ = argmin
x,w

‖Gx − Mw‖2
2 + γ‖w‖2

2.

subject to ṽk = ck, k ∈ 1 . . . p

(.)

The second term γ‖w‖2
2 favors examples close to the mean f̄ by penalizing large weights.

The value of γ, which weights the penalty term, can be chosen in a principled fashion by con-

sidering the Bayesian interpretation of the linear model: it maximizes the likelihood of the pa-

rameter vector w with respect to the example poses. Accordingly, this method can be improved

by compressing the matrix M using its principal components and selecting an appropriate value

for the weighting parameter γ as a function of the variance lost during PCA [Tipping and Bishop

].

An alternative to this linear Gaussian model is a nonlinear Gaussian-process–latent-variable model

[Grochow et al. ] in which each component of the feature vector is an independent Gaussian process.

This implies that one should carefully parameterize the feature space to match this independence

assumption. For skeletons, exponential maps or Euler angles accomplish this task but introduce a



nonlinear mapping between the independent parameters and the user-specified handles. Applying a

similar strategy on meshes will also produce nonlinear constraints and make it difficult to solve for

thousands of vertices interactively.

5.1.3 Nonlinear Feature Space

Since the reconstructed mesh vertices are a linear function of the feature vectors, linear blending of

feature vectors amounts to naı̈ve linear blending of poses, which is well known to result in unnatural

effects if the blended poses have undergone rotation. Thus, in our setting, linear blending will suffice

only if the example set is dense enough that large rotations are not present. However, dense sampling is

not the typical case and generalizations of the examples beyond small deformations are not possible with

linear blending. To avoid artifacts due to large rotations, which are typical in most nontrivial settings,

we require a “span” of the example features that combines rotations in a more natural way. Our

approach is based on polar decomposition [Shoemake and Duff ] and the matrix exponential map.

First, we decompose the deformation gradient Tij for the jth triangle (j ∈ 1 . . . m) in the ith pose

(i ∈ 1 . . . l) into rotational and scale/shear components using polar factorization:

Tij = RijSij . (.)

We then use the exponential map to combine the individual rotations of the different poses. The scale

and shear part can be combined linearly without further treatment.

We implement the exponential map using the matrix exponential and logarithm functions [Murray

et al. ]. These provide a mapping between the group of 3 rotations SO(3) and the Lie algebra

so(3) of skew symmetric 3 × 3 matrices. A practical approach to interpolating rotations is to map

them to so(3) using the matrix logarithm, interpolate linearly in so(3), and map back to SO(3) using

the matrix exponential [Murray et al. ; Alexa a]. This leads to the following expression for the

nonlinear span of the deformation gradient of the j th triangle:

Tj(w) = exp





l
∑

i=1

wilog
(

Rij

)









l
∑

i=1

wiSij



 Pj . (.)

The matrix exponential and logarithm are evaluated efficiently using Rodrigues’ formula [Murray et al.



C
o

rr
e

c
te

d
U

n
c

o
rr

e
c

te
d

Figure -: The ambiguity inherent in the matrix logarithm is demonstrated with this interpolation
sequence. When all triangles use rotation angles in the same range, neighboring triangles may take
different paths during interpolation. This problem is evident in the “Uncorrected” row where the bar
pinches and folds on top of itself. By marking certain triangles and adding 2π, the correct interpolation
sequence is generated, as shown in the “Corrected” row.

]. Experiments with exponential and logarithm functions for general matrices [Alexa a] which

do not require factorization into rotations and scales exhibit singularities that prevent a stable solution

of the minimization problem. Because MIK solves an optimization that minimizes reconstruction

error, it is important that this error be a meaningful measure of the quality of the reconstructed

mesh. For this reason, Equation . must include the matrix Pj defined in Equation . to remove

the perpendicular space component from the interpolated deformation gradient. Otherwise, the

perpendicular-space error dominates the cost function and the weights are adjusted to lower this error

even though the triangles match the in-plane transformation more poorly.

We chose to use the matrix exponential and logarithm because we can easily take derivatives of

the resulting nonlinear model with respect to w. For later use in Section .., we note that the partial

derivatives of Tj(w) are given by

Dwk
(Tj(w)) = exp





l
∑

i=1

wilog
(

Rij

)



 log
(

Rkj

)

l
∑

i=1

wiSijPj

+ exp





l
∑

i=1

wilog
(

Rij

)



 SkjPj . (.)

The matrix logarithm is a multi-valued function: each rotation in SO(3) has infinitely many

representations in so(3). In some cases, interpolation may require equivalent rotations in a different

range which can be computed by adding multiples of 2π. This problem is demonstrated with the



interpolation sequence shown in Figure -. When all triangles use rotation angles in the range

between −π and π, some triangles take a different path than their neighbors during interpolation,

as shown by the “Uncorrected” row. My implementation of the matrix logarithm returns rotation

angles between−π and π by default. However, the user can mark particular triangles to indicate that a

corrective multiple of 2π should be added. The interpolation sequence using these corrections is shown

in the “Corrected” row of Figure -. The same ambiguity also exists when rotations are represented

as Euler angles or quaternions. It is present in the interpolation algorithms of Alexa, Cohen-Or, and

Levin [] and Xu and colleagues []. Alexa utilizes a greedy approach to automatically adjust

the angles of adjacent simplices [Alexa a]. Whether proper corrections can be found for all cases

is an open problem.

The nonlinear feature space can be thought of as an n-way boundary-based version of as-rigid-

as-possible shape interpolation [Alexa et al. ]. Rather than performing a two-way interpolation

based on the compatible dissection of the interior of two shapes, MIK interpolates the boundary

of n shapes. As discussed in Section ., the practical implication of this reformulation is significant.

MIK interpolation is faster because it solves for fewer vertices and easier to apply because compatible

dissection of n shape interiors is difficult without adding an extremely large number of Steiner vertices.

An experimental comparison of the two methods is shown in Figure - and demonstrates that, for

2 polygonal shapes, MIK interpolation behaves reasonably despite ignoring the interior. The

remaining results in this dissertation and my experience with MIK indicate that the same holds for

3 meshes.

By setting the weights directly, rather than solving for them within the IK framework, the nonlinear

feature space can create multi-way blends. Figure - demonstrates three-way interpolation. Used in

this way, the nonlinear feature space matches the concurrent work of Xu and colleagues on boundary-

based mesh interpolation []. This similarity is expected since the analytic derivation in Section .

can be applied to show that reconstructing a mesh using fixed blending weights is equivalent to

solving a Poisson problem. In this case, the guidance function corresponds to the interpolated feature

vectors. However, while Xu and colleagues focus on interpolation with prescribed blending weights,

my primary contribution is a formulation of mesh-based inverse kinematics that hides these weights

from the user behind an intuitive interaction metaphor.



Figure -: The nonlinear feature space can be used to perform multi-way interpolation. In these two
examples, the green corner meshes are blended to produce the blue ones.

5.2 Numerics

In this section I show how to solve the following nonlinear analog of the linear inversion in Equation .:

x∗, w∗ = argmin
x,w

‖Gx − M(w)‖2
2,

subject to ṽk = ck, k ∈ 1 . . . p

(.)

where M is now a function that combines the feature vectors nonlinearly according to Equation ..

This is a nonlinear least-squares problem which can be solved using the iterative Gauss-Newton

algorithm [Madsen et al. ]. At each iteration, a linear least-squares system is solved which involves

solving the normal equations by Cholesky decomposition and backsubstitution. I now elaborate on

the key stages of this procedure.

5.2.1 Gauss-Newton Algorithm

In MIK, the Gauss-Newton algorithm linearizes the nonlinear function of the feature weights which

defines the feature space:

M(w + δ) = M(w) + Dw(M(w))δ. (.)



Then, each Gauss-Newton iteration solves a linearized problem to improve xk and wk—the estimates

of the vertex positions and the weight vector at the kth iteration:

δk, xk+1 = argmin
δ,x

‖Gx − Dw(M(wk))δ − (M(wk) + c) ‖2
2 (.)

wk+1 = wk + δk.

The constraints from Equation . have been enforced by treating the constrained vertices as constants,

updating G and x, and computing the constraint vector c as described in Section ...

The process repeats until convergence, which we detect by monitoring the change in the objective

function fk = f(wk), the gradient of the objective function, and the magnitude of the update vector

δk [Gill et al. ]:

‖fk − fk−1‖∞ < ε(1 + fk)

‖Dw(f(w))‖∞ < 3
√

ε(1 + fk) (.)

‖δk‖∞ < 2
√

ε(1 + ‖wk‖∞).

In my experiments, the optimization converges after about six iterations with ε = 1.0 × 10−6.

Solving the linear least-squares problem in Equation . leads to a system of normal equations:

B>B





x

δ



 = B> (M(wk) + c) , (.)

where B is a sparse matrix of size 9m × (3(n − p) + l) of the form

B =











A −J1

A −J2

A −J3











. (.)

Recall that A is also a very sparse matrix, having only three entries per row (Figure -). As we will

see in Section .., this permits efficient numerical solution of the system despite its size. The three

blocks Ji are the blocks of the Jacobian matrix Dw(M(w)) partitioned according to the three vertex

coordinates.



5.2.2 Cholesky Factorization

Without a special purpose solver, the normal equations in Equation . can take a minute or longer to

solve during each step of the Gauss-Newton iteration. This is much too slow for an interactive system,

which, in my experience, requires at least two solutions for every second of interaction. The key to

accelerating the solver is to reuse computations between iterations. A direct solution with a general

purpose method (e.g., Cholesky or QR factorization [Golub and Loan ]) will not be able to reuse

the factorization from the previous iteration because B continually changes. And, despite the sparsity

of B>B, conjugate gradient converges too slowly even with a variety of preconditioners.

My solution uses a direct method with specialized Cholesky factorization that exploits the block

structure of the system matrix:

B>B =

















A>A −A>J1

A>A −A>J2

A>A −A>J3

−J>1 A −J>2 A −J>3 A
∑3

i=1 J>i Ji

















. (.)

The three A>A blocks, each sparse (n− p)× (n− p) matrices, are constant throughout the iterations.

If these blocks are pre-factored, the remaining portion of the Cholesky factorization may be computed

efficiently.

First, symbolic Cholesky factorization U>U = B>B reveals the block structure of the upper-

triangular Cholesky factor:

U =

















R −R1

R −R2

R −R3

Rs

















(.)

where

R>R = A>A. (.)

We precompute R by sparse Cholesky factorization [Toledo ] after re-ordering the columns to

reduce the number of additional non-zero entries [Karypis and Kumar ]. The remaining blocks of

U are computed by solving the following equations in each iteration:



R>Ri = A>Ji, i ∈ 1 . . . 3 (.)

R>
s Rs =

3
∑

i=1

J>i Ji − R>
i Ri. (.)

In Equation ., backsubstitution with the precomputed R computes the blocks R1, R2, and R3 by

solving three linear systems. These blocks are in turn used on the right-hand side of Equation .

to compute the l × l matrix whose dense Cholesky factorization yields the last block Rs. For a large

number of examples, this factorization step will eventually become the bottleneck. In experiments,

however, with l= or fewer examples, the solution of Equation . for the three dense (n − p) × l

blocks and their use in the computation of R>
i Ri dominates the cost.

5.3 Results and Discussion

I have implemented MIK both as an interactive mesh manipulation system as well as in an offline

application that uses keyframed constraints to solve for mesh poses over time. In the interactive system,

the user can select groups of vertices that become “handles” which can be interactively positioned. As

the handles are moved the rest of the mesh is automatically deformed.

Figure - demonstrates the power of MIK. Given a cylindrical bar in two poses (- A), one

straight, and one smoothly bent, the user constrains the left cap to stay in place and manipulates one

vertex on the right cap. Using the nonlinear feature space, my system is able to generalize to any

other bend of the bar in the same plane (- B). In contrast, the linear feature space (- C) interpolates

the two examples poorly (the tip of the bar collapses in between the examples) and extrapolates even

more poorly. If the end of the bar is dragged perpendicular to the example bend (- D), it deforms

differently since no example has demonstrated how to deform in this direction. Given an additional

example, the bar can bend in that plane (- E) as well as the space in between (- F). By supplying a

different example, the bar bends differently (Figure -). Thus, MIK does not prescribe one type of

deformation but instead derives the appropriate class of deformations from the examples.

Figure - shows how MIK can be used to pose a character. Ten example poses, shown in

green in the top row, are used for this demonstration. Two handle vertices are selected as constraints

on the front and back foot of the reference pose (- A). By dragging the front foot forward, the lion



B C D E FA

Figure -: Using MIK to pose a bar. (A) Two example poses superimposed on top of each other.
(B) The left cap of the unbent bar is constrained to stay in place while a single vertex on the right side is
manipulated. Three edits using the nonlinear feature space are shown. Note that MIK generalizes
beyond the two examples and can create arbitrary bends in the plane. (C) In contrast, the linear feature
space interpolates and generalizes poorly. (D) In this top down view, moving the constrained vertex
perpendicular to the bend causes a shear since no examples are provided in this direction. (E)–(F)
Providing one additional example in the perpendicular direction allows MIK to generalize to bends
in that direction as well as in the space in between.

A B C D

Figure -: (Top row) Ten lion example poses. (Bottom row) A sequence of posing operations. (A) Two
handle vertices are chosen. (B) The front leg is pulled forward and the lion continuously deforms as
the constraint is moved. (C) The red region is selected and frozen so that the front leg can be edited in
isolation. (D) A similar operation is performed to adjust the tail. The final pose is different from any
individual example.

A B C D E F

Figure -: Posing a simulated flag. (Top row) Fourteen examples of a flag blowing in the wind created
with a cloth simulation. (Bottom row) (A) An undeformed flag is used as the reference pose. (B)–(D) By
positioning only the corners of the flag, the user creates realistic cloth deformations without requiring
any dynamic simulation. (E)–(F) Two frames from an animation in which the constraints on the
corners are keyframed to produce a walking motion.



...

Figure -: Galloping horse and elephant animations are created using only four examples of each
along with the same keyframed motion of one vertex on each foot.

bends its front legs at the hip and stretches its body forward. The position of the lion’s paw can be

precisely controlled by the user. In (- B) the paw has been pulled farther forward than its position

in any example. The body of the lion deforms realistically to meet the constraints so that there is no

discernible distortion. In order to pose only the front right leg and keep the rest of the body fixed

(- C), the user selects the unwanted region (shown in red) and removes it from the objective function

by building a feature space that ignores the deformation gradients of the selected triangles. This region

remains fixed in place, but does not contribute to the error as the optimal weights are computed. This

allows the user to pose the front leg independent of the rest of the body. After performing the same

operation for the tail (- D), the user has achieved a novel pose different from all those shown in the

example set. This result also shows how MIK builds upon deformation transfer since the example

lion poses are the result of transfer from a cat mesh (Figure -).

Figure - demonstrates that MIK also applies when deformations have no obvious skeletal

representation. The input for this demonstration is fourteen flag examples from a dynamic simulation,

shown in the top row. Starting with an undeformed flag (- A), the user arbitrarily positions the flag’s

four corners (- B–D). The interior deforms in a cloth-like fashion. By keyframing the position of the

constraints over time, the user creates an animation of a walking flag (- E–F).

Figure - shows the system used to produce a galloping animation. Four example poses of a horse

are used as input, and one vertex on each foot of the horse is keyframed to follow a gallop gait. The

positions of the remaining vertices of the horse are chosen by MIK for each frame, resulting in a

galloping animation. If we replace the four horse poses with those of an elephant and use the same

keyframed foot positions, MIK computes a galloping elephant.

Temporal coherence is important when generating offline animations. Since the deformation

system is nonlinear, a small change in the constraints may result in a large change in the resulting

deformation. In order to achieve temporal coherence, we add the additional term η‖w−w0‖2
2 to the



objective function in Equation .. This term encourages the new blending weights w to be similar to

the ones from the previous frame of animation w0. A value of  is used for η in all animations.

Table . gives statistics about the meshes used in these results including the number of vertices,

the number of triangles, the number of examples, the number of fixed handle vertices, and the running

times. The timing was measured on a .GHz Pentium  PC with GB of RAM. The “Factor” column

indicates the time required to permute A>A and compute the Cholesky factorization. This computation

is a preprocess as the factorization does not change for a particular choice of handle vertices. The

“Solve” column indicates the time required to perform one iteration of the Gauss-Newton algorithm

described in Section ... After each iteration, the user-interface is updated and new positions for the

constrained handle vertices are queried by the solver. This allows the system to remain interactive

during the nonlinear optimization. Figure - graphs the solve time as a function of the number of

examples for the horse and elephant meshes.

Mesh Vertices Triangles Examples Fixed Factor Solve

Bar     . s . s
Flag     . s . s
Lion , ,   . s . s
Horse , ,   . s . s
Elephant , ,   . s . s

Table .: Number of vertices, triangles, and example meshes, as well as the number of fixed handle
vertices and resulting timing data for the demonstrated results.

5 10 15
0

1

2

Number of examples

S
o

lv
e

 t
im

e
 (

se
co

n
d

s)

Horse

Elephant

0.136
0.250

0.375

0.890

1.422

2.188

Figure -: Solve time as a function of the number of examples for the horse and elephant meshes.
(Timings are from the original publication [Sumner et al. ].)



Conclusion 6
Computer-generated character animation, where human or anthropomorphic characters are animated

to tell a story, holds tremendous potential to enrich education, human communication, perception,

and entertainment. However, current animation procedures rely on a time consuming and difficult

process that requires both artistic talent and technical expertise. Although the stages of the animation

pipeline—modeling, rigging, and animation—are well explored individually, there is little work that

extends beyond the boundaries of any one area. As a consequence, the same procedure must be

followed for each new character without the opportunity to generalize or reuse technical components.

The work addressed in this dissertation eases the animation process by offering novel connections

between the stages and opportunities for reuse.

6.1 Contributions

Deformation transfer allows deformations from any stage in the pipeline to be reused on another

character. The mesh-based formulation does not depend on the mechanism used to create the

deformation and can be applied to hand-sculpted alterations made during modeling, individual poses

created with rigging controls, or continuous keyframed or simulated animation. Deformation transfer

enables the compilation of a database of both skeletal and non-skeletal deformations such as running,

walking, or gesturing that can be retargeted onto new characters of different shape when needed.

Reusing this motion amortizes the human effort spent creating it in the first place.



The correspondence algorithm provides a means of communication between the myriad existing

meshes used in computer animation. By employing a many-to-many mapping in the form of discrete

triangle pairs, shapes of different topology, tessellation and even gross anatomical structure are related

to one another. A deformation algorithm that computes a user-guided partial parameterization creates

this mapping efficiently.

Mesh-based inverse kinematics allows the user to avoid the traditional rigging phase and animate a

mesh via direct manipulation. The user can generate significant mesh deformations and pose changes

intuitively with a minimal amount of work. This technique is distinguished from traditional animation

methods since no formal rigging is required. It is distinguished from existing mesh editing algorithms

since it gives the user the freedom to specify the class of meaningful deformations. Example creation

can use the full spectrum of editing, sculpting, scanning, deformation, and animation techniques and

is further facilitated by deformation transfer.

The deformation transfer, correspondence, and mesh-based inverse kinematics algorithms employ

the same mathematical formulation which approximates the deformation gradient tensor field from

continuum mechanics on a triangle mesh. In deformation transfer, deformation gradients are used

to encode the source deformation and apply it to the target. For correspondence, the deformation

smoothness term allows the deformation incurred by vertex constraints to be smoothly propagated

across the mesh. In mesh-based inverse kinematics, deformation gradients make up the feature vectors

and an appropriately chosen nonlinear interpolation scheme generates a feature space that captures

the class of meaningful mesh deformations.

6.2 Future Directions

Generalized Skeletons. Without exception, existing systems that generate 3 character animation

single out kinematic deformation and model it with a skeleton or a similar rigging device. Non-

kinematic deformation such as muscle bulging or facial expressions is created differently. Even

methods that support a generic specification of deformation for 2 characters defer to skeleton-based

articulation when 3 kinematic deformation is involved [Ngo et al. ; Bregler et al. ]. The

domain-specific nature of these solutions limits the degree to which they can be generalized and

applied in new situations.



In contrast, my algorithms apply to any deformation, skeletal or non-skeletal. The underlying

representation of deformation gradients accommodates kinematic and non-rigid deformation without

distinction. As a consequence, the methods presented in this dissertation are broadly applicable.

Deformation transfer can apply the kinematic poses of the horse shown in Figure - to the camel

as successfully as the nonrigid buckling displayed in Figure -. Likewise, MIK can animate a

crouching lion (Figure -) as easily as a flapping flag (Figure -).

One conceptual interpretation of my work is that it generalizes the idea of skeleton-driven ani-

mation to the point where each triangle acts analogously to a joint by contributing a transformation

matrix to the ultimate deformed pose. Following this analogy, a mesh can be thought of as a very

complex skeleton in which every joint corresponds to a triangle, the bones are not rigid, and are not ar-

ranged hierarchically in a tree. Thus, the algorithms I present lie at the opposite extreme of traditional

skeleton-based animation where bones are chosen parsimoniously. The conceptual contribution of a

mesh as a “generalized skeleton” may apply to other problems in computer graphics. Furthermore,

just as traditional skeletons have benefited from years of research, this generalization will improve with

time, particularly through the exploration of other parameterizations in between the most restricted

skeleton representations and the most general mesh representations.

Copy/Paste Transfer. In the presented results of deformation transfer, whole body deformations

of one character are transferred to another. Only the face/head (Figure -) and horse/flamingo

(Figure -) examples deviate from the entire body. However, these cases demonstrate that the

transfer algorithm can be executed on a more fine-grained level. Thus, one avenue of future work

is developing tools that allow copy/paste operations for deformation transfer from multiple sources.

Movement originating with the legs of one character, the arms of another, and the head of a third

could all be transferred onto one target mesh to generate a novel animation different than any single

source.

The challenge in copy/paste transfer is primarily one of developing tools to specify the proper

correspondence. The algorithm I present in Chapter  works well for whole-body mappings between

anatomically similar characters. However, it is not designed to map individual body parts and requires

user-guidance in the form of matching marker locations. Ideally, a copy/paste application would

incorporate segmentation, correspondence, and transfer into one intuitive interface.



Figure -: Deformation transfer between drastically different meshes is an open problem in computer
graphics. Making the tree gallop like a horse requires a versatile method to relate the two meshes to
one another and some way to adapt the source motion to the target shape that incorporates artistic
direction.

Drastically Different Characters. Deformation transfer requires a gross similarity between the

source and target. When two meshes are drastically different, their correspondence may be unclear

and ambiguous even on a semantic level. Consider, for example, the horse and tree meshes shown

in Figure -. Transferring the galloping horse animation onto the tree would be difficult using my

deformation transfer algorithm since it is not clear how to specify a correspondence between the

two meshes. However, I am certain that talented animators, if asked to make the tree gallop like a

horse, would succeed. In fact, this example is not unreasonable since many animated cartoons feature

anthropomorphized characters.

Transferring deformation between drastically different meshes is an open problem in computer

graphics that presents several challenges. It requires an extremely versatile technique to relate the

source and target to one another that can accommodate ambiguous and arbitrary mappings. Second, it

requires a method to appropriately adapt the deformation to the target, rather than simply transferring

it directly without modification. Finally, this adaptation method must provide some way to incorporate

artistic direction into the transfer process.



Rigging Reuse. Character rigging provides countless tested methods to model mesh kinematics.

This dissertation characterizes the rigging process as time consuming and difficult and offers MIK

as an alternative. However, the rigging controls themselves are not the enemy; it is the lengthy

parameter tuning process that makes rigging so laborious. An alternate approach to mitigate the

expense of character rigging is rigging reuse: transfer the rigging controls themselves (including the

hard-to-tune parameters) from one character to another. Rigging reuse would allow animators to

use familiar rigging tools and the same proven animation pipeline while avoiding the lengthy tuning

process.

Deformation transfer provides a starting point for rigging reuse. The reconstruction problem

can be thought of as a metric that measures how well one mesh’s deformation mimics that of

another. This metric permits a reformulation to solve for other quantities that influence a character’s

shape.

Localized Examples and Simplicial Modeling for MIK. A principle design goal of MIK is to

allow the user to generate the most meaningful mesh deformations with the least amount of work.

Thus, the presented framework focuses on selecting and moving a few vertices in order to generate

a full-body deformation. For example, the lion mesh from Figure - can be made to stretch forward

or sit down by fixing one vertex on its back paw and dragging a vertex on its front paw forward or

backward. MIK finds the best pose in the nonlinear span of all examples.

In a production setting where animators require precise control over every nuance of shape, the

number of examples required to express the character’s deformation may become unmanageable.

Localizing the examples to individual parts of the character’s body can reduce the total example count.

For example, the user may sculpt a multitude of facial expressions but only a few examples of the

legs and arms. This approach avoids a combinatorial increase in the number of examples that might

otherwise result when fine-grained control over the mesh kinematics is required.

Simplicial configuration modeling [Ngo et al. ] provides another approach to manage the

example set. Rather than always searching among all examples, the user can explicitly model the

configuration space of the character via a simplicial complex. This allows the user to ensure that only

compatible examples are combined in any situation. A user interface can facilitate navigation of the

possibly high-dimensional complex in an intuitive way [Matusik et al. ].



Physics. Neither deformation transfer nor MIK employs physics, but both have much to gain

from its application. As discussed in Section .., the physical laws that govern motion in the real world

are an integral component of stylized and realistic animation alike. A substantial amount of research

in computer graphics focuses on physics-based character animation and there are many opportunities

to incorporate it into the problems I have presented.

Adding physics to the transfer process could ensure that the target character moves in a physically

realistic way even when the size and shape of the source and target are different. Or, the physical

properties of a fluid simulation, such as velocity or pressure, could be transferred instead of mesh

deformation. Physics transfer would facilitate the construction of a library of physical phenomena

that could be applied to new domains without the need to resimulate.

MIK could be modified to capture dynamic effects such as inertia and follow-through. A

comprehensive treatment would introduce dynamic features and a mechanism for matching both

static and dynamic feature vectors. Such a system might ultimately provide a practical compromise

between the automation offered by physical simulations and the control provided by keyframing

techniques.



Bibliography 7
A, Y., L, C. K.,  P́, Z. . Momentum-based parameterization of dynamic character

motion. In 2004 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, –.

A, A., D, M., A, M., D, S., C, A., C, B., S, D.,
 C, M. . Interactive digital photomontage. ACM Transactions on Graphics 23,  (Aug.),
–.

A, M., C-O, D.,  L, D. . As-rigid-as-possible shape interpolation. In Proceedings
of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, –.

A, M. . Local control for mesh morphing. In Proceedings of the International Conference on Shape
Modeling and Applications (SMI’01), –.

A, M. . Linear combination of transformations. In Proceedings of SIGGRAPH ’02, –.

A, M. . Recent advances in mesh morphing. Computer Graphics Forum 21, , –.

A, M., . Personal communication.

A, M. . Differential coordinates for mesh morphing and deformation. The Visual Computer 19,
, –.

A. . Maya 7 Documentation. http://www.alias.com/.

A, B., C, B.,  P́, Z. . Articulated body deformation from range scan data.
ACM Transactions on Graphics 21,  (July), –.

A, B., C, B.,  P́, Z. . The space of human body shapes: Reconstruction and
parameterization from range scans. ACM Transactions on Graphics 22,  (July), –.



A, B., C, B.,  P́, Z. . Exploring the space of human body shapes: Data-driven
synthesis under anthropometric control. In Proceedings of the SAE Digital Human Modeling for Design
and Engineering Conference.

A, P., C-S, D., Y, M.,  D, M. . Variational tetrahedral meshing.
ACM Transactions on Graphics 24,  (Aug.), –.

A, A., C, M.-P., W, G.,  K, S. . Swirling-sweepers: Constant-volume
modeling. In 12th Pacific Conference on Computer Graphics and Applications (PG’04), –.

A, D., S, P., K, D., P, H.-C.,  D, J. . The correlated correspon-
dence algorithm for unsupervised registration of nonrigid surfaces. In NIPS.

A, D., S, P., K, D., T, S., R, J.,  D, J. . SCAPE: Shape
completion and animation of people. ACM Transactions on Graphics.

A, O.,  F, D. A. . Interactive motion generation from examples. ACM Transactions
on Graphics 21,  (July), –.

A, B., S, R.,  S, D. . On compatible triangulations of simple polygons.
Computational Geometry: Theory and Applications 3, , –.

A, A.,  T, D. . Interactive modeling of the human musculature. In Proceedings of
Computer Animation 2001.

B, A. H. . Global and local deformations of solid primitives. In Computer Graphics (Proceedings
of SIGGRAPH 84), vol. , –.

B, A. C., B, T. L.,  M, J. . Shape matching and object recognition using low distortion
correspondences. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR
2005), –.

B, P. . Cartoon Animation. Walter Foster Publishing.

B, V.,  V, T. . A morphable model for the synthesis of 3 faces. In Proceedings of
SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series, –.

B, J. . An implicit surface polygonizer. In Graphics Gems IV, P. S. Heckbert, Ed.
Academic Press, –.

B-M, I., R, H.,  J, J. . Parameterization of triangle meshes over quadrilat-
eral domains. In SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing, ACM Press, New York, NY, USA, –.

B, M.,  K, L. . Multiresolution surface representation based on displacement
volumes. Computer Graphics Forum 22, , –.

B, M.,  K, L. . An intuitive framework for real-time freeform modeling. ACM
Transactions on Graphics (Proc. SIGGRAPH) 23, , –.



B, M., B, D.,  K, L. . Efficient linear system solvers for mesh processing. In
IMA Conference on the Mathematics of Surfaces, –.

B, Y.,  K, V. . An experimental comparison of min-cut/max-flow algorithms
for energy minimization in vision. In EMMCVPR ’01: Proceedings of the Third International Workshop
on Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer-Verlag, London,
UK, –.

B, M.,  H, A. . Style machines. In Proceedings of ACM SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, –.

B, C., L, L., C, E.,  D, H. . Turning to the masters: Motion
capturing cartoons. ACM Transactions on Graphics 21,  (July), –.

B, D. C., M, R. A.,  H, J. K. . Dynamically simulated characters in virtual
environments. IEEE Comput. Graph. Appl. 18, , –.

B, A.,  W, L. . Motion signal processing. In Proceedings of SIGGRAPH 95,
Computer Graphics Proceedings, Annual Conference Series, –.

C, B. L.,  B, R. . Interactive motion deformation with prioritized constraints.
In 2004 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, –.

C, S., G, S., C, B., D, T.,  P́, Z. . Interactive skeleton-driven
dynamic deformation. In Proc. of SIGGRAPH.

C, S., G, S., C, B., D, T.,  P́, Z. . A multiresolution framework
for dynamic deformations. In Proceedings of the ACM SIGGRAPH Symposium on Computer Animation.

C, S., B, M., C, B., D, T.,  P́, Z. . Physically based rigging
for deformable characters. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium
on Computer animation, ACM Press, New York, NY, USA, –.

C, J. E., H, D. R.,  P, R. E. . Layered construction for deformable
animated characters. In Computer Graphics (Proceedings of SIGGRAPH 89), vol. , –.

C, D. T.,  Z, D. . Pump it up: Computer animation of a biomechanically based
model of muscle using the finite element method. In Computer Graphics (Proceedings of SIGGRAPH
92), vol. , –.

C, D. M., C, M., Z, L.,  B, N. I. . The emote model for effort and shape.
In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series,
–.

C, K.-J.,  K, H.-S. . On-line motion retargetting. The Journal of Visualization and Computer
Animation 11, .

C-S, D., A, P.,  D, M. . Variational shape approximation. ACM
Transactions on Graphics 23,  (Aug.), –.



C, M. F. . Interactive spacetime control for animation. In Computer Graphics (Proceedings of
SIGGRAPH 92), vol. , –.

C, S. . Extended free-form deformation: A sculpturing tool for 3 geometric modeling.
In Computer Graphics (Proceedings of SIGGRAPH 90), vol. , –.

C, B.,  L, M. . A volumetric method for building complex models from range
images. In Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series,
–.

D, T. A., G, J. R., L, S.,  N, E. . COLAMD, an approximate column
minimum degree ordering algorithm. ACM Transactions on Mathematical Software 30, , –.

D, T. A. . UMFPACK version . user guide. Tech. rep., University of Florida. TR--.

DR, T. D., K, M.,  T, T. . Subdivision surfaces in character animation. In
Proceedings of SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference Series, –.

 C, M. . Differential Geometry of Curves and Surfaces. Prentice Hall.

D, S., B, P.-T., G, M., P, V.,  H, J. C. . Quadrangulating a mesh
using laplacian eigenvectors. Tech. Rep. UIUCDCS-R--, University of Illinois at Urbana-
Champaign, June.

E, M., DR, T. D., D, T., H, H., L, M.,  S, W. . Multiresolu-
tion analysis of arbitrary meshes. In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings,
Annual Conference Series, –.

F, P.,   P, M.,  T, D. . Dynamic free-form deformations for
animation synthesis. IEEE Transactions on Visualization and Computer Graphics 3, , –.

F, P.,   P, M.,  T, D. . Composable controllers for physics-
based character animation. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings,
Annual Conference Series, –.

F, P.,   P, M.,  T, D. . The virtual stuntman: Dynamic
characters with a repertoire of autonomous motor skills. Computers and Graphics 25, , –.

F, A. C.,  P, N. S. . Efficient synthesis of physically valid human motion. ACM
Transactions on Graphics 22,  (July), –.

F, R.,  L, D. . Target-driven smoke animation. ACM Transactions on Graphics 23,
 (Aug.), –.

F, R., L, D.,  W, M. . Gradient domain high dynamic range compression.
ACM Transactions on Graphics 21,  (July), –.

F, R.,  K, M. J. . The Cg Tutorial: The Definitive Guide to Programmable Real-Time
Graphics. Addison Wesley Professional.



G, M. . Quadric-Based Polygonal Surface Simplification. PhD thesis, Carnegie Mellon
University.

G, P. E., M, W.,  W, M. H. . Practical Optimization. Academic Press, London.

G, M., S, H. J., K, L.,  J, A. . Snap-together motion: Assembling run-time
animations. In Proceedings of the 2003 symposium on Interactive 3 graphics, ACM Press, New York, NY,
USA, –.

G, M. . Motion editing with spacetime constraints. In 1997 Symposium on Interactive 3

Graphics, –.

G, M. . Retargeting motion to new characters. In Proceedings of SIGGRAPH 98, Computer
Graphics Proceedings, Annual Conference Series, –.

G, M. . Retargeting motion to new characters. In Proceedings of ACM SIGGRAPH 1998,
Computer Graphics Proceedings, Annual Conference Series, –.

G, M. . Comparing constraint-based motion editing methods. Graphical Models 63, ,
–.

G, G. H.,  L, C. F. V. . Matrix Computations, third ed. Johns Hopkins University Press,
Baltimore, Maryland.

G, N. I. M.,   J. A. S, Y. H. . A numerical evaluation of sparse direct solvers for
the solution of large sparse, symmetric linear systems of equations. Tech. Rep. RAL-TR--,
Council for the Central Laboratory of the Research Councils.

G, J.,  P, W. . Deformation of solids with trivariate B-splines. In
Eurographics ’89, –.

G, K., M, S., H, A.,  P́, Z. . Style-based inverse kinematics.
ACM Transactions on Graphics (Proc. SIGGRAPH).

G, I., S, W.,  S̈, P. . Multiresolution signal processing for meshes.
In Proceedings of ACM SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series,
–.

G, I., V, K., S, W.,  S̈, P. . Normal meshes. In Proceedings of ACM
SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, –.

H, G., M, R.,  L, M. C. . Fast volume-preserving free form deformation
using multi-level optimization. In SMA ’99: Proceedings of the fifth ACM symposium on Solid modeling
and applications, ACM Press, New York, NY, USA, –.

H, G., F, S., S, A., L, C.,  F, H. . An implicit finite element method for
elastic solids in contact. In Proceedings of Computer Animation 2001.

H, J. K.,  P, N. S. . Adapting simulated behaviors for new characters. In
Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Series, –.



H, J. K., W, W. L., B, D. C.,  O’B, J. F. . Animating human athletics. In
Proceedings of SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference Series, –.

 Z, Q., C, Y.,  K, A. . Real-time biomechanically-based muscle volume
deformation using fem. Computer Graphics Forum 17, , –.

H, W. M., H, J. F.,  K, H. . Direct manipulation of free-form deformations. In
Computer Graphics (Proceedings of ACM SIGGRAPH 92), vol. , –.

H, E., P, K.,  P́, J. . Style translation for human motion. ACM Transactions on
Graphics 24,  (Aug.), –.

I, T., M, S.,  T, H. . Teddy: A sketching interface for 3 freeform
design. In Proceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series,
–.

I, T., M, T.,  H, J. F. . Spatial keyframing for performance-driven
animation. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM Press, New York, NY, USA, –.

I, T., M, T.,  H, J. F. . As-rigid-as-possible shape manipulation. ACM
Transactions on Graphics 24,  (Aug.), –.

I. . Math Kernel Library Reference Manual. http://www.intel.com/.

J, D. L.,  T, C. D. . Skinning mesh animations. ACM Transactions on Graphics 24, 

(Aug.), –.

J, O.,  T, F. . The Illusion of Life: Disney Animation. Disney Editions.

J, T. . Robust repair of polygonal models. ACM Transactions on Graphics 23,  (Aug.), –.

K̈, K. . A Head Model with Anatomical Structure for Facial Modeling and Animation. PhD thesis,
Max-Planck-Institut für Informatik.

K, G.,  K, V., . METIS: Serial graph partitioning, version ...
http://www.cs.umn.edu/∼metis.

K, S.,  T, A. . Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM
Transactions on Graphics 22,  (July), –.

K, L.,  Ž́, J. . Real-time skin deformation with bones blending. In WSCG Short Papers
Proceedings.

K, L.,  Ž́, J. . Spherical blend skinning: A real-time deformation of articulated models.
In 2005 ACM SIGGRAPH Symposium on Interactive 3 Graphics and Games, ACM Press, –.

K, L., C, S., V, J.,  S, H.-P. . Interactive multi-resolution modeling
on arbitrary meshes. In Proceedings of ACM SIGGRAPH 98, Computer Graphics Proceedings, Annual
Conference Series, –.



K, L., V, J.,  S, H.-P. . Multiresolution hierarchies on unstructured triangle
meshes. Computational Geometry 14, -, –.

K, L. P., V, J., L, U.,  S, H.-P. . A shrink wrapping approach to remeshing
polygonal surface. In Computer Graphics Forum (Eurographics ’99), The Eurographics Association and
Blackwell Publishers, P. Brunet and R. Scopigno, Eds., vol. , –.

K, L., B, T.,  S, H.-P. . Multiresolution shape deformations for meshes
with dynamic vertex connectivity. Computer Graphics Forum (Proc. Eurographics) 19, C–C.

K, L. . Discrete fairing. In Proceedings of the Seventh IMA Conference on the Mathematics of
Surfaces, –.

K, T., L, H.,  K, J. . Animating reactive motions for biped locomotion. In
VRST ’04: Proceedings of the ACM symposium on Virtual reality software and technology, ACM Press, New
York, NY, USA, –.

K, R., K, T.,   A, K. . Directable animation of elastic objects. In SCA ’05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press,
New York, NY, USA, –.

K, L.,  G, M. . Simplicial families of drawings. In UIST ’01: Proceedings of the 14th
annual ACM symposium on User interface software and technology, ACM Press, New York, NY, USA,
–.

K, L.,  G, M. . Flexible automatic motion blending with registration curves. In
2003 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, –.

K, L., G, M.,  P, F. . Motion graphs. ACM Transactions on Graphics 21,  (July),
–.

K, V.,  S, A. . Cross-parameterization and compatible remeshing of 3 models.
ACM Transactions on Graphics 23,  (Aug.), –.

K, P. G., J, D. L.,  P, D. K. . EigenSkin: Real time large deformation character skinning
in hardware. In Proceedings of the Symposium on Computer Animation, ACM Press, –.

L, W. M., R, D.,  K, E. . Introduction to Continuum Mechanics, rd ed. Elsevier.

L, J. . Principles of traditional animation applied to 3 computer animation. In Computer
Graphics (Proceedings of SIGGRAPH 87), vol. , –.

L, J. . Tricks to animating characters with a computer. SIGGRAPH Comput. Graph. 35, ,
–.

L, J.,   P, M.,  F, E. L. . Interactive control for physically-based animation.
In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series,
–.



L, J., N, M.,  S, K. . Predictive feedback for interactive control of physics-based
characters. In Computer Graphics Forum, Proceedings of Eurographics 2005, Blackwell, Dublin, Ireland,
vol. , Eurographics, –.

L, J.,  L, K. H. . Precomputing avatar behavior from human motion data. In 2004 ACM
SIGGRAPH / Eurographics Symposium on Computer Animation, –.

L, J.,  S, S. Y. . A hierarchical approach to interactive motion editing for human-like
figures. In Proceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series,
–.

L, Y., T, D.,  W, K. . Realistic modeling for facial animation. In Proceedings
of SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference Series, –.

L, A. W. F., S, W., S̈, P., C, L.,  D, D. . MAPS: Multireso-
lution adaptive parameterization of surfaces. In Proceedings of SIGGRAPH 98, Computer Graphics
Proceedings, Annual Conference Series, –.

L, A., M, H.,  H, H. . Displaced subdivision surfaces. In Proceedings of ACM
SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, –.

L, J., C, J., R, P. S. A., H, J. K.,  P, N. S. . Interactive control of avatars
animated with human motion data. ACM Transactions on Graphics 21,  (July), –.

L, J. P., C, M.,  F, N. . Pose space deformations: A unified approach to shape
interpolation and skeleton-driven deformation. In Proceedings of ACM SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, –.

L, J. P., M, J., D, Z.,  N, U. . Reducing blendshape interference by
selected motion attenuation. In Proceedings of the 2005 symposium on Interactive 3 graphics and games,
ACM Press, New York, NY, USA, –.

L, P. . Filling holes in meshes. In SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland,
–.

L, E., K, M. J.,  M, H. . A user-programmable vertex engine. In
Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series,
–.

L, Y., S, O., C-O, D., L, D., R̈, C.,  S, H.-P. . Differential
coordinates for interactive mesh editing. In Proceedings of Shape Modeling International.

L, Y., S, O., A, M., C-O, D., L, D., R̈, C.,  S, H.-P. .
Laplacian framework for interactive mesh editing. International Journal of Shape Modeling 11, , –.

L, Y., S, O., L, D.,  C-O, D. . Linear rotation-invariant coordinates for
meshes. ACM Trans. Graph. 24, , –.



L, C. K.,  P́, Z. . Synthesis of complex dynamic character motion from simple
animations. ACM Transactions on Graphics 21,  (July), –.

L, Z., G, S. J.,  C, M. F. . Hierarchical spacetime control. In Proceedings of
SIGGRAPH 94, Computer Graphics Proceedings, Annual Conference Series, –.

L, P.-C., W, F.-C., M, W.-C., L, R.-H.,  O, M. . Automatic animation skeleton
construction using repulsive force field. In PG ’03: Proceedings of the 11th Pacific Conference on Computer
Graphics and Applications, IEEE Computer Society, Washington, DC, USA, .

L, C. K., H, A.,  P́, Z. . Learning physics-based motion style with nonlinear
inverse optimization. ACM Transactions on Graphics 24,  (Aug.), –.

L, I., K, B., G, J., R, J.,  S, C. D. . Twister: A space-warp operator
for the two-handed editing of 3 shapes. ACM Transactions on Graphics 22,  (July), –.

L, W. E.,  C, H. E. . Marching cubes: A high resolution 3 surface construction
algorithm. In Computer Graphics (Proceedings of SIGGRAPH 87), vol. , –.

L, M., DR, T. D.,  W, J. . Multiresolution analysis for surfaces of arbitrary
topological type. ACM Transactions on Graphics 16,  (Jan.), –.

L, A. B., R, W. S. N., B, J.,  W, P. . System for authoring highly
interactive, personality-rich interactive characters. In 2004 ACM SIGGRAPH / Eurographics Symposium
on Computer Animation, –.

MC, R.,  J, K. I. . Free-form deformations with lattices of arbitrary topology. In
SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques,
ACM Press, New York, NY, USA, –.

M, K., N, H.,  T, O. . Methods for non-linear least squares problems.
Tech. rep., Informatics and Mathematical Modelling, Technical University of Denmark.

M, W., Z, M.,  D, F. . Texture design using a simplicial complex of
morphable textures. ACM Transactions on Graphics 24,  (Aug.), –.

MN, A., T, A., P́, Z.,  S, J. . Fluid control using the adjoint method.
ACM Transactions on Graphics 23,  (Aug.).

M, M.,  M, S. . Adapting motion capture data using weighted real-time inverse
kinematics. Computers in Entertainment (CIE) 3, , –.

M, M., D, M., S̈, P.,  B, A. H. . Discrete differential-geometry operators
for triangulated -manifolds. In Visualization and Mathematics III, H.-C. Hege and K. Polthier, Eds.
Springer-Verlag, Heidelberg, –.

M, T. P. . Old and new matrix algebra useful for statistics. Tech. rep., MIT Media Lab.

M, A.,  G, M. . Building efficient, accurate character skins from examples. ACM
Trans. Graph. 22, , –.



M, A., T, L.,  G, M. . Direct manipulation of interactive character skins.
In Proceedings of the 2003 symposium on Interactive 3 graphics, ACM Press, New York, NY, USA, –.

M, J.-S., B, P., B, R.,  T, D. . Using an intermediate skeleton
and inverse kinematics for motion retargeting. Computer Graphics Forum 19,  (August).

M, R. M., L, Z.,  S, S. S. . A mathematical introduction to robotic manipulation. CRC
Press.

N S. P, P. S. A. R. . Animation of humanlike characters: Dynamic motion filtering
with a physically plausible contact model. In Yale Workshop on Adaptive and Learning Systems.

N, A., S, O., A, M.,  C-O, D. . A sketch-based interface for detail-
preserving mesh editing. ACM Transactions on Graphics 24,  (Aug.), –.

N, M.,  F, E. . Modeling tension and relaxation for computer animation. In ACM
SIGGRAPH Symposium on Computer Animation, –.

N, M.,  F, E. . Aesthetic edits for character animation. In 2003 ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, –.

N, M.,  F, E. . Methods for exploring expressive stance. In SCA ’04: Proceedings of the
2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY,
USA, –.

N, M.,  F, E. . AER: Aesthetic exploration and refinement for expressive character
animation. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM Press, New York, NY, USA, –.

N, J. T.,  M, J. . Spacetime constraints revisited. In Proceedings of SIGGRAPH 93,
Computer Graphics Proceedings, Annual Conference Series, –.

N, T., C, D., D, J., D, B., L, L.,  Z, S. . Accessible animation and
customizable graphics via simplicial configuration modeling. In Computer Graphics (Proceedings of
SIGGRAPH 2000), ACM SIGGRAPH, –.

N, J.,  N, U. . Expression cloning. In Proceedings of ACM SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series, –.

N, F. S.,  T, G. . Simplification and repair of polygonal models using volumetric
techniques. IEEE Transactions on Visualization and Computer Graphics 9, , –.

O’R, J. . Computational Geometry in C. Cambridge University Press.

P, S. I., S, H. J.,  S, S. Y. . On-line locomotion generation based on motion blending.
In ACM SIGGRAPH Symposium on Computer Animation, –.

P́, P., G, M.,  B, A. . Poisson image editing. ACM Transactions on Graphics 22,
 (July), –.



P, K.,  G, A. . Improv: A system for scripting interactive actors in virtual worlds.
In Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series, –.

P, K. . Real time responsive animation with personality. IEEE Transactions on Visualization
and Computer Graphics 1, , –.

P, L. . On NURBS: A survey. IEEE Comput. Graph. Appl. 11, , –.

P, N. S.,  B-M, F. . Force-based motion editing for locomotion tasks.
In Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA 2000), –.

P́, Z.,  W, A. P. . Physically based motion transformation. In Proceedings of
SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series, –.

P́, J., S, S. M., E, M., P́, Z.,  W, A. P. . Interactive manipulation
of rigid body simulations. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings,
Annual Conference Series, –.

P́, J., S, S. M.,  E, M. . Motion sketching for control of rigid-body simulations.
ACM Transactions on Graphics 22,  (Oct.), –.

P, M., C, P., L, J.,  S, K. . Outside-in anatomy based character
rigging. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM Press, New York, NY, USA, –.

P, E., S, W.,  S̈, P. . Consistent mesh parameterizations. In Proceedings
of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, –.

R, M. H.,  H, J. K. . Animation of dynamic legged locomotion. In Computer
Graphics (Proceedings of SIGGRAPH 91), vol. , –.

R, M. H. . Legged robots that balance. Massachusetts Institute of Technology, Cambridge,
MA, USA.

R, A., S, A.,  B, M. . Volume-preserving free-form solids. IEEE
Transactions on Visualization and Computer Graphics 2, , –.

R, P. S. A.,  P, N. S. . Evaluating motion graphs for character navigation. In 2004
ACM SIGGRAPH / Eurographics Symposium on Computer Animation, –.

R, C. F., G, B., B, B.,  C, M. F. . Efficient generation of mo-
tion transitions using spacetime constraints. In Proceedings of SIGGRAPH 96, Computer Graphics
Proceedings, Annual Conference Series, –.

R, C., C, M. F.,  B, B. . Verbs and adverbs: Multidimensional motion
interpolation. IEEE Computer Graphics and Applications 18, , –.

S, A., H, J. K.,  P, N. S. . Synthesizing physically realistic human motion
in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics 23,  (Aug.), –.



S, P., MM, L.,  P́, J. . Continuous capture of skin deformation. ACM
Transactions on Graphics 22,  (July), –.

S, D.,  S, R. . A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision 47, -, –.

S, F., P, R. E., C, W. E.,  M, S. F. . Anatomy-based modeling of
the human musculature. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual
Conference Series, –.

S, J., A, A., P, E.,  H, H. . Inter-surface mapping. ACM Transactions
on Graphics 23,  (Aug.), –.

S, T. W.,  P, S. R. . Free-form deformation of solid geometric models. In
Computer Graphics (Proceedings of ACM SIGGRAPH 86), vol. , –.

S, H.,  M-T, N. . An automatic modeling of human bodies from sizing
parameters. In 2003 ACM Symposium on Interactive 3 Graphics, –.

S, H., C, F.,  M-T, N. . Synthesizing animatable body models with
parameterized shape modifications. In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland,
–.

S, A., P, F.,  F, P. . Hybrid control for interactive character animation. In
PG ’03: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, IEEE Computer
Society, Washington, DC, USA, .

S, A., A, M.,  C-O, D. . Context-based surface completion. ACM Transactions
on Graphics 23,  (Aug.), –.

S, A.,  K, V. . Pyramid coordinates for morphing and deformation. In Proceedings
of the 2nd Symposium on 3 Processing, Visualization and Transmission.

S, J. R. . A condition guaranteeing the existence of higher-dimensional constrained
delaunay triangulations. In SCG ’98: Proceedings of the fourteenth annual symposium on Computational
geometry, ACM Press, New York, NY, USA, –.

S, L.,  Y, Y. . Taming liquids for rapidly changing targets. In SCA ’05: Proceedings of the 2005
ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY, USA,
–.

S, H. J., L, J., G, M.,  S, S. Y. . Computer puppetry: An importance-based
approach. ACM Transactions on Graphics 20,  (Apr.), –.

S, H. J., K, L.,  G, M. . Physical touch-up of human motions. In PG ’03:
Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, IEEE Computer Society,
Washington, DC, USA, –.



S, K.,  D, T. . Matrix animation and polar decomposition. In Proceedings of Graphics
Interface ’92, –.

S, K.,  F, E. L. . Wires: A geometric deformation technique. In Proceedings of ACM
SIGGRAPH 1998, Computer Graphics Proceedings, Annual Conference Series, –.

S, K.,  K, E. . Skinning characters using surface oriented free-form deformations.
In Graphics Interface, –.

S, P.-P. J., R, III, C. F.,  C, M. F. . Shape by example. In Proceedings of the 2001
symposium on Interactive 3 graphics, ACM Press, –.

S, O.,  C-O, D. . Least-squares meshes. In Proceedings of Shape Modeling
International, IEEE Computer Society Press, –.

S, O., L, Y., C-O, D., A, M., R̈, C.,  S, H.-P. . Laplacian surface
editing. In Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry processing, –.

S, O. . State-of-the-art report: Laplacian mesh processing. In Eurographics 2005—State of the
Art Reports, The Eurographics Association, Dublin, Ireland, Eurographics, –.

S̌́, A.,  P́, J. . Adaptation of performed ballistic motion. ACM Transactions
on Graphics 24,  (Jan.), –.

S, R. W.,  P́, J. . Deformation transfer for triangle meshes. ACM Transactions on
Graphics 23,  (Aug.), –.

S, R. W., Z, M., G, C.,  P́, J. . Mesh-based inverse kinematics. ACM
Transactions on Graphics 24,  (Aug.), –.

S, J., Z, N.-N.,  S, H.-Y. . Stereo matching using belief propagation. IEEE Trans.
Pattern Anal. Mach. Intell. 25, , –.

T, S.,  K, H.-S. . A physically-based motion retargeting filter. ACM Transactions on Graphics
24,  (Jan.), –.

T, S.,  S, O.,  K, H.-S. . Motion balance filtering. Computer Graphics Forum 19, 

(August), –.

T, J., B, S., H, V. N. T.,  F, R. . Finite volume methods for the simulation
of skeletal muscle. In 2003 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, –.

T, J., S, E., B, S. S., N-T-H, V., L, C.,  F, R. . Creating and
simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and
Computer Graphics 11, , –.

T, S. C. L.,  M, R. A. . Performance timing for keyframe animation. In 2004 ACM
SIGGRAPH / Eurographics Symposium on Computer Animation, –.

T, M., B, D.,    P, M. . Motion doodles: An interface for sketching
character motion. ACM Transactions on Graphics 23,  (Aug.), –.



T, M. E.,  B, C. M. . Probabilistic principal component analysis. Journal of the Royal
Statistical Society, Series B 61, , –.

T, S., . TAUCS: A library of sparse linear solvers, version ..
http://www.tau.ac.il/∼stoledo/taucs.

T, A., MN, A., P́, Z.,  S, J. . Keyframe control of smoke simulations.
ACM Transactions on Graphics 22,  (July), –.

U, M., A, K.,  T, R. . Fourier principles for emotion-based human figure
animation. In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference
Series, –.

  P, M., F, E.,  V, Z. . Reusable motion synthesis using state-space
controllers. In Computer Graphics (Proceedings of SIGGRAPH 90), vol. , –.

V. . Vicon iQ 2.0 Reference Manual. http://www.vicon.com/.

V, D., B, M., P, H.,  P́, J. . Face transfer with multilinear models. ACM
Trans. Graph. 24, , –.

W, L.,  P, R. E. . Automated generation of control skeletons for use in animation.
The Visual Computer 18, .

W, X. C.,  P, C. . Multi-weight enveloping: Least-squares approximation techniques
for skin animation. In ACM SIGGRAPH Symposium on Computer Animation, –.

W, J. . Run-time skin deformation. In Proceedings of the 2000 Game Developers Conference.
http://www.gdconf.com/archives//.

W, R. . Calculus of Variations. Dover Publications, Inc.

W, W.,  W, A. . Variational surface modeling. In Computer Graphics (Proceedings of
SIGGRAPH 92), vol. , –.

W, H.,  H, J. . Timing for Animation. Focal Press.

W, J.,  G, A. V. . Anatomically based modeling. In Proceedings of SIGGRAPH 97,
Computer Graphics Proceedings, Annual Conference Series, –.

W, J. . Animals with anatomy. IEEE Comput. Graph. Appl. 17, , –.

W, A.,  K, M. . Spacetime constraints. In Computer Graphics (Proceedings of SIGGRAPH
88), vol. , –.

W, A. P.,  P́, Z. . Motion warping. In Proceedings of SIGGRAPH 95, Computer
Graphics Proceedings, Annual Conference Series, –.

W, W. L.,  H, J. K. . Animation of human diving. Computer Graphics Forum 15, ,
–.



W, W. . Simulation of leaping, tumbling, landing, and balancing humans. PhD thesis, Georgia
Institute of Technology.

X, D., Z, H., W, Q.,  B, H. . Poisson shape interpolation. In Proceedings of ACM
Symposium on Solid and Physical Modeling.

Y, K.,  N, Y. . Dynamics Filter—Concept and Implementation of On-line
Motion Generator for Human Figures. IEEE Transactions on Robotics and Automation 19,  (jun),
–.

Y, P.-F., L, J.,  S, K. . Layered dynamic control for interactive character swimming.
In 2004 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, –.

Y, Y., Z, K., X, D., S, X., B, H., G, B.,  S, H.-Y. . Mesh editing with
poisson-based gradient field manipulation. ACM Transactions on Graphics 23,  (Aug.), –.

Z, R., R̈, C., K, Z.,  S, H.-P. . Harmonic guidance for surface deformation.
In Computer Graphics Forum, Proceedings of Eurographics 2005, Blackwell, Dublin, Ireland, vol. ,
Eurographics, –.

Z, L., S, N., C, B.,  S, S. M. . Spacetime faces: High-resolution capture
for modeling and animation. ACM Transactions on Graphics (Proc. SIGGRAPH), –.

Z, J.,  B, N. I. . Inverse kinematics positioning using nonlinear programming for
highly articulated figures. ACM Transactions on Graphics 13,  (Oct.), –.

Z, P.,    P, M. . User interfaces for interactive control of physics-based 3

characters. In Proceedings of the 2005 symposium on Interactive 3 graphics and games, ACM Press, New
York, NY, USA, –.

Z, V. B.,  H, J. K. . Tracking and modifying upper-body human motion data with
dynamic simulation. In Computer Animation and Simulation ’99.

Z, V. B.,  H, J. K. . Motion capture-driven simulations that hit and react. In ACM
SIGGRAPH Symposium on Computer Animation, –.

Z, V. B., M, A., C, B.,  F, M. . Dynamic response for motion capture
animation. ACM Transactions on Graphics 24,  (Aug.), –.

Z, D.,  S̈, P., . Subdivision for modeling and animation. SIGGRAPH  Course
notes.

Z, D., S̈, P.,  S, W. . Interactive multiresolution mesh editing. Computer
Graphics 31, –.

Z, M., P, M., K, O.,  G, M. . Pointshop 3: An interactive system for
point-based surface editing. ACM Transactions on Graphics 21,  (July), –.



