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ABSTRACT

Future space structures are expected to have very large size. Such Large Space Structures
(LSS) will be constructed in-orbit, probably by assembling large structural modules. This
is a dangerous and difficult task for humans. On the other hand, this is a challenging and
promising application for space robotics.

This work provides a planning and control architecture for the manipulation of a large
flexible structural module in the proximity of the LSS, by a team of space manipulators
that are mounted on the LSS. In this task, the payload (module) and the base structure
(LSS) of the robots are assumed to be very compliant. Interface forces between robots
and flexible structures induce undesirable vibration. The approach developed here is to
plan and control the forces that robots apply to the flexible structures so that they
maneuver the module precisely while exciting low levels of residual vibration in the
module and the LSS. Robot use different control implementations to control the forces
they apply to different kinds of flexible structures. Robots plan and control cooperatively
the forces they apply to the module. Each robot exploits its redundancy to minimize the
base reaction forces it applies to the LSS and to avoid undesirable configurations.

Simulation results demonstrate the effectiveness of the developed architecture in
positioning the module precisely and exciting low levels of residual vibration in the
module and the LSS.

Thesis Supervisor: Steven Dubowsky

Title: Professor of Mechanical Engineering
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Notation

A F System matrix of the linearized robots-module dynamics

AF System matrix of the modified linearized robots-module dynamics

A, Coefficient matrix used in force planning

BAZ Mass matrix of robot i (with respect to its operational space) [kg]

BF Input matrix of the linearized robots-module dynamics

Bi Mass matrix of robot i (with respect to its joint space) [kgm 2]

B, Vector used in force planning

CF Output matrix of the linearized robots-module dynamics

DAi Damping matrix of robot i (with respect to its operational space) [Nsec/m]

DAid Desired active damping matrix for robot i (with respect to its operational space) [Nsec/m]

f bi Base reaction force of robot i [N]

fbi Tracking error of fbi [N]

f bDesired base reaction force of robot i [N]
-bid

ft Frequency of beam's mode i [Hz]

Si Force applied to the module by robot i [N]

Fsi Laplace transformation of f [N]

f s. Tracking error of f . [N]

The j component (j = X, Y ) of f [N]

fsid Desired force f to be applied by robot i to the module [N]

Fsid Laplace transformation of f sid [N]

f,d The j component (j = X, Y ) of f sid [N]

G BF Transfer matrix for the PI controllers of the base reaction force/moment controller

GF Transfer matrix of the linearized robots-module dynamics

_ - Transfer matrix of the inverse linearized robots-module dynamics

GFCI PI controller for the j component (j = X, Y ) off (part of the endpoint force controller)

H Angular momentum of robot i with respect to its center of mass [kg-m 2 /sec]

hi Excitation function of beam's mode i [N]

hsv Hankel singular value for the beam's mode i

L ei Jacobian matrix for expressing *ei with respect to 0 [m/rad]

LGi Jacobian matrix for expressing rGi with respect to 4i [m/rad]

Jai Jacobian matrix for expressing the momentum of robot i as a function of 6i
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Ri Computationally efficient approximation of J-Ri

L lei Jacobian matrix for expressing *ei with respect to i# [m/rad]

kB Spring rate used to model the dynamics of the base structure of each robot [N/m]

K, ii I term of the GFC1 controller

KF State feedback gain used in the endpoint force controller

K, Pi P term of the GFC1 controller

Li Linear momentum of robot i [kg-m/sec]

M Number of sinusoids used to express each component of f,,d

M B Mass used to model the dynamics of the base structure of each robot [kg]

mRi Robot i mass [kg]

Msr Beam mass matrix (rigid body motion)

Q Number of assumed modes used to describe beam vibration

qs Beam modal coefficient vector

q,, The i-th modal coefficient of the beam

ret Position of robot i end-effector with respect to its base [in]

ei Estimated rei [in]

rGei Position of robot i end-effector with respect to its CM [in]

r Gi Position of robot i CM with respect to its base [in]

!iGs Position of the beam CM with respect to the origin of the inertial frame XYZ [in]

Si Pole of beam mode i (free-free)

U Beam vibration displacement in the y,, direction at x,,, [in]

U Matrix whose columns are the principal axes of inertia of BAi

Wsr Grasp matrix for the beam rigid body motion

Wsv Grasp matrix for the beam vibration motion

XYZ Inertial coordinate system axes

F State vector of the linearized robots-module dynamics

X, YZ, Body-fixed coordinate system axes attached at the beam CM

xS Beam generalized coordinates

Xsr Beam rigid body coordinates

Ybi Vibration displacement of the robot i base [in]

a Vector containing all a 0

a Parameters used to express f, d as a sum of sinusoids

y. Contribution of the end-effector forces due to joint actuation T_ [N]

YEi Contribution of the endpoint forces f due to joint actuation TEi [N]

C Ei Contribution of the endpoint forces f due to joint actuation C -Ei [N]
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C Ei Laplace transformation of C Ei

D Ei Contribution of the endpoint forces f due to joint actuation DTX [N]

F E Contribution of the endpoint forces f due to joint actuation FE 1 [N]

br
3 , Maximum allowable positioning error for the beam CM rGGs in]

bu,,, Maximum allowable residual vibration in the beam ends [in]

Oyhi Maximum allowable residual vibration in the robot base structures [m]

50, Maximum allowable positioning error of the beam orientation 0, [rad]

At Maneuver duration [sec]

Damping ratio of beam mode i

Z Beam modal matrix

Nonlinear forces of robot i (with respect to its operational space) [N]

). Nonlinear and friction forces of robot i (with respect to its joint space) [Nm]

7. Nonlinear and friction forces of the "robot i and base structure" system (with respect to its

joint space)

0. Joint angle vector of robot i [rad]

0 id Desired joint angle vector of robot i [rad]

0.. The j-th joint angle of robot i [rad]

0S Orientation of the beam neutral axis [rad]

__ Generalized coordinates of robot i (including reaction wheels) [rad]

Pbi Base reaction moments of robot i [Nm]

bi Tracking error of y2 bi [N]

bid Desired base reaction moments of robot i [Nm]

itmax Maximum eigenvalue of the inertia matrix B A [kg]

Ymin Minimum eigenvalue of the inertia matrix BAi [kg]

(-) Singular values of a square matrix

Bi Joint torque output of the base reaction force/moment controller of robot i [Nm]

Tdamp,i Joint torque applied in robot i to generate the desired damping matrix D Aid [Nm]

IEi Joint torque output of the endpoint force controller for robot i [Nm]

C TEi The part of TEi from the centralized part of the endpoint force controller [Nm]
D

TDEj The part of TEl from the decentralized part of the endpoint force controller [Nm]

F E, Feed-forward action of the endpoint force controller [Nm]

Ti Joint torque vector of robot i [Nm]

T Mi Joint torque output of robot i motion controller [Nm]

C TM The part of TM, from the joint PD controllers of robot i [Nm]
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F TMi Feed-forward action in the robot motion controller [Nm]

(x,) Q xl vector that contains Oh (x,) , i = 1. Q
(x,) The i-th assumed mode of the beam evaluated at x,

4, Angular position of the reaction wheel of robot i [rad]

idj Desired angular position of the reaction wheel of robot i [rad]

w Angular frequency [rad/sec]

(OC Cut-off frequency of the low-pass filter used to avoid spillover in the endpoint force controller

[rad/sec]

WFbw Bandwidth of the robot endpoint force controller [rad/sec]

(01 Natural frequency of beam mode i [rad/sec]

O),i Natural frequency of the sinusoids used to express f,,d [rad/sec]

__s Beam natural frequency matrix [rad/sec]

All position and force vectors are expressed with respect to the inertial frame

XYZ, except from the vibration displacement u(xm) with is expressed with respect to the

body-fixed coordinate system X,,,Y,,,Z,,, (see Fig. 2.4).
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Chapter 1

Introduction

1.1 Introduction

This thesis presents a planning and control architecture for the cooperative

manipulation of a large flexible space structure by a team of robot manipulators mounted

on a Large Space Structure (LSS). This work took place at the MIT Field and Space

Robotics Laboratory and is the author's contribution to the joint MIT - JAXA research

project on the study of space robotic systems.

One major potential application of space robots is the construction of Large Space

Structures. This task requires robots to maneuver delicate structures, which will probably

have large size and flexibility. Interaction forces between robots and structures induce

vibration that damps slowly, delay the construction progress, and can damage the

structures and the robots. The robot planning and control architecture described in this

thesis exploits robot redundancy and cooperation to enhance their ability to interact with

flexible structures of large size without inducing significant residual vibration or

excessive forces.

1.2 Motivation

There is significant international interest in building Space Solar Power Stations

(SSPS) within the next twenty to fifty years [27]. SSPS will use large mirrors (on the

Chapter 1. Introduction 13



order of kilometers in size) to collect solar radiation. This power will be transformed into

electrical power and then transmitted to earth by microwaves or laser beams, Fig 1.1.

SSPS (GEO orbit)

Microwave Beam

Ground Base

Figure 1.1. Concept for the proposed Space Solar Power System of JAXA [501.

Future space structures, such as SSPS and orbital telescopes, will be considerably

larger compared to existing space structures like the International Space Station (ISS)

[22]. The construction of such structures by human extra-vehicular activity (EVA) will be

too expensive and dangerous. The use of robots is a promising alternative.

The robotic construction of LSS is assumed to take place in two steps, Fig 1.2.

The first step is the transportation of raw material in orbit and the construction of large

structural sub-assemblies (on the order of 100-200 m) by assembling small structural

elements (e.g. rods) [9]. These sub-assemblies are transported in the proximity (about 10

m) of the LSS under construction by a team of free-flying robots [17]. In the second step,

each module is manipulated into its pre-assembly position and assembled with the LSS

by robot manipulators mounted on the LSS.

Chapter 1. Introduction 14



Transportation of LSS modules
in the proximity of the LSS

Assembly the LSS modules
with the LSS

Figure 1.2. Steps in the robotic construction of Large Space Structures.

At the moment, new robotic manipulators (the European Robotic Arm (ERA) and

the Japan Experiment Module Remote Manipulator (JEMRMS)) are planned to be

installed in the ISS to assist astronauts in construction and maintenance tasks [20, 49, 50],

Fig 1.3. However, the necessary dexterity skills for robots to accomplish LSS

construction tasks are beyond today's state of the art.

Figure 1.3. Schematic of astronauts using the European Robotic Arm to install a solar array 1491.
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1.3 Problem Statement

This study focuses on the last phase of LSS construction, Fig 1.2, in which a large

flexible structural module of the LSS has just been transported in the proximity of its pre-

assembly position [17]. The module is grasped by a team of robot manipulators, which

are mounted on the LSS. The robots must manipulate the module into its pre-assembly

position, where the two structures will be connected probably by self-latching

mechanisms [10].

Large Flexible
Space Manipulators Structural Module

LSS Under
Construction

Figure 1.4. Schematic of a large flexible structural module of the LSS that is manipulated by a team
of robots based on the LSS.

During this manipulation task, robots interact with space structures (the module

and the LSS), which are extremely lightweight and compliant. Forces applied by robots

to such structures can induce large deflections and vibration, which damps very slowly

due to the poor damping of space structures [12]. Residual vibration in the module or the

LSS prevents latching mechanisms from operating. This induces costly time delays.

Residual vibration can also cause collisions that could damage the space structures and
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the robots. For these reasons, robots should manipulate the structural module precisely

while inducing low levels of residual vibration in the module and their base structures.

The cooperative manipulation of LSS modules is a challenging task for the robots

involved. Space robots have limited actuation and lightweight designs, Fig. 1.5. They are

susceptible to damage from large forces applied to their end-effectors or when they reach

their joint limits. Vibration in the robots' base structures (here the LSS) can degrade the

performance of their controllers or force them into undesirable configurations.

Robot cooperation is an important aspect of this task. A single robot will probably

not be able to position such a large structure reliably. On the other hand, a team of robots

can distribute loads to keep the required joint torques within their actuator limits, and

exchange sensory information to acquire a better estimate of the system's state.

Cw

Figure 1.5. The European Robotic Arm 149].

1.4 Background and Literature Review

On-orbit construction of space structures has been an area of research for more

than thirty years. The main motivation has been the construction of space solar power
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systems and orbital telescopes [20, 27]. Studies show that the construction of LSS by

human EVA will be impractical and dangerous [44]. Many studies focus on using simple

machines or robots to construct space structures by assembling simple structural elements

such are rods and beams [9, 10, 20, 30, 36, 44]. However, it is believed that future LSS

will probably be constructed by assembling large structural sub-assemblies, which will be

assembled in orbit [9, 22]. Some studies focus on the design of the elementary structural

elements of LSS and the latching mechanisms that are used to connect them during

assembly [10, 44].

The robotic construction of LSS has been studied mainly during the last decade.

Some studies focus on using robots to progressively build truss structures by assembling

rods [10, 30]. The use of existing space robot facilities to construct space structures is

analyzed in [20]. Robots of various kinds are considered to participate in various tasks of

the LSS construction [45], Fig 1.6. These include free-flying robots that transport

structural modules [17], free-flying robots that provide sensory information [21, 45],

robot manipulators that walk on the surface of the LSS to perform tasks at various

locations [35, 42] and tele-operated robots [14, 45]. High level planning of the robotic

assembly of LSS that considers structural dimensional mismatch is addressed in [22]. In

the large majority of these studies, robot size is comparable with the size of the structural

elements that are assembled.

LSS control schemes focus mainly in designing robust stable state-feedback

controllers to damp vibration that is induced in the LSS by external disturbances [2, 3, 12,

16]. The proposed algorithms control a large number of modes by using on-board sensors

(rate sensors and accelerometers) and usually embedded piezoelectric actuators.
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(a) (b)

Figure 1.6. Robot concepts for LSS assembly. a) Robonaut tele-operated robot, b) Skyworker
walking robot, 145].

There is a significant amount of work in the area of planning time or fuel optimal

maneuvers for flexible structures or spacecrafts [5, 24, 33, 41]. Structural flexibility is

usually modeled through the finite element method [11]. Optimization techniques provide

analytical solutions for optimum one-dimensional point-to-point motions [6].

Optimization problems in three dimensions are solved numerically [11]. Studies in

flexible spacecraft maneuvering model the actuators as point forces, which is a good

approximation for thrusters. However, when the structure is maneuvered by robot

manipulators, the analysis should consider their dynamics and kinematics.

An important aspect of maneuvering flexible structures is the minimization of

residual vibration that is induced by actuation. A popular approach is the pre-shaping of

input commands [32, 34]. A somewhat more general approach is presented in [6].

This thesis considers the cooperative manipulation of a large flexible space

structure by a team of robots. The mechanics of cooperative robotic manipulation are

described in [26]. Proposed control algorithms for the cooperative manipulation of rigid

objects include joint space controllers [7], impedance controllers [25], and adaptive
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controllers [43]. There are also a number of studies on the planning and control of robots

that manipulate flexible objects [37, 38, 39, 48]. These studies consider cases where the

flexible object is smaller than the robots, usually pieces of sheet metal that need to be

deformed before their assembly.

Various research groups have studied the problem of planning the motion of a

robot mounted on a compliant structure so that the vibration excitation in the compliant

base structure is minimized [40, 46]. These approaches require some knowledge of the

robot base structure dynamics. This probably will not be the case in LSS assembly, where

each robot will operate at various locations of the LSS and will probably have limited

knowledge of the dynamics of its supporting structure.

To date, there are no studies on the planning and control of a team of robots,

which are mounted on compliant base structures, so that they manipulate a large flexible

structure (an order of magnitude larger than the robots) and induce low levels of residual

vibration in the flexible structure and their base structures. This problem is addressed in

this thesis.

1.5 Contributions of this Thesis

This thesis presents a planning and control architecture for the manipulation of a

large flexible space structural module by a team of redundant robot manipulators, which

are mounted on rigid or compliant base structures. The objective is to manipulate the

module into its pre-assembly position precisely and to excite low residual vibration in the

module and the compliant base structures of the robots.
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The main idea of the developed architecture is to plan and control the interaction

forces between the robots and the flexible space structures. The desired interaction forces

are planned so that when applied to the flexible structures, they result in desired system

response (in terms of positioning accuracy and residual vibration). Robots use

force/torque sensors to measure and control these interaction forces. The control of the

forces that robots apply to the module is improved by exploiting robot cooperation and

proper redundant robot designs. Each robot also exploits its redundancy to control the

forces it applies to the LSS, and to avoid undesirable configurations.

1.6 Thesis Outline

The developed architecture for the cooperative manipulation of large flexible

structural modules is described in the next two chapters, following this introduction.

Chapter 2 provides a more detailed description of the task, describes the developed

planning and control architecture when robots are assumed to be mounted on a rigid base

structure, and provides simulation results. Chapter 3 extends the architecture to the case

where robots are mounted on compliant base structures, and provides simulation results.

Chapter 4 summarizes this study and provides ideas for future research. The appendices

contain background material. Appendix A provides the derivation of the linearized

system dynamics that are used to design the force controller algorithms of Chapters 2 and

3. Appendix B provides preliminary design specifications for experiments that will

validate the planning and control architecture developed in this study.
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Chapter 2

Manipulation of Large Flexible Structures

by Robots Mounted on Rigid Bases

2.1 Introduction

The precision manipulation of large structural modules in the close proximity of

LSS is a challenging task that space robots will face during the construction of Large

Space Structures. This task will probably not be accomplished by a single robot due to

actuation limitations and safety concerns. It will require a team of cooperative robots that

will be able to interact with structures of significant size and flexibility.

This chapter describes a planning and control architecture for the manipulation of

a large flexible module by a team of robots. Here, the robots are assumed to be mounted

on a rigid structure. Compliant base structures will be discussed in Chapter 3. In the

developed architecture, robots plan and control cooperatively the forces that they apply to

the module. Each robot controls also the motion of its redundant degrees of freedom to

avoid collisions and undesirable configurations.

This chapter starts by providing a more detailed description of the manipulation

task. It presents the developed planning and control architecture and provides simulation

results to demonstrate its effectiveness in positioning the module accurately and with low

levels of residual vibration.
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2.2 Task Description

Fig. 2.1 shows a representative manipulation task. A large flexible structural

module of the LSS (about 200m) has been transported in the proximity of the LSS (about

10 m from the LSS), near its pre-assembly position, by free-flying robots [17]. A team of

robot manipulators have already firmly grasped the module at proper grasping points.

The robots must maneuver the module into its pre-assembly position (about im from the

LSS), where it will be assembled with the LSS. The robot manipulators are mounted on

the LSS. In this chapter, the compliance of the LSS is neglected and the robots are

assumed to be mounted on a rigid base structure.

Module Module

Force/Torque FSre/oru
Sensors

Robot R Robot 2

Robot I Module Robot 2

LSS (here treated as rigid)

Figure 2.1. Manipulation of a large flexible structural module by a team of robots mounted on the
LSS. Here, the LSS is assumed to be rigid.

The manipulation of such a large flexible structure in the close proximity of the

LSS is a challenging task. Fig. 2.2 and 2.3 show simulation results for the manipulation

of a 200m beam by two 20m robots. The robots grasp the beam at its ends and move it by

6m in the Y direction (normal to the beam neutral axis) within 30 sec. The robots are
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controlled by joint PD controllers. The design of the joint PD controllers ignores the

flexibility of the beam. Fig. 2.2 shows that robots apply to the module excessive

oscillatory forces. For example the forces that robots apply in the X axis do not result in

moving the beam. Instead, they induce tensile and compressive stresses that can damage

the beam.

Module - left robot Module - right robot
40 40

Y component X component

30 X component 30-

20 20 -

-10 10 -1

Y component

-4 0 d) 40 -

-010 20 30 40 0 1' 20 30 40
time [sec} time [sec]

Figure 2.2. Interaction forces between the module and two robots that maneuver it. The robots are

controlled by joint PD controllers.

Fig. 2.3 shows that the interaction of the large flexible structure with the robots,

which are controlled by joint PD controllers, results in large structural deflection and

residual vibration in the module that damps slowly. The positioning accuracy is poor

because the position of the beam CM oscillates around the desired final value (zero). The

resulting distance between the beam ends and the corresponding mating points in the LSS

is large and prevents the operation of the latching mechanisms that connect the LSS with

the module. Therefore, the performance shown in Fig. 2.2 and 2.3 is not satisfactory. It is

desirable to plan and control the robots so that they manipulate the module into its pre-
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assembly position accurately while exciting low residual vibration in the module. This is

achieved by the planning and control architecture described in Sections 2.4 to 2.7.

.

0
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4

3

2

0

-1

E
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(0

Ca)

0.4

0.3

0.2

0.1

0

-0.2

-00 10 20 30 40 0 10 20 30
time [sec] time [sec]

Figure 2.3. Left: Beam CM position response. Right: Vibration displacement in the left beam end.
The beam is maneuvered by two robots that are controlled by joint PD controllers.

2.3 System Modeling

A planar model of a representative system considered in this study is shown in

Fig. 2.4. Two redundant planar robots manipulate a long flexible beam (module) from its

initial position in the proximity of the LSS to its pre-assembly position. While the

examples considered in this thesis are planar, the approach can be extended to the general

three-dimensional case.
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Figure 2.4. Planar model for the manipulation of a large flexible structure by two robots mounted on
a rigid base structure.

2.3.1 Robot Model

Each robot is assumed to have N rigid links, where N>2 so that it is redundant

with respect to positioning its end-effector at inertial position r,. Each robot firmly

grasps the module and the connection acts as a pinned joint. This means that each robot

can apply forces to the module but no moments. The configuration of each robot is

described by its joint angle vector 0, where i=1 refers to the left robot and i=2 to the

right robot. O denotes the j-th link of robot i. The dynamics of each robot in joint space

are [29]:

B,(O,1)O1 +j(, 10) = (rO) - J,T (0,)f , i =1, 2 (2.1)

where Bi(O,) is the robot mass matrix, rj,( ,,0,) contains nonlinear and friction terms,

&i is the Nx1 vector ofjoint torques, L. is the 2x1 force vector applied by robot i to the

module and ei (,) is the Jacobian matrix for the robot end-efector position rei [29]:

-ez = ei-Oi-_i (2.2)
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All force and position vectors are expressed in the inertial frame XYZ. The study

of the robot-module dynamic interaction is based on the robot dynamics expressed in its

operation space, which here coincides with the inertial frame XYZ [19]:

BA(J,)kei +'I,(0i, 9,) + DQi(0 )ki = y - f Si(2.3)

where rA (0,,O,) are nonlinear terms and DA(O), BA(qi) are the 2x2 damping and

inertia matrices of the robot with respect to its operation space:

BAi(_) = (,iB -1LTY 1  (2.4)

The vector y. is the contribution of the end-effector forces due to joint actuation -L. The

robot joint torques L, that are equivalent to y. are:

T. = y (2.5)

2.3.2 Module Model

For the planar system considered here, the module is modeled as a long slender

Euler-Bernoulli beam. A sample beam-like structure is shown in Fig. 2.5. The two robots

grasp the beam at its ends (grasping points).

A coordinate system XYZ,,, is attached to the beam at its center of mass so that

the axis Xm coincides with the beam neutral axis, Fig. 2.4. The rigid body motion of the

beam is described by its orientation O, and the inertial position rGs of its centre of mass.

Given the nature of the task considered here, OS and 6, are assumed to be relatively

small. The beam deflection u in the Ym axis is approximated by Q assumed modes [24]:

Q

u (XM It) = {q, 1(t)#,(x,,)} = q T (x,) (2.6)
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.. Q(Xm)1 27

where q, is the i-th modal coefficient. Here O, is taken to be the i-th mode shape of the

free-free beam. The vector xs contains the beam's generalized coordinates [24]:

x, = G, 6s I (2.8)

Figure 2.5. Sample beam-like LSS module made of rods and cable elements.

The module dynamics are derived by expressing the position of each beam

element as a function of x and applying the Langrangian principle [24]. The assumption

of small O, and 6, simplifies the derivations. The resulting beam dynamics are:

M,,2,, =W f

+2ZQ 5 4 + Q q =W f =[h 1 (t) ... hQ(t)J

(2.9)

(2.10)

where x,. =T, 0s 3 contains the beam rigid body coordinates, f. is the force applied

by robot i to the beam, M, is the beam mass matrix for the beam rigid body motion, Z

and Q , are the beam modal damping and natural frequency matrices, and Wsr W , are

grasp matrices [26]. The function hi (t) is the excitation of the assumed mode i caused by
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the forces f that robots apply to the beam. In this study, it is assumed that the effects of

orbital mechanics are negligible, the kinematic and dynamic parameters of the module

(inertial properties, vibration model) are relatively well known and that initially the beam

is at rest(q (0) =4 (0) = 0 ).

2.4 Planning and Control Architecture Overview

The system of interest (robots and module) is a complex nonlinear system. The

inputs of this system are the robot joint torques x . The outputs of interest are the beam

motion and vibration response, and the motion of the robot joint angles 0. The planning

and control of such a complex nonlinear system so that the task objectives are achieved

optimally (accurate positioning and low residual vibration in the module) is difficult and

complicated [7, 8, 11, 26].

The key idea of the planning and control architecture is to divide the system into

interacting mechanical subsystems instead of treating the system as a whole. These

subsystems are the robots and the module. The subsystems interact through the forces

f that robots apply to the module. Since the dynamics of the module can be described

well by simple dynamic models (Section 2.3), it is relative easy to plan the desired

interaction forces f sid such that the beam is positioned accurately and with low residual

vibration. Robots control the forces f that they apply to the module so that f track

the desired interactive forces fsid . At the same time robots exploit their redundancy to

avoid undesirable configurations.
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Fig. 2.6 shows the planning and control architecture (Architecture for Minimum

Vibration Manipulation - AMVM) for the cooperative manipulation of a large flexible

module by a team of robots mounted on a rigid base structure. The architecture consists

of two parts. Robots plan and control cooperatively the forces f they apply to the

module (endpoint forces). At the same time, each robot individually plans and controls

the motion of its redundant joints 0 . The total torque actuation for each robot -. is the

sum of the actuation output of the end-effector force controller -rEi and the actuation

output of the robot motion controller -,r.

Force f~d Endpoint Force TEi
Planning Controller

Robot Motion Qid Robot Position Robots-Module
Planning Controller mi Dynamics

Figure 2.6. Overview of the Architecture for Minimum Vibration Manipulation (AMVM).

The force planning algorithm calculates the desired forces fsid that each robot

needs to apply to the module so that the module is positioned accurately and with low

levels of residual vibration. Robots control the forces f to track the desired ones f

by using the endpoint force controller.

The endpoint force controller does not directly control the motion of the robot

joints. Each robot should avoid certain joint configurations that can damage it or limit its

performance. This problem is addressed by the second part of AMVM , the robot motion

planning and control algorithms. Since each robot already controls the two force
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components of f (planar case), it can control at most N-2 joint angles (its redundant

degrees of freedom). In this study each robot controls its first N-2 joints (Oil to 0 i,N-2 )

The endpoint force controller output TEi is nonzero for all robot joints whereas the

position controller output -cM, is nonzero for the first N-2 joints.

The control actions of the AMVM architecture for each robot is shown in Fig.

2.7. Each robot controls the force at its end-effector (Xe, Y, axes) and the position of the

origin of the X,, Y frame (or equivalently the first N-2 joint angles).

--- Position contr

..--..---.-1 Force contro

Y

Yx
X,

Figure 2.7. Control actions for each robot in AMVM.

The design of the robot controllers is based on the assumed set of specifications

shown in Table 2.1. The duration of the manipulation task is At. 6 rGs is the maximum

allowable positioning error for the beam CM rGs " 0s is the maximum allowable

positioning error for the beam orientation Os. u,, is the maximum allowable residual

vibration at the beam ends.
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Beam position error 6
rGS [in] ' 0.10

Beam orientation error 60, [deg] ± 0.05

Residual vibration in beam ends 5u,,, [in] t 0.03

Table 2.1. Specifications for the design of the AMVM planning and control architecture.

2.5 Force Planning

This section describes a simple algorithm for the planning of the desired forces

f si that robots are to apply to the module. It is assumed that initially the beam is located

at _Gs 01, 0 (0) = 0 , and that the desired module position is rGs(At), O (At).

The objective is to plan the desired forces fsid so that when they are applied by the

robots to the module, the beam is transported to its desired position, within time duration

At and with low levels of residual vibration. For the planar case considered here, each

force f,,d is expressed in its components parallel to the inertial axis X and Y:

fid = siXd fsiYd I L 2 (2.11)

It is desirable to provide smooth force commands so that they can be tracked

easily by the endpoint force controller. For this reason, each force component _f sjd (t) is

expressed as a sum of M sinusoids:

M
f 5 ijd (t) = X { afi sin(wopit)} (2.12)

The frequencies wo are chosen to lie within the bandwidth of the endpoint force

controller, which will be discussed in Section 2.6. The parameters ajk are calculated by

imposing three constraints:
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1. The force commands f,,,d are smooth. Since f,d are a sum of smooth functions,

the smoothness condition has to be imposed only at t=O and t= At:

M

f,, d(At) = {a sin(wcAt)} = 0 (2.13)

M

fsd ( 0 ) = {akwp} = 0 (2.14)

M

fsid(At) {ajkwp, cos(w,,At)} = 0 (2.15)

2. The force inputs f sid cause the beam to translate byrG (At) and rotate by

O (At), so that it is transported into its desired position:

ffW , - S dtdt = M,, - (2.16)
0 0 s2 Ijs

where the matrices Wsr, _M,, are defined in Section 2.3.

3. The force inputs f,,d induce low levels of residual vibration in the beam ends

(grasping points). This is achieved by inducing zero residual vibration in the modes that

participate more in the response of the beam ends. Residual vibration in mode i is

eliminated if its excitation hi (Eq. 2.10) satisfies the condition [6]:

fhi (t)e-'dt = 0 (2.17)

where s, = - P', + jo i- is the pole of beam mode i, and ,, w, are the

damping ratio and natural frequency of beam mode i. This condition imposes two

equations, because the real and imaginary parts of Eq. 2.17 must equal zero.
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The vibration parameters of the system probably are not known exactly.

Therefore, the result of Eq. 2.17 should be robust to variations of the beam pole locations

si. The condition for robust minimization of residual vibration in mode i is obtained by

differentiating Eq. 2.17 with respect to si:

thi (t)e-' t dt = 0 (2.18)

Residual vibration in the beam ends is minimized if Eq. 2.17 and 2.18 are

imposed to all dominant modes of the beam. The selection of these modes is based on

observability properties of the system, for example by choosing the modes that have the

largest Hankel singular values hsv, [12]:

hsv, = (2.19)

WsVi is the i-th row of the grasp matrix !Ws (see Eq. 2.10 in Section 2.3), and 11-112

denotes the 2-norm of a vector.

The constraints imposed by Eq. 2.13 to 2.19 create a system of equations with

unknowns ajk . Assuming small 0,, these equations are simplified into a linear system:

Apa = b, (2.20)

where the vector a contains the unknown parameters ajk and A,, bp are constant

matrices. If M is large enough, then the number of unknowns a,,k is larger than the

number of equations and the system has infinite solutions. The chosen solution is:

a = A'b, (2.21)
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where A' is the pseudo-inverse of A, [26]. This solution minimizes the norm

a| =12 a. The resulting force profiles are suboptimal with respect to

At2

minimizing the metric I= f Sidt (the magnitude of the forces applied by the
01

robots to the module). However, this algorithm is computationally efficient, provides

smooth force profiles and distributes loads evenly among robots.

Residual vibration elimination can also be achieved by applying the input shaping

method [32, 34]. In this method, a proper filter modifies an initial force command profile

such that its output satisfies Eq. 2.17 and therefore results in minimum residual vibration.

This filtering induces a time delay, which equals at least half the period of the module

lowest mode. The method described here is somewhat more general than input shaping as

it can be modified easily to deal with nonzero initial vibration conditions.

Assuming that robots control the forces f that they apply to the module so that

they track perfectly the commands fsid . If the dynamic properties of the module are

known exactly, then the forces fsid will cause the beam to be positioned accurately and

with low residual vibration. If the vibration parameters of the beam are known within

some reasonable error (t 10%), the beam will be positioned accurately and with small

residual vibration (due to Eq. 2.18). If the inertial parameters of the beam are not known

exactly (or if they have been modified, for example due to thermal warping [22]), then

the forces f,,d will not cause the beam to be positioned accurately. These positioning

errors can be reduced by either adding an impedance control action [15], or by updating
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the desired force profiles f sid by a guidance loop. In the late case, the force planning

algorithm provides updated force profiles fLd using estimates of the current state of the

beam that are calculated from measurements of the robot state Qi, 6i . Any force tracking

errors f _f,,= - f result in increased positioning error and residual vibration in the

module.

2.6 Endpoint Force Controller Design

2.6.1 Force Controller Overview

The objective of the robot endpoint force controller is to have the forces f that

robots apply to the module (endpoint forces) track the desired forces f The actuator

output of the controller for each robot -r is the sum of an action from a centralized

controller Cr Ei an action from each robot's decentralized controller Dr and a feed-

forward term F TEi, Fig. 2.8:

C D F
iEi -: TIEi+ IE+ TiEi (2.22)

The centralized control action is a state feedback controller that modifies the

system dynamics so that the forces f can be controlled more easily. It provides joint

torque actuation C-rEi for all robots. This controller exploits robot cooperation to enhance

the performance of the endpoint force controller.
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Figure 2.8. Endpoint force control architecture.

Each robot has its own decentralized PI controller for every component of f i.

The input to each PI controller is the tracking error f iand the output is a joint torque

action D-Ei for this specific robot. The decentralized controllers provide direct closed

loop action that affects the closed loop bandwidth and steady state errors.

2.6.2 Robots - Module Dynamic Model

Combining the dynamics of the module and the robots and linearizing the system

around a representative robot configuration (so that the robot matrices B, and Qui are

constant), the plant dynamics are described by a linear MIMO system (the analytic

derivation of the linearized system dynamics is shown in appendix A):

iF AF XF +B FY (2.23)
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f =L f]

where xF is the state of the robots-module system, and y. is the contribution of the end-

effector forces due to joint actuation xr (Eq. 2.5). The plant can be equivalently described

by a transfer matrix GF (s). It can be shown that the plant zeros are the poles of the free-

free beam, and that the plant poles are the poles of the free-free beam and the poles of the

free-free beam augmented by proper mass and damper elements that correspond to BA1

and DAi. Since space structures have poor modal damping [12], the poles and zeros of

the plant are located very close to the imaginary axis.

2.6.3 Endpoint Force Controller Design

Force controllers usually contain proportional (P) and integral (I) terms, and do

not contain derivative (D) terms to avoid the differentiation of noisy force signals [29]. A

simple control architecture for the endpoint force controller is to have each robot to

control its own endpoint force f without considering the control performance in the

other robots of the team. A proper PI controller for each force component would be (the

double pole at s = 0 compensates the zeros of the plant at s = 0 ):

K s + K
GF s Pj 2

s
(2.24)

The beam is considered rigid in the X,.direction and flexible in the Y,, direction.

Since the beam orientation 0 is small, the axes X,, Y,, almost coincide with the axes

X Y. Therefore robots use different PI controllers GCFX , GCFY to control the X and Y
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components of f without considering the beam orientation 0. The output of the

decentralized PI controller for each robot is:

K G(s)
-E, (2.25)

GFCY (S)j .fsil

D E= TD (2.26)EEi ei Y Fi

where _f = fi - fS is the tracking error of f.

This control architecture results in slow closed loop bandwidth and oscillatory

response. The reason is that the poles and zeros of GF (s) are located near the imaginary

axis and small gains in the PI controllers can make the closed loop system unstable.

Therefore, if robots use only decentralized PI controllers, the closed loop system will be

too slow to track the commands f sid that can maneuver the beam within duration At.

This problem is overcome by combining the simple decentralized PI controllers

with a centralized force control action, as shown in Fig. 2.8. The centralized force

controller modifies the system dynamics. The decentralized PI controllers of each robot,

Eq. 2.25 to Eq. 2.26, now control the modified plant. The centralized force controller is a

state feedback control law:

E] = -KFXF (2.27)
Y-E2

C =jTC Y( .8
Ei Ei 228)

The state xF is estimated from measurements of f through a linear observer [1]. The

state feedback gain KF depends on the selection of the desired poles of the dynamics of
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the modified plant. The state matrix of the modified plant is AF =F lF!F. The i-th

pole of A* is chosen to be better damped and somehow faster than the i-th pole of AF.

The desired poles of A*F are located on the left of its zeros. This pole-zero placement

allows the application of larger gains K and K in the decentralized PI controllers

without making the closed loop system unstable.

A feed-forward component is added. It is a model-based action which uses the

inverse dynamics of the nominal plant dynamics G-F'(s), see Appendix A:

F E S - s s (s ) (2 .2 9 )F FE2 (Sl sFF2d (S)

F lu=iT F (2.30)
FEi Ti F Ei

where F Ei(s), sid (s) are the Laplace transformations of the actuation F Ei and the

desired endpoint forces f d*

2.6.4 Controller Robustness

The design of the control gains KF, KPj and K# is based on a nominal linear

plant (Eq. 2.23) that has been derived using a constant mass matrix BA, for each robot. In

reality, the inertia BA, of each robot depends on its configuration. As the robot moves

and its inertia varies, the plant dynamics change. It is desirable to minimize the effect of

this change in the performance of the robot endpoint force controller.

As the beam "feels" more robot mass, the distance between the poles and zeros of

GF (s) increase and smaller gains Kj and K, can cause the closed loop system to
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become unstable. Therefore, the controller design becomes more robust to robot

configuration if the beam "feels" that robots have small inertia, regardless of their

configuration.

The beam "feels" that each robot has inertia BA, which can be expressed as:

(2.31)BAi = U(_) ma, (i)
min( U(0,)

where the columns of U are the robot's principal axis of inertia (in operation space) and

Mma, aminre the eigenvalues of B The beam "feels" that a robot has small inertia,

regardless of its configuration if P ,max P.1 x - pmin are small compared to the beam

inertia.
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Figure 2.9. Inertial properties of three robot designs with respect to their operation space.
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The parameters yma, /min depend on the robot size and mass and also on the

mechanical design of the robot. Fig. 2.9 shows the inertial properties Y!ma, I Mmin of three

robot designs that have the same total length (20 m) and total mass (350 kg). The

properties pma /1 min are calculated for a large number of arbitrary configurations and

plotted against the corresponding value of the manipulability metric [47]. The first

design is a simple three-link robot with evenly distributed weight. The other two designs

are a five-link and a seven-link robot with the majority of their weight concentrated on

their middle link (which acts as the robot body).

Fig. 2.9 shows that the three-link design is not appropriate to apply the endpoint

force controller as its inertia is large (/max >110 kg). The five-link and seven-link designs

have lower inertia (pmax<50 kg). All designs have large Mmax near singular configurations

(very low ). The parameters Umax , pmin are plotted against the manipulability metric

to show that the beam can "feel" that a robot is heavy at certain robot configurations

(noted with 'x' in Fig. 2.9) that are away from the robot's singular configurations. These

undesirable configurations for the five-link robot occur when the last joint angle

approaches zero (015 -+ 0). The avoidance of such configurations limits severely the

robot's workspace. The undesirable configurations for the seven-link robot occur when

the last two joint angles approach zero (0,6 -- 0 and 0,7 -+ 0). The avoidance of these

configurations is achieved by proper joint planning and control without imposing severe

limits to the robot motion.
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The second way to improve the robustness of the force controller is to implement

an active damping action:
_ITaDnT T T (2.32)

damp ei Aid ei = ~-J i Aid-ei-i

This term provides damping that is constant with respect to the robot operational space

and does not depend on the robot configuration. This can be thought as adding dashpots

of constant damping rate DAid on the ends of the beam. Simulation results show that this

damping action reduces the dependence of the closed loop poles on the robot

configuration.

2.7 Robot Motion Planning and Control

The second part of AMVM is the robot motion planning and control algorithm,

Fig. 2.6. This part provides direct control over the redundant joints of the robot and

makes the robot able to avoid undesirable configurations and obstacles.

2.7.1 Robot Motion Planning

Fig. 2.10 shows the robot motion planning and control algorithm of the AMVM.

The desired joint angles 0 id for each robot are calculated by a priority-based inverse

kinematics algorithm [26]. The first priority is that the desired robot motion must be

compatible with a prediction of the motion L, (t) of the corresponding beam end when

the forces applied by the robots to the module f equal the desired ones f .d

_ei(! d)Qid ei (2.33)

This prediction iei (t) is calculated from a simple dynamic model of the beam.
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Since only the first N-2 joints of the robot are controlled, the robot motion id

will be compatible with the beam motion if the distance between the origin of the frame

XYZ, shown in Fig. 2.7 and the estimated motion ,i (t) is less than the sum of the

lengths of the last two robot links. Since the calculated r,, (t) can deviate from the real

value rei(t), robot motion planning should avoid to plan the last two robot joints to take

values near zero.

The second priority of the inverse kinematics algorithm exploits robot redundancy

so that the robot avoids undesirable configurations, joint limits and obstacles. This is

achieved by planning Oid to minimize a smooth potential function W(O) [18]. The

resulting desired motion for the robot joints is:

JeJ#(dW ) (2.34)
-id - ei-Le i -z 0i

where J is the pseudo-inverse of Je, and J, is a projection into the null-space of Jei.

Robot Motion Planning

Priority-Based + - Robot Joint System
~d Modue Dynam ) Robot Inverse

roe Kinematics *0 Controller Dynamics

Figure 2.10. Schematic of the robot motion planning and control algorithms of the AMVM.

2.7.2 Robot Motion Control

The first N-2 joints of the robot are controlled by simple joint PD controllers.

Since the robot already controls the two components of the force it applies to the module,

it cannot control all its joint angles. This is because the robot cannot simultaneously
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control the position and the force applied at its end-effector. The output of the PD

controller is the joint torque action cTy :

C Mi PM (+d D -ii) (2.35)

F

The robot motion controller includes also a feed-forward term F Mi . This feed-

forward action can include a friction compensation term, although, in this study the

effects of friction were not studied into detail. The total joint torque output -UMi of the

robot motion controller is the sum of the feed-forward action and the joint PD action:

F C (.6

The response of each robot endpoint depends on the forces f that robots apply

to the module. If the inertia properties of the module are poorly known or the tracking

errors f id - f, are large, then the actual response of the robot endpoint ri(t) will

differ significantly from the predicted response i, (t). Since the desired joint motions

0 are calculated from ei (t), if the deviation re, (t) - ,ii (t) is large, then as the robot

motion controller tries to track 0
*, it affects the motion of the robot endpoint. In this case

the robot endpoint controller and the robot motion controller interfere and their

performance is degraded. Possible solutions to this problem are to use an impedance

controller to compensate the deviation r, (t) - r^,i (t) or to update the desired force

profiles f sid by an external guidance loop.
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2.8 Simulation Results

2.8.1 Simulation Description

This section provides simulation results that demonstrate the effectiveness of the

AMVM planning and control architecture. The simulations consider the planar case

depicted in Fig. 2.4, where two redundant planar manipulators maneuver a flexible beam

into its final desired position. The system is simulated in Matlab/Simulink using the

method descried in [13], Fig. 2.11.

Robot 0
body0

0 ... LSS Module
Force/Torque (initial position)
sensor

Y1 LSS Module

Z - X (final position)
LSS V....

Figure 2.11. The planar system used in simulations. Only one of the two robots is shown.

The properties of the robots are shown in Table 2.2. Each robot has seven links,

total length 20 m, total weight 350kg. The mass of the robot is concentrated in its middle

link, the robot body. This robot design results in small operational-space inertia which

makes easier to control the robot endpoint interaction forces, Section 2.6.4. Each robot

has force/torque sensors at its end-effectors. In the simulations of this section robots are

assumed to be mounted on a rigid base structure.
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Number of links: 7
Link length [m]: [2.5, 3, 3.5, 2, 3.5, 3, 2.5]
Link mass [kg]: [10.5,14,14,273,14,14,10.5]

Table 2.2. Robot properties used in the simulations

The module is modelled as an Euler-Bernoulli beam. The properties of the beam

considered in the simulations of this section are shown in Table 2.3. The beam initially is

at rest.

Length [m] 200
Effective Young's modulus [GPa] 0.159
Linear Density [kg/m] 3
Lowest vibration modes (free-free beam) f1=0.197 Hz, f2=0.539 Hz, f3=1.042 Hz

Table 2.3. Beam properties used in the simulations

2.8.2 Force Planning

Fig. 2.12 shows results for the force planning algorithm of Section 2.5. All

profiles correspond to maneuvering the beam into rGs (At) = [0 -6]sand O(At)=.

The maneuver duration is At =40 sec. The results of the force planning algorithm depend

on the range of the angular frequencies wo of the sinusoids that are used to create the

force profiles f (Section 2.5). The numerical parameters for each case are shown in

Table 2.4. The values of o are found by interpolating opimax and w() -min -

Case M max [rad/sec] Opmin [rad/sec]

1 20 2ir/20 2n/80

2 20 2ic/1O 2n/80

3 20 2n/5 2n/80

Table 2.4. Force planning parameters for the force profiles shown in Fig. 2.12.
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Figure 2.12. Force planning results for various force planning parameters.

At2

Fig. 2.12 also shows the force profile that minimizes the metric I= f f dt
01

for a rest to rest motion of the flexible beam [6]. It can be seen that the force profiles fd

that are calculated by the planning algorithm of Section 2.5 are always smooth, whereas

the theoretical optimal result is not. However, the resulting f sid from the force planning

At2

algorithm of Section 2.5 are suboptimal with respect to the metric I = fJ 112Adt. It can
0'

be seen that as f sid are approximated by faster sinusoids (larger p>max) the results tend to

the theoretical optimal result. However, as the command signals f contain faster

sinusoids, it is more difficult to track them due to the relative slow bandwidth of the

endpoint force controller. The proper force profile is the result of a trade-off between the

actuation capabilities of the robot and the limited bandwidth of the endpoint force
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controller. It was found that good choices for o max and oi min are oi max o OFbw and

Wimin =K7r/At.

Fig. 2.13 shows the response of the beam CM and the vibration in its left end

when the force profiles fd that are calculated from the force planning algorithm are

applied to the beam as forces. The force profiles are calculated for a 6 m maneuver within

40 sec(rGs(At)=[0 -6],Os(At)=0, At=40 sec, M=20, wpimax =2n/15 and

(0pi min =2n/80). This figure shows that beam is positioned accurately to its desired

position and with low levels of residual vibration.

6 0.2

5- 0.15-

0.1-
4-

0.05-
__ E

0 0

CL. 0
00

-0.1

0- -0.15-

-11- -0.2-
0 10 20 30 40 50 0 10 20 30 40 50

time [sec] time [sec]

Figure 2.13. Beam CM position and beam end vibration response when the calculated desired

endpoint force f are applied at the ends of the beam (the presence of robots is ignored).

2.8.3 Controller Performance

This section provides simulation results for a sample design of the AMVM

architecture. The endpoint force controller consists of a centralized state feedback control

action and decentralized PI controllers for each force component, Fig. 2.8. The design of
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the centralized controller gain KF is based on a nominal plant of the system, Eq. 2.23,

which is calculated considering the first two modes of the free-free beam. The force and

torque measurements are filtered by a low-pass filter with cut-off frequency at wOC 4.5

rad/sec to prevent spillover effects [3]. The gain KF is chosen so that the modified plant

AF = AF -BF L§F has poles at desired locations of the s plane. The chosen poles of the

plant and the modified plant are shown in Table 2.5. The rigid body poles of the system

are chosen to lie at s=-0.2 (X motion), s=-0.6 (double pole- Y motion).

Zero of nominal plant Desired pole of modified plant
(pole of free-free beam)
-0.0116 t 1.1643j -0.6 ± 0.lj
-0.0321 + 3.2094j -0.5 ± 2.9j

Table 2.5. Desired poles for the design of the state-space controller.

The decentralized part of the endpoint force controller consists of PI controllers for each

component of f S. The PI controllers GCFX, GCFY that control the X and Y

components of f are:

GCFX
0.88s + 0.08

2

0.75s + 0.5
GCFY 2

s

The PD gains for the first five links are KPM=1000[38, 22.7, 12, 6, 4] Nm/rad

and KDM =1000[14, 8.4, 7, 6, 4] Nmsec/rad. The active damping added by each robot to

the system, Eq 2.32, corresponds to the damping matrix:

50
_~Ds, =

200Nsec/m
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Fig 2.14 shows the singular value plot of the open loop (Eq. 2.23) and the closed

loop dynamics (the dynamics between the command f,,, and the response f .). This

plot is the generalization of the Bode magnitude diagram for MIMO linear systems [1].

The plot includes only the first two flexible modes of the beam.

Singular Values
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Figure 2.14. Singular values of the open loop (up) and the closed loop dynamics (down) of the robots-
module system.
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Fig 2.14 shows that the open loop sigma plot has deep notches and high resonant

peaks due to the poor damping of the beam. The closed loop sigma plot is smooth and

without resonant peaks due to the damping added by the endpoint force controller and the

active damping action, Eq. 2.32. The closed loop bandwidth is WFbw =0.75 rad/sec since

the magnitude of all singular values is larger than -3 dB for o < (OFbw. The maximum

closed loop bandwidth that was achieved when each robot controls the force f it exerts

to the module independently by PI controllers was aoFbW =0.25 rad/sec. In that case the

robots could not track the forces fsid that they need to apply to the module so that they

manipulate it within 40 sec. Fig. 2.14 shows that the closed loop bandwidth has deep

notches that correspond to the modes of the free-free beam. Therefore, the closed loop

bandwidth is limited by the lowest natural frequency of the beam.

The main idea of the AMVM algorithm is to plan and control the forces f that

robots apply to the module so that they manipulate it with low levels of residual

vibration. Fig 2.15 shows the tracking performance for the force applied by robot 1 to the

module. The time lag between the command and the response is less than 1 sec. This lag

induces overshoot that is less than 1 N. The controller is able to track the command signal

well. The X component of the endpoint force has also overshoot (less than 1 N) even

though the desired command here is zero. This shows a dynamic coupling between the

X and Y components of the endpoint force which is caused by the non-diagonal mass

matrices BAi of the robots.
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Figure 2.15. Tracking performance for the force applied by robot 1 to the module when the robots
use the AMVM architecture.

The endpoint force controller includes a centralized state feedback term that uses

measurements of the forces i that robots apply to the module, Fig. 2.8. The

communication and process of these signals induces time delays in the system that have

not been considered in the results shown in Fig 2.15. Fig 2.16 shows a modification of

the endpoint force controller block diagram that presents how such time delays are

considered in this study.

Fig 2.17 shows the response of the endpoint force of robot 1 when there is a

communication delay of 0.5 sec in the system. The comparison of Fig 2.15 and Fig 2.17

shows that the 0.5 sec delay does not induce major delays and deteriorates the system

performance mildly, mainly increasing overshoot. Simulation results show that the

system will become unstable when the communication delay is more than 1 sec.
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Figure 2.17. Simulation results for the endpoint force of robot I in the presence of
delays (0.5 sec). Robots use the AMVM architecture.

communication

The AMVM makes forces fS to track the commanded forces fLd well enough

to position the beam within the required position accuracy, Table 2.1. Fig. 2.18 shows the

beam response using the AMVM architecture and the ideal response of the beam

obtained when the beam is driven by forces equal to f sid . The small tracking errors
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f~ f - / . induce positioning errors and residual vibration, which however are

within the required specifications of Table 2.1.
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Figure 2.18. Beam CM response (a) and beam left end vibration response (b).

Fig. 2.18a shows the response of the beam CM motion. This figure shows that

robots position the beam accurately (the steady state position error is zero) and safely (the
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position overshoot is less than 10 cm). Fig. 2.18b shows that the resulting residual

vibration in the beam is small and well within the specifications of Table 2.1.

Fig. 2.19 shows the response of the joint angles %j of robot 1 and compares them

with the command signal 0 1jd that is calculated in the robot planning algorithm. This

figure shows that the first five joints are controlled accurately (the command and

response signals are indistinguishable). The last two joints are not in closed loop position

control. The position response of the last two joints is determined by the motion of the

beam (and therefore the response of the robot end effector) and the response of the first

five robot joints. Fig. 2.19 shows that there is a deviation between the actual and the

predicted motion of the last two joint angles. This deviation is caused by the endpoint

force tracking errors i. This figure also shows that the robot planning algorithm

succeeds in avoiding the undesirable robot configurations (the configuration where 1161

ande 1,7 | are simultaneously below 30 degrees) that can deteriorate significantly the

performance of the endpoint force controller, see Section 2.6.4.
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Figure 2.19. Desired joint angles 9IJd and joint angles response 0j for robot 1. For the first five

joint angles of the robot, the two signals are indistinguishable.
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Chapter 3

Manipulation of Large Flexible Structures

by Robots Mounted on Compliant Bases

3.1 Introduction

Chapter 2 provided a planning and control architecture for the manipulation of a

large flexible structure by a team of robots in the proximity of the LSS when the

compliance of the LSS is ignored. This chapter expands the architecture to consider the

compliance of the robots' base structures. In the architecture developed here, robots plan

and control the forces that they apply to both the module and the LSS. Robots still exploit

their redundancy to avoid undesirable configurations and obstacles.

The chapter starts by providing a description of the manipulation task and

highlighting the effects of the compliance of the LSS. It presents the proposed planning

and control architecture, and provides simulation results that demonstrate its

effectiveness in positioning the module accurately while inducing small residual vibration

in the module and the LSS.
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3.2 Task Description

Robot I

Module

Reaction
whee~l

Force/Torque
Sensors

Robot IRobot2
Module

Compliant LSS

Figure 3.1. Manipulation of a large flexible structural module by a team of robots mounted on the
compliant LSS.

Fig. 3.1 shows a representative manipulation task. A large flexible structural

module of the LSS, located in the proximity of the LSS, is maneuvered into its pre-

assembly position by a team of robots mounted on the LSS. The description of the system

with the exception of the compliant base structures was done in section 2.2.

The compliance of the robots' base structures is an important aspect of the

problem and should be considered in the analysis. The reaction forces and moments that

robots exert to the LSS excite vibration in the LSS. This vibration can have significant

amplitude and cause undesirable effects in the system response. Such negative effects are

shown in Fig. 3.2 to 3.4. These figures show simulation results for the manipulation of a

200m beam by two 20m robots, which are mounted on compliant base structures. The

dynamics of the robot base structure are modeled by a mass-spring system. The natural

frequency of the base is 0.1 rad/sec. The robots use the AMVM architecture that was
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developed for the case where robots are mounted on a rigid base structure (see Chapter

2).

10 20 30 time4 .ec 50 60 70

Figure 3.2. Vibration
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Figure 3.3. Desired force fsid and simulation results i when the AMVM architecture is applied

to robots mounted on compliant structures.
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Fig. 3.2 shows the vibration deflection at the base of robot 1. The base reaction

forces are large enough to induce significant deflections in the robots' base structures.

This vibration couples with the robot dynamics and can induce significant force tracking

errors. This is shown in Fig. 3.3 where the robot fails to control well the forces that it

applies f to the module. In this case robots fail to position the module accurately,

Fig.3.4. The force tracking errors cause the trajectory of the beam ends to deviate from

the desired trajectory. Such positioning errors can result in collisions that could damage

the flexible structures and the robots.

7

initial position
6-

5- actual trajectory

desired trajectory
4-

2-

1 I

final position

0-

-101 -100.5 -100 -99.5 -99
X [m]

Figure 3.4. Desired and actual trajectory of the left beam end when the AMVM architecture is
applied to robots mounted on compliant structures.

Residual vibration in the LSS causes also dimensional mismatch between the

mating points of the LSS and the corresponding mating points of the module. These

mating points have to be within some distance so that the latching mechanisms, that will

connect the module and the LSS, can operate. If significant vibration is induced in the
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LSS, robots have to wait for this vibration to damp before they proceed to the next phase

of LSS assembly. This results in costly time delays.

In this study it is assumed that initially the LSS is at rest and that there is no

outside vibration excitation in the LSS apart from the robots' base reaction forces and

moments. Therefore, it is desirable to plan and control the robots so that they manipulate

the module into its pre-assembly position accurately while exciting low levels of residual

vibration in the module and the LSS. This is achieved by the planning and control

architecture described in Sections 3.4 to 3.5.

3.3 System Modeling

A planar model of a representative system considered in this study is shown in

Fig. 3.5. Two redundant planar robots manipulate a long flexible module from its initial

position in the proximity of the LSS to its pre-assembly position. The robots are mounted

on the compliant LSS. While the examples considered in this thesis are planar, the

approach can be extended to the general three-dimensional case.
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Figure 3.5. Planar model for the manipulation of a large flexible structure by two planar robots

mounted on compliant base structures.

The compliance of the module and the robot base structures are important aspects

of the task. The large flexible module is modelled as an Euler-Bernouli beam, see section

2.3. Fig. 3.6 shows a sample LSS concept configuration considered in this study. The

structure diameter is approximately two kilometers. The stiffness of such a planar-like

structure in the plane of the structure is much larger compared to the stiffness in the

direction normal to this plane. The dynamic properties of this LSS sample configuration

were analyzed using finite element analysis. The complete structure is made of 420

beam-like structural modules (Fig 2.5). The total weight of the LSS is about 250 tn. The

period of the structure's lowest mode is about 10.4 min.
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Figure 3.6. Example LSS concept configuration considered in the study.

Each robot is assumed to have N rigid links (where N>2 so that it is redundant

with respect to positioning its end-effector at inertial position re,) and a reaction wheel

whose axis is parallel to the inertial Z axis, Fig. 3.5. Each robot firmly grasps the module

and the connection acts as a pinned joint. The configuration of each robot is described by

the vector t. that contains the robot joint angle vector 0 and the angular position of its

reaction wheel V, (subscript i= 1 refers to the left robot and i = 2 to the right robot):

0,=T pj, i1, 2 (3.1)

Here, it is assumed that the XZ plane coincides with the plane of the LSS shown

in Fig. 3.6. Therefore, each robot base is assumed to be rigid in the X direction and

compliant in the Y direction. The dynamics of the LSS in the Y direction are modeled by

a mass mB and a spring rate kB. This model assumes that base reaction forces/moments

of each robot do not induce vibration in the base structure of the other robots of the team.

The dynamics of each robot (including the effects of its base structure) are:
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[ i B mRi Gi

mRi JGi mRi + MB bi

+ O][l = [i] -
_-

kB Ybi 0 1i]

where Ybi is the vibration displacement of the robot base in the Y direction, 1i are

nonlinear terms, mRi is the total mass of robot i, and JGi is a Jacobian matrix for the

motion of the robot CM with respect to its base:

rGi =jG( (3.3)

Using Newton laws, the base reaction forces
fb, and moments [tb that each

robot applies to the LSS are:

f .~br
~bi

d
dt

L -

-- l _ ~
fsi

xfSi - rGi
(3.4)

f bi]

where L, Hi are the robot's linear and angular momentum, and rGei is a vector that

starts at the robot CM and ends at its end-effector. Assuming that the motion of the robot

base structure Yb, is slow compared to the motion of the robot joints, then the robot

momentum is approximated as a function of its state 2Q by a Jacobian matrix JRJ ( :

Lr'i

_Hi,
Ri i Ri ( i Y (3.5)

3.4 Planning and Control Architecture Overview

This section describes the developed planning and control architecture for the

manipulation of a large flexible structural module by robots mounted on a compliant

LSS. The essential idea of the planning and control architecture is to divide the whole
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system into subsystems (robots, module, robot base structures) and control the interaction

forces between these subsystems. These interaction forces are the forces f that robots

apply to the module, and the base reaction forces fb. and moments _Pb, that robots apply

to the LSS.

Fig. 3.7 shows the block diagram of the planning and control architecture

(Architecture for Minimum Vibration Interaction - AMVI). Robots plan and control

cooperatively the forces f that they apply to the beam so that the beam is positioned

accurately and with low levels of residual vibration. Robots also regulate to zero the

components of their base reaction forces f b and moments y bi that induce significant

vibration in their base. At the same time they exploit their redundancy to avoid

undesirable configurations and obstacles. Robots are able to control the forces they apply

to the flexible structures by using force/torque sensors at their endpoints. Robots also

improve their ability to control base reaction moments y bi by using reaction wheels.

In the AMVI architecture, the total joint torque output for each robot -u. is the

sum of the joint torque output of the endpoint force controller -rE and the joint torque

output of the robot base reaction force/moment controller -rBi .
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Figure 3.7. Overview of the Architecture for Minimum Vibration Interaction (AMVI).

The AMVI architecture is an extension of the AMVM architecture that was

developed for the manipulation of large flexible structures by robots that are mounted on

a rigid base structure, see Chapter 2. In AMVM robots plan and control only the

interaction forces f they apply to the module. In AMVI robots plan and control

cooperatively the forces f the same way as in AMVM. The force planning and control

algorithms for the endpoint forces f are described in Chapter 2. In AMVI robots also

exploit their redundancy to plan and control individually the base reaction forces f, and

moments y, that they apply to the LSS. The force control action on f and pi, is

implemented indirectly, by proper planning and control of the robot redundant degrees of

freedom (redundant links and reaction wheels).

The design of the robot controllers is based on the assumed set of specifications

shown in Table 3.1. The parameters brGs, 60s, 6uip have been defined in Section 2.4.

yi is the maximum allowable residual vibration in the base structure of each robot.
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Beam position error of 6 rGS(At) [] L 0.10

Beam orientation error 0, (At) [deg] ± 0.05

Residual vibration in beam ends 6u,,i [in] ± 0.03

Residual vibration in the LSS y,, [m] +0.05

Table 3.1. Specifications for the design of the AMVI planning and control architecture.

3.5 Base Reaction Force/Moment Control

3.5.1 Base Reaction Force/Moment Controller Overview

This study assumes that initially the LSS is at rest. It is desirable to keep LSS

vibration small (and therefore the vibration of the robots' base structures) by eliminating

the components of robot base reaction forces f b and moments p , that induce

significant vibration in the LSS. The objective of the robot base reaction force/moment

controller is to regulate these components of f b and pyb, to zero. Additionally, the robot

base reaction force/moment controller exploits robot redundancy to avoid undesirable

configurations and joint limits.

For the planar example considered in this study, Fig 3.5, it is assumed that the

XZ inertial plane coincides with the plane of the sample LSS configuration shown in

Fig. 3.6. Therefore it is desired that each robot eliminates the component of is base

reaction force f that is parallel to the Y axis.

The implementation of the base reaction force/moment controller is different than

the implementation of the endpoint force controller (Section 2.6). The base reaction

force/moment controller regulates the components of interest of fLb and Pbh indirectly,

by planning and control the robot redundant degrees of freedom. For the planar case
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considered here, each robot already controls the two components of the force f that it

applies to the module. Therefore, the redundant degrees of freedom of each robot are its

first N-2 joint angles (O, to 0
iN-2) and the angular position of its reaction wheel i,.

Fig. 3.8 shows the block diagram of the base reaction force/moment controller.

The comparison of Fig. 3.8 and 2.10 shows that the base reaction force/moment

controller is an extension of the robot motion planning and control algorithm that is used

in the AMVM architecture, Section 2.7.

Robot Motion Planning

- fidi/bi

sidModule Dynamic
rdel .d Robot Joint recto System

t ro t onverse onoter Dynamicsk
Robot o Kinematics + Controlsem

- Momentum fh9 i, bi
+Planning -i I

.. .. ........................ .................. f i _ id , _ bid

IPI Controlle~r -- - -

Figure 3.8. Base reaction force/moment controller.

The base reaction force/moment controller consists of an outer force feedback

loop that modifies the commands of an inner position control loop. Therefore, it can be

considered as a variation of the parallel force/position control scheme [8]. The inner

position control loop consists of PD controllers for each robot redundant degree of

freedom. The commands for this inner control loop (the desired motion of the robot

redundant joint angles 0 id and the desired angular position V-id of the robot reaction

wheel) are calculated by the robot motion planning algorithm. The outer control loop

modifies the input of the robot motion planning algorithm as a function of force tracking
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errors _f - f,, and ji = 1bd bi through PI controllers, Fig. 3.8. Here, the

desired base reaction forces and moments are fbid =" id = 0 (for the components of

interest).

3.5.2 Robot Motion Planning

The desired motion of the robot joints 0 , and the robot reaction wheel V id are

calculated by a priority-based inverse kinematics algorithm [26]. The first priority of the

algorithm is that the desired robot motion should be compatible with a prediction of the

motion r^ei(t) of the corresponding beam end:

J lei - ei (3.6)
Yid

ei=Lei 0] (3.7)

The second priority of the robot motion planning algorithm is to exploit robot

redundancy to eliminate the components of interest of the robot base reaction forces f

and moments y b. This is done in a modelled-based way by approximating the robot

linear momentum L. and angular momentum Hi as a function of the robot generalized

coordinates:

-'L .

Hfi
-LR[i (3.8)

where JRi is a computationally efficient Jacobian matrix that approximates jRi (Section

3.3). According to Newton's law, the base reaction forces and moments of all robots are

Chapter 3: Manipulation of Large Flexible Structures by Robots Mounted on 70
Compliant Bases



eliminated if the total momentum of the robots-module system is kept constant and if the

momentum of each robot varies according to Eq. 3.4 when fb = Itb = 0 :

(3.9)f S

LGei X f s1 . Gbi X f bi

The right side of Eq. 3.9 contains the effective forces and moments at the robot CM due

to the force - f applied by the module to the robot. The robot motion is planned so that

the estimated robot momentum (Eq. 3.8) varies according to Eq. 3.9 when f is

approximated by f i:

LRi id [
id 0

fsid fLBCL

- rGei X fsid + BCL

dg + [L(0)

I -H i (0)

It is assumed that initially the robot is at rest, so L1 (0) = H (0) = 0. The vector

fBCL contains the outputs of the PI controllers of the outer control loop due to errors in

base reaction forces f =f -f = - . The vector It BCL contains the outputs of the

PI controllers of the outer control loop due to errors in base reaction moments

I±bi = !bid - 14i = L1tbi

S-BCL
1BCL

-BF(S){ ~biI }
(3.11)

where GBF(s) is a diagonal transfer matrix. Each diagonal element of GBF(s) is the PI

controller for the corresponding component of the robot base reaction forces or moments.
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The third priority of the inverse kinematics algorithm exploits robot redundancy

to avoid undesirable configurations and obstacles. This is achieved by planning 0 id to

minimize a smooth potential function W(O )[18]. The resulting desired motion of the

inverse kinematics algorithm is [26]:

r +' J -f +
d teiei e-sid -BCL d- d- _RiJteirei ~

f dG ei X s + B C L

P~d J 0 ! id XBCL (3.12)
J# # TW

~ -lei Ri lei -

-oi 0 id

where the subscript "+" denotes the pseudo-inverse of a matrix and the subscript "#"

denotes a projection into the null-space of a matrix.

3.5.3 Workspace Limitations

In the AMVI architecture each robot controls the forces f that it applies to the

module and the forces f b and moments y , that it applies to the LSS. This is possible as

long as the robot can vary its linear momentum according to Eq. 3.9. Assuming that the

motion of the robot base is slow, the robot momentum is approximated as:

Li = -mRi Gi (3.13)

where rGi is the position of the robot CM position relative to its base. Therefore, the

ability of the robot to apply the AMVI architecture is limited by the finite size of the

locus of reachable locations for the robot CM rGi (CM-workspace). If the robot CM-

workspace is large, the robot can apply larger forces (which cause higher acceleration

LGi ) for larger time duration without violating the CM-workspace limitation. This makes
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the robot able to manipulate larger modules for longer distances without exerting base

reaction forces and moments.

3 link design

CM-workspace at
initial beam position

7 link design

CM-workspace at
initial beam position

Initial beam position

CM-workspace at the
final beam position

Final beam position

Initial beam position

CM-workspace at the

final beam position

Final beam position

Figure 3.9. CM workspace for two robot designs (of same total mass and length) at the beginning and
the end of the manipulation task.

Fig. 3.9 compares the size of the CM-workspace of two robot designs that have

the same total mass and total length. The first design is a three-link robot whose weight is

evenly distributed along its length. The second design is a seven-link robot whose weight

is concentrated in a central heavy body. The seven-link design has significantly larger

CM-workspace. For this design, the robot CM is located near the robot body CM. The

large number of links makes this robot able to position its body (and therefore its CM)

inside a large area for the same end-effector position re.
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The application of the AMVI can be improved by using reaction wheels to control

the robot's base reaction moments. Reaction wheels do not have workspace constraints.

Their performance is limited only by actuator torque and speed limits.

3.6 Results

3.6.1 Simulation Description

This section provides simulation results that demonstrate the effectiveness of the

planning and control method described in Fig 3.7. The simulations consider the planar

case depicted in Fig. 3.5. Each robot has seven links, total length 20 m, total weight

350kg and its mass is concentrated in its middle link (the robot body). Each robot has

force/torque sensors at its end-effectors and a reaction wheel at its middle link, see Fig.

3.10. The beam has length 200 m and total mass 600 kg. Section 2.8.1 provides more

information about the properties of the robots and the beam. The system is simulated in

Matlab/Simulink using the method described in [13].

Heavy robot
body

Reaction 0
wheel

LSS Module
o Force/Torque (initial position)

sensor
0 LSS Module y

X .. .(final position)

LS S k bFo

Figure 3.10. The planar system used in simulations. Only one of the two robots is shown.
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The robot base structure is considered rigid in the X direction and compliant in

the Y direction. The base dynamics in the Y direction are modelled by a mass mB Of

2000 kg and a spring rate kB of 20 N/m, Fig. 3.10. The natural frequency of the base

dynamics is 0.1 rad/sec.

The seven-link robot design used in the simulations has two desirable

characteristics. The low inertia with respect to its operational space (see Section 2.8.1)

enhances its ability to control the forces f that it applies to the module. The large CM-

workspace (a circle of about 9m radius) enhances its ability to eliminate its base reaction

forces and moments while it manipulates large flexible modules.

3.6.2 Controller Performance

This section provides simulation results for a sample controller design. The design

of the endpoint force controller is the same as the design described in Section 2.8.3. For

the planar case considered here the base is assumed to be rigid in the X direction. Each

robot needs to regulate only the Y component of its base reaction force. Each robot

reduces the magnitude of its base reaction moment by planning the motion of its joints

and its reaction wheel, Section 3.5.2. In the general three dimensional case, robots can

control all the reaction components of f and y .

The gains of the PD joint controllers for the first five links of the robots are

K,,=1000[38, 22.7, 12, 6, 4] and KDM=1000[14, 8.4, 7, 6, 4]. The gains for the PD

joint controller of the reaction wheel are kpW = 200 and k,= 500. These position
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controllers implement the inner control loop of Fig. 3.8. The PI controller for the Y

component of the base reaction force is (outer control loop of Fig. 3.8):

GBF W)=1+ 1

The dynamics of the GBF(s) controller are one order of magnitude faster than the

dynamics of the base.

The calculation of the Jacobian JRi that approximates the momentum of the robot

is based on the linear and angular velocity of the robot body (heavy middle link) and the

reaction wheel.

The simulation results of this section, correspond to a maneuver of 6 m in the

Y axis within 40 seconds. The desired forces f that robots need to apply to the beam

are calculated from the force planning algorithm of Section 2.5 for

r Gs(At) = [0 -6],Os(At) = 0, At=40 sec, M=20, Wpimax=27t/15 and opimin =27E/80.

Fig. 3.11 and 3.12 demonstrate the effectiveness of the AMVI architecture in

eliminating the base reaction forces and moments of robots that are mounted on

compliant base structures. They show simulation results using the AMVI architecture

(developed for robots mounted on compliant base structures - Chapter 3) and simulation

results using the planning AMVM architecture (developed for robots mounted on rigid

base structures - Chapter 2).

Fig. 3.11 shows simulation results for the Y component of the base reaction force

fbIY of robot 1. AMVM does not control the base reaction forces of the robots. In this

case, the maximum magnitude of the base reaction forces is on the same order of
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magnitude as the command f for this robot. On the other hand, the closed loop control

action of AMVI managed to regulate the Y component of the robot base reaction forces

and keep it below 3 N.

20

15

10

5

0

0

-5

-10

-15

-20L-
0 10 20 30

time [sec]
40 50

Figure 3.11. Simulation results for the Y component of robot 1 base reaction force with and without
base reaction force control action.

Fig. 3.12 shows simulation results for the base reaction torque of robot 1. This

reaction component is not controlled in closed loop because it is a control input for the

robot controller itself. However, Fig. 3.12 shows that AMVI reduced the magnitude of

the base reaction moment by proper planning and control of the motion of the robot

reaction wheel.
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I '1
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z
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-601 1
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Figure 3.12. Simulation results for the base reaction moment of robot I with and without planning
action the motion of the robot reaction wheels.

Fig. 3.13 shows simulation results for the vibration deflection of robot 1 base

using the AMVI (includes base reaction force control) and the AMVM (does not include

base reaction force control). These deflections result from the base reaction forces shown

in Fig. 3.11. When robots use the AMVM architecture, their base reaction forces induce

large vibration deflection in the robot base structures. On the other hand, the AMVI

architecture regulates successfully the Y component of the robot base reaction forces and

keeps the vibration in the LSS within the specifications of Table 3.1.
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Figure 3.13. Response of robot 1 base structure with and without base reaction force control.

Fig. 3.3 shows that large vibration in the robot base structure can deteriorate

significantly the performance of the endpoint force controller. In this case the robots will

fail to position the module, Fig. 3.4. On the other hand, Fig 3.14 shows simulation results

for the endpoint force of robot 1 using the AMVI architecture. The force tracking

performance is good although as good as the result shown in Fig. 2.15, where the robots

are mounted on a rigid structure and are controlled using the AMVM architecture. The

reason is that after t==30 sec the robots tend to approach the region of undesirable

configurations, Section 2.6.4. This can be avoided by increasing the gains of the potential

field function term in Eq. 3.12.
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Figure 3.14. Simulation results for the endpoint force of robot 1. Robots use the AMIVI planning and
control architecture.

Fig 3.15 shows the position response of the beam that corresponds to the force

tracking performance of Fig. 3.14. Fig 3.15 shows that the AMVI architecture succeeds

in positioning the module within the accuracy specifications of Table 3.1 while exciting

low residual vibration in the module and the LSS. The positioning error of the beam CM

is kept below 5 cm, whereas the amplitude of residual vibration in the beam end is kept

below 2 cm. The application of the AMVI architecture made indeed the robots able to

position the beam accurately and with low levels of residual vibration while minimizing

the base reaction forces they exert to their base structure.
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Chapter 4

Conclusions and Suggestions for Future Work

4.1 Contributions of this Work

This work has developed a planning and control architecture for the manipulation

of large flexible structural modules by a team of space manipulators mounted on the LSS.

The key idea of this architecture is that robots can maneuver such delicate structures in a

desired way by planning and control the forces that they apply to them.

Chapter 2 presented the planning and control architecture when the compliance of

the LSS is not considered. The desired forces that robots need to apply to the module are

calculated by a simple force planning algorithm. This algorithm provides smooth sub-

optimal force profiles in a computationally efficient way. Robots control the forces they

apply to the module cooperatively by using measurements of the forces that they apply to

the module. Robots also exploit their redundancy to avoid undesirable configurations.

The resulting Architecture for Minimum Vibration Manipulation makes robots able to

position the LSS module into its desired pre-assembly position accurately and with low

levels of residual vibration.

Chapter 3 expanded the method of Chapter 2 to take into consideration the

compliance of the LSS (AMVI). Robots still use the force planning and endpoint force

controllers developed in Chapter 2 to control the forces they apply to the module.

Furthermore, robots use a base reaction force/moment controller to eliminate the
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components of their base reaction forces and moments that induce significant vibration to

the LSS. The resulting Architecture for Minimum Vibration Interaction (AMVI) makes

robots able to position the LSS module into its desired pre-assembly position accurately

and to excite low levels of residual vibration in the module and the LSS.

The ability of space robots to interact successfully with such large and flexible

space structures depends strongly on their mechanical design. Robots should be highly

redundant, have light links and concentrate their weight in a single middle link (robot

body). Robots should have force/torque sensors in their end-effectors to measure and

control the forces that they apply to flexible structures. Finally, robots can use reaction

wheels to improve their ability to eliminate their base reaction forces and moments.

4.2 Suggestions for Future Work

The manipulation of large flexible structures by robots mounted on compliant

base structures is a very challenging task. The planning and control architecture (AMVI)

developed in this study will be evaluated experimentally in the new FSRL experimental

test-bed, see Appendix B. This work can also be expanded in various directions by

eliminating various assumptions that have been used to simplify the analysis.

The AMVI architecture can be applied to more general cases of space robots -

large space structures interaction, as shown in Fig. 4.1. The system of interest can consist

of many robots of various designs (manipulators or free-flyers) and a number of flexible

structures. In such a system some robots interact at the same time with many flexible

structures. Similarly, some structures interact with more than one robot. In the AMVI

architecture robots perform various tasks to flexible structures (manipulate, damp
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vibration, grasp without exerting forces) by planning and control the interaction forces

that they apply to the flexible structures. The successful execution of these tasks depends

strongly on the effective cooperation between the robots. The performance of the robot

team can be enhanced by using global sensing robots to acquire information about the

state of the robots and the structures [21]. This information can help robots to compensate

the disturbances of their compliant base structures, localize themselves and avoid

collisions.

An important future work direction is the compensation of errors in the

knowledge of the module inertial properties. When robots control only the interaction

forces that they apply to the structures, they need to have accurate dynamic models for

the structures so that they can plan properly the forces they need to exert. Errors and

uncertainties in the dynamic models of the space structures can be compensated by

adding impedance control actions or by using a guidance loop to re-plan the desired

interaction forces.

Another important direction for future work is a deeper study of how the

performance of the robots is affected by the compliance of the LSS. In this thesis, it was

assumed that initially LSS is at rest, therefore vibration in the LSS can be kept small by

exerting small base reaction forces and moments. In reality vibration in the LSS can be

significant. Robots should be able to position the module precisely and safely even if

their bases have some amount of vibration.
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Figure 4.1. Concept for the planning and control of a generic space robots - large flexible structure
interaction using the AMVI architecture.
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Appendix A

Linearized Dynamics of the Robots - Module System

This appendix describes the derivation of a linearized dynamic model of a

representative system considered in this study. The system consists of a flexible module

that is manipulated by two planar robots that are mounted on a rigid base structure, see

Fig. 2.4 in Section 2.3. This linearized dynamic model is used in Chapter 2 to design the

endpoint force controller that is used in the AMVM and AMVI architectures.

The module is modeled as an Euler-Bernoulli beam, see Section 2.3. The beam is

assumed to be rigid in the X, direction and flexible in the Y direction. Assuming small

O,, O, (the axes X, Y are assumed to coincide with X, , Y,) , the dynamics of the beam,

Eq. 2.9 and 2.10, are described as:

X,(s) - lFsx (s) (A.1)

=_ s) G,,Fs S (A.2)
Y2 (s) F :- s2Y()

where X,, Y are the Laplace transformations of the X and Y component of the position

of beam end i (i=1 corresponds to the left end and i=2 to the right end) andF,,(s),

j = X, Y, is the Laplace transformation of the j component of the force f applied by

robot i to the beam.
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Each robot is modeled by a constant inertia matrix BAi and a constant viscous

damping matrix DAi that are attached to the beam at its corresponding end. The constant

matrix BAi used in the derivations is calculated as

B( U() "m _U(i)T (A.3)

assuming constant reasonable values of spmax and pmin (away from singular or

undesirable configurations, Section 2.6.4) and that the principle axis of BA, form a 45

deg angle with the inertial axes X, Y. The constant matrix D Ai is approximated by the

damping matrix DAd that is created by the active damping control law of Eq. 2.32. The

matrix BAi is not diagonal. The linearized dynamics of each robot are:

SXi,(s)~ Tx(s)- F,,, (s)
zRi ( (s) I (s) E(s)= 1 (s)] - [,ix 0] i=1, 2 (A.4)

[ZRXX(s) ZKXT(s)1 i12(A)
ZRi(S)=MAiS+DAs= RXXi W X5i , 1,2 (A.5)

-- - ZRYXi(s) ZRYIS)l

where Fi (s) is the Laplace transformation of y.. The system inputs are the torques T_

applied at the robot joints. These are described through r, (s), because -u. is calculated

from y. through Eq. 2.5. Combining Eq. A.4 with Eq. A.I and A.2 provides the

dynamics between the inputs Fi (s) and the forces applied by robots to the beam F, ,(s):

F= G (s)F, (A.6)

1 (s) + ZRX, (s)G, (s) ZRXY (s)G," (s)
_ Z RYX (s)G, (s) I + ZRYY (s)G (s)(
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where _F=,[FI F2x lY I , F =F,,x Fs2X FsY F2YI and ZRjk(s) is a

diagonal matrix whose i-th element is the (j, k) element of ZR(s). The matrix G_- is

used to calculate the feed-forward action of the robot endpoint force controller, see

Section 2.6.3. The matrix G_-(s) can be written as:

G_' (s) = ID(s)
N(s)

(A.8)

where N(s) is the least common multiple of the denominators of G1 (s) elements. Then:

(A.9)_F, (s) = N(s)D' (s)F(s)

The matrices D(s) and N(s)J are written as:

D(s) = P, H(s) + D L L(s)

N(s)L = NH H(s) + NL L(s)

(A.10)

(A.11)

where (m is the order of the polynomial N(s))

H(s) = s'I

~l(s)

L(s) =

(A.12)

I(s)

1(s)
l(s) = "- m-2

5 s 1 (A.13)

I(s)

By choosing v(s) = D '(s)F(s) then:

_:(s) = D(s)v(s) = D H (s)v(s)+ DL L(s)v(s) --

_D- F(s) = H(s)v(s) + D1 DL L(s)(s)

Choosing as new state xF so that its Laplace transformation is:

XF (s) = L(s)v(s) = L(s)D~ (s)F(s)

(A.14)

(A.15)
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the state equations of the system become

-F F F FBFY

AF = fl

[afI

I

0

0

0

0

I
af2 0

0

0

0
af 3

0

a 2 a a =-D 1DL

0 bf2 0 bf 3

bf2 bf3 b f4 =-D_

The I 's and O's of AF are a result of the definition of L(s). The remaining four state

equations come from the expression of H(s)v(s) and again the definition of the L(s)

matrix. The output equations are found as:

F, (s) = N(s)v(s) = NH H (s)v(s) + N L L(s)V(s)

Fs (s) = NH H(s)v(s) + NLL I F (S)

_F,(s)= (NL - N H 2L )IF (s)+NHD F(s)

so

f =Cx -+D2F
S, F F _F _

CF =L -NH D1DL

_DF =NHLD2

(A.2 1)

(A.22)

(A.23)

It is assumed that DH is invertible. The dynamic model of the system consists of Eq

A.16 to Eq. A.23.
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(A. 16)

0T

0

f4 0

I

(A.17)

0 bf 4 o}

(A.18)

(A.19)

(A.20)

BF :" f I
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Appendix B

Future Experimental Validation

The planning and control architecture developed in this thesis will be validated

experimentally in the new FSRL Interactive Robotic Team Microgravity Test-bed. The

experimental set-up is currently under design and construction.

Fig. B. 1 shows the proposed experiment set-up. Two planar robots manipulate a

flexible structure, which consists of two free-floating modules (about 10 kg each)

connected by a flexible sheet (about Im in length). Each module is based on the smooth

surface of the granite air-table through three flat air-bearings that operate using CO 2.

These bearings almost eliminate the friction between the flexible structure and the table.

Pinned joint Force sensor

Free-floating "module"

Robot Flexible sheet

Robot base
Air table

Figure B.1. Schematic of the proposed experiment.
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Each robot is firmly attached to a floating module by a pinned joint, has three

links (about 15 cm each) and a force sensor at its wrist. This sensor is used to measure

and control the forces that the robot applies to the flexible structure. The robots are

mounted outside the air-table on rigid or flexible base structures. In the later case, each

robot needs an additional force/torque sensor on its base to control its base reaction

forces.

The experiment's objective is to apply the planning and control architecture

developed in this thesis to maneuver the flexible structure from its initial position to a

desired final position accurately and with low levels of residual vibration. The maneuver

distance br is about 50 cm (in the direction normal to the sheet axis). The maneuver

duration At is about 5 seconds (the period of the structure lowest mode is about 1.5

seconds) and the peak forces between the robot and the flexible structure is about 1.2 N.

Large vibi
displacem

(5r

L

Figure B.2. Snapshots of the proposed experiment.
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