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ABSTRACT

Nitric oxide is postulated to protect cancer cells from the death-
inducing effects of tumour necrosis factor alpha by S-nitrosating
the active site cysteines, inhibiting cleavage of caspase-9. We
aimed to test this hypothesis and to determine its validity across
cancer cell types. In addition, we hoped to explain the
involvement of certain kinases in nitric oxide-induced apoptosis.
The experimental setup involved stimulating human colorectal
cancer cells, HT-29 and HCT- 116, and human prostate cancer
cells, LNCaP, with cytokines in order to induce cell death. Then,
we observed the effects of NO inhibitors, kinase inhibitors, and
activation of Akt, a kinase up-stream of the caspase cascade,
following transfection of a DNA sequence that was proven to
protect cells against apoptosis induction. In our series of
experiments, inhibition of the nitric oxide synthases removes
nitric oxide protection from apoptosis, but inhibition of only the
inducible synthase has opposite effects with prostate and colon
cancer cells that are considered insignificant, and its effects on
the two types of colon cancer cells are in discord. Transformation
and transfection of ARK5 into the colorectal cancer cell line, HT-
29 did not prove beneficial. Similarly, glucosamine showed no
clear pattern of reducing apoptosis in the cells. Therefore, we
propose further exploration of the inhibition of constitutive nitric
oxide synthases as a potential therapy.

Thesis Supervisor: Steven R. Tannenbaum
Title: Underwood Prescott Professor of Toxicology and Professor of Chemistry
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1. INTRODUCTION

Diseases [in human beings] are progressively more resistant to currently

available drugs. How best to neutralise this challenge, in light of the sharp rise

in life expectancy amongst the U.S. population, and the rate of technological

change are two of the factors that have significant impact on scientific research

for cures to diseases, such as cancers.

A 2003 experimental project executed by a team in the Tannenbaum

laboratory land on which I was a partner], established that glucosamine

modulates the production of inflammatory molecules through the mitogen-

activated protein kinase (MAPK) pathway. Nitric oxide (NO) had been shown

separately to protect HT-29 colon cancer cells from apoptosis through S-

nitrosation of the active site cysteine. The implication of these findings formed

the rationale for studying the consequence of NO on cancer cells to determine

whether the observed effects were universal or at least a cancer-specific

phenomenon. Additional investigation will also be conducted into glucosamine

as an instrumental factor in apoptosis that is induced in cancer cells by

cytokines (or drugs).

Nitric oxide has both physiological benefits and harmful effects on the

body. It maintains physiological homeostasis, regulates the cardiovascular

system and promotes cellular adhesion for tissue formation. As an antioxidant,

NO protects the body against the toxic effects of tumour necrosis factor and

apoptosis (the natural, programmed cell death), due to changes in the health

and condition of normally functioning cells (25). The practical application of NO

to diseases, such as diabetes, atherosclerosis, myocardial infarction and cancer

is wide-ranging. With additional research, NO inhibition has the potential of

warding off cancer cells' evasion of cell death.

1.1 Objectives of the Study

The underlying study has a four-prong approach. Its expected results

will clarify whether and, if so, how cancer cells bypass the mechanism of

apoptosis. In addition, we expect that our findings will provide a means by
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which to target and, therefore, realise controlled cell death. Particulars of this

study's aims have been delineated below, as follows:

o Investigate the hypotheses, NO protects cancer cells against

apoptosis, and inhibitors of nitric oxide synthase (NOS)

increase cell susceptibility to apoptosis;

o Determine whether or not the underlying study results are

universal to all human cancer cell types.

u Examine the effects of glucosamine, an inhibitor of externally

regulated kinase (ERK) on apoptosis involving the MAPK

pathway.

Li Utilise alternative sequences of biochemical reactions, such as

the Akt pathway, to exploit caspase activation.

Cancer is the principal cause of death among the U.S. adult population

(20). Tumours of the lung and bronchus (29% deaths), breast (15% deaths),

prostate (10% deaths), and colon and rectum (10% deaths) account for the

highest death rates in both genders. Cancer incidence is a measure of the

number of new cases in a given year per 100,000 people (for gender-specific

cancers; same-gender patients comprise the denominator).

The rate of cancer incidence became stable around the mid-2000s, due

to new advances in research and lifestyles changes in the U.S. population.

Early detection through screening has also had a favourable outcome in cancer

treatments, with effective tests available to screen for a number of cancers

(notably, breast and cervical types). In contrast to these positive developments,

the screening rate for colorectal cancer remains unacceptably low.

The regular post-surgery therapy for cancer is chemotherapy, which is a

combination of toxins that attack all actively reproducing cells, especially those

in the M and S phases of the cell cycle. The treatment unsystematically targets

cancerous and non-cancerous cells, alike, with hair loss during treatments as

its most discernable side effect. Ideally, this form of therapy should be

selective, affecting only the tumour cells. Because cancer cells sometimes

develop mechanisms to bypass the ordinary mechanisms of death, directed cell

attack currently pose a sizeable challenge.
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2. RATIONALE AND SIGNIFICANCE

The current canon holds that animal cells derive specific survival signals

from other cells. Signals of this type activate or suppress suicide programs

and, when transformed, the unwanted cells die and are phagocytosed. The

tenet also postulates that non-pathological cell death, also known as apoptosis,

occurs normally at the developmental stage and is useful in determining cell

number and tissue size. Apoptosis is apparent, for instance, in the formation of

fingers from selective death of the tissue that is initially present between digits.

Apoptosis morphology consists of nuclear condensation, cytoplasmic

shrinkage, membrane blebbing and blister formation. Note that organelles

(other than the endoplasmic reticula) showed no swelling or changes in

functioning, nor was there any leakage of call contents; hence, inflammation

did not occur (32). Instead, the phosphatidylserine residues gather about the

outer surface of the plasma membrane, activating proteases. The procedure

requires energy for mRNA and protein synthesis (16).

Inherent in each cell is a vim that is analogous to a killing machine.

Typically, this force is dormant, but will rapidly go into killing mode when death

is signalled from its inhibition and, correspondingly, the cell is induced to die

(32). This induced cell death depends upon factors, such as the stage of the

cell cycle, the strength of competing signals and the relative expression of pro-

apoptotic and anti-apoptotic proteins. Given the occurrence of a blocked

apoptosis pathway, for instance, the cell might die through autophagy or other

unspecified pathway.

Occasionally, cells develop means of bypassing cell death by apoptosis or

otherwise. This phenomenon leads to uncontrollable and, in some cases,

cancerous, cell growth. To inhibit the onset of cancer and develop better

treatments, an understanding of the physiology of the system, and the cause

and progression of its abnormality is useful.

2.1 Apoptosis Induction by Surface Receptors

Apoptosis can start from ligation of death receptors in the tumour

necrosis factor (TNF-R) family (namely, CD95/Fas/Apo- 1/TNFR1/TRAIL-R), by
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their respective cytokines. As has been illustrated in Figure 1, ligands binding

to plasma membrane receptors recruit Fas-associated death domain protein

(FADD) and TNFR1-associated death domain protein (TRADD), both of which

cause down-stream initiation of proteolytic enzymes (25), tagged caspases or

cysteine-requiring aspartate specific proteases. These reactions occur in

caspase-dependent apoptosis. It is also plausible that apoptosis can be

caspase-independent, with associated stimuli comprising granzyme B from

virally infected cytotoxic T-cells, UV-light, X-rays and chemotherapeutic drugs,

and deprivation of growth factors and interleukin-2 (IL-2). However, the

majority of apoptotic reactions involve caspases that can be regulated.

2.2 The Caspase Cascade

Caspases are cysteine proteases that disable critical homeostatic and

repair processes, by cleaving after the aspartic acid residue. An examination of

the recognised active site indicates QACXG, where, the variable, X, is any

residue. As the apoptotic bodies become engulfed, proteases cause the

systematic and orderly disassembly of the dying cell, through the degradation of

proteins that are required for cytoskeletal regulation. In a proteolytic cascade

involving autocatalysis, caspases de-activate inhibitors and cleave and trigger

other caspases into long and short domains, which associate to form

heterodimers. They then associate and act as catalytically active tetramers with

two functionally independent, catalytic sites (4) to initiate and sustain either

receptor-linked apoptosis or cell death that is linked to mitochondrial

metabolism.

All caspases are not essential in the process of cell death. Caspases

consist of subfamilies, and their division reflects structural similarity, sequence

similarity and preference for substrate. Alternative splicing throughout

activation forms different variations on the original zymogen. By implication,

the apoptotic pathway typifies some combination of caspases but, ultimately,

the overall scheme entails a two-tier activation of specific members of the

caspase class: the commitment phase and the execution phase. Caspases 8, 9

and 10 situate at the upper end of the cascade, and down-stream are caspases

3, 6, and 7, whose cellular substrates include poly-ADP ribose polymerase
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(PARP), lamins and histones. Each of these has a DXXD motif (Figure 2) similar

to that described in PARP (4). In particular, caspase-3 cleaves PARP at DEVDG,

freeing up the PARP substrate, adenosine triphosphate (ATP) for the energy-

dependent apoptosis reactions. Furthermore, caspase-3 (as well as granzyme

B) activates down-stream caspase-9, whose over-expression triggers apoptotic

events and cause further cleavage at QACXG active sites, where the variable, X,

is glycine.

In later apoptotic events, proteins localised in the mitochondria -- second

mitochondria-derived activator of caspases/direct IAP binding protein with low

PI (SMAC/DIABLO), arylhydrocarbon receptor-interacting protein (AIP) and

cytochrome c -- are released. SMAC/Diablo binds anti-apoptotic AP proteins,

suppressing their inhibitory activity and promoting caspase activation (7,56).

When cyotchrome c is present in the cytoplasm, Apaf- 1 oligomerises and

combines with ATP and procaspse-9, as revealed in Figure 1, to form the

apoptosome (25).

The action of caspases is irreversible; therefore, caspase regulation

occurs through control of both activity and availability of the substrate.

Naturally occurring CrmA and Bcl-2, p35 and peptide inhibitors, and reversible

inhibitors (such as aldehydes, ketones and nitriles), can counteract caspase

activity (4). Bcl-2 proteins' chief role is detection of cellular stress in the

cytoplasm they routinely reposition by rising to the mitochondrial surface.

There, pro-apoptotic and anti-apoptotic bcl-2 proteins interact to form pores in

the mitochondria. The next course of action is a release of cytochrome c, which

causes formation of the apoptosome with caspase-9 and activates the caspase

cascade. As a consequence of this process, the majority of pathological

treatments have focused on the direct activation of caspases, control of their

selectivity and the exploitation of oncogenic transformation.

2.3 Nitric Oxide Production

A stable, free radical, NO is a neutral, lipophilic molecule with a weak

chemical reactivity with thiols at neutral pH. Previous studies indicate that the

radical is formed from a two-step oxidation of L-arginine into citrulline from the

terminal guanidine nitrogen of L-arginine (33). Large phagocytic cells of the
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reticuloendothelial system, called macrophages, produce the diatomic molecule

in a reaction (shown in Equation 1) that is mediated by each of three types of

nitric oxide synthase. (A fourth isoform, mtNOS has been recently discovered in

the mitochondria.)

L-Arginine + 02 * Citrulline + NO- (Equation 1)

The NOS isozymes exist as homodimers, with molecular weights ranging

between 130 and 160 kDa, and require co-factors, nicotinamide adenine

dinucleotide phosphate (NADPH), flavin dinucleotide (FAD), flavin

mononucleotide (FMN), tetrahydrobiopterin, haem and BH4. Additionally, NOS

activity is a function of their localization inside the cells; their regulation is

complex and cell-specific (25). The constitutive, forms, neuronal NOS (nNOS)

and endothelial NOS (eNOS), are modulated mostly at the post-translational

level by a multitude of different stimuli in diverse cell types through

calcium/calmodulin activation. Over prolonged periods of time, inducible NOS

(iNOS) produces high (micromolar) and sustainable levels of NO under the

transcriptional control of the pro-inflammatory agents. Specifically, iNOS is up-

regulated due to a synergism of various stimuli, including tumour necrosis

factor (TNF), interferons (IFN) and bacterial lipopolysaccharide (LPS), nuclear

factor kappa b (NFKB), activator protein 1 (AP-1), cAMP and other second

messengers (25). Its down-regulation occurs in response to transforming

growth factor (TGF), heat shock protein (Hsp), the tumour suppressor gene,

p53, and, in a negative feedback loop, NO. There is no correlation between NO

activity and iNOS mRNA expression, suggesting post-transcriptional regulation.

iNOS over-expression during chronic inflammation leads to mutagenesis and

cell death (42).

Nitric oxide is highly reactive and diffusive. As a charged, chemically

active molecular fragment, deficient in electrons, it reacts directly with other

molecules especially haem-containing compounds, or indirectly through the

formation of reactive nitrogen species (RNOS): nitrogen trioxide (N20 3),

transferred as the nitrosonium cation (NO+) to an active site thiol of cysteine in

a protein; nitroxyl (HNO) and peroxynitrite (ONOO-), which oxidise thiol-

containing proteins (9). The target amino acid must be in its reduced state for
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the reaction to progress, and the type of reaction will depend on the redox
potential of the cell (30,34,36). The biological activity of NO hinges on its
unpaired electron and, as such, it also reacts with electron acceptors (notably,
oxygen), transition metal ions and superoxide radicals, which will continue in

other S-nitrosation reactions (24).

2.4 Apoptotic Effects of Nitric Oxide

Nitric oxide is a pleiotrophic regulator that is important in a diversity of
responses (namely, vasodilation, neurotransmission and macrophage-mediated
immunity). Diseases, such as vascular dysfuntions, cerebral infarction and
diabetes mellitus are associated with faulty production of NO. The effects of NO
on the body are somewhat contradictory, and conflicting reports from the
scientific community have otherwise obscured its true impact of NO on cells.
Many variables play into NO reactivity; its source, concentration and form
within the cell, cell-type and the presence of antioxidants (25) can affect
whether NO is beneficial or harmful. Specific to this discussion, NO can be
both pro-apoptotic and anti-apoptotic, depending on the cell type and redox
status, the concentration of NO and the presence or absence of certain co-
factors.

Amongst the relevant variables or factors are Bcl-2 proteins; antioxidants
(namely, metals conjugated to superoxide dismutase); repeated exposure to
cytokines; iron, which is protective to the cell; the presence and concentration
of arginase, which competes with iNOS for the arginine substrate;
prostaglandins, such as cyclo-oxygenase 2 (COX-2), that inhibit apoptosis; and
glucose, which, at high levels, produce ROS and NO that lead to apoptosis,

increase the ATP level to prevent energy depletion, and determines the type of
cell death (necrosis versus apoptosis).

Nitric oxide is involved in both ligand-dependent and ligand-independent
apoptosis, inducing apoptosis through the action of reactive nitrogen species

(RNOS), formed by reaction with NO and ROS. These RNOS react directly with
DNA. Peroxynitrite, a S-nitrosating species, oxidises DNA, causing strand
breaks that can lead to further damage by up-regulating p53 and activating
PARP. Peroxynitrite also specifically targets thiols (inhibiting DNA repair and
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synthesis) degrades proteins and induces lipid peroxidation (2). Nitrogen

trioxide (N2 0 3) also leads to nitrosation of amines and the formation of other

mutagens that damage DNA.

Another primary NO-dependent pathway by which to trigger apoptosis is

up-regulation of p53. This increases the amounts of pro-apoptotic Bax present

relative to anti-apoptotic Bcl-XL; thereby, activating caspases (Figure 3). A

change in the bcl-2 protein ratio plus the presence of second messengers,

calcium, ceramide derivatives, nitric oxide, and reactive oxygen species, and

pro-apoptotic Bax, Bid, Bak and caspases can alter the mitochondrial

membrane potential. Note that, at low NO concentrations, such a change is

reversible and, at high NO concentrations, it is irreversible (24).

These alterations are modulated through the permeability transition pore

(PTP) of the mitochondria. However, cancerous cells produce proteins that bind

to and inactivate p53. They also produce proteins similar to bcl-2 or increase

the production of bcl-2, thereby reducing the likelihood of apoptosis. The

apoptosis promoter, p53, also suppresses iNOS production; hence, p53

mutation, fnctional loss, activation and inactivation of apoptotic proteins are

all linked to NO resistance (42). Experiments in macrophages have shown that

apoptosis occurs via the JNK/SAPK pathway and that over-experession of

protein kinase C (PKC) protects these cells against NO-induced apoptosis.

Further, p38 MAPK has been implicated in apoptosis in neuronal and

haematopoietic cells (21).

Additional mechanisms of reducing the frequency of apoptosis induction

include the binding to the haem moiety of guanylyl cyclase and activation of

cGMP, signalling and suppressing of caspases activity, increasing the

expression of anti-apoptotic proteins, and inhibiting the proteasome. These

effects indicate that NO-induced apoptosis occurs through the 20S and 26S

subunits. Conversely, NO inhibits apoptosis by moderating cyclic nucleotides,

specifically cGMP and cAMP by mechanisms similar to those cited above, but

devoid of ay overlap in cell types. Current literature does not offer any

explanation of this discrepancy.

At low concentrations, NO has direct cytostatic effects on the body. In

combination with metals in prosthetic groups, it reacts to form stable metal ion
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complexes, which inhibits the activities of the related enzymes and alter the

synthesis or metabolism of many molecules, such as lipids (56). It reacts with

other free radicals to suppress DNA synthesis and increase sensitivity to

radiation. NO also causes cells to become more susceptible to the cytotoxins,

preventing cell growth and division and promoting damage to healthy,

noncancerous tissue. These indirect effects stem from oxidation (the removal of

one or more electrons from the substrate), nitration (the addition of NO2
+ to an

aromatic group) or nitrosation (the addition of NO+ to an amine, thiol or hydroxy

aromatic group). In this case, S-nitrosation of the active site cysteines in

caspases protects the cells from apoptosis. The reaction usually proceeds at

only one thiol within a given protein, though there are many such sites (24).

+ON...NO-2 + RSH * 2 NO2 (Equation 2)

2NO + 02 - . N2 03 - +ON NO-2 (Equation 3)

NO2 + NO * RSNO + HNO2 (Equation 4)

Where, R is the substrate to be nitrosated, forming the generic structure (RSNO)

of S-nitrosothiols. This reaction scheme, depicted in Equations 2 through 4,

results in a reversible, post-translational modification of a protein structure

that affects its ability to repair DNA, transduce signals, and activate or inhibit

enzymes in cellular processes, especially apoptosis (24), ubiquitous regulatory

mechanisms and other redox-sensitive signalling pathways, including the

mitogen-activated protein kinase (MAPK) pathway (40). The rate-limiting step,

under physiological conditions, is the production of nitrogen dioxide (NO2) from

nanomolar concentrations of nitrogen monoxide (NO) and micromolar

concentrations of oxygen (13). However, the preferred targets are cysteines in

hydrophobic compartments, such as biological membranes, because the

hydrophobic phase has large local concentrations of NO2 and NO. Hence, its

expected effect is an increase in the reaction rate between these two

compounds. In addition, SNO bioactivities are typically stereoselective (13); NO

targets cysteine thiols with distinctive temporal resolution and three-

dimensional protein configuration (17).

Once S-nitrosation has occurred, Bid and Bcl-2 cleavage is inhibited

and, consequently, cytochrome c release from the mitochondria is avoided. The
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formation of nitrogen oxide is further favoured by co-localisation of NO sources

and targets with subcellular precincts, based on some specific protein-protein

interactions with NO synthases (17), and catalysed by electron acceptors, such

as nicotinamide adenine dinucleotide (NAD+), iron-nitrosyls and specific

proteins with consensus motifs.

Formation of S-nitrosothiols results from activation of any of the three

nitric oxide synthases, reaction between NOS-derived NO-/NO/NO+ with target

protein motifs and metalloprotein-catalysed reactions. To prevent their

reductive or transnitrosative degradation, S-nitrosothiols can be sequestered in

membranes, lipophilic protein folds, in vesicles and in interstitial spaces (14).

For instance, caspases are usually sequestered in an inactive state to the

mitochondrial membrane space and, during apoptosis, the caspases are

released into the cytoplasm where they can be denitrosated and activated. In

contrast to this procedure, S-nitrosothiols degradation employs a number of

enzyme systems, such as glutathione-dependent formaldehyde dehydrogenase

(GDFDH) and the thioredoxin/thioredexin reductase system (14). They

decompose, presumably by homolytic cleavage of the S-N bond, to give nitric

oxide (NO-) and the corresponding disulphide or thiyl radical (44). The

presence of transition metal ions and photolytic conditions promote the

reaction, but the S-N bond is otherwise stable, especially in the presence of

transition metal ion chelators in the dark.

At physiological NO concentrations, NO inhibits PTP opening and this

action prevents the release of cytochrome c into the cytoplasm. NO directly

interacts with p53, and this exchange not only alters its activity, but also

inhibits apoptosis (42).

2.5 Inhibitors of Nitric Oxide Synthases

Overproduction of NO plays a role in many disorders. It facilitates direct

NO interaction, for instance, and contributes to arthritis, septic shock, diabetes

and various neurodegenerative diseases. This over-stimulation is usually

attributable to up-regulation of iNOS in response to proinflammatory cytokines.

Control of NO production would regulate the amount of highly toxic and

reactive products, specifically the previously mentioned peroxinitrite. Animal
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studies have shown that controlling NO production can be therapeutic and

could further elucidate biological mechanisms and functions of NO. However,

an ideal solution would involve the use of drugs that target only the inducible

isoform of NOS without affecting the levels of eNOS, which is crucial to

vasoregulation in the endothelium, or nNOS. In fact, long-term inhibition of the

constitutive forms of NOS leads to pathological disorders, such as hypertension

and organ injury (5). Alternatively, the immune system response could be

altered to regulate the relative production of iNOS (6).

Already in common use is an indiscriminate inhibitor of NOS, known as

N-monomethyl-L-arginine (L-NMA), that inhibits proteoglycan synthesis by IL-

1 C and increases the concentration of TGF-[ (47). However, this inhibitor is, at

best, 30-fold more effective against iNOS than eNOS. The iNOS-specific

inhibitors, aminoguanidine and N-(3-(Aminomethyl)benzyl)acetamidine

(1400W), show anti-inflammatory effects by selectively inhibiting iNOS

(11,12,45,46). In particular, Garvey, et a, (1997) illustrated that, in vascular

tissue and in a time-dependent manner, 1400w inhibited iNOS 200- to 5000-

fold more effectively than eNOS and nNOS without toxicity. The explanation lay

in the structure of 1400W, whose primary sequence includes amidine, a

structural analogue of guanidine and either competes with guanidine for the

active site or allosterically inhibit iNOS. The Garvey experimentation team

concluded that 1400W worked as an irreversible inhibitor or a slowly reversible

inhibitor. However, our study will investigate changes over a short period

during which 1400W has ample time to affect the cells' apoptotic profile.

2.6 Glucosamine Effect on Inflammation

Inflammation occurs as a localised protective response to injury that is

characterised by an elevation in the levels of NO. Glucosamine (or 2-amino-2-

deoxy-D-glucose) is a natural metabolite of glutamine and fructose-6-phosphate

used to treat inflammation as a symptom of osteoarthritis (OA) (50). In OA,

osteoclast activity is elevated, causing an imbalance between the synthesis and

degradation of cartilage and, ultimately, leading to loss of cartilage (19).

Glucosamine has been shown to be abundant in many complex

polysaccharides, connective tissue and cartilage, where it helps to preserve
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their strength, flexibility, and elasticity. In addition to its structural role in the

extracellular matrix, glucosamine may inhibit the activation of inflammatory

cell types involved in the OA disease process, including chondrocytes and

macrophages (35). This is an area of opportunity for added study since the

mechanisms of glucosamine efficacy are still unknown. Hypotheses might

include the signal transduction pathway between the binding of LPS and IFN-y

to their respective membrane receptors and the induction of inflammatory

genes.

Glucosamine is believed to increase both the activity of agrecanase (10)

and the synthesis of structural proteoglycans in joint cartilage by mediating the

effects of a cytokine, IL- 1 (15). Secretion of IL-1 by activated macrophages

occurs in response to antigens and results in the inflammation of joints. The

cytokine initiates a series of events, including the inhibition of

glycosaminoglycan (GAG) biosynthesis and results in the prevention of

proteoglycan synthesis, which could ultimately lead to cartilage deterioration.

The latter also relates to an increased production of nitric oxide and inducible

nitric oxide synthase. Glucosamine has been proven to inhibit this increase in

the synthesis of inducible iNOS and NO (61). Research has confirmed the

formation of glucosamine from its glutamine precursors indirectly inhibits the

pentose cycle pathway, thereby reducing the availability of the iNOS cofactor,

nicotinamide dinucleotide phosphate (NADPH) (61).

These inflammatory effects can be replicated in macrophage cell cultures

treated with LPS and IFN-y. There are defined pathways between receptor

binding of LPS and iNOS expression. LPS activates the interferon inducible

gene, interferon response factor one (IRF- 1) (39), thereby increasing the

transcription of the LPS binding protein, CD48, and inducing the iNOS gene.

The binding of IFN-y to its receptor increases TNF-a production through the

activation of the JAK-STAT pathway (59). LPS also activates the toll like

receptor, which transmits via MyD88, IRAK and TRAF6 to activate NFKB as well

as several members of the mitogen-activated protein kinase (MAPK) family (62).

MAPKs are known to activate a number of transcription factors, including AP- 1,

ATF-2, CREB and certain members of the Ets family (52). These MAPK

responsive transcription factors promote the induction of inflammatory genes

such as iNOS, members of the matrix metalloproteinase family and TNFa (3,37).
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2.7 Other Signalling Pathways

The association of MAPK in TNF-a-induced apoptosis impelled additional

investigation into alternative signalling pathways, including the Akt pathway,

which is up-stream of caspase activation [and apoptosis] and purported to be

under the effects of TNF-a (48). Embedded in the Akt pathway is adenosine

monophosphate-activated protein kinases (AMPK), known to play a key,

signalling role in response to nutrients throughout evolution.

ARK5 is a 661 amino acid protein, with a molecular weight of 74

kiloDaltons. It shares homology with other members of the AMPK family,
specifically 47%, 45.8%, 42.4% and 55% with AMPK-al, AMPK-a2, MELK and

SNARK, respectively (49). Thus, ARK is a serine/threonine protein kinase that

is activated by AMP under conditions of stress, such as reduced ATP

concentrations and, along with other members of the AMPK family, is necessary

to maintain energy equilibrium within the cells. The amino acid sequence of

ARK5 revealed a conserved region near the C-terminal that serves as the active

site for Akt phosphorylation; that is, Akt phosphorylates ARK5 at Ser 6o0 . ARK5

mRNA is expressed in the heart, brain, skeletal muscle, kidney and ovary, but

not in the liver, pancreas, lung or intestine. Therefore, no endogenous

expression is expected to be observed and any ARK5 detected in the

gastrointestinal organs (by Western blot) is from transfection of ARK5 plasmid.

In hypoxic conditions, AMP and Akt mediate tolerance. When deprived of

glucose, for instance, the cell cycle G phase is delayed and p53

phosphorylation increased by processes, which involve AMPK. Akt activates

ARK5, which directly phosphorylates ATM, a member of the phosphoinositol-3

kinase (PI3K) family and activates the tumour suppressor p53 by

phosphorylation at Ser 15 or through Chk2 at Ser20 [during DNA damage]. This

chain of events leads to cell cycle arrest or cell death. ARK5 and Akt co-

immunoprecipitate, but separate just after Akt has been activated by either

glucose starvation or insulin treatment. The dissociation enables ARK5-

phosphorylation of ATM, as the ATM/p53 interaction is necessary to maintain

survival during glucose starvation. Insulin activates Akt, which phosphorylates

ARK5 and leads to activation of ATM and phosphorylates cell promoters, Bad
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and caspase-9, thereby, inhibiting their biological function and inducing

apoptosis via glucose starvation, TRAIL and TNF-a.

Wild type Akt and ARK5 have additive effects, suppressing cell death.

Dominant negative Akt (DN-Akt) and/or ARK5 mutants cannot induce cell
survival; therefore, ARK5 acts down-stream of Akt. ARK5 is the only AMPK

member that responds to Akt, implicating it as the key mediator of tolerance to
glucose starvation or insulin treatment.

2.8 Previous Studies

In an earlier Tannenbaum laboratory project, we evaluated the effects of

glucosamine on macrophage activation functions using the murine macrophage

cell line RAW 264.7. Macrophages are derived from bone marrow mononuclear

phagocytic cells and the monocyte-macrophage system is actively involved in
the elimination of various microorganisms, debris, dead cells and tissue during

the cleaning of wounds (53). In addition to their phagocytic role, macrophages
produce and secrete a number of enzymes that can act as cardinal cellular

elements in inflammation and host resistance. Inclusion of the bacterial

endotoxin (LPS) with macrophages, plus the cytokine, IFN-y, up-regulates the

expression of inflammatory molecules (such as TNF-a and iNOS) and, along
with a boost in urea cycle enzymes, stimulates NO synthesis, leading to (8).

This project showed that the induction of TNF-a, NO, prostaglandin E2
(PGE2), COX2, and matrix metalloproteinase 9 (MMP9) by LPS and IFN-y was

reduced by the addition of glucosamine in a process that was modulated by

ERK1/2 and JNK, but not by p38 MAPK or NFKB. It also identified ERK1/2 as
being post-translationally modified by the addition of O-linked N-

acetylglucosamine (O-GlcNAc). These findings suggest that glucosamine down-

regulates macrophage activities through the use of signalling cascades, thus
explaining its anti-inflammatory activity in OA. Moreover, glucosamine is

implicated in the MAPK pathway, interacting with ERK1/2 and JNK, suggesting

a role in apoptosis inhibition.

In a separate study, Kusakai, et al, (2004) introduced the ARK5 plasmid

by transfect;ion into the human hepatoma cell line, HepG2, and several
colorectal cancer cell lines in efforts to protect cells against apoptosis (28).
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Cells were exposed to the transfection reagent for four hours, yielding between

70% and 80% transfection, as measured by a green fluorescent protein (GFP)

reporter. Transfection showed appreciable resistance to cell death, and the

inclusion of the ARK5 plasmid into the cell's genome increased cell survival rate

from 12.9% to 33.4% after 24 hours. This activity delayed the cell death,

mediated by the mitochondrial death pathway.
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3. RESEARCH DESIGN AND METHODOLOGY

The current study was designed to test the hypothesis: NO-protection

from apoptosis is a universal mechanism, and to determine how to remove this
NO-protection by manipulation of related pathways. The materials and

procedures selected for this study are also justified. We identified appropriate
cell types and treated them with a death-inducing agent, measuring apoptosis

over a 24-hour time periods. We also inhibited independent variables that we

presumed to have been embodied in the apoptotic pathway and observed

changes in the cells' profiles.

3.1 Cell types

The use of cultured human tumour cells as model systems is an obvious

first approach to experimental human research. The cell lines used in this
study offer a preclinical opportunity to investigate the activity and properties of

human cancer cells. We have selected systems that are fairly representative
and approximate the physiological response of tumour cells in vitro and allow

comparisons between cell types and between cancer types.

3. 1-1 Prostate Cell/: LNCaP

LNCaP cells express prostate-specific antigen (PSA) and prostatic acid
phophatase (PAP) (58). Despite a low anchoring potential, the cells create

monolayers in culture with a doubling time of 60-72 hours. They secrete and,

thus, are response to polypeptide growth factors, especially EGF (54) and, with

a high affinity androgen receptor, they are androgen-dependent. In contrast to
this dependency, the addition of transforming growth factor beta (TGF-3) to the

culture medium did not inhibit LNCaP proliferation. LNCaPs proved to be

similarly resistant to the anitproliferative and antiviral effects of human

interferon (HuIFNI3).

This finding is particularly important as a prospective therapeutic

application in tumour treatment. The cells also have anchorage-independent
proliferation in semisolid media and excellent cloning efficiency (18). Further,

they produce poorly differentiated adenocarcinomas 14 to 56 days post-
inoculation into nude mice, and form solid tumours in intact male hosts, but
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not in their castrated male counterparts. The derivative sublines undergo

phenotypic and genotypic changes irreversibly, and acquire androgen-

independence and metastatic phenotypes when tested in vivo (26).

The androgen receptor has a mutation that allows oestradiol and

progesterone to bind and stimulate LNCaP growth in the absence of oestrogen

and progesterone receptors (55). The effects of the hormones show a biphasic

dose-response relationship. Androgen sensitivity depends on culture

conditions, as the cells adapt to the change in environment and often lose their

biphasic dose-response.

3. 1-2 Colon Cells: HT-29 and HCT- 116

The first type of colon cancer cells used in our study was the colorectal

adenocarcinoma, HT-29. This cell line retained its biological and physiological

features of normal colorectal epithelium (38). As a malignant epithelial cell, it

increased glucose consumption and lactate production with high levels of

accumulated glycogen. HT-29 also expresses hormone and peptide receptors

(notably, EGF-R), the receptors for insulin, vasoactive intestinal peptide (VIP)

and prostaglandins. The study that produced these findings was conducted

under culture conditions, where HT-29 cells are undifferentiated, while growing

as a multilayer of unpolarised cells. They did not express cellular

characteristics of any particular intestinal epithelial layer. However, under

appropriate growth conditions, such as glucose and/or serum deprivation, HT-

29 can be made to express differentiation characteristics.

One of the best indicators of a cell's tumourigenicity in vitro is its

grouping into one of three classes (51), based on tumourigenicity, as seen by

colony formation in soft agar. As a class I tumour-causing agent, the HT-29

cells produce palpable tumours ten days post-injection in 80% to 100% of

injected mice. These tumours grow rapidly and at a uniform rate. The cells

form multilayered colonies at plating efficiencies of between 25% and 30%.

These cells arise from primary tumour site and grow to confluence in a

monolayer pattern at a doubling time of 20 hours. However, the cell line is

heterogeneous as it contains a small proportion (fewer than five per cent) of

differentiated cells of either enterocytic or mucus-secreting type. They exhibited
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weak expression of keratin, microvilli, tight junctions, zona adherens and

desmosomes, which is indicative of their epithelial origin.

The HT-29 cells also secreted tumour-association markers,

carcinoembryoinc antigen (CEA - 25 ng/106 cells), CA 19.9 (268 U/106 cells)

and TGF-{3 binding protein (TGF-{3-BP), the secretory product of IgA and mucin.
CEA is considered to be a colon tumour-cell marker substance because high
amounts of this antigen are found in colon carcinomas. For HT-29, CEA is

found in the cell membrane and in the culture medium for even long-term
cultures, and CEA is a principal member of a group soluble in percholic acid

(57). These antigens do not show any effects of coordination.

Oncogene transcripts are detected in the growing medium of the cells.
Specifically, c-myc, H-ras, K-ras, N-ras, Myb, fos, sis and p53 were found at the
anticipated sizes. However, there is an additional sis-reactive band at 3.7

kilobase-pairs (kbp).

An additional colon cancer cell type, HCT-116, is derived from a primary

human colon tumour and produces moderate mounts of CEA in tissue culture

(1). The cells grow moderately well on soft agar. This colorectal carcinoma has

a hMLH1 defective mismatch repair deficiency, which is relevant because most

hereditary and sporadic colorectal cancers have deficiencies in MMR (27). The

deficiency causes a higher spontaneous mutation rate, microsatellite instability,

has more induced mutations in the hgpt locus, and increases the cells

resistance to toxicity induced by 2-amino- 1-methyl-6-phenylimidazo[4,5-

b]pyridine (PhIP). This result suggests that PhIP-induced apoptosis is mediated

through a MMR-dependent pathway. These cells have been associated with an
increased resistance to chemotherapeutic agents, including cisplatin. However,

MMR does not cause high-level resistance to cisplatin, doxorubicin or paclitaxel

is not caused by MMR (31).

With respect to chemotherapeutic agents, the absence of hMLH1
curtailed arrest in the G2/M cell cycle phase and enhanced concomitant

apoptosis with irinotecan (CPT-11), the standard treatment in colorectal cancer.
Apoptosis induction happens independently of p53. There is a likelihood of an
overlap between function of MMR and p53 in the activation of mutagenesis after
an oxidative stress (29). Specifically, p53 and MMR cooperate to control
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sensitivity to the cytotoxic effect and to limit its mutagenic potential in colon

cancer cells. These cells are positive for keratin (by immunoperoxidase

staining), transforming growth factor beta 1 and beta 2 (TGF- 31 and TGF- 32).

The cell viability of HCT-116 cells is relatively low. TRAIL triggers

caspase-8 mediated truncation of BID and mitochondrial activation of caspase-

9 in HCT-116, leading to apoptosis (22). Here, HCT-116 cells are Type II cells

because their mitochondrial dependence and because TRAIL-induced apoptosis

can be blocked by the caspase-9 inhibitor, Z-LEHD-FMK. Apoptotic signalling

in HCT-116 depends on the doses and types of inducers, involving the bcl-

2/bax family, death receptors, mitochondria and XIAP.

Even with variances across cell types, there is also heterogeneity in each

cell population. These differences include morphology, state of differentiation,

metastatic and invasive ability, karyotype, pharmacological response to drugs.

Nevertheless, variant populations tend to retain their properties for extended

periods of time (1). There are perceptible differences between in vivo and in vitro

cultures with particularity towards the antigen secretion, generation time,

morphology and tumourigenicity. With the exclusion of tumourigenicity, these

properties are contingent upon the culture conditions, medium recipe, serum

concentration and cell density. Tumourigenicity depends on, in addition to

other factors, the inoculation route, cell dose and the presence of fibroblasts.

Another important determinant is passage history. Prolonged cultivation in

vitro can cause phenotypic drift, in which any potential offspring has properties

distinct from the parent. Whereas these differences are apparent in CEA

production, generation time, morphology and tumourigenicity, the HT-29 line

has been synthesized for a number of years without losing its antigen secretion

capacity (57).

3.2 Reagents and Protocols

We selected reagents and protocols because of their accuracy and ease of

use. Often, the reagents and protocols were carried over from previous

experiments, where they proved to be reliable.

3.2-1 Cell Growth Conditions
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LNCaP cells were obtained from the Essigmann laboratory and

maintained in RPMI 1640 medium with GlutaMAX acquired from GIBCO®

(Grand Island, NY) and supplemented with 10% BioWhittakerTM heat inactivated

foetal bovine serum, one per cent each of glucose, sodium pyruvate and HEPES

from Sigma-Aldrich (Sheboygan Falls, WI).

HT-29 cells [from the Sorger laboratory] were similarly acquired and

maintained in GIBCO® McCoy's 5A medium, supplemented with 10% heat

inactivated foetal bovine serum from GIBCO® and one per cent each of

BioWhittaker TM (Walkersville, MD) penicillin and streptomycin. HCT-116 cells

were a generous donation from the Wogan laboratory, maintained in

BioWhittakerT M McCoy's 5A medium and supplemented with Biosource

(Camarillo, CA) 10% heat inactivated foetal bovine serum containing less than

0.06 EU/ml, by limulus amebocyte assay, and one per cent each of penicillin

and streptomycin, also from BioWhittakerTM. All cells were incubated at 37°C

under five per cent CO2.

Chemicals purchased from Sigma-Aldrich (St. Louis, MO) included:

glucosamine, cycloheximide and NG-monomethyl-L-arginine acetate salt

(product number M7033). IFN-y and the Cell Death Detection ELISAPLUS assay

were acquired from Roche (Indianapolis, IN). Recombinant human TNF-a was

purchased from PeproTech (Rocky Hill, NJ). 1400W was purchased from

Calbiochem (La Jolla, CA). Trypsin-EDTA (0.05% Trypsin with EDTA 4Na, 1X)

and 1X phosphate-buffered saline (PBS) were also obtained from GIBCOO.

3.2-2 Ctokine Treatment of Cells

Cells were grown in appropriate media at 37°C, five per cent CO2. At the

time of the experiment, cells were trypsinised and plated at a density of 5*104

cells/ml in 24-well, six-well or 10 cm dishes, with 0.5 ml, 1.5 ml or 10 ml cell

suspension per well, respectively. After a 24-hour incubation period, the cells

were incubated for 24 hours with 200 U/ml IFN-y to stimulate iNOS induction,

and subsequent to pre-treatment, we added other cytokines and glucosamine.

(Previous experiments have shown that the most pronounced effects of

glucosamine are observed when simultaneously added with cytokines and not

hours before or after the cytokines.)
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A dose response was done on all cells initially to determine the ideal

concentration of death-inducing reagent that should be added to cause

sufficient induction of apoptosis. Current literature prescribes that the typical

concentrations used to induce apoptosis in vitro range between 25 ng/ml and

50 ng/ml and measured apoptosis after 24 hours. Thus, in administering our

dose-response experimentation, we aimed toward observe the effects of TNF-a

up to 100 ng/ml doses.

Preliminary data suggest that 50 ng/ml is the optimal level for testing.

The cells were treated with TNF-a and/or glucosamine in final concentration of

2mM and, because we changed the medium at this stage, fresh IFN-y is also

added to the blend. In the NOS inhibitor experiments, 5 mM NMA or 20 PlM

1400w was added at the induction of apoptosis. These concentrations were

previously shown to sufficiently inhibit iNOS activity (23).

The cells were incubated for 24 hours with dose response or at the

various times indicated in the graphs, and then trypsinised, rinsed with 1X PBS

and collected at time of treatment or four, eight, 12, or 24 hours following

treatment. The suspension is centrifuged at 6000 rpm for two minutes, after

which the supernatant is removed and the cells frozen at -80°C overnight until

the apoptosis assay was to be conducted.

3.2-3 Plasmid Preparation

ARK plasmids were obtained from the Esumi laboratory at the National

Cancer Centre Research Institute, East. A common host strain, competent

DH5c (E. colo cells were used to propagate, express and isolate the plasmids

prior to amplification. We thawed competent cells on ice and added 30 P1 of the

competent cells to each plasmid.

Tubes of the materials were gently tapped and incubated on ice for 30

minutes. Immediately following this step, we incubated the tubes at 42°C for

50 seconds as part of a heat shock to stimulate the cells to close their "pores",

then snap-cooled them on ice for two minutes. To the plasmid DNA, we added

500 p Luria Broth (LB - 10 g sodium chloride, 10 g tryptone, and 5 g yeast

extract in one litre water). The tube was incubated at 37°C for one hour after

which the mixture was spread on LB Agar Ampicillin plates, made with 12.5g
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Agar in LB. After absorption of the mixture into the plate, it was incubated

overnight (16 hours) at 37°C.

A single colony was then picked and inoculated with three millilitres of

LB for eight hours. Five hundred microlitres of the mixture with a colony was

mixed with 500 ml LB and grown to saturation at 37°C. The mixture was

centrifuged at 6000 x g for 15 minutes at 4C. The pellet was saved for the

DNA maxiprep, administered according to manufacturer's protocol (Appendix

B.1), with a QIAfilter Plasmid Maxi kit from QIAGEN (Valencia, CA). The

plasmids were isolated and the cell lysates analysed in two per cent agarose gel

with a one kbp ladder. In addition, the DNA concentration was measured and,

to ensure purity of the samples, the optical density ratios were read on an

Amersham Pharmacia Ultraspec 2100 pro UV/Visible spectrophotometer and

corrected for scattered light at 320nm.

3.24 Transfection of RK Plasmids into HT-29

ARK5 transfection into HT-29 cells was done with Invitrogen (Carlsbad,

CA) Lipofectamine 2000 and Opti-MEM®I (GIBCO®) as per manufacturers'

instructions (Appendix B.2). The procedure was optimised in 24-well plates

with ratios of LipofectamineTM 2000 (l):DNA (g) from a human recombinant

green fluorescent protein expression plasmid from Stratagene (La Jolla, CA): of

1:1 to 4:1. Transfection efficiency was highest, as assessed by transfection with

the GFP at a ratio of 1:2.5. Therefore, 0.8 plg DNA was used per 50 i of Opti-

MEM®I, giving a transfection efficiency of between 70% and 85%.

Transfection was done with GFP or one of three Ampicillin-resistant,

G418-resistant plasmids: FLAG-ARK5 wildtype in pcDNA3.1(+) vector, ARK5

anti-sense (AS) in pcDNA3. 1 (-) and a dominant negative version of ARK5 (FLAG-

DN-ARK5 S600A) in pcDNA3.1 (+). After a four-hour exposure to the

transfection mixtures, we replaced the growth medium on all cells with serum-

containing McCoy's 5A. We allowed a one-day incubation at 370C and five per

cent CO2, then pre-treated them for with IFN-y for 24 hours and, thereafter

added 200 nM insulin (Calbiochem) as a substrate for the Akt pathway. The

cell death-induction [with TNF-a] and apoptosis detection were then carried out

fully.
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3.24 Detelction of Apoptosis using an Immunoytochemi-calAssay

A key biochemical event during apoptosis is endonucleolysis -- cleavage

of double stranded DNA at the most accessible internucleosomal linker region,

generating mono- and oligonucleosomes. This endogenous reaction depends of

calcium and magnesium concentrations. However, the DNA of the nucleosomes

forms tight complexes with the core histones (H2A, H2B, H3 and H4), protecting

it from cleavage by endonuclease. Therefore, the DNA fragments that form are

discrete multiples of the 180 base-pair subunit, which can be detected as a

"DNA-ladder" on agarose gels after extraction and separation of fragmented

DNA. In the cytoplasm of the apoptotic cells, DNA degradation occurs several

hours before the plasma membrane breaks down and there is a high

concentration of the mono- and oligonucleosomes present.

The typical "DNA-ladder" on an agarose gel does not produce sufficient

information about the histological localisation at the single cell level. An

immunocytochemical assay and enzymatic labelling of apoptosis-induced DNA

strand creaks (TUNEL) serve this purpose.

For this experiment, we chose to use the immunocytochemical assay

with a mouse anti-DNA and anti-histone monoclonal antibodies, conjugated

with peroxiclase and biotin, respectively. The assay photometrically measured

the relative quantities of histone and DNA that were present in the cytoplasm of

cells after apoptosis was induced. The antibodies bound the histone

component of the nucleosomes and simultaneously reacted with the

immunocomplex to the streptavidin-coated multiplate through its biotinylation.

The assay used quantitative determination of the amount of single- and double-

stranded, low molecular weight DNA fragments retained in the immunocomplex

by the POD, showing the internucleosomal degradation of genomic DNA during

apoptosis. Meanwhile, the anti-histone-biotin antibody bound to the histones.

We opted for the modified ELISA was chosen because of its sensitivity

and low background, and for its reliability in amplifying apoptosis. Also, it is a

non-radioactive assay system, with easy handing and fast performance.

The cells were lysed with the lysis buffer included in the Cell Death

Detection ELISAPLUs kit. After a one-half hour of incubation at room
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temperature and centrifugation at 200 x g for 10 minutes, the protein

concentration of the supernatant was measured with the BCA protein assay kit

(Pierce, Rockford, IL), as per manufactures' instructions. From this value were

determined the relative amount of apoptosis per mg of protein used to

normalise the data to the total protein concentrations of each sample. This

measurement/calculation allowed for observation of the effects of cytokine

treatment on both the relative apoptosis levels and cell division.

The Roche assay was continued by carefully transferring 20 llI of the

supernatant into the streptavidin-coated multiplate and adding 80 ll of the

Immunoreagent to each well. The remaining elements of the procedure were

consistent with those suggested by the manufacturer (Appendix B.3). After the

absorbances were taken, the values were averaged and the background value is

subtracted from this average. Then, the specific enrichment of mono- and

oligonucleosomes released into the cytoplasm was calculated using the

equation below:

Fold Apoptosis = Absorption of sample (dying/dead cells) (Equation 5)

Absorption of corresponding negative control

Exponentially growing permanent cell cultures contain a certain amount

of dead cells, usually approximately 3-8%. In this immunoassay, the inherent

dead cells in the untreated sample (without TNF-a inducing cell death) result in

a certain absorbance value, which, depending on the amount of dead cells, may

even exceed the absorption value of the immunoassay background.
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4. EVALUATION

The study results provide an objective basis for testing our hypothesis,

given the incidence of cancer death, our work was exploratory as we sought to

learn more about the effects of nitric oxide and it inhibits distinct from the

results of the transfection and glucosamine experiments.

4.1 Nitric Oxide Protects all Cancer Cells against Apoptosis

We explored the mechanism of apoptosis in colorectal and prostate

cancer cells to validate our belief that (a) cancer cells and protected from

apoptosis by S-nitrosation, and (b) this mechanism is not unique to the

colorectal cells, HT-29. Our goals were to enhance understanding of NO

protection from apoptosis.

Data obtained from duplicate trials [during our study] help to propose a

means of circumventing the mechanism and, correspondingly, offers

opportunities for additional investigation.

4.1-1 poptosis Induction in Cells

The action of controlling apoptosis in cancer cells was challenging and

warranted a four-prong approach. First, we determined the appropriate dose of

death-inducing agent to elicit a sufficiently distinct response that is

characteristic of apoptosis with the ultimate goal of establishing the dose at

which half the cells undergo apoptosis (LD5o). Next, we fitted the data to

sigmoid equations, as with the typical dose response, as follows:

y = a (Equation 6)

1 + e-bx

Where, a = 2.62 and b1 = 0.28 for LNCaPs, and a2 = 4.99 and b2 = 0.86 for the

HCT-116 with TNF-a and IFN-y.

As illustrated by the steep slopes in Figure 6, TNF-a is very toxic in low

doses to the LNCaP and HCT- 116 cancer cells. The dose response curves,

surprisingly, showed dramatic effects at and above lng/ml of TNF-a.

Consequently, the LD50 values for both cell types hovered below 1 ng/ml and,
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from the best-fit graphs, are in the "pico-" range. TNF-a concentrations above

the 5 ng/ml and 10 ng/ml in HCT-116 and LNCaP cells, respectively, have little

variance (including standard error) in response to the cells. By implication, the

number of cells observed under apoptosis above these concentrations does not

vary in any significant way. The literature indicates that apoptosis is typically

induced in cancer cells with 25-50 ng/ml of TNF-a. To confirm such and

outcome, we bombarded the cells with the death-inducing agent and decided

that, given the results from Kim, et al, the ideal concentration to induce

apoptosis in the cell lines approached the literature-prescribed concentration.

Therefore, the cells were treated with 50 ng/ml.

Literature on apoptosis in HCT- 116 cells explains the synergistic

cytotoxic effects of 10 ng/ml of TNF-a and 10 ng/ml of IFN-y, reducing the

number of cell colonies by 89% (43). Park, et al, (41) also demonstrated that

priming LNCaP cells with 200 U/ml IFN-y enhances the effectiveness of TNF-a

in inducing apoptosis. We confirmed these observations with 24-hour pre-

treatment o:f IFN-y. Our results indicated that TNF-a alone produced moderate

levels of apoptosis and that fold apoptosis is three times higher when TNF-a is

used in conjunction with IFN-y. For this reason, both cytokines are added to

the medium to stimulate apoptosis in subsequent experiments with HCT-116
and LNCaP cells.

Our second objective was to induce death with a cytokine mixture of

TNF-a and IFN-y and observe the cellular response over a 24-hour period. The

response in HT-29 cells (Figure 7) comported with those of the other cells,

indicating that TNF-a and IFN-y alone induce little apoptosis; their co-

stimulatory effects are more pronounced with 18-fold apoptosis at 24 hours.

This procedure induced apoptosis indeed earlier for the colon cancer cells than

for the prostate cancer cells. HCT-116 cells show a rapid increase in apoptosis

within four hours (Figure 7b) while the HT-29 cells have a maximal response

after eight hours. For both these cell types, the initial spike is followed by a

small decrease of 6% for HCT-116 and 18% for HT-29. The change probably

reflected one successful cell division (over the course of incubation) and an

increase in cell number thus, decreasing the relative fold apoptosis in a

background of newly formed cells. In LNCaP cells, the response is gradual up

to 24 hours, at which point, the fold apoptosis in the cells is much higher.

31



Hence, the effects of the NOS inhibitors and glucosamine in LNCaP cells, if any,

will probably be evident closer to 24 hours of incubation.

4.1-2 Effect of NOS Inhibitors

The NOS inhibitors were added to the cytoplasm at the time of apoptosis

induction as the effects were expected to occur over a similar timeline as TNF-a.

Their anticipated action was to remove the nitric oxide protection of cells from

apoptosis. In part three of our study, NMA accomplished the expected results.

It increased apoptosis in LNCaP cells over the course of 24 hours and, at which

point, there was 40% more apoptosis in NMA-treated, death-induced cells

(Figure 8). Similarly, in HCT- 116 cells, NMA caused, on the average, 30% more

apoptosis in death-induced cells. These results confirmed the findings by Kim,

et al, in which NMA increased apoptosis. The Kim study also determined that

the mechanism of action involved enhanced caspase-9, caspase-3 and PARP

cleavage and activity. We concluded that these pathways were not cell-specific

and that the reaction seen in the present experiments occurred via a similar

mechanism in the HCT-116 and LNCaP cells.

Another inhibitor, 1400W, was used to corroborate the results and

further explicate the role of NOS in the process. Unlike NMA, 1400W is believed

to selectively inhibit iNOS activity; thus, changes due to NO synthesis should,

in the presence of 1400W, reflect constitutive expression. In Figure 9, 1400W

appeared to cause a slight increase in the amount of apoptosis in HCT- 116 cells

but the change is only 10% and is considered negligible. In LNCaP cells, a

reverse is trend observed. That is, 1400W seemingly reduces apoptosis, but,

again, only insignificantly. We believe that this NOS inhibitor had practically

no effect on apoptosis in the cell types; therefore, we cannot conclude that the

changes seen with NOS inhibitors are iNOS-specific. These results contradict

Kim, et al, who had stated a notable increase in apoptosis in HT-29 cells.

The results of NMA-inhibition of NOS and subsequent reduction in

apoptosis support our hypothesis, NO protects cells from apoptosis via S-

nitrosation and that inhibiting NO would remove this protection and increase

apoptosis. However, the results with 1400W are unconvincing with conflicting

outcomes in the different cell lines. As an iNOS-specific inhibitor, 1400w was
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expected to increase apoptosis, indicating that the source of NOS is inducible or

have no material effect on constitutive NOS production. Regardless, we

successfully reduced apoptosis by inhibiting NO synthesis with NMA, and these

results are potentially useful in the effort to regulate apoptosis in cancer cells.

4.1-3 Transfection and TNF-a induced Apoptosis

A relatively small fraction of the underlying cells incorporate the DNA

and, of those, fewer have insertions that do not disrupt essential genes. To

ensure a successful incorporation of the plasmids into the cells' genome, we

optimised the experimentation with GFP. At a LipofectamineTM 2000 (pl):DNA

(Ijg) ratio of 2:1, the GFP was appropriately transfected into the HT-29 cells at a

frequency of 75%. Higher ratios showed no marked increase in the transfection

efficiency, so the concentration used in the remaining the experiment was 0.8

jig of GFP. n the plasmid transformation, the non-transformed, control culture
produced no colonies, and this indicated that Ampicillin inhibited growth of E.

coli without the plasmid. Gel electrophoresis indicated that the inserts were of

the correct and expected size at 6.8 kbp. The transformation and amplification

were successful, and optical density measurements are reported in Table 2.

Esumi, et al, had shown that ARK5 plasmid transfection into colorectal

cancer cells inhibited TNF-a induced apoptosis. Fold apoptosis was

determined, as mentioned above, from the ELISA assay and Equation 5. Figure

10 reveals no trend in ARK5 protection against cell death. In fact, insertion of

ARK5 plasmids and GFP into HT-29 colon cancer cells yields similar effects on

the relative cell death, increasing apoptosis upwards of four-fold. Control cells

further reveal three important points: treatment with the cytokines induced

apoptosis, cytokine synergism is maintained in this background, and the

addition of insulin had no effect on degree of cell death.

We expected ARK5 transfection to protect the cells from apoptosis. The

dominant negative and anti-sense forms should cause more apoptosis because

the DN would knock down ARK5 activity, while the AS produces complimentary

strands that inhibit active ARK5. The ARK5 plasmid could have inserted down-

stream of inactive promoter, but this is unlikely to have happened for all

successful insertions (that is, not inserting in essential genes). Alternatively,
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and more likely, the transfection process probably caused some apoptosis and,

above this "baseline" apoptotic level, ARK5 shows no protective effect.

Moreover, one cannot distinguish between an ARK5-induced decrease in

apoptosis and a disruption of delicate balance of cellular activity by transfection

procedure, resulting in [TNF-a-independent] cell death. In Esumi, et al, several

colorectal cells with similar characteristics to those as HT-29 cells are

investigated. Theoretically, the HT-29 cells should produce similar results and,

based on the results, one cannot conclude that the ARK5 plasmid protects

these cells from apoptosis.

4.2 Glucosamine Reduces Cytokine-induced Apoptosis

We investigated the effect of a proven MAPK inhibitor on apoptosis and

present the results in Figure 11. Treatment comprised of 50 ng/ml TNF-a

induced apoptosis in HCT- 116 cells, beginning four hours and up to a

maximum of eight-fold after 24 hours. The addition of 2mM glucosamine to the

cells reduced by an average of 30% the maximum level of apoptosis that is

observed in these cells over the time course. The effects are noted early.

However, the control cells showed a change of three-fold over time,

compromising the credibility of the results. Glucosamine has a less marked

effect on LNCaP cells, since it reduces apoptosis by 15% after 24 hours of

incubation. The trend begins to develop around eight hours and indicates a

slowdown in the rate at which apoptosis begins and occurs in the prostate

cancer cells treated with glucosamine. These values are not significant to

consider glucosamine as having an effect on the LNCaP cells. The control and

glucosamine-treated cells show no appreciate change in the fold apoptosis over

the 24-hour time period.

The response by HT-29 is equally puzzling. Glucosamine seemingly

increases apoptosis in the short term (up to the 12-hour time point), where cells

treated with glucosamine show more 20% apoptosis. After 12 hours, the

amount of apoptosis in glucosamine-treated cells plunges, but the final 24-hour

fold apoptosis lies inconsequentially lower than that for the control cells.

Our team has shown that glucosamine is an ERK1/2 inhibitor; it should

decrease the amount of apoptosis because MAP kinases are involved in
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apoptosis, preventing AP-1 and NFKB activation. The response in HCT-116

cells positively confirms these expectations, but the other cell types show

conflicting effects. These results are inconclusive in that the effects of

glucosamine in colon and prostate cancer cells are uncertain. Further

investigation would help to determine whether the reduction in apoptosis,

observed in HCT-cells is an artefact. One possible explanation for these results

hinges on the use of a high concentration of glucosamine in these

experimentations, though the typical concentration range of glucosamine is

between 10 liM and 3 mM.

Previously, experiments done were with RAW 264.7 macrophages in

which the cells were treated for eight hours with 100 ng/ml LPS, 50 U/ml IFN-y

and, simultaneously, varying concentrations of glucosamine. Changes in the

nitric oxide concentration were monitored by the analysis of media samples for

the stable degradation product, nitrite, with use of the standard colorimetric

Griess reaction (60). This study proved that 2 mM glucosamine neither depletes

ATP nor alters physiology of relevant pathways that define the cells' response to

the death-inducing agent (data not shown). In addition, this concentration

elicited a drastic reduction of 94% in nitrite production as a result of NOS

activity (Figure 12). This trend was readily discernible and, for the purposes of

the underlying experimentations, we deemed it suitable. Despite the suitability

of a high concentration, the results from the glucosamine studies are in dissent.
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5. CONCLUSIONS AND RECOMMENDATIONS

Cancer incidence rates have stabilised over the past five years, due in

part to the Centres for Disease Control's public awareness initiative. Cancer

mortality for women has declined by 1.5% per year since 1993, and for men it

fell by 0.8% per year since 1992 (20). For those who already suffer from cancer,

chemotherapy is their primary form of treatment. This therapy indiscriminately

kills cells, so the current drive is for to identify alternative therapies that target

cancer cells.

Our study sought to determine whether findings [of S-nitrosation in

colorectal cells] by Kim, et al, (2004) are applicable to other cell types. Our

approach was to investigate, synthesise conclusions and exploit the

mechanisms that cancer cells use to avoid normal signals for cell death,

specifically apoptosis. Kim and her team proved that NO protects the colorectal

cancer cell line, HT-29, from apoptosis in a process called S-nitrosation. Our

own investigation supports the hypothesis: HT-29 cells are not unique in their

response to nitric oxide inhibitors, and NO-protection from apoptosis is not

specific to this cell line. They showed that NO actually protects many types of

cancer cells from apoptosis and that inhibition of NO leads to increased cell

death. Further, the mechanism by which NO inhibits apoptosis may be

universal, meaning that it operates in other colorectal cells and in prostate

cancer cells, too. An important inference is that treatments for cancer patients

can be constructed to target NO inhibition to the tumour. Our laboratory

experience with the iNOS inhibitor, 1400W, suggests that these cancer cell-

specific treatments would not involve the inhibition of inducible NOS.

Glucosamine did not support the notion that apoptosis can be reduced

via MAPK inhibition. Hence, we can postulate that the mechanism of TNF-a-

induced apoptosis proceeds independently of the MAPK pathways that involve

ERK1/2. We could not ascertain whether the ARK5 plasmid currently is a

feasible source of treatment because the effects of ARK5 do not facilitate

observation in a background of transfection-induced apoptosis. The problem be

appropriately linked to the time lab between the plasmid input and cytokine

treatment. The plasmid is not transferable to offspring, so mitotic division

produces cells that do not have the plasmid in their genome. If indeed the
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ARK5 response is characteristic of HT-29 cells, this method currently offers no

protection for these cells from TNF-a-induced apoptosis.

Given the evidence and evaluation presented in this paper as part of our

efforts, we hope that there will be additional work, using mice for in vivo studies

with the infusion of NMA into tumours and observing subsequent changes to

the size or characteristics of the tumours. Other potential techniques for

consideration include proteomic investigation into the effects of NOS inhibitors

and glucosamine. In our introduction, we cited the challenges associated with

controlling disease. We hope that the research discussed in this paper

represents a useful step in the path toward developing drugs to control, if not

cure cancer.,
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APPENDIX A. FIGURES

The symbols used through Appendix A are consistent and adhere to the

following legend:

Table 1. Legend of Symbols Used in the Figures

Symbol Condition

Control

E0 200 U/ml IFN-y

50 ng/ml TNF-a

................. 200 U/ml IFN-y + 50 ng/ml TNF-a

<O 5 mM NMA

5 mM NMA + 200 U/ml IFN-y + 50 ng/ml TNF-a

A 20 llM 1400W

20 IpM 1400W + 200 U/ml IFN-y + 50 ng/ml TNF-a

o 2 mM GlcN

2 mM GlcN + 200 U/ml IFN-y + 50 ng/ml TNF-a

45



IL-3

Figure 1. Caspase Activation by Surface Receptors

46

CD95

Pro-4S

\ '- Ac#ve 
/s c aspaso 9

Acti A e Adis
caspase 3 caste 6 caspasa 7RaEtd.ell.j C andThompson,C

The central effectors of cel death ma the mmure systt
Annu iRev Immuncl 17.7S]3-28. 1999



Figure 2. Caspase-dependent Apoptosis Pathway
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Figure 4. Akt Signalling Pathway
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Various concentrations of the death-inducing agent are added to (A) LNCaP
cells and (B) HCT-116 cells and the relative amount of apoptosis is measured
after 24 hours. In HCT-116 cells, 24-hour pre-treatment of 200 U/ml IFN-y

(--i--) is investigated, and compared with no pre-treatment ( X). In
addition, the data are fit to sigmoid equations that best represent the dose
response. (Refer the text for equations.)
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Figure 7. Cells' Response to TNF-alpha Over 24-hour Period
(A) LNCaP cells; untreated ( ), treated with 50 ng/ml TNF-a (X), and pre-
treated for 24 hours with 200U/ml IFN-y and then with 50 ng/ml TNF- ()
show a slow response to the cytokine-induced apoptosis over the 24-hour
period. (B) HCT-116 cells and (C) HT-29 cells, untreated (*), treated with
TNF-a only (X), IFN-y only (1) and with TNF-a + IFN-y (I) have a faster,
more pronounced response than LNCaP cells.
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Figure 8. Effects of N-Methylarginine on TNF alpha-induced Apoptosis
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Both (A) LNCaP and (B) HCT-116 cells show a reduction in
apoptosis in response to 5 mM NMA () in a background of 200
U/ml IFN-y and 50 ng/ml TNF-a (). Note that this nitric oxide
synthase inhibitor is added concurrently with the cytokines.
Control cells ( ) have little or no response.
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Figure 9. Effects of 1400W on TNF alpha-induced Apoptosis
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The cancer cells are untreated () or induced into cell death with
200 U/ml IFN-y and 50 ng/ml TNF-a. To the treated cells, is
added also an iNOS inhibitor, 1400W, in a final concentration of
20 PM (A). This infusion has little effect on both cancer cells, (A)
LNCaP cells and (B) HCT-116 cells.
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Table 2. Optical Density Measurements of Plasmid DNA

Sample Name 260/230 260/280 Concentration (g/pl)

ARK5 2.03 1.88 1.830

ARK5 AS 2.09 1.90 1.702

ARK5 DN 2.11 1.89 1.712

GFP 2.24 1.87 3.953
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Figure 10. ARK5 Transfection into HT-29 cells

The bar graph compares with the control cells ( ), cells transfected
with ARK5 (3), ARK5 AS (--- ), ARK5 DN () and GFP (•) DNA into
the cells using Invitrogen's Lipofectamine 2000. The plasmids are
incubated for four hours before the OptiMEM is replaced with HT-
29 growth medium. The cells were then pre-treated with 200
U/ml IFN-y for 24 hours before the addition of 200 nM insulin and
50 ng/ml TNF-a. Fold apoptosis was then measured and
calculated. There is no significant ARK5-specific effect on these
cells although the transfection process itself induced much
apoptosis.
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Figure 11. Effects of Glucosamine on TNF-alpha-induced Apoptosis

Four conditions are represented in these graphs, representing (A)
HCT- 116, (B) LNCaP and (C) HT-29 cells. Control cells ( ) have no
cytokines added. Twenty-four hours prior to harvesting, cells are
treated with IFN-y in conjunction with 50 ng/ml TNF-a () or, in
the case of HT-29 cells, with only 200 U/ml IFN-y (). To the
former is added, at the same time as TNF-a, 2 mM glucosamine
(*). After 24 hours, fold apoptosis is measured and calculated.
The response from the three cell types does not clearly define the
effects of glucosamine.
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Figure 12. Dose Response of Glucosamine in RAW 264.7 Macrophages

The macrophages were plated two million cells per well and
stimulated with 100 ng/ml LPS, 50 U/ml IFN-y and,
simultaneously, varying concentrations of glucosamine. The cell
culture medium was collected after eight hours and nitrite levels
were measured using the Griess Reaction.
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APPENDIX B. PROTOCOLS

B.1 Plasmid Maxiprep

Protocol: Plasmid or Cosmid DNA Purification Using

QIAfilter Plasmid Midi and Maxi Kits
This protocol is designed for preparation of up to 100 pg of high- or low-copy plasmid
or cosmid DNA using the QCAfilter Plasmid Midi Kit, or up to 500 pg using the QlAfiiher
Plasmid Maxi Kit. In this protocol, QlAfiler Cartridges are used instead of conventional
centrifugation to clear bacterial lysates. For purification of double-stranded M t3
replicative-form DNA, we recommend using the protocol in Appendix H on page 79.

Low-copy plasmids which have been amplified in the presence of chloramphenicol
should be treated as high-copy plasmids wfien choosing the appropriate culture volume.

Maximum recomnended cullure volumnes

QIAfiter Midi QIAfilter Maxi

High.copy plasmids 25 ml 100 ml

Low-copy plasmids 50-100 ml 250 ml'

*For hisfropy plasownmd expecctd yields oa 75-1003 qg for the QlAfilter Pl Midi d Kit and 300-500 pg
for the CmAfiker Plstnid Moxi Kit. For law-copy plcnmid,, expected yields are 20-1 0 pg for the QlAfitter
Plosd Midi Kit and 50-250 pg for the QIAfiter Plosmid Moxi Ki using thee. culture volumes.
The maximum recomrnmended culture volume opplies o the copocity ofthe C Afilter Maxi Cartridgr If higher
yields of low-copy r plosmids ae desired. the tlyales from two QAfilter Maxi Cartridges can be koded of
one QIAGEN4-tip 500

Important paints before starting

U New users are strongly advised to read Appendix C: General Considerations for
Optimal Results provided on pages 63-73 before starting the procedure.

* If working with low-copy vectors, it may be beneficial to increase the lysis buffer
volumes in order to increase the efficiency of alkaline lysis, and thereby the DNA
yield. In case additional Buffers P1, P2, and P3 are needed, their compositions
are provided in Appendix D: Composition of Buffers, on page 74. Alternatively,
the buffers may be purchased separately (see page 83).

* Optional: Remove samples at the steps indicated with the symbol ' in order to
monitor the procedure on an analytical gel.

26 QIAGEN Plasmid Purification Handbook 08/2003

64



Things to do before starting

* Add the provided RNase A solution to Buffer P1 before use. Use one vial of RNase A

(spin down briefly before use) per bottle of Buffer P1, to give a final concentration

of 100 pg/ml.

* Check Buffer P2 for SDS precipitation due to low storage temperatures. If necessary,

dissolve the SDS by warming to 37°C.

* Prechill Buffer P3 to 4°C.

* In contrast to the standard protocol, the ysate is not incubated on ice after addition

of Buffer P3.

Procedure

1 Pick a single colony from a freshly streaked selective plate and inoculate a starter
culture of 2-5 ml LB medium containing the appropriate selective antibiotic.

Incubate for -8 h at 37°C with vigorous shaking (.300 rpm).

Use a tube or flask with a volume of at least 4 times the volume of the culture.

2. Dilute the starter culture 1/500 to 1/1000 into selective LB medium. For high-copy

plasmids inoculate 25 ml or 100 ml medium. For low-copy plasmids, inoculate
50-100 ml or 250 ml medium. Grow at 37°C for 12-16 h with vigorous shaking

(-300 rpm}.

Use a flask or vessel with a volume of at least 4 times the volume of the culture.

The culture should reach a cell density of approximately 3-4 x 109 cells per ml,
which typically corresponds to a pellet wet weight of approximately 3 g/liter medium

(see page 68).

3. Harvest the bacterial cells by centrifugation at 6000 x g for 15 min at 4C.

6000 x g corresponds to 6000 rpm in Sorvall GSA or GS3 or Beckman JA-10

rotors. Remove all traces of supematant by inverting the open centrifuge tube until
all medium has been drained.

o,. If you wish to stop the protocol and continue later, freeze the cell pellets at-20°C.

4. Resuspend the bacterial pellet in 4 ml or 10 ml Buffer P1.

For efficient lysis it is important to use a vessel that is large enough to allow

complete mixing of the lysis buffers. Ensure that RNase A has been added to

Buffer P 1. The bacteria should be resuspended completely by vortexing or pipetting

up and down until no cell clumps remain.

5. Add 4 ml or 10 ml Buffer P2, mix gently but thoroughly by inverting 4-6 times,

and incubate at room temperature for 5 min.

Do not vortex, as this will result in shearing of genomic DNA. The lysate should

appear viscous. Do not allow the fysis reaction to proceed for more than 5 min.

After use, the bottle containing Buffer P2 should be closed immediately to avoid

acidification from CO 2 in the air.

QIAGEN Plasmid Purification Handbook 08/2003 27

65



During the incubation prepare the QIAfilter Cartridge:

Screw the cap onto the outlet nozzle of the QIAfilter Midi or QOAfilter Maxi Cartridge.

Place the QIAfilter Cartridge in a convenient tube.

6. Add 4 ml or 10 ml chilled Buffer P3 to the tysate, and mix immediately but gently

by inverting 4-6 times. Proceed directly to step 7. Do not incubate the lysate on ice.

Precipitation is enhanced by using chilled Buffer P3. After addition of Buffer P3, a

fluffy white precipitate containing genomic DNA, proteins, cell debris, and SDS
becomes visible. The buffers must be mixed completely. If the mixture still appears

viscous and brownish, more mixing is required to completely neutralize the solution.

It is important to transfer the lysote into the QIAfilter Cartridge immediately in order

to prevent later disruption of the precipitate layer.

7. Pour the lysate into the barrel of the QlAfilter Cartridge. Incubate at room

temperature (15-25 0C) for 10 min. Do not insert the plunger!

Important: This 10 min incubation at room temperature is essential for optimal

performance of the QIAfilter Midi or QIAfilter Maxi Cartridge. Do not agitate the
QIAfilter Cartridge during this time. A precipitate containing proteins, genomic
DNA, and detergent will float and form a layer on top of the solution. This ensures
convenient filtration without clogging. If, after the 10 min incubation, the precipitate

has not floated to the top of the solution, carefully run a sterile pipet tip around the

walls of the cartridge to dislodge it.

8. Equilibrate a QIAGEN-tip 100 or QIAGEN-tip 500 by applying 4 ml or 10 ml

Buffer QBT and allow the column to empty by gravity flow.

Flow of buffer will begin automatically by reduction in surface tension due to the

presence of detergent in the equilibration buffer. Allow the QIAGEN-tip to drain

completely. QIAGEN-tips can be left unattended, since the flow of buffer will stop
when the meniscus reaches the upper frit in the column.

9. Remove the cap from the QiAfilter Cartridge outlet nozzle. Gently insert the plunger

into the QIAfilter Midi or QIAfilter Maxi Cartridge and filter the cell lysate into the

previously equilibrated QIAGEN-tip.

Filter until all of the lysate has passed through the QIAfilter Cartridge, but do not

apply extreme force. Approximately 10 ml and 25 ml of the lysate are generally
recovered after filtration.

, Remove a 240 pl or 120 pl sample of the filtered lysate and save for an
analytical gel (sample 1) in order to determine whether growth and lysis

conditions were optimal.

10. Allow the cleared lysate to enter the resin by gravity flow.

,ar Remove a 240 p1 or 120 pI sample of the flow-through and save for an

analytical gel (sample 2 in order to determine the efficiency of DNA binding
to the QIAGEN Resin.
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11. Wash the QAGEN-tip with 2 x 10 ml or 2 x 30 ml Buffer QC.

Allow Buffer QC to move through the QIAGEN-tip by gravity flow. The first wash
is sufficient to remove all contaminants in the majority of plasmid preparations. The

second wash is especially necessary when large culture volumes or bacterial

strains producing large amounts of carbohydrates are used.

Remove a 400 pl or 240 pI sample of the combined wash fractions and save
for an analytical gel (sample 3).

12. Elute DNA with 5 ml or 15 ml Buffer QF.

Collect the eluate in a 10 ml or 30 ml tube. Use of polycarbonate centrifuge tubes

for collection is not recommended as polycarbonate is not resistant to the alcohol

used in subsequent steps.

t, Remove a 100 pl or 60 p1 sample of the eluate and save for an analytical gel
(sample 4).

;1 If you wish to stop the protocol and continue later, store the eluate at 4°C.

Storage periods longer than overnight are not recommended.

13. Precipitate DNA by adding 3.5 ml or 10.5 ml (0.7 volumes) room-temperature

isopropanol to the eluted DNA. Mix and centrifuge immediately at l15,000 x g
for 30 min at 4°C. Carefully decant the supernatant.

All solutions should be at room temperature in order to minimize salt precipitation,

although centrifugation is carried out at 4"°C to prevent overheating of the sample.
A entrifugal force of 15,000 x g corresponds to 9500 rpm in a Beckman JS-1 3
rotor and 11,000 rpm in a Sorvall SS-34 rotor. Alternatively, disposable conical-
bottom centrifuge tubes can be used for centrifugation at 5000 x g for 60 min at
4°C. Isopropanol pellets have a glassy appearance and may be more difficult to

see than the fluffy, salt-containing pellets that result from ethanol precipitation.

Marking the outside of the tube before centrifugation allows the pellet to be more

easily located. Isopropanol pellets are also more loosely attached to the side of

the tube, and care should be taken when removing the supernatont.

14. Wash DNA pellet with 2 ml or 5 ml of room-temperature 700 ethanol and

centrifuge at 15,000 x g for 10 min. Carefully decant the supernatant without

disturbing the pellet.

Alternatively, disposable conical-bottom centrifuge tubes can be used for centrifu-

gation at 5000 x g for 60 min at 4° C. The 70% ethanol removes precipitated salt
and replaces isopropanol with the more volatile ethanol, making the DNA easier

to redissolve.
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15. Air-dry the pellet for 5-10 min, and redissolve the DNA in a suitable volume of

buffer (e.g., TE buffer, pH 8.0, or 10 mM Tris-Ci, pH 8.5).

Redissolve the DNA pellet by rinsing the walls to recover all the DNA, especially

if glass tubes have been used. Pipetting the DNA up and down to promote resus-

pension may cause shearing and should be avoided. Overdrying the pellet will

make the DNA difficult to redissolve. DNA dissolves best under alkaline condi-

tions; it does not easily dissolve in acidic buffers.

Determination of yield

To determine the yield, DNA concentration should be determined by both UV

spectrophotometry and quantitative analysis on an agarose gel.

Agarose gel analysis

We recommend removing and saving aliquots during the purification procedure

(samples 1-4). If the plasmid DNA is of low yield or quality, the samples can be

analyzed by agarose gel electrophoresis to determine at what stage of the purification
procedure the problem occurred (see page 60).

QIAGEN Plasmid Purification Handbook 08/2003
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B.2 Transfection

Page 2

Transfection Procedure (for DNA)
tse the followig procedue to transfect mannalian cells in a 24-well format. For
other f'nmats, see Scaling Up or Down Transfections. All amounts and volumes
are given ont a per well basis.

1. Adhetent cells: Onle day before transfectin, plate 0.5-2 x 105 cells in 500 pl of
growth medium without antibiotics so that cells will be 90-Q5'X, confluent at
the time of transfection.

Suspension cells: Just prior to preparing complexes, plate 4-8 x 0l cells in
-J Fd of growth medium without mantbiotics.

2 For each tansfection sample, prepare complexes as follows:

a. Dilute DNA in td oft Opti-hEM I Reduced Serum Medium without
serum (or other medium without serum) Mix gently.

b, Mix Lipofectamine 2000 gently before use, then dilute the appropriate
amount in R pil of C)pti-MEFMI1 Medium. Incubate for 5 minutes at room
temperature. Note: Combine diluted LipofectamineN 2000 with diluted
DNA within 30 minutes,

c. After 5 minute incubation, combine the diluted DNA with diluted
Lipofectamne' 2000 (total volume = iCt d). Mix gently and incubate for
20 minutes at room temperature (solution may appear cloudy). Note:
Complexes are stab le for 6 hours at room temperature.

3 Add the i100 pl of complexes to each well containing cells and medium. Mix
gently by rocking the plate back and forth

4. Incubate cells at 37°C in a CO~ incubator for 18-48 hours prior to testing for
transgene expression. It is not necessary to change the medium, but medium
may be replaced after 4-6 hours.

5 For stable cell lines: Passage cells at a 1:10 (or higher dilution) into fresh
growth medium 24 hours after transfection., dd selective medium (if
desired) the following day.

For suspension cells: 4 hours post-transfection, add PMA and/or PHA (if
desired) to enhance CMV prormoter activity and increase gene expression .
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Page 3

Scaling Up or Down Transfections
To transfect cells in different tissue culture formats, varyT the amotlCrts tf
Lipofectamine"' 2k00, DNA, cells, and medium used in proportion to the relative
surface area, as shoiwn in the table. With automated, high-throughput systems, a
complexing volume of l50 d is recommended for trmsfections in %6-well plates.
Note: You may perform rapid 6-well plate transfections by plating cells directly
Into the transfection mixn Prepare complexes in the plate and directly add cells at
twice the cell density as in the basic protocol In a 100 pd volume. Cells will
adhere as usual in the presence of complexes.

Culture Surf. area Relative Vol. of DNA (pg) in Lipofectamine
vessel per well surf. area plating media vol. (Id) 2!00 (1l) in

(em) vs. 24-well medium media vol. (il1)

Q6-well 03 0.2 100 pI 0.2 g in 25 1 05 l in 25 l

24-well 2 1 500 p1 0.8 tAg in 95 41l 2.0 tl in 50 p1

12-well 4 2 1 ml i .6 g in 100 tl 40 l in 100 l

35-nmun 10 5 2 ml 40 pg in 250 il 101 p in 250 ll

6-well 10 5 2 ml 4.0 pg in 250 ll 10t p1 in 250 l

60-mm 20 10 5 ml 80 pg in 0.5 ml 20 pl in 0.5 ml

10-cm 60 30 15 ml 24 g in 15 ml pl in 15 ml

Note: Surface areas are determined from actual measurements of tissue culture
vesse:ls, and many vary depending on the manufacturer.

Optimizing Transfection
To obtain the highest tritsfection efficiency and lwt non-specific effects,
optimize tansfection conditions by vatring cell density as well as DNA land
Lipcfectamine m 2000 concentrations. Make sure that cells are greatet than 00',
confltluent and vary DNA (tg)':Lpofectaminel 2?000 it1) ratios from 10.5 to 1 5.
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B.3 Cell Death Detection ELISA

3.2 Preparation of working solutions

Reconstitution of
lyophilizates

Preparation of kit
working solutions

We strongly recommend double distilled water for reconstitution of Iyophyisates:

Bottle Conltent Reconstitution or prepara- Storageand Use
# ftion of working solution stability
1 Anti-histone- Reconstitute the yophilizate at 2-80 C for Part of the

blotin in 450 pi double dist. water 2 months Immunoreagent
for 10 min and mix thor-
oughly.

2 Anti-DNA- Reconstitute the the yophilizate at 2-80C for Part of the
POD in 450 puI double dist. water 2 months Immunoreagent

for 10 min and mix thor-
oughly

3 Positive Reconstitute the lyophilizate at 2-8'C for ELISA
control in 450 pIL double dist. water 2 months step 1

for 10 min and mix thor-
oughly.

Please refer to the following table for the preparation of the ABTS solution

Reagent/ Cormposition/preparation Storage Use
solution and stabilty

ABTS Dependent on the number of samnples tested. 1 month, EUSA
tablets dissolve 1, 2, or 3 tablets from bottle 7 in 5, 10. protect from light step 5

or 15 ml Substrate Buffer (vial 6).
Store protect from lightl
Allow to come to 15-25°C before use.

Roche .ipplied Science7
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3.2 Preparation of working solutions, continued

Preparation of the
Immrnunoreagent

The Immunoreagent is prepared by mixing of 1i20 volume Anuti-DNA-POD (bottle 2) and
1/20 volume Anti-histone-biotin (bottle 1) with 18/20 volumes Incubation blffer (bottle 4),

The following table shows the amounts needed for 1 0. 20. 40 50, and 1 00 tests, respectively
Note Always prepare the solution shortly before use, do not store.

Step Action
1 Place into a suitable vessel the Incubation buffer (bottle 4).

Use the following table for the amount which is needed:

#of tests 10t 20 40 50 1 00

Incubation buffer 720 14 1440 Al 2880 i 3600 W1 7200 p,1

2 · Add appropriate volumes of Anti-histone-biotin and Anti-DNA-POD.

#of tests 10 20 40 50 100

Anti-histone-biotin 40 Pl 80 Jl 160 pi 200 i 400 d
(bottle 1)

Anti-DNA-POD 40 PI 80 Il 160 pl 200 p1 400 Id
(bottle 2)

Imniunoreagent 800 ILI 1600 pI 3200 i1 4000 J 8000 O
total amount

Homogenize thoroughly,
Note: Do not store the solution. lhe solution is used in the ELISA Assay in step 2.

Roche Applie Science8

72



3.3 Sample preparation

Before you begin

Cellular Assay

The following cellular model system, in particular the cell number per test, is an example
for a test procedure and is optimized therefore.

As a model system, the human lymphoma cell line U937 (ATCC CRL 1593) and the
topoisomerase I-inhibitor camptothecin (22) was chosen for induction of apoptosis.

Dilute the cells with culture medium to obtain a suitable cell concentration. Depending
on the cell type and the cell death inducing agent, the cell number per test has to be
determined and optimized. For adherent cells we recommend to trypsinize and wash the
cells, seed amounts of cells in the MP wells (e,g. 04 or less) and let them grow for an
appropriate while before starting the assay,

In the following table the procedure for a cellular assay is described:

Step Action

1 Set up a titration of camptothecin (CAM) in declining concentrations from 4
jg/ml to 2 ng/mll Duplicates of 100 p./well are recommended.
Aete Use cell culture medium witlout CAM as negative control.

2 Dilute exonentially growing U937 cells with culture medium to a concentration
of I x 10 cells/mlf

3 Add 100 A1 of diluted cells (0 cells) to each well,

4 Incubate for 4 hours at 37" C and 5% CO,

5 Centrifuge the M P 10 min, with 200 x g.

6 IF._ THEN.

you want to analyze necrosis remove the supernatant carefully,
and store it at 2-8P C!

you don't want to analyze the necrosis remove the supernatant carefully.

7 · Resuspend the cell pellet in 200 pJ Lysis buffer bottle 5),
* Incubate for 30 min at 15-25°C (Cell lysis).
Nts Adherent cells can be lysed directly in the well without prior removal.

8 · Centrifuge the lysate at 200 x g for 10 min.
* Transfer 20 pJ from the supernatant (=cytoplasnic fraction) carefully into

the streptavidin coated MP for analysis, Do not shake the pellet (cell nuclei,
containing high molecular weight unfragmented DNA).

Netit Samples should be analyzed immediately. becase storage at 2-8°C
or -15 to - 25°C reduces the ELISA signals.

Roche Applied Scientce9
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3.4 ELISA Assay

Before you begin

Cell equivalent

Procedure

The EUSA was developed and evaluated with the use of 20 pI sample and 80 1I
Immunoreagent per MP-well. It is recommended not to change these portions.

Using 104 cellswell (200 gpJ), the sample analyzed (20 i ysate or supernatant corre-
sponds to a cell equivalent of 1 x 103 cells/well or 5 x 04 cells/mi.

Please refer to the following table to perfornm the ELISA.

Note: It is recommended to analyze at least duplicates of the samples. Also, a negative
control cells without CAM treatment) should be analyzed, which allows calculation
of an enrichment factor Working temperature 18-25°C.

Step Action

1 Transfer 20 ,pi from
* cultLure supernatants after centdfugation and treatment (CAM)
*· ysates of CAM treated cells after centrifugation
* positive control (bottle 3)
* negative control (culture supernatant and ysate after centrifugation

of untreated cells)
* background control (Incubation buffer, bottle 4)
into the MP.
Note: It is important. due to low volumes. to pipette into the middle of the
microplate well.

2 Add to each well 80 Il of the Immunoreagent.

3 Cover the MP with an adhesive cover foil
Incubate on a MP shaker under gently shaking (300 rpm) for 2 h at 15-250 C.

4 * Remove the solution thoroughly by tapping or suction.
· Rinse each well 3 x with 250-300 1l Incuation buffer (bottle 4).
· Remove solution carefully

5 · Pipette to each well 100 pI ABTS solution.
Incubate on a plate shaker at 250 pm until the color development is
sufficent for a photometric analysis (approx. after 10-20 min)

6 Measure at 405 nm against ABTS solution as a blank (reference wavelength
approx 490 nm).

Roche Applied Science10
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