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ABSTRACT

Many biological, natural and synthetic materials possess a networked or micro-truss-like
microstructure. In this thesis work, a general microstructurally-informed continuum level
constitutive model of the large stretch behavior of membranes possessing a triangulated
network or truss-like structure is developed. As a specific example, a constitutive model
of the stress-strain behavior of the red blood cell membrane is developed. The mechanical
behavior of the membrane of the red blood cell is governed by two primary
microstructural features: the lipid bilayer and the underlying spectrin network. The lipid
bilayer is analogous to a 2D fluid in that it resists changes to its planar area, yet poses
little resistance to planar shear. A skeletal network of spectrin molecules is crosslinked to
the lipid bilayer and provides the shear stiffness of the membrane. The planar triangulated
structure of the spectrin network is used to identify a representative volume element
(RVE) for the model. A strain energy density function in terms of an arbitrary planar
deformation field is proposed using the RVE. Differentiation of the strain energy density
function provides expressions for the general multiaxial stress-stretch behavior of the
material. The stress-strain behavior of the membrane when subjected to uniaxial and
simple shear loading conditions in different directions is given, showing the capabilities
of the proposed microstructurally-detailed constitutive modeling approach in capturing
the evolving anisotropic nature of the mechanical behavior. The proposed constitutive
model also provides a framework to explore the contributions of mechanically-induced
unfolding. The force-extension behavior of a single modular macromolecule exhibits a
"saw-tooth" pattern due to unfolding giving a sequence of force rise to a peak followed
by a load drop. Using the introduced continuum approach together with single molecule
force-extension behavior and a transition state model of unfolding, large deformation
behavior of two-dimensional networks of biomacromolecules is studied for various
loading conditions. The effect of the strain-rate on the mechanical response is
investigated.

Thesis Supervisor: Dr. Mary C. Boyce
Title: Kendall Family Professor of Mechanical Engineering
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Chapter 1

Background

The structure of cellular solids has been studied since Robert Hooke in the 1660s. A low

density cellular solid is a network of solid struts and/or plates which form the edges

and/or faces of cells.

There are three kinds of cellular solids as grouped by Gibson, L. J. (Gibson and Ashby,

1997):

" 2-D honeycombs,

* 3-D foam with open cells,

" 3-D foam with closed cells.

Cellular solids are found abundantly in nature. Natural cellular materials are often

mechanically efficient. Inspired from natural cellular materials, man-made cellular solids

have been constructed and found to have a variety of applications.

In addition to cellular solids, there are also macromolecular networked structures. There

is on-going research in the field of determining mechanical responses of these networks

by properly incorporating constitutive member behaviors. Some of the example network

structures are: elastomers and biological networks such as: auditory outer hair cells,

cytoskeleton and soft tissues (collagen).

This thesis work will focus on developing constitutive models for two-dimensional truss-

like networked microstructures and Chapter 1 will give a brief background on cellular

solids and macromolecular networked structures.

9



1.1 Major Areas of Structural Application of Man-Made Cellular Solids

Cellular solids are utilized in many applications due to their mechanical properties:

* Cellular materials are used in packaging applications. The material that is used for

packaging should be able to absorb energy without subjecting the contents to

damaging stresses. The strength of the foam can be changed by changing the relative

density of the foam. Also, foams can undergo large compressive strains at a constant

stress, resulting in the possibility of absorbing large amounts of energy without

generating high stresses. Therefore they are also used in protective structures such as

helmets and automobile bumpers. In addition to that, their low densities allow the

design of light structures that are easily shipped and handled with lower cost.

* Man-made foams and honeycombs are used as an integral part of structural materials,

such as sandwich plates. Modem aircraft industry uses honeycomb cores for

providing high bending stiffhess to the sandwich plates. Sandwich plate technology

has other applications where a combination of high stiffness at low weight is

important in the design (skis, space vehicles, etc.).

* Closed cell foams are used as the support material for floating structures. Foams are

damage tolerant in comparison to flotation chambers, because of their closed cell

structure, they retain their buoyancy even when they are damaged. They are used as

the core of the sandwich structures in the deck and the hull of ships for their role in

enhancing the structural stiffness and strength as well as their buoyancy features.

Some examples of the engineering cellular materials are given in Figure 1.1.
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E

Fig.1.1: Engineered Cellular Materials: (a) aluminum honeycomb, (b) closed-cell polyethylene

foam, (c) open-cell nickel foam, (d) closed-cell glass foam, (e) open-cell zinc foam, and (f)

collagen-based porous scaffold used in tissue engineering (Gibson and Ashby, 1997).
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1.2 Natural Cellular Solids
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Fig.1.2: (1.A) Schematic of Balsa Wood, (1.B) Micrograph of Balsa showing axial (top) and

tangential (bottom) faces. (Easterling et al., 1982) (2.A) The micrograph of (a) radial, (b) axial

and (c) tangential sections of cork. The cell walls are corrugated in the undeformed configuration.

(2.B) Schematic of cork cells, hexagonal prisms with 8 faces, 18 edges and 12 vertices. (Gibson et

al., 1981) (3.A) Micrograph of the trabecular bone, showing the open-cell structure. (Vajjhala et

al., 2000) (3.B) Open cellular structure used to model the open-cell structure of a typical

trabecular bone. (Gibson et al., 1982) (4) Natural sandwich structure: (a) skull (b) iris. (Gibson

et al., 1988) (5.A) Micrograph of hawthorn showing the cylindrical shell with the inner foam like

cells. (5.B) Plant stems are modeled as cylindrical tubes with foam cores. (Gibson et al., 1995)
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In this section some examples of natural cellular solids, their microstructure and

mechanical responses as calculated by researchers (Gibson, Ashby, and Easterling) will

be discussed.

1.2.1 Wood: Balsa

Fig.1.3: Uniaxial compression stress-strain curve for medium-density balsa, tested in radial,

axial and tangential directions (Easterling et al., 1982).

The stiffness and the strength of a tree in the axial direction is as large as 20 times that of

the stiffness and strength of the tree in the radial and tangential directions.

There are three features that characterize the microstructure of wood (Figure 1.2.1):

1. The highly elongated cells which make up the bulk of the wood are called

"trancheids" in softwoods and "fibres" in hard woods,

2. The "rays" made up of radial arrays of smaller cells,
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3. The "sap channels" which are large cells with thin walls that carry water up the

tree.

Cubes from balsa wood were cut parallel to the radial, axial and tangential faces. The

compressive stress-strain curves for the samples were recorded (Figure 1.3).

The compression in the tangential and radial directions were found to be almost identical,

except from the subtle drop at the yield stress point. This difference is due to how "rays"

lie in the direction of compression. Compression in the axial direction is different than in

the other directions. The yield stress is much higher in the axial direction and the curve

shows a much different trend than in the other directions. The compression plots show

the anisotropic structure of the balsa wood.

Easterling et al. (1982) also worked on theoretically modeling the balsa wood,

considering the microstructure to be a 2-D honeycomb network. Only in-plane

deformation was taken into account, neglecting the stiffening effect of the transverse

walls. The Young's modulus of the network was calculated using simple beam theory for

the cell wall. Using this approach, the modulus in the radial direction was found to be

twice the modulus in the tangential direction because of the restraining effect of the

"rays" in the radial direction. Another important observation made using the

microstructure geometry and beam theory was that, the moduli depend on the third power

of the relative density as given in Equation (1.1).

The radial modulus was found to be:

ER=2ET =ES (P/PS), (11)

Here ET is the tangential modulus and Es is the modulus of the cell wall material.

16



The theory almost agrees with what was found in the experiments. The axial modulus, EA,

unlike the other two, varies linearly with the relative density. This shows that the

anisotropy in wood increases as the relative density decreases.

1.2.2 Cork

The microstructure of cork resembles that of wood (Figure 1.2.2). In the radial view, the

cells are hexagonal cells and in tangential and axial views, the cells resemble rectangular

bricks. Cubes from cork were cut parallel to the radial, axial and tangential faces. They

were deformed in compression and tension. The uniaxial compressive stress-strain curves

of the cork cubes is given in Figure 1.4.

10 -

E ~~ energy
0 0.2 0.4 0.6 0.8 1.0

nominal strain, 4/l- 1

Fig.1.4: Uniaxial compressive stress-strain curve of cork (Gibson et al, 1981).

The difference in the response of cork and balsa wood is that cork can be assumed to be

isotropic in the plane, because of its rather simple in-plane geometry. When cork deforms,

17



the cell walls buckle and bend. After the maximum stress, amax, shown in Figure 1.5, the

cells completely collapse. The response in the radial direction has been found to be

significantly different than the in-plane direction. Tensile deformation along the prism

axis unfolds the corrugated cell walls. Compressive deformation folds the corrugations

even more.

Gibson et al. (1981) also worked on theoretically modeling cork. They found the relative

density from the geometry, in terms of the thickness of the cell walls, length of the

hexagonal sides and the height of the unit prisms. The in-plane deformation of 2-D

hexagonal cells was analyzed in the same manner that Easterling et al. (1982) analyzed

the balsa wood. The material has been treated as a network of connected elastic beams

that bend and buckle. The moduli in the axial, EA, and tangential, E1 directions were

found in terms of the relative density, and the modulus of the cell wall material, Es:

EA= ET=0.5 Es (p / ps) 3. (1.2)

The radial stiffness is found from the stiffness of a corrugated hexagonal prism. The

radial modulus was found to be:

ER= 0.70 Es (p/ps). (1.3)

This equation predicted the modulus to be a factor of 50 higher than that found in the

experiments. A possible reason for this difference can be the corrugation of the cell walls

in the calculation which had been neglected in the calculations.

Another interesting feature of cork is that compression in the axial direction does not

result in any lateral expansion giving a Poisson ratio of zero. The reason behind this is

noted to be the corrugation of the cell walls.
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1.2.3 Trabecular Bone
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Fig.1.5: (A) A schematic stress-strain curve for a foam, (B) Young's moduli of cancellous bone

plotted by Ashby and Gibson 1997(a), The compressive strength of cancellous bone (b) plotted by

Ashby and Gibson 1997.

Trabecular (cancellous) bone is commonly found at the center of long bones and consist

of regularly ordered plates and struts. Bone grows in response to load such that the

density of the bone depends on how much load it is carrying. Also, the orientation of the

trabeculae depends on the direction of loading. If loads are equal in all three dimensions,

equiaxed cells form in the bone. For lighter loads, rod like open cells form and for higher

loads, perforated plates form. Because of this variation in trabecular architecture, there is

also a variation in the mechanical responses of different trabecular bones. If the structure
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contains rod like open cells, then it is modeled as given in Figure 1.2.3.A. For this model

the elastic modulus is proportional to the square of the ratio of the relative density:

E CI P (1.4)
Es LPs)

The basic uniaxial compression stress-strain curve of a trabecular bone is given in Figure

1.5.A.

The typical compression stress-strain curve (Figure 1.5,A) has three parts: (i) linear

elastic region, (ii) plateau (plastic yielding and buckling) region, and (iii) densification

region. The equiaxed cells first deform in a linear elastic behavior by bending or

extension of trabeculae. For a trabecular bone with relative density of p*/ps = 0.4, a

typical value for the plateau stress is ap,* = 37 MN/m 2 (Hayes and Carter, 1976).

1.2.4 Sandwich Structures: Iris Leaf, Skull

Many natural materials possess a sandwich beam structure. The skull has two outer faces

of dense bone separated by trabecular bone. The iris leaf has two outer membrane faces

which are similar to fiber composite materials separated by a core of thin walled cells

(Figure 1.2.4). The sandwich structure provides the leaf structural stiffness and strength

and low mass to keep the upright position in the plant.

Mechanically, sandwich plates are efficient at resisting bending and buckling. The

separation of the faces by the foamed core section can dramatically increase the moment

of inertia, I, of the structure, while only slightly increasing the weight. The deflection of

the structure depends on 1/EI, so that the core of the structure increasing the moment of

inertia of the structure results in increased stiffness of the structure.

20



The bending stiffness, EI, of a sandwich beam can be approximated by:

Eft2
(EI)= Efbtc , (1.5)

2

where Ef is the Young modulus of the faces, t and c are the thicknesses of the faces and

the core respectively and b is the width of the beam. Here it was assumed that the

Young's modulus of the core was much smaller than the Young's modulus of the faces.

Also the faces are assumed to be much thinner than the core. The core gives rise to shear

deflections. The shear stiffness of the core is given as:

(AG) = bcGc. (1.6)

1.2.5 Tubular Structures: Plant Stems, Animal Quills

The tube structure with the foam core (Figure 1.2.5, A) provides the stem of a plant a

high resistance against buckling failure due to the weight of the plant. The plant stems

resist the bending moment from their own mass as well as that from applied loads. Plant

stems were modeled by Gibson et al. (1995) as axisymmetric, cylindrical tubes with foam

cores (Figure 1.2.5,B).

Using the axisymmetric cylinder model for plant stems, under uniaxial compression the

shell with a foam core has a higher resistance to both global and local buckling than a

hollow shell due to the enhanced global bending resistance and due to the foam core also

providing a resistance against local buckling of the outer shell. The shell with a foam core

was found to have a higher buckling resistance for thin and thick shells (Figure 1.6).
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Fig.J. 6: The buckling resistance of the foam core cylindrical shell to that of the hollow

cylindrical shell (A) for uniaxial compression, (B) for bending; the relative density of the foam is

decreased as: (i), (ii), (iii) Gibson et al. (1995).

Experiments have also been conducted to compare with the theoretical model. Silicon

rubber cylindrical shells with and without foam cores were tested under uniaxial

compression and four point bending. The experimental results agreed with the theoretical

results.

1.3 Man- Made Cellular Materials

In addition to natural cellular materials, there are also man-made cellular materials. There

is on-going research in the field of man-made cellular materials (Ashby et al., 2000,

Brittain et al., 2001, Chiras et al., 2002, Evans et al., 2001, Wallach and Gibson, 2001,

Wicks and Hutchinson, 2001).

In this section we will look at some of the approaches taken to model truss-structured

materials recently being developed and used in applications that typically had used foams

22



and/or honeycomb cores. These structures are not only light-weight, but also possess

high stiffness and strength due to the constitutive members' ability to carry axial loads

and the tailoring of the truss geometry to optimize the positioning for efficient utilization

of the member stiffness and strength contribution to the structure as a whole.

There are three methods to model cellular materials:

i. Dimensional arguments,

ii. Analysis using repeating unit cells,

iii. Numerical micromechanical modeling using finite element methods.

Wallach and Gibson, 2001 used the approaches: (ii) and (iii) to model materials with

periodic, three-dimensional truss-like structures (Figure 1.7).

Fig.1. 7: Photograph of a 3D truss structure made from an aluminum casting alloy (Wallach and

Gibson, 2001).
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They worked on a millimetric periodic array of an aluminum alloy. The mechanical

response of an infinite plane of truss materials was calculated from that of the unit cell. A

unit cell isolates a repeating structural unit of the material and accounts for the influence

of its neighbours through proper periodic and symmetric boundary conditions (Figure

1.8).

h

b

b

Fig.1.8: The sketch of the unit cell used for the infinite plane of truss materials. The triangles are

isosceles right triangles with the inclined members at 450 to the horizontal member. Here, h/b is

the aspect ratio of the unit cell (Wallach and Gibson, 2001).

Wallach and Gibson (2001)'s analysis of uniaxial tension included two steps of numerical

simulations. They conducted numerical analysis using MATLAB for the case of a linear-

elastic material. And then studied the non-linear response at large deformations

employing a finite-element code: ABAQUS.

In addition to looking at the infinite number of cells in the x and y planes, they also

looked at finite number of cells' responses with respect to an infinite sized array of unit

cells. The truss elements in the structure carry axial loads, the effective Young's moduli
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and shear moduli are noted to vary linearly with the relative density as given in Equation

(1.7).

E*/Es = C, (p*/ ps),

G*/Gs= C2 (p*/ ps). (1.7)

The stress-strain curves for a network made of several cells under compression was

plotted (Figure 1.9,A.).

Ezperumenta R..pon.. of Lattice Bltock Specimens

20 Laulce Block Spochnn Shear Test

16 1-8
14 1.6

12.

S0.8
40.6

4
04

2
0.2

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 0 % . . .
Stran 0.0% 0.2% 0.4% 0.6% 0.6% 1.0%

- M-X-d R1ecio: 5 cex x1s specimen Strin
- Y-dcon: 1 cot x 5 cad specimen
- Z-dkecton: 1.5 coN x 2 waN specimen

(A) (B)

Fig.1.9: (A) Measured compressive stress-strain behavior for loading the truss material in x, y, z

directions, (B) Measured shear stress-strain behavior for loading the truss material in x-z plane.

In the x and z directions, the initial slope was found to be the same. In the z direction, the

curve has a linear trend up until a strain about 0.7%, and because of the measuring

difficulties, there were two tests they carried out which determined the failure stress and

the linear trend up to that point. In the x direction, when the members failed there was a

sudden drop in stress. The failure in the y direction was because of fracture in the top and

bottom face members and buckling in the core members. The buckling is seen in the

Figure 1.13 for the y direction.
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The measured shear stress- strain curve gave an initial shear modulus of 1.17 GPa.

Because of the debonding (Figure 1.14) of the specimen from the aluminum plates, the

failure in shear was not measured. The measured moduli were compared to the

calculation. Figure 1.10 gives the comparison for loading in the x direction. The

discrepancy between experiment and model for Ex, Ey, E, and Gx has been found to be -

15%, +3%, +7% and -27%, respectively.

X-dOr Response: Compare Model and Experiment

8

7-

o Model
- Experiment

1 1

2

0
0.0% 0.5% 1.0% 1.5% 2.0%

Strain
Fig 1.10: Comparison of experiments to the calculated response.

Table 1.1: Comparison of predicted and experimental elastic properties.

Failure stress for lattice block material. model and experiment

Experiment (MPa) Model (MPa)A Model ( V/experiment

'F; 6.51 ).S (7.2 ) 1.12
18.31 15.11 (14.72) 0.80

'; 9.01 8.92 (8.42) 0.93
Specnimen sixs: x and y direction specimens were 5 cells / I cell. The : direction specimens were 2 cells - 4 cells.

'Two values Ibr each model are given. The first is for a geometrically perfect model, and the (second) is for a model that includes
random distortions in initial node position.

26



Ultra Light Structures

Minimum weight designs are identified by the failure modes. For flat panels subject to

bending, honeycomb core panels are always found to be lighter for the same performance

(Figure 1.11 .A). However, foam core sandwich structures have superior performances in

specific cases, because of their isotropic nature when compared with the honeycomb

structures. Examples of designs that require that specific loads be supported at minimum

weight are given in Figure 1.11 .B.

4U

Fled ,, am ,

Wafe Panel

0.006 Tru Plate 2

Ip~~ . .. . . ......
MHZ =0 1 2 L

Foam /fn' -plL
2

*X104)
0.004 Core

0N0 0 D0A 20 0 1.
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O0 0-2 0A 06 0A.8 1.0

(A) (B)

Fig.1.11: (A) Comparison of four core configurations. The minimum weight as a function of

collapse load P. (B) Minimum weights is compared for axially compressed configurations as a

function of load index. (a) Annual design has the lowest weight. (b) Sandwich structures have

lower weight than axially stiffened structures. (Evans et al., 2001)
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Fig.1.12: Crushing force as a function of axial compression for foams, empty tubes and tubes

with foam cores.(1)+(2) refers to the expected experimental result from crushing the tubes with

foam cores (Evans et al., 2001).

High Energy Absorption

Cellular materials are noted to have the highest energy absorption per unit mass of any

material as given by Ashby et al. (2000). The isotropy of the foam is a superior feature

for impacts. Figure 1.12 gives the crushing force vs. axial compression for empty tubes

and tubes filled with foam cores. The result is interesting in the sense, Evans et al. (2001)

showed that the addition of the responses of the empty tubes and the foam itself gives

rise to lower crushing force than the actual case they found from the experiments when

they compressed the tubes with foam cores, They explained this phenomenon as a

"synergistic effect". This is analogous to the plant stems in the sense of the foam core
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acting to increase the global bending stiffness and buckling loads as well as the local

buckling conditions.

1.4 Fabrication of photonic crystals with fcc, bcc and cubic symmetries
using interference lithography

Interference litography can be used to fabricate 3D nanoscale structures which are

analogous to truss-like mechanical structures. They have the potential to provide high

stiffness, strength, as well as low density and enhanced energy absorption properties. The

periodic microstructure is generated by interfering four coplanar or noncoplanar laser

beams in a film of photoresist (Campbell et al., 2000, Ullal et al., 2004, Yang et al., 2005).

Photolithography is the process of applying a pattern to a substrate material. The material

can be anything of interest, typically it is semiconductor material either in wafer or piece

form. The lithography process consists of several key steps:

* Mask fabrication

" Photoresist application

* Mask alignment

" Development

Thomas' Group Work

The Thomas Group (MIT, Materials Science) constructed 2D and 3D periodic structures

in polymeric thin films using interference lithography. 2D and 3D nanotrusses were

fabricated using multibeam holographic interference lithography (Figure 1.13).
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Fabrication Procedure

1. Making the Solution (Solution: Raw SU8 + initiator + base + solvent),

2. Pre-baking: to evaporate the solvent,

3. Exposure: to produce the interference pattern on the epoxy based photoresist

(the interference of three of four equal amplitude beams of visible light from

a continuous wave laser),

4. Post baking: to move the polymer for reaction and to crosslink,

5. Development: washing away (in PGMEA-colorless liquid) unexposed parts,

6. Drying.

(A) (B)

Fig.1.13: (A) 2-D and (B) 3-D periodic nano structures fabricated from holographic interference

lithography (Choi et al., 2005).
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(A) (B) (C)

Fig. 1.14: SEM images showing the deformation of SU8: (A) cracks propagating at 1200, (B)

large openings with bent ligaments bridging opposite sides and (C) overstretched and fractured

beams in the vicinity of crack tip showing plasticity in the top and sub-layer struts. (Choi et al.,

2005).

Although the mechanical behavior of the micro truss structured materials have not yet

been quantified, the materials have been deformed (however forces and strains were not

measurable). The "struts" of the microtruss are observed to undergo large strain plastic

deformation. The extensive deformability of these struts may be a length scale effect (the

struts are ~150 nm in diameter) imparting ductility to the SU8 (which is brittle at the

macro-level, Figure 1.14) or it maybe a lower cure than thought.
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1.5 Macromolecular Networked Structures

(1)

Tubulin

(2) (3)

Actin

(4)

(5) (6)
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Fig. 1.15: (1) A schematic of an elastomer microstructure showing the long-chain molecules and

the crosslinks that bind them, (2) The array of microtubules in a fibroblast. The bar is

10pn.(Boal, 2003) , (3) 2-D network of spectrin protein in the red blood cell membrane (Liu et

al., 1987), (4) A micrograph of the rabbit muscle actin and tubulin (Nakamura, 2001), (5) Single

hair cell bundle in the inner ear (Furness and Hackney, 1990), (6) Crosslinked filaments inside a

nerve cell from a frog. The bar is 0.1 pum. (Boal, 2003), (7.A) Arrangement of collagen fibrils in

corneal stroma (Miller and Benedek, 1973), (7.B) Collagen type Ifibril (left) in tendon and type

Hfibril (right) in cartilage (Gelse et al., 2003), (8) A micrograph of infected mouse keratinocytes

(Roper et al., 2001).
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In addition to cellular solids which can be considered as networks of solid struts and

walls, there are also macromolecular networked structures. Elastomers (Figure 1.15.1) are

the basic family of these type of microstructures. The presence of long chain molecules

with freely jointed links and weak secondary forces between the molecules are the basic

characteristics of rubbers (Treloar, 1958 and Flory, 1953). Crosslinking of the molecules

at junctions along their lengths form a three dimensional network.

Biological networks are another class of molecular networked structures. There exist

many examples of these structures in nature (Figure 1.15.2-8). One of the examples of

two dimensional networks in the animal cell is the spectrin network (Figure 1.15.3). The

spectrin network is a 2-D triangulated network of protein molecules; micrographs

usually show the stretched form and make the six-fold symmetry clear. There are also

three-fold coordinated biological networks, such as the auditory outer hair cell (Figure

1.15.5).

In addition to the 2-D networks existing in the cell, there are also 3-D networks in the cell.

For example, keratin intermediate filaments (Figure 1.15.8) extend through the cytoplasm

and are attached to the cell nucleus and plasma membrane (Boal, 2003). Actin network is

another example of the 3-D networks present in the cytoskeleton where the actin

molecules are crosslinked by other protein filaments to form networks (Figure 1.15.4).

There is also a microtubule network in the cytoskeleton, where the microtubules are very

stiff elements. Figure 1.15.2 gives the microstructure of microtubules which are

polymeric protein filaments of tubulin monomers present in the cytoskeleton (Boal, 2003).

Some soft tissues have networked structures as well. An example of this class is the

connective tissue which contains collagen, the fibrous protein (Figure 1.15.7). Collagen is
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the most abundant protein in animals, mainly supporting skin, tendon, bone, cartilage and

connective tissue.

The following chapters in this thesis will concentrate on deriving a constitutive model for

the two dimensional macromolecular triangulated networked structures. Specifically the

spectrin network will be studied in the following chapters.

In Chapter 2, basic red blood cell membrane properties and the importance of modeling

the spectrin network (which resembles a two dimensional triangulated network) in

investigating the mechanical properties of the red blood cell membrane will be discussed.

Previous work on the constitutive modeling of the mechanical properties of the red blood

cell membrane and the previous approaches in modeling triangulated nets will be studied.

Then the chapter will mainly concentrate on the proposed general continuum level

constitutive model of the large stretch behavior of the red blood cell membrane that

directly incorporates the microstructure of the spectrin network.

In Chapter 3, the previous theoretical and experimental studies on the unfolding of single

molecules possessing folded domains will be given. Then later in the chapter, using the

introduced continuum approach and statistical mechanics based models of the chain

force-extension behavior together with a transition state model of unfolding, a

constitutive model for the membrane stress-stretch behavior will be constructed.

Chapter 4 will provide a summary of the proposed model and will elaborate on possible

applications of the same methodology to explore additional complexities in various other

microstructures. The methodology will further be extended to investigate three-

dimensional structures.
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Chapter 2

Constitutive Modeling of the Stress- Stretch Behavior

of the Triangulated Spectrin Network

2.1 Introduction

In this chapter, a general continuum level constitutive model of the large stretch behavior

of the red blood cell membrane that directly incorporates the microstructure of the

spectrin network is developed. The triangulated structure of the spectrin network is used

to identify a representative volume element (RVE) for the model. A strain energy density

function in terms of an arbitrary planar deformation field is constructed using the RVE

together with various representations of the underlying molecular chain force-extension

behaviors. Expressions for the nonlinear finite deformation stress-strain behavior of the

membrane are obtained by proper differentiation of the strain energy function. The stress-

strain behavior of the membrane when subjected to tensile and to simple shear loading in

different directions are obtained, demonstrating the capabilities of the proposed

microstructurally-detailed constitutive modeling approach in capturing the small to large

strain nonlinear, anisotropic mechanical behavior. The sources of nonlinearity and

evolving anisotropy are delineated by simultaneous monitoring of the evolution in

microstructure including chain extensions, forces and orientations as a function of

macroscopic stretch.
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2.2 Red Blood Cell Membrane Properties

Human red blood cells are disc-shaped. Red blood cells experience deformation when

they travel through the circulatory system. These deformations can be quite large

especially when the red blood cells enter a capillary, where the human red blood cell

diameter is approximately 8 ptm, while the diameter of a capillary is around 3 ptm. In the

capillary blood vessels, the blood cell shape becomes bullet-like (Figure 2.1) (Fung,

1993).

Fig. 2.1: The video-micrograph of a red blood cell drawn into a pipette (Jones et al., 1999).

In spite of the large deformations that the Red Blood Cells go through, they recover their

shape once the applied load is released. The shear modulus of the cell membrane should

be small enough to accommodate the shape change but should be large enough so that the

membrane will recover its shape.
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To model the elastic response of the membrane, one should take a look at the

components of the membrane that provide the mechanical responses.

Fig. 2.2: The sketch of the lipid bilayer and the underlying spectrin network (Mohandas and

Evans, 1994).

The interior contents of a cell excluding the nucleus is called cytoplasm. The fluid

component of the cytoplasm is called cytosol. The fluid-like membrane that bounds the

cell is called the lipid bilayer. Cytoskeleton lies beneath the lipid bilayer and, in most

cells, also throughout the cytoplasm and is attached to the bilayer. The cytoskeleton is the

filamentous network composed of microtubules, intermediate filaments, actin and

spectrin (Figure 2.3). In the red blood cell, a network of spectrin molecules lies tangential

to the bilayer and is connected to the bilayer through transmembrane proteins. The

spectrin network is constituted with x- and P- protein chains. The a and P protein chains

form a heterodimer; 2 heterodimers combining back-to-back to form a spectrin tetramer
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(Figure 2.4). The contour length of the heterodimer is I00nm while the heterodimers

associate head to head to form tetramers of contour length of 200nm (Mohandas and

Evans, 1994).

Fig. 2.3: A picture of the lipid bilayer and the protein network attached to it (Becker et al., 2000).

Fig. 2.4: Sketch of (A) spectrin heterodimer, composed of an a and a '8 polymer chain, (B) 2

heterodimers back to back form a spectrin tetramer.

The lipid bilayer is analogous to a two-dimensional fluid in that it resists changes to its

planar area, yet poses little resistance to planar shear as noted as early as 1948 by Ponder

(Ponder, 1948). A skeletal network of spectrin molecules is crosslinked to the lipid
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bilayer and provides the shear stiffness of the membrane. Experiments have documented

a membrane planar area modulus of approximately 5(102) dyn/cm and a membrane planar

shear modulus of approximately 6(1 0-3 )dyn/cm (Mohandas and Evans, 1994).

2.3 Previous Work on Red Blood Cell Mechanical Properties

2.3.1 Constitutive Modeling: Skalak, Evans, Mohandas, Hocmuth

Fung and Tong (1968) first introduced a relationship between the principal stresses and

the principal strains in terms of the isotropic elastic Lame' constants t and X:

T1 =h( peJ I + A(ej]j +e2 2 )), (2.1)
T2 = h (pe2 2 + A(ej 1 +e22)).

Here, h is the thickness of the membrane. These equations hold for small strains.

Skalak et al. (1973) noted that the strain energy function for the human red blood cell

membrane contains two terms in it, one related to the area change, and the second related

to the elastic modulus at constant area, i.e the shear modulus. Evans (1973), Skalak et al.

(1973), and Evans and Hochmuth (1977) emphasized that the membrane behavior is

essentially a two-dimensional analogue to a rubbery solid which shears readily, yet is

nearly incompressible.

Skalak et al., (1973) used alternative forms of the invariants defined as: I=2(e1 +e22) and

I2= 4e11e22+2(eii+e22), where ell= %/ (A, 2 1) and e2 2 =2 (A2
2 _1).

These definitions give:

S2=Al2+A222_2

2 =12 222 dA 2 
(2.2)

dAO
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The preservation of the area constraint gives:

12=0. (2.3)

Then Skalak et al. (1973) postulated a hyperelastic constitutive model, considering a

plane thin rectangular element, to define the stress-stretch relationships.

The simple form of strain energy density equation Skalak et al. (1973) used was in the

Neo-Hookean form of:

W = 1('12+1 1 1 2 )+ 1 I2 2; (2.4)
4 2 8

where B and C are taken to be constant material properties.

Using continuum mechanics approaches:

The first Piola Kirchoff Stress is found from:

SY= aw (2.5)

and, the Cauchy Stress is found from:

1 8xj 8 x-T-- =Sk -i (2.6)
J 8Xk 8Xl

Here xi is the final coordinate, and Xk is the initial coordinate, and J is the determinant in

the form of:

ax- = - A22 (i, j = 1, 2, 3). (2.7)

The uniaxial tension-stretch curves introduced by Skalak et al. (1973) agreed with

Hochmuth and Mohandas (1972) results.
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Evans represented the energy per unit area of the hyperelastic membrane network as:

E= (p 22 + A2 22, (2.8)

where A, and 2 are principal stretch ratios for a unit rectangle element and p is the shear

modulus of the membrane. Note that Equation (2.8) should read

E = ( 2J2 + A22 - 2) 2, to account for zero energy when Aj = A2 =1.

Mohandas and Evans, in their review paper from 1994, examined the outcomings of the

experiments conducted over the period from 1974 to 1994. They studied the relations

between the architecture and the mechanical properties of the cell membrane.

The structural determinants of the membrane elastic properties can be summarized as

follows:

A. Membrane Area (Dilatation Elasticity)

B. Membrane Bending Elasticity

C. Membrane Extensional Elasticity

A. Membrane Area (Dilatation Elasticity)

Evans showed the area restrictions using Micro-pipette aspiration techniques comparing

an osmotically preswollen red cell and a bilayer vesicle (Figure 2.5). He showed that the

red blood cells and the lipid bilayer rupture at an expansion of only 2-3%. Meaning, the

surface area change that a cell can undergo is negligible. However red cells lyse at lower

tension levels than the bilayer vesicles, meaning, the underlying protein network

somehow weakens the red cell. From here, it can be concluded that the resistance to

change in surface area is due to the lipid bilayer. They derived, from the micro-pipette

aspiration experiments, that the planar area modulus of the membrane is 500 dyn/cm.
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Fig. 2.5: The video-micrograph of a phospholipid bilayer (left, diameter=20pm) and a pre-

swollen red cell (left, diameter=6pm) drawn into a pipette showing the change in the surface

area of the membrane is correlated with the bilayer in the red blood cell (Mohandas et al., 1994).

B. Membrane Bending Elasticity

The lipid bilayer dominates the opposition to bending (Evans et al., 1980). When the red

cell membrane is deformed by aspiration into a micropipette (Figure 2.5), the bending

stiffness regulates the shape of the membrane at the entrance.

C. Membrane Extensional Elasticity

To look at the extensional elasticity of the membrane, demonstrations are done by

aspiration of a flaccid discocyte in a small suction pipette (Figure 2.6). The lipid bilayer

dominates the planar area modulus and bending stiffness of the cell (Evans et al., 1980).

However, the lipid bilayer contributes negligibly to the extensional rigidity of the red cell

as it is similar to a liquid layer. The suction pressure is much bigger than the threshold

stress required to overcome the bending rigidity of the membrane, therefore the plots of

the suction pressure vs. the aspiration length gives the coefficient of extensional rigidity
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of the red cell, p. From the mechanics point of view, p is a measure of the planar shear

stiffness.

Extensional elasticity represents the major reason of the recovery of the cell's shape after

deformation and it is mainly due to the shear response of the protein network underneath

the bilayer.

Fig. 2.6: The video-micrograph of the red blood cell discocyte aspiration(Mohandas et al., 1994).

2.3.2. Triangulated Nets: Discher, Boal, Boey, Wintz

Discher et al. (1997) modeled the spectrin network as a C6 network of Hookean springs.

Discher et al.'s triangulated network (Figure 2.7):

i. Maintains connectivity at all times, long-range atomic diffusion or self avoiding

elements do not exist in the network.

ii. It is constructed of linear elements which are thin rods that do not overlap, except

at the vertices.

iii. Defects in the triangulated network are excluded.

iv. Any energy storage due to angle change between elements in the strain energy

function is excluded.
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v. Only in-plane motions are allowed in the model (i.e. out of plane buckling is

excluded).

These researchers (Discher et al., 1997) formulated the expressions for the elastic strain

energy for triangulated networks as a function of the distance between vertices and the

area of the triangles.

Wintz et al. (1997) referred to the network as a hexagonal network of chains with

Hookean spring behavior. They noted that the constituent chains have a non-zero end-to-

end distance since they have a self-avoiding nature and the network has a non-vanishing

area.

Wintz et al. (1997) discussed a phenomenon called the "collapse" phenomenon. At low

temperatures, the networks undergo a "collapse transition" with increasing compression.

In the 2-phase region, collapsed and non-collapsed triangles coexist. Discher et al. (1997)

also defined the collapse state as the state at which the triangle completely

transforms/crushes into a line (Figure 2.7). Since this state is against the assumption of

bond interactions and area diminishing, it is called "collapse" state. This state is not

reached for the real network. This collapsed state is impossible because of the existence

of the bilayer which constrains the area change needed for such a collapse.

8
9 92 -2

8 4
9 3

Fig. 2.7: C6 to C2 transition of the network unit cell (Discher et al., 1997).
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Wintz et al. (1997) mentioned in his paper that, one application of the hexagonal network

formulation is the protein skeleton of the red blood cell membrane. These researchers

also noted that when the membrane is compressed, instead of buckling into the third-

dimension, if the bending modulus of the membrane is large enough, lateral compression

of a network patch occurs (Figure 2.8).

Fig. 2.8: Wintz et al.'s network under compression (1997).

Discher et al. (1998) worked on a network of molecular chains represented by the WLC

model (Marko and Siggia, 1995). The WLC, characterized by two parameters, the

presistance length, A and the locking stretch, Ac, provides a better describtion of the

network behavior than do the Hookean springs. The polymer network, unlike the spring

network do not display collapse transformations under compression.
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2.4 Constitutive Model

The constitutive model development for the general membrane stress-stretch behavior of

the triangulated spectrin network follows the successful methodology of rubber elasticity

(Trelor, 1958, Arruda and Boyce, 1993, Boyce and Arruda, 2000) and can be broken

down as follows:

" Idealization of the networked microstructure and identification of a Representative

Volume Element (RVE),

" Application of macroscopic deformation to the RVE,

* Assignment of mechanical behavior to constituent elements of the RVE,

* Determination of the RVE strain energy,

* Differentiation of the strain energy function to obtain the general multiaxial stress-

stretch behavior.

Fig. 2.9: Electron micrograph of a spread human erythrocyte cytoskeleton (Liu et al., 1987).
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2.4.1 Microstructure Idealization and Corresponding Representative

Volume Element

L2 =X2 L2 0

j32

C B
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r0
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Fig. 2.10: Schematic of the planar triangulated network in (A) the undeformed state, also

depicting Voronoi tessellation to identify the area of the RVE; (B) when stretched in the 2-

direction (planar area is preserved); (C) the representative volume element.

Examination of spread red blood cell membranes by high resolution negative staining

electron microscopy reveals the microstructure of the spectrin network (Figure 2.9). A

planar network is observed where typically 5-6 spectrin molecules emanate from each

crosslink site forming a rather regular triangulated network. This structure has also been

referred to as a hexagonal lattice structure (Boey et al., 1998), where we note six triangles

form each hexagon. We idealize this microstructure as a regular planar triangulated

network as shown in Figure 2.10. Therefore the representative unit cell to analyze the

mechanical behavior is chosen to be an equilateral triangle (Figure 2.10, C). Noting that

each chain in the unit cell triangle also contributes to its neighboring triangle, we use

Voronoi tesselation to identify the area affiliated with the chosen unit cell RVE (Figure

2.10, A). Voronoi tesselation gives the area associated with the RVE constituents to be
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twice the area of the RVE triangle; this area will be needed for properly constructing the

strain energy density of the network later.

2.4.2 Deformation of the Network R VE

An arbitrary planar deformation is applied to the unit cell equilateral triangle where the

planar deformation gradient F2D is defined in the 1-2 frame as:

_ x F i F121
F2D- a -=j where x is the deformed position of a material point and X is the

aX _F21 F22I

reference position. The RVE is subjected to an arbitrary deformation gradient (Figure

2.11), giving the stretch of constituent network chains A, B, C in terms of the

macrosopic deformation gradient. The simplicity of the unit cell triangle RVE provides a

unique, kinematically-determined mapping of the macroscopic deformation gradient to

the microscopic network deformation. Denoting the current end-to-end distance of each

chain as r,(i = A, B, C), the axial stretch of each chain in the network is, ,i = ri (i = A, B, C)
ro

and can be expressed in terms of an arbitrary planar deformation gradient:

AA =F2 +F2 ) 21
v'3-A [F/1 2)2J

AB =j(FU -F 12  +( F2 1 -F2 2  ) (2.8)

C = (F + Fl2_3 +(F2 j + F -)2)2
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Fig. 2.11: Schematic of the RVE in undeformed configuration (solid lines) and when subjected to

an arbitrary planar deformation gradient (dashed lines).

2.4.3 Constitutive Stress-Stretch Behavior of Chains

The stress vs. stretch relationship of the membrane will depend on the axial force-

extension behavior of the constituent chains. In this paper, two representations of chain

behavior will be studied: linear axial extension behavior and non-Gaussian freely-jointed

molecular chain behavior.

2.4.3.1 Linear Chain

The linear force-extension behavior of a chain is given by:

Tch = kchro (Ach -1); (2.9)

with corresponding strain energy:

AhC = Ikchro 2 (Ach -1) 2 ;(2.10)

where kch is the chain axial stiffness in units of force/length and ro is the initial chain

length.
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2.4.3.2 Molecular Chain

The force-extension behavior of a molecular chain is taken to follow that of a non-

Gaussian freely-jointed chain obtained from statistical mechanics treatments of long

chain molecules (see, for example, Treloar (1958)).

The Freely Jointed Chain

The freely jointed chain (FJC) model idealizes a molecular chain to be constructed of N

rigid Kuhn segments of length 1 which are free to rotate with respect to one another at

their joints; the fully extended contour length is then:

Le = N. (2.11)

The FJC can accommodate an end-to-end distance r by many different configurations of

these connected links and the links will continuously sample this configuration space

through thermal fluctutations. Statistics are used to study these configurations as a

function of end-to-end distance and thus determine changes in entropy with extension.

r0  r

Fig. 2.12: A schematic of the initial (ro) and current (r) end-to-end distance of a long chain

molecule under deformation.

A. Gaussian Statistics

Kuhn and Grun (1942) derived the probability density function which shows the position

of the end of a randomly jointed chain when the beginning point is held fixed. This
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function is only approximate because it assumes the end-to-end distance of a chain is

much smaller than its contour length, i.e. r<<Nl.

If a chain lies in a spherical shell of radius r, the probability density at a point r is:

P(r)= 3 2 exp -3r 2 (2.12)
.21rN13 _2N12

Boltzmann developed the general principles of statistical thermodynamics where entropy

(S) is proportional to the number of configurations of a system:

S = B [ln p(x,y,z)dV=c - 9KBN2 1r2 (2.13)
4

where KB is the Boltzmann's constant and c is an arbitrary constant.

The Helmholtz free energy for the chain is

AV/ = -OAs (2.14)

where 0 is the absolute temperature.

Average tensile force acting along the direction of r, f:

f -- = _ dS _ 9 BON214r (2.15)
dr dr 2

B. Non-Gaussian Treatment of Single Molecules

Gaussian theory is for small to modest extensions of the chains since the Gaussian

probability distribution function does not account for the fact that the number of

configurations that can accommodate an end-to-end distance r will become severely

1
limited when r > - n1 and will not follow equation (2.10). The non-Gaussian probability

3

function, as derived by Kuhn and Grun (1942) is given by:
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1np(r) =c-N r 8+ln =c-N {1r1J+ 9 + +...Mr (2.14)N1 sinh 8 2 N1 20 N1 350 N1

where,

18 
1

( C) - = coth? - -, (2.16)

N 1 . (2.17)

N

The inverse Langevin function is a function of the ratio of current end-to-end distance of

a single chain to the contour length of the chain. The inverse Langevin function is a

mathematical explanation of the upturn in stress experienced at large stretches as the

number of configurations of the rigid links to accommodate r -}Nl becomes severely

1
limited. For small extensions, r 1 ni, the non-Gaussian theory reduces to the Gaussian

3

theory.

Non-Gaussian Freely Jointed Chain vs. Worm Like Chain

Macromolecular chains have been well-modeled by both the freely jointed chain (FJC)

and the worm like chain (WLC) representations.

The FJC:

* Contains N bonds of fixed bond length 1.

* The directions of the neighboring bonds are completely random.

" L, = N1, is the contour length of the chain.

* The persistance length is equal to the Kuhn segment length or so called "bond length".

The WLC:

* Includes the bending of the chains.
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* The direction of the neighboring bonds change again, but in a continuous manner in

this case.

* The model is characterized by L,, the contour length of the chain and also the

persistance length, A, which is the projection of a tangent to the chain lying along a

given length of the chain prior to any strong change in direction from the tangent line.

The change in direction due to the bending of the chain and thus the persistance

length is related to the bending stiffness of the chain. Higher bending stiffness means

longer persistance length.

* The force extension behavior of a single WLC, using the Marko and Siggia (1995)

curve fitting expression, is given as:

Pch - kBO r + (2.18)
A k Lc 4(1-r/LC)2 4

with a corresponding strain energy:

I&- kBO LC +( r )2 r ,(2.19)
A 2 Lc )4(1-r/Lc) 4 Lc)

where r is the end-to-end distance, A is the persistence length (1 =2A).

For our spectrin network model, we use the FJC model for the force-extension behavior

of each chain:

- NkbO ich; (2.20)
PChNGC Lc

with corresponding strain energy:

'ch =kbON r 8+1n sij; (2.21)
GCLC sin ) ;
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where N is the number of Kuhn segments along the chain, kb is Boltzmann's constant, 0

is the absolute temperature, L, =Nl is the contour length of the chain, 1 is the Kuhn

segment length, r is the chain end-to-end distance and 8 is the inverse Langevin

function.

2.4.4 Strain Energy Density of the RVE

The strain energy of the RVE, U, is the summation of the strain energy in each chain:

'Z =&A +VIB + VC . (2.22)

Strain energy density is typically defined as the strain energy divided by the initial

volume of the material. The membrane is a planar network of essentially single molecule

thickness. Therefore the strain energy density, U*, is taken here to be strain energy per

unit initial planar area. The initial planar area of the RVE is twice the area of the unit cell

triangle following Voronoi tesselation:

& * __I_('?A + aB + &C )- (2.23)2Atriangle

Using the strain energy expressions for each element found earlier together with the

kinematics describing the deformation for each element, the following expression for the

strain energy density function for the network of linear chains, U*c is obtained:

VI C = 2 n kchro2 J _)2 (2.24)
2 Atriangle i=A,B,C

Noting that the chain areal density, v, is three chains per (2A)triange, the strain energy

density may be written as:
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(Z,'LC = kchro2  -1)2 (2.25)

i=A,B,C

Similarly, for the non-Gaussian network, the strain energy density is given by:

'NGC* = -7kbON 8i +in -o +in r00 (2.26)
3 i 7 'BC L sinhl8i L sinh3 o J)

where ro is the initial end-to-end distance (i.e. the initial chain length or distance between

crosslinks), Ai (i= A, B, C) are the chain stretches defined earlier as a function of the

macroscopic deformation gradient, and i = [Z y Lir

2.4.5 Stress- Stretch Relationships

The stress-stretch behavior is determined by proper differentiation of the strain

energy density function. Given a strain energy density which is a function of the

deformation gradient, the first Piola Kirchoff Membrane Stress* is derived as:

TO = . (2.27)
a(F)

The Cauchy Stress tensor is then obtained from:

T = TOFT, (2.28)

where J= det (F) is the planar area ratio (ratio of current area to original area). Here, we

take J=1 due to the preservation of area constraint imposed by the lipid bilayer which

then necessitates an additional energy-indeterminate equibiaxial stress term, hI, giving:

* where we define membrane stress to be the product of stress and membrane thickness; thus membrane
stress has units of force/length.
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T = TOFT +hI. (2.29)

Noting that the U (i=A, B, C) are functions of ki (i=A, B, C), and ki (i=A, B, C) are

functions of the deformation gradient, gives:

TO = A * A + * (B* ,aAB + * ._ (2.30)
aAA W a8 A 8F OAC 8F

The - terms are independent of chain constitutive behavior and are given in the

Appendix.

For the linear chains:

kch (Ai - 1), i = ABC ;(2.31)
aAi 3

For the non-Gaussian chain model:

= kb9N-rO-fi, i=A,B,C (2.32)
aAi 3 LC

where p = - r The effect of a finite planar area modulus can be incorporated into

the strain energy function by addition of the strain energy corresponding to planar area

changes in a manner analogous to the treatment of finite compressibility in rubber

elasticity (e.g., Boyce and Arruda, 2000).
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2.5 Determination of Material Properties

The planar shear modulus of the red blood cell membrane has been experimentally found

to be between .006-0.010 dyn/cm (e.g. Mohandas and Evans, 1994). The initial end-to-

end distance of chains in the spectrin network is taken to be r0=75nm following Boal

(1994) which, from geometry, gives an areal chain density of v = 6.16(10O4 )/m 2 . The

fully extended contour length of the network chains has been found to be nominally

180nm (Liu, et al., 1987). In order to meet a target initial shear modulus value of

approximately 0.0 10 dyn/cm, the linear chain stiffness was found to be kch = 0.033dyn /cm .

In order to meet this same shear modulus value for the non-Gaussian chain network while

simultaneously meeting the initial end-to-end length and the contour length, the Kuhn

segment length was found to be l=10.5nm, giving N=18. Absolute temperature is taken to

be, 0=300K, since the literature data are obtained at 300K.
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2.6 Uniaxial Tensile Behavior

The axial stress (T11) versus axial stretch (X) relationships for uniaxial tension in the 1-

direction for the linear chain network (LC) and the non-Gaussian chain network (NGC)

are given by:

TJJLC = kchro A A-]+A - 3 2 -2 -~ 2+3A 2 (2.33)

NC3 L KA+n(2 2 '\1 2(2 -~

TjjNGC =kBONO A 8A+8A A2+ 3A-2 2 - 3 BA-2 2+3A-2) 2 (2.34)

where: fi (=1 Al)ro and i= A, B, C.

The axial stress (T22) versus axial stretch (X) relationships for uniaxial tension in the 2-

direction for the case of a network with constituent linear chains and the case of a

network with constituent non-Gaussian chains, respectively, are given by:

I I

{322 _1322+ 2 -1 _+-1+ 2 - - 322)+2

(2.35)
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T22NGC = kBN {C3A218B L3 2 + A-2)2 -A-1 PA + BA 322+ A,-2)2 (2.36)

0.5
-.- LC

T LC 3---LC
- 0. 22

T NG
- TNG/22NGC 2,#0.3 3

0. 2

0.1.
T11case J , G

E = 0.057 dyn/cm
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Axial Stretch, Angle of Uniaxial Stress(deg)
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Fig. 2.13: (A) Uniaxial tensile stress vs stretch behavior in the 1-direction and the 2-direction for

constituent Linear and constituent Non-Gaussian Chain Behaviors. (B) Percent change in the 10

percent strain secant modulus vs. the angle ofthe uniaxial tension applied for various angles with

respect to axis 1 for Linear Chain and Non Gaussian Chain Behavior.

Figure 2.13,A shows the uniaxial Cauchy stress vs stretch behavior for loading in the 1-

and 2-directions, using LC and NGC representations. For small axial stretch (X<1.10),

both networks exhibit an essentially linear behavior. Nonlinear axial stress-stretch

behavior becomes clearly apparent after a stretch of -1.50. There are three different

sources of nonlinearity in the stress-stretch response of the network:

i. Material nonlinearity due to evolution in the microstructure geometry (changes in

length and angles of chains),
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ii. Material nonlinearity arising from the nonlinear constituent chain behavior (for

the non-Gaussian chain case)

iii. Geometric nonlinearity due to macroscopic shape change with deformation.

The sources of nonlinearity in the linear chain network arise from (i) and (iii), whereas,

all three sources of nonlinearity are inherent in the non-Gaussian chain network behavior.

The uniaxial stress-stretch curves are direction dependent for both the LC and NGC cases

as shown by the different stress-stretch behaviors obtained in the 1-and 2-directions. The

six-fold symmetry of the initial (undeformed) microstructure results in isotropy of the

very initial modulus. However, even at an axial strain as small as 10%, anisotropy begins

to manifest itself as shown in Figure 2.13.B which shows the 10% strain secant modulus

as a function of loading direction. The anisotropy is more apparent and important in the

large strain behavior, where the stress-stretch curves of Figure 2.13.A show significant

differences (especially for NGC network) at large stretches.

To understand the predicted stress-stretch behavior, we examine the evolution in the

triangulated network microstructure. Figure 2.14.A shows the evolution of chain stretch

and chain orientation during uniaxial tension in the 1-direction. Chains B and C respond

identically to the applied loading because of the symmetry. As the network is deformed,

chains stretch and orient to accommodate the imposed deformation. As shown in Fig

2.13.A, since chain A is aligned with the loading direction, it does not reorient (OA is

constant) and simply stretches by the imposed macroscopic stretch. Chains B and C are

seen to monotonically orient towards the 1-direction; one observation is that, although
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these chains rearrange themselves as the applied macroscopic stretch increases, they

exhibit a non-monotonic change in chain stretch with imposed macroscopic stretch: the

chains first undergo a small amount of contraction from their initial end-to-end distance

and then undergo extension.

Figure 2.14.B shows chain force versus macroscopic stretch for uniaxial tension in the 1-

direction. Here, for LC behavior, chain A is aligned with the loading direction and

therefore shows a linear chain force vs. macroscopic stretch behavior. However chains B

and C both stretch and rotate towards the loading direction, therefore their chain force

values exhibit a nonlinear history with macroscopic stretch for the LC network. For the

NGC, the force-extension curve for chain A shows the typical non-Gaussian behavior

since it is directly axially stretched; chains B and C rotate and stretch with deformation

and thus show a different nonlinear behavior and a later upturn in the chain force.

Chain force vs macroscopic stretch curves also provide insight regarding the direction-

dependence of the evolution of macroscopic stress with macroscopic stretch. In Figure

2.14.A, the uniaxial stress behaviors in the 1-and the 2-directions are identical for NGC

behavior until X>1.50. The curves depart at larger stretches and uniaxial membrane stress

in the 1-direction curve gives an earlier upturn than uniaxial membrane stress in the 2-

direction. Uniaxial tension in the 1-direction is dominated by chain A (Fig. 2.14.A,B),
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Fig. 2.14: (A) Evolution of chain orientation and chain stretch with respect to axis 1 for chains A,

B and Cfor uniaxial tension in the 1-direction. (B) Evolution offorce in chains A, B and C with

axial stretch in the 1-direction.
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Fig. 2.15: (A) Evolution of chain orientation and chain stretch with respect to axis 1 for chains A,

B and Cfor uniaxial stress in the 2-direction. (B) Evolution offorce in chains A, B and C with

axial stretch in the 2- direction.
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which is directly axially stretched resulting in the earlier upturn in the macroscopic

stress-stretch curve. Uniaxial tension in the 2-direction is dominated by chains B and C

(Fig. 2.15.A,B), which accommodate macroscopic stretch by both rotating and stretching,

thus giving the upturn in macroscopic stress at a larger macroscopic stretch.

2.7 Simple Shear Behavior

The shear stress (T 2) versus the shear angle (tan y) relationships for simple shear of the

linear chain network and the non-Gaussian chain network are given by:

2 1 (g -
T12Lc =kchro2 g +3 -1 g] g +3 2 +3) -1 ]2 g +3 2},

(2.37)

1 1

T12NGC = kBON t/gJl g2 +3 2 -PBg2 g +3 2 (2.38)
NGC 2,F3 1  ) K 2  )

where, g, = (1+ J tan y) g 2 = (1-4 tanry and 8i = z- , i= A, B, C.

The shear stress (T21) versus the shear angle (tan y) relationships for simple shear for the

case of a network with constituent linear chains and the case of a network with

constituent Non-Gaussian chains, respectively, are given by:
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T2JLC ={kchro2 {2(f-1)f7- tany+ [ +f22 i2 (I2(I+f2) 2+- I1+f32 2-f3(1+f34 2

(2.39)

1

T21NGC kBON ro 2YAfj- tan y + 8Cf2 I+ f -B f3 I+ f2 2 (2.40)
6 Lcontour 2

1
where fi=(+tany2)2; f 2 =(tany-1i;
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Fig.2.16: (A) Simple shear stress vs shear angle behavior in the 12-direction and in the 21-

direction for constituent Linear and constituent Non-Gaussian Chain Behaviors. (B) Percent

change in the 10 percent strain secant modulus vs. the angle of the simple shear applied for

various angles with respect to axis 1 for Linear Chain and Non-Gaussian Chain Behavior.

Figure 2.16.A shows the behavior of the network for simple shear in 12- and in 21-

directions, using linear chain and non-Gaussian chain models up to a macroscopic stretch

of tan y =2. The initial slope of these four curves is the same, giving the shear modulus to

be 0.014 dyn/cm. The larger deformation behavior is nonlinear and anisotropic.
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Figure 2.17.A and 2.17.B show the evolutions in microscopic chain stretches/orientations

and chain forces, respectively, for simple shear in the 12-direction. Chain A is neither

stretched nor rotated in simple shear in the 12-direction. Chains B and C rotate and

stretch. Both B and C monotonically rotate towards alignment with the shear flow; chain

C monotonically extends whereas Chain B first contracts then extends. Note that, due to

the pretension present in the NGC model, Chain B does not experience a compressive

force during its contraction. Chain C extension governs the upturn in the macroscopic

stress-strain behavior of the NGC model.

4 A180 5 '

3.5 160 PB LC

3 -1403- -- PC LC

B aya .~120 Z 3.....P NGC
2. BP NGC

tan 2 P NGC0100. ta--8 ,= $. C 00
2 1.5 80 cNo

41.400C
U0

0.5- 20
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Fig. 2.17: (A) Evolution of chain orientation and chain shear angle with respect to axis 1 for

chains A, B and Cfor simple shear in the 12-direction. (B) Evolution offorce in chains A, B and

C with simple shear in the 12-direction.
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Fig. 2.18 (A) Evolution of chain orientation and chain shear angle with respect to axis 1 for

chains A, B and Cfor simple shear in the 21-direction. (B) Evolution offorce in chains A, B and

C with simple shear in the 21-direction.

Figure 2.18. A and 2.18.B show the chain responses for simple shear in the 21-direction.

All chains rotate towards alignment with the shear flow; chain A and C monotonically

extend whereas Chain B first contracts then extends. The pretension prevents Chain B

from experiencing compressive force during its contraction. Chain A extension governs

the upturn in the macroscopic stress-strain behavior.
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2.8 Pretension Effects
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Fig. 2.19: Effect of pretension on the uniaxial stress-stretch behavior.

The initial end-to-end distance; r = 75nm implies a pretension in the network (Qi et. al.,

2005). The NGC behavior naturally captures this effect of pretension. Referring back to

equation (11), we note that the chain force is zero when the end-to-end distance

=0 and non-zero when r w0; thus r2 sets the pretension of the network. To examine

the influence of pretension on the membrane stress-stretch behavior, the value of r is

varied. Changing r also corresponds to changing the areal density v of the membrane. As

r0 is increased, v decreases. Figure 2.19 shows the uniaxial tensile behavior of the

membrane for different r,,. Uniaxial tension in the 1-direction and in the 2-direction are

both simulated for an r, of 50nm, 75nm, 125nm and 150nm. As seen in Figure 2.20, as

pretension is increased, the initial modulus of the membrane increases (even though the

chain density decreases). Furthermore, increasing the pretension decreases the
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extensibility of the network as evidenced by the influence of increasing r, on the

macroscopic stretch at which an upturn in the stress-stretch curve is observed.
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2.9 Summary

The mechanical behavior of the red blood cell membrane is governed by the lipid bilayer

in the membrane and the spectrin network crosslinked to the bilayer. The lipid bilayer

resists changes in planar area while posing little resistance to planar shear. The spectrin

network provides shear stiffness to the membrane. In this chapter a continuum level

constitutive model is proposed for the red blood cell membrane stress-stretch behavior for

arbitrary general planar deformations. The cases of networks constituted of chains with

linear force-extension behavior and for chains with non-Gaussian force-extension

behavior are studied. The skeletal network of spectrin is approximated as a perfectly

triangulated network. Uniaxial tension and simple shear behaviors of the membrane are

simulated for the two different constituent chain behaviors in different directions. The

macroscopic nonlinear stress-stretch behavior is found to be anisotropic at large

deformations. The evolution in microstructure (chain stretches, forces, and orientations)

is naturally monitored during macroscopic deformation thus capturing the effects of

structural evolution on macroscopic mechanical loading behaviors and vice versa. The

effect of pretension with stress-stretch behavior of the membrane is also studied; the

initial modulus of the membrane is found to increase with chain pre-tension and the

extensibility of the network is found to decrease with pretension. The proposed

constitutive model can be used together with finite element modeling of the red blood cell

to study complex deformation behaviors of the red blood cell; such cell deformation

studies have been conducted by the Suresh group (Dao et al., 2003, Mills et al., 2004)

utilizing the Evans, Skalak, Hochmuth neo-Hookean membrane model and, more

recently, using a phenomenological higher-order I, (first stretch invariant) based

70



constitutive model'. The proposed constitutive model also provides a framework to

explore additional complexities on the mechanics of biomacromolecular network

deformation including the effects of crosslinking proteins providing additional strain

energy contributions during deformation, non-affine deformation in irregular triangulated

networks (where mapping of macroscopic to microscopic deformation is not simply

kinematically determined, but mechanical equilibrium must also be invoked), three-

dimensional networked structures, and contributions of mechanically-induced unfolding.

Unfolding of modular biomacromolecules such as spectrin has been experimentally

observed to have dramatic consequences on the single molecule force-extension behavior

(Rief et al., 1999, Law et al., 2003); the unfolding event has been incorporated into recent

simplified "four-chain" network representations of membranes by Qi et al. (2005),

whereby all chains experience the same stretching and thus unfold simultaneously. The

triangulated network framework presented here provides a more physically-representative

microstructure and will lead to unfolding in some sequential manner for the different

chains as evidenced by the different evolutions in chain forces with macroscopic

stretching presented in this work. The effects of incorporation of unfolding into the

introduced triangulated network are presented in Chapter 3.

1 We note that Arruda et al., (1993) and Boyce et al. (2000) and Boyce et al. (1996)have shown that higher
order I-based models are phenomenological equivalents to non-Gaussian statistical models, in particular,
to the 8-chain model of Arruda and Boyce (Arruda et al., 1993).
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Chapter 3

Constitutive Modeling of the Stress-Stretch Behavior of

2-D Networks Containing Folded Domains

3.1 Introduction

The constituent spectrin chain molecules of the network consist of several folded

modules. Each folded module will completely unfold with extension of the chains upon

reaching a chain force between 25 to 35pN depending on the extension rate and also the

statistical distribution of the strength of the internal bonds of the module. Individual

spectrin chains within the network will experience their first unfolding event at different

levels of macroscopic strain depending on the loading conditions (uniaxial tension,

compression, shear) and the orientation of each constituent chain with respect to the

macroscopic loading. A microstructurally informed continuum level constitutive model is

developed which tracks individual chain deformation behavior as well as the overall

macroscopic network stress-strain behavior. In this chapter, using the introduced

continuum approach and statistical mechanics based models of the chain force-extension

behavior together with a transition state model of unfolding, a constitutive model for the

membrane stress-stretch behavior is constructed. The stress-stretch behavior of the

membrane under uniaxial tension and simple shear is simulated at large stretches. The

evolving anisotropy of the network is shown. The influence of unfolding on the

macroscopic stress-stretch behavior under various loading conditions is determined. The

mechanical response of the network at different strain rates is compared.
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3.2 Single Molecule Mechanics

Atomic Force Microscopy (AFM) and Optical Tweezers (Bustamante et al., 2003) make

it possible to conduct direct measurements of single molecule force-extension behavior to

track the evolution of deformation in the molecule (Figure 3.1.A). Length, extensibility

and the folded vs. unfolded states of a folded domain are each important aspects of the

function of a protein molecule. A protein molecule has a long chain repeating multi-

domain structure. Spectrin is a cytoskeleton protein composed of repeats of 3 anti-parallel

a-helices that form a coil-coil structure (Figure 3.1.B). Single molecule force-

spectroscopy has been used to study the unfolding of spectrin-repeats by Rief et al.

(1999) and by Law et al., (2003) (Figure 3.l.C).

Rief et al., (1999), Lenne et al., (2000), and Law et al., (2003) conducted mechanical

experiments on single molecules to obtain the single molecule force-extension behavior

and the force required to unfold the folded domains of the protein. Rief et al. (1999)

worked with spectrin molecules, Immunoglobulin (Ig), the muscle protein titin and

dextran. When spectrin molecules are extended beyond 100nm, a characteristic pattern of

peaks appears. The peak force is the unfolding force of a domain. The peak force is

between 25-35 pN when the spectrin modules are extended at a pulling speed of 0.3pm/s

(Rief et al., 1999). Rief et al. (1999) fit the unfolding traces to the WLC (worm-like-

chain) force-extension equation to capture the force-extension behavior after each

unfolding event (Figure 3.2.A); this fitting thus gave the length of molecular chain

released with each unfolding event. The incremental increase in the molecular chain

length was found to be 31.7nm.
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Fig. 3.1: (A) Schematic of AFM (atomic force microscopy). Single proteins are attached to

properly prepared surfaces and pulled with AFM tips (Rief et al., 1999), (B) Spectrin repeats

consist of 3 anti-parallel a-helices (Pascual et al., 1997), (C) AFM experiment showing the

unfolding of the spectrin repeats one by one in a all-or-non process (Discher et al., 2001).

Rief et al. (1999) used a Monte Carlo simulation approach to capture the unfolding events.

A combination of WLC to capture the force-extension behavior together with a

thermodynamic two-state transition model to capture the rate-dependent unfolding force

(and subsequent updating of the contour length of the WLC model) was used to capture

the entire force-extension behavior.
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Fig. 3.2: (A) Rief et al. (1999) fit the spectrin single molecule force spectroscopy experiments

with a WLC fit, (B) Schematic of thermodynamic 2 state model. The applied force unfolds the

folded domains along the chain one by one. l4 is the folded length of the module and 4, is its length

when it is unfolded. There is an energy barrier of AG* that the molecules have to overcome to

unfold. x, is the width of the activation barrier (Rief et al., 1998)

According to the two state theory, spectrin modular domains can be modeled as being in

one of two states; a module is either in the folded state, or it is in the unfolded state. To

be able to transfer from the folded state to the unfolded state, an energy barrier of AG*

has to be overcome (Figure 3.2.B). Following Bell (1978), the energy barrier to translate

from one state to the other is reduced by the applied force multiplied by the width of the

activation barrier:
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w(F) = aexp k(AGFxu)

where co is the reciprocal of a diffusive relaxation time, F is the extension force on the

molecule, x, is the width of the activation barrier. For low forces (Izrailev et al., 1997),

xu and coo are assumed to be constant. In practice, terms in equation (3.1) can be lumped

to give:

w(F) = a exp (32)

where a = c, exp(-AG/kBO); a and xu are then obtained from the data of peak unfolding

force as a function of the strain rate.

Rief applied the Monte Carlo Simulation algorithm to various molecules including

dextran and spectrin to model the single molecule unfolding.

The Monte-Carlo algorithm to monitor the random unfolding events includes:

1. Stretching the single chain,

2. After each time step, determining the force using the WLC model force-

extension expression as given in (2.17):

fc = kBT r + 1 (3.3)
A Lc 4(1-rl/Lc) 2 4

where r is the updated end-to-end distance, A is the persistence length, L, is

the initial contour length of the chain, kB is the Boltzmann's constant and 0

is the absolute temperature.

3. Calculating the unfolding frequency using (3.2): co (F) = a exp (Fx /kB 0),

76



4. Calculating domain unfolding probability, according to:

dP = mtcoAt (always below 1)

where m, is the number of folded modules in the chain during At.

5. Polling the domains to see their unfolding status.

6. If unfolding occurs, update the contour length of WLC and calculate the

current force for that extension using the updated WLC parameters.

7. Repeat the steps by increasing the extension.

Upon extension of a molecule, unfolding of a single module occurs when the nonlinear

rise in the force reaches a peak, where upon unfolding gives a load drop. The modules

unfold one by one (Discher and Carl, 2001), giving the force-extension curve a "saw-

tooth pattern" due to unfolding which gives a repeating sequence of a force rise with

extension to a peak followed by a load drop, rise to a peak and drop etc.

3.3 Network Mechanics

The Rief et al. (1998) use of a transition state energy criterion for unfolding for single

molecules can be incorporated to model the unfolding behavior of the chains in the

spectrin network. This method has also been followed by Qi et al. (2005) in which an

idealized "four-chain" two-dimensional planar network representation is used to model

the spectrin network. The four chain network possesses a perfectly staggered arrangement

of crosslinks as shown in Figure 3.3. Qi et al. (2005) mapped the macroscopic stretch

state onto the network obtaining the chain stretch as a function of macroscopic membrane

stretch. Given the chain stretch, they used FJC and WLC to obtain the chain force and the
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transition state model to trigger module unfolding when the chain force reached critical

conditions.

---- --a Chain 2

(A) (B)

Fig.3.3: (A) Qi et al.'s idealized planar network for modeling the spectrin network, (B)

representative volume element (R VE) of the given network (Qi et al., 2005).

Qi et al. (2005) introduced statistical distributions of sources of randomness in their

simulations. For example, the range of the peak force at which unfolding happens has

been found to vary in the experiments even at a given strain-rate. Law et al. (2003)

observed spectrin unfolding to occur at forces ranging from ~10 pN to ~37 pN at

extension rates of ] pm/s. Whereas Rief et al. (1998) noted that the peak force is between

25-35 pN when the spectrin repeats unfold with a pulling speed of 0.3ptm/s. This

randomness can be introduced by considering a range in AG, the energy barrier required

to overcome unfolding in the simulation. Or similarly, a can be chosen to vary over a

range. This range is calculated to be a = .000125-.0079 /s (Qi et al., 2005) using Law et

al. (2003)'s experimental results.

The energy criterion can be implemented using a Monte Carlo simulation. Using Rief's

approach for the single molecule simulation, in each time increment, the domain

unfolding probability is calculated by:
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dp = mtcoAt (3.4)

Here mt is the number of folded modules, and At is the time increment.

For each macromolecule, an a is generated through a random Gaussian number

generator based upon the distribution in unfolding force data of Law et al. (2003). In the

Monte Carlo simulation, a random number, p, (O<p<l), is generated at each step. This

random number is chosen out of a Gaussian distribution, using a predefined function in

MATLAB. This number is then compared with dp. If dp>p, unfolding occurs. Unfolding

acts to release additional rigid links. Therefore, the number of current folded modules, the

number of effective links and the contour length are then updated when a module unfolds.

A new a is generated. If unfolding does not happen, the loop goes to the top with the next

time increment. The unfolding events are simulated to follow transition state theory with

additional randomness imparted through a random selection of AG.

This method of using transition state theory as the unfolding criterion for single

molecules can be incorporated into our triangulated network. After application of

membrane deformation, the status of all three chains, chain A, chain B and chain C are

monitored. The stretch (and force) in each chain will, in general, be different depending

on the macroscopic deformation and therefore the three chains will not unfold at the same

time. Therefore, the properties of each chain is updated separately. Because the

deformation evolves much differently in all three molecules and because each molecule

unfolds at different points during the overall deformation, this would result in a higher

degree of anisotropy than observed when unfolding does not occur.
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Prior to unfolding, the number of the effective rigid links along the chain is:

N(t= o) = n -m(t= O) (q - 1), (3.5)

where n is the total number of rigid Kuhn links, m is the number of folded modules and q

is the number of links in a folded module (Qi et al., 2005). The equation suggests that,

when the links in a module are folded, the module itself is taken as one effective link.

When a module unfolds, the number of folded modules decrease by 1, since the unfolding

process requires that a module completely unfold upon reaching a certain unfolding

criterion. This argument implies:

m(t=tj) =m(t=0) -1. (3.6)

After one module unfolds, the effective number of rigid links at t = tj, N (t=t ) is

updated according to:

N(t=t 1 =n-m (t=0; (q -1). (3.7)

The contour length, Lc , of the molecule increases, giving a new contour length of:

Lc~t=t, = N(t=t; } l (3.8)

where 1 is the length of the rigid links.

In this thesis work, all formulations are presented using the FJC to represent chain

behavior.
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3.4 Determination of Material Properties

Table 3.1: Spectrin properties

Model Parameters Spectrin

(FJC) Network

Initial end-to-end distance, ro (nm) 75

The areal chain density, v (1/m 2) 6.1 (10 1)

Number of Kuhn segments along the 19
chain, N

Absolute temperature, 0 (K) 300

Persistence length, 1 (nm) 10.25

Initial contour length (nm), Lo 180

Increase in contour length due to 28.8
unfolding, AL (nm)

Activation barrier width, x, (nm) 1.7

The width of the activation barrier, xU, is defined to be xu=. 7nm from fitting the

experimental data (Rief et al., 1999). The persistance length, 1, has been used as 10.25nm

(Discher et al., 1997) in Chapter 2 for the spectrin network. It's worth here to note that,

although / = 10.25nm for the network proteins, because of the complications, such as

complicated heterodimer structure or the spectrin interactions with other proteins, this
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number reduces to =1.6nm in single molecule behavior experiment and calculations (Qi

et al., 2005). Another parameter that is predefined is the increase in the contour length of

the chains with each unfolding event. AL= 28.8nm is defined from the FJC fit to Rief's

single molecule data, also and the number of folded modules prior to unfolding is found

to be m=7, shown in Figure 3.4 (Qi et al., 2005). The range in which a varies is a =

0.000125 - 0.0079/s (Qi et al., 2005). The properties are summarized in Table 3.1.

60 50
40 100- 1 Experinents Molecule I
30 t 75 - [D Model .....--.-.-. Molecule 2

50- 40 C Molecule 3

4 20  * Expment 2 0
0 F4 -U. - Model - .I

40 91% 10' 10s 30 - 0 25 50 o
Extension Rates (nm/s) R - Foe (pN) 5

v30--.0
U2 : . 0 20 -

20 -
e1

10 -
ExperIment 10

............ Model
Rate: 0.3pm/s

0 100 200 300 0 100 200 300
Extension (nm) Extension (nm)

(A) (B)

Fig. 3.4: FJC fit to Rief et al. (1999)'s experimental data: (A) Spectrin force versus extension

behavior; the inset shows the dependence of unfolding force on extension rate; (B) Predicted

force versus extension behavior for spectrin (1 pjm/s) using a distribution in unfolding barrier

based on Law et al. (2003) data. (Qi et al., 2005)
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3.5 Uniaxial Tensile Behavior

3.5
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Fig. 3.5: Stress-stretch behavior of the membrane under uniaxial tension in the 1- and 2-direction

at a strain rate of 1.0/s. In the inset, is the loading conditions are shown with the deformed

configuration depicted by the dashed lines.

Figure 3.5 shows the stress-stretch behavior of the network under an application of

uniaxial stress in the 1-direction and in the 2-direction at a strain-rate of 1.0/s.

Under a uniaxial stress in the 1-direction, the first unfolding event happens at a

macroscopic stretch of 2
L=

2 .3 5 . The unfolding stress goes up to 1.2 dyn/cm. Once

unfolding occurs, the stress drops since the contour length of the chain(s) which have had

a domain unfold increased and the configurational entropy of those chains have increased

and their corresponding extensional force decreased. Then the stress starts increasing

nonlinearly again with further extension, but this time with a slope less than the initial
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slope, again because of the contour length of the chains that unfolded acting to increase

their compliance.

As the membrane is axially stretched, its cross-sectional area decreases which leads to an

increased macroscopic stress level at which unfolding occurs. This nonlinear increase in

the overall peak stress level is due to the macroscopic shape change (geometric

nonlinearity) with increasing deformation. As the tensile stress in the 1-direction

increases, the area over which the load is acting decreases (Figure 3.6, inset) which

increases the stress on the network. Figure 3.6 shows the nominal stress behavior of the

network in uniaxial stress in the 1-direction. The nominal stress curve has a plateau-like

region at an unfolding stress of 0.3 dyn/cm.
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Fig. 3.6: Stress-stretch behavior of the membrane under uniaxial tension

strain rate of 1.0/s. Cauchy Stress and Nominal Stress are compared.
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To understand the meaning of the macroscopic stress-stretch plot better, we examine the

behavior of individual constituent chains of the network under the same loading: uniaxial

tension in the 1-direction.

30 - chain A A
- .---- chain B 160

25 ---- Chain C 4 :

Z 20 C2
C B3- 'A

~ AB 

10

-q5 -- 60
15

121 80

- -- 20

0 0 01 2 3 4 5 12 3 45
Axial Stretch Axial Stretch

(A) (B)

Fig. 3.7: (A) Chain force-extension behavior in the R VE under uniaxial tension in the 1-direction,

(B) Chain stretch and orientation evolution with macroscopic stretch.

Figure 3.7 shows the force vs. macroscopic stretch behavior of chains A, B, C, as well as

the chain stretches and orientations under the applied deformation. Since chain A is

aligned with the axis of deformation, it is the chain to first undergo unfolding. When the

links of chain A align towards the 1-direction and the chain is fully-extended, r~A = Lcontour

= J8Onm, the first unfolding event occurs. The chain stretch corresponding to the first

unfolding event is:

- =8nm2.4 (3.9)
rE 75nm

This estimation is true since chain A is nearly aligned with the axis of deformation. The

folded molecules in chain A totally unfold, corresponding to 7 peak forces (m =7),
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before reaching a stretch of X = 5. The peak force at which unfolding events happen

differs every time because of the random distribtion of unfolding barrier introduced in the

simulation following the data of Law et al. (2003).

Chains B and C rotate and stretch with the applied macroscopic deformation because of

the geometry of the RVE. The rotation of these chains accomodates much of the imposed

deformation and therefore their chain stretch levels are substantially lower, thus delaying

unfolding of these chains. The first unfolding of chains B and C occur at a macroscopic

stretch of XI= 4 .6 5 and only one module unfolds under the applied deformation.

Unfolding of chains B and C affect the overall stress-stretch behavior as seen in Figure

3.6. At a stretch level of X1 =4.65, after the stress curve peaks up and before it drops a

considerable amount, it rises up again and then drops much more this time because of the

additional effects coming from the unfolding of chains B and C in addition to that of

chain A.
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Fig. 3.8: The strain-rate dependence of the stress-stretch behavior of the membrane under

uniaxial tension in the 1-direction.

Figure 3.8 shows the strain rate dependence of the stress-stretch curve under uniaxial

tension in the 1-direction.

When the strain rate is decreased, as the maximum strain is the same and the number of

steps are defined to be constant, according to:

strain rate = maximum strain(3.10)
#steps* At

the time increment, At increases. When At increases, following:

At = dp = dp
Mt&W mta exp fC')

kBO

(3.11)

the unfolding probability increases, which results in earlier unfolding. Therefore, the peak

force of unfolding decreases and as a consequence, the stress for unfolding is lower.
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When the strain rate is as low as 0.01/s, the stress peaks and drops are not very clear, the

curve is more like a smooth nonlinear curve.

When a strain rate of 1.0/s is applied to the macromolecule, the individual extension rates

of the chains can be calculated using geometry, also equations (2.8) and using:

Extension _rate = maximum extension (3.12)
total _time

For uniaxial tension in the 1-direction, i.e. F = 1 for a maximum stretch of
.0 1 / F1 1

A = 5 , maximum extensions of the individual molecules are calculated from geometry

following Equations (2.8):

zmax = F] 2 + F2 12 = F max = 5,

maxB F F2 2  +F 2 1 -F 2 2 - (3.13)

I1 ]m 2+ 3 1 52 3
2 Fllmax 2  2 +2

Fmaxx =5A xC axBa

Using these equations, since the total time of deformation is the same for all the

molecules, the individual extension rates can be calculated. The individual extension-

rates are given in Table 3.2.
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Table 3.2: Mapping individual

Macroscopic Strain
Rate (/s)

1.0

0.1

0.01

extension-rates of chains under uniaxial tension in the 1-direction.

Chain A Chain B Chain C
Extension Extension Rate Extension

Rate Rate
(pum/s)

(PM/s) (pn/s)

0.225 0.113 0.113

0.0225 0.0113 0.0113

0.0022 0.0011 0.0011

The initial contour length of the spectrin chains are observed to range from 150nm-

210nm (Qi et al., 2005). Therefore next approach will be to take this distribution into

account. In the code constructed, the chains are randomly asigned contour lengths in the

given range and the effects of that distribution on the stress-stretch curve are plotted

(Figure 3.9) for two different simulations.
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Fig. 3.9: The initial contour length dependence of the stress-stretch behavior of the membrane

under uniaxial tension in the 1-direction.

The average initial contour length of the first simulation (dashed line in Figure 3.10) is

(177 nm + 193 nm + 204 nm) / 3 = 191 nm. The average initial contour length of the

second simulation (solid line in Figure 3.9) is (164 nm + 164 nm + 153 nm) / 3 = 160

nm. Unfolding occurs earlier in the shorter initial contour length (160 nm) case.

When uniaxial stress in the 2-direction is applied to the model, the dominating chains that

govern the unfolding behavior are chains B and C. Chain A gets compressed under the

applied deformations seen from the sketch in the inset of Figure 3.5. The stresses in

Figure 3.5, for uniaxial tension in the 2-direction are twice as large as the stresses for

uniaxial tension in the 1-direction. The reason behind this is in uniaxial tension in the 2-

direction, the contributions to the overall stress comes from chains B and C whereas
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during uniaxial tension in the 1-direction, the contribution is primarily from chain A until

very large stretches.

35 5 180
--- chain A
----. chain B 160

30 - chain C

Z 25- 2 - 12&8

0100
- 2 0 ~ - B - - ----- - - -4

~2 -- c
8 0 c

15 2- 40

5d .Z60

SAxialStretch

Fig. 3.10: (A) Chain force-extension behavior in the R VE under uniaxial tension in the 2-

direction, (B) Chain stretch and orientation evolution with macroscopic stretch.

Figure 3.10 shows the force-extension behaviors of the chains under uniaxial tension in

the 2-direction, as well as how the stretch evolves in individual chains. The first

unfolding happens at a stretch of X2=2.7. This can also be seen in Figure 3.5. The

unfolding for uniaxial tension in the 2-direction is delayed in comparison to the loading

in the 1-direction since the dominating chains undergo rotation as well as stretching. This

geometric consequence creates totally different responses in the stress-stretch behavior

when the macromolecule is pulled in different directions. The reason why the responses

of chains B and C are different is due to the random distribution of unfolding barrier

introduced by unfolding events' nature.
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Fig. 3.11: The strain rate dependence of the stress-stretch behavior of the membrane under

uniaxial tension in the 2-direction.

Figure 3.11 shows the different stress responses when the network is deformed at strain-

rates of 0.01/s, 0.1/s, 1.0/s. Similar arguments about the strain rate apply to this case as

well.

1/F 2 2For uniaxial tension in the 2-direction, i.e. F = 102
01

F , for a maximum stretch of
F22

A = 5 , maximum extensions of the individual molecules are calculated from geometry

following Equations (2.8):

92

I

'I



Zmax = Fj j 2 +F1 - 1 1F22maxx

max = (Fi -F)2 + F2 1 - F2 2 l) 25

_ 1 3 2 1 3 2
2 + F22max = 1 -+52

F22 ax

(3.14)

AImaxc = - mB -

Using these equations, since the total time of deformation is the same for all the

molecules, the individual extension rates can be calculated. The individual extension-

rates are given in Table 3.3.

Table 3.3: Mapping individual extension-rates of chains under uniaxial tension in the 2-direction.

Macroscopic Strain
Rate (]/s)

1.0

0.1

0.01

Chain B
Extension Rate

(pns)

0.195

0.0195

0.0019

The individual extension-rates under the same macroscopic strain rate are lower in the

case of Uniaxial Tension in the 2-direction ( ~ 0.195 n/s ) than in Uniaxial Tension in

the 1-direction ( ~ 0.225 pm/s ) as given in tables 2 and 3 . The reason is because the

chains which govern the motion; B and C, in Uniaxial Tension in the 2-direction case, not
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Rate
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only stretch but also rotate with the applied deformation. However, in Uniaxial Tension

in the 1-direction, chain A, which is the chain basically dominating the deformation of

the membrane, only stretches with the applied deformation.

1.5

0

0

X)
a)

rj D -

I

"1

Distributed Initial Contour Lengths

...... L =210nm,LB = 176 nm, L C = 170 nm

_ L =185 nm, L = 157 nm, L C = 152 nm
.A 'oB 0o
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2 3
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Fig. 3.12: The initial contour length dependence of the stress-stretch behavior of the membrane

under uniaxial tension in the 2-direction.

Figure 3.12 shows the effects of possible distributions in the initial contour lengths of the

chains on the stress-stretch behavior of the network. Average initial contour lengths of

(210 nm + 176 nm + 170 nm) / 3 = 185 nm and (185 nm + 157 nm + 152 nm) / 3 = 165

nm are compared. When the average initial contour length is decreased, the stretch at

which unfolding occurs is lower.
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Fig. 3.13: Stress-stretch behavior of the membrane under uniaxial tension

strain rate of 1.0/s. Cauchy Stress and Nominal Stress are compared.

5

in the 2-direction at a

Figure 3.13 shows the nominal stress vs. stretch and compares it to Cauchy stress vs.

stretch curve. The peak stresses are almost the same for the nominal stress curve ( 0.2

dyn/cm).
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3.6 Simple Shear Behavior
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Fig.3.14: (A) Shear Stress vs. Shear angle behavior of the membrane under shear in the 12- and

21-directions at a strain rate of 1.0 rad/s. In the inset, is the loading conditions are shown with

the deformed configuration depicted by the dashed lines, (B) Shear Stress vs. Shear angle

behavior of the membrane under shear in the 12-direction using distributed initial contour

lengths, (C) Shear Stress vs. Shear angle behavior of the membrane under shear in the 21-

direction using distributed initial contour lengths.
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Figure 3.14 shows the shear stress vs. shear angle, tany, behavior of the network at a

shear rate of 1.0 rad/s. At this shear rate, in the case of uniform initial contour lengths,

when shear is applied in the 12-direction, the first unfolding happens at tan y =1.97,

while for shear in the 21-direction, the first unfolding happens at tan y = 2.2. The shear

angles at which the network experiences initial unfolding is very close for shearing in

different directions, meaning, the anisotropic response in the shear case is less than the

anisotropy in the tension case, as mentioned in Chapter 2.

In order to look into the network shearing behavior in more detail, one can study the

force-extension behavior of the individual chains.
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Fig. 3.15: (A) Chain force-extension behavior in the R VE under shear in the 12-direction, (B)

Shear angle and chain orientation evolution with macroscopic shear deformation.

Figure 3.15 shows how the chain force (A), chain stretch and chain orientation (B) varies

with the macroscopic deformation for shearing in the 12-direction. When shear is applied
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in the 12 direction, only chains B and C are deformed, they stretch and rotate with the

deformation. Chain B compresses until it makes an angle of OB=90 0 with the 1 direction.

Therefore chain B starts to stretch after tan 7B = 0.6 as seen Figure 3.15 (B). This

delayed stretching behavior results in chain C initiating the unfolding in the overall RVE.

Therefore, the stress-shear angle plot shows an initial unfolding behavior which is

identical to chain C's unfolding behavior. Chain B starts unfolding at a shear angle of

tan y = 3.1 which results that the stress-shear angle curve (Figure 3.15.A) to fluctuate

around the same shear angle.

30 4 180
- chain A
----- .chain B 3.5 - 160

r25 --- chain C tan Y
1-3 - an - - 140,

C> 20 -2 6 -12

1 -5 - CqB2
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Fig. 3.16: (A) Chain force-extension behavior in the RVE under shear in the 21-direction, (B)

Shear angle and chain orientation evolution with macroscopic shear deformation.

In shear 21 case, all the chains deform, but they unfold at different times. Chain A is the

first molecule to unfold (Figure 3.16), therefore dominates the initiation of the peak stress

in shear stress-shear angle profile (Figure 3. 14.A). Chain B, whose behavior is shown in

the inset, compresses under the applied deformation until a deformation of tan y =1.75
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and until it makes an angle of OB=180 0 with the 1 direction as seen in Figure 3.16.B.

Chain B does not unfold under the applied deformation.
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Fig. 3.17: The strain rate dependence of the stress-stretch behavior of the membrane under shear

in the (A) 12- and (B) 21-directions.

Figures 3.17 shows the shear rate dependence of the shear stress vs. shear angle, tan y ,

of the network for shear rates of 0.01 rad/s, 0.1 rad/s and 1 rad/s for shear in 12 (A) and

in 21 (B) directions.
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3.7 Summary

The constituent chains of the spectrin network consist of several folded modules.

Unfolding of these folded modules can be triggered by the application of large

deformation to the macromolecular network, depending on the extension rate and also the

statistical distribution of the strength of the internal bonds of the module. The force-

extension behavior of a single modular macromolecule exhibits a "saw-tooth" pattern due

to unfolding giving a sequence of force rise to a peak followed by a load drop, rise to a

peak and drop etc. In this chapter, using the introduced continuum approach together with

single molecule force-extension behavior and with a transition state model of unfolding,

large deformation behavior of two-dimensional networks of biomacromolecules is

studied. Uniaxial tension and simple shear behaviors of the membrane are simulated

incorporating the unfolding of the individual chains. The three chains do not unfold at the

same time since the stretch (and force) in each chain is different depending on the

macroscopic deformation. Because the deformation evolves much differently in all three

molecules and because each molecule unfolds at different points during the overall

deformation, this results in a higher degree of anisotropy than observed when unfolding

does not occur. The effect of the strain-rate on the mechanical response is also

investigated in this chapter. When the strain-rate is as low as 0.01/s, the stress peaks and

drops do not come out to be very clear. The variation in the extension-rates of the

individual chains under different loading conditions is presented. The extension-rate of

the dominating chain in that specific loading condition is found to be higher than that of

the other chains in the RVE under a given macroscopic strain-rate. The proposed model

includes a combination of FJC to capture the force-extension behavior together with a
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thermodynamic two-state transition model to capture the rate-dependent unfolding force.

The force-extension behaviors of individual chains of the RVE incorporated to define the

stress-stretch behavior of the spectrin network, can be used to serve as a model for three-

dimensional solids that have a similar microstructure, such as the cytoskeleton and the

networked microstructure of soft tissues.
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Chapter 4

Summary and Future Work

Many biological, natural and synthetic materials possess a networked and/or micro/nano-

truss-like microstructure. In this thesis work, a general microstructurally-informed

continuum level constitutive model of the large stretch behavior of membranes

possessing a triangulated network or truss-like structure is developed. As a specific

example, a constitutive model of the stress-strain behavior of the red blood cell

membrane is developed; this model directly incorporates the microstructure of the

spectrin network. The skeletal network of spectrin is approximated as a perfectly

triangulated network. The cases of networks constituted of chains with linear force-

extension behavior, for chains with non-Gaussian force-extension behavior, and for

modular chains which exhibit a non-Gaussian behavior together with unfolding of the

folded modules are studied. The model provides a description of the deformation

behavior of the membrane when subjected to an arbitrary planar deformation gradient.

Furthermore, the proposed model monitors the evolution of force, stretch and orientations

of the microscopic constituent chains of the network under large deformations. The

approach undertaken was to define the RVE (Representative Volume Element) of the

triangulated network to track the microscopic deformation in each constituent chain as a

function of imposed macroscopic deformation. The strain energy contribution for each

chain is then determined and contributes to the strain energy density function of the

membrane. Using continuum mechanics, the macroscopic stress-stretch behavior of the

network is derived from the strain energy density function. The constituent chains of the

spectrin network exhibit a highly nonlinear force-extension behavior. Therefore, the
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force-extension behavior of the chains is modeled using the FJC (Freely Jointed Chain)

model (see, for example, Treloar (1958)). Deviation from the linear chain model is also

highlighted in the studies. The macroscopic nonlinear stress-stretch behavior is found to

be anisotropic at large deformations. The effect of the pretension in the undeformed

configuration of the network on the stress-stretch behavior of the membrane is also

studied in Chapter 2 of this thesis work.

In Chapter 3, the "saw-tooth pattern" observed in single molecule studies (Rief et al.,

1999, Law et al., 2003) of the spectin repeats is incorporated into the model presented in

Chapter 2. Unfolding of the folded modules of the constituent chains of the spectrin

network can be triggered by extension of the molecules. Unfolding depends on the

extension rate and also the statistical distribution of the strength of the internal bonds of

the module. Using the introduced continuum approach together with single molecule

force-extension behavior and with a transition state model of unfolding, large

deformation behavior of two-dimensional networks of biomacromolecules is studied,

monitoring the effects of the individual module unfolding of the constituent chains of the

RVE. The effect of the strain-rate on the mechanical response is also investigated in

Chapter 3.

The deformation of the proposed perfectly triangulated network model is an affine

deformation, and is completely kinematically prescribed by the applied deformation

gradient. The proposed constitutive model also provides a framework to explore

additional complexities on the mechanics of biomacromolecular network deformation

such as; non-affine deformation in irregular triangulated networks, where mapping of

macroscopic to microscopic deformation is not simply kinematically determined, but
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mechanical equilibrium must also be invoked. The RVE of the irregular triangulated

network, composed of chains with different lengths, can be chosen to be an irregular

hexagon with periodic boundary conditions. The constitutive chains of this RVE have

different axial stiffness' to be able to accommodate the pretension in the spectrin network.

Using the periodic boundary conditions together with force equilibrium equations, a

constitutive model can be introduced for this network with an RVE composed of irregular

triangles. The constitutive model proposed in Chapter 2 can be incorporated with the

material behavior of the irregular triangulated network, to be able to define the

mechanical behavior of a random microstructured network of triangles. This

incorporation would serve as a more realistic approximation of the mechanical behavior

of the spectrin network.

The methodology introduced in this work can also serve as the basis for deriving the

constitutive models for three-dimensional microtruss structured materials. These three

dimensional structures should be space filling to be able to be used to generate a

tessellation of space. One of the examples of these structures is R. Buckminster Fuller's

octet-truss (Fuller, 1961). In his book Fuller writes: " Nature's simplest structural system

in the universe is the tetrahedron. The regular tetrahedron does not fill all-space by itself.

The octahedron and tetrahedron complement one another to fill all space. Together they

provide the simplest, most powerful structural system in the universe..." Based on the

patent of Fuller (1961), the "octet-truss" system represents a structure sustaining loads by

axial deformations of the constituent members. The effective mechanical properties of the

octet-truss have been investigated in the literature (Deshpande et al., 2001, Evans et al.,

2001, Christensen, 2004, Mohr 2004). The methodology presented in this thesis work can
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be modified to fit a three-dimensional frame. By the use of an RVE composed of two

tetrahedrons connected by an octahedron, a general large deformation constitutive model

for the octet-truss can be developed.
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Appendix

The derivatives related:

For member A:

NA _ F]]
DF] F 2 +)Fj

aAA F21
0F12 F2 + F2j

- F21
F21 

F2 +)F2

- F21
aF22 2

For member B:

OX F]]F]2v) ((F]]-F]2J)2+(F2-

B I-(F]-F2 -,F(F 1-F12F)2 +(F21 -F22,Fl)2  2

F2B ,[- F2)F2]- 1 +F1-F2

FF2 2 -F- -(F2 -F22f)(j l- F12-,1 ) +(2 -F22 -,f3
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For member C:

*(F] I+ F12V3)

aAC F]I+F12
aF2 2"+

(F]I +F121 +(F21 +F2241)f2

(F+F2I) +(F21 +F22v/i)f2

=-'2(F21+F2 2 JF)( F]J+F]2 V +(F21 +F22 Ii3

(F21 + F22V3) (F]i I+Fl2J2 ) +(F21 +F22'13)f2)
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