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ABSTRACT

How do cells sense their environment and decide whether to live or to die? This question
has drawn considerable interest since 1972, when it was first discovered that cells have an
intrinsic ability to self-destruct through a process called apoptosis. Since then, apoptosis has
been shown to play a critical role in both normal physiology and disease. In addition, many of
the basic molecular mechanisms that control apoptosis have been revealed. Yet despite the
known list of interactions and regulators, it remains difficult to inspect the network of apoptosis-
related proteins and predict how cells will behave. The challenge is even greater when one
considers interactions with other networks that are anti-apoptotic, such as growth-factor
networks.

In this thesis, we develop an approach to measure, analyze, and predict how complex
intracellular signaling networks transduce extracellular stimuli into cellular fates. This approach
entails three interrelated aims: 1) to develop high-throughput, quantitative techniques that
measure key nodes in the intracellular network; 2) to characterize the quantitative changes in
network state and cell behavior by exposing cells to diverse fate-changing stimuli; and 3) to use
data-driven modeling approaches that analyze large signaling-response datasets to suggest new
biological hypotheses. These aims were focused on an apoptosis-survival cell-fate decision
process controlled by one prodeath cytokine, tumor necrosis factor (TNF), and two prosurvival
stimuli, epidermal growth factor (EGF) and insulin.

We first developed radioactive- and fluorescence-based high-throughput assays for
quantifying activity changes in the kinases that catalyze key phosphorylation events downstream
of TNF, EGF, and insulin. By combining these assays with techniques measuring other
important posttranslational modifications, we then compiled over 7000 individual protein
measurements of the cytokine-induced network. The signaling measurements were combined
with over 1400 measurements of apoptotic responses by using partial least squares (PLS)
regression approaches. These signaling-apoptosis regression models predicted apoptotic
responses from cytokine-induced signaling patterns alone. Furthermore, the models helped to
reveal the importance of previously unrecognized autocrine cytokines in controlling cell fate.
This thesis has therefore shown how cell decisions, like apoptosis-versus-survival, can be
understood and predicted from the quantitative information contained in the upstream signaling
network.

Thesis Supervisor: Douglas A. Lauffenburger
Title: Whitaker Professor of Biologcial Engineering, Chemical Engineering, and Biology

Thesis Supervisor: Michael B. Yaffe
Title: Howard S. and Linda Stern Associate Professor of Biology and Biological Engineering
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CHAPTER 1

Introduction

1.1. Complexity in biological signal transduction networks

1.1.1. Introduction

Cytokines and their receptors regulate cell function and fate via a complex network of

signaling cascades (here, "cytokine" refers generally to peptidyl ligands [20]). Cytokine-

receptor interactions have been studied extensively, as have the intracellular kinases, adaptor

proteins, GTPases, and transcription factors that constitute the signals 1211. The binding of a

single cytokine to its cognate receptor typically induces multiple signals that vary with time.

Despite the wealth of information about individual signaling proteins, systems-level

understanding of the signal transduction network remains poor [22]. Consequently, many

attempts to target signaling proteins with small-molecule and biological therapeutics have been

disappointing, notwithstanding clear connections between signaling mutations and human

diseases such as cancer [23]. In this Introduction, we discuss some of the challenges in studying

biological signaling networks and in relating these networks to the control of cellular

phenotypes.

1.1.2. Signaling specificity

One confounding feature of signaling networks is that multiple cytokines activate the

same signaling cascades while still eliciting different physiological effects [24]. Epidermal

growth factor (EGF) and insulin, for example, both activate extracellular-regulated kinase (ERK)

and the kinase Akt, but EGF is primarily mitogenic whereas insulin regulates metabolism 125,
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261. For receptor tyrosine kinases (RTK's) such as the EGF and insulin receptors, there even

exists some evidence that downstream signaling pathways might confer generic signals, which

are subsequently tuned by cell-specific expression of transcription factors to activate target genes

[27, 28]. Though provocative, these studies conflict with knockin models of pathway-deficient

platelet-derived growth factor (PDGF) and c-Met receptors 129, 30]. In these studies,

replacement of the endogenous receptor with one lacking the ability to signal through particular

branches of the network conferred a subset of the defects present in the corresponding knockout.

These results suggest that endogenously expressed receptors convey distinct information through

different pathways in the downstream network.

How then is this signaling specificity achieved? In mammalian cells, the predominant

mechanism is thought to be a combination of selective posttranslational modifications and

protein-protein associations [3 1. For RTK's, ligand binding causes the phosphorylation of key

tyrosine (Tyr) residues, which serve as phospho-dependent docking sites for Src-homology 2

(SH2) or phosphotyrosine binding (PTB) domain-containing adaptor proteins. These adaptors

recruit cytoplasmic kinase and other proteins to the membrane for activation, which subsequently

leads to phosphorylation cascades mediated by serine-threonine (Ser-Thr) and dual-specificity

protein kinases [211. Serine-threonine phosphorylation by these transducer and effector kinases

modulates transcription-factor activity and thus gene expression [32j. In addition, these

phosphorylation events initiate a second class of phospho(Ser-Thr)-dependent interactions

through WW and Forkhead-associated (FHA) domain-containing proteins, as well as through

proteins like 14-3-3 [331.

For each event in this cascade of signals, specificity is conferred by both sequence and

structure. Protein kinases preferentially phosphorylate Ser, Thr, and Tyr residues based on the

flanking amino acids surrounding the site [34] as well as more distant docking sequences 135].

Phospho-dependent binding proteins are likewise preferential towards certain neighboring

residues 1361, and structural studies have revealed that specificities can be highly complex at the

molecular level [37]. Interestingly, protein kinase and phospho-dependent binding proteins only

partially overlap in their sequence preference, and neither interaction is "hard-wired" to be 100%

specific [331. Together, this suggests that signaling proteins, as well as their upstream activators

and downstream targets, are specific and yet also multifunctional.

12
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Figure 1-1. Schematic of the recognized intracellular signaling network shared by TNF, EGF, and insulin.
Signals were defined as "T" signals (red or black), "E" signals (green), or "I" signals (blue) as described in
Chapter 2.4. Dashed arrows indicated transcriptional pathways. Nineteen signals (parentheses) were selected
throughout the network and measured by either high-throughput kinase assay 15], Western blotting, or Ab
microarray [161. P/total EGFR (signal 6) and P/total Akt (signal 15) signals were defined by taking the ratio of
the phospho and total signals measured by antibody microarray.

1.1.3. Signaling antagonism and crosstalk

An additional complication in most signaling networks is that a single cytokine can

activate multiple opposing signals. One clear example of this is the proinflammatory cytokine,

tumor necrosis factor (TNF) [38-401. TNF binding trimerizes the TNF receptor (TNFR) to

recruit death domain (DD)-containing proteins, like TRADD and TRAF2, into the so-called

death-inducing signaling complex (DISC) (Figure 1-1) [391. A membrane-bound DISC complex

(complex I) activates nuclear factor-KB (NF-KB) via a TRAF2/5-RIP-IKB kinase (IKK) pathway

and the MKK7-c-jun N-terminal kinase (JNK) and MKK3-p38 stress kinase pathways via

TRAF2-MAP3K [38, 40, 411. Subsequently, a cytoplasmic DISC complex (complex II) forms

that cleaves the executioner cysteine protease, caspase-3, via the binding of the initiator caspase-

8 to FADD (Figure 1-1). Thus, TNF promotes prodeath responses by activating caspase-8 and

caspase-3 1421, but TNF also activates the nuclear factor-KB (NF-KB) transcription factor, which

is typically prosurvival 431. TNF signaling is further antagonized transcriptionally, in that

13
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complex I signals are downregulated by complex II signals by NF-KB mediated expression of c-

FLIPL [441, which binds to caspase-8 and prevents FADD-induced activation [41].

In tissues, cells are exposed to multiple cytokines that combine synergistically and

antagonistically to control cell fate. In colonic epithelia, for example, TNF is a key mediator of

inflammatory bowel disease 1451 whereas EGF and insulin-like growth factor (IGF) stimulate

growth and repair of the mucosa [46, 471. In many cell types, the proapoptotic functions of TNF

are antagonized by EGF [48-50]. Likewise, insulin and the related insulin-like growth factors

(IGFs) have also been shown to inhibit many TNF-induced responses [51-55]. For these types of

antagonistic stimuli, communication between signaling pathways through crosstalk is critical in

determining outcome. Attempts to understand the responses of cells to combinations of

cytokines started several decades ago but were hindered by a lack of molecular information on

signaling 156, 571.

Most work on the topic of conflicting stimuli has focused on crosstalk among

intracellular signaling proteins with pro- and antiapoptotic functions [58]. For example, Akt has

been shown to phosphorylate Bad and caspase-9 in response to prosurvival cytokines, which

downregulate critical prodeath responses 159, 60]. Likewise, extracellular-regulated kinase

(ERK) activity has been shown to prevent the activation of caspase-8 [611. Conversely, it has

been shown that prosurvival EGF-family receptors are targeted for degradation by caspases [62].

These interactions add new stimulus-specific edges to the signaling network and together shift

the balance of pro- and antiapoptotic signals toward one fate or another 1631. A similar

mechanism has been proposed for cytokines, like TNF, that activate opposing intracellular

signals. Within the TNF-induced signaling network, there are several examples of pathway

crosstalk, including degradation of prosurvival IKK by caspases [64], NF-KB-mediated

downregulation of JNKI [65], and the aforementioned c-FLIP inhibition of complex II 1411. It

is not clear why a single cytokine like TNF is endowed with so many overlapping positive and

negative feedbacks for controlling cell behavior. However, control theory suggests that

overlapping feedback optimizes the sensitivity and stability of systems for a wide ranges of

inputs [66].

1.1.4. Signaling dynamics

14



Controlling cellular behaviors requires the correcting timing of signaling as much as the

signal itself. For transcriptional networks in prokaryotes, it has been shown that a "just-in-time"

principle applies to key regulators of metabolism and cell-cycle progression [67, 681. Although

less well understood in mammalian cells, the temporal aspects of signaling are a recognized

means for controlling distinct cellular processes [69].

The mitogen-activated protein kinases (MAPK's) are perhaps the simplest example of

time-dependent signals controlling distinct cellular outputs 701. One of the earliest observations

was in PC 12 pheochromocytoma cells, where EGF and nerve growth factor (NGF) both activate

ERK with different kinetics. EGF induces transient ERK activity and causes proliferation,

whereas NGF induces sustained ERK activity and causes differentiation and neurite outgrowth

171 1. A possible mechanism for interpreting transient and sustained ERK signals was discovered

using quiescent Swiss 3T3 fibroblasts [72]. In this system, platelet-derived growth factor

(PDGF) induces sustained ERK activity and promotes S phase entry, whereas EGF induces

transient ERK activity and does not promote entry. It was shown that immediate-early gene

(IEG) products induced by the initial transient spike of ERK were themselves ERK substrates.

IEG phosphorylation by sustained ERK activity stabilizes the protein products from degradation

and triggers S phase entry. Many immediate-early "ERK sensors" have now been implicated in

the control of the G,-S transition 73].

The stress-activated JNK MAPK has also been implicated to exert time-dependent

control of cell behavior, in particular, toward apoptosis. The involvement of JNK signaling in

apoptosis is controversial 74, 75], but transient JNK activation frequently correlates with

survival and sustained JNK with apoptosis [76]. Mechanisms for both prosurvival JNK signaling

through JunD phosphorylation 177] and prodeath signaling through Bim phosphorylation [781

have been described. More recently, the kinetics of JNK activity have been linked to reactive

oxygen species (ROS), whereby ROS deactivate JNK phosphatases to cause sustained JNK

activation and cell death by necrosis [79, 801. Nevertheless, other JNK-dependent proapoptotic

pathways have been suggested 181], and the molecular mechanisms appear to depend heavily on

the experimental system [801. Unlike for ERK [72], it has yet to be determined in a single

system how different classes of JNK activation might exert opposing control on apoptosis.

The lack of real-time or high-throughput techniques to quantify MAPK signaling has

prevented more detailed studies of dynamics. Although there is a sense that "transient" and

15
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Figure 1-2. Spectrum of computational approaches for modeling protein networks: clustering 17], partial least
squares [101, Markov models [15], Bayesian networks [17], Boolean networks [18], and differential equations
119]. The spectrum is not implied to be comprehensive.

"sustained" signals are categorically different (see Chapter 3.2.1), there is no strict definition of

what these terms actually mean. This starkly contrasts other signaling fields, such as Ca2 +

signaling, where real-time single-cell reporters have allowed oscillation frequencies and

amplitudes to be quantified from "puffs" and "waves" of Ca2+ 182, 83]. Equivalent tools for

enzyme-catalyzed cascades could investigate in greater detail the temporal fidelity of these

pathways for changing gene expression and cellular phenotypes.

1.2. Clarity through quantitative modeling: the MAPK pathway

Increasingly, systematic methods are being to applied to the interpretation and

computational analysis of cell signaling [84, 85]. These numerical methods lie on a spectrum of

16



approaches that vary in their level of abstraction and specificity (Figure 1-2) 861. However, by

far the most common approach for analyzing intracellular signaling networks involves modeling

the fundamental biochemical reactions with ordinary differential equations (ODE's). These

reaction-based, "mechanistic" models are meant to formalize the basic processes that underlie

signal transduction. Although hurdles exist for constructing mechanistic models (see Chapter

1.3), these approaches are a valuable quantitative test of the aggregate biological understanding

of a system 1871. By codifying the existing knowledge, one can then examine if this information

is sufficient to explain and, more importantly, predict experimental results. There are several

comprehensive reviews on mechanistic modeling applied toward signaling pathways and

networks 188, 89]. Here, we restrict our discussion to MAPK signaling 1901, where quantitative

models have had a frequent scientific impact.

The MAPK signaling cascade is a module of three kinases [91, 92]. First, a MAP3K

kinase activates the dual-specificity MAP2K by phosphorylation on two Ser-Thr residues. Then

the MAP2K activates a MAPK Ser-Thr kinase by phosphoryating its Thr-X-Tyr motif, where X

denotes Glu for ERK, Pro for JNK, and Gly for p38 MAPK. Many theoretical studies have

focused on this cascade because (1) the basic biochemical events are agreed upon, and (2) many

of the rate parameters have been determined by experiments. Perhaps most importantly, the

MAPK cascade appears to be "insulated" from the rest of the signaling network, in that

MAP3K's are specific for MAP2K's, and MAP2K's are highly specific for MAPK's.

As an isolated module, the MAPK pathway has been shown computationally to be

ultrasensitive, where small changes in inputs signals are propagated through the cascade to cause

dramatic changes in output signals [931. Studies in Xenopus later revealed that MAPK

ultrasensitivity plays a critical role in bistability at the single-cell level [941. Other more recent

work in MAPK-like modules has suggested that the deactivating MAPK phosphatases were

particularly important in controlling response parameters, like response time and signal duration

[951. Experiments with a MAPK-protein kinase C (PKC) signaling network later corroborated

the importance of phosphatases in system behavior [96]. For mechanistic modeling, these

studies illustrated the power of a well-defined signaling system, which could be studied in detail

and abstracted from the rest of the network [97].

The MAPK pathway has also been analyzed within larger networks of pathways, such as

growth factor-induced signaling. Drawing from literature-based parameters, multiple studies
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have analyzed the theoretical requirements for the MAPK signal adaptation [98, 991.

Internalization-degradation of growth factor receptors, inhibitory phosphorylation of adaptors

and upstream kinases, and GTPase recruitment have all been identified as adaptation

determinants for the transient-vs.-sustained MAPK signal (see Chapter 1.1.4 and references in

[ 1001). Here, the mechanistic models were a useful tool for quantifying the strength of negative

feedback required to explain the transient ERK MAPK signals measured experimentally 119,

101 1. Multiple models correctly identified receptor internalization as a critical determinant for

EGF-induced transient ERK signaling [19, 100]. Interestingly, a lack of receptor internalization

could not be the mechanism for NGF-induced sustained ERK activation, because NGF receptor

(TrkA) internalization is required for sustained ERK signaling 102]. Very recently, a combined

experimental-computational study proposed EGF- and NGF-specific differences in upstream G

proteins [1001. Ras and Rapl G proteins activate different Raf MAP3K-family members en

route to ERK phosphorylation, and Rapl is specifically activated by NGF. Ras and Rapl were

shown to act as differential and linear transducers by sensing the rate of change and final levels

of the input growth factor signal respectively [100].

The latest mechanistic models of growth factor-induced MAPK [19, 100] and other

signaling networks [103, 104] have illustrated an important shift toward experiment and

prediction. Quantitative analyses that explain disparate biological conclusions remain highly

valuable [105, 1061. Yet, there is a growing impetus for models to incorporate new experimental

data and validations along with published values [107]. In the next chapter, we discuss some the

challenges associated with constructing realistic and useful mechanistic models of signaling.

1.3. Challenges in constructing and validating mechanistic

models

Despite experimental advances [108], the biological data for any signaling system is

currently insufficient to constrain the unknown (and therefore flexible) parameters of

mechanistic models. Moreover, the existing data are fragmented across multiple publications,

laboratory notebooks, and cell types [107]. Some have suggested that robustness should be used

to evaluate models of large reaction networks [109], but this concept is both vague and
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unfulfilling for most biologists. The general uncertainty surrounding mechanistic models has led

some to question whether such approaches have really added anything to the qualitative intuition

of experimentalists [110]. It is more likely that mechanistic models of signaling networks will be

indispensable for quantitatively framing biological information in the future. However, extreme

caution is needed when constructing and validating these models to avoid straying from real

biological mechanism and into phenomenology.

1.3.1. Computational challenges

Mechanistic models will always be imperfect, but they should strive to reflect the existing

biochemical and cell-biological knowledge as faithfully and realistically as possible. In

particular, because the system of ODE's describes the aggregate dynamics of many biochemical

reactions, the mathematics must be constrained by the biophysical limits of these reactions. For

instance, there are important biophysical constraints embedded in any bimolecular protein-

protein interaction:

A+B AB
A,

The above reaction scheme is ubiquitous in mechanistic models of signaling networks. An A-B

interaction could be a simple binding event or the initial formation of an enzyme-substrate

complex before a catalyzed reaction (see below). The challenge for most mechanistic models is

that A, B, AB, kf, and kr are usually unknown or partially known: A is estimated from a different

cell type, k,- is calculated from proteins of another species, etc.

Protein abundances (here, molecules A and B) vary between 10 nM-1 [tM for most

signaling molecules [103]. There are, of course, exceptions to these ranges, but they can serve as

a useful reality check for published estimates, which sometimes neglect to correct for dilution

after lysis [ 1 11 . The reverse rate constant (k) varies widely with the affinity of the interaction,

but importantly, the forward rate constant (kf) is inherently constrained by diffusion. Theoretical

and experimental evidence suggests that most kf values fall between 105-106 M-'s -' [1121, with

the fastest, electrostatically assisted associations occurring near the diffusion limit of 109-10'0 M-
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Figure 1-3. Michaelis-Menten kinetics are inappropriate for modeling reaction cascades. (A) Reaction scheme
of a two-tiered signaling cascade, where the enzyme is subject to activation at a rate r, and deactivation at a rate
r2. The active enzyme (E*) then catalyzes the conversion of substrate (S) to product (P). (B and C) Comparison
between the Michaelis-Menten approximation and the full numerical solution for a range of kl and k2 when (B)
r/r 2 = 0 (i.e., no deactivation) or (C) r,/r2 = 0.01 (i.e., slight deactivation). The Michaelis-Menten equation was
compared against the steady-state numerical solution and scored blue (solutions within 10% of each other) or red
(greater than 10% discrepancy). The enzyme-to-substrate ratio was kept constant at nine.

s' 11131. This simple diffusional constraint provides an simple means for questioning the

validity of models with kf values as high as 1013 M-1s-' [1141 or with unlisted reaction parameters

11151. Similar arguments can be made to constrain kf and kr further by enforcing their

consistency with published binding affinities [116].

In addition to bimolecular interactions, signaling network models are also encoded with

many enzyme-catalyzed conversions of substrate (S) to product (P):

E+S ES . E + P
k-,

Throughout biochemistry, we are taught how to "simplify" the above reaction scheme by

rearranging the rate constants (k,, k,, and kcat) into the classic Michaelis-Menten equation:

dlP] k,,,[EWTSlo
dt k,at + + [

+ [Sho

Vma~x S]o

KA, + Slo
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The two kinetic parameters of this equation (KM and Vm,,ax) are widely available for many

signaling enzymes and therefore represent a rich source of information for mechanistic models.

However, the Michaelis-Menten equation is, itself, a model of enzyme kinetics, with the critical

assumptions that the active enzyme concentration is constant (d([E+L[ESI)/dt = 0) and that

enzyme-substrate complex (ES) is at pseudo-steady state (d[ES]/dt = 0).

The pseudo-steady state approximation works very well with purified enzymes and

substrates during the time scale of most biochemical experiments. However, this same

assumption is problematic when considering all ES complexes in a signaling network. Of

particular concern is the dynamic behavior of ES complexes in enzymatic cascades, where the

enzyme activity is regulated (Figure 1-3A). Using a simple two-reaction cascade with a

regulated enzyme, we compared the final product formation estimated by Michaelis-Menten

kinetics to that predicted by the full system of ODE's. With constant enzyme activity, the

Michaelis-Menten approximation matched the full numerical solution for a broad range of input

concentrations (Figure 1-3B). However, when the enzyme was dynamically regulated, there

were significant discrepancies between the two models for most starting values of E and S

(Figure 1-3C).

Because cells are not bounded by Michaelis-Menten kinetics, it is recommended to use

the full set of biochemical ODE's (characterizing E, S, ES, and P dynamics) when modeling

signaling networks. Unfortunately, this implies that KM and Vax values from experiments

cannot be used directly in the rate equations. Nevertheless, the Michaelis-Menten parameters

add important algebraic constraints for optimizing unknown rate constants. For instance, the k,,

k,, and kcat fitted in a model can be constrained so that (kcat + k )/k, must equal the published KM

for the reaction. In this way, KM and Vm,a aid model construction similarly to the biophysical

constraints discussed above.

1.3.2. Experimental challenges

Computational cell biology distinguishes itself from theoretical biology by its firm

grounding in experiment and measurement [1071. Biological validation is an essential

component of mechanistic models, but not all experiments are equally valid for this purpose. In

fact, experiments with deceptive "quantitative" readouts are possibly more damaging to a model
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Figure 1-4. Validating mechanistic models requires careful experimental controls. (A) Bovine serum albumin
(BSA)-based calibration of recombinant X-linked inhibitor-of-apoptosis protein (XIAP) to validate this standard
as a calibration for initial condition calculations. Proteins were visualized with SYPRO-Ruby (upper panel) and
quantified by fluorescence densitometry (lower panel). Asterisks indicate XIAP cleavage products that should
be excluded from the quantification. (B) A quantitative, but nonlinear, KB kinase (IKK) activity assay.
Reaction conditions were same as described [5], but with an anti-IKKat antibody from Pharmingen.
Phosphorylated IKBoa was quantified by autoradiography (upper panel) and liquid scintillation (bottom panel).
(C) Differential partitioning of procaspase-8 and cleaved caspase-8 into Triton-soluble and insoluble fractions.
HT-29 cells were treated with 100 ng/ml TNF for 24 hr and Triton or SDS lysates prepared by standard
techniques.

than no data at all. The two types of measurements that are both experimentally tractable and

informative for mechanistic models are 1) the starting concentrations, or initial conditions, of

signaling molecules and 2) the dynamic response of a signaling molecule to a defined stimulus.

Ideally, both approaches should be used to constrain models [191, but unfortunately this is rare.

Quantification of initial conditions is both experimentally challenging and tedious.

Because these data are difficult to obtain, we have found that is most productive to prioritize

effort on the signaling molecules to which the model is most sensitive 114]. Using quantitative

Western blotting, a lysate of known cell density is regressed against a calibration curve from

recombinant protein standards of the signaling molecule of interest [191. Importantly, we have

found that commercially available proteins have unreliable stock concentrations, due to cleavage

products and contaminants. Therefore, we calibrate each recombinant standard against an

albumin standard by quantitative SDS-PAGE and SYPRO-Ruby staining (Figure 1-4A) before

proceeding with Western blotting or antibody microarrays 116].

Since most biochemical assays quantify changes relative to a positive or negative control,

it is essential for the linearity of any assay to be verified explicitly. Dilution series are a common

way to detect nonlinear measurement biases, and we have disqualified several assays because of

highly nonlinear response characteristics. This includes assays that measure the final assay
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product with quantitative detection formats, such as autoradiography and liquid scintillation

(Figure 1-4B). Recently, we have shown that the performance of statistical models can be fragile

to nonlinear data [117]. It will be interesting to examine the prediction stability of mechanistic

models after similar perturbations to the training data.

A significant logistical challenge for experimentally validating computational models is

to retain meaningful biological variation, yet control for spurious experimental variation. These

consistency controls provide critical normalization factors to fuse large experimental datasets

coherently [121. Like the assays themselves, the choice of controls is essential, because the

results can be disastrous if normalizations are superficial or nonexistent.

One familiar example involves loading controls for Western blots. Structural proteins,

such as [B-actin and ca-tubulin, are frequently used to control for sample-to-sample variations in

cell number and protein content. However, in studies where significant cytoskeletal

rearrangements are involved, these controls might be inappropriate. This is particularly true for

mechanistic models of apoptotic signaling networks [1 14], because actin is a known target for

degradation by apoptotic caspases [118]. In general, protein variation can be controlled by

quantifying total protein beforehand using a bicinchoninic acid assay.

Another implicit control for validating mechanistic models is the choice of lysis recipe

during sample preparation. Commonly, nonionic detergents (such as Triton X-100, NP-40) are

the preferred chemical agent, because the retain protein complexes and activities more

effectively. However, in control studies, we have found that certain signaling molecules, such as

caspase-8, can partition between the Triton soluble fraction (the clarified extract) and the

insoluble fraction (which is usually discarded) (Figure 1-4C). This translocation is widely

appreciated in adhesion and migration signaling [119, 1201. But for mechanistic models, it is

technical detail with significant implications when fitting biochemical data of this kind. By

using clarified extracts alone to analyze partitioned signals, there would appear to be a

significant "degradation" mechanism that would then be falsely encoded in the model. This

experimental artifact can be resolved with whole cell extracts (soluble + insoluble fractions) for

assays like Western blotting and clarified extracts only for functional or coassociation studies.

1.3.3. Summary
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The value of large-scale quantitative experiments characterizing signaling is clearly

recognized 1871. Combined with new measurement technologies [1081, this suggests that high

quality datasets will soon be available for modeling the reactions of complex networks [121]. It

remains unlikely, however, that these data will be sufficient to constrain all of the parameters

embedded in a mechanistic network model (see Chapter 1.3.1). Furthermore, as datasets grow, it

becomes increasingly difficult to interpret and reconcile what these data actually mean 1122]. It

is here that less detailed modeling approaches, which are founded on the measurements

themselves rather than on mechanism, can be valuable. In the next chapter, we discuss some

recent insights that have been gained from data-driven models of signaling networks.

1.4. Models of data

Data-driven models lie on the opposite end of the spectrum when compared with

mechanistic models (Figure 1-2) and are usually rooted in statistics and probability. Data-driven

models are powerful because they can handle empirical data and prior knowledge about the

underlying phenomena in a flexible fashion. Unlike mechanistic models, data-driven models do

not require fine-grained knowledge about the interrelationship between measured components.

Model constraints and assumptions are still formalized mathematically, but these methods allow

dataset to "speak for themselves" in terms of global variations and covariations. We focus here

on two data-rich fields where analysis of biological signals and phenotypes has provided higher-

level insight: biological interaction networks and gene expression-based classifications.

Transcriptional and interaction networks are now available for a variety of organisms,

including Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae

1123]. Despite concerns about the accuracy of these large datasets 11 241, many groups have

analyzed these connection maps to study network organization and topology 1125]. Terms like

"scale-free" have been drawn from network theory to describe biological interaction maps [126].

More recently, these data have been mined further by focusing on phenotypically-relevant

subsets of' the network, such as the DNA-damage subnetwork 127]. These phenotypically-

focused subnetworks were shown to be more tightly interconnected than nonessential genes but

less tightly interconnected than essential genes [1281. The patterns of the connections,
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themselves, have also been shown to be overrepresented in biological networks 11291.

Interestingly, these patterns, or "network motifs", are significantly different from the motifs that

emerge from engineered networks [130], suggesting distinct organizing principles.

These analyses of biological networks are more accurately data "mining", rather than true

data modeling, because they lack predictive ability. That is, one looks for an overrepresented

network topology 1131, 132] or a network "hub" [1331, but predicting the function of this

element is not possible from the mining algorithm used to identify it. This inability to predict is

endemic to the current interaction data, which is mostly static and without interventions or

perturbations 1341. Other data-rich fields, like transcriptional profiling, contain a wealth of

these types of measurements, and gene-based predictions have been in development for some

time. For various cancer types, expression profiles have been used to predict tumor class [1351

as well as patient outcome [136, 137]. An additional benefit to these models is that key predictor

variables (here, transcripts) help to suggest biological hypotheses about the link between gene

products and the studied tumor 1138]. Extensions to this work are currently being pursued in

combination with newer technologies, like laser capture microdissection [139] and multicolor

flow cytometry 140]. There is tremendous interest for applying similar approaches to protein

signaling and expression [141, 142]. However, because of a lack of experimental methods to

quantify many proteins in parallel, these studies have been limited to biomarker discovery, rather

than predictive modeling. In the next chapter, we detail several techniques developed to provide

the kind of quantitative, multiplex protein data required to begin modeling signaling networks

from a data-driven perspective.
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CHAPTER 2

Techniques and approaches for systematically

measuring signaling networks

2.1. Introduction

Complex patterns of signal transduction arise when cells are exposed to combinations of

extracellular cues that vary in onset, duration, origin and synchrony. Cells process these cues

through an interconnected network of multifunctional, redundant molecules to elicit a set of

phenotypic responses that subsequently impact function at the cell, tissue and organ level. In

order to develop a molecular understanding of the complex pathophysiology underlying human

diseases and utilize this information for prognosis and therapy, a systems-level, network-biology

approach should be applied to the signaling networks governing the relevant cell responses

11431. This approach will require frequent temporal sampling of protein activity at critical nodes

within parallel signaling pathways inside the cell in a quantitative manner to accurately

characterize the flow of information. Such functional measurements are likely to be as valuable,

or more valuable, than measurements of simple protein abundance. By quantitatively exploring

the functional response of the signaling network to distinct extracellular cues and correlating

these molecular events with phenotypic responses, one can construct predictive models of cue-

signal and signal-response relationships.

Evolving proteomic approaches to network biology have largely focused on measuring

abundances of many proteins at only few time points or under a limited number of experimental

conditions 1144]1. Complementary information on functional protein characteristics, such as

enzyme activity, has been lacking in these systematic analyses, in large part because there do not

exist quantitatively robust, high-throughput techniques to simultaneously measure multiple

protein activities in cells. Initially, this type of data collection on protein functional status should
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focus on frequent sampling of a limited number of key molecules that sit at critical nodes in

different signaling pathways (Figure 1-1).

2.2. A high-throughput multiplex radioactivity-based kinase

activity platform

To characterize cytokine-induced signaling networks more quantitatively, we developed a

generalized assay for the multiplex analysis of multiple protein kinase activities in a 96-well

format. The procedure utilizes parallel kinase-specific immunopurification steps, followed by

rapid quantitative high-throughput activity measurements within the linear-rate regime for each

kinase. We applied this technique to measure the activities of five kinases (extracellular-

regulated kinase (ERK) [145], Akt, IK-B kinase (IKK), c-jun N-terminal kinase 1 (JNK1), and

n-mitogen-activated protein kinase-associated protein kinase 2 (MK2)) in a model system for

tumor necrosis factor-alpha (TNF-c)-induced colon epithelial cell death.

The generalized assay format involves four steps, shown in Figure 2-1: i) parallel

purification of endogenous kinase from whole cell lysates by immunoprecipitation onto Protein

A or G microtiter plates that have been precoated with kinase-specific antibodies, ii) low

stringency washes to remove nonpurified lysate components, iii) addition of ly-32P]ATP and a

1. 2. 3. 4.
Substrate [7 32P]ATP

wash incubate transfer 4 

Figure 2-1. General schematic of the high-throughput multiplex kinase activity assay format. Lysates are
incubated with Protein A or G microtiter wells precoated with anti-kinase antibody. After several washes, an
appropriate substrate and [y-32P]ATP are added to the plate to initiate an in vitro phosphorylation reaction. The
reaction is terminated with H3PO4 (for Akt and JNKI assays) or EDTA (for IKK and MK2 assays), and a
fraction of the reaction mix is transferred to a phosphocellulose (PC) filter plate and washed to remove free 32 p.
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kinase-specific substrate to initiate an in vitro kinase reaction, and iv) termination of the in vitro

reaction either by H3PO4 or EDTA and liquid transfer to a 96-well phosphocellulose (PC) filter

plate to isolate phosphoproteins and remove free [y-32P]ATP. We developed assays for ERK

11451, Akt, JNK1, IKK and MK2 activity in cell extracts, after rigorous optimization and

quantitative validation.

To develop the parallel immunopurification step, we experimentally screened multiple

commercially available products and identified for each kinase a single, high-affinity antibody

that retained enzymatic activity. Coating conditions for each anti-kinase antibody on Protein

A/G microtiter plates were individually optimized, revealing that the antibodies maximally

bound their intended targets when 50 1l of 10 yg/ml antibody was applied to each well (Figure

2-2A--D, left panels), consistent with our estimates of the number of antibody binding sites on

the plate surface. Higher coating concentrations of polyclonal antibodies (anti-JNK1, anti-

IKKa/3 and anti-MK2) reduced the solid-phase avidity for the kinase and caused a decrease in

purification efficiency (Figure 2-2B-D, left panels). At the optimized coating concentration

(Figure 2-2A-D, left panels, arrows), the immunopurification was always linear in the amount of

kinase purified over a substantial range of lysate concentrations (Figure 2-3A-D). This

demonstrates that the antibody capture step linearly reflects kinase abundance in the lysate.

Next, kinase reaction conditions for each assay were optimized by modifying the

following in vitro parameters: choice of substrate, concentration of substrate, radioactive-to-

nonradioactive ATP ratio and reaction duration (see Chapter 6.2.1.). When an individual kinase

was determined to effectively phosphorylate multiple substrates (Figure 2-4A,B,D and data not

shown), the substrate showing the highest specific activity (CPM/Pumol) was selected to

maximize sensitivity. Other reaction parameters, such as buffer composition and reaction

temperature, were intentionally kept constant to enable assays of different kinases to be

performed in parallel on the same microtiter plate in a single step.
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Figure 2-2. (Previous page) High-throughput multiplex kinase activity assays are optimally sensitive,
quantitatively linear and specific for the target kinase. (A) Left panel, Akt was immunopurified from 500 pg of
IHT-29 lysate on Protein G microtiter plates coated with 50 p1 of anti-Akt at various coating concentrations.
Plate-bound Akt was analyzed by Western blotting, as described [5], and quantified by densitometry of the band
intensity to calculate a normalized volume. Middle panel, 50-600 pg of lysate from HT-29 cells treated with 1
/AM insulin for 5 min was measured with the high-throughput Akt activity assay using 10 M Aktide as
substrate, as described [51. The stimulated lysate (arrow) was compared with 500 Jug untreated control lysate
(solid bar). Rightpanel, HT-29 cells were pretreated with various concentrations of wortmannin (Sigma) for 1 h
then stimulated with 1 M insulin for 5 min and lysed. Akt activity was quantified as described [5]. (B) Left
panel, JNKI was immunopurified from 200 pg of HT-29 lysate on Protein A microtiter plates coated with 50 ul
of anti-JNK1 at various coating concentrations and analyzed as described in (A). Middle panel, 25-500 pg of
lysate from HT-29 cells harvested 30 min after treatment with 30 J/m2 UV-C was measured with the high-
tlhroughput JNKI activity assay using 3 pg ATF-2 as substrate, as described [5]. The stimulated lysate (arrow)
was compared with 200 ug untreated control lysate (solid bar). Right panel, plate-bound JNKI from UV-
stimulated HT-29 cells was incubated for 10 min with various concentrations of SP600125 (Calbiochem), and
JNKI activity was quantified as described [5]. (C) left panel, IKK was immunopurified from 800 pg of HT-29
lysate on Protein A microtiter plates coated with 50 1 of anti-IKKac/ at various coating concentrations and
analyzed as described in (A). Middle panel, 50-800 pg of lysate from HeLa cells treated with 100 ng/ml TNF-a
for 10 min was measured with the high-throughput IKK activity assay using 10 pg IKBa as substrate, as
described 151. The stimulated lysate (arrow) was compared with 600 g untreated control lysate (solid bar).
Right panel, plate--bound IKK from TNF-stimulated HeLa cells was incubated for 1 h with various
concentrations of 15-deoxy-A'2 '4 -prostaglandin J2 (Sd-PGJ 2, Calbiochem), and IKK activity was quantified as
described [51. (D) Left panel, MK2 was immunopurified from 200 pg of HT-29 lysate on Protein G microtiter
plates coated with 50 1 of anti-MK2 at various coating concentrations and analyzed as described in (A). Middle
panel, 10-400 pug of lysate from HT-29 cells treated with 500 mM NaCI for 30 min was measured with the high-
thr-oughput MK2 activity assay using 10 pM MK2tide as substrate, as described [51. The stimulated lysate
(arrow) was compared with 200 g untreated control lysate (solid bar). Right panel, HT-29 cells were
pretreated with various concentrations of SB202190 (Calbiochem) for 1 h then stimulated with 500 mM NaCI
for 30 min and lysed. MK2 activity was quantified as described [5]. All kinase activities are reported as the
mean ± S.E.M. of triplicate samples (error bars for the MK2 assay were smaller than the size of the marker).
Western blots were repeated at least twice with similar results; representative images are shown. Arrows
indicate fixed experimental conditions for the adjacent experiment.

ERK, Akt and JNK1 assays were terminated by adding an equal volume of 75 mm H3PO4

to the microtiter reaction well and transferring the well contents to a parallel 96-well PC filter

plate for washing and quantitation. MK2 and IKK assays contained unintended phosphorylation

products on the plate surface that were released into solution by H3PO4 (data not shown).

Therefore, these assays were terminated by adding an equal volume of 20 mM EDTA to the

microtiter reaction well and transferring the contents to the 96-well PC filter plate preacidified

with 75 mM H3PC)4 in each well. SDS-PAGE analysis of the terminated reaction mixtures

transferred to the PC filter verified that phosphorylation was only occurring on the added

substrate (Figure 2-4A-E). Therefore individual filters in the wells of the PC plate could be

punched out for scintillation counting to accurately quantify kinase activity, eliminating the low-

throughput, SDS-PAGE and autoradiography step required in classical immune complex kinase

assays.
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Figure 2-3. Purification of endogenous kinases is linear on antibody-coated microtiter plates. (A) 300-700 Jg
of HT-29 lysate was incubated for 3 h on Protein G microtiter plates coated with 10 Hg/ml of anti-Akt. Plate-
bound Akt was analyzed by Western blotting, as described [5], and quantified by densitometry of the band
intensity to calculate a normalized volume. (B) 100-250 pg of HT-29 lysate was incubated for 3 h on Protein A
microtiter plates coated with 10 Hg/ml of anti-JNKI and analyzed as described in A. (C) 400-900 pg of HT-29
lysate was incubated overnight on Protein A microtiter plates coated with 10 Hg/ml of anti-IKKcda and analyzed
as described in (A). (D) 50-200 Hg of HT-29 lysate was incubated for 3 h on Protein G microtiter plates coated
with 10 pg/ml of anti--MK2 and analyzed as described (A)

To investigate the sensitivity, dynamic range and linearity of these assays, HT-29 and

HeLa cells were treated with known activators of each kinase, and the kinase activities (CPM on

the PC filter) measured as a function of different dilutions of the activated lysates (Figure 2-

2A-D, middle panels). The 32p incorporation was linear over at least an order of magnitude in

activity, and the absolute sensitivities of the assays were always below 200 Jug, with some assays

capable of measuring activity from as little as 10-25 Jg of total lysate. This result is comparable

to, or better than, existing assays that usually require several hundred jg of lysate for analysis

1146-1481. The aggregate sensitivity of the format was more than sufficient to measure ERK,

Akt, JNKI, MK2 and IKK activity simultaneously from a single 10 cm plate of HT-29 cells.
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The signal-to-noise and reproducibility characteristics for each kinase assay were

examined by selecting a single concentration in the middle of the dynamic range of each assay

(iFigure 2-2A-D, middle panels, arrows) and comparing the kinase activities between lysates

from stimulated and unstimulated cells. For each agonist, this revealed a relative activation of

each endogenous kinase that was comparable in magnitude to that reported in the literature, with

intra-assay coefficients of variation always <10%. Thus, the assays clearly reflected activation

of the endogenous pathways, and the endpoint measures of activity were highly sensitive and

reproducible.

In order for these assays to reflect information flow through the signaling network

accurately, it was crucial to confirm that our endpoint CPM measurement linearly reflected the

kiinaser activity in the lysate. Therefore, the kinetics of the in vitro reaction were examined in

detail at a selecting fixed lysate concentration within the linear range (Figure 2-2A-D, middle

panels, arrows). As shown in Figure 2-5A-D, each phosphorylation reaction displayed linear

kinetics up to the time of termination, suggesting that neither the [y-32PIATP nor the substrate

was significantly depleted over the course of the reaction. Thus, the linearity at every step in the

assay procedure (kinase capture, in vitro reaction kinetics and endpoint CPM measurement)

strongly suggests that these assays are a linear reflection of endogenous kinase activity in vivo.

Figure 2-4. (Next page) Terminated in vitro reaction products specifically contain the phosphorylated substrate.
(A) The high-throughput Akt assay, using 10 M Aktide or 40 yg partially purified histones (Sigma) as
substrate, was analyzed by SDS-PAGE and autoradiography after termination of the in vitro reaction as
described 15]. Note that the phosphopeptide has run off the gel and no other phosphorylated bands are evident.
(B) The high-throughput JNKI assay, using 3 g ATF-2 or 2 pg c-jun (Upstate) as substrate, was analyzed as
described in (A). Single asterisks indicate 32p incorporation into partially cleaved substrates. (C) The high-
throughput IKK assay, using 10 g IKBoa as substrate, was analyzed as described in (A). Double asterisks
indicate nonspecific 32!p incorporation (note that these bands are of equal intensity in the blank sample, such that
background subtraction will remove their contribution). (D) The high-throughput MK2 assay, using 10 M
MK2tide or 5 t4g Hsp27 (Upstate) as substrate, was analyzed as described in (A). Note that the phosphopeptide
has run off the gel and no other phosphorylated bands are evident. (E) The peptide substrates (10 pM Aktide for
the Akt assay and 10 M MK2tide for the MK2 assay) were analyzed on a tricine polyacrylamide gel and
autoradiographed after termination of the in vitro reaction as described [5].
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Figure 2-5. Kinetics of the in vitro kinase reactions are linear with time. Assays were incubated with fixed
amounts of HT-29 or HeLa lysates treated with known activators of the pathway of interest (for details, see
Figure 2-2, A--D). In vitro reactions were allowed to proceed for the indicated times and analyzed as described
[51. (A) Akt assay kinetics with Akt from 500 jg of HT-29 lysate. (B) JNKI assay kinetics with with JNK1
from 200 pg of HT-29 lysate. (C) IKK assay kinetics with IKK from 800 g of HeLa lysate. (D) MK2 assay
kinetics with MK2 from 200 g of HT-29 lysate. Western blots were performed at least twice with similar
results; representative images are shown.

The current knowledge of intracellular signal transduction is staggeringly complex. To

identify network-level properties that affect cell function, it will be necessary to mathematically

model the dynamic, multivariate characteristics of signaling proteins within cells [88]. For such

models to be realized, quantitative experimental techniques that are both high-throughput and

multiplex are needed. The kinase activity assay format presented here represents a first step in

this direction. The 96-well, microtiter format is highly versatile, in that it is amenable to scale-

up and automated liquid handling, yet tractable for individual scientists and more moderate

studies. Importantly, these assays possess linearity, reproducibility, specificity and sensitivity

characteristics as good as, or better than, the corresponding low-throughput technique. We

anticipate that these functional assays will complement existing proteomic approaches 1144] and
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find broad applicability towards biological and clinical problems involving signal transduction

and human disease.

2.3. A high-throughput multiplex fluorescence-based kinase

activity platform

2.3.1. Introduction

As illustrated in the previous chapter, the most common methods for measuring cellular

kinase activities involve isolation of the target kinase from cell lysates [149, 150]. Then, in vitro

kinase assays are performed with protein or peptide substrates and [y-32 PJATP, and

autoradiography or liquid scintillation counting later quantifies the phosphorylated product.

Limitations of this format are that the kinase reaction is a "quenched-point" assay, and

processing steps needed to isolate the kinase and measure activity are time-consuming and

inherently low-throughput. Moreover, sub-physiological ATP concentrations are required (10-

50 rtM) to avoid overdiluting the [y-32 P]ATP. Such "ATP-starved" conditions diminish the

absolute activity of most kinases, which reduces the signal-to-noise ratio of radioactivity-based

kinase assays.

To more directly and rapidly analyze crude cell lysates, a continuous, fluorescence-based,

homogeneous kinase activity assay is very desirable. Despite numerous reports of kinase sensors

in the literature, only a fraction are compatible with unfractionated cell lysates or within cells

[151-1631. Moreover, all of these assays either a) exhibit small fluorescence changes, b) involve

non-versatile design strategies, or c) require technically challenging microfluidic setups. Thus,

de spite the recognized importance of protein kinases, there is not a straightforward way to

quantify kinase activity from cells.

Previously, a versatile and sensitive fluorescence-based chemosensor strategy was

described for monitoring recombinant kinase activity in vitro [164]. The chemosensor comprises

a small sensing module appended to an optimized peptide substrate for the target kinase. The

fluorescence signal is generated when the nonnatural Sox amino acid [4] undergoes chelation-
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enhanced fluorescence in the presence of divalent magnesium (Figure 2-6a). The Mg2+-binding

affinity of the product phosphopeptide is much greater than the substrate peptide, which results

in a large fluorescence increase upon phosphorylation [1641.

We found that the sensitivity and selectivity of Sox-based chemosensors are sufficient to

measure kinase activities directly from unfractionated cell lysates. Using similar design

principles, we engineered new Sox-based fluorescent substrates for three important protein

kinases: Akt [ 165, 166], MK2 [167, 168], and PKA [ 169, 170]. These chemosensors are

excellent reporters of both recombinant enzyme activity in vitro and endogenous activity ex vivo.

We established optimized assay conditions for preferential, quantitative detection of cellular Akt,

MK2, and PKA activation. The homogeneous assay format is high-throughput, remarkably

straightforward, and reproducible; importantly, it is also compatible with physiological

concentrations of ATP (1 mM). This work establishes an important tool for studying the roles of

protein kinases in cellular regulation.

2.3.2 Design and validation of fluorescent kinase chemosensors

turn
(inase

? 05 H

H3C'N'CH 3

b Sensing module
Sensor peptide ,

scaffold (Xaa),, -Ser-Xaa-DPro-Sox-Gly-NH2

CHEF luorophoreFrom optimized substrate- 02N(CH )
kinase recognition elements

OH

Figure 2-6. Design of fluorescent chemosensors of Akt, MK2 and PKA activity. (a) The chemosensor peptide
contains three important design modules for fluorescence sensing: critical kinase specificity determinants, the
chelation-enhanced fluorophore (CHEF) Sox 14], and a p-turn to preorganize Mg2 -binding between Sox and the
incipient phosphate. Phosphorylation increases the affinity of the peptide for Mg2+ and the fluorescent signal is
generated by chelation of Mg2+. (b) The critical kinase specificity determinants in the sensor peptide sequence
are derived from an optimized peptide substrate, including one residue in the sensing module as part of the 13-
turn sequence.
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Table 2-1. Chemosensor sequences, sensitivities, and kinetic parameters.

Fold fluorescence KM Vax

Sensor Sequence increase (tM) (ptmol/min/mg)

Akt-S I AcARKRERAYSF-DPro-Sox-Gly-NH2 9.3 3.8 + 0.1 0.59 + 0.08

MK2--S I AcAHLOROLSI-DPro-Sox-Gly-NH 2 8.5 21 + 1 2.3 + 0.1

PKA-S3 AcLRRASL-)Pro-Sox-GIy-NH, 5.6 2.9 + 0.3 6.3 + 0.3

T'he underlined portion of each chemosensor sequence indicates the series of amino acids from the optimized
peptide substrates Aktide [8], MK2tide [111 and Kemptide 13], and the phosphorylatable serine is in bold.
Fluorescence enhancements and kinetic parameters (KM and V,, reported as mean s.e.m. for triplicate
experiments) were determined as described in [6].

The kinase chemosensor peptides (Akt-S1, MK2-S 1 and PKA-S3) were developed from

optimized peptide substrates for Akt [81, MK2 [11], and PKA [131 (Figure 2-6b). For each

chemosensor, the N-terminal portion of the optimized substrate was preserved to retain the

consensus motif for substrate recognition. The sensing module was appended C-terminal to the

target serine. Importantly, the 1-turn element in the sensing module tolerates one additional

amino acid recognition element for improved specificity and reactivity.

To evaluate the fluorescence increase and kinetic parameters of each substrate, both

substrate peptides and phosphoserine (pS)-containing product peptides (Akt-P1, MK2-P1, and

PIKA-P3) were synthesized. When excited at 360 nm under the final assay conditions, the

phosphopeptides were five-ten-fold more fluorescent (em, = 485 nm) than the corresponding

unphosphorylated peptides at identical concentrations (Table 2-1). The absolute fluorescence

increases depend on the instrumentation, concentration of Mg2+, presence of other chelators, and

ionic strength 16]. Compared with other sensors, this increase is over tenfold larger than most

1151-162] and over threefold larger than the most sensitive probe used to date [163]. By

fluorescence [1641, it was determined that these new chemosensors retained the high activity of

the original optimized peptides 18, 11, 131 (Table 2-1).

2.3.3. Development of an Akt-S1 kinase activity assay

The sensitivity and efficacy of these kinase chemosensors prompted investigation of how

each would perform in more complex environments. While direct in vivo applications are a

common next step for most kinase activity sensors 1151-162], there are several advantages to
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testing sensor properties in cell extracts. For instance: a) sensitivity and specificity can be

improved by adding inhibitors of phosphatases and off-target kinases, b) quantification of

fluorescence changes is more straightforward, and c) multiple distinct lysate-based assays can be

performed from different aliquots of the same sample.

We first developed an Akt-Sl activity assay, because this chemosensor had the largest

fluorescence increase after phosphorylation. An initial concern for a homogeneous assay was

compatibility between the lysis buffer (containing crude cellular proteins, nonionic detergents,

and various inhibitors) and a typical kinase assay buffer [1711 (containing kinase and

phosphatase inhibitors, ATP, and substrate) (see Chapter 6.2.2). Typically, 40-100 tg of cell

lysate in 7.5 vol % of the total reaction was used in the Akt-S I assay. Radioactive Akt assays

[1[47, 1711 typically employ 500 itg lysate and micromolar concentrations of ATP. Here, less

lysate is needed because the Akt-S 1 assay is compatible with 1 mM ATP. We found that assay

sensitivity improves by an order of magnitude when the ATP concentration was increased from

10 RtM to 1 mM (Figure 2-7).

Another challenge for a crude lysate assay was the presence of competing cellular

processes, such as off-target kinases and phosphatases. To improve specificity for Akt, a

cocktail of phosphatase and kinase inhibitors was included in the assay buffer (see Chapter

6.2.2). We confirmed that none of these kinase inhibitors affected recombinant Aktl activity,

4ULr-

- 300-
a,0
o
0 200-
a)

a)

o

L_
. .. I . I

U ulvl I mlvl

[ATP]

Figure 2-7. Akt-S 1 kinase assay sensitivity improves by an order of magnitude when the ATP concentration is
increased from 10 [tM to 1 mM. Insulin-treated HT-29 lysates were assayed as described [6]. Akt-S1 kinase
activity was quantified by calculating the change of fluorescence in the reaction mixture during the initial
reaction phase (see Figure 2-9).
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Kinase

Figure 2-8. Kinase inhibitors used in the assay mixture do not affect recombinant Akt, MK2 and PKA activity,
but each inhibitor does completely inhibit its target enzyme. Recombinant Aktl, MK2, PKA and PKC, were
assayed with the indicated concentrations of GF109203X, PKC inhibitor, PKItide and calmidazolium. Akt-S1
kinase activity was quantified by calculating the change of fluorescence in the reaction mixture during the initial
reaction phase (see Figure 2-9). Fluorescence slopes are normalized a kinase reaction lacking inhibitor.
Recombinant Aktl, MK.2, PKA assays were conducted as described in [6] with 10 [tM chemosensor peptide.
PKC(, was assayed with 10 [M Ac-Sox-PGSFRRR-NH 2 [14] in Buffer A (see 16]) containing 0.3 mM CaC12 , 5
plg/ml phosphatidylserine (porcine brain, Avanti Polar Lipids) and 1 tg/ml diacylglycerol (dioleoyl, Avanti
Polar Lipids). Plotted values indicate mean + s.e.m for triplicate measurements.

while completely inhibiting their target enzymes (Figure 2-8). For the kinase assay, it was

critical to add the small-molecule bisindolylmaleimide PKC inhibitor, GF109203X, which

targets all PKC isozymes as well as p70S6 kinase and MAPKAP-K1 [1721 (see Chapter 6.2.2).

The Akt-S I kinase activity assay was optimized in a fluorescence microcuvette and then

adapted to a 96-well glass-plate format [61. To obtain Akt activity measurements, cell lysates
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Figure 2-9. Akt-Sl kinase activity is quantitatively linear and preferential for Akt. (a) Fluorescence
measurements of lysis buffer (,O,A), untreated HT-29 lysates (,r,X) and insulin-stimulated HT-29 lysates
(-+-,,) over 60 min. R2 values range from 0.72 to 0.97 (b) Summary of fluorescence slopes from data in (a).
(c) The insulin-treated (-) and untreated (- -) samples were diluted in lysis buffer to vary the total protein
content, and the volume of lysis buffer was kept constant throughout all data points. (d) Results of an immune
complex radioactive assay [5] using the same lysates as in (a) with unmodified Aktide [8]. (e,f) HT-29 lysates
were pretreated with various concentrations of the P13K inhibitors (e) wortmannin and (f) LY294002 for one
hour prior to stimulation with 500 ng/ml insulin. The carrier (DMSO) was kept constant at 0.1% for all
stimulation conditions. (g) Kinase activity was measured from an insulin-treated HT-29 lysate (input), and
following immunodepletion of this lysate with anti-Aktl/2 or naive mouse IgG. Note that the residual activity in
the anti-Akt sample is similar to the residual activity in the maximally inhibited samples in (e) and (f). Inset:
Western blot for Akt in the measured samples (asterisk indicates a nonspecific band). Plotted values indicate
mean + s.e.m for triplicate measurements. Akt-S1 kinase assays were performed as described in 161.

were added to the complete assay mixture, and fluorescence readings were taken each minute for

60 min (see Chapter 6.2.2). The change in fluorescence is linear during this time (Figure 2-9a),

and the slope was used as the measure of activity since it is the best aggregate metric for the

increase in fluorescence. All subsequent data were collected in this high-throughput format.
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2.3.4. Validation of the Akt-S kinase assay

After generically characterizing lysate activity, we determined if the assay format could

quantitatively detect changes in activity from cell samples stimulated with known Akt activators.

HT-29 cells were treated with insulin for 5 min and lysed by standard techniques. Then, Akt-S1

fluorescence changes were monitored in triplicate with insulin-stimulated or untreated-control

lysates (Figure 2-9a). The assay revealed a threefold increase in Akt-S1 kinase activity (Figure

2--9b). Using recombinant active Aktl, the untreated and insulin-treated lysates were found to

correspond to about 8 ng and 23 ng active Aktl equivalents per 93 [tg lysate, respectively. The

amount of turnover in the insulin-treated samples after 60 min was 7%.

The Akt-S 1 fluorescence slope varied linearly with dilutions of both insulin-treated and

untreated lysates over at least a fivefold concentration range of cellular protein (Figure 2-9c). In

addition, the fold-change between insulin-stimulated and unstimulated activities correlates with
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Figure 2-10. Quenched-point fluorescence assays with immunopurified Akt report insulin-stimulated
phosphorylation of Akt-S1. (a) Fluorescence intensities after 30 min with Akt immunopurified from 1250 g
HT-29 cell lysates. Assays were conducted as described in [6]. (b) Fluorescence intensities of Akt-S I1 kinase
assays after 30 min with 90 [g crude cell lysate. Assays were conducted as described in [6]. Plotted values
indicate mean + s.e.m for triplicate measurements. Quantitatively, the extent of Akt activation by insulin in a
was smaller and less reproducible than both the Akt-S1 kinase assay in (b and Figure 2-9b) and the radioactive
Akt assay (Figure 2-9d). The approach could be optimized with improved immunopurification protocols that are
more compatible with fluorescence detection and can overcome diffusional limitations for plate-bound kinase.
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Figure 2-11. Measured Akt-S1 kinase activity in CHO cell lysates is quantitatively comparable to a radioactive
assay. (a) Akt-S1 fluorescence slopes were monitored over 60 min in triplicate with EGF-stimulated or
untreated-control CHO cell lysates. (b) Results of a radioactive assay using the same lysates as in (a). Plotted
values indicate mean ± s.e.m for triplicate measurements. Lysates were prepared and assays performed as
described in [61.

the activation measured by a quantitative radioactive assay [171] (Figure 2-9d). Akt-S1 also

reported Akt activity in a quenched-point fluorescence assay with immunopurified Akt (Figure

2--10). These results indicate that the fluorescence-based readings quantitatively report Akt-S1

kinase activity in cell lysates.

Next, we tested whether the Akt-S 1 kinase assay was preferential for measuring Akt

activity in crude biological samples by using two small-molecule inhibitors (wortmannin and

LY294002) of phosphatidylinositol 3-kinase (PI3K). P13K initiates recruitment of Akt to the

plasma membrane; this recruitment is required and sufficient for Akt activation [173]. Cells

were preincubated with the indicated concentration of each PI3K inhibitor for one hour, then

stimulated with insulin for 5 min. Dose-dependent inhibition of Akt-S1 kinase activity was

observed for both wortmannin (Figure 2-9e, IC5 0 = 3.6 nM) and LY294002 (Figure 2-9f, IC50 =

8.2 mM). These values agreed with reported IC50 values for the upstream P13K inhibition by

wortmannin (5 nM) and LY294002 (1.4 mM), considering differences in ATP concentrations

11741. Since wortmannin and LY294002 inhibit PI3K by different mechanisms 11741, sensitivity

to both strongly implicates a PI3K pathway in Akt-S 1 phosphorylation.
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Figure 2-12. MK2-SI kinase activity is quantitatively linear and preferential for MK2. (a) Fluorescence
measurements of lysis buffer (,O,A), untreated HT-29 lysates (,,X) and NaCI-stimulated HT-29 lysates
(+,V,*) over 15 min. R2 values range from 0.93 to 1.0 (b) Summary of fluorescence slopes from data in (a).
(c) The NaCI-treated (-) and untreated (- -) samples were diluted in lysis buffer to vary the total protein content,
and the volume of lysis buffer was kept constant throughout all data points. (d) Results of an immunc complex
radioactive assay [5] using the same lysates as in (a) with unmodified MK2tide [11I. (e) HT-29 lysates were
pretreated with various concentrations of the p38 inhibitor SB202190 for one hour prior to stimulation with 250
mM NaCI. The carrier (DMSO) was kept constant at 0. 1% for all stimulation conditions. (f) Kinase activity was
measured from an NaCl-treated HT-29 lysate (input), and following immunodepletion of this lysate with anti-
MK2 or naive sheep IgG. Inset: Western blot for MK2 in the measured samples. Plotted values indicate mean
+ s.e.m for triplicate measurements. MK2-S 1 kinase assays were performed as described in [6].

Since other P13K-dependent kinases might nonspecifically phosphorylate Akt-S1, Akt

was removed in vitro by immunodepletion. Insulin-stimulated lysates were depleted with an

Akt-specific antibody, and Akt-S 1 kinase activity was compared to both the input lysate and a

naive mouse IgG immunodepletion. Akt immunodepleted lysates showed threefold less activity

than naive immunodepleted lysates (Figure 2-9g), strongly suggesting that the Akt-S 1 signal is

predominantly due to Akt-mediated phosphorylation. Immunodepletion was confirmed by
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(+-,V,*) over 15 min. R2 values range from 0.60 to 0.97 (b) Summary of fluorescence slopes from data in a. (c)
The forskolin-treated (--) and untreated (- -) samples were diluted in lysis buffer to vary the total protein
content, and the volume of lysis buffer was kept constant throughout all data points. (d,e) Forskolin-treated HT-
293 lysates were assayed in the presence of various concentrations of (d) H89 and (e) PKItide. Plotted values
indicate mean + s.e.m for triplicate measurements. PKA-S3 kinase assays were performed as described in 161.

Western blot analysis with the immunodepleting antibody (Figure 2-9g, inset), as well as with an

independent anti-Akt antibody (data not shown). Slightly reduced activity in the naive

immunodepletion sample was due to nonspecific loss of Akt (-23% loss, estimated by

de nsitometry). Also, there was a small but detectable amount of residual Akt in the Akt-depleted

lysates (5% of input). Therefore, we consider the immunodepleted samples to be a

conservative estimate for the selectivity of the assay.

To test the general applicability of the Akt-S 1 kinase assay for other mammalian cell

types, we measured Akt-S1 activity in Chinese hamster ovary (CHO) cells. Here, epidermal

growth factor (EGF) was used as the Akt agonist (see [61). Similarly to the insulin-stimulated

Akt activity in HT--29 cells (Figure 2-9b,d), we found that EGF-induced Akt activation in CHO

cells quantitatively correlated with a radioactive Akt assay [171] (Figure 2-11). Together, these
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results indicate that the Akt-S1 assay is a quantitative, selective and generalizable format for

studying Akt signaling.

2.3.5. Development of MK2-S1 and PKA-S3 kinase activity assays

After successfully developing an Akt-S 1 kinase activity assay, we investigated whether

the protocol could be applied more broadly to the other target kinases (Figure 2-6b). To design

activity assays for PKA and MK2 in HT-29 cell lysates, the assay mixture from the Akt assay

was used as a starting point and then refined for each kinase. We confirmed that the panel of

inhibitors for each assay mixture did not affect recombinant MK2 and PKA activities (Figure 2-

8).

The MK2-S1 (Figure 2-12) and PKA-S3 (Figure 2-13) activity assays were evaluated in

HT-29 lysates similarly to the Akt-S1 activity assay. Both assays were linear for 15 min

(Figures 2-13a and 2-14a) and over a fivefold range of lysate concentrations (Figures 2-13c and

a b

c-2,)

LLU)

T

Untreated NaCI- 'treated

20,000-

15,000-

10,000-

5,000-

0-

Sample

I ,,/'i I
Untreated 'a".-treated

Sample

Figure 2-14. Quenched-point fluorescence assays with immunopurified MK2 report osmolarity-stimulated
phosphorylation of MK2-S1. (a) Fluorescence intensities after 15 min with MK2 immunopurified from 750 tg
HT-29 cell lysates. Assays were conducted as described in [6]. (b) Fluorescence intensities of MK2-S1 kinase
assays after 15 min with 90 [tg crude cell lysate. Assays were conducted as described in [6. Plotted values
indicate mean + s.e.m for triplicate measurements. Quantitatively, the extent of MK2 activation by NaCI in a
was smaller and less reproducible than both the MK2-S1 kinase assay (b and Figure 2-12b) and the radioactive
MK2 assay (Figure 2--12d). The approach could be optimized with improved immunopurification protocols that
are more compatible with fluorescence detection and can overcome diffusional limitations for plate-bound
ki nase.
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Figure 2-15. Measured MK2-S1 kinase activity in CHO cell lysates is quantitatively comparable to a
radioactive assay. (a) MK2-SI fluorescence slopes were monitored over 15 min in triplicate with TNF-
stimulated or untreated-control CHO cell lysates. (b) Results of a radioactive assay using the same lysates as in
(a). Plotted values indicate mean + s.e.m for triplicate measurements. Lysates were prepared as described in [6].
Assays were conducted as described in [6].

2-14c). MK2 activation by NaCi treatment resulted in a 4.6-fold increase in MK2-S1

phosphorylation (Figure 2-12b). 53 [tg of the stimulated lysate contains 51 ng recombinant MK2

equivalents with 18% turnover in 15 min. PKA activation by forskolin treatment resulted in a

3.5-fold increase in PKA-S3 phosphorylation (Figure 2-13b), which corresponds to 12 ng

recombinant PKA in 18 mg of HT-29 cell lysate with 9.1% turnover in 15 min.

There was a somewhat weaker correlation between the MK2-S 1 assay (Figure 2-12b) and

a radioactive MK2 assay (Figure 2-12d), so the chemosensor selectivity was examined in detail.

MK2-S 1 phosphorylation was abrogated in NaCl-treated lysates when cells were pretreated with

SB3202190, a small molecule inhibitor of the MK2 kinase, p38 (Figure 2-12e). The apparent ICs0

value (430 nM) correlates reasonably well with that reported for upstream p38 inhibition (50-100

nM), considering differences in ATP concentrations 11721. When MK2 was removed in vitro,

the immunodepleted lysate lost 50% activity compared to the input lysate (Figure 2-12f). In

addition, Western blot analysis showed that the immunodepleted sample had retained 25% of

input MK2, and the naive immunodepleted sample had nonspecifically lost -15% of input MK2

(Figure 2-12f, inset). Together, these data suggest that 75% of MK2-S 1 activity is due to MK2.

The residual 25% nonspecific activity likely explains the higher untreated background activity of
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Figure 2-16. Dose-dependent inhibition of recombinant PKA is observed for H89 and PKltide. Recombinant
PKA was assayed in the presence of various concentrations of (a) H89 (IC 0 = 2.6 EtM) and (b) PKItide (IC =
1.0 RtM). Assays were performed as described in [6]. Plotted values indicate mean s.e.m for triplicate
measurements. These plots match those determined for the PKA-S3 kinase assay (Figure 2-13d,e).

the MK2-Sl assay relative to the radioactive MK2 assay [171] (Figure 2-12d). This could

possibly be due to the truncation of additional N-terminal recognition elements in the MK2-S1

peptide relative to the originial MK2tide (Table 2-1 and [11]). MK2-S1 also reported MK2

activity in a quenched-point fluorescence assay with immunopurified MK2 (Figure 2-14).

Finally, using the MK2-S1 activity assay, we also detected MK2 activation in CHO cell lysates

treated with tumor necrosis factor (TNF) (Figure 2-15). This activation correlated with a

radioactive MK2 assay [171] and showed that the assay could be used with diverse stimuli and

cell types.

For PKA, an adequate anti-PKA antibody was not commercially available to perform

either a radioactive PKA assay or an immunodepletion. Therefore, two mechanistically distinct

PKA inhibitors were used to interrogate the selectivity of the PKA-S3 kinase assay: H89, a small

molecule ATP-competitive inhibitor, and PKItide, the active fragment of a PKA-specific

inhibitor protein [175]. PKA-S3 activity was abolished in a dose-dependent manner with both

inhibitors (Figure 2-13d,e). The calculated IC50 values (3.6 mM for H89 and 0.91 nM for

PKItide) match those for the inhibition of recombinant PKA activity measured under identical

conditions (Figure 2-16). This inhibition data provides strong evidence that the PKA-S3 assay is

highly preferential.
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2.3.6. Summary

The homogeneous, fluorescence-based kinase activity assays reported here have several

advantages over existing assays. The Sox-based chemosensors are uniquely quantitative in their

ability to estimate enzymatic activity and phosphorylated product generation from cell samples.

The amount of lysate activity can easily be related to recombinant protein standards or

normalized to untreated control lysates. In addition, the assay is compatible with physiological

concentrations of ATP. Together with the solution-phase format, this dramatically increases the

sensitivity of the assay. Whereas most immune complex kinase activity assays require 200-500

[tg total cell protein (Figure 2-2) [1471, the kinase assays presented here can make equivalent

measurements at less than 100 g (Figures 2-9b,d and 2-12b,d). This sensitivity is critical for

applications where cell samples are limited, such as high-throughput cell-based screening and

clinical diagnostics. In addition, crude cell lysate assays eliminate several hours of

manipulations, such as incubation and washing steps, before and after the in vitro reaction.

During the kinase reaction, the 60 time points collected provide additional activity information

and reduce error without extra experimental effort.

An important feature of these lysate-based assays is that selectivity can be improved by

pharmacologically inhibiting kinases with overlapping substrate specificity. Because the

relevant off-target enzymes will depend upon the peptide chemosensor, kinase-by-kinase

optimization will be needed to ensure maximum possible specificity. Although some residual

off-target activity is inevitable (here, < 30% for Akt and 25% for MK2, Figures 2-9g and 2-12g),

this singular limitation is outweighed by the many benefits of these fluorescent kinase activity

assays, in that they are straightforward, rapid, continuous, non-radioactive, quantitative, and

sensitive. The format is conceptually similar to many fluorogenic protease assays 11761 that,

because of these same benefits, have found widespread use in a number of applications 11771.

Finally, our work provides a general protocol for developing assays using other Sox-based

chemosensors. Since it is straightforward to multiplex chemosensors to measure several cellular

kinase activities in parallel, this assay platform is of immediate and expanding utility in drug

discovery and molecular biology.
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Figure 2-17. A proteomic compendium of antagonistic TNF-EGF-insulin signaling in HT-29 cells. (A) Dose-
response for HT-29 apoptosis induced by various concentrations of TNF. Apoptosis was measured at 24 hr by
annexin V-propidium iodide staining and flow cytometry as described in Chapter 6.2.4. Mock (0), low (L), and
high (H) TNF concentrations were defined at 0, 5, and 100 ng/ml (red). (B and C) Growth factor antagonism of
TNF-induced apoptosis. HT-29 cells were costimulated with 100 ng/ml TNF (H-TNF) and 100 ng/ml EGF (H-
EGF, B) or 500 ng/mnl insulin (H-insulin, C) and compared against 100 ng/ml TNF alone (red) for apoptosis at
12, 24, and 48 hr as described in (A). (D) Signaling network response to 100 ng/ml TNF (H-TNF) and 100
ng/ml EGF (H-EGF). Signals are referenced by number to the targets specified in Figure 1-1. Data are presented
as. the mean + S.E.M. of triplicate biological samples as described in Chapter 6.2.4. Nine combinations (a-h) of
TNF, EGF, and insulin were similarly measured and are available in 12].

2.4. Proteomic compendium of the TNF-EGF-insulin signaling

network
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Next, we wanted to use the above kinase activity assay platform (Chapter 2.2) with other

quantitative biochemical techniques for studying intracellular signal processing of conflicting

cytokine stimuli. To explore the molecular basis of crosstalk between mitogenic and apoptotic

signals, human HT-29 colonic adenocarcimona cells were stimulated with TNF in combination

with either EGF or insulin. Although we focused this study on HT-29 cells, we confirmed that

other cell lines, such as HCT-116 and HeLa, were sensitive to prodeath TNF and prosurvival

EGF or insulin treatments'. The potency of TNF as a proapoptotic factor in these cell lines is

most apparent in combination with immunostimulatory cytokines such as interferon-y (IFN-y)

[ 1]78, 1791. Therefore, cells in this study were pretreated with IFN-y for 24 hr before cytokine

addition.

Nine combinations of TNF, insulin, and EGF, at either subsaturating ("low", "L-") or

saturating ("high", "H-") concentrations were added to HT-29 cells without refeeding the

medium (see Chapter 6.2.3) (Figure 2-17A-C). In addition, a "mock" treatment ("0"), in which

cells were manipulated like any other stimulus but without added cytokine, served as a baseline

control (Figure 2-17A and data not shown). At 13 time points spanning 5 min to 24 hr, we

prepared triplicate cell extracts and collected 19 protein measurements from each extract (Table

2--2). Based on literature data, the 19 measurements could be roughly characterized as TNF-

dependent ("T" signals), EGF-dependent ("E" signals), or insulin-dependent ("I" signals). Since

many kinase signals exhibit rapid changes between 0 and 30 min whereas caspases rise slowly in

activity over many hours, time points were distributed unevenly, with seven time points

concentrated within the first two hours.

Considerable effort was expended to ensure reproducibility and self-consistency of the

data [121. The median coefficient of variation for biological repeats across the full dataset was

-1 1%, making it possible to reliably compare changes in protein state or activity of +25%.

Inspection of the complete 7,800-measurement dataset revealed both fast-acting signals, such as

a transient 50-fold c-jun N-terminal kinase 1 (JNK1) activation that peaked at 30 min, and

sustained signals, such as a threefold activation of Akt that lasted for 24 hr. Each cytokine

treatment also elicited multiple classes of signals: high TNF activated both T and E signals (data

not shown) and high TNF + high EGF elicited T, E and I signals (Figure 2-17D). We therefore

conclude that TNF, EGF and insulin signal extensively by crosstalk in HT-29 cells [1801.

1J.G.A. and P.K.S., unpublished observations.
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Figure 2-18. A proteomic compendium of TNF-, EGF-, and insulin-induced apoptotic outputs in HT-29 cells.
(A) Panel of input combinations and concentrations of TNF, EGF, and insulin. Numbers represent the
concentration in ng/ml and letters correspond to the subsequent apoptosis subpanel. The carrier (0.02% DMSO)
was maintained constant for all treatments. (B-J) Apoptotic outputs induced by various combinations and
concentrations of TNF, EGF, and insulin. The exact treatment conditions are shown in (A). Data are presented
as the mean + S.E.M of triplicate biological samples.

In this system, TNF and EGF-insulin are prodeath and prosurvival cytokines respectively

[178, 1811. How EGF and insulin antagonize TNF-induced apoptosis is not clear, so we asked

whether a complementary set of measurements characterizing cytokine-induced apoptosis could

connect the signaling network to the apoptotic phenotype (Figure 2-18A). Apoptosis elicits a

variety of cellular changes (outputs) that can be regulated independently [ 182]. We were

concerned that individual parameters used to characterize cell death (e.g., loss of membrane

asymmetry as a single output) would only partially reflect the overall cellular response.

Therefore, we selected four distinct apoptotic outputs (phosphatidylserine exposure, membrane

permeability, nuclear fragmentation, and cytokeratin cleavage) and measured each output

response by flow cytometry at 12, 24, and 48 hr after stimulation (Figure 2-18B-J) [1]. Taken

together, these output measurements constituted an apoptotic "signature" that characterized early

(phosphatidylserine exposure), middle (cytokeratin cleavage and membrane permeability), and

late (nuclear fragmentation) outputs of apoptosis.
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The apoptotic signature revealed unique temporal and cytokine dose-dependent features

that would have been missed by measuring individual apoptotic outputs alone. Membrane

permeability and cytokeratin cleavage measured dead cells cumulatively [183]. Therefore, these

outputs increased monotonically with time and TNF dose (Figure 2-18B,E,H) and decreased with

EL-GF or insulin cotreatment at 12 and 24 h (Figure 2-18F,G,I,J). In contrast, phosphatidylserine

exposure (before membrane permeability) and nuclear fragmentation (before the formation of

apoptotic bodies) were transient cell states [1831 that could increase and decrease with time and

input dose (Figure 2-18B-J).

Using these distinct output patterns, we observed that high concentrations of EGF and

insulin antagonized TNF-induced cell death with similar apoptotic signatures (Figure 2-18I,J).

However, low concentrations of TNF with either EGF or insulin elicited different output

responses. EGF reduced TNF-induced membrane permeability at 48 h but increased transient

phosphatidylserine exposure at 12 h (Figure 2-18E,F; p < 0.05). In contrast, insulin reduced

TNF-induced membrane permeability at 12 and 48 h, and phosphatidylserine exposure was

decreased at 12 h but higher at 48 h (Figure 2-18E,G; p < 0.05). These signatures suggested that

the different apoptotic outputs could be controlled separately, depending upon the input stimulus.

Moreover, it emphasized that connecting the intracellular network to the complete apoptotic

signature would require contributions from many molecular signals.
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CHAPTER 3

Data-driven approaches for analyzing signaling

networks

3.1. Introduction

The new measurement technologies and applications described in the previous chapter

allowed us to interrogate signaling networks quantitatively. Yet, large datasets do not directly

equate to biological understanding [184]. In this chapter, we describe several approaches used to

reduce data complexity and aid hypothesis generation.

3.2. Categorical inspection

3.2.1. Transient vs. sustained signals

The fluorescence-based chemosensors (Chapter 2.3) were used in a multiplex assay

format by examining Akt, MK2, and PKA signaling responses to two growth factors: insulin and

EGF. HT-29 cells were treated with saturating concentrations of insulin or EGF and lysed in

triplicate at various times between zero and two hours. These lysates were then analyzed for

Akt, MK2 and PKA activity with their respective kinase assays, and activation levels were

calculated by normalizing to the zero minute samples. For each growth factor, 63 independent

activity assays were performed in parallel with less than 170 [tg cell lysate. By comparison, a

similar quantitative radioactive assay [171] for Akt and MK2 would require at least 700 trg cell

lysate and would not be possible for PKA.
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Figure 3-1. The multiplex kinase assay reveals differential responses of Akt, MK2 and PKA in response to
stimulation by EGF and insulin. Akt-S1 (), MK2-S1 (O) or PKA-S3 () kinase activities were measured in
I-IT-29 lysates after stimulation by (a) EGF or (b) insulin for various times as described in 161. Plotted values
indicate mean + s.e.m for triplicate measurements. Changes in kinase activity were normalized to the baseline (O
min) fluorescence slope.

The multiplexed three-kinase assay revealed qualitatively and quantitatively different

responses to EGF (Figure 3-1a) and insulin (Figure 3-lb). EGF activated MK2 more potently

and transiently. Akt was also activated transiently in response to EGF, but to a lesser extent, and

PKA was not activated at all. In contrast, insulin activated Akt potently, and the response was

sustained over the time course. MK2 was slightly activated in response to insulin, and again,

PKA was not activated at all. The features of these time courses correlate with those reported for

Akt 185, 1861 and MK2 [187] (or upstream p38 1188]) activity dynamics in other mammalian

cell lines. To the best of our knowledge, there is limited evidence that either EGF or insulin

activate PKA.

The transient-vs.-sustained categorization as noted here with Akt is a simple way to

classify changes in signaling dynamics. There is an extensive literature on these types of

signaling responses in MAPK signaling (see Chapter 1.1.4). These qualitative differences have

motivated several computational and experimental studies aimed at understanding their

mechanism (see Chapter 1.2). Nevertheless, reducing time-course data into transient or

sustained classifications results in data loss, because there do not exist clear quantitative

definitions for these types of signaling profiles. How long must a signal persist to be considered

"sustained"?

3.2.2. Biphasic signals
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Multiphasic signaling patterns are also commonly observed. In a separate study, IFN-

sensitized HT-29 cells were treated with 50 ng/ml TNF-ca, in the presence or absence of 100 nM

insulin cotreatment, and triplicate lysates prepared at 13 time points over 24 h. Since much of

the signaling induced by these cues occurs shortly after cytokine addition, time points were more

densely sampled in the first four hours (Figure 3-2A,B, inset). From these cell extracts,

quantitative measurements of ERK, Akt, JNK1, MK2 and IKK kinase activity were performed

using the high-throughput multiplex kinase activity assays (Figure 3-2A,B). This set of time
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Figure 3-2. TNF-a and TNF-a + insulin treatments elicit quantitatively distinct signaling patterns in HT-29
cells. Endogenous ERK ( , ), Akt (-, O), JNK1 (0, O), IKK (0, 0) and MK2 (*, ) activities in HT-29
cells in response to: (A) 50 ng/ml TNF-a (solid circles) and (B) 50 ng/ml TNF-a + 100 nM insulin (hollow
circles). Lysates were generated at 0, 5, 15, 30, 60, 90 min and 2, 4, 8, 12, 16, 20, 24 h, then measured for
kinase activity with the high-throughput multiplex kinase assay. Results are plotted as the mean fold activation
of three independent cell extracts. Error bars are omitted for clarity, but are shown in (C). (C) Comparison of
ERK, Akt, JNKI, IKK and MK2 activities in response to TNF-a (solid circles) and TNF-a + insulin (hollow
circles) from (A) and (B) plotted as mean fold activation ± S.E.M. of triplicate samples.
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Figure 3-3. Insulin elevates two phases of Akt activity, and the late-phase of Akt activity provides a critical
anti-apoptotic signal in HT-29 cells. (A) hypothetical two-phase contribution to the sustained Akt activity that
was observed in the presence of insulin (Figure 3-2, B and C). (B) HT-29 cell death in response to no cytokines
(1), 50 ng/ml TNF-c (), or 50 ng/ml TNF-a + 100 nM insulin ( ) in the presence of 20 M LY294002 (LY)
at the indicated times. Cells were stained for cleaved cytokeratin and cleaved caspase 3 and analyzed by flow
cytometry as described in Experimental Procedures. Values represent the percentage of apoptotic cells + S.E.M.
of triplicate samples. (C) HT-29 cell survival in response to timed combinations of 50 ng/ml TNF-a, 100 nM
insulin and 20 M LY294002. Values represent the percentage of increased survival S.E.M. of triplicate
samples, computed as described in Experimental Procedures. The carrier (0.1 % DMSO) was kept constant for
control experiments.

courses consisted of over 400 independent activity measurements, which would have been

extraordinarily laborious and technically impractical by traditional techniques.

To deconstruct the effects of insulin therapy on the signaling network in the context of

TNF-(x signaling, a pairwise comparison was performed for each kinase under TNF-a with and

without insulin costimulation. As shown in Figure 3-2C, the dynamics of activation of some

pathways, such as the ERK pathway (Figure 3-2C, green), were essentially superimposable.

Thus insulin does not appear to influence activation of the ERK pathway by TNF-ca under these

conditions. Other TNF-induced kinase activities were affected by insulin in a time-dependent

manner. JNK1 activity, for example, was larger at intermediate times (8-16 h), while IKK

activity was smaller at 16 h, and MK2 activity was larger at late times (16-24 h). Although

potentially important, these transient signaling differences did not clearly reflect the insulin-

induced survival phenotype observed at the cellular level 151.

In contrast to the subtle influences of insulin on ERK, JNKI, IKK and MK2 signaling, it

was readily apparent that insulin dramatically augmented Akt activity, inducing a rapid increase

within five minutes and sustaining activation for 24 h, whereas with TNF-uC alone, the Akt

response was much smaller in magnitude (Figure 3-2C, red). In addition to these quantitative

differences, we noted that the dynamic TNF-induced Akt response was also qualitatively
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different without insulin, in that the course of activation was clearly biphasic, with a brief initial

peak, followed by a small (i.e., twofold), sustained increase in activity after four hours. If these

data had not been rigorously quantitative, or had the signaling network not been sampled

frequently in time, this increase in activity would likely have been missed. By virtue of the high-

throughput activity assays, however, it was clear that Akt activity after four hours was

significantly upregulated in comparison to baseline activity (p < 0.05 for all times after four

hours, Student's -test).

These findings suggested that a significant component of the insulin-induced anti-

apoptotic effect was mediated by the high sustained Akt activity, and that this activity profile

was derived from the superposition of an early, elevated phase of activity that was transient with

a late, elevated phase of activity that was sustained (Figure 3-3A). Conversely, in cells treated

with TNF-ca alone, these two phases were reduced in intensity and separated in time. Since Akt

is thought to provide strong pro-survival signals [189], we hypothesized that one or both of

these temporal components of Akt activation were involved in controlling the phenotypic

response of HT-29 cells to TNF-ca and insulin.

To investigate this, we used a reversible, selective inhibitor (LY294002 [190]) of PI 3-

kinase (PI 3-K), an upstream activator of Akt. LY294002 was added or removed at critical

times to eliminate the early phase of Akt activity, the late phase of Akt activity or both, and

apoptosis was quantified by flow cytometry with an anti-cleaved caspase 3 antibody and the

M30 antibody [191] against caspase-cleaved cytokeratin. We have found this double stain to be

the most sensitive, quantitatively reproducible measure of apoptosis in HT'-29 cells2.

When LY294002 was added one hour before cytokine addition and tonically maintained

to block Akt activity over the entire time course, a dramatic increase in TNF-induced cell death

was observed (Figure 3-3B, red). Surprisingly, if LY294002 was present only for the first three

hours of TNF-o addition, thus permitting only the late phase of Akt activity, there was no

increased cell death relative to treatments without inhibitor. In contrast, when LY294002 was

first added at three hours after cytokine addition to selectively abolish late-phase Akt activity, we

observed an increase in cell death equivalent to that observed when the inhibitor was present for

the entire 24 h. An identical pattern was observed in response to TNF-ot + insulin (Figure 3-3B,

green), whereas LY294002 had only a small effect on basal apoptosis (Figure 3-3B, blue).

2 I.G. Albeck, unpublished observations.
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These data suggest that late-phase Akt activation is necessary to restrain the percentage of cells

undergoing programmed cell death in response to TNF-a in the presence or absence of insulin.

The importance of late Akt activity in controlling TNF-induced cell death, in conjunction

with the strong, sustained late Akt activation in the presence of insulin, led to the hypothesis that

the insulin-induced increase in cell survival was due, in part, to this increase in late-phase Akt

signaling. If true., then addition of insulin up to four hours after the pro-death stimulus should

elicit an equivalent reduction in the extent of TNF-induced apoptosis. Indeed, this was observed;

the delayed addition of insulin four hours following TNF-ca addition resulted in the same

increase in HT-29 cell survival as observed when insulin was added simultaneously with TNF-cc

(Figure 3-3C). Moreover, pretreatment with LY294002 one hour before insulin addition

significantly reduced the survival response, regardless whether insulin was added simultaneously

or four hours after TNF-a treatment (Figure 3-3C). These experiments strongly implicate late-

phase signaling, along a PI 3-K dependent/Akt pathway, as a critical pro-survival mechanism of

insulin in colon epithelia.

Later studies revealed that the secondary activation of Akt was dependent upon refeeding

during stimulation3. When TNF was spiked into the existing medium rather than added with a

fresh medium change, the late phase of TNF-induced Akt activity disappeared and cell death

increased significantly4. Together, these corroborate that late-phase Akt signaling is a potent

prosurvival signal in HT-29 cells. Importantly, the identification of a TNF-induced biphasic Akt

activation led more readily to a testable hypothesis than the transient-vs.-sustained Akt signaling

induced by EGF and insulin (Chapter 3.2.1). This study provided the initial evidence that future

studies should reduce signaling data in a way that retained time-dependent information.

3.3. Clustering through principal components analysis

3.3.1. Directed data acquisition and biological significance

3 K.A. Janes and S. Gaudet, unpublished observations.
4 K.A. Janes and J.G. Albeck, unpublished observations.
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One way to analyze time-dependent information is to treat each time point as a separate

observation. Data-driven clustering of time-point observations is most effectively achieved with

a data matrix that; contains informative, quantitative measurements. Our work focuses on the

regulation of programmed cell death in response to the prodeath factor TNF-oc and the survival

factor insulin. We directed our experimental measurements to a subset of the downstream

kinases, caspases. and other regulators that are known to influence cell death or survival (Figure

3-4). In particular, we focused on those proteins whose signaling varies in response to TNF-xa,

insulin, or both, and whose perturbation, by genetic or other means, affects cell survival. By

imposing both these criteria, we increase the likelihood that the data we collect will make a

Figure 3-4. Directed data acquisition of the biomolecular signaling network downstream of prodeath cues
(TNF-uc) and prosurvival cues (insulin) [5]. Network state is determined by many component characteristics,
including protein expression levels, protein-protein interactions, protein enzymatic activities, and protein
locations. Approximately 30 of these characteristics are measured in quantitative and dynamic terms for
multivariate systems analysis. Green arrows indicate activating interactions, red arrows indicate inhibitory
interactions, and blue arrows indicate transcriptional interactions. Shaded nodes highlight proteins whose
characteristics were measured experimentally. Diagram is not implied to be comprehensive (e.g., location-
dependent interactions have been abstracted).
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useful contribution to models of apoptotic signaling.

In our experimental analysis of apoptosis, we have examined four types of protein-based

signals: phosphorylation, enzymatic activity, abundance and cleavage state. Protein

phosphorylation is an important mechanism of signal transduction in cells [69] and

measurements of the phosphorylation states of signaling proteins, and the enzymatic activity of

the protein kinases that catalyze these phosphorylation events, represent one source of

information on death and survival signals. Similarly, measurement of protein abundance

captures important information on both intracellular signaling proteins and cytokine receptors.

Finally, measurement of the cleavage states of caspases, the biochemical executors of apoptosis

[421, makes it possible to gauge how far cells have progressed towards death.

The specific data points collected in this paper come from three types of measurements,

which each characterize one or more of these four types of signals. In one set of data, we

explored signaling dynamics in depth by quantifying nearly 30 protein states, levels of

abundance, and activity from HT-29 cells treated with 50 ng/ml TNF-a alone or in combination

with 100 nM insulin at various time points subsequent to cytokine addition (Figure 3-5). The

kinase activities of five protein kinases (ERK, Akt, JNK, IKK, and MK2) were measured with a

kiinase activity assay (Figure 3-5c,d) [5], in which kinases are immunoprecipitated from cells and

mixed with protein or peptide substrates. Three of these kinases (ERK, MK2, and JNK) are

components of mitogen-activated protein kinase cascades, Akt is a key mediator of survival

signals, and IKK regulates the nuclear factor-KB transcription factor (Figure 3-4). Regulatory

phosphorylation events were monitored for MEK, Akt, and JNK by Western blotting (Figure 3-

5a,b). Western blotting was also used to examine the phosphorylation of several Akt and IKK

substrates, as well as the cleavage state of caspase 8 and the executioner caspase, caspase 3. One

important feature of the measurements is that they yield heterogeneous data with regard to

experimental technique and biological significance. In spite of this heterogeneity, the data all

capture signals that meet the criteria for multivariate analysis: signals that vary in response to

cues and signals that, when perturbed, affect cell response.
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3.3.2. Compact representations of signaling by principal component

analysis

As a first approach to reducing the complexity of our data, we used principal component

analysis (PCA), a nondirected multivariate analysis technique. We cast our data as a matrix of M

rows, representing mi experimental samples, and N columns, representing ni measurements on

the experimental samples. For multivariate analysis to work most effectively, this matrix should

have as few empty elements as possible, implying that the same measurements be performed on

all samples.

Here, all 29 measurements were performed on all 26 samples (13 time points per

treatment x 2 treatments), leaving no empty elements in the data matrix. The different time

points were collected from separate tissue culture plates, so the individual time points from both

treatments were blindly considered as independent samples for the purposes of the multivariate

analysis. Since all of the measurements were made on samples prepared under identical

conditions, we can safely include these in the same sample row. However, not all measurements

Measurements (N)

M

(0
0~

C,

P1

P2

n4 n3 P3

Data matrix =+ Signaling . Principal component
Space space

Figure 3-6. Schematic of data reduction via principal components analysis. A data matrix of N signaling
measurements can be represented as an N-dimensional signaling space and reduced via principal components
analysis to a P-dimensional principal component space. Column shade represents the magnitude of the
measurement in the different samples. Note the colinearity of axes in signaling space and the orthogonality of
axes in principal component space.
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used the same cell extract material (since the different assays require different extract

procedures; see [3]), so it is possible that some of the variation in the measurements might be due

to variability in the lysate preparations.

An M x N matrix is frequently viewed as a flat, two-dimensional spreadsheet of numbers;

alternatively, the data can be thought to represent a multidimensional "signaling" space, where

the different protein measurements form a set of N axes (Figure 3-6). The M samples are then

vectors describing coordinates in the N-dimensional space, such that the projection of a sample

vector m i on to axis ni represents one measurement. In this N-dimensional space, the axes are

not orthogonal, meaning that the measurements defining these axes are partially redundant.

Moreover, the mi sample vectors project on some axes more than others, because some

measurements have a wider range of variation than others.

PCA reduces the dimensionality of the data space, and the size of the M x N matrix, by

factoring it into the product of an M x P scores matrix, containing the same number of scores as

samples in the data, and a P x N loadings matrix, containing the same number of loadings as

original measurements. This decomposition represents the data in P dimensions, with pi

principal components, or latent variables, of the system. These principal components form a

new, orthogonal coordinate system in which the scores matrix defines how far the samples

project along the coordinate system of the pi principal components, and the loadings matrix

defines how the principal component axes "point" relative to the original measurement space;

these two matrices enable one to flip from principal component space to signaling space, and

vice versa, by matrix multiplication and division, respectively. The multiplication of a row in the

scores matrix and a column in the loadings matrix is called an outer product.

Most computational algorithms determine the principal components iteratively, with the

first component capturing as much of the measurement information (i.e., the changes in

measurement values over all samples) as possible. Then, the outer product of the first score-

loading vector pair is subtracted from the original data matrix, and the second principal

component is calculated to capture as much of the residual information as possible. To avoid

biasing the decomposition toward measurements with disproportionately large absolute

magnitudes or dynamic ranges, we subtract the mean, calculated across all samples for each

measurement separately, and divide by the measurement variance. These preprocessing

techniques (called mean centering and variance scaling, respectively) eliminate difficulties
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Figure 3-7. Principal component analysis reduces a complex data set of heterogeneous signaling measurements
to a data-driven model that retains the differences in the original measurement set. (a) Information captured as a
function of increasing principal component number. The hatched line represents the arbitrary information cutoff
for the two-component PCA model. Higher components were very fluctuant in their scores and loadings and did
not indicate consistent data-wide variations in the measurement set (data not shown), suggesting that these
components were fitting measurement error and noise. (b) Scores plot for the two-component PCA model,
showing the projection of each sample along principal components #1 and #2 identified by the PCA model. The
hatched line highlights the data-driven separation of the TNF-a (*) and TNF-a + insulin () samples. The size
of the markers indicates increasing time.

associated with measurement heterogeneity by putting all data evenly on a unitless measurement

axis with a mean of zero and variance of one, thereby enabling scale-free, inter-measurement

comparisons in the decomposition procedure.

If the data matrix is completely decomposed by iteration, then P will equal the lesser of

M and N, and the product of the scores and loadings matrices will exactly equal the original data

set. However, because the principal components were iteratively calculated to maximize

information capture, good approximations of the original data set can be obtained with only the

first few principal components. In this way, PCA generates a data-driven model, comprising the

most significant principal components, and extracts the most salient features of a data set while

removing spurious fluctuations (usually from measurement error and noise). The critical

question in PCA is whether a significant fraction of the measurement information ( 60%) can

be captured effectively when P is much less than N.

To begin to determine the most critical factors in our data set for influencing the death-

vs.-survival decision, we performed PCA on a complete set of preprocessed protein data and

examined the amount of information captured as a function of increasing principal component
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number. In Figure 3-7a, we see that the first two principal components together capture over

(p2% of the information in the original data matrix, with progressively smaller contributions from

higher dimensions. Often with PCA, the residual information from higher components (in this

model, 38% of the total) is postulated to mostly contain random experimental fluctuations.

H-iowever, with only 29 measurements, our sample set was too small to permit a rigorous

treatment of signal to noise (see Figure 3-7a legend).

Therefore, we further examined the quality of the two-component PCA model by plotting

how the different samples mapped along the two principal components via their scores (Figure 3-

7b). The size of the data markers represents increasing time; we see that that earlier time points

fall largely south and southeast on the two principal components in Figure 3-7b, whereas later

time points are located more north and northwest. Importantly, when we applied an objective

test to the TNF-cc (diamonds) and TNF-a + insulin (squares) time courses, we found that the two

sets of measurements were separated in a highly significant fashion, with p < 0.005 that the data

represents two distinct populations by a two-dimensional Kolmogorov-Smirnov test [1921,

illustrated schematically by the hatched line in Figure 3-7b. This result contrasts the separation

achieved by a PCA model with only one principal component (when the null hypothesis was not

rejected by this same test, with p = 0.19), and it therefore supports the two-component model as a

compact, but not oversimplified, representation of the sample set.

The information contained in the reduced model (see first two columns in Figure 3-7a)

has general implications for the study of protein networks. Starting with heterogeneous

measurements from a complex signaling network (Figure 3-4), we created a model that

efficiently reduced the dimensional complexity from 29 to 2 dimensions (Figure3-7a). This

reduced model was informative, in that it clearly determined from the differences in protein state

(but without any prior knowledge) that the data derived from two sets of cells that had been

exposed to different death and survival mediators.

As mentioned in Chapter 3.3.1, the original measurements themselves contain real

biological meaning, it is therefore valuable to explore the contribution of individual signals to the

data-wide model, as well as the interplay between signals; the relationship between the

multivariate models and the original signaling measurements is contained in the loadings matrix.

Upon inspection of the loadings, we first found that none of the reduced axes (the principal

components) corresponded to an individual measurement (data not shown). Rather, the axes
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were composed of combinations of measurements: the first principal component points largely

toward early, prosurvival signals, such as phosphorylated Akt substrates and phospho-IKB,

whereas the second component points more toward late, prodeath signals, such as cleaved and

procaspase levels (data not shown). Second, we found that not all measurements were equally

informative. As mentioned earlier, high-dimensional data usually contains measurements that

are collinear, and we identified several groups of measurements that with equally weighted

loadings (data not shown), indicating that these signals were redundant in their information

content. Importantly, this grouping was consistent with the known biology. For example, the

regulatory phosphorylation of Akt and the enzymatic activity of Akt were highly collinear, and

the phosphorylation states of many Akt substrates were clustered. We can therefore conclude

that PCA has achieved an effective data fusion of heterogeneous sources of data.

Overall, our results with PCA suggest that a multivariate, but by no means

comprehensive, set of signaling measurements is sufficient to classify phenotypically distinct

samples of cells, whereas no single measurement has this power of discrimination. PCA also

appears to be effective at fusing diverse data sources into a single consistent model. More

generally, the analysis suggests that there exists a set of highly informative measurements that, in

combination, compactly describes the relevant variations in signaling network state and might in

the future obviate the need to characterize all of the signals in the network.

3.4. Classification through partial least squares regression

3.4.1. Identification of insulin-induced survival signals

Our next step in data analysis focused on attempts to incorporate prior knowledge about

cell treatments rather than to derive them postfacto. In general, data analysis is much more

powerful if prior knowledge can be captured effectively; the specific prior knowledge in our data

is that some cells were treated only with TNF-a whereas others were cotreated with insulin. HT-

29 cells die in response to TNF-cc [178, 193] and are rescued from TNF-induced death when

cotreated with insulin [181]. To focus on this death-vs.-survival decision, we used PLS, since it
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is designed to generate data-driven models that relate a matrix, or block, of independent

measurements to a block of dependent measurements or classifications.

Cue, signal, and response measurements can act as independent or dependent blocks, but

it is conceptually helpful to organize the data so that cause-effect relationships are appropriately

directed in relation to the original biological setting (i.e., so that an independent block of signals

affects a dependent block of responses, rather than the reverse). In our case, the independent

block contains the levels and activities of proteins, and the dependent block contains the binary

information on cytokine treatments that constitutes our prior knowledge about the outcome:

* Samples that are associated with cell death (i.e., with TNF-c treatment) 0

* Samples that are associated with cell survival (i.e., with TNF-c + insulin treatment) 1

For the classification, we assigned time points from each treatment to one of the two classes,

ignoring the time component. This class architecture highlights proteins whose state, level, or

activity is consistently different between the two responses at all time points. (In future work,

we expect to have sufficient data to look at each time point individually.) Since our model is

meant to bring out the differences between the two outcome classes, it belongs to a subcategory

of PLS called discriminant partial least squares regression (DPLSR).

To perform DPLSR, the original M samples x N measurements data matrix is

supplemented with a separate, dependent block of M samples x one classification. Principal

components are extracted iteratively from the independent block, analogously to PCA, and the

dependent block might also be decomposed, if there were multiple classifications. The most

important modification is that, whereas PCA extracts latent variables to maximize the

information captured from the independent block, DPLSR decomposes the data matrix to

maximize the correlation between the principal components and the (possibly decomposed)

classification of the dependent block. The principal components are related to the dependent

block by additional coefficients, called weights, that quantify the contribution of each component

to the class model through an "inner product".

Whereas PCA generates a reduced model of the variations in the independent block

alone, the decomposition criterion for DPLSR focuses on the relationship between the

independent and dependent blocks, highlighting the measurements that strongly covary with the

known outcome and deemphasizing those that do not. In other words, it is insufficient for a

measurement to simply change from sample to sample-to be regarded as significant in the
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Figure 3-8. Discriminant partial least squares regression explicitly distinguishes distinct phenotypic outcomes
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TNF-ct + insulin time point as the most clearly classified survival sample. (b) Observed-vs.-predicted plot for
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DPLSR model, these changes must covary with the changes in apoptotic response. This is a

powerful quality of PLS, since it is frequently difficult to identify the determinative changes in a

particular response, when the characteristics of many other proteins are simultaneously varying.

We decomposed our signaling data set with DPLSR and the aforementioned binary

classification system, after preprocessing the independent and dependent block as described

earlier. The decomposition criterion makes the data in the original dependent block more

valuable than the independent block for assessing information capture, so we concentrated on

model capture of the class structure rather than capture of the signaling variation, which was the

focus of PCA. As with the PCA model, however, we observed that the first two components

were highly informative (78% capture of the class structure) and that information content fell

rapidly with increasing component number (data not shown).

To cross-validate the two-component DPLSR model, we first used a Cooman's plot

(Figure 3-8a) to determine the ability of the model to discriminate between two samples classes.

The abscissa and ordinate mark the deviations of the samples from the two classes. The four

quadrants demarcate the samples that, according to the model, would fall into: (I) neither class,
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(II) the death class, (III) both classes, or (IV) the survival class. We see in Figure 3-8a that the

lTNF-at samples (diamonds) fall largely in (II) and TNF-o + insulin samples (squares) fall in

([V). Thus, the DPLSR model allows good discrimination of the two outcomes, with only a few

samples falling into (III) and no samples in (I). Interestingly, the sample with the largest

deviation from the death class (TNF-ct + insulin at 30 min, marked by an arrowhead in Figure 3-

8a) corresponds to the time point at which the largest number of measurements differ in a

pairwise comparison of the TNF-ca and TNF-cc + insulin samples (data not shown).

Although both PLS and PCA reduce data complexity, PLS is generally more powerful

because of the predictive ability of the resulting models. After a PLS model has been generated

linking independent and dependent blocks, one can attempt to predict which dependent variable

is linked to a particular set of measurements. PLS model predictions are achieved in three steps:

1) an experiment is projected onto the reduced principal component space of the PLS model; 2)

in this principal component space, the model then uses the inner product, consisting of scores,

loadings, and weights, to calculate a predicted dependent component; and 3) if the dependent

block has been reduced in the model, the predicted dependent component is recomposed to form

a predicted dependent block.

We used this predictive power as an additional form of cross-validation to evaluate how

well the PLS model recapitulated the original outcome classes from the independent block of

signaling measurements. In Figure 3-8b, for each sample, we plotted the observed (assigned)

class against the class predicted by the DPLSR model using only the independent block of the

sample. These predictions were not de novo predictions, since all the data are part of the training

set. Nevertheless, these predicted outcome classes do provide an indication of model quality: if

the model were to perfectly fit the training set, then all of the TNF-a treated samples would

collapse upon (0,0) and the TNF-ca + insulin treated samples upon (1,1) in the observed-vs.-

predicted plot. Instead, the data spread laterally from these coordinates, because we retained

only two principal components in the PLS model, but we considered the two-component model

valid, since it achieved the desired separation of the samples, with no overlap between the two

sample classes.

As mentioned before, our original motivation for developing the DPLSR model was to

quantify the contributions of various signaling measurements to the outcome classification, and

we therefore examined the measurement space of the PLS model. In the PLS model, the
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contributions of a measurement take the form of a regression coefficient that includes the

rnultiplicative and additive influences of the loadings and scores of the measurement in the two

principal components that are retained, along with the weights relating these principal

components to the class outcome. The columns in Figure 3-9 shows the regression coefficients

for all state, level, and activity measurements included in the model. Positive regression

coefficients suggest correlations with survival, by contributing to a "1" classification by addition,

and negative regression coefficients suggest correlations with death, by contributing to a "0"

classification by subtraction.

Next, we assessed the significance of these regression coefficients in the context of the

model, the class structure, and the original data set. Techniques for estimating significance in

PLS models vary, but we had success with a Monte Carlo-type strategy, where the rows of the

dependent block (here, the classifications) are shuffled randomly, and a DPLSR model is created
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Figure 3-9. Discriminant partial least squares regression identifies Akt phosphorylation state, procaspase 8
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Fiigure 3-9. Discriminant partial least squares regression identifies Akt phosphorylation state, procaspase 8
levels, TNFR1 levels, and Akt activity as important signals for cell survival. The columns represent the model
regression coefficients, whereas the points represent the mean nai've coefficient ( S.D.) from 500 block
shuffling iterations. The asterisks indicate measurements with regression coefficients outside of those expected
by a nave model.
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with a new set of regression coefficients [194]. These regression coefficients are naive, since the

prior knowledge about the outcome of these samples is lost by the randomization procedure.

After several hundred shuffling iterations, one can gain an indication of each mean naive

regression coefficient (usually near zero) in a particular data structure and, importantly, the

variation of the regression coefficient about its mean. The results of these shuffling iterations are

included in as markers in Figure 3-9, with asterisks indicating the seven "outcome classifiers."

These measurements have regression coefficients substantially different from the naive

coefficients that would be expected by chance classification.

Most significantly, we found that, despite the simple classifications in the DPLSR model,

the multicomponent properties of the apoptosis network were clear (Figure 3-10). When we

generated DPLSR models with partial data sets consisting of certain isolated classifiers, such as

the levels of TNF receptor 1 (TNFR1, leftmost column in Figure 3-10), we recapitulated the

class structure poorly (38% capture). In contrast, with the complete set of outcome classifiers,

we generated a model of nearly the same quality as when the entire data set was used (74% vs.

78% capture, compare third and fourth column in Figure 3-10). By this analysis, we identified

those signals that the data support as a "minimal model" for predicting the dependent block.

Therefore, both the PCA and DPLSR models support the hypothesis that measurement of

individual molecules is not sufficient to capture network properties, but an appropriate set of

information-rich measurements can, in combination, create useful models of the signaling

network.

A number of the survival classifiers found by DPLSR were intuitively reasonable from a

biological perspective: Akt phosphorylation state, procaspase 8 level (both forms), and Akt

activity. Akt is phosphorylated in response to insulin treatment [189], and that phosphorylation

leads to an increase in catalytic activity [195, 196] to constitute a potent prosurvival signal 11971.

Caspase 8 is an initiator caspase along one of the death pathways [42]. Early in the TNF-ca time

course, the inactive pro- form was processed to the active, cleaved form (Figure 3-5a). In the

TNF-o. + insulin time course, however, this cleavage was blocked, retaining high levels of the

procaspase 8 zymogen (Figure 3-5b).

In contrast, it was intriguing and counterintuitive that the model identified the level of

expression of TNFRI as a survival classifier. Comparison of the original time courses showed

that the DPLSR result was supported by the original sample set (Figure 3-5a,b), perhaps

72



- anVj -

4 VV

o
C) 40-

- 20-

e0
_ n

.- I-
I I I I I I

TNFR1 + + + +

Procaspase 8 - + + +
Akt activity, P-Akt - - + +
All other data - - - +
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suggesting that insulin competes with, or inhibits, the internalization and downregulation of these

receptors 11981. Alternatively, there may be other potentiating effects of insulin on TNFR1

expression 1199]. The identification of TNFR1 levels as a predictor for outcome emphasizes that

DPLSR models can incorporate prior knowledge without biasing against novel or

counterintuitive signal-response relationships.

In addition to extracting outcome classifiers, the DPLSR model also identified

measurements with zero, or near zero, contribution to any class discrimination (e.g., 48 kDa JNK

phosphorylation state, total Akt level). Thus, in the same way that PCA filters noise and

identifies redundant measurements within a data set, PLS models deemphasize signals that do

not productively contribute to a correlation with the dependent block. This is useful from a

practical standpoint, since future experiments can be made more efficient and less costly by

eliminating these measurements.

Interestingly, the DPLSR model exclusively highlighted survival classifiers from this set

of signaling measurements, with no death classifiers significantly outside of random fluctuations

in the data. We believe that failure to identify death classifiers is simply a reflection of the two
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treatment conditions that generated the samples: TNF-ca treatment alone, placed in the death

class, and TNF-(x + insulin cotreatment, placed in the survival class. Insulin was expected to

activate a number of pathways that DPLSR would identify as survival classifiers, but since TNF-

cx was present as a cue in both the death and survival outcomes, insulin would need to rapidly

attenuate a TNF-induced pathway at all time points for the pathway to be highlighted as a death

classifier. We expect that our models will extract additional classifiers, as we work toward

supplementing the data set with more diverse cue combinations (e.g., insulin alone, no

cytokines).

3.4.2. Construction of a cytokine-signal map

To generate a compact data-driven view of signals induced by TNF, EGF, and insulin

from the compendium described in Chapter 2.4, we constructed a cytokine-signal map by again

using DPLSR [31. Briefly, each time course of the 19 measured signals was integrated from
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7 Phospho S217/221 MEK (MEK-ERK kinase)
8 ERK (extracellular-regulated kinase) activity
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Substrate 1)
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13 Akt kinase activity
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16 Phospho S256 FKHR (Forkhead transcrip-
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Figure 3-11. DPLSR mapping of intracellular crosstalk in the network shared by TNF, EGF, and insulin. Data
were mapped as described in the text [31. The numbers, colors, and markers are identical to those in Figure 1-1.
The gray box indicates the crosstalk region shared by TNF, EGF, and insulin.
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0-24 hr to capture the magnitude and duration of the signal [200]. For each combination of

TNF, EGF and insulin, the 19 integrated signals for that cytokine stimulus together formed a

"treatment vector" indicating how strongly the signaling network was activated. We then

constructed a second vector of "cytokine classes" in which the three vector elements classified

the input levels of TNF, EGF, or insulin for that treatment (mock 0, low 1, high _ 2).

Finally, a DPLSR map was created in which the treatment and cytokine-class vectors were

projected onto a common set of vectors, called principal components, that maximize the

covariation between the treatment vectors and the cytokine-class vectors (see [3] for details).

The first principal component in the DPLSR mapping identified a generic baseline signal

for all cytokines, whereas the second and third principal components discriminated TNF, EGF,

and insulin most effectively (data not shown). By plotting the cytokine classes and integrated

signals along these two principal components, we could relate cytokine treatments to the

activities of various kinases, caspases, and other measured signals in a simple fashion (Figure 3-

11). This mapping proved to be particularly important for the subsequent discovery of the TNF-

induced autocrine circuits described in Chapter 4.2.

3.5. Predictive modeling through partial least squares regression

Our ultimate goal for data-driven modeling was to predict cell-death decisions from

intracellular signaling patterns activated by TNF, EGF, and insulin. Studying multiple input

stimuli in this way requires information about the network as a whole; otherwise, intracellular

changes in signal transduction molecules ("molecular signals" hereafter) can appear paradoxical.

For example, JNK is a protein that has been reported to be proapoptotic [781, antiapoptotic 1771,

or uninvolved in apoptosis [201] for different cell systems. To investigate this JNK-apoptosis

link further, we added multiple combinations of TNF and EGF to HT-29 cells and then measured

JNK phosphorylation (P-JNK) and apoptosis (Figure 3-12A) 111]. The TNF-EGF input stimuli

established a four-dimensional signal-response "surface" connecting the P-JNK molecular signal

to an apoptotic output (Figure 3-12B). "Slices" through this surface mimicking single TNF or

EGF inputs could recapitulate any of the previously reported correlations between P-JNK and

apoptosis (Figure 3-12C-E) [77, 78, 201]. This indicated that individual molecular signals, like
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Figure 3-12. Individual molecular signals are poorly predictive of apoptotic outputs. (A) TNF- and EGF-
induced JNK phosphorylation (P-JNK) and apoptosis. P-iNK and apoptosis were analyzed by quantitative
Western blotting and cleaved caspase-cytokeratin at 15 min and 24 hr after cytokine stimulation, respectively.
For Western blotting, tubulin was included as a loading control. (B) Response surface for P-JNK (z-axis) and
apoptosis (color bar) defined by the data in (A). (C-E) P-JNK was classified as (C) proapoptotic, (D)
antiapoptotic, or (E) uninvolved in apoptosis depending on whether P-JNK increased, decreased, or remained
unchanged with increasing apoptosis.

P-JNK, cannot uniquely determine complex output responses, like apoptosis. Quantitative

experiments [5] that dynamically sample many critical signals were needed.

Since individual molecular signals correlate with particular apoptotic outputs for only a

limited set of experimental conditions (Figure 3-12C-E). We therefore sought to determine

whether molecular signals in combination could quantitatively predict apoptosis more globally

and capture the entire apoptotic signature as a response. To pursue this, we designed a

mathematical formalism that could identify the "information variables" within each molecular

signal that mapped most closely with the output responses. The resulting multisignal-response

map would allow us to project the input stimuli along only the most relevant network variables

for apoptosis and then use these variables to predict apoptotic responses to new stimuli outside

the training set.

It was unclear what aspect of a dynamically sampled molecular signal would fill the role

of an information variable for apoptosis. For a time course of kinase activity, it was not known if

the maximum activity, the rate of rise of activity, or the time when peak activity occurred would

contain useful information. Therefore, we defined a panel of time-dependent signaling

"metrics", which were candidate information variables that could be empirically derived from

any dynamic signal (Figure 3-13A). Each of the metrics (e.g., ERK activity at 5 min, ERK

activity at 15 min, peak ERK activity, and P-MEK at 5 min) can be represented by an "axis"

along which particular multi-input stimuli project (Figure 3-13C).

In total, we extracted 30-40 metrics (Table 3-1) from a time course to form a composite

"metric set" (Figure 3-13A). Metric sets were defined for all 19 molecular signals and then
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Figure 3-13. The F'LS signal-response model correctly predicts apoptosis and caspase activation induced by
TNF, EGF, and insulin. (A) Conversion of signaling time courses into signaling metrics and concatenation of
apoptotic outputs into an apoptotic vector. From each dynamic network measurement [2], the following metrics
were extracted: individual time points (t), instantaneous derivatives (d/dt), area under the curve (AUC), and the
maximum, mean, and steady-state (S-S) values. In addition, the activation slope and decay rates for signaling
peaks were incorporated [1]. (B) Construction of the PLS apoptosis model. Signaling metric vectors were
concatenated into a single vector for each treatment condition and regressed against the apoptotic response
vectors as described [3]. wA is the coefficient matrix of the apoptosis regression model. (C) Reduction of a
signaling metric space into a principal component space and organization of the apoptosis vector through the
principal component space. Collinear axes like peak ERK activity, ERK activity at 5 min, and P-MEK levels at
5 min were reduced into a single principal component axis (p,). In the full model, the four apoptotic outputs at
12, 24, and 48 hr were oriented along three principal component axes (p, P2, and p3 ). Each point corresponds to
one multi-input stimulus, such as TNF + EGF. (D) RMSE of calibration and prediction as a function of
increasing number of principal components. An optimum model of three components was selected. (E-J)
Correlation plots between measured apoptotic outputs and cross-validated predictions of the PLS model with
caspase signals (red) and without caspase signals (yellow). The merged overlay is shown in green, and marker
size corresponds to the response time point. Data are presented as the mean + S.E.M., and model uncertainties
were estimated by jack-knifing [31. (K) Construction of the PLS caspase model and heat-map comparisons
between measured caspase levels and cross-validated model predictions. Signaling metric vectors from non-
caspase molecular signals were regressed against the 0-24 hr time-point measurements of procaspase-8, cleaved
caspase-8, and procaspase-3. w. is the coefficient matrix of the caspase regression model. The nine rows in the
measured and predicted heat map correspond to the nine treatment combinations shown in Figure 2-18A.

consolidated as individual axes that together define a 660-dimensional signaling metric space.

The projection of a multi-input stimulus along these axes forms a "signaling vector" of 660

column elements corresponding to the 30-40 metrics from each of the 19 molecular signals
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(Figure 3-13B). The apoptotic outputs were similarly concatenated to form an apoptosis vector,

where the 12 column elements are the four apoptotic outputs at three time points each (Figure 3-

13A). Each input stimulus has its own particular signaling and apoptosis vectors, so these were

calculated separately for the nine treatment combinations (Figure 2-18A).

Our goal was then to identify the best mapping of the 660-dimensional signaling metric

space onto the 12--dimensional output response space. A linear mapping would require the 7920-

element coefficient matrix (12 rows x 660 columns) that best transformed the signaling space

into the response space (Figure 3-13B), a calculation that would be impossible given only nine

Table 3-1. Signaling metrics extracted from dynamic network measurements

Metric class*
Time point

Instantaneous derivative

Summary metrics

Peak metrics

Metrics extracted
0 min
5 min
15 min
30 min
60 min
90 min

2 hr
4 hr
8 hr
12 hr
16 hr
20 hr
24 hr
0 min
5 mln
15 min
30 min
60 min
90 min

2 hr
4 hr
8 hr
12 hr
16 hr
20 hr
24 hr

Area under the curve
Maximum signal

Mean signal
Steady-state signal

Area under the curve
Activation slope

Decay rate

*See [1] for a complete description and definition of the signaling metrics.
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multi-input conditions (Figure 2-18A).

To simplify the mapping, we first assumed that some of the signaling metric dimensions

were either redundant or irrelevant. For instance, the peak activity of ERK would contain the

same information as the ERK activity at 5 min, when the ERK peak occurred (Figure 3-13C).

Likewise, other axes (e.g., metrics at 0 min, prior to stimulus) scrambled the projections because

they pointed in directions that were unrelated to apoptosis (Figure 3-13C). These uninformative

axes could be deemphasized or eliminated without any loss of information about the apoptotic

outputs. Second, we assumed that informative axes could be compressed into linear

combinations that retained the apoptotic information of the original axes but were simpler. For

instance, proteins like MEK and ERK are part of the same signaling pathway and were thus

activated similarly. Although not identical, the information in many MEK and ERK metrics

pointed in collinear directions that could be combined into a MEK-ERK "super axis" that

retained the projection with fewer dimensions (Figure 3-13C).

To reduce unnecessary axes and condense important axes mathematically in this way, we

used partial least squares (PLS) regression, which simplifies dimensions based upon their

covariance with a specified dependent variable [3, 202]. The apoptosis vector specified the 12

dependent variables (Figure 3-13A, B) to distill from the original network space those metrics

that together best oriented the measured apoptotic outputs (Figure 3-13C). PLS modeling, like

singular value decomposition [203], specifies an orthogonal set of "principal components",

which are the super axes that contain linear combinations of the original 660 metric dimensions

weighted by their contribution to the apoptotic outputs (Figure 3-13D). Principal components

are calculated iteratively so that each PLS dimension is regressed against the residual

information about the apoptotic outputs that was not captured by the preceding component.

After several iterations, more dimensions become undesirable, because the residual information

is so small that new principal components are essentially capturing spurious fluctuations in the

outputs, like measurement error and noise [3].

To optimize the number of model dimensions, we examined the root mean-squared error

(RMSE) between the measured apoptosis vector and the values from models with increasing

numbers of principal components. First, all of the input treatments were included during the

model training to assess the RMSE of data fitting, or calibration. Next, each treatment was

individually withheld from the training set to construct a cross-validation model, in which an
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Figure 3-14. The partial least squares model does not require late time points to make predictions of apoptosis.
Correlation plots between measured apoptotic indices and cross-validated predictions of (A) phosphatidylserine
exposure, (B) membrane permeability, (C) nuclear fragmentation, and (D) cleaved caspase-cytokeratin. The full
PLS model (red) was compared with a truncated PLS model (yellow) that omitted signaling measurements after
four hours. The merged overlay is shown in green, and marker size corresponds to the response time point.
Data are presented as the mean + S.E.M., and model uncertainties were estimated by jack-knifing [3].

RMSE of prediction could be assessed by bootstrapping. The calibrated RMSE decreased

monotonically, but the predicted RMSE minimized after three principal components (Figure 3-

13D), identifying the optimal model complexity [2021.

Using the three-component apoptosis model, we examined the correlation between the

measured apoptotic outputs and the cross-validated predictions for each treatment [31. We found

an extremely high correlation for all four apoptotic outputs and all time points, with an overall

predictive ability of 94% (Figure 3-13E-J). This illustrated that the signaling measurements

contained enough network information to predict outputs for TNF, EGF, and insulin stimuli that

had not been used during the model training. Although the 12 individual apoptotic outputs were

quantitatively different (Figure 2-18B-J), their stimulus-dependent changes were entirely

80

1 25-

c 20-
x
c 15-C
4
*3 10-

0u 5-
0
I 0-

6
.,

al
:3e)

30-

25 -

20-

15-

10-

5-
0-

_

F_ jiF ;$'O"""
0 F- --i

-11

$411



captured by a single PLS model of the intracellular network (Figure 3-13E-J). Furthermore, this

network-level information was absolutely essential-an equivalent PLS model given the multi-

input concentrations (Figure 2-18A) instead of signaling metrics predicted only 43% of the

apoptotic outputs [91.

The original signaling network measurements [2] contained several direct effectors of

apoptosis, such as caspases (Table 2-2) [42]. The model would obviously be less valuable if

these late-effector signals were providing all of the predictive power to the model. To test

whether caspase metrics were required for accurate predictions, we removed all of the caspase

signals from the model and rederived the principal component axes. No significant change in the

predictions was observed (Figure 3-13E-J). Thus, non-caspase signals contained more than

enough information to predict the apoptotic outputs quantitatively. Furthermore, the molecular

signals activated before the initial onset of apoptosis were adequate for predicting the apoptotic

signature. We found that a separate PLS apoptosis model derived exclusively from signaling

measurements at times 0-4 hr after cytokine addition was accurate within 81% (Figure 3-14).

Next, to examine the relationship between other molecular signals and late effector

caspases directly, we removed the apoptotic outputs altogether and defined the procaspase-8,

cleaved caspase-8, and procaspase-3 time-point measurements as a new set of outputs (Figure 3-

13K). Using the remaining network measurements, the PLS model predicted the caspase

response dynamics within 80% accuracy (Figure 3-13K). Together, this suggested that both the

caspase effector signals and the final cellular output responses were encoded by the upstream

signaling network..

In the HT-29 system, two regulated autocrine stimuli-transforming growth factor-a

(TGF-ct) and interleukin-la (IL-l c) -cooperate with TNF to activate the signaling network

(Figure 3-15A) [21. Whether these autocrine circuits contributed significantly to the TNF-

induced apoptotic signature was unknown. We therefore challenged the PLS model to predict

what the apoptotic signature would be when these autocrine TGF-( and IL-la circuits were

disrupted pharmaceutically with either an antagonistic EGFR antibody (C225) or IL-1 receptor

antagonist (IL-I ra) and the cells then treated with TNF. All 19 molecular signals were measured

from 0-24 hr 121 and provided as input data to the PLS model. We then measured the actual

TNF + C225- and TNF + IL- 1 ra-induced apoptotic signatures experimentally [ 11 and compared

these with the model predictions. This experiment was a particularly stringent test of the model,
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Figure 3-15. The PLS signal-response model correctly predicts apoptotic outputs induced by autocrine stimuli.
(A) Diagram of TNE-induced autocrine circuits from the studies presented in [2]. Orange arrows indicate fast
pathways (before four hours) and purple arrows indicate slow pathways (after four hours). C225 and IL-lra
were used as pharmacological inhibitors of autocrine TGF-a and IL-la, respectively. (B) Correlation plot
between measured apoptotic outputs and predictions of the autocrine circuit perturbations. Apoptotic outputs
were presented as Figure 3-13E-J for the C225 (circle) and IL-lra (square) perturbations. Marker color
corresponds to the apoptotic index (Figure 2-18B-J) and size corresponds to the time point (Figure 3-13E-J).
(C) Heat-map comparisons between measured caspase levels and model predictions for the autocrine circuit
perturbations. The unperturbed caspase dynamics were included for comparison.

because neither TGF-ca nor IL-lat stimuli had been explicitly specified in the original training set

(Figure 2-18A).

Strikingly, we observed an 84% correlation between the measured apoptotic outputs and

the model predictions when the two autocrine loops were disrupted individually (Figure 3-15B),

indicating that the model could predict the contributions of cytokines other than TNF, EGF, and

insulin. Furthermore, we found that upstream molecular signals alone were also highly

predictive of downstream effector caspase activation after TNF + C225 and TNF + IL-ra

stimuli (Figure 3-15C). Therefore, the contributions of autocrine TGF-ct and IL-l e to TNF-

induced apoptosis had been implicitly and correctly incorporated throughout both the full

apoptosis model and the caspase activation model.
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CHAPTER 4

Biological discovery through data-driven modeling

4. 1. Introduction

Data-driven approaches to map, classify, and predict measurements are all useful for

interpreting large biological datasets. However, the critical test for these methods is in their

value as tools for discovery. In this chapter, we describe model-driven discovery of

extracellular, intracellular, and network mechanisms for how cells make decisions to die or

survive when stimulated with conflicting input stimuli.

4.2. TNF-induced crosstalk through regulated autocrine cytokines

By inspecting the positions of signals relative to cytokines on the DPLSR map (Chapter

3.4.2), we could determine the extent to which signals covaried with particular treatments. We

found that some covariations were as expected: the cleavage of caspase-8 (Figure 3-11, signal

18), a proapoptotic protease activated directly by the TNF receptor [38], mapped closely to TNF.

Similarly, three overlapping measures of Akt (signals 13-15) mapped closely to insulin, which is

a powerful inducer of Akt 125]. Sometimes, the map position suggested unexpected biological

regulation; for example, the phosphorylation of IRS1 on Y896 (P-IRS1 (Y896), signal 10) was

closely associated with EGF and not insulin [12]. Of greatest interest was a cluster of signals

that lay midway between TNF, EGF, and insulin, which implied covariance of these signals with

two or more cytokines (Figure 3-11, gray box). When the Euclidean distance was calculated

between cytokine cues and E signals in this central cluster-EGFR (Figure 3-1 1, signal 4), ERK

(signal 8), and MAPK-ERK kinase (MEK, signal 7)-we found that TNF and EGF were nearly

equidistant, but insulin was farther away (see [2]). Inspection of the individual cytokine time

83



H-TNF

*'-U

, , _4 

Y

I -

P , ' -- V ._ - . -

L-TNF

i i ' ___ _ _.,

I ,-- I ---
0T 41 
0 4

B TGF-(x release
o-o Control - L-TNF

- 40 -

U. -

"0 -C225
0 4

Time (hr)

C

I0 44 0
Time (hr)

Total EGFR P-Y
5 min (EGF), 15 min (TNF)

tD 8- 7

> 2- -1.5

z 1 z
-- -U. ) U.

C Z Z 

-I -' ~ u

D TGF-ao release
o-o Control - L-TNF

- 80
E

0 
¥ 20-

0
Time (hr)

0 4
Time (hr)

E EGFR P-Y1068
5 min (EGF), 15 min (TNF)
16 - 14

> 12C)
. 2 -1.5
C 1

I' 0

I I + I=,u
4

F TGF-x-induced

2::>

El)

..
tD

cc"

G

j 0.4-

.N 0.2 -

E 0.0

z 0.0 -
0 1 10 100

Exogenous
TGF-x (ng/ml)

(7) P-MEK (S217/221) H (8) ERK activity I ERK activation
L-TNF H L-TNF +C225 > - L-TNF e- L-TNF+C225 t= 15min

B0.6 -0805 C 0.8

o 0. 

Time (hr) Time (hr) a

L-TNF

Figure 4-1. TNF activates an early-phase TGF-a autocine circuit to crosstalk through a EGFR-MEK-ERK
signaling pathway. (A) Comparison of P-MEK (upper) and ERK (lower) signaling dynamics induced by 100
ng/ml TNF (H-TNF, left), 5 ng/ml TNF (L-TNF, center left), and 500 ng/ml insulin (H-insulin, center right)
compared to 100 ng/mnl EGF (H-EGF, right). EGFR phosphorylation was similarly increased in response to TNF
(data not shown). B) TGF-a release in response to 5 ng/ml TNF. The control treatment was a mock
stimulation with carrier only. (C) Densitometric analysis of Western blots for total phosphotyrosine (P-Y) of
immunoprecipitated EGFR from HT-29 cells treated with 100 ng/ml TNF (H-TNF) for 15 min with or without
pretreatment with C225. 100 ng/ml EGF (H-EGF) treatment for 5 min was included as a positive control. P-Y
band densities were normalized to the untreated (Untr) sample for comparison. (D) TGF-a release in response to
5 ng/ml TNF in the presence of 10 [tg/ml C225 pretreatment for 1 hr before stimulation. The control treatment
wAas a mock stimulation with carrier only. (E) Densitometric analysis of Western blots for phospho-EGFR on
Tyrl1068 (P-Y1068). Treatments were identical to those described in (C). P-Y1068 band densities were
normalized to the untreated (Untr) sample for comparison. P-Y1068 was not detectable (n.d.) for the H-TNF +
C225 treatment. (F) ERK activity induced by recombinant TGF-ca. HT-29 cells were stimulated with various
concentrations of exogenous TGF-a for 5 min and analyzed for ERK activity. (Legend continued on next page.)
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Figure 4-1 (cont). (G and H) TNF-induced E signaling through EGFR. ERK (G) and pMEK (H) responses to
5 ng/ml TNF with or without 10 ltg/ml C225 pretreatment. (I) Perturbation of TNF-induced ERK activation by
pretreatment with 10 Rtg/ml C225, 1 1[M AG1478, 10 IM batimastat, or 1 tg/ml anti-TGF-a for 1 hr before
stimulation with 5 ng/ml TNF (L-TNF) for 15 min. 0.1% DMSO was added as a control pretreatment (TNF
alone). ERK activity from untreated cells was included as a baseline control, and ERK activation was defined as
the increase in ERK activity compared to untreated cells. For (A), (B), (D), and (F-I), data are presented as the
mean ± S.E.M. of triplicate biological samples as described in [2].

courses confirmed that TNF activated EGFR, ERK, and MEK similarly to EGF, whereas insulin

did not (Figure 4-1A and data not shown). Others have also noted crosstalk among TNF and

EGF in more focused studies with different cell types [204, 205]. Together, this supports the

paradoxical conclusion that EGFR and its downstream targets MEK and ERK are activated with

similar strengths and kinetics by TNF and EGF.

4.2.1. Rapid activation of a TGF-ct autocrine circuit by TNF

A direct intracellular link from TNF to ERK has not been definitively established, but

TNF can induce the shedding of EGF-family ligands in mammary epithelial cells when

stimulated for 24 hr 1206]. HT-29 cells shed ligands of the EGF family [207, 208], so we asked

whether TNF could potentiate this shedding and thereby activate MEK and ERK via EGFR. The

EGF-family ligands known to act as autocrine factors include transforming growth factor-at

(TGF-at), amphiregulin (AR), and heparin-binding epidermal growth factor (HB-EGF). We

measured the levels of these three EGF-family ligands before and after TNF addition by using

quantitative ELISA's. We found all three ligands at biologically significant levels in conditioned

medium from HT--29 cells, but only TGF-at was significantly upregulated by TNF (Figure 4-1B

and Figure 4-2). Furthermore, this TNF-induced TGF-at release was significantly faster than

previous reports [206], peaking at 1 hr after TNF addition (Figure 4-1 B). We conclude that TNF

treatment of HT-29 cells is associated with the rapid release of TGF-at into the medium.

EGFR activation itself causes shedding of TGF-at into the medium [209], so it was

unclear whether TGF-c- release following TNF treatment was a cause or consequence of EGFR

activation. To distinguish between these possibilities, cells were treated with C225 antibody,

which blocks the interaction of ligands with EGFR, and then stimulated with TNF. As expected,

the 1.5-fold increase in EGFR tyrosine phosphorylation associated with TNF stimulation of HT-
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Figure 4-2. TNF-induced AR and HB-EGF release in HT-29 cells. Cells were stimulated with 5 ng/ml TNF
with or without pretreatment with 10 Ltg/ml of a function-blocking anti-EGFR antibody (C225), and AR and
HB-ECGF levels were measured as described in [2]. The control treatment was a mock stimulation with carrier
only. I)ata are presented as the mean + S.E.M. of three independent biological samples.

29 cells was blocked by C225 treatment (Figure 4-1C). C225 treatment also elevated the levels

of TGF-ca in conditioned medium from 20 to 30 pg/ml by blocking the basal uptake of TGF-ca

into cells via EGFR (Figure 4-1D). The inhibition of this constitutive autocrine circuit was also

evident in the dramatic decrease of baseline EGFR phosphorylation on Y1068 (Figure 4-1E).

Nevertheless, the ability of exogenous TNF to increase TGF-ca levels twofold (from 30 to 60

pg/ml over 2 hr) was not affected by C225 treatment (Figure 4-D). Although rather complex,

these data are completely consistent with current understanding of both constitutive and

inducible EGFR autocrine circuits (see Figure 4-3 and 190]). Taken together, this indicates that a

basal TGF-a autocrine circuit in HT-29 cells is significantly upregulated by TNF addition,

consistent with previous findings [206] but on a much faster time scale than has been reported

previously.

After establishing that autocrine TGF-cc signaling in HT-29 cells could be blocked with

C225 antibody, we asked whether TNF-induced MEK and ERK activation, like EGFR

phosphorylation (Figures 4-1C,E) was inhibited by C225 and therefore EGFR-dependent. We

observed dramatic inhibition of both acute (fourfold reduction at 30 min, p < 0.005) and

sustained MEK-ERK activation (twofold reduction from 4-24 hr, p < 10-) in response to TNF
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Figure 4-3. TNF rapidly upregulates a basal TGF-a autocrine circuit. In resting cells, low levels of TGF-ct are
released into the medium, which leads to partial EGFR occupation and "low" basal signaling (upper left). Upon
TNF stimulation, TGF-cz release is upregulated, and free TGF-ct binds unoccupied EGFR's to increase signaling
(upper right). When cells are treated with a function-blocking anti-EGFR antibody (C225), both the basal and
TNF-induced autocrine circuits are disrupted. This reduces EGFR signaling to below basal levels and increases
the levels of TGF-a in the medium (lower left). Nevertheless, EGFR blockade by C225 does not affect TGF-a

release, so TNF treatment still increases TGF-a release in C225-treated cells (lower right). The remaining
signaling not blocked by C225 could be due to an alternative pathway of TNF-induced ERK activation.

treatment when cells were pretreated with C225 antibody (Figure 4-1G,H). By using a standard

curve to relate ERK activity to exogenous TGF-cx levels, we estimated the effective levels of

TGF-ct in TNF-treated cells (Figures 4-1F and 4-4). The fivefold ERK activation observed with

I 00 ng/ml TNF was equivalent to 400 pg/ml of exogenous TGF-a, even though only 40 pg/ml of

TGF-c was detected in conditioned medium (Figure 4-iB). This implied a significantly greater

TGF-c concentration in the vicinity of cells compared to the bulk medium, consistent with local

TGF-oc release and uptake 1210].

Some TNF-dependent activation of MEK and ERK was still observed in C225-treated

cells (-25% of the unperturbed activation). This perhaps reflected the inability of C225 to fully
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block EGFR ligand binding [2111 or possibly the existence of an additional pathway between

TNF and MEK-ERK 1212]. To determine whether the bulk of the low TNF-stimulated

activation of ERK was indeed mediated by EGFR, we also showed that ERK activation was

blocked by a small molecule inhibitor (AG1478) of the EGFR kinase, an inhibitor (Batimastat)

of the matrix-metalloproteases involved in shedding TGF-c from the plasma membrane 1213],

and, to a lesser extent, a neutralizing anti-TGF-a antibody. From these data we conclude that an
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Figure 4-4. The TNF-induced TGF-a autocrine circuit is sensed locally. A peak TNF-induced TGF-a release
of -40 pg/ml (upper left, same as Figure 4-1B) was compared against the recombinant TGF-a-induced ERK
activity (upper right, same as Figure 4-1F) to estimate -2x ERK activation after TNF treatment. This estimate
was much smaller than the peak TNF-induced ERK activity, which was measured -5x (lower left, same as
Figure 4-1A). Using the -5x ERK activity, it was estimated that cells were locally sensing 400 pg/ml TGF-a,
assuming equivalent bioactivity between endogenous TGF-a and recombinant TGF-cr.
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autocrine circuit involving TGF-cc and EGFR is the primary mechanism by which TNF activates

MEK-ERK signaling at both short (before 1 hr) and long (after 4 hr) time scales in HT-29 cells.

The 10-min interval between the peak of direct ERK activation by EGF at 5 min and indirect

activation by TNF at 15 min is an estimate of the minimum time required to establish the TGF-c

autocrine circuit (Figure 4-1A). The speed of autocrine TGF-a in this system is comparable to

tlhe near-instantaneous autocrine circuit triggered by G-protein coupled receptors through HB-

EGGF 1214].

4.2.2. TNF activates a late-phase IL-lao autocrine circuit

Activation of IKK (Figure 3-11, signal 1) was a second signal that occupied an

unexpectedly central position on the DPLSR map. IKK is activated by binding to the DISC

complex, which assembles on the intracellular domain of TNF receptor (Figure 1-1). In the

'"canonical" NF-KB pathway, IKK phosphorylates and inactivates IKB, an NF-KB inhibitor,

which allows NF-KB to translocate into the nucleus and induce gene expression 1431. Inspection

of signaling time courses revealed that IKK was activated 5-30 minutes after TNF addition,

along with other T signals induced by the DISC, such as the stress kinases JNK1 and MK2

(Figure 4-5A-C). However, IKK also exhibited a sustained period of activation between 4 and

2.4 hr when JNK1 and MK2 activities had returned to baseline. IKK activation after 4 hr was

associated with sustained translocation the p65 subunit of NF-KB into the nucleus (Figure 4-

5D-F), implying that late-phase IKK activity was relevant for signaling.

The disappearance of JNK1 and MK2 signaling by 2 hr suggested that late IKK

activation might not be mediated by DISC or TNFR (Figures 4-5A-C). A similar sustained

phase of NF-KB signaling occurs in keratinocytes following ultraviolet radiation and involves an

interleukin-lct (IL-la)-dependent autocrine circuit 1215]. Since IL-1 is a potent IKK agonist

[216], we determined whether TNF treatment of HT-29 cells was associated with IL-1 release by

analyzing conditioned medium for IL- cytokines. An eightfold increase in the soluble IL-lIc,

but not IL-1 , was observed 4-25 hr after TNF treatment (Figure 4-5G). HT-29 cells express the

IL-1 receptor (IL-1R) [2171, and we found that exogenous IL-loc activated IKK at concentrations

as low as 30 pg/ml (Figure 4-5H), consistent with the known sensitivity of IL-lR signaling
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Figure 4-5. (Previous page) TNF activates a late-phase IL-la autocrine circuit to crosstalk through the IKK-
NF-KB signaling pathway. (A-C) TNF-induced T signaling after stimulation with 100 ng/ml TNF. JNKI
activity (A), MK2 activity (B), and IKK activity (C) dynamics were compared against a 2 hr gate corresponding
to "direct" responses (dotted). (D-F) Indirect immunofluorescence images of the p65 subunit of NF-KB in
untreated cells (D) and in cells stimulated with 100 ng/ml TNF (H-TNF) for 30 min (E) and 24 hr (F). Scale bar
::: 15 tm. (G) IL-I( (purple) and IL-13 (orange) release in response to 100 ng/ml TNF (H-TNF). The control
treatment was a mock stimulation with carrier only. (H) IKK activity induced by recombinant IL-la. HT-29
cells were stimulated with various concentrations of exogenous IL-la for 10 min and analyzed for IKK activity.
(I) Dose-response for HT-29 apoptosis induced by various concentrations of IL-la. Apoptosis was measured as
described in Figure 1-1. (J and K) IKK response to 100 ng/ml TNF (H-TNF) with (K) or without (J) 10 Ftg/ml
IL-Ira cotreatment. (L) Perturbation of TNF-induced IKK activation by cotreatment with 10 [tg/ml IL-lra, 25
RLM ALLM, 25 !LM PD150606, 1 tg/ml anti-IL-la, or I tg/ml anti-IL-l1p during stimulation with 100 ng/ml
TNF (H-TNF) for 24 h. IKK activity from untreated cells was included as a baseline control, and IKK activation
was defined as the increase in IKK activity compared to untreated cells. For (A-C) and (G-L), data are
presented as the mean + S.E.M. of triplicate biological samples as described in [2].

[216]. Finally, exogenous IL-la also induced apoptosis in HT-29 cells, demonstrating that IL-

I ct is a prodeath factor in this experimental system (Figure 4-51). To exclude the possibility that

TNF-induced IL- I release was affected by rebinding to the HT-29 IL-I R's (Figure 4-6), we

blocked binding with IL- receptor antagonist (IL-ra) and remeasured TNF-stimulated IL-

release. No significant change in IL-la release was observed in the presence of IL-lra (Figure

4-7). We therefore conclude that HT-29 cells secrete IL-la in response to TNF, that HT-29 cells

contain functional IL,- R's, and that IL- R activation is proapoptotic.

To determine if late IKK induction by TNF was mediated by secreted IL- 1 a, IKK

activity was measured from cells stimulated by high TNF with or without saturating levels of IL-

lIra (Figure 4-5J,K). The rapid twofold increase in IKK activity 15-30 min after TNF

stimulation was unaltered by IL-Ira addition, but the sustained activation after 4 hr was reduced

twofold (p < 0.00-1). The residual IL-lax-independent IKK activity observed at very late times

(Figure 4-5K) could be due to incomplete IL-R blockade by IL-lra [2161 or other mechanisms,

such as IKK activation by MEKK2 [2181. Significant reduction in TNF-induced IKK activity at

24 hr was also observed with ALLM and PD150606-two structurally distinct calpain inhibitors

that block processing and release of IL-la from cells [2191-as well as IL-la neutralizing

antibodies (Figure 4-5L). From these data, we conclude that early activation of IKK by TNF

occurs in an IL-la-independent manner, consistent with the canonical TNF-induced NF-KB

pathway 1431. In contrast, sustained IKK activation after 4 hr (which is quantitatively more

significant than early activation in these cells) is mediated largely by the binding of autocrine
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Figure 4-6. Tumor necrosis factor (TNF) activates an interleukin-la (IL-la) circuit. In resting cells, IL-la is
retained in the cytoplasm as an inactive zymogen (upper left). Upon TNF stimulation, processed IL-la is
released into the medium, and a small fi-action binds the IL-IR to cause signaling (upper right). When cells are
treated with IL-lra, the IL-IR's are blocked, but there is no change in baseline signaling, because the IL-la
autocrine circuit has not been activated (lower left). When TNF activates the IL-la circuit in the presence of IL-
1ra, signaling through the IL-R does not occur (lower right). Since only a small fraction of autocrine IL-la
was captured without IL-lra (upper right), there is not a measurable difference in TNF-induced IL-la release in
the presence or absence of IL-ra (Figure 4-7).

IL-Ict to IL-1R. Furthermore, the requirement for calpain in this response suggests that this

autocrine circuit is regulated by the release of cytoplasmic prolL-lc 1[219]. By calibrating the

measured late IKK activation with exogenous IL- a (Figure 4-5H), we estimated that HT-29

cells could be locally exposed to high (i.e., ng/ml) concentrations of IL-cla at 24 hr (Figure 4-8).

Whether residual IKK activation in the presence of IL-ra therefore reflects incomplete receptor

blockade or the existence of additional regulatory mechanisms remains to be established.

Nonetheless, we can conclude that IKK is activated in TNF-treated HT-29 cells by a direct

pathway before 1 hr and by an autocrine IL-loc pathway after 4 hr.
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4.2.3. TNF-induced autocrine circuits quantitatively affect direct TNF

signals

Autocrine TGF-c and IL-1 ot were critical for ERK-MEK and late IKK signaling

mediated by TNF (Figures 4-1F,G, and 4-5K), so we next asked if other signals might be

similarly autocrine-dependent. In particular, we were interested in the T signals: JNK1, MK2,

and the caspases. We therefore treated cells with TNF and C225 antibody or IL-Ira and

measured the entire set of protein signals from 0-24 hr (see 1121 for details).

Many T signals were unexpectedly dependent upon the TNF-induced autocrine circuits.

For instance, although JNK1 was located near TNF on the DPLSR map (Figure 3-11, signal 2),

JINK1 was strongly influenced by the TGF-ct autocrine cascade. C225 treatment significantly

reduced both early and late JNK1 activity by twofold (p < 10-"1, Figure 4-9A). MK2 was also

reduced significantly at late times (p < IO-6) and to a much lesser extent at early times (Figure 4-

9B). Reduced signaling through these stress kinases is probably due to reduced activation of

MEKK1, a MAP3K that is regulated by both TNFR-complex I (Figure 1-1) and EGFR-Ras

12201. In contrast, MK2 signaling was completely unaffected by IL-I ra treatment, and JNK1
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Figure 4-7. TNF-induced IL-1 release in HT-29 cells. Cells were stimulated with 100 ng/ml TNF with or
without cotreatment with 10 ttg/ml IL-Ira, and IL-la and IL-1P levels were measured as described in 21. The
control treatment was a mock stimulation with carrier only. Data are presented as the mean + S.E.M. of three
independent biological samples.
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Figure 4-8. The TNF-induced IL-la autocrine circuit is sensed locally. A peak TNF-induced IL-la release of
-30 pg/ml (upper left, same as Figure 4-5G) was compared against the recombinant IL-la-induced IKK activity
(upper right, same as Figure 4-5H) to estimate -1.2x IKK activation after TNF treatment. This estimate was
much smaller that the steady-state TNF-induced IKK activity, which was measured -2x (lower left, same as
Figure 4-5C). Using the -2x IKK activity, it was estimated that cells were locally sensing -5 ng/ml IL-la,
assuming equivalent bioactivity between endogenous IL-la and recombinant IL-la.

signaling was significantly increased after 4 hr (p < 10-8, Figure 4-9C,D). Elevated JNK1

activity is likely a consequence of reduced late IKK signaling in the presence of II- 1 ra (Figure

4-5K), because sustained IKK-NF-KB signaling has been shown to negatively regulate JNK1

165]. This illustrates that JNK1 and MK2 stress-activated pathways are quantitatively and

distinctly dependent upon TNF-induced autocrine cascades.

Apoptotic signaling through caspases was also affected by disrupting the TGF-a and IL-

l ct autocrine circuits. Cleavage of the initiator caspase-8 was significantly increased by C225

94

4--
3
> 3--

N 2-

-1 _
z

0-

- I.. 4'.r., : ,v
�_ �__�__



(2) JNK1 activity
c~, L-TNF 0- L-TNF + C225

1 -

0.01 -

0 ·--- 25
1 -

0.1

0.01 -

Time (hr)

(17) procaspase-8
o-0 L-TNF - L-TNF + C225

1.0: _

0.0 _ . . .
0

Time (hr)
25

B

1-

>.
._

a

'a

0N

oz

F

.5
S)0

N

.o
E
0z

I

.5
d)

N

-a
E
0z

(3) MK2 activity
-0 L-TNF H L-TNF + C225

Time (hr)

(18) cleaved caspase-8
o0- L-TNF - L-TNF + C225

I I I I I

0 25
Time (hr)

(19) procaspase-3
oo- L-TNF H L-TNF + C225

1.0-

0.0-
0

Time (hr)
25

C

U

N

.5
E

0z

G

z

(2) JNK1 activity
0-> H-TNF H H-TNF + IL-1ra

0 Time (hr)

(17) procaspase-8
0-o H-TNF - H-TNF + L-1

1.0 -
'l

_ nit

o nn-z

J
.5

-oaU)
N

to
E
0z

ra

0 25
Time (hr)

(19) procaspase-3
0-0 H-TNF H H-TNF + IL-lra

1.0 

0 .0 - _ _ _ _ _ _ _

D

a1)
N
.5a

0z

H

a)
a)
N

E
0z

(3) MK2 activity
;-~ H-TNF H H-TNF + IL-ra

Time (hr)

(18) cleaved caspase-8
o-o H-TNF - H-TNF+ IL-ra

1.0

0.0
0 25

Time (hr)

0 25
Time (hr)

Figure 4-9. The TGF-a and IL-la circuits quantitatively affect TNF-induced JNK1, MK2, and caspase
signaling. (A-D) Quantitative changes in TNF-induced stress kinase signaling after perturbation of the TGF-a
and IL--la autocrine circuits. JNKI (A and C) and MK2 (B and D) responses to 5 ng/ml TNF (L-TNF) with or
without 10 [tg/ml C225 pretreatment (A and B) or 100 ng/ml TNF (H-TNF) with or without 10 [tg/ml IL-lra
cotreatment (C and D). (E-J) Quantitative changes in TNF-induced caspase signaling after perturbation of the
TGF-ca and IL-la autocrine circuits. Procaspase-8 (E and G), cleaved caspase-8 (F and H), and procaspase-3 (I
and J) responses to 5 ng/ml TNF (L-TNF) with or without 10 g/ml C225 pretreatment (E, F, and I) or 100
ng/ml TNF (H-TNF) with or without 10 g/ml IL-lra cotreatment (G, H, and J).

antibody (p < 0.001, Figure 4-9F), suggesting stronger prodeath signaling in the absence of

autocrine TGF-cc. However, C225-mediated increases in caspase-8 cleavage were accompanied

by increased levels of the precursor zymogen, procaspase-8 (p < 10-5, Figure 4-9E). Recent

microarray studies of TNF-treated HT-29 cells have shown that the procaspase-8 mRNA is

upregulated threefold after TNF addition, suggesting that transcription is important for

controlling procaspase-8 levels5. In contrast to C225, IL-1 ra did not affect procaspase-8 but

significantly decreased prodeath signaling by reducing cleaved caspase-8 levels (p < 10- °, Figure

K.A.J. and P.K.S., unpublished observations.

95

:C

0.3

.70
m

0
;z

E-

_5

13

.5

__·_
: ' -
: W - =

]l

j

0.5-

n-n 

.

-

a~,~~-~----

ir

v~v . , I , . . .

iB�k�



4-9G,H). Thus, TGF-ct and IL-lac exert opposing control on caspase-8 processing in HT-29

cells.

Interestingly, although both C225 and IL-Ira perturbed initiator caspase-8 signaling

(Figure 4-9F,H), the executioner caspase precursor, procaspase-3, was only affected by IL-lra

(Figure 4-9I,J). Autocrine IL-lao blockade significantly reduced the processing and

disappearance of procaspase-3 after 4 hr (p < 10-9, Figure 4-9J) because of reduced active

caspase-8 (Figure 4-9H). In contrast, procaspase-3 was not substantially affected by the

increases in caspase-8 cleavage induced by C225 (Figure 4-91), raising the possibility that

caspase-8 signaling was blocked by a modulator, like an inhibitor of apoptosis (IAP) protein

1221]. Taken together, these results show that directly induced stress and apoptotic signals from

TNF are quantitatively dependent upon contributions from the early TGF-a and late IL-lac

autocrine circuits..

4.2.4. Coupling of TGF-ca and IL-l Autocrine Circuits

Treatment of HT-29 cells with TNF induces two autocrine circuits, one in which TGF-a

binds to EGFR within 30 min of TNF addition and one in which IL-la binds to IL- IR after 4 hr

(Figures 4-1 and 4-5). To determine whether the two circuits were linked, we blocked EGFR

with C225 and then measured soluble IL-la levels and IKK activity in response to TNF. C225

completely prevented IL-ilc release triggered by low concentrations of TNF (Figure 4-10A) and

significantly inhibited IL-la release induced by high TNF (Figure 4-11). Expectedly, then, we

found that low TNF-induced late IKK activity was significantly reduced by twofold at late times,

when the IL-la circuit is normally operative (p < 0.001, Figure 4-10B). More surprising was

that early TNF-induced IKK was also inhibited (p < 10-'°), implying that TGF-ca cooperated with

TNF to activate IKK--NF-KB. EGF-family members activate NF-KB in certain breast cancer

cells [222], and more recently, IKKt has been shown to be required for EGF-induced histone H3

phosphorylation 223]. Our IKK assays measure both IKKo and IKK3 151 and might therefore

quantify a mixture of NF-KB activation and histone H3 phosphorylation in the early phase 1224,

2251. Regardless, the IL-lla-IL-1R-IKK autocrine circuit after 4 hr (Figure 4-5G) was

quantitatively dependent on the TGF-a-EGFR circuit established at earlier times (Figure 4-1B).
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Interestingly, this crosstalk was not reciprocal, because adding exogenous IL-la alone did not

increase the levels of secreted TGF-a (data not shown). Moreover, exogenous TGF-a by itself

was not sufficient to provoke IL-la release, implying that the IL-la autocrine circuit requires

signaling from both TNF and TGF-ct (data not shown). Together, this shows that the TGF-ca and

IL- 1 cc autocrine circuits induced by TNF treatment of HT-29 cells are coupled to each other

unidirectionally.
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Figure 4-11. The TGF-a autocrine circuit is not absolutely required for TNF-induced IL-lat release. Cells were
stimulated with zero or 100 ng/ml TNF with or without 10 Etg/ml C225 pretreatment, and IL-la release into the
medium was measured at 24 h as described in [21. Data are presented as the mean + S.E.M. of three independent
biological samples.

We considered it likely that this TNF-induced autocrine cascade contained additional

components. Related transcriptional profiling experiments of TNF-treated HT-29 cells revealed

strong upregulation of the IL-Ira gene", and IL-lra ELISA's showed that IL-Ira began to

accumulate significantly in the medium of TNF-treated cells after 12 hr (Figure 4-10C). As

described above, IL-lra blocks signaling through IL-R [2261 and its release into the medium

constitutes a third, presumably prosurvival, step in the TNF-induced autocrine cascade. These

data demonstrate that crosstalk exists between multiple time- and dosage-dependent autocrine

circuits activated by TNF.

TGF-ac is a growth factor and we therefore expected TNF to be more potent as an inducer

of cell death when the TGF-a-EGFR autocrine interaction was blocked. However, only modest

changes in TNF-induced apoptosis were observed in the presence of C225 (Figure 4-10D). From

the signaling studies, we observed an increase in TNF-induced caspase-8 cleavage upon C225

treatment, as well as reduced ERK activity (Figures 4-1 H and 4-9F), both of which are expected

to increase cell killing [42, 227]. However, C225 also a reduced JNK1 and MK2 signaling at

various times, which should increase cell survival [751.

One way to explain these conflicting findings is by noting that C225 treatment blocks

both signaling from EGFR (Figures 4-1G,H) as well as secondary signaling from the coupled IL-

l(x autocrine circuit (Figure 4-10A). To estimate what fraction of TNF-induced apoptosis could

"K I.A.J. and P.K.S., unpublished observations.
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Figure 4-12. Calibrated estimate for the contribution of autocrine IL-la to TNF-induced apoptosis. The local
estimate of autocrine IL-la (top, same as Figure 4-8) was compared against recombinant IL-la-induced
apoptosis (lower left, same as Figure 4-51) to estimate -20% apoptosis. This local concentration of IL-la was
induced by 100 ng/ml TNF (see Figure 4-5), which caused -45% apoptosis (lower right, same as Figure 2-17A).
After correcting for -13% basal apoptosis caused by mock treatment, we estimated that -22% of TNF-induced
apoptosis could be due to autocrine IL- a.

be a result of autocrine IL-la, we indexed the levels of TNF-induced IL-l to a calibration

curve relating exogenous IL-la concentrations to fraction of cells killed (see Figure 4-12 for

details). We estimated that the IL-1R autocrine circuit was responsible for -25% of the total

apoptosis induced by high TNF, which was consistent with our measured IL-lIra-mediated

increases in survival at 12 hr (Figure 4-10E). This degree of protection from cell killing is

similar to that provided by high levels of exogenous EGF or insulin (Figures 2-17B,C).
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Therefore, blocking the TGF-c autocrine circuit does not have a net effect on TNF-induced cell

death because a downstream proapoptotic circuit involving IL-lt is also inhibited.

From these data, we might expect exogenous TGF-a itself to have a complex effect on

cells. To examine this directly, cells were treated with low TNF and in the presence of varying

concentrations of exogenous TGF-a and measured the extent of apoptosis. At very low

concentrations (0.01 to 1 ng/ml) TGF-a was observed to potentiate the apoptotic effects of TNF,

but at higher concentrations apoptosis was blocked (Figure 4-10F). Based on data presented

above, we interpret dosage-dependent changes in TGF-a biology to reflect tight coupling

between EGFR and the proapoptotic IL-lot autocrine circuit. Considered together, these data

strongly suggest that autocrine cascades have an important function in cell physiology and

represent an extracellular extension to trans-antagonistic intracellular signals induced by TNF

1:381. Moreover, our findings show how receptor blockade, in this case by a clinically important

therapeutic antibody, can substantially perturb an intracellular network, but not manifest itself as

a significant change in cell response.

4.3. Identification of a late MK2 prosurvival signaling mechanism

We next compared the full TNF-induced apoptotic signature when the TGF-ca and IL-la

autocrine circuits were blocked by C225 antibody and IL-lra. Interestingly, IL-l a disruption

decreased most of the apoptotic outputs relative to TNF alone (Figure 4-13A), suggesting that

autocrine IL- 1 a was an extracellular positive-feedback circuit that augmented the apoptotic

response to TNF. In contrast, TGF-a disruption by C225 led to large changes in TNF-induced

activation of the network but did not lead to any clear overall changes in the apoptotic outputs

(Figure 4-13A). Some outputs, like phosphatidylserine exposure at 12-48 hr, were increased by

C225 (p < 10-5), whereas others, like cleaved cytokeratin at 12 hr, were decreased (p < 0.05), and

6 of the 12 apoptotic outputs did not change significantly 11, 91.

In these cells, autocrine TGF-a causes the early activation of prosurvival signals, like

M[EK-ERK, from 15-30 min and the late activation of prodeath signals through IL-la from

12-24 hr (Figure 3-15A) 121. The net lack of an effect of autocrine TGF-ou on apoptosis

suggested that late prodeath signals were offset by some unknown late prosurvival signal. Using
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Figure 4-13. The PLS signal-response model suggests late MK2 activity as a TGF-a-induced prosurvival
signal. (A) Heat-map comparison of TNF-induced apoptotic outputs with and without autocrine IL-lac and
autocrine TGF-a. Mean outputs are color-scaled from white (smallest) to black (largest). (B) Comparison of
late MK2 activities induced by 5 ng/ml TNF with or without C225 to block autocrine TGF-ct. Time courses
were extracted from the dataset presented in [2]. (C) Caspase-8 immunoblot of floating and adherent cells after
treatment with 100 ng/ml TNF for 24 hr to confirm separation of apoptotic and viable cells. It was also verified
by DAPI staining that isolation of floating and adherent cells had purified the apoptotic and viable
subpopulations by over 96% [9]. (D) MK2 activity assay of floating and adherent cells after treatment with 100
ng/ml TNF for 20 hr. Data were normalized to basal MK2 activity as described 112]. (E) Change in cleaved
cytokeratin after treatment with 100 ng/ml TNF for 24 hr with or without SB202190 pretreatment for 12-24 hr
or 0-24 hr. Inhibitor experiments were performed as described 5]. For (E), (G), and (H), data are presented as
the mean + S.E.M. of triplicate biological experiments [2].

the PLS model, we searched for candidate molecular signals and identified MK2. In the model,

early MK2 kinase activity was positively correlated with apoptosis and therefore prodeath [9].

However, late MK2 signaling after 12 hr was anticorrelated with apoptosis and was inhibited by

C225 (Figure 4-13B) [2, 9.

If late MK2 activity was actually a prosurvival signal, then MK2 activity at these times

should be present only in viable cells. To investigate this, we compared MK2 signaling in live-

vs.-apoptotic cells separately by analyzing the floating and adherent subpopulations of TNF-

treated cells (Figure 4-13C). All of the MK2 activity was observed in the viable cells (Figure 4-

13D). To verify the importance of late MK2 activity as a prosurvival signal, we rapidly inhibited

the MK2-activating kinase, p38, with a specific small-molecule [228, 2291. Inhibition of p38

starting at 12 hr alter TNF treatment caused a significant increase in cell death at 24 hr, which

was identical to that observed when p38 was inhibited throughout the entire time course of TNF

treatment (Figure 4-13E). Thus, the PLS model correctly identified late-phase MK2 activity (or

another p38 substrate) as a prosurvival signal in this system.

Our model-driven observation that late MK2 activity was TGF-ct-dependent (Figure 4-

13B) was intriguing, because the p38 activator, MKK3, is transcriptionally upregulated by

growth factors in a Grb2- (and, by extension, MEK-ERK)- dependent fashion [28]. We have

found in the HT-2'9 system that MKK3 is upregulated severalfold in response to TNF 191, raising
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the possibility that MEK-ERK signaling through autocrine TGF-a (Figure 3-15A) upregulates

late MK2 activity (Figure 4-13B) by transcription. Mechanistic biological hypotheses like these

would not have been easily recognized without the data-driven mathematical formalism provided

by the PLS model.

4.4. Network mechanism of growth factor-mediated inhibition of

TNF-induced apoptosis

In the full model, 660 metrics derived from 7182 signaling measurements were used to

predict apoptosis (Figures 3-13E-J and 3-14B). In retrospect, it was not clear that this breadth of

signaling information was actually necessary for prediction. If not, then it implied that the

apoptotic outputs could be predicted equally well by a reduced number of metrics derived from

smaller, more tractable experiments.

To investigate the minimal experimental requirements that were sufficient for network

coverage, we constructed models given only a fraction of the available signaling metrics. First,

we examined the metrics in the model with the largest relative contributions to the most

influential principal components 11. We found that a model containing only the top 20 most

informative metrics (Table 4-1) was nearly as predictive of apoptosis as a full model that used all

660 metrics (Figure 4-14A). A model given fewer than these top 20 metrics was significantly

less predictive 9]. The need for at least 20 metrics explicitly supported our hypothesis that

individual signaling measurements would not broadly predict cell response (Figure 3-12C-E).

The most noteworthy feature of the top 20 metrics was that they were completely

nonobvious. The list of metrics included activation slopes of Akt and IRS I phosphorylation and

integrated peaks of JNK1 and IKK signaling but did not include any caspase metrics (Table 4-1).

Since 20 metrics were as predictive as entire list of 660 metrics (Figure 4-14A), it suggested that

the apoptotic information was redundantly encoded in the original model. To investigate this, we

sequentially removed the top 20, 50, 100, etc. metrics and then recalculated the prediction of

apoptosis. Surprisingly, up to the top 350 metrics could be eliminated before the apoptosis

model significantly lost predictive ability (Figure 4-14A). This implied that the full biological
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system was redundantly encoded with the stimulus-specific information required to mediate all

of the apoptotic outputs [230, 2311.

All of the above PLS models (Figure 4-14A) included metrics derived from all 19

molecular signals. From an experimental standpoint, it was also important to determine how

many individual molecular signals needed to be sampled to broadly predict apoptosis.

Intriguingly, when we ranked molecular signals based on the average information contained in

their derived metrics, we found that the top three molecular signals belonged to the MAPK

cascades: JNK1, MK2, and ERK [9]. A model given only metrics from these three signals

performed nearly as well as the full PLS model in predicting the autocrine perturbations (Figure

4-14B). At the same time, a model without JNK1, MK2 and ERK and containing metrics

derived from only the seven least informative molecular signals was also equally predictive

(Figure 4-14B). Together, these findings suggest that 3-7 relevant molecular signals in a defined

intracellular network are sufficient to predict network-dependent output responses. In agreement

with these estimates., we found that the maximum per-signal prediction efficiency occurred at

Table 4-1. Top 20 most informative signaling metrics of the PLS model

VIP* Proteint Signalt MetricT
1.560 IRS-1 P-Ser636 Decay rate, peak #2
1.443 Akt P-Ser473 Activation slope, peak #3
1.368 IRS- I P-Ser636 Activation slope, peak #2
1.351 JNKI Activity Area under the curve, peak #2
1.343 IKK Activity Area under the curve, peak #2
1.297 MK2 Activity 4 hr time point
1.295 MK2 Activity 8 hr time point
1.:291 JNKI Activity 8 hr time point
1.287 IKK Activity Steady-state
1.283 JNKI Activity Decay rate, peak #2
1.281 MK2 Activity Area under the curve
1.280 MK2 Activity Mean
1.280 Akt P-Ser473 Area under the curve, peak #3
1.276 MK2 Activity 30 min time point
1.274 IKK Activity Area under the curve
1.274 IKK Activity 12 hr time point
1.274 IKK Activity 20 hr time point
1.273 JNKI Activity Mean
1.271 IKK Activity 16 hr time point
1.271 MK2 Activity Maximum§

*Variable importance in the projection [1].
tSee Table 2-2 and [2. for a complete description of the network measurements.
tSee Table 3-1 and [11 for a complete description of the signaling metrics.
§The top caspase metric, mean cleaved caspase-8, was only 3 4 th overall [9].
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4-5 molecular signals in the network (Figure 4-14B, inset).

What biological insight could be gained from the full PLS model? To answer this, we

examined the relationship between all of the signaling network measurements and the input

treatments through the model's first two principal components [3], which predicted 92% of the

apoptotic outputs [91. These components formed a pair of axes defining the two-dimensional

slice through the signaling dataset that most accurately predicted the apoptosis dataset 31. We

found that certain signals and treatments were clearly overrepresented in these dimensions. The

first principal component, Axis #1, was heavily oriented toward stress and apoptotic pathways:

early JNKI activity, early MK2 activity, and late cleaved caspase-8 metrics (Table 4-2). In

contrast, the second principal component, Axis #2, appeared to constitute a global survival signal
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Table 4-2. Top 20 loadings in the first principal component of the PLS model

Signalt
Cleavage

P-Tyrl 068/total
Activity
Activity

P-Ser473
Activity
Activity
Activity
Activity
Activity
Cleavage
Activity
Activity
Activity
Cleavage
Cleavage
Cleavage
Activity

Total
Cleavage

Metric-:
2 hr derivative
16 hr derivative
5 min derivative
5 min derivative
Activation slope, peak #3
Activation slope, peak #1
15 min time point
Area under the curve, peak #1
15 min time point
Maximum
4 hr derivative
90 min time point
30 min time point
60 min time point
12 hr time point
16 hr time point
8 hr derivative
30 min time point
20 hr derivative
Steady-state

*Loading weights of the first principal component 11.
tSee Table 2-2 and [2 for a complete description of the network measurements.
t:See Table 3-1 and [ 11 for a complete description of the signaling metrics.

by including P-Akt, P-IRS 1, P-FKHR, and procaspase-3 metrics (Table 4-3). Furthermore, the

contributions of many signals to the two axes depended upon the time point when the molecular

signal was activated. Sometimes, these time-dependent changes corresponded to distinct

mechanisms of activation. Early IKK activity directly mediated by TNF was predominantly

prosurvival along Axis #2 (Figure 4-14C). In contrast, IKK activity after 12 hr, which occurs

indirectly via autocrine IL-lca (Figure 3-15A) [2], was identified by the model as prostress-

proapoptotic by its contribution along Axis #1 (Figure 4-14C). Thus, the PLS model axes had

separated the time-varying contributions of IKK according to its upstream activators (Figure 4-

14D).

Using these axes, we could now reanalyze the signaling contributions to apoptosis when

cells processed single and combination cytokines. Expectedly, we found that TNF treatment

alone projected strongly along prodeath Axis #1, whereas isolated EGF and insulin treatments

mapped exclusively on prosurvival Axis #2 (Figure 4-14E). This reinforced our original
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Table 4-3. Top 20 loadings in the second principal component of the PLS model

w2C2' Proteint Signalt Metrict
-0.0695 IKK Activity Activation slope, peak #2
-0.0691 EGFR Total 60 min derivative
-0.0622 Akt P-Ser473 24 hr time point
-0.0615 MK2 Activity Decay rate, peak #2
-0.0613 Akt P-Ser473 8 hr derivative
-0.0608 FKHR P-Ser256 16 hr time point
-0.0605 Akt P-Ser473 16 hr time point
-0.0605 EGFR Total Area under the curve, peak #3
-0.0603 Akt P-Ser473 Steady-state
-0.0600 Procaspase-3 Zymogen 12 hr time point
-0 0599 Procaspase-3 Zymogen Steady-state
-0.0599 Procaspase-3 Zymogen 20 hr time point
-0.0596 Procaspase-3 Zymogen 24 hr time point
-0.0595 Procaspase-3 Zvmogen 16 hr time point
-0.0593 Caspase-8 Cleavage 90 min time point
-0.0590 FKHR P-Ser256 12 hr time point
-0.0587 Akt P-Ser473 20 hr time point
-0.0586 FKHR P-Ser256 Steady-state
-0.0583 Akt P-Ser473 12 hr time point
-0.0581 IRS1 P-Tyr896 24 hr time point§

*Loading weights of the second principal component 1.
tSee Table 2-2 and 2] for a complete description of the network measurements.
tSee Table 3-1 and I lL] for a complete description of the signaling metrics.
§Five P-IRSI (Ser636) metrics were identified within the top 30 loadings of the second principal component 9].

intuition that TNF and EGF-insulin stimuli act upon orthogonal and antagonistic signaling axes

for apoptosis.

In contrast, the multi-input projections were remarkably different from what would be

predicted by a summation of the single-input treatments (Figure 4-14F, gray). TNF, EGF, and

insulin each lost a fraction of their original projections along the two axes, indicating that the

input stimuli were antagonized when added in combination (Figure 4-14F). Importantly, the

TNF + EGF and TNF + insulin projections were now distinctly separated from one another

(Figure 4-14F), implying different network mechanisms. EGF appeared to antagonize TNF-

induced apoptosis by specifically reducing the projection along the stress-apoptosis Axis #1

without any change along Axis #2 (Figure 4-14F). In contrast, insulin actively promoted

prosurvival signaling along Axis #2 while also inhibiting stress-apoptosis signaling along Axis

# I. This separation was unexpected, because TNF + EGF and TNF + insulin stimuli elicited

nearly identical apoptotic signatures (Figure 2-181,J). Therefore, analyzing the multi-input
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stimuli through these canonical model-derived "network axes" (Figure 4-14E) helped to reveal

the different strategies used by EGF and insulin to antagonize TNF-induced apoptosis.

Finally, to determine the contribution of the TNF-induced autocrine circuits in the model,

we mapped the TNF + C225 and TNF + IL-lra treatments (Figure 4-14G). We found that the

projection of TNF along the stress-apoptosis axis (Figure 4-14G) was enforced by the autocrine

circuits, which increased the contribution along Axis #1 and decreased the contribution along

Axis #2. This is consistent with the notion that regulated autocrine circuits provide

microenvironment-dependent feedback to cells during phenotypic decision processes, such as

death-survival 2, 90]. Furthermore, it directly illustrated that complex environmental stimuli

were entirely contained within the two biologically meaningful axes that the PLS model had

distilled from the original 660-dimensional signaling metric space (Figure 4-14E).
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CHAPTER 5

Conclusions and future directions

5.1. Quantitative high-throughput methods for studying signaling

The current knowledge of intracellular signal transduction is staggeringly complex. To

model how network-level properties affect cell function, quantitative experimental techniques

that are both high-throughput and multiplex are needed. The kinase activity assay formats

presented here represent a first step in this direction. A 96-well, microtiter format is highly

versatile, in that it is amenable to scale-up and automated liquid handling, yet tractable for

individual scientists and more moderate studies. Importantly, these assays possess linearity,

reproducibility, specificity and sensitivity characteristics as good as, or better than, the

corresponding low-throughput technique. We anticipate that these functional assays will

complement existing proteomic approaches [144] and find broad applicability towards biological

and clinical problems involving signal transduction and human disease.

There remains tremendous potential for extending a paradigm of applying engineering

design to quantitative biology. There are, of course, many other phosphorylation cascades and

other types of potentially informative signals [232, 233]. It seems immediately feasible to design

quantitative activity assays for other important classes of signaling enzymes, such as

phosphatases and exchange factors. Other types of signals, like protein localization and protein-

protein interactions, lack even a low-throughput technique that is quantitative. It would be

interesting to consider ways to analyze these signals and compare their predictive value to

protein state, level, and activity measurements.

An additional direction to pursue is toward more sensitive signaling assays that are still

quantitative. The homogeneous, fluorescence-based kinase activity assays reported here are one

example of how sensitivity can be improved. The Sox-based chemosensors are uniquely

quantitative in their ability to estimate enzymatic activity and phosphorylated product generation
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from cell samples. The amount of lysate activity can easily be related to recombinant protein

standards or normalized to untreated control lysates (Figure 3-1). In addition, the assay is

compatible with physiological concentrations of ATP. Together with the solution-phase format,

this dramatically increases the sensitivity of the assay. Whereas most immune complex kinase

activity assays require 200-500 [tg total cell protein[147], the kinase assays presented here can

make equivalent measurements at less than 100 [tg (Figures 2-9b,d and 2-12b,d). This sensitivity

is critical for applications where cell samples are limited, such as high-throughput cell-based

screening and clinical diagnostics. In addition, crude cell lysate assays eliminate several hours of

manipulations, such as incubation and washing steps, before and after the in vitro reaction.

II)uring the kinase reaction, the 60 time points collected provide additional activity information

and reduce error without extra experimental effort.

An important feature of these lysate-based assays is that selectivity can be improved by

pharmacologically inhibiting kinases with overlapping substrate specificity. Because the

relevant off-target enzymes will depend upon the peptide chemosensor, kinase-by-kinase

optimization will be needed to ensure maximum possible specificity. Although some residual

off-target activity is inevitable (here, < 30% for Akt and 25% for MK2, Figures 2-9g and 2-12g),

this singular limitation is outweighed by the many benefits of these fluorescent kinase activity

assays, in that they are straightforward, rapid, continuous, non-radioactive, quantitative, and

sensitive. The format is conceptually similar to many fluorogenic protease assays 1176] that,

because of these same benefits, have found widespread use in a number of applications [177].

Together with the radioactivity-based techniques, these assay platforms are of immediate and

expanding utility in drug discovery and molecular biology.

5.2. Autocrine crosstalk in the response of human epithelial cells

to apoptotic and mitogenic stimuli

Here we analyzed a proteomic compendium of time-varying changes in cellular signaling

induced by pro- and antiapoptotic cytokines in HT-29 colonic epithelial cells. Our overall aim

was to determine how the decision between cell proliferation and apoptosis is controlled by

opposing death and survival signals. Previous work on this topic focused on crosstalk among
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intracellular signaling proteins with pro- and antiapoptotic functions 1581. For example, Akt has

been shown to phosphorylate Bad and caspase-9 in response to prosurvival cytokines, which

downregulate critical prodeath responses 159, 60]. Conversely, it has been shown that

prosurvival EGF--family receptors are targeted for degradation by caspases [621.

Our work highlights the equivalent importance of extracellular crosstalk in cell fate

decisions. Specifically, we identify three regulated and overlapping autocrine circuits that play

critical roles in controlling TNF-induced apoptosis in HT-29 cells. We find this autocrine

cascade is rapidly induced and can activate intracellular signals that are as quantitatively

significant as signals immediately downstream of activated TNFR. We propose that crosstalk

among autocrine cytokines constitutes a generally important form of biological regulation

linking cellular physiology to the extracellular environment.

5.2.1. A tripartite TNF-induced autocrine cascade

TNF triggers a sequential three-part autocrine cascade that plays out over at least 24 hr

(Figure 5-1A). Together with TNF, this cascade stacks layers of pro- and antiapoptotic signals

that control the death-survival decision. First, proapoptotic signals immediately downstream of

TNFR binding are induced within 15 min. A few minutes later, an autocrine TGF-cE circuit is

established, leading to prosurvival signaling through EGFR. The combination of TNF and TGF-

t causes the release of IL-1 a starting at 4 hr, which activates prodeath signaling through IL-IR.

Finally, upregulation of IL-Ira 4-8 hr later negatively regulates IL-R-mediated signaling, and

presumably constitutes a final antiapoptotic stimulus. The time-dependent interaction of these

cascades establishes a robust network of positive and negative signals to set the level of

apoptosis in a self-limiting fashion.

The first intracellular step in TNF signaling is the recruitment of TRAF2, FADD, and

other adaptor proteins to the DISC on activated TNFR's 138, 39]. Shortly after DISC assembly

and 15 min after TNF addition, intracellular kinases such as JNK1, MK2, and IKK are activated

by complex I (Figure 5-1A,B). In HT-29 cells these kinases are presumably induced by well-

established pathways involving TRAF2-MAP3K's and TRAF2/5-RIP respectively 38].

MAP3K's, such as MEKK1 and ASKI, have been implicated as TNF-dependent activators of
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the MKK7 and MKK3 kinases that phosphorylate JNKI and p38/MK2 [40]. Currently, it is

unclear how RIP activates the IKK complex [391.

In parallel with these well-established pathways, TNF also drives the release of

membrane-bound pro-TGF-ct in a metalloprotease-dependent fashion. While the precise

mechanism of metalloprotease activation is unclear, ERK has been implicated in the growth

factor-stimulated release of autocrine TGF-c in other settings [2091, possibly via metalloprotease

phosphorylation 1234]. The p38 pathway has also been implicated in the constitutive release of

TGF-uc and cytokine-stimulated shedding of HB-EGF 1235]. However, TNF does not induce

HB-EGF shedding in HT-29 cells even though it strongly stimulates p 3 8 activity. Thus, p38 and

EiRK must differentially control the release of EGF-family members by as-yet unknown
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mechanisms of metalloprotease regulation.

The release of TGF-a into the extracellular medium activates signaling through EGFR

and subsequently induces the MEK-ERK pathway (Figure 5-1A). We find that at least 75% of

TNF-induced MEK-ERK activation in HT-29 cells is caused by autocrine TGF-ca. This is likely

to be an underestimate of the extent of autocrine dependence because EGFR blockade by

antibodies is incomplete 12111 and residual signals from activated receptors are highly amplified

1191. ERK is known to inhibit the activation of caspase-8 [611 consistent with our observation

that cleaved caspase-8 levels rise when TGF-ca autocrine signaling (and thus, ERK activation) is

blocked. Early JNK.1 signaling triggered by TNF also appears to be mediated partly by TGF-oc,

since EGFR blockade reduces JNK1 activity - 50%. Thus, the TGF-c-EGFR autocrine circuit

appears to directly stimulate multiple intracellular signals that are both pro- and antiapoptotic.

Eight hr after TNF addition and seven hr after maximal TGF-c release, IL-cla begins to

accumulate in the medium as a consequence of calpain-mediated proteolysis [2191. IL-lac binds

the IL-IR, activating IKK and the NF-KB pathway. JNK1 signaling is reduced - 50% by IL-la,

probably due to C;add453 upregulation by NF-KB [65]. Finally, autocrine IL- la promotes the

cleavage of initiator and effector caspases (Figure 5-1A,B) and leads to increased apoptosis via

an as-yet unknown mechanism [236]. Finally, 4-8 hr after IL-lta shedding begins, IL-lra is

released as the third cytokine in the cascade (Figure 4-10OF). IL-lra blocks IL-IR and thereby

attenuates the IL-1 c autocrine cascade (Figure 5-IB). The overall effect of the IL-lat autocrine

circuit is to increase proapoptotic signals (e.g., cleaved caspase-8) and decrease others (e.g.,

JNKI). The induction of IL-lra makes the circuit self-limiting and shows how specific receptor

antagonists can cause unexpected changes throughout a signaling network.

5.2.2. Induction of intracellular signals by direct and autocrine-

indirect processes

Our data support the idea that response of cells to TNF involves a combination of

"direct" signals, which lie immediately downstream of the TNFR-DISC complex, and

"autocrine-indirect" signals, which are mediated by TNF-released cytokines. TGF-ot shedding

and DISC formation occur simultaneously, so certain TNF-direct and TGF-uc-indirect signals
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overlap extensively. Moreover, autocrine signals are transduced within 15-30 min, nearly as

rapidly as direct signals, and are as significant quantitatively. Overall, we observe four types of

regulation. TNF-induced signals such as MK2 are primarily regulated in a direct fashion by the

I)ISC whereas others, such as MEK and ERK, are regulated almost entirely by autocrine

mechanisms 7. A third set of signaling proteins, such as JNKI, are activated both by TNF-direct

and autocrine-indirect mechanisms. Finally, signals such as IKK have the very interesting

property of exhibiting direct regulation at early times and autocrine-indirect regulation at later

times. Because the target specificity of IKK-induced NF-KB has been shown to change over

time as a result of dimer exchange [237J, it is possible that early and late phases of IKK

activation might result in the activation of distinct sets of genes.

5.2.3. Extracellular crosstalk in the TNF-induced network

Crosstalk in intracellular networks is well recognized [180], but extracellular crosstalk

involving autocrine signals has not been extensively documented. A straightforward example of

such crosstalk in the current study is the sequential TNF-dependent release of TNF-ca, IL-1 ct, and

IL-lra (Figure 5-1B). Activation of the IL-la circuit requires prior TGF-c release, and this

T GF-t-IL- t crosstalk is TNF-dependent, because exogenous TGF-a alone does not cause IL-

la release. The TGF-a-IL-la crosstalk is also directional: exogenous IL-loa alone is

insufficient for TGF--a release8 . The link between IL-l c and IL-1 ra appears purely TNF-

dependent, since exogenous IL-la caused a very modest release of IL-lra. Likewise, TNF-

induced IL- ra release was only slightly affected by TGF-c blockade 9. In general, we observe a

close link between the presence of a cytokine and activation of its cognate receptor. Thus, the

directionality and interdependency among autocrine signals is likely to be enforced through

regulated proteolysis of precursors, rather than by the modification of receptors

("transactivation"). Further study of the regulatory metallo- and calpain proteases seems

warranted.

7 K.A. Janes and P.K. Sorger, unpublished observations.
8 Ibid.
9 Ibid.
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5.2.4. Biological and clinical significance

Why does the response of cells to TNF involve complex self-limiting extracellular

signals? Overlapping positive and negative feedback has been proposed as a means for

optimizing the sensitivity and stability of biological systems over a wide ranges of inputs [661.

A role for autocrine circuits in sensing spatial ranges and local environmental cues has also been

documented [90]. Thus, multi-step, contingent activation of autocrine signals by TNF might

serve to ensure the orderly processing of intracellular and extracellular cues and allow

microenvironment-sensitive control over cell death (Figure 5-B). It seems highly likely that the

extent of crosstalk between autocrine and intracellular circuits, and the quantitative significance

of various cues, will vary will cell type. In the current study, we use transformed cells grown in

vitro. Although a fairly artificial experimental setting, immortalized cells were clearly

advantageous for initial studies, since the construction of a compendium requires methodological

developments and large numbers of cells. It will now be important, however, to examine

variations in autocrine-indirect and TNF-direct signaling among primary cells, such as

hepatocytes and adipocytes, in which TNF has important physiological and pathological

functions [238, 239]..

Since its discovery three decades ago as a endotoxin-induced serum factor with

tumoricidal activity, TNF has remained an important therapeutic target in a variety of human

diseases [240, 241 ]. Neutralizing anti-TNF antibodies (e.g., Remicade®) and decoy receptors

(e.g., Enbrel®) are now used to treat inflammatory bowel disease and rheumatoid arthritis

(Figure 5-iC) [45. 242]. However, clinical trials with sepsis and cancer, once promising targets

for TNF-directed therapies, were disappointing and highlighted the puzzling inefficacy and side-

effects of cytokine-directed therapy [243, 244].

Our experiments provide some insight into this problem by suggesting that secondary

autocrine cascades must be considered. One simple example in our current data is with the anti-

EGFR antibody C225 (known commercially as Erbitux®). C225 treatment of TNF-stimulated

HT-29 cells does not change the level of TNF-induced apoptosis, but extensive changes

nonetheless occur in both intracellular and extracellular signaling. Thus, it is not that Erbitux is

inactive against HT-29 cells or TNF-induced apoptosis, but rather that the proapoptotic effects of

blocking TGF-ct autocrine signaling are offset by reduced IL-l a mediated signaling.
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Elucidating such interactions among autocrine signals over a variety of tissues appears daunting,

but it has the potential to uncover differences between normal and diseased tissues that can be

exploited by combination treatments with larger therapeutic indexes than single-drug treatments.

Indeed, combination therapies involving anti-TNF biologics and IL-lra are already being

explored for the treatment of rheumatoid arthritis [245].

5.3. Canonical network axes for cytokine-induced apoptosis

By using a systems approach that combines quantitative experiments with data-driven

modeling, we have identified two canonical network axes-a stress-apoptosis axis and a survival

axis--that together define a reduced signaling space for apoptosis. These axes capture the time-

dependent, intracellular signal processing of individual and combination stimuli, as well as

autocrine-feedback stimuli (Figure 4-14E-G). Our work illustrates how a complex signaling

network can be reduced computationally to a much simpler empirical model that is directly tied

to biological mechanism (Figures 4-13B-E and 4-14C,D).

Whether these network axes apply to signaling in general is unknown but clearly

warrants further study. Extensions of this work that could examine the generality of the model

predictions include:

* Other TNF-family ligands, such as TNF-related apoptosis-inducing ligand (TRAIL) [246]

* Other cell types, such as HeLa, in which TNF-induced cell death is antagonized by

growth factors' °

* Combinations with adhesion signals, like fibronectin and laminin [247]

* Sensitizing agents other than IFN-y, such as adenoviral infection [2481

* Different apoptosis-inducing stimuli, like DNA-damaging agents [249]

* Therapeutically relevant pathway inhibitors, such as those targeting the EGFR 250]

* Coupling of other output responses with apoptosis, such as proliferation [2511

° J.G. Albeck, unpublished observations.
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These careful-yet-ambitious extensions would reveal whether the stress-apoptosis and survival

axes (Chapter 4.4) reappear as important dimension in other complex biological systems. One

can envision a scenario where perhaps 5-10 of these canonical axes are sufficient to predict most

of the recognized cellular phenotypes.

5.4. Other data-driven modeling approaches

This thesis has focused largely on multivariate modeling of signaling datasets through

F'LS regression. It is exciting to speculate that new insights will be gained by applying other

clata-driven techniques to the same proteomic compendium. There exist a number of other

matrix decomposition approaches that reduce dimensionality with different optimization

constraints. These include non-negative matrix factorization [252], where basis vectors are

constrained to be additive and not subtractive; independent component analysis 1253], where

axes must correspond to dimensions in the original measurement set; and network component

analysis 12541, where reduction is constrained by a known connectivity matrix. Compared with

the orthogonality constraint of PCA and PLS, these techniques will project the dataset differently

in a way that may be: more informative for certain applications.

Bayesian network analysis is another data-driven approach that could be readily applied

to the TNF-EGF-insulin proteomic compendium [17, 255]. This probabilistic method could be

used in an unbiased way to identify from the data the most likely connectivity graph that maps

the measured signaling proteins. Such calculations are computationally intensive and require

large datasets, but it has recently been shown that resampling from replicated data can improve

the power to converge upon a consensus graph confidently [256]. Because the signaling

measurements were focused upon a well-understood network (Figure 1-1), it is also possible to

include this prior information to score competing models that vary in their edge connectivities

[171. Using Bayesian networks in this fashion could be useful for clarifying regions of the

network that are not as well characterized, such as the posttranslation regulation of IRS 1 2571.

5.5. The role of transcription in apoptosis-survival cell decisions
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Unlike many studies of TNF, which inhibit gene expression by various means 180], our

studies permitted cytokine-induced transcripts and proteins to affect the signaling network

measurements. Because TNF-induced HT-29 apoptosis occurs on the same time scale as

transcription' I, we expect that the apoptosis-survival cell decision contains both transcription-

dependent and transcription-independent signals [258, 259]. Consequently, it is likely that the

predictive PLS model (Chapter 3.5) took a "shortcut" through the transcriptional branch of the

decision process. It would be possible to omit transcription if contributions from important

transcripts had been incorporated into the measured signaling proteins. For instance, roles of key

1I 1..f..l X

41· z \L,
X., 0 , I Xll 11/0 1fieJ7

3c5 J 7
, 01- 19 1 V 1~~^ 1~ 1r

Figure 5-2. Preliminary clustering of transcriptional profiles of HT-29 cells. Note that the TNF-treated time
points form distinct clusters relative to the EGF- and insulin-only time points.
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IAP proteins [22 11 could be embedded in the measured caspase cleavage states.

Nonetheless, it will be important to interrogate the role of gene expression in the HT-29

system at a level of detail similar to that achieved for protein signals. In very recent work, we

have transcriptionally profiled the responses of HT-29 cells to the nine multi-input stimuli

specified in the signaling and apoptosis datasets'2. Preliminary analyses of these measurements

revealed a much stronger clustering of TNF-treated samples compared with EGF- and insulin-

treated samples (Figure 5-2). Interestingly, this contrasts the DPLSR mapping of the protein data

(Figure 3-1 1), in which TNF and EGF were more similar compared to insulin. Future studies

with these profiles will investigate the interrelationship between protein signals and gene

expression responses, as well as examining the relative predictive power of transcriptional data

compared to protein data.

5.6. Physiological model systems

The philosophy of "systems biology" [85, 2601 has received much fanfare in the

scientific community. However, it has been correctly noted that the long-term acceptance of

systems biology is heavily dependent upon the emergence of a "success story" [2611. Namely,

these systems-level approaches must provide useful biological information to help design real

therapies that improve human health. For this to occur, the quantitative engineering approaches

like those developed in this thesis need to be applied to real model systems of human physiology

and disease.

At present, such model systems must be chosen with care, because it is unclear how our

approaches "scale' in systems with less reproducible data, smaller biological samples, and

greater uncertainty about the underlying network. However, recent successes in integrating

microarray data from diverse tumor biopsies to predict patient survival [262] suggest that these

types of experiments are possible. Achieving quantitative signal-response models of human

disease will suggest new strategies for therapy and move biology from an anecdotal to a

predictive era of discovery.

' K.A. Janes, unpublished observations.
12 K.A. Janes and R. Fry, unpublished data.
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6.2. Experimental protocols

6.2.1. High-throughput radioactivity-based kinase activity assays

The microtiter-based kinase activity assays were performed with the following

antibodies: anti-ERK1/2 CT (Upstate), anti-Akt PH domain (Upstate), anti-JNKl (Santa Cruz),

anti-IKKct/3 (Santa Cruz) or anti-MAPKAP kinase 2 (Upstate). Protein A or G microtiter strips

(Pierce) were coated overnight with 10 jig/ml anti-kinase antibody and washed three times with

blocking buffer (1 % bovine serum albumin (Sigma) in 50 mM Tris-HCl (pH 7.5), 150 mM NaCI,

0.05% Triton X-100). Cell lysates (50 Jg for ERK, 500 jug for Akt, 200 jg for JNK1, 200 jg for

MK2, 600 jug for IKK) were added for 3 h (ERK, Akt, JNK1 and MK2) or overnight (IKK), then

washed two times with wash buffer (50 mM Tris-HCl (pH 7.5), 150 mM NaCI) and two times

with kinase wash buffer (20 mM Tris-HCI (pH 7.5), 15 mM MgCl2, 5 mM 3-glycerophosphate, 1

mM EGTA, 0.2 mM Na3VO4, 0.2 mM DTT). The wells were resuspended in 20 jl kinase wash

buffer and warmed to 37°C. 20 jl kinase assay buffer (kinase wash buffer plus 0.4 juM PKA

inhibitor, 4 jM PKC inhibitor, 4 jM calmidazolium, 0-25 juM cold ATP, 1-5 YCi ly-32P]ATP)

was added to the wells, followed by 20 jul of substrate (40 jug myelin basic protein for ERK, 10

jM Aktide 1263] for Akt, 3 jg GST-ATF2(1-109) [2641 for JNK1, 10 PM MK2tide [2651 for

MK2, 10 jg GST--IKBc(l-62) [266] for IKK) to initiate the reaction. The kinase reactions were

allowed to proceed for 15-120 min at 37°C, then terminated by 60 Jl 75 mM H3PO4 or 20 mM

EDTA. Exact conditions for each kinase assay are detailed in Table I. For EDTA-terminated

reactions, 40 jul of the terminated reaction was transferred to a phosphocellulose filter plate

(Millipore) containing 100 jul 75 mM H3PO4 and mixed, whereas H3 PO4-terminated reactions

Table 6-1. Experimental conditions for the individual in vitro kinase assaysa

Kinase Antibody Substrate ATP [y-32 P]ATP Reaction time Termination
(PM) (PCi) (min)

ERK Anti-ERK] /2 CT Myelin basic protein 25 1 60 H3PO4

Akt Anti-Akt PH dom. Aktide 10 5 30 H3P04
JNKI Anti-JNK1 GST-ATF2 10 2 60 H3PO4

IKK Anti-IKKoi/ GST-IKBa 0 5 120 EDTA
MK2 Anti-MAPKAP K2 MK2tide 25 2 15 EDTA
a Other experimental parameters were maintained as described in Experimental Procedures.
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were added directly to the filter plates. The terminated reaction contents were vacuum-filtered

and washed five times with 75 mM H3PO4 and three times with 70% EtOH. The filters were

punched into vials and the radioactivity incorporated was measured by liquid scintillation

(Cytoscint, ICN). The results from blank wells, containing only lysis buffer during the

immunopurification step, were subtracted to remove nonspecific contributions, with the

exception of Akt, where this was not necessary.

6.2.2. High-throughput fluorescence-based kinase activity assays

Activity assays were performed in a glass 96-well plate (Zinsser #3600500 with 250 ld or

Zinsser #3600501 with 150 tl1 per well) at 300 C in a fluorescence plate reader in Buffer D with 4

pM PKC inhibitor, 4 tM calmidazolium (Sigma), 10 tM substrate peptide, 1 mM ATP

(Calbiochem, Low Metals Grade) and for Akt, 0.4 tM PKItide, 5 [tM GF 109203X

(Calbiochem); for MK2, of 0.4 [tM PKItide, 25 tM GF 109203X; and for PKA, 5 [lM GF

109203X. This assay buffer was prepared in bulk at 300 C and aliquoted to each well to ensure

equal concentrations of the chemosensor. To begin each reaction, 7.5 vol% lysis buffer (Buffer

C) or Ilysate (18.5 [l in 250 trl for Akt, and 11 tl in 150 tl for MK2 and PKA) was added and the

contents of each well mixed gently. 60 data points were collected over each reaction. Akt-S 1

activity was monitored over 60 min typically with 93 tg lysate. MK2-S 1 and PKA-S3 activities

were monitored for 15 min typically with 50 gtg and 20 tg lysate, respectively. To quantify

product formation, different turnover amounts (5%, 10%, 15%) were simulated in triplicate and

lysis buffer was added as for a blank sample. For recombinant enzyme comparison, different

amounts ( 3) of recombinant enzyme were added with lysis buffer to begin the reaction. For

P]KA inhibition studies, the indicated concentration of H89 or PKItide was included in the assay

buffer. Chemosensor sensitivities were determined by comparing the absolute fluorescence of 10

I[t\ substrate and 10 [tM corresponding product phosphopeptides in triplicate under the

optimized assay conditions.

6.2.3. Signaling network measurements
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Briefly, 19 quantitative signaling network measurements-IKK activity, JNK1 activity, MK2

activity, P-EGFR (Y1068), total EGFR, P/total EGFR, P-MEK (S217/221), ERK activity, P-

IRSI (S636), P-IRS 1 (Y896), P-Akt (S473) by Western blot, total Akt, Akt activity, P-Akt

(S473) by antibody microarray, total Akt, P/total Akt, P-FKHR (S256), procaspase-8, cleaved

caspase-8, and procaspase-3-were compiled from triplicate biological samples treated with 0, 5,

100 ng/ml TNF and 0, 1, 100 ng/ml EGF or 0, 5, 500 ng/ml insulin for 0, 5, 15, 30, 60, 90 min or

2, 4, 8, 12, 16, 20, 24 hr. Exact treatment combinations are shown in Figures 2-17 and 2-18. For

autocrine perturbations, cells were pretreated with 10 [tg/ml C225 for one hr or cotreated with 10

Fig/ml IL-lra, then stimulated with 5 or 100 ng/ml TNF 21.

6.2.4. Apoptosis measurements

HT-29 cells were plated in 24-well plates at a density of 50,000 cells/cm 2, and were

sensitized and treated identically to the cells used in the corresponding signaling measurements

on the same day 21. After 12, 24, or 48 hours of cytokine treatment, the cells were trypsinized

until all cells were detached from the plate. The growth medium was combined with the

trypsinized cells to ensure capture of both floating and adherent cells in each well. The

combined pool of cells from each well was split into thirds; one third was analyzed for

phosphatidylserine exposure and membrane permeability, one third was fixed with methanol and

analyzed for cleaved caspase-cytokeratin, and one third was fixed with methanol (MeOH) and

analyzed for nuclear fragmentation. For the phosphatidylserine-membrane permeability

analysis, the cells were washed once with Annexin Binding Buffer (ABB, 10 mM HEPES, 140

mM NaCl, 2.5 mM CaCl2) and stained with Alexa Fluor 488-conjugated Annexin-V (Molecular

Probes) and I ug/ml propidium iodide (PI) for 10 minutes at room temperature. Excess ABB

was added and the cells were analyzed by a Becton Dickinson FACScan or FACSCalibur flow

cytometer. For the cleaved caspase-cytokeratin assay, MeOH-fixed cells were stored at -20 C for

up to 1 week. After centrifugation to remove the MeOH, cells were washed in PBS + 0.1%

Tween-20 (PBS-T), and were then stained with anti-cleaved caspase-3 (Cell Signaling) and anti-

cleaved cytokeratin (Roche) antibodies in PBS-T + 1 % bovine serum albumin (PBS-TB) for 1

hour at room temperature. The cells were washed and stained with secondary antibodies, Alexa
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Fluor 488-conjugated donkey anti-mouse IgG and Alexa Fluor 647-conjugated donkey anti-

rabbit IgG (Molecular Probes) in PBS-TB for 1 hour at room temperature. The cells were then

washed and analyzed on a Becton Dickinson FACSCalibur flow cytometer. For the nuclear

fragmentation assay, MeOH cells were stored at -20 C for up to one week. After centrifugation

to remove the MeOH, cells were washed once with PBS-T, and then incubated with 1 mg/ml

RNAse A in PBS-T for 2.5 hours. PI was then added at a final concentration of 50 ug/ml, and

the cells were analyzed on a FACSCalibur flow cytometer to quantify nuclear fragmentation.

For all flow cytometry assays, data was analyzed using FlowJo software (TreeStar).

To fuse quantitative measurements on different days, 100 ng/ml TNF and mock

treatments were always included as fixed positive and negative controls. Experimental samples

were then scaled by the TNF (membrane permeability and cleaved caspase-cytokeratin) or mock

(phosphatidylserine exposure and nuclear fragmentation) index for that day. By cross-validation

we verified that the magnitude and dynamics of these normalized apoptotic indices were highly

reproducible, with R2 = 0.79-0.98 [9]. The entire dataset of 1440 flow cytometry runs is

available in the Supporting Online Material.

6.2.5. Metric extraction

For each signaling time course, the following signaling metrics were derived:

a. Thirteen time-point metrics, defined as the mean signal at each point in the time course.

b. Thirteen instantaneous-derivative metrics, defined as the forward slope between the

current time point and the subsequent time point. For the final time point (24 hr), the

instantaneous derivative was set to zero.

c. Four summary metrics, which included the area under the curve for the entire time

course, the maximum signal, the mean signal, and the steady-state signal (defined as the

mean of the final four time points).

d. A variable number of peak metrics. For each signal a tolerance value (defined as a

percentage of the dynamic range of the signal) was set for the algorithm to classify an

upward fluctuation as a peak. Tolerances were set at: 50% for Akt activity, IKK activity,

and all antibody microarray measurements; 5% for JNK1 activity and MK2 activity; and

20% for all other signaling network measurements. For each peak identified, three
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metrics were extracted: area under the curve, activation slope (defined as the best linear

fit between the preceding local minimum and the peak maximum), and decay rate

(defined as the best exponential fit between the peak maximum and the proceeding local

minimum).

These signaling metrics are summarized in table S2. Metric extraction algorithms were coded in

MATLAB and are available upon request.

6.2.6. PLS model construction and validation

Prior to all analyses, the signaling and apoptosis matrices were variance scaled to

nondimensionalize the different measurements. The PLS model was constructed in the SIMCA-

P 10.0 (Umetrics) software suite according to the following iterative formulas:

E = X -tpr;E2 = E 1 - t2 P2 , t2 = Elwl; Ei Ei-l - tiPiT, ti Ei-lWi

F1 = Y - bltlql'r; F2 = F - b2t2q 2 r; F i = Fi- - bitiqiT

where Ei represents the residual of the i th principal component, with score vector ti, weight vector

wi, and loading vector Pi, and r represents transpose. Fi represents the residuals of the ith

dependent principal component, with score vector ti and loading vector qi, and bi represents the

coefficient characterizing the inner relation between the independent and dependent principal

components. Model predictions were made by leave-one-out crossvalidation for the TNF-EGF-

insulin treatments and by unbiased prediction for the autocrine perturbations [31. Model

uncertainties were calculated by jack-knifing 12671. Signaling axes and treatment mappings

(Figure 4-14E-G) were plotted using w,, w2 and t,, t2 respectively after a 60° subspace rotation

[2031. Centered and scaled coefficients were used as the regression weights.
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