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Abstract

The problem of creating generative music systems has been approached
in different ways, each guided by different goals, aesthetics, beliefs and
biases. These generative systems can be divided into two categories:
the first is an ad hoc definition of the generative algorithms, the sec-
ond is based on the idea of modeling and generalizing from preexistent
music for the subsequent generation of new pieces. Most inductive mod-
els developed in the past have been probabilistic, while the majority of
the deductive approaches have been rule based, some of them with very
strong assumptions about music. In addition, almost all models have
been discrete, most probably influenced by the discontinuous nature of
traditional music notation.

We approach the problem of inductive modeling of high level musical
structures from a dynamical systems and signal processing perspective,
focusing on motion per se independently of particular musical systems
or styles. The point of departure is the construction of a state space
that represents geometrically the motion characteristics of music. We
address ways in which this state space can be modeled deterministically,
as well as ways in which it can be transformed to generate new musical
structures. Thus, in contrast to previous approaches to inductive music
structure modeling, our models are continuous and mainly deterministic.
We also address the problem of extracting a hierarchical representation
of music from the state space and how a hierarchical decomposition can
become a second source of generalization.
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CHAPTER ONE
Introduction and Background

1.1 Motivations

There are two motivations for the present work: the first motivation
comes from my interest in music analysis. Several music theories have
been developed as useful tools for analyzing and characterizing music.
Most of these theories, such as Riemann’s theory of tonal music, Schenke-
rian analysis [31] and Forte’s atonal theory, are specific to particular
styles or systems of composition. It would be interesting to see the de-
velopment of an analytical method useful for any kind of music. This
method would have to be based on features that are present in all music,
the element of motion being the only constant characteristic. Thus, my
interest in finding a more general method of musical analysis applicable
for a variety of music has motivated me to classify music in terms of
the different kinds of motion it manifests, encouraging me to define a
taxonomy of motion. While the importance of motion in music is obvi-
ous, no work that I know of has systematically studied music from this
perspective.

The second motivation comes from my interest in understanding the be-
havior of my musical imagination. The process of composing usually
includes writing or recording the imagined sound evolutions as they are
being heard in one’s mind. Multiple paths and combinations are ex-
plored during the process of imagining new music, so that the score we
ultimately write is but an instance of the multiple combinations explored
in one’s mind. It is also a simplification of the imagined music because
the representation we use to record the imagined sound evolutions is
incomplete. In other words, we are unable to represent accurately ev-
ery detail of the imagined universe. Thus, this representation is like a
photograph of the dynamic, ever-changing world of the imaginary. Why
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decide on one sequence or combination over another? Is there a single
best sequence, a better architecture? My personal answer to this ques-
tion is no. This has led me to become interested in pursuing the creation
of a meta-music: a system that generates the fixed notated music along
with all its other implied possibilities.

1.2 Generative Music Systems and Algorithmic Com-
position

Algorithmic composition can be broadly defined as the creation of algo-
rithms, or automata in general, designed for the automatic generation of
music.! In other words, in algorithmic composition the composer does
not decide on the musical events directly but creates an intermediary
that will choose the specific musical events for him. This intermediary
can be a mechanical automaton or a mathematical description that con-
strains the possible musical events that can be generated. The definition
here is deliberately broad to suggest the continuous spectrum that exists
in the levels of detachment between what the composer creates and the
actual sounds produced.?

Every algorithmic composition approach can be placed in a continuum
between ad hoc design and music modeling. Ad hoc designs are those
where the composer invents or borrows algorithms with no particular
music in mind. The composer doesn’t necessarily have a mental image
of what the musical output will be. The approach is something like:
“Here’s an algorithm, and I wonder what this would sound like.” In
music modeling, the composer deliberately attempts to generalize the
music he hears in his mind, so the algorithm is a deliberate codification
of some existing music.

We find examples of ad hoc approaches as early as 1029 in music theorist
Guido D’Arezzo’s Micrologus. Guido discusses a method for automati-
cally composing melodies using any text by assigning each note in the
pitch scale to a vowel [26]. Because there are more pitches than vowels,
the composer is still free to choose between the multiple pitch options
available. Similarly, Miranda borrows preexisting algorithms from cellu-
lar automata and fractal theory for automatic music generation [28].

!For a complete definition of algorithm and a discussion of how they relate to music
composition, see [26].

20ne could argue that any composition is algorithmic since the composer does not
define the specific wave-pressure changes, only the mechanisms to produce them.

12
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While inventing ad hoc algorithms for music composition is a fascinating
endeavor, in this work we are interested in learning about our intuitive
musical creativity and developing a generative system that grows from
musical examples. Thus, we discuss the design of a generative music
system based on modeling existent music.

1.3 Modeling

All models are wrong, but some are useful.

George E.P. Box

There are no best models per se. The most effective model will depend
on the application and goal. Different goals suggest different approaches
to modeling. As expressed by our motivations, our models intend to
serve a double purpose: the first is to obtain some understanding about
the inner workings of a given piece and, hopefully, gain insight into
the composer’s mind. The second is for the models to be a powerful
composition tool. It is difficult, if not impossible, to come up with a
model that achieves these two goals simultaneously for a variety of pieces
because a generative model might not be the most adequate for analysis
and vise versa. Music structure is so varied, so diverse, that it seems
unlikely that a single modeling approach could be used successfully for
all music and for all purposes.

What are the criteria for choosing a model? Is the model simple? The
Minimum Description Length principle [33], which essentially defines
the best model as that which is smallest with regards to both form and
parameter values, is a measure of such a criterion. Other criteria to
consider are:

Robustness: Does it lend itself well to a variety of data (e.g. musical
pieces)?

Prediction: Can it accurately predict short term or long term events?
Insight: Does it provide new meaningful information about the data?
Flexibility: As a generative system, what is the range or variety of new
data that the model can generate?

1.3 Modeling
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1.3.1 Models of Music
Deduction vs. Induction

Brooks et al. describe two contrasting approaches to machine modeling:
the inductive and the deductive [4]. Essentially, the difference lies in who
performs the analysis and the generalization: the human programmer or
the machine. In a deductive model, we analyze a piece of music and
draw some rules and generalizations from it. We then code the rules
and generalizations and the machine deduces the details to generate new
examples. In an inductive approach, the machine does the generalization.
Given a piece (or set of pieces) of music, the machine analyzes and learns
from the example(s) to later generate novel pieces.

While many pieces may share common features, each piece of music has
its own particular structure and “logic”. A deductive approach implies
that one must derive the general constants and particularities of a piece
or set of pieces for the subsequent induction by the machine. This is a
time-consuming task that could only be done for a small set of pieces
before one’s life ended. The classic music analysis paradigm is at the root
of this approach. One can certainly learn a lot about music in this way,
but it seems to us that attempting to have the machine automatically
derive the structure and the generalization is not only a more interesting
and challenging problem, it also might shed light about the way we learn
and about human cognition in general. This approach also encourages
one to have a more general view regarding music and to be as unbiased as
possible (hopefully changing our own views and biases in the process).
In a deductive approach we are filtering the data. We are telling the
machine how to think about music and how to process it. In an inductive
approach the attempt is to have the machine figure out what music is.

We could alternatively attempt to model our own creativity directly, but
it seems to us that the “logic” or structure and generative complexity of
the highly subconscious and hardly predictable creative mind is at a far
reach from our conscious self probing and introspection.® Rather than
asking ourselves what might be going on in our mind while we imagine a
new piece of music and trying to formalize the creative process, we can
let our imagination free, without probing, and then have the machine
analyze and model the created object.

3This nebulous and partly irrational experience of the imaginary has been expressed
many times by different composers, for example [34, 15].

14
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Continuous vs. Discontinuous

Most generative music systems and analysis methods assume a discrete
(and most times finite) musical space.? This is a natural assumption
since the dominating musical components in western music have been
represented with symbols for discrete values.® The implication is that
most models of music depart from the idea that a piece is a sequence of
symbols taken from a finite alphabet. Almost all the generative systems
we are aware of are discrete ([21][4][19][38][12][8](9](41][7][32][30][29][3])-
This thesis, however, proposes a continuous approach to modeling music
structure.

Deterministic vs. Probabilistic

There is no way of proving the correctness of the position of
‘determinism’ or ‘indeterminism’. Only if science were
complete or demonstrably impossible could we decide such
questions.

Mach (Knowledge and Error, Chapt XVI.11)

Should a music structure model be deterministic or stochastic? Con-
sider two contrasting musical examples: on one extreme there is Steve
Reich’s Piano Phase. The whole piece consists of two identical periodic
patterns with slightly different tempi (or frequencies).® Piano Phase can
be straightforwardly understood as a simple linear deterministic station-
ary system. On the other extreme we can place Xenakis’ string quartet
ST/4, 1-080262. It would make sense to model ST/4, 1-080262 stochas-
tically since we know it was composed in this way! In between these two
extremes there are a huge variety of compositions with much more com-
plex and intricate structures. There may be pieces that start with clearly
perceivable repeating patterns and that gradually evolve into something
apparently disorganized. A piece like this might best be modeled as a
combination of deterministic and stochastic components that are a func-

4Since the classical period, notation for loudness has commonly included symbols
for continuous transitions, but loudness is typically not considered important enough
to be studied. If it is, its continuous nature is typically ignored.

5Indeed, the recurrent inclusion of the continuum in notated pitch space (start-
ing probably with Bartok, continuing with Varése and Xenakis, and culminating in
Estrada) has made it difficult or impossible for some music theoretic views to approach
these kinds of music.

5The point of the piece is the perception of the evolution of the changing phase
relationships between the two patterns.

1.3 Modeling
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tion of time. In addition, these combinations may occur at multiple
time scales, in which case it would be better modeled as a combination
of a deterministic component at one level, and a stochastic component
at another. Thus, rather than trying to find a single global model for a
whole piece, we might want to model a piece as a collection of multiple,
possibly different, models.

Brief Thoughts on Markov Models

Tt is intriguing to see how the great majority of the inductive machine
models of music are discrete Markov models. Remember that an kth
order Markov model of a time series is a probabilistic model where the
probability of a value at time step n + 1 in a sequence s is given by
the k previous values: p(sn+1]p(Sn, Sn—1,- -+, Sn—k+1). Why discrete and
why Markovian? Several papers on Markov models of music are based
on the problem of reducing the size and complexity of the conditional
probability tables by the use of trees and variable orders([41][3][30]).
Again, the discrete nature of the models most probably comes from the
view of music as a sequence of discrete symbols taken from an alphabet.
Why not model the probability density functions parametrically, as with
mixtures of gaussians?

Are Markov models really good inductive models of music? What kind
of generalization can they make? Most applications of discrete Markov
models estimate the probability functions from the training data. Usu-
ally, zero probabilities are assigned to unobserved sequences. If this is
the case, it is impossible for a simple kth order Markov model to gener-
ate any new sequences of length k£ + 1. All new and original sequences
will have to be of length k+ 2 or greater. Take for example the following
simple sequence which we assume to be infinite:

1,2,3,2,1,2,3,2,1,2,3,2, ... (1.1)

A first order model of this sequence can be constructed statistically by
counting the relative frequencies of each value and of each pair of values.
The relative frequencies of all possible pairs derived from this sequence
can be easily visualized in the following table, where each fraction in the
table represents the number of times a row value is immediately followed
by a column value, divided by the total number of consecutive value or
sample pairs found in the sequence. From these statistics we can now
derive the marginal probabilities of individual values, and by Bayes’ rule

16
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Table 1.1: Relative frequency of all pairs of values found in sequence 1.1

1 2 3

1 0 1/4 0
1/4 0 1/4

3/ 0 1/4 0

we find the conditional probabilities:

p(3n+1, Sn)

p(sn+1|sn) = p(sn)

From this table we can see that new sequences generated by this joint
probability function will never produce pairs (1,1), (1,3), (3,1), (3,3),
(2,2) or extrapolate to other values, such as (4,5). In other words, all
length 2 sequences that this model can generate are strictly subsets of
sequence 1.1, while those of length 3 or greater may or may not appear in
the original sequence. To overcome this limitation one could give unob-
served sequences a probability greater than zero, but this is essentially
adding noise. Looking at generated sequence segments of length 3 or
greater we may now wonder how these are related to the original train-
ing pieces. The limitation of this model soon becomes apparent. New
sequences generated from this model will have some structural resem-
blance to the original only at lengths [ < k+ 1 (I < 2 in this example),
but not at greater lengths. From the first order model in the present
example it is possible to obtain the following sequence:

1,2,3,2,3,2,1,2,3,2,1,2,1,2,1,2,1,2,3,2,3,2,1,2,3,2,1, . ..

Because p(3]|2) = p(1]2) = 0.5, the generated sequence will fluctuate
between 1 and 3 with equal probabilities every time a 2 appears. This
misses what seems to be the essential quality of the sequence: its peri-
odicity. Increasing the order of the model to 2, we are able to capture
the periodicity unambiguously. But what generalization exists? Now the
model will generate the whole original training sequence exactly. This
is the key idea we explore in this work. We want the model to be able
to abstract the periodicity and generate new sequences that are differ-
ent from the original but that have the same essentially periodic quality.
This information can be obtained by looking for structure and patterns
in the probability functions derived from the statistics, but in this work
we will present a different approach.

1.3 Modeling
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One more problem is that of stationarity. In our example the sequence
repeats indefinitely, making a static probabilistic model adequate. But
music continuously evolves and is very seldomly static. Sequences gener-
ated with a simple model like the one discussed above may resemble the
original at short time scales, but the large scale structures will be lost.
This problem could be addressed by dynamically changing the proba-
bility functions, i.e. with a stochastic model. Modeling non-stationary
signals can also be done through a hierarchical representation, where the
conditional probabilities are estimated not only sequentially, but also ver-
tically across hierarchies. Some concrete applications of this approach
can be found in image processing [10], and to our knowledge, there have
not been similar approaches in music modeling. Similar problems have
been observed using other methods such as neural networks [29], where
the output sequences resembled the original training sequence only lo-
cally due to the note-to-note approach to modeling.

The Markov model example we have given here is certainly extremely
simplistic, but hopefully it makes clear some of the problems of this
approach to music modeling for the purpose of generating novel pieces.

1.3.2 Our Approach to Music Structure Modeling

As suggested in our motivations, our main interest is the abstraction
of the essential qualities of the dynamic properties of music and their
use as sources for the generation of novel pieces. By dynamics we mean
the qualitative aspects of motion in music, rather than the loudness
component as is usually used by musicians. Here we approach musical
sequences in a similar way as a physicists would approach the motion of
physical objects.

The notion of the dynamical properties of a musical sequences is rather
abstract, and we hope to clarify it with a concrete example. First, con-
sider the following question: why can we recognize a tune even when
replacing its pitch scale (e.g. changing from major to minor), or when
the pitch sequence is inverted? What are the constants that are pre-
served that allow us to recognize the tune?

Take for example the first 64 notes (8 measures) of Bach’s Prelude from
his Cello Suite no.1 (Figure 1-1). There are multiple elements that we
can identify in the series: the pitches, the durations, the scales and har-
monies the pitches imply, the pitch intervals and the temporal relation-
ships between these elements. How can we characterize these temporal

18
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Figure 1-1: Top: First 8 measures of Bach’s Prelude from Cello Suite
no.l. Bottom: Alternative notation of the same 8 measures of Bach’s
Prelude. Here the note sequence is plotted as connected dots to make
the contour and the cyclic structure of the sequence more apparent.
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relationships? Can we say something about the regularity/irregularity
of the sequence, the changes of velocity, the contour? An abstract rep-
resentation of the motion in Bach’s Prelude might look something like
(up, up, down, up, down, up, down, down, ...) repeating several times.
This is a useful but coarse approximation, preserving only the ordering
of intervals. We might also want to preserve some information about the
size of the intervals, their durations and the quality of the motion from
one point to the next: is it continuous, is it discrete? Whatever the case,
we see from Figure 1-1 (Bottom) that this general sequence is the only
structure in the Prelude fragment, repeating and transforming gradually
to match some harmonic sieve that changes every two measures. Every
two measures the sequence is slightly different, but in essence the type of
motion of the eight measures is the same. Thus, we can consider the se-
quence as being composed of two independent structures: the dynamics
and the sieves though which these are filtered or quantized.

In this thesis we focus on the analysis and modeling of these dynamic
properties. We address ways in which we can decompose, transform,
represent and generalize the dynamics for the purpose of generating new
ones. Rather than trying to extend on the Markovian model as suggested
above, we approach the problem from a deterministic perspective. We
explore the use of a method that allows for a geometric representation
of time series, and discuss different ways to model and generalize the
geometry deterministically.

20
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CHAPTER TWO
Musical Representation

Structure in music spans about seven orders of magnitude, from approx-
imately 0.0001 seconds (gzzz) to about 1,000 seconds (= 17 min.) [11].
In the present work we focus on the upper four orders (between 0.1 secs.
and 1,000 secs.) for two reasons: One, these orders correspond to those
typically represented in musical scores. Second, there is a clear differ-
ence between the way we perceive sound below and above approximately
0.02Hz.

Below this threshold, we hear pitch and timbre, and above it we hear
rhythm and sound events or streams. The perception can be so clearly
different that they feel like two totally independent things: a high-level
control signal driving high-speed pressure changes. These high-level con-
trol signals are what we are interested in modeling and transforming.
Thus, the musical representations we will use are not representations of
the actual sound, but abstract representations of these high-level signals.

As of today, it is still very difficult to extract these high level control
signals from the actual audio signal. Good progress has been made in
tracking the pitch of individual monophonic instruments and in some
special cases from polyphonic textures. But the technology is still far
from achieving the audio segregation we would like. Therefore, except
for simple cases where the evolution of pitch, loudness and some timbral
features can be relatively well extracted (such as simple monophonic
pieces), our point of departure is the musical score.

Two basic types of scores exist. In the first, the score represents the
evolution of perceptual components, such as pitch, loudness, timbre, etc.
In the second, traditionally called tablature notation, the score is a rep-
resentation of the performance techniques required to obtain a particular
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sound. In essence they are both control signals driving some salient fea-
ture of sound or some mechanism for its production. There are several
ways in which these high level control signals can be represented before
being modeled and transformed. Some representations will be more ap-
propriate than others depending on their use and the type of music to
be represented.

Representation of Time

The simplest and most common way of representing a digitized scalar
signal is as a succession of values at equal time intervals:

sln]= so, S1, ..., Sn (2.1)

Since it is assumed that all samples share the same duration, this infor-
mation need not be included in the series.

The same is true for a multidimensional signal where each dimension
describes the evolution of a musical component. For example, a series
describing the evolution of pitch, loudness and brightness might look like
this:

Po, P1, ---y Pn
s[n] = lo, ll, ey ln (2.2)
bOa bla [ERE) bn

For the specific case where there is more than one instrument or sound
source, as in a three voice fugue, a chorale or even possibly an entire
orchestra, the series can again be extended as:

DPap, Pai, .--5 DPan
la,Oa la,17 RN l(l,’ll
ba,O, ba,la ceey ba,n
DPbos DPbly, ---5 DPbn
S[TL] = lb,Oa lb,17 ey lb,n (23)
bb,Oa bb,l7 ey bb,n
Pmo, Pm,d, -5 Pmmn
lm,Oa lm,l’ ey lm,n
L bm,Oa bm,l, ceey bm,n .

While this is a simple representation scheme, it is not necessarily the best
in all cases. The problem with this representation has to do primarily

Musical Representation



with the temporal overlapping of events. Consider a polyphonic instru-
ment such as the piano. With this instrument it is possible to articulate
multiple notes at the same time. How should we represent a sequence of
pitches that overlap and start and end at different times? An alternative
is to have a series that has as many dimensions as the number or keys in
the piano, where each dimension represents the evolution of the velocity
of the attack and release of each key:

V1,0, UL, -eey Uln
V2,0, V2,1, ceey U2

sll=| . ’ ’ (24)
Um,0, Um,1, ---5 VUmn

How could we reduce the number of dimensions and still have a meaning-
ful representation? A tempting idea might be to separate a piano piece
into multiple monophonic voices and to assign each voice to a dimension
in a multidimensional polymelodic series as in 2.3. But in addition to
being an arbitrary decision in most cases (not all piano pieces are con-
ceived as a counterpoint of melodies), the main problem is that even in
single melodic lines there may still be overlaping notes through legatis-
stmo articulation.

An alternative representation is the Standard Midi File (SMF) approach,
where time is included explicitly in the representation by indicating the
absolute position of each event in time or the time difference: the Inter
Onset Interval (IOI). In addition to this time information there are the
duration of each event and the component values. The most economical
form of this representation, Format 0, combines all separate sources or
instruments into a few dimensions, one of which specifies the instrument
to which the event corresponds. The following is an example of this
format, where i0i stands for Inter Onset Interval, d for duration, p for
pitch, v for velocity (or loudness) and ch for channel (or instrument):

ioig, 4081, ..., i0in
do, di, ..., dn
s[n]=1| po, P1, -y Pn (2.5)
Vo, v, ey Un
Cho, Chl, ey chnp

With this format we can now represent overlapping events with only a
few dimensions. This is an adequate representation for the piano, due
to the discrete nature and limited control possibilities of the instrument.
Yet, it is far from being a good numeric replacement for a traditional
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music score in general, the main problem being the loss of independence
between the multiple parameters. Because the explicit representation of
time intervals can be useful, we can still take advantage of this feature by
defining pairs of dimensions for each parameter: one for the parameter
values and another for their durations. Besides providing some insight
into the rhythmic structure of a sequence, it can also significantly reduce
the number of data samples:

bo, P1, .-y DPn
do, dv, ..., dy
s[n] = (2.6)
Vo, Vi, «..5, Un
do, di, ..., dy

While this representation lends itself best for discrete data, we can as-
sume some kind of interpolation between key points and still make it
useful for continuous data.

Summary

There are multiple ways in which musical data can be represented. Dif-
ferent representations have different properties: some provide compact
representations, while others are more flexible. In addition, some may
be more informative about certain aspects of the music than others. The
choice of representation will also depend on the type of transformation
we are interested in applying to the data. In the present work we use
these three basic representations (constant sampling rate representation,
variable sampling rate representation, and SMF Format 0) in different
situations for the purpose of analysing and generating new musical se-
quences.
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CHAPTER THREE
State Space Reconstruction and
Modeling

3.1 State Spaces

One of the most important concepts in this work is that of state space
(or phase-space). A state space is the set of all possible states or con-
figurations available to a system. For example, a six sided die can be in
one of six possible states, where each state corresponds to a face of the
die. Here the state space is the set of all six faces. As a musical exam-
ple consider a piano keyboard with 88 keys. All possible combinations
of chords (composed from 1 to 88 keys) in this keyboard constitute the
state space, and each chord is a state. These two examples constitute
finite state spaces because they have a finite number of states. Some
systems may have an infinite number of states; for example a rotating
height adjustable chair. A chair that can rotate on its axis and that
can be raised or lowered continuously has an infinite number of possible
positions. Yet, in practical terms, many of these positions are so close to
each another that sometimes it makes sense to discretize the space and
make it finite (for example, by grouping all rotations within a range of
% radians into one state). While this system has an infinite number of
possible states, it has only two degrees of freedom: up-down motion and
azimuth rotation.

State spaces can be represented geometrically as multidimensional spaces
where each point corresponds to one and only one state of the system. In
the chair example, since only two degrees of freedom exist, we can rep-
resent the whole state space in a two dimensional plane. Yet, we might
like to keep the relations of proximity between states in the representa-
tion as well. Therefore we embed the two dimensional state space of the
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rotating chair in a three dimensional space in such a way that the states
that are physically close to each other are also close in state space. This
results in a cylinder, and is a “natural” way of configuring the points in
the state space of the chair.

An analogous musical example is that of pitch space. This one-dimensional
space can be represented with a line, ranging from the lowest perceivable
pitch to the highest. But this straight line is not a good representation
of human perception of pitch in terms of similarity. Certain frequency
ratios like the octave (2:1) are perceived to be equivalent or more closely
related to each other than, for example, minor seconds. In 1855 Dro-
bisch proposed representing pitch space as a helix, placing octaves closer
to each other than perceptually more distant intervals [3