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Abstract
Our growing reliance on online services accessible on the Internet demands highly-
available systems that work correctly without interruption. This thesis extends pre-
vious work on Byzantine-fault-tolerant replication to meet the new requirements of
current Internet services: scalability and the ability to reconfigure the service auto-
matically in the presence of a changing system membership.

Our solution addresses two important problems that appear in dynamic replicated
services: First, we present a membership service that provides servers and clients in
the system with a sequence of consistent views of the system membership (i.e., the set
of currently available servers). The membership service is designed to be scalable, and
to handle membership changes mostly automatically. Furthermore, the membership
service is itself reconfigurable, and tolerates arbitrary faults of a subset of the servers
that are implementing it at any instant.

The second part of our solution is a generic methodology for transforming repli-
cated services that assume a fixed membership into services that support a dynamic
system membership. The methodology uses the output from the membership service
to decide when to reconfigure. We built two example services using this methodology:
a dynamic Byzantine quorum system that supports read and write operations, and a
dynamic Byzantine state machine replication system that supports any deterministic
service.

The final contribution of this thesis is an analytic study that points out an obstacle
to the deployment of replicated services based on a dynamic membership. The basic
problem is that maintaining redundancy levels for the service state as servers join and
leave the system is costly in terms of network bandwidth. To evaluate how dynamic
the system membership can be, we developed a model for the cost of state maintenance
in dynamic replicated services, and we use measured values from real-world traces to
determine possible values for the parameters of the model. We conclude that certain
deployments (like a volunteer-based system) are incompatible with the goals of large-
scale reliable services.

We implemented the membership service and the two example services. Our
performance results show that the membership service is scalable, and our replicated
services perform well, even during reconfigurations.

Thesis Supervisor: Barbara H. Liskov
Title: Ford Professor of Engineering
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In the memory of my mother.
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Chapter 1

Introduction

We are increasingly dependent on Internet services provided by computer systems.

These services provide important functionality and store critical state that should be

made readily available to their users.

As our reliance on the Internet grows, these services become more and more

attractive targets for attacks. The statistics published by the CERT research and

development center for Internet security confirm that the number of attacks against

Internet-connected systems is increasing: the number of reported incidents has almost

doubled every year since 1997 [2].

The goal of this thesis is to develop techniques that allow Internet services to

function correctly despite failures, whether they are caused by attacks, or any other

causes like hardware failures, power outages, software errors, or human configuration

errors. By functioning correctly we mean that services should (1) provide correct

semantics, (2) be highly-available, or in other words provide continuous service, and

(3) store the service state reliably, never losing any of that state.

Satisfying these requirements will require the use of replication. The basic idea is

as follows. Instead of using a single server to implement a service, these techniques

replicate the server and use an algorithm to coordinate the replicas. The algorithm

provides the abstraction of a single service to the users, but the replicated service

continues to operate correctly even when some of the replicas fail, since other replicas

are still available to do the requested processing. Therefore, the system is highly
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available provided no more than some number of replicas fail at the same time (the

exact number of failures that can be tolerated depends on the replication protocol in

use). Replication also allows data to be stored reliably since even if data is lost at

some replicas it can be recovered from the others.

There has been a great deal of previous work on replication techniques. Most ear-

lier research has focused on techniques that tolerate benign faults (e.g., [5, 36, 55, 58,

71]): these techniques assume components fail by stopping or by omitting some steps

and may not provide correct service if a faulty component violates this assumption.

This assumption can be problematic as malicious attacks, operator mistakes, and

software errors can cause faulty nodes to exhibit arbitrary behavior. Techniques that

tolerate Byzantine faults [56, 74] address this problem since they make no assumptions

about the behavior of faulty components.

This thesis builds on previous work on replication, in particular, replication tech-

niques that tolerate Byzantine faults. However, we extend this work to meet the

needs of Internet services. Existing work on replication protocols, especially in the

context of Byzantine fault tolerance, focuses on systems where a fixed set of servers

form a single replica group that holds the entire service state. This assumption is

incompatible with current Internet services, which have additional requirements.

The first requirement is scalability. Modern Internet services are growing in size:

both in terms of the number of users that access the service and the amount of state

stored by the service. For example, the Google search engine indexes 8,058,044,651

web pages (as of November 24, 2004), and handles 200 million searches per day [3].

To handle this kind of load, and to store this amount of state, Internet services must

be scalable: their design should be able to accommodate a large number of servers

(e.g., the Google search engine uses a cluster of more than 10,000 servers [3]), and

should enable spreading the load of the system across the different servers.

The second requirement is that Internet services must deal with changes to the

system membership (the set of servers that comprise the system at any given moment):

machines will break or be decommissioned, and must be removed from the system

and their responsibilities assigned to non-failed nodes, to maintain reliability and
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availability of the state those nodes used to store. Also new machines must be added to

the system as the need for increased storage or throughput dictates. Experience with

deployed large-scale systems confirms that a dynamic system membership is a fact of

life. For example, the description of the Google file system [35] (a storage substrate

for Google's services) mentions that "some [machines] are not functional at any given

time and some will not recover from their current failures" [35]. Another example

comes from the study of the availability of desktop PCs at Microsoft Corporation [15].

This study sent periodic ping messages to a set of machines every hour during a

time interval of five weeks. The authors found that some machines would become

unresponsive from a certain point in time until the end of the trace. By assuming these

machines were decommissioned (or, at least, had their operating system reinstalled,

which is equivalent in terms of information loss), they extrapolated the expected

machine lifetime from this attrition rate, and concluded that the machines in that

study had an expected lifetime of 290 days. This is equivalent to saying that, in

a system of 10,000 nodes, the system will have to deal with an average of 34.5

membership changes per day.

This thesis develops new techniques that address these new challenges in the

context of Byzantine-fault-tolerant systems.

1.1 Contributions

Our work provides a foundation for building large-scale, replicated services that han-

dle membership changes.

We focus on services that run on a large set of servers (e.g., tens or hundreds of

thousands), and are accessed by an even larger client population. The service stores

a large service state, so large that it would not be feasible to store the entire state

on a single machine. Instead, the service state is partitioned. Each server stores a

subset of the service state, and each subset of the service state must be replicated on

a number of servers for reliability and availability.

The system membership is changing throughout the lifetime of the system. These
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changes must be detected automatically, and the service must adjust itself to the

changes by shifting parts of the service state, to better distribute the load or to

maintain replication levels for that state.

The thesis makes three main research contributions.

1.1.1 Membership Service

The first contribution is to solve one fundamental problem that these services face,

namely keeping track of a changing system membership. This thesis presents a mem-

bership service that solves this problem. It is defined in a generic way so that it can

be used by different services.

The membership service provides clients and servers with a globally consistent

view of the set of currently available servers. The important benefit of our approach

is that it allows clients and servers to agree on the current system membership, and

this allows them to make consistent local decisions about which servers are currently

responsible for which parts of the service state.

The membership service determines the current system membership automatically,

or with minimal human intervention. This is important to avoid human configura-

tion errors, which have been shown to be a major cause of disruption in computer

systems. A recent study [72] pointed out that operator error is the largest cause of

failure in many Internet services. The study explains that, in general, operator errors

arose when operators were making changes to the system, e.g., scaling or replacing

hardware.

Therefore the membership service is designed to monitor server availability, and

automatically evict unavailable nodes from the system membership. When such mem-

bership changes occur, the membership service provides a well-defined transition from

one system membership to the next, and it disseminates information about the tran-

sition to all members of the system efficiently.

An important challenge in the design of the membership service is that member-

ship changes are themselves a threat to the correctness of the system. The member-

ship service must both defend itself against attack and produce system memberships
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whose content cannot be influenced by the attacker; otherwise an attacker might, for

instance, populate the system with servers under its control, or arrange for a system

membership that puts responsibility for a key part of the service in the hands of a

few corrupt servers.

1.1.2 Replicated Services

The membership service is a useful tool for achieving our goal of building large-scale,

replicated Internet services that support a dynamic system membership, but it is not

enough. We still need to design services that incorporate the notion of the current

system membership, allow for changes in that system membership, and adapt to these

changes automatically.

The second main contribution of the thesis is to provide a generic methodology to

transform a service that assumes a static membership into one that uses the output

from the membership service and adjusts to membership changes.

The main challenge is to ensure that the system behaves the same with member-

ship changes as it would with a static membership. We ensure this with a simple set

of rules and generic principles that can be applied to different replication algorithms.

We also applied the methodology to two concrete examples.

We present dBQS (which is an acronym for dynamic Byzantine quorum system),

a service that provides clients with read/write access to a repository of data objects.

Each object is replicated at a subset of the servers and accessed with protocols based

on Byzantine-fault-tolerant quorum replication [65]. As the membership changes,

the subset of the servers where a particular object is replicated will also change.

The dBQS service provides strong semantics (atomic access to data objects) despite

Byzantine faults and membership changes.

The second example service is dBFT. This service is based on the BFT state

machine replication service [20]. With state machine replication [53, 89] it is possible

to build arbitrary deterministic services like file systems. However, Byzantine-fault-

tolerant state machine replication algorithms were designed with the assumption of

a static replica set. dBFT allows many replica groups to coexist in the system.
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Furthermore, dBFT also allows replica groups to change as the system membership

changes, and the replicated services maintain correct semantics despite Byzantine

faults and membership changes.

1.1.3 Analysis of the Cost of State Maintenance

Up to this point we have simply taken for granted that it is possible for the system

to adjust itself to membership changes, independently of the speed of change in the

system. But we need to ask the question of how dynamic can the system be and

still behave correctly? What are the negative consequences of a system that is too

dynamic? Our last contribution is an analysis to answer these questions.

The resulting analysis points out an important obstacle to the deployment of sys-

tems with the characteristics that guide our design: services that maintain a highly-

available replicated state, and that withstand changes in the system membership.

The basic problem that these services face is as follows. As the system membership

changes, the responsibility for storing different parts of the service state shifts, and

when this happens it is necessary to transfer state among the system members. This

state transfer is an inevitable consequence of handling a dynamic system membership,

since otherwise the replication levels for the service state would become low, and

ultimately the data would be lost. The bandwidth generated by this data movement

can be large, especially if the service state held by each node is large, or if the system

dynamics are high. Given that nodes have a limited bandwidth to deal with this

traffic, this can be an obstacle to the deployment of the system.

To evaluate how dynamic the system membership can be, we developed a model

for the cost of state maintenance in dynamic replicated services, and we use mea-

sured values from real-world traces to determine possible values for the parameters

of the model. We conclude that certain deployments (e.g., a volunteer-based deploy-

ment with the membership characteristics of existing volunteer-based applications)

are contrary to the goals of large-scale reliable services.

We examined some bandwidth optimization strategies like using erasure codes

instead of replication, and find that their gains are dependent on the deployment of
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the service. For stable deployments, their gains are limited. For unstable, dynamic

deployments, there are some bandwidth savings, but not enough to make the system

practical: the cost of state transfer is still too high.

1.2 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 presents the system model

and assumptions. Chapter 3 presents the membership service. Chapter 4 presents a

generic methodology for transforming replicated services that work in static systems

to support a dynamic membership, and we present two example replicated services in

Chapter 5 (dBQS) and Chapter 6 (dBFT). Chapter 7 discusses implementation tech-

niques for the membership service and the two example replicated services. Chapter 8

presents our analysis for the cost of membership dynamics. Chapter 9 evaluates the

performance of our systems. Chapter 10 discusses related work. Chapter 11 con-

cludes with a summary and directions for future work. Appendix A presents our

programming modules that support the methodology. Appendix B presents a formal

description of the algorithm that is implemented in dBQS using I/O automata [64].

Appendix C presents a correctness proof for this algorithm. Appendix D presents a

secure multi-party coin tossing algorithm we developed for our membership service.
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Chapter 2

System Model and Assumptions

This chapter presents the system model and the assumptions that underlie the design

of our services.

2.1 Assumptions

We assume an asynchronous distributed system where nodes are connected by a

network that may fail to deliver messages, delay them, duplicate them, corrupt them,

deliver them out of order, and there are no known bounds on message delays or on

the time to execute operations.

We assume that nodes can use unforgeable digital signatures to authenticate com-

munication (we denote a message m signed by node n as (m), and no other node

can produce the signed message unless it is replaying a previous message). This as-

sumption is probabilistic but there exist signature schemes (e.g., RSA [83]) for which

it is believed to hold with very high probability. Therefore, we assume it holds with

probability one in the rest of the paper.

We use a Byzantine failure model: faulty nodes may behave arbitrarily, except

that they cannot forge signatures. Of course this also allows us to tolerate benign

failures, since they are a special case of Byzantine failures. (In reality, it is more

likely that most nodes will fail by crashing, e.g., due to machine breaking or being

decommissioned, but we do not need to assume this.)
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To avoid replay attacks we tag certain messages with random nonces that are

signed in the replies. We assume that when clients pick nonces, with probability one

they will not choose a repeated nonce.

These assumptions suffice to ensure safety of all the components presented in

this thesis: They ensure that when a client request is executed, the execution of

the request will not deviate from the specified behavior for the system. To ensure

liveness (i.e., that client requests are eventually executed) we need to make additional

assumptions about the timing of the system. For example, we can assume eventual

time bounds [60] where, after an unknown point in the execution of the system,

messages get delivered within certain bounds.

2.2 System Model

We assume a large pool of server machines that collectively provide a service to

applications that are running on a large population of client machines. The replicated

service stores a large service state, so large that it would not be feasible to store the

entire state on a single server. Instead, the service state is partitioned (each server

stores a subset of the service state). But this state still needs to be replicated on a

number of servers for availability and reliability. Therefore each subset of the service

state is stored at multiple servers, and it is accessed using replication protocols that

ensure correct semantics despite failures. We say a server is responsible for that part

of the state assigned to it.

On the client side there is a "proxy" for the replicated service that is responsible

for the client side of the replication protocols. Applications interact with this proxy

via a narrow RPC-like interface, where applications issue requests to the replicated

service via the proxy, and after the request is executed the proxy will issue a reply.

A client request affects only a small part of the entire service state. The client proxy

must determine which servers are responsible for the relevant subset of the service

state and contact them to execute the client request.

The replicated service is built using the aid of a membership service. As explained,
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this is a service that provides clients and servers with consistent views of the system

membership, i.e., the set of currently available servers.

Each server has a unique identifier (we call this the node id). This identifier is

assigned to it by the membership service, and is used by the membership service to

describe the system membership: servers are identified in the system membership

using the node ids. The identifier space is very large (e.g., 160 bits) so that even very

large systems can be accommodated. We view the identifiers as residing in a circular

id space and we take advantage of this view to assign responsibility for work in some

of our membership service protocols: we identify a task to be done by a point in

the id space, and we assign the responsibility for that task to the first server in the

current system membership whose identifier follows that point in the id space. We

select node ids in a way that ensures they are distributed uniformly around the id

space and therefore different servers will have similar probabilities of being required

to perform these tasks.

As mentioned, replicated services partition the service state into smaller units;

we refer to them as items. Items can have different granularities, e.g., an item might

correspond to a file page, a file, or an entire file system subtree. The replicated service

needs to assign the responsibility for items to groups of servers, which are called an

item's replica group. The size of these groups depends on the replication protocol in

use. For instance, the BFT state machine replication algorithm [20] uses groups of

k = 3f + 1 replicas, and works correctly provided each replica group contains no more

than f faulty replicas.

Replicated services can choose to assign responsibility in various ways. For exam-

ple, the service could use a directory to store a mapping, and then look up items in

this directory to determine the responsible servers.

An alternative is to use a deterministic function of the system membership to

assign responsibility for items. Using such a mapping simplifies the replicated service

(since it does not require the use of a directory). An example of such a mapping

(used in our implementation) is the use of successors in consistent hashing [48]. In

this scheme, both items and servers have m-bit identifiers, which are ordered in
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Figure 2-1: Example of a system organization based on the use of consistent hashing.
Client cl is accessing an item with id x, which is stored at the k = 4 servers whose
ids follow x in the circular id space. Client c2 also accesses a second item with id y,
which is stored at 4 different servers.

an identifier circle modulo 2 m, and the k replicas responsible for a data item with

identifier i are the first k servers in the current system membership whose identifiers

follow i in the identifier space (called the successors of identifier i). Since the identifier

space is large, we will not run out of identifiers even if the service stores many items.

Furthermore, if the identifiers for servers and items are spread uniformly, then we get

a nice load-balancing property that each server is responsible for roughly the same

number of items [48].

Figure 2-1 depicts an example of the utilization of a system based on successors

and consistent hashing. This assumes that each item is stored at a group of 4 servers

(this would be the case if we used the BFT algorithm with f 1). The figure shows

two clients, cl and c2, executing operations on the service. Client c1 accesses object

with identifier x. The replica group responsible for x are the 4 servers that follow x

in the circular identifier space. Client c2 accesses two objects, with identifiers x and

y. Item y is stored at 4 other servers.

With this way to distribute the responsibility for items, it is important that node
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ids are assigned in a way that is not related to physical location or other server

characteristics that could lead to correlated failures. This avoids a situation where all

successors for an item fail simultaneously, causing the item to be lost or unavailable.

Our way of assigning node ids satisfies this constraint.

2.2.1 Dynamic System Membership

At any moment, a certain set of servers makes up the current system membership;

these are the servers currently responsible for storing the service state. The system

membership changes during the execution of the system. This can happen if a failure

of a server is detected by the membership service, which decides to evict the server

from the system membership (a mechanism we will explain in Chapter 3), or if a new

server is added or explicitly removed from the system.

As the membership changes, the set of servers responsible for a particular portion

of the service state also changes. For example, if some server has left the system,

other servers will need to assume responsibility for the state that that server used

to store. A server newly responsible for some part of the state will need to obtain a

copy of that state from the servers formerly responsible for it by performing a state

transfer.

For the service to perform correctly, we need a way for clients and servers to agree

on the current system membership, since responsibility for items will depend on this,

no matter how the service assigns responsibility. It is important to have different

nodes agreeing on how the responsibility is assigned in the system, since replication

protocols rely on certain intersection properties between the sets of replicas that were

accessed by different operations to work correctly.

Figure 2-2 shows what happens when there is no agreement on the system mem-

bership. This figure shows a client, cl, executing an operation that accesses an item

with identifier i (step a). Then two of the servers where the operations were executed

crash, and they are removed from the system membership (step b). After that, three

new servers join the system membership, with identifiers near the neighborhood of i

(step c). After this point, a second client, c2, that is informed of these membership
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Figure 2-2: Example of a problem with maintaining consistent data with a dynamic
system membership. In this figure, we show a series of events that leads to old and
new replica groups that only overlap in a single (potentially faulty) server.

changes tries to access the same item i and contacts the current set of replicas for

item i (step d). The problem is that the current set of replicas only intersects the

set accessed by cl in a single replica. This intersection is not enough to ensure that

traditional algorithms work (e.g., if that replica is faulty, it can neglect to inform c2 of

the operation executed by cl). To ensure that c2 sees the changes from the previous

operation executed by cl, we must modify replication algorithms to perform state

transfer between new and old replica groups, and the second operation (by c2) must

not be executed until after the old state has been copied from the old replicas of item

i.
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This scenario also illustrates a problem if c1 is not immediately informed of the

membership changes, and, after c2 executes its operation, tries to access the item in

its old replica group. It is required, in this case, that some of the old replicas inform

cl of the new replica group and redirect c1 to that group.

A second problem is shown in Figure 2-3. Suppose that a long time after the same

sequence of events, a very slow client, C3 , that did not hear about the membership

changes, tries to access item i by contacting the initial replica group for the item. In

the previous example, we mentioned that the old replicas could notify the slow client

of the membership changes and redirect the client to the new replicas. However, we

cannot rely on this forever, since it requires that old replica groups contain no more

than the allowed number of faulty nodes for a long time. If we do not impose such

strict conditions, old replicas can behave arbitrarily badly in the above situation, e.g.,

respond that the item does not exist, or with an old state.

Note that the two problems require different solutions. For the first problem, we

need only worry about what correct replicas do: they must not respond to requests

about objects they are not responsible for, and, for objects they are responsible for,

they must respond only after they are certain to hold the correct state.

For the second problem, though, we need to worry about very old replica groups

where the number of faulty replicas exceeds the bound of the replication protocol

(e.g., in the BFT state machine replication protocol, a group of 3f + 1 replicas with

more than f faulty nodes). Here we need a way to prevent clients from using a stale

system membership.
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Figure 2-3: Second example of a problem with maintaining consistent data with a
dynamic system membership. In this example, the same sequence of membership
events occur, and a long time after the membership changes, another client, C3, tries
to access an old replica group that potentially contains more than the allowed number
of faulty nodes.
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Chapter 3

The Membership Service

This chapter describes the membership service. This service provides a trusted source

of membership information, and it is designed in a way that scales to very large

numbers of servers (e.g., tens or hundreds of thousands) and even larger numbers of

clients.

This service is designed in a generic way that can be used by many different

applications. One important class of applications that use it is replicated services

with the characteristics we presented in Chapter 2: they store a large service state

and make it available to a large client population. The service state is partitioned

into a series of items, and each item is replicated at a subset of k servers that form

that item's replica group.

In the presentation in this chapter, we will assume, without loss of generality, that

the application that is using the membership service is a replicated service with these

characteristics. We will refer to it as the "replicated service".

The remainder of this chapter is organized as follows. Section 3.1 presents an

overview of the membership service, and the main choices that underlie its design.

Sections 3.2 to 3.4 present the design of the MS through a series of refinements.

Section 3.5 presents of a discussion of some of the design choices.
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3.1 Membership Service Overview

The membership service (MS) provides applications like replicated services with a

sequence of globally consistent views of the current system membership, i.e., the set

of servers that are currently available for the replicated service to run on. This set is

determined based on requests to add or permanently remove servers from the system

that is managed by the MS, and also on reachability information measured by the

MS. Servers that are unreachable will initially be marked as inactive, and, after a long

period of inactivity, will be automatically removed from the system membership.

The MS is responsible for producing descriptions of the current system member-

ship, called configurations. Such a description includes the set of system members and

an indication of whether they are active or inactive. The MS is also responsible for

disseminating the system configuration to all the servers in the system. To allow the

system configuration to be exchanged among system members without being forged,

the MS authenticates it using a signature that can be verified with a well-known

public key.

A key part of our design is that the MS only produces new configurations oc-

casionally, and not after every membership change event. The system moves in a

succession of time intervals called epochs, and we batch all configuration changes at

the end of the epoch. Epochs are advantageous for several reasons. They simplify

the design of the replicated service, since it can assume that the system membership

will be stable most of the time, and the replicated service can be optimized for pe-

riods of stability. Also periodic reconfiguration reduces some costs associated with

propagating membership changes (like authenticating configurations or transmitting

them). Each epoch has a sequential epoch number associated with it that is included

in the system configuration.

Our design is flexible about what triggers the end of an epoch. Epochs can have

a fixed duration; or they can end after a threshold of membership changes in the

system is exceeded. We can also use a hybrid scheme where epochs end upon the first

of the two conditions: exceeding a threshold of membership changes, or exceeding the
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Table 3.1: System parameters for the membership service.

maximum duration.

Our implementation uses a fixed epoch duration which is a parameter, Tepoch,

set by the system administrator. (For reference, we list all the system parameters

of the membership service in Table 3.1.) This epoch duration must be chosen based

on the characteristics of the servers in the deployment of the system. For stable

environments, we can use use relatively long epochs (e.g., an hour). This is because we

can set the replication factors used by the service in a way that the remaining servers

ensure the service availability. Chapter 8 elaborates on how to set the replication

factors depending on how long we wait to remove unavailable members from the

system.

The remainder of this chapter describes three implementations of the MS. In

the first implementation (Section 3.2) the MS is implemented by a single, fault-free

node. This allows us to show how the basic functionality can be implemented, but

has very stringent correctness criteria. In the second implementation (Section 3.3)

the MS is implemented by a Byzantine-fault-tolerant replication group, which adds

complexity to the implementation but allows us to tolerate more failures in the nodes

that implement the MS. In our final refinement (Section 3.4) we superimpose the

replica group on the server nodes that implement the replicated service, and we allow

the servers that comprise the replica group to change.
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Parameter Meaning

Tepoch Duration of an epoch
ladd-cert Number of epochs for which add certificates are valid
ninactive Number of failed probes to become inactive
Tprobe Interval between probes
nrem ove Number of inactive epochs before removing
Tease Lease duration
Afs Maximum number of faults in MS replica group

nstart-inactive Number of failed probes to initiate eviction
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Figure 3-1: In the first implementation the membership service functionality is im-
plemented by a centralized, fault-free node.

3.2 Centralized Membership Service

Here we assume the membership service is implemented by a separate, fault-free

node that we will call the MS node. This node is the sole entity responsible for

determining membership changes and producing configurations for the system. These

configurations are sent to the system nodes, and can be exchanged among them. This

system organization is depicted in Figure 3-1. The figure shows a service formed by

several servers with identifiers in a circular space, and a separate MS node that

implements the membership service.

This implementation has very strict correctness conditions: we assume that the

MS node never fails. We will relax this assumption in subsequent implementations of

the MS.

3.2.1 Membership Changes

The MS needs to respond to requests to add and remove nodes, and it also needs to

detect unreachable nodes and remove them automatically.
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Explicit Addition and Removal

Our design requires a form of admission control to join the system. We excluded

an open membership system since these are vulnerable to a Sybil attack [29] where

an adversary floods the system with malicious nodes. In such a setting it would be

nearly impossible to ensure that the correctness conditions of replicated services that

use the MS are met.

Therefore we require that nodes can only be added by a trusted authority, and

that the trusted authority must prevent attacker from easily adding a large number

of nodes to the system. This can be done, for instance, by ensuring a relationship

between nodes in the system and real-world entities.

We employ a simple trust model based on public key cryptography: we assume

that the trusted authority has a well-known public key that can be used to validate

certificates it issues. To reduce the risk of exposing certificate signing keys, the trusted

authority should produce certificates offline; thus the machine used to produce these

certificates should not be involved in the regular operation of the system.

The certificate for adding nodes to the system contains the information needed for

clients and servers that are running the replicated service to establish authenticated

communication with the new node: the network address and port number of the

new node, and its public key. The certificate also includes a random number that is

generated by the trusted authority, which will be useful for assigning node ids.

To be added to the system a node must first obtain the add certificate from the

trusted authority. Then the incoming node forwards this certificate to the MS node.

When the MS node receives a request to ADD a member it must verify the au-

thenticity of the respective certificate. If this is authentic, the information about the

node is recorded in a list of nodes that must be added to the next configuration.

The MS node also generates a node id for the incoming node, which is included in

the system configuration. Node ids are generated as a deterministic function of the

random number included in the add certificate. This function should generate node

ids that are uniformly distributed in the circular id space. The simplest scheme is to
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use the random number as the node id, but we also allow more elaborate schemes.

For instance, we can obtain better load-balancing by generating a number of ids by

hashing the random number and different salt values, and choosing the id that more

evenly spaces nodes in the id space given the current system membership [49]. Our

implementation just uses the random number as the node id.

The trusted authority can also permanently REVOKE membership (e.g., of nodes

that are known to be compromised) by issuing revocation certificates. This certificate

needs to identify the node to be removed by its public key. Such a certificate is also

forwarded to the MS node after it is produced. The MS node also validates the

certificate and records the information about the node that will be removed in the

next configuration.

We need to prevent replay of add requests; otherwise a node that was previously

removed from the system could be re-added by a malicious party. We do this by

putting an interval of epoch numbers in the add certificate. The length of the inter-

val (the number of epochs during which the certificate is valid) is a system parameter,

ladd-cert. An add request is only good while the epoch number of the current config-

uration falls within the interval in the add certificate; otherwise it is rejected. This

means we need to remember revocations for ladd-cert epochs. If we set add-cert to

1, then we do not need to remember revocations in future epochs.

Automatic Detection of Unreachable Nodes

Besides processing explicit add and revoke requests, the MS must also automatically

detect unreachable nodes and mark them as INACTIVE. It does this by probing system

nodes periodically, round-robin. The time interval between two consecutive probes to

a system member is a system parameter, Tprobe. The probes are usually unauthen-

ticated ping messages, which we expect to be sufficient to detect most unreachable

nodes. Infrequently, probes contain nonces that must be signed in the reply, to avoid

an attack that spoofs ping replies to maintain unavailable nodes in the system. Signed

pings are used sparingly since they require additional processing on the MS node to

verify signatures. However, once a node fails to reply to a signed ping, all subsequent
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pings to that node must request signatures (until a correctly signed response arrives).

Probe results are inserted into a probe database that records, for each system

member that is currently unreachable (or, in other words, that has failed to reply to

the last probe that was sent to it) how many consecutive probes that member has

failed to respond.

If a node fails to reply to a threshold of consecutive probes, it is declared to be

inactive and will be added to a list of inactive nodes. This threshold is a system

parameter, ninactive.

Marking nodes as inactive must be done slowly, which means that the probing

period Tprobe and the threshold ninactive should be set by the system administrator

such that the time to mark a node inactive, Tprobe ninactive, is relatively high. For

applications like the ones we envision being the target users of our MS (i.e., replicated

services that store large amounts of service state), it is important to have a delayed

response to failure for several reasons: It avoids unnecessary data movement due to

temporary disconnections, offers additional protection against denial of service attacks

(assuming we wait for longer than the duration of such attacks), and avoids thrashing,

where in trying to recover from a host failure the system overstresses the network,

which itself may be mistaken for other host failures, causing a positive feedback cycle.

The downside of using a delayed response to failures is that the average availability

of active system members will be smaller than if we had a quick response to failures.

However, this can be circumvented by setting f (the redundancy parameter for the

replicated systems) appropriately. This issue is addressed in more detail in Chapter 8.

However, we also envision the use of our system by other applications that want to

be more aggressive about marking unreachable nodes as inactive. It would be simple

to extend the design to include a parameter Tfostprobe that represented a shorter

probe interval that would be used after the first failed probe to a system member.

The system would revert to the normal probe rate after a correct reply was received

from that node. Note that we cannot decrease the probe period drastically, or else

we can suffer from the thrashing effects described above.

If an inactive node contacts the MS node, it will be marked as RECONNECTED.
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The MS node must send a challenge to the reconnecting node that is signed in the

reply to avoid a replay attack. Also nodes are not allowed to remain inactive indef-

initely; instead, if a node has remained inactive for longer than a number of epochs

(determined by the system parameter nremove), it is automatically removed from the

system membership.

Byzantine Fault Detection

Probes are a good mechanism to detect nodes that crashed or that are unreachable.

We cannot rely on them to detect Byzantine faults, since a Byzantine-faulty node

might respond correctly to them.

In general, Byzantine fault detection is a hard problem because the system can

be a target of a lying in wait attack, where an attacker compromises more and more

nodes, making them behave correctly until a sufficient number of nodes have been

corrupted that launching an attack at that point would cause substantial damage to

the system. Therefore we cannot rely on a node's external behavior to determine if

it is compromised.

Even though there is no complete solution to the problem of detecting Byzantine

faults, we point out a simple extension to the scheme above that would allow us to

detect some of these faults.

This extension is based on proposals for remote attestation [22, 33, 1]. These

proposals rely on secure hardware and a small, trusted OS kernel base to produce a

certificate that enables a machine to prove to a remote system what local programs

are running.

The idea of remote attestation is that nodes run tamper-resistant hardware [34]:

the processor has a private key that changes in the case of an attack on the hardware.

The processor contains a special register that contains a fingerprint of the software

that is running in the system, and there is a special instruction the processor can

execute that receives a nonce as an argument, and outputs a signature of the nonce

and the fingerprint of the running code.

Most proposals for remote attestation assume short-lived sessions between clients
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and servers where the attestation is only performed in the beginning of the interaction

between the client and the server, e.g., to ensure that both nodes are running the most

up-to-date versions of the operating system and the application software.

We would like to use remote attestation in a slightly different way, as a means

to automatically remove server nodes that have been compromised, and divert the

clients to other, correct servers.

To do this we augment our probing scheme with remote attestation. This is

done by piggybacking the output of the software attestation instruction on the signed

probes. When the MS receives a reply to a signed probe, it checks to see if the

software running on the server is the same as what is expected.

If the reply is correctly signed but the node is not running the correct software, it

can be immediately added to the list of nodes to be removed from the system. If the

reply does not contain a correct signature, it is ignored, and after a number of failed

replies the node is eventually removed from the system.

3.2.2 Propagating the System Membership

The MS node must propagate information about membership changes to the servers

at the end of each epoch.

Our implementation has a fixed epoch duration, Tepoch. The MS node starts a

timer with that duration at the beginning of an epoch, and STOPS the epoch when

that timer expires. Note that, as mentioned, other conditions for ending epochs are

possible, e.g., exceeding a number of membership changes, or a threshold of inactive

system members. It is easy to extend the current implementation to end epochs

abruptly upon such conditions.

When the timer expires the MS node stops probing, and produces a certificate de-

scribing the membership and epoch number of the next configuration. This certificate

is signed with the MS node's private key.

Then the MS sends a message to the other nodes describing the next configuration.

This message describes the configuration change using deltas:

(epoch number, add list, drop list, unreachable list, reconnected list, cMs)
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where add list is a list of the nodes that joined the system during that epoch, and

contains, for each node, its network address, port number, public key, and node id;

drop list is the list of the node ids of nodes that were permanently removed (either

because a revocation certificate was issued, or because they were inactive for over

nremove epochs); unreachable list is the list of ids of nodes that became inactive

during this epoch; reconnected list is the list of ids of nodes that used to be inactive

but reconnected during this epoch; and aMS is a signature certifying that the MS

produced the configuration. aMS is not a signature over the message described above,

but over the entire configuration, consisting of the following:

* The current epoch number;

* and, for each system member:

- its node id;

- its network address;

- its port number;

- its public key;

- a flag indicating if it is active or inactive.

This list is sorted by node id.

When a node receives this message, it produces the new configuration from its

old one and the delta and then checks the signature. Transmitting only deltas is

important for scalability.

To avoid an expensive one-to-all broadcast, we disseminate the certificate using

multicast trees (made up of servers). For increased fault-tolerance we set up m

redundant trees rooted at the MS node: each system node is included in more than

one tree. However, nodes can also get a certificate from any other node that already

received it, and we make use of this ability in the replicated services presented in later

chapters.

The multicast trees are setup as follows. The MS node chooses m random numbers

in the node id space. Then it sends a level 0 message to the nodes in the next
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configuration that succeed each of the m ids by i . N2 nodes, where N is the

number of nodes in that configuration, and i = 0,..., N- 1. Nodes receiving level

O messages send level 1 messages to the nodes that succeed it by i N, again with

i = 0,..., N- 1. Finally, nodes receiving level 1 messages send level 2 messages to

their N- immediate successors. This guarantees that each of the m trees spans all

system nodes.

The number m of redundant multicast trees that are set up represents a tradeoff

between the likelihood that all system members will receive the new configuration by

this process, and the amount of redundant information that is transmitted.

3.2.3 Supplying Old Configurations

As mentioned, replicated services need to do state transfer at epoch boundaries. But

to do state transfer, a node needs to know not just the configuration for the current

epoch but also the previous one, since it needs to know which nodes were previously

responsible for items that are now its responsibility.

However, a node might miss hearing about some epochs. When it finally learns

about the new configuration, it will need to learn the missing information, both in

order to compute the membership of the current epoch (since we send deltas) and to

learn about previous epochs.

This implies that the system needs to remember previous configurations. We

place this responsibility on the MS. Since configurations are authenticated, we can

use unauthenticated requests and replies to obtain them.

For now we will assume that the MS maintains all configurations since the begin-

ning of the system, and that each server node can obtain any configuration from the

MS node. This can be a large amount of state if the system lasts for many epochs.

Section 3.5.2 describes a scheme to garbage collect old configurations when they are

no longer needed.
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3.2.4 Freshness

Our approach of using epochs and certificates that describe the system membership for

each epoch simplifies the design of replicated services. By augmenting the replication

protocols to include epoch numbers in requests we ensure that two correct nodes that

are in the same epoch agree on the system membership (hence they agree on the set

of replicas for the operation in question). If the client is still behind the servers it is

contacting, it can request the certificate for the new configuration from the servers,

and consequently upgrade to the new epoch.

However, as mentioned in Section 2.2, this does not solve the problem entirely, in

particular if clients are lagging behind by several epochs. This can happen for several

reasons, e.g., if the client is slow and has not been receiving messages from other

nodes, or when a client joins the system for the first time, and has just downloaded the

configuration from another running node. This can lead to the problematic situation

explained in Figure 2-3 where a client with a stale configuration contacts an old

replica group to execute an operation, and the failure threshold in that group (i.e.,

the number of faulty servers in the group) has long been exceeded.

We could address freshness by having each server use a new public (and associated

private) key in each configuration (as is done in [67]). In this scheme, the membership

service picks new public and private keys for all replicas when replica groups change,

and, for each replica, encrypts the new private key with the old public key of the

replica, and sends it to that replica. Each (non-faulty) server discards its old key

after receiving its new one, preventing clients from executing operations in old groups

(assuming enough replicas discarded their keys). But this approach is not scalable

when there is a large number of servers, both because of the communication required

between the MS and servers when the membership changes, and because of the size

of the configuration message. Also this approach makes it more difficult to replicate

the MS (as described in Section 3.3), since faulty MS replicas would have access to

critical information.

A variation that would allow the MS to be replicated would be for servers to choose
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the public/private key pairs, and send the public key to the MS. But this approach

has the problem that the MS could not make progress if a faulty node would not send

it its public key.

Therefore we use another approach, leases. The mechanism works as follows.

Clients obtain leases by issuing challenges to the MS. The challenge contains a

random nonce; the MS node responds by signing the random nonce and the epoch

number of the current configuration. The response from the MS gives the node a lease

during which it may participate in the normal system operation. The duration of the

lease is a system parameter, Tlease. As future work, we could make the duration of

the lease adaptable, so that leases would expire shortly after the end of the current

epoch. In designing such a mechanism we need to be careful not to overload the

system after epochs end.

A client will only accept and process a reply from a server if it holds a valid

lease (our client side code for the replicated services enforces this). We must set the

epoch duration and the lease duration in a way that ensures that clients will never

try to contact replica groups where the failure threshold has been exceeded (i.e., they

contain more than f faulty nodes). Note that leases do not prevent new epochs from

being produced. They only limit the time a client will use an epoch it already knows.

Leases are required by clients for correctness, but servers can also use them as a

means to speed up the discovery of new configurations. If a server is using the same

configuration for a while and has not checked with the MS to ensure it is still valid, its

lease will expire and this will cause the server to issue a new challenge, and find out

if its configuration is still up-to-date. If not, the MS will forward the most up-to-date

configuration to that server.

3.3 Replicated Membership Service

The current design has an obvious problem: The MS node is a single point of failure.

In this section we replace the MS node with a group of 3 fM$ + 1 MS replicas executing

the Castro-Liskov BFT state machine replication protocol [20], We assume that these
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Figure 3-2: In the second implementation the membership service functionality is
implemented by a separate set of BFT [20] replicas.

MS replicas are always the same machines, and that no more than fs replicas

become faulty throughout the entire execution of the system. We also assume that

each MS replica has its own private key, and the corresponding 3 fMs + 1 public keys

are well-known. This system organization is depicted in Figure 3-2.

3.3.1 Membership Changes

Moving to a BFT group requires some changes in the previous design. First, the

ADD and REVOKE operations must be performed as BFT state machine operations.

The request can be sent to one (or more) of the MS replicas, which invokes the state

machine operation on the BFT service. The state machine operation to add a system

member or permanently revoke membership takes as argument the add or revoke

certificate, respectively. The execution of the operation validates the certificate: it

verifies that it is correctly signed, and, in the case of an add certificate, that the range

of epochs in the add certificate includes the current one. For revocation operations,

the BFT service verifies that the node is a current member of the system.

In the replicated MS, replicas probe system members independently, which is

needed so that they can monitor one another and so that we do not need to trust a
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single replica that may be lying. To mark the node inactive, an MS replica must get

the other MS nodes to agree, and this is not trivial, since different nodes will have

different values for how long each node has been unreachable.

MS nodes initiate the process to mark the node inactive if nstart inactive con-

secutive pings for that node fail. (Like ninactive, nstart-inactive is also a system

parameter set by an administrator.) In this case, that MS replica proposes the node

should be marked inactive to other MS replicas. Then, it must collect signed state-

ments from at least fMs + 1 MS replicas (including itself) that agree to mark that

node inactive. Other MS replicas accept the proposal (and sign a statement saying

so) if the last ninactive pings for that node have failed (according to their own probe

database), where ninactive < nstart-inactive ninactive and nstart-inactive should

only differ by one or two units so that nodes are detected as unreachable in a timely

way. This approach ensures that the proposal will usually succeed if the node is really

down.

Once a node has the necessary signatures, it causes the node to be marked as

inactive by running an operation on the BFT service, for the purposes of agreement

and serialization with other operations we will describe next. The INACTIVE oper-

ation that is invoked on the BFT service has two parameters: The identifier of the

node being marked inactive and a vector (al, ..., a3fts+1) containing at least fs 1

signatures from MS replicas agreeing to mark the node inactive during the current

epoch. The operation will fail if there are not enough signatures or if they do not

verify.

The reconnect operation is performed by a replica when it hears from an inactive

node. This also requires a vector of fMs + 1 signatures of MS replicas willing to

reconnect the node during that epoch. MS replicas will produce these signatures

after sending a challenge to the reconnecting node, and receiving a correctly signed

reply. When the operation is executed, the MS verifies that the node is an inactive

system member, and verifies that there are enough correct signatures.

If a node is marked inactive and then reconnects in the same epoch, we need to

be careful not to accept the old vector of signatures that was used to mark the node
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as inactive in a replay that would make the node inactive again. This could be done

by adding sequence numbers in the inactivity statements, but instead we only allow

nodes to be marked inactive or reconnected no more than once per epoch.

3.3.2 Propagating System Membership

The STOP operation also needs to be changed since it requires agreement on when

to end the epoch. We use the same approach as in INACTIVE of collecting signa-

tures agreeing to stop epoch e, but in this case each node consults its local clock to

determine how long it thinks the epoch has lasted, and agrees only if it has lasted

more than Tepoch - 3epoch, where epoch is a system parameter that allows for the

operation to succeed despite a small drift in clock rates. Note that we do not as-

sume synchronized clocks, nor synchronized clock rates. However, if there are more

than fs non-faulty MS replicas with a slow clock rate, this might cause the STOP

operation to be executed later, causing the system membership to change later than

desired.

After the STOP operation is executed, all MS replicas agree on the membership in

the next epoch: nodes for which REVOKE operations have been executed are removed

and those for which ADD operations have been executed are added. Also INACTIVE

and RECONNECT operations mark nodes as inactive or active, and we remove nodes

that have been inactive for longer than nremove epochs.

Then the MS replicas can produce a certificate describing the membership changes

for the new epoch similar to the one described before, except that the certificate can

no longer be signed by a single node, since we cannot trust any particular node.

Instead, we sign the configuration with a vector of at least fMs + 1 signatures from

MS replicas.

This certificate is disseminated using multicast trees as before, but now each MS

replica sets up a single multicast tree to disseminate it. Each tree spans all system

members, therefore our current implementation uses m = 3fMs + 1 redundant trees

(in some cases, when MS nodes are faulty or slow, the number of redundant trees may

be smaller). Note that we could increase the number of redundant trees by having
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each node start more than one tree that spanned all members.

3.3.3 Leases

The challenge-response mechanism for granting leases is still implemented by the MS,

but now leases require a vector of fM$ + 1 signatures.

3.3.4 Correctness of the Membership Service

This implementation of the MS will provide correct service if no more than fs MS

replicas fail during the entire system lifetime.

We can weaken this condition using an extension to the BFT state machine repli-

cation algorithm called proactive recovery [21]. Proactive recovery assumes that each

replica of the BFT group (in this case, each MS replica) has a secure coprocessor that

holds its private key and a watchdog timer that periodically (e.g., every 10 minutes)

interrupts processing and hands control to a recovery monitor, which restarts the

node. When the node is restarted, the coprocessor reinitializes the code running on

the main processor from a copy on a read-only disk. The idea is that at this point

the code is correct. Then the node runs a restart protocol that corrects its copy of

the service state if that has been corrupted.

Proactive recovery allows the BFT service to work correctly despite an arbitrary

number of faults, provided less than fMs replicas fail within a small window of vul-

nerability (roughly equal to the restart period). However, it opens an avenue for an

attack where an adversary compromises one MS node at a time and gets each of them

to sign a wrong membership list for a future configuration.

In the next section, we will explain techniques that overcome this problem.

3.4 Reconfigurable Membership Service

The use of proactive recovery with a fixed replica group allows us to tolerate an

arbitrary number of faults among these replicas, but it still does not solve the problem
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Figure 3-3: In the final implementation, the membership service functionality is su-
perimposed on the servers running in the system.

of an MS replica failing permanently, and needing to be replaced. In this case we

would like to automatically reconfigure the MS, replacing the failed MS replica with

a new, non-failed node.

Our (final) refinement addresses this by changing the MS membership. We do

this by periodically moving the MS to a new set of nodes, as part of transitioning

between epochs. Our current implementation changes the MS replicas every epoch,

but we can also change it less frequently, every nchange epochs.

Our design superimposes the MS on the current set of system members: we assume

servers occasionally act as MS replicas, in addition to running the replicated service.

However, we could easily limit what servers are allowed to run the MS by marking

servers (in the add certificate) to indicate the roles they are allowed to assume. These

marks could be used to allow the MS to run only on particularly capable or well-

connected servers.

Superimposing the MS on the system members ensures we have a pool of available

servers on which to run the MS. Superimposition also provides good security: it allows

us to move the MS periodically as a way of avoiding an attack directed at a particular

set of replicas.
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3.4.1 Choosing the New Membership Service

The MS is a particularly tempting target to attack because if more than fs of its

nodes are faulty, the entire system will fail. Therefore we would like to make the

attack difficult.

To achieve this goal we move the MS periodically. At the end of each epoch we

choose a new set of system members who will implement the membership service

for the next epoch. However, it would be bad if the attacker could predict where

the MS is running in advance since this would allow it many epochs to launch an

attack. Therefore we want to move the MS in an unpredictable way. Our solution is

to choose the MS based on a random number. Once this number has been chosen,

the MS replicas for epoch e + 1 are chosen to be the nodes whose ids follow (or equal)

h(i, re+), where i E {1,..., 3 fMs + 1} is the replica number, h is a random hash

function (our implementation uses SHA-1), and r+l is the random number chosen

for epoch e + 1.

It might seem that we could compute this random number as a hash of the configu-

ration membership. But our system might run in an environment with very low churn,

and the membership might not change for several epochs. Therefore this approach

does not work and we require a more secure way of computing r,+l that ensures that

it is impossible to predict r,+l before it is computed and that no compromised node

can bias the choice of that number. For this purpose we use a multi-party secure coin

tossing scheme [77].

The reason why we use h(i, r,+l) instead of a simpler scheme (e.g., picking the

successors of re+1 ) is to avoid a total match between the MS replica group and a

replica group for the replicated service, since the replicated service may also pick

the same simple scheme like successors. If there were a total match, that group of

the replicated service might suffer performance problems due to the extra work of

implementing the MS.
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3.4.2 Discovering the MS

As mentioned, the MS must supply old configurations to slow servers that have missed

some epochs and need their configurations for state transfer (and to verify the au-

thenticity of the configuration delta).

With the reconfigurable MS this is problematic since the slow servers cannot know

who the MS replicas are without computing the current configuration. To break this

circular dependence we augment the current configuration with a signed list of the

3 fMs + 1 nodes that form the MS.

3.4.3 Signing

Another issue that arises in this refinement is how configurations are authenticated.

A vector of signatures no longer works since incoming nodes do not know who the

current MS replicas are; this means a group of bad nodes could pretend to be an MS.

Therefore we switch to having the configuration be validated with the MS public

key. Each MS replica holds a share of the associated private key and the signature

is produced using a proactive threshold signature scheme [45]. This scheme will only

generate a correct signature if fMs + 1 replicas agree on signing a statement. When

epochs change, the new replicas obtain new shares from the old replicas, allowing the

next MS to sign. Non-faulty replicas discard old shares after the epoch transition

completes. Different shares must be used by the new MS replicas because otherwise

these shares could be learned by the attacker once more than f failures occurred in

a collection of MS groups.

Another point is that we need to be careful in carrying out the protocol that moves

the information about the shares to the new MS members. If this information were

sent by encrypting with their public keys, then eventually an attacker could figure out

the secret, by saving all messages. Then when a node previously in the MS became

faulty, the attacker could get it to decrypt all messages sent to it earlier. As soon as

fMs + 1 nodes from the same configuration have done this, the attacker would know

the secret.
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We solve this problem by having the new MS members choose new public/private

key pairs. These are their epoch keys; they are distinct from the nodes' permanent keys

(which never change). MS members use their epoch keys to encrypt the information

they exchange in the resharing. The old MS waits to hear about at least 2 fMS + 1

new public keys from the new members before doing the resharing. For agreement

on these keys, new replicas must run an operation on the old MS state machine to

submit these keys. And as soon as the old MS produces the new configuration, all its

honest replicas discard their epoch keys.

Epoch keys for the new MS replicas are included in the configuration. Since there

is only a small number of them, this does not affect scalability.

The challenges used to obtain leases are now signed with the epoch keys. We also

use epoch keys to sign the arguments to the INACTIVE, RECONNECT, and STOP state

machine operations.

Using epoch keys instead of threshold signatures for these functions is advan-

tageous since the cost of producing a vector of signatures is lower than producing

a threshold signature. Therefore we only use threshold signatures to authenticate

configurations.

This approach makes the configuration a bootstrap of trust in the system: it can

delegate trust to the epoch keys by signing the corresponding temporary public keys.

Furthermore anyone using the system can trust the configuration since we know its

threshold signature must have been produced by one of the replica groups in a chain

of trustworthy MSs.

3.4.4 State Transfer

Our MS has state: it knows about the current and previous configurations, the list of

membership changes to be applied in the next configuration, and its members have

their probe database. So the question is how to transfer this state when the MS

moves?

The next configuration is signed by the threshold signature scheme and propagated

to new MS members, and the lists of membership changes are reset when epochs
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Figure 3-4: Different possibilities for the need to transfer the probe database across
epochs. In case (a) there is no need to transfer the database, but in case (b) the
database needs to be transferred.

change, so the current configuration information is simple to transfer.

Old configurations can be obtained directly from any non-faulty MS member di-

rectly since they are authenticated. This can represent a substantial amount of infor-

mation if the system is running for many epochs. We address the issue of garbage-

collecting old configurations that are no longer needed in Section 3.5.2.

The other piece of MS state that may need to be transferred is the probe database.

Figure 3-4 illustrates two different cases that need to be distinguished. If the time to

mark a node inactive after its unreachability started (in our implementation this is

equal to Tprobe· ninactive) is smaller than the epoch length, Tepoch, we can discard

the probe database (part (a) of the figure). The loss of ping information means that

some work is lost (some pings will have to be re-sent), but that is not a problem since

epochs are long enough so that unresponsive nodes will be declared inactive in the

new epoch.

If the time to mark the node inactive is larger than Tepoch (part (b) of the figure),

the probe database needs to be transferred to ensure that the process of detecting

the inactivity of the node will eventually succeed. This process is complicated by the

fact that this is a non-deterministic state: different MS replicas will have different

values for how long nodes have been unreachable.
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Our solution is to have old MS replicas invoke an operation on the BFT service

that submits the values of their probe database to the old MS. (This state is relatively

small since only the nodes that have failed their last contact attempt are in the probe

database.) After 2 fMs + 1 old MS replicas have invoked the operation, the new

MS replicas can invoke an operation on the service to read their initial values for

the probe database. The latter operation will return, for each currently unreachable

node, the median value for the number of consecutive failed attempts to contact that

node (among the 2 fMs + 1 values that were submitted, considering that a node that

was not reported is unreachable for zero attempts). This discards fMs possible high

values or fIs possible low values from faulty replicas.

3.4.5 Epoch Transition Protocols

We now describe how the epoch transition protocol works, by enumerating the se-

quence of steps, and explaining each step in detail.

1. Run the stop operation and submit values for the probe database.

This protocol starts when the first MS node invokes the STOP operation on the

MS. After this operation runs, all the old MS nodes that execute this operation will

run an operation to submit their probe database values. Once 2fMs + 1 MS nodes

have run this operation, the service discards all the values that were submitted for the

probe databases with the exception of the median values, which will be transmitted

to the new MS replicas.

2. Pick the random number.

At this point the olds MS replicas run the multi-party secure coin tossing scheme [77]

to pick the random number to be included in the next configuration, re+l.

3. Notify the new replicas to start the protocols.

After re+l is chosen, any old MS replica can compute who the new MS replicas

are. Each old MS replica will individually send a message to all the new MS repli-

cas, requesting that they initiate their part of the protocols. These messages are

retransmitted if necessary until acknowledged (or if the epoch transition concludes).

New MS replicas will wait until they receive fMs +1 notifications to start their side

59



of the epoch transition protocols, to avoid being spoofed into starting this protocol

when they should not.

4. New replicas read the probe database and propose epoch keys.

The first thing that new MS replicas must do is run operations on the old service

to submit their epoch keys and read the probe database values that were recorded in

the old service. These will be the initial values for their probe databases.

We cannot wait for all new MS replicas to submit their epoch keys since fMs of

them can be faulty and never do it. Instead, after the new replicas have run 2 fMs + 1

operations to submit their epoch keys, we wait for a fixed time (a parameter await

that can be set to only a few seconds) for the remaining new replicas to submit their

keys. After that time, or after all keys are present, we move to the next steps of the

protocols. The additional wait is just a performance optimization: the more epoch

keys are known the better we can balance load on the new MS. However, the system

works correctly with only 2 fMs + 1 epoch keys in the configuration.

5. Perform the share refreshment protocol.

Once we have enough epoch keys and we have waited the additional wait, the old

replicas start the share refreshment protocol that produces new shares from the old

ones. All the communication sent to the new replicas in this protocol is encrypted

using the epoch keys for the new replicas.

A problem that may arise is that up to fMs replicas may be correct but slow

and not submit their epoch keys in time to be for these keys to be included in the

configuration. As mentioned, this is not a problem for the normal MS operation

since leases and certificates to change the inactivity status of members can be signed

by only fMs + 1 MS replicas. However, it may be important to know the epoch

keys of these nodes to encrypt communication during share refreshment protocol (in

case some of the remaining replicas fail and do not properly execute the refreshment

protocol), and it is also useful to have more epoch keys so we have more possibilities

to sign leases. To address this, a node that had not submitted its epoch key may still

create one and submit it to the old membership service until this service is stopped.

6. Sign the new configuration.
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The share refreshment protocol ends after 2 fMs + 1 new replicas claim they have

computed the new shares [23]. At this point, old replicas sign the new configuration,

and send it to the new replicas. New replicas request the new configuration from old

replicas after a timeout. Once a new replica receives the new configuration, it starts

the BFT service for the next membership service.

7. Discard old epoch shares and epoch keys.

When the old replicas sign the next configuration, this also serves as an indication

that it is safe for the old replicas to discard the old shares, epoch keys, probe database,

and the old BFT service state for the MS. Any old MS replica that sees a signed

configuration for the next epoch discards all these pieces of state (this can happen, for

instance, to a slow replica that did not participate in the epoch transition protocols).

The only state that is not immediately discarded is the old configurations. These

are transmitted in the background from the old replicas to the new replicas, in parallel

with the remaining protocols. New replicas can request and read each old configura-

tion from a single old MS replica, since these are authenticated and cannot be forged.

Once an old MS replica receives an indication from fMs + 1 new replicas that they

have transferred all old configurations, it can discard them. Old replicas query new

replicas for this assertion after a timeout.

Slow New MS Replicas

Another issue is what happens to slow new MS replicas that do not participate in

the epoch transition protocols. They may find out about the new epoch later on and

need to transfer state from the previous epoch. The solution is that when the new

nodes see the new configuration they know the old state has been discarded and they

obtain their state from the remaining new MS replicas.

They can produce new shares from information received by fMs + 1 other non-

faulty new nodes, a feature that is present in the proactive threshold signature pro-

tocols we use [23].

The initial values for the probe database can be obtained directly from the other

MS replicas. The slow MS replica will accept the probe database values after it
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receives fM$ + 1 matching replies. This implies that MS replicas must keep their

initial values for the probe database until the epoch ends.

The old configurations can be obtained directly, either from one of the old repli-

cas or from one of the new replicas, depending on who still holds them. The slow

new replica can query both old replicas and new replicas for old configurations, and

download them from the node to whom it has the fastest connection.

After obtaining this state, the slow new replica can start the service for the new

epoch. It may be the case that some operations have already executed on the new

service. The BFT protocol ensures that slow MS replicas catch up with all the

operations [20].

3.4.6 Correctness Conditions of the MS

When we had just one MS node, we required that it never fail. When we had a BFT

group, we required than no more than fs of them fail during the entire lifetime of

the system. Now we have a less constraining requirement:

Correctness condition for the membership service: Each MS replica group

must contain no more than fMs faulty replicas between the moment the epoch prior

to the one that corresponds to that particular MS ends, until the moment when the

last non-faulty MS replica finishes the new epoch and discards its secret threshold

signature shares and its epoch private keys.

This condition ensures that faulty nodes cannot forge requests, e.g., to remove

members, since BFT works when less than one third of the replicas in the group are

faulty [20], plus requests that require a vector of signature have at least one signature

from a non-faulty replica, and the proactive threshold signature protocol produces

valid signatures by combining k = fs + 1 correctly generated signature shares.

Given this condition, the membership service offers very strong semantics to the

replicated services: We ensure that any two nodes that have configurations for the

same epoch agree on the system membership. In addition, each node has a certificate

that vouches for that configuration that can be shown to any other node in the system,

thereby providing a way to bring slow nodes up-to-date.
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These strong semantics come at a price: the system may halt (i.e., stop producing

new configurations) if we cannot form a set of at least 2 fMs + 1 old and 2 fMs + 1 new

MS replicas that can communicate when epochs are ending. This would happen, for

instance, if a network partition splits the MS in two groups, each larger than fMs.

It has been proven that you need to pay this price for the strong consistency and

availability guarantees of the service [37].

3.5 Discussion

In this section we discuss the scalability of the design of the MS, and an extended

functionality that can be performed by the MS.

3.5.1 Scalability

Our approach includes a number of techniques that enable it to scale to large numbers

of clients and servers.

Deltas and dissemination trees allow us to communicate information about new

configurations efficiently.

The lease mechanism has provisions that make it scalable. First, we expect leases

to be relatively long, e.g., an hour or more (and we could make them even longer by

making their duration adaptive so they expire right after epochs end, as explained

before). Nevertheless, there could be so many clients and servers that the MS is

not able to keep up with all the challenges. But it is easy to fix this problem by

aggregation: rather than having each client issue its challenges independently, we

aggregate client challenges and respond to them all at once. Aggregation is done by

servers: clients send challenges to particular servers (selected randomly or based on

proximity information); the server collects them for some time period, or until it has

enough of them, e.g., a hundred; the server hashes the nonces, and sends the challenge

to the MS replicas; the server sends the signed response to the clients, together with

the list of nonces that were hashed.

In our scheme each node stores the entire configuration in memory. However, this
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is not a concern, even for systems with tens or hundreds of thousands of nodes. If

we assume that node identifiers have 160 bits (based on a SHA-1 cryptographic hash

function), and we use 1024 bit RSA public keys, then the entire configuration for

a system of 100, 000 nodes will fit in approximately 14.7 megabytes (which is small

compared to current memory sizes).

A related issue is the time it takes for a new client to download the current

configuration. (This is not a problem for new servers since they will not be active

until the next epoch). Clients can use Merkle trees [69] to download specific parts

of the configuration, e.g., a node can learn about nodes in a particular id interval

first. Merkle trees can also be used by a reconnecting node to identify the minimum

information that needs to be transmitted.

A final scalability issue is having each MS replica probe all system nodes. This

is not a problem if the replicated service that uses the MS decides to be slow about

declaring unreachable nodes to be inactive (Chapter 8 argues that this is is advanta-

geous to reduce the cost of redundancy maintenance).

However, this is a scalability barrier if we need to evict nodes more aggressively.

To address this, we designed a simple extension to the MS protocols that allows the

probe protocol to scale to even larger systems and/or faster probing. The idea is to

use committees that serve the purpose of offloading the probing functionality from the

MS. These committees can be chosen the same way the MS is chosen, i.e., based on

the random number in the configuration. Then each committee can probe a subset

of the system members (using the same techniques used by the MS) and report the

results to the MS (at the end of the epoch, or earlier if the MS desires).

3.5.2 Garbage Collection of Old Configurations

As mentioned, the MS must supply slow servers with old configurations so they can

catch up one epoch at a time, and perform state transfer between epochs. Although it

might be acceptable for the MS to record this information forever, since all it requires

is storage, here we describe how to detect when an old epoch will never be needed

again; at that point its storage can be removed.
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In the two example replicated services we implemented, a configuration for epoch

e can be discarded when a quorum of 2f + 1 replicas in each group in epoch e + 1 have

upgraded to epoch e + 1 and finished reading the old state from epoch e. We believe

this can be generalized for applications that any quorum size QI: once a quorum of

new replicas have the transferred the state from the previous epoch, the remaining

new replicas can obtain that state from the servers in that quorum.

To recognize this condition, the MS needs to understand how replica groups are

assigned in the replicated service; otherwise it could not know that it has heard from

2f + 1 members of each group. For this purpose we assume the existence of a function

replica-groups that lists all groups of replicas in the configuration for epoch e.

In our example services we use successors so it is easy to compute the replica

groups for any configuration, and there are only N of them, where N is the number

of nodes in the system. However, for some assignments it may be too hard to compute

the set of replica groups (e.g., if we use a different group for each item, there would

be as many different groups as items). Our solution would not work in this case.

The MS maintains, for each epoch corresponding to configurations it holds, the

list of replica groups for that epoch, and a count, for each replica group, of how many

replicas in the group have entered and completed state transfer to that epoch. This

information is piggybacked in the answers to signed ping requests.

The configuration and all associated information for an epoch (and previous

epochs) can be discarded when at least IQI = 2f + 1 replicas for every replica group

in that epoch have entered (and completed state transfer to) that epoch or a greater

one.

If a node requests a configuration that has been discarded, the MS tells it this.

If the node needed the configuration to know which old replica group to transfer the

data from, it can skip state transfer (and, if needed, get the data from the 2f + 1

correct new replicas that finished state transfer).

Note that, in the case of a replicated MS, we cannot trust a single node that says

it is safe to discard a certain epoch. As in other operations, we rely on collecting

fMS + 1 signatures and running an operation with those signatures before we discard
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an epoch. When the MS replicas change, the new replicas can run an operation on

the old service to determine which old configurations they must remember, and then

they only request those configurations from old members.

66



Chapter 4

Methodology for Building

Dynamic Replicated Services

This chapter describes a methodology for transforming replicated services that work

in a static system into services that support membership changes. We also present

correctness conditions for replicated services that use the technique.

The methodology presented in this chapter can be applied to different replica-

tion protocols. In Chapters 5 and 6 we give two examples where we applied the

methodology to build dynamic replicated services.

Some of the steps of the methodology are generic: they must be done in any

dynamic, replicated service. For instance, the code running on the client machine

must check the validity of the lease, and try to renew it slightly before it expires. Or

when a server discovers it skipped an epoch, it must contact the MS to obtain the

intermediate configurations so that it can advance one epoch at a time.

We provide support for these common functions in the form of modules that run

on clients and servers. These modules handle this service-independent work, and also

implement the membership service functionality described in Chapter 3 (e.g., sending

probes, replying to probes, generating configurations). These modules are described

in Appendix A.

The remainder of this chapter is organized as follows. Section 4.1 presents the

methodology for transforming replication algorithms to work in a dynamic setting.
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Section 4.2 presents correctness conditions for replicated services that use this method-

ology.

4.1 Methodology for Transforming Replicated Ser-

vices

The starting point of the methodology is a replicated service designed for a static

system, i.e., one that does not support membership changes. We assume the replicated

service has the characteristics mentioned in Chapter 2: We assume the service state

is partitioned into items, and each item is assigned a replica group that is a subset of

the active servers.

We also assume the replicated service includes a proxy on each client. The proxy

handles application requests to use the replication service (e.g., to read or write an

item) by carrying out a replication protocol. This protocol involves a sequence of one

or more phases. In each phase the client contacts the replicas responsible for an item

and gets back replies from a subset of these replicas. Examples of different protocols

are given in Chapters 5 and 6; the protocol in Chapter 5 has two phases, while that

in Chapter 6 requires just one phase.

The methodology assumes the existence of configurations that have ordered epoch

numbers. These numbers allow nodes to compare the recency of the configurations

they hold, as described in Chapter 3.

The goal of the methodology is to transform the replicated service designed for a

static system into a service that supports changes to the system membership. Ap-

plications using the service should be oblivious to this transformation: They should

observe the same service interface, and the new service should provide the same se-

mantics as the static one.

The basic idea is that the protocols must be modified to be aware of epochs. The

client-side protocols must ensure that each phase is executed entirely within an epoch.

If this cannot occur because some of the servers are in different epochs than the client,
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corrective action must take place (the slower parties must upgrade to the "current"

epoch) and a phase is retried until it is correctly executed in the "current" epoch.

4.1.1 Detailed Steps

In the modified replicated services, clients and servers must maintain the current

configuration and the associated epoch number. All messages in the modified protocol

are tagged with epoch numbers, so that nodes that communicate agree on what epoch

they are in.

The replicated service is designed to run efficiently in the normal case where the

epoch does not change while it is carrying out a request. In this case, client and

servers agree on the current epoch number, and the replication protocols are run as

in the static case.

Additionally, there is work to do to deal with reconfigurations. The modified client

protocols (carried out by the client proxy) should work as follows.

1. Send each request for a given item to the set of responsible replicas.

2. If a server replies that it has a lower epoch number than the client, re-send the

request to the same server, but include the latest configuration delta (i.e., the

configuration certificate) in the request message.

3. If a server replies that it has a higher epoch number than the client, the reply

contains the new configuration delta. In this case, the client verifies the new

configuration, installs it, and retries the request in the new epoch.

4. Each phase must be executed entirely in the same epoch: if replies from several

servers are required to complete the phase, all of them must come from servers

in the same epoch. This is important so that the client will not be fooled if an

epoch change occurs in the middle of some phase. Sometimes the client may

need to re-execute the phase to satisfy this condition, so care must be taken to

make the execution of the requests idempotent.
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5. Clients need to make sure they hold a valid lease when they process a reply

from a server. The lease mechanism ensures that the configuration held by the

client is not "too old", if it were too old the correctness conditions of the replica

group that is contacted might no longer hold (see section 4.2).

The server methodology is as follows.

1. If a message received from a client or a server is tagged with an epoch number

greater than its own, request the new configuration from that node and upgrade

to it as soon as it arrives. Upgrading will trigger state transfer as described in

point 4.

2. If a message received from a client or a server is tagged with an epoch number

smaller than its own, reject the request and provide the sender with the latest

configuration delta.

3. For each epoch, a server knows which items it is responsible for, and it responds

to requests only for those items and that epoch. Furthermore, requests are

executed only after the server has completed state transfer for that item and that

epoch. (This ensures that a response from an honest server reflects everything

that happened in earlier epochs and the current epoch.)

4. After the server upgrades to a new epoch, it determines which items it just

became responsible for, and performs state transfer from the nodes responsible

for them in the previous epoch.

In doing so, it can make use of all nodes that were responsible for that item in

the previous epoch, even those that are no longer in the current configuration.

This is important because the node may have been removed by mistake, and

this could lead to a situation where the old replica group would exceed its

failure threshold if the new group were unable to make use of the node that was

removed.
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State transfer is dependent on the replication protocols. However, it must be

done in such a way that all operations that happen after the "latest" operation

seen by state transfer can no longer be executed in the previous epoch.

In addition, state transfer must let the nodes responsible in the earlier epoch

know when their items have been transferred to the next epoch so that they

can discard old items. This condition is also dependent on replication protocols,

and we further address it in Chapters 5 and 6.

4.2 Correctness of the Replicated Service

Our methodology allows the replicated services to tolerate an arbitrary number of

server failures provided each replica group meets the required failure threshold (which

we assume is in the form "no more than f failures per replica group") while the group

is "needed". Now we try to define more precisely what "needed" means. We do this

in a way that is not overly restrictive, namely only imposing a small interval during

which enough correct servers are required in a replica group.

The system behaves correctly provided each replica group contains no more than f

faulty replicas during the "window of vulnerability" for that replica group. If a replica

group is responsible for serving data during epoch e, the window of vulnerability is

the time interval that starts when epoch e is created, and ends when the replica group

is no longer needed. A replica group may be needed for handling requests from clients

that are in epoch e, or for handling state transfer requests for the replicas in epoch

e+ 1.

The window of vulnerability is depicted in Figure 4-1. The figure shows that there

are two conditions that govern how long nodes are needed after an epoch ends: state

transfer and leases. The figure shows the lease expiration time being smaller than the

time for the last correct server to finish state transfer, but the reverse may also be

true, in which case the window of vulnerability is bounded by the time for the last

client lease to expire.

Note that the lease expiration time is measured according to the client's clock:
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Epoch e Epoch e+ I Client lease
is created is created expires (slowest client)

Client requests Last correct epoch e+ 1 replica
epoch e lease j I l finishes state transfer (from epoch e)

time

Window of vulnerability for epoch e
(no more than f faults in epoch e replicas during this interval)

Figure 4-1: The correctness conditions for servers are expressed in terms of a window
of vulnerability, which is the time interval depicted in this figure.

we have to take the slowest client into account when determining the window of

vulnerability.

We capture the notion of the window of vulnerability in the following correctness

condition.

Replicated Service Correctness Condition. For any replica group g, for epoch e

that is produced during the execution of the system, ge contains no more that f faulty

processes between the moment when epoch e is created, until the later of the following

two events: (1) the last non-faulty replica in epoch e + 1 finishes state transfer, or (2)

the latest time when the client lease for epoch e expires at any client c that accesses

data stored by g,.

As Figure 4-1 illustrates, the new epoch starts even though leases for the old epoch

have not expired. Therefore, holding a valid lease does not mean the node holds the

current configuration, only that it holds a recent configuration.
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Chapter 5

Example I: Dynamic Byzantine

Quorum Replication

This chapter presents the first example replicated service we built using the method-

ology presented in Chapter 4.

This replicated service is based on Byzantine quorum systems [65], but extends

this work by supporting a dynamic membership. For this reason we named this

system dBQS.

This chapter is organized as follows. Section 5.1 presents an overview of dBQS.

Section 5.2 discusses the placement of individual items. Section 5.3 presents the

algorithms used by the system. Section 5.4 discusses the correctness of the system.

5.1 System Overview

The system we present in this chapter is a replicated data service that provides read

and write operations on items (which, in this case, are opaque data objects) that are

indexed in a flat namespace.

Object ids are chosen in a way that allows the data to be self-verifying (similarly

to previous storage systems like SFS-RO [32] or DHash [25]). dBQS provides access

to two types of objects:

* Content-hash objects are immutable: once created, a content-hash object cannot
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change. The id of a content-hash object is a hash of its contents.

* Public-key objects are mutable and contain a version number or timestamp that

is used to determine data freshness. The id is a hash of the public key used to

sign the object. A public-key object includes a header with a signature that is

used to verify the integrity of the data, and that covers the timestamp. Public-

key objects provide access control (for writing); the scheme could be extended to

allow a static set of principals with different public keys to write the same object,

by identifying the object by a hash of the public keys of all possible writers, and

indicating in the object which key was used in the signature. Extending this

scheme to allow changes to the set of writers would probably require an extra

level of indirection, and the use of more conventional access control schemes.

Access to public key objects is atomic [54] (or linearizable [42]). This means

that all operations on an object appear to execute in some sequential order that is

consistent with the real-time order in which operations actually execute. We ensure

these semantics despite Byzantine-faulty servers, and membership changes. We as-

sume clients fail by crashing, and we discuss how to extend our algorithms to handle

Byzantine clients in Section 5.4.

Content-hash objects have weaker semantics: we only ensure that once the oper-

ation that created the object completes, that object is returned by subsequent reads.

Having weaker semantics for these objects is a conscious decision, given how we ex-

pect them to be used: typically a user publishes their ids (e.g., by modifying a public

key object) only after their write completes.

Public-key objects can be deleted (we perform this by overwriting objects with

a special null value of negligible size), but content-hash objects cannot (since they

are immutable). Content-hash objects should be garbage-collected after they are no

longer useful. We leave the design of the garbage collection mechanism as future

work.

Table 5.1 shows the API that dBQS exposes to applications. We omitted the

delete operation since it uses the same interface as puts except we write a special null
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value. This API is similar to the one supported by storage systems like DHash [25],

and applications like file systems have been built using this interface [25, 70].

Table 5.1: dBQS application interface.

5.2 Object Placement

A key issue is how to partition the objects among the servers. Our implementation

uses consistent hashing [48], where node ids have m bits, and the ids are ordered in

an identifier circle modulo 2. dBQS stores objects with id i at the first 3f + 1 active

members whose identifiers are equal to or follow i in the identifier space (called the

successors of id i), where f is maximum number of failures in each replica group;

this is how nodes are selected in Chord [90] but any other deterministic selection

technique would also be acceptable.

Using consistent hashing has several advantages. It has good load-balancing prop-

erties (all nodes are responsible for approximately the same number of objects); it is

easy for a node to verify whether it is responsible for a data object; and the work

needed to accommodate membership changes is small: only a small number of nodes

is involved in redistributing the data.

The current design does not include any access control mechanism, other than

the fact that the data is self-verifying. This means that malicious clients (or even

malicious servers, as we will see in the next section) can create bogus public key and

content-hash objects, and consequently try to exhaust the storage at servers. This

attack is subject only to the restriction that it is difficult to target a particular server,
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Function Description
put_h(value) Computes the object's id by hashing its contents,

and stores it in the system.
put_s(pubkey, value) Stores or updates a public key object. The value

must be signed with the given public key.
The object's id is the hash of pubkey.

get(id) Fetches and returns the object associated with the
specified id.



since it requires creating many data objects where the hash of their contents is an id

in the interval of the responsibility of that server (or, for public-key objects, create

a series of public/private key pairs), which is hard since hash functions are random

and not invertible.

5.3 Storage Algorithms

This section describes how operations are implemented in our system.

The high-level idea is as follows. We use an existing Byzantine quorum algo-

rithm [66] in the normal case (when there are no reconfigurations). This algorithm

provides atomicity for public-key objects in the presence of Byzantine faults with

a static replica set [76]. We use a simpler, more efficient version of this algorithm

for content-hash objects, since they are immutable. We tag all messages with epoch

numbers, and execute each phase of a request in a single epoch. A server accepts a

client request only if the epoch number agrees with the current epoch at the server.

Otherwise servers notify the client that it is ahead or behind them. When servers hear

about a new epoch, they request the corresponding configuration, and then perform

state transfer between quorums of different epochs as needed.

The remainder of the section presents the algorithms using pseudocode and some

textual descriptions. To eliminate ambiguities, we formally specify the algorithm us-

ing I/O automata [64] in Appendix B. We present a correctness proof in Appendix C.

5.3.1 Replicated State

Each system node n (either a client or a server) maintains information about the

current configuration, and the current epoch number.

Additionally, servers maintain the previous configuration (this is important for

purposes of state transfer), a database containing, for each object they store, its id,

value, type (content-hash or public key) and, for each public key object, its timestamp

and signature (authenticating both the value and the timestamp).

The timestamps form a totally ordered set used to determine the relative order
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of operations, and our algorithms require that different clients choose different times-

tamps. The timestamp space must also contain a minimum element, to. In our

implementation timestamps are obtained by concatenating a version number and the

client id.

There are other components of the state that we do not explicitly describe here,

since they are only used for recording the status of ongoing operations (e.g., to count

the number of replies that have been collected thus far). Appendix B describes the

state maintained by each node in detail.

5.3.2 Client Protocol

Operations must be completed in quorums. These can be arbitrary constructions for

dissemination quorum systems [65], but for simplicity of presentation we will assume

that at each instant in time there are k = 3f + 1 replicas of every data object and

quorums (both read and write) are any subset of those replicas of cardinality 2f + 1,

where f is a threshold set a priori that describes the maximum number of faults in

each replica set. The generalization of our algorithms to arbitrary (and reconfigurable)

read and write quorums is straightforward.

We now describe how get and put operations are implemented. We describe these

for content-hash objects first, and then for public key objects.

The description does not include retransmissions of client requests, which are

important to ensure liveness in the presence of lost or corrupted messages. In our

implementation, all requests are retransmitted until the respective reply is received.

Another common feature of the client protocols that we omit is that clients must

ensure they hold a valid lease before they accept a reply from a server. When client

leases expire, clients must discard new server responses until they renew the lease.

Content-hash Put Operation

To create a content-hash object with value v,ne and identifier x (where x is the hash

of Vnew), a client, c, performs the following sequence of actions.
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1. Send (WRITE-CH, epochc, x, Vnew) to all replicas of the object (the successors of

x in the current configuration held by the client) , where epochc is the epoch

number held by the client.

2. Collect replies in a quorum Q.

3. If all replies are in the form (WRITE-CH-REPLY, X)a, (where ai represents a

correct signature from the sending replica, i), the operation is complete. Other-

wise, if some reply is of the form (WRITE-CH-REPLY, ERR_NEED_CONFIG), send

replica i a (NEW-CONFIG, epochs, configc, configsignature%) message (where

config,, configsignature are the configuration and configuration signature held

by the client) followed by a retransmission of the WRITE-CH, remove replica i

from Q, and try to form a new quorum (wait for more replies). If some reply is of

the form (WRITE-CH-REPLY, ERR_UPGRADE_CONFIG, next epoch, nextconfig,

ac,), the client verifies the authenticity of nextconfig, upgrades its configura-

tion and restarts the operation. If the configuration or the reply is malformed

(e.g., the configuration in the message is old or signatures do not verify), remove

the reply from Q and wait for more replies.

Note that in practice replies from servers that are in a more recent epoch than

the client do not contain the entire configuration, but only the list of nodes that were

added and deleted, and the client produces the new configuration from the delta and

checks the signature. This works in the normal case, when the client is only one

epoch behind. We address the case when clients are more than one epoch behind in

section 5.3.6.

Content-hash Get Operation

To read a content-hash object with identifier x, a client, c, performs the following

sequence of actions.

1. Send (READ-CH, epochs, x, nonce) message to all replicas, where nonce is a ran-

domly generated number.
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2. If a reply in the form (READ-CH-REPLY, val) is received, where the hash of val

is x, return val. Note that in the case of content-hash objects we only need to

read from a single replica, and the reply does not need to come from server in

the current epoch (e.g., a client can upgrade in the middle of a request and still

accept an epoch from an old replica).

3. Otherwise, collect replies in a quorum Q.

4. If all replies are in the form (READ-CH-REPLY, ERR_NON_EXIST, nonce),a re-

turn an error indicating that the object does not exist. Otherwise, handle all

remaining cases as in step 3 of the put protocol.

Public Key Objects

Both get and put operations for public key objects have two phases: a read phase

where the highest timestamp is queried (steps 1-3 of the protocols for get and put

operations), and a write phase where a new timestamp (or the highest timestamp

queried, in case of a read operation) is propagated to a quorum (steps 5-7 of the

protocols).

Public Key Put operation

To put a value Vnew to the object with identifier x, a client, c, performs the following

sequence of actions.

1. Send (READ, epoch,, x, nonce) messages to all replicas for x in the current epoch,

where nonce is a randomly generated number.

2. Collect replies in a quorum Q.

3. If all replies are in the form (READ-REPLY, vali, tsi, (val,ts), nonce)i (where

a(val,ts) is a correct signature from an authorized writer over (val,ts)), go to step

4. Otherwise, handle all remaining cases as in step 3 of the put protocol for

content-hash objects.
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4. Choose a timestamp ts,,, greater than the highest timestamp it read, and append

the client id in the low order bits. Sign the data object and the timestamp, creating

c(vneu ,tSnew ) '

5. Send (WRITE, epochs, X, tnew, vnew, (vnw,ts,), nonce) to all replicas.

6. Collect replies in a quorum Q'.

7. If all replies are in the form (WRITE-REPLY, ACK, nonce, tSnew),i, the operation is

complete. Handle all remaining cases as in step 3 of the content-hash put protocol

(retransmitting the WRITE, or restarting the write phase, if necessary).

Optimizations

As an optimization, the read phase (items 1-3) can be omitted in two situations.

First, if there is a single writer (as in some existing applications, e.g., Ivy [70]), the

writer can increment the last version number it wrote and use it in the write phase.

Second, if clients use a clock synchronization protocol where clock skews are smaller

than the time to complete an operation (e.g., if the machines have GPS), they can

use their clock readings (concatenated with the client id) as timestamps.

Public Key Get Operation

For a client, c, to get the value of the object with index x, it performs the following

sequence of actions.

1. Send (READ, epoch, x, nonce) message to all replicas, where nonce is a randomly

generated number.

2. Collect replies in a quorum Q.

3. If all replies are in the form (READ-REPLY, va4l, tsi, U(val,ts), nonce),, choose

the (value,timestamp) pair with maximum timestamp, (v, t) and go to step

4. Otherwise, handle all remaining cases as in step 3 of the put protocol for

content-hash objects.
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4. If all replies in Q agree on the timestamp t $ to, return v. If all replies in Q

have t = to then return an error indicating the object does not exist.

5. Otherwise send (WRITE, epoch, x, t, v, a(v,t), nonce) to all replicas.

6. Collect replies in a quorum Q'.

7. If all replies are in the form (WRITE-REPLY, ACK, nonce, t),i, the operation

is complete and the result is v. Otherwise, handle all remaining cases as in

step 3 of the put protocol for content-hash objects, restarting the current phase

if needed.

Note that typically a client will need to carry out only one phase to do a read;

the second phase corrects inconsistencies introduced, for example, when some other

client fails in the middle of writing.

5.3.3 Server Protocol

On the server side, when replica i receives a request, it validates the epoch identi-

fier. If it is smaller than its current epoch, epochi, it replies (READ/WRITE-REPLY,

ERR_UPGRADE_CONFIG, epochi, configi, configsignaturei). If it is larger than its cur-

rent epoch the reply is (READ/WRITE-REPLY, ERR_NEED_CONFIG).

If the epoch number is the same as its own, the server checks if it is responsible

for the identifier x in the current configuration, and ignores the request if not.

Otherwise, normal processing ensues as follows.

In the case of a READ-CH request, if the object with index x is present in the

database and of type content-hash, then return (READ-CH-REPLY, val(x)i), where

val(x)i is the object value stored in the database. If the object is not present return

(READ-CH-REPLY, ERR_NON_EXIST, nonce)li.

In the case of a WRITE-CH request, verify if the identifier of the object matches

a hash of its contents. If there is a mismatch, ignore the request. If the request is

correct, the server updates its local database to the received value v. Then the server

issues a reply of the form (WRITE-CH-REPLY, X),ri.
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In the case of a READ request (for a public key object), the server returns (READ-

REPLY, val(x)i, ts(x)i, sig(x)i, nonce), where val(x)i, ts(x)i, sig(x)i represent the

value, timestamp, and signature for identifier x stored in the local database. If the

object is not in the database, it returns the default value and timestamp: (vo, to),

where to is the minimum timestamp.

In the case of a WRITE request, the server validates the signature of the object

against the data value and its timestamp (this step also verifies that the data was

created by an authorized writer). Then, if t is greater than the previously stored

timestamp, the server updates its local database value for x to the received values

(v, t, U(,t)). Independently of t, the server issues a (WRITE-REPLY, ACK,nonce, t)c,

reply.

5.3.4 State Transfer

When a server, i, in epoch e receives a valid message with an authenticated configu-

ration for epoch e + 1 it moves to epoch e + 1, updating its local configuration.

At this point, server i may discover it is no longer a replica of a subset of the

identifier space, in which case it stops serving read and write requests for objects in

that subset. Or it may discover that it has become responsible for data objects in a

new subset of the identifier space. In this case, state transfer must take place from

the old replicas that used to be responsible for these objects. There may be more

than one group of replicas for different intervals that need to be transferred. The

remainder of this section explains how to transfer state from a single replica group,

but this process has to be repeated for all old replica groups.

To transfer old objects from their old group, node i sends a STATE-TRF-INTERVAL-

READ message to the old replicas. The argument for this request is an interval that

describes the new subset that node i has become responsible for. A replica j that

was responsible for (part of) that interval in epoch e will only execute this request

after upgrading to epoch e + 1 (issuing a ERR_NEED_CONFIG reply if necessary). Then

it issues a STATE-TRF-INTERVAL-READ-REPLY containing the indices of the objects

held by the server in that interval. (The request contains a nonce that is signed in
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the reply, to avoid replays.)

The new replica gathers all the different indices returned in a quorum of 2f + 1

STATE-TRF-INTERVAL-READ-REPLY messages, and requests all of the corresponding

objects by issuing a STATE-TRF-OBJ-READ message. Objects are fetched individually,

and our implementation maintains a window of size Wst objects that are transferred

at a time.

State transfer reads are executed exactly as normal reads with two exceptions.

First, a STATE-TRF-OBJ-READ is executed in epoch e + 1 despite the fact that replica

j may no longer be responsible for those indices. Second, there is no write back phase

(only steps 1-3 in the read protocol are executed). After receiving 2f + 1 replies

from distinct previous replicas, replica i sets its local database values to the value

received with the highest timestamp for every identifier x of correct objects (properly

signed) returned in any of the STATE-TRF-READ-REPLY messages, or to any correct

content-hash object received.

A problem with this protocol is that malicious replicas can create a large number

of bogus objects to waste space at new replicas. As mentioned, this is hard since it

would imply creating a large number of self-verifying objects in a particular interval,

and this can be avoided with an access control mechanism that is not part of the

current design.

Note that between the moment that replica i upgrades to an epoch, and the

moment that replica i finishes transferring state from the previous epochs, requests

for reads and writes in the new epoch must be delayed, and handled only when state

transfer for the object being requested concludes. Our implementation minimizes this

delay by placing an object that is requested by a client at the beginning of the list of

objects to be transferred from old replicas.

5.3.5 Garbage-Collection of Old Data

In a large scale system where the responsibility for storing a certain object shifts

across different replica groups as the system reconfigures, replicas must delete objects

they are no longer responsible for, to avoid old information accumulating forever. In
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this section we discuss when it is safe to delete old data.

A new replica sends an ack when it receives a valid response to a state transfer

request (the ack and the nonce used in state transfer are signed to avoid replays). An

old replica counts these acks and deletes the old objects it is no longer responsible

for once it has 2f + 1 of them. It explicitly requests acks after a timeout to deal with

losses of the original acks.

After it deletes an object, the old replica might receive a state transfer request

from a new replica (one it had not heard from previously). In this case its STATE-

TRF-INTERVAL-READ-REPLY will not contain any of the deleted objects.

This is safe since non-faulty replicas discard their values only once 2f + 1 new

replicas indicate they have completed state transfer, and at this point any quorum

in the new replica group will contain at least one non-faulty replica that will have

transferred the latest object written in the old epoch.

5.3.6 Skipped Epochs

State transfer as described above requires that a server know about the previous

configuration. But it might not know. For example, the server might have known

about epoch 1, missed learning about epoch 2, and then heard about epoch 3.

In this case the server will contact the MS to obtain the missing epoch.

Once the server learns about the configuration for epoch 2, it must do state transfer

into epoch 2 followed by state transfer into epoch 3. It may happen that the MS

informs the server that epoch 2 is no longer active, in which case the server skips

state transfer, and upgrades directly to epoch 3. In general, it is safe to skip state

transfer from epoch e to epoch e + 1 if the MS informs the server that epoch e is

inactive. This is because a quorum of e + 1 replicas is already holding the latest value

written in epoch e or a subsequent write.
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5.4 Correctness

The system works correctly despite Byzantine-faulty servers, provided each replica

group of 3f + 1 servers contains less than f faulty servers in that replica group's

window of vulnerability which is defined in Section 4.2.

As far as clients are concerned, the algorithm presented thus far provides atomicity

only in the presence of clients that fail benignly (crash failures)1 and our correctness

proof (given in Appendix C) assumes that clients follow the protocol.

A malicious client can cause the system to malfunction in several ways. For

instance, it can write different values to different replicas with the same timestamp,

thereby leaving the system in an inconsistent state where subsequent reads could

return different values; or it can try to exhaust the timestamp space by writing a

very high timestamp value.

However, it is not clear what are the desirable semantics in the presence of mali-

cious clients, since these problems do not seem worse than what cannot be prevented,

namely, that a dishonest client can write some garbage value, or constantly overwrite

the data, provided it has access to that data.

As future work, we intend to define precisely what should be the desirable behavior

of this system with malicious clients, and to extend our protocols so that they meet

this specification.

lunder the standard assumption that if a client crashes during an operation it is considered an
incomplete operation as detailed in [60]
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Chapter 6

Example II: Dynamic State

Machine Replication

This chapter presents the second example replicated service that uses the methodology

presented in Chapter 4. This replicated service, named dBFT, is based on the BFT

state machine replication algorithm by Castro and Liskov [20]. dBFT can run on a

large number servers, and allows the set of servers that run the service to change over

time.

The dBFT service state is divided into items. The granularity of an item is specific

to the service that is being run and the way that service is implemented on top of

dBFT. For instance, if the service is a distributed file system, we can implement items

that correspond to file pages, or files, or even entire file system subtrees.

The dBFT service allows arbitrary operations on individual items (unlike the

previous example service that only supported blind reads and writes). For instance,

we can update an item based on its previous state. Our current design does not allow

for multi-item operations. This is left as future work.

The remainder of this chapter is organized as follows. Section 6.1 presents an

overview of the BFT state machine replication algorithm and library. Section 6.2

explains how dBFT works in the static case. Section 6.3 extends that to work with

configuration changes. Section 6.4 discusses state transfer. Sections 6.5 and 6.6 ex-

plains how to garbage collect application and BFT replication state from the system.
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Finally, Section 6.7 discusses how to extend BFT to work with a larger number of

clients.

6.1 BFT State Machine Replication Overview

This section provides a brief overview of the practical Byzantine fault tolerance repli-

cation algorithm [17, 20, 21] and BFT, the library that implements it. We discuss

only those aspects of the algorithm that are relevant to this thesis; for a complete

description, see [17].

6.1.1 Algorithm Properties

The algorithm is a form of state machine replication [53, 89]: the service is modeled

as a state machine that is replicated across different nodes in a distributed system.

The algorithm can be used to implement any replicated service with a state and some

operations. The operations are not restricted to simple reads and writes; they can

perform arbitrary computations.

The service is implemented by a set of replicas R and each replica is identified

using an integer in {0, ..., IRI - 1}. Each replica maintains a copy of the service state

and implements the service operations. For simplicity, we assume that IRI = 3f + 1

where f is the maximum number of replicas that may be faulty.

Like all state machine replication techniques, this algorithm requires each replica

to keep a local copy of the service state. All replicas must start in the same internal

state, and the operations must be deterministic, in the sense that the execution of

an operation in a given state and with a given set of arguments must always produce

the same result and lead to the same state following that execution.

This algorithm ensures safety for an execution provided at most f replicas become

faulty during the entire system lifetime, or within a window of vulnerability of size

Tv (if we employ proactive recovery). We do not intend to use proactive recovery in

our services, since we are overlapping many functions in each server.

Safety means that the replicated service satisfies linearizability [44]: it behaves
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like a centralized implementation that executes operations atomically one at a time.

A safety proof for a simplified version of the algorithm using the I/O automata for-

malism [60] is sketched in a technical report [19].

The algorithm also guarantees liveness: non-faulty clients eventually receive replies

to their requests provided (1) at most f replicas become faulty within the window

of vulnerability Tv; and (2) denial-of-service attacks do not last forever, i.e., there is

some unknown point in the execution after which all messages are delivered (possibly

after being retransmitted) within some constant time d, or all non-faulty clients have

received replies to their requests.

6.1.2 Algorithm Overview

The algorithm works roughly as follows. Clients send requests to execute operations

to the replicas and all non-faulty replicas execute the same operations in the same

order. Since operations are deterministic and start in the same state, all non-faulty

replicas send replies with identical results for each operation. The client waits for

f + 1 replies from different replicas with the same result. Since at least one of these

replicas is not faulty, this is the correct result of the operation.

The hard problem is guaranteeing that all non-faulty replicas agree on a total

order for the execution of requests despite failures. A primary-backup mechanism is

used to achieve this. In such a mechanism, replicas move through a succession of

configurations called views. In a view one replica is the primary and the others are

backups. Replicas are numbered sequentially, from 0 to 3f, and the primary of a view

is chosen to be replica p such that p = v mod R1, where v is the view number and

views are numbered consecutively.

The primary picks the ordering for execution of operations requested by clients.

It does this by assigning a sequence number to each request. But the primary may be

faulty. Therefore, the backups trigger view changes when it appears that the primary

has failed to propose a sequence number that would allow the request to be executed.

To tolerate Byzantine faults, every step taken by a node in this system is based

on obtaining a certificate. A certificate is a set of messages certifying some statement
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is correct and coming from different replicas. An example of a statement is: "I accept

the assignment of sequence number n to operation x."

The size of the set of messages in a certificate is either f+ 1 or 2f+ 1, depending on

the type of statement and step being taken. The correctness of the system depends

on a certificate never containing more than f messages sent by faulty replicas. A

certificate of size f + 1 is sufficient to prove that the statement is correct because it

contains at least one message from a non-faulty replica. A certificate of size 2f + 1

ensures that it will also be possible to convince other replicas of the validity of the

statement even when f replicas are faulty.

Other Byzantine fault-tolerance algorithms [20, 50, 80] rely on the power of digital

signatures to authenticate messages and build certificates. The algorithm we describe

uses message authentication codes (MACs) [14] to authenticate all messages in the

protocol. A MAC is a small bit string that is a function of the message and a key

that is shared only between the sender and the receiver. The sender appends this to

the protocol messages so that the receiver can check the authenticity of the message

by computing the MAC in the same way and comparing it to the one appended in

the message.

The use of MACs substantially improves the performance of the algorithm 

MACs, unlike digital signatures, use symmetric cryptography instead of public-key

cryptography - but also makes it more complicated: the receiver may be unable to

convince a third party that a message is authentic, since the third party must not

know the key that was used to generate its MAC.

Processing Requests

When a replica receives a client request, the first thing it needs to do is verify if

the request has already been executed. This can happen if the client did not receive

the replies to its request (e.g., because the messages were lost) in which case it must

retransmit the request to all replicas. If a replica receives a retransmission, it should

just retransmit the reply instead of re-executing the request, since requests are not

idempotent.
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To distinguish retransmissions from new requests, clients assign their own sequence

numbers to each operation they invoke on the service, and tag each request with that

sequence number. Additionally, replicas maintain the sequence number and the reply

of the last operation executed by every client that used the service. This information

is maintained as a part of the service state that is hidden from the applications.

If a request arrives and the primary recognizes it is not a retransmission, it uses

a three-phase protocol to atomically multicast requests to the replicas. The three

phases are pre-prepare, prepare, and commit. The pre-prepare and prepare phases

are used to totally order requests sent in the same view even when the primary, which

proposes the ordering of requests, is faulty. The prepare and commit phases are used

to ensure that requests that commit are totally ordered across views.

Figure 6-1 shows the operation of the algorithm in the normal case of no primary

faults. In this example replica 0 is the primary and replica 3 is faulty. The client

begins by sending a request to the primary, which multicasts it to all replicas in a pre-

prepare message. The multicast message proposes a sequence number for the request,

and if the remaining replicas agree with this sequence number (meaning that they

have not assigned the same sequence number to a different request) they multicast a

prepare message. When a replica collects a certificate with 2f + 1 matching prepare

messages from different replicas (including itself), it multicasts a commit message.

When a replica has accepted 2f + 1 commit messages from different replicas (in-

cluding itself) that match the pre-prepare for the request, it executes the request by

invoking an application-specific execute upcall that is implemented by the service.

This call causes the service state to be updated and it produces a reply containing

the result of the operation. This reply is sent directly to the client, who waits for

f + 1 replies from different replicas with the same result.

If a client does not get f + 1 matching replies after a timeout, it may be the

case that the primary was faulty and never forwarded the client request, so the client

multicasts the request to all replicas.

There is an important optimization that improves the performance of read-only

operations, which do not modify the service state. A client multicasts a read-only
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Figure 6-1: BFT algorithm in normal case operation

request to all replicas. The replicas execute the request immediately after some basic

checks (e.g., that the client has access). The client waits for 2f + 1 replies with the

same result. It may be unable to collect this certificate if there are concurrent writes

that affect the result. In this case, it retransmits the request as a regular read-write

request after its retransmission timer expires. This optimization reduces latency to a

single round-trip for most read-only requests.

Replica State

Each replica stores the service state, a log containing information about requests, and

an integer denoting the replica's current view. The log records information about the

request associated with each sequence number, including its status; the possibilities

are: unknown (the initial status), pre-prepared, prepared, and committed. Figure 6-1

also shows the evolution of the request status as the protocol progresses.

Replicas can discard entries from the log once the corresponding requests have

been executed by at least f + I non-faulty replicas, a condition required to ensure

that request will be known after a view change. The algorithm reduces the cost by

determining this condition only when a request with a sequence number divisible by

some constant K (e.g., K = 128) is executed. The state produced by the execution

of such requests is called a checkpoint. When a replica produces a checkpoint, it

multicasts to other replicas a checkpoint message containing a digest of its state d,

and the sequence number of the last request whose execution is reflected in the state,

n. Then, it waits until it has a certificate with 2f + 1 valid checkpoint messages
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for the same sequence number n and with the same state digest d sent by different

replicas. At this point the checkpoint is known to be stable and the replica garbage

collects all entries in its log with sequence numbers less than or equal to n; it also

discards earlier checkpoints.

Creating checkpoints by making full copies of the state would be too expensive.

Instead, the library uses copy-on-write such that checkpoints only contain the differ-

ences relative to the current state. To enable an efficient copy-on-write mechanism,

we partition the service state into a vector of objects of variable size. Each object is

identified by its object id in the set 0, ..., Nobjs - 1}. To produce checkpoints, the

BFT library makes a get-item upcall to retrieve a particular object. For slow or cor-

rupt replicas that copied objects from other replicas, the library invokes a put-items

upcall that updates the state of the application given the values of the objects that

are incorrect or out-of-date [84].

View Changes

The view change protocol provides liveness by allowing the system to make progress

when the current primary fails. The protocol must preserve safety: it must ensure

that non-faulty replicas agree on the sequence numbers of committed requests across

views. In addition, to provide liveness it must ensure that non-faulty replicas stay

in the same view long enough for the system to make progress, even in the face of a

denial-of-service attack.

View changes are triggered by timeouts that prevent backups from waiting indef-

initely for requests to execute. A backup is waiting for a request if it received a valid

request and has not executed it. A backup starts a timer when it receives a request

and the timer is not already running. It stops the timer when it is no longer waiting

to execute the request, but restarts it if at that point it is waiting to execute some

other request.

If the timer of backup i expires in view v, the backup starts a view change to

move the system to view v 1. It stops accepting messages (other than checkpoint,

view-change, and new-view messages) and multicasts a view-change message to all
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Figure 6-2: BFT view change algorithm

replicas. Figure 6-2 illustrates view changes.

The new primary p for view v+ 1 collects a certificate with 2f +-1 valid view-change

messages for view v + 1 signed by different replicas. After obtaining the new-view

certificate and making necessary updates to its log, p multicasts a new-view message

to all other replicas, and enters view v + 1: at this point it is able to accept messages

for view v + 1. A backup accepts a new-view message for v + 1 if it is properly

signed, if it contains a valid new-view certificate, and if the message sequence number

assignments do not conflict with requests that committed in previous views. The

backup then enters view v + 1, and becomes ready to accept messages for this new

view.

This description hides a lot of the complexity of the view change algorithm, namely

the difficulties that arise from using MACs instead of digital signatures. A detailed

description of the protocol can be found in [17, 21].

6.2 dBFT Algorithms in the Static Case

First, we present how dBFT works in the normal case when clients and servers are

in the same epoch, and agree on the system configuration. Section 6.3 presents the

extensions to handle reconfigurations.

As in dBQS, each item has a unique id, and we use consistent hashing to determine

which servers in the current configuration are replicas for a particular item: these are

the successors of the item id in the circular id space.
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This already represents a significant departure from the original BFT model [20].

In the original algorithm, there is a single, static replica group. So, for instance,

when the primary wants to multicast a protocol message to all backups, it is easy to

determine who the backup nodes are. In dBFT, on the other hand, each server is

a member of some number of different replica groups in a given epoch (in our case,

3f + 1 since we use consistent hashing). Each of these distinct replica groups handles

requests for items in a different subset of the id space. And each replica group must

implement its own instance of the BFT protocol, with distinct BFT internal state

(e.g., message logs) and different service states (e.g., files and directories).

We call each local instance of BFT a BFT-instance(e, i), where e is the epoch

number and i a "BFT replica number". The replica number represents the offset in

one of the 3f + 1 groups that this node is running in (e.g., for the group where it

is the lead, i = 1, and so on). The reason we also include an epoch number when

referring to an instance of a BFT replica is that, as will be discussed, when we change

epochs, we continue to run BFT instances for earlier epochs as well. So, in general,

each dBFT server runs a matrix of BFT instances, with e identifying the row, and i

identifying the instance within the row.

When a dBFT server receives a message, it needs to forward the message to the

appropriate BFT-instance. To do this we augment the BFT protocol to include two

extra fields that are sent in every message. These two fields are the epoch number and

replica number that together identify the remote BFT-instance that should handle

the message.

Each dBFT server runs a wrapper (we refer to this as the dBFT-wrapper) that

handles incoming messages, analyzes the epoch number and the BFT replica number,

and forwards the message to the appropriate BFT-instance.

This architecture is shown in Figure 6-3.

6.2.1 Client Protocols

On the client side, there is a client proxy that runs the client side of the dBFT

protocols. This is similar to the client proxy for normal BFT, but it needs to be
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Figure 6-3: dBFT system architecture. Clients run the client application on top of
a dBFT client proxy that implements the client-side protocols. Servers run a dBFT
wrapper that handles incoming messages, and a matrix of BFT-instances where rows
represent different epochs, and columns represent different replica groups that the
server is part of in the same epoch. Clients and servers are connected by an unreliable
network.

modified in several respects. It must maintain the current configuration, and it must

be aware of the existence of multiple groups. The dBFT client proxy knows what

item id is associated with the operation it is executing; it determines which replicas

are responsible for that id, and sends the requests to these replicas. The new client

proxy must also tag each outgoing message with the epoch number and the BFT

replica number.

As in dBQS, a client may obtain a reply from a server indicating that client and

server are not in the same epoch. The format of these messages and the way they are

handled are similar to what happened in that system. If the server is behind, it will re-

ply with a special ERR_NEED_CONFIG message, and in this case the client forwards the

latest configuration delta to the server and retries the request. In case the client is be-

hind, it will receive a reply of the form (NEW-CONFIG,epoch, config-delta, configsignature).

This reply can come in the form of an individual message from a server or from a

normal reply to a BFT request. In this case the client verifies the authenticity of

the new configuration, moves to the new epoch and retries the operation in the new

epoch.

Finally, the client proxy must check if it holds a valid lease for epoch e before it
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accepts messages for that epoch.

6.3 Configuration Changes

Now we move our attention to how servers handle configuration changes. We begin

by describing how servers know about configuration changes, then we explain the

actions that consequently take place.

6.3.1 Delimiting Epoch Changes

The main challenge is to ensure correct serialization between operations in the old

epoch and operations in the new epoch. For this purpose, we use the properties of

state machine replication itself: we do this by running a special CHANGE-EPOCH state

machine operation that delimits the end of each epoch. (Later we describe how this

operation is implemented.)

When a dBFT-wrapper learns about a new configuration for epoch e + 1, it invokes

the CHANGE-EPOCH operation on all local BFT-instance(e, i), i = 1, ..., 3f + 1. (To be

more precise, the dBFT-wrapper runs an operation on a BFT service, where the local

BFT-instance is one of the replicas that implement the service.) The dBFT-wrapper

also creates new row of BFT-instance(e + 1, i), i = 1, ..., 3f + 1, which will implement

the BFT services that will handle client requests in epoch e + 1.

There are several ways a dBFT-wrapper running on epoch e can be informed about

a new configuration for epoch e + 1:

* By the membership service, e.g., via the multicast of the new configuration.

* By a client that is ahead of the dBFT-wrapper and tried to execute an operation

in epoch e + 1. In this case the dBFT-wrapper recognizes the client is ahead and

issues a direct ERR_NEED_CONFIG reply to the client, and the client forwards the

new configuration, as explained. The server must verify the new configuration

before it accepts it.
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* If a CHANGE-EPOCH operation is run on a service that is implemented by a

local BFT-instance. This is the case when the CHANGE-EPOCH operation was

invoked by another dBFT-wrapper on the same replica group as the local server.

In this case, the dBFT-wrapper does not need to invoke the CHANGE-EPOCH

operation on the group where that particular BFT-instance belongs to.

6.3.2 Handling Epoch Changes

For the BFT-instance to handle the special CHANGE-EPOCH operation (and other

operations we will describe later), we need to extend it by running a dBFT-special-

req-handler layer between the BFT replication library and the service code. This

layer handles the execute upcalls that are invoked by the BFT replication library

whenever a request is ready to be executed. It recognizes special requests related

to the dBFT protocol (because they have a special header) and handles them with

dBFT-specific code.

The dBFT-special-req-handlerlayer maintains a special status variable that keeps

track of the status of the service. This status is initially active when the instance is

first created. The CHANGE-EPOCH operation takes the configuration delta as argu-

ment and when it is executed the dBFT-special-req-handler verifies the new configu-

ration, and, if it is correct, it stores the new configuration and changes the status

state variable to inactive.

For the normal requests, the dBFT-special-req-handler checks the value of the

status variable. If it is active, the request is forwarded to the application by invoking

its execute upcall. Otherwise, the request is not passed to the application code and

the client receives a reply of the form

(NEW-CONFIG, epoch, config-delta, configsignature),

containing the configuration for the new epoch.
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6.4 State Transfer

When a new BFT-instance for a new epoch is started, it is initialized with the config-

uration information for its configuration and the previous one, and it starts off with a

clean BFT protocol state (e.g., empty message logs). However, it still needs to obtain

its initial service state, which consists of the application state (e.g., the file system's

files and directories) and the extra BFT service state that is maintained by the state

machine (the sequence numbers for the last client requests). This requires that new

BFT-instances transfer state from the previous epoch.

State transfer takes the form of several special dBFT operations that are handled

by the dBFT-special-req-handler. The new instance identifies the different replica

groups in epoch e that held the state that it will become responsible for, and, for

each of these groups, it performs the following sequence of actions.

First, the new BFT-instance invokes the GET-IDS operation, passing as an argu-

ment an id range that is being requested. When this operation is executed on the

old service, the dBFT-special-req-handler verifies if the service is in the inactive state,

and if so it returns the ids of all the items in the requested range. If the service is still

active, the dBFT-wrapper rejects the operation, issuing a reply of the form (GET-IDS-

REPLY, ERR_NEED_CONFIG). In this case, the new BFT-instance must invoke the

NEW-CONFIG operation on the old service, and then retry the GET-IDS. This ensures

that the state that is transferred reflects the latest operation executed in the previous

epoch.

After receiving the list of item ids that the old service was storing in the range

that is being transferred, the new BFT-instance makes a series of STATE-TRANSFER

operations, one for each item id, passing that id as an argument. These operations are

also handled by the dBFT-special-req-handler, which invokes a get-item upcall on the

service to retrieve an item in the service state. The retrieved items are incorporated

in the state of the new BFT-instance via a put-items upcall. The get-item and

put-items upcalls were also already present in the BASE library for the purposes

of checkpointing the service state [84]. We identify the part of the state that holds
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the last sequence number of operations executed by clients by a special item id, so

this state is transferred using the same mechanism. When a new replica receives

sequence numbers for operations by the same client from different groups, it merges

this information by keeping only the highest sequence number and the respective

reply.

Note that GET-IDS and STATE-TRANSFER operations are executed very efficiently

since we can employ the read-only optimization of the BFT protocol that allows these

operations to be executed in a single round-trip.

As an optimization, new instances do not need to transfer items that another local

BFT-instance (for the previous epoch) is holding. That state can be transferred di-

rectly from the respective BFT-instance for the previous epoch. This is implemented

by calling an application-specific shutdown upcall when the old BFT-instance be-

comes inactive. This call saves the service state to disk, although in some cases a

large part of that state is already on disk and this call only needs to store whatever

state is not already in persistent storage. Then a restart upcall is invoked on the

new BFT-instance that reads the service state from the previously created file.

Note that the shutdown and restart upcalls were already present in the BASE

library [84] and they were used to shutdown and restart the node during proactive

recovery. We only needed to extend these upcalls to include intervals in the id space

that need to be stored or read from disk.

Once state transfer completes, the new BFT-instance can start executing the

server BFT protocol and start handling operations for the new epoch.

6.5 Garbage Collection of Old Application State

As in dBQS, BFT-instances must delete application state (e.g., files and directories)

they are no longer responsible for, to avoid old information accumulating forever. In

this section we discuss when it is safe to delete old application state.

The idea is similar to dBQS. When new BFT-instances finish transferring state

from the old service, they invoke a DONE-STATE-TRANSFER operation on the old
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service. The dBFT layer in the old service records the number of distinct new

BFT-instances that have executed that operation for each sub-interval of the id space

in the state machine. BFT-instances in servers that do not require state transfer are

automatically counted as having performed that operation. Once the old service has

executed 2f + 1 DONE-STATE-TRANSFER operations for a given interval, it informs

the application that it can discard the items in that interval. All subsequent state

transfer operations for objects in that interval will return a special I reply, which

indicates that the interval has been discarded from the old replica's state.

When a new BFT-instance receives a I reply to a STATE-TRANSFER operation,

this means it can obtain that state from the other 2f + 1 new replicas, using the

normal BFT protocol checkpointing and state transfer mechanism.

6.6 Garbage Collection of Old BFT replicas

Eventually we want to stop handling messages for very old epochs so that we can

avoid maintaining a large number of BFT-instances running at each server.

We can stop the service after all 3f + 1 new BFT-instances for all intervals execute

the DONE-STATE-TRANSFER operation. However, this may never happen, as some of

these BFT-instances may run in faulty servers and never execute it.

Instead, when a BFT-instance executes 2f + 1 DONE-STATE-TRANSFER operations

for each portion of the entire id interval it was responsible for, it lets the dBFT-wrapper

know of this fact. The dBFT-wrapper can then shut down that BFT-instance. If calls

directed to that BFT instance arrive after this point, the dBFT-wrapper issues a

special ± reply, indicating the BFT-instance has stopped.

If a new BFT instance trying to fetch old state, or a slow old BFT instance (in

the same replica group) trying to execute the BFT protocol, receives f + 1 ± replies,

it can conclude that the old BFT group has been deleted. In the case of the new BFT

instance, this means it will do state transfer from the other replicas in the current

group. In the case of the slow old BFT instance, it means it can delete itself.

If a client sends a message for a BFT instance that has been deleted the dBFT-
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wrapper issues the NEW-CONFIG reply described before.

6.7 Scalability of BFT with the Number of Clients

As mentioned, the BFT protocol is not designed to work with a very large number

of clients. The main aspect of the protocol that limits this scalability is the fact that

BFT replicas store a client-issued sequence number of the last request executed for

every client that executed operations in the group, and the respective reply. This

information is stored as part of the BFT service state, and it is used when the client

retransmits a request (e.g., if messages were lost and the client never got the reply

from enough replicas) to distinguish between a new request and the retransmission.

In the case of a retransmission, the replica will just re-issue the reply, instead of

executing a new request (since requests may not be idempotent).

We would like to modify this in a way that scales to a larger number of clients.

Our approach is to recognize very old requests and garbage-collect them. The service

state maintains the last sequence number and reply only for a fixed number of clients.

The set of client requests is maintained in FIFO order: when a request arrives for

a client that is not in the set then the last client that has used the service is evicted

from the set.

The service state also maintains a variable, glb, describing the highest client se-

quence number that was removed from the set.

If we receive a request from a client that is not in the set maintained by the service,

we check to see if the sequence number proposed by the client is higher than the glb.

If so, the request is executed normally, but if not then the service will issue a special

"old" reply. In this case the client will not know what happened, but we believe this

will be a very unlikely situation if we make the set of client requests big enough.
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Chapter 7

Implementation

We implemented the membership service presented in Chapter 3 and the two example

replicated services presented in Chapters 5 and 6. This chapter presents an overview

of these implementations and some optimizations that we employed.

7.1 Membership Service Implementation

We implemented a prototype for the MS in C++. Inter-node communication is done

over UDP. For cryptographic operations we use the SFS toolkit [68] implementation of

a Rabin-Williams public-key cryptosystem with a 1024-bit modulus, and the 160-bit

SHA-1 random hash function.

The main MS loop is written in an event-driven structure. Whenever a node

becomes an MS replica, it spawns a replica for an MS service that tracks the operations

that occur during that epoch. This service is implemented as a BFT service using

the publicly available BFT/BASE code [84].

For proactive threshold signatures we have implemented a variation of the APSS

protocol [94] that works in asynchronous systems. The details about the implemen-

tation are presented in a previous publication [23].

For the multi-party secure coin tossing scheme [77] we implemented a scheme

that is simpler than previous approaches (e.g., [16, 77]), but provides weaker security

properties. Appendix D describes this scheme and analyzes its security properties.
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7.2 Implementation of dBQS

We implemented a prototype for dBQS in C++. Our implementation is based on

the code for the DHash peer-to-peer DHT built on top of Chord [90]. Inter-node

communication is done over UDP with a C++ RPC package provided by the SFS

toolkit [68]. Our implementation uses the 160-bit SHA-1 cryptographic hash function

and the 1024-bit Rabin-Williams public key cryptosystem implemented in the SFS

toolkit. Objects are stored in a Berkeley DB3 database. dBQS and the membership

service module run as separate user-level processes and communicate using a unix

domain socket. The two processes run at the same priority level.

Our implementation of the protocols described in Chapter 5 makes a simple op-

timization with respect to what is described. When executing the read phases of the

protocols, we do not send an entire copy of the object in the read replies, as described

before.

For content-hash objects we only send a small reply indicating that the replica

has the object. The client waits for the first reply and asks that server for the

entire object. The size of the object may be larger than the maximum UDP size

packet that is supported. Therefore we break the download into multiple RPCs for

individual fragments. The first reply contains the size of the object, so the client can

issue RPCs for all fragments in parallel. If the client is unable to download the entire

object from the first replier after a timeout, we revert to a slower download from all

the replicas simultaneously.

For public key objects the first RPC requests a signature covering the timestamp

of the object and the nonce issued by the client, plus the size of the object. The client

then downloads the object from the first replier. In case the client receives a later

reply with a higher timestamp, it changes to downloading from the server that issued

that reply. Again, the client must revert to the less efficient method of downloading

the entire object from all replicas after a timeout.

Another point to note is that the library uses public key cryptography to authenti-

cate replies to READ and WRITE requests. These signatures are in the critical path of
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executing the operations and therefore will introduce a relevant latency to the opera-

tions (we discuss performance in Chapter 9). These signatures can easily be replaced

with MACs [14] as they are only used in a two-party context. Our implementation

does not use these because we assumed a very large system where clients may talk to

many different servers and many of the client-server interactions will only last for a

single request. In this setting the overhead of establishing a shared secret for the use

of MACs is not worth the benefits of not using digital signatures.

When we use public key cryptography, a possible optimization (which we did

not implement) is to avoid one of the signatures for the put protocol for public-key

objects by having servers not sign replies in the READ phase, and then sign both the

acknowledgment and the timestamp of the read phase in the WRITE phase.

7.3 Implementation of dBFT

For dBFT we extended the BASE/BFT code [84] to be aware of configurations and

support a dynamic membership.

As an example service, we implemented a replicated file system that supports

membership changes based on BASE-FS [84]. This is an implementation of a BFT

service where the replicas of the service run an unchanged version of the NFS file

system server, and a small wrapper that calls the NFS server and hides all non-

determinism from the behavior of the server. We extended BASE-FS to support a

dynamic membership.

For dBFT and the dynamic version of BASE-FS we used MACs to authenticate

communication between clients and replicas. This is because in our implementation

of the reconfigurable file system we stored an entire file-system subtree as a single

item. This means that the client will contact the same replica group for a long period

(except when we reconfigure the system), and therefore it can establish a shared secret

with the servers and use MACs for the rest of the operations.
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Chapter 8

The Cost of Membership Dynamics

This chapter evaluates a cost associated with providing highly available replicated

services based on a server set that changes during the system lifetime.

This cost arises from the fact that we require some form of data redundancy

to obtain availability guarantees. Maintaining redundancy levels with a changing

membership implies that we make new copies of the data as nodes join and leave the

system. The rate of data movement is an obstacle to the scalability and dynamics

of the system, as nodes have a limited bandwidth to spare for maintaining data

redundancy.

In this chapter we determine this cost using a simple analytic model, and we

determine possible values for the parameters in this model using values collected

from measurement studies of different dynamic systems corresponding to distinct

deployment scenarios.

The remainder of the chapter is organized as follows. Section 8.1 presents the

analytic model. Section 8.2 elaborates on this model to distinguish between tempo-

rary disconnections and membership changes. Section 8.3 uses measurements from

deployed system to find values for parameters of the model. Section 8.4 analyzes an

important optimization: the use of erasure coding. Section 8.5 presents a discussion

of issues related to our model.
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8.1 Basic Model

8.1.1 Assumptions

Our model assumes a large, dynamic collection of nodes that cooperatively store the

data. The data set is partitioned and each subset is assigned to different nodes using

a deterministic function from the current membership to the set of replicas of each

block. This is what happens, for instance, in consistent hashing [48], used by storage

systems such as CFS [25].

We make a number of simplifying assumptions. The main simplification comes

from the fact that we focus only on an average-case analysis. When considering the

worse-case accidents of data distribution, there could be situations where, for instance,

more redundancy would be required to maintain data availability in the presence of

a spike in system dynamics.

We assume identical per-node space contributions. In reality, nodes may store

different amounts of data, and maintaining redundancy may require in certain cases

more bandwidth than the average bandwidth.

We assume a constant rate of joining and leaving. Worst-case membership dy-

namics would be a more appropriate figure for determining the maximum bandwidth

required to maintain data redundancy.

We assume a constant steady-state number of nodes. A decreasing population re-

quires more bandwidth while an increasing population would require less bandwidth.

8.1.2 Data Maintenance Model

We consider a set of N identical hosts that cooperatively provide guaranteed storage

over the network. Nodes are added to the set at rate a and leave at rate A, but the

average system size is constant, i.e., = A. On average, a node stays a member for

T = N/A (this is a queuing theory result known as Little's Law [10]).

Our data model is that the system reliably stores a total of D bytes of unique data

stored with a redundancy factor k, for a total of S = kD bytes of contributed storage.
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If the system redundancy is in the form of replication then the parameter k represents

the number of copies of each data object. If, instead, the system uses erasure codes

then k is the expansion factor (the ratio between the sum of the sizes of the fragments

that are stored and the size of the original data block). The desired value of k depends

on both the storage guarantees and redundant encoding scheme and is discussed more

in the next section. We assume this is a fixed redundancy factor: the system tries to

maintain at all times a factor of redundancy among system members of at least k.

TotalRecall [13] is a storage system that proposes a variable redundancy factor

where many copies are created initially and as flaky nodes leave the system the

redundancy levels drop, but new copies are not created provided redundancy is still

above some threshold. Section 8.5 discusses this optimization and how it relates to

our model.

We now consider the data maintenance bandwidth required to maintain this re-

dundancy in the presence of a dynamic membership.

Each node joining the system must download all the data that it must serve later,

however that subset of data might be mapped to it. The average size of this transfer is

S/N, since we assume identical per-node storage contributions. Join events happen

every 1/ao time units. So the aggregate bandwidth to deal with nodes joining the

overlay is S, or S/T.

When a node leaves the overlay, all the data it housed must be copied over to new

nodes, otherwise redundancy would be lost. Thus, each leave event also leads to the

transfer of SIN bytes of data. Leaves therefore also require an aggregate bandwidth

of A, or S/T.

In some cases the cost of leaving the system can be avoided: for instance, if we

assumed that data is never discarded by nodes who are no longer responsible from

certain objects, and that data is immutable, then the following situation would not

require redundancy repairs after a leave. Node x joins the system at a moment when

the redundancy levels for object o are at the desired levels, and makes a new copy of o,

increasing the redundancy for that object. Then x leaves before the other nodes that

were responsible for the same object leave, and this reinstates the desired redundancy
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Figure 8-1: Log-log plot of the average data maintenance bandwidth (in kilobits per
second), as a function of the average membership lifetime, for three different per-node
storage contributions: 1, 10, and 50 gigabytes.

levels.

We will ignore this optimization and therefore the total bandwidth usage for data

maintenance is B = , or a per node average of:

T' lifetime

Figure 8-1 shows the consequences of this basic model. We plotted the average

bandwidth required to maintain data redundancy as a function of the time members

remain in the system for three different per-node storage contributions: 1, 10, and

50 gigabytes. These contributions roughly correspond to 1%, 10%, and 50% of the

size of hard drives shipped with commodity desktop PCs sold today. We can see

that the maintenance bandwidth can be a serious obstacle to the storage size when

systems are dynamic. For instance, for systems where nodes remain in the system for

an entire week, and if each node contributes 10 GB to the distributed storage system,

the average bandwidth required to maintain data redundancy will be higher than 200

kbps, which is significant.

Another way to state the result is in terms of how stable members must be in order
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to bound the average maintenance bandwidth. For instance, to limit this bandwidth

to an average of 100 kbps, system members must remain in the system for at least

2, 20, or 100 days, for the three per-node storage contributions above. This makes

it hard to build such systems out of volunteer members who may only be willing to

"try out" the distributed application.

8.2 Distinguishing Downtime vs. Departure

As mentioned in the previous section, long lifetimes are essential to the scalability

of cooperative storage. To achieve long memberships, applications should try to

make a simple distinction between session times and membership lifetimes (as other

authors have noted [12, 82]). This distinction is illustrated in Figure 8-2: A session

time corresponds to the duration of an interval when a node is reachable, whereas a

membership lifetime is the time from when the node enters the system for the first

time until it leaves the system permanently.

Considering only membership lifetimes minimizes the amount of data movement,

by avoiding triggering such movement due to temporary disconnections. The side

effect of doing this is that nodes will be unavailable for some part of their membership

lifetime. We define node availability, a, as the fraction of the time a member of the

system is reachable (i.e., it will respond to requests of a client trying to access the

data), or in other words, the sum of the node's session times divided by the node's

membership lifetime.

To maintain data availability in the presence of unavailable system members we

must employ appropriate data redundancy schemes. The remainder of this section

tries to compute the needed redundancy factor when we use replication. Section 8.4

discusses how the use of erasure codes might improve on the amount of redundancy,

and possibly the bandwidth usage of the system.
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Figure 8-2: Distinction between sessions and lifetimes.

8.2.1 Needed Redundancy: Replication

The first redundancy scheme we study is replication, where k identical copies of each

data object are kept at each instant by system members.

The value of k must be set appropriately depending on the desired per object

unavailability target, (i.e., 1 - c has some "number of nines"), and on the average

node availability, a. Assuming that node availability is independent and identically

distributed (I.I.D.), and assuming we only need one out of the k replicas of the data

to be available in order to retrieve it (this would be the case if the data is immutable

and a single available copy is sufficient to retrieve the correct object), we compute

the following values for e.

= P(object o is unavailable)

= P(all k replicas of o are unavailable)

= P(one replica is unavailable)k

= (1 - a)k

which upon solving for k yields

k log1 (8.2)
log( - a)

The assumption that one out of k replicas suffices to retrieve the data may be

optimistic. In some cases, namely if the data is mutable and we need to ensure that

we retrieve the latest version of the data, we may require more redundancy than

the one stated above (e.g., in Byzantine-fault-tolerant replication algorithms we may
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Figure 8-3: Membership timeout, T.

require more than of the replicas to be available). We do not address this case, but

the analysis would be similar to what is presented in Section 8.4.

8.3 Detecting Permanent Departures

The problem with this simple model for distinguishing between sessions and mem-

bership lifetimes is that it requires future knowledge: applications have no means to

distinguish a temporary departure from a permanent leave at the time of a node's

disconnection. To address this problem we introduce a new concept of a membership

timeout, T, that measures how long the system delays its response to failures. In

other words, the process of making new hosts responsible for a host's data does not

begin until that host has been out of contact for longer than time T, as illustrated in

Figure 8-3.

There are several consequences of introducing this membership timeout. A higher

T means that member lifetimes are longer since transient failures are not considered

leaves. The number of members of the system also increases with T, as more unavail-

able nodes will be considered members. The average host availability, a, will decrease

if we wait longer before we evict a node from the system.

Translating this into our previous model, T and N will now become T(T) and

N(T), and a will now become a(T), which implies that k will become k(a(r), ) (set

accordingly to the equations above). Note that a decreases with T, whereas T, N, and

k increase with T. By our definition of availability, N(T) can be deduced as N(O)/a(T).

Note that we consider a(O) _ 1, which means that we ignore the period between a
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node becoming unavailable and it being evicted from the system membership.

Another consequence is that some joins are not going to trigger data movement,

as they will now be re-joins and the node will retain the data it needs to serve after

re-joining the system. According to the measurements we will present later this has

a minor impact on data movement when we set long membership timeouts (i.e., if 

is large enough then there will hardly exist any re-joins) so we will ignore this issue.

Equation 8.1 can therefore be rewritten as

B/N(T) = 2k(a(T), e)D/N(T) (8.3)
T()

Note that BIN(T) is the average bandwidth used by system members. At any

point in time some of these members are not running the application (the unavailable

nodes) and these do not contribute to bandwidth usage. Thus we also may want to

compute the average bandwidth used by nodes while they are available (i.e., running

the application), and to do this we replace the left hand side of Equation 8.3 with

a(T)B/N(O) and computing B/N(O) instead.

8.3.1 Setting the Membership Timeout

Setting the membership timeout, T, is not an easy task. A timeout that is too short

may lead to spurious membership changes (and consequent spurious data movement),

but if is too long the host availability may be hampered. The exact dimensions

of these problems (and the appropriate values for ) are highly dependent on the

distribution of session times, and thus the expected deployment scenario.

To address this problem, we analyzed three existing traces that represent three

possible deployment scenarios for a distributed storage system, and looked at how

varying will affect the behavior of the system. The traces we looked at correspond

to the following deployment scenarios.

* Peer-to-peer (volunteer-based) - We used the data collected by Bhagwan et al.

on their study of the Overnet file sharing system [12]. Their methodology is as
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follows. They crawled the system to find out the identity of 2,400 peers who

were members of the overlay at that time. Then they periodically probe each

member to see if they are still part of the overlay. The probing is done by

looking up the node IDs of the members, to overcome the effects of IP aliasing

(nodes behind NATs or using DHCP that may have different IP addresses over

time). Each node in the sample is probed every 20 minutes during 7 days.

* Corporate Desktop PCs - We used the data collected by Bolosky et al. [15] on

their study of the availability of desktop PCs at Microsoft Corporation. They

probed a fixed set of 51,663 machines that participated in the study by sending

them ping messages every hour over the course of 35 days.

* Server Infrastructure - This data was collected by Stribling [91] and reflects the

reachability of PlanetLab [75] hosts. Unlike the two previous studies that had

a centralized prober that verified the reachability and recorded the results, this

study measured pairwise ping data between PlanetLab machines. Periodically,

ping measurements are taken locally from individual nodes perspective, stored

locally, and less frequently archived at a central location. We used results of

pings among 186 hosts over the course of 70 days between October and Decem-

ber 2003. Nodes send each other three consecutive pings every 15 minutes. In

our analysis of this data, we considered a host to be reachable if at least half of

the nodes in the trace could ping it (in at least one of the three attempts).

The methodology used in the Overnet study is somewhat inadequate to the dy-

namics of the system. The problem is that the membership lifetimes in the Overnet

study can be much smaller than the length of the trace. This causes the later parts

of the trace to be dominated by stable nodes, since a large fraction of the less reliable

nodes will have left the system for good. In terms of the real system these might be

replaced with other (possibly also unreliable) nodes, but the trace will not capture

that.

The authors of the Overnet study also performed a second experiment, where they

crawled the overlay every four hours for a period of 15 days, to discover new members
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Figure 8-4: Membership dynamics as a function of the membership timeout (T).

of the system. This experiments gives us a good idea of the real membership lifetime

of the system, which we can compare to the lifetimes we deduce from the reachability

results. The authors report that each day, new hosts never seen before in the trace

comprise over 20% of the system. This implies (using Little's law [10]) that the

average membership lifetime is around 5 days.

Our analysis just looks at the average case behavior of the system. Figure 8-

4 shows how increasing the membership timeout T decreases the dynamics of the

system. In this case, the dynamics are expressed as the average fraction of system

nodes that leave the system during an hour (in the y axis). Note that by leave we

are now referring to having left for over units of time (i.e., we are referring to

membership dynamics, not session dynamics).

As expected, the membership dynamics of the system decrease as we increase

the membership timeout, since some of the session terminations will no longer be

considered membership changes, namely if the node returns to the system before -

units of time.

The most impressive gains in terms of membership dynamics are present in the

Overnet trace, where increasing T changes the leave rate from almost half the members

leaving each hour, to 0.5% of the members leaving each hour when we set = 50
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Figure 8-5: Average node availability as a function of the membership timeout (T).

hours. This reflects the methodology flaw we mentioned above: a leave rate of 0.5%

per hour implies a membership lifetime of about 8 days, which is higher than what

was deduced from the periodical re-crawling of the system. This is due to the fact

that the probing methodology skews the distribution of members to have more stable

nodes toward the end of the trace

As mentioned, the second main effect of increasing is that the node availability

in the system will decrease. This effect is shown in Figure 8-5.

Node availability is, as one would expect, extremely high for PlanetLab (above

97% on average), slightly lower for Farsite (but still above 85% on average), and low

for the peer-to-peer trace (lower than 50% when T is greater than 11 hours).

An interesting effect from Figure 8-5 is that node availability drops much more

quickly in the Overnet trace than in the two other traces. This is the effect of shorter

lifetimes in Overnet: waiting before declaring an unavailable node to be out of the

membership leads to a more significant contribution to unavailability when there are

many short sessions, which is the case in Overnet. On the other hand, a trace like

PlanetLab with fewer and longer sessions leads to a slower decrease in availability.

Again, the methodology flaw from the Overnet trace may lead to availability levels

that are higher than in reality.
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Figure 8-6: Required replication factor for four nines of per-object availability, as a
function of the membership timeout (T).

Note that we did not plot how N varies with T but this can be easily deduced

from the fact that N(T) = N(O)/a(T).

So the next question is how setting T influences the required replication in the

system? To answer this we used the availability values of Figure 8-5 in Equation 8.2,

and plotted the corresponding replication values, assuming a target average per-object

availability of four nines.

The results are shown in Figure 8-6. This shows that Overnet requires the most

redundancy, as expected, reaching a replication factor of 20. In the other two deploy-

ments replication factors are much lower, on the order of a few units. Note that the

figure shows the values obtained from Equation 8.2 rounded off to the next higher

integer, since we cannot have fractions of copies.

8.3.2 Putting it All Together: Bandwidth Usage

Now we can compute the combined effects of membership timeouts and the required

replication factors on the total amount of bandwidth consumed by nodes in a coop-

erative storage system.

For this we will use the basic equation for the cost of redundancy maintenance
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Figure 8-7: Average bandwidth required for redundancy maintenance as a function
of the membership timeout (T). This assumes that 10, 000 nodes are cooperatively
storing 1OTB of unique data, and replication is used for data redundancy.

(Equation 8.1) and apply for membership lifetimes the values implied by the leave

rates from Figure 8-4 (recall the average membership lifetime is the inverse of the

average join or leave rate). We will also assume a fixed number of servers (10, 000),

a fixed amount of unique data stored in the system (10 TB), and the replication

factors required for different membership timeouts and consequent availability levels,

as computed in Figure 8-6.

Figure 8-7 shows the average bandwidth used for the three different traces and for

different values of T. The conclusion is that trying to distinguish between temporary

disconnections and permanent departures is important to maintain the bandwidth

levels at acceptable values, in any deployment. The downside of using a large mem-

bership timeout is that, for a fixed amount of unique data in the system, it requires

increased storage to deal with the additional unreachability.

A second conclusion is that even with a large timeout, the bandwidth used in

Overnet is problematic (above 200 kbps). Note that Figure 8-7 uses a logarithmic

scale in the y axis, so there is a substantial difference in the bandwidth requirements

for the three different traces.

An interesting effect can be observed in the Farsite trace, where the bandwidth
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curve has two sudden "steps" (around T = 14 and = 64 hours). These corresponds

to the people who turn off their machines at night, and during the weekends, respec-

tively. Setting T to be greater than each of these downtime periods will prevent this

downtime from generating a membership change and consequent data movement.

8.4 Erasure Coding

A technique that has been proposed to save storage and bandwidth is the use of

erasure coding [11, 93]. This is more efficient than conventional replication since the

increased intra-object redundancy allows the same level of availability to be achieved

with much smaller additional storage. With an erasure-coded redundancy scheme,

each object is divided into b fragments and recoded into n fragments which are stored

separately, where n > b. This means that the effective redundancy factor is k nb.

The key property of erasure codes is that the original object can be reconstructed

from any b fragments (where the combined size for the b fragments is approximately

equal to the original object size).

We now exhibit the equivalent of Equation (8.2) for the case of erasure coding.

Object availability is given by the probability that at least b out of kb blocks are

available:

1 e (= ) ai(1 - a)kcb- i

i=b \/

Using algebraic simplifications and the normal approximation to the binomial

distribution (the complete derivation was done by other authors [11]), we get the

following formula for the erasure coding redundancy factor:

I I b + 4ak + -2a (8.4)
2a

where a, is the number of standard deviations in a normal distribution for the required

level of availability. E.g., a, = 3.7 corresponds to four nines of availability.

Another difference between coding and full replication is how new fragments are
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created to deal with the loss of fragments held by nodes leaving the system. In a

replication scheme the bandwidth cost associated with this event is just the cost

of the new replica downloading a copy of the object from one of the remaining old

replicas. With coding, you need to reconstruct the entire object so that you can

create the new fragment. To avoid the cost of downloading the entire object (and

thus keep the cost of dealing with data loss equal to the amount of data the departing

node held) we can employ a simple scheme where one of the nodes responsible for

storing fragments of the object will store a complete copy, and this node will be the

preferred responsible for creating new fragments as nodes leave the system.

In terms of our model, this would roughly correspond to increasing the coding

redundancy factors of Equation 8.4 by one unit (because a complete copy is now

maintained alongside with the fragments). With this design, the bandwidth analysis

of Section 8.1 is still valid because when nodes leave the system you need to replace

the fragments the node held (which is done by the node that holds the copy of the

data and only has to push out a new fragment) and the complete copies the node

held (which is done by reconstructing a new copy from some of the fragments). Both

kinds of reconstruction generate data movement equal to the size of the fragment or

data object being replaced, so the analysis still holds.

8.4.1 Needed Redundancy and Bandwidth Usage

To conclude our analysis we will plot the required redundancy factors and the band-

width usage for maintaining data redundancy using erasure coding, as a function

of the membership timeout, T. Figure 8-8 shows the redundancy requirements (i.e.,

stretch factor) for the availability values of Figure 8-5 for the case when we use coding

and set the number of blocks needed to reconstruct an object to be 7 (i.e., we set

b = 7 in Equation 8.4). This is the value used by the Chord implementation [26].

Again we assume a target average per-object availability of four nines. The values

shown in the figure include the redundancy introduced by the extra copy for restoring

fragments (i.e., we added one unit to Equation 8.4).

As shown in Figure 8-8, Overnet still requires more redundancy than the other two
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Figure 8-8: Required stretch (coding redundancy factor) for four nines of per-object
availability, as a function of the membership timeout (T).

deployments, but for Overnet coding leads to the most substantial storage savings

(for a fixed amount of unique data stored in the system) since it can reduce the

redundancy factors by more than half.

Finally, Figure 8-9 shows the equivalent of Figure 8-7 for the case when coding

is used instead of replication. The average bandwidth values are now lower due to

the smaller redundancy used with coding. However, the bandwidth requirements in

an Overnet-like deployment are still too high for a volunteer-based deployment where

nodes may be behind slow connections.

8.4.2 Replication vs. Erasure Coding: Quantitative and Qual-

itative Comparisons

The previous section points out that coding can lead to substantial storage and band-

width savings but it would be desirable to quantify these savings.

Figure 8-10 plots the ratio between the required replication and the required

erasure coding stretch factor (i.e., the ratio between equations 8.2 and 8.4) for different

server availability levels (assuming server availability is I.I.D.) and for three different

per-object availability targets: 3, 4, and 5 nines of availability. In this figure we set
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Figure 8-9: Average bandwidth required for redundancy maintenance as a function
of the membership timeout (T). This assumes that 10, 000 nodes are cooperatively
storing O1TB of unique data, and coding is used for data redundancy.

the number of blocks needed to reconstruct an object to be 7 (i.e., we set b = 7 in

Equation 8.4), and we included the effects of the extra copy for erasure coding, and

of rounding off the replication factors to the next higher integer.

The conclusion is that erasure coding is going to matter more if you store the data

in unreliable servers (lower server availability levels) or if you target better guarantees

from the system (higher number of nines in object availability). The redundancy gains

from using coding range from 1 to 3-fold.

Another advantage of coding (pointed out by a previous paper [26]) is that coding

would be useful if we were in the presence of a write-intensive workload where the

writer wanted to minimize the time spent in sending out the data.

The redundancy savings from using coding instead of full replication come at a

price.

A point against the use of erasure codes is the download latency in a environment

like the Internet where the inter-node latency is very heterogeneous. When using

replication, the data object can be downloaded from the replica that is closest to the

client, whereas with coding the download latency is bounded by the distance to the

mth closest replica. This problem is pointed out with simulation results in a previous

123

Overnet
Farsite -----------



O
-H 2.6

X 2.4

u 2.2U

° 2

u) 1.8

-H

d 1.4
u

*d 1.2

1() 1
n Q

0.4 0.5 0.6 0.7 0.8 0.9 1
Server Availability

Figure 8-10: Ratio between required replication and required stretch factors as a
function of the server availability and for three different per-object availability levels.
We used b = 7 in equation 8.4, since this is the value used in the Chord implementa-
tion [26].

paper [26].

The task of downloading only a particular subset of the object (a sub-block) is

also complicated by coding, where the entire object must be reconstructed. With

full replicas sub-blocks can be downloaded trivially. Coding also makes it difficult to

perform server-side computations like a keyword search on a block.

A final note about this dichotomy is that erasure coding introduces more complex-

ity into the system (e.g., the task of redundancy maintenance is much more complex,

as explained before), and, as a general principle, we believe that complexity in system

design should be avoided unless proven strictly necessary. Therefore system designers

should question if the added complexity is worth the benefits that may be limited

depending on the deployment.
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8.5 Discussion

8.5.1 Limitations of the Model

A limitation of the previous analysis is that it considered only the average values for

node availability, and for the corresponding per-object availability.

The first problem with this is that node availability is not constant, but in fact

follows interesting diurnal and weekly patterns. For instance, consider the instanta-

neous node availability plots for the Farsite trace shown in Figure 8-11. With a 1-hour

timeout it is hard to see these patterns, but if we wait for 16 hours before evicting

nodes from the system, we can see that all the machines that are turned off at night

start to count as system members and the fraction of available nodes goes down at

night. With a 64-hour timeout the same happens to machines that are turned off

during the weekends. These peaks of unavailability are not captured by the average

case analysis of the previous section.

Also, we would like to distinguish more carefully which join and leave events

require data movement, since, as mentioned, re-joining or leaving after recent joins

created extra redundancy may not trigger data transfer.
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Addressing these issues analytically is hard since it would imply having a model

for the distribution of node lifetimes, and require a tedious analysis. As future work,

we intend to simulate the behavior of a real system using the membership dynamics

from these traces.

8.5.2 Other Optimizations

In our analytic model for data maintenance we considered two important optimiza-

tions that minimize the bandwidth cost: delaying the system's response to failures

and using erasure coding.

There are other possible optimizations that could be employed. One of them is

hysteresis where the system creates a number of replicas (or erasure coded fragments)

when the data is first created, and does not try to maintain that number of copies

in the system at all times. Instead, it waits until the number of copies falls below a

certain minimum threshold, and only then creates new copies (this is proposed in a

peer-to-peer storage system called Total Recall [13]).

This technique is useful in settings where the stability of the members is hetero-

geneous (e.g., peer-to-peer deployments [12, 88]) since it may happen that the initial

copies included enough stable members that will ensure the data permanence. The

analysis for the amount of initial redundancy required for this is equivalent to, in our

analysis, setting the membership timeout to infinity.

There are a few shortcomings with this approach. First, the cost of writing the

data (in terms of required time and bandwidth) is increased by the fact that extra

copies are necessary to avoid future data movement. Second, you need to be care-

ful about correlated failures: by the time the data level falls below the minimum

thresholds, the system may not have enough time to create new copies in case the

last remaining nodes leave the system abruptly.

Another characteristic of this design is that it leads to different storage contribu-

tion from different nodes: stable nodes will end up with more data as they become

the only replicas of old data in the system. This may or may not be considered a

positive point.
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As future work we intend to study the exact gains of this approach.

8.5.3 Hardware Trends

A final discussion point is how hardware trends may influence the future importance

of the cost of bandwidth in cooperative storage systems. We could think that the

increase in end-user bandwidth might lead to the redundancy maintenance costs be-

coming less and less relevant. However, the storage trends also have to be taken into

account: if the per-node storage contribution grows faster than the per-node band-

width contribution the cost of redundancy maintenance will become more and more

relevant.

To estimate which of these two contributions may increase faster, we did a simple

thought experiment: we determined how long it takes to upload your hard drive

through your network connection for "typical" home and academic users, and how

this figure has evolved over the years.

Table 8.1: Evolution of the relative growth of disk space and bandwidth.

Table 8.1 present our results for this thought experiment. The fourth and sixth

columns show an ominous trend for the relative growth of bandwidth and disk space:

available storage is growing faster than available bandwidth. Therefore, if nodes are

to contribute meaningful fractions of their disks their participation must become more

and more stable for the bandwidth cost to be reasonable.

Note that "typical" values were intuitively determined by personal experience and

not by any scientific means, and are therefore subject to debate.
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Home access Academic access
Year Disk Speed Days Speed Time

(Kbps) to send (Mbps) to send
1990 60 MB 9.6 0.6 10 48 sec
1995 1 GB 33.6 3 43 3 min
2000 80 GB 128 60 155 1 hour



128



Chapter 9

Evaluation

This chapter presents an experimental evaluation of the three main components of our

work. Section 9.1 describes our infrastructure. Section 9.2 presents the evaluation the

membership service, while Sections 9.3 and 9.4 focus on the two example replicated

services: dBQS and dBFT.

9.1 Evaluation Infrastructure

The experiments we describe in this section took place, except otherwise noted, on a

wide-area infrastructure consisting of a mix of nodes from different testbeds.

* PlanetLab [75] - Part of the machines in our experiments were nodes from the

PlanetLab infrastructure. We used all 296 nodes that were up when we began

to run our experiments. These machines were located in approximately 200

sites in four continents. The type of equipment varied considerably (for details

about this see http: //planet-lab. org/). The machines were running version

2.0 of the PlanetLab software that includes a Redhat 9 distribution running a

2.4.22 linux kernel.

* RON [7] Our wide-area infrastructure also included 22 machines from the

RON testbed, scattered over the Internet. Most of these machines had 733 MHz

Celeron processors and 256 MB of memory (or similar), and all machines run
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FreeBSD 4.7. For more details about the infrastructure see http://nms. lcs.

mit. edu/ron/

* Local machines - in some cases we wanted to run experiments that would test

the system under conditions of extreme load, and, in order to generate this load,

we needed to generate a large network traffic. In this case, it is desirable if the

load of the machines being tested, and not the wide-area network bandwidth,

were the bottleneck of the experiment. In such situations, we populate the

system with large number of node running on 10 machines in our local area

network. These were Dell Precision 410 workstations with Linux 2.4.7-10. These

workstations have a 600 MHz Pentium III processor, 512 MB of memory, and a

Quantum Atlas 10K 18WLS disk. All machines were connected by a 100 Mbps

switched Ethernet and had 3Com 3C905B Ethernet cards.

9.2 The Membership Service

In our evaluation of the membership service we tried to determine how scalable our

solution is, and how fast the system can be reconfigured.

9.2.1 Scalability

We divide the scalability barriers into two categories: scalability with the number of

servers, and with the number of clients.

Scalability with the Number of Servers

The main obstacle to scalability with the number of servers stems from the ping

protocol, since it is the only component of the system whose complexity grows linearly

with N (the number of nodes in the system).

Remaining costs do not increase as much when N grows. The cost of running

operations for marking nodes as inactive or active, or for explicit addition and removal

are proportional only to the number of membership changes (which we expect to

130



be small or moderate in our deployments) and the number of MS replicas, which

is independent of the system size. The cost of the epoch transition protocol also

depends on the number of MS replicas and the number of membership changes, with

the possible exception of computing signatures of the entire configuration (which is

relatively cheap), and of transferring the probe database. The probe database should

also be small, since it only contains entries for the nodes that failed the last probe.

The percentage of nodes that fail probes is small in stable deployments, as our analysis

in Chapter 8 pointed out, so we expect this cost to be low. Additionally there is the

cost of propagating new configurations, but our design keeps this cost small by using

configuration deltas and multicast trees.

As mentioned in Chapter 3, we can improve on the scalability by delegating the

probing responsibility to committees picked among the server nodes. However, to

better understand the limits of the design without the committees, we evaluate the

scalability of our protocols without this extension.

The first experiment tries to determine how many system nodes a MS replica

can ping in a certain interval. To determine this, we monitored a MS replica while

varying the rate at which it ping'ed other nodes in a large scale system. (Here we

augmented the testbed with about 200 new processes from the local machine set,

to avoid saturating wide-area links.) This MS replica was located in our own LAN

and was running on an unloaded machine with a 2 GHz Pentium IV processor and 1

GB of memory running Linux 2.4.20. In our implementation of the MS functionality,

an active MS replica sends a series of pings, and then sleeps for a predetermined

period of time, while awaiting ping replies and other requests. The monitored process

verifies a signed nonce for 10% of the ping replies. We measured the scalability of the

ping protocol by modifying the number of pings a MS replica sends each time it is

awakened. Since we could not control the amount of sleep time at a fine granularity

(a limitation of the kernel timer mechanism in Linux/i386 which has a resolution of

about 10 ms) we set the sleep time to the minimum we could achieve: 10 ms. This is

not an obstacle to measuring the scalability of the system since we can send as many

ping packets as desired during a sleep cycle.
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Figure 9-1: Variation of the ping throughput as an MS replica tries to send more
probes per sleep cycle. This figure shows this variation for three different levels of
activity of a dBQS server co-located with the MS replica.

To determine the scalability of the ping protocol more realistically, the MS replica

was associated with an instance of a dBQS server. We repeated the experiment under

three different degrees of activity of the dBQS server: when it is not serving any data

(which will be the case when the MS runs at a single node or a static replica group),

when it is handling 30 queries per second, and when clients saturate the server with

constant requests, which leads the maximal number of about 300 queries per second.

(We further address the issue of the impact of running MS replicas on the performance

of the replicated service in Section 9.3.) Each query requested a download of a 512

byte content-hash block.

Figure 9-1 shows how many pings the MS process could handle per second when

we increased the number of pings the MS process sent each time it awakened. The

experimental methodology was that, to obtain each point in the graph representing a

certain value for the ping throughput, we ran the system until the MS replica handled

400,000 pings, determined the length of time required to do this, and computed the

average throughput in number of pings handled per second. The figure shows three

lines, corresponding to the different levels of activity in terms of serving data. It shows

that the number of pings the node can handle increased linearly with the number of

132

no queries -
30 queries/s -----------

-300 queries/s -------------

I I IiI I I

= I I I I I 
I



01

1 hr
I
a
Ir,
a 45 min

0
ro

H 30 min
a,

15 min
0

0
0

-p ;. 1 h170 kbpS -----------

Feasible

a 45 min

'0
H 30 min

->, 15 mi. ~ Infeasible

1 2 3 1 2 3

Number of servers (Millions) Number of servers (Millions)

(a) 1.7 Mbps (b) 170 kbps

Figure 9-2: Feasibility and unfeasibility regions for different inter-ping arrival rates
and system sizes. The lines above divide the deployment planes in two parts: above
and to the left of the lines, the system is small enough and the probes are infrequent
enough that the probing scheme is feasible with less than the threshold bandwidth.
On the other side of the line, the system is so large and the probes are so frequent
that the bandwidth usage surpasses the threshold bandwidth. Figure (a) assumes we
use 1.7 Mbps for probes, and Figure (b) assumes we use 170 kbps.

pings sent per sleep interval up to almost 7000 pings per second if the node is not

serving data, or up to about 5000 pings per second if the node is also serving content.

After this point, the node goes into a state of receive livelock, in which the system

spends most of its time processing interrupts, and fails to perform other important

tasks. This leads to decreasing ping throughput as we try to send more pings.

The ability to process probes is one possible limit to how frequently we send

probes, and how many system nodes can the probe protocol handle. However, there

is another possible limitation coming from the bandwidth consumed by probing. This

bandwidth is relatively high and may be another reason to monitor nodes at a slower

rate. Each outgoing packet consists of 8 bytes for the nonce and control information,

plus the 28 byte UDP header (we do not consider Ethernet headers since the band-

width bottlenecks are usually not in the local area). Thus the upstream bandwidth

in the MS replicas would be 211 kB/s (or about 1.7 Mbps) for 6000 pings per second.

This is a significant bandwidth usage and therefore we may choose to use a slower

ping rate for this reason.

If we fix a certain target for the interval between probes to the same machine, the
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ping sending frequency (which is directly proportional to the bandwidth usage) de-

termines how many machines a MS replica can probe. Figure 9-2 shows this effect, by

depicting the regions where deployments of the monitoring scheme are feasible in the

system size / inter-ping arrival rate plane. Threshold lines are shown for two different

bandwidth consumption targets: a high bandwidth consumption, corresponding to

the maximum ping rate of about 6000 pings per second (or 1.7 Mbps), and a mod-

erate bandwidth consumption of 170 kbps, which corresponds to a ping rate that is

10 times slower. We conclude that even a moderate bandwidth usage of 170 kbps

allows for a system with millions of nodes being probed every hour by each MS node.

Obviously fewer nodes could be probed if we wanted to use a higher rate.

This analysis ignore the fact that we may want to immediately retry a ping a

few times before we declare that a node failed a probe. Again, since most pings are

replied immediately, this would not significantly alter the numbers above.

A point to note is that the responsibility of implementing the MS functionality

shifts periodically, so this cost is shared in time among the different servers in the

system.

It may be desirable to ping very slowly and increase the ping frequency when

failures are first detected (but never increase so much that it would cause network

congestion). Such a scheme would not have a major impact on the lines of the

above figure: we looked into the probability of failed pings in the PlanetLab testbed

according to the measurements of Stribling [91] and we concluded that a small fraction

of under 1% of the pings to current members fail (assuming we evict failed members

in under 11 hours). Therefore even tripling the rate after failed pings would only lead

to a 2% increase in the number of pings sent.

The results from Figure 9-2 raise the question of what is an acceptable probe

interval? The answer depends on three factors: the desired membership timeout,

T (as defined in Chapter 8, this is the time it takes to evict an unreachable node

from the set of servers that hold data), the average member availability (i.e., the

probability that we cannot contact a system member, for instance due to a temporary

disconnection or a network problem), and the false-positive rate for evictions (i.e., the
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probability that we remove a member who is still connected).

The idea is that, assuming we probe k times before we evict nodes from the

replicated system, if all k times the node was only temporarily unavailable, then we

have a false positive. Therefore, if we have an average temporary unavailability of u,

the false positive rate is equal to uk. This means that the number of probe attempts,

k, should be set to

k = flog,,(false positive rate)l

k - log (false positive rate)
log u

Finally, we note that the probe interval should be set to the membership timeout

divided by the number of probes required to evict a member, or, in other words, the

number of probes is equal to the membership timeout divided by the probe interval.

T - log (false positive rate)= F1probe interval log u

probe interval TFlog (false positive rate)
log I

As we explained in Chapter 8, the membership timeout (T) and the average node

unavailability (u) are dependent on the deployment; therefore we used values mea-

sured in the analysis of that chapter to determine possible values for the probe interval

for different deployments.

Note that we overestimated the node unavailability in Chapter 8 by using both

the unavailability due to temporary disconnections and real membership departures.

The latter should not be accounted since it does not lead to false positives.
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Table 9.1 show possible values for the probe interval for the three different traces

and for different values of T. This table assumes we are willing to tolerate a small

false positive rate of 0.1%.

Deployment (Trace) r=6h 7=12h r=18h
PlanetLab 3 hours 6 hours 9 hours

Farsite 2 hours 4 hours 6 hours
Overnet 45 minutes 1.1 hours 1.5 hours

Table 9.1: Required inter-probe interval in hours for a 0.1% false positive eviction
rate for different traces and different values of the membership timeout.

The conclusion is that probing can be done very slowly. For the stable environ-

ments, unavailability is uncommon so we can safely evict a node that has only been

probed twice for PlanetLab or three times for Farsite. Note that with so few probes

we want to repeat a failed probe to account for lost messages: the PlanetLab trace

sent 3 pings to a node before it declared a probe attempt to have failed, so it may

be desirable to do this as well. For the more unstable environment of Overnet, we

need to probe up to 12 times before evicting an unreachable node to ensure it is not

a temporary unavailability. However, this still leads to a probe interval of around

one hour, which, in the low-bandwidth scenario of Figure 9-2, scales up to around 2

million server nodes.

Scalability with the Number of Clients

Scalability with the number of clients is dictated by the lease mechanism used to

ensure freshness of configurations. If we fix a certain maximum number of leases the

MS can grant for each unit of time, this will limit the number of clients and the

duration of the respective leases.

To determine the maximum number of leases the MS can grant, we measured

the time to produce a digital signature in our local machines. This is a conservative

estimate for the time to produce a digital signature since these are five year old

machines with a 600 MHz PII processor. These machines take 21 ms to produce a

digital signature, a time we expect to be an upper bound on the time servers will take
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to grant leases. Conversely, the inverse of this time is the maximum lease granting

frequency: 47.6 leases per second, which implies the feasibility of lease assignment in

the client population / lease duration space shown in Figure 9-3. We show feasibility

thresholds for three different aggregation values: no aggregation, and aggregating 10

and 100 leases in one signature. These results are conservative for two reasons. First,

the signature time was measured using slow machines. Second, this neglects a simple

but important point: since we only require fMs + 1 signatures, these requests will

naturally be done by different subsets of the replicas (e.g., due to choosing them based

on proximity considerations), leading to approximately a 1/3 reduction in replica load

in the normal case (no failures).

Nevertheless, the graph shows that aggregation of lease requests is important to

allow for large numbers of clients. If we aggregate 100 requests per signature, we can

expect to scale to millions of clients with leases shorter than one hour.

Reconfiguration Frequency

The second part of the evaluation of the MS tried to determine how fast we can

reconfigure the system, or in other words, what is the minimum duration for an

epoch. We need to choose an epoch duration large enough so that the time it takes

to move to the next epoch is a small part of the total duration.

Moving to the next epoch is easy when the MS is implemented at a single node or

even at a static group of replicas. But when the MS moves at the end of the epoch,
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we have a number of expensive operations to perform. The most significant of these

is proactively resharing the secret [23].

To evaluate the cost of reconfiguration, we conducted an experiment for several

days to determine the length of reconfigurations in a wide-area deployment. Again,

even though we were limited by the actual size of the testbed (in this case, a few

hundred nodes), the main costs are only proportional to the number of changes,

not to the number of nodes, and therefore we expect the numbers we obtain to be

representative of a real deployment. We ran dBQS in our wide-area infrastructure

for several days and measured, for each reconfiguration and each MS replica in the

old epoch, the amount of time elapsed between the beginning of the reconfiguration

process (invoking the STOP operation on the MS) and its end (ending the share

refreshment protocol and signing the next configuration). The MS was running on

a group of 4 replicas (i.e., fMs = 1) and was moving randomly among the system

nodes.

Figure 9-4 shows a large variation in the time to reconfigure, which is explained

by the fact that nodes in the PlanetLab testbed are running many other applications

with varying load, and this concurrent activity can affect the performance of the

machines significantly. The figure shows that, even an a heterogeneous environment

where some machines showed more load than others, most reconfigurations take under
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20 seconds to complete. This indicates that cost to reconfigure is not a serious factor

in deciding on epoch duration. However, the figure is somewhat misleading because

it is done for an MS replica using fMs = 1. The secret sharing protocol we are using

has complexity (3ff1) [94]; it doesn't scale well as fMs grows and yet we probably

want to run the MS using a reasonably large f, e.g., 3 or 4. The performance of this

protocol as f grows is evaluated in [23]. This evaluation computes a lower bound on

the cost of the share refreshment protocols for fast machines, based on the time those

machines take to perform the cryptographic operations involved in the protocol. The

conclusion is that with f = 2 this lower bound is over ten seconds, for f = 3 this

raises to a few minutes, and for f = 4 a few hours.

9.3 Dynamic Byzantine Quorums

This section evaluates the performance of dBQS, the read/write data block service

based on reconfigurable Byzantine quorums.

We will first present detailed performance results of different operations without

reconfigurations. Then we present an analytic model and an experimental evaluation

for the performance of individual operations with reconfigurations. Then we present

results that outline the impact of MS operations on this service.

9.3.1 Performance with a Static Configuration

The first set of benchmarks represents a controlled experiment that uses a small

number of machines on a local area network (which avoids the variability of Internet

message delays), and focuses on determining the overhead of public key cryptography

and quorum replication for each individual operation in dBFT, and compares the

performance of the different types of objects supported by the system.

In this experiment our experimental setup consisted solely of machines from our

local set. This allows us to focus on the overhead of cryptography and other local

processing steps. The next section presents a set of experiments using our wide-area

testbed, which accounts for all the possible overheads.
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Object Type Store Time (ms) Fetch time (ms)
content-hash 23.9 3.3

public-key (1 phase) 46.2 24.8

public-key (2 phases) 68.4 49.0

Table 9.2: Local area network experiments. Average per object store and fetch time
for different systems.

In this experiment we consecutively stored and fetched 256 4kB objects in each of

these systems. We repeated the experiment for both kinds of objects. The results are

summarized in Table 9.2. The results show the average of three separate attempts.

The standard deviations were always below 1.1% of the reported value.

The performance of store operations is roughly proportional to the number of

signatures that are in the critical path of the operations (a digital signature takes on

average 21 ms to execute on these machines). Content-hash objects only require one

signature, by the servers to certify they have stored the object. Public key object

operations are slower than content-hash because the client needs to sign the data

before storing it, which accounts for the additional latency. We distinguish two kinds

of writes. Single-phase writes use the optimization proposed in Chapter 5 of avoiding

the read phase in the case of a single writer or synchronized clocks. This leads to

only two signatures on the critical path of the operations: the client signing the data,

and the servers vouching for storing the data. Two-phase writes require an additional

phase for reading the latest timestamp. This phase requires an additional signature

in our implementation, which vouches for reading the correct timestamp.

The second column in Table 9.2 shows times for fetching the same number of

objects. Again, we see the cost of using public key cryptography to ensure freshness

for public key fetches in the presence of Byzantine faults: all repliers must send a

signed response containing the current version number and a nonce proposed by the

client, since otherwise the client could be tricked into accepting stale data. This is

not the case when fetching content-hash objects because these are immutable; thus

replies do not need to be signed, and the only additional overhead is for fetching from

more replicas.
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For two phase reads, we artificially forced the client to write back the value it

read (even though it read identical values from all replicas). These are relatively slow

operations since they require two signatures in the critical path, but we expect them

to be rare, since they occur only if the first phase found an incomplete write.

Furthermore, even though the per-store overhead of dBQS seems significant, it is

acceptable when compared to the round-trip latency of Internet communication. For

instance, a network round-trip across North America takes more than 70 ms on an

uncongested link. This means our is system practical for a wide-area deployment.

The next section describes experiments in the wide-area testbed, which shows this

effect.

9.3.2 Performance During Reconfigurations

We will now analyze the performance of individual operations when clients and servers

are not in the same epoch when the operations are initiated. We start with an analytic

performance model, which we validate with experimental results.

Analytic Model

We define dk to be the latency between the client and the kth most distant replica

(we assume there are wide variations among inter-node latencies, as our algorithm is

designed for an Internet deployment where replicas are geographically diverse). We

define to be the local processing time of an action that does not involve producing a

digital signature, and l, to be the processing time of an action that includes signing.

This distinction is important as in practice producing a digital signature takes more

than an order of magnitude more time than any other local action. We further

distinguish between the time taken by clients to sign data objects, I,,, and the time

taken by servers to sign replies, l,,, since our experimental evaluation uses different

processors at client and server machines.

We simplify the analysis by assuming that at most one reconfiguration occurs

during an operation, which is justified by our assumption of a moderate reconfigu-

ration rate. The analysis is for the normal case when there are no node faults. The

analysis ignores message pileups and assumes that the probability of a node receiving
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Table 9.3: Average round-trip latencies between the client at CMU and different
server machines. This reports the average of 20 ICMP pings, the standard deviations
were under 0.3 ms.

a message while it is performing a non-signing action is negligible (which is justified

by the fact that 1 < d in practice).

In the case when no nodes reconfigure during the operations, write operations take

at most time 4d2f+l + 21 + 21,, + l,,. Read operations take time 4d2f+l + 31 + 2l1,,

if the write back phase is required (i.e., when servers do not agree on the current

timestamp) or time 2d2 f+l + 21 + 1,, in the most common case where servers agree.

Now we consider the case when some of the nodes need to upgrade their configu-

rations. We assume the replicas that are upgrading do not need to transfer state, i.e.,

they were already replicas in the previous configuration. The case when the replicas

need to transfer state leads to a long analysis that we will omit for the sake of brevity.

If a subset K of the replica set R is behind the client, the first phase will take the

2f + 1st lowest value of {4dc,k + 41 + las,,, k E K} U {2d-kl + 21 + ls, k' C R \ K},

where dk is the latency between the client and replica k. The second phase for

writes and two phase reads takes an additional 2d2f+l + 1 + ,,, plus, in the case of

a write operation, the last operation of the first phase becomes a client signature, so

we must subtract 1 and add l,, to the first phase. The total time is the sum of the

duration of both phases, as the second phase starts when the first ends.

If k servers are ahead of the client, there is a race condition in the case where

k < f, where if the time to complete the operation with no upgrade at the servers

that are not ahead of the client is smaller than 2d' + 21 (where d' is the closest server

ahead of the client), then the operation completes in the time for the normal case.

Otherwise, (or if k > f) the operation will take 2d*+ 21 plus the time for the operation

in the normal case, where d* is the latency to the closest node that is ahead of the
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Reconfiguration Write Predicted Read Predicted
Scenario Latency Write Latency Latency Read Latency

no reconfiguration 227.0 220.4 102.8 100.2
client upgrades 249.5 241.6 126.1 121.4

UCSD and Cornell upgrade 226.4 220.4 103.7 100.2
UCSD and Utah upgrade 298.6 288.6 174.9 168.4

Table 9.4: The performance of read and write operations under different reconfigura-
tion scenarios. The data reflects the average of five trials with a standard deviation
of less than 2 ms. All values are in milliseconds (ms)

client.

Experimental Validation

The experimental validation for the performance model used five machines that are

part of the our wide-area testbed; the four servers have 733 MHz Celeron processors

and 256 MB of memory, while the client machine has a 1.1 GHz PIII processor and

512 MB of memory, and all machines run FreeBSD 4.7. The experiments were run late

at night, when network traffic was low and machines were expected to be unloaded.

The client machine ran at CMU, and the four servers ran at MIT, UCSD, Cornell,

and University of Utah. The average round-trip latency between the client and each

server is shown in Table 9.3. Row k of the table represents 2dk in our model.

Due to the different processors used in client and server machines, the time to

produce a digital signature, which is a good approximation to l,, differs among these

machines. On the servers, this time is 32 ms, while the client takes on average 20 ms

to sign data objects.

Our microbenchmarks consist of a single read or write of a 1 kB data object (this

size includes the signature appended to the object). We repeated the operations

under different conditions of different nodes changing epochs during the operation.

Despite the fact that we changed epochs, we did not change the replica set, to avoid

delays related to state transfer. This allowed us to validate the performance model

above.

Table 9.4 summarizes the results. The second and fourth column of Table 9.4

show the measured performance of write and read operations, respectively.
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In the first reconfiguration scenario, all nodes are in the same epoch initially and

there are no epoch changes, so that the write operation completes in two round-trips,

and the read operation completes in a single round-trip. Note that, as predicted by

our model, we use quorums of 2f + 1 replicas so that operations do not need to wait

for the most distant replica (in this case, UCSD).

In the second reconfiguration scenario, the client's configuration is initially be-

hind all replicas. In this case, the client upgrades and restarts the operation after

contacting the nearest replica (MIT). This adds approximately a round-trip time to

the nearest replica to the performance with no reconfiguration (plus an additional

smaller latency to verify and install the new configuration).

In the third and fourth reconfiguration scenarios, the replicas at Cornell and UCSD

(or Utah and UCSD, respectively) are behind the client and the remaining replicas,

initially. This will cause the initial response from these replicas to ask for the new

configurations, so that an additional round-trip time must be added to the time to

complete the operations at those particular replicas. In the first case, this will not

affect the duration of the operation, due to the fact that the latency to Cornell is

less than half of the latency to Utah, and therefore Cornell manages to upgrade and

reply to the first phase of the operation before a reply from Utah for that phase is

received. In the second case, the two most distant replicas need to be upgraded, and

this will affect the duration of the operation: The first phase will require an additional

round-trip to the Utah replica (the last replica to complete in the quorum) in order

for that replica to request the upgrade.

The third and fifth column in Table 9.4 show the values predicted by our perfor-

mance model when we set 1,,=32ms, c,,=2 0ms, 1=0, and d to the values implied by

Table 9.3. This shows that the analysis is correct, yet conservative. Namely, setting

I = 0 ignores the cost of some operations that require the verification of a digital

signature.
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9.3.3 Impact of MS operations on Application Performance

Finally, we look at how the superimposing the MS functionality on the dBQS nodes

affects the application performance.

We focus on how the performance of dBQS nodes that are assigned the task of

being MS replicas degrades due to this task.

The normal case performance within an epoch (when the system is stable) is

essentially affected by the ping protocol. (The other cost is that of running state

machine operations to add or evict nodes, but these are uncommon. Near epoch

boundaries there is the cost of reconfiguring the system but we have seen that epoch

transitions are short.) To measure this effect, we ran an experiment that measured

how many fetch requests a dBQS node can handle, while we varied the rate at which

that node is sending probes.

The setup was similar to the experiments in Section 9.2 where we monitored dBQS

server that was serving as an MS replica during that epoch. This server was located

in our own LAN and was running on an unloaded machine with a 2 GHz Pentium IV

processor and 1 GB of memory running Linux 2.4.20. It was probing nodes on our

LAN, and also nodes on the PlanetLab and RON testbeds.

Figure 9-5 shows the results of this experiment. We can see that the fetch through-

put decreases from 350 fetches per second to 250 fetches per second as we increase the

ping load to near maximal. The degradation is approximately linear, which indicates

that we have fine grained control over the tradeoff between probe frequency and the

dBQS server performance.

9.4 Dynamic Byzantine State Machine Replication

This section presents results of experiments that compare the performance of dBFT

with BFT. The experiments were done by running the modified version of the BASE-

FS file system [84].

This evaluation differs from the evaluation of dBQS, in that we use MACs to

authenticate communication between clients and replicas, whereas in dBQS we used
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Figure 9-5: Fetch throughput, while varying the ping rate.

public key cryptography. The results from this and the prior section are not meant

to be comparable. A comparison between the use of quorums and state machine

replication is outside the scope of this thesis.

All experiments ran with one client and four replicas, i.e. we set f = 1. Scalability

of BFT with f is discussed elsewhere [17]. The results apply to systems with many

groups, as only the replica group members have to be contacted by clients to perform

operations.

The client ran on the PIII-600 Mhz machine mentioned above, servers ran on Dell

PowerEdge 650 servers with dual 3 GHz Intel P4 processors with 2GB of memory.

Clients and servers were in different LANs connected by bridges and we emulated

multicast by transmitting a series of identical messages to all recipients.

The experiments ran at late hours, when network traffic was low. The machines

were always unloaded.

All experiments ran the modified Andrew benchmark [46, 73], which emulates a

software development workload. It has five phases: (1) creates subdirectories recur-

sively; (2) copies a source tree; (3) examines the status of all the files in the tree

without examining their data; (4) examines every byte of data in all the files; and

(5) compiles and links the files. They ran the scaled up version of the benchmark
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No change Phase 2 Phase 3 Phase 4 Phase 5
I 2.9 2.8 5.2 2.7 3.0
II 177.7 211.4 184.8 182.1 189.2
III 61.8 62.0 63.5 62.4 62.7
IV 78.2 78.7 74.5 79.2 79.2
V 934.8 946.0 934.1 932.6 946.2

Total 1255.4 1300.9 1262.0 1259.0 1280.4

Table 9.5: Andrew100: elapsed time in seconds

described in [21] where phase 1 and 2 create n copies of the source tree, and the other

phases operate in all these copies. We ran a version of Andrew with n equal to 100,

Andrewl00, that creates approximately 200 MB of data.

The benchmark ran at the client machine using the standard NFS client imple-

mentation in the Linux kernel with the following mount options: UDP transport,

4096-byte read and write buffers, allowing write-back client caching, and allowing

attribute caching. All the experiments report the average of three runs of the bench-

mark and the standard deviation was always below 10% of the reported values.

The results are summarized in Table 9.5. The first column represents the elapsed

time for running the Andrew 100 benchmark with a static configuration. The times

for the remaining columns correspond to running the same benchmark with only three

replicas up in the beginning of the benchmark (the fourth replica was deliberately

never started). While the benchmark is still running, during the phase indicated in

the header row, the system reconfigures replacing the crashed replica with a new one

(running on a fourth machine).

The results show that reconfiguring the replica group during the benchmark does

not substantially degrade overall performance: the entire benchmark ran only 0.3-

3.6% slower with reconfigurations. Another interesting result is that reconfiguring

during a write-intensive phase (phases II or V) causes a bigger slowdown than recon-

figuring during a read-only phase (phases III or IV). This is because the new replica,

after fetching the initial service state for the second epoch, will be out-of-date with

respect to that service, since several updates were executed in the new epoch using

the remaining three replicas. Therefore this replica has to fetch state from these
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replicas right after it fetched the initial state, causing the other replicas to slow down

because they have to provide the missing updates.

Next we tried to breakdown the sources of overhead in the system. There are two

main sources of overhead, and one effect that reduces the overhead. The first source

of overhead is the time for replicas to upgrade, and start the new service for the new

epoch. This cost is due to the fact that replicas have to stop the service, write the

old service state to disk, start a new service for the new epoch, and that service needs

to read the old state from disk. The second source of overhead is, as explained, the

slowdown of the replicas that are supplying state for the node that has become a new

replica. The effect that reduces the overhead is the fact that we are moving from a

group of three replicas to a group of four replicas, and this allows for BFT to be more

efficient by striping complete replies from more replicas: in BFT only one replica has

to transmit a complete reply, and the remaining replicas only transmit a hash of the

reply, which allows for the overlapping of important transmission costs [20].

To estimate the first source of overhead, we measured the elapsed time between the

client receiving a reply indicating it needs to upgrade, and executing an operation in

the new configuration, for the different phases when we executed the reconfiguration.

Table 9.6: Time to reconfigure. These are the measured times between the client
receiving a reply with the new configuration and the client executing an operation in
the new configuration, for different phases of the Andrew 100 benchmark when the
reconfiguration occurs. Each entry is the average of three reconfiguration times. The
standard deviation was under 7% of the average.

Table 9.6 shows this reconfiguration time. This shows that the time for the client

to start executing requests in the new epoch was under 5 seconds. This time is some-

what significant, and could be optimized if our implementation would not start a new

service, but instead would just modify the internal state of the existing service. How-
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ever, assuming that reconfigurations are rare, we believe this overhead is reasonable,

and the total running times for the benchmark support this. We also note that the

overhead for reconfiguration is small when compared to the other source of overhead

(supplying state to the slow replica), especially when the reconfigurations occur in

write-intensive phases (II and V).
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Chapter 10

Related Work

We divide the related work presented in this chapter according to the three con-

tributions of the thesis: the membership service for large scale distributed systems;

replication algorithms that support a dynamic membership; and the analysis of the

cost of redundancy maintenance on dynamic systems.

10.1 Membership Service

Several prior systems have either either assumed the existence of a membership service

that detects and proposes membership changes, or have included some form of a

membership service. In general, previous approaches are not designed to be very

scalable, or do not provide a consistent view of the system membership.

10.1.1 Applications with Membership Changes

Automatic reconfiguration was a goal in many existing systems. Important examples

include Petal [57], xFS [8], and Porcupine [87]. These systems include application-

specific approaches to deal with membership changes.

Petal [57] is a storage service that provides the abstraction of virtual disks. Petal

partitions data among a pool of servers connected by a fast network, and replicates

the data for high-availability. Petal can automatically incorporate new servers. This
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is achieved by a global state module and a liveness module running on every server.

The global state module maps different parts of the state of the system to the current

servers that are responsible for them. The global state module maintains its state

using the Paxos state machine replication protocol [55], which tolerates up to half

of the nodes failing by crashing. Therefore adding a new server to the system is

mostly a matter of running operations on that state machine. The liveness module is

responsible for detecting and informing other modules of failures, and its operation

is not detailed.

xFS [8] is a decentralized file system where multiple machines cooperate as peers

to provide the file system service. xFS replicates a "manager map", containing in-

formation about the system membership and the responsibility assignments in the

system, at all clients and servers. When the system detects a configuration change,

it initiates a global consensus protocol. The consensus algorithm begins by running

a leader election protocol (which is not described, but typically involves contacting

all system members). The new leader then computes a new manager map and dis-

tributes it among the system nodes. The authors do not describe how to tolerate

leader failures or concurrent reconfigurations.

Porcupine [87] is a scalable mail server based on a large cluster of commodity PCs.

The system provides a membership service that maintains the current membership

set, detects node failures, and distributes the new system membership. This service

is implemented by all system nodes. Nodes probe their immediate neighbors in the

id space to detect unreachability. When any node detects that its neighbor failed a

series of probe attempts, it becomes a coordinator for a membership change. The

coordinator broadcasts a "new epoch" message with a unique epoch id, and collects

replies from all available system nodes. After a timeout period, the coordinator defines

the new membership to be those nodes from which it received a reply. In the final

round, the coordinator broadcasts the new membership and epoch id to all nodes. As

part of this protocol, the coordinator also reassigns the partitioning of the state of

the system among the current system members, and broadcasts the new assignments.

If two or more nodes attempt to become a coordinator at the same time, the one
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proposing the largest epoch id wins. Node additions go through a similar process.

In all these applications, membership changes imply that all nodes agree on that

change by running a global consensus protocol. The problem with these approaches

is that global consensus does not work in large scale systems.

We took a more principled approach to handling reconfigurations by building a

service that tracks membership changes, and separating it from the application design.

Furthermore, our configuration management techniques differ from the approaches in

these systems because we provide strong security using BFT techniques and because

our system is designed to scale better, by avoiding the need for consensus among all

system nodes upon reconfiguration, and by batching configuration changes at the end

of epochs, among other design choices.

10.1.2 Group Communication Systems

The membership service shares the same goals as the group membership modules

that were present in many proposals for group communication systems (see [24] for a

survey).

Group communication is a means for providing multi-point to multi-point commu-

nication, by organizing processes in sets called groups. Processes can send a message

to a particular group. The group communication service delivers the message to all

the group members. The set of members of the group is allowed to change over time.

These systems are divided into a membership module that maintains a list of the

currently active and connected processes in a group, and a reliable multicast service

built using the output of the membership module.

Membership modules can be either "primary component" or "partitionable". In

a primary component membership module, views installed by all the processes in the

system are totally ordered. In a partitionable one, views are only partially ordered

(i.e., multiple disjoint views may exist concurrently).

The specification for the membership module of primary component group com-

munication systems is similar to the specification of our membership service.

Most solutions for the group membership module are not very scalable since they
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require all nodes to carry out a consensus protocol for changing the system member-

ship.

An exception comes from the work of Guerraoui and Schiper that proposes a

small, separate consensus service that could solve the problem of group membership

with fail-stop failures [41]. We improve on this work in several respects: Our work

tolerates Byzantine faults, we show how to superimpose the consensus service among

the system members, and finally their work does not seem to be implemented.

The only proposals for group communication systems that tolerate Byzantine

faults come from the Rampart [79] and SecureRing [50] systems. Adding and removing

processes in these systems is a heavyweight operation: all nodes in the system execute

a three-phase Byzantine agreement protocol [80], which scales poorly. In contrast,

the algorithms used by the membership service were designed to work with thousands

of nodes by executing agreement only among a subset of the nodes.

Another problem with these systems is that they must exclude faulty replicas

from the group to make progress (e.g., to remove a faulty primary and elect a new

one), and to perform garbage collection. For example, a replica is required to know

that a message was received by all the replicas in the group before it can discard the

message. So it may be necessary to exclude faulty nodes to discard messages. These

systems assume that a lack of response from a node implies that the node is faulty,

which may not always be true.

To reduce the probability of misclassification, failure detectors can be calibrated

to delay classifying a replica as faulty. However, for the probability to be negligible

the delay must be very large, which is undesirable in these systems. For example, if

the primary has actually failed, the group will be unable to process client requests

until the delay has expired, which reduces availability.

Furthermore, misclassification can open an avenue of attack in their system they

reduce the group size after a node identified as failed, which is equivalent to saying

that they reduce the failure threshold. Therefore an attack that slows down correct

replicas can cause the system to be more vulnerable to the existing faulty replicas.

In our system misclassification can also occur, but we reduce its probability by
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having a delayed response to failures. Our algorithms do not stall when we delay the

response to failures, since we can always make progress despite f faulty replicas, so

we can minimize the occurrence of misclassification without the problems mentioned

above. Furthermore, when we remove nodes from the system we are not lowering

the failure thresholds, since we maintain the predetermined group sizes, and just

redistribute the responsibilities to other system nodes.

10.1.3 Peer-to-Peer Systems

Peer-to-peer systems provide several tools for building large-scale applications that

support a dynamic membership. We were inspired by these systems in several ways:

they also assign responsibility within the system based on node ids and the set of

currently available servers, and they share our goals of scalability and automatic

reconfiguration.

These systems are based on a lookup layer that locates a set of available nodes

responsible for any value in the id space. The operations implemented by applications

can be preceded by a lookup step that locates these nodes.

This lookup functionality is implemented using routing protocols: Each node has

a limited knowledge of the current set of available members of the overlay. By con-

tacting several nodes in sequence, the requesting node will be able to obtain enough

knowledge about the membership to conclude the lookup.

Several systems have been built on top of the lookup layer. The systems that are

more closely related to our work are distributed hash tables (DHTs) [25, 40, 59, 78, 86].

These provide a storage substrate with a get/put interface similar to dBQS.

The lookup layer does not provide consistent views of the set of responsible nodes

for a given id, i.e., different and concurrent lookups may produce different "correct"

results. This makes the task of building a DHT that provides strong semantics com-

plex. The initial work in peer-to-peer DHTs [25, 86] did not provide any guarantees

in terms of the recency of the data retrieved from the system, or even of the success

of that operation.

Our approach of building a membership service that produces system configura-
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tions that guide the system through periods of stability, instead of using a less stable

lookup layer that provides inconsistent views of the system membership, allowed us

to design simple storage systems that provide strong semantics. Furthermore, we

still obtain most of the benefits from the peer-to-peer approach, namely automatic

reconfiguration.

Other work tried to improve on this, and proposed DHT designs that provide

atomic updates to mutable data [61]. This work assumes that nodes notify other

nodes before failing and therefore it does not actually handle failures but only planned

node departures.

Another limitation of the lookup layer in peer-to-peer systems is that most of

this work does not tolerate Byzantine faults, which makes the outcome of the lookup

vulnerable to a single dishonest node in the sequence of nodes that is contacted in the

routing process. Castro et al. have proposed extensions to the Pastry peer-to-peer

lookup protocol [85] to make it robust against malicious attacks [18]. This prevents

an adversary from causing a lookup to return a set of bad nodes as the set of replicas

for an item, but this does not solve the basic problem of how to avoid inconsistent

views of the system membership.

OceanStore [52, 81] is a DHT that is tolerant of Byzantine faults. OceanStore is a

two-tiered system. The primary tier of replicas offers strong consistency for mutable

data despite Byzantine faults using the Castro-Liskov BFT state machine replication

algorithm [20]. Its design mentions automatic reconfiguration as a goal but does not

detail its approach, design, or implementation. Our membership service would be an

interesting addition to this system as a means to determine the current membership

for the primary tier. The secondary tier is used essentially to propagate self-verifying

content with weaker consistency guarantees, so it does not require any trust in the

replicas that serve that content. The secondary tier uses peer-to-peer routing to locate

replicas for the data.

Another large-scale storage system that tolerates Byzantine faults and is designed

with similar goals to peer-to-peer systems is Farsite [4]. Farsite is a file system that

uses spare resources from desktop PCs to logically function as a centralized file system.
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Farsite does not detail how to detect failed nodes and migrate their responsibilities to

new nodes, and it mentions as future work the design of a mechanism to determine

which machines to place file replicas on, but no subsequent publications address these

issues. Our membership service could be used in Farsite to implement this missing

part of its design, although we would have to extend it with measurements of machine

availability, as required by their system.

Neither OceanStore nor Farsite addresses the issue of changing the storage pro-

tocols (in their case, BFT) to support a dynamic membership. dBFT could be used

for this purpose.

10.2 Dynamic Replication

To our knowledge we are the first to present a generic methodology for transforming

replicated services that work in a static setting into services with the same semantics

but support membership changes.

The two example services we implemented, dBQS and dBFT, are related to pre-

vious systems.

10.2.1 Systems Related to dBQS

dBQS is related to a large body of research in quorum systems. Quorum systems-

collections of sets where every two sets have a non-empty intersection-have been

used for providing consistent data in distributed settings since the seminal work of

Gifford [36] and Thomas [92].

The initial work on quorum systems assumed a static processor universe. More

recently, these algorithms have been extended to work in long-lived systems where

the processors may dynamically join and leave the system, and the quorums systems

are allowed to reconfigure [27, 28, 30, 38, 43, 47, 62, 63].

The aforementioned work assumes benign failures. Quorum systems that tolerate

Byzantine failures were initially proposed by Malkhi and Reiter [65]. Our algorithms

are more closely related to the one proposed in Phalanx [66], which provides atomic
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semantics, but also assumed a static processor universe. Alvisi et al. [6] looked at

dynamic Byzantine quorum systems. However, this work assumes a fixed replica

set, and simply allows the failure threshold to change throughout the execution. We

could easily change the failure threshold by having this information be part of the

configuration description. Kong et al. [51] improve Alvisi's protocol to include a

special, fault-free node that monitors the set of servers in the system. When faulty

servers are identified, they can be removed from the server set, which reduces the load

in the system. However, there is no provision for adding new nodes to the system, and

thus the system does not allow the replacement of faulty nodes with new, non-failed

ones.

Recently, the work of Martin et al. [67] addresses the same problem that dBQS

does of providing reconfigurable Byzantine quorums. Their solution solves the prob-

lem of slow clients accessing old replica groups by having their equivalent to our mem-

bership service issue new keys to all replicas after each reconfiguration. Old replicas

discard the previous keys, and thereafter cannot handle client requests. Our work

differs in several respects. First, we designed our system to work at a large scale with

many replica groups. Their solution does not scale well with the number of groups

in the system because disseminating new keys after each reconfiguration is costly

and leads to large configuration descriptions. Second, we designed the membership

service in such a way that it can be (and has been) implemented as a Byzantine-

fault-tolerant state machine replication group. Their solution does not allow such

replication of their equivalent of the membership service because it knows informa-

tion that cannot be disclosed to any malicious party (it knows the private keys of

the replicas that are serving the data). Third, there are problems we dealt with that

only arise when there are multiple replica groups, such as the garbage collection of

old data. Finally, we implemented of our solution and show performance results.

10.2.2 Systems Related to dBFT

dBFT is a form of state machine replication [53, 89]. Previous systems that pro-

vide state machine replication and tolerate Byzantine faults are Rampart [79], Se-
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cureRing [50], and BFT [20].

Our work is most closely related to BFT, since this is the algorithm we modified.

BFT assumes a static processor set and we improve on this work by allowing the

replica set to change throughout the execution of the system.

Rampart and SecureRing take a different approach to implementing state ma-

chine replication. Both Rampart and SecureRing are based on group communication

systems. The idea is to use a feature of the group communication system that imple-

ments a reliable, atomic multicast. This is used by servers that, on behalf of clients,

multicast client requests to all current group members. Then, all that is required is

that all servers keep a copy of the state machine and execute client requests as they

are delivered to them by the group communication system.

Using a group communication system has the advantage that it inherits the re-

configuration properties of that system: it is possible to add and remove servers from

the system, and the multicast of the messages will adapt to it, delivering the client

requests only to the current group members. To implement state machine replication,

there is still the need for a state transfer protocol for joining (or re-joining) nodes,

and some mechanism to authenticate the current group for joining or slow nodes.

This protocol is not defined in the aforementioned systems.

The use of group communication systems has the problems mentioned above: poor

scalability, and they require that faulty nodes are evicted from the system to make

progress, which leads to the possibility of nodes being mistakenly marked as faulty.

10.3 Analysis of Membership Dynamics

Our analysis of the cost of redundancy maintenance in dynamic system was inspired

by several proposals of cooperative storage systems. The idea behind a cooperative

storage system is to harness the spare storage and spare bandwidth of volunteers to

build a storage system simultaneously accessible by many clients.

Some of these systems have been presented above. For instance, Farsite and xFS

are based on the idea of using spare resources from desktop PCs in a large corporation,
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and peer-to-peer storage systems (e.g., CFS [25], PAST [86], TotalRecall [13]) that

try to harness the spare resources of any node connected to the Internet that may

wish to participate in the system.

The main contribution here is to point out an important limitation that these

systems may face: Their approach only works if the dynamics are limited. We were

the first to point out this problem and to present this kind of analysis.
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Chapter 11

Conclusion

This chapter presents a summary of the main results in the thesis and directions for

future work.

11.1 Summary

The growing reliance of our society on Internet services demands highly-available

systems that provide correct service without interruptions. This thesis describes new

techniques for building large-scale, replicated services that tolerate Byzantine faults.

The first part of the thesis described a membership service that supports this

technique. The membership service provides servers and clients in the system with

a sequence of consistent views of the system membership. Our solution uses several

techniques that allows it to scale to large systems, e.g., with tens or hundreds of

thousands of servers: we only execute agreement protocols (to decide on membership

changes) among a small committee formed by a subset of the members; the system

moves in a succession of time intervals called epochs, and we batch all membership

changes at the end of an epoch; and we employ a strategy of having a delayed response

to failures which allows us to probe system members slowly. The correctness of the

membership service depends on realistic and lenient conditions. We only require that

no more than one third of the servers in the committee are faulty, and we tolerate

arbitrary failures. Furthermore we choose committee members from the current set
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of available servers, which means we have a large pool of available servers, and we

move the committee around periodically, to avoid having it be a target of attack.

The second part of the thesis presents a generic methodology for transforming

large-scale replicated services that assume a fixed membership into services with the

same semantics that support a dynamic system membership. The methodology uses

the output from the membership service to decide when to reconfigure, and to bring

slow nodes up-to-date by presenting them with signed certificates produced by the

membership service. The replicated services built using this methodology have rea-

sonable correctness conditions that are not stringent: we only require that each replica

group in the system contain less than maximum number of faults the algorithm can

tolerate while that group is needed for serving data to clients or for the purposes of

state transfer.

We back up our methodology with two example replicated services: dBQS is a sys-

tem based on Byzantine quorum replication, and dBFT is based on Byzantine-fault-

tolerant state machine replication. In both cases we extended existing algorithms

that were designed for a static membership to work with a dynamic replica set.

The final contribution of the thesis was to develop a model for the bandwidth

cost of maintaining data redundancy in a dynamic system where servers join and

leave continuously. We used measured values from different real-world applications to

determine values for the parameters of the model, with emphasis on the membership

dynamics. This allowed us to make an important conclusion that spare bandwidth,

and not spare storage, is likely to be the limiting factor for the deployment of systems

that store a large service state and support a highly dynamic membership.

We examined some bandwidth optimization strategies like delaying the response to

unreachability to distinguish temporary disconnections from permanent departures,

or using erasure codes instead of replication. We found that a delayed response to

unreachability leads to significant bandwidth savings. For the use of erasure coding,

the gains are dependent on the deployment of the service. For stable deployments,

their gains are limited. For unstable, dynamic deployments, there are some band-

width savings, but not enough to make the system practical: the cost of redundancy
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maintenance is still too high.

We implemented the membership service and the two replicated services and our

performance evaluation concluded that the systems are practical. Our membership

service ran on a large-scale, wide-area testbed and the time the system took to recon-

figure is small enough that the system can support relatively frequent reconfigurations

(e.g., on the order of few minutes between reconfigurations). Furthermore, we found

that the performance of our replicated services when there are changes to the system

membership is close to the performance of the services in the static case. And we

also determined that the measured impact of superimposing the membership service

on instances of the replicated services is small.

11.2 Future Work

We divide our future work directions according to the different contributions of the

thesis.

11.2.1 Membership Service

It would be interesting to use committees for extending the scalability of the mem-

bership service. We believe that this is a simple design extension, although the exact

details still need to be worked out.

An obstacle to the design of our membership service was the scalability of the

APSS protocol with the maximum number of faults tolerated, f. Our implementation

of this protocol did not perform well with f = 2 and was completely impractical

for f > 2. An interesting research area is to investigate new protocols for proactive

secret sharing and proactive threshold signatures that work correctly in asynchronous

systems and perform well with values of f > 1.

We believe the membership service could be valuable for applications other than

replicated services. For instance, applications like multicast could also be built based

on our membership service. The new challenge in this application is that it may be

desirable to have a quicker response to unreachability: multicast trees need to be
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rearranged quickly when an interior node fails. One option is to push the limits of

the system, by having very small epochs, but this may not be enough. Therefore the

multicast system may need some form of redundancy to deal with this unavailability.

11.2.2 dBQS

Our current design for dBQS is vulnerable to an attack that tries to exhaust the

storage at server by creating a large number of objects (of either type). To solve this

we need an admission control and quota scheme that limits the number of objects that

may exist in the system. For content-hash objects, we could additionally implement

a garbage collection scheme that reclaims these objects automatically if they are not

referenced from other objects.

Another problem is the fact that the algorithms used in dBQS are vulnerable to

Byzantine-faulty clients that can cause violations of atomicity or exhaust the times-

tamp space (as described in Section 5.4). An interesting research area is to extend

quorum protocols that tolerate Byzantine-faulty clients [66] in two ways. First, so

that they work with a dynamic membership, similarly to what we have done with

the current protocols. Second, so that they tolerate a client that tries to exhaust the

timestamp space.

Finally, we could make our transformation more generic, so that we define how an

individual phase can be transformed, and then reuse this transformation for different

quorum-based protocols, independently of the number of phases or the information

collected in each phase. This is similar to what has been proposed in [67].

11.2.3 dBFT

It would be interesting to extend dBFT to support multi-item operations. This means

that we need to define a global order for operations across different state machines

implemented by different replica groups, similarly to what happens in distributed

transactions [39]. To implement operations that use more than one object from

multiple groups we need some form of two-phase commit protocol [31] between replica
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groups to ensure agreement on the values of the serialization points.

It would be interesting to implement more services based on dBFT, and we also

want to exploit different designs for our file system implementation. The current

design stores an entire file system tree as a single item. This leads to a simpler

design for the file system code but also leads to worse load-balancing, since all files

and directories in each file system are the responsibility of a single replica group.

In the future we could explore more fine-grained partitioning of the service where

different files (or even different pages within each file) and directories are different

items replicated at different groups.

11.2.4 Analysis of Dynamic Replicated Systems

It would be interesting to validate the analysis presented in Chapter 8 with simu-

lations, using as input the traces of session dynamics for the three deployments we

studied. Simulations would help us validate our analytic results, and also would help

us study the worst-case behavior of the system.

Our analysis points out an important limitation of peer-to-peer storage systems,

namely that volunteer-based systems may not withstand the bandwidth requirements

to maintain data redundancy in the presence of a dynamic membership. A promising

research direction is to redesign current peer-to-peer storage systems in order to

minimize these problems.

One possible scheme is to use surrogates to avoid data movement when nodes join

the system. The idea is that when nodes join they become responsible for all items in

a certain interval in the id space, but the system may already contain enough replicas

for each of these items. To avoid the data transfer associated with joins, we can create

surrogates in joining nodes that point to the existing replicas of the data. The details

of the design are left as future work.

Another interesting idea for minimizing the bandwidth cost came from TotalRe-

call [13], a system that delays creating new copies of data until replication levels fall

below certain levels. This leads to biasing the storage toward more stable nodes that

remain in the system for longer, therefore breaking one of the assumptions behind
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our analysis.

In the future, we would like to incorporate these two optimizations in our analysis

and simulations, and determine if these are possible solutions for the problem we

pointed out.

Finally, a limitation of our analysis is that it assumes that the data is immutable,

and that the replicas that are available behave correctly. It would be interesting

to extend this analysis for mutable data, and for different assumptions about the

behavior of faulty nodes (failstop and Byzantine failures). Note that the analysis for

erasure coded redundancy already assumes that we need a fraction of the servers to

be available in order to retrieve the data. We believe that the analysis for algorithms

like BFT would be similar.

Another interesting point that needs further studying is how to integrate the

Byzantine failure assumption with erasure coded redundancy. The current designs

that use erasure coded redundancy assume that fragments that are downloaded are

always correct. We would like to understand how to design a storage system that

uses erasure-coded storage and tolerates Byzantine faults.
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Appendix A

The MS Modules

In the methodology described in Chapter 4, several tasks, such as checking leases or

obtaining missing configurations when nodes skip an epoch, have to be performed

by any replicated service. Furthermore, the methodology depends on the fact that

servers in the system are notified of new configurations by a membership service.

We encapsulate the service-independent functionality and the implementation of

the membership service described in Chapter 3 into separate MS modules that run

alongside with the application. There are separate MS modules for clients and servers.

The MS client module tries to ensure that the client holds a valid lease all the

time. Before a client lease expires, the MS client module tries to renew it, so that

clients will hold valid leases whenever possible.

After a client receives a reply that belongs to an epoch e, the client can invoke a

check-lease function that verifies if the client is holding a valid lease for e.

In the process of renewing a lease, the client MS module may find out about a

new configuration, e.g., the old MS can return the new configuration delta to the

client. In this case the client MS module notifies the client via a new-config upcall.

This upcall passes the delta to the previous configuration and the signature that

authenticates the new configuration as arguments.

The MS client module also provides a move-config function. This is called by the

client proxy for the replicated service when it learns about the a new configuration

as a result of a reply from a server. (As mentioned earlier, this reply contains a
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certificate for the new configuration.)

The MS server module implements the MS functionality. It acts as an MS replica

whenever necessary, issuing probes, executing the MS service, producing new config-

urations, etc. If the server is not an MS replica is still needs to handle probes, handle

lease aggregation request for clients, and multicast new configurations.

When the server module discovers a new configuration it immediately notifies

the replicated service via a new-config upcall. This upcall passes the delta to the

previous configuration and the signature that authenticates the new configuration as

arguments.

When the replicated service receives a message that contains a new configuration

that configuration can also be passed directly to the MS module via a move-config

call. This call takes as an argument the new configuration delta and the signature of

that configuration, and returns an error if the signature is not valid.

A server may pass a configuration delta that is more than one epoch ahead the

current epoch held by the server. In this case, it is impossible to reconstruct the

current configuration from the delta, since the missing intermediate configuration are

required to reconstruct the system membership. In this case, the move-config call

will act as a hint to the MS module that the node skipped some epochs. The MS

module will try to obtain the missing epochs, contacting the MS replicas if needed.

As the MS module obtains the missing epochs, it will invoke the move-config upcall

on the replicated service.
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Appendix B

I/O Automata Code for dBQS

This appendix presents the client, replica, and membership service I/O automata

code. Before we present this, we will make some clarifications about the notation in

this description.

The notation used in our IOA specifications follows closely the one in [60]. We om-

mit channel automata, but we assume these are lossy reordering channels as defined

in [60]. We use the following notation for cryptographic functions. (m)> means that

node n digitally signs m and appends the signature to the message. p.verify(x, a)

is a boolean function that returns true if the public key p verifies that a is a cor-

rect signature for the content x. We denote Pc as the well know client public key,

corresponding to the private key used by authorized writers to sign the data and its

associated timestamp (this signature is included in the data block's header). We as-

sume the existence of a random() function that produces a random value (for nonces)

with probability of collision equal to 0. We simplify the notation of picking a times-

tamp greater than t by writing t + 1. In practice timestamps are (counter,client id)

pairs, so this corresponds to incrementing the counter and appending its own client

id. For clarity, in this presentation we will separate the set of process identifiers into

a set of server identifiers S, and client identifiers C.
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Client Automaton

Signature:
Input: READc

WRITE(V)c, v C V

RECEIVE((READ-REPLY, val, ts, a, nonce),, )i,c, val V, ts E T, a C, nonce e V
RECEIVE((READ-REPLY,ERR_NEED_CONFIG))i,,

RECEIVE((READ-REPLY, ERR_UPGRADE_CONFIG,next epoch, nextcon fig, ams))i,c, nextepoch C N,
nextcon fig C , c E E

RECEIVE((WRITE-REPLY, ACK, nonce, t), )i,c, nonce E J, t E T
RECEIVE((WRITE-REPLY,ERR-NEEDCONFIG))i c

RECEIVE((WRITE-REPLY, ERR_UPGRADE_CONFIG,next epoch, nextcon fig, ams))i,c, nextepoch IN
nextcon fig CE , ams E Z

RECEIVE((POLL-CONFIG-REPLY, nonce, epoch, con fig, con figsignature))mSc, nonce Af, epoch E N,

config GE , configsignature CE 

Internal: POLL-CFGc

Output: READ-ACK(v)c,v C V

WRITE-ACKc

SEND(m)c,i

State:

epochc E N, initially 0
configc GE , initially co
con figsignature C , initially ao
previousconfigc G , initially { }
statusc C {idle, readpl, readp2, read done, writepl, writep2, writedone}, initially idle
noncec EC , initially 0
maxts E T, initially to, to < t, V t T
maxval E V, initially vo
max_sigc E , initially ao
replyset E 2S , initially { }
replysetsec-phase E 2 S , initially { }

numagreeingrepliesc GE N, initially 0
valtowrite EG V, initially vo
sig_towrite, C , initially ao
pollnoncec GC V, initially 0
for every j E S:

sendbuffer(j)c, a FIFO queue of messages, initially empty

Transitions:
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READc

Eff: statusc : read-pl
nonce, := random()
max_tsc := to
replysetc := {}
numagreeing repliesc := 0
for all j C {j E S: (j,p) configc}

add (READ, epoch,, nonce) to sendbuffer(j)

WRITE(V)c
Eff: status := writepl

nonce := random()
maxtsc := to
replysetc := {}
valtowrite, := v
for all j E {j E S: (j,p) E config,}

add (READ, epochc, nonce) to sendbuffer(j)c

RECEIVE((READ-REPLY, val, ts, a, nonce), )i,C
Eff: if 3p: (i, p) E configc and i V replysetc and nonce, = nonce and p.verify(nonce, ts, ai) and

pc.verify(val, ts, o) then
if statusc = readpl or statusc = readp2 then

if ts = maxtsc then
numagreeingxreplies := numagreeing-repliesc + 1

if ts > maxts, then
maxtsc := ts
maxvalc:= val
max_sigc := 

numagreeingreplies := 1
replyset, := replysetc U {i}
if numagreeingrepliesc = 2f + 1 then

statusc := readdone
else if replyset = 2f + 1

statusc := readp2
replyset-secphasec := {}
for all j {j E S: (j,p) C config,}

add (WRITE, epoch,, maxts,, maxval, maxsigc, nonce) to sendbuffer(j)c
if status = writepl then

if ts > maxts, then
maxtsc ts

replysetc:= replyset, U {i}
if Ireplysetcl = 2f + 1 then

status : writep2
replysetsecphasec := {}
sigqtowrite, := pc.sign(valtowritec, maxtsc + 1)
for all j E {j c S: (j,p) E configc}

add (WRITE, epochc, maxtsc + 1, val_to writec, sigtowritec, nonce) to sendbuf f er(j)¢
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RECEIVE( (READ-REPLY,ERR_NEED_CONFIG))i,c
Eff: if 3p: (i,p) G configc and (statusc = readpl or status, = writepl) then

add (NEW-CONFIG, epochs, con figs, con figsignature,) to sendbuf f er(i)c
add (READ, epochc, nonce) to sendbuffer(i)c

RECEIVE((READ-REPLY, ERR UPGRADECONFIG,nextepoch, next_config, ams))i,c
Eff: if next epoch > epochc and p,,.verify(nextepoch, next_con fig, a,,s) then

epochc := nextepoch
previousconf ig := conf igC
conf ig := next con fig
configsignaturec := ams
if statusc = readpl or status = writepl then

noncec := random()
max_tsC := to
replysetc := {}
num agreeingreplies, := 0
for all j c {j C S: (j,p) E configc}

add (READ, epochs, nonce) to sendbuffer(j)c
if status = readp2 then

noncec := random()
replysetc := {}
numagreeing replies, := 0
replysetsecphase, := {}
for all j E {j S: (j,p) configc}

add (WRITE, epochc, max-tsc, maxval, maxsigc, nonce) to sendbuffer(j)c
if status = writep2 then

noncec := random()
replysetc := {}
numagreeing replies, := 0
replysetsec-phasec := {}
for all j E {j c S: (j,p) E confi}g,

add (WRITE, epochc, max-tsc + 1, valto-write,, sigtowrite, nonce) to send-buffer(j),

RECEIVE((WRITE-REPLY, ACK, nonce, t)ai)i,c
Eff: if 3p: (i,p) configc and i replysetsec-phase, and ((statusc = readp2 and t = maxtsc) or

(status = writep2 and t = maxtsc + 1)) and noncec = nonce and p.verify(nonce, t, ri) then
replysetsecphasec := reply-setsecphasec U {i}
if Ireplysetsecphase = 2f + 1 then

if statusc = read p2 then
statusc := readdone

if status, = writep2 then
statusc : writedone

RECEIVE((WRITE-REPLY,ERR-NEED-CONFIG))i,c, nonce 
Eff: if 3p: (i,p) configc and (status = readp2 or status = write p2) then

add (NEW-CONFIG, epoch,, con fig, con figsignature,) to sendbuffer(i)c
if status = read p2 then

add (WRITE, epochc, maxtsc, max valc, max sigc, nonce) to sendbuffer(i)c
if status = writep2 then

add (WRITE, epochs, maxtsc + 1, valtowritec, sigtowritec, nonce) to sendbuffer(i)c
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RECEIVE((WRITE-REPLY, ERRUPGRADECONFIG,next epoch, next config, ams))i,c
Eff: if nextepoch > epochc and p,, s.verify(next-epoch, next_con fig, ams) then

epochc := next epoch
previousconf igc := conf ig,
conf ig, := next con fig
configsignature, := ams
if status, = readpl or status = writepl then

nonce, := random()
maxtsc := to
replyset, := {}
numagreeingrepliesc := 0
for all j E {j c S: (j,p) E configc}

add (READ, epochc, nonce) to sendbuf fer(j)c
if status = readp2 then

nonce, := random()
replysetc := {}
numagreeing replies, := 0
replysetsecphasec := {}
for all j cE j c S: (j,p) E configc}

add (WRITE, epochc, maxtsc, maxval, maxsig,, nonce) to send-buf fer(j)c
if status = writep2 then

noncec := random()
replysetc := {}
numagreeing replies, := 0
replysetsecphasec := {}
for all j E {j E S: (j,p) E configc}

add (WRITE, epochc, max-tsc + 1, val_to-write, sigtowritec, nonce) to sendbuffer(j),

SEND (m),i
Pre: m is first on send-buffer(i),
Eff: remove first element of sendbuffer(i)c

READ-ACK(V)c
Pre: status, = readdone

v = maxvalc
Eff: status, = idle

WRITE-ACKc
Pre: statusc = writedone
Eff: statusc = idle

POLL-CFGc
Pre: none
Eff: pollnoncec := random()

add (POLL-CONFIG, poll_noncec) to sendbuffer(ms)c

RECEIVE((POLL-CONFIG-REPLY, nonce, epoch, con fig, configsignature),,m)ms,c
Eff: if nonce = pollnoncec andepoch > epochc and verify(epoch, con fig, config-signature) and

p,,s.verify(epoch, nonce, ams) then
epoch := epoch
conf igc := conf ig
con figsignaturec := configsignature
pollnoncec := 0
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Replica Automaton
Signature:
Input: RECEIVE((READ, epoch, nonce)),,i

RECEIVE((WRITE, epoch, ts, val, a, nonce)),,i

RECEIVE((NEW-CONFIG, epoch, con fig, ams))n,i, epoch E N, con fig E 5, ams E 

RECEIVE((STATE-TRF-READ, epoch, nonce))j,i

RECEIVE((STATE-TRF-READ-REPLY, val, ts, a, nonce)a )j,i, val C V, ts E T, a c Z, nonce E V
RECEIVE( (STATE-TRF-READ-REPLY ,ERR_NEED_CONFIG))j,i

RECEIVE((POLL-EPOCH, nonce))m,i, nonce C J

RECEIVE((CFG-QUERY-REPLY, e, nonce, cfg, a(cfg ) .. )ms,i, e G N, nonce C , afg C
RECEIVE((CFG-QUERY-REPLY, e, nonce, I)as )msi, e E N, nonce N C

FAILi

Output: SEND(m)i,n
Internal: GOSSIP-CONFIGi

State:
vali V, initially vo
tsi T, initially to, to < t, V t E T
sigi E Z, initially a,,,t o
epochi IN, initially 0
configi GE , initially co
configsignaturei CE , initially ao
previousconfigi EG , initially { }
noncei , initially 0
instatetrfi E boolean, initially false
replyseti C 2

S , initially { }
epochgoali IN, initially 0
incf gpolli boolean, initially false
for every n S U C:

sendbuffer(n)i, a FIFO queue of messages, initially empty
pending readsi, a FIFO queue of elements in C x A, initially empty
pendingstreadsi, a FIFO queue of elements in S x , initially empty
faulty i boolean, initially false

Transitions:

RECEIVE((READ, epoch, nonce)),i
Eff: if epoch = epochi then

if -instatetrfi then
add (READ-REPLY, vali, tsi, sigi, nonce),, to sendbuffer(c)i

else
add (c, nonce) to pending readsi

if epoch > epochi then
add (READ-REPLY,ERR_NEEDCONFIG) to sendbuffer(c)i

if epoch < epochi then
add (READ-REPLY,ERR_UPGRADE_CONFIG,epochi, conf igi, conf igsignaturei) to sendbuf f er(c)i
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RECEIVE((WRITE, epoch, ts, val, a, nonce))c,i
Eff: if p,.verif y(val, ts, a) then

if epoch = epochi then
add (WRITE-REPLY, ACK, nonce, ts), to sendbuffer(c)i
if ts > tsi then

vali := val
tsi := ts
sigi := 

if epoch > epochi then
add (READ-REPLY,ERR_NEED_CONFIG) to sendbuffer(c)i

if epoch < epochi then
add (READ-REPLY,ERR_UPGRADECONFIG,epochi, con figi, configsignaturei) to sendbuf f er(c)i

RECEIVE((NEW-CONFIG, epoch, conf ig, ams ))n,i
Eff: if pms.verify(epoch, conf ig, as) and epoch > epochi then

if -instatetrfi then
if epoch = epochi + 1 then

epochi := epoch
previousconf igi := con figi
con f igi : = con f ig
configsignaturei := ms
if i con figi and i previousconfigi then

instatetrfi := true
epochgoal := epoch
replyseti := {}
noncei := random()
for all j j S: (j, p) E previousconfigi}

add (STATE-TRF-READ, epochi, noncei) to sendbuffer(j)i
else

incf gpolli := true
epochgoali := epoch
noncei := random()
add (CFG-QUERY, epochi + 1, noncei) to sendbuf f er(ms)i

else
if epoch > epochgoali

epochgoali := epoch
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RECEIVE((POLL-EPOCH, nonce))ms,i
Eff: if instatetrfi then

add (POLL-EPOCH-REPLY, nonce, epochi - 1), to sendbuffer(ms)i
else

add (POLL-EPOCH-REPLY, nonce, epochi), to sendbuffer(ms)i

RECEIVE((STATE-TRF-READ, epoch, nonce))j,j
Eff: if epoch < epochi then

add (STATE-TRF-READ-REPLY, vali, tsi, sigi, nonce),, to sendbuffer(j)i
if epoch > epochi then

add (STATE-TRF-READ-REPLY,ERR_NEED_CONFIG) to sendbuffer(j)i
if epoch = epochi then

if -instatetrfi then
add (STATE-TRF-READ-REPLY, vali, tsi, sigi, nonce),, to sendbuffer(j)i

else
add (j, nonce) to pendingstreadsi

RECEIVE((STATE-TRF-READ-REPLY, val, ts, , nonce),j )j,i
Eff: if instatetrfi and 3p: (j,p) C previousconfigi and j replysetiand noncei nonce and

p.verify(nonce, ts, aj) and p.verify(val, ts, ) then
if ts > tsi then

vali := val
tsi := ts
sigi := 

replyseti := replyseti U {j}
if Ireplysetil = 2f + 1 then

instatetrfi := false
for every (c, n) pending readsi

add (READ-REPLY, vali, tsi, sigi, n),, to sendbuffer(c)i
remove all elements from pendingxreadsi
for every (j, n) pendingstreadsi

add (STATE-TRF-READ-REPLY, vali, tsi, sigi, n), to sendbuffer(j)i
remove all elements from pendingstreadsi
if epochgoali > epochi then

noncei := random()
add (CFG-QUERY, epochi + 1,noncei) to send-buffer(ms)i
incfgpolli := true

RECEIVE( (STATE-TRF-READ-REPLY,ERR_NEED_CONFIG) )j,i
Eff: if ]p : (j,p) C previousconfigi and instatetrfi then

add (NEW-CONFIG, epochi, con figi, con figsignaturei) to sendbuffer(j)i
add (STATE-TRF-READ, epochi, nonce) to sendbuffer(j)i
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RECEIVE( (CFG-QUERY-REPLY, e, nonce, cfg, acfg) m.)ms,i
Eff: if incfgpolli and noncei = nonce and e = epochi + 1 and p,,s.verify(e, nonce, a,,,) and

p,s.verify(e, cfg, af g) then
epochi := e
previousconfigi := configi
conf igi : = cfg
configsignaturei := acfg
if i C configi and i 4 previousconfigi then

incfgpolli := false
instatetrfi := true
replyseti := {}
tsi := to
noncei := random()
for all j ({j c S: (j,p) c previousconfigi

add (STATE-TRF-READ, epochi, noncei) to sendbuffer(j)
else

if epochgoali > epochi then
noncei := random()
add (CFG-QUERY, epochi + 1, noncei) to sendbuffer(ms)i

else
incfgpolli := false

RECEIVE((CFG-QUERY-REPLY, e, nonce, L)~,, )msi
Eff: if incfgpolli and noncei = nonce and e = epochi + 1 and pms.verify(e, nonce, I, M,.s) then

tsi := to
if epochgoali > epochi then

noncei := random()
add (CFG-QUERY, epochi + 1, noncei) to sendbuffer(ms)i

else
incfgpolli := false
configi := {i}

FAILi

Eff: faultyi := true

SEND(m)i,n
Pre: m is first on sendbuffer(n)i
Eff: remove first element of sendbuffer(n)i

GOSSIP-CONFIGi
Pre: none
Eff: add (NEW-CONFIG, epochi, con figi, con figsignaturei) to sendbuffer(j)i, j C S
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Membership Service Automaton

Signature:
Input:

Output:
Internal:

RECEIVE((POLL-CONFIG, nonce))c,ms, nonce C V'

RECEIVE((POLL-EPOCH-REPLY, nonce, e),j )i,ms, nonce C f, e IN
RECEIVE((CFG-QUERY, e, nonce))i,ms, nonce C JA, e C N
SEND(m)ms,n

RECONFIGURE(cfg)ms, cf g E 

POLL-SERVER(i)ms, i G S

State:

epochm E N, initially 0
configm C , initially co
configsignaturems E , initially ao
sentnonce,, E S - V Ar, initially everywhere 0
confighistory C IN ( x ) U {I, T}, initially confighistory(0) = co, confighistory(e) =
T,e>0
transferred C N - 2S , initially everywhere { }
for every n S U C:

sendbuffer(n)m, a FIFO queue of messages, initially empty

Transitions:

RECEIVE((POLL-CONFIG, nonce))c,ms
Eff: add (POLL-CONFIG-REPLY, nonce, epochms, con f figsignaturemS,,), to sendbuffer(c)ms

RECEIVE((POLL-EPOCH-REPLY, nonce, e),, )i,ms
Eff: if nonce = sentnonce(i)ms and verify(nonce, e, ai) then

for all e' < e such that 3 : (i, a) confighistory(e')
transferred(e') := transferred(e') U {i}
if transferred(e') = 2f + 1 then

con fighistory(eld) := I, VeoId < e'

RECEIVE((CFG-QUERY, e, nonce))i,ms
Eff: if confighistory(e)ms = I then

add (CFG-QUERY-REPLY, e, nonce, L),ms to sendbuffer(i),,
if confighistory(e)mns = (cfg, (7cfg) then

add (CFG-QUERY-REPLY, e, nonce, cfg, acf g)a,, to sendbuffer(i)ms

SEND(m)i,n
Pre: m is first on sendbuffer(n)i
Eff: remove first element of sendbuffer(n)i
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RECONFIGURE(cfg)ms
Pre: cfg C g

lcfgl = 3f + 1
Eff: epoch,, : epochm,, + 1

conlfigm := cfg
configsignaturems := sign(epochm, configms)
confighistory(epochms) := (cfg, con figsignaturems)
for all i E cfg:

add (NEW-CONFIG, epochms, conf ig,,, con figsignaturems) to sendbuffer(i)ms

POLL-SERVER(i)ms, i C S

Pre: none
Eff: sentnonce(i)ms := random()

add (POLL-EPOCH, sentnonce(i),,) to sendbuffer(i)ms
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Appendix C

Proof of Correctness of the dBQS

Algorithms

This appendix discusses the proof of atomic consistency of the algorithms used in

dBQS (Chapter 5). To prove this, we only need to show that the timestamps asso-

ciated with the values induce a partial-order that obeys four properties, which are

enumerated in the proof of Theorem 1. This implies the atomicity property, using

Lemma 13.16 in [60].

Throughout the proof, we will refer to the correctness condition for dBQS (pre-

sented in Chapter 4) as being the conjunction of two conditions (C1 and C2) which

correspond to the two sub-conditions that govern the end of the window of vulnera-

bility as presented in Chapter 4.

The proof starts with two definitions. Then we prove a few lemmas that will be

helpful in proving Theorem 1, which states that our algorithm implements an atomic

variable.

Definition We say that the read or a write phase of an operation completes in epoch

e if during that phase the client collects valid replies in a quorum for epoch e before

it upgrades to a subsequent epoch (and thus completes the operation or moves on to

the next phase).

Definition Given a read or write operation r, we define epoch(7r) to be the epoch
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in which the last phase of the operation completes (we define the last phase to be

the read phase of a read operation if that phase gathered enough identical replies

to skip the write phase, or otherwise to be the write phase of the operation), and

timestamp(r) to be the timestamp associated with the value read in a read operation,

or written in a write operation. Similarly, when a replica upgrades a configuration

and transfers state from the previous replicas, we define timestamp(sti) to be the

timestamp associated with the value replica i read during state transfer (the highest

timestamp in the quorum of STATE-TRF-READ-REPLY messages for that epoch).

Lemma 1 If there exists an operation r (a read or a write) such that epoch(w) = e

and timestamp(7) = t, then for any replica i that transfers state from epoch e to

epoch e + 1, timestamp(sti) > t (i.e., state transfer will read a timestamp that is

greater or equal than t).

Proof. Consider the quorum where the last phase completes and an arbitrary read

quorum that is used for state transfer. Those quorums intersect in at least one

nonfaulty replica (given correctness condition C1, the state transfer operation will

collect replies from at most f faulty replicas, and given correctness condition C2, the

client will contact at most f faulty replicas as well) and that replica will return that

write, unless it was overwritten with a write with a higher timestamp (since data

items are only overwritten by writes with higher timestamps at nonfaulty replicas,

by algorithm construction). Since a state transfer read outputs the highest valid

timestamp it sees, the lemma is true. u

Lemma 2 For any epoch e, there are at most f nonfaulty replicas in epoch e that

skip state transfer to epoch e.

Proof. This is true since a nonfaulty replica only skips state transfer if the MS

reports the epoch to be inactive, and this can only happen after 2f + 1 replicas in

epoch e have claimed to have completed state transfer. [

Lemma 3 If, for at least f+l non-faulty replicas i in the configuration for epoch e+l,

state transfer between epochs e and e + 1 yields timestamp(sti) > t, then every state

transfer for a non-faulty replica j in a subsequent epoch will yield timestamp(stj) > t.
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Proof. Nonfaulty replicas will only overwrite the data value they read during state

transfer with another value if it has a higher timestamp. Therefore, when state trans-

fer occurs for subsequent epochs, at least f + 1 nonfaulty replicas will be contacted

and at least one of those replicas will output data with timestamp t or higher (given

quorum intersection and correctness condition C1). D

Lemma 4 For a given operation, 7r, if epoch(7) = e, then for every operation q5

such that the response event for 7 precedes the invocation event for , no phase of X

completes in epoch e', e' < e.

Proof. Assume, for the sake of contradiction, that operation precedes operation

q, and one of the phases of X completes in an earlier epoch. If epoch(w) = e, then all

nonfaulty replicas in quorum Q where the last phase of the operation completed had

upgraded to epoch e at the time the reply was produced. By algorithm construction,

in order for these replicas to produce a reply, they must have successfully completed

state transfer from epoch e - 1. The same argument applies to the replicas in e - 1:

for state transfer to occur from e - 1 to e, the replicas in e- 1 must have already

successfully completed state transfer from epoch e-2, and successively until we reach

epoch e'. Thus we conclude that by the time operation 7r was executed, 2f+ 1 replicas

of epoch e' had upgraded, at least to epoch e' + 1.

Now consider operation X that is invoked subsequently. By correctness condition

C2, the quorums contacted in operation X contain at least f + 1 nonfaulty repli-

cas, which execute one of the phases in epoch e'. Since nonfaulty replicas will not

downgrade their epoch numbers and do not execute requests for a stale epoch (by

algorithm construction), this contradicts the fact that 2f + 1 replicas of epoch e' had

upgraded to the next epoch. [

Lemma 5 All timestamp values for distinct write operations are distinct.

Proof. For writes by different clients this is true due to timestamp construction. For

writes by the same client, by well-formedness (as defined in [60]), these operations

occur sequentially. So all we must argue is that the read phase of the latest write

"sees" the timestamp of the previous write, or a higher timestamp. If the write phase
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of the first write and the read phase of the second write complete in the same epoch,

then this is true due to quorum intersection (the write quorum for the first write and

the read quorum for the first phase of the second write intersect in at least one non-

faulty replica, given correctness condition C2) and because replicas store increasing

timestamps. Therefore, that non-faulty replica stored a timestamp greater or equal

than the one for the first write, and due to the way timestamps are chosen for write

operations the timestamp chosen for the later write is greater than the timestamp

stored by that replica. Now suppose that the write phase of the first write executed

in epoch e, and the read phase of the second write executed in epoch e' Z e. By

Lemma 4, it must be that case that e' > e. In this case, Lemmas 1, 2, and 3 will

imply that f - 1 nonfaulty replicas in epoch e will execute state transfer for epoch e'

and read a timestamp greater or equal than the timestamp of the first write. Since

nonfaulty replicas never overwrite with a smaller timestamp, the read phase will

contact at least f + 1 nonfaulty replicas (given correctness condition C2), and, by

quorum intersection, at least one of them will present a valid timestamp greater or

equal than the timestamp of the first write, and the same argument as above applies.

Theorem 1 The algorithm described before is a read/write atomic object [60].

Proof. Well-formedness, as defined in [60], is easy to see.

For atomicity, we use Lemma 13.16 of [60]. We define a partial ordering on

operations in I. Namely, we say that X 7 q if either of the following applies:

1. timestamp(r) < timestamp(O)

2. timestamp(ir) timestamp(O), i is a write, and X is a read

where timestamp(7r) is defined as the timestamp written in the second phase of

operation ai, or unanimously read in the first phase of a read.

It is enough to verify that this satisfies the four conditions needed for Lemma

13.16 of [60].

1. For any operation 7r II, there are only finitely many operations such that

0 - 7.
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Suppose for the sake of contradiction that operation 7r has infinitely many -<

predecessors. Lemma 5 implies that it cannot have infinitely many predecessors that

are write operations, so it must have infinitely many predecessors that are read

operations. (Without loss of generality, we may assume that 7r is a write.) Then

there must be infinitely many read operations with the same timestamp, t, where t

is smaller than timestamp(r). But the fact that 7r completes in the execution of the

algorithm implies that timestamp(7r) gets written to a quorum in an epoch e. After

this happens, any read operation that is subsequently invoked either completes its

read phase in epoch e or in an epoch e' > e (by Lemma 4). If it completes the read

phase in epoch e, it will read timestamp(w) or a higher timestamp, due to quorum

intersection and the fact that replicas store increasing timestamps. If it completes

in an epoch e' > e, Lemmas 1, 2, and 3, and the fact that nonfaulty replicas store

increasing timestamps imply that the read phase in epoch e' will read timestamp(w) or

a higher timestamp. This contradicts the existence of infinitely many read operations

with timestamp t.

2. If the response event for 7r precedes the invocation event for in any sequence of

actions of the system, then it cannot be the case that q -< 7r.

By Lemma 4, both phases of q must complete in an epoch greater or equal than

the epoch in which 7r completes. Suppose that the write phase of 7r completes in the

same epoch as the read phase of q. In this case, quorum intersection will ensure that

the read phase of 0 will see a value greater or equal than timestamp(7r) which suffices

to show the implication above for this case. (Note that some operations do not have

a write phase, but only if it is a read where all replicas agree on the timestamp, in

which case the same argument applies to the unanimous read phase of 7r instead of

its write phase.)

Otherwise, the last phase of 7r executes in an epoch e earlier than the epoch of the

read phase of 0, e' > e. In this case, Lemmas 1, 2, and 3 will imply that state transfer

for epoch e' read a timestamp greater or equal than the timestamp of the first write

(in at least f + 1 nonfaulty replicas). Since nonfaulty replicas never overwrite with

a smaller timestamp, and given correctness condition C2, the read phase will contact
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at least f + 1 nonfaulty replicas, at least one of which will present a valid timestamp

greater or equal than the timestamp(r), and the same argument as above applies.

3. If 7r is a write operation and 0 is any operation in II, then either 7r -< 0 or -< ir.

By Lemma 5, all write operations obtain distinct timestamps. This implies that

all of the writes are totally ordered, and also that each read is ordered with respect

to all the writes.

4. The value returned by each read operation is the value written by the last preceding

write operation according to -< (or vo, if there is no such write).

Let 7r be a read operation. The value v returned by 7r is just the value that r

finds associated with the largest timestamp, t, among the replies in quorum Q. This

value also becomes the timestamp associated with 7r. By the unforgeability of data

items (i.e., data is signed thus faulty replicas cannot produce forged data), there can

only be two cases:

* Value v has been written by some write operation with timestamp t. In this

case, the ordering definition ensures that is the last write preceding r in the -

order, as needed.

v = vo and t = 0. In this case, the ordering definition ensures that there are no

writes preceding 7r in the -< order, as needed. El
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Appendix D

Multi-Party Secure Coin Tossing

Scheme

This appendix presents the multi-party secure coin tossing scheme we implemented.

Section D.1 describes the algorithm and Section D.2 analyzes its security.

D.1 Algorithm Description

The algorithm to choose a random number works as follows. After the STOP operation

has been executed, each MS replica invokes the CHOICE operation on the MS. The

operation has as an argument a label that represents a random value, ri; the label

doesn't reveal the value and it allows the value to be validated when it is produced

later. E.g., the label might be a SHA-1 hash of the value.

These operation calls are ordered by the MS (via BFT). As soon as 2fAIs + 1

CHOICE operations, from different replicas, have completed, the MS is ready to move

to the second phase of the protocol. (BFT authenticates the caller of a request and

therefore the replicas in the MS know when this condition holds).

In the second part of the protocol, all replicas whose values were accepted in the

first phase invoke the EXPOSE-VALUE operation, providing the random value, ri, they

had chosen initially. As soon as fMS + 1 of these operations complete, from different

replicas, and where the value matches the label provided by that replica in the first
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step of the protocol, the protocol is complete. At this point at least 2 fMs + 1 replicas

know the same fMS + 1 values and can produce the nonce for the next epoch. This

nonce is h(rl, ... ,rfMS+l), where h is the SHA-1 hash function, and the ri are the

first fMS + 1 values that were received, in id order. The properties of the BFT state

machine replication algorithm ensure that all replicas see the same outcome for these

operations.

The soundness of our scheme relies on the fact that malicious nodes have to

commit to a random value before good nodes disclose their random value. However,

because we have an asynchronous network model and have to decide after receving

fMS + random values, the adversary can choose among a small number of different

random values the one is is most convenient for it. For instance, an attacker that

controls fMS > 1 node can propose fMS hashes, wait until fMs good nodes disclose

their values, and then decide among the fMs hashes it controls which one to propose

first.

D.2 Soundness Analysis

Here, we discuss the probability that the adversary gets control of the MS. We make

several assumptions. First, the adversary controls at most fMS nodes in the MS at

the beginning of the epoch. Second, the adversary cannot break the security of the

commitments, either to change his own commitments or to read the commitments of

the honest party. Third, we assume the hash function SHA-1 cannot be distinguished

from a random oracle. The first assumption is essentially our inductive assumption:

we will show that this remains true at the end of the epoch. The second assumption

should be true if the cryptographic primitives are good ones. The last assumption,

that a hash function is a random oracle, is one that is controversial in some ways in the

cryptographic community but it is well recognized that this assumption is reasonable

in practice [9].

If these assumptions hold, the adversary may at best choose which fMs + 1 values

are used as the inputs to the hash function. This means the adversary can choose
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one of many random outputs from the hash function. The adversary gets one output

from every subset of size fs + 1 of the random values from the set of 2 fMs + 1

values. In other words, the adversary gets /2fMs1+) choices.
fMs+ e

We can see that

2n+ 1 2n+ 1

2n- 1 2n-) (2nn- )

n (n-2 +3 n-1/

n n (n-1)+lJ

< 4 2(n + 1 - 1

and therefore, ( 2 fM+l') = 0(4fMs). Thus, the adversary in effect gets to con-

trol about 2 fMs bits of entropy of the final choice without breaking any of the

cryptographic primitives. Nonetheless, this amount of control of the nonce is not

enough to let the adversary have a good chance of corrupting the MS. The to-

tal entropy of choosing the MS for the next epoch from all n nodes is at least

(3 fMs + 1)log 2 n - (3f + 1) log2 (3f + 1), so after the subtracting 2 fMs from this,

there is still at least (3 fMs + 1) log2 (n/(2 2/ 3 )) - (3f + 1) log2 (3f + 1) entropy remain-

ing. In other words, at worst, it is still like making a random choice of 3f + 1 elements

out of n/(2 2 /3 ) possible choices.

It is easy to check that if the adversary has a total of k corruptions in the whole

system, then the probability that when we choose 3fMs + 1 machines out of n/(2 2 /3 )

choices including all k corruptions, the probability the adversary succeeds is upper

bounded by (3fAs+1l) (22/3 k/n)f+. If we fix a proportion a so that we assume k < acn
~ fM$+l

then this is upper bounded by (3fMs+1) (22/30a)f+1 Using a similar technique as
fM$+l ]

before, we can show that '3fms+l) rows slower than 8fms so if we pick a <f4s+lo ta 8/ i w pi 8(22/3)
.0787 then this probability approaches 0 exponentially as f grows. This shows that

by choosing the system parameters appropriately, we can keep any adversary from

corrupting the MS.
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