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Electron Bernstein Wave Current Drive Modeling

in Toroidal Plasma Confinement

by Joan Decker

Submitted to the Department of
Electrical Engineering and Computer Science
on May 20, 2005, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

Abstract

The steady-state confinement of tokamak plasmas in a fusion reactor requires non-
inductively driven toroidal currents. Radio frequency waves in the electron cyclotron
(EC) range of frequencies can drive localized currents and are thus particularly at-
tractive for control of the current profile. In the high-fl regimes of spherical tokamaks
(ST) such as NSTX and MAST, heating and current drive (CD) by conventional
electron cyclotron waves is not possible. However, electron Bernstein waves (EBW)
have been proposed as an alternative for CD in these overdense devices. Given the
important role predicted for CD by EBWs in high-f STs, a detailed study of EBWCD
must be undertaken.

In thxis thesis a systematic analysis of EBWCD is provided. In particular, the
characteristics of EBWs, the physics of resonant wave-particle interaction, and the CD
mechanisms are investigated in detail. The CD efficiency and the current deposition
profile are calculated using the numerical code DKE, which solve the drift-kinetic
equation. Two scenarios for EBWCD are identified. The first scenario consists of
approaching a harmonic of the EC resonance from a lower B-field region and drives
current in the plasma core using the Fisch-Boozer mechanism. The other scenario
consists of approaching a harmonic of the EC resonance from a higher B-field region
and drives current off-axis on the outboard side using the Ohkawa mechanism. Both
schemes drive current in the toroidal direction opposite to the parallel wave vector.
The EBWCD efficiency is found to be higher than ECCD efficiency because the EBW
power is deposited in the tail of the electron distribution function. The results of this
thesis confirm the important role of EBWs for driving currents in high-f plasmas.

The analytical and numerical tools developed as part of this thesis can be used
to design, predict, and analyze future EBWCD experiments. Among these tools is
the kinetic solver DKE, which can be used for electron current drive calculations in
toroidal plasmas for different types of radio-frequency waves, such as lower hybrid
and electron cyclotron waves.

Thesis Supervisor: Abraham Bers
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction and Background

1.1 Motivation, Objectives and Outline

1.1.1 Motivation

Electron Bernstein Waves (EBW) have been theoretically predicted [1] and exper-

imentally identified [2] more than forty years ago. Recently [3] [4] [5], they have

received much consideration for heating and current drive (CD) in spherical toka-

maks (ST) such as NSTX, MAST and CDX-U.

STs are small aspect ratio toroidal devices that differ from conventional tokamaks

by their ability to achieve high-0 regimes, where 3 = 2po (p) /B 2 is the ratio of the

kinetic pressure to the magnetic pressure ((p) is the volume-averaged pressure and B

is the toroidal magnetic field on axis). In complement to the large bootstrap current

(BC) fraction expected in these high-f plasmas, sustaining a steady-state operation

in STs requires one to drive non-inductive currents. For that matter, radio-frequency

(RF) CD in the electron-cyclotron (EC) range of frequency is particularly attractive

because of its ability to drive very localized currents, and thus to provide an accurate

control of the q-profile and a means to stabilize MHD modes such as neoclassical

tearing modes [6].

However, high-fl plasmas in STs are typically very overdense, meaning that the

electron plasma frequency wp, is several times larger than the electron cyclotron fre-
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Figure 1-1: Radial profile of characteristic frequencies in a NSTX high-3 plasma.
Solid lines correspond to harmonics of the EC frequency, while dashed lines represent
the R, 0 and L cut-off frequencies WR, Wpe, and WL respectively. The dash-dotted line
shows the upper-hybrid frequency WUH.

quency Wee, except near the edge of the plasma. In that case, heating and current

drive by electromagnetic EC waves (0- and/or X-mode), which have been used exten-

sively in low-# tokamaks, becomes very difficult because ECWs can propagate only

above the cut-off frequencies WR (X-mode) and wp, (0-mode), several times above

the cyclotron harmonics. Unfortunately, ECWs experience little if any damping at

high harmonics of the cyclotron frequency. To illustrate these observations, a radial

profile of characteristic frequencies in a overdense high-fl NSTX plasma is shown in

Fig. 1-1.

However, lower frequency ECWs can be mode-converted to EBWs at the upper-

hybrid resonance (UHR) near the edge [7] [8], and EBWs can propagate into the

overdense plasma at frequencies below the electromagnetic cut-offs. In addition, they

are completely damped at any harmonic of the cyclotron frequency [8].

Although EBWCD has been demonstrated in toroidally confined fusion plasmas

[9] [10] and numerical prediction of EBWCD can be found in the litterature [11] [10]

[12], no systematic description of EBWCD has been given. Given the important

role predicted for EBWCD in high-fl STs, a thorough understanding of EBWCD
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mechanisms and an extensive calculation of CD efficiency and localization are much

needed. In addition, analytical and numerical tools must be developped in order to

design and analyze future EBW experiments.

1.1.2 Objectives

The goal of this thesis is to provide an extensive analysis and understanding of EB-

WCD. I will identify the possible scenarios and mechanisms of EBWCD. For each

of the two EBWCD scenarios considered in this work, I will study the parametric

dependence of the current drive localization and efficiency. Several ways to optimize

the CD efficiency will be discussed. The possible locations of EBWCD and the extent

of the current deposition region will be calculated. More generally, I will investigate

the robustness of EBWCD with respect to variations in plasma and wave parameters.

A systemetic calculation of EBWCD requires to study extensively the properties

of EBWs and the kinetic calculation of RFCD in toroidal plasmas, with numerical

developments. These topics are addressed in separate chapters of the thesis, which

are fairly independent and could be used in different areas of research.

In addition, the set of analytical and numerical tools developed in this thesis could

be used to design, predict and analyze EBWCD experiments.

The present work focuses on high-3 STs, because the possible role of EBWCD

in these devices is clearly apparent, and because the particular magnetic geometry

of high-0 STs is suitable to study different scenarios for EBWCD. However, most of

the results and analyses are also applicable to other overdense toroidal plasmas in a

magnetic field. In particular, EBWCD could also be an attractive method for CD in

high-f conventional tokamaks.

1.1.3 Outline

In the rest of this introductory chapter, I outline a more general approach to the

EBWCD problem, and give a review, with historical perspective, of the research on

EBW excitation, description of wave-particle interaction and numerical calculations
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of RFCD. Then, the particular magnetic geometry of high-,3 STs is introduced, and

two possible EBWCD scenarios in STs, schematically illustrated on Fig. 1-2, are

proposed (Section 1.3):

" The low B-field (LBF) approach, in which the EBW (with frequency w) ap-

proaches the nth cyclotron harmonic resonance from a lower field region (nwc <

w), and which typically takes place in the core of the plasma.

* The high B-field (HBF) approach, in which the EBW approaches the nth cy-

clotron harmonic resonance from a higher field region (nwoc > w), and which

typically takes place off-axis on the outboard side of the plasma.

B
LBF Approach

HBF Approach

(nce

EC resonance
nth harmonic

Figure 1-2: Illustration of the LBF and HBF schemes.

In Chapter 2, the characteristics of EBWs are studied in details. Because EBWs

are kinetic waves that do not exist in the cold plasma description, the basic concepts

of the linear kinetic theory of waves are reviewed (Section 2.1). This theory is applied

specifically to EBWs in the electrostatic approximation (Section 2.2), which allows

one to carry approximate analytical calculations of EBW characteristics, thus provid-

ing useful insight on the behavior of EBW. In particular, characteristics of EBWs in

the vicinity of cyclotron harmonic resonances are very different depending on whether

the resonance is approached from a LBF or a HBF region. Then, in Section 2.3, the
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exact dispersion relation for EBWs is solved using the numerical dispersion solver

R2D2 developed by A.K. Ram [13], and the relevant wave parameters for studing

EBWCD are calculated.

Current drive by radio-frequency (RF) waves, such as EBWs, results from the

combined effects of three physical mechanisms:

* The resonant interaction between the waves and particles in the plasma. In the

case of high frequency waves in the electron cyclotron range of frequencies, such

as EBWs, the interaction is between the waves and electrons.

" The collisions between particles, which involve energy and momentum exchange.

" The motion of particles in the toroidal magnetic field, including effects of

trapped particle orbits and particle drifts.

Although the motion of particles and the interaction with RF waves can generally

be described from the perspective of a single particle moving in an electromagnetic

field, the essential role of collisions requires a collective description of the plasma,

such as provided by kinetic theory, which we adopt in the present work. The motion

of electrons in a toroidal magnetic plasma, the wave-particle interaction, and the

collisions between particles are described in Chapter 3 where the appropriate electron

kinetic equation including these three mechanisms is derived. This equation accounts

for the particle radial drifts, which generate the bootstrap current. Therefore, RFCD

and the bootstrap current are kinetically calculated self-consistently, and possible

synergistic effects can be investigated.

This equation can only be solved numerically, and a kinetic code, named DKE, was

developed in close collaboration with Yves Peysson from CEA-Cadarache, France, to

solve the electron kinetic equation and calculate the distribution function describing

electrons in a toroidal plasma in the presence of collisions, interaction with RF waves,

and the particles radial drifts that generate the bootstrap current. This code and its

application to solving the kinetic equation for EBWCD are described in Chapter 4.

EBWCD calculations are presented in Chapter 5. The mechanisms of the interac-

tion between EBWs and electrons are studied in detail and the EBW power deposition
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is calculated. This description is used to analyze the results of CD calculations, which

are presented separately for the two EBWCD scenarios (LBF and HBF approach).

1.2 Introduction to Electron Bernstein Wave Cur-

rent Drive

The problem of modeling current drive by RF waves can be generally divided into

three main aspects:

" Excitation from a launching structure, such as waveguides, antennas and mir-

rors. One investigates the launching efficiency (what fraction of the incoming RF

power will actually propagate in the mode under consideration) and the char-

acteristics of the wave in the excitation region: spectral properties and spatial

power distribution. This work requires a modeling of the launching structures

and knowledge of the plasma edge physics. In the case of indirect launching - as

for EBWs - this work includes the modeling of mode-conversion and sometimes

requires the study of non-linear effects, such as parametric instabilities where

different modes are non-linearly coupled and power can be transmitted from

one to another.

* Propagation of the RF wave through the plasma to the region of absorption and

current drive. The evolution of the wave characteristics along its propagation

needs to be calculated, which typically involves ray-tracing or full-wave calcu-

lation techniques. In addition, the problem of accessibility investigates whether

all or part of the power in the wave is reflected (for example, at a cut-off) or

mode-converted (for example, at a propagation resonance) instead to reaching

the region of wave-particle resonance.

" Wave-particle interaction, power absorption and current drive. Wave-particle

interaction can occur when the resonance condition

w - k1 v - nQO (1.1)
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is satisfied for some particle velocity vIl < c , some wave frequency w and parallel

wave number ki (with respect to the magnetic field), and some harmonic number

n at some location where the particle's gyrofrequency is Q = qeB/yme. Here B

is the magnetic field and y is the relativistic factor. The effect of wave-particle

interaction is the exchange of energy and momentum between the wave and the

particles. This exchange can modify the distribution function of the particles

and therefore lead to current drive if this distribution becomes asymmetric in

MCR

ECR UHR ECW
harmonic

EBW Edge

Pwje

Figure 1-3: General scheme of the EBWCD problem.

EBWs are excited by mode conversion at the upper-hybrid frequency and damped

at the Doppler-shifted location of cylotron resonance harmonics. The general scheme

of EBWCD is illustrated in Fig. 1-3.

The present work does not encompass the study of EBW excitation and prop-

agation. Rather, previous work on EBW excitation and propagation will be used

to extract the information relevant to the present study, which is focusing on the

vicinity of the EBW damping region in the plasma and addresses the wave-particle

interaction, power absorption and current drive problems.
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1.2.1 Excitation and propagation of electron Bernstein waves

Historical background

The existence of electrostatic waves in the electron cyclotron frequency range, propa-

gating perpendicularly to the magnetic field and not subject to Landau damping, was

first shown by I. Bernstein [1], who gave the corresponding dispersion relation. The

experimental verification of EBW was done by F.W. Crawford, et al. [2]. Because

EBWs do not exist in vacuum, they need to be excited either by an in-plasma antenna

structure or by MC from the slow electromagnetic extraordinary mode (SX) at the

upper-hybrid resonance (UHR). Among the MC methods with launching from the low

field side (LFS) - the only ones applicable to STs - the O-SX-B scheme [7] was first

experimentally demonstrated in a linear device [14], and then at high harmonics [15].

It has been successfully used for ECH on Wendelstein 7-AS [16]. A second scheme,

noted FX-SX-B [17] [4], has been demonstrated first on linear devices [18] and then

on STs [19] [20]. These two MC schemes have been extensively studied in [8]. Be-

cause of the symmetry properties of the MC process [21], significant knowledge has

been gained from the theoretical [22] and experimental [16] study of EBW emission

(EBE). EBWCD in tokamaks was first demonstrated on COMPASS-D [9], showing

the high dependence of EBW properties, such as the parallel index of refraction, on

the propagation path, as predicted in [8].

Description of EBW excitation

The FX-SX-B and O-SX-B schemes for EBW excitation are described on Fig. 1-4,

where propagating modes are shown in the vicinity of the upper-hybrid resonance

(UHR), represented by a vertical dashed line. These modes are characterized by their

perpendicular wave number N1 (w, N11), calculated by solving the dispersion relation

(2.16) assuming a fixed frequency w/ (27r) = 14 GHz and using the full non-relativistic

kinetic plasma susceptibility tensor (2.65) XM (k, w) in (2.10) and (2.15). The solution

is obtained using the code R2D2 [13], which solves the dispersion relation. The wave

number is defined as N = kc/w.
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Figure 1-4: ECW and EBW roots N1 (real part) as a function of a = WJ e/W2 for (a)
perpendicular (N = 0) and (b) oblique (N1 = N10) propagation. The dashed vertical
line corresponds to the location &UHR of the upper-hybrid resonance.

The mode-conversion region is typically located very near the edge where the wave

characteristics are dominated by the strong density variations. A scan of the mode

conversion region is therefore obtained by varying the electron density normalized to

the frequency, a2 = / 2 , keeping all other plasma parameters constant, including

the temperature (Te0 = 1.3 keV) and the magnetic field amplitude (B = 0.3 T). The

upper-hybrid resonance is obtained for a 2 = a2 HR 1- ~~ce/W)2 . The roots of the

dispersion relation (N±) are shown on Fig. 1-4, where two separate values of Nil are

considered:

SGraph (a): N1 = 0 for perpendicular propagation. This is a case where FX-

SX-B mode conversion is favored. In that case, if an ECW is launched into

the plasma with X-mode polarization, it reaches a cut-off (R) where part of the

wave power is reflected and part of the power is tunneled across the evanescent

region between the cut-off and the UHR to the slow X mode. The power is

then reflected at the L cut-off and propagates back to the UHR when it can be

mode-converted to the EBW. In fact, the FX-SX-B scheme present a resonator

configuration [8], and under some favorable conditions, up to 100 % of the wave

power can be mode-converted to the EBW.

33



* Graph (b): N11 = N110 = (1+ w/weO) 1 2  0.61, for oblique propagation. N11o

is the value for which the 0- and L- cut-offs coincide, and therefore where 0-

SX-B mode conversion is favored. In that case, if an ECW is launched obliquely

into the plasma with 0-mode polarization and N11 = N11o, it reaches the plasma

cutoff (0) where w = wpe, which coincide with the L cut-off. Part of the power

is transmitted to the SX mode, which propagates back towards the UHR where

the power can be mode-converted to the EBW.

Detailed calculations of the mode-conversion processes [8] show that the FX-SX-

B scheme is favored by steep density gradients, such that the evanescent region is

narrower and more power can tunnel though. These conditions are typically found

very near the edge, and thus the FX-SX-B scheme is better at lower frequencies. By

contrast, the O-SX-B scheme is favored by smaller density gradients, such that little

if any power is tunneling back to a FX mode at the UHR after conversion from 0 to

SX mode. This scheme requires the UHR to be located farther away from the edge,

and is thus adapted for larger frequencies.

1.2.2 Description of wave-particle interaction

The idea of using radio-frequency (RF) waves to drive currents in tokamak plasmas

goes back to the 1970's. It was shown that lower-hybrid waves (LHW) could be

used to transfer parallel momentum to the electrons [23] [24], and that LHWs with

sufficiently high power lead to the creation of a plateau in the parallel momentum

direction in distribution function, and drive a large current [25]. Important 2D effects

(in momentum space) in LHCD, due to collisional pitch-angle scattering, were later

described [26] [27].

Waves in the electron cyclotron (EC) range of frequency are attractive for heating

and current drive, because they are easily coupled to the plasma and the location

of their damping, at the Doppler-shifted cyclotron resonance or its harmonics, can

be precisely controlled and adjusted with mirrors. While ECW transfer mostly per-

pendicular momentum to the electrons, it is possible to use them for driving parallel
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current through several mechanisms:

" One method was described by Fisch & Boozer (FB) [28] and shows that asym-

metric (in p11) perpendicular heating of the distribution function leads to an

asymmetric resistivity of electrons, since hotter particles are less collisional.

More precisely, if electrons with p1l > 0 are heated, ions collide more frequently

with electrons going in the opposite direction (pli < 0) and there is a net ion

momentum gain in the pl1 < 0 direction. By reaction, there must be a net (op-

posite and equal in magnitude) electron momentum gain in the p1l > 0 direction.

Although both species then drive a current in the same direction (in that case,

p1l < 0, since electrons carry a negative charge), the contribution from electrons

to the current is dominant because they are much lighter. Note that no current

could be generated without collisions of electrons with ions, in which case the

total parallel momentum of electrons would be conserved.

" Another method, proposed by Ohkawa (OK) [29], uses electron magnetic trap-

ping to drive current. Indeed, perpendicular heating near the trapped/passing

boundary leads to the magnetic trapping of barely passing electrons. Because of

the fast bounce motion of trapped electrons, the collisional detrapping of elec-

trons is quasi-symmetric in pil. In steady state, the RF and collisional fluxes

through the trapped/passing boundaries must compensate, so that there must

be a depletion of passing electrons with negative pii, along with an accumulation

of both trapped electrons and passing electrons with positive p1i. These effects

combine to drive a current in the same direction as the resonant electrons, since

electrons carry a negative charge. Note that a more accurate description of the

Ohkawa effect should account for the radial pinch effect associated with the

trapping of electrons, in order to conserve toroidal canonical momentum.

To sum up, the FB effect drives a current in the opposite parallel direction to the

resonant electrons, while the OK effect drive a current in the same parallel direction as

the resonant electrons. A schematic representation of the Fisch-Boozer and Ohkawa

effects is shown in Fig. 1-5 on graphs (a) and (b) respectively. While all experiments
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in tokamaks have relied on - and optimized - the FB effect in ECCD, we have shown

that the OK method for CD may be more efficient when current is needed far off-axis

[30], as it is often the case in recent advanced tokamak (AT) scenarios. We gave a

precise description of the kinetic mechanisms of ECCD in the presence of magnetic

trapping [31].

V ECCD V OKCD

tr ,

(a) (b)

Figure 1-5: Schematic illustration of the Fisch-Boozer (a) and Ohkawa (b) mecha-
nisms for ECCD.

The first kinetic description of the kinetic interaction between BC and LHCD was

given by S. Schultz [32]. We further studied this interaction [33], showing the positive

effect of temperature gradient on the synergism between LHCD and BC, and also

investigated the synergism of FBCD and OKCD with the BC [34][30][35].

1.2.3 Numerical Calculations of Radio-Frequency Current

Drive

An accurate calculation of RFCD requires one to solve a kinetic equation including

the effect of collisions and RF fields [36]. Collisions are well described by a Fokker-

Planck operator, which accounts for the cumulative effect of small angle bilinear

collisions, which is the dominant collisional process. A differential expression for the

fully relativistic Fokker-Planck collision operator has been developed by Braams and

Karney [37] by expanding Rosenbluth potentials in spherical harmonics.
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RFCD calculations also use the so-called adjoint method to describe the effect of

RF waves [38]. This description, which calculates the current drive efficiency analyti-

cally in the linear limit where the distribution function remains close to a Maxwellian,

ignores the effects of particle trapping, which are very important in small aspect ratio

toroidal devices like STs. Modifications to the adjoint method that include the effect

of magnetic trapping have been proposed [39] [40]. However, analytical calculations of

the current drive efficiency are then no longer possible and numerical calculations are

needed. Quasilinear theory, which accounts for distorsions of the distribution function

to calculate the densities of current and power dissipated self consistently, is more

appropriate to describe the effect of externally imposed RF waves. A quasilinear

operator was developed by Kennel and Engelmann [41], and extended to relativis-

tic plasmas by Lerche [42]. However, these operators apply only to infinite uniform

plasmas, and are not immediately suitable for simulations in tokamaks and STs. A

quasilinear operator for slab and mirror plasmas was later derived [43]. Operators

were also derived for toroidal plasmas by using a direct approach to reduce the ki-

netic equation by averaging over fast gyro- and wave frequencies [44], and also by

using a Hamiltonian approach to adiabatically remove these fast time scales [45] [46].

However, these operators were only applicable to plasmas without toroidal magnetic

field.

It is necessary to use numerical tools to solve the 2D Fokker-Planck equation

(FPE) with quasilinear diffusion. Such solvers have been developed by Kerbel and

McCoy [47] also with Killeen [48], and their work was continued by Harvey and McCoy

[49]. Other solvers were developed independently by Karney and Fisch [50], Giruzzi,

et al. [51), Bizarro, et al. [52], Shoucri and Schkarofski [53] [54], and also Peysson

and Shoucri [55]. A good review paper on FP QL codes was written by Karney [56].
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1.3 High-fl Plasmas and EBWCD Scenarios

1.3.1 Magnetic field configuration in STs

The tight geometry of STs rules out

NSTX the possibility of inboard launching.

1.5 - The only remaining possibilities are
1:I .51

top launching and outboard launch-

1 ing. However, in a ST, launching

from the outboard horizontal mid-

0.5 - plane does not necessarily imply that

the resonance region is approached

N 0 - from a low-field region, as it would be

in a conventional tokamak. Indeed,

-0.5 " because of the important contribution
ma a

of the poloidal magnetic field in a ST

-1 with:sufficiently high 0, the lower field

region is generally not at the point

-1.5 . 1.5 farthest outboard, but somewhere be-
R tween the core and the edge near the

outboard horizontal midplane.
Figure 1-6: NSTX high-fl plasma poloidal To illustrate this, we show the

cross section. The red solid contours are poloidal cross-section of our sample

flux-surfaces labeled by p = 0, 0.1, --- 1 and NSTX plasma on Fig. 1-6 where
the blue labeled dashed lines are contours the red solid contours are flux-surfaces

of constant magnetic field magnitude (in labeled by p = 0,0.1, - 1 and the

Tesla). blue labeled dashed lines are contours

of constant magnetic field magnitude.

Here p is the normalized distance form the magnetic axis, measured along the out-

board horizontal midplane. The enclosed magnetic well on the outboard side is clearly

apparent, and is centered at the point XM of minimum magnetic field, which is lo-
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cated at (R = 1.31 m, Z = 0) where the corresponding radial coordinate is p = 0.63.

The important contribution of Bp to the total magnetic field magnitude appears on

Fig. 1-7 which shows a profile of the magnetic field components along the horizontal

mid-plane (Z = 0). Near the outboard edge, the poloidal component of the magnetic

field becomes comparable and even larger than the toroidal component.

NSTX
1

-B
0.8 -

- B0.6-

0.4-

0.2

0
0.4 0.6 0.8 1 1.2 1.4

R(m)

Figure 1-7: Toroidal (red), poloidal (blue) and total (black) magnetic field amplitudes
along the Z = 0 horizontal midplane.

As we show in Section 2.2, the EBWs are strongly absorbed at any Doppler-shifted

electron cyclotron harmonic. Because of the particular magnetic field configuration of

high-3 STs, with a dip in the field magnitude profile as shown on Fig. 1-7, it should be

possible, with outboard launch only, to approach a Doppler-shifted electron cyclotron

harmonic from either a low B-field (LBF) region (nwce < w), or a high B-field (HBF)

region (nwce > w), depending on the propagation path, the angular frequency W, and

the parallel wave vector k1j. These schemes are illustrated in Fig. 1-2. The terms

low-field side and high field side are not used here because of the confusion with con-

ventional tokamaks where they are also used to describe outboard and inboard sides,

respectively. We will show in Chapter 2 that the EBW characteristics differ greatly

upon whether the wave approaches a resonance from a LBF or a HBF region. As a

consequence, as will be shown later, these two scenarios for wave-particle interaction
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are very different and should be treated separately.

1.3.2 Equilibrium profiles

NSTX

.....~ ~ ~ ~ ~ ~ ~ ......... .....

-. ....

0.2 0.4 1/20.6 0.8

U

2.5

2

1.5

1

0.5

1

(a)

NSTX

0.2 0.4 0.6
1/2

WIn

(b)

Figure 1-8: Density (a) and temperature (b) profiles in NSTX, as a function of /
where V) =4/4'a is the normalized flux function.

The calculations presented in this thesis are based on a # = 42% NSTX equi-

librium with the magnetic configuration presented in Section 1.3.1 and equilibrium

profiles calculated consistently with a MHD code [57]. The electron temperature and

density profiles are shown on Fig. 1-8. The effective charge is Zeff = 2 and is assumed

to be uniform across the plasma.
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1.3.3 Accessibility

Because EBWs are generated - mode

NSTX converted from EC modes - at the

1.5- upper-hybrid resonance where w2 =

2 + W2e, the EBW frequency is nec-

1 -essarily higher than the electron cy-

clotron frequency. In order to choose

0.5- a suitable launching frequency, N11

spectrum and location for EBWCD

N 0 - generation, it is important to know

which regions of the plasma are ac-

-0.5- cessible to a given frequency and what

type of CD scenario is associated with

-1 -the wave propagation (HBF or LBF).

In our case, we define a plasma loca-

-1.5 -tion to be inaccessible to an EBW,
0 0.5 1 1.5

R characterized by their frequency w

and their parallel wave number N11, ei-

Figure 1-9: NSTX high-0 plasma poloidal ther if EBWs do not propagate in this

cross section. The red solid contours are region (where w, < w), or if the wave

flux-surfaces labeled by p = 0, 0.1, ... 1. is completely damped before reaching

The thick solid line give the location of the this location. In any other case, the

first cyclotron harmonic for the frequency location is said to be accessible to this

fm = 14 GHz, and the blue dashed lines EBW, regardless of the existence of an

are the corresponding Doppler-shifted har- actual propagation path, from a re-

monics w = nwc ± 3VTekI for N1 = 0.5. gion where mode-conversion is possi-

ble, to the location under considera-

tion. Because we do not address the problems of EBW mode-conversion and prop-

agation in this work, additional studies would be required to determine whether a
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location defined here as accessible can indeed be reached in an experiment and what

the EBW characteristics - in particular N11 - would be in that case.

On Fig. 1-9, we show the same the poloidal cross section as in Fig. 1-6, where the

location of cyclotron harmonics for the frequency fM = 14 GHz is shown as labeled

(by the harmonic number) solid black lines. In addition, dashed blue lines show the

location of the Doppler-shifted resonances, calculated for N11 = 0.5 by

w = nw, ± 3VTekj; (1.2)

where vTe = /Te/me is derived from the local temperature (See Fig. 1-8-b), and the

strong damping condition is given by vjj = 3VTe, which is the typical value for EBWs

as we will show in Section 5.1.6. The striped regions represent the plasma locations

that are inaccessible to this wave, either because w < w, (on the inboard side)

or because the location is enclosed by Doppler-shifted cyclotron harmonics, where

complete damping of the wave occurs. In principle, any Doppler-shifted cyclotron

harmonic resonance location (dashed blue lines) which borders an accessible region of

the plasma is a possible location for EBW damping and CD, and the type of scenario

for EBWCD - HBF or LBF - depends on whether the magnetic field in the bordering

accessible region is higher or lower, respectively, than it is at the location of the

harmonic. For example, in the case considered on Fig. 1-9, HBF EBWCD is possible

in principle at locations along the second harmonic Doppler-shifted resonance on the

outboard side, while LBF EBWCD is possible on the first harmonic Doppler-shifted

resonance on the inboard side.

Such general investigation of accessibility and possible scenarios is easily done

for any frequency w and parallel wave number N11, by drawing the poloidal cross

section of the (axisymmetric) plasma and showing the locations of Doppler-shifted

harmonic resonances. To illustrate this, we show on Fig. 1-10 the accessible regions

corresponding to two frequencies often mentioned in the NSTX design plan, which

are fPR1 = 21 GHz (graph (a)) and fPR2 = 28 GHz (graph(b)), still with N11 = 0.5.

At f = 21 GHz, outboard launching would in principle give access to HBF CD at
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NSTX NSTX
1.5- 1.5-

1 -I1

0.5- 0.5-

-0.5 -- -0.5 --

-1~ -4 -

0 0.5 1 1.5 0 0.5 1 1.5
R R

(a) (b)

Figure 1-10: Same as Fig. 1-9 with Ng = 0.5 but for different frequencies: (a) f =21
GHz and (b) f = 28 GHz

third harmonic and LBF CD at second harmonic, while top (or bottom) launching

would allow HBF CD at second harmonic and LBF CD at first harmonic. At f = 28

GHz, outboard launching is restricted to the midplane locations and therefore allows

only HBF CD at fourth harmonic.

Comparing results obtained with three different frequencies (Figs. 1-9 and 1-10),

we observe that at higher frequencies, the various cyclotron harmonics are closer to

each other, which effectively restricts the accessible regions of the plasma. Therefore,

for the sake of keeping a wide range of possible CD scenarios, low frequencies, typically

favorable to X-B mode-conversion schemes', are better than high frequencies, usually

favorable to 0-X-B mode-conversion schemes. However, this fact is balanced by other
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experimental constraints. For example, higher frequencies require smaller mirrors and

therefore allow for a wider range of launching angles, which can be adjusted to control

the location of CD. In addition, the mode-conversion process is subject to large density

fluctuations close to the edge, which could decrease the MC efficiency.

1.3.4 Summary

A poloidal cross-section of accessible regions can be easily drawn for a given frequency

and parallel wave number, as done in Figs. 1-9 and 1-10. Such maps are useful to

determine schematically the location of EBWCD as well as possible scenarios - HBF

or LBF CD.

High B-field CD appears to be possible at any harmonic n > 2 with launching

near the midplane, and therefore seems to work for either low or high frequencies. In

such CD scenario, wave-particle resonance occurs off axis on the outboard side and

will likely involve strong magnetically trapped electron effects.

On the other side, the accessibility of LBF CD requires to use low frequencies -

between first and second harmonic. In addition, the location of resonance is generally

located in the core of the plasma, where magnetically trapped electrons are expected

to play a lesser role.
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Chapter 2

Description of Electron Bernstein

Waves

In order to study EBWCD, it is necessary to calculate and describe the characteristics

of EBWs. Indeed, the interaction between a given EBW mode and electrons depends

on wave properties such as the frequency w, wave vector k, polarization vector ek and

electric field amplitude IlEkj|| In a plasma where inhomogeneities occur on a scale-

length much larger than the wavelength, the wave properties can be approximately

calculated using the model of linear waves in a uniform plasma, and assuming there-

after that the plasma characteristics k, ek and |lEkil are slowly varying functions of

space. This is known as the WKB approximation.

The basic concepts of the linear kinetic theory of plasma waves are reviewed

in Section 2.1, where we focus in particular on the dispersion relation and on the

energy equation, which relates in steady state the wave energy flow density and power

dissipated and is the basis for the calculation of EBW power deposition. The non-

relativistic kinetic susceptibility tensor is derived in many textbooks on kinetic waves,

for example [58] [59] [60], and is recalled here.

In Section 2.2, the dispersion relation is solved analytically in the electrostatic

approximation for EBWs propagating perpendicularly to the magnetic field, and the

initial description of EBWs [1] is retrieved. This approximate description provides a

useful insight into the behavior of EBW. In particular, characteristics of EBWs in the
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vicinity of cyclotron harmonic resonances are very different depending on whether the

resonance is approached from a low B-field (LBF) or a high B-field (HBF) region.

The kinetic linear dispersion relation and wave equation are solved exactly in

Section 2.3, using the numerical solver R2D2 [13]. Particular attention is given to

the wave properties which enter the calculation of the quasilinear diffusion coefficient

(3.192). In this work, vectors are written in bold characters, like v, and unit vectors

are covered with a hat, like V. Tensors are written in blackboard characters, such as

T.

2.1 High-Frequency Linear Waves in a Hot Uni-

form Plasma

2.1.1 Linear wave equation and dispersion relation

Detailed and consistent derivations of linear wave theory can be found in [61], [59

and [58]. Elements of the theory relevant to the study of wave-particle resonance are

presented here.

Maxwell's equations

Electromagnetic fields are generated by charge and current densities, according to

Maxwell's equations

V E = (a)
EO

V9E (2.1)
V x B =/oJ + PoEo 5T (c)

V xE = B (d)at

where E (r, t) and B (r, t) are the electric and magnetic (induction) fields, and p (r, t)

and J (r, t) are the charge and current densities, respectively. The conservation of
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charge density leads to the continuity equation

- + V -J = 0 (2.2)
(9t

In the absence of static fields, equation (2.1-b) can be derived by taking the divergence

of Faraday's equation (2.1-d), and Gauss' law (2.1-a) can be derived by taking the

divergence of Ampere's law (2.1-c) and using the continuity equation (2.2). In order

to obtain a complete set of equations, we need an expression for p (r, t) and J (r, t)

as a function of E (r, t) and B (r, t).

Linear wave equation

Under some conditions - which generally include sufficiently small-amplitude electro-

magnetic fields - non-linear effects, such as particle trapping in waves or non-linear

coupling of waves, can be neglected. Then, the current density has a linear depen-

dence on the electric field, and can in general be expressed as a convolution

J (r, t) = d3r' f dt' S (r, r', t, t') -E (r', t') (2.3)

where S is the conductivity tensor, which depends on the equilibrium properties of the

medium. In an infinite plasma with a homogeneous, constant equilibrium, which is

invariant by translation in space and time, the conductivity tensor is only a function

of the relative distance in space and time, and we can rewrite (2.3) as

J (rt) = J d3r' dt' S (r - r', t - t') - E (r', t') (2.4)

If we take a Fourier transform of this equation, defined for a field F (r, t) as

Fk (k, w) = J d'r J dt eik.r-itF (r, t) (2.5)

we obtain

Jk (k, w) = S (k, w) -Ek (k, w) (2.6)
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In addition, the Fourier transform of Maxwell's equations (2.1) gives

ik -Ek Pk
E0

ik-Bk 0

ik x Bk = poJk - IptoEoiwEk

ik x Ek = iwBk

Combining the two last equations, and using (2.6), we find the linear wave equation

k x k x Ek = -i 1 ow§S- Ek - IOEOW2Ek

S-- (I+ X) - Ek
C

(2.8)
C

2

where we defined the susceptibility tensor

i
WE0

and the permitivity tensor

K =-I + X

Introducing the normalized wave vector, or index of refraction

C
N -= -k

the wave equation (2.8) becomes

N x N x Ek+ K - Ek = 0

and hence

(NN - N 2I+K) -Ek = 0
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which is rewritten as

D - Ek = 0 (2.14)

where

D = NN - N + K (2.15)

is called the dispersion tensor.

Dispersion relation

In order to find a non-trivial solution to the wave equation (2.14), the determinant

of the dispersion tensor must be zero

D(kw) = IDI = 0 (2.16)

This equation is called the dispersion relation, and can solved for either w (k) or

ki (w, kj, kk) where i, j, k is a permutation of coordinates of k. This relation gives the

natural electromagnetic modes that can be independently excited in the homogeneous

plasma. We also define a wave phase velocity and group velocity, respectively given

by

V k D(kw)=O (2.17)

V9 = -
8k D(kw)=O

where k = Ilkil and k = k/k is the unit vector in the direction of the wave vector.

Note that in a dispersive medium, w and k are not proportional in general, and thus

we can have v, j vg. In addition, if the medium is anisotropic (for example, in the

presence of a strong magnetic field), the group velocity vg is not necessarily in the

direction of the wave vector k.
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Uniform plasma with static magnetic field

For a uniform plasma in a externally applied static magnetic field

R = b (2.18)

with B= and where the bar refers to the static nature of the field, the cylindrical

symmetry around the magnetic field direction b imposes that the dispersion relation

be only a function of k11 and kI, with

k1i = k -b

kt = k - klb
(2.19)

and therefore the dispersion relation (2.16) can be written as

D (k,11 ki, w) = 0 (2.20)

The cylindrical symmetry also imposes that the group velocity v9 be in the (kI, b)

plane.

2.1.2 Energy equation for linear waves

In a uniform, weakly dissipative plasma, the conservation of energy for the linear

mode Ek is given by [61]

OWk + v-s = plrn
at

(2.21)

where wk is the time-averaged energy density, Sk is the time-averaged energy density

flow, and Pk" is the density of power dissipated. This equation is function of the real

parts of w and k, which will be implicit in this Subsection.

Note that any tensor T = TH +A can be decomposed into hermitian TH and
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antihermitian TA parts, which are given respectively by

T H [ t
2

2

(2.22)

where the operator t = t* is the combination of a transposition and a complex

conjugation.

Wave energy density

The time-averaged energy density Wk

Wk = WkP + WkT (2.23)

includes the electromagnetic energy density WkP and the kinetic energy associated

with the coherent motion of charged particles in the field WkT. These are given by

WkP = ' IIEkII 2 + 1 IBkI112

4 4pO
(2.24)

e:0 a (WxH)
kT6= E* - -E4k~ k aw

Using Faraday's equation (2.7-d), we normalize the energy density Wk as

Wk = E IIEk I2 Ek2

where the normalized energy density Ek thus decomposes as

k kP + kT

(2.25)

(2.26)
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with the definitions

ZkP = [1 + IN x ekH](227

(2.27)
1 a (wXH)

EkT = -e*--eXkT 2 ek O *ek

where ek = Ek/ IEk I is the polarization vector. The normalized energy density (2.26)

can be rewritten as

1
2 = -

a (wKH) (NN - N21)1 - ek (2.28)

where we used the identity

IN x ek i2 = e* - (N 2 R - NN) -ek

With N = kc/w we have at constant k

W2 (NN

(2.29)

(2.30)- N21)] = 0

so that
a[w (NN - N2f)] (NN - N2f) (2.31)

and we can rewrite, using the expression (2.15) for the dispersion tensor

where we used the wave equation (2.14) so that

in the limit of weak dissipation.
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Zk~ = ,(e* ek)
2 k (2.32)

DH ' ek = 0

e* _ DH=0
(2.33)



Wave energy density flow

The time-averaged energy flow density Sk

Sk = skP + SkT (2.34)

includes both the electromagnetic Poynting flow sp and the flow associated with the

coherent motion of charged particles in the field ST, which are expressed as

1
5 kP = Re [Et x Bk]

2io
Eow

SkT = E -4

(2.35)
aH

AX . EkOX

Using Faraday's equation (2.7-d), we normalize the energy flow density s (2.34) as

Sk = E IIEkI12 4'k (2.36)

where the normalized energy flow density (k thus decomposes as

= 4'kP + 1?kT (2.37)

with the definitions

P= Re [e* x N x ek] = N - Re [(e -N) ek]
1

~kT=-ek
(2.38)xH

aN

Using (2.77), the normalized energy flow density (2.37) can be rewritten as

108
2-I (e - DH - ek)(k 2 ON(e (2.39)

where we used the identity

N-Re [(e - N)ek] =
1 O (NN - N 2ff)
2 ON
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and the expression (2.15) for the dispersion tensor.

Relation between power flow and group velocity

In the limit of weak dissipation, we have (2.77)

DtH(kw) =eDH ek =

which can be viewed as a dispersion relation for the mode ek.

(2.41)

Using (2.17) we can

rewrite the group velocity as

!DH(k, w) /&k
v =kw-

9 aD H(k )lw
(2.42)

and, with (2.32) and (2.39), we obtain the useful relation

(2.43)4)k = Egk VC
C

or equivalently

Sk = VgWk (2.44)

which states that the wave energy flows at the group velocity. Like the group velocity,

the energy flow density 4% must be contained in the (k, b) plane.

Density of power dissipated

For weakly damped linear waves in an infinite homogeneous plasma, the time-averaged

density of power dissipated Pkj" associated with the Fourier mode Ek is given by

-1

pl" =-Ek . SH (k, w)-Ek2
(2.45)

where SH is the hermitian part of the conductivity tensor.

The relation between the conductivity and susceptibility tensors (2.9) is

S = -FowiX
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so that the hermitian part of the conductivity tensor is

- = S+St OWXA (2.47)
2

where XA is the anti-hermitian part of the susceptibility tensor (2.22). The density

of power absorbed (2.45) becomes

Plf" =-i E -X^ E Ek'k~ 2

= -i IEk 112 'e* _ X^ - e (2.48)
2 c

where ek is the polarization vector.

Absorption coefficient

With the normalization (2.36) of the time-averaged energy density flow Sk, (2.48)

becomes

S=e -X- ek (2.49)

The absorption coefficient is by definition

af" = (2.50)ak=JSkj

and therefore we obtain an expression for the absorption coefficient

fn = I - ek _ XA -ek (2.51)II= Z 11kII C k

2.1.3 Plasma description and Vlasov equation

In a plasma, the charge and current densities depend on electromagnetic field through

the motion of charge particles. The jth charged particle, of mass m, charge qj,

position r3 and momentum pj, is accelerated by electromagnetic fields according to

Lorentz' force

F (pj, rj, t) = qj [E (rj, t) + v3 x Bj (rj, t)] (2.52)
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The equations of motion are
dp3m -p F.

r = (2.53)drj 
_j

dt

where the velocity is given by

v P = (2.54)
j-

where -yj is the relativistic factor

Y m 2 c2 (2.55)

The charge and current densities are then obtained by adding the contribution of all

N charged particles
N

p(r,t) = Eqj6 [r - rj (t)]

N = (2.56)
J (r,t) = Iqjvj6 [r - rj (t)]

j=1

This is overall a closed system of equations, but with a very large number of un-

known (of order N), and it cannot be solved for a typical fusion plasma. Therefore, a

statistical approach is generally used, in order to solve for a hierarchy of probability

functions. For plasmas with neA' > 1 - where Ae = 8eOTe/ (e2ne) is the Debye

length - it suffices to consider only the "one-particle" distribution function f, (p, r, t)

for each type s of particles, and account for correlations by a binary "collision inte-

gral" among the f,. In general, collisions between particles can be neglected for the

calculation of electromagnetic waves in plasmas, provided that the wavelength of the

wave is much longer that the Debye length, since the fluctuating Coulomb fields asso-

ciated with discrete particles occur on distances smaller than Ae. In a typical NSTX

plasma (Te ~ 1.3 keV, ne ~ 3 x 109 m- 3), the Debye length is Ae ~ 50 pm, while

the wavelength of EBWs in such plasma is of the order or larger than a millimeter.

In collisionless dynamics, the evolution equation for the distribution function
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f, (p, r, t) is the Vlasov equation

Of,
- + - Vrf + F (p, r, t) -Vpfs = 0 (2.57)at

where p, r and t are independent, continuous phase space variables, and F (p, r, t) is

given by (2.52). When the plasma thermal effects on the characteristics of electro-

magnetic fields are small, it is possible to consider only a few moments of the Vlasov

equation, which form a set of hydrodynamic - or fluid - equations and are much easier

to solve than the full Vlasov equation. However, electron Bernstein waves (EBWs)

are kinetic plasma waves, meaning that their characteristics depend of the velocity

distribution of the plasma particles. Indeed, EBWs are waves in the electron cy-

clotron range of frequencies and may have a short wavelength comparable to the

Larmor radius of electrons, and thus interact differently with particles depending on

their velocity.

2.1.4 Hot plasma dielectric tensor

The linearized motion of charged particles in electromagnetic fields, in an infinite

plasma with a homogeneous, constant equilibrium, leads to the existence of a suscep-

tibility tensor such as (2.9). Such a tensor is derived from the Vlasov equation (2.57)

after linearization and Fourier transformation. In addition, the plasma is assumed to

be immersed in a uniform constant magnetic field, which generates anisotropy in the

conductivity tensor. Retaining all thermal effects - by solving the Vlasov equation -

and including a constant magnetic field, this susceptibility tensor is then appropri-

ate to describe EBWs. An analytical expression for the susceptibility tensor can be

obtained in the non-relativistic limit, when the zero-order, equilibrium distribution

function for each species s is a non-relativistic Maxwellian

n,,) s / exp -8 21 (2.58)AS (v) = Al (V) (27rT 8/rMn) 3 /2  2T
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where n, and T, are the density and temperatures for the species s.

relativistic Vlasov equation

Of 8 + v
9tf

+ - [E (r, t) + v x B (r, t)] - vf, = 0
MS

is then linearized and used to derive the conductivity tensor.

Non-relativistic hot plasma susceptibility tensor

The hot plasma susceptibility tensor XM (k, w) for a non-relativistic plasma has been

derived for example in [58] and [60] and is recalled here. The plasma frequency for

the species s is given by

4, = 2,"

EOMS

The particle thermal velocity is

VtS = /V2Ts, with VT, = /kT 8/m8

The constant uniform magnetic field is assumed to be in the ' direction

R = B2

and we define the rest mass cyclotron frequency for the species s:

wCS =

(2.60)

(2.61)

(2.62)

(2.63)

where B is the magnitude of the static magnetic field. The 'X direction is chosen such

that the k vector lies in the (X, F) plane

(2.64)
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The susceptibility tensor is then the sum over the contribution of all species s

XM (k, w) = j X' (k, w) (2.65)
S

where the susceptibility tensor X' (k, w) associated with a given species s is the sum

over contributions from all harmonic numbers n

2' 00

X (k, Co) =E Y (2.66)
n=-00

which decompose as
2

y,', = n- nsZnsA2

Y,, 2= rns - 2A)F' 8 Zn
Y' = -A ns)n Z's

y

Y, = Y," (2.67)

Y'z = -o\ s

y'"n = Y'nz
x2 z

, = Z =k (b)

oc8 (2.68), = (d)

rns = sign (ks) (e)

-= sign (q8 ) (f)

where In is the modified Bessel function of the first kind, Z is the plasma dispersion

function, and pT, is the thermal Larmor radius for the species s.
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Hermitian part of the susceptibility tensor

In a non-relativistic hot plasma, the susceptibility tensor is given by (2.66). The

hermitian part of X (kr, w,), which is used to calculate energy flow density through

expressions (2.39) (2.15) and (2.10), is expressed as

X'S (kw) = 7-os YH,s,n6

n=-oo

where YH"" is the hermitian part of Y,," (2.67) and decomposes as

YXX s= Fs Re (Zns)

Y's'n = n - 2As8 f's Re (Zn,)

YH,s s n

YHM'zf' = i-,n,' 8Re (Zn,)

YHs'n = (yrsn)* R =ns R ()MXY n

yHsn yH,s,n _ H,s n

MzX Mxz MxY

M z \/2-s F| ns Re ( Z's

yH,s,n (yH,s,n yH,s,n
Mzy Myz Myz

Antihermitian part of the susceptibility tensor

In a non-relativistic hot plasma, the susceptibility tensor is given by (2.66). The anti-

hermitian part of Xs (kr, wr), which is used to calculate damping through expression

(2.51), is expressed as

X' (k,w) = W2os (2.71)
n=-oo
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where yA,',' is the antihermitian part of Y"' (2.67) and decomposes as

2
A,,n i- n Im (Zns)

mx A
As F sF

YMyy =( 1n 7- 2AJ'n) Im (Zn)

yA s'n -ir sn Im (Z'8 )

Y Mxy = - 8 nFs Im (Zn,)

yA,'n = - yA ) (2.72)-Y;,'"n

YA's= n VI (nZ',)

Y '*'n = - (YA '*' = Y An'

yAn = (--i)ns IM (Z s)
YA,,,n_ _ A,s,n Y A,,n
Mzy Myz Mz

We have the following properties of the plasma dispersion function [62] for real argu-

ments

Im (Zns) = \ e-( .3

Im (Z',) = -2(ns 7re-Ce

so that YA',n can be rewritten assotht M

YAsn = Ay'''"re-Cn2 (2.74)
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where Y '" decomposes as
M=

-As A

~\ n2

A =s,n si A s - 2A(F2 .)

AYs ns n

As,n = 2iFZ8ZnsA

-A s,n u nF

jA p'n ( -iA~~) =M A Y (2.75)

MY XZ = 
2  Ks ns

-A s'n -A s,n = A s,nM zy My ; ~- My

2.2 Electrostatic Description of EBWs

The theory of linear plasma waves in a kinetic plasma described in Section 2.1 is used

to calculate analytically the EBW characteristics in the electrostatic approximation,

which gives an insight in the behavior of EBWs.

In general, for a kinetic plasma, the resolution of the dispersion relation (2.16)

involves root finding techniques and requires one to have a good guess for k1 . It

is possible to obtain a good guess for the EBW k1 root by solving an approximate

dispersion relation, in the electrostatic limit.

Moreover, it is possible to calculate the absorption coefficient and the normalized

energy flow density for EBWs in the electrostatic approximations. These calculations

will be used to characterize EBW damping in Chapter 5.

2.2.1 Electrostatic approximation

In all generality, we can decompose the electric field into its longitudinal EkL and

transverse EkT components with respect to the wave vector direction N = N/N
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Ek E LET+ E(.6

Inserting this decomposition in the wave equation (2.13) leads to

(K- N 2 f) EkT +EkLK* R = 0 (2.77)

If the following relation is verified for all components of the dielectric tensor

(2.78)

then the wave equation (2.77) is approximately

-N 2EkT +EkLK -N ~N 0 (2.79)

and, projected on the wave vector direction, leads to an equation for EkL

(N -K -N) EkL ~ 0 (2.80)

while the equation (2.79) then gives an expression for the transverse field

EkL
EkT -N2KN (2.81)

The equation (2.81) with the relation (2.78) leads to IIEkTJI < IEkLI, and therefore

ek ~- N (2.82)

which means that the electric field is mostly longitudinal, or electrostatic. This

justifies the names electrostatic approximation for the relation (2.78) and electrostatic

wave equation for (2.80).
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Electrostatic dispersion relation

In order to have a non-trivial solution to the electrostatic wave equation (2.80), it is

therefore required that the following relation, called electrostatic dispersion relation,

be satisfied.

DL (kw) = N -K -N = 0 (2.83)

With the normalized wave vector (2.11) and the decomposition (2.64), the electro-

static dispersion relation (2.83) gives

NI Kxx + N1 N11 (Kxz + Kzx) + N2 KZZ = 0 (2.84)

Energy flow density

In the electrostatic limit for the polarization (2.82), the energy flow density (2.51)

becomes

KH . N) (2.85)

where we used

N - (NN-N 2 R) . N = 0

and we obtain

cES 1 &9
k 2 aN

(1
N2
(NXH + NLN1 (xz + XzH) +

Absorption coefficient

In the electrostatic limit for the polarization (2.82), the absorption coefficient (2.51)

becomes

inES 2! 1 L'rT 2 yA (XyA yAvN A]
ak II'PkH cN 2 [II/xx + 1'I +1x vI~~~z (2.88)
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2.2.2 High frequency waves

Electrostatic dispersion relation for perpendicular propagation

In the case of perpendicular propagation, N11 = 0 and the dispersion relation reduces

to

Kxx = 0 (2.89)

If we consider only high frequencies, in the electron cyclotron range such that w >

W1,j, , the ion dynamics can be neglected and (2.89) becomes, using (2.10)

1 + Xxex (ki, w) = 0

where Xe (k, w) is the electron contribution to the susceptibility tensor.

Energy flow density

Neglecting the ion dynamics, the energy flow density (2.87) becomes

iEs = 1
k 2 0N (XHe + xH,e) + N2XIH,e

where XHe is its antihermitian part of Xe.

Absorption coefficient

Neglecting the ion dynamics, the absorption coefficient (2.88) becomes

linES = 1 [Ni Xi; NNI W (X'e + XAe) +
+r XN is tt XVAek 114'IkII cN2 L1 x+Ni'z

where XA,e is the antihermitian part of Xe.

(2.90)

(2.91)

(2.92)
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2.2.3 Non-relativistic kinetic plasma

Dispersion relation

In a non-relativistic kinetic plasma, the susceptibility tensor is given by (2.66). The

XAIx (k, w) component is, using (2.67) and (2.68-a)

2 00

Xixx (k, )= COe Y
n=-oo

_ 2 e 0 2 -A
= (e e In (Ae) Z ('%e) (2.93)

W n=-ooA

with

e= kjLV e

W ce (2.94)w - nwce
|kl,|Vte

In the limit of perpendicular propagation, kl -* 0 and the factor (ne diverges unless the

wave frequency is exactly at a cyclotron harmonic resonance, in which case relativistic

effects must be included. It is thus necessary to do an asymptotic expansion of the

plasma dispersion function Z ((ne) for large arguments. This expansion gives for

I(ne I > 1 [62]
Z(ne 7  [12nO(Q4)] (2.95)Z ((ne) - - C 1 + 22+ o - (.9]

so that, in the limit k| -* 0, the electrostatic dispersion relation (2.90) becomes

W2 ex A -0 2w

1 W- 2Ae - In (Ae) w - __ = 0 (2.96)
W 'Xe fl_0 -nce

Defining the normalized quantities

Wce (2.97)
q =-.

Wee
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we obtain
eAe 001 n 2

T q In(Ae)qq-n (2.98)
n=-oo

which becomes
e-Ae n2

1 = 2 e- EIn (Ae) q2 
-2 (2.99)

n=1

where we used the following property of the Bessel functions

I-n (z) = In (z) (2.100)

Equation (2.99) is the electrostatic EBW dispersion relation, which can solve for

q2 (Ae) to give w (k_). It has an infinite number of roots. However, if we consider

only the N first harmonics, the equation (2.99) is a Nth order polynomial for q2 (Xe),

which has therefore N roots. Polynomial equations are easily solved by standard

numerical routines, and our polynomial was implemented in a numerical code to

solve the electrostatic dispersion relation. We found that a Nth order polynomial is

sufficient to accurately solve for the N - 1 first roots, while the correct determination

of the Nth root requires at least the (N + 1 )th order polynomial.

44

(a))(b

1 2....... . 1

o/t) 1 2 2 3

Figure 2-1: Electrostatic EBW roots calculated with N = 10 for (a) W e = 2W~e and
(b ) w2e = 4w2 . The thermal velocity is expressed as Vre = Sc, where we assumed
S = 0.1.
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On Figure 2-1 we show the four first electrostatic EBW roots calculated using

N = 10 and T = 2 (graph a) and x = 4 (graph b) respectively. The dashed red line

corresponds to the location of the upper-hybrid resonance (UHR) where EBWs can

be mode-converted from electromagnetic EC waves. We see a structural difference

for the EBW root issued at the UHR between the two graphs, depending on whether

the UHR is below the second harmonic (a) where the root remains below the UHR

frequency towards the first cyclotron harmonic (q = 1), or above the second harmonic

(b) where the root starts above the UHR frequency and then crosses this frequency

towards the second cyclotron harmonic (q = 2). The transition occurs for qUHR = 2,

which means for WUHR = 2 wce or for T = 3 since the UHR frequency is given by

2 W2 +W2 (2.101)
WUHR pe c

Because this dispersion relation was derived in the electrostatic approximation,

the solution fails when electromagnetic effects becomes important. Clearly, we do

not expect the electrostatic approximation to be valid when the phase velocity of the

wave becomes of the order of the speed of light, that is, for W > k1 c. Equivalently, it

means that our solution fails for

kIPTe N feq (2.102)

where

PTe =Ve (2.103)

In particular, it is not valid near the MCR. In Section 2.3, the full electromagnetic

dispersion relation (2.16) will be solved for the non-relativistic hot plasma electron

susceptibility tensor (2.66), and we will investigate the validity of the electrostatic

root when compared to the exact solution of the dispersion relation.
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Energy flow density

The high-frequency electrostatic energy flow density (2.91) becomes, in a non-relativistic

kinetic plasma (2.69)
00

4 s
n=-oo

where the contribution of the harmonic n is

ES (2.104)

([Ni + N LN11 (yE'" +yE'") +y

which, using (2.70), is explicitly expressed as

1ES 1 2 e

'"w 2 w2 aN
S2N2Fne( I N11 /3TeN

2Ae [Re (Zne) - IN11
f3 e (1 + Yn) Re (Zne)

(2.106)

where we used the definitions (2.94) rewritten as

Ae = N2 W 2e
ce

1 ernwce

VTe
PTe=

C

and the definition
y=wce

yn-

Using the following differential property of the plasma dispersion function

(2.109)Zne ((ne) = -2 [1 + (neZ ((ne)]

the expression (2.106) simplifies to

EDE pe
k,n 2 ON

( 2 N2Fne

N 2 AeY n

Re (Zne)

v2N,, ITe
+ (1 + Yn)]
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Away from the resonance, we have 1(el > 1 and we can use the expansion (2.95)

for the plasma dispersion function, which gives Re (Zne) ~ 1/(ne so that, using

N1 ~ N, we find

4 ES WO (e (2.111)
k,n 2W2 aN (1 - y) Ae

Adding all harmonic contributions, the total energy flow density can be written as

(2.104)

tPE 1 1 wp2e e -A,, 0 n 2
n 2a W e 1 In (Ae) (2.112)

n=-2(

and we find that in the limit >neI 1, the normalized energy flow density (2.112) is

related to the electrostatic dispersion relation (2.96) in accordance with the relation

(2.39).

In the non-relativistic electrostatic limit, far from resonances, there is no flow in

the parallel direction, since Fne/Ae is independent of N11. The perpendicular compo-

nent of the energy flow density becomes

_ 2s 2 ne) (2.113)S2 w2 (1 -y)ON 1  Ae

which can be rewritten as

kL 2 TeO (q, Ae) (2.114)
ce

with

00n2 A

(q, A,)=

2 (2.115)
n=1 2_2

We will show in Section 2.3 that Ae = (kIPTe) 2 is rather insensitive to variations

in the temperature and density (except near the MCR). Therefore, the perpendicular

power flow of EBWs is roughly proportional to the density and the thermal velocity

of electrons (2.114). The density dependence can be understood in the sense that a

higher density means that there are more electrons to coherently transport energy
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with the wave.

Absorption coefficient

The high-frequency electrostatic absorption coefficient (2.92) becomes, in a non-

relativistic kinetic plasma (2.71)

00

Iin,ES 1in,ES (2.116)

n=-oo

where the contribution of the harmonic n is, using (2.74)

linES 1 W 2~ [N2An N yTA 'Aen + -~~) ,,A ,
a =n _ I __oe -re Y M'" + I N Y +Y Mzx + NIY

(2.117)

which, using (2.75), is explicitly expressed as

lin,ES 1 W 2C (~e Fne [t- ~ T A 2
akn e k Oe vFe - [v/2N In + 2,/Ae [I Nj (ne (2.118)

With the definitions (2.107) and (2.108), we find

V2 L n + 2 NI |(ne = VNi (2.119)
Wce

so that we obtain

lin,ES _ 1 W pe 1 rne 1 - )2l2.120)
&k,n = 2 k cWOe N ITe e 2 7V2 (q

where we used N1 ~ N.

We see that the nth harmonic contribution of the absorption coefficient includes

a Gaussian term that peaks at the resonance (yn = 1) and is dominated by magnetic

field variations.

The expression (2.114) for the power flow is valid only far from resonances, where

(nel > 1. However, more detailed studies of the plasma dispersion function show

that the the expansion for large arguments remains valid down to 1(nel > 3. In that
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case, inserting (2.114) in (2.120) gives (since there is no parallel energy flow in that

limit)

linES 1ne eXp (1 )22.121)

~k,n f2Ni/~ 211kn 2 C I NI I O A, D (q,7 Ae) _2NI # Te

and we see that unlike ECWs, the absorption of EBWs does not depend upon the

density.

Optical depth and EBW absorption

We assume that the plasma is in a slab geometry, and that the inhomogeneity scale

length is much larger than the wavelength, such that the results from this section

are valid in the WKB approximation. The magnetic field, in the uniform ' direction,

is a slowly varying (and monotonically increasing) function of x. All other plasma

parameters are assumed to be constant.

The optical depth defined as the integral of the absorption coefficient along the

propagation path of the wave across the resonance. For a given mode (w, k) and a

given cylotron resonance harmonic n, it is defined as

Tk,n = j ds ak,n (2.122)

where s is the distance along the propagation path, in the direction of the group

velocity and the power flow 4k. Because of the slab symmetry, the power flow is in

the (x, ) plane and thus
dx = 1d1k1 (2.123)
ds |I'kIl

From the definition of yn (2.108), we find, using yn ~ 1

dy~ 1 (2.124)
dx LB

where LB is the magnetic field variation scalelength. We obtain

Tk,n = j dy n La4 k,k (2.125)
-o k
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We also define the parameter
1 - y

)3TeNI
(2.126)

which measures the distance from resonance (y, = 1) in terms of magnetic field

variation, and accounts for the Doppler shift effect through the term ,3 TeNi. We can

rewrite (2.125) as

Tk,n = j dPn 3 Te |NIII LBak,n (2.127)

Because Ae is very different for HBF and LBF approaches to the resonance, we

calculate the two contribution to Tk,, separately and define the optical half-depth

Tin=F fdpT f3 e N LBak,n

rH BF ,O, dPn /Te IN LBaek,n

for LBF approach (yn < 1)

for HBF approach (yn > 1)

On each side, the values for Ae and IkLI can be considered as being approximately

constant, and the variations of the other factors outside the exponential in (2.128)

can be neglected compared to the strong variations of the Gaussian term, such that

we can approximately integrate (2.128) using the expression (2.120) and find

LBF _ pe LB Ine
' 2 c w I2 LBF L 'e J LBF

HBF 7Wpe LB ne

2 c I HBF e . HBF

for LBF approach (yn < 1)

(2.129)

for HBF approach (Yn > 1)

The optical half-depth rk,n will be evaluated in Section 5.1.6, where we will show

that k'F > 1, which means that EBWs are completely absorbed at harmonics of

the cyclotron frequency.
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2.3 Characteristics of Electron Bernstein Waves

In this section, we calculate the wave characteristics using the full electromagnetic

kinetic plasma susceptibility tensor (2.66) for electrons X' (k, w) in (2.10) and (2.15).

The solution is obtained numerically using the code R2D2 [13]. The guess for finding

the appropriate root of the dispersion relation is provided by the electrostatic root

(2.99) for EBWs. Once the appropriate ki roots of the dispersion relation (2.16) have

been found, the polarization vector ek = Ek/ IlEki can be obtained by calculating

the normalized eigenvectors of the wave equation (2.14) for the mode (w, k). The

power flow density Sk and the density of power dissipated Pk are obtained using the

expressions (2.34) and (2.45) respectively.

In this section, we focus in particular on the wave characteristics that enter the

RF quasilinear diffusion coefficient (3.192) and thus determine the wave-particle in-

teraction. These are the normalized components of the wave vector N11 and kIPTe,

the polarization vector ek, and the normalied perpendicular power flow 1 k±_ = II II,
which is also a measure of the electric field amplitude for a given incident power

density, since <D-' Ic |Ek 112 / IlskiJ (2.36). For comparison, electromagnetic waves in

vacuum have <b-' = 1.

We calculate the EBW characteristics assuming a fixed frequency wo/ (27r) = 14

GHz, as a function of N11 and the equilibrium properties of the plasma, namely the

density ne, the temperature T, and the static magnetic field B or, equivalently, the

following normalized parameters:

" the squared ratio of the plasma frequency to the wave frequency, proportional

to ne
2

a2 =Wpe (2.130)

* the ratio of the cyclotron frequency to the wave frequency, proportional to B

b = Wce oc B (2.131)
W
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* the ratio of the thermal velocity to the speed of light, proportional to v/T

=e = Oc ( (2.132)
C

Our nominal parameters are a = 10, bo = 0.6 and 3 TeO = 0.05. For the frequency

wO, these parameters correspond to neO = 2.4 x 1019 m 3 , Teo = 1.3 keV, and B = 0.3

T. They are typical of core parameters in a NSTX-type plasma. Note that the value

bo = 0.6 means that the closest cyclotron harmonic is n = 2 (which occurs at b = 0.5).

Results from R2D2 will be compared to those obtained within the electrostatic

approximation in Section 2.2 with Nil = 0. In the electrostatic approximation, the

electric field is assumed to be longitudinal, and therefore the polarization vector eES

is simply (2.82)

eESek= N (2.133)

The polarization plays an important role in the wave-particle interaction, where the

diffusion coefficient depends on the rotating field and parallel components of the

polarization vector, defined as

= ek,x + iek,y
ek,+, =

ek - = ek,- e, (2.134)

ek,II = ek,z

In the electrostatic approximation, the components of eES (2.133) are then

ES _ N1ek,+ VN

e S- N (2.135)

eES _Nil
'~l N

We anticipate that our analytic description in the electrostatic approximation is ex-

pected to fail when the large argument expansion (2.95) of the plasma dispersion

function becomes invalid. In fact, a detailed study of the dispersion function shows
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that the expansion fails completely for ,nel <. 1, that is,

11 - nbl V2
I1 I 2b (2.136)

In that case, the imaginary part of the plasma dispersion function, which goes like

exp [-(e] [62], is expected to become significant, and therefore strong damping of

the EBWs should occur. This occurs near cyclotron resonances where b ~ 1/n. The

presence of IN11 I and OTe in the denominator is a signature of the Doppler-shift effect.

2.3.1 Effect of N11 on EBW characteristics

2 0.8
(02 /o= 10 Full DR 02 /(= 10pe P

1.5 ( /W= 0. 6 0. 0.6 /0= 0.6

~ Te=0.05 = 0 0.05
S1 0. Te

0.5 :0.2

01 0
1 2 3 4 1 2 3 4

N N

(a) (b)

Figure 2-2: Real part (a) and imaginary part (b) of the EBW root N1 as a function
of N11, showed as blue solid lines. On graph (a), the electrostatic EBW root is also
shown, as a dashed red line.

The EBW root kIpre is calculated as a function of Nil keeping all plasma pa-

rameters constant, and displayed as a blue solid line on Fig. 2-2, with the real part

on graph (a) and the imaginary part on graph (b). On graph (a), the electrostatic

root calculated using (2.99) is shown for comparison, as a red dashed line; it does not

vary with N11 since it was derived for N11 = 0. We see that the real part of the root

calculated from the full dispersion relation does not differ much from the electrostatic

root up to N11 ~ 1, and that differences remain small for N11 ,< 3. We observe that

the electrostatic approximation is very good for calculating the real part kIpre for
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EBWs, since we can hardly distinguish between the roots for N11 = 0. For large

parallel wave numbers, N11 > 3, two approximations made in deriving (2.99) become

questionable: (1) the two first terms in (2.84), which are neglected in the N11 -* 0

limit, may now have a significant contribution, and (2) the inequality (2.136), which

with our parameters gives IN11 > 3, is a condition for the failure of our analytical de-

scription. In addition, the Doppler broadening of the cyclotron resonance appears as

the imaginary part of N1 increases, according to (2.136). A significant imaginary part

(Im [kIpTe] - Re [kIpre]) means that there is strong resonant damping on electrons,

which may also generate current. The role of N11 on EBWCD will be investigated in

Chapter 5.

0

lee1 2 35
.. .....+ ES0.5 . ....... 2 /02 = 10

--- 5
..... |ez. Pe/ =. : .6
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1 2 3 4 1 2 3 4
N N

(a) (b)

Figure 2-3: Graph (a): components of the polarization vector ek as a function of N11.
The electrostatic (ES) polarization is shown for comparison. Graph (b): normalized
electric field amplitude, (D-1 oc IIEoI12 / Iskill, as a function of N11.

The components of the polarization vector are shown on Fig. 2-3 as a function

N11 (graph (a)) and we see that the parallel component of the polarization increases

linearly with N11 as predicted in the electrostatic limit (2.135), which is a good ap-

proximation for the polarization. On graph (b) we show that the normalized energy

flow (DkJI = Dk., does not vary much with N11 for N11 < 3. This is in accordance with

the expression (2.114) obtained for )k± in the electrostatic limit. For N11 > 3, the

weak dissipation limit used in deriving the expression (2.39) for 1 k is no longer valid.

To summarize, the EBW root Re [kIpTe], polarization ek and perpendicular power
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flow <b± do not vary much with the parallel wave number N11, except for the parallel

component of the polarization which varies as ek,II ~ N11/N. In the remaining of this

section, we will consider a fixed value N11 = N11o = (1 + 1/bo)~ 112 ~ 0.61 for which the

0- and L- cut-offs coincide, and therefore where O-X-B mode conversion is favored.

2.3.2 Effect of the magnetic field on EBW characteristics

5 - 1 1- 3 --
:0 /1 =10 :C02 602 = 104 pe pe
... 0.05 ....... =. .0.05

- b , Te -- Te ..... ......

222 :Ni -:6 ... .. :N 11 =0.61
n = 2 ....... ...

1 - Full DR n=2 n=1
--- ESDR

01 ' ' 0
0.6 0.8 1 0.6 0.8 1

O /0 (0 /0ce ce

(a) (b)

Figure 2-4: Real (a) and imaginary (b) parts of the EBW root NJ as a function of
b = wce/w for N11 = N110, calculated using the full non-relativistic dispersion relation
(blue solid line) and, on graph (a), the electrostatic dispersion relation (red dashed
line). The dashed vertical lines show to the location of cyclotron resonances.

We calculate the variations of the EBW characteristics as a function of the mag-

netic field ratio b = wce/w, between the second (b = 1/2) and first harmonic (b = 1).

All other plasma parameters are kept constant and we take N11 = N110 = 0.61.

The real part of the EBW root kIpre is shown on Fig. 2-4, graph (a). We observe

strong variations of Re [kIPTe] are a function of Wce/w, from low values (Re [kIPTe] e

0.5 corresponding to N1 ,< 5) near second harmonic, to very high values (Re [kIpTe] >

3 corresponding to N1 > 50) near the first harmonic (the dashed vertical lines show

to the location of cyclotron harmonic resonances). The electrostatic root, shown as a

red dashed line, seems a good approximation to the exact root (blue solid line) except

near the resonances. In fact, this graph is an inverted representation of graph (b) in

Fig. 2-1, for values 1 < q < 2.
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The condition (2.136), which sets a limit on the validity of our analytical de-

scription in the electrostatic approximation (failure of our Z (Ce) function expansion

(2.95)), gives b > 0.95 near first harmonic and b ,< 0.52 near second harmonic. The

region where the expansion is invalid is therefore twice as wide on the n = 1 side,

which explains why the approximate description fails "earlier" on that side. The con-

dition (2.136) also explains why Im [N±], shown on graph (b), picks up further from

resonance on the n = 1 side. The imaginary part of the wave vector characterizes

damping near the Doppler-shifted resonances.
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40 2 2
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:N =0.61
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(0 /0) (0 /0
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Figure 2-5: Graph (a): components of the polarization vector ek as a function of
b = we/w. The electrostatic (ES) polarization is shown for comparison. Graph (b):
normalized electric field amplitude, P-j oc |Eo112 / |isk1|, as a function of b.

The components of the polarization vector are shown on Fig. 2-5 as a function

wc/w (graph (a)). Near the n = 1 resonance, where kiPTe - and therefore N - is very

large, the parallel component of the polarization is very small, in accordance with

(2.135), and the polarization is basically electrostatic. On the opposite side, towards

the n = 2 resonance, the wave number N is much smaller and the contribution

of ek,I more significant. In addition, the polarization becomes very different from

the electrostatic limit (2.133) near the second harmonic, a sign that electromagnetic

effect are important. In graph (b) we see that the normalized power flow '1 kj_ = 4bkx

varies significantly with b, and D- 1c JjEo|J2 /||saI follows essentially the profile of

Re [kiPTe] (Fig. 2-4). When Re [kiPTe] becomes large (near n = 1 resonance), the
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wave becomes electrostatic and, for a given incident power density ski, the electric

field amplitude is very large (4)-1 > 30). However, when Re [kIPTeI is low (near

n = 2 resonance), the wave has strong electromagnetic features and the electric field

amplitude is small ((P-1 < 1).

2.3.3 Effect of the temperature on EBW characteristics

1 0.2
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N =0.61
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Figure 2-6: Real (a) and imaginary (b) parts of the EBW root N1 as a function of

/Te = VTe/c for Nii = N11o, calculated using the full non-relativistic dispersion relation
(blue solid line) and, on graph (a), the electrostatic dispersion relation (red dashed
line).

The EBW characteristics are calculated as a function of /3 Te = Te/mc2 keep-

ing all other plasma parameters constant and taking Nii = N11o = 0.61. The real

part of the EBW root k±PTe is shown on Fig. 2-6, graph (a), where the solid blue

line represents the exact root and the dashed red line is the approximate root in

the electrostatic limit. The electrostatic root does not depend on 3 Te, which was

expected since there is no temperature dependence in the electrostatic dispersion re-

lation (2.99) solved for w (Ae) where Ae = (kiPTe) 2 . The exact root does not vary

much with the temperature, and is very close to the electrostatic root for /Te ,< 0.05.

The approximate form is expected to fail completely when the condition (2.136) is

satisfied for n = 2 (the nearest harmonic), which gives /3Te , 0.2 with our parameters.

As expected from (2.136), increasing /
3 e lead to larger Doppler-shift and therefore
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increasing imaginary part of the root, as seen on graph (b), which means increasing

damping.

8
-- 3------ 2 /CO =

pe
c:: ..--.--. 6.../.=...

ce
N =0.61

0 .5 - - le , 4. .. ... ......... . ... .......... ... ......
. . .- l e ) E *0 _I

le 2

10 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
OTe PTe

(a) (b)

Figure 2-7: Graph (a): components of the polarization vector ek as a function of 3 Te =

VTe/c for N11 = N11o. The electrostatic (ES) polarization is shown for comparison.

Graph (b): normalized inverse electric field amplitude, Dk1 oc (lIEo12 / I|Ski ) -1, as
a function of ,re.

The components of the polarization vector are shown on Fig. 2-7 as a function

of N, (graph (a)) and we see that the polarization differs significantly from the

electrostatic limit (2.135) for f3 Te ; 0.05. The temperature also has an important

effect on the normalized power flow, as shown on graph (b) where 4 ki = 4Dkx increases

linearly with 3 Te for small /3 e, in accordance with the expression (2.114) obtained

for 4)k I in the electrostatic limit.

2.3.4 Effect of the density on EBW characteristics

The EBW characteristics are calculated as a function of the normalized density a 2

w 2 /W 2 keeping all other plasma parameters constant and taking N11 = N11o = 0.61.

The real part of the EBW root kiPTe is shown on Fig. 2-6, graph (a), where the solid

blue line represents the exact root and the dashed red line is the approximate root

in the electrostatic limit. We see that the EBW root does not depend much upon

the density as long as it is far from the upper-hybrid resonance, which is located at
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Figure 2-8: Real (a) and imaginary (b) parts of the EBW root N1 as a function of
a = W2e/W2 for Nil = N 1o, calculated using the full non-relativistic dispersion relation
(blue solid line) and, on graph (a), the electrostatic dispersion relation (red dashed
line).

very low densities (typically near the plasma edge) and shown as a vertical dashed

line. We also notice that the exact root is very close the electrostatic approximation,

although the difference increases slightly with increasing density. The imaginary part

is shown on graph (b) and has a similar dependence as the real part.

The components of the polarization vector are shown on Fig. 2-7 as a function

of a 2 (graph (a)) and we see that the polarization also diverges steadily from the

electrostatic limit (2.135) as 2 IW2 increases. The density also has an important

effect on the normalized power flow, as shown on graph (b) where <k1L = @,kx increases

linearly with a2 , which agrees with the expression (2.114) obtained for 4"k± in the

electrostatic limit.

2.3.5 Conclusions

When the results obtained in this section are considered in perspective of a EBW

heating or current drive experimental situation, they lead to the following qualitative

observations:

e EBWs are kinetic waves that are found to be well described in the electrostatic
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Figure 2-9: Graph (a): components of the polarization vector ek as a function of a =

We/W 2 for Nil = Nlo. The electrostatic (ES) polarization is shown for comparison.

Graph (b): normalized inverse electric field amplitude, <k±L Oc (IEo 112 / jjski - , as
a function of a.

approximation away from the resonances. The approximate analytical results

(2.99) and (2.114), obtained in the electrostatic limit, are generally valid as long

as the expansion (2.95) of the plasma dispersion function remains valid, which

breaks down when the condition (2.136) is satisfied.

" EBWs are propagating waves between two harmonics of the cyclotron frequency.

However, they are completely absorbed at the Doppler-shifted harmonic reso-

nances. The wave absorption coefficient is independent of the plasma density,

a property of waves for which the energy flow is mostly carried by electrons

coherently moving with the wave.

" In accordance with the electrostatic dispersion relation (2.99), the root of the

dispersion relation, or normalized perpendicular wave vector Re [kiPTe], does

not vary much as a function of Ni1 and the temperature, and is rather insensitive

to density variations away from the MCR.

" After the EBWs are generated at the MCR (Description in Section 1.2.1),

they propagate towards the central, high density (a 2 >> 1) and temperature

( 3T, > 0.05) region until they eventually approach an electron cyclotron har-
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monic resonance, where they are damped. There is also a possibility that the

wave encounters no resonance along the propagation and reaches the edge again,

where it can be reflected or mode-converted to EC modes. Therefore, inside the

plasma, the behaviour of EBWs is dominated by magnetic field variations. We

have shown on Fig. 2-4 and Fig. 2-5 that the EBW characteristics depend

very much on whether a harmonic is approached from the lower B-field (LBF)

region, where wce < w, or a higher B-field (HBF) region where wce > w. A

comparative summary of these two scenarios is given in Table 2.1.

" The polarization is mostly electrostatic - along the wave vector - except near

the HBF harmonic where Re tk_-PTe) is small and electromagnetic effects on the

polarization are important.

" The condition (2.136), which is a measure of the proximity to cyclotron reso-

nances and includes (temperature and N11-dependent) Doppler shift effects, also

characterizes the strong damping condition measured by Im [kipTe].

* The normalized electric field amplitude <D-1 oc 11Eol2 /j|Sk1ll has a strong de-

pendence upon density and temperature. It typically evolves as <Dki 0C nefTe,

meaning that for a given incident power flow, the electric field amplitude is

larger in low density and low temperature regions. When the electric field am-

plitude becomes too large, non-linear effects, such as trapping in wave, can

take place. The onset of these effects will therefore depend upon density and

temperature - as well as the average power density carried by the wave. These

effects are considered in Section 3.5.3.

The calculations presented in this chapter are obtained for an infinite homoge-

neous plasma. Going from an infinite to a bounded plasma, such as in a torus, does

not change fundamentally the equations - we should consider discrete Fourier modes

rather than continuous ones -, and these equations remain valid in such continuous

form when the wavelength A is much smaller than the plasma size, which is a good

approximation.
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Scenario LBF Approach HBF Approach

EBW root Large Re [kIpTe] > 3 Small Re [k±pre] < 0.5

Polarization Basically electrostatic Strong electromagnetic effects

Normalized E-field Very large 4ij > 30 Small <D1 < 1

Table 2.1: Comparative table of EBW characteristics depending of damping scenario:
low-B field (LBF) approach versus high-B field (HBF) approach

However, these calculations do not strictly apply to an inhomogeneous plasma.

Still, in the regions of the plasma where the equilibrium inhomogeneity scale length

is much larger than the wavelength, it has been shown that the dispersion relation is

satisfied locally, which is known as the WKB approximation. Therefore, the calcula-

tions presented in this section can be used to understand the evolution of the wave

characteristics along the propagation through a plasma with a slowly varying inho-

mogeneous equilibrium. In the regions where the equilibrium inhomogeneity scale

length becomes comparable or shorter than the wavelength, notably in the MCR

where kI -+ 0 at cut-offs, this description fails.
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Chapter 3

Kinetic Description of Toroidal

Plasmas with Non-circular

Cross-sections

3.1 Introduction

In this chapter, a kinetic description of axisymmetric toroidal plasmas is given for the

general case of closed nested flux-surfaces with arbitrary geometry. After defining the

equilibrium magnetic field in appropriate coordinates systems, we describe in Section

3.2 the motion of a single electron in this magnetic field, which is characterized by

a constants of the motion, the energy - since magnetic forces do no work - and an

adiabatic invariant, the magnetic moment, which results from the fast gyromotion.

The inhomogeneity of the magnetic field is unavoidable in a torus, and results in the

trapping of a fraction of electrons in the low magnetic field regions. Another effect

of the magnetic field inhomogeneity is to generate particle drifts. The drift across

flux-surfaces, associated with temperature and density radial gradients in the plasma,

is responsible for the bootstrap current. However, the orbit deviation from a flux-

surface is very small compared to the size of the plasma and the poloidal orbit length,

and it is a good approximation, for electrons, to assume that the particle is exactly
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on the flux-surface when integrating along the particle orbit.

The drift-kinetic equation, which accounts for this drift, is derived in Section 3.3

from the Boltzmann equation with Fokker-Planck collisions. The effect of RF fields

- such as Electron Bernstein Waves - on the plasma is described by a quasilinear

operator that is added ad-hoc to the drift-kinetic equation. This 4-D equation (2-D

in axisymmetric configuration space, 2-D in gyroaveraged momentum space) is re-

duced to a set of two 3-D equations by applying the small drift approximation, which

accounts for the fact that the drift velocity is much smaller than the parallel veloc-

ity of electrons. This approximation effectively decouples the flux-surfaces. These

3-D equations are further reduced to a set of 2-D bounce-averaged equations (in mo-

mentum space) using the low-collisionality approximation, under which the motion

of a given electron is not altered much by collisions or quasilinear diffusion over the

course of one poloidal transit time (for passing electrons) or bounce time (for trapped

electrons). The differential operators in the kinetic equation are expressed in a conser-

vative form as the divergence of momentum-space fluxes with diffusive and convective

parts. The bounce-averaging of these operators is expressed analytically and for the

general case, using the symmetry properties of the distribution functions, and leads

to an expression for bounce-averaged diffusion tensor and convection vectors, which

must be specified for each operator (collisions and quasilinear diffusion).

The Fokker-Planck collisions operator is linearized and bounce-averaged in Section

3.4. The quasilinear operator is derived in Appendix B for a Gaussian beam in a

uniform plasma. Its application to a toroidal plasma is discussed and justified in

Section 3.5, where it is transformed to enter the bounce-averaged kinetic equation.

The validity of the quasilinear operator with respect to non-linear effects is also

discussed.

Finally, the calculation of moments of the distribution function is presented in

Section 3.6, after introducing the flux-surface averaging operation. It allows us to

evaluate the flux-surface averaged density, plasma current, and collisional or RF power

dissipated, from the bounce-averaged distribution function. The stream function,

which gives a useful mapping of steady-state fluxes, is also calculated.
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3.2 Electron Dynamics in an Axisymmetric Torus

In this section, we first introduce the axisymmetric toroidal magnetic equilibrium ap-

plicable to tokamaks and STs. The particle motion in this magnetic field is described

and the drift across magnetic flux surfaces is calculated. In addition, the bounce-

averaging operation is defined in the zero-banana width limit, when the drifts can

be neglected in first approximation. The results presented here are not derived from

first principles, although this has been done in previous works refered to in this sec-

tion. The properties of the equilibrium magnetic field are obtained from ideal MHD

equations [63] [64]. The motion of particles in a non-uniform magnetic field has been

derived by expanding the equation of motion to orders of PL/LB < 1 where PL is

the Larmor radius and LB is the scale length of magnetic field variations [65] [66].

Equivalently, these equation have been derived using an Hamiltonian approach [67].

3.2.1 Toroidal plasma field geometry and configuration space

coordinates systems

Z

A

R

y z

Figure 3-1: Cylindrical coordinate system (R, Z, <) for axisymmetric toroidal plasmas.
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A natural coordinates system for an axisymmetric toroidal plasma is the cylindri-

cal system (R, Z, #), defined in (A.46) and shown in Fig. 3-1, where R is the distance

from the torus axis of symmetry, Z is the (generally vertical) position along this axis,

and q is the angle in the toroidal direction. The system (R, Z, 0) is oriented such

that the toroidal magnetic field be positive B -V0 > 0. In other words, if the toroidal

field is directed clockwise from a top view, then VZ is oriented towards the top of the

torus. Otherwise, it is oriented towards the bottom of the torus. The corresponding

local direct orthonormal vector basis is (R, Z, ), defined in (A.49), with (A.51)

R= VR

Z=VZ (3.1)

0= RVO

Many useful geometrical and differential properties of this system are derived in Ap-

pendix A. Note that with our definitions, the angle q is oriented in the opposite

direction from the one used generally in ideal MHD, where the direct orthonormal

vector basis is R, , Z). The present prescription allows us to use the same toroidal

coordinate # throughout various coordinate systems defined below.

In a toroidal axisymmetric geometry, the equilibrium magnetic field can be ex-

pressed generally as [64]

B = I (V) V0+ V0 x VV (3.2)

where 4 is called the magnetic flux function and I (4) is a free function related to the

toroidal magnetic field, and which accounts for the plasma dia- or paramagnetism.

In an axisymmetric system, 7P is independent of # and therefore VO -V = 0 and we

get from (3.2) that B - VV) = 0. The magnetic field is therefore included in nested

surfaces of constant V), called flux surfaces.

A consequence of the axisymmetric magnetic equilibrium is the existence of a

magnetic axis in the toroidal direction, located at the fixed position (R,, Z) ,which

corresponds to the innermost flux-surface. The magnetic axis is an extremum of the

magnetic flux function 4'. The value of V) on axis can be arbitrarily chosen as 4 = 0.
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Figure 3-2: Flux coordinates system (4', s, #$) for axisymmetric toroidal plasmas with
closed nested flux-surfaces.

Using this axis as a reference, we define the coordinate system (4, s, q5), shown in Fig.

3-2, where the distance s is the curvilinear length along the poloidal magnetic field

lines (A.72). In this study, we assume that the magnetic field amplitude has only

one maximum and one minimum on the flux-surface, which is generally the case for

tokamaks and STs
Bmax (4) a max {B (', s)}

Bo () amin {B (4', s)}

and we choose the origin of s to be at the position of minimum B-field amplitude

within a flux-surface.

B(,s 0) = B0 (4) (3.4)

Note that from now on, and all along this thesis, the subscript 0 refers to quantities

evaluated at the position of minimum B-field on a given flux-surface. The range of s

on a given flux-surface is limited by smin (4') and smax (4') which are set at the position

of maximum magnetic field, such that

B (4', s a min < 0) = Bmax (4')(5

B (', s a max > 0) = Bmax(4')
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The local direct orthogonal vector basis corresponding to the system (4, s, q) is

(^, S7 defined in (A.74), with (A.78)

(3.6)
=Vs = #xS

The toroidal magnetic field is

BT= I(O)V#= B5 (3.7)

with BO = 1 (4) 11V#|1. With our prescription that B - Vq > 0, we have that BO > 0

and I(4) > 0, and therefore the (positive definite) toroidal component of the field is

BT= 1|BTI||= BO4R (3.8)
R

If the plasma current is in the same direction as the magnetic field, -4 > 0, the

poloidal field is directed counter-clockwise in the poloidal plane, as shown by ' on

Fig. 3-2, and the flux function V' increases in the radial direction. Then, the magnetic

axis is a minimum of 4. If I4 < 0, 4 decreases in the radial direction and the magnetic

axis is a maximum of 4. The poloidal magnetic field is

Bp = VO x V = B S (3.9)

with B. = ||VOJ J|VOI|. Therefore, the (definite positive) poloidal component of the

field is

Bp - ||BpI| = B = (3.10)
R

The total magnetic field magnitude is simply

B IIBI = B + B, (3.11)

The magnetic flux function V; is related to the poloidal flux of B. Indeed, let's
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W

dS,(xV)

dS,( )

Figure 3-3: Elementary toroidal surface dST (4) and poloidal surface dSp (4) for the
calculation of flux of magnetic field B within a given flux-surface 4.

consider the flux of Bp across a toroidal surface ST (4) as shown on Fig. 3-3. Because

the magnetic flux is a conserved quantity, the surface ST (4) can be taken at any

poloidal location. We choose arbitrarily the s = 0 surface. Using axisymmetry, (3.10).

and the expression (A.81) for elementary surfaces of constant s, we find

4p (') = dS B

2r -RdO B= 2wjhr By

=27r4 (3.12)

and we see that 0 is the poloidal flux per radian.

Because the range of s depends on 4 (3.5), it is often more convenient to work

with the coordinate system (4, 0, #), where 0 is the poloidal angle measured from

the magnetic axis. The 9 range (-7r, 7r) is now independent of 4, which simplifies

numerical calculations. On the other hand, the contravariant vectors V0 and VO

(A.91) are not orthogonal. This coordinate system, also shown on Fig. 3-2, is a blend
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of (4, s, #) and (r, 9, #), which is defined in (A.59) with the basis (A.64)

i= Vr
(3.13)

0 = rV9

The properties of this curvilinear system are detailed in Appendix A. We also define,

for geometrical purposes, a flux-function p (40) which coincides with the normalized

radius on the horizontal outboard mid-plane. Indeed, in an axisymmetric system,

using the functions R (4, 9) and Z (V), 9), we define p (4') as

M R (, 0) - R(3.14)
Ra - Rp

where Rp = R (0, 0) is the location of magnetic axis and Ra R (4a, 0) is the value of

R on the separatrix (4' = 0'a) as it crosses the horizontal mid-plane (9 = 0). We have

by construction 0 < p < 1 in the plasma. Here ap = Ra - Rp is defined arbitrarily as

the plasma minor radius, since this definition merges ap for circular concentric flux-

surfaces. We also define the position 00 (4) corresponding to the (unique) location of

minimum B-field on the flux-surface

When the plasma is up-down symmetric, we have 00 = 0. The system ('i, 0, #) will

be used from now on and through this thesis.

Safety Factor q (W)

The safety factor q (4') is a measure of the average number of toroidal rotations

completed while following a field line for one entire poloidal rotation. It is precisely

defined as

q (4') d(3.16)
dop

where OT is the toroidal flux and Op in the poloidal flux. The toroidal flux is the flux

of BT through the poloidal surface Sp (4) as shown on Fig. 3-3. Using axisymmetry,
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(3.8) and the expression (A.94) for elementary surfaces with constant 0, we find, using

(A.90),

oT (') = fST p) dS - B

=/do r d - BT (3.17)

We recall (3.12)

op (4) = 2i7r4 (3.18)

so that, using (3.17) and (3.10), the safety factor (3.16) becomes

( 1 dO 1 r BT (3.19)

0 27r . R Bp

3.2.2 Particle motion in a magnetic field and momentum

space coordinates systems

Because of the fast gyromotion of particles in the magnetic field, we use momentum

space coordinates systems with rotational symmetry in order to reduce the dimen-

sionality of the problem. Two different momentum space coordinates system are

considered through this work:

" First, the cylindrical coordinate system (p1j, pj, o), where pli is the component

of the momentum along the magnetic field, p± is the component perpendicular

to the field, and V is the gyro-angle. This system is defined in (A.100). The

cylindrical momentum-space coordinate system has the natural symmetry of

wave-particle interaction.

* Second, the spherical coordinate system (p, , V), defined in (A.113), where p

is the magnitude of the momentum, and is the cosine of the pitch-angle.

The spherical momentum-space coordinate system has the natural symmetry

of collisions. It is the primary system, used in the DKE code, for an accurate

95



description of collisions.

z // B

PHP
CosY

Py

x

Figure 3-4: Momentum space coordinates systems (p11 , p, <p) and (p, , p).

The momentum space and the two systems are shown on Fig. 3-4. In a relativistic

plasma, the velocity is related to the momentum by (2.54)

V= (3.20)
"yme

where (2.55)

11 + m I P
- mp)= + 2 = + 2 2  (3.21)

is the relativistic factor.

The motion of an electron in a uniform magnetic field is decomposed into a gyra-

tion in the plane perpendicular to the field line and a free streaming along the field

line [641. The radius of the gyration, also called electron Larmor radius or gyroradius,

is

PL = M (3.22)
mewe
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where
_eB

Wce - (3.23)
me

is the rest mass gyrofrequency. When the magnetic field is non-uniform and when

its variations, both in amplitude and directions, occur on a scale length much larger

than the Larmor radius, then the modifications to the particle motion can be viewed

as a perturbation to the gyromotion, and consists of relatively slow particle drifts.

When averaged over the fast gyro-motion, the resulting velocity - called guiding center

velocity - is then the sum of the fast streaming along field lines and a slow drift

Vgc = v11b + VD (3.24)

where b = B/B is the unit vector in the magnetic field direction.

In a constant equilibrium and the absence of equilibrium electric field, the drift

velocity VD is the sum of the VB drift, due to changes in the magnitude of B, and

the curvature drift, due to changes in the direction of B. It is given by [64]

2 B Bx VB
VD (V2 B (3.25)

where Qe is the relativistic cyclotron frequency

e - "eB w__e e (3.26)
~yme

3.2.3 Constants of the motion and particle motion along the

field lines

Because magnetic fields cannot do any work on charged particles, the electron's kinetic

energy S is a constant of the motion

-- = 0 (3.27)
dt
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where 8 is expressed relativistically as

S = (- - 1) mc 2  (3.28)

In addition, the fast gyromotion results in the existence of an adiabatic invariant

[64],
dy

~ -0 (3.29)
dt

where p is the magnetic moment

P2 q 2

=A = qev1 (3.30)
27meB 2Me

Because of the conservation of energy and magnetic moment, the parallel velocity of

the electron decreases as it moves towards regions of higher magnetic field amplitude.

This effective force in the parallel direction is called mirror force, as it is the principal

longitudinal confining effect in a mirror machine. In a toroidal plasma, the parallel

velocity of an electron moving towards higher field regions can sometimes vanish

before the electrons reaches the location of maximum magnetic field Bma, (V)). In that

case, the electron bounces back towards lower field regions, and is called a trapped

electron, as it is confined in a region of low magnetic field. All electrons confined on

a given flux surface 0 will pass by the point of lowest magnetic field Bo (0) on that

flux-surface. In an axisymmetric plasma, it is therefore possible to identify electrons

by the value of their momentum components p1jo and pio as they reach the point

where B (), 0) = BO (V).

The turning points eT in the bounce motion are then determined by the location

where vo1 vanishes. The conservation of energy (3.28) leads to the conservation of -y

and therefore, using (3.21)
2 2 2 2 (331P11o + Pio = p+p (3.31)

while the conservation of magnetic moment (3.30) gives

2 2
P10 = (3.32)

Bo (0) B(O, 7OT)
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We define the ratio T (V, 0), on a given flux surface, between the magnetic field and

its minimum value Bo (V)) on that flux-surface.

S( , ) = B( 0)
Bo (0) (3.33)

so that, at the turning point where p11 = 0, (3.32) with (3.31) gives

2
110XF (0i OT) =1+2

P10

Trapped electrons are such that there exists such poloidal location 9 T and therefore

2

1 + < Xmax
P10

where Tmax (4') = Bmax (4) /Bo (V)). The two turning points are

OT min (Plo, Pio, 4)

OT max (Po, Pio, 1')

= min { B (1, OT)

=-max { B(O, OT) 5

and we have 9 Tmin = - 9Tmax in an up-down symmetric plasma.

In spherical momentum coordinates (p, ), the conservation of energy (3.28) gives

Po = P (3.37)

meaning that the magnitude of the particle momentum is conserved, while the con-

servation of magnetic moment (3.32) leads to

Bo(4) B
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(3.35)

(1
+Pil~o\

p10 /
Bo (4)

P2\110(1 +

(3.36)

Bo (4)

_ (2

(0, 0)
(3.38)



so that, at the turning point where = 0,

'F (1, OT) = (3.39)

Trapped electrons on a given flux-surface are therefore such that

02 <2 (?b) (3.40)

where we defined
1

CT (P) 1 - (3.41)
ma(#

In spherical coordinates, electrons are therefore identified by their momentum p,

which is a constant of the motion, and by the value o of their pitch-angle as they

cross the point of minimum B-field on the flux-surface. The turning points (3.36) of

an electron (p, o) can also be defined in (p, ) coordinates, using (3.39)

OT min (6o) =-min { B(kOT7 ) 2

(3.42)

6rTma(fO,'i@) a max{ B(O, OT) <BO

The pitch-angle of an electron varies along the flux-surface according to (3.38)

o = o 1 - (0, 0) (1 - 02) (3.43)

where -=sign( o). We can also derive the condition for an electron with pitch-angle

( at the poloidal location 6 to be trapped. From (3.38) and (3.41) the condition is

< T (,9 )= 1 -- ('V ) (3.44)
Tma (
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We define the limits Omin and Omax as

Omn 07=0

6rnax (01 W)

-7r for passing particles

Tmin for trapped particles

7r for passing particles

OTma for trapped particles

where OTmin and Tm, were defined in (3.42). The conditions for an electron (p, o)

to be able to reach a given poloidal location 9 is then

(3.46)

which, using (3.34), can also be written as

(3.47)

or equivalently

( , ) 1 2

1 )(

(3.48)

3.2.4 Particle drift in an axisymmetric toroidal plasma

In an axisymmetric toroidal plasma, the equilibrium magnetic field is given by (3.2),

which is rewritten in (0, s, #) coordinates as

B (_) I|V'||
R qR (3.49)

and is necessarily non-uniform. In that case, particles are subject to drifts both

within and across the flux-surfaces. We are particularly interested in drifts across

the flux-surfaces as they are essentially responsible for the existence of the bootstrap

current.
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Drift Velocity from the Expression of Single Particle Drift

The guiding-center drift velocity due to the magnetic field gradient and curvature is

given by (3.25) and its component perpendicular to the flux-surface can be written

as

VD - 25 VH 2 ) I Vx B - VB (3.50)

Inserting the expression (3.49) of the magnetic field, we find

VD - VN = 1 V2 +
V2_L)

(3.51)

Using axisymmetry and the expression (A.83) for the gradient in (4, s, 4) coordinates,

the equation (3.51) becomes

VD * (
V2
2 L)

B1V451 (4) aR
B 2 R O9s

With the definition (3.30) of the magnetic moment p, we rewrite

_DVO 1 K 1 1(45) ( 2 +I'Qe OB
VDV B 2R 1 + ) as

Using the conservation of magnetic moment (3.29) along the particle motion

pIQe B apB
qe Os as q,

and using the conservation of energy (3.28) and the identity

v O s

B 2

B 1 +

_ a
as

(VI
2J)- vlB 09 ( 1)

= avlBs (B

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)
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and finally, the equation (3.53) becomes

1V IvOI aV
VD R os (B) (3.57)

In addition, using (3.49) and axisymmetry,

B -V IT a
R &s

(3.58)

so that we can rewrite (3.57) as

VD - VI =I (0) B -V( (3.59)

Drift velocity from the conservation of canonical momentum

The drift velocity (3.59) was obtained based on the expression (3.25), which was not

derived from first principles. Note that we can also derive the drift velocity using the

conservation of canonical momentum, which is also a constant of the motion because

of axisymmetry. It is expressed as

PO = R [ymev, + qAO] (3.60)

where AO is the toroidal component of the vector potential.

From the relation

B = V x A (3.61)

with the expression (A.85) of a curl in (40, s, #) coordinates, we have

BS = (A) - -- (RAO)
R O R ft

(3.62)

Then, using axisymmetry and the expression (3.10) for the poloidal field, we get

(3.63)
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where we chose arbitrarily AO (4 = 0) = 0.

Because the toroidal canonical momentum is a constant of the motion, we have

vgc - VP0 = 0 (3.64)

which becomes, using (3.24), (3.63) and the conservation of energy so that vgc-V7 = 0,

VD ' 7Me v ge V (Rvo)ye

Assuming a priori that vII I > IvDI, a condition that is well verified consistent with

the conservation of magnetic moment, this equation reduces to

DeB V (Rvo) = B - V (Rvo)

The toroidal velocity is related to the parallel velocity by

V4= Bif V = RB VI

Since 1 (0) is a flux function, it can be taken out of the gradient, so that

VD - V) = VI (V) B (3.68)

an expression which is the same as (3.59).

Deviation of particle orbits from the flux-surface

Because of the drift across flux-surfaces, particles are not strictly confined to a given

flux-surface. Considering that the gradient of magnetic field amplitude is globally in

the inward direction (VB ~ -RB/R), the drift velocity in the poloidal plane (3.25)

is arroximately

VD -1 (VDP "- ~~ VI +2) RB
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(3.67)

(3.69)

(3-65)

- V CB



VB

passing e-

-VD

flux surface

trapped e-

(banana orbit)

Figure 3-5: Poloidal projection of particle orbits in a toroidal plasma.

and is therefore directed in the vertical direction. Because ions and electrons drift in

opposite direction, this drift could generate a vertical electric field that would lead to

a loss of confinement due to resulting E x B drift in the outboard direction. However,

along the poloidal motion of particles, this drift is directed alternatively towards the

core and toward the edge of the plasma, such that it cancels exactly over the course

of one transit or bounce period. This explains why a poloidal field is necessary to

confine a ST or tokamak plasma. Although the cumulative drift vanishes over one

poloidal motion, particles drift across the flux-surfaces along their orbit, as illustrated

on figure 3-5, which results of the characteristic shape for trapped electrons, called

banana orbits. The maximum deviation off the flux-surface can be estimated by

calculating the accumulated drift over half a bounce or transit time rb. From (3.69),

we get

pTe7rq for passing electrons

Tb

2 T for trapped electrons

T
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where we used the estimation (3.103) for the bounce time and where we used q ~-

iBT/B. We see that the particle deviation from the flux-surface is not more than a

few Larmor radii, and that it is larger for trapped electrons, because their parallel

velocity is smaller.

3.2.5 Bounce time and bounce averaging operation

Transit or Bounce Time

Because the orbit deviation from a flux-surface is very small compared to the size of

the plasma and the poloidal orbit length, it is a good approximation, for electrons,

to assume that the particle is exactly on the flux-surface when integrating along the

particle orbit. In this limit of zero-banana width, the forward and backward motion

of trapped electrons follow the same trajectory. In that case, we can define the bounce

time as the time for a trapped electron to complete half a bounce period. The poloidal

transit time for a passing electron is defined as the time to complete a full orbit in

the poloidal plane. We define then, for any electron

7b"ma ds = max ds
Bb 9 -(3.71)

where v, is the guiding center velocity along the poloidal field lines, and v11 is its

velocity parallel to the magnetic field. The limits smin and smax are defined in (3.5)

for passing electrons, and are the positions, along the field lines, of turning points for

trapped electrons.

The differential arc length ds along the poloidal field line is generally expressed

in curvilinear coordinates (ul, u 2 , u') as (A.11)

ds = V/gijduidui (3.72)

where the gij are the metric coefficients, defined in (A.10). In the (4, 6, #) coordinates

system, the variations do and do are essentially zero along the poloidal field line. As
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a consequence, (3.72) reduces to

ds = VgP22d9 (3.73)

where the metric factor Ag/- represent the poloidal distance per radian along the

field lines. The bounce time (3.71) becomes

Tb (4) = d9 B
|v1 | Bp

(3.74)

(3.75)

where the limits 6min and Omax are defined in (3.45).

In spherical momentum coordinates, we have (A.113)

V11  PI1
V p

so that

-r 2,7r O*ax dO Vf-2 o B
TbQ4) _ 2 [mxd

Vg| I Oi 27r Bp

The bounce time can then be normalized as

Tb 27,RpiC?) A (0 o)
V |16

where

A 1

and

J O ax0
min

d9 VJo B
27r Rp Bp

(3.76)

(3.77)

(3.78)

(3.79)
2jd d B

0 27r Rp Bp

The bounce time is in fact normalized to the transit time of particles with parallel

momentum only, since A (4, ±1) = 1. The factor q~(0) represents the length of field

lines within one poloidal rotation, normalized by 27rRP.

The covariant metric element 922 is given by (A.8)-(A.10), which in the (4', 0, <$)
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system becomes (A.89)
r

922 = (3.80)
V - r

Consequently, the normalized bounce time takes the form

A = ~V) 4 m1O- K --rpBP (3.81)

with
2( dO 1 r B (3.82)

0 27r . Rp Bp

Bounce Averaging

Anticipating that the kinetic equation will be reduced based on the fast streaming

motion along the field lines, we define an average over the poloidal motion, which

accounts for changes in the particle velocity, including trapping, and effectively anni-

hilates any term of the type v, - &/&s in the zero banana-width limit. This is called

the bounce-averaging operation

JA [1 1 L "max ds
-rb 2 T~g IVS

Smax ds B

b[]T mr A (3.83)-rb 2 T fmin |v|||I Bp

where the sum over o =sign(vl|) applies to trapped particles only. This is an average

over a poloidal rotation for passing electrons, and over both the forward and backward

motion for trapped electrons. It can be rewritten in (V), 6, q) coordinates using (3.73)

{ =A dO A (3.84)
-rb 2 0 . T f in v|||I Bp
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and in terms of the normalized bounce time A using expression (3.78)

{A}4["z1d0-a B O{A}I= ~ v2 A
Aq 2 E ~.27r Rp Bp

(3.85)

or, inserting the expression (3.80) for g-

(3.86)JAI 1 10"ax dO 1 r B OA{A} = 4A ~ ji
Aq~ 2 , 27r . Rp B

We anticipate that bounce averaging the momentum-space operators in the kinetic

equations leads to a set of coefficients that all have a similar structure, denoted Ak,1,m

and Ak,l,m, which are define as

(1 )) 
Ak,l,m (9, ))( o ) ' ( R(A,() ~o)

(7 ,7 , ( ) kRo (0) M - k,l,m (,d)
07 o T' (0, 6) O0) - A (0, 0)

(3.87)

(3.88)

and

where

Ro (0) = R (01, Oo)

Note that by definition, A0, 0,0 = A. In addition,

(3.89)

- Ak,l,m
k,t,m 0

0

for passing particles

for trapped particles

3.3 Drift-Kinetic Equation

In this work, we do not undertake the derivation of a consistent drift-kinetic for-

mulation in the presence of RF fields. Rather, we derive the drift-kinetic equation

independently from the presence of RF fields, and assume that the cumulative effect

of the wave particle interaction on a slow time scale (of the order of the collision

time) is approximately described by the quasilinear operator derived by Kennel &
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Engelmann [41] and Lerche [42] for a uniform plasma.

This approach, first followed by S. Schultz [32], is justified by assuming that the

inhomogeneity in the plasma - which is responsible for the mirror force and the drifts

of the flux-surface - does not significantly affect wave-particle interaction. For this

assumption to be valid, it is required that (1) the extent of particle orbits off the flux-

surface is small as compared to the variation of RF wave characteristics, and (2) the

changes in the particle velocity due to the equilibrium inhomogeneities do not affect

the particle resonance. The condition (1) is easily satisfied for electrons, because

the radial shift of their orbits is small (of the order of a few Larmor radii), which

is consistent with the zero-banana width limit in the bounce-averaging operation.

However, the condition (2) is more restrictive, and imposes limits on the spatial

extent of RF beams, which we will investigate in section 3.5.2.

We point out that the derivation of a quasilinear operator consistent with toroidal

geometry has been undertaken in previous works, either by direct averaging techniques

[44] or from a Hamiltonian approach [68]. However, this operators have been derived

for mirror machines and space plasmas, respectively, and consider only the motion

of trapped electrons. They do not directly apply to the tokamak plasma where both

passing and trapped electrons must be considered. It can be readily shown, however,

that the operator derived in [44] reduces to the operators from [41] and [42] in first

approximation for equilibria with large inhomogeneity space scale.

3.3.1 Boltzmann equation

In kinetic theory, electrons are described statistically by a distribution function f (r, p, t),

which represent the phase-space density of particles with momentum p at the position

r and time t. The evolution of the distribution function is governed by the Boltzmann

equation

0+vf Vr f +F(r,p,t)-Vpf =C(f) (3.91)
at
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where v is the velocity the particles (2.54)

p (3.92)
mey

and F (r, p, t) is the electromagnetic force acting on electrons, called Lorentz force

F (r, p, t) = qe [E (r, t) + v x B (r, t)] (3.93)

where E (r, t) and B (r, t) are the electric and magnetic field, respectively. The oper-

ator C (f) describes the effect of collisions with both like and unlike particles.

In the derivation of the drift-kinetic equation, we consider only the equilibrium

field B (r), and ignore the perturbation field (typically generated by RF sources).

The Boltzmann equation (3.91) can then be rewritten as

Of _ eB Of
-- + V - Vrf - -- af = C (f) (3.94)at me78 p~

where we used the following identity, based on (3.92), (A.102) and the expression

(A.110) for the gradient in cylindrical momentum coordinates

qeB Ofqev x B (r) -VPf = - (3.95)

where B = l|B I. With the definition (3.26) for the gyrofrequency, we get

-f + V - Vrf - Q, (r) f = C (f) (3.96)
at av

3.3.2 Drift-Kinetic Equation

In tokamaks, the gyro-frequency is typically much larger than the collision frequency

and the bounce frequency, such that, to leading order, the equation (3.96) reduces

to Of/Ocp = 0 and f is gyro-independent. Gyro-averaging equation (3.96) gives then
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the drift-kinetic equation (DKE) [69]

+ vgc -Vrf = C (f) (3.97)
at

where vgc is the guiding center velocity, obtained after gyro-averaging the particle

velocity, and f = f (r,p, , t). At this stage, we introduce the quasilinear operator,

which describes the diffusive effects of RF fields on the macroscopic, gyro-independent

distribution function. We obtain the DKE with RF diffusion

Of
+ Vgc -Vrf = C (f)+ Q (f) (3.98)

The guiding center velocity is decomposed into the fast motion along the field lines,

and a drift velocity. It is expressed as (3.24)

Vgc = vjjb+ VD (3.99)

The drifts within the flux-surface are neglected compared to the fast parallel stream-

ing, and we retain only the drift across flux-surfaces, which is responsible for the

existence of the bootstrap current and is given by (3.59)

VD !V-"I (0) B -Vr (3.100)

Using the expression for the gradient in (4, s, #) corrdinates (A.83), we rewrite

the DKE (3.98) in steady-state form as

Of vi ||\IV 4||IO vI Of Cf)Qf)(.11V- + sI = C (f) + Q (f) (3.101)
Os Qe R as B ao

3.3.3 Time scales in the DKE

The DKE (3.101) is a linear partial integro-differential equation for the steady-state

distribution f = f (,0, s, p, ) in axisymmetric plasmas. However, it is possible to re-

duce this equation to a set of 2D momentum-space equations by ordering the different
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time scales in this equation. This reduction is important not only with respect to

the challenge of multidimensional numerical calculations, but also in order to extract

the relevant physics of particle motion and wave-particle interaction. The physical

interpretation and corresponding time scales of the terms in equation (3.101) are

respectively

1. Parallel motion along magnetic field lines

Bounce Averaging Coefficient X
1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

-1 -0.5 0 0.5 1

Figure 3-6: Normalized bounce time
nate 'o for G0T ~ 0.6.

A (4, o) as a function of the pitch angle coordi-

The characteristic time scale of the parallel streaming along field lines is rb, the

bounce or transit time for trapped or passing electrons respectively. It is given

by (3.77)

Irb 27rRpi( b)A(0 oV A ('sb, o)6'VI|o|
(3.102)

A detailed study of A (4', o), plotted in Fig. 3-6, shows that for passing elec-

trons we have typically A (', o) / |o| ~ 1, while for trapped electrons we have

A (10 , o) / 1l ~ 1/oT. Therefore, the typical bounce or transit time of electrons
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is of the order of

_27rR,iIbP 2w for passing electrons
VTe

(3.103)

TbT ~2w p for trapped electrons
6OTVTe

2. Drift across flux-surfaces

The drift time scale is defined as the time for an electron to drift on a cumulative

distance of the order of the plasma radial size ap, and can be derived from (3.101)

Td R aB (3104)
VTePTe BT

where we define the thermal Larmor radius

PTe = Vre (3.105)
Wce

3. Collisions

Collisions are described by a Fokker-Planck operator (Section 3.4), which ac-

counts for the cumulative effect of many small-angle collisions. The collision

time -rc represents the time-scale for a diffusive deflection of the order of wr/2

and is given by [56]
47rE 2M 2V 3

-1c = V 4 = 4 ee (3.106)
q4neln A

where ln A is the well known Coulomb logarithm, a slowly varying function

of the plasma temperature and density. A characteristic collisional time scale

for trapped electrons is the detrapping time, defined as the typical time for

a trapped electron to be detrapped due to collisional pitch-angle scattering.

The typical detrapping deflection for trapped electrons is smaller than 7r/2 by

a factor OT. Because pitch-angle scattering is a diffusive process, the average

deflection increases like the square root of time, A ~ v'A. Therefore, the

detrapping time is shorter than the r/2 collisional time by a factor (OT and we
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have

T 2t OTTC (3.107)

4. Quasilinear diffusion

In quasilinear theory, the cumulative effect of RF fields on the macroscopic

distribution function is a momentum space diffusion characterized by a diffusion

coefficient DQL, which will be determined in Section 3.5. The corresponding

diffusive time scale can be expressed as

2
QL PTeTQL DQL (3.108)

DQL

3.3.4 Small drift expansion

In tokamaks and STs, the drift time scale, as defined in (3.104), is typically much

longer than the bounce, collisional and quasilinear time scales, and we define the

small drift parameter as being the ratio

_TbP - PTe BT ' PTe (3.109)
rd ap B ap

where we used q ~ q~BT/B based on (3.19) and (3.82). The small parameter J can

also be viewed as the ratio of the banana radial deviation from the flux-surface ArD

(3.70) to the plasma size ap.

In a typical NSTX plasma (q ~- 3, ap ~ 0.9 m, T = 1.3 keV, B = 0.3 T), we find

j ~ 10-3 , which indicates that the small drift approximation is well validated.

Ordering equation (3.101) in powers of J < 1 after expanding f = fo + fi + ,

we get

* At zero order

'9fo
vs - = C (fo) + Q (fo) (3.110)

which is the usual Fokker-Planck equation, obtained when the effects of radial

drifts is neglected.
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e At first order

v8 1 + 'I (14) B4- L-)-=C(fi)+Q(fi) (3.111)
Os Qe as B 0,

which we will refer to as the drift-kinetic equation, since the effects of radial

drifts are included.

3.3.5 Low collisionality ordering

In the low collisionality, so-called banana regime, the collisional detrapping time rdt

is much longer than the bounce time of trapped particles Trp, meaning that trapped

electrons typically bounce back and forth many times before their orbit is affected by

collisions. The collisionality is measured by the parameter

V= TbP 27r14 (3.112)
Tdt TcVTe OT

In a typical NSTX plasma, the collisionality parameter is very small, except very

near the magnetic axis, where the trapped particle fraction vanishes, and near the

edge, where typically rvTe -+ 0. The profile of v* is shown on Fig. 3-7 for a typical

NSTX plasma with the profiles of Fig. 1-8. Note that near the magnetic axis, the

fraction of trapped particles vanishes and therefore v* becomes irrelevant. Then, the

collisionality parameter for passing particles v = TbTr/dt, which typically remains very

small, should be considered instead.

In the case where v* < 1, the collisionless approach to particle motion done in

section 3.2 is essentially valid. If in addition we assume that the effect of RF fields is

small in the course of one bounce-period, meaning TQL bT/v*, we can (sub)order

the equations (3.110) and (3.111) with respect to v*, in the so-called banana regime

< < v* < 1, which gives at leading order:

* For the Fokker-Planck equation (3.110)

f= 0 (3.113)
as
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Figure 3-7: Collisionality parameter v* for a typical NSTX plasma.

which means that fo is constant along the field lines, and therefore symmetric

in in the trapped region.

e For the Drift-kinetic equation (3.111)

I()Bp o
De Os

V11 Ofo
-I- f\B- 0

which integrates as

fi = f + g

J8 I(V))B a

vil Ofo
- 09

(3.115)

where, using v, = viBp/B and the fact that fo is constant along field lines,

(V1B Ofo

(3.116)

and g is an integration function of (p, 0) but constant in s, and therefore is

also symmetric in the trapped region. We determined in Section 3.2.1 that with

our expression (3.2) for the magnetic field, the flux function 0 increases in the

radial direction if the plasma current is in the same direction as the magnetic
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field (I4 > 0). In that case, afo/o8 < 0 and with Qe < 0 we see that f is of

the opposite sign to vjj. Because electrons carry a negative current, we find that

the drifts generate a current in the direction of the magnetic field, and therefore

the bootstrap current is in the same direction as the plasma current.

3.3.6 Bounce averaging and steady-state equations

* The evolution equation for fo can now be obtained by bounce-averaging the

equation (3.110), which annihilates the motion along the fields lines, since using

(3.83), v, = o- v,I and the fact that fo is constant along field lines.

V fo 1o- [ O]Smax = 0 (3.117)
J9 T. J b 2 T min

We obtain the steady-state bounced-averaged Fokker-Planck equation

{C (fo)} + {Q (fo)} = 0 (3.118)

* The evolution equation for fi is obtained by bounce-averaging the equation

(3.111). Because g is constant along field lines, {vog/Os} = 0 using (3.117).

We also have that

fof 1 1[1~1 Smax
o- [ fma = 0 (3.119)

since Smin and smax coincide for passing electrons, and f(smin) = I(Smax) = 0

for trapped electrons since vil vanishes at these points (3.116). In addition, we

have

I () B B } BI (-) Ofo I I = 0 (3.120)s e 5s B a QeTc oicd f2 ps e ,Bl I van

since smin and smax coincide for passing electrons, and vil vanishes at the turning
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points. We obtain the steady-state bounced-averaged DKE

{C (fi)} + {Q (fi)} = 0 (3.121)

and therefore, for linearized collision and RF diffusion operators,

{C (g)}+{Q(g)}= - WC I - (Q W 1 (3.122)

Note that fo is a solution of the homogeneous part of the linear equation (3.122),

and therefore any solution of the type

g'= g + cfo (3.123)

is also solution of (3.122). We choose to solve (3.122) for the solution g that is

identically zero in the trapped region, and then solve (3.123) for cg by using the

conservation of the flux-surface averaged density.

3.3.7 Conservative formulation of the kinetic equation

Operator expressed as the divergence of a flux

As we will show in Section 3.4 and 3.5, the quasilinear diffusion operator and the

differential part of the collision operator can be expressed in a conservative form as

the divergence of a flux. Therefore, we write formally

C(f) = -Vp- SC + I(f) (3.124)

Q(= -Vp- SRF

where I(f) is an integral contribution to the collision operator, which ensures mo-

mentum conservation. The kinetic equations (3.118) and (3.122) can therefore be
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rewritten respectively as

VP S (fO) = I(fo)

VP - S (g) + VP - S () = I(g) + I (

where S = SC + SRF is the total momentum-space flux.

) (b)

For these gyro-averaged

kinetic equations, the divergence is (p, ) coordinates is given by (A. 124)

V S(f) = a [p2 S, (f)]P P2 ap
1 a

P a

with the definitions

SP (f) = W(f) -p

S (f) = W(f)

Bounce-averaged divergence operator

The bounce averaging of the divergence operator (3.126) gives

{VP'S}= (P2SP) _ 0 ( S_ (2S' }

where the bounce averaging operation is defined in (3.86)

1 [1T2 J O-ax
Omin

and is given along the trajectory by (3.43)

((0, 0, G) = 0(,) (1 - 0)

with (3.33)

V (0, 0) = B(70BQOp(O)
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(a)

(3.125)

(3.126)

(3.127)

(3.128)

dO 1 r B O
27r --. -A R Bp

(3.129)

(3.130)

(3.131)

/[ _I1 2S, (f ) ]



From (3.130) we derive the identities

= @Fodo

(- 2) 2 g)0

(3.132)

Then, using (3.132) and keeping in mind that Uol = co is independent of c-, we can

transform as follows,

1 -a2

_ 1
Sz]ax

2

_1 & 1[1 ~~/~mx d 1 r B o-
Ap 0o4oq~ 2 1:27r Rp Bp 1 :S

IJ max

ST 
9 min

d9 1 r B a-
27r ^.p RpBp I

1 10 - so
-paoV 1- 2Aa (3.133){6 oSc }

Consequently, we can rewrite the bounce-averaged divergence operator (3.128) as

{vp - S} =
1

Ap 0$_p2 ap
(i 1 (0A~))

where we defined

We must check the conservative nature of the equation (3.134). The integral of

{Vp - S} over the (p, ) momentum space (Jacobian (A.119) J, = p 2 ) and over the

incremental volume of a flux-surface (Jacobian (A.92) Jr = Rr/ JIVOII 1i^- r 1) is given
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11

q

(3.134)

-,43 = {Sp}

S0 = o{ cIT s (3.135)

dO 1 r B (o1 0

21 R- B- TP p - - (y/ V'" S



d = 47r 2doC
J2r dOJr dp j d<J {Vp - S}

/ 27r
47 2 dOJr d [p2 sO)]P00~2~mJ6~ f0 F=1

- or f', pdp I -- O

=0 (3.136)

and therefore the operator (3.134) conserves particles on a given flux-surface.

3.3.8 Decomposition of bounce-averaged fluxes

As we will determine is Section 3.4 and 3.5, the total momentum-space flux has both a

convective part (collisional drag) and a diffusive part (collisional momentum diffusion

and pitch-angle scattering, RF diffusion), so that it can be decomposed as

Sp (f) = -Dp -Vpf + Fpf (3.137)

where D is the diffusion tensor and F is the convection vector. The gradient vector

VP in (p, ) coordinates system in given by (A.123)

Vp=

a

Q1- 2 g
p 86

(3.138)

so that

Sp = -DOp-f
=p

S = -Dep a
ap

/1 -2 Of
+ PDpg - + Fpf

41-92 Of+ IVDc-- + Fcf
P a
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In order to evaluate the bounce-averaged fluxes (3.135) as a function of the bounce-

averaged distribution functions, we must treat separately the cases of fo and g from

the case of f.

Distribution functions fo and g

The distribution functions fo and g are independent of 0 and they are also symmet-

ric in the trapped region. We denote such function as f and evaluate the bounce-

averaging terms in the decomposition (3.139) from (3.135). We have f (p, ) =

f(0) (p, o) which is independent of 0 and also of o in the trapped region. Using

(3.132) and keeping in mind that I oI = ao- is independent of o, we get

S D pp } D p } &f(0)

{D 1 -62 f 1- T_ oT{Tj2p4

D~g - a D~g a
P a P -V o ato

{Fpf} = {F,} f(0)

(3.140)

-_ D 1 f -o- D_ _ (2 }f(
{ f_ ap }VT aa

0-o D 19 P T2 D~

* { F Fdo =-{j F} f(0)

and we can rewrite

S(O) (f) = -D(O) -VPo f(0) + FO)f (0) (3.141)
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where the bounce averaged flux is decomposed into

S,3(f) = ( (f(O))

(f(0))

with

S "Y) (f(0)) = -D,, O

S(0) (f(0)) = -D Of()

by defining the diffusion components

+ 1 P' -- Do)O -
P

= {DT2

and the convection components

where the gradient vector in the reduced (p, o) momentum space is

a

P0

P 1- o

124

) (3.142)

+ F(0)f(0)

+ F "If(")

(3.143)

Dp~p ={IDp }

D(0 = orU D

D)- { 2 DD D0

(3.144)

F (O = a NjF
(3.145)

I (3.146)



Distribution function f

The distribution function f (3.116)

I(0) vii fo
e =90 (3.147)

depends explicitly upon the parallel velocity and the magnetic field, and therefore

upon the poloidal angle 0. It can be rewritten as

f = -f() (3.148)
XF

where

f() e(0) 0
eBo (0) ao

(3.149)

is independent of 0 and is antisymmetric in the trapped region, since feo) is symmetric

and o is antisymmetric. As a result, only a-f(O) can be taken out of the bounce
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averaging operator. Taking the bounce-average of each term in (3.139), we find

S -D = - D- o D

S D~g V 2g

P 0
1-_ T

IF3/2 2 2D }af(0) -1 D1
U ,3/23 P f(o)

}r")
(3.150)

Dp =o -
500 J - {T3/22 jp O

I'o 1-g2OI

{ 03D }

or 4 {=o FJ 4

where the following relation was used

a

We can therefore rewrite

s 0) (W

ako

= U

- ~() V, 0j~o) + o)(O)ZO

126

* f} {

* -

- - [co- (0)

(3.151)

xpno

+ qID C

f(O)



where the bounce averaged flux is decomposed into

s ()
§(O) ((0))

§(0) ())

+ 1 - ~oO + PpO)rfo)
P

(3.153)
1j-- F)0 ____)

+ p~ + P(O)f(O)

by defining the diffusion components

bp(P or Dp

- 13/2 2D
,5(0) 2 D0

D/2D

ban ot D

and the convection components

1-
+g0P(O) . o F

(O) = F

(X1'- 1){T~3/2
(3.155)

+ o 'D
g0 c O'J

where we use the fact that U-3 may be taken out of the bounce averaged operator,

since 0 is an odd function of o.
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() (f(o))

() ( (o))
(O) 0

P p

(3.154)
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3.4 Linearized Fokker-Planck Collisions Operator

3.4.1 Linearized collision operator

The collision operator results from interactions between electrons with themselves

and with all ion species s

C (f) = C (f, f) + EC (f, fis) (3.156)
3

where fm, is the distribution function for ions of species s and is assumed to be a

Maxwellian with Temperature T, and density n,. The term C (f, f) is bilinear, but

can be linearized under the assumption that collisions dominate the bulk electrons,

such that the distribution function f may be expanded as

f ~ fMe + 6f (3.157)

where fMe is the Maxwellian electron distribution function, and 6f is the perturbation

due to RF-electron interaction, which is assumed to be globally small compared to

fMe. The non-linear term C (6f, Sf) is neglected, and C (fme, fm,) = 0 since the

Maxwellian is the equilibrium distribution in the absence of perturbations. Therefore,

we approximate

C (f, f) ~ C (f, fMe) + C (fMe, f) (3-158)

The operator C (f, fMe) and the electron-ion collision operators C (f, fm,) are differ-

ential operators which can be put in the conservative form

C (f, fM) = -Vp Sp (f) (3.159)

where the flux vector Sc is decomposed into a diffusive part and a convective part as

SC (f) = --DC -Vpf + Fcf (3.160)

128



Because of the symmetry of the collisional process, the collisional diffusion tensor

components

D1,= A(4',p)

Dc = 0
.P 0(3 .1 6 1 )

14 = 0

Dyg = Bt (0, p)

and the collisional convection vector components

F~C = -F (0, p)- ((3.162)

F5c=0

are only function of the magnitude p of the electron momentum. The coefficient

A (0, p) corresponds to the momentum diffusion while Bt (4, p) describes pitch-angle

scattering. The convection factor F (4,p) describes the collisional drag. The colli-

sion coefficients are independent of and the (numerically challenging) cross terms

D and DC are identically zero, which makes the spherical coordinate system (p, ()

the natural system to describe collisions, and the system chosen for the numerical

resolution of the kinetic equation.

The term C (fm, f) in an integral term which describe the effect on the bulk due

to collisions with the perturbed distribution function. While taking into account the

exact form of this correction term C (fm, f) is not necessary, it is important to use an

approximate form that conserves momentum, in order to obtain a correct calculation

of the current. This can be done by expanding the gyro-averaged distribution f as a

sum of Legendre harmonics according to the relation

00

f (t, r, p, ) = E (m + 1/2) fm (t, r,p) Pm ( ) (3.163)
m=O

where Pm ( ) are the Legendre polynomials and the Legendre coefficients are

f. (t, r, p) = j- f (t, r,p, ) Pm ( ) d (3.164)
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The linear operator C (fM, f) becomes

00

C (fM, f) = S (m + 1/2) C (fM, fm (t, r, p) Pm (i)) (3.165)
m=O

The zero-order term is a isotropic distribution o (t, r, p) ~ fM, which does not ex-

change parallel momentum with the Maxwellian; therefore, its effect of the Maxwellian

is neglected. Since P ( ) = 1,

C (fM, fm (t, X, PO ()) ~ C (fM, fM) = 0,

The operator C (fM, f) is then approximated to

C(fMf) ~ C fMu f (t, r, p) (3.166)

since P1 (,) = (, where terms m > 2 are neglected. We use the notations in Ref. [54]

C (fM, f) - - _TI[fm, fi (t, r, p)] (3.167)

where I is an integral operator over p. Because C (fm, f) is a corrective term, it can

be treated explicitly in the numerical resolution of the kinetic equation. The total

collision operator (3.156) can be rewritten as

C (f) = E C (f, fMs) - -3a [fM, f (t, r, p) (3.168)
s=e,i2

By construction, the linearized electron-electron collision operator conserves mo-

mentum, but not energy, so there is no need to introduce an energy loss term in

the kinetic equation (to compensate for the RF power deposition) in order to con-

verge to a steady-state. The coefficients A (0, p), Bt (0, p), F (4, p) and the operator

I [fm, fi (t, r, p)] have been explicitly evaluated in Ref. [54], following the work done

in Ref. [37]. We refer to these papers for detailed expressions.
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3.4.2 Bounce-averaged differential collisional operator

According to the results of Section 3.3.8, the bounce averaging of an operator of the

form (3.159) requires to evaluate the bounce-averaged diffusion tensor D() and con-

vection vector F()defined by (3.144), (3.145) for the contributions of the 9-independent

functions fo and g, as well as the diffusion tensor 5() and convection vector F) de-

fined by (3.154) and (3.155) for the 9-dependent functions f.

Flux coefficients for the distribution functions fo and g

Applying (3.144) and (3.145) to (3.161) and (3.162), and using (3.132), we find

D p.PO) = A (0, p)

D (O) = 0
X c.-

DC(O) = 0CP

DC(O) B,1,B (, p)C At(~P

and

where we used

according to the definition (3.87).

(3. 19)

(3.170)FC(0) = p)
FC(O) =0

{ ,2 } (3.171)
A

Flux coefficients for the distribution function I
Applying (3.154) and (3.155) to (3.161) and (3.162), and using (3.132), we find

-c(O) - 0

0
bc(O) = 0P

bc(O) /\3,-2,0Bt(,p

(3.172)
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and the convection components

?C(O) - ' '_ F(, p)

) _l, / B
?c(O) - )1 - )L0- 2,0) 1 O (0F - A XB Vp

(3.173)

where the following bounce-average coefficients were determined in accordance with

the definition (3.88)

I _ __ 1,-1,o
{ 3 3,-2,0

{0- (T - ) 1,_1,0

OXP2A A

3.4.3 Bounce-averaged integral collisional operator

The integral term (3.167) must also be bounce-averaged. Applying the bounce oper-

ation (3.86) gives

(3.174)

{C (fMn f)} = -G {a- fM fi} (3.175)

Flux coefficients for the distribution functions fo and g

For the 0-independent functions fo and g, whichsatisfy f (p, () = f(0) (p, o), the

integral (3.164) for m = 1 can be transformed according to (3.132) d = IJOdg0 and

the condition (3.48) such that an electron o reaches the poloidal location 0 if

6 1 ;> 1 - ( , - )

fi (, ) = j do of H (o - 1 - (1

(3.176)

(3.177)

132

We get

= 0 )



being a 0-independent function

f do of (0f H |(o - 1 - (k, 9)

= jdo of(0) (3.178)

where the symmetry of f() in the trapped region cancels the trapped particle contri-

bution. With the definition (3.88)

o A (3.179)

the integral collisional term (3.175) becomes, using (3.177)

{C(fM,f) ,= - - ,o3 M,
A 2 Lf

(3.180)

Flux coefficients for the distribution function f

The distribution function f (3.116) can be rewritten as (3.148)

= f(0)xpo
(3.181)

where f(0 )is independent of 9 and is antisymmetric in the trapped region. With the

integral (3.164) for m = 1, the integral collisional term (3.175) transforms according

to (3.132) d = ! 0d~0 and the condition (3.176) as

{C (fM )} ~~ IfM, T^o)]

with the definition

r0f {aj-1 dko~f("0 H 1(o - 1 - 1
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} (3.183)
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since I is a linear integral operator over p and therefore permutes with the bounce-

averaging operation. We can permute the integrals over 0 and 0, using the equivalence

(3.46)-(3.48) and (3.86), and obtain

1 1+1
1) - - do of0) X2,o,o (3.184)

where we used the definition (3.88)

,ac {0} = \ 2 ,0,0  (3.185)

3.5 RF Quasilinear Diffusion

3.5.1 Quasilinear operator in a uniform plasma

Quasilinear operator in conservative form

The quasilinear operator describing the slow evolution of the macroscopic distribution

function f under the effect of the fields has been derived by Kennel & Engelmann

[41] and extended by Lerche [42] to relativistic plasmas. The conservative form of

this quasilinear operator was derived in Appendix B.2 for an electric field of the form

(B.26)

E (r, t) = Re [Eb (r) e-bt] (3.186)
b

and gives an expression as the divergence of a flux (B.11-A.124)

(psF 1 VjQ (f) = -Vp-SRF _ 2gR / _ 2RF~
ap 1- RF (3.187)

where the flux is the sum over contributions from all RF frequencies present in the

plasma, which are assumed to constitute a discrete set of monochromatic waves (B.21)

SRF F (Wb, Eb) (3.188)
b
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The momentum-space flux associated with a wave (Wb, Eb) is purely diffusive

SF (Wb Eb) = - F (Wb, Eb) - V~f (3.189)

The RF diffusion tensor elements, given in (p, ) coordinates by (B.44), contain the

contribution of all harmonics. Because electrons have a negative charge qe = -e, it is

convenient to transform n - -n in order to work with positive harmonic numbers.

In that case, the diffusion tensor elements become

+00

D (1
n=-00

+00

D S
Dl-

+00 1:
+=oo

D =

+l00

- 62) DF (P, wb, Eb)

V 2 -62 -

Vj 2 _ 62 _ 7

c DRF (P, Wb, Eb)

Wce DRF (P, Wb, Eb)

2

1 - (2 _ nwce D RF P7 Wb, Eb)

where we used
eB

=ce - -7 2 (3.191)
me

and where DRF (P, Wb, Eb) is the diffusion coefficient associated with the wave (Wb, Eb)

at the n's harmonic cyclotron resonance (B.41). It is given here in (p, ) coordinates

and after the n -+ -n transformation

D'F (P, Wb, Eb)
7re 2 d ~kb12 E(n) (7k b126 p nWe

V-oo 2VII
(3.192)

where Ek,b are the Fourier components of Eb (B.3)

Ek,b (k) = J dar Eb (r) eikr
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and ek,b = IEk,bI / IIEk,bJt is the corresponding polarization vector. E (')is the polar-

ization term (B.25) and is given here after the n -- -n transformation

1)n 1 ~a z P"eb,11 J Z

-=ek,b,+e -fn+l (z) +-ek, eiJ._ (z) -+ ekbIIJ (z) (3.194)
v'2- Pi-

where we used J_ (z) = (-1)n J, (z) and J (-z) = (-)n Jn (z), and with the

definition

Z =k 1 - (3.195)
Wce me

Diffusion coefficient for a Gaussian beam

The diffusion coefficient (3.192) was evaluated in Appendix B.3 for the case of a lo-

calized wave with Gaussian transverse amplitude profile in a uniform plasma. The

Gaussian beam is initially characterized by the frequency Wb, the central parallel

wave vector kbJI, the beam size db, and the total power P in the beam. The cen-

tral perpendicular wave number is then determined from the dispersion relation

D (Wb, kbI1, kbw) = 0 (2.16). The energy is propagating in the direction of the group

velocity vg,b = OWb/Okb (2.17). The polarization eb is defined by eb = JEb / lEbJJ

where Eb is determined from (2.14) for the mode (kb, Wb), and the normalized power

flow <Jb is obtained from (2.39). The beam size db is defined such that the beam

intensity is down by a factor e from the maximum intensity at a distance db from the

beam central line of propagation. It is assumed that the beam size is much larger than

the wavelength db > Ab = 27r/kb, such that diffraction can be neglected. A corollary

to this condition is that the spectral width (B.59) of the beam Akb = 11db, is much

smaller than the wave vector kb, which justifies to solve the dispersion relation only

for the central kb. Then, the diffusion coefficient (3.192) becomes (B.93)

F (P) = lim PbLb e 2ir ym , 1 exp (kires- kbJJ12-
D EOC expbJ ( kbII)2  (3.196)SV-00 V &0c |bI| p b JF/.skII [ zk21
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where Lb is the beam path length in the plasma volume V, and where we defined

E)(n =E)( (p, kb, eb),

kjjres = M (7W -- nwce) (3.197)

and

Akbjj = I- I Akb (3.198)

where <Dbi is the component of Jb perpendicular to the magnetic field.

3.5.2 Application to toroidal plasmas

Approximations and validity of the operator (3.187) in toroidal plasmas

In a torus, the plasma is bounded and non-uniform. In order for the operator (3.187)

to apply to a toroidal plasma, several approximations must be made and justified.

" First, in a bounded plasma, the Fourier space is discrete rather than continuous

as in (3.192). The continuous description is a good approximation if A < L,

where A = 21r/k is the wavelength and L is the size of the plasma. This condition

is well satisfied for EBWs in typical tokamaks and STs; for example, in NSTX

with L ~ 1 m, w/27r ~ 14 GHz, and N > 4, we have A/L ; 0.005.

" The motion of electrons is in first approximation confined to a flux-surface, and

equilibrium properties such as the density and the temperature are uniform

within this flux-surface. Because the equilibrium non-uniformity across flux-

surfaces occurs on a scale L much larger than the typical lengths involved in

wave propagation and wave-particle interaction (A, PTe), the wave properties kb,

Pb, eb and 4 b can be considered to be slowly varying functions of space, and

the derivations of Appendix B are a good approximation, such that we can use

the operator (3.192) for wave-particle interaction, with the volume V being the

incremental volume of the flux-surface under consideration.

" However, the magnetic field amplitude B - and therefore the gyrofrequency Q -

are not uniform within a flux-surface. In addition, this non-uniformity leads to
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changes in the parallel and perpendicular velocities of electrons. The changes in

Q and v11 along the propagation within the wavepacket may lead to dephasing

in the wave-particle interaction. Indeed, resonant interaction between electrons

and the wave occurs when the phase v = (Wb - k11v11 - nQ) t is constant across

the wavepacket [44]. The time for an electron to cross the wavepacket is dbii / IVi1 I,

where dbii is the projection of the wavepacket on the field line within the flux-

surface. Assuming that the condition wb - k11v11 - nQ = 0 is satified in the

center of the wavepacket, the dephasing 6v accumulated during the electron

transit across the wavepacket is bounded by

Ju = (5k11 lv11 + |kbi 6vIl + n6Q) dbi (3.199)

In order for the wave-particle resonance to be maintained across the wavepacket,

it is required that 6v < 2-r. We assume that the wavepacket crosses the flux-

surface under consideration around the poloidal location 6b.

- The changes in the ki spectrum are essentially 6 kbii = Akbil, where Akb1i is

the width in k spectrum and Akbii = 1/dii. Therefore, the dephasing due

to 6k 11 is typically of order Akldi = 1 and is independent of the beam size.

It simply derives from the spectral properties of wavepackets and reflects

the uncertainty principle.

- The changes in the cyclotron frequency are typically of order

dR dbli. By6 Q - ~ d- sin 6 b (3.200)
R R B

since R is the scalelength of B-field variations and the projection dR of

the field line element dbli on the direction of inhomogeneity is of the order

of dR ~ Bp sin Ob/B. The condition 6v < 27r therefore imposes a limit on

the beam size

4wr vre R Bdi 2< 7V, (3.201)
b~l nQ sin Ob B(

where we used that vi > 2 vTe for typical electron-EBW interaction. In a
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typical ST such as NSTX, we typically have nQ/27r ce w/27r ~ 14 GHz,

Bp ~ B, R - 1 m, VTe 0.05c, which leads to dbej < 0.05/Vgsi-nb m.

This condition is well satisfied near the outboard or inboard horizontal

midplane where 9 b -+ 0, 7r, but becomes restrictive near 9 b = +900.

- The changes in the parallel velocity are related to the changes in the mag-

netic field according to the conservation of energy (3.28) and magnetic

moment (3.29), which give 6vjj/ lvi|I - 6Q/2Q so that, using (3.200)

JVjj ~ sin (3.202)2 R B

and the condition 6v < 27r imposes a second limit on the beam size

47r R Bnb < (3.203)

In a typical ST such as NSTX, this condition leads to dbjj < 0.2/ IN,, I sin 0 b

m, which is less restrictive than the condition (3.201) for relevant IN|1 .

In conclusion, applying the operator (3.187) for a spatially localized beam in a

toroidal plasma is valid as long as the condition (3.201), which is a measure of the

dephasing that results from magnetic field variations, is satisfied. Otherwise, it is

required to use different methods to calculate the diffusion coefficient, for example by

studying the motion of electrons through a wavepacket, as in Ref. [70], but in a non-

uniform magnetic field, which would likely require numerical calculations. Another

option is to develop and use an orbit code which numerically integrates the wave-

particle interaction over the particle orbit [71]. It can be expected, however, that

the non-uniformity of B and therefore vjj would lead to a reduction of the diffusion

coefficient along with a broadening of the resonance region in momentum space. The

conditions of applicability of the operator (3.187) with the diffusion coefficient (3.192)

will be assumed to be satisfied from now on. Consequently, the inhomogeneity across

the region of wave-particle interaction is neglected within a given flux-surface, such

that any 0-dependent quantity - such as the magnetic field B and the parallel velocity
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vil - is evaluated at 9 = Ob in the quasilinear operator (3.187) and diffusion coefficient

(3.192). This operation can be mathematically imposed by transforming the diffusion

coefficient (3.192) according to

DRF (p) -+ D F (p) 27r6 (0 - Gb) (3.204)

which will be integrated with the bounce-averaging operation.

Diffusion Coefficient for a Gaussian beam in toroidal plasmas

Within the approximations of Subsection 3.5.2, we derive the diffusion coefficient for

a Gaussian beam in toroidal plasma. The beam is characterized by the frequency

Wb, the central parallel wave vector kbII, the beam size db, and the total power P in

the beam. Considering a given flux surface 0 crossed by the beam at the poloidal

location 9 b, we rewrite (3.196) with the transformation (3.204) as

2 [N
DRF (P) 276 (6 ~ 9) DRF 7me 1n) 2 exp (NIIresb -NbIl) 2 (3.205)

n P)O)bP J~bj b V7-r ANbII bI I
P O ylsl ANb~

where we make use of the condition 9 = Ob to define 9" = (P, k, eb),

N 1resu -- mec nwce,b (3.206)

and

AN 11 = (3.207)
WbdbII Wbdb b

with Pb (p, b) being the momentum of a given electron (p, o) at the poloidal location

9 b where the gyrofrequency is Wce,b. The constant factor D RF in the diffusion coefficient

(3.205) is calculated for the infinitesimal volume dV (V') of the flux-surface 4'.

DRF = dLb (4, Ob) Pe 2w (3.208)
dV (4') OWLb I'<b I

where dLb (4, Ob) is the beam infinitesimal path length within the flux-surface.
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The beam trajectory rb and the evolution of wave vector kb require propagation

calculations, such as ray-tracing techniques. In this work, these calculations are not

undertaken, and therefore we do not intend to solve the full current-drive problem,

from excitation to propagation and damping of EBWs. Rather, we consider only the

vicinity of the damping region, near a cyclotron resonance, and this region is assumed

to be sufficiently narrow such that the parallel wave number NbI| is approximately con-

stant across the damping region. In this work, we assume in addition that the beam

propagates near the horizontal mid-plane (0 = 0, 7r) in a up-down symmetric plasma,

and that the beam poloidal extent be small, meaning d < 27rr. This assumptions

allow us to study EBWCD without solving the beam propagation problem, and is

motivated by the following considerations:

" Near the horizontal midplane, and for sufficiently narrow beams (d < 27rr), the

tokamak geometry is close to a slab geometry. In that case, the components of

the wave vector perpendicular to the direction of inhomogeneity are conserved.

* Consequently, and as shown in works on EBW ray-tracing [8], the evolution

of NbII is much slower near the horizontal midplane than above or below that

midplane. Therefore, our approach that Nb1j be considered constant in the

vicinity of the damping region is more valid near the mid-plane. Note that we

do not require that the beam propagates strictly on the midplane, so that NbII

may have experienced some cumulative upshift or downshift before reaching the

damping region. This gives us all latitude to consider a wide range of values for

NbII.

" In the slab geometry, the component of the wave vector that is perpendicular

to both the direction of inhomogeneity and the direction of the magnetic field

is also conserved. In the meanwhile, kb± experiences a significant upshift, from

0 at the L cut-off in the MCR, to very large values for EBW in the WKB

region. Consequently, the perpendicular wave vector is mostly in the direction

of inhomogeneity, kbL I"V. Because the power flow 4>b - which is in the direction

of the ray propagation - lies in the (k, b) plane, its perpendicular component
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must also be in the direction of inhomogeneity. Therefore, the path length in the

flux-surface is dLb (tb, Ob) = dl (0L, Ob) Ib/ Ibl I where dl (/, Ob) is the width of

the flux-surface at the poloidal location Ob. The constant factor in the diffusion

coefficient (3.208) can then be rewritten as

DRF dl (0 Ob) Pbe2lrDV4' 6 =I II(3.209)b dV (V)) EOWb I 1|

" In the quasi-slab geometry near the horizontal midplane, and for sufficiently

narrow beams, the magnetic field B is approximately uniform in magnitude

and direction within a flux-surface, and therefore the parallel velocity vj of a

given electron is approximately constant. In that case, the condition (3.201) is

well satisfied (sin 9 b -+ 0) and our quasi-linear operator is more valid.

* We can expect that trapped particle will play an important role in off-axis

EBWCD, because the trapped particle fraction is significant in small aspect

ratio STs, and because the EBW-induced diffusion is mostly perpendicular in

momentum space. As a consequence, by calculating EBWCD near horizontal

mid-plane (0 = 0, 7r), where the trapped particle fraction is respectively max-

imum (outboard side) and minimum (inboard side), we expect to encompass

most of the important physics of EBWCD.

To summarize, restricting our study to the horizontal midplane allows us to work

in a quasi-slab geometry, in which electrons see a locally quasi-uniform plasma and

our quasilinear operator (3.187) is valid. In addition, with the symmetry of the slab

geometry, it is sufficient to calculate the local dispersion relation and corresponding

wave characteristics to provide all necessary information for the RF diffusion coeffi-

cient. This is not true is general toroidal geometry, in which the direction of the power

flow, for example, in not determined with respect to the flux-surfaces by solving the

dispersion relation only.

For an infinitesimal surface, the width of the flux-surface at the poloidal location
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9 b is given by (A.93)

dl (P, Ob) _ 1 _ 1
- IIV i BpR r(3.210)

and the infinitesimal volume of the flux-surface is (A.95)

dV (P) _ '2 d' do Rr (3.211)

which can be rewritten for an axisymmetric plasma as

dV (4') _ 4) q (3.212)
d p Bo ( b)

where we defined the pseudo safety factor q as

q () B -(V) (3.213)
fo 2-r 10 lRp Bp

The diffusion factor (3.209) becomes

2

Der b (4, Ob) (3.214)
b EoWb 1)b..L I 47 2 r (b, O) Rp (1

where we introduce the factor

F~~b9) = rBo
Fg (0, 0) a(3.215)

qRBp r-

which accounts for the geometry of the flux surfaces. Note that for circular concentric

flux-surfaces, ;g (0, b) = 1.

3.5.3 Estimate of non-linear electron trapping effects

It has been shown [72] [59] that electrons resonating with finite-amplitude electrostatic

waves propagating obliquely with respect to the magnetic field - such as EBWs - have
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finite-amplitude oscillations in the wave frame, characterized by a bounce frequency

1/2
[eVbki (kbiv±)

WT = J (3.216)
MeQ

where Vb is the electrostatic potential and n is the harmonic number of the resonance,

characterized by Wb = kbjlvjl + nQ. The amplitude of the oscillation in pl1 is given by

2 mwT
AP1iT = kb1I (3.217)

The importance of these non-linear effects can be measured by the ratio of the

trapping time TT = 27r/wT to the transit time - or autocorrelation time - TRF =

dbII /vi of an electron through the RF beam, which is characterized by a width dbel

along the magnetic field. Indeed, if TT> TRF, trapping is not able to affect the

wave particle resonance during the interaction time. On the other limit, when TT <

TRF, the electron has bounced many times in the wave frame during the interaction

period, which basically cancels any energy of momentum transfer from the wave to

the particle. In other words, we can take the condition T > rRF as a limit of validity

for the quasilinear approach. In addition, note that the ratio of the trapping width

APlIT to the spectral width of the wave (in momentum space) Apl1 ~ pl1Akbll/kblI gives

approximately the ratio TRF/TT

APIT 2 mwT kbjI TRF~ ~27r (3.218)
AP I k 1 pjAkbjj TT

which means that requiring that the trapping time be longer than the interaction

time is equivalent to requiring that the trapping width be small compared to the

interaction width in momentum space.

For kb > kb11, the electrostatic potential is related to the electric field amplitude

through

Eb = IIVVbII ~ kVb (3.219)
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and the power density in the beam is related to the electric field by (B.71)

P = 7rd 2&LbE2 (3.220)b2

Approximating the power density in the beam to be uniform within an area of radius

db corresponding to the beam size, we have

Eb = (2 A(3.221)
sEC(Db 7rd 2

and the bounce frequency in the wave (3.216) becomes

-eki 21 P ) 1/2 k0 - 1/2

WT = J_2 Pb 1 ( kbIV)J (3.222)
Mekb-L 6e0cb rdi 2

so that the ratio of the transit time to the bounce time is

TRF db ek 11  2 Pb 1/2 (kbiv /2

TT 27rvj1  mekb± 'EOC4b irdb )

which gives numerically

N / d12P 1' 4  (kb-lv±
TRF = K N z G2Hz b[MWI j1/2 bv= K- NI/f HZld n[W (3.224)
TT Isin 3b (VII/VTe) #N 2I1/4 k J

where Isin, 3 bl = db/dlI = I4DbII /4b is a measure of the incidence of the power flow

with respect to the magnetic field line. The numerical coefficient is

K e 210 6 ~ 0.13 (3.225)
21/4 r3/4c7/4 1/2 1/4

Taking typical NSTX EBWCD parameters NiI ~ 1, f ~ 14 GHz, d ~ 0.1 m, P ~ 2

MW, Vil ~ 3.5vTe, Jn (kiv/7) ~ 1, /3 e ~ 0.05, |sin | ~b 0.5, we get, for typical

LBF cases (N± ~ 50, 4 ~ 0.05), and also typical HBF cases (N± ~- 5, (D - 5) that

TRF/TT ~ 0.5. This means that for EBWCD in typical STs such as NSTX, trapping

effects are expected to play a role and need to be investigated in more detail; they
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may lead to some decrease in the energy and momentum transfer between EBWs and

electrons. A systematic study of interaction between particles and a wavepacket, such

as the one done in Ref. [70], should be done for the case of a plasma in a magnetic

field in order to quantify the effect of particle trapping when TT sj TRF. This is beyond

the scope of this work, where we restrict ourselves to cases where rT > TRF-

3.5.4 Bounce-averaging of the quasilinear operator

According to the results of Section 3.3.8, the bounce averaging of an operator of

the form (3.187) requires to evaluate the bounce-averaged diffusion tensors D(O) and

convection vector F(ldefined by (3.144) and (3.145) for the contributions of the 0-

independent functions fo and g, as well as the diffusion tensors Dp) and convection

vector ZFI') defined by (3.154) and (3.155) for the 9-dependent functions f.

Flux coefficients for the distribution functions fo and g

Since RF fluxes are purely diffusive, we have FRF(O) = 0 (3.145). Applying (3.144) to

(3.190) and using (3.132) as well as wce = 'Jwc, 0 with

eBO
Wce,0 = Me (3.226)

we find

+00

n=-oo
+00

DEo) = -
+0oo

DG4) = -
+00D RF(O)- 1

D RF( fl00 0

- (. ) DfF(n ) (ADF )

1 - - ' ' D F (P ,

- fl0 c02 D wco RF(O)
1 -(3 "''b DnF0 (p, 0

2

1 0 - -nuce,O DRF(O) 9 0
7Wb )D p

where we defined

DRF(O) (P, 0) = {DfF(P,
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We note that the bounce-averaging operation (3.144) on the diffusion tensor (3.190)

gives a diffusion tensor (3.227) that is function of a bounce-averaged diffusion coeffi-

cient Dn common to all tensor elements. Applying the bounce-averaging operation

to (3.205) gives

D RF(O) (P, H) =JH - 1 -

x DRF(O) 'me 0(n) 2 1 eXp - (Niiresb - NbII)2 (3.229)b #b ANbII AN 2 (
bl

where we defined

2

DF e2 I Pb (0, Ob) (4, (Ob) (3230)
b O00b b.L 4w2r (9b) Rp A b

and introduced the factor

rB
Fg (0, 0) = - (3.231)

qRBy P - r

Note that for circular concentric flux-surfaces, Fg (4, 0) = 1. The equivalence (3.46-

3.48) gives the Heaviside function in (3.229), which ensures that only trapped elec-

trons that reach the poloidal location Ob do interact with the wave.
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Flux coefficients for the distribution function f

Applying (3.154) and (3.155) to (3.190) and using (3.132) as well as We = IWce,O with

(3.226), we find

+00

flF() = -(

fl- 0

n=-oo

+00

bRF(O)

+00
b RF(O)- 1

b RF( fl00 0

- 2) bRF())D bFOD(,)

V'_ 12 - 0 - nwce,O RF(O)D , 0
S6 7W n P

02_n ce,O RF(O)D (p, 0
0 'TWb

2
l2 Wce,O RF(o)D p, 60)
(1b b(b )

P~RF(O) -2 1 _____ __

pRF ( ) _ - 00 2 1 - n W ce,0 b R F (O )F (P 7 0 )

2 +- 20
-RF(O) _0 1 1 ( _ 62 _nwce,O bRF (0)F F (60)

9 n__o 0 (~

(3.233)

where

n (p RF()D )=-oDRF(p,

bRF(0)F(p,)=- a (I - 1) D RF

Again, the bounce-averaging operations (3.154) and (3.155) on the diffusion tensor

(3.190) give a diffusion tensor (3.232) and a convection vector (3.233) which elements

are function of common bounce-averaged diffusion coefficients, respectively bnF(o)D

and DnF(o)F. We also note that the bounce-averaging of the RF quasilinear operator

for the drift distribution function f also generates a convective term. Applying the
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bounce-averaging operations to (3.205) gives

nF(p)D ) = o [ l H [I0I - 1 1

yRF()D 7me n)2 1 (NIIresb - NbI) 2

b P 1 bI b /-rANblI L AN21 1
-RF(O)F or -1 1 (3.234)

DnF P, 6) = E+- J oH [I0 - 1 'I(P,&b)
2aT I I V b

mRF()F Wne E 2 1 exp [ (NIIresb - Nb) 2 1
b P|bI FANbi [ ANPbAl

where we defined

DbRF(O)D , e 2br Ag(4, 9b)
b6OWb k(bL 4r 2r (i$, 9 b) R p ('' -0 Ob (3.235)A27r6 b.L227 g) (3.235)

~)RF(O)F _ e2 2b -'-1

Db = 14 4 F- ($, b) g ,Ob)6b b 47 2  Ob) A 2

and used the equivalence (3.46-3.48).

3.6 Moments of the Distribution Function

Once the steady-state distribution function is calculated from solving the drift-kinetic

equation, it is possible to take moments of the distribution function. Because of the

fast parallel motion of particles, only the moments that are averaged over a flux

surface are of physical relevance. These moments can be expressed as a function

of the 9-independent distribution functions f0o), (o) and g(O). In this section, we

introduce the flux-surface averaging of both flux and volumic quantities, and apply

this operation to the density, the toroidal current density, and the power density

associated with a given momentum-space flux, such as quasilinear RF-induced fluxes

or collisional fluxes.
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3.6.1 Flux-surface averaging

Toroidal flux quantities

We consider the flux-surface averaging of a flux quantity through a poloidal surface,

generally noted F (4', 0). An example of such flow is the toroidal plasma current. We

calculate the averaged flux of r through the infinitesimal poloidal surface dSp (4')

fds,(V) dS4 . F (', 6)

( s (4') = dS
(3.236)

In the (4', 0, q$) system, the differential poloidal surface element is given by (A.94)

dSO = r dV'dOq (3.237)

so that the infinitesimal poloidal surface element dSp (4') of radial extent d4 is

LSP(O) dSci==d' j
dO r 2 7rq(,0)dO

||VV)1 0.r - Bo ( b)

where we used (3.10) and defined the pseudo safety factor - as

f2-7 d 1 r Bo ()

( )7 I '̂ . r R Bp

The flux-surface averaged flux in the toroidal direction becomes

(F) (0) =
dSp

'dO'
dO r Ir YF(4, I)

which gives, using (3.238)

(P)~(4') = 1
~(4') o 27r

d9 1 r Bo ()
2-r . I R Bp
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Volumic quantities

We consider the flux-surface averaging of a volumic quantity, such as the density or a

dissipated power density, generally noted 4 (4, 9). It is defined as the average value

of 4 within the infinitesimal volume dV (V)

(3.242)ffdV(V)) 4PJ (0', 9) dV
ffdv( ,)dV

In the (4', 9, #) system, the differential volume elements is given by (A.95)

dV = Rr dV'd~d
||VO1||1 -rl

(3.243)

and the infinitesimal volume element dV (4) of a flux-surface was previously calcu-

lated (3.212)

dV = 472R,(#) d4'
Bo (0)

(3.244)

so that the flux-surface averaged quantity in the toroidal direction becomes

1 2
7r d9 1 r Bo (V)(V)

jo 27r . R, Bp

3.6.2 Plasma density

Definition

The electron density ne (4, 0) is given by the relation

ne (', 9) = 27r d j p2 dp f (p, 6, 4, 9)

(3.245)

(3.246)
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Flux-surface averaging

Using the general expression (3.245) of the flux-surface averaging of a volumic quan-

tity, we transform

1 f 2

(ne) (W) = j
q 0

27

dO 1 r BO
2,r . I.Rp Bp

p2dp 2d 1 rBO

0 JO 27r . I Rp Bp _

P2dPj d 1 r BO [1 ]

JO 2 7r .p RBp _-1 2

(3.247)

where the sum over - for trapped electrons can be introduced because of the integral

over . Using (3.132) d = To0d<0 with the condition (3.48) such that an electron

'o reaches the poloidal location 0

o > 1TJI(?p7 ))

T T

((o.- 19

(3.249)

where H is the usual Heaviside function which is defined as H (x) = 1 for x > 0 and

H (x) = 0 otherwise.

Note that the condition (3.248) is equivalent to (3.46)

min (0,G) < 0 < 0max (0, O) (3.250)
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27r 0

q f
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so that, after permuting the integrals over 0 and o, we get

(re)v (4') = 0P2dP d< x

"d 1 r B
-0 f (V@, 0, P, 0)

2 T,, 27r . Rp BP
(3.251)

where the bounce-averaging of the distribution (3.86) appears naturally. Therefore,

the expression (3.251) can be rewritten in the simple form

~ 274jP2dPjf +1
(ne)V (0) =2r dp do A{f (0,,p, o)}

where f = fo+f+g.

Distribution functions fo and g

The distribution functions fo and g are constant along a field line, and for such 9-

independent distribution function f, we have f (V), 9, p, ) - f(0) (4, p, 0) such that

we obtain

(ne)v (4', f(0)) =
SfP2dPj +1

27r pdp

Distribution function f

The distribution function f (3.116) depends explicitly upon the poloidal angle 9, but

can be rewritten as (3.148) f = / (xGo) f(0) where P(o) is independent of 9 but is

antisymmetric in the trapped region.

Therefore, the flux-surface averaged density contribution of f becomes

2 2w !f P2dPjd 0 1, 0r= 7rl p7 d d<o _1,_1,of(o)
q -

(3.254)

where

(3.255)
%Ii( 1 )(o A

is defined according to (3.88).
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do A f(0) (3.253)

(ne)v (0, f(O)

A1,-1,o=



Total distribution function

The total flux-surface averaged density for the total distribution function f = fo+f+g

becomes

(ne)v (4) = (ne)V (0, f(O)) + (ne)y ( g(0)) + (H

3.6.3 Current Density

Definition

The density of current carried by electrons is given by

J (r) = qe d3p vf (r, p)

so that the parallel current density is

Jl (r) = ge

e)v (0) ,o)) (3.256)

(3.257)

I d3p vl f (r, p)
(3.258)

which becomes in (4, 0, p, ) phase space

Jil (4', 0) = 27rqe
00

P2dPj (3.259)<d X f (0ym, )
'7Ee

Flux-Surface Averaged toroidal current

The flux-surface averaged current density in the toroidal direction is given by (3.241)

q 0

dO 1 r BO
2g . R Bp

1f2r dO 1 r BT J (, )

q0 27r . R BP qf (0)
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where we used (3.39). Using (3.132) and (3.48), and inserting (3.259), we find

qe 1Me q f 0P3dp 11 d . o-fo A
oo _

(3.261)

Distribution functions fo and g

The distribution functions fo and g are constant along a field line and symmetric

in the trapped region, and for such 9-independent distribution function f, we have

f (0, 1, p, ) = f(0) (V), p, 'o) such that we can define

= 2drq f d d Hq(fo -00op)3of 0

Me qJ 0 7yi
(3.262)

since [ zO+ 1 o- = 0 for trapped electrons and, according to (3.19)

qA { r
j 27 d9 1 r BTq()

0 27r . R Bp

Distribution function f

The distribution function f (3.116) depends explicitly upon the poloidal angle 0, but

can be rewritten as (3.148) f = / (T'o) f(O) where PO) is independent of 0 but is

antisymmetric in the trapped region, such that only c-f(O) can be taken out from the

bounce averaging.

Therefore, the flux-surface averaged toroidal current density contribution of f

becomes

2rqe qBTo Ro
Me 4Bo Ro o 00

3 dp

ABTo Rp {2 1 RO BT
Bo Ro 0 2 X~2R BToI

do A2,- 2,20(0)f

BTo Rp -2,2
Bo Ro ' '
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since

A 2 RB }
'F0 R B )

(3.264)

(3.265)

R BT a-f (0, 0, P, )
o R B

(J1)0 (P, f 10))



where we used RBT = I (0) = RoBTo and where

I =2,-2,2 { 2 pf 2 (,)2} (3.266)

is defined according to (3.87).

Total distribution function

The total flux-surface averaged toroidal current density for the total distribution

function f = fo + I+ g becomes

(Jii)O (4) = (JII)k (, fo")) + (JII) (4, g(O)) + K '1 (o , (o))

3.6.4 Power Density Associated with a Flux

Definition

The kinetic energy associated with a relativistic electron of momentum p is

E, = mec 2 (_y - 1)

Then, the local energy density of electrons is

e (r) = J d3p mec2 (y - 1)f(r, p)

The density of power absorbed through the process 0, P,, is

Pf, (r) = = Jd3P mec2 (_ _
Of (r, p)
1)tat

When the operator is described in conservative form, as the divergence of a flux

af
at 0

_1 a
P P 2 p

then the power density becomes
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(3.268)

(3.269)

(3.270)

/1-.V S O) (3.271)(P2P +1 a
2 P) +



Pfs = -27rmec 2 P2dP (7- 1_2S' )]

(3.272)

The integration of the Sf term gives no contribution, since the particle energy is

function of p only

I+ 1

and the equation (3.272) reduces to

(3.273)

/ + 1 j
Pafbs = -21rmec 2 d(

Integrating by parts, we get

Pabs = -27rmec 2 d ( [(G- 1) p2S] 0
o 00d7%2Sd)

dP

Assuming that limp,,.o p 2 SP' = 0, and using

d-y _p

dp 'ym2c2

the equation (3.275) reduces to

Pas (P,0 ) = 27r / +1 1< . 00 dp 3 OJ> dp7

Flux-Surface Averaging

Starting from the general expression of the flux-surface averaging of a volume quantity

(3.245), the flux-surface averaged power density (P,), (0) is

(Ps)() -O SPbs (0,) )q 0 27r rIRp Bp
(3.278)
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(3.276)

(3.277)

_ a

d< so-2
V__ 2SCO1- = 0

( a-1 (p2SO) dP
OP

1)1 a (P2 SO)



which becomes

(P,9,)V (0) = 27r o 00
dp p

7me q

27r di 1 r BO 1  [
0 27rj . jRBp 1 2

SO (3.279)

where the sum over -for trapped electrons can be added in the integral over 6. Using

6d6 = I'6Od60 with the condition (3.48) on 6o we permute the integrals over 9 and 6o

and find
J j0

(Pfb,)y v 2-7, dp
q 0

(3.280)d 0oA {S }7Yme f_1

Using the definition (3.135), we observe that the flux-surface averaged power den-

sity is calculated using the momentum flux component of the bounce-averaged kinetic

equation:

(Ps), (4) = 27r7
q 0

where 4

dp " d~oAS,)0
7Yme f_1

was evaluated for each operator in the kinetic equation.

3.6.5 Stream Function for Momentum Space fluxes

When the integral term in the collision operator is neglected, the Fokker-Planck

equation (3.125) reduces to

VP -SP (fo) = 0 (3.282)

where fo = fo (p, (, 4). Because S, is a divergence-free field vector, it can be expressed

as the curl of a stream function

SP = V x Tp (3.283)
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The expression of a curl in momentum space (p, , p) is given by relation (A.125) in

Appendix A

18 9
S, =

P 09P
(pT,) - 1 OT

p(PT-
(3.284)

1 9 V1 -1 aT
SB = (PT ) -

P ap P 09

Because S. = 0, we can choose T = T = 0, which leads to

10a
SP = - - (V/1 - 2TW)

/ 0(3.285)
1 0

and we can rewrite

SP = V x TW9 (3.286)

In order to give a physical meaning to T (p, (, 0), we define formally

T 1 (0, p, ) = K (4, p, ) A (V', p, ) (3.287)

where the function A (p, ) is such that the flux of electrons between two contours A1

and A2 is equal to ne (4) (A2 - A1 ). Lets consider a path 712 between the contours

A 1 and A2. The total flux of electrons through this path, which is in fact a surface,

given the rotational symmetry in p, is given by

I'12 = dS Sp -n

= T dl -
JC12(t

(3.288)
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By rotational symmetry in <p, and using (A. 120), we get

F 12 = 27rp 2 1 - Q2W2 - 2 rpi 1 -T1

If we define

we obtain

K (V), p, ') = 0)

2F1p ( -A,2

12= 1ne (4') (A2 - A1)

and therefore the total flux between the contours A1 and A 2 is equal to ne (4)

(A2 - A1 ). We call A (0,p, ) the stream function, and we get finally

ne (0) aA
S2wrp 2 

ak

ne (7P) DA
27rp1 -V (2OP

(3.292)

(3.293)

Since there are no fluxes across the internal boundaries in the momentum space,

this boundary coincide with a contour A, and therefore we can arbitrarily set this

value to 0:

A(0, ) = A(p,±1) = 0 (3.294)

Then A can be calculated by any of the integrals

A (, p, ) = 2ir p2 f- d Sp = 2w p2

le (')
f dS' (3.295)

(3.296)A 27r V1 -_V
A (4, p,() = ()

ne (4')

However, A (4, p, ) remains a function of , which depends upon 0. Starting from

the bounce-averaged fluxes, it is interesting to compute a function A 0) (', p, (o), such
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(3.289)

(3.290)

(3.291)

or
p
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that

A(O) (0, o) =1 (p, t1) = 0

S ) ( /}) 2A( 0  (3.297)
p 2i7rp 2  a~

S -0)= ne (0P) aA(0)

2Wrp r d-sts t t s P

We first need to demonstrate the existence of such a function. Starting from SPO

A(O) (01 ,p, o) =

< 
1

[2= 2rp j) orj10-a- dO 1 r S
T 27mR B

[2 o1 T'J
1 2r 1 r B

(Io - -

Ol

0*

21

[2

z]
f27r j9 1 r BO

T0 27 VrRp Bp

q (o[r]TAv,

where we used

min 0 < max < B < Bb 4= F-1 -:5 161l

161

-H(Bb - B)
27

/0 1

0l

d HJ 0~

1 r B60a

I- - p6 6

(3.298)

(3.299)

27rp2 IS
ne (0) _}



Now, starting from S(0), we have

AM ) (0, p, o) =
ne ()

p'dp' r_ ~

2w 1- 0 Jpdpl
ne(?) 0

= dp' U
0 A 1 [

1

T- q

T j 
X

2 T oi8

1
2 J o max

dG 1 r B u
2r ^p Bp y@S4

dO 1 r B o- 1- 02A
2-x R. Bpy4I V 1 20p'

1 IJOaxdg 1 r B 0- p d A
T 2r ^ I Rp Bp To OP

[1T
J o- x0

mina

dO 1 r BO
27r ^. r Rp Bp

2(o-A)y
1 ' T

(3.300)

and we find the same function A('). The existence of a function A(0 ) verifying (3.297)

is therefore demonstrated. We need now to demonstrate that A 0 ) verifying (3.297)

leads to the bounce-averaged Fokker-Planck equation (3.134):

{VP -Sp} = -1 1(p 2 S( 0))po2(p P

10( 2

P2 ap (
1 02

A\p 2 ap'~o

10a

( 1-720ASO)O)

10 ane (7p) 9A(O)
21rp 2  

a 0 o )
Ane (V)) A(0)]

2r

(
1 02

Ap2 OoOp

ne (4) A( 0 )
1 A 2 ,wp 1 -602 OP

Ane (7p) A(0)~

2-r I

= 0

In conclusion, a stream function verifying

A(0) (0, ) =~A (p, 1) = 0 (3.302)

has been found which leads to the bounce-averaged Fokker-Planck equation and which
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can be calculated from the bounce-averaged fluxes by either

A101 (ib p, o) = (4)) jd2 SO)
n e ( 0) _1

S27rp2 'O d% S ()
ne (0) 1

= 20r (f jp'dp' s 0(
ne ( 0

relations.
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(3.304)A(0) (0, p, o)
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Chapter 4

Numerical Solver for the Drift

Kinetic Equation

In the presence of RF fields, the bounce-averaged drift kinetic equation cannot be

solved analytically. Therefore, in collaboration with Yves Peysson from CEA-Cadarache,

France, I have developped a numerical code that solves the steady-state DKE and cal-

culates moments of the resulting distribution function such as the current density and

the density of power absorbed. It should be pointed out that the code DKE presented

in this section includes a novel, fast and consistent treatment of conservative radial

dynamics, which is important for integrated current drive calculations because of the

role of anomalous radial transport on current deposition and current drive efficiency,

and also for studying any consistent coupling between radial and momentum-space

dynamics, for example wave-induced transport or collisional transport. Such inves-

tigations are outside the scope of the present study, and therefore radial dynamics

is ignored in the present work, meaning that any consistent, classical or neoclassical

coupling between radial transport and momentum space dynamics, is neglected. For

more details on the DKE code, including a description of the conservative formalism

for 3D dynamics (radial and momentum-space), the reader is referred to Ref. [731.
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4.1 Conservative Formalism in Momentum Space

4.1.1 Bounce-averaged kinetic equation

The appropriate kinetic equation for RFCD calculations was derived in Section 3.3.7.

The small drift and low collisionality approximations led to a set of two 2-D bounce-

averaged kinetic equations (3.125) for the distribution functions fo) (p, o) and g(O) (p

Since these equations are bounce-averaged, they are solved as a function of (p, (o),

where the pitch-angle coordinate o represents the value of as the electron passes

through the point of minimum B-field on a given flux-surface. For the sake of

readability, we will omit the superscripts (0) and subscripts o refering to

bounce-averaged quantities in the entire chapter, keeping in mind that

all operators are assumed to apply to the (p, o) space and all fields are

bounce-averaged. More explicitly, one can refer to the following equivalence in the

notations

f9() f

f(o) +-+ g
fO) f(4.1)

S+-+ sp

B(O) +- S#
(O) -*ID~p p

The equations (3.125) are thus rewritten as

VP Sp (fo, IDp, Fp) = I(fo) (a)

(4.2)

VP Sp (g, lDp, Fp) + Vp -Sp (f, ip, Fp) =T (g) + Y (b)

and the total distribution function is

ftot = fo + f + g (4.3)
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with (3.149)
~I($b)ptOfo

I =X Of) (4.4)eB (0) ft

In addition, we must ensure that fo is symmetric in the trapped region and g is

identically zero in the trapped region. The bounce-averaged integral terms IT and

Z describe the effect of collisions on the bulk of electrons due to collisions with the

perturbed distribution. They are given by (3.180) and (3.182) respectively. The

divergence operator acting on the fluxes (3.134) is expressed as

V, -Sp (P2S,) (VI _ V2AS (4.5)P p P2 Op pa

and the momentum-space fluxes (3.143) and (3.153) decompose as

af - 1 -- V a2f
Sp ( f,Dp, F) = -Dp-+ 1 Dp- + Fpf

(4.6)

SC (fD, Fp) = -Dp-f+ 1 DC--+ F f
ap P o

The momentum-space diffusion tensors D,, ID and convection vectors Fp, Fp describe

the effect of collisions and RF quasilinear diffusion. We have thus

D, = DC + DF

ID = FC + DRF
= + PF (4.7)

F, = FC + FRF

F = PC + RF

where the respective coefficients are given by (3.169-3.170) and (3.172-3.173) for col-

lisions, and (3.227) and (3.232-3.233) for RF quasilinear diffusion.

It must be pointed out that in this formalism, all momentum space fluxes are taken

into account consistently at the same level, such that the collision and the quasilinear

operator - for all RF waves - will be discretized in a uniform, consistent manner. This

procedure is different from many other kinetic codes in which the divergence form
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of operators is not used and each operator is discretized separately. In addition, the

divergence form of the operator leads to the development of a discretization scheme

that intrinsically conserve particles, such that unlike many other codes, there is no

need for a numerical source of particle in DKE, which is an intrinsically conservative

code.

4.1.2 Resolution of the drift kinetic equation

Using the structure of the system of equations (4.2-4.4), the process of solving the

kinetic equation for ftot is divided into three steps:

" Solve the steady-state distribution function fo from (4.2-a)

" Calculate the distribution f by taking the radial derivative of fo according to

(4.4)

" Solve the steady-state distribution function g from (4.2-b) where the operators

acting on f are considered as a source term.

The equations (4.2) are both of the form

VP' Sp (f, Dp, Fp) = I(f) + S (4.8)

where f represents fo or g, and the source term is

0 in the equation for fo (4.9)
S =~~ ~ ~(4)

-Vp ' Sp (f, D, IFp) + (f W in the equation for g

It is worth noting that the differential and integral parts of the equations (4.2) for fo

and g are identical, which greatly simplifies the calculation and saves computational

time. Note, however, that we must ensure that fo is symmetric in the trapped region

while g is identically zero in the trapped region. This symmetrization can be enforced

implicitly in the equation (4.8) and results in specific boundary conditions (BC) at

the trapped/passing boundary. These BC will be discussed in Section 4.3.
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The algorithm to solve equation (4.8) will be described in Section 4.4. The steady-

state distribution function results from a time-like relaxation of (4.8) starting from

some initial distribution function (generally, but not necessarily, a Maxwellian). We

rewrite equation (4.8) as

Of
+ + - SPp(f,DpF) = 1(f) +S (4.10)

where t is a time-like parameter. In order to avoid singularities in the divergence

operator (A. 124) when solving this equation numerically, it is multiplied by the Jaco-

bian of momentum space (A.119) J, = p2 . The actual form of equation (4.8) solved

in the code is thus

a(p2f ) + p2Vp - Sp (f, IDp, Fp) = p2_T(f ) + P2S (4.1at

4.1.3 Normalizations

In order to ensure a good numerical precision in the resolution of the kinetic equation,

this equation must be normalized. The distribution function must be evaluated at

several radial positions, so that the radial derivative (4.4) can be evaluated. We define

a reference temperature Tt and a reference density nt, which are arbitrarily defined,

but are typically chosen as the maximum values for Te (40) and ne (0). We can then

define the local normalized temperatures

Te ( 4) =VTe(4)
Tet (4.12)

net

Because collisions are the dominant process in most of the momentum space,

the equation is normalized to the momentum and time scales associated with col-

lisions. The time is naturally normalized to the collision time Tr given by (3.106)

f= (4rmev) / (qr4 in At) where vie = Tet/me is the thermal velocity and

in At = 25.2 - 0.5 x log (nt) + log (Tet) is the usual Coulomb logarithm. The momen-
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tum is normalized to the thermal momentum p, = mev-e. The flux-function $ was

chosen to be zero on the magnetic axis. It is normalized according to its value at the

edge 0,. We define the normalized variables

t

- p(4.13)
Te

and the normalized fields

ne/ T

- SP

- D

F=

DP- f (4.15)

7re0
-P t

Y = I

t/| (_Fcpt

so that the equation (4.11) remains structurally identical with the normalized fields

and variables. The same is true for the flux divergence expression (4.5), the flux

decomposition (4.6), and the source term (4.9). The equation (4.4) becomes

f = CKt (4.15)
ao
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where we define the following normalized variable

C = V) _T'e (4.16)
eB (7p) ?

From here on, all variables and fields are assumed to be normalized, and the bars

above the symbols is omitted for simplicity.

4.2 Discretization of the kinetic equation

4.2.1 Grid definitions

The kinetic equations (4.11-4.15) are discretized according to the finite difference

scheme with non-uniform grids. The normalized variables in these equations and

corresponding spaces are

0 < p < oo

(4.17)
0 < t < oo

We define the grids

pi i=0,1,- -. N po =0 PNp = Pax > 0

j j =0,1,--NC o = -1 = I
(4.18)

tk k=0,1,-.-Nt t0 =0 tNt = tmax > 0

'01 1=-,o,+ 0 < V_ < 00 < 0+ < 1

In momentum space, the existence of internal boundary conditions (p = 0, ± = 1)

requires that the flux of momentum vanishes at the corresponding boundaries. It will

be demonstrated in Section 4.3 that these boundary conditions are naturally satisfied

if the momentum space grid is defined with respect to the flux discretization. The

grid (4.18) will be referred to as the flux grid, or full grid.

In other words, the grid (4.18), which includes boundaries, defines cells that accupy
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all of the momentum space (up to p = pmax). Naturally, the flux in momentum space

must be defined on the cell boundaries. Hence, for a proper discretization of the

differential operators, the distribution functions must be discretized on a intermediate

grid, or half-grid. This grid is defined according to the median positions of the full

grid, or center of the cells:

Pi+1/2

j+1/2

i =0,1,---N - 1

j =0, 1,- - -N -I1

Pi+1,/2 =

j+1/2 = + +
(4.19)

The momentum space grid is shown in Fig. 4-1 where a particular cell is considered.

The flux components S, and S are defined on the respective cell boundaries and the

distribution function is defined at the center of the cell.

4Oj+1

f0(1+ 1/2,i+ 1/2,j+ 1/2)

/SP
S

Pi

SOj

Pi+1

Figure 4-1: Momentum space full grid cell.

The choice of using non-uniform grids is motivated by several considerations:

e The radial and pitch-angle grids are linked through the trapped/passing bound-

ary, which is defined by (3.41)

'T((P) = 1 - 1 (4.20)
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and the fluxes across this boundary SC must be defined at this location &T (V) in

order to ensure the proper symmetrization (for fo) or specification (for g) of the

distribution function in the trapped region. The trapped/passing boundary is

in fact another internal boundary. Therefore, all the points 6T,1 = T (41) must

correspond to one j grid point, since the fluxes are defined on the entire grid.

This condition can be systematically satisfied only with a non-uniform j grid.

" A better accuracy in the numerical solution of the kinetic equation can be

achieved if a finer grid is used in the vicinity of internal boundaries (p = 0,

= ±1, = T ()). With non-uniform grids, a finer grid can prescribed in

these vicinities while keeping a coarser grid elsewhere, such that the computing

cost of improving accuracy is limited.

* Under some circumstances (for example, in LBF EBWCD), the region of mo-

mentum space where the wave-particle resonance is significant is very limited

in one or both dimensions of momentum space. In that case, it is again possible

to use finer grids in that region only, greatly improving accuracy while limiting

the increase in computing costs.

The grid intervals associated with the half grid points are defined naturally as the

full grid cell widths

APi+1/2 = Pi+1 - A 4.1(4.21)

Adj+1/2 = j+1 - j

The grid intervals associated with the full grid are defined with respect to the half

grid positions, such that

Api+1/2 + Api-1 /2
Api = Pi+1/2 - Pi-1/2 = 2

(4.22)

Aj = j+1/2 - j-1/2 =  2+ A 1 2
- 2
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4.2.2 Numerical differentiation in momentum space

Divergence operator: In the kinetic equation (4.11), the divergence operator p2V ,SP
is defined on the same momentum grid as the distribution function, that is (i+ 1/2, j +

1/2). On a given flux-surface 01 at time tk (the field dependence upon 1 and k will

be kept implicit in this section) this operator is expressed as (4.5)

p2vp* a (p 2 SP) Pi+1/2 a / _2 AS
+9- i+1/2,j+1/2 Aj a/,i+/22,j+1/2

i+1/2,j+1/2

(4.23)

where the discretized differential terms naturally call for fluxes to be expressed on

the full grid

_ (p 2 S,) pi+1
i+1/2,j+1/2

' i+1/2,j+1/2

pi+,j+1/2 - P Sp,i,j+1/2

APi+1/2

S- 2+1j+14,i+1/2,j+1- 1 - j( S ,i+1/2j

A(j+1/2
(4.24)

Momentum space fluxes: They are decomposed according to (4.6). With Sp de-

fined on the full pi grid and S defined on the full j grid according to (4.24), we find

that the flux Sp (f, D,, Fp) is discretized as

Of
Sp,ij+1/2 = -Dp,i,j+1/2 - +

4P ij+1/2

Of
Si+1/2,j = -Dp,,+ 1/ 2,3 i1

0P i+1/2,j

+ 1- Dpt,ij+1/2- + FIr,i,J+12fi,j±12pi 21j+1/2

+ A Df+1 + F p,i+1 1/2 f+1 /2d

+ Pi+1/2 DCCi 112,j 4 i+1/2,j 4.2 5)
(4.25)

Gradients: Keeping in mind that the distribution function is defined on the half

grid, the gradient terms associated with Dp and D 4 are discretized in a straightfor-
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ward manner
fi+1/2,j+1/2 - fi-1/2,j+1/2

Ani

(4.26)

Of _ fi+1/2,j+1/2 - fi+1/2,j-1/2

i+1/2,j Aj

C 4f I f
However, the discretization of - and -- , associated respectively with

i,j+1/2 OPi+1/2,j
the cross terms DpC and Dep, is not straightforward and has been the subject of many

debates. There are at least three possible procedure.

* The first approach modifies the operator discretization (4.24) for the cross terms,

by analytically differentiating the flux term, which gives

-= -ip 1 -2DPC) -f
p -) i+1/2,j+1/2 OP i+1/2,j+1/2 i+1/2,j+1/2

+Pi+1/2 1 - +/2D!,i+1/2,j+1/2

O (/1 -VAD jf) 2 (- -2AD,)

Si+1/2,j+1/2 i+1/2,j+1/2

+ 1 - j+1/ 2 Aj+1/2I~p,21/2,j+1/2 02 f i+1/2,j±1/2

f

OP +/,+/

(4.27)

The advantage of this discretization scheme is that the cross-derivative terms
02 f

are all identical and defined at the center of the cell, and are
apa I i+1/2,j+1/2

thus evaluated in a completely symmetrical manner with respect to the neigh-

boring points. The downside, however, is that the internal boundary conditions

are no longer naturally satisfied for the cross terms and must be enforced.

Of
* The second approach consists of discretizing the terms --

i,j+1/2

Of
and - 1

OP i+1/2,j
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according to
Of fijl- j

ij+1/2 Aj+1/2

(4.28)
Of filj- j

OP i+1/2,j APi+1/2

which has the advantage of exactly satisfying boundary conditions. However,

the distribution functions are now defined at the cell corners fij, and the in-

terpolation to the neighboring half grid points is complicated and not very

accurate.

* There is a third approach, which satisfies the internal boundary conditions and

avoids the grid points at the cell corners. In this approach, the cross terms are

discretized according to

Of fij+3/2 - fij-1/2

ij+1/2 + + Ay

(4.29)

f _ fi+3/2,j - fi-1/2,j

aP i+1/2,j APi+ 1 + Api

With this scheme, which is chosen from now on in this work, the discretization

of the operator (4.23) requires to calculate the following diffusion and convection

tensors at all grid points

D(p,i,j+1/2

DP Dp ,ij+1/2 FP Fp,i,j+1/2 (4.30)
Dep,j+1/2,j F ,i+1/2,j

D ,i+1/2,j

and involves the distribution function at the half grid points and also at the

following full grid points

fi,j+1/2 
(4.31)

fi+1/2,j
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4.2.3 Interpolations of the distribution function

Regardless of which scheme is used for the discretization of the operator (4.23), the

distribution function must be interpolated from the full grid points (i, J + 1/2) and

(i + 1/2, j) to the neighboring half-grid points. An interpolation scheme for (4.31) is

very generally defined in the form

fi,j+1/2 = (1 - 6p,i,j+1/2) fi+1/2,j+1/2 + 6 p,i,j+1/2fi-1/2,j+1/2

(4.32)

fi+1/2,j = (1 - 6 ,i+1/2,j) fi+1/2,j+1/2 + 6 ,i+1/2,jfi+1/2,j-1/2

where the interpolation coefficients 60J+1/2 and 6k,i+1/2,j are such that 0 < 6 < 1 and

must be specified.

Pitch-angle interpolations

The variations in the distribution as a function of the pitch-angle coordinate are

usually relatively slow (they is no variation at all for a Maxwellian distribution)

and they are locally well approximated by a linear dependence, such that the linear

interpolation works well. It gives

kAj+1/2
gi+1/2,j = Adj-1/ 2 + Adj+ 1/ 2  (4.33)

which reduces to J,i+1/2,j = 1/2 for uniform grids.

Momentum interpolations

In kinetic calculations, the usual linear interpolation works very poorly in the momen-

tum p direction, because of the rapid, highly non-linear variations of the distribution

function as a function of p (typically close to a Maxwellian dependence exp [-p 2/2]).

The interpolation coefficients are indeed calculated such that the Maxwellian distri-

bution function - which results from the effect of collisions - be the exact numerical

solution in the absence of RF waves [74].
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In steady-state, the operator (4.23) must vanish. In the absence of RF waves,

only collisions come into play, and the solution of the equation must be isotropic by

symmetry since collisions have spherical symmetry. In other words, the collisional

diffusion D and convection F coefficients are independent of . For an isotropic
9

distribution function, the operator (4.23) reduces to - (p2 S) = 0 which integrates
Op

to p2 S_ = 0. As it is intuitively expected for an isotropic distribution, there must be

no steady state fluxes. In other words, the effects of collisional momentum drag FC

must compensate the effects of momentum diffusion DC, which gives (4.6)

DC - FCf (4.34)
P pp

Analytical solution: Is easy to show that the solution of this equation is indeed a

Maxwellian distribution. The collisional coefficients DC and FC are easily related

through [37]
FC

DC = (4.35)

so that, with p = yv, (4.34) becomes

O f f (4.36)
op '

which integrates to

f = f (0) exp [-I dp (4.37)

with -y = 1I + p2f3 2 so that the integral becomes explicitly j dp so
fo 7 Ore

that

fM (p) = f (0) exp - 1 (4.38)

and, multiplying by (-y + 1) both the numerator and denominator

fm (p) = f (0) exp - (4.39)
w ( l +

which is the relativistic Maxwellian distribution.
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Numerical solution: In the following calculations, there is no dependence upon

because the collision coefficients and the distribution function are isotropic. There-

fore, the j + 1/2 index is kept implicit. Inserting the expressions (4.25) for the

discretized fluxes and given that there is no cross term Dg for collisions, (4.34) be-

comes

DC, F C f (4.40)

which reduces to

7i -f =Pifi (4.41)

when the relation (4.35) is used.

With the expression (4.26) for the momentum gradient and the expression (4.32)

for the interpolation, this equation gives

_i fi+1/2 - fi-1/2 = (1 - p,i) f+1/2 + 6p,ifi-1/2 (4.42)
pi Api

which is rewritten as

6P i = (4.43)
Pi Api (fi-1/2/fi+1/2 - 1)

Because the Maxwellian f = fM is the exact solution of this equation, we can relate

fi+1/2 = fM (Pi+1/2) to fi-1/2 = fM (pi-1/2) using (4.38) as

fi+1/2 = fi-1/2 exp i1/2 +1/2 (444)

The relations (4.19) and (4.21) are combined so that

APi/ 2
Pi+1/2 = Pi + 2

(4.45)

Pi-1/2 =Pi - AA-1/2
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and a Taylor expansion around p = pi of the gamma factors gives

+ iAPi+1/20Te2
+ 2?

AAAi-1/20Te

2^ j2

+(APi+1/2) e

+(Api-1/2 ) 2Te

8-yi4

and we obtain

Api
- (APi+1/2 - APi-1/2)1

yiI

Hence, the interpolation coefficient becomes

6P 7i -

pi/xpi
e

= g (A

1

xp I
L4 Y

+ (APi+1/2
4- j

p (APi+1/2 - A --1/2)

where we define the generalized Chang & Cooper interpolation function g (x, y) = 1 -
x

with the interpolation factors are x = *A and y = A (APi+1/ 2 - AA-1/2)
exp (x + y) -1 yi 4y
As expected, if the intervals go to zero (Api -* 0) or near the origin (pi -- 0) where

1
afml/8p -+ 0, we find 6p, - . The Chang & Cooper function g (x, 0) is plotted

2
on Fig. 4-2, where we see that the interpolation can differ significantly from the-

1
value g (0, 0) = -. For example, with a typical uniform momentum grid defined

by (pma = 20, nr = 201), we find Api = 0.1 and therefore the maximum value for

X = 15 Xmi = 2 is the non-relativistic limit, and g (Xma, 0) = 0.34.

4.2.4 Discretized differential operator

With the differentiation and interpolation schemes developed in this section, the

divergence operator p2 V, - SP, calculated at the half-grid point (i + 1/2, j + 1/2) by

(4.23), can be expressed as a function of fi+1/2,j+1/2 and the eight neighboring points,
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E l7i+1/2 = 7Y

'Yi-1/2 = 7/i

+ (Api+1/2 Te

+ 0 1(AAi-1/2) O e

(4.46)

(4.47)

(4.48)
- 1

(4.49)

fi+1/2 ~ A*-1/2 exp - ~p

- AAi-1/2) I
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Figure 4-2: Chang & Cooper function g (x).

such that we can define

i'=i+1 j'=j+1

p2vp SP li+1/2,j+1/2 =i+1/2j'+1/2/+1/2j'+1/2 (4-50)
i'=i-1 j'=j-1

The coefficients Mi'+1/2,j'+1/2 are given in Appendix C.

Note that near the boundaries of momentum space, this differentiation scheme

calls for the value of the distribution function that are outside the boundaries, for

example at the point (-1/2, j). Fortunately, the value of f at these points is known

by symmetry, which in fact leads to boundary conditions on the momentum flux such

that the value of f outside boundaries will not be used. More details are given in

Section 4.3.

4.2.5 Radial differentiation

In order to calculate the distribution function f on the flux surface 4'o, the distribution

function fo is calculated at the position V/o as well as on two neighboring flux-surfaces

_ and 0+ with 0- < 0o < +, such that f can be obtained from performing a
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numerical radial derivative according to (4.4)

~IQ(@o)pg &fo
1B(00) ( ) If 00 -eB (o) 00 IV)_5

(4.51)

A parabolic interpolation of the form y = a' 2 + b + c is used to calculate the radial
dy

derivative = 2a4' + b. The coefficients a, b and c are determined from the values

y-, yo and y+ at the respective radial grid points 0/, Lo and 0+, which is written in

matrix form as
C

b

a

(4.52)yo = V-3

Y+

where V is a Van der Monde matrix of order 3

1

1

1

(4.53)

which can be inverted to

= det (V)(

where we defined

-A$+ (0o + 0+) o 0- + +)

Using 5y

dy

do=7po

= 2a o + b, one finds

1
= det (V) - + A o ( A + - A -) yo + A 2 2y+)
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-Ao- (0 + 0-) (4.54)

(4.55)

(4.56)

Ao+ = iP+ - Oo

Ao- = 7PO - 0-

Aoo = b+ - 0- = Ao+ - Ao-



with the determinant

det (V) = A?_ AoA?+ (4.57)

This differentiation scheme is thus applied to (4.51) with

-fo ___ _fo ()+-) + A + fo (,0+) (4.58)

&fo
For a uniform radial grid, AV)+ = AV- and this expression reduces to = -

fo (0+±) - fo ('1k_)

4.2.6 Numerical integration in momentum space

Numerical integration in momentum space is required in the calculation of:

" the discretized diffusion tensor and convection vector elements listed in (4.30),

which enter the coefficients Mi'+1/2,'+1/ 2,

* the operators I(f) and Z () in (4.8-4.9),

* the moments of the distribution function such as the current and the density of

power absorbed.

The calculation of these terms only involves algebraic expressions and numerical

integrations. The corresponding discretized expressions are not reported in this the-

sis, but can be found in the extensive report [73] on the DKE code. However, the

numerical integration in momentum space is described here for the general case.

For a given discretized momentum space variable xk - which represents either pi

or 6 - the integration domain can be bounded by full grid positions (Xk min, Xk max)

- this includes integration over the entire spaces (X0, xn.) and integration up to the

trapped/passing boundary, which is a full grid position in pitch-angle - or by half

grid positions (xk min +1/2, Xk max +1/2), or by a compination of the two. The integrals

are evaluated numerically using the trapezoidal method, according to the following

schemes:
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9 If F is discretized on the half-grid Fk+1/2 = F (Xk+1/2)

JXk max k max-i

F (x) dx ==> E Fk+1/2Axk+1/ 2
f k min k=k min

JXk+1/2 F (x) dx AXk+1/2 Fk+1/2 (4.59)

kF (x) dx => A -112 Fk-112
Xk-1/2k2

* If F is discretized on the full grid Fk = F (Xk)

/Xk max +1/2 k max

F (x) dx =-> 1 FkAxk
xk min -1/2 k=k min

JXk+1/2 F (x) dx == Ak+1/2 F (4.60)
k F (x) dx AXk-1/2 Fk

Xkl 2ik-1/2

Note that when the expression for F (x) is only an explicit function of x, the grid

Xk does not have to be any of the grids defined for the flux and distribution function

in (4.18) and (4.19) respectively. Instead, a much finer grid can be used to calculate

the integrals more accurately. This is the case for the collision integrals defined in

(3.169-3.170). However, when F (x) depends upon the distribution function - like in

the moment integrals or the operators I(f) and Z () - the grid (4.18) must be used.

4.3 Initial and Boundary Conditions

4.3.1 Initial conditions

The initial value for the zero-order distribution function fo is chosen to be the rela-

tivistic Maxwellian, which is the exact solution of the Fokker-Planck equation (4.2-a)

in the absence of RF field. Using the expression (B.118), derived in Appendix B,

and using the normalization procedure of Section 4.1.3, the relativistic Maxwellian is
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expressed as

fm (p, ) e (0) 2 exp - 2 (4.61)(2ir) 3/ 2 T3, 2 (4) (y + 1)kT

with

e mec2  (4.62)

Y(p)= 1+p /4T

and where R (x) is given by (B.119) with the approximate form (B.120) R (x) =[ 15x 1052 31
1+ 8 +28

The initial value for the first-order distribution function g can be chosen to be

identically zero, since there is a driving source term in the drift-kinetic equation (4.2-

b). However, the convergence to a steady-state can be greatly increased with using

the approximate analytical solution obtained in the absence of RF waves and in the

Lorentz limit Zi > 1 where pitch-angle scattering with ions is the dominant collisional

process. This solution is developed in Ref. [73].

4.3.2 Internal boundary conditions

The internal boundaries - apart from the trapped/passing boundary, which is treated

separately in the next section - correspond to the axes or planes of symmetry of

the system. In the gyro-averaged momentum space, the direction of the magnetic

field is an axis of symmetry. In spherical coordinates, this axis is defined by the

following position of momentum space (4.17): p = 0, = -1 and = 1. Therefore,

by cylindrical symmetry of momentum space, there is no flux of momentum through

this axis. This condition is intrinsically verified in the expression divergence (4.5) of

the divergence operator

1 a 1P SP

V S -Sp= -(p2S) _i 2ASC) (4.63)
p2 0p Ap 49

185



since p2 S, and V1 - V2 AS naturally vanish at p = 0 and 1 j = 1 respectively. In

order to ensure that the internal boundary conditions are numerically satisfied, it was

chosen to discretize the flux on the full grid - which includes these boundaries. Indeed,

the discretization of the divergence operator (4.23) using (4.24) at the internal limits

of momentum space i = 0, j = 0, j = n - corresponding to p = 0, = -1 and 6 = 1

- respectively involves the following flux contributions on the internal boundaries

PoSpOj+1/2 = 0

1 -OAoS ,j+1/2, = 0 (4.64)

1- 2 CAn Si+1/ 2,nC = 0

which vanish because po = 0, o = -1 and ,, = 1. The internal boundary condi-

tions are thus intrinsically satisfied with this discretization scheme. Consequently,

in the discretization (4.50) of the differential operator at the limits i = 0, j = 0,

j = nr, it is not necessary to evaluate the distribution function at the neighboring

points outside the boundaries, because the identities (4.64) cancel their contribu-

tion. It is easy to verify from the expressions developed in Appendix C that the el-

ements (M-1/ 2,j-1/2, M-1/2,j+1/2, M-1/ 2,j+3/ 2), (Mi-1/2,-1/2, Mi+1/2,i/2, Mi+3/ 2,-1/ 2),

and (Mi-1/ 2,n+ 1/ 2, Mi+1/ 2,n&+1/ 2 , Mi+1/ 2 ,n+1/2 ) are identically zero.

Note that in other schemes used in kinetic theory, where the distribution function

is specified on the full grid rather than the fluxes, extra points must be added outside

the boundaries to numerically satisfied the boundary conditions.

4.3.3 Trapped/passing boundary

Distribution function fo

In the low collisionality regime, which is assumed through this work, the bounce

time of trapped electrons is much shorter than the collisions and RF diffusion times.

Therefore, a trapped electron with momentum (p, ) (with II < &T) - as it crosses the

outboard horizontal midplane - bounces back before undergoing any significant change

of momentum due to collisions or RF diffusion, such that after one bounce time, it

186



crosses the same midplane with momentum (p, -i). As a consequence, trapped elec-

trons with (p, ) and (p, - ) are completely equivalent, and the distribution function

fo is symmetric in the trapped region, which is also obtained from equation (3.113).

When solving the bounce-averaged Fokker-Planck equation (4.2-a), it must be

ensured that fo is symmetric in the trapped region. This condition can in fact be sys-

tematically satisfied implicitly in the differential operator, following the prescription

by [48]. Because trapped electrons with (p, ) and (p, - ) are completely equivalent,

the equation (4.2-a) is solved only for one half of the trapped region 0 < 6T while

the other half is removed from the numerical momentum space. After the distribu-

tion function is calculated on the reduced momentum space, it is extended to the full

space by symmetry.

The reduced momentum space for the calculation of fo is illustrated in Fig. 4-3

where the following points are considered

(4.65)

where the indices j+, jj and jo are defined such that T= gT, ' = - and j0 = 0

Note that the (non-uniform) pitch-angle grid was symmetric and defined such that

&T and - correspond to full grid points.

This scheme requires to consider the fluxes through the trapped/passing boundary

carefully. In fact, by reducing momentum space, it is necessary to account implicitly

for links between points 4 and 3 by linking 4 to 1. The differential expression (4.50)

is modified at the points 1-+5 to account for this procedure:

* Point 5: By symmetry in the trapped region, the fluxes through the = 0 axis

must vanish, since fi+1/2,jo+1/2 = fi+1/2,jo-1/2. The point 5 is linked to itself on
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1 (i + 1/2, j+ - 1/2) last point in the right half trapped region

2 (i + 1/2, jT + 1/2) first point in the co-passing region

3 (i + 1/2, jT + 1/2) first point in the left half trapped region

4 (i + 1/2, jT - 1/2) last point in the counter-passing region

5 (i + 1/2, jo + 1/2) first point in the right half trapped region
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Figure 4-3: Reduced momentum space for the calculation of fo.

the left

p2v .'P i+1/2,jo+1/2
i'=i+1

= > Mi'+1/ 2,j 0+ 3/ 2 fi'+1/ 2,jo+ 3/ 2 + (Mi'+1/ 2,j,-1/2 + MAi+i 1 2,jo+1/ 2) fi'+1/2,jo+1/2
i'=i--1

(4.66)

* Point 4: Since points 1 and 3 are equivalent, we can replace the link between

points 4 and 3 by linking 4 to 1 on the right

P2v ' P I i 12,jT - 12

i'=i+1

= Mi'+1/ 2,js-3/2fi'+1/2,js-3/2 + Mi'+1/ 2 j -1/2fi'+1/2,jd-1/2 + MA'+ 1/2,- +1/ 2fi'+1/2,js-1/2

(4.67)

where the last term is the link to point 1 fe+12,j-/2.

* Point 1: Since points 1 and 3 are equivalent, we can replace the link between
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points 3 and 4 by linking 1 to 4 on the right.

P27PSPI i+1/2,j -1/2

i'=i+1

1 i'+ 1/ 2,j - 3 /2fi'+1/2,j -3/2 + Mi'+ 1/2,j;-1/2fi'+1/2, -1/2

i'=i-1

i'=i+1 ] 1 j

++1/2,+1/2 '(f+1/2 ,j++ 1/ 2  i'+1/2,j--1/2
i'=i-l

(4.68)

(4.69)

where the last term is the link to point 4 fi+1/ 2 ,j--1/2. Note that only half of

the flux from the right is accounted for - since the rest implicitly goes to the

equivalent point 3.

* Point 2: The discretization at point 2 remains unchanged.

Distribution function g

The distribution function g is defined as being identically zero in the trapped region.

In that case, the equation (4.2-b) is solved only in the passing regionj(| ;> 'T. After

the distribution function is calculated on the reduced momentum space, it is extended

to the full space by setting g (-&T < < &r) = 0.

o=- or

3

4O

Pi
0=OOT

2

8o

Figure 4-4: Reduced momentum space for the calculation of g.

The reduced momentum space for the calculation of fo is illustrated in Fig. 4-4. In
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that case, there is simply no momentum flux through the trapped passing boundary.

The differential expression (4.50) is modified at the points 2 and 4 to account for this

procedure:

* Point 4: We have fi+1/2,j+1/2 = 0 because this correcponds to points 3, which

is in the trapped region. We have then only

i'=i+1

2 P S -i+1/2,j -1/2 i.'+1/ 2,jT-3/2'+1/2j-3/2+Mi'+1/2,jT-1/2i'+1/2fT -1/2
i'=i-1

(4.70)

" Point 2: We have fi+1/2,j-1/ 2 = 0 because this correcponds to points 1, which

is in the trapped region. We have then only

i'=i+1

P2v P l S 2 l 2 = E Me+12,+3/2+i'+1/2,j+3/2+M +1/2,j+1/2fi'+1/2,j+1/2
i'=i-1

(4.71)

4.3.4 External boundary conditions

The upper limit pmax in momentum space is a numerical approximation because the

physical space goes to p -+ oo. The limit Pma must be chosen such that the relevant

physics be fully included. The condition Pma > 1 is necessary in order to account

for the quasi-totality of the particles for a Maxwellian distribution oc exp 1 ]. In

order to conserve particles in the numerical scheme, the fluxes through the external

boundary must be set to zero, by artificially setting fn,+1/2j+1/2 = fnp-1/2,j+1/2. This

leads to the discretization scheme

jf=j+1

2v . SPn ,+1/2j+1/2 = 1I An,-1/2,j+1/2fn1/2,j+1/2

j,=j-1

+ (Mn,+1/ 2,jI+1/ 2 + Mn,+3/2'+1/ 2) fnp+1/2,j'+1/2 (4.72)
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4.4 Algorithm

4.4.1 Relaxation to a steady-state

In order let the equation (169)

Of S+ VP - Sp (f, Dp, F) = I(f) +S (4.73)at

relax to a steady-state, an implicit time scheme is used. In that case, the time

derivative is discretized as
Of k+1 fk+1 _ fk

t At

An implicit method is used because in that case there is no fundamental limitation on

the time step At for this scheme to be stable, as opposed to explicit schemes (where
Of is evaluated at the time step k) for which the maximum stable time step is related
at
to the momentum grid size.

The integral term 1(f), however, must be treated explicitly. In that case, the

stability of the scheme can no longer be ensured, and a limitation exist on the maxi-

mum time step At that can be used. Fortunately, the term I(f) is a small correction

to the distribution function, such that in practice, a large step At > 1 can be used

and the equation (4.10) converges whithin a few iteractions.

Note that it is possible to make full use of the implicit time scheme - and large time

step At - only if the symmetrization of the trapped region is ensured implicitly, as it

is done in this code. In other codes where the symmetrization is explicit, a time step

At < 1 must be used and the equation converges only after hundreds or thousands

of iterations. The present implicit scheme thus reduces computational time by orders

of magnitude.

The discretized form of equation (4.10) becomes

,Fk+1 k
f i+1/2,j+ 1/ 2  f+1/ 2 ,j+1/ 2 + v * k+1

At + i+1/2,j+1/2

= 1(fi+1/2,j+1/2) + Si+1/ 2 ,j+1/ 2 (4.75)
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where the (i, j) indices refer to the reduced momentum space (with np momentum

and n, pitch-angle grid steps), according to the procedure detailed in Section 4.3.3.

4.4.2 Matrix representation of the kinetic equation

As explained in Section 4.1.2, this equation is multiplied by p2 to avoid singulari-

ties in p = 0. Using the discretized differentiation scheme developed in Section 4.2

and modified for the reduced momentum space in Section 4.3.3, we can rewrite the

divergence operator in vector form as

p2V P. k+1 = M. fk+1 (4.76)

where fk+1 is a vector of n, x n' elements made

distribution fk++/2 .+1/2, and organized as follows

fk+1 =

I, fk+1
1/2,1/2

fk+11/2,j+1/2

k+1
J1/2,n' -1/2

k+1
J3/2,1/2

f k+1i+1/2,j+1/2

of the discretized values of the

(4.77)

f k+1 I
n,-1/2,n'-1/2 /

and M is a matrix made of the elements MiI+1/ 2 ,j'+1/ 2 in (4.50). These elements

are arranged in diagonals in M. For example, Mi+1/ 2 ,+1/ 2 is the main diagonal,

Mi+1/ 2,j-1/2 is the first lower diagonal, Mi-1/ 2,j+1/ 2 is the n'th lower disgonal, etc.
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Hence, the nine-point scheme presented in Section 4.2 leads a nine diagonals in the

matrix M. In addition, the implicit symmetrization of the trapped region requires to

connect additional points, according to the procedure detailed in Section 4.3.3. The

fluxes at the trapped/passing boundary thus results in an additional six diagonals,

such that the differentiation matrix M finally contains 15 diagonals.

In vector form, the equation (4.75) (multiplied by p2 ) can be expressed as

P P fk
-+M+ P - I ) + p S (4.78)

(At at

where P is the diagonal matrix corresponding to the discretization of p2

4.4.3 Inversion of the linear equation

The equation (4.78) can be rewritten in a compact form as

A - fk+1 = Bk (4.79)

which is a linear equation and must be inverted. Here, A = - + M and Bk -

At
p.fk

+ P.I (fk) + P.S. In order to potimize the numerical accuracy of the inversion

process, the equation (4.79) is pre-conditioned such that all the coefficients of the

main diagonal of A are 1. This is done by multiplying Eq. (4.79) by C-1 where C

is the diagonal matrix made of the main diagonal of A. Defining A' = C- 1 - A and

B = C-1 - Bk, we finally obtain the equation

A' . fk+1 = B ' (4.80)

The matrix A' is a mostly sparse matrix with only zeros except on the main diagonal,

where elements are identically one, and on 14 off axis diagonals that made of elements

with an absolute value between zero and one.
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This equation is inverted by LU factorization, such that

A'= L-U (4.81)

where L is a lower triangular matrix and U is a higher triangular matrix. The equation

then reduces to the two systems

Vk+1 = L-1 -B '

fk+1 = -1 . vk+1 (4.82)

which are solved in order.

Although the matrix A' is made of only 15 non-zero diagonals, the factorization

matrices L and U have far more non-zero elements, and require a large amount of

computer memory. In order to limit the use of computer resources - or alternatively

to extend the limits of anageable grid size - an approximate factorization procedure,

called incomplete LU factorization, is used. In that case, all elements of the L and

U matrices that are below some threshold 6 Lu are discarded. Hence, only an ap-

proximate form of the equation (4.80) is solved. The procedure is iterated until the

approximate solution fk+1 satisfies (4.80) within some predefined tolerance. This

method allows a very significant gain in memory requirements, with only a slight

increase in computation time.

4.5 Numerical Calculation of Bounce Integrals

The numerical calculation of bounce-averaging coefficients such as the normalized

bounce time (3.81) and the generalized coefficients (3.87-3.88) requires an integration

over the poloidal angle 0 which can be expressed symbolically as

( I') = -F (V, 9, 0o; BR, Bz, B0, R, Z) (4.83)
m 27
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where BR, Bz, BO, R, Z are functions of (40, 9). They are given on a uniform grid of

No points in 9

=N - 1, j=0,1,*, ,No-1 (4.84)

4.5.1 Domain of Integration

For trapped electrons, it is important to account for the entire bounce path of the

particle, including in particular the tip of banana orbits near OTmin and OTmax The

contribution of these banana tips is often larger than the d9 = 27r/(No - 1) grid

accuracy level, because F (9) can become very large near the turning points. This is

true for example in the calculation of A, since F (9) ~ 1/ and -* 0 at the turning

points. It is therefore necessary to perform the integration up to 9 Tmin and Tmna.

However, these turning points are defined by (3.42)

B (4, 7T) = Bb (4,0 o) = B 2 () (4.85)
1 _ 602

which in general do not coincide with any grid points in 9. In order to calculate 9 T,

the equation (4.85) is solved by imposing that the fields BR, Bz, B', R, Z, which are

given on the (4', 9) grid, be evaluated in OT by linear interpolation, while the value of

B (4, OT) is obtained from (3.11)

B=I||B|= B+ + BO (4.86)

It is assumed that the magnetic field Bb (4, 6o) at the turning point OT min is

located between the two (consecutive) values B1 (4', 01) and B 2 (', 92) on the (4, 9)

grid. These values are determined from the data BR, Bz, B, (typically calculated by

the equilibrium code) by (4.86)

B1 (', 01) = VB 2(o, 1) + B2 (1, 01) + B 2(, 1 )
R z 0(4.87)

B2 (4',92) = Bi (',R 2) + Bz (, 02) + BO (4,92)

We chose to define the values of BR, Bz and B , at the location OT by linear interpo-
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B(,) = B + (B2(-T ))Bi b7OT)= Bl +(02 -01~) ,(Bi2 - Bil)

where i = R, Z, 0. Then, the location 6 T of the turning point can be calculated

according to the relation (4.85) which implies, using (4.86)

B (, OT) + B2 (07, T) + B2 (0,9) = B ( ,)

such that the equation for OT is

EBSi
i=R,Z, -1

(OT - 01)+(02-01) i 2 B 1)] -B ( , 0 ) = 0 (4.90)

Defining

(4.91)01 = (OT - 01)

(02 - 61)

one obtains

Bi1 (Bi2 - Bii) =
i=R,Z,Ob

-B (, 0 ) = 0

(4.92)

which solves as

± [Ei Bei (Bi2 - Bji)]2 - [Ei (Bj2 - Bii)2] [EiB2 - B2] - ZBi(Bi2 - Bi1 )

Ei (B 2 -Bii)2
(4.93)

The square root transforms as

2

[ ZBi1 (B 2
Bi1)2]

- i -BLBSBA- BS (4,o)]

= (Y - B2)2 _ (B2 - B2) (B2 - B2)

with the definition

Y = BRjBR2 + Bz1 BZ2 + B01B-02
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(4.88)

(4.89)

(Bi2 - Bi)2] a2 + 2

(4.94)

(4.95)

- (Bi2 -



so that

k B(Y - B )2 - (B2 - B ) (B2 - B2Y ) +B2 -y

B 2 + B 2 - 2Y

and finally

OT = 01 + (02 - 01) (4.97)
BY - Y k (Y - B, 2 ( B - B2 ) (Bb - B2

B2+ B 2 - 2Y

The (unique) solution that gives 0 ; ab < 1 must be chosen. Note that if the

magnetic fields in points l and 2 are equal, we have Y = Bi = B2= Bb.

4.5.2 Numerical Integration

The two turning points are added to the 0 grid, now noted 0,, j = 0, 1, 2,- No + 1,

and we define the half grid

_k (~k+l + k)

k = 2
k = 0, 1, 2, ... No (4.98)

and calculate the discrete function

(4.99)

where BRk, Bzk, Bek, Rk, Zk have been calculated on the grid 9k by linear interpola-

tion. The integral (4.83) becomes

No

r= dOkFk (4.100)
k=0

where the step dOk are defined by

dk = Ok+1 - Ok, k = 0,1, 2, ... No (4.101)

197

ab = (4.96)

Fk = F(b, k, o; BRk, Bzk, Bok, Rk, Zk)
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Chapter 5

Current Drive by Electron

Bernstein Waves

In this chapter, I calculate and describe current drive by EBWs in toroidal plasmas.

First, the components of the quasilinear diffusion coefficient (3.192) are analyzed in

Section 5.1 for the case of a single EBW Fourier component (w, k). The interaction

between electrons and EBWs is described by studying the resonance condition, and

the effect of Re [k±PTe] and the polarization, which are very different for the HBF

and LBF scenarios. The direction of RF diffusion is calculated. The EBW absorp-

tion coefficient and power deposition profile are evaluated in the weakly relativistic

linear limit in a slab geometry. This analysis will help the interpretation of EBWCD

calculations from Sections 5.3 and 5.4, which consider the LBF and HBF EBWCD

scenarios respectively. The framework of these calculation is presented in Section 5.2.

5.1 Resonant interaction between electrons and EBWs

In quasilinear theory, the resonant interaction between electrons and EBWs leads to

momentum-space diffusion of electrons, with momentum and energy transfer from

the wave to the electrons. In this section, the local interaction between electrons and
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a single EBW Fourier component (w, k) is studied in a slab plasma. After recalling

the expression of the quasilinear operator, I will focus on the wave-particle resonance

condition, the direction of particle diffusion due to RF fields, the linear damping of

EBWs, the power deposition profile, and the resonance overlapping problem.

5.1.1 RF quasilinear diffusion operator

The quasilinear operator defined in Section 3.5 is expressed here in spherical coordi-

nates and for a single EBW Fourier component.

In a uniform plasma

We consider the RF quasilinear operator (3.187) for a given frequency w, given here

in (p1,pII) coordinates (A.111)

Q (f) =I V. SRF(P ,) F F) (5.1)

where the RF induced momentum-space flux SRF is purely diffusive (3.189) and given

by (A.110)

RF RFDF D RF (f /09p-
SRF = IDRF VPf = - - (5.2)

DR DOf/Dp

and the quasilinear diffusion tensor elements are given by (B.23) which for electrons

becomes (3.190) (B.43)

+00 2

D (wce D RF()

n=-oc
+00

DRF JpfL wce ce R(pD-1 E1 -W( -W D F

+n= p (5.3)
Dj-+0(

DF p- nwce 1 tce D RF p

+=oo22+00 2 ,,\2

R Pi XYWIe
IN-00 (p
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where D RF (p) is the quasilinear diffusion coefficient corresponding to resonance at

harmonic n. It is given by (3.192) and reduces to

D F P e"2  ' 11 P11) nwre
DnF 2 -IEk|12 14 (p, k, ek) 2 w - kym - (5.4)

2 7Me 7

for a single Fourier component (w, k) with electric field amplitude Ek, and ek =

lEk I / IEkjj is the corresponding polarization vector. E () is the polarization term

(3.194)

1) 1n + P 11-k1J(Z
-ek,+e Jn+1 (z) + -ek,-e J- 1 (z) - - eijJ, (z) (5.5)

with (3.195)

z = kL p- (5.6)
Wce me

Extension to a slab plasma

As seen in Appendix B.4, the diffusion coefficient (5.4), derived in a uniform plasma,

can be extended to a slab geometry where the direction of inhomogeneity is perpen-

dicular to the magnetic field. It requires that the inhomogeneity scale length L is

much larger than the wavelength A = 27r/k, such that the WKB approximation is

valid, and also much larger than the thermal electron Larmor radius PTe = VTe/Wce,

such that wave particle interaction remains unaffected.

The plasma electron temperature Te (x) and density ne (x) as well as the magnetic

field (or gyrofrequency Wce (x)) are all slowly varying functions of x. In that case, wave

amplitude E (r), and the related polarization and energy flow, also contains a slow

dependence upon x. However, the parallel wave vector k11 is conserved by symmetry.
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5.1.2 Description of the resonant electrons

Resonance curves in momentum space

Considering a given Fourier component (w, k), we study the condition

w = viikli + nWce (
-y

(5.7)

for wave-particle resonance in the diffusion coefficient (5.4), which identifies the elec-

trons - characterized by their momentum (p, PI) - that resonate at harmonic n with

the wave (w, k1i), given the local cyclotron frequency Wce (x). These electrons are typ-

ically located (in momentum space) on a curve that depends upon two dimentionless

parameters: the parallel wave number Ni1 = kllc/w and the frequency ratio (2.108)

yn (x) = nrce (x)
W

(5.8)

which describes the position with respect to the nth harmonic resonance. The reso-

nance condition (5.7) can be rewritten as

- ' Nil - yn = 0
mneC

(5.9)

Then, the equation for the resonance curve is obtained from (5.9) using (3.21)

)2
+ -(0Iy 1 - yN =1 11 NI

Mc me

(pN 2 _- 2ai II + 1 y- 2 

(NImc -N) P V - 1mc

2
yn

1 - Ni

2
yn +

N2 - 1N21+

for N < 1

for N = 1

for N12 > 1

where all =sign (Nil) . The equation (5.10) shows that the resonance curve is an ellipse

for N < 1, a parabola for N 2 = 1, and a hyperbola for N 2> 1. When N < 1, this
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Figure 5-1: Resonance curves in (p, p11) momentum space corresponding to the wave
numbers N11 = 0.5 (solid lines), Nil = 1 (dashed lines), and N11 = 1.5 (dashed-dotted
lines) and the ratios y, = 0.9 (red lines), y, = 1 (blue lines), and y" = 1.1 (green
lines). Graph (b) is a x 10 zoom of graph (a).

equation has a solution only when

yn > 1~ - N1 (5.11)

otherwise there simply are no resonant electrons.

On Fig. 5-1 are shown the resonance curves corresponding to the wave numbers

N1 = 0.5 (solid lines), N11 = 1 (dashed lines), and N11 = 1.5 (dashed-dotted lines) and

the ratios yn = 0.9 (red lines), y, = 1 (blue lines), and yn = 1.1 (green lines). We

observe that:

* For y, = 1, the resonance curve always passes through the origin (ps, P11) =

(0, 0). This property can be readily verified from equation (5.10).

* It can be shown that the point with minimum momentum p on the reso-

nance curve is always on the pi = 0 axis, and can therefore be identified as

Ph min (NiI, yn). For positive N11, we find that pl min < 0 for yn > 1, which corre-

sponds to a high B-field (HBF) approach since ne > w. Also, pU min > 0 for

y, < 1, which corresponds to a low B-field (LBF) approach since nWce < w. In
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Figure 5-2: The point p min characterizes the location with minimum momentum p
on the resonance curve, in both LBF (a) and HBF (b) cases.

addition, the point pll min (Nil, yn) "moves in" closer to the bulk as the the wave

approaches the resonance (yn -+ 1) from either (HBF or LBF) side.

* For a given yn, p1 min is closer to zero for larger N11 , which generally means

larger damping. This effect is called Doppler shift of resonance. In addition, the

resonance curves "move" less rapidly as a function of yn for larger N11 |, which

generally leads to wider spatial power deposition profiles. This effect is called

Doppler broadening.

* The equation (5.10) is invariant by the transformation (NIl, p1 ) - (-N 11, -p).

Therefore, changing the sign of Nil requires simply to invert Fig. 5-1 with

respect to pii.

Expression for p min

For given wave parameters (NII, yn), the value of pu min (N, yn), which is the point

with minimum p on the resonance curve and is on the pi = 0 axis, has a particular

importance because it strongly affects damping, as we will demonstrate in Section

5.1.6, and also the current drive efficiency. This can be understood by the fact that

the momentum-space density of electrons is highest on the resonance curve at this
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point. Therefore, if this point is closer to the bulk, it usually means that the damping

is higher, since there are more resonant electrons.

Therefore, it is important to calculate the value of pi min with respect to PTe From

(5.10), we get, setting pi = 0,

N1 yn - O-l Vyn

Se(1 -N 11

_-yn)

2 2fcv

yTe 1 + N - Nily

reN -\T2

for . < 1

for N = 1

for N > 1

(5.12)

with (2.103) /3 e = PTe/mec. We define the parameter (2.126)

Pn 1 - yn (
p~ x) I3 eNI (5.13)

which measures the distance from resonance (yn = 1, nwc = w) in terms of magnetic

field variation, and accounts for the Doppler shift effect through the term 3TeN i. The

equation (5.12) for P11 min becomes

N11

3Te N1 l)
/3TeNIIPn -

SPn (2 - o-g TePn)

2 (1 - 1 23 3ePn)
Nl 2 ) 1

2 Ali + OrePn
Nre N 1N

2/3TePn
N11

+ niepf)

- 1 + TeNPn )

for N < 1

for N = 1

for N 2 > 1

(5.14)

In the limit where Ne pn < IN< I ,< 1, which we will call weakly relativistic approxi-

mation, and gives with (5.13)

(5.15)
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which is satisfied close enough to resonance, (5.14) becomes for any N11

P1=in 3Pn 1+ + 3)0 (5.16)
Pre 2NII+ _ Nil )-

where the subscript "wr" refers to quantities evaluated in the weakly relativistic limit.

Note that in the non-relativistic limit (/re --+ 0) we have

nr

P~ = Pn (5.17)

where the subscript "nr" refers to quantities evaluated in the non relativistic limit.

Therefore pn (5.13) is the parallel momentum of a resonant electron on the (p± = 0)

axis in the non-relativistic limit, and the Doppler effect is well described by (5.13).

In addition, we see from (5.16) that relativistic effects bring the resonance closer to

the bulk in HBF approach (yn > 1, p, and Nil are of opposite signs) but further from

the bulk in LBF approach (yn < 1, p, and Ni1 are of the same sign).

Therefore, the properties of EBWCD, in particular the damping and the efficiency,

strongly depend upon pn ~ P11 min/PTe which determines the position of the resonant

curve. The relative variations of p, depend mostly on the parameter yn because p"

varies like 1 - y, and we consider the vicinity of yn ~ 1. As a consequence, near

the cyclotron harmonic resonance, the characteristics of EBWCD will vary primarily

according to the changes in ya, i.e. in the magnetic field.

5.1.3 Polarization term for EBWs

Because EBW waves have a mostly electrostatic polarization, as we saw in Section

2.2, we can make the following approximations (2.82)

1
ek,+ 2 ek,- 2 -

N 1 t
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so that, using the following identity for Bessel functions

2n
Jn+1 (z) + J.-1 (z) = - Jn (z)

z

the polarization term (5.5) becomes

k 1Z ~ + N piI Jn (z)

J (z) PTe

NLfTe P1 [N + Ni

where we used (5.6)

z = k-pTe,
PTe

and the definitions (5.8) and (2.103)

y=wce
Yn=

/e =
PTe

meC

.-.. p1I= -
-- --- p =0

p =0.. - -.. ... ...

q- -- --

10
0.5

0.4

0.3

0.2

0.1

0
02 4 6 8 10

P-i'pTe

(a)

2 4 6 8 10
Pji'PTe

(b)

Figure 5-3: Polarization term (5.5) for EBWs as a function of p± for several values
of p0l and with I3 e = 0.05 and NiI = 1. Graph (a) corresponds to a n = 1 LBF case

(yn= 0.83) and graph (b) corresponds to a n = 2 HBF case (yn = 1.19).

We observe that the polarization term varies mostly like nJn (z) /z, and therefore

has a band structure in p'. The polarization term E " (5.5) is shown in Fig. 5-3 as
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a function of pi for several values of p1l and with OTe = 0.05 and Nil = 1. Graph (a)

corresponds to a n = 1 LBF case (y,, = 0.83) and graph (b) corresponds to a n = 2

HBF case (y, = 1.19).

" In the n = 1 LBF case, the polarization term peaks at pi = 0, in accordance

with the behavior of J1 (z) /z for z -+ 0. In addition, the zeros and peaks of

) Iare quite close together in pj, which is due to the large values of kipre

in (5.21) for LBF approach, as seen in Section 2.3.

" In the n = 2 HBF case (note that there cannot be a n = 1 HBF approach

with EBWs), the polarization term peaks at pi ~ 3 PTe , in accordance with the

behavior of J2 (z) /z which peaks at z = 2.3. In addition, the zeros and peaks

of E)(2 are much further apart in p than in the LBF case, which is due to

the smaller values of kipre in (5.21) for HBF approach.

* We also note that the shape of EL n follows closely J (z) /z and that the

parallel polarization correction is merely a scaling of this term, which confirms

the approximate form (5.20).

The correction due to the parallel polarization is of order NiiO/TePII/1PT and is

therefore expected to play a role for electrons with a large p1l. Note that this corrective

effect is proportional to the Doppler-shift factor N11/Te.

5.1.4 Direction of diffusion for EBW-electron interaction

EBWs interact with electrons at harmonics n > 0 of the cyclotron frequency. We

consider the vicinity of a given harmonic n and assume that harmonic overlapping

can be neglected. For an electron with momentum (pI, P11) resonating with an EBW

characterized by (w, k1l), the direction of diffusion, characterized by an angle X with

respect to the perpendicular direction in momentum space, is investigated by consid-

ering (5.3) and the ratio

tan- -= Di Pi D p1 l _L P (W - 1 (5.23)
tanX=DRF D PH nce \H Rw D pk nkce I
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The resonance condition (5.9) gives

7 - Nil - yn = (5.24)
mec

with the ratio

yn = w (5.25)

so that combining equations (5.23) and (5.24) we find

tanX - P1 NIJ3pe (5.26)
PTe Yn

In the non-relativistic limit, we take c -- oo and get simply

tanX = 0 (5.27)

meaning that the diffusion is purely perpendicular (x = 00).

When relativistic effects are included, the diffusion is no longer purely perpendic-

ular. Using yn ~ 1, we get

tan X ~k N1,3Te (5.28)
PTe

where typically Nbjj/3 Te < 1. Expanding tan x, we get

X ~ P NII3e (5.29)
PTe

which gives, for typical NSTX parameters with Ire ~ 0.05 and pi ~ 3 PTe, a devi-

ation x ~ Nbl x 100. Even for large parallel wave numbers, the diffusion remains

mostly perpendicular. However, the small parallel component of the diffusion can

have important effect on current drive, because some parallel momentum can be

transferred directly to electrons, which is more efficient than creating an asymmetric

resistivity [36]. The effects can be even more important when trapped electrons ef-

fects are present. The diffusion in the parallel direction increases with both Nbll and

OTe oc , and is of the same sign as Nil. Because pj mmi is of the same sign as Nil
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in LBF approach, the parallel diffusion is in the same direction as p1l min. However, in

HBF approach, P11 minN 11 < 0 and the parallel diffusion is in the opposite direction to

P11 min.

5.1.5 Linear damping of EBWs

The density of power absorbed from RF waves at the nth harmonic is related to the

quasilinear operator for EBW (5.1), and is given by (3.277)

pRF /00 3 j+1 R
ab=,n F2r j dp me J <Sp (f) (5.30)

where SIF is the RF-induced flux (5.2) for the nth harmonic, projected in the p

direction. This expression can be evaluated analytically in the linear electrostatic

limit when the distribution function f is a Maxwellian, using the weakly relativistic

approximation (5.15). The derivation is detailed in Appendix B.4, and gives an

expression for the absorption coefficient near the nth harmonic, defined as (2.50)

PRF

aRF _ abs,n (5.31)
Ilsoll

where Ilsoll is the energy flow density (2.36). We find, in the weakly relativistic limit

(B. 162)

RFMwr 1 pe e TePn 2an = exp -- Pn [I+ (5.32)
"FCW C c 2Te N II Ae 2 2N11

which becomes in the non-relativistic limit (B.160)

aRFMnr __ 2e e(5.33)
Vr C WceTe NI,|1 Ae 2)

where <D is the normalized energy flow density (2.36) and pn is given by (5.13). Com-

paring with expressions (5.16) and (5.17), we can rewrite respectively in the weakly
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relativistic limit

22
wr

RFMwrpe 1| n[A,] (_1_min
an 2 = exp 2p2

RF Mwr rC We |NeIII INe e L 2 :1e
and in the non-relativistic limit (B.160)

RF Mnr 1 wr p I n ['e]' - C Wpe 1 A exp

(5.34)

(5.35)

Therefore, the absorption coefficient of EBWs depends primarily upon Pli min/PTe, as

we anticipated in Section 5.1.2.

We note that the linear non-relativistic electrostatic absorption coefficient (2.120)

calculated from the kinetic susceptibility tensor is retrieved in (5.33), which was

expected since the two derivations are based on the same assumptions. This is a

good check for the validity of our derivation of the quasilinear operator.

n=2

-- ES NR
-.-.- ESWR
- R2D2 NR

-- .-... DKE FR

0.6 0.7 0.8 0.9 1
ce

io4

02

10
-2

102

1

(a)

1.1 1.2 1.3
2ce/0ce

(b)

Figure 5-4: Absorption coefficient as a function of y,, in the LBF case (a) and in
the HBF case (b), for w/27r = 14 GHz, N11 = 1, 3Te = 0.05 and 2 = 12w 2. The
results from non-relativistic (NR) and weakly relativistic (WR) analytical results are
compared with results from R2D2 and DKE codes.

In order to verify our calculation of the absorption coefficient and determine if

the electrostatic, weakly relativistic limit is a good approximation to the exact, fully
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relativistic and electromagnetic absorption coefficient, we calculate the product caRF

as a function of yn for a typical NSTX EBWCD scenario, with w/27r = 14 GHz,

N11 = 1, 3 re = 0.05 and 2 = 12w 2. The results are shown on Fig. 5-4 for both

a LBF approach at first harmonic (a) and a HBF approach at second harmonic

(b), where the product <baRF is calculated using the non-relativistic expression (5.33)

(blue solid line), the weakly relativistic expression (5.32) (green dashed line), the fully

electromagnetic, non-relativistic result from R2D2 [13] (dot-dashed red line) and the

fully electromagnetic, fully relativistic code DKE (purple crosses). We observe that:

* In LBF approach, all calculations converge near resonance, meaning that the

electrostatic approximation is very good.

* In HBF approach, the electromagnetic calculations (DKE, R2D2) differ slightly

from the corresponding electrostatic calculations (WR,NR) close to the res-

onance. This is in accordance with the results of Section 2.3 where it was

shown that electromagnetic effects were important near the resonance in HBF

approach, in particular for the polarization.

" Apart from the electromagnetic effects in HBF approach, the analytic non-

relativistic calculation (NR) agrees perfectly with the results from R2D2, which

validates our derivation (and R2D2).

* Apart from the electromagnetic effects in HBF approach, the weakly relativistic

calculation (WR) is in very good agreement with the fully relativistic calculation

from R2D2, except in the LBF approach for y, < 0.8.

" The relativistic effects lead to a reduction of the absorption in the LBF approach

and an increase in the HBF approach, as found in Section 5.1.2.

" Resonance overlapping occurs around II - yI 0.3 in the two cases presented

here. The importance of this overlapping will be asserted in Section 5.1.7.
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5.1.6 EBW power deposition

The calculation of aRF is not sufficient to predict the effect of plasma and wave pa-

rameters on the damping of EBW and the driven current. In fact, it is the integration

of aF along the propagation that gives the deposition profile and characterizes EBW

damping.

The damping region is assumed to be sufficiently narrow as compared to plasma

non-uniformity scalelength L, so that the temperature and density can be considered

as being uniform across that damping region. In addition, we assume that wave prop-

agation characteristics such as the perpendicular wave vector kJ and the power flow 'D

are also constant across the damping region. This assumption may seem questionable

with regard to the rapid changes in these wave characteristics near cyclotron reso-

nances, as a function of yn = nlce/w, as demonstrated in Section 2.3 from solving the

local dispersion relation. However, it will turn out that the power deposition profile is

rather insensitive to the typical variations of the wave parameters across the damping

region.

Indeed, the variations in the absorption coefficient aRF are dominated by the expo-

nential term in (5.33) and (5.32), which is expressed as (B.133) pn = (1 - yn) /TeNoll.

The relative variations of pn are mostly sensitive to the variations of the magnetic

field, because pn depends upon the difference (1 - yn) in the vicinity of yn ~ 1. It is

therefore justified to take all parameters constant in the damping region except yn,

that is, account for variations in the magnetic field only. In addition, the magnetic

field amplitude - and thus yn - are assumed to vary linearly in space.

The equation for the location of the peak in the power deposition profile has been

solved in Appendix B.4. We found that the peak position as a function of pn is

given by (B.183) in the weakly relativistic limit and by (B.178) in the non relativistic

limit. In either case, given that the weakly relativistic corrections matter only in the
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exponential factor, one obtains

2-

Pli min PI min
- Po,n exp ~ 2

Pre 24e J (5.36)

where po,n is a dimentionless parameter given by (B.179)

1 W7r e2 LB Fn [Ae]

'"~n 27~ C W e,4, I Ae (5.37)

and where we keep in mind that P'min is of the same sign as -Ni where - = +1 for

low B-field approach (LBF) and a = -1 for high B-field approach (HBF). Note that

the parameter PO,n is simply related to the optical half-depth rk,n (2.129) as

PO,n = -Tk,n
7r
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Figure 5-5: Peak of deposition profile P11 min as a function of rk,n on linear (a)

and logarithmic (b) scales. On graph (a), the dashed line represent the linear limit

P +min -- 2 Tk,n

The equation (5.36) for pjmin, which corresponds to the resonant value of p11 for

p= 0 at the peak of deposition, is plotted on Fig. 5-5 as a function of the optical half-
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depth rk,n. On graph (a), the dashed line represents the linear limit PiPm - PO,n-

As a first observation, we see that PMi increases as a function of r,,, which

means that for larger PO,n - or equivalently a larger optical depth - the power will be

absorbed farther in the tail in momentum space. As expected from equation (5.36),

and showed on graph (a), pMi is linear with po,n for PO,n < 1, while Prmi varies

very slowly with PO,n for po,n > 10; indeed, for large values of PO,n, or for PImi > 1,

Pm varies like Vlnpo,,, which is an extremely slow variation.

We point out that the validity of equation (5.36) extends to wave damping prob-

lems in general - with different expressions for po depending on the type of wave.

" For example, in lower-hybrid current drive (LHCD) problems where wave-

particle resonance occurs through Landau damping at n = 0, we have that

Prm is often set at a fixed value, typically between 3 and 4, and this is done

rather independently of local wave or plasma equilibrium properties. This is

because in LHCD, po,o is very large (larger than 1000) and therefore Pmin

varies very slowly with po,o. It is equivalent to say that spectrum components

such that N11 > 1/( 3 ,3 Te) are strongly absorbed. We note also that in LHCD,

the strongly absorbed N1js are then such that 3Te/NII < 3,3T < 1 and weakly

relativistic effects in (5.16) can be neglected.

" In electron-cyclotron current drive, however, absorption occurs much closer to

the bulk, where P m min ~ 1, and therefore the power deposition profile - and con-

sequently the CD efficiency - depends strongly on plasma and wave parameters.

In other words, the LH absorption is dominated by the Gaussian dependence of

the distribution function, while the EC absorption is dominated by the plasma

and wave parameters.

" For EBW, it is necessary to calculate po,, in order to specify which regime the

evolution of Pmjmin belongs to. We recall (Section 2.3) that typical values of

Ae = (kI pTe) 2 for EBWs are Ae ~ 0.2 for n = 2 HBF approach, and Ae ~ 10 for

n = 1 LBF approach. We consider the asymptotic forms of Fn [Ae] /Ae:
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- Large arguments. From [75] we get the asymptotic expansion

Fn [Ae] 1
~e for Ae > 1 (5.39)Ae v27A3/

so that for large values of Ae ~ 10 typically found in LBF approach, we

have approximately IF [Ae] /Ae ~ 10-2

- Small arguments. From [75] we get the power series

I~n[Ae Ae-1
Se n e for Ae < 1 (5.40)

'Xe 2"n!

and we see that for small values of Ae ~ 0.2 typically found in second

harmonic HBF approach, we have approximately F2 [Ae] /Ae ~ 10-2, which

turns out to be of the same order as for LBF approach.

9 We can rewrite

1 W-,r W2 LB 1
1 e for LBF approach

PO,n c W e kIPi \/(kiPTe) (5.41)
1 WiT Wi~e LB (ki-PTe) 2  for HBF approach

SC W2, 1il 2nn!

For a NSTX-type plasma with W2e = 1Ow 2, fle = 0.05, w/27r = 14 GHz, we

have typically L BF ~ R, ~ 1 m, while for a HBF approach near the bottom

of the magnetic field well on the outboard side, LIBF depends strongly on

the propagation path and can be much larger than R,. Taking for example

LHBF = 10 m and fB = 1, Po,n scales approximately as

1000 for n = 1 LBF approach (5.42)

200 for n = 2 HBF approach

As a consequence of the large values for PO,n for EBWs, the value of Prmin is

very insensitive to variations in PO,n, which justifies a posteriori our assumption to

consider wave and plasma parameters constant in the damping region, except for the
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magnetic field. Considering the typical values for po,,, for EBWs (5.42), we observe

that the location of the peak of deposition is a rather fixed quantity, and is located

at 3 < p" < 3.5. The explanation is that EBW is deposited in the tail of the

distribution function, which varies so strongly as a function of p0 min/PTe that the

location of deposition is a function of these variations rather than anything else.

This is an important result in the study of EBWCD, because it means that the

normalized CD results will not depend much upon the parameters that typically

affect greatly ECCD results, such as the density and the magnetic field scale length.

Rather, we should approach EBWCD more like LHCD where the location of damping

in momentum space is a fixed quantity. Another important observation is that EBWs

are deposited on electrons in the tail of the distribution function, which are less

collisional than bulk electrons, and therefore better current drive efficiencies than in

ECCD can be anticipated.

5.1.7 Harmonic overlapping with EBWs

In this section, we have always assumed that harmonics could be considered sepa-

rately, meaning the the wave damping was strongly dominated by the contribution

of only one harmonic. As we saw on Fig. 5-4, there is a position (measured by yn)

between two harmonics where the contributions from the two harmonics are compa-

rable. We will call this position the overlapping point. With (2.108) We = wyf/n, we

find that the overlapping point is characterized by

Yn = Yn+1 (5.43)
n n +1

This condition can be expressed as a function of pn according to (5.13), which gives

I - /T#eNIIPn _ 1 - fJreNjjPn+1 (5.44)
n n + 1

The question of the overlapping problem can then be expressed as such: under

which conditions does the Doppler effects increase sufficiently such that the over-

217



lapping point is in the strong damping region? In that case, we will say the two

harmonics overlap, and it is not possible for the wave to propagate between the two

harmonics, and the corresponding region in the plasma is inaccessible, because the

wave power would be absorbed before reaching this region.

The overlapping point necessarily separates a LBF approach region (near harmonic

n) from a HBF approach region (near harmonic n + 1). Because relativistic effects

reduce the damping in one case (LBF) and increase the damping in the other case

(HBF) with comparable shift in amplitude, the overall effect of relativistic corrections

on the overlapping problem is mainly to move the overlapping point closer to the

LBF resonance (harmonic n). These effects are neglected in the determination of the

overlapping condition.

The strong damping region can be defined as including the locations between the

resonance and the position Ipi| of the peak in the deposition profile when only one

harmonic is considered at a time. Using (5.44) and the fact that p' is of the same

sign as --lU, where a- = +1 for LBF approach and o = -1 for HBF approach and or,

is the sign of N11, the overlapping point coincides with the position of peak deposition

for

1-Te |NIlI||pm,LBF1 1 +3TeI NiI Pn"BF
(5.45)n n+1

which gives an equation for /Te INI

/3 e INi| = 1 (5.46)
n n B1 + ( n + 1) rn LB F

According to results in Section 5.1.6, the location of the peaks of deposition be-

tween first and second harmonics is given by pLBF I n1BF ~ 3.5. For typical

/3 Te = 0.05, the overlapping condition becomes Nii I > 2. Note that our definition of

harmonic overlapping is a rather conservative one, since we impose that the peaks of

one-harmonic deposition profiles must coincide. However, the profiles themselves will

visibly overlap at even lower 3 Te Ni 1, as we will show in Sections 5.3 and 5.4.

We also observe that the overlapping condition becomes quickly restrictive at
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higher harmonic. Even if the value of pmBF decreases as higher harmonic according

to (5.41), and we take the high-harmonic limit pHBF -+ 0, we find that for Te =

0.05 and |N| I 1, harmonics completely overlap above the fourth harmonic.
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5.2 Framework of EBWCD Calculations

5.2.1 Introduction

The EBW is approximated to a beam of frequency w with Gaussian transverse am-

plitude profile of characteristic width d. We assume that the beam size d is much

larger than the wavelength A. Then, the beam diffraction can be neglected and the

Fourier spectrum of the beam is very localized around a central wave vector k, since

Ak/k = A/ (21rd) < 1. In addition, we assume that the plasma inhomogeneity scale

length L is also much larger than the wavelength A, so that the WKB description of

the wave is valid. With these assumptions, the local behaviour of the EBW beam

can be understood by studying the uniform plasma characteristics of the linear mode

(w, k) corresponding to the central wave vector of the beam. Such study was done in

Section 2.3 where properties of EBWs relevant to EBWCD were described by solving

the local dispersion relation.

In this thesis, we restrict our calculations of EBWCD to the horizontal midplane

(Z = 0). According to the discussion in Section 3.5.2, our quasilinear description

of EBWCD is more valid near the horizontal midplane, where we can consider ap-

proximately a slab geometry, and where electrons see a quasi-uniform plasma across

the EBW beam. These approximations require however that the size of the beam,

projected on the poloidal field line within the flux-surface (dllp), be small compared

to the length of the poloidal field lines: d11 < 21rr.

The beam size must therfore satisfy the condition

A < d < 27rr, L (5.47)

In a typical NSTX plasma, we have A < 0.005 m and 27rr, L > 1 m. The experimental

beam size (which is half the beam diameter in our definitions) is typically of the order

of d = 0.05 m [12]. Therefore, the condition (5.47) is well satisfied.

With the slab symmetry, the parallel wave number N11 can be taken to be ap-

proximately constant in the damping region, and the direction of the power flow
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with respect to the flux-surfaces can be evaluated from solving the local dispersion

relation. Thus, the propagation aspects of the EBWCD problem, such as the power

deposition profile and the total driven current, can be calculated without solving the

EBW propagation problem (which would otherwise require ray-tracing techniques).

In addition, the EBW electric field amplitude is assumed to be sufficiently small

such that non-linear wave-particle interaction effects (trapping) can be neglected.

The calculations of EBWCD are presented in two steps: local calculations, which

have a great generality, and integrated calculations, which are applied to a particular

plasma and illustrate the local calculations.

5.2.2 Local calculations and parametric dependence

Definition

In order to describe the CD mechanism and study parametric dependence of the CD

damping and efficiency, we first consider "local" calculations, which are independent

of any particular plasma magnetic geometry or plasma profiles, and thus could apply

a priori to any axisymmetric toroidal device - ST, tokamak or RFP - where EBWCD

is considered. However, the nominal parameters of these calculations are chosen

to be typical of a high-3 NSTX plasma at the location of the minimum B-field XM

(R = 1.31 m, Z = 0, p = 0.63) on the outboard side. The nominal plasma parameters

relevant for EBWCD calculations are

(5.48)
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electron temperature Te ~ 1.3 keV (/Te = 0.05)

electron density ne ~ 3.0 x 1019 m- 3  (a2 = 12)

effective charge Zeff = 2

trapped particle fraction ft = 66 %

B-field variations length LB = 1 m



and the nominal wave parameters are

(5.49)

Parametric study

The EBW approach to resonance is simulated by changing the magnetic field am-

plitude B, keeping all other plasma parameters constant. This explains the term

"local" to describe these calculations. This approximation is justified from the re-

sults of Section 5.1, where it was demonstrated that both the CD mechanism - which

depends mostly on the localization of resonant electrons in momentum space - and

the power deposition profile were dominated by variations of the magnetic field am-

plitude through the parameter y, = nwc/w. This approximation is advantageous

because it allows to isolate the effects of various parameters and thus conduct an de-

tailed, independent and rigorous parametric study. Indeed, in the local calculations,

a " scan" of y, is done to simulate EBWCD with given plasma and wave parameters,

and these are modified between scans to study their effect on EBWCD.

Organization

We first consider the linear limit where the RF diffusion coefficient is much smaller

than collisional diffusion, by considering an input wave power P that is appropriately

small (such that the CD efficiency is independent of Pb). In that case, the local

normalized CD efficiency is expected to be independent of the diffusion coefficient

factor DRF (3.214), and therefore also independent of the incident normalized power

flow (Db.I and the plasma equilibrium magnetic geometry. However, it should depend

upon the position of the resonance condition in momentum space, and thus, for a given

yn = nwce/w, upon Nil and the normalized temperature 3 Te. We will also investigate

the effects of the fraction of trapped particle ft and the effective charge Zeff, which

strongly affect the dynamics of collisional pitch-angle scattering. Quasilinear effects

222

frequency w/27r = 14 GHz

parallel wave number Nil = 1

spectral width ANII = 0.1



will then be investigated by varying the incident power density on the flux-surface.

The plasma electron density affects the current drive efficiency through the collision

frequency, but does not play a significant role in the EBW characteristics (Section 2.3),

in the CD mechanism or in the power deposition (Section 5.1). It will be normalized

out in our calculations.

5.2.3 Integrated calculations

The integrated effect of varying plasma parameters will be included in the "global"

calculations at the end of the section, which are applied to a realistic NSTX geometry

and used to validate our approximate local approach. Although the plasma param-

eters vary along the propagation, the parallel wave number is considered constant

across the damping region, in accordance with our slab approximation. The inter-

action between EBWCD and the bootstrap current is also calculated for a realistic

NSTX CD scenario.

5.2.4 Normalization and interpretation of CD results

In order to determine the intrinsic efficiency of EBWCD mechanisms independently

of the plasma parameters, and thus conduct an independent parametric study of

EBWCD, it is necessary to work with normalized units. In addition, normalized

units - along with local calculations as defined in Section 5.2.2 - offer the possibility

to extrapolate the CD results to different plasma conditions, rather than being tighted

to a given scenario. In this section, all quantities are considered to be flux-surfaces

averaged.

The natural normalized units follow the normalization used in the DKE code.

The current and the density of power absorbed are normalized to

.J

qenevTe

(5.50)
Pabs

Pabs = 2
nemeveve
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where J is measured in A/m 2 and Pabs is measured in W/m 3. Note that the normal-

ized current is in the direction of the electron flow, which is the opposite direction to

the actual driven current.

Local figures of merit

The normalized CD efficiency q is a local quantity (in 0), which is given by the ratio

"7=-
Pabs

(5.51)

and is related to the dimensional figure of merit, defined as

T/JP = J/Pabss

and expressed in A-m/W, by

Inserting the expression (3.106)

rjp = 17 y

meVeVTe

for the collision frequency, we find

47r62 KTe
17 = - (5.54)

qe ln A ne

However, the definition (5.52) for the efficiency is seldom used. More common defini-

tions of the efficiency relate to quantities that can be directly measured experimen-

tally, such as the current and power deposition profiles dI/do and dP/do. With the

infinitesimal volume dV/do and poloidal surface dSp/db elements of a flux-surface,

given by (3.212) and (3.238) respectively

dV 4ir2RPq
dV) Bo

(5.55)
dSp 2,rq

db B0
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we find
dP dV =472 Rpq'Pabs

-- = Pabs -

do do Bo
(5.56)

dI dSp 2irqJ

do do Bo

With the following definition of the efficiency

T7IP d (5.57)

expressed in A/W, we obtain

I = Th' (5.58)
q 27r R.

This expression can be rewritten as

dI = 2e0 KTe
= 7IP = - Y (5.59)dP q q3 1n A R,

where we note that q^ accounts for the poloidal variations in the radial thickness

of the incremental flux-surface, and that q = q' for circular concentric flux-surfaces.

Therefore, the measurable current drive efficiency dI/dP increases with temperature,

and decreases with density and the plasma size.

Global figures of merit

The total driven current in the plasma is the integral over dI

I= 'P- dI do = 7p dP d (5.60)
fo do 0 do

When the deposition profile is narrow enough so that the efficiency is approximately

constant across the damping region, where all the beam power is assumed to be

absorbed, this integral approximately reduces to

I - ?RIPpeakPO (5.61)
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where 7 7Ipeak is the value of 7Ip at the peak in the deposition profile and where P is

the power deposited by the EBW beam. With the expression (5.59) for the efficiency

'Iqp, we obtain

I _ 7 2e! ISTe (.2P0  - 26a (5.62)Po 31gan A Rpne

which is an approximate global efficiency in the narrow deposition profile limit. Note

that this expression can be rewritten as

npeak - qicj in A IRpne (5.63)
q 2o ixTeP 0

and also as
q'ln A

77peak - - - CD (5.64)
q 2

with

CD = 32.7IRpne[20] (5.65)
TefkeV]PO

where CD is the current drive efficiency defined in [76], ne[ 20] is the density divided

by 1020 and Te[kev] is the temperature in keV. The efficiency CD is therefore very

similar to q in the narrow deposition profile limit.

The total current (5.60) can also be rewritten as

I= JYpjP dyn (5.66)
dyn

where the integral is over the damping region in the vicinity of the nth harmonic

resonance, where y, = 1. This expression can be rewritten as (5.59)

fi 2E2 Te dP
I-] = -dyn (5.67)

q qe3 In A Rpne dyn

For "local" EBWCD calculation, as prescribed in Section 5.2.2, all parameters are

assumed to be constant across the damping region except the magnetic field - or

equivalently yn - whose variations strongly affects both the damping and the CD
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efficiency. Hence, we can write

I r. 2e2 KTe-- = 2 0 (5.68)
Po q qes n A Rpne

where we define the integrated efficiency

f (ldP\ f (dP
=- ( d dyn = J7 P dPn (5.69)

PO d y, Po dPn

The global efficiency I/Po is therefore proportional to ij, which is the efficiency ?7
l dP

weighted by the deposition profile 1 d. In local EBWCD calculations, the nor-
Po dpdP

malized CD efficiency 77 will be plotted on the same graph as ,- d, with the inter-
PO dpn

(1 dP
pretation that the integral of the product q yI d-) over the damping region gives

(PO dPn
the total current. Note that we can also rewrite

qc 2
-CD = ln 7  (5.70)

q in A

which is consistent with 7 ~ Rpeak in the narrow deposition profile limit, where qpeak

is taken at the peak in the deposition profile.

5.3 LBF (nwe < w) approach

We first consider a LBF scenario for EBWCD. We have seen in Section 1.3 that LBF

wave-particle interaction typically takes place in the inboard side of the plasma in a

high-fl plasma (see Fig. 1-9). In that case, trapped electron effects are expected to

play a lesser role and therefore Fisch-Boozer effect should dominate current genera-

tion. The calculations are restricted to the horizontal inboard midplane (0 = 1800),

which is relevant since trapped electron effects are minimized at this location.

In our study of LBFCD, we consider only the n = 1 resonance, because LBFCD

accessibility is very limited for harmonics n > 2, as we saw in Section 1.3.

Considering local calculations, as defined in Section 5.2.2, an example of LBF
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approach to EBWCD is considered first. The CD results are explained according to

the CD mechanism. By calculating the power deposition profile and comparing with

the CD efficiency profile, it is possible to identify an optimization scheme for LBF-

EBWCD. The parametric dependence of EBWCD on the parallel wave number, the

temperature, the effective charge, and the fraction of trapped particles is calculated.

Quasilinear effects on EBWCD are also investigated. Then an integrated calculation

of EBWCD is presented and illustrates the LBF-EBWCD mechanism in realistic

ST geometry. Finally, the effects of the interaction with the bootstrap current are

described.

5.3.1 EBWCD calculation in LBF approach

By varying the frequency ratio yn keeping all other parameters constant, it is possible

to simulate the EBW approaching the resonance and calculate analytically the power

deposition - as a function of y, - by integrating over the absorption coefficient, as

done in Appendix B.4. Knowledge of the power deposition profile is important in

order to estimate the driven current density and optimize EBWCD.

1 40 10
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~30 8

0.6 0.6 6
.0 .4 ... ... ..... . 0.4~ ' . 20 .. ... I.. .

... . . .. .. . . . . . . .. . . . . . .4
. ..0.2 0 - 0.2... .
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0 -'0 .2
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(a) (b)

Figure 5-6: Relative evolution of (a) the current (dashed red line) and absorbed power
(solid blue line) densities, and (b) the normalized efficiency r7 (dashed red line) and
the power deposition profile dP/Pody, (solid blue line) as a function of Wee/W.

We consider the plasma and wave parameters given in the tables (5.48) and (5.49)
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respectively. For various values of y, < 1, and a given input power Pb, we solve

the Fokker-Planck equation (3.118) and calculate the resulting normalized driven

current density j and absorbed power density pabs. The results are shown on Fig.

5-6, graph (a), where the blue solid line is pabs/P and the dashed red line is j/Pb,

normalized to the input power density. As expected from the results of Section

5.1.5, the absorbed power density increases as y, increases towards y, = 1 and the

wave approaches resonance. The current density picks up further from the resonance

and then saturates. Consequently, the normalized current drive efficiency, defined as

R = j/Pabs and shown on graph (b) as a red dashed line, decreases steadily towards

resonance.

5.3.2 Current drive mechanism

10 10

5 5
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Figure 5-7: Resonance condition term J (Nlres (p) - Nil, ANII) (a), and polarization
term 111 (b) contributing to the diffusion coefficient in momentum space, for y, =

0.83.

The current drive mechanism can be understood by considering the various com-

ponents of the RF diffusion coefficient (3.205), namely the resonance term

1 (N - N

S(N'res - NA, AN) =V'AN N (5.71)
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and the polarization term|I()1 (3.194), plotted in momentum space as contour plots

in Fig. 5-7 on graphs (a) and (b) respectively. Calculations are done for y, = 0.83.

As expected, the resonance condition leads to a diffusion confined around the central

resonance curve, characterized by (yn, N11) (5.10) and shown as a red dashed line,

with a characteristic width in p1: ApIl ~ pliAN 1/NII. Because we took N11 = 1,

the resonance curve is a parabola in momentum space. In the limit of electrostatic

polarization, the term I 1O (p) can be rewritten approximately as (5.20), where

J, (z) /z peaks at the origin and has a first zero for z ~ 3.8. Because of the large

value of kIPTe ~ 2.1 in LBF approach, as seen in Section 2.3, z = kIPTePI/PTe

(5.21) corresponds to a relatively small value of pi = 1 .8PTe, and therefore most

of the interaction is confined to p_ < 1 .8PTe, that is, electrons with mostly parallel

momentum. We also note that the effect of the parallel component of the polarization,

which explains the strong pit asymmetry in IE(1)1, is quite important because the small

amplitude of ell is compensated by the factor pj /p± which can be very large since the

polarization term contribution is confined to a narrow band near the pj = 0 axis.

Because ell ~ N11/N, larger N11 are expected to have a positive effect of this term and

increase the diffusion coefficient.

The resulting diffusion coefficient is shown on Fig. 5-8, graph (b), where its mag-

nitude is represented by a contour plot and the dashed red and blue lines represent

the central Ni resonance curve and the first zero of 18(l)1 (3.194), respectively. The

RF diffusion is therefore mostly confined around the resonance curve and under the

first zero line, with a much weaker secondary peak above the line. The black arrows

indicate the direction of RF diffusion, where the angle of diffusion is given by (5.26)

and the direction of diffusion is given by -&f/&p, which is the direction of rising

p's for a Maxwellian. We observe that the diffusion is mostly in the perpendicular

direction, as expected for cyclotron harmonic resonance. Because wave-particle in-

teraction occurs on the inboard midplane (Ob = 180'), there are no resonant trapped

electrons and the current is generated by Fisch-Boozer effect [28]. As a consequence of

Fisch-Boozer CD, electron flow (opposite to the driven current since electrons carry

a negative charge) is driven in the same direction as the resonant pit min. In LBF
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approach, the resonant p1 mj is also of the same sign as N11. We note that in LBF

EBWCD, the diffusion coefficient is located near and along the pI = 0 axis, which is

favorable for Fisch-Boozer CD because the resonant electrons are located far from the

trapped region and have a large parallel velocity, which generates a large anisotropy

in the distribution function.

5.3.3 Power deposition and CD optimization

In order to estimate the actual driven current density in such scenario, it is necessary

to calculate the power deposition profile, calculated by DKE for a density ne -

3.0 x 1019 m- 3 (2 = 12) and LB = 1 m and shown on Fig. 5-6, graph (b) as a solid

blue line. The deposition profile results from the balance between increasing damping,

as y. increases, and reduction in the power density carried by the wave, as the wave

is being damped. This calculation of the power deposition profile is compared with

the weakly relativistic calculation (green dash-dotted line), based on the expression

(5.32) for the absorption coefficient. We see that the two calculations agree fairly

well, which is in accordance with the results shown on Fig. 5-4.

Because of the monotonically decreasing efficiency, an increasing damping rate

- which shifts the power deposition to lower y, and thus further in the tail of the

distribution function - would increase the normalized driven current. According to

the results of Section 5.1.6, the location of the peak of deposition - with respect to p"

- is a rather fixed quantity at the value p, ~ 3.5. However, it is sentitive to relativistic

effects, which we will investigate further in this section.

5.3.4 Interpretation of CD results

In order to explain the variations of j, pabs and r with ya, we calculate the diffusion

coefficient (3.205) and show its magnitude in momentum space on Fig. 5-8, for three

values of y, = 0.73 (a), y,, = 0.83 (b) and y, = 0.93 (c). We see that the main effect

of increasing yn is to move the resonance curves in momentum space closer to the

bulk, in accordance with Fig. 5-1. Therefore, as the wave moves closer to resonance,
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Figure 5-8: Contour plot of the RF diffusion coefficient in momentum space for NII = 1
and (a) y, = 0.73, (b)y, = 0.83, and (c) y, = 0.93. Black arrows give the direction
of diffusion.

increasing yn leads to increasing damping, since the number of resonant electrons

increases, but also decreasing efficiency, because resonant electrons have a decreasing

parallel momentum p1l and an increasing collisionality.

5.3.5 Role of N11 in LBF EBWCD
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Figure 5-9: Normalized efficiency 7 and power deposition profile dP/Pody, as a
function of y" = Wce/w (a) and as a function of p, (b), for three different values of
the parallel wave number: N = 0.5, Ni1 = 1 and N = 1.5.

On Fig. 5-9, graph (a), we show the normalized efficiency 7 and power deposition

profile dP/dyPo as a function of yn = nWce/w < 1 (LBF), for the same parameters as
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in Section 5.3.1, but for three different values of the parallel wave number, N11 = 0.5,

Ni1 = 1 and N11 = 1.5. We observe that:

* The CD calculation for N11 = 0.5 is limited to y, > 0.86 because of the condition

(5.11) for the existence of resonant electrons.

* For a given ya, we saw in Fig. 5-1 that the resonance curves are closer to

the bulk for larger N11, which is the Doppler shift effect. This explains why

the profiles of power deposition dP and of efficiency q are shifting away from

resonance (y, = 1) as Nil increases.

" The slower variations of dP and 71 for larger Nil are due to the Doppler broad-

ening effect (see Section 5.1.2).

* For a large N11 = 1.5, the n = 1 and n = 2 resonance overlap, meaning that

the deposition profiles corresponding to each harmonic cannot be separated. In

other words (see Section 5.1.7), the wave cannot propagate undamped between

these two harmonics for Nil = 1.5.

Because the Doppler shift and broadening effects dominate the variations of both

dP and 77, we normalize the position yn with respect to Nil as (B.133) pn = (1 - yn) /NIII 3 e

and plot the profiles of dPb/dpnPo and 1 as a function of pn. This choice of normal-

ization is motivated by the results of Section 5.1.2 where we saw that Pn corresponds

approximately to the value of phl mij, which is the position on the resonance curve

closest to the bulk. As expected, with the Doppler effects accounted for, the profiles

are now much closer and it is possible to compare the results in more detail. We

observe that:

* The deposition profiles are shifting away from the resonance (p, = 0) as N11

increases, in particular between N11 = 0.5 and N11 = 1. This result can be

understood as a relativistic effect on power absorption. Indeed, we saw in

Section 5.1.6 that relativistic effects bring the deposition closer to resonance for

LBF approach, and that the relativistic shift varies as (5.36) 3 Te/ IN, 1 meaning
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Figure 5-10: Contour plot of the RF diffusion coefficient in momentum space for (a)
N11 = 0.5 and yn = 0.92, (b) N11 = 1.0 and yn = 0.83, and (c) N11 = 1.5 and yn = 0.74.

Black arrows give the direction of diffusion.

it decreases with increasing IN11 , which is consistent with our observations on

Fig. 5-9, graph (b).

* At constant pn, the CD efficiency q increases with IN11 1. This result can be

explained by the contribution of the parallel component in the RF diffusion.

We showed in Section 5.1.4 that there is a small parallel component in the RF

diffusion due the relativistic effects, such that the angle of diffusion with respect

to perpendicular is X ~ -NINlre (5.26). This angle increases with N11, and
PTe

this effect is enhanced by the fact that resonant pI/PTe also increase with Nil.

Indeed, Doppler effect shifts the power deposition further from resonance, where

kIPTe is lower, and resonant pIpTe verify P1PTe < zi/ (kiPTe), where z1 is

the first zero of J1 (z) /z (5.20).

The effect of parallel diffusion can be seen of Fig. 5-10, where we calculate the

diffusion coefficient (3.205) and show its magnitude in momentum space at the peak

location of deposition profile for (a) N11 = 0.5 (yn = 0.92), (b) N11 = 1.0 (yn = 0.83),

and (c) N11 = 1.5 (yn = 0.74). The black arrows indicate the direction of RF diffusion.

The increase of the angle x with N11 and the increase in resonant P±/PTe are clearly

visible. An increased parallel diffusion leads to a consequent increase in efficiency,

because direct parallel momentum is transfered to electrons. By extension, a fully

parallel diffusion would lead to normalized efficiencies comparable to LHCD, r > 15.
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N 0.5 1.0 1.5
77peak 2.9 3.7 4.2

Table 5.1: CD efficiency 77 measured at the peak of deposition profile for various
values of N11.

An estimation of the total driven current efficiency is ?lpeak (5.62), the efficiency

measured at the peak of deposition profile Yn,peak or Pn,peak. The results are shown

in Table 5.1. The combined effect of a shift of the deposition profile (in pn) and an

increase of the CD efficiency (at fixed pn) result in a significant increase in the peak

current drive efficiency with Ni1 . The conclusion is that a higher NII is better as long

as the harmonics do not overlap.

5.3.6 Role of the temperature in LBF EBWCD

- Te0.0 2 5  - PTe=0.025

75 - - - P =0.05 15 2 -~- PTe=0.05 10
Te g .75=0.075 P. Te =8.

1.2
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Figure 5-11: Normalized efficiency 7 and power deposition profile dP/Podyn as a
function of yn = Wce/w (a) and as a function of pn (b), for three different values of
the normalized temperature, 3 Te = 0.025, OTe = 0.05 and 3Te = 0.075.

On Fig. 5-11, graph (a), we show the normalized efficiency 7 and power deposition

profile dPb/dynPo as a function of yn = nwce/w < 1 (LBF), for the same parameters

as in Section 5.3.1, with NiI = 1, but for three different values of the normalized

temperature /3 e = VTel (mec 2 ): /re = 0.025, f3 e = 0.05 and /3 e = 0.075, which

correspond to Te = 0.3 keV, Te = 1.3 keV, and Te = 2.9 keV respectively. We observe

235



that:

" For given y, and N11, the position of the resonance curves (5.10) is not a function

of temperature in the momentum space (p±/mec, plI/mec), but it is clearly a

function of temperature in the space (PI/PTe, PII/PTe), which is relative to the

distribution function, as a result of the change of coordinates. The Doppler

shift effect is therefore proportional to pTe/mec = /3 Te, as seen on garph (a).

" The slower variations of dP and 7j for larger N11 are due to the Doppler broad-

ening effect (see Section 5.1.2).

" For a large #3 e = 0.075, the n = 1 and n = 2 resonance overlap, meaning that

the deposition profiles corresponding to each harmonic cannot be separated. In

this way, !3 Te and N11 have similar effects since the overlapping condition (5.46)

is a condition on 3 Te IN11 .

In order to isolate the Doppler shift and broadening effects, we normalize again

the position Yn as (B.133) pn = (1 - y,) /Nii/Te and plot the profiles of dPb/dpnPo

and q as a function of pn. With the Doppler effects accounted for, the profiles are

now much closer and it is possible to compare the results in more details. We observe

that:

" Unlike the case of increasing N11, the deposition profiles are shifting towards the

resonance (pn = 0) as f3 e increases, which is again a relativistic effect on power

absorption. Indeed, we saw in Section 5.1.6 that relativistic effects bring the

deposition closer to resonance for LBF approach, and that the relativistic shift

varies as (5.36) 0Te/ INi1 1, meaning it increases with 3 Te, which is consistent

with our observations on Fig. 5-11, graph (b).

" At constant pn, the CD efficiency q increases with /3 e. This result can again

be explained by the contribution of the parallel component in the RF diffusion.

We showed in Section 5.1.4 that the angle of diffusion with respect to perpen-

dicular is X ~ kN3Te (5.26). This angle increases with 3 Te, and this effect is
PTe
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3Te 0.025 0.050 0.075
7lpeak 3.8 3.7 3.7

Table 5.2: CD efficiency 27 measured at the peak of deposition profile for various
values of 3 Te.

enhanced by the fact that resonant pI/pTe also increase with OTe, since Doppler

effect shifts the power deposition further from resonance, where kiPTe is lower,

and resonant pI/PTe verify PI/PTe < zi/ (kIPTe), where z, is the first zero of

Ji (z) /z (5.20).

An estimation of the total driven current efficiency is qpeak, the efficiency measured

at the peak of deposition profile Yn,peak or Pn,peak. The results are shown in Table

5.2. The negative effect of an increasing shift of the deposition profile (in pn) and

the positive effect of an increase of the CD efficiency (at fixed pn), as 3 Te increases,

almost cancel so that the total effect of OTe on the normalized efficiency is negligeable,

as the harmonics do not overlap. However, we should keep in mind that for a fixed

q, the absolute current drive efficiency qjp (5.54) increases linearly as a function of

/
3 Te, when the normalization is taken into account. This increase results from the

reduction of collisionality at higher temperature.

5.3.7 Collisional response: role of Zeff and electron trapping

In the linear limit, Zeff and electron trapping do not affect the power deposition

profile. However, they affect the collisional response of the plasma, and thus the

current drive efficiency.

On Fig. 5-12, we show the normalized efficiency 7 and power deposition profile

dP/dyPo as a function of yn =- nce/w < 1 (LBF), for the same parameters as in

Section 5.3.1, but either (a) for three different values of the effective charge Zeff = 1,

Zeff = 2 and Zeff = 3, or (b) for three different values of the trapped electron fraction,

ft = 47 %, ft = 66 % and ft = 81 %. As expected, the linear power deposition profile

is independent of Zeff and ft.

Considering the effect of Zeff, we see that the current drive efficiency decreases ste-
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Figure 5-12: Normalized efficiency 77 and power deposition profile dP/Pody. as a
function of we/w for (a) three different values of the effective charge Zeff = 1, Zeff = 2
and Zeff = 3, and for (b) three different values of the trapped electron fraction, ft = 47
%, ft = 66 % and ft = 81 %.

dily with Zeff (graph a), which is a general characteristic of any current drive scenario.

Indeed, the collisional pitch-angle scattering of electrons on ions, which increases pro-

portionally to Zeff, tends to isotropize the distribution function and therefore reduces

the parallel current.

Despite the fact that there are no trapped electrons at the location of wave-

particle resonance (0 = 180*), trapped electrons affect the current drive efficiency ?7,

which decreases when the trapped fraction ft increases (graph b). Indeed, resonant

electrons rapidly move back and forth from inboard to outboard sides, because of

fast motion along the field lines. When they are on the outboard side, they exchange

momentum with trapped particles through collisions. Because of the fast bounce

motion of trapped electrons, this momentum can almost immediately be transferred

to counter-passing electrons. In other words, the trapped region acts as a short-circuit

in collisional pitch-angle scattering, thus increasing the collisional isotropization of the

distribution function.

An estimation of the total driven current efficiency is 7lpeak, the efficiency measured

at the peak of deposition profile Yn,peak or Pn,peak. The results are shown in Table 5.3

as a function of Zeff (a) and ft (b).
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Zeff 1 2 3
7lpeak 4.8 3.7 3.0

ft 47% 66% 81% (b)
[peak 4.6 3.7 2.8

Table 5.3: CD efficiency q measured at the peak of deposition profile for various
values of (a) Zeff and (b) ft.

5.3.8 Quasilinear effects on EBWCD

The calculations so far were done in the linear limit. The quasilinear effects on

EBWCD can be investigated by increasing the incident power in the EBW beam.

40 -.- <Sb>= 1000 -20

3S 10

10 - . -... ... ....5

0.0
8.7 0.8 0.91

Figure 5-13: Normalized efficiency q and power deposition profile dP/Pody as a
function of wce/w, for three different values of the incident energy flow: Sin, = 0.01
kW/m 2 , slne = 1 kW/m 2 and Sin, = 100 kW/m 2.

On Fig. 5-13, graph (a), we show the normalized efficiency q and power deposition

profile dPb/dynPo as a function of y, = nwce/w < 1 (LBF), for the same parameters as

in Section 5.3.1, but for three different values of the incident energy flow density sinc =

0.01 kW/m 2, snc = 1 kW/m 2 and sin, = 100 kW/m 2. This last value corresponds to

experimental power levels (about one Megawatt in NSTX) and approaches the limit

of validity of our quasilinear operator with respect to non-linear effects, according to

results from Section 3.5.3.

The difference between sinc = 0.01 kW/m 2 , Sin, = 1 kW/m 2 does not affect the

CD results significantly, which means that the linear regime still prevails. However,

for sin, = 100 kW/m 2 , we observe a significant shift of the power deposition profile

towards the resonance, combined with a strong increase in the efficiency y at fixed yn.
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These effects can be understood by the flattening of the distribution function due to

quasilinear diffusion. The modifications of the distribution function due to quasilinear

diffusion can be observed on Fig. 5-14, where the steady-state distribution function

was calculated for y, = 0.83 and sin, = 100 kW/m 2

2D Distribution function fo

-.
r

-10 -5 0 5 1
ref

P Te

(a)
x 10-

0
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210 -5 0 5 10

I Te

(b)

Figure 5-14: (a) Contour plot of the distribution function fo in LBF-EBWCD. The
thin blue lines represent the Maxwellian distribution, and the green contours represent
the magnitude of the diffusion coefficient. (b) Fo: same distribution integrated over
the perpendicular momentum.

On graph (a), the steady-state distribution function fo is shown as a contour

plot in momentum space, while on graph (b) it is integrated over the perpendicular

momentum as

F0 (p|j) = 27r J0 00
p-dp± fo (pI1, p±)
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sinc (kW/m 2) 0.01 1 11001
17peak 3.7 4.1 5.2

Table 5.4: CD efficiency ?7 measured at the peak of deposition profile for various
values of sic.

On graph (a), the thin blue lines represents the circular contours of a Maxwellian

distribution, while the thick red lines are contours of the distribution function with

strong RF diffusion. The dashed green contours reprensent the magnitude of the

diffusion coefficient. In the region of strong diffusion, the quasilinear distortion of the

distribution function is clearly visible. This flattening is in the direction of diffusion,

and leads to a decrease in the density of absorbed power (normalized to the incident

power) relative to the linear case, where the distribution remains Maxwellian. This

reduction in the relative density of absorbed power Pabs leads to a higher peak CD

efficiency 77, since 77 = j/Pabs, but also a shift of the power deposition profile towards

resonance. The overall effect is positive, however, as we can see from the results of

Table 5.4.

5.3.9 Integrated calculation of LBF EBWCD for actual ST

scenario

In order to validate the parametric study presented in this section, an actual LBF

EBWCD scenario in a NSTX plasma is considered. A EBW beam of frequency

w/27r = 12 GHz is assumed to propagate along the horizontal midplane, with a

constant N11 = 0.5, as shown of Fig. 5-15 graph (a). For such parameters, the inboard

side of the plasma is accessible, as shown on graph (b) where the frequency profile on

the horizontal midplane shows the cyclotron harmonics including the Doppler shift

w = nWce 3 .5VTekII. The wave characteristics, power deposition and driven current

are calculated along the beam path, for an initial power P = 1 MW in the beam.

The power and current density deposition profiles are shown on graph (c). The power

deposition profile peaks at the radial location p ~ 0.50. The current is driven by Fisch-

Boozer effect and peaks sightly before, meaning that the CD efficiency is decreasing
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Figure 5-15: (a) Same as Fig. 1-9 for f = 12 GHz and Nil = 0.5. (b) Frequency
profile of the cyclotron harmonics - including the Doppler shift W = nWce t 3VTek -
on the horizontal midplane. (c) Density of current and power deposited at a function
of radius.

as expceted as the wave moves towards resonance. The normalized efficiency at the

peak of power absorption is r1 ~ 3.7, and the total driven current is I = 99 kA, so that

the CD efficiency is approximately I/P = 0.1 A/W. In terms of normalized global

efficiency as defined in (5.65), we find CD = 0.67, which is significantly higher than

typical ECCD efficiencies. The power deposition profile is very narrow: Ap = 0.04,

because of a small Doppler effect (NiI = 0.5) and the small value of the magnetic field

variations scale length on the inboard side of the plasma.
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5.3.10 Interaction between LBF EBWCD and the bootstrap

current

Because the LBF interaction between EBWs and electrons occurs on the inboard

side of the plasma, where there are no trapped electrons, the interaction between the

bootstrap current and EBWCD is expected to be small. To illustrate this, we consider

the location of the peak in the power deposition profile calculated for the integrated

LBFCD calculation in NSTX presented in Section 5.3.9. The radial location is p =

0.50. The distribution function fl, which accounts for the effects of the drifts, is

calculated in the absence of EBWCD - when fo is Maxwellian - which gives the

bootstrap current. At this location, the bootstrap current density is JBC = 0.13

MA/m 2 . When the effect of EBWs is included, the current calculated from fo gives

the EBWCD density, JRF = 1.03 MA/m 2 , and the current calculated from fi give

the bootstrap current with synergistic effects, J1 = 0.15 MA/m 2 . Substracting JBC

from this value, we obtain the synergistic current Jy" = 0.02 MA/M 2. This current

represents about 2% of the EBW driven current and is not significant.

5.4 HBF (nu;ce > w) approach

We now consider a HBF scenario for EBWCD. We have seen in Section 1.3 that HBF

wave-particle interaction typically takes place in the outboard side of the plasma

where the dip in the magnetic field is located in a high-3 plasma. (see Fig. 1-9).

This dip is located far off-axis near the midplane, such that trapped electron effects

are expected to play an important role and Ohkawa effect should dominate current

generation. Since trapped electron effects are maximized near the inboard horizontal

midplane, restricting our calculations to 6 = 00 is relevant for HBFCD.

Because the EBW frequency is necessary higher than the electron cyclotron fre-

quency, a HBF approach (nwc > w) can only be considered for n > 2. In our

study of HBFCD, we consider only the n = 2 resonance, but many results and their

interpretation can be extrapolated to higher harmonics.
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Considering local calculations, as defined in Section 5.2.2, an example of HBF

approach to EBWCD is considered first. The CD results are explained according to

the CD mechanism. By calculating the power deposition profile and comparing with

the CD efficiency profile, it is possible to identify an optimization scheme for HBF-

EBWCD. The parametric dependence of EBWCD is calculated upon the parallel wave

number, the temperature, the effective charge and the fraction of trapped particles.

Quasilinear effects on EBWCD are also investigated. Then an integrated calculation

of EBWCD is presented and illustrates the HBF-EBWCD mechanism in realistic

ST geometry. Finally, the effects of the interaction with the bootstrap current are

described.

5.4.1 EBWCD calculation in HBF approach

By varying the frequency ratio yn keeping all other parameters constant, it is possible

to simulate the EBW approaching the resonance and calculate analytically the power

deposition - as a function of y, - by integrating over the absorption coefficient, as

done in Appendix B.4. Knowledge of the power deposition profile is important in

order to estimate the driven current density and optimize EBWCD.
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15 3

0 .6 - ----... ... ... ......: .. 0 .6
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Figure 5-16: Relative evolution of (a) the current (dashed red line) and absorbed
power (solid blue line) densities, and (b) the normalized efficiency r (dashed red
line) and the power deposition profile dP/Pody (solid blue line) as a function of
Y2 = 2Wce/W-
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We consider the plasma and wave parameters given in the tables (5.48) and (5.49)

respectively. These parameters correspond approximately to the plasma conditions

near the bottom of the dip in the magnetic field profile on NSTX, and the wave

frequency w/21r = 14 GHz is chosen to match the second harmonic at that point.

For various values of y, > 1, and a given input power Pb, we solve the Fokker-Planck

equation (3.118) and calculate the resulting normalized driven current density j and

absorbed power density pabs. The results are shown on Fig. 5-16, graph (a), where

the blue solid line is pabs/Pb and the dashed red line is j/Pb, normalized to the

input power density. As expected from the results of Section 5.1.5, the absorbed

power density increases as Y2 decreases towards 1 - or the wave approaches resonance.

However, the current density increases and then decreases after some peak location.

The normalized current drive efficiency ij = j/pabs is shown on graph (b) as a red

dashed line. It slowly increases as y, decreases towards 1 until some maximum value,

beyond which the efficiency rapidly decreases to 0.

5.4.2 Current drive mechanism
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Figure 5-17: Resonance condition term 6 (Nitres (p) - N11, ANii) (a), and polarization
term 1821 (b) contributing to the diffusion coefficient in momentum space for Y2 =

1.19.

The current drive mechanism can be understood by considering the various com-
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ponents of the RF diffusion coefficient (3.205), namely the resonance condition

J (Nires - Ni1, ANii) 1 exp (NiresN11)2  (5.73)

and the polarization term IE(2)1 (3.194), plotted in momentum space as contour plots

in Fig. 5-17 on graphs (a) and (b) respectively. Calculations are done for Y2 = 1.19,

which corresponds to the peak in the efficiency profile. As expected, the resonance

condition leads to a diffusion confined around the central resonance curve, character-

ized by (yn, Nil) (5.10) and shown as a red dashed line, with a characteristic width in

pll: Apli - pl ANII/NII. Because we took N11 = 1, the resonance curve is a parabola in

momentum space. In the limit of electrostatic polarization, the term IE(2) (p) can be

rewritten approximately as (5.20), where J2 (z) /z peaks at z ~ 2.3 between the two

first zeros at z = 0 and z ~ 5.1. Because of the smaller value of kIpTe ~ 0.7 in HBF

approach, as seen in Section 2.3, z = kIPTePI/PTe corresponds to large peak value

at pI = 3 .3PTe, which is higher than typical resonant pI/PTe in LBF approach. The

interaction occurs over a wide range of 0 < p_ < 7.3 pI/PTe, and resonant electrons

have a significant perpendicular momentum component. We also note that the effect

of the parallel component of the polarization, which explains the strong p11 asymmetry

in IE( 2) , is quite important because eli is larger than for LBFCD (since el ~ NI/N

and N is smaller) despite the fact that the factor pll /pi is smaller in this case. The

asymmetry reduces IE(2)| on the resonant side and therefore larger N11 are expected

to have a negative effect of this term and decrease the magnitude of the diffusion

coefficient.

The resulting diffusion coefficient is shown on Fig. 5-18, graph (b), where its mag-

nitude is represented by a contour plot and the dashed red and blue lines represent

the central N11 resonance curve and the peak of IE(2)| , respectively. The RF diffusion

is therefore mostly confined around the resonance curve and peaks near where this

curve crosses the blue line, with a much weaker secondary peak well above. The

black arrows indicate the direction of RF diffusion, where the angle of diffusion is

given by (5.26) and the direction of diffusion is given by -&f/op, which is the direc-
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tion of rising p's for a Maxwellian. We observe that the diffusion is again mostly in

the perpendicular direction, as expected for cyclotron harmonic resonance. Because

wave-particle interaction occurs on the outboard midplane (Ob = 0') and the trapped

particle fraction is large (about 2/3), perpendicular diffusion leads to significant elec-

tron trapping and therefore Ohkawa current is generated [29]. As a consequence of

Ohkawa CD, electron flow (opposite to the driven current since electrons carry a neg-

ative charge) is driven in the opposite direction to the resonant P11min. However, in

a HBF approach, resonant P11 min are of opposite sign to N11, and therefore current is

generated in the same direction as for LBF FBCD. We see that in HBF EBWCD,

the diffusion coefficient is located at rather high values of p _, which is favorable for

Ohkawa CD because the resonant electrons are located close to the trapped region

and significant wave-induced trapping can be expected.

5.4.3 Interpretation of CD results
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Figure 5-18: Contour plot of the RF diffusion coefficient in momentum space for
N11 = 1 and (a) y, = 1.29, (b)y, = 1.19, and (c) y,, = 1.09. Black arrows give the

direction of diffusion.

In order to explain the variations of j, pabs and r with ya, we calculate the diffusion

coefficient (3.205) and show its magnitude in momentum space on Fig. 5-18, for three

values of y,, = 1.29 (a), y,, = 1.19 (b) and y, = 1.09 (c). We see that the main effect

of increasing y,, is to move the resonance curves in momentum space closer to the

bulk (Ipii min decreases), in accordance with Fig. B. 149. Therefore, as the wave moves

closer to resonance, decreasing yn leads to increasing damping, since the number of
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resonant electrons increases, which explains the evolution of pabs on Fig. 5-16.

" Concerning the current density j, it first increases as the wave moves closer to

resonance and y,, decreases (a -+ b), mainly because the number of resonant

electrons increases.

" However, even closer to the resonance (c), most of the wave power couples to

trapped electrons, which do not carry any current. This explained the decreas-

ing current density for y,, < 1.13. This current reduction leads to a correspond-

ing decrease in the efficiency, which is further enhanced by the fact that the few

remaining resonant electrons of the passing region have a decreasing parallel

momentum p1l and an increasing collisionality (c).

" Note however that the heating of trapped electrons may result in changes in the

bootstrap current, which will be investigated in Section 5.4.10.

" The small decrease in the efficiency as the resonance curves move away from the

bulk for increasing yn (b -- a) beyond the peak value y,, = 1.19 is the result of

the balance between having less collisional resonant electrons with larger p1l - a

positive effect - and the Fisch-Boozer effect of creating an asymmetric resistivity,

which increases as the resonance moves further from the trapped region, and

drives a current in the opposite direction.

" It is not surprising that the peak efficiency is obtained when the diffusion co-

efficient peaks just below the trapped/passing boundary (b) and perpendicular

diffusion leads to maximum wave-induced trapping.

5.4.4 Power deposition and CD optimization

In order to estimate the actual driven current density in such scenario, it is necessary

to calculate the power deposition profile, calculated by DKE for a density ne ~

3.0 x 1019 m-3 (a 2 = 12) and LB = 1 m and shown on Fig. 5-16, graph (b) as a

solid blue line. The deposition profile results from the balance between increasing
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damping, as y, increases, and reduction in the power density carried by the wave,

as the wave is being damped. This calculation of the power deposition profile is

compared with the weakly relativistic calculation (green dash-dotted line), based on

the expression (5.32) for the absorption coefficient. We see that the two calculations

agree fairly well, but not as well as for the LBFCD case. This is due to the fact that

the electrostatic approximation, used in the calculation of (5.32), fails down near the

resonance in HBF appraoch, in particular regarding the polarization (See Fig. 2-5),

which is in accordance with the results shown on Fig. 5-4.

Because of the peaked efficiency profile, CD is be optimized if the peaks in the

deposition profile and the efficiency coincide. According to the results of Section 5.1.6,

the location of the peak of power deposition is always about p" ~ 3.5. Therefore,

the optimization of HBF EBWCD requires to adjust the location of the peak in the

efficiency profile accordingly, by controling the location of deposition and N11, which

will be adressed in the coming sections.

5.4.5 Role of NII in HBF EBWCD

40 4 1 ---.4 N = 0.5 -4

-0.6

2 0 .. . ... 2.. ...10

0 10 0
1 1.1 1.2 1.3 1.4 - 6 -5 -4 -3 -2 -1

2 /Co p

(a) (b)

Figure 5-19: Normalized efficiency 77 and power deposition profile dP/Pody, as a
function of Y2 = 2wc/w (a) and as a function of p,, (b), for three different values of
the parallel wave number: N = 0.5, N = 1 and NII = 1.5.

On Fig. 5-19, graph (a), we show the normalized efficiency 7 and power deposition
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profile dP/dyPo as a function of y. = nWce/W > 1 (HBF), for the same parameters as

in Section 5.4.1, but for three different values of the parallel wave number, N11 = 0.5,

N11 = 1 and N11 = 1.5.

* For a given ya, we saw on Fig. 5-1 that the resonance curves are closer to

the bulk for larger N11, which corresponds to the resonance Doppler shift effect.

This explains why the profiles of power deposition dP and of efficiency q are

shifting away from resonance (y,, = 1) as N11 increases.

* The slower variations of dP and q for larger N11 are due to the Doppler broad-

ening effect (see Section 5.1.2).

" The peak value for y increases as N11 increases, and the Doppler shifts of the

peaks for 77 and dP are different, such that these two peaks coincide for N11 = 1,

while power deposition occurs too far away from resonance for N11 = 1.5 and

too close to the resonance for N11 = 0.5.

" For a large N11 = 1.5, the n = 1 and n = 2 resonance overlap, meaning that

the deposition profiles corresponding to each harmonic cannot be separated. In

other words (see Section 5.1.7), the wave cannot propagate undamped between

these two harmonics for N11 = 1.5.

Because the Doppler shift and broadening effects dominate the variations of both

dP and q, we normalize the position yn with respect to N11 as (B.133) pn = (1 - yn) /NII/3Te

and plot the profiles of dPb/dpnPo and 71 as a function of p,. This choice of normal-

ization is motivated by the results of Section 5.1.2 where we saw that pn corresponds

approximately to the value of P1 min, which is the position on the resonance curve

closest to the bulk. As expected, with the Doppler effects accounted for, the profiles

are now much closer and it is possible to compare the results in more details. We

observe that:

o The deposition profiles moving closer to the resonance (pn = 0) as N11 increases,

in particular between N11 = 0.5 and N11 = 1. This result can be understood as
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Figure 5-20: Contour plot of the RF diffusion coefficient in momentum space for (a)
Nil = 0.5 and y, = 1.13, (b) N11 = 1.0 and y, = 1.19, and (c) N11 = 1.5 and y, = 1.26.
Black arrows give the direction of diffusion.

a relativistic effect on power absorption. Indeed, we saw in Section 5.1.6 that

relativistic effects move the power deposition away from resonance for HBF

approach, and that the relativistic shift varies as (5.36) /Te/ I Nil1, meaning it

decreases with IN11 , which is consistent with our observations on Fig. 5-9, graph

(b). In other words, the positive relativistic effects are larger for small IN 1 .

* The peak value of q increases with N11. This result can be explained by the

contribution of the parallel component in the RF diffusion. We showed in

Section 5.1.4 that there is a small parallel component in the RF diffusion due the

relativistic effects, such that the angle of diffusion with respect to perpendicular

is X ~- -~NINe (5.26). This angle therefore increases with N11. Unlike the
PTe

LBF CD case, the variation of resonant pI/PTe as N11 changes should not be

important in this case because resonant pI/PTe are spread over a large range,

a consequence of small (kipTe) (5.20). The effect of parallel diffusion can be

seen of Fig. 5-20, where we calculate the diffusion coefficient (3.205) and show

its magnitude in momentum space at the peak location of deposition profile

for (a) N11 = 0.5 (y, = 1.13), (b) N11 = 1.0 (y, = 1.19), and (c) Nil = 1.5

(y, = 1.26). The black arrows indicate the direction of RF diffusion. The

increase of the angle x with N11 is clearly visible. Unlike the LFBCD case, the

parallel diffusion now faces towards lower 1pl| and so toward the bulk. Because

the CD mechanism is the Ohkawa effect, this parallel component has a positive
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NiI 0.51 1.O1.51
?lpeak 1-8 2.4 2.6

Table 5.5: CD efficiency q measured at the peak of deposition profile for various
values of NII.

effect as it reduces the incidence angle between the direction of diffusion and

the normal to the trapped/passing boundary. The RF diffusion is directed more

toward the trapped/passing boundary. Therefore, the peak value of q increases

with NiI.

" On Fig. 5-20, we see that for each NI, the largest current drive efficiency is

obtained when the diffusion region peaks right beneath the trapped/passing

boundary, so that wave-induced trapping is maximum.

" The profiles for the CD efficiency q move closer to the resonance (with respect

to p") as INI increases. A possible explanation for this result is the effect of

curvature in the resonance curve, which decreases as INI increases. Therefore,

in order to have the diffusion region peaking near the trapped passing boundary,

the value of [p11 min ~ lp, I must be smaller for large N1 . Another explanation is

the variation of the peak in resonant pI/PTe (blue dashed lines on Fig. 5-20),

which moves down as INI increases, such that the value of IpII minj IPn I must

be smaller for large Nil.

We note that, as INI, I increases, the shifts of the power deposition and efficiency

profiles with respect to pn are in the same direction, which means that the range of

INiI over which the two profiles coincide - and HBF Ohkawa CD is optimized - is

quite large.

An estimation of the total driven current efficiency is 77pek (5.62), the efficiency

measured at the peak of deposition profile Yn,peak or Pn,peak. The results are shown

in Table 5.5. At Nil = 1, the two profiles coincide, and the peak efficiency is higher

than for N1 = 0.5, which explains the large difference on 7peak. Between N1 = 1 and

N = 1.5, the increase in the peak efficiency with NiI dominates the fact that the two

profiles do not coincide for N11 = 1.5, and ipeak increases slightly.
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5.4.6 Role of the temperature in HBF EBWCD
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Figure 5-21: Normalized efficiency ?7 and power deposition profile dPb/Podyfl as a
function of y2 = 2Wce/W (a) and as a function of pn (b), for three different values of
the normalized temperature, I3 Te = 0.025, f3 Te = 0.05 and I3Te = 0.075.

On Fig. 5-21, graph (a), we show the normalized efficiency iy and power deposition

profile dPb/dyPo as a function of y, = nwce/w > 1 (HBF), for the same parameters

as in Section 5.4.1, with Nii = 1, but for three different values of the normalized

temperature I3Te = /Tel (mec2 ): I3Te = 0.025, I#re = 0.05 and f3 Te = 0.075, which

correspond to Te = 0.3 keV, Te = 1.3 keV, and Te = 2.9 keV respectively. We observe

that:

* For given y, and Nii, the position of the resonance curves (5.10) is not a function

of temperature in the momentum space (p±/mec, pii/mec), but it is clearly a

function of temperature in the space (PI/Pre, PII/pre), which is relative to the

distribution function, as a result of the change of coordinates. The Doppler

shift effect is therefore proportional to pre/meC = /3Te, as seen on graph (a).

* The slower variations of dPb and a for larger N1 are due to the Doppler broad-

ening effect (see Section 5.1.2).

In order to isolate the Doppler shift and broadening effects, we normalize again

the position y, as (B.133) pn = (1 -= y) /NII/ 3Te and plot the profiles of dP/dpPo
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N/e 0.025 0.050 0.075

Rpeak 1-9 2.4 2.9

Table 5.6: CD efficiency r7 measured at the peak of deposition profile for various
values of Te.

and rq as a function of p,. With the Doppler effects accounted for, the profiles are

now much closer and it is possible to compare the results in more details. We observe

that:

* Unlike the case of increasing Nil, the deposition profiles are shifting away from

the resonance (p, = 0) as 3 Te increases, which is again a relativistic effect on

power absorption. Indeed, we saw in Section 5.1.6 that relativistic effects move

the deposition profile away from resonance for HBF approach, and that the

relativistic shift varies as (5.36) Te/ IN11 1, meaning it increases with OTe, which

is consistent with our observations on Fig. 5-21, graph (b).

" At constant pa, the CD efficiency q increases with 3Te. This result can again be

explained by the contribution of the parallel component in the RF diffusion. We

showed in Section 5.1.4 that the angle of diffusion with respect to perpendicular

is X ~ NIlf 3 TeP/PTe (5.26). This angle increases with Te. The effect of OT, on

the efficiency is therefore very similar to the effect of N11.

" There is a shift of the qj profile away from resonance as 3 Te increases. Like in

the case of varying N11, the power deposition and efficiency profiles shift in the

same direction as f3 e increases, which means that the range of /3 Te over which

the two profiles coincide - and HBF Ohkawa CD is optimized - is quite large.

An estimation of the total driven current efficiency is rpeak, the efficiency measured

at the peak of deposition profile ynpeak or Pn,peak. The results are shown in Table 5.6.

Because the power deposition and efficiency profiles coincide quite well for all these

values of /3 e, the increase in the peak efficiency results from the increase in the

maximum efficiency with 3 Te.
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5.4.7 Collisional response and Ohkawa effect: role of Zeff and

electron trapping

In the linear limit, Zeff and electron trapping are not assumed to affect the power

deposition profile. However, they affect the collisional response of the plasma, and

thus the current drive efficiency. In addition, the Ohkawa CD mechanism is very

dependent on the location of the trapped/passing boundary in momentum space,

and therefore on the fraction of trapped electrons.

20 4 24 12
-- Z, = 1 -- f = 0.47eff - 04

Z5 -..Z,=2 3 =6 ~~=0.668
S ...... Z 3 f = 0.81

eff

5 ---- 1 0 - "

0 0 -4
1 1.1 1.2 1 1.1 1.2

ce ce

(a) (b)

Figure 5-22: Normalized efficiency q and power deposition profile dP/Podyn as a
function of Y2 = 2wce/w for (a) three different values of the effective charge Zeff = 1,
Zeff = 2 and Zeff = 3, and for (b) three different values of the trapped electron
fraction, ft = 47 %, ft = 66 % and ft = 81 %.

On Fig. 5-22, we show the normalized efficiency q and power deposition profile

dP/dyPo as a function of y,, = nwce/w > 1 (HBF), for the same parameters as in

Section 5.4.1, but either (a) for three different values of the effective charge Zeff = 1,

Zeff = 2 and Zeff = 3, or (b) for three different values of the trapped electron fraction,

ft = 47 %, ft = 66 % and ft = 81 %. As expected, the linear power deposition profile

is independent of Zeff and ft.

Considering the effect of Zeff, we see that the current drive efficiency decreases ste-

dily with Zeff (graph a), which is a general characteristic of any current drive scenario.

Indeed, the collisional pitch-angle scattering of electrons on ions, which increases pro-
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ZeI 1 2 3 (a) ft 47% 66% 81% M
7lpeak 3.4 2.4 1.9 77peak -1.1 2.4 3.0

Table 5.7: CD efficiency rj measured at the peak of deposition profile for various
values of (a) Zeff and (b) ft.

portionally to Zeff, tends to isotropize the distribution function and therefore reduces

the parallel current.

The CD efficiency profile depends dramatically upon the fraction of trapped elec-

trons.

" When the trapped fraction is small (case with ft = 47 %) and the trapped

region in momentum space is narrow, the peak in the profile of CD efficiency

is close to the bulk. Further from the resonance, the driven current becomes

actually negative, which means that the Fisch Boozer effect dominates. For the

present power deposition profile, shown on Fig. 5-22, the total driven current

would definitely be negative Fisch-Boozer current

" With a very large trapped fraction (case with ft = 81 %, which would corre-

spond to NSTX locations very close to the edge), the efficiency increases stedily

away from the resonance. This means that the Fisch-Boozer current effects are

negligeable, and the increase in efficiency results from the fact that the resonant

electrons are further in the bulk and thus less collisional.

" Because of the strong variations in the efficiency profile when the trapped frac-

tion is changed, the region of the plasma where Ohkawa CD is possible is limited

to the far off-axis locations of the plasma.

An estimation of the total driven current efficiency is qpeak, the efficiency measured

at the peak of deposition profile Yn,peak or Pn,peak. The results are shown in Table 5.7

as a function of Zeff (a) and ft (b).
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5.4.8 Quasilinear effects on EBWCD

The calculations so far were done in the linear limit. The quasilinear effects on

EBWCD can be investigated by increasing the incident power in the EBW beam.

-- <Sb>=1

25 --- - -300

5

0- 0
1 1.1 1.2

ce

Figure 5-23: Normalized efficiency 7 and power deposition profile dP/Pody as a
function of Y2 = 2wc/w, for three different values of the incident energy flow: sinc =

0.01 kW/m 2 , sinc = 1 kW/m 2 and sin, = 100 kW/m 2.

On Fig. 5-23, graph (a), we show the normalized efficiency q and power deposition

profile dPb/dynPo as a function of yn = nlce/w > 1 (HBF), for the same parameters as

in Section 5.4.1, but for three different values of the incident energy flow density sine =

0.01 kW/m 2 , sinc = 1 kW/m 2 and sinc = 100 kW/m 2 . This last value corresponds

to experimental power levels and approaches the limit of validity of our quasilinear

operator with respect to non-linear effects, according to results from Section 3.5.3.

The difference between sic = 0.01 kW/m 2 , Sinc = 1 kW/m 2 does not affect the

CD results significantly, which means that the linear regime still prevails. However,

for sinc = 100 kW/m 2 , we observe a shift of the power deposition profile towards the

resonance, combined with a strong increase in the peak efficiency y and a large shift

of the efficiency profile away from the resonance.

These effects can be understood by the flattening of the distribution function

due to quasilinear diffusion. The modifications of the distribution function due to

quasilinear diffusion can be observed on Fig. 5-24, where the steady-state distribution

function was calculated for y, = 1.19 and sinc = 100 kW/m 2
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Figure 5-24: (a) Contour plot of the distribution function fo in HBF-EBWCD. The
thin blue lines represent the Maxwellian distribution, and the green contours represent
the magnitude of the diffusion coefficient. (b) Fo: same distribution integrated over
the perpendicular momentum.

On graph (a), the steady-state distribution function fo is shown as a contour

plot in momentum space, while on graph (b) it is integrated over the perpendicular

momentum as

F0 (p||) = 27r Io 00
p-dp1 fo (PiP1')

On graph (a), the thin blue lines represents the circular contours of a Maxwellian

distribution, while the thick red lines are contours of the distribution function with

strong RF diffusion. The dashed green contours reprensent the magnitude of the

diffusion coefficient. In the region of strong diffusion, the quasilinear distortion of the
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sinc (kW/m) 0.01 1 100
27peak 2.4 2.5 1.4

Table 5.8: CD efficiency 7 measured at the peak of deposition profile for various
values of sinc-

distribution function is clearly visible. This flattening is in the direction of diffusion,

and leads to a decrease in the density of absorbed power (normalized to the incident

power) relative to the linear case, where the distribution remains Maxwellian. This

reduction in the relative density of absorbed power p leads to a higher peak CD

efficiency 7, since q = j/p, but also a shift of the power deposition profile towards

resonance. In addition, a large shift of the efficiency profile occurs. This shift is also

a consequence of the flattening of the distribution function, for which a given contour

of the distribution "reaches" the trapped/passing boundary further away from the

resonance.

Because the peaks in the profiles for the power deposition and the driven current

do not coincide for the large energy flow density case, the overall effect can be negative,

as we can see from the results of Table 5.8.

5.4.9 Integrated calculation of HBF EBWCD for actual ST

scenario

In order to validate the parametric study presented in this section, an actual HBF

EBWCD scenario in a NSTX plasma is considered. A EBW beam of frequency

w/27r = 12 GHz is assumed to propagate along the horizontal midplane, with a

constant N11 = 1.0, as shown of Fig. 5-25 graph (a). For such parameters, the

beam reaches a Doppler-shifted harmonic on the outboard side near the botton of the

magnetic well, as shown on graph (b) where the frequency profile on the horizontal

midplane shows the cyclotron harmonics including the Doppler shift w = nWce ±

3.5VTekI. The wave characteristics, power deposition and driven current are calculated

along the beam path, for an initial power P = 1 MW in the beam. The power and

current density deposition profiles are shown on graph (c). The power deposition
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Figure 5-25: (a) Same as Fig. 1-9 for f = 12 GHz and N11 = 1.0. (b) Frequency
profile of the cyclotron harmonics - including the Doppler shift W = nwce t 3.5VTekIi -
on the horizontal midplane. (c) Density of current and power deposited at a function
of radius.

profile peaks at the radial location p ~ 0.68. The current is driven by Ohkawa effect

and peaks at the same location as the power deposited. The normalized efficiency at

the peak of power absorption is r7 ~ 1.6, and the total driven current is I = 41 kA,

so that the CD efficiency is approximately I/P = 0.04 A/W. In terms of normalized

global efficiency as defined in (5.65), we find CD = 0.37, which is significantly higher

than typical off-axis ECCD efficiencies. The power deposition profile is rather broad:

Ap = 0.12, because of the large Doppler effect (N = 1.0) and the large value of the

magnetic field variations scale length near the bottom of the magnetic well.
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5.4.10 Interaction between HBF EBWCD and the bootstrap

current

Because the HBF interaction between EBWs and electrons occurs on the outboard

side of the plasma, where the fraction of trapped electrons is maximum, the interaction

between the bootstrap current and EBWCD is expected to be significant. To illustrate

this, we consider the location of the peak in the power deposition profile calculated

for the integrated HBFCD calculation in NSTX presented in Section 5.4.9. The radial

location is p = 0.68. The distribution function fi, which accounts for the effects of

the drifts, is calculated in the absence of EBWCD, when fo is Maxwellian, which gives

the bootstrap current. At this location, the bootstrap current density is JBC = 120

kA/m 2 . When the effect of EBWs is included, the current calculated from fo gives

the EBWCD density, JRF = 133 kA/m 2, and the current calculated from fi give

the bootstrap current with synergistic effects, J1 = 146 kA/m 2 . Substracting JBC

from this value, we obtain the synergistic current J"' = 26 kA/m 2. This current

represents about 20% of the EBW driven current. Note that the EBW driven current

density in that case in much lower than the LBF case because the deposition profile

is much broader.

The strong synergism between HBF EBWCD and the bootstrap current can be

understood from the plot of the distribution function fi on Fig. 5-26. The thin lines

represent the bootstrap current distribution, while thick lines are the contours of fi in

the presence of EBWCD. The distribution is negative on the side p11 < 0 and positive

on the p1l > 0 side. The green contours represent the magnitude of the diffusion

coefficient. The deformation of the bootstrap distribution function due to interaction

with EBWs in clearly visible. On graph (b), the same distribution is integrated over

the perpendicular momentum, as

F1 (pij) = 27r j pjdpi fi (pj, p±) (5.75)

which shows that the synergistic current is driven in the tail of the bootstrap distri-

bution function, which drives significant current.
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Figure 5-26: (a) Contour plot of the distribution function fi in HBF-EBWCD. The
thin lines represent the bootstrap current distribution, while thick lines are the con-
tours of fi in the presence of EBWCD. The green contours represent the magnitude of
the diffusion coefficient. (b) F1 : same distribution integrated over the perpendicular
momentum.
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Chapter 6

Summary and Conclusions

6.1 Electron Bernstein wave current drive model-

ing

Electrons Bernstein waves (EBW) are kinetic waves, for which the wavelength can be

of the order of the electron Larmor radius or even smaller. They do not exist in a cold

plasma wave description. The fundamentals of the kinetic theory of plasma waves

have been reviewed. An analytical description of EBWs characteristics has been

undertaken in the electrostatic limit for a non-relativistic plasma, and expressions

for the wave energy flow density and absorption coefficient have been derived for the

first time. This analytical work has been used for the guidance and interpretation of

EBWCD calculations. This model has been validated by comparison with the exact

calculations using the numerical code R2D2 [13], which includes full electromagnetic

effects. The characteristics of EBWs have been systematically described, as a function

of the wave and plasma parameters.

The description of the resonant interaction between electrons and EBWs also

involves kinetic theory, in the form of a RF quasilinear diffusion operator for electrons

in momentum space, which calculates the transfer of momentum from radio-frequency

(RF) waves to the resonant electrons. Based on earlier works on quasilinear theory

[41], a new fully-relativistic quasi-linear operator describing the interaction between
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electrons and a Gaussian EBW beam has been derived for a slab plasma.

The calculation of current drive (CD) by EBWs in toroidal plasmas involves the

solution of the fully-relativistic electron drift-kinetic equation with Fokker-Planck

collisions and RF quasilinear diffusion. This equation, which accounts for particle

orbit effects such as magnetic trapping and radial drifts, has been derived in a general

formalism that is valid for an arbitrary axisymmetric magnetic geometry, and thus is

adapted to the strongly shaped plasmas of spherical tokamaks.

In typical fusion plasmas, the radial drift velocity of electron is much smaller than

their parallel velocity, and thus the radial extent of trapped particule (banana) orbits

is small. In addition, the collisionality is low, meaning that particles can complete

many poloidal orbits before strong collisional effects occurs, and as a results the

particle orbits are well defined. In that case the 4D drift-kinetic equation (2D in

axisymmetric configuration space, 2D in gyro-averaged momentum space) is reduced

to a set of two bounce-averaged 2D equations in momentum space.

Solving these two partial integral-differential equations requires numerical tech-

niques, and a new code named DKE [73] has been developed for this purpose. It

uses a completely implicit technique to solve the differential part of the equations, in

the sense that the symmetrization of the distribution function in the trapped region,

which results from the fast parallel motion, is ensured implicitly, with an appropriate

treatments of the fluxes at the trapped/passing boundary in momentum space. This

fully implicit scheme makes calculations several order of magnitude faster than the

commonly used half-implicit schemes. Because radial drifts are properly accounted

for in the kinetic equations, the DKE code also calculates the bootstrap current cor-

rectly. In addition, it consistently includes the calculation of CD by any kind of RF

wave interacting with electrons, provided that this interaction can be described by

quasilinear theory. Therefore, the range of applications for the present formalism and

the DKE code reaches far beyond the scope of this thesis, and the code has been

successfully used for many CD calculations, including the first accurate calculation

of Ohkawa CD with electron cyclotron (EC) waves [31] and several investigations of

the kinetic interaction between the bootstrap current and RF waves [77] [30] [33] [34]
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[351 [78].

The description of EBWs and the EBWCD calculations both derive from kinetic

theory. The consistency between the two models has been verified by demonstrating

that the EBW absorption coefficient, calculated using the analytical linear model for

EBWs, is retrieved both analytically and numerically from the quasilinear operator in

the non-relativistic electrostatic limit. Along with this calculation, a new expression

for the linear absorption coefficient has been derived within the weakly-relativistic

approximation. The resulting relativistic effects on the power deposition are found

to be important.

6.2 Electron Bernstein waves characteristics

The systematic study of EBW characteristics has led to the following observations,

relevant for EBWCD calculations:

" In high-fl plasmas, EBWs are generated at the edge of the plasma, in the

mode-conversion region near the upper-hybrid resonance, which is character-

ized mainly by density variations. Once EBWs propagate inside the plamas,

however, their behaviour is dominated by magnetic field variations. Indeed,

EBWs can propagate between two harmonics of the cyclotron resonance, but

are completely damped at the Doppler-shifted resonance of any harmonic.

* The absorption of EBWs is independent of the plasma density, a property of

waves for which the energy density flow is mostly due to the coherent motion

of particles.

" The ratio of the gyroradius to the wavelength is measured by the expression

Re [kIPTe], which is obtained from solving the dispersion relation. It is found

that Re [kIpTe] does not vary significantly as a function of parallel wave number

N11, the temperature, or the density (away from the mode-conversion region).

" The properties of EBWs vary primarily with variations in the magnetic field,
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and can be characterized with respect to the location of cyclotron harmonic

resonances. For this purpose, we have defined the parameter yn = nwce/w.

" In particular, if the wave approaches the nth harmonic resonance from a lower B-

field region (LBF) (nWce < w), the wave is characterized by a large perpendicular

wave vector, a completely electrostatic polarization, and a large electric field

amplitude for a given energy flow density.

" However, if the wave approaches the nth harmonic resonance from a higher

B-field region (HBF) (nwce > w), the wave is characterized by a smaller per-

pendicular wave vector, strong electromagnetic effects in the polarization, and

a smaller electric field amplitude for the same energy flow density.

6.3 Damping of EBWs and power deposition pro-

file

* As EBWs approach a cyclotron harmonic resonance, they are absorbed in the

tail of the distribution function, for typical values of the parallel momentum

such that 3 < p1/pTe 5 3.5, where PTe = /me T, is the thermal momentum.

As a consequence, the location of power deposition in momentum space, along

the resonance curve, is determined by the rapid Gaussian variations of the

distribution function at large pii. As a result, parameters such as the geometry

of the flux-surfaces (plasma shaping) and the scale length of magnetic field

variations, which for example strongly affect the ECCD deposition profile and

thus the CD efficiency, have little effect on EBWCD.

* In the vicinity of a resonance (y,, ~ 1), the position of resonance curves in

momentum space changes mostly as a function of the distance from the magnetic

field, or (1 - y,). Therefore, the damping of EBWs is dominated by changes in

the magnitude of the magnetic field.

* There is an important shift and broadening of the power deposition profile in
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configuration space, due to the Doppler effect, which scales like N/ 3Te, where

f3 Te = VTe/ (mec2 ). This effect is accounted for by measuring the distance to

the resonance using the parameter pn = (1 - yn) / (NII/Te) , which accounts for

the variation is the magnetic field as well as the Doppler shift.

" In addition, the power deposition profile is subject to significant relativistic

effects, which are found to scale like /3e/N withing the weakly relativistic

approximation. Relativistic effects shift the deposition towards the resonance

in LBF approach, and away from the resonance in HBF approach

" For large values of the Doppler shift, two consecutive harmonics can overlap

and thus the wave cannot propagate between these harmonics any longer. In a

1 keV plasma, significant overlapping occurs between first and second harmonic

for N11 > 1.5. In a 10 keV plasma, the overlapping threshold drops to N11 > 0.5.

In addition, overlapping increases with the harmonic number. For example,

between the third and the fourth harmonic, significant overlapping occurs for

N11 > 0.5 in a 1 keV plasma.

" The diffusion of electrons due to interaction with EBWs is mostly in the per-

pendicular direction in momentum space. However, there is a small component

of the diffusion in the parallel direction, which scale like NI/3Te and is in the

direction of the parallel wave vector k11.

6.4 Spherical tokamaks and framework of EB-

WCD calculations

Spherical tokamaks are high-@ plasma devices with a very small aspect ratio and

thus a tight toroidal geometry. Consequently, RF waves must be launched from

the outboard side of the plasma. A particularity of high-fl toroidal plasmas is the

existence of a dip in the magnetic field profile, located off-axis on the outboard side

of the plasma. Therefore, in a high-,3 plasma, it is possible to approch a harmonic
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resonance from either the LBF or the HBF region, with launching from the outboard

side. In that case, LBF CD is located on the inboard side while HBF CD is located

on the outboard side.

The EBWCD calculations presented in this thesis apply to the vicinity of the

horizontal midplane, where the plasma is locally in a slab geometry so that the

quasilinear operator is valid. This approximation requires that the EBW beam size

be much larger than the wavelength, so that the wave is well defined in Fourier

spectrum, but also much smaller than the length of poloidal field lines, so that the

slab approximation applies. In that case, EBW damping and current drive can be

calculated without ray-tracing techniques.

Because the EBW characteristics are very different depending whether the reso-

nance is approached from a HBF or a LBF region, and because the corresponding

locations in the plasma are different, these two scenarios are considered separately.

Even though the calculations are limited to the horizontal midplane, the relevant

physics of EBW CD mechanisms is included in our models, since we consider both

the location with maximum trapped electron effects (HBF at 0 = 00) and the location

with minimum trapped electron effects (LBF at 0 = 00).

6.5 Low B-field (nwce < w) current drive

" Since LBFCD occurs on the inboard side of the plasma, the LBFCD mechanism

is the Fisch-Boozer effect, which results from the plasma collisional response to

an asymmetric resistivity (in p1j) created by asymmetric perpendicular heating

of the distribution function.

" The CD efficiency decreases as the wave moves closer to the cyclotron harmonic

resonance and the resonance curves move correspondingly closer to the bulk in

momentum space, where resonant electrons are more collisional and carry less

parallel momentum.

* The large value of Re [kIpre] in LBFCD results in confining the interaction to
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the vicinity of the pi = 0 axis, which is favorable for Fisch-Boozer current drive

because the resonance region is far from the trapped/passing boundary.

" The parallel component of the quasilinear diffusion - a relativistic effect - is

directed towards the tail of the distribution in LBFCD, which is favorable for

Fisch-Boozer current drive because more efficient direct parallel momentum is

transmitted to the electrons.

" In LBFCD, the shift of power deposition due to relativisic effects is directed

toward the resonance, which has a negative effect on CD since the CD efficiency

is decreasing monotonically towards the resonance.

* As a consequence of these two relativistic effects, the normalized LBF driven

current increases with N11 and remains rather independent of temperature.

" The effect of electron trapping is to reduce the CD efficiency, because the effect

of collisional pitch-angle scattering is enhanced by trapped electrons.

" Quasilinear effects typically increase the LBF Fisch-Boozer CD efficiency.

" In HBFCD, the overlapping of harmonics is always deleterious because the

mechanism for n = 2 HBFCD is dominated by the Fisch-Boozer effect on the

inboard side of the plasma, where there are no trapped electrons. This effect can

be observed in Fig. (5-9). Because the HBF approach to the n = 2 resonance

is on the opposite side in p11 (see Fig. 5-14-a), current is driven in the opposite

direction.

6.6 High B-field (nuce < w) current drive

* Since HBFCD occurs on the outboard side of the plasma and far off-axis, the

HBFCD mechanism is the Ohkawa effect, which results from the asymmetric

trapping (in pit) induced by the wave when barely-passing electrons are heated

perpendicularly.
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" The CD efficiency peaks at some distance from the resonance that corresponds

to a situation where the diffusion coefficient in momentum space is located in

the vicinity of the trapped-passing boundary, and thus wave-induced magnetic

trapping is at its maximum. Farther from the resonance, the Fisch-Boozer effect

counteracts the Ohkawa effect and the CD efficiency is reduced. Closer to the

resonance, most of the power is coupled to the trapped electrons, which drive

no current.

" Because of the smaller value of Re [kIPTe] in HFBCD, the interaction is located

at larger pI, which is favorable for Ohkawa current drive because the reso-

nance region is close to the trapped/passing boundary, and large wave-induced

trapping can occur.

" The parallel component of the quasilinear diffusion is directed towards the bulk

of the distribution in HBFCD, which is favorable for Ohkawa current drive

because wave-induced trapping is increased.

* In HBFCD, the shift of power deposition due to relativisic effects is directed

away from the resonance. Its effect on CD depends on the relative positions of

the CD efficiency and power deposition profiles.

" As a consequence of these two relativistic effects, the normalized HBF driven

current increases with both N11 and the temperature.

" Optimizing OKCD requires a much larger fraction of trapped electrons than

for ECCD, in order for the diffusion coefficient to be located close to the

trapped/passing boundary in momentum space. Fortunately, STs typically have

very large fractions of trapped particles, because of their small aspect ratio.

* In order to optimize OKCD, the fraction of trapped electrons - and thus the

location of deposition - must be adjusted with quasilinear effects such that the

peaks in the CD efficiency and power deposition profiles coincide.
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LBF-EBWCD HBF-EBWCD
Definition (vs. nth harmonic) nWce < W nw > w

Localization in high-fl plasma inboard side outboard side
CD mechanism Fisch-Boozer Ohkawa
CD direction opposite to kl opposite to kl
Accessibility restricted on midplane very good on midplane
Accessible harmonics only n = 1 any n > 2
Radial locations (in NSTX) 0 < p < 0.6 0.6 < p < 1
Deposition profile very narrow narrow to broad
Increasing N11  increases 7 increases q
Increasing electron trapping reduces q increases q
Increasing temperature little effect on 77 increases 7
==> effect of increased p q decreases q increases
Typical norm. CD efficiency CD- 0-67 CD 0-37

Typical CD efficiency in NSTX I/P ~ 0.1 A/W I/P ~ 0.04 A/W

Table 6.1: Comparison between the HBF and LBF EBWCD schemes.

* In HBFCD, the overlapping of harmonics is not necessarily deleterious because

the mechanism for n = 1 LBFCD, far from the resonance, is dominated by the

Fisch-Boozer effect, even on the outboard side of the plasma. This effect can

be observed in Fig. (5-19). Because the LBF approach to the n = 1 resonance

is on the opposite side in p1l (see Fig. 5-24-a), current is driven in the same

direction.

6.7 Comparison and conclusions

A comparison between LBF and HBF approaches is presented in Table 6.1.

For a given N11, LBF Fisch-Boozer CD and HBF Ohkawa CD are in the same

direction, because the resonance curves in momentum space are located on opposite

sides of the pI1 = 0 axis. This could be an important (and favorable) factor if part of

the RF power happens to be absorbed in LBF approach on the inboard side and part

of it in HBF approach on the outboard side.

The typical EBWCD efficiencies are significantly higher than ECCD efficiencies

because the power - and the current - are deposited in the tail of the distribution func-

tion. For comparison, typical normalized ECCD efficiencies measured in comparable
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D3D plasmas are CD ~ 0.3 in the core and CD~ 0 for p > 0.4. However, efficiencies

are lower than for lower-hybrid current drive, because the diffusion is mostly in the

perpendicular direction.

In general, a higher N11 leads to higher CD efficiencies for both Fisch-Boozer

LBFCD and Ohkawa HBFCD. However, if N11 becomes too large, two harmonics can

overlap. As for any current drive mechanism, an increased effective charge reduces

both Fisch-Boozer LBFCD and Ohkawa HBFCD, because it tends to isotropize the

distribution function.

Because of the particular magnetic geometry of high-6 ST plasmas, LBFCD occurs

on the inboard side and is possible only between first and second harmonic, and at

radial locations 0 < p < 0.6. Its efficiency generally decreases with p because of the

larger fraction of trapped particles.

On the other side, the high-f ST plasma geometry limits HBFCD to the outboard

side at locations 0.6 < p < 1, where the mechanism is Ohkawa current drive. The

variations of the CD efficiency with p depend upon many parameters, in particular

the fraction of trapped electrons.

The radial width of the power deposition profile increases with the magnetic field

variations scale length LB and the Doppler broadening effect, proportional to NII)3Te.

In HBFCD, it is possible to obtain very wide deposition profiles by driving current

near the bottom of the dip in the magnetic field profile, where LB becomes very large.

In conclusion, current can be efficiently driven by electron Bernstein waves in most

radial locations in the plasma, provided the wave is launched near the midplane.

The current drive mechanism is the Fisch-Boozer effect when the EC resonance is

approached from a lower B-field region in the center of the plasma, and it is the

Ohkawa effect when it is approached from a higher B-field region far off-axis on the

outboard side.
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Appendix A

Properties of Curvilinear Systems

The particular geometries and symmetries of toroidal magnetic equilibrium (in config-

uration space) and gyromotion (in momentum space) require to use several curvilin-

ear coordinate systems. The geometrical properties of these systems (metric factors,

elementary distances, surfaces and volumes) and differential operators are used ex-

tensively in this work. Some general properties and identities of curvilinear systems

are first presented; then, they are applied to the particular coordinate systems used

through this work.

A.1 General Case (u1 , 1 2, u 3)

We note X = xx + y' + zz the vector position in the space under consideration,

where (x, y, z) is the initial, cartesian coordinate system. We consider the curvilinear

coordinate system (u1 , u 2 , u 3).

A.1.1 Covariant (tangent) basis

The covariant, or tangent vector basis (el, e 2, e3 ) is defined as

oX
e= (A.1)waui

where the ej are tangent to the curvilinear lines.
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A.1.2 Contravariant (reciprocal) basis

The gradient Vf of a function f being defined by the differential

df = Vf -dX

we apply to ui which gives

du' = Vu4 -dX

By chain rule, we have

so that

axdX =-du = ejdu
9u3

du' = Vu- ej du-

which implies

Vu' -e 3 = 6j (A.6)

thus defining two reciprocal basis (Vui, ej) of vectors. The reciprocal basis vectors

are also called contravariant, and noted

ei = Vu (A.7)

These vectors are perpendicular to the surfaces of constant us.

From the properties of reciprocal basis, we can calculate a vector from the three

vectors of the reciprocal basis, such that

ei = Vui = ejxek
ej -ej x ek

X ei x ek
=j t e- x ek

(A.8)

(A.9)
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A.1.3 Metric coefficients

They are defined as

gij = ej -ej (A.10)

g9i = e'. e'

With the differential vector given in (A.4), we see that the differential arc length

along a curve is

dl = IdX| = dX-dX = -g\judu'id

In addition, we have the relations

We also see that

[gij] = [gii] 1

[gii] = [945]

so that, defining

g = det [gij]

g- = det [gii]
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(A.11)

ej = gije (A.12)

(A.13)

(A.14)

we find

(A.15)

(A.16)



A.1.4 Jacobian

We define the Jacobian

a(u, U2, U3)

which gives

= det

ax
-~

ax/au l ax/au2 ax/au3

ay/aU' 9y/au 2 ay/a4u 3

az/au az/au2 az/au 3 J

ax
x 5-=e e2 x e 3

and the reciprocal Jacobian

a(ul, U 2, U 3)

09(x, y, z)
= det

aul/ax aul/ay uBul/az

au2/aX au 2/ay au 2/az

4a3/Dx au3/ay au93/az

which gives

S= Vu1 - Vu 2 X Vu 3 =e . 2 xe

We can show that

J= J-1

and the relations (A.8-A.9) become

e= (ej x ek)

e= J (ei x ek)

g = j2
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(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

Also,

(A.24)

J = a



A.1.5 Vector identities

With

A = (A -ej) ei = Aje

A = (A -e') ei = Atei

A - B = gijA 2B3 = g'3 AiBj

A =AI= /gAiAi = VgtiiAAj

We also find

A x B = A2Bjei x e, = AiBje x e

which gives

(A x B)k = EijkJABi =

Note that from (A.12),

A' = g'j Aj

A.1.6 Differential elements

differential length along ui

dl (i) = IdX (i)I = hidu = V g-idu'

Equivalently,

dl (i) = J IVu3 x Vukj dui
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(A.25)

(A.26)

so that

(A.27)

(A.28)

Eijk
JAiBj

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)



Differential area in surface of constant ui

Using

dS(i) = JdX(j) x dX(k)I = lej x ekl dujduk

which becomes

dS (i) = gjjgkk - gA dudu

Equivalently

dS (i) = J IVuil duiduk

so that

dS (i) = ±JduidukVUi

Differential volume element

d3X =dX (1) -dX (2) x dX (3) = Jdu'du2du3

A.1.7 Operator V

The operator V can be decomposed in the curvilinear coordinates as

0 a
V=Vui =

We then find the following differential operations:

Gradient

It follows simply that

so that

Vf = Vu f
V u -

(Vf) = (Vf 4

Of

Of
i) = Of
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(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)



It can be shown that the divergence is expressed as

108
V -A - (JA')

Curl

It becomes, a compact notations,

V x A =ijk A ek
J Oi W

or is extended as

(V x A)k = A -a )

(A.43)

(A.44)

(A.45)

A.2 Configuration space

A.2.1 System (R, Z, #)

The coordinates (R, Z, #) are defined on the space 0 < R < oo, -oo < Z < oo,

0 < # < 27r, and they are related to (x, y, z) by

R = V/X2 +y 2

Z= -z

0 = arctan (y/x) + wrH (-x)

(A.46)

[27r]

which is inverted to
x = R cos q

y = R sin q5

z = -Z

(A.47)

The position vector is

X = RR+ ZZ (A.48)
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where we define a local orthonormal basis (, , #

R = cos R i+ sin # y
(A.49)

= xZ= -sinq#i+cos$'

The covariant vector basis is defined in (A.1), which gives in the (R, Z, #) coordinates

system

(eR, ez, eo) = ,a
ax ax = (R, Z, R )

The Contravariant vector basis is defined in (A.7), which gives

(eR, ez, eo) = (VR, VZ, V#) = , Z

We note that the normalized reciprocal basis is colinear with the normalized tangent

basis, which was expected since both bases are orthogonal.

transformation is

J = R

The differential elements associated with this system are:

The Jacobian of the

(A.52)

" the infinitesimal distance elernent along each coordinate

dl (R) = dR

dl (Z) = dZ

dl (#) = Rd#

" the infinitesimal surface element of constant coordinate

dS (R) = RdZd# R

dS (Z) = RdRd# Z

dS(#) =dRdZ$

(A.53)

(A.54)
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(A.51)
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* the infinitesimal volume element

d3X = RdRdZdOb

Finally, the differential operators are

e Gradient

Vf= aR+

* Divergence

1 0A

'9~ ((V x A) -R= A

0

(V x A) -Z= (A -

A - Z)

-. RA ()

a A - R-)

A.2.2 System (r, , q)

The coordinates (r, 9, 0) are defined from an origin (Rp, Zp) on the space 0 < r < oo,

0 < 0 < 27r, and they are related to (R, Z, #) by

r = (R - Rt2+ (Z - Z(A59)

9 = arctan ((Z - Z) / (R - Rp)) + rH (RI - R) [27r]

which is inverted to
R = R+r cos0

Z = Z,+r sin9
(A.60)

The position vector is

X = RpR+ ZpZ + r? (A.61)
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(A.55)

10af

V. A = RA -f +

(A.56)

* Curl

-4) (A.57)

(A.58)



where we define a local orthonormal basis , $) as

r= cos 6 R + sin 9 Z

0 = xir= - sin9 R + cos9 Z

The covariant vector basis (A.1) is

(er, eo, eo) (, ,X

The Contravariant vector basis (A.7) is

(er ,eo e) = (Vr, V9, V$) = ',

and again, the normalized reciprocal basis is colinear with the normalized tangent

basis. The Jacobian of the transformation is

J = rR (A.65)

The differential elements associated with this system are:

" the infinitesimal distance element along each coordinate

dl (r) = dr

dl (0) = rd9

dl ($) = Rd$

" the infinitesimal surface element of constant coordinate

dS (r) = rRdd$ '

dS (9) = Rdrd 9

dS (0) = rdrd9 q
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(A.62)

= (i, r0, R ) (A.63)

(A.64)

(A.66)

(A.67)

, 1



* the infinitesimal volume element

d3 X = rRdrdd$

Finally, the differential operators are

" Gradient
0f, 10f

Vf = -r+ r -5 +

" Divergence

(rRA -?)+
I c' (RA

(V x A) -=rRa (6RA - #1 0i

(V x A) - 0 =! (A.-)

(V x A) - 0 -- (rrA - o-

-\ 1 0i. -\

la R o#A o

R ar (RA -#
1 0
r (A -)

A.2.3 System ('e, s, )

The coordinates (V), s, 0) are used to parametrize non-circular closed flux-surfaces,

are defined from the origin (R,, Z), on the space min (V'o, 0,a) 4 max (4'o, 0,a),

Smin (4) < smax, (4), and they are related to (r, 9, #) by a general

0 =4' (r, 9)

which is inverted to

s = s (r, 0)

r = r (4, S)
9 =9 (P, s)

(A.72)

(A.73)

Note that 4 (r, 9) must be a monotonic function of r from 4o at the center (R,, Z)

to V)a at the edge. It is the case for nested flux-surfaces. We define a local orthonormal

283

(A.68)

1 0fO (A.69)

10 a
S-A=rR Or

* Curl

(A.70)

(A.71)

- 1 a (
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basis S ,, with

R
s=#x =VqxV4'IIV4'H

The transformation from

(
is a rotation of angle a (4, s) such that

) cos a

sin a

The position vector remains

X = RpR + ZpZ + r

The covariant vector basis (A.1) is

(e0, ea, ) - ,
X)

-- = (A.77)( -01 L ) R )

The Contravariant vector basis (A.7) is

= (VO, Vs, V#) = ( ||V4'I (A.78)

and again, the normalized reciprocal basis is colinear with the normalized tangent

basis. The Jacobian of the transformation is

R

II VO'II
(A.79)

The differential elements associated with this system are:
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(A.74)

) (A.75)

(A.76)

with

(, to ,1)

-sina

cos a)

(e' , e-9, el)



" the infinitesimal distance element along each coordinate

dl (d)o=

dl (s) = ds

dl (#) = Rd$

" the infinitesimal surface element of constant coordinate

dS (') = Rdsd# P

dS (s) = R

dS(#) = d~ds 

* the infinitesimal volume element

d3X = dodsd511V4'II

Finally, the differential operators are

e Gradient

Vf =VII VOII +
+ f

-s +

e Divergence

V _-A = II a
V.A-R Oo RA - + a A.-) + (A

e Curl

(V x A) =

(V x A) -=s

(RA -

(A - )

)(A - )

-11ola RA (A.85)

(V x A) - = I70
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(A.81)

(A.82)

1 af -
(A.83)

(A.84)

(A -i) -a|A



A.2.4 System (/, 0, q)

The coordinates (0, 9, #) are an alternative to (0, 9, #) and is defined from the origin

(R,, Z) and is related to (r, 0, 0) by

(A.86)

which is inverted to

r = r (4, 0) (A.87)

The position vector then becomes

X = RR+ Z Z + r (0, 0)

The covariant vector basis (A.1) is

axaX
|(ii|Acosa'

where 0
cosa =

The Contravariant vector basis (A.7) is

(VO, V0, V#) = (IV@', 0j,
r

the two based are not colinear in this case, because (', , is not orthog-

onal. The Jacobian of the transformation is

J= Rr

IIV4'IIcos a

The differential elements associated with this system are:
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(A.88)

rs

cos a
R5) (A.89)

(A.90)

Note that

(A.91)

(A.92)

0= 0 (r, 0)

(ax(ev), eo, eo)

(e, eo, el)



" the infinitesimal distance element along each coordinate

d4,
dl (V)) = V co

||VO|| Cos a

dl (0) = r dO
cos a

dl ($) = Rd

" the infinitesimal surface element of constant coordinate

dS (,) = Rr d~d$

dS (0) = R dd$ s
VO| 11Cos a

dS ( ) = r dd0
|@|cos 0a4d9q

" the infinitesimal volume element

d3 X = Rr dddo
IIVO, Cos a

Finally, the differential operators are

* Gradient

Vf =|VO,8f 0 + 0+

9 Divergence

V A = IV4VIlcosa a Rr A
Rr 04 (cos a J

|V Cosa a Vcos A
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(A.94)

(A.95)

(A.96)

(A.97)
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Cos a 49
(V x A)*-'= Rr 0 (RA

(V x A) - = (A -)
'I? o a8

(V x A) - = 0r 89

)- 1 0 A8'i
- ) R #A -o

|VOI Cosa RA -
R 0(RA

rA* _ IV-P cosa a
cosa J r 6 (iV#Cosa

(A.98)

A.3 Momentum Space

We consider a cartesian momentum space in coordinates (pr, Py, Pz) along axes (x, Y, i).
The vector position is momentum space is written

P = p2+ p"Y + p i (A.99)

We consider the two following curvilinear systems:

A.3.1 System (PII,p_,<p)

The coordinates (pjpi, i) are defined on the space -- oo < pg < oo, 0 ; p1 < oo,

0 < W < 27r and is related to (px,pypz) by

Pit = Pz

(p = arctan (py/px) + wH (-px)

(A.100)

[27r]

which is inverted to

PX = pI cos p

py = p_ sin cp (A.101)

Pz = Pii

The position vector in momentum space then becomes

P = p'LI + p1111 (A. 102)
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where we define a local orthonormal basis (I, , as

=z

I = cos WR+ sinp y

x 1= -sin Rp + cospY

The covariant vector basis (A.1) is

(e, e,e) = ,

The Contravariant vector basis (A.7) is

= (E, 1 Pi-

(V"Ppl, v~,p±, V'O) =( Ip

The Jacobian is

J = p1

The differential elements associated with this system are:

" the infinitesimal distance element along each coordinate

dl (p1) = dp1

dlI(pi-) = dp1L

dl(p) =p 1 h

" the infinitesimal surface element of constant coordinate

dS (p11) = pjdpjdp
dS (P±L) = p-Ldpljd'p

dS ( p) = dp1 dp±

" the infinitesimal volume element

d3X = p dpildp dp
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Finally, the differential operators are

9 Gradient
=f I+
apf= 11+

* Divergence

_ a
VP-A = a A - + -

-\ 108
A -)1 9 (A -)A.I) PIa

* Curl

(VP x A)-H- (pi-A

(Vp xA). - - A

(V9 xA) - = A. -I

i -1a (A
- (A

-| ( A - )

L)

A.3.2 System (p, , (p)

The coordinates (p, , W) are defined on the space 0 < p < oo, -1 < ( < 1, 0 < p < 27r

and is related to (pIpiL, p) by

P11 (A.113)

which is inverted to

PH =P

P±P VI-

The position vector in momentum space then becomes

P =pP

(A.114)

(A.115)
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1 f.P (A.110)

(A.111)

(A.112)

- 9 A-II
)



where we define a local orthonormal basis (p, as

Te=aa x nt=etr -ss(A-)2

The covariant vector basis (A.1) is

p
- ( p 1 - (2

41- 6

The Contravariant vector basis (A.7) is

(eP, e, el) = (Vpp, Vp, Vp) = (I, 1-2
p pV-1 - 2

The Jacobian is

J = p 2

The differential elements associated with this system are:

" the infinitesimal distance element along each coordinate

dl (p)= dp

dl(p)= pVl - 2 dp

" the infinitesimal surface element of constant coordinate

dS (p) = p2dgdp 'p

dS (Q) = -pV1 - 2 dpd p

dS (p) = dpd< p

21- 2
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* the infinitesimal volume element

d3X = p2 dpd~d p

Finally, the differential operators are

e Gradient
- 029f

P 09
+ p 1I-V01i 20cp

* Divergence

(V1 - 2A
P a

1 0 (A
SV1 _( A.T2

(A. 124)

(VxA).-= 1 a

(V x A) -F=18
10 x)(V x A). =

14

(P
(p.

9

V1(A - + _ V (A -^

1 0 _
A - a) - - (A - P)

PV1 -2 aw

pA - F^ 2 ( -9p 
(

___ __ 0
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* Curl

(A. 125)

VP*-A =1 a (P 2A - ')
=p 8p P



Appendix B

Quasilinear Operator in an Infinite

Uniform Plasma

B.1 Introduction

We consider an infinite uniform collisionless plasma in a constant, uniform mag-

netic field of magnitude B associated with the electron gyrofrequency we = eB/me.

Steady-state radio-frequency (RF) fields are applied to this plasma. The RF electric

field is assumed to be decomposed into a discrete set of monochromatic waves with

frequency Wb

E (r, t) = E(r) e-ib' (B.1)
b

with each monochromatic wave being decomposed into Fourier components, such that

Eb (r) = 3 Ek,b (k) eik.r (B.2)b fff (27r)3

where each Fourier component is given by

Ek,b (k) = J d3r Eb (r) eikr (B.3)

The quasilinear operator describing the slow evolution of the macroscopic distribu-

tion function f under the effect of the fields has been derived by Kennel & Engelmann
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[41] and extended by Lerche [42] to relativistic plasmas. In order to apply this oper-

ator to our study of EBWCD, we proceed in three steps: first, the operator derived

by Lerche is transformed in order to be expressed in a conservative form, as the di-

vergence of a RF-driven flux, which is essential for a proper use in a kinetic code

in which particles conservation must be ensured. The second step consist of trans-

forming the quasilinear operator using the reality of the electric field. Third, this

operator is applied to the case of a quasi-Gaussian RF beam, which is a generally a

good approximation for experimental EBWs. The use of this operator - derived for

an infinite uniform plasma - in a bounded, non-uniform tokamak plasma is discussed

and justified in Section 3.5.2. In the fourth section, we extend our operator to a slab

geometry and use the energy equation to calculate the power deposition profile for

EBWs.

B.2 Quasilinear operator in a conservative form

The quasilinear operator derived by Lerche for a relativistic infinite uniform plasma

assumed a field with a single monochromatic frequency w. The generalization for a

discrete set of frequencies is immediate and will be done at the end of the section.

The operator derived by Lerche [42] is expressed as

2 00o
() hlinmJ d k (B.4)

(27) 3 V,0 E
P+ E J - 1)] E ,,)

(EkJJJnP + Ek,IPI) f(nQ + k11v1 - W ]

with the momentum-space differential operators

a nQ a 0
P1 = - 1 - V(B5)

a kl a vJ a
P1 T + - VL -v||
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and

Ek,1 = - (Ek,_ enaJn+1 + Ek,+eiaJn-1) (B.6)
/2

where a Fourier component Ek (B.3) of the electric field is projected on the rotating

field frame

V/2 (B.7)
Ek,±1 = Ek,z

The wave vector is expressed in cylindrical coordinates as

kX = k, cos a

ky = k1 sin a

kz=kl

and the argument of the Bessel functions is k-v±/Q where the relativistic cyclotron

frequency is

7yme
(B.8)

-y

The differential operators (B.5) can be rewritten in divergence form as

PIA-I[( nGl A] + IPilA= 1-A+

P1A= A+ kIIvLAP1 -
OPil W Pi-OP-j

k ) A] 1
+-

where we used the identity

0^/ P11 _P11 
09-Y

ap9k 7m2c2  p 0pI

Consequently, (B.4) can be rewritten in a conservative form as

108
Q'(f) = SRF = - (P±SRF) a (sR)apl 1

where we see from the expression (B.4) and (B.5) that the fluxes are purely diffusive,
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such that we can write

SRF = -D RF VPf = - (
with the following diffusion tensor elements

DRF e, lim
LLv-oo

d3k E J + [ -

[nQ + k1v1 - w] (WEJ + 1

kuv±]
Ek,±)

DRF~+001ff
D R - 1:e 2lim -Id 3 kJ-1 - =-o(2r)3 V-oo V jj

ri-2

DR +00 2 lim fdk D~~j=-Z i-Io~

i ~ nQ vj Ek,||Jn +
[nQ + k vI - w] ( WU1 +

+00 2 lim3

(2) 3 _C

E Jn+

Ek,IlJf + k E)]

- EJ+

1
Ek,±)

[nQ + k1vj - w]
1 Q ] Ek,I1Jn +

W4 W Ek,.L

(B.13)

In the limit of a resonant diffusion,

1
[nQ + kv -w]

i6 (w - kiivjj - nQ)

and, using the resonance condition

kjvjj = w - nQ (B.15)

the frequency w must be real and the RF diffusion tensor elements may be expressed
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D LI

D RF

I I ) Of/api-

Of/p ) (B.12)

EZi,)

[i~ku~w]

Ek

Ei'_)

E 1 Jn + E

(B.14)

1 -

[nQ + kj v ] - 1w



in a simple form

D -00

D +00
III I: -W

D +00

IIIp ' w
+00 2

D RF
n=-oo PH

D F(p)

- D (p)

- -Q DR Fp
W

S 2 DF(p)
W

(I

where the diffusion coefficient, common to all tensor elements, is

lim -. o 2
V-*+OO VjjN

d3 k

(27r)3
Ek,! + J Ekii Jl

P I

2
6 (w - k1v1 - nQ)

which can be rewritten as

D F (P)= lim
V- oo

2 (23

V (2,
E I 2 E(n) 2 6 (w - kIIvII - nQ)

where we refer to E as the polarization term associated with a particular Fourier

component Ek = Ek I eiWk. It is expressed as

6(_1ek,+ei Jn-1 k-v±) + -ek-e +Jn+1
-v/21 ( k -v± L)+ -ek,jJn

AL

where the polarization vector ek = lEki / IlEk is decomposed as

ek,+ = IEk, E + i Ek|

ekI- = jEk,x - i IEk,yI (B.20)
ek,2 I VI EkI I

ek,I = Ekz I

and where the phase cpk,b diseappeared because only the module of E (n is used.
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DnF (p) (B.17)
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B.2.1 Discrete set of monochromatic waves

The extension of the quasilinear operator to a discrete set of monochromatic waves

is immediate provided that wave-wave coupling phenomena are neglected. With the

electric field given by (B.1), the RF flux (B.12) is the sum over the contributions from

each frequency

SRF S' (Wb, Eb)
b

with

SRF (Wb, Eb) = -DRF (Wb, Eb)- VPf

where the diffusion tensor elements (B.16) for a given (Wb, Eb) are

D =R +00 (nQ)2

+=oo2 DRF (P, wb, Eb)

DRF +00b,411 E _P11 WIb

D RF -+00 P-L nQ
b,111 I: P11 L~

n=-oo

+00 2

D=- 2P1 (1

(1
(i

- ) DRF (P, Wb, Eb)
Wb n D

) n DRF (Pi wb, Eb)

Q)2

- 4b DnF (Pw b, Eb)

The diffusion coefficient (B.18) associated with a particular harmonic n and the wave

parameters (Pb, Eb) is given by

DnF (P, Wb, Eb) =

r2
lim 7re

V-.00 V j
r fd3k

Ii di3 ff(27r)3
IIEk,b11 2 n) (k, ek,b) 6 (wb - k jj - nQ)

(B.24)

where E), which accounts for the polarization and the intensity of the RF wave, is

given by (B.19)

= ek,b,+e Jn-1(kV )E)(n (k, ek,b) + 7 ekb,-e+

+ -ek,b,IJn

(B.21)

(B.22)

(B.23)

kIv)

kiv1
Jn+1 ( (B.25)

)
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and Ek,b (k) is obtained from the Fourier transform (B.3) with ek,b

B.2.2 Reality of the electric field

Because the electric field is a real quantity, it must be of the form

E (r, t) = 1 E [E (r) e-iwbt + E* (r) e i]bt

b

(B.26)

where E (r, t) = E* (r, t) is immediately verified. As a consequence, the total RF flux

can be rewritten as

SRF = F (b + sRF
F4) (B.27)

Considering the expression (B.23) for the diffusion tensor elements, we can use

the transformation n -+ -n and the sum over all n's to obtain the identity

D RF -W, )
b1 1 2

DR -Wb )
D -o, b

D_ ,
n=-00

K 
2

n=-o P11 WIb

n-oP11 WIb

(1

(1

-
- I
nQ'

Wb

W

D p,

-Wb, 2 )

-Wb, Eb)
-2s (B.28)

nQ)2
D p, - -,

n=-oo P11

which is identical to (B.23) with the transformation DRF (p, Wb, Eb) -+ D_

The Fourier component of E* associated with the wavevector k is given by

E
-2 ,

(E*)kb (k) = IIdr E (r) e-ik-r = [Ek,b (-k)]*
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22
so that (E*)kb (k)V= IEk,b (-k)II and

(E*)kb (k)

(E*)kb (k)

Ek,b (-k)= e, (-k)
IE-k,b (-k) 1(

Consequently, we get the following expression from (B.24)

-Wb, lim re 2  fff d 3  IIEk,b (-k)11 2

x 9 VJJ (2)4 (

X E)-n [k, ek,b (-k)] 2 -b-k 11vj1 + nQ)

and can use the transform k -* -k and the symmetry of the delta function to get

D (p, -Wb, E*) = lim
V-*oo 4V L d k) IIEk,b (k) 112

x - [-k, ekb (k)] 2 (Wb

- ekb,+e -n-1

+1 ,J
+ 1 ek,b,- e+i(a&±r) J-n+1

kLv

( k 
-

(k-vj)

- kiivil - nQ)

+ -ek,b,I J-n
Pi-

where we used the fact that k -+ -k leads to a -+ a + 7r and kI -+ k1 . With the

property of the Bessel functions Jn (z) = (-1)" J-n (z), and using e-" = -1, we get

= (-1)n[ek,,+ezaJn+l
(ki U)

(B.35)

+ ek,b,-e in- (ki-v1

Q )+ -"ek,b,lJn
P I
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(B.31)

with

(B.32)

(B.33)

(B.34)

(kiv)

(k-Lvj-

E)(-) [-k, ek,b (k)]

E)(-) [-k, ek,b (k)]



In addition, we see from (B.20) that

ek,b,+ = (ek,b,-)*

ek,b,_ = (ek,b,+)*

ek,b,| = (ek,b,l) *

(B.36)

so that we get the identity

(B.37)E -") [-k, ek,b (k)] = (-e) [") (k, ekb)

Inserting back into (B.32), and comparing with (B.24), we find

-Wb, = D F (Pwb = DF (P, Wb, Eb)4n
(B.38)

so that finally, for a real field expressed as (B.26)

(B.39)E (r, t) = Re [Eb (r) e-iWbt]
b

the RF fluxes can be expressed again as (B.21)

SRF bS (w,, Eb)
b

(B.40)

where SRF is given by (B.22) and DRF is given by (B.23), and where we redefine

(B.24) for real fields as

.DF (P, wb,Eb) = m 2  d 3 kv-~ooo2VNIi(27r)3 IEk,b 11 2 n) (k, ek,b) 2 6 (Wb - kijoj - nQ)

(B.41)

B.2.3 Expression in spherical momentum coordinates

While cylindrical momentum coordinates (p1j, pi) are the natural set of coordinates

for describing wave-particle interaction, the kinetic equation is rather solved in the
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spherical (p, ) system, which has the natural symmetry of collisions. To obtain the

expression for the coefficient in spherical coordinates, we use the coordinate transfor-

mation

(B.42)P

which is associated with the following diffusion tensor coordinates transformation

(1 2)

2

-(1 - 2)

62

-V ) - 2

W-1 _V2

2

_(1 _ 2)

_g) 2 (1 2)

and, using (B.23), leads to the following RF diffusion tensor elements

+00

D F = (1
n=-oo

+00

D RF n=oo
+00

n=-o0

DF +001

fl=-oo

- 2)DRF (P, wb, Eb)

2_ - D F (p, wb , E)

(1_ g2 - DRF (P, Wb, Eb)

_2 -n D F (P, Wb, Eb)

B.3 Diffusion coefficient for a Gaussian beam

B.3.1 Electric field with Gaussian transverse amplitude pro-

file

We propose to calculate the diffusion coefficient for a beam of limited transverse

extend with Gaussian profile. Note that it is somewhat incorrect to name such wave

a Gaussian beam, since this denomination has a precise meaning in optics and refers

to modes that include diffraction and are exact solutions of the wave equation.
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In the present case, we neglect the effects of diffraction and simply assume a field

of the form

E (r, t) = Eo (ro) cos [ko -r - wot + po] exp ( ) (B.45)

where Eo (ro) is a real field, r is the position vector

r=xx+yy+ zF (B.46)

and ro is the corresponding "ray location", which is the projection of r on the central

line of wavepacket energy propagation, which is along the group velocity vg, so that

ro = (r vg) Vg (B.47)
Vg

The frequency wo and the parallel wave vector koll are arbitrarily chosen. Then

the perpendicular wave vector koj is obtained from solving the dispersion relation

D (wo, ko0 l, ko±), so that the wave vector ko is known. The group velocity vg is also

determined from the dispersion relation, as Vg = .
oko D(wo,kol I,ko.)=0

We stress the point that the expression (B.45) is in fact an approximation because

diffraction is neglected. In order to fully satisfy the wave equation, this beam cannot

strictly speaking have a constant width. This approximation is more valid if the beam

width is large compared to the wavelength

kod > 1 (B.48)

This is the limit where the beam is not well focused and is apparented to a plane

wave near the axis of propagation ro. A corollary is that the spectral width Ak of the

beam is small compared to ko, since Ak ~ 1/d. Within this approximation Ak < ko,

it is also valid to require that the dispersion relation D (wo, kol, koi) = 0 be satisfied

for the central value ko only.
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The real field (B.45) can be expressed in the form (B.26) as

E (r, t) = E (r) e-iwot + E* (r) eiwot

with the complex field

E (r) = Eo (ro) esko-r+iwo exp,

To simplify the Fourier transform operation, we define a fixed coordinate system

(x', y', z') such that x' be in the direction of energy propagation v 9 and the wave

vector ko lies within the (', 2F) plane, which gives

ro = x'^ 2 (B.51)

(B.52)ko = k' 2'+ k' Y

Within this system, the electric field (B.50) is expressed as

E (r) = Eo (x') ei0-x'iOz'+i o exp _ 2d 2

B.3.2 Fourier transform of the electric field

The Fourier transform of the field is

Ek (k) = J d3r e ik-rE (r)

With k - r = k'x' + k'y'+ k' z' we find

Ek (k) = EoJ d3r eikre k.x'+ikoz'io exp ( 2 + z' 2)
2d 2 I

= 27rEoeio 6 (k' - k ) Jexp
XJ exp [i (kI - ki Z)Z' - z dz'
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(B.53)
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The integrals are separated and can be solved analytically

exp -ik'y' -

exp -i (k' - k1,)z'

dy' = v/7d exp

z'2 1
2 dz'
2d2I

= V-27d exp [
k d2 ]

(k' - k1 )2 d2
2 J

and (B.55) becomes

Ek (k) = Ak2 Eoet 006 (k' - ko') exp
0k

k2 + (k' - k) 2

2AkO2

where we defined

Ako =
d

(B.59)

Note that we can re-express the Fourier field independently of the coordinate system:

using the conditions k' = tkox in (B.58) and k' = 0, we can rewrite

Ek (k) = (2k Eoeiwo6 (k' - ko') exp Ilk - kol 2

2Ak 2
(B.60)

and given that k' = k- o and k' = ko, where 4o = v9 /v is the unit vector in

the direction of the energy density flow (2.43), the expression (B.58) becomes

Ek (k) = AUEoe___ [(k - ko) .- o] exp [ -kko2 12

B.3.3 Power carried by the beam

The time-averaged energy density flow related to a Fourier component of the field is

normalized according to (2.36) as

Sk (k) = 'iE' IEk(k)112 ( (k) (B.62)

where the normalized power flow bk (k) is a smooth function of k, and since we

assumed Ako < ko, we can take bk (k) - 44 (ko) = (o. The total energy flow in
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the beam is the sum over all Fourier contributions, and is therefore given by

S= II s (k)

2 AO0 I
EOC (27r )2 r2 Ako |

Eo2 JJ

I|Eo 12

d3 k 62 (k' - k')

(2,7r)3 ( -

Sx 52 (k' - k'~
27w x O

exp
ky2 + (k' - ko1z)

Ak 2

where we used Parseval's theorem

Jdk'x

with Fk (k') = 6 (k' - k6,) such that

F (X') = x eik'x'6(kx'
27r

1
- k',) = -- eik'XX

27r

S = rd2L' 6'o IEo 112 (B.68)

where L' is the plasma size in x' direction in which the beam propagates. We also

get an integrated formulation of (2.43) for the Gaussian beam

S = WVg (B.69)

where

W = wrd 2L' ' Eo 12 E k (B.70)

is the total energy in the beam of effective volume 7rd 2 L'.

The power carried by the beam is the total energy flow per unit length along the

beam propagation path, and is therefore given by P = IISHJ /L' so that

P = rd 2 |0C IIoI1Eo 112
2

(B.71)
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(B.64)

(B.65)

IFk(k') 2 = I dx'
IF (X') 12 (B.66)

We get

(B.67)



B.3.4 Diffusion coefficient

For a Gaussian beam characterized by a single frequency wo, and the parameters ko,

EO and Ako, the diffusion coefficient for harmonic n is (B.41)

DF (p)= lim
V-oo

r dk d k

(27r)3

2
E(n) (k, eo) J (wo - kjivjj - nrQ)

with (B.19)

()(- 1 eo,+e Jn- k + e0 ,e~iQJn+1 ( k-v )
+ -e 0 11 J

P1L

where, using (B.61), we defined the polarization vector

e _ IEk (k)I IEoI
IEk (k)I IlEoll

(B.74)

Because the polarization term E) (B.73) is a smooth function of k and since we

assumed AkO < ko, we can make the approximation e)() (k, eo) ~ ")( (ko, eo) = (n)

using the Gaussian term. In addition, we can be rewrite the resonance condition as

J (wo - k vjj - nQ) = 1 ( (k - kijres) (B.75)
lvi Ii

where

(B.76)kljres = -
Vi'

Then, using (B.61), the diffusion coefficient (B.41) can then be rewritten as

DF (p) r 2 |lEo12 27r n 2

V-o 2V |V1 Ak1

where we need to evaluate the integral

1(n) (P, wO, kO) = II d 3 k 6
(kjj - kiires) 62 [(k - ko) -4]
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(B.77)

exp Ilk - kol2 I (B.78)
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Using the expression (B.71) for the power carried by the beam, we can rewrite (B.77)

D RF (P)= lrn
n ~V--+OO

P 27e2

V EocIIldoII jviiI Ak2

Evaluation of the integral 1(n)

We define the coordinate system (X, y, z) such that the magnetic field is along the F

axis, and the group velocity Vg - and the unit vector 4 - lie within the (', F) plane.

Because of the cylindrical symmetry of the plasma around the F axis, the power flow

must be within the (ko, 2F) plane (see Section 2.1.1), and we define then

ko = ko0 -i+ ko0±7 (B.80)

along with

D = cos3' + sin,3x' (B.81)

which gives

cos o = l
It I

sin =
II<oll

(B.82)

(k - ko) 4

Ilk - ko 112 = (kj| - kOil)2 + (kx - koi)2kIe t ( ) o II kt

Integrating (B.78) over k1l then gives

1(") (p, wo, ko) = exp

= cos / (kj1 - koll) + sin/3 (kx - ko-)

x6 2 [cos/i (k||res - ko
+ s ()([k -k ] 2)+ sin)3 (kx - ko-L)] exp Q kx oL2 k

In the two-dimensional space k1 , for any integrable function Fk (k±), Parseval's the-

orem gives

(2) 2 IFk (k)1 2 = Jd2r± IF (ri) 12 (B.85)
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(kres - k )

Ak 2 Jfd2k- (B.84)
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where r1 is the corresponding real space and F (r1 ) is given by

F (r1 ) = J 2dk eikLrj F (ki)

In order to apply Parseval's theorem to (B.84) where

Fk (ki) = 6 [cos 3 (kilres - koli) + sin g (kx - kos)] exp

we first do the Fourier inverse transform (B.86)

F (rd) 2k eikxx+iky 6 [cos 0 (kIres -

[kx - koi]2 + k2)-x exp 2AkO2

Integrating over kx, we obtain

(2ir) 2 F (ri) =
1 _Cot2 (kiires -kOll)2

sin exp[ct 2Ak +i(ko

x dkexp [-2 g

and now, integrating over ky,

+ ikyyl

- cot 3 [kiires - kOl1]) x

(B.89)

(27r)2 F (r±)
1

-sin exp
cot2 0 (kilres -koli)2

2Ak 2
+ i (ko± - cotg3 [kiires - koll]) x

(B.90)

x r2x Ako exp

(B.86)

[ [kx - kox+ k)
2Ak 2

(B.87)

k011) + sin # (kx - koi)] (B.88)

[ 2 Ak21
2
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Inserting (B.90) into (B.85), we find

II d2 k1 IFk (k) 12 = (27r) 2 11 d 2 r 1 IF (r)1 2

cot2 3 (kllres - koll) 2

Ak 2
(B.91)2 o

=27r sin2 0 X

x fd2 r-exp [-y 2Ak 2

and integrate

I' d2 r 1

exp [-y 2 Ak ] = L, Or (B.92)

where L, is the space extent in the x direction. The integral (B.84) therefore becomes

v rLxAko

27r sin 2 0 exp

(kijres - koI)21
sin 2 oAkO2

Diffusion coefficient

The diffusion coefficient (B.79) now becomes

DRF () PL' e 27r

V-+oo V E0c4)o Iv1 | I
2

1
exp

(kiires - kol)

Ak2

where (Do = |1<Doll and where we defined

2 *2 2,Ak l= sin /Ako

and used (B.81)

L= L' sin ,31

Using (B.82), we can rewrite

(B.96)
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(B.95)

_Tn (p, wo, ko)

Akoll = (oAko



Limit of a plane wave

The limit of a plane wave can be retrieved from the expression (B.93) by taking the

limit Akoll -+ 0 for which we have the following asymptotic expression

1 (klIres - ko)2]
exp - 2 J (kires - koll) (B.97)

PL' eoc 12

V 2 4% JEo (B.98)

where we used (B.71) and let the volume 7rd 2 L' 4--> V go to infinity as Akoll -+ 0.

This gives

DRF (p) -er lEo 112 En 6 (wo - kollvl1 - nQ) (B.99)

which is the same expression as found in Refs. [58] and [59].

B.4 Diffusion coefficient in a slab geometry

B.4.1 Diffusion coefficient for a Gaussian beam

The diffusion coefficient for a Gaussian beam in a uniform plasma (B.93) can be

extended to a slab geometry where the inhomogeneity scale length L is much larger

than the wavelength AO = 27r/ko , such that the WKB approximation is valid, and

also much larger than the thermal electron Larmor radius PTe = VTe/we, such that

wave particle interaction remains unaffected. With the magnetic field still is in the

' direction, we assume that the inhomogeneity is in the i" direction, and define

9" = Z" x X". The parallel component of the wave vector koll and the component

perpendicular to both the field direction and the inhomogeneity, k, are conserved.

Because k is conserved while koj undergoes a large upshift in the mode conversion

region, we have typically k, < koj. Therefore, the perpendicular wave vector is

directed in the direction of inhomogeneity, and we have k =ko = ko0 . The

inhomogeneity is therefore in the x direction.

Because the normalized power flow 4O is in the (X, i) plane by symmetry in the
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dispersion relation (B.81), we have (B.82)

=x 0 4(B.100)

~Oz = %jj

In a slab geometry, it is therefore possible to determine the direction of <bo with respect

to the direction of inhomogeneity x simply from solving the dispersion relation, which

gives %oL and (Doli.

The plasma electron temperature Te (x) and density ne (x) as well as the magnetic

field (or gyrofrequency wce (x)) are all slowly varying functions of x. In that case,

the beam power P (x), perpendicular wave vector koi (x), power flow (Do (x) and

polarization eo (x) are also slowly varying functions of x. Across an infinitesimal

flux-surface of width Ax (x), the beam path L' becomes

~o (x)L' (x) = Ax (x) 4DO (X) (B.101)

and the diffusion coefficient for a Gaussian beam (B.93) becomes in a slab plasma

DRF (p, x) = DW () V 0e WO n) (X) 2 1 ((kAres (X) - kol) 2

vil C /() Akoll (x) Ak ()
(B. 102)

with the constant factor

D (x) - oo A e 2 r (B.103)v-oo A eowo|1Ol (X)IVTe

where we defined

AV (x) = A (B. 104)

with A being the area of the flux-surface (Y, ).
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B.4.2 Limit of a plane wave

In order to simplify the calculation of the absorption coefficient and power deposition

profile, we take the limit of a plane wave, based on the condition (B.48) which gives

Ako < ko. Applying the limit AkO -+ 0 in (B.102) we get the asymptotic expression

(B.97)

1 (kiiresk~ii)2] 5(k - koll)
V/'rskoj 11ko +6(ire ol

= |v1 6 (wo - vllku

P (x)
and lim = sin (x), where sinc (x) is the incident energy density

A-oo A
flux-surface (y, z). The diffusion coefficient (B.102) becomes

nwce

(B. 105)

flow on the

DRF (p, x) = D" () VTe () 2)6 1
n ~ ~~~ n, X

- vi koli nce (x)

WO 7WO
(B. 106)

(B. 107)

with (B.103)

Dg% (x) = e2 rsinc (x)
EoWo I DoI (X)IVTe

B.4.3 Density of power absorbed in the linear limit

We propose to calculate the density of power absorbed using the quasilinear operator

in the linear limit.

General expression

The expression for the density of power absorbed from RF waves is given by (3.277)

P R / = 
3 f+1 R

Pb = 27r dp dyMe jd S F(f) (B. 108)

where SF (f) is the RF induced flux (B.12) in the momentum direction , with the

expression (A.123) for the gradient in spherical momentum coordinates

SF (f) = -DRF L + 1 -P (B.109)(B19
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The corresponding quasilinear diffusion tensor elements are (B.44), expressed here

with the transformation n - -rn for electrons (see Section 3.5)

+00

D R E (1- (2) D-F0
n=-oo

DRF 
2 

o

x__ E
+00o

1 
_ 2 L_ Wee] DRF

7wLO. P

with the RF quasilinear diffusion coefficient (B.106)

DF (p) = D VTe En 2 (
nlce)

^/wO )
(B.111)viiko

WO

For electrons, the polarization term (B.73) can be written as (3.194) with a = 0 since

kOi = ko:, which gives

(B.110)

(z) + - eo,_ J_1 (z) + -e o,11 J (z)
P I

with (3.195)

z = kp-
Wce me

(B.113)

Polarization term for electrostatic EBWs

Assuming that EBWs have an electrostatic polarization, the polarization term can

be approximated to (5.20)

0(n) ~ Jn (z) PTe

NOj/3 Te Pi

with the definitions (2.108) and (2.103)

yN +
NOII/3 Te A

moce
yn=

Wo
PTe

fJTe=
Mec
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Relativistic Maxwellian distribution

When the evolution of the electrons is dominated by collisions, we tend to the linear

limit where the electron distribution function is a Maxwellian, given by

fM (P) = 47rm cTe K mec2  eXp - pec

Te

(B.116)

where -y is the relativistic factor (3.21)

m
2
e

(B.117)

In order to make the non- and weakly-relativistic limits more apparent for further

approximations, we rewrite (B.116) as

fM = 'e 2 R
(2irmeTe )3/2

exp (y + 1)meTej

where R (x) is a normalization factor defined as

R(x) = V!1/2 exp
K2

which has the following Taylor expansion

R(x) = [1 +
15x 105 2

8 + 128 +
(B.120)

The derivative of fM with respect to p is

&fM

op

_ d OfM

dp Oay _ p fM (p)
7MeTe

(B.121)

while the derivative of fm with respect to is zero since the Maxwellian distribution

is isotropic.

Therefore, in the linear limit with a relativistic Maxwellian distribution, the den-
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(B.118)

S11
-J

(B.119)



sity of power absorbed (B.108) reduces to

RF,Mabs =2 o 00
, 4 f +1

2 2T (I _ 62) D RF(p)fM (P)
fl=-00

where we inserted (B.109) and (B.110). The density of power absorbed can be de-

composed into the contribution of each harmonic

+00

PRF,M 
MRFM

=- absn
abs-o

(B. 123)

with

RFa' = 27r dpabsn = O
(B. 124)_PrT/ d (1 - 2) D F (p)fM (P)

72Mje _ -+

which we will consider separately from now on.

Expression in cylindrical coordinates

From here on, it is easier to work in cylindrical coordinates (p1i, p±), with the trans-

formation (A.114)

P11 =
(D.125)

pj1 = PV1 -v

and (B.124) becomes

pRFM, = 27rabs,n J00 0p dpi
dpil D RF (p)fM (p)

2Mjee

Normalization

The momentum coordinates are normalized to the thermal momentum according to

P11 PTePH1 (B.127)
Pi -PTeP-
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so that (B.126) becomes

pR'M = 2w-
abs~n e Jo

pjdpj j
-oo

dp DF m (P)
I2

with the normalized Maxwellian distribution (B.118)

1 [( + P 1
fM (27) 3/ 2 (e) exp [ +1)

The diffusion coefficient (B.111) becomes

D F (p) = D pRFe 02 1 - LOeNo

with (B.114), (5.21), (B.117)

) N Jn (Z) [Yn + NOII/3TePII]

Z No s WO e
Z = Nlp -PIfe

-y= 1+(P~ + p2 2e

Expression with EBW polarization

We can transform

P11 NXli- P
Y)

S)
= 7 6

INoll| I Te ( Pi - Pn -

with the definition (5.13)

(B.128)

(B.129)

(B.130)

(B.131)

;e Nol )
(B. 132)

Pn= ( Yn)
N3 e Noll
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so that, inserting (B.130) and (B.131), (B.128) becomes

pRFM ne DF
abs,n =27 meNOe |N 011 |

x p 1 dp 1 J dp -J (z) [Yn + NOIII3TePI ] 2 6 ( P1-pn - __)

(B.134)

The integration cannot be performed exactly because dependence upon (P11, pI) in

the relativistic factor -y. However, it is possible to obtain approximate analytical

expressions in the non- and weakly relativistic limits.

Non-relativistic limit

To obtain an expression for the density of power absorbed in the non-relativistic limit,

we simply need to take the limit - -+ 1 in the expression (B.134), which gives

n_ DRF _00 +

pRF'Mnr = 27r e n,O dp 1 P [+absn meN ±!Oe |N 011 1f00
dpjj Jn (z) [Yn + NOII/OTePj ] 2 6 (P1 - Pn) Junr

(B.135)

where the non-relativistic Maxwellian is derived from (B.129)

1 (P pl
fMnr 3/2 exp [

The integration in p11 is straightforward, using the resonance condition

nRF
PRFMnr _ 1 e-Ln~o~abs,n V_2-MeNO2 /,3e INi1 ex

I2Pn dpi p± 2 (Z) exp
[2]J

where we used

Yn + NOIIf3TePn = 1

The integration in pj is performed using the identity [[59]]

dw wJ (aw) exp [-bw2] = exp
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21] (B. 137)

(B.138)

In (a2) (B. 139)



which gives

dp±p 1 J_, (NOIe ei P) exp - 21

with

Ae = (ko±PTe) = NOfLe )2 (B.141)

We get an analytical expression for the density of power absorbed in the non-relativistic

limit

P= ,unr - D' n [Ae] exp (B. 142)
v '2-7 MeNOL e I NO12

where

En [Ae] = exp [-Ae] In [Ae] (B.143)

We recall (B.107)

DRF= e 2 rsinc

E002 e l W0r e

1 1 Wo'inc 1F [Ae] exp
V/27- NO±f31e INO11 w0 c I<bo| I

(B.144)

2
(B.145)

where the electron plasma frequency is (2.60)

e2n
Wpe = e2me

60Me
(B.146)

Weakly relativistic limit

In the weakly limit, we do a Taylor expansion of the gamma relativistic factor for

small 3 Te

y= 1 +(Pj + pI) 2

12
= 1 + (p +p) (r)
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When considering the expression for the power absorbed (B. 134) with the Maxwellian

distribution (B.129), we see that relativistic corrections (B.147) will come to the order

#3 everywhere, except in the resonance condition, where the relativistic corrections

are of order /Te/NOII. Therefore, we only keep relativistic effects in the resonance

condition in (B.134), which becomes

nD RF
pRFMwr -'i n,O
abs,n meN-27re -N (

S pidPI dpll Jz [yn + NOPI-n - yl) 1fMnr
_0 -oo OTeN111

(B. 148)

where the non-relativistic maxwellian in given by (B.136). This correction of order

Nre/Ni1 can be significant, and corresponds to a relativistic shift of the resonance

curve p1| = Pn+(y - 1) /I3TeNolI in momentum space, towards higher pil when Noll > 0,

and towards lower plj when Noll < 0. The consequence of this shift is therefore a

relativistic increase of the damping for HBF approach, and a relativistic reduction of

the damping for LBF approach.

Case with N|Noll I < /e

When Noll ,< / 3
e, it is not possible to use a perturbative approach in calculating pl1

from the resonance condition. In fact, the existence of resonant electrons imposes a

condition on pn. From the resonance condition

P1i = Pn + (-) (B.149)
I3eNoll

we obtain the same expression as in (5.10) and get a minimal (pi = 0) condition for

the existence of resonant electrons (5.11)

yw > th- N (B. 150)

which affects the LBF approach (y,, < 1).
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Case with INoll J > 3 re

This inequality is generally valid in EBWCD, where typically INoll1  1 and fTe < 0.1.

In that case, to which we restrict ourselves in the remaining of this section, we can

calculate pli perturbatively from the resonance condition, which gives

P1 =Pn+ 2 (,+pi) +O(3 7 e/ I NOij) (B.151)

Resonance in Ipi I > pI limit

In order to obtain an analytical expression for the density of power absorbed in the

weakly relativistic limit, we have to neglect the relativistic corrections involving p±,

meaning that we assume that resonant electrons satisfy |p|I > pi. This approxima-

tion is very good in the LBF approach, as we saw in section 5.3, but not in the HBF

approach where we have typically 1pl1 ~ p±. Dropping pi terms in the relativistic

correction means that we neglect the curvature of the resonance line.

Then, in the limit 1pi I > pj the approximate resonance condition in the weakly

relativistic limit (B.151) gives simply

P Pn (1+ =Pn1 + [1- Y (B.152)2NO1  2N 2

where we observe that the weakly relativistic correction are independent of 3Te.

Using the resonance condition, the integration in p11 gives

, 1 neD n [
pRFswr 2 2/mN±3~ N [Yn + NOII/3TePn]

V12 Me N _OT_#r INoll|

x exp [ pn 1 + (12N pdp 1 J2 (z) exp [ L (B.153)

where the weakly relativistic correction (B.152) was not kept in the yn + NoII 3 eplI

term because NOlII/TeP is itself a corrective term. The integral over p1 is done in
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(B.140), giving

pRFMwr _ 1 DR' , [e] eXp
abs,n F [A,] meNe xN

L

E1-+2N 2

where we used (B.138). We recall (B.107)

DRF e 2rS

EoWo 1%-LI VTe

so that the weakly relativistic density of power absorbed becomes

pRFMwr = 1 1
abs,n =/v7 N2pIe N011

WPie W7 Sinc
W2 c I<boil Fn

exp, (p2
L

1+

-2

(Y)])2n)
2N 1

(B.156)

B.4.4 Absorption coefficient

The absorption coefficient defined in (2.50) is expressed here as a function of power

absorbed related to the RF quasilinear operator, which for the nth harmonic contri-

bution gives
pRF

RF abs,n
an = ol

(B.157)

where lisoI is the energy density flow, which is directed along <Do (2.36) such that

S = I(B . R
11sol 4DCO

58)

and we find
RF a,n I Ko-l

Sinc 4Io
(B.159)

In the linear limit where the distribution function is a Maxwellian, we find, using

(B.145) and (B.156):
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* In the non-relativistic limit

aRF,Mnr _
n

12
wo7n pe 1 In [Ae] exp

W N 0
2 ji e jN 011 1 (1Io

1 W02r Wp2e 1n [Ae] exp
-V/27 c C c2 e INO, I(o Ae

. and in the weakly relativistic limit

1 WO7r ,e 1

C w N| N [e] exp [- Pn [ +
L2 (

1 w0 r Wpe n [Ae]

Vf27F C W/3e N INO,, (Do~ Ae 2 ( P
1+

(B.162)

2N 2  )

(B.163)

where we recall (2.108) (B.115)

nrce
yn =

WO
(1 - yn)

Pn=OeNoll

(B. 164)

B.4.5 Power deposition profile

Evolution of the incident power density

In our slab geometry, we consider the case of a EBW propagating towards the nth

cyclotron harmonic resonance where it is completely damped. The magnetic field

variations are assumed to be monotonic and increasing in the positive x direction,

and the nth cyclotron harmonic resonance is located at x = 0.

Assuming that harmonics do not overlap, so that we can consider separately the

damping near harmonic n, the energy equation (2.21) gives, in steady-state and in

slab geometry
dsox = -0PRF

dx absn
(B. 165)
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RF,Mwr _
n

])2]

2N 2
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where so, = sinc and - = +1 for low B-field approach (LBF) where x < 0 and is

increasing towards resonance, and o- = -1 for high B-field approach (HBF) where

x > 0 and is decreasing towards resonance. Introducing the absorption coefficient

(B.159), we get

dinc = o aRFsinc (B.166)

We assume that the wave propagates towards the nth harmonic resonance from a

position x0 (negative for LBF approach, positive for HBF approach) where the initial

incident power density is sic,o. The evolution of the incident power density is then

- r . (O RFdx

sinc () = inc,oe Io IIoL F n (B.167)

Narrow damping region approximation

The damping region is assumed to be sufficiently narrow as compared to plasma non-

uniformity scalelength L, such that the plasma properties such that temperature and

density can be considered as being uniform across that damping region. In addition,

we assume that wave propagation characteristics such as the perpendicular wave

vector koj, the polarization vector eo, and the power flow <Do are also constant across

the damping region. This assumption may seem questionable with regards to the

rapid changes in these wave characteristics near cyclotron resonances, as a function of

yn = nWce/w, as demonstrated in Section 2.3 from solving the local dispersion relation.

However, it will turn out that the power deposition profile is rather insensitive to the

typical variations of the wave parameters across the damping region.

Indeed, the variations in the absorption coefficient aRF are dominated by the expo-

nential term in (B.160) and (B.162), which is expressed as (B.133) pn = (1 - Yn) /TeN 11.

The relative variations of pn are mostly sensitive to the variations of the magnetic

field, because pn depends upon the difference (1 - yn) in the vicinity of yn ~ 1. It is

therefore justified to take all parameters constant in the damping region except yn.

We can define the magnetic field amplitude variations scalelength LB > 0 such
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dB B

dx LB (X)
(B. 168)

Near the damping region, the variations of B are assumed to be apprximately linear

so that LB is a constant. We can rewrite the power deposition profile (B.166) as

dsinc = -ULB (Do aRF (Y) Sinc (y.)
dy,,ID

(B. 169)

where we used yn = enB/(mwo) ~ 1. With the following identity, obtained from

(B.133)

dp - dyn
OTeNOII

(B. 170)

we can rewrite (B.169) as

dsinc = aLB/TeNo aRF

The peak p"' in the profile is then given by

dp2

(yn) Sinc (yn)

which leads to

daRF

dpn
Sinc (pn) = -an (P)

-aLB 3 TeNojj ki [aRF (Pnm)] 2 Sinc (pnm)

such that the location p" of the peak in power deposition profile is given by

d(F (RF 2 =0
+ dp u +L TeNOj| 01 (
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dpinc

d~npn =

(B. 173)
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Linear non-relativistic limit

In the linear limit without relativistic effects, the absorption coefficient is given by

(B. 160)

a RFMnr (p) = ao,n exp [ ] (B.175)

where we define the coefficient

1 WWr Wle 1 En [Ae]

'O n-'i c Wfc 3e INij'I'O Ae
(B. 176)

which is assumed to be constant across the resonance region. We find

(B.177)

which is inserted in (B.174), so that we get an equation for pm,'Mnr in the non-

relativistic limit

|pnMnr = po,n exp
E m,Mnr 2-

- n7 (B. 178)

where we keep in mind that pmMnr is of the same sign as -N11 for either HBF or LBF

approach, and where we defined the dimensionless parameter

po,n = LBOTe INol| 14 ao,n
_ 1 w0 r 2 LBEnD[Ae

wo7r 'e LB I [Ae]
2-7-/ W2 1 (Dc2 (B. 179)

Linear weakly relativistic limit

In the linear limit with weakly relativistic effects, the absorption coefficient is given

by (B.160)

anRFMwr (Pn) = aon exp
1 (

E1 +
)3en1)2]

daRF,Mwr
S -anRF,Mwrp

dpn
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" = -RF,Mnr
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so that
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where the weakly relativistic correction is dropped in the terms outside the expo-

nential, consistently with our narrow damping region approximation. Inserting in

(B. 174), we get an equation for pmMwr in the weakly relativistic limit

p m,Mwr K! ( m,Mwr [ TePnm 1 Mwr 2(
IN I= Po, exp n [1+ 2N 1  11(B. 182)

where we keep in mind that pamMnr is of the same sign as aN11 for either HBF or LBF

approach, so that we get

Pm,MwrI =POnexp (P m,MwrI OT 1PmMwr 2 (B.183)
nL21+ 2fINuI JJ
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Appendix C

Differential Operator in the DKE

code

In the DKE code, the differential operators in the kinetic equations (3.118-3.122) are

bounce-averaged and solved as a function of (p, (o), where the pitch-angle coordinate

0 represents the value of 6 as the electron passes through the point of minimum B-

field on a given flux-surface 4. For the sake of readability, we will omit the superscripts

(0) and subscripts o refering to bounce-averaged quantities in this chapter, keeping in

mind that all operators are assumed to apply to the (p, 6o) space and all fields are

bounce-averaged. More explicitly, one can refer to the notation equivalence prescribed

in (4.1):

f () - fo

9(0)

f(0) -- f (C. 1)
g(O) S g

We need to calculate the momentum space differential operators (4.2) corresponding

to the fluxes Sp (fo, Dp, Fp), Sp (g, IDP, Fp) and Sp (f, 5P, FP). On a given flux-
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surface 01 at time tk (the field dependence upon 1 and k will be kept implicit in

this chapter), the operator associated with the diffusion tensor DP and the convector

vector FP and acting on the distribution function f is discretized according to this

operator is expressed as (4.23)

P 2vp P '9 Si+1/2,j+1/2 = E E Mil+1/2,j'+1/2fi'+1/2,j'+1/2 (C.2)
i'=i-1 j'=j-1

Using the operator differentiation scheme (4.23) with (4.24), the flux decomposition

(4.25), the gradient differentiation schemes (4.26) and (4.29) and the interpolation

scheme (4.32), the elements Mi'+1/ 2 ,j'+1/2 are given by

1-2
Mi'+3/2,j'+3/2 Ap 1 A _ + a/ Dp ,i+1 ,j+ 1/ 2 (1 - 6p,i+1,j+3/2)

Aji+1/ APj+l/ -1' +

+ j+1/2 Pi+1 p 6j1/2 Dp,+1/2,j+1 (1 - 6 ,i+3/2,J+1) (C.3)
Aj+ 1/2 APi±1 + LAPi A.~9± 1 /2

Mi'+1/2,j'+3/2 = - + D(,j+1/2,j+
Aj+1/2 Adj+l/2Adj+l

i 1 +- /+ P6+1
L+ 1/ 2 P 'dj+1 + Dp,i+1,j+1/2p,i+1,j+3/2

1p- +1/2

Lpi+1/ 2 Ad+ + Ad De~~+/ (i - ri+/2

Aj+1Pi+1/2 1 - +

1-

- P Fj+12. p,ij+1/2+ (1 - ,i+/2,)(C4

=-AP 1 2 A~9+l + A~

Aj~ Pi+1/2 V 1 FC,i 1 2,+ (1 - ,i-1/2,+) (C.4)

Aj+1/2 Aj+1/2

A. 3(+1/2
Mi'-1/2,j'+3/2 =-A e~~+/0~~+/

Aj+1 Pi+1/2 3+1

Aj+1/2 APi+1 + AAi Adj+1/2 'Dep,j+1/2,j+1 (1 - 6 ,i-1/2,J+1) (C.5)
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Mit+/2,j+1= XP+2ZXP~ lj++1

APi+/2A~~

+ Ai±1  FPi±lj1/2 (1 - Jp D~l,j + l/ 2 ,jli+/,
Ai 1 2 A 2 i+A~~±

+ A3~ Pi+1/2 1 - +1 (~j 1 - 61k i+32,j) (.6
Aj+ 1/2 /APi+l + APi Aj 1 2

2j6
=j Pi+123Dvj12j( 

Ci32j C6

Ai12AP 2 ±1+ APi A1/

2

Mil1/,j +1/ pil pilj1/

APi±1/2A~~

* APi+1/2 2Klp,i,j+1/2 pij12

*_ A3+j 1  _ 2 _ +1/2,1- ~*l+
Aj+1/2 A1/j+l

* A\ (i1/_ 2 1_ % F,+ ,1-,i+1/2,j) C7
+Aj+ 1/ 2 Aj+1/2j
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-
D

/APi±1/2L\Pi pp~ij+/

P / 2 F ,i,j+1/2
6p,i,j+1/2

A+1  Pi+1/2 +-

\j+1/ 2 APi+i + APi Adj+1/ 2

1 - A?
+ /2 AP +1/ 3~ d+/ Dep,j+1/2,j 50- g~-1/2,j)

-Pi+i1 +-/
Mi'+3/2,j-1/2 Pi+1/2 + + , Dp ,i+ 1,i +1/ 2 (1 - 6p,i+1,j-1/2)

Ai Pi+1/ 2  -j±1

A+1/2 APi+1 + Api Ad+1/2 Dvi12ssi32j

A,. (1 - .)
Mif+1/2,j-1/2 = Aj +1/2 adj2 dD i+1/2,jAAiI1/2j1/ = ~+/,U

Pi+1 1/2

Pi+1/ 2 Zdj+1 + ADj p,i+1,j+1/2 6 p,i+1,j-1/2

APi+/ ~ + A/2

Pi+1/2 A j+1 + D p,i,j+1/2 (1 - p,i,j-1/2)

Pi+1/2 1 -

+ F,i+1/2,ki+1/2,j
A+1/2 Adj+1/2

/ -1 +1/2
Mi'-1/2,jl-1/2 = Ai+/ Vd+ + /~ Dp ,ij+1/2Jp,ij-1/2APi+1/2 A~'j+1 + A~Lj

Aj Pi+1/2 1-
Aj+1/ 2 APi+1 + APi Aj+1/ 2
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