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Abstract

Semiconductor-device limitations to system miniaturization have receded, but exposed by
their improvement numerous "ancillary" barriers which continue to preoccupy nearly every
electronics industry. Prominent among these obstacles are package parasitics and heat,
which have come to the fore as conventional circuits are applied in modern regimes of
frequency and integration density. To an ever increasing extent, integration limits are
symptoms of the fundamental frequency- and size-scaling limits of passive components.
Power inductors and transformers, in particular, are challenging to miniaturize because of
their poor performance when scaled down in size, and the difficulty of fabricating them with
available planar processes.

A family of approximating networks for transmission lines, the focus of this work, enables
miniaturization by internally circulating energy and exchanging delay fidelity for bulk en-
ergy storage. These multi-resonant components are substantially smaller than their lumped
counterparts, in particular requiring less inductance, and enforce useful waveform symme-
tries that can be traded for higher power or higher efficiency. Lumped analogs of transmis-
sion lines, and delay-based means of processing energy in general, exploit rather than fight
the parasitics which can restrict conventional designs to lower switching frequencies, and
are compatible with RF power-conversion techniques.

Printed-circuit and wafer- or package-scale construction methods for multi-resonant struc-
tures are presented, along with power-converter topologies that exploit the waveform sym-
metries they enforce. A new soft-switched RF power converter is introduced, in particular,
that demonstrates reductions in peak device stress and passive-component size. Taken
together, the construction techniques, networks, and converter topologies presented here
extend the power levels and applications for which passive components can be manufac-
tured in an integrated fashion, within a printed circuit board or at the die/package scale
alongside semiconductor switches and converter controls.
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Chapter 1

Introduction

NOTHING is so productive of problems as a good solution. Semiconductor devices, in

particular, have improved by every measure of performance in past decades to drive

miniaturization in digital, RF, and power electronics. Device limitations to system minia-

turization have receded, but exposed by their improvement numerous "ancillary" barriers

which continue to preoccupy nearly every electronics industry. Prominent among these ob-

stacles are package parasitics and heat, 1 which have come to the fore as old solutions are

applied in modern regimes of frequency and integration density. For instance, though digital

designers might dispute the contention, the cooling and packaging of modern CPUs (with

package-scale passives integration, point-of-load power conversion, and elaborate material

and thermal design), has demanded more attention and de novo design effort than the CPU

circuitry itself. The 1 MW phased-array radar from Raytheon's THAAD missile-defense

system is a modern example of a highly integrated, loss-limited system from RF electronics;

the dominant design, manufacturing, and maintenance expense of the radar installation is,

significantly, the glycol-refrigeration trailer.

In the design of miniaturized power electronics, parasitics and the interrelated concerns

of heat and efficiency are pitfalls facing a designer on either hand. Given the excellent

performance of modern switches, these pitfalls are to an ever greater extent symptoms of

the fundamental frequency- and size-scaling limits of passive components. The trend of

inverse-frequency scaling of passive-component values, by which decreased cycle-to-cycle

flux linkage and charge corresponds to a decrease in bulk, has reached a practical loss limit

for conventional materials. Moreover, reduction of passive-component size at a constant

1I am using "heat" here as a catch-all phrase for the trade-offs between heat-management and the
decidedly non-ancillary concern of efficiency. Given a commitment to integrated manufacture on all hands,
and the fact that many components are loss-limited rather than energy-storage-limited at frequencies of
interest, excess heat has become more and more a "given," and heat management - rather than bulkier
but efficient design - the solution.
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Introduction

switching frequency (where such reduction is even possible from energy-density consider-

ations) is attended by losses incompatible with typical converter efficiency and thermal

requirements. Power passive components are often constrained, therefore, to sizes imprac-

tically large for integrated manufacture, and system designers must tolerate the associated

parasitics. These parasitics - e.g., interconnect inductance in series with a load, or ground-

lead inductance in ripple-current shunt paths - erode the ripple performance of a power

circuit and slow its response to changing output conditions. Such power-delivery and pack-

aging issues are a significant bottleneck in the development of future microprocessors, for

instance, where extremely tight and localized control of power delivery will be necessary.

This thesis explores techniques for reducing the volume and values of passive components,

techniques which are compatible with a shift to HF and VHF switching frequencies, air-

core magnetics, and planar magnetic geometries. These techniques can increase converter

efficiency or power density, and have substantial manufacturing and cost advantages over

power converters with comparable specifications. At the core of these improvements are

multi-resonant components, structures which exploit rather than fight the parasitics which

plague conventional designs. These components reduce frequency-dependent losses and the

cut into the bulk of low-Q reactive energy storage, promising to extend the energy- and

loss-limited frontiers of miniaturization. Multi-resonant structures are not simple drop-in

replacements for passive components, notably, but alter converter operation in a manner

that can further benefit efficiency. The prize to be won for circumventing the conventional

limitations considered above is a galvanizing trend of size and cost reduction in power

electronics. Depending on the power level of application, reduced-volume passive elements

can be constructed on die or board scale, fabricated alongside semiconductor devices and

controls, or effectively printed within the thickness of PCB laminates. Both types of manu-

facture exploit the mask-based, batch-fabrication techniques that are central to the cost and

size benefits of integrated circuits, and can reduce or control the packaging and interconnect

parasitics that can otherwise limit power-circuit performance.2

2 "Integration," it should be noted, has two senses, referring to wafer-level fabrication and to miniatur-
ization techniques which reuse volume for multiple modes of energy storage. Notable within the "integrated
passives" field are techniques for manufacture of magnetic structures directly within PCB laminates, with a
degree of care in layout which is normally reserved for integrated circuits [1, 2].

- 20 -



1. 1 Magnetic scaling limitations

1.1 Magnetic scaling limitations

Power inductors and transformers are challenging to miniaturize - especially by available

planar processes - and suffer from chronically low Q at high frequencies and small scales.

Multi-resonant structures bypass the relevant energy- and loss-limited mechanisms, and are

moreover well-suited to the laminate form-factors which constrain integrated magnetics to

undesirable geometries.

Frequency-dependent losses place a lower bound on magnetic-component volume, volume

which would otherwise dwindle at higher switching frequencies and lower applied volt-

seconds. At high frequencies, loss (rather than energy storage) is the dominant consideration

in sizing magnetics. The core-loss densities of most power ferrite materials rise rapidly with

frequency in the megahertz range, necessitating flux de-rating as frequency is increased.3

As a result, magnetic component size does not always decrease with higher frequencies, but

can actually increase [3, section 15.3.1]. Air-core magnetics do not suffer this limitation,

but must be operated at still higher frequencies to compensate for reduced inductance

and the lack of a permeable core material. The multi-resonant structures constructed as

a part of this thesis contain no permeable materials, and are complemented by power-

conversion architectures capable of operating at tens to hundreds of megahertz, frequencies

well-matched to air-core inductors and the impedances of comparably sized capacitors.

For a fixed frequency, inductor Q decreases with smaller dimensions because of fundamental

scaling relationships between linear dimensions and flux- or current-carrying area. Consider

the inductor of Fig. 1. la when all linear dimensions in the core and winding decrease together

by a factor ac < 1 (e.g., fc is reduced to a). Winding resistance can be expressed as

R = NpI/A for N turns with resistivity p. The geometrical factor w,,lA, and hence

resistance, increases by 1/a. Inductance, conversely, scales as an area over a length:

pN2A,L =

so that Q = X/R decreases as ac2 without compensated winding build. Microfabricated

windings are often patterned with large dimensions relative to the core (when magnetic

3 Core loss considerations are of particular importance in magnetic elements with significant ac flux
components, such as transformers and resonant inductors.
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(a) area and length scaling in (b) Inductor geometries compatible with
magnetics planar manufacturing

A

core

I I I~ll~x ~ UI

X1 \"

Figure 1.1: (a) Limitations of magnetic scaling, considered as a fundamental relation-
ship between flux- and current-carrying areas to lengths. (b) Magnetic
geometries fabricated with planar processes

materials are employed at all) precisely to reduce winding loss.4 Similar scaling laws are

found for other inductor geometries [4, 5], including the planar spirals (see Fig. 1.lb) favored

for micro-scale fabrication [6, 7, 8]. Planar construction techniques introduce a host of fur-

ther restrictions - on assembly, winding layers, laminations, and form factor - which can

prevent the designer from even achieving the inductance and Q that might be anticipated

from the scaling of a board-level component.

Multi-resonant components do not rely on lossy inductive reactances exclusively, but ex-

change energy internally between electric and magnetic modes of energy storage. Because

high-Q capacitive reactances can be constructed with in relatively small volumes, higher-

order structures can circulate energy with less overall loss for a fixed volume. I.e., by

exchanging for higher Q the volume reduction that might otherwise attend decreased in-

ductance, multi-resonant structures can push back the loss limits of miniaturization. Also

unlike their fully magnetic counterparts, multi-resonant structures actually benefit from

laminar form-factors because of the leakage inductances peculiar to planar geometries, a

4Inasmuch as N is decreased by attempts to construct windings with larger conduction area, however,
Q can still suffer. As N decreases, flux linkage A decreases as N 2 , outstripping an approximately linear
decrease in winding resistance with N.

- 22 -
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1.2 Techniques for Reducing Passive- Component Values

claim which will be supported by measurements in Chapter 3,

1.2 Techniques for Reducing Passive-Component Values

Because passive components can be so troublesome to converter efficiency, bulk, and manu-

facturability, the task of doing more with less - of converting power with less capacitance

and inductance - is of major practical concern. Reduction of passive values has largely

been driven by increases in switching frequency. Rising from tens of kilohertz in the early

1970's into the megahertz range today, this converter "blue shift" has been enabled, in turn,

by new devices and materials better suited to high-frequency operation (e.g., power MOS-

FETs and new ferrite magnetic materials) and by circuits and components that reduce

the losses associated with high-frequency switching [9, 10]. Cellular conversion schemes,

significantly for manufacturability, reduce passive-component values on a cell-by-cell basis,

requiring that paralleled converters be rated for only fraction of the overall system power

[11]. Though such schemes can outperform their bulk counterparts through interleaved op-

eration, preferable from a standpoint of system miniaturization is an aggressive decrease,

rather than a subdivision, of bulk passives.

Multi-resonant components reduce passive volume at roughly constant efficiency, compared

to bulk passive elements, by circulating energy among internal modes of energy storage. As

we've seen, this reduction is especially significant for reducing the size of magnetics, and can

be exploited to increase efficiency at constant volume. To understand how multi-resonant

networks achieve these trade-offs, let us first consider in general terms the components they

replace.

1.2.1 Bulk reactive components

The standard distinction between direct and indirect converters developed in [12] and [13]

can be generalized to distinguish converters which modulate a direct connection between

source and load, and those which exchange energy with source and load during alternate

portions of a switching cycle. We can classify, on this basis, the class-E inverter of Fig. 1.2d

with the indirect converters of Fig. 1.2b and c, because it rings the energy in its drain-

- 23 -
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transport

(a)

/ rn.- I I A'..VC) rI of I tI -

transport transport

Figure 1.2: Energy-transport components in power-converter circuits

source capacitance toward the load once every switching cycle. Bringing the division to

the component level, we can distinguish between reactive elements with an energy-storage

and transport function - i.e., which pass energy between ports - and those which reflect

energy to the same port over a cycle to develop a reactive impedance. Components of the

first type are labelled Fig. 1.2, where the boost converter contains no "transport" elements,

notably, because it is a direct converter. Let us focus for a moment on components which

develop reactive impedance at the driving port.

Single-pole reactive elements develop large immitance by dispersing injected charge or over-

whelming applied volt-seconds over the course of a cycle, and we refer to such elements as

"bulk" capacitors and inductors for precisely this reason. The reaction impedance for the

capacitive case is depicted in Fig. 1.3a. The parallel-plate structure has a low impedance

when the plates are brought closer together, as the electric field between them is integrated

over a shorter distance (i.e., the geometry has less terminal voltage V for a given plate

charge Q). For practical film capacitors of comparable voltage rating, however, larger area

is the principal means of scaling reactance. Developing admittance is a problem of reducing

the integrated electric field; of diluting charge across a wide area to decrease surface-charge

density at the inner plate faces.

The pressure vessel of Fig. 1.3b illustrates this notion by a fluid analogy. The vessel contains

a compliant gas volume above a liquid phase, and is the hydraulic analog of the capacitor

- 24 -
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1.2 Techniques for Reducing Passive- Component Values

/V
V Q

/v + + + Q
+VAV + + QfromI',, + Q-aQ

from
Qdc to

131 UtU! U ' ac load
source

(a) capacitive reaction (b) hydraulic compliance
impedance

Figure 1.3: Low impedance viewed as charge dilution

on a force-voltage basis5 (see the discussions of lumped-parameter electromechanics in [14],

Chapter 3, and [15], section 4.4). The plenum has large ac compliance inasmuch as the

incremental back-pressure AP is small for an incremental flow AQ. Compliance is thus

analogous to capacitance -a ratio of charge to effort - and a large fluid compliance (a

large capacity) is again precisely a matter of dilution. An ideal reservoir can accommodate

arbitrary AQ at any frequency with no back-pressure; like a capacitor of infinite extent, it

accumulates no incremental charge density for any input current, and has zero incremental

impedance.

Inductance, continuing the force-voltage analogy, is analogous to inertia. Large inertia

corresponds to large bucking flux-linkage and many inductor turns. In both the mechanical

or electrical domains, a leading reaction impedance bears a clear relation to the volume of

the corresponding component.

5i.e., in which force or pressure is analogous to voltage, and flow or velocity to current. The pressure
vessel is incidentally an accumulator, most often employed to mitigate pressure ripple on hydraulic lines. It
is placed, for instance, close to the pressure port of the oil pump in most automotive power-steering systems.
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V

Ii

Figure 1.4: Mechanical analogies for bulk and resonant filters

1.2.2 Resonant and delay networks

The basic technique behind the structures of this thesis is a replacement of bulk energy

storage by resonance, as illustrated in Fig. 1.4. The action of a switch during converter

operation is represented schematically by the periodic application of effort, alternating on

the left and right of Fig. 1.4. The illustrations with the spring represent the case of a bulk

compliance; some effort is needed to effect the velocity v, and the reaction impedance of

the spring is available at any point during the switching cycle. In the case of the pendulum,

however, a small incremental mechanical impedance (like that of a large compliance or large

capacitor) is subject to a phase condition between the pendulum velocity and applied effort.

If the effort source has excited the pendulum at its eigenfrequency over previous cycles, this

phase condition is met for continued periodic effort. When the peak excursion is fixed-

which could correspond, for instance, to some steady-state application of a constant force or

voltage through a source impedance - the pendulum's potential energy aids in developing
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1.2 Techniques for Reducing Passive-Component Values

the velocity that would otherwise result from the application of force. The incremental

impedance F/v is nulled, not in the sense that pendulum has no inertia, but in the sense that

once excited, it requires no force to maintain a fixed peak excursion. That the impedance

is non-reactive in this case is insignificant. Effort and velocity (or voltage and current) are

in phase, but the source is not required to do any work inasmuch as the pendulum and

its suspension are lossless.6 We will see shortly how the resonant impedance condition is

compatible with the delivery of power from the effort source through the structure, but first

let us extend the treatment from the sinusoidal case to periodic waveforms in general.

Just as a pendulum's states, once excited, encode the fundamental phase and amplitude

of applied effort, so the states of a higher-order system can store converter waveforms

with many degrees of freedom, and again use terminal behavior from previous cycles to

manipulate impedances. Fig. 1.5 depicts the feedforward cancellation of a periodic waveform

by a delay, in illustration of this principle. Two types of cancellation are shown, the general

periodic case in Fig. 1.5a, and the half-wave symmetric case in Fig. 1.5b.7 The delay act

as record of applied input, and begins with nulled internal states to produce the output

shown. As with the pendulum, the delay must be "charged" by the input, during which

time the output is not cancelled, analogous to the manner in which work must be done on

the pendulum to excite it. Unlike the pendulum - the single conjugate mode of which

has two degrees of freedom with which to encode the amplitude and phase of its steady-

state response - the delays have an infinite number of states and can encode (and cancel)

arbitrary periodic inputs. In the case of Fig. 1.5b, which is of special importance in later

chapters, the record of applied input need only be one-half period long to effect cancellation

at the quiet port (note the change in sign at the summing junctions, corresponding to the

half-wave symmetry between the feedforward and delayed wave).

Fig. 1.6 builds upon feedforward cancellation, presenting in schematic form the effect of

stored, reflected waveforms at a driving port. The forward delay has been replaced by a

ring delay of the same overall record-length (half- and full-period) as the corresponding cases

6I am being cavalier in blurring distinctions between sinusoidal steady state and what appears to be,
from the position of the force source, and impulsive excitation. The basic fact remains, however, that once
excited to some fixed peak excursion, a lossless pendulum requires no additional work impulse to continue
swinging to the same height.

7 For the half-wave symmetric waveform, x(t) = -x(t ± T/2) for all t. I.e., the input in any given half-
period is the inverse of its value in adjacent half-periods (or more generally, it assumes a value symmetric
about its dc level).
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half-wave symmetric
periodic input input

7ILL'L 
T

LF--- I I IUJ
T T

(a) Full-wave delay (b) Half-wave delay

Figure 1.5: Feedforward cancellation of periodic waveforms

of Fig. 1.5. The circulating and terminal signals have the units of work, and cancellation

of the input signal (or more specifically, the ac input work) proceeds as before. For nulled

initial states, the input signal passes through half of the overall ring delay, is offset by some

constant value, and returns to the source. At the source, the return wave cancels the input at

the first summing junction (labelled "cancel") to whatever degree the overall transport delay

has faithfully preserved the input signal. The portion of the return energy which cancels

the input work is not destroyed, but reflected back around the ring, augmented from the

source by some incremental A (the result of imperfect cancellation) which compensates for

ring losses. After a startup transient, during which the ring delay is "charged," the system

is in periodic steady state and net ac work from the source is minimized.

The delay-cancellation effect shown in Fig. 1.6 is an ac phenomenon, and does not affect

the dc power delivered across the transport delay. For both of the depicted cases, the input

delivers constant power through the delay once periodic steady state is reached. This power

is absorbed by the offset term on the right of Figs. 1.6a and 1.6b (which in the depicted

simulations has a constant negative value equal to the average value of the input). Note

that there is nothing fundamental about this choice of source and sink, for purposes of

minimizing A. The half-wave symmetric "input" might as well represent the drain node of

a power converter, drawing energy through the ring delay from a dc source on the right.

Also not fundamental to the energy formulation in Fig. 1.6 are specific boundary conditions

at the input and output ports, corresponding to some particular relationship between effort

and flow variables. As we will see in the next chapter, the delays of Fig. 1.6 are implemented

with propagating waves which require cross-coupled modes of energy storage to subsist. The

effort and flow quantities comprising these waves require different sorts of termination to

circulate around the transport delay, entailing different terminal impedances at the ports.

The minimization condition for A, for instance, might correspond to a returning voltage
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ring delay
(at summing junction)
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(a) Full-wave delay ring
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A
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(b) Half-wave delay ring

Figure 1.6: Work cycles for half-cycle and full-cycle delays
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Introduction

wave in phase with an applied source voltage, in which case the cancellation condition

corresponds to an impedance maximum at which no current (ideally) is required from the

source. The treatment on an admittance or impedance basis will be developed further -

in relation to delay times, symmetries, and terminations - in Chapters 2 to 4

An important consideration worth mentioning here is that while the treatment began

impedance generation at the driving port, the delay ring of Fig. 1.6 can function as trans-

port element in the sense of Fig. 1.2. I.e., the energy stored in travelling waves can replace

lumped transport elements of the type shown in the indirect converters of Figs. 1.2b and c.

For the buck-boost converter of Fig. 1.2c, in particular, we can imagine a converter in which

the bulk inductance is replaced by a transmission delay. When switched in, the source can

launch a travelling wave along the delay, which returns to deliver its energy to the load

during the switch-off portion of the conversion cycle.

Reflected waves, significantly, are able to do work on the port which launched or sustained

them initially. Referring to Fig. 1.4, we can readily appreciate that the source may not

always command (on the mechanical analogy) velocity or displacement in the pendulum;

the pendulum is thoroughly capable of enforcing velocity with its inertia. For converter

systems of the half-wave type in Figs. 1.5b and 1.6b, this insight has an important conse-

quence. Given enough circulating energy and the proper timing of applied effort or flow, the

transport delay does not require a half-wave symmetric input to function, but can enforce

symmetry conditions at its ports. This important circuit-design concept can enable efficient

(i.e., soft) switching at very high frequencies, and will be explored further in Chapter 4.

The energy stored in travelling waves around the ring delay highlights one last point

worth mentioning, regarding the hidden cost of implementing delay-based power conver-

sion schemes. Fig. 1.6 glibly shows a constant "offset" on the right of both delay rings. The

dc condition at the offset terminal is equivalent to an ideal termination of the transport

delay at switching frequencies, one which enforces an ac energy-reflection condition while

sourcing or sinking dc power. Given the dynamic impedance of practical sources and sinks,

this dc port may be difficult to implement. 8

8In the converters considered in Chapter 4, for instance, this termination is a broadband ac short-circuit
at the source, required to sink several amps at 13-65 MHz. This termination is expensive, relative to the
small component values in the power stage.
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1.3 Contributions and Organization of the thesis

Multi-resonant components, and delay-based power electronics in general, is a conception

of energy conversion that dissolves inherited problems in power electronics, and is the fun-

damental contribution of this thesis. Whereas reduction of high-frequency parasitics is a

major preoccupation of circuit and component design, multi-resonant devices can incorpo-

rate parasitics to accomplish their function. Tolerance for irreducible parasitics encourages

a shift to much higher switching frequencies, as does the eschewal of lossy permeable ma-

terials and the imposition of waveform symmetries compatible with soft-switching. These

same symmetries can be leveraged to increase efficiency, should a designer choose increased

efficiency over increased power. Subject to some loss, the size of a network which imple-

ments a delay bears a precise relationship to the size of a corresponding lumped filter,

allowing accurate comparisons between conventional and resonant design on a constant-

performance or constant-volume basis. The glorious fact is that multi-resonant structures

can be much smaller than conventional reactive networks for constant ripple performance. 9

Circuit models for lumped approximations of transmission delays, as compared to lower-

order lumped networks with the same total inductance and capacitance, are presented in

Chapter 2 alongside background material for subsequent chapters.

It is worthwhile reiterating that a avoiding a straight energy-impedance or volume-impedance

tradeoff requires a gross departure from single-pole dynamics. Though the delays we will

consider are on the order of 10-100 nanoseconds, multi-resonant structures must still pro-

vide several cycles of phase shift at switching-frequency harmonics, all subject (for ideal

performance) to the same excitation condition depicted schematically in Fig. 1.4 (i.e., the

higher-order modes must still be excited at the proper point during a switching period).

Large phase shift implies that our networks must necessarily contain many poles, and hence

many inductors and capacitors. The phase conditions placed on these harmonic modes

highlights the need for an accurate understanding of high-order modal-frequency align-

ment, the subject of Chapter 3. This chapter presents a new clarification, in particular, of

the otherwise fuzzy boundary between lumped and distributed systems.

A new class of soft-switching HF/VHF power inverters incorporating multi-resonant net-

9Magnetic-volume reduction of three times was demonstrated using the single-resonant method for de-
veloping impedance at the switching fundamental, by electrical analogy to Fig. 1.4 [16, 17].
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works as delay elements is presented in Chapter 4. This converter is one of numerous

examples that could have been chosen to demonstrate the principles of Chapters 2 and 3.

The control context of this thesis will be considered in more detail here, in particular the

topology, tuning, and regulation issues which are perhaps the greatest barriers to operating

at dramatically increased switching frequencies.

Chapter 5 presents methods for fabricating structures which approximate delays, at both

the wafer/package and PCB scales. A 3-D copper electroformation process that extends the

practical dimensions of on-die magnetics is the central contribution of this chapter. Air-core

magnetic structures - suitable for switching frequencies higher than in the PCB case -

can be electrodeposited by this technique on finished die using additive, low-temperature

processes.

Memory- or delay-based power electronics in general, and multi-resonant components in

particular, are an effective means of reducing the values and bulk of passive components re-

quired to implement a power-conversion function. Multi-resonant passive networks enforce

converter waveform symmetries that can be exploited to increase efficiency or output power

with smaller reactive-component values, as will be seen in comparisons with conventional

power-electronics circuits. The components, converters, and manufacturing techniques pre-

sented in this thesis provide, moreover, a viable means for printing all converter passives

elements, including those normally considered too large for laminate construction.

As a final note, it should be mentioned that though we've introduced delay components in a

context of miniaturization and board- and die-level integration, there is no reason that multi-

resonant techniques cannot be applied to conventional discrete designs. As exemplified by

the I kW converter for the automotive electro-hydraulic power-steering system in Fig. 1.7

(shown alongside the component dimensions for its second-order, conducted-EMI filter),

passive sizes for discrete designs can dominate converter volume and contribute significantly

to material and assembly cost. Even without dramatic shifts in manufacturing technique,

reduction of parts count is of considerable value in a cost-sensitive designs for the automotive

industry.
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.65"

i0

W1 L"

0 

Physical dimensions the power converter module and EMI-filter compo-
nents for an Automotive EHPS (Electro-Hydraulic Power Steering) sys-
tem. The converter module is mounted in the hydraulic fluid reservoir,
so little extra volume is required for heatsinking. The volume of the 5
principle EMI filter elements (3 capacitors and 2 inductors) is 5.65 in3,
compared to about 6 in3 converter volume (control and power devices)
within the depicted enclosure.
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Chapter 2

Resonators and transmission lines

T HERE are two important regimes of operating frequency, distinguished by whether one

may treat a network as lumped or distributed. In the distributed regime, resonance

assumes its proper significance, namely - at "re-sonance" - reflected waves return through

a transport delay precisely in phase or out of phase with the sinusoidal drive depending on

the properties of the reflecting interface. On an impedance basis l, any frequency at which

a returning wave is in phase with applied effort is an impedance pole, and the generator

source impedance is bootstrapped insofar as the transport delay preserves the energy stored

in the travelling wave (cf. the electrical analog of Fig. 2.1a, top). With perfect fidelity, the

returning wave develops infinite input impedance at the driven port, requiring no flow

from the source. An inverted reflected wave, on the other hand, cancels source effort at

an impedance-zero frequency. The input port demands a large flow limited by the source

impedance Rs, completely collapsing source effort in the case of perfect return-wave fidelity.

Focusing on the electrical case, when a transmission line is longer than a some fraction of a

signal wavelength, the finite speed of signal propagation is significant (referring to Fig. 2.la,

"some fraction" is often set somewhat arbitrarily as the lower bound > A/10). Near the

lower bound, the schematic twin-lead lines of Fig. 2.la store less and less energy in travelling

waves, Kirchhoff's laws become less approximate when applied to the lines' port variables,

and partitioning of energy-storage volume becomes less ambiguous. Finally, when e < A,

the impedance of the short-circuited twin-lead of Fig. 2.1a closely approximates that of

the loop inductance Lo. The transmission-line conductors link flux in a quasistatic sense,

and the stored magnetic energy is accurately measured by the line's port variables (by loop

current, in this case). Likewise for the open-circuit termination, as f << A the line impedance

approaches that of the low-frequency line capacitance Co, and the unloaded source voltage

1according to typical impedance analogies between electric and mechanical system, "effort" is a voltage
or a force, and "flow," "current," and "velocity" are interchangeable.
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(a) Distributed resonances (b) Lumped resonance
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Figure 2.1: Distributed and lumped resonators, demonstrating how stored waveforms
can develop impedance extrema

accurately measures the electrical energy stored in the structure.

In this lumped regime, so-called because of the partitioning of energy storage elements, reso-

nance is perhaps not immediately recognizable as a case of waveform storage or delay in the

sense of Chapter 1. Consider, however, the circulating current in the tank of Fig. 2.lb. At

resonance, the voltage across the network is Vin = IinR. Since the inductive and capacitive

reactances are equal in magnitude at resonance, the inductor and capacitor branch currents

are also equal in magnitude:

I/Li = Ii l R _ n inl R- = Q in[Z w0L L L/C

Though the current flowing in the inductive and capacitive branches is Q times higher

than the net terminal current, the network impedance is also Q times as higher than either

reactance at resonance. The tank circulating current, therefore, is the current that would

have been provided from by external network had it driven either reactance with the same

voltage magnitude Vin at the resonator terminals. In the parallel-tuned case, we can think

of the capacitor as storing - at one frequency woo = 1/ - the current that would have

been supplied in its absence. Once energized, and with perfect cycle-to-cycle energy fidelity

(infinite tank Q), the tank capacitance supplies all of the current necessary to maintain Vin

across L, and the input impedance is infinitely large.

As introduced in Chapter 1, the waveform-storage properties of resonances (in both the
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2.1 Networks with one resonance
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Figure 2.2: (a) Buck converter demonstrating the reduction in output-network com-
ponent values by the introduction of a series-tuned resonance. As shown
in (b), the output-network presents a low impedance at the converter
switching frequency fs,.

distributed and lumped regimes) can supplant bulk energy-storage in power converters.

Though electrical resonances are considered in this chapter, the same framework- Q,

characteristic impedance, and coupling - applies to the electromechanical analogs of Chap-

ter 6. We will extend the present discussion to multi-resonant structures in Section 2.2, after

considering their single-resonant counterparts in more detail.

2.1 Networks with one resonance

Networks incorporating a single resonance are a convenient means of reducing the volume

of the passive components in a power converter, and for increasing converter control band-

width. Resonant ripple filters with active tuning control [16]-[19] use the immitance peaking

of series- and parallel-tuned networks to provide extra attenuation at discrete frequencies,

reducing the requirements on accompanying low-pass networks. A series-tuned resonator in

parallel with the load in Fig. 2.2a), for instance, diverts power-stage ripple currents away

from the load at the switching frequency when properly tuned (res = 2rfsw). With deep
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resonant attenuation of the fundamental, higher switching harmonics need not be atten-

uated as effectively to maintain peak-to-peak ripple performance (Fig. 2.2c), so that the

corner frequency of an accompanying low-pass filter (comprising the 20 piH buck inductor

and output capacitor C) can increase nearly two times. Though the resonator introduces

more passive components into the output network, the total value of the passives compo-

nents (as well as their bulk) can typically be reduced three times or more [16, 18, 17].

Along with smaller passive components - i.e., less capacitance and inductance - comes

faster closed-loop response. Consider the buck converter and resonant-filter buck converter

in Fig. 2.3 operating under average current-mode control, where instead of a series-tuned

network, a parallel-tuned resonator has been introduced into the switching cell. In this

dual of Fig. 2.2a, the increase in low-pass corner frequency is due to a decrease in the buck

inductance, which diminishes more than 4.9 times (from 59 H to 12 H) while maintaining

constant peak-to-peak current ripple. The average inductor current in the converter with the

resonant filter can slew more than twice as fast as the regular buck converter, for the same

current-loop phase margin and ripple performance (at D = 0.5). The power-cell resonance

is closed within the current loop, so the outer voltage-loop has no special complications; the

controller commands inductor current into the same load and output capacitor, but with

higher bandwidth in the resonant case.

The smaller passive values in resonant networks can also reduce manufacturing and material

costs. The magnetizing inductance LA of air-core transformers and inductors, for instance,

are typically too low for many practical power-conversion applications. A capacitor in

parallel with a low L (Fig. 2.4), however, decreases the current supplied by the driving

network - at the resonant frequency - by ringing the magnetizing current i from an in-

ternal mode of energy storage. Such single-resonant techniques have made printed-magnetic

implementations of gate drives and isolated converters practical [20].

To take advantage of high-Q resonant filters, a designer must ensure that the converter

switching frequency remains aligned with the filter resonance across component variations

and operating conditions. Excitation of a resonance is equivalent to maintaining a resis-

tive phase relationship (0°) between resonator voltage and current, a phase shift which

increases or decreases monotonically around the 0° tuning point (viz. the grey phase curve

of Fig. 2.4b). Whether a network's impedance transitions from capacitive to inductive

phase or vice versa past resonance, the I - V phase difference can be used as an error signal
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(a) Current-loop step response
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Simulated step responses of current-control loops for a (a) buck converter
and (b) a buck converter with a power-stage resonance, demonstrating an
increase in control bandwidth accompanying a reduction in power-stage
inductance. Both converters are 300-kHz, 36 W buck converters under
average current-mode control, and the magnetics are designed for ferrite
cores using manufacturer's loss models. That the resonant filter behaves
like a smaller inductor across the regulation bandwidth is plausible: the
resonator Q is high enough that impedance variations are appreciable only
above half the switching frequency, yet not so high that earlier crossover
is necessary to maintain acceptable gain margin in the current-command
loop.
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(a) A resonant transformer (b) Impedance magnitude IZinl of
primary resonant primary

0IZin ) C L:"i : ,- .! : . : ::
Frequency/wres

Figure 2.4: A resonant transformer primary, illustrating how magnetizing current i,
can be supplied by the capacitance C, increasing the impedance Zin seen
from the primary terminals at a discrete frequency.

(a) Switching-frequency control (b) Resonant-frequency control
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Figure 2.5: Two tuning methods which assure resonant attenuation over a range of
component values and operating conditions

to tune an excitation to the frequency of maximum immitance or attenuation, as shown

schematically in Fig. 2.5a. The phase-lock tuning systems presented in [16, 18, 17] employ

this method precisely, feeding back impedance phase to drive a voltage-controlled oscillator

(VCO) toward a series- or parallel-tuned frequency.

Phase-sensing control can be applied to tune a filter resonant frequency (as in Fig. 2.5b)

rather than a converter switching frequency. An electrically controlled reactance imple-

mented, for instance, with a cross-field reactor [21]-[24] can shift a filter transmission null

as currents are applied to a control winding. An advantage of the resonance-tuning approach

is that it can support tuned attenuation of multiple harmonic frequencies.
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2.2 Networks with multiple resonances

tuned to tuned to
fsw 2fsw

Vin Rload

Figure 2.6: Cascaded, parallel-tuned resonators in the power-stage of a buck con-
verter, an extension of the network in Fig. 2.3

2.2 Networks with multiple resonances

Multi-resonant extensions of filters like those in Section 2.1 could realize even greater at-

tenuation than their single-resonant counterparts. Discrete resonators might be cascaded

as in Fig. 2.6, with branch or mesh resonances tuned to a fundamental frequency and select

harmonics. Such networks could present impedance extrema to a general class of peri-

odic waveforms, rather than just one frequency-component of a switching waveform, as in

Fig. 2.2b. In the PWM converters of Figs. 2.2 and 2.3b, a single resonance is aligned to

Wres = 27fsw so that switching ripple is mitigated most effectively at a duty ratio D = 0.5.

Harmonic resonances at the second or third multiple of fsw could effectively limit peak-to-

peak load-voltage ripple over a broader range of duty ratios.

The performance promise of multiple, discrete resonators is undermined by practical con-

siderations of tolerance and volume. The alignment of multiple modal frequencies, whether

by careful manufacture or closed-loop control (along the lines of Fig 2.5), grows so rapidly

in complexity as to be impractical for mass-manufactured power electronics.2 The cascaded

approach to synthesis, moreover, is volume-inefficient beyond two or three resonances, as

will be demonstrated in Section 2.3.

A transmission-line resonator (cf. Fig. 2.7) circumvents the problems of large size and

imprecise alignment of critical-frequencies quite naturally. Whether terminated in an open

or short, the line and its boundary conditions develop many extrema in Zin - an infinite

number in the lossless case - by a corresponding number of modeshapes superposed along

a single arrangement of conductors and dielectric. The material of the line is effectively

2In large power-electronics systems the effort may be cost-effective. The 2 GW, 12-pulse inverter at
Sandy Pond in Massachusetts, for instance, has 100-yard long banks of carefully aligned harmonic traps on
its AC side.
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ZSC I 1in

Figure 2.7: A uniform, lossless transmission line used to introduce the frequency re-
lationships of impedance nulls and peaks.

reused, and such a distributed structure is much smaller than a cascaded realization of the

same impedance extrema (with one resonator per mode, as in Fig. 2.6). The impedance pole

and zero frequencies, corresponding to standing-wave constraints enforced by the the line's

termination and propagation properties, are precisely related among themselves inasmuch

as the line and its terminations are predictable.

Expressions for the critical frequencies of the terminated line can be derived by reference

to Fig. 2.7, which illustrates a line of length short-circuited at the far end. Zin might

represent the impedance seen from a drain node in a power converter - looking back to

the source or toward the load -in which the terminal short is approximated in practice

by a small AC reactance (a large capacitance). If L' and C' are the distributed inductance

and capacitance per unit length, the input impedance is a transcendental function with an

infinite number of j-axis poles [25]:

ZC =-- j tan (wCe ) (2.1)

The zeros of Zisn are seen to lie at s = jw,, where

/r
WV,/ V7 for v = 0, 2, 4,... (2.2)

The admittance, likewise, is

Yi =-j cot (we ) (2.3)

so that the poles of Zsc are described by Eqn. 2.2 for odd integral v. By a similar develop-

ment for an open-circuit termination, Zj c is maximum at DC and all even integral multiples

of the first null frequency. In a converter whose switching frequency fsw is aligned to the

first impedance maximum of a open-circuited transmission line, therefore, the line presents
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2.2 Networks with multiple resonances

Measured Zin of a 13.61 MHz A/4-wave section of RG-58/U coax

1 r 3 .... .. ....... .. ....... ... ........ ...........................IU
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Figure 2.8: Measured input impedance of a 13.61 MHz A/4-wave section of RG-58/U
coaxial line, terminated in a short circuit

high impedance to dc and all integral multiples of the switching fundamental, i.e., a high

impedance to any waveform periodic in T = 1/fsw.

The measured input impedance of a 136" length of RG-58 coaxial line terminated in a

short is shown in Fig. 2.2. The principal quarter-wave resonance at w1/27r = 13.61 MHz

is followed by zeros and poles at even and odd multiples of wl, respectively, as just de-

scribed. For a voltage excitation with period T = 2/1 from a finite source impedance,

the low even-harmonic impedance will effectively short out the corresponding harmonics

(w2 , 4, 6 , ... ). Because the line will not collapse odd-harmonic voltages,3 the voltage

waveform at the input port will be half-wave symmetric, as depicted in Fig. 2.9a. At even

multiples of wl, the line will draw large currents by collapsing the effort applied by the

source. The input-port current will have enriched even-harmonic content or, equivalently,

one-half the period T = 27r/lwl of the source. The current in this case is half-wave repeating,

a sum of even harmonics as shown in Fig. 2.9b.

3The line is a quarter-wave transformer of the short-circuit termination at w = i, with a large
impedance at that frequency and all its odd multiples. Recall that for every additional A/4 length of
line the driving-point impedance is inverted. In the lossless case the line transforms the termination from
a short -+ open -+ short - .. for successive zero -* pole - zero -, ... at each of which, successively,
the line is electrically one quarter-wavelength longer.
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(a) Half-wave symmetric (b) Half-wave repeating

wt

E sin(nwt) E sin(nwt)
n odd n even

Figure 2.9: The sum of odd harmonics is a half-wave symmetric waveform, and the
sum of even harmonics is a half-wave repeating waveform.

Note that the V-I symmetry relations are the result of the line's infinite-dimensional dy-

namics, and obtain even for a half-period of effort by the source. If the external circuit

imposes a voltage waveform during the first half of a cycle, the transmission line will be-

come energized so as to impose a half-wave symmetric voltage during the other half, even

if the source is removed. The line stores the voltage waveform in a travelling wave along its

length, which returns delayed by one-half fundamental period and inverted, because of the

power-reflection condition at the short-circuit termination. The applied current wave also

returns, delayed r/wl seconds but erect, so that the line attempts to do the same work on

the network at its input port that was done on the line in the first half of the cycle.

Multi-resonant networks, as exemplified by the transmission line, are much more than a

means of generating large impedance extremes, by analogy to the single-resonant case. The

control of zero and pole frequencies is key to enforcing symmetries in voltage and current

waveforms, and is a ready means of not only reducing the volume of passive components

in a power converter, but of limiting device stresses, increasing efficiency, creating soft-

switching opportunities, or altogether eliminating switches in certain cases. Applications of

transmission lines and their approximating networks will be considered further in Chapter 4.
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2.3 Lumped models for the terminated transmission line

Chapter 3 treats in detail the problem of constructing compact structures which mimic the

driving-point impedance of a transmission line over a range of frequencies. These designs

are based upon lumped models of the line, so it is of some interest to discuss possible ways of

synthesizing finite-dimensional networks simulating a full, infinite-dimensional transmission

delay.

The transcendental functions describing the input immitance of a transmission line (Eqns.

2.1 and 2.3) have an infinite number of ordinary poles, and can at best only be approximated

by a finite network. However, since the poles are all simple and lie on the jw-axis, and the

residues are all real and positive, it is reasonable that a lumped, finite network can be

constructed which simulates the impedance Zsc over a finite range of frequencies [26]. Such

a simulating network has several possible forms, though the so-called Foster form (considered

further in Section 2.3.1) is easiest to derive because of its explicit relationship to modal

frequencies.

A generic expression for the input impedance Zin(s) of the line of Fig. 2.7 has a finite number

of simple zeros at s = , ±s 2 , Is 4 ,..., and simple poles at the points Isl, s3, .... As a

quotient of factored polynomials Zin(s) has the form

Z(s) = G' S(S2 - S22)(S2 - S42)(S2 562) ... (2.4)
(s2 - sl2)(s2 -s32)(s2 - 552) ...

where G is a constant impedance-level factor, and each factor (s2 - s2 ) = (s + jw) (s -jI)

represents a pair of conjugate, imaginary critical frequencies. For w << w, Z(s) is dominated

by the factor s = jw in the numerator, and is evidently an impedance function describing the

short-circuit case. Evaluated at any s = jw, the impedance will have a real and imaginary

component Z(jw) = R(jw) + jX(jw), but because the singularities of the transmission-line

impedance Zs, lie along the jw-axis, Z(s) cannot consume any average power in sinusoidal

steady state, and is represented fully by its lossless reactance function Z(jw) = X(jw).

The reactance function X(jw) has several properties worth mentioning because of the insight

they offer into the network synthesis problem. X(jw), first of all, has a positive nonzero
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(a) X(s) complex
map (b) an exemplary reactance function
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Figure 2.10: An exemplary reactance function X(jw)

slope at all j-axis frequencies, i.e.,

dX(s)] > 0

In the context of a Lagrangian formulation for network equilibrium in terms of associ-

ated energy functions [27, Chapter 10], this constraint on reactance slope follows from the

Cauchy-Riemann equations [28, Chapter 6] and is of a fundamental character. From an

intuitive point of view in the complex plane (viz. Fig. 2.10a), Z(jw) will assume completely

inductive or capacitive phase when evaluated along the positive jw axis. For either 490 °,

the reactances wL and -1/wC increase with increasing w.

The dX/dw > 0 condition shows in the first place, and in agreement with the assumed

formulation of Eqn. 2.4, that all of the zeros must be simple. Referring to Fig. 2.10b, X(jw)

clearly has one intersection with the w-axis for each capacitive-to-inductive traverse, and

since the corresponding analysis on an admittance basis shows the slope of the susceptance

function Y(jw) = jB(jw) to be strictly positive, the zeros of Y(s) and the poles of Z(s) are

likewise simple. The positive-slope condition requires, secondly, that poles and zeros must

alternate since X(jw) is constrained to the general appearance of Fig. 2.10b. I.e.,

0 < Wl < W2 < W3 < W4 < '''

Two zeros cannot follow in succession because reactance always increases with (0, nor can

two poles, since the reciprocal B(jw) has the same character. The customary interpretation

of the complex Z-plane as the surface of a sphere is important to keep in mind here, on the

surface of which the imaginary axis is a great circle passing through the south pole at Z = 0
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w=O 00
w - 0 x0 'Z(j:) - x o x o xo 

W1 W2 W3 W4 W5 W6

Figure 2.11: Frequency pattern depicting all the information necessary to specify a
reactance or susceptance function. For this particular arrangement of wl-
w6, the alternation property of poles and zeros requires that Z(s) have a
zero at s = 0 and a pole s = oc, because the lowest and highest non-zero
critical frequencies are pole and zero, respectively.

and through the north pole at Z = c. Passage through X = oc results in the behavior

shown in Fig. 2.10b where, after reaching +oo, the function emerges out of -0c without

violating the condition that it must continuously increase.4

X(s) has further structure which determines its asymptotic high- and low-frequency behav-

ior. If the highest-index factor (s - s,) in Eqn. 2.4 is in the numerator, then its degree is

evidently larger by one than the degree of the denominator, and the function Z(s) has a

simple pole at s = oc. If the last factor is in the denominator, then the denominator degree

exceeds that of the numerator by one, and Z(s) has a zero at s = co. The former case corre-

sponds to a inductance dominating the high-frequency dynamics of Z(jw) for w > w,, and

the latter case to asymptotic capacitive impedance. This limiting high-frequency behavior

is a property of the finite-order approximation for the transmission-line impedance; the line

itself has no asymptotic behavior at s = oc in the lossless case. The zero at s = 0 results

from the factor s in the numerator (the numerator must incidentally be odd), corresponding

to low-frequency inductive reactive and a short-circuit termination. If instead Z(s) is an

even-over-odd quotient, then the point s = 0 is a pole, corresponding to an open-circuit

termination. 5 Whether the point s = 0 is a zero or pole is independent of whether the point

s = o is a zero or pole.

Because of the alternation property of the zeros and poles explained above, a specification

of the finite nonzero critical frequencies of X(jw) determines the behavior at the points

s = 0 and s = oo. A frequency pattern such as that in Fig. 2.11 is sufficient to specify X(s)

up to its impedance-level factor G. Though this development started with an odd-over-even

reactance function, a pole at s = 0 shifts the conventional indices of critical frequencies -

4this behavior is reminiscent of the Nyquist D-contour, encircling the complex right half-plane by a similar
passage through s = oo.

5Note that, along with the odd/even-order property of the polynomials as a whole, the conjugate pole-
pairs in numerator in denominator ensure that the degrees of their respective summands are odd/even
interleaved.
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the poles and zeros, numbered with increasing w - so that the poles have even-numbered,

and the zeros odd-numbered indices.

2.3.1 Foster realizations of transmission-line impedance

Though we will make much use later of the insights gained from the rational form of X(s),

a partial-fraction expansion for X(s) is useful for the line-impedance synthesis problem

at hand. X(s) may be written in terms of the residues k, k3, k5, ... k in its poles at

S =- ±jW 1, +jW3, jw 5,... and s = oc respectively [26, Sections 2.1 and 3.2]:

2k1s 2k 3s 2k5s
X(s) = 2 2+ 2+3 2 + 2 +S + ... + kos (2.5)

s2 + W12 S2 + W3q2 S2 + W52

Here we've assumed that the high-frequency reactance is asymptotically inductive by the

inclusion of the k term, which will vanish for a zero at s = oc. These residues may be

evaluated by several methods [28], including the well-known Heaviside "cover-up" method,

viz.

kn = [(s - s)X(s)]=,,, (2.6)

In the form of Eqn. 2.4 with unity impedance-level factor, and setting the highest finite

critical frequency arbitrarily at w = W4, the residue in the pole at w is

s(s2 + 22)(2 + 42)
(s - jl)Z(s) = (s + 02 )(s2 + W432)

and since s = jwl
kx - (W2

2 - W1
2)(W4 2 - W 1

2 )

2(W 3
2

- w1
2 )

More useful in the case of a transcendental impedance function, with an infinite number

of poles, is an expression for the residues in terms of the slope of the susceptance B(s)

X(s)-1:

ds 
:~= L ds J (2.7)

A thorough development of this expression is found in [28, Chapter 6, Art. 15], but a brief

example here will show the equivalence to more familiar means of partial-fraction expansion.
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(a) series Foster form, open-circuit
L4 L2

,,, .....

(b) series Foster form, short-circuit (c) parallel Foster, short-circuit

L1 L 3 L 5 L 27r2 L = -
2 L L 6 2

C, = C Co C = 8C2 ..... 27

Figure 2.12: A canonical Foster form (a) for network synthesis in the case of an open-
circuited line, and series (b) and parallel (c) Foster realizations of the
impedance of a transmission line with short-circuit termination

For the same residue considered above, the admittance function is

Y(8 _ (82 - s12)(s2 - 32) _ Q(s)
() s(s2 - s22)(2 - 42) P(s)

and since Q(sl) = 0,

dY(s)1 [P(s)Q'(s) - Q(s)P'(s) Q(i) (2.8)
ds __8 LP 2 (s) =81 P(S)

If we now write Q(s) = (s2 + w12)q(s), then

Q'(sI) = [(S2 + w2)q'(s) + 2sq(s)]s = 2slq(sl)

Substitution of this expression into Eqn. 2.8 and the result into Eqn. 2.7 yields, on an

impedance basis
P (s) [( 2 + W2

2 )(s2 + W42 )1
2slq(s1) 2(S2 + w 3

2 ) S2=-W12

In agreement with the earlier result.

The admittance-slope expression provides a ready means of synthesizing a reactance or

susceptance function when its zeros and slope are easily determined, even if the function

itself is not algebraic and subject to the development of Eqn. 2.6. For the transmission-line

impedance of Eqn. 2.1, for instance, component values in the so-called series Foster form
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(Fig. 2.12b [29, Chapter 4]) can be determined by a term-by-term comparison of the Foster

impedance to Eqn. 2.5:

1 1s

ZFoster = 2 + + + sL
L1C 1 L 3C3

from which
2 1 1

W L and 2k=, for v = 1,3,5,...

where the Lo = k term will vanish in the case of a zero at s = oc. Rewriting in terms of

the susceptance slope:

1 dB(s)] 1 1C, d J= and L=

for v = 1, 3, 5,.... Referring back to the short-circuit admittance Ysc of the transmission

line in Eqn. 2.3, the zero admittance frequencies are

vTr
W 2 L for v = 1, 3, 5,...

from which the Foster capacitances can be found:

[ds . L = C' = Co (2.9)[ ds JL'sin 2

I.e., Cv = Co/2, where Co is the total open-circuit, low-frequency line capacitance. The

corresponding modal inductances L, decrease as the square of the mode-number:

L, = 8Lo where Lo = L'f (2.10)

For the parallel Foster form (Fig. 2.12c), a dual development from a partial-fraction expan-

sion for susceptance is straightforward:

1 dX (s) and C

for v = 1, 3, 5, ..., in which s, = jw, are the poles of Y(s) and the zeros of Z(s). In the

transmission-line case, again noting a shift in the numbering of critical frequencies, the
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LoAL Lo
2n

. 1 1 T ........ AC

Figure 2.13: Iterated Cauer model for the transmission line. n iterated T-sections are
shown, though L and sections could be used. The total open-circuit
line capacitance Co is divided into n equal AC, and the short-circuit line
inductance Lo is divided into 2n equal AL (the left and right crossbars of
each T-section). The AL of adjacent T-sections add to Lo/in along the line,
with half-sections at either end. Such an arrangement has a higher cutoff
frequency than the network with uniform inductances (see Section 2.3.3)

derivative of Zsc (Eqn. 2.1) yields series-tuned inductances and capacitances:

Lo 8 C0
L,= Cv= 2 (2.11)

These expressions for line modes - in terms of modal inductance and capacitance - are

useful for design comparisons because they are expressed in terms of Co and Lo, the total

low-frequency open-circuit line capacitance and short-circuit line inductance. The relative

merits of distributed resonators, lumped resonators, and bulk filters can now be treated

on a common basis. E.g., for a given total Co and Lo, the first impedance maximum on

a shorted line has an index v = 1 (with v = 0 for the DC zero). From Eqn. 2.10 and the

modal capacitance C, = Co/2, the first quarter-wave resonance is at

1 1
Hz

2w7 1C1 = 4L 0

This resonant frequency is 7/2 times higher than the knee frequency of a 2nd-order low-

pass filter, should Lo and Co be used in such a manner. Assuming a switching frequency of

(2 /LiC)- 1 Hz, a designer can compare the -401og 10 (w/2) dB attenuation in low-pass

case to the attenuation expected from the resonator (this attenuation depends, in turn, on

Q and the impedance mismatch the resonator sees).
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AL

Zin2

Figure 2.14: Input impedance of a semi-infinite ladder network

2.3.2 Cauer-form realizations of transmission-line impedance

Though the Foster realization yields a precise match to the impedance-maxima frequen-

cies of the transmission line, an iterated network of the so-called Cauer form6 (Fig. 2.13)

exhibits an approximate harmonic alignment of peaks and nulls. Indeed, the network is

a physical analog of a transmission line, comprising iterated L- or T- or -sections, with

section inductance and capacitance AL and AC approximating the continuously varying

magnetic and electrical quantities along the line. A semi-infinite ladder network of infinites-

imally small inductors and capacitors (cf. Fig 2.3.2, with AL, AC - 0), has a purely real

input impedance over an infinite bandwidth - like a lossless line - and can store infi-

nite energy in waves propagating down its length. When terminated in its characteristic

impedance /ALV/AC, the infinitesimally sectioned ladder simulates the distributed line

over an arbitrarily large bandwidth.

In RF design, uniform, lumped Cauer networks are used to realize delays with smaller overall

volume than sections of transmission line. These lumped analogs offer greater control over

line constants (e.g., characteristic impedance) than is readily achieved with distributed

lines [30, Chapter 5]. The finite number of poles of the artificial line, however, bounds the

high-frequency phase shift of the network; exactly like the algebraic expression of Eqn. 2.4,

a coarse Cauer network approximates the unbounded high-frequency phase-shift of the

infinite-dimensional delay. Of practical importance to an RF designer is a measure of the

bandwidth over which the lumped analog is useful.

6 Note that Cauer form, in which L and C series and shunt branches alternate along a ladder network,
is distinct from Cauer synthesis, a technique for pole-zero placement in a network of Cauer structure (see
Section 3.4). That a network is in "Cauer form" does not imply that its L and C values have been selected
using Cauer synthesis.
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2.3.3 Cut-off frequency

The useful approximation bandwidth for an iterated ladder network is usually expressed as

a fraction of the cutoff frequency Wh, the frequency below which the input impedance of the

artificial line - when terminated in its characteristic impedance - has a real component

[30, Section 5.7]. The cutoff frequency can be derived by assuming that input impedance

of the artificial line is constant after the removal of one iterated section, an approximation

which holds true for a large number of sections. Considering again the network of Fig. 2.3.2,

the input impedance can be expressed as:

Zin = sAL + sC Zin2

Because Zin = Zin 2 in the semi-infinite case:

SL. 1 Zin
Zin = sAL + 1sAC (Zin-SAL)( + Zi 

ZTA= sA-(s -ZinSAC
From which

sAL ± s2AL 2 + 4-L/AC sAL I (2.12)
Zin = 1± +2 AC) (2.12)

2 2 2ALAC

Substituting s = jw, the rightmost radical in Eqn. 2.12 is the only term in the bracketed

expression that contributes to a real component of the input impedance. At low frequencies,

for a given choice of ALAC, the term -4/(w 2ALAC) is large with respect to unity, and

Zin has a real component. At the cutoff frequency w = Wh, Zin becomes purely reactive.

I.e.,
4 21_ =0 Wh

(W ALAC) ALAC

No power can be delivered through the line above wh, since the input impedance is dom-

inated by the input-section inductance AL, effectively shorted across the input terminals

by the first lumped capacitance AC. Given no restrictions on the fineness of discretiza-

tion, transmission-line behavior can be simulated with arbitrary precision by the choice of

a sufficiently small section delay v/ALAC.

Zin for a finite, lumped network deviates far from the distributed-system input impedance

well below the cutoff frequency, a discrepancy which is usually expressed in terms of phase
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error or input-impedance variation for a matched, lumped ladder. No good expressions for

the frequency deviation of coarsely discretized artificial lines seem to be published, with

most authors relying on ad hoc guidelines, e.g., that electrical lengths be more than 10

times less the shortest wavelength of interest.

2.3.4 Choosing total line inductance and capacitance

Building upon the derivation of modal inductance and capacitance in Section 2.3.1, we can

approximate the first few non-zero critical frequencies of an iterated network in terms of

the total inductance and capacitance along the line. For alignment with some switching

frequency fsw, we simply choose Lo = nAL and Co = nAC (for n iterated sections) to have

the correct product, and rely on the fine discretization of the Cauer network to align higher-

order poles and zeros with switching harmonics. The characteristic impedance V/LoCo of

the iterated network can be set from manufacturing considerations, or to match impedance

levels in a circuit. A design with larger inductances and smaller capacitances, for instance,

will ring up to higher impedances for the same Q, with smaller capacitor-plate areas that

may be less expensive to fabricate.

To demonstrate selection of Lo and Co, suppose we wish to align the zeros of a short-

circuited transmission-line analog to even harmonics of a switching frequency. Impedance

zeros in a short-circuited line are described by the series-tuned network from Fig. 2.12c

Ltot 8Ctot
2 C= 22

The first nonzero null has an index u = 2 (i.e., = 0 for the DC zero, v = 1 for the first

peak). We would choose L2 and C27 to resonate at 2fsw in this case, from which the relation

between the switching fundamental and total line values Lo and Co is:

2fsw=+[ = L2.1 -1
2=2 2 (2.13)

Alternately, we might wish to align the first non-zero eigenvalue of an open-circuited network

to a switching frequency. The impedance peaks in this case are described by parallel-tuned

7Note that we are not constructing these components, just using them to model the desired line mode.
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simulating networks with values:

8Lo C o
LV 2 2

0 V 2
L lr2 v = 2

The mode of interest again has an index v = 2, so our alignment condition expressed in

terms of total capacitance and inductance becomes:

2L 0 .Co 214
2ifsw = = ~L (2.14)

Note that an iterated approximation of a transmission-line impedance is particularly volume-

efficient because modal inductances and capacitances arise from different modeshapes on

the same structure. The Foster forms, by comparison, are bulkier than the Cauer network

beyond two or three resonances: they require, for each peak or null, one component which

is half as large as the corresponding total-line value (Lo or Co).

2.4 Critical-frequency alignment of lumped lines

Chapter 3 presents impedance measurements for lumped transmission-line analogs; in light

of the useful waveform symmetries arising from odd- and even-harmonic relationships among

poles and zeros, is worthwhile considering how these measured critical frequencies can differ

from the integrally related frequencies of a distributed line.

2.4.1 Coupling and Pole-Zero Separation

Whenever driving effort excites some mode, whether native to the energy-domain of exci-

tation or not, the coupling coefficient k represents the extent of energy conversion, and is

defined over a cycle as

2 energy delivered to load + energy stored and recovered from load
total energy delivered

Consider a simple case of energy storage shown in Fig. 2.15a: a mass slides on a frictionless

plane, and is tied to a mechanical ground through a spring k1. A force with infinite authority
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- i.e., no source impedance - stretches k and stores energy in it. All of the energy

delivered from the source stretches the spring, and the drive is perfectly coupled to k. For

this case of zero source impedance, the coupling coefficient k _ 1.

Mode excitation is rarely as simple as the case pictured in Fig. 2.15a. Usually, energy

stored in k requires that some energy be delivered to the exciting structure, as shown in

Fig. 2.15b. At frequencies far below resonance, the oscillator is compliance-dominated (i.e.,

the energy stored in m is negligible) and F stores energy in k1 by stretching k2. If k2 is stiff,

F is strongly coupled to k; if k2 is compliant, it is stretched considerably, k is relatively

undisturbed, and the coupling is weak. k2 in this case can be expressed as the fraction of

total energy delivered to k:

energy stored in k1

energy stored in k + energy stored in k2

In laboratory practice, the frequency separation between resonance and antiresonance (i.e.,

between a modal resonance and the zero introduced by exciting it) is a measure of the

degree of energy coupling. To understand this useful relationship, consider the impedance

of Fig. 2.16a for the network in Fig. 2.16b:

=j L- 1 w2LoLC - Lo- LZ = jwLo L w2LC -1
wo2LC - 1 o 2LC - 1

wp and w, from Fig. 2.16a are found by setting numerator and denominator to zero and

solving for frequency, from which:

>p= and z =LC LoCLoIL. C L-C + LC

F M F M

(a) (b)

Figure 2.15: A simple example of coupling
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(a) Impedance of network in (b)

Frequency

(b) Electrical
analog of
Fig. 2.15b

L

C
Lo L

O <Wp

Figure 2.16: Explanation of coupling in terms of pole/zero separation

The ratio wz2/wp bears a useful relationship to k2, and can be expressed as

2 L
since - 1 =

Wp2 Lo

By the energy definition of coupling coefficient, and

frequency, inductance-dominated regime,

= Li2
Li2 + 2Loi 2

for some applied current i in the low-

L

Lo + L

which can in turn be related to the ratio w2 /Cz/Cp

1-k 2 = Lo
L + Lo

w2
:.#> k2 = I -p

WZ
(2.15)

Using the gross pole-zero coincidence approximation w, + wp 2wz,

k2 = (z + p)(w-z - p) L2CZ- p
WZ Lwz

(2.16)

While Eqn. 2.15 precisely determines k from measured wz and p, Eqn. 2.16 affords the

insight that pole-zero spacing increases linearly with increasing k, to a better approximation

as wz -wp is small with respect to either critical frequency. We can apply this single-resonant

treatment of coupling to cascaded oscillators, as long as we can ignore the impedances of

neighboring intertia- or compliance-dominated resonators, excited away from their tuned
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-van )N
A W)

Ls

W X'(s) X()s)cz
z1 z2 Z3

Figure 2.17: Zero shifting from a series inductance is series with X(jw)

frequencies. This approximation, and the others of this section, are common practice within

the transducer field [15, Section 4.8], and are a convenient means of comparing the alignment

of adjacent poles and zeros.

2.4.2 Terminal Impedance and Zero Alignment

The critical frequencies of a lossless network described by a reactance function X(s) may be

shifted up or down, in unison, by a common factor applied to the network's L and C values.

Impedance zeros can be shifted down in frequency without disturbing pole locations, how-

ever, by exciting X(s) through a terminal inductance. Fig. 2.17 shows an exemplary X(s) in

series with a inductance Ls, where the original zeros zl-Z 3 of X(s) move closer toward their

associated poles - to the new frequencies z-z - when Ls is introduced. Intersections

between the reactance -wLs and X(w) specify the new zero locations, because subtract-

ing the series impedance -sLs from X(s) is equivalent to adding sLs to X(s). Clearly,

the pole locations are not affected by this finite impedance offset. The zero frequencies

can often not be shifted to appreciably higher frequencies by removing series inductance

inside X(s), simply because the network realizations considered in Chapter 3 have very

small input-section inductances. I.e., mode coupling cannot be improved for the class of

transmission-line analogs considered; if zeros fall below a desired even-harmonic alignment,

the shortfall can only be made worse by parasitics.

The dual phenomenon of pole-shifting with shunt capacitance cannot be readily exploited

to compensate for a zero misalignment, or to correct systematic misalignment in pole fre-

quencies. This constraint is again due to the particular application at hand. The exciting

network at the port of X(s) is, for the cases in Chapters 3 and 4, the drain of a FET, and
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we are typically not at liberty to add or subtract capacitance from the driven node.

2.5 Chapter summary

This chapter considers second-order electrical networks and transmission lines as storage el-

ements in the sense of Chapter 1. Foundations for later chapters have been introduced here,

including lumped realizations of transmission-line impedances (Foster and Cauer forms) and

methods for comparing the size and critical-frequency alignment of such networks. The im-

portance of frequency alignment of poles and zeros is considered with respect to waveform

symmetries, symmetries which enable the soft-switching converter operation discussed in

Chapter 4. These higher-order systems take advantage of periodic switching to develop

impedance extremes by energy fidelity rather than bulk energy storage. By storing and in-

ternally circulating periodic applied voltages or currents, high-order networks can develop

impedance extremes by decreasing the instantaneous work delivered through driving termi-

nals. Such resonant and delay networks, moreover, can be substantially smaller than their

bulk counterparts.
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OR the cases of short or open (non-reactive) termination, the boundary conditions of a

lossless transmission line enforce a precise integral alignment of impedance-maximum

and -minimum frequencies. As explored in Chapter 2, such harmonic relationships can en-

force useful waveform symmetries and present large impedance extrema to periodic wave-

forms. A uniform-cross-section line which supports resonances at power switching fre-

quencies, however, may be inconveniently long. Though telecom applications at gigahertz

frequencies routinely exploit the cavity modes of miniaturized, high-Q dielectric resonators,

structures with electromagnetic modes in the vicinity of 10 MHz would be orders of mag-

nitude larger.' A transmission-line analog which mimics - in a smaller volume -the

impedance of a distributed line would be eminently useful, especially if it could be electro-

magnetically shielded and manufactured directly alongside other components.

This chapter treats in detail the critical-frequency alignment of a family of transmission-

line analogs formed by tapping a planar inductor along its length with capacitors. Analytic

and synthetic means of designing such structures are considered, corresponding to iterated

networks and ladder structures with individually selected inductors and capacitors. The

impedances of the different types of approximating networks are confirmed by experiment, as

are means of compensating for the mutual inductances that arise from compact construction

methods.

1To give some a sense of scale, a length of RG-58/U coax with a A/4-wave resonance at 13.56 MHz (in
the ISM band) is 136" long. In a design example presented in Chapter 4 this line is a somewhat bulky
replacement for a 10 PH inductor (cf. Sec. 4.3.2 and the converter of Fig. 4.21).
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Figure 3.1: Schematic rendering of the tapped toroidal inductors considered in this
chapter, alongside a circuit model. The air-core inductors can be manufac-
tured in a printed-circuit board, with the principal flux path in the board
thickness. Full information on this structure is provided in Section 3.2.3.

3.1 Tapped toroidal structures

The family of simulating networks considered in this chapter is rendered schematically

in Fig. 3.1. A base inductance, in this case an air-core toroid with 30 turns, is tapped

uniformly along its length with capacitors. The lower plate of these capacitors is shown in

the rendered model, with plates in front removed for clarity. In the full structure, a dielectric

layer separates the top metal layer from a ground plane, which overlies just the capacitor

taps or - preferably, for shielding - the toroid and taps (see Section 3.4.4.2). The air-core

toroid can be manufactured in a laminate printed-circuit process, and exemplary top and

bottom metal layers are reproduced in Figs. 3.1a and 3.1b (PCB fabrication is elaborated

further in Chapter 5). The staggered radial traces on the bottom layer connect successive

turns around the toroid, so that with the principal flux path is in the board thickness. The

structure relies on leakage flux to mimic transmission-line behavior, as we will see shortly, so

- 62 -

_____________
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shielding of some sort is a practical necessity. Just as a dielectric resonator is miniaturized

at microwave frequencies by the high relative permittivity of its cavity material, so the

tapped toroid, by linking more flux per unit length than a coaxial geometry, is smaller than

its transmission-line counterpart.

Though one equal capacitor per turn is shown in Fig. 3.1, different arrangements of tap

locations, tap capacitances, and tap-capacitance leads will be explored in this chapter.

Variations of the basic tapped-toroidal structure have different merits as transmission-line

simulating networks, and will be considered in turn.

Iterated network

Non-diagonalized network

Cauer-synthesized network

A network in the Cauer form as presented in 2.3.2, with

uniform L/C and no mutual inductance between sections

As above, but with mutual inductance coupling adjacent

inter-tap segments along the toroid. This form is most

similar to the network shown in the top right of Fig. 3.1

The same base toroid as in the above cases, tapped at

selected points around its periphery with nonuniform ca-

pacitors (no longer with an even tap spacing or uniform

tap capacitance, necessarily)

We will analyze these structures on a network basis, though full-field simulations should

be useful for predicting the effect of distributed capacitance on driving-point impedance

(see Section 3.4.4.2). Rather than translating the opacity of multi-resonant design to a

computer, a network approach readily suggests techniques for aligning impedance peaks

and nulls.

3.2 Iterated-Network Impedance

In this section we focus on identifying the critical frequencies of uniform, iterated L/C

networks with short- or open-circuit terminations. In the discussion of Cauer-form networks
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in Section 2.3.2, the useful approximation range of an artificial line was expressed in terms

of the cutoff frequency wh. A great deal of ingenuity has been demonstrated in techniques

for increasing wh (e.g., half-sections and m-derived sections, see [30, Chapter 5] and [31,

Chapter 9]) or otherwise maximizing the real part of Zin in lumped, artificial lines (e.g., by

synthesizing non-coincident critical frequencies, deliberately shifted away from those of a

transmission line [31, Chapter 7]). All of these techniques are concerned with power delivery,

and express their results in terms of input-impedance variation for a matched, lumped

ladder. No authors seem to treat systematically perturbations of critical frequencies in

consideration of the reactive properties of an artificial line with an open or short termination.

3.2.1 Analytic expression for transmission-line critical frequencies

To understand how minima and maxima in Zin shift for a given degree of discretization in

an iterated network, first consider the impedances of the normalized networks of Fig. 3.2.

As shown in the topmost T-section, all inductors have a value of 1 H, and all capacitors a

value of 1 F. The impedance levels and critical frequencies of the cascaded sections can be

denormalized without affecting the relative frequency relationships among poles and zeros.2

The input impedance functions Zin are a ratio of a numerator nk, an odd polynomial in

s, and a denominator dk, an even polynomial in s, with indices equal to the number of

inductors in the network they describe. Not shown is the untapped network comprising a

single 1 Henry inductor with impedance ni/dl = s.

If the non-zero coefficients of the dk and nk polynomials are written from highest order to

lowest order in a tabular arrangement, the interesting pattern shown in Table 3.1 emerges,

in which the entries along descending diagonals are evidently rows of Pascal's triangle. The

diagonals n = 2 to n = 5 are labelled in Table 3.1, where n corresponds to the C(n, k)

notation for the binomial coefficient. Note that the arrangement in Table 3.1 does not

take into account the staggered odd-even order of the terms in dk and nk, which we will

re-introduce later (see the discussion of reactance functions, Section 2.3).

The diagonal sequences from the table of numerator and denominator coefficients are them-

2 The impedance can be shifted up or down by reciprocal scaling of L and C values, i.e., L' = aL, and
C' = C/a, which will leave the critical frequencies unchanged. A common factor /3 in L and C values will
likewise shift critical frequencies by a factor 1//3 while leaving the impedance unchanged.
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Table 3.1: Tabular arrangement of impedance-function coefficients

row sum

1 m=1 doi = 1
i-1
1

nl n =2 1

1

1

1

n3 1

1

n4

m=2 noi = 1
i=l

1

2

3

4

5

1 6

1

1

3

6

10

7 15

m= 6 E n2i = 8
i=1

1

4

10 1

5

1 8 21 20 5 m= 10 En4i=55
i=1

highest order lowest order
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n2 s3 + 2s
Zin- = d2 S2 +1

1H 1H

- 1F T

6a 

Input impedances of the normalized, iterated L-networks, in which the
k subscript of numerator and denominator polynomials corresponds to
the number of iterated L-sections. Note that the termination of each of
the networks in shorts across a terminal L-section capacitor (hence the
dashed capacitor at the right of the topmost network). This detail is
significant when comparing open- and short-circuit impedances, since the
open-circuit network gains a capacitor rather than losing an inductor.

1
I i 1

1 2 1 1 1

1 3 3 11 2 1
1 3 3

1 4 6 4 1 1 3 3
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1 6 15
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Table 3.2: The numerator and denominator coefficients
from alternating rows of Pascal's triangle.

from Table 3.1 are taken
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3.2 Iterated-Network Impedance

selves diagonal sequences from Pascal's triangle, as demonstrated by the left-justified tri-

angle on the right of Table 3.2. The ascending diagonals of this tabular arrangement are

numbered by increasing m, beginning with m = 1, and corresponding to the m numbering

shown on the right of the Table 3.1.

The polynomials whose coefficients are taken from diagonals of Pascal's triangle, when

expressed in the staggered-order form of our nk and dk, are the Fibonacci polynomials Fm.

Fr,1() evaluated at x = 1 yields the corresponding Fibonacci number, as defined by the

recurrence relation Fn _ Fn-2 + Fn-1, where n = 3,4,... and F1 = F2 = 1 (cf. the

right column of Table 3.1). MSbius expresses the roots of collapsed-order versions of the

Fibonacci polynomials in deriving a periodicity condition for M6bius transforms [32]. The

boxed coefficients from the m = 11 diagonal in Table 3.2, for instance, correspond to the

polynomial:

a5 + 9 4 + 28cr3 + 35 2 -+ 15a + 1 = O

which has five roots given by

a =-4cos 2 ()=4cos 2 - for k= 1,2,...,5

These roots can also be expressed in terms of the roots of unity. I.e., if r denotes any mth

root of 1, then:

(1 + r) 2 -7 2 [I +I(180/1)]2Cr = E.g., 4cos - = 1Z(180/11) ° 3.6825r~ kill 1 1(180/11)

The original polynomial ratios describing the iterated network impedances were odd-over-

even reactance functions, with a zero at s = 0 (That is, the numerator had non-zero

coefficients for odd powers of s, and the denominator had non-zero coefficients for even

powers of s). By tabulating nonzero numerator and denominator coefficients without regard

for the staggering of order in the terms, the analytic roots for the Fibonacci polynomials

no longer have the units of frequency. Zin maxima from the denominator polynomial in

o-, however, are easily recovered by the substitution a = s 2 = W-2, from which the peak

frequencies wp are:

p 4 cos 2 ( ) = 2 cos ) for mp odd and k = 1,...,
MP MP rpodndcl,.,
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Chebyshev polynomials
of the 1St kind

To(x) = 1

T(x) = x
T2(x) = 2x2 - 1
T3(x) = 4x3 - 3x
T4 (x) = 8X4 - 8X2 + 1
T5(x) = 16 5 - 20x3 + 5x

Tn+l(x) = 2xTn - Tn-1

Chebyshev polynomials
of the 2 nd kind

Uo(x) = 1
U(x) = 2x
U2 (x) = 4X2 - 1
U3(x) = 8 3 - 4x
U4(x) = 16 4 - 12X2 + 1
U5 (x) = 32x5 - 32x3 + 6x

Un+l () = 2xUn- Un-1

Fibonacci polynomials

Fi(s) = 1
F2 (s) = s
F3 (s) = s2 +
F4(s) = S3 +
F5(s) = 4 +
F6(s) = s5 +

1

2s
3s2 + 1
4s3 + 3s

Fm+l (s) = sFm + Fm-1

Table 3.3: Chebyshev polynomials and Fibonacci polynomials, with their recurrence
relationships

Where L[. is the floor function. The same substitution = 2 = -w2 in the diagonal

polynomial with m = mz = mp + I , yields the original numerator polynomial with its zero

at s = 0 factored away. The non-zero roots of this polynomial, the zeros of Zin, are given

by:

z = 4cos2 (k7 = 2cos (-) for mz even and k = ,.... [z-J = LIJ

Note that because of the initial arrangement of numerator and denominator polynomials

and their corresponding m-indices in Table 3.1, mz is always one greater than mp.

When the staggered order of the diagonal polynomials is re-introduced, the successive dk

and nk have a generating function similar to that of Chebyshev polynomials. Listed in

Table 3.3 are Chebyshev polynomials of the first (Tn) and second (Un) kind, followed by

their recurrence relationships. The Fibonacci polynomials Fm, corresponding to the m rows

of the tabulated numerator and denominator coefficients, are listed in the right column, with

their slightly different recurrence relation. The roots of Tn are given by

( -cos1
n 

for k = 1,2,..., n

which motivated a search for similar roots of Fm.3

3Also similar to Chebyshev polynomials of the first kind, Fm satisfy a curious determinant equation,
effectively a recasting of the recurrence relation:
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Conjugate pole and zero frequencies
for networks with an increasing

number of iterated sections

2 cut-off
ncy

9 9 p 
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x x x ox~~~~··- ° x °0xx o x O
o xx a

x x 00 0x 0 x 0 x 0~~00 00
x x 0C _ A_x ~~~~X .

5 10 15 1 .7r
m

order of Zin denominator polynomial

I)

k-7r 9-7ir
m m

Figure 3.3: Analytical prediction of the pole and zero frequencies for iterated L-
section networks

Many features of the critical-frequency alignment for Zin become apparent from an ex-

plicit expression for the impedance-polynomial roots. Shown in Fig. 3.3 are peak and

null frequencies for increasing numbers of cascaded L-sections (along the lines of Fig. 3.2),

demonstrating the alignment of conjugate impedance poles with the range of 2 cos(kr/m)

over k = 1,..., [m/2J. From the plot, it appears that impedance nulls are closer to their

neighboring low-frequency pole, and never equidistant between adjacent peak frequencies

as in an ideal, lossless transmission line. This non-coincident behavior can be explained by

s -1 = F3 (s)
1 s

s
1
0

-1 0
s -1 =sF3 + 1 
1 s

s -1 0 0
1 s -1 01 -1 0 = F4 + F3 = F5 (s)
0 1 -1
O 0 1 s

The tri-diagonal matrix structure in is suggestive of the tableau-form of mesh equations written for the
iterated ladder network.
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considering the alignment of the lowest-frequency peak and the lowest-frequency AC null.

For any desired iterate network and the corresponding denominator polynomial with mp

odd, the first conjugate-pole frequency can be computed from the largest allowable index

k:

Cp = 2cos - = 2 cos
mp V mp

In consideration of the near linearity of the cosine function near 7r/2, a metric of the fre-

quency wp can be approximated by the separation of the cosine argument from r/2. Dis-

carding the common factors of 7r and performing a similar approximation for the lowest null

frequency, the differences

1 L-2J and 1 [ L- J
2 mp 2 m

are suitable measures for the lowest-frequency wp and w,. Note that given the inflection

of the cosine function and because wp < wz, the approximation cos(7/2 - e) = places an

upper bound on w, as compared to wp. I.e., the cosine function shifts w, further down in

frequency than wp, only worsening the lack of alignment being demonstrated.

Because mp is always odd and mz even, the product mpmz is even, and the frequency

metrics can be expressed with common denominators:

1 r[mmz [mpi (mp + 1)] for Wp, and 1 [m[pmz [mpjmp] for Wz
mpmZ 2 2 mpmzT 2 2z

discarding the common divisor mpmz and remembering that mp = m, - 1 is odd, the

frequency metric for wp can be simplified:

mpm _ (mp - )(m,) _ mZ mp + 1
2 2 2 2

Again discarding mpmz, the metric for the separation between the first peak and AC null

is:

m2P (mp ) L2 mp = mp m - 1

Therefore, for a finite, iterated network of the type in Fig. 3.2, the first null in Zin can never

reach twice the the frequency of the lowest-frequency peak, even with assumptions favoring

a high zero frequency.
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Figure 3.4: A circuit model (a) for a toroid with a fully populated inductance matrix,
and an approximating network (b) with only adjacent mutual inductances
preserved.

This non-coincident arrangement of poles and zeros in Zin is exacerbated at higher frequen-

cies. For the higher-order modes, the zeros approach - and nearly cancel - the adjacent

low-frequency conjugate pole as is clearly visible in Fig. 3.3. This approximate cancellation

follows from the greater proximity of k/mp and k/(mp + 1) for lower values of k, and from

the higher inflection of cos(x) about x = 0.

3.2.2 Inductance-matrix diagonalization

Printed-circuit structures like those in Fig. 3.1 were constructed and measured, and ver-

ify the pole-zero structure derived in the previous section. An immediate discrepancy is

apparent between the decoupled ladder networks - like those of Fig. 3.2 - and a capac-

itively tapped toroid. By linking more flux per unit length than the uniform cross-section

transmission line, the toroid's meandering DC current path couples its component sections

together magnetically. A section inductance no longer exclusively exchanges energy with

the network through conduction currents at its terminals; its flux links every other portion

of the toroid, as represented schematically in Fig. 3.4a.

Though a fully populated inductance matrix would seem to complicate the analysis hope-

lessly, in the case of air-core, planar magnetics the problem is tractable. Because of the

large flux leakage in a structure like that of Fig. 3.1, the mutual inductances between any

two ports (where a port is two adjacent tap terminals) falls off rapidly around the toroid.
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Mutual inductance contour around toroid

4

3
7:.

2

- 0

15 10 5 1 1 5 10 15

Turns clockwise = ---= Turns counter-clockwise

Figure 3.5: Segment-to-segment mutual inductances around a full toroid, where ports
are taken to be two adjacent tap terminals. The mutual inductance be-
comes small and negative when section coils have antiparallel axes on
opposite ends of the toroid.

Fig. 3.5 shows the computed decrease in mutual inductance for ports around a 38-turn

toroid with 973 nH total self inductance. The model was 124 mil thick, with a 3-inch outer

diameter, 0.93-inch inner diameter, and single-turn self-inductance of 15.4 nH.4 The mutual

inductances decrease rapidly, from 3.94 nH to the immediately adjacent turn, then 1.30 nH,

0.55 nH, ... moving clockwise or counterclockwise along the toroid. Mutual values eventu-

ally become small and negative when winding-sections have antiparallel axes, approaching

opposite ends of the toroid. If possible, we would like to thoroughly diagonalize the induc-

tance matrix, cancelling all mutual inductance entries.

Because the main-diagonal and adjacent-mutual entries are substantially higher than all

the other entries in L, the section-to-section inductance matrix has an approximately tri-

diagonal structure, as represented by the couplings of Fig. 3.4b and by the matrix view in

Fig. 3.6a. Considering the adjacent-section M with reference to Fig. 3.7, for the sense of the

windings shown (in which i bucks i2) there is a negative mutual induction -M between

the left and right mesh. The branch inductances in the equivalent T-model of Fig. 3.7 can

be quickly verified by considering the open-circuit impedance of any pair of terminals in

the three-terminal network. With the tap branch open, significantly, the total inductance

4 There are actually two types of turn, which extend different amounts toward the toroid's center and
have slightly different self inductances. These different turns were designed for efficient packing of vias in
the center rosette of the structure, so that each turn was able to accommodate 3 vias in parallel for each
traverse of the board. This construction technique lowers DC and AC resistance, and can easily be included
in the analysis.
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(a) Inductance matrix for ungapped
toroid with no tap extensions

Figure 3.6:

(b) Gapped toroid with tap extensions

20 nH

15 nH

10 nH

5 nH

0 nH

FastHenry toroid models and their computed inductance matrices. Two
nodes at the upper periphery of adjacent turns form a port. The L matrix
for the toroid on the left shows substantial off-diagonal mutual terms,
whereas the inductive tap extensions and eleminated turns in the right
toroid effectively diagonalize its inductance matrix.
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L1 +M L2+M

i M 22 L1 +M L2 +M -M

+ +

)Al _ L1 M ii (L 1 + L3 M-L 3
A 2 J M L 2 J\i 2 M - L 3 L2 + L3

Figure 3.7: A A-Y transformation of a mutual inductance provides intuition for how
added tap-branch inductance affects the L matrix. Notice that the block
sum is unchanged by L3, i.e., the top-branch A impedance, with the L3
branch open, is still L1 + L2 + 2M.

of the coupled sections is the block sum of the inductance matrix (i.e., L1 + L2 + 2M, an

observation which we will extend later).

Returning to the problem of diagonalization, note that a tap-path inductance L3, shown in

the rightmost network of Fig. 3.7, increases the mutual induction between the meshes. L 3

cancels -M, without affecting the total inductance of the sections in series (i.e., with the

tap path open), or altering the block sum of the inductance matrix. Fig. 3.6b depicts the

magnitude of L-matrix entries for the case of added tap-branch inductance. Both matrices

in Fig. 3.6 were computed by FastHenry [33], a program for the efficient extraction of

inductances and resistances of 3-dimensional conductor geometries on a quasistatic basis.

Note that Fig. 3.6a has two more turns than the approximately diagonalized version with

tap extensions on the right. The left structure is the 38-turn, 973 nH toroid whose mutual-

inductance contour is plotted in Fig. 3.5. With turns packed all along its periphery, the

38-turn structure has significant end-to-end mutual inductances ( 4 nH; the effect of this

coupling term will be considered in Section 3.4.4.1). Removing two turns leaves the gapped

toroid rendered on the right of Fig. 3.6, with an effectively diagonalized inductance matrix.

The planar aspect ratio and non-magnetic core of the toroids considered in this chapter are

more than a manufacturing conveniences, as seen from this discussion of diagonalization.

The ability to construct ladder networks in a small volume arises precisely from the low

mutual inductance between turns far apart on the toroid, and the ability to compensate for

adjacent-section mutual entries. Were the flux to be guided within the toroid completely,
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the toroidal structure would have only one mode, and be unable to enforce the waveform

symmetries discussed in Section 2.2.

3.2.3 Iterated-network measurements

The impedance data (shown in Fig. 3.8a) were taken from an iterated, coupled ladder

network of 30 L-sections terminated in a short-circuit, with a total capacitance of 915 pF and

a total inductance of 355 nH divided among the sections. The structure is exactly the one

for which the top- and bottom-copper masks are reproduced in Fig. 3.1, and was built into

a 62 mil printed circuit board. A mylar film was applied over the tap-capacitor plates, with

1-mil adhesive copper foil forming the common node for the taps (a capacitance-per-area

of C' = 157.6 pF/in2 was measured for this method of construction). The structures was

designed for a characteristic impedance of 20 Q and a A/4 mode at 13.56 MHz. Zo = 19.7 Q

was measured, with a principal peak at 13.41 MHz. Though the inductors in the ladder

were coupled with small adjacent-section mutual terms, these mutual inductances were

cancelled with 20 x 80-mil long inductor-traces in series with the capacitor branches (see

Section 3.2.2).

Two measures are applied to the critical-frequency data from Fig. 3.8a. The first is the align-

ment measure of Fig. 3.8b, comparing measured pole and zero frequencies to the analytical

predictions from Section 3.2.1 (dashed line), and to the desired harmonic alignment (solid

line). The reflection conditions of the transmission line enforce a constant ratio between

critical frequency and critical-frequency index, viz. (4LO) 1 for the line with a short

termination (compare to the extrema Fig. 2.2, uniformly separated by one quarter wave).

By normalizing all critical frequencies to this transmission-line slope, as in Fig. 3.9, it is

easier to appreciate the slight crowding of critical frequencies below cutoff in the iterated

case. Note that the dashed theoretical curve is the contour of denominator-polynomial roots

according to the development in Section 3.2.1, and the corresponding measured impedance

maxima are shown as x's. Though the zeros are non-coincident with the transmission-line

locus, we could easily excite the network to exploit their alignment to a slightly lower base

frequency, in this case 4% lower than the impedance-maximum frequency. The relative

pole-zero alignment cannot be improved, however, because of the considerations of Sec-

tions 3.2.1 and 2.4. The zero shortfall (or equivalently, the pole elevation) is not due to
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(a) Measured Zin of 28 iterated L-sections
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(c) Coupling of transmission-line and
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Figure 3.8: Measured input impedance of 28 iterated, coupled L-sections, showing the
trend in mode coupling and the trends in pole and zero frequencies. The
data are for the design illustrated in Fig. 3.1 and described in Section 3.2.3
and Appendiz A.1.
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3.2 Iterated-Network Impedance

(c) Normalized critical frequencies of
iterated network
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Figure 3.9: Normalized critical-frequency alignment for the iterated network, from
data in Fig. 3.8c.

measurement parasitics, but the low coupling of the iterated modes, as described below.

The second metric for the impedance of Fig. 3.8a is the coupling measure plotted in Fig. 3.8c.

Fig. 3.8a shows approximate pole-zero cancellations at high frequencies. I.e., zeros follow

adjacent, low-frequency poles more and more closely, a phenomenon which can be quantified

by the modal coupling coefficients for the iterated network. Coupling coefficients k, recall

from Section 2.4, are a measure of the separation between modal frequencies and the zeros

introduced by exciting them, as developed in [15, Section 4.8]. The measured values of k

are computed from adjacent pole and zero frequencies using the relationship

2k= I - P (3.1)
wz

derived in the last chapter. The measured k closely follow the trend (dashed curve) ex-

pected from the application of Eqn. 3.1 to the theoretical pole and zero frequencies from

Section 3.2.1. Whereas a transmission line terminated in an open or short is capacitive and

inductive over equally broad ranges of frequency (cf. Fig. 2.2), the iterated-network Zin

is capacitive over an increasingly narrow band following each conjugate pole, so that the

phase envelope of Fig. 3.8a has an inductive bias at higher frequencies.
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L1 + Al1 2 L2 + A 12 + A 2 3 L3 + A123 + M3 4 Lk + Mk-l,k

C

Figure 3.10: For an a network with adjacent-section mutual coupling as in Fig. 3.4b, A-
Y circuit transformations reflect the mutual terms as negative inductances
in the tap paths.

3.3 Iterated network with mutual coupling

Without compensating for adjacent-section mutual terms with tap inductance as in Sec-

tion 3.2.2, off-diagonal mutual entries are diminished only by the low parasitic inductance in

the capacitor/ground path. In such a case, after introducing a gap to eliminate end-to-end

to coupling as in Fig. 3.6, the L matrix has an approximately tri-diagonal structure.

3.3.1 Inductance cancellation

In the tridiagonal case, a A-Y transformation for adjacent pairs of coupled inductors in-

troduces a negative inductance in the intervening capacitive-tap branch. In an extension

of the T-model shown in Fig. 3.7 with all section inductors wound in the same sense, the

self-inductances are increased by an amount equal to the adjacent mutuals communicating

with the section. Fig. 3.10 summarizes these network models for the banded L-matrix.

A negative inductance behaves like a reactance with capacitive phase but an impedance

magnitude which increases with frequency. Though such a component would develop energy

if isolated between terminals, it appears as an entry in a passive inductance matrix which is,

from energy considerations, positive semidefinite. Consider the physical model in Fig. 3.11

of the transformer with parasitics in the upper left. The model includes inductance Lp,

reflecting finite permeability in the mutual flux path (with reluctance M), and the leakage

inductances Le and Le2 modelling the imperfect coupling between transformer windings

(with associated leakage reluctances Rte and Re2). L and Lt2 are large insofar as flux
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N 1 N2

N2 + N2

2+

il

Figure 3.11: Coupled windings, showing the paths of mutual flux bM and leakage fluxes
c411 and 22. The inductance matrix which relates flux linkages to coil cur-
rents can have a "physical" form which reflects the actual paths seen by
the magnetic flux, or a "phenomenonological" form like that shown on the
lower left. In this inductance matrix, L11 and L22 are the self-inductances
measured from either winding, and LM is the windings' mutual induc-
tance. Without further information about the magnetic coupling (e.g.,
the turns ratio), such terminal measurements do not determine a unique
physical model of the magnetic circuit.

from one winding does not link turns on the other winding (cf. )11 and 22 on the right

of Fig. 3.11) The leakage and magnetizing inductances are "physical" - hence positive -

because they correspond to energy storage within the magnetic structure. Note, however,

that the physical model has four parameters (the turns ratio and the three inductances

already mentioned) but can be modelled by a two-port network characterized by three

impedances. As suggested by the equivalent inductance matrix formulation in Fig. 3.11,

other "non-physical" inductances can preserve the terminal V-I (A-I) relationships of a

magnetic structure. An inaccessible internal node in the transformer model (resulting,

for instance, from a A-Y transformation as in Fig. 3.7), can introduce a negative branch

inductance while preserving the positive inductances seen from each port. We can treat

the negative tap inductance like a regular circuit element, in other words, using it to cancel

physical inductances or offset capacitances with a capacitive reactance that increases with

frequency [16, 34, 35].
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(a) Measured Zin of 28 iterated L-sections with no diagonalization
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(b) Normalized critical frequencies of an
undiagonalized iterated network
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tion 3.2.3 and Fig. 3.1, is provided in Appendix A.1.
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3.3 Iterated network with mutual coupling

3.3.2 Measurements of the undiagonalized, iterated network

The measured impedance of the tapped toroid with no tap extensions, but otherwise iden-

tical the toroid of Section 3.2.3, is plotted in Fig. 3.12a. Though the mode coupling

(Fig. 3.12c) is nearly identical to that of Fig. 3.8c (shown in light grey for comparison),

the frequency alignment has become harmonic-coincident over a broader range of frequen-

cies. The negative tap-path inductance cancels more and more loading capacitance at higher

frequencies, just compensating for the decrease in harmonic alignment expected from the

iterated network.

For the 20 Q toroid shown here, the negative inductance in each tap Lt is about -1.5 nH,

in series with Ct = 30 pF. An equivalent, frequency-dependent capacitance C' for both

elements is given by the series combination

1 1 Ct- =-wLt- C = Ct
WC, wCt w2LtCt + 1

I.e., the effective loading capacitance has a knee frequency at (LtCt) - 1/ 2 rad/s, beyond

which it drops at 40 dB/decade. The given Lt and Ct resonate at 750 MHz, but still affect

the critical frequencies by a percent or more a decade below the LC corner. The 13th critical

frequency, for instance, is a pole whose modal capacitance is decreased by the factor

= 0.947
1 + (76 

corresponding to a 2.7% increase in frequency (a 3.8% change was observed).

Though capacitance offset improves harmonic alignment of higher frequencies, the effect is

not that significant in a practical design. The alignment of the first few critical frequencies

is of the greatest significance for enforcing waveform symmetries, and these poles and zeros

are hardly moved at all. Moreover, as pointed out with the diagonalized structure of

Section 3.2.3, poles and zeros are precluded from simultaneous coincident alignment because

mode coupling in the iterated network falls below transmission-line values.

Inductance cancellation may prove important for miniaturizing line-simulating networks

with low characteristic impedance and large tap capacitors, or miniaturizing analog net-

works for very long lines. In such cases, large capacitors with low self-resonant frequencies
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might be appropriate. The base inductor in such a case could be designed such that its

negative branch inductances approximately cancel the equivalent series inductance of the

tap capacitors [35]. Inductance cancellation would prevent the order of the overall structure

from collapsing beyond the self-resonant frequency of the capacitors.

3.4 Cauer synthesis

From the measurements presented in Sections 3.2.3 and 3.3.2, a salient problem of iterated

networks is low mode coupling. In terms of impedance phase for a short-circuited termi-

nation, while the transmission line is capacitive and inductive over equally broad bands of

frequency (Fig. 2.2), the iterated designs show approximate pole-zero cancellation and a

pronounced inductive bias at high frequencies (cf. Figs. 3.8a and Fig. 3.12a). When consid-

ered separately, the poles and zeros of iterated networks have good harmonic alignment for

little design effort, less than t1% for the first 4 critical frequencies. Harmonic incidence,

however, is much poorer (about ±3% of frequency) for poles and zeros considered together.

Periodic waveforms can be accurately aligned to impedance minima or maxima, with half-

wave repetition in current or half-wave symmetry in voltage, for instance, enforced by the

network. The iterated structure cannot enforce both symmetries simultaneously, however,

as well as it able. What we require, evidently, is a means of synthesizing a network with

arbitrary modal frequencies and coupling (or, equivalently, arbitrary conjugate poles and

zeros).

3.4.1 Description of the synthesis method

Cauer synthesis is a means of realizing a reactance function in a network of the Cauer form

(i.e., in a ladder of series inductances and shunt capacitances, as introduced in Section 2.3.2

[26, Chapter 3]). A desired reactance or susceptance is first written in factored form, along

the lines Eqn. 2.4, with a zero or pole at s = 0 as required:

X(s) = G S(S2 - sI 2 )(s 2 - 32)(s2 - s52) . .
(s2 - s22)(s2 - S42)(2 - s6

2 ) ...
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3.4 Cauer synthesis

For a power-converter application with switching frequency fsw, one might choose nulls at

s = 0 and all even multiples of fsw, with poles at odd multiples of fsw. Residues at s -= o

are now successively subtracted in the reactance or susceptance domains, corresponding to

the removal of the L or C which dominates - at very high frequencies - the impedance

of successive remainder networks. E.g., For the Cauer form of Fig. 3.2, the high-frequency

impedance seen from the input ports are dominated by end-section inductors; the adjacent

capacitors are effectively short-circuits.

3.4.1.1 A network explanation of synthesis

Removal of a residues at s = o is illustrated graphically in Fig. 3.13. Suppose the given

positive real XI(s) has a pole at at s = oo. Removal of this pole in the form of a series

inductance leaves a remainder that must be positive real and LC realizable, with a zero

at s = 0 (because a reactance function must have a pole or zero at s = o, and a pole

has just been removed). The inverted remainder - a susceptance function B2(s) - must

therefore have a pole at s = oc, and its removal yields a shunt capacitance. The remaining

susceptance is again positive real and LC realizable, and has a zero at s = oo, so that its

reciprocal has a pole there. At this stage the original state of affairs again obtains, namely,

we have a positive real and LC-realizable reactance function with a pole at s = oo. The

same cycle of manipulations as just carried out yields another series inductance followed

by a shunt capacitance, and another reactance function with a pole at s = 0o. After each

cycle, the remaining reactance function has one less finite nonzero pole and zero (two finite

nonzero critical frequencies less than at the beginning of the cycle). When all the poles and

zeros are exhausted, the process ends, and the given function is developed into an ladder

network in which all series branches are inductances and all shunt branches are capacitances

(cf. the networks of Fig. 3.2)

It is useful to note that the first and last elements in each of these ladder networks determines

the behavior of the function at s = 0 and s = oo. Specifically in the networks of Fig. 3.13,

if Z(s) has a pole at s = oo, then L1 0, and if s = o is a zero, then evidently L1 = 0. If

s = 0 is a pole, then Cn, 7 oc, and if it has a zero, C, = o (a short circuit). When the given

Z(s) does not have a pole at s = oo, therefore, the first step in the synthesis procedure is

to consider its reciprocal admittance Y(s) = 1/Z(s), which has a pole at s = oc that can
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Figure 3.13: Two cycles of Cauer synthesis, depicting the successive removal of residues
in poles at s = oz. Each step corresponds to a ladder-network develop-
ment, i.e., the removal of the series or shunt element which dominates
high-frequency reactance or susceptance, respectively.
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3.4 Cauer synthesis

be subtracted as the shunt capacitance C2.

A better appreciation of the process of successive pole removal is gained by observing

graphically the details involved in some typical cycle of network reductions, as illustrated

in Fig. 3.13. In the top part of this figure is a plot of the reactance XI(w) having a pole at

s = oc which is to be removed as a series inductance L 1. Shown dashed is the asymptote of

of the function Xl(w), a straight line with a slope equal to the residue in the pole at s = oo.

This slope equals the value of the series inductance L1, because its impedance dominates

X1 (w) at high frequencies . Removal of this pole at s = o from X (w) amounts to the

subtraction of its linear asymptote. This process leaves the positions of the remaining poles

unchanged, but shifts the zero at z, for instance, to Z2, located vertically below a point

of intersection between the Xl(w) curve and its linear asymptote. For the zero at z 3, the

asymptotic intersection lies at infinity, and so this zero is shifted to s = 0o.

The inverted remainder function B 2(w) is shown below the curve for XI(w) in Fig. 3.13.

B 2(w) has a pole at s = oc as explained above, and the residue in this pole is again equal

to the slope of the linear asymptote, viz., the value C2 of the capacitance in the next shunt

branch of the ladder. Removal of this pole from B1 (w) shifts its highest zero to the point

s = oo, so that the next inverted remainder again has a pole at infinity. It is thus clear

that each step in the process reduces number of finite nonzero critical frequencies by one.

Eventually, there remains a function with critical frequencies only at the points s = 0 ans

s = o, which is simply and inductance or a capacitance. The total number of elements in

the complete ladder development is equal to the number of finite nonzero critical frequencies

plus one, which exactly equals the number of parameters characterizing the given reactance

or susceptance function as pointed out in Section 2.3.

3.4.1.2 Algebraic explanation of synthesis

In order to discuss this method of ladder development from an algebraic point of view, the

reactance function is best written with the polynomials in unfactored form:

aZs + asn-2 + an - + a2s2 + ao
Z(s) =b,-sn- 1 + bn-3sn -3 + ... + b3s3 + b1s (3.2)
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Removal of the pole at s = oo is accomplished by dividing the denominator polynomial into

the numerator polynomial and obtaining a quotient ans/bn-1 and a remainder function

which is the ratio of an (n - 2)-degree to an (n - 1)-degree polynomial, as indicated below

I _n-2 +' n-4 + 2 + aa -2s ± +aI +··-+ a2s +a-Z(s) = Ls + an-4 
b,_ 1sn- + bn-3s n- 3 + +.. - b3s3 + b1s

where L1 = an/bn-1 is the value of the first series inductance. Inverting the remainder and

repeating the process yields

in which C2 is the value of the succeeding shunt capacitance, and the second remainder

function is the ratio of an (n-3)-degree to an (n-2)-degree polynomial. Continuation of this

process yields a continued-fraction development of the specified reactance or susceptance

Z(s) = Lls+ 1

L 3 s+ 1

C4s+
1

C6s + 
It should be noted that the expression 3.2 for Z(s) assumes that n is even. If it is odd, then

Z(s) is an odd-over-even rational function and the final term in an inductive reactance Lns.

When the reactance function X(s) approximating a short-circuited line is synthesized using

a Cauer development, section inductances and capacitances increase in a horn-like manner

along the ladder (cf. Fig. 3.14, and the Cauer-synthesis code from Appendix A.3). Along

the majority of the artificial line's length, the L and C values approximate those of an

iterated ladder with the same number of meshes, and with the same fundamental resonance.

The first section inductance, however, approaches a value 1/2 times as large as the second

section, in the limit of many meshes. This initial half-section has a higher cutoff frequency

than the full LC of the corresponding iterated line5 (see Section 2.3.3). The end-section L

5 Half-sections are used in more ad-hoc approximations of transmission-line impedance, cf. [30, Sec-
tion 5.7.3]
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Normalized Cauer inductor values
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Normalized Cauer capacitor values

C
C1
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2.5

2

1.5
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0.5
2 4 6 8 10

Tap number from driving

L1 L2 L3 L 12 L13

Zin ---- C1 C2 C12 

Inductors Capacitors

L 1 0.4983 L8 1.2140 C1 1.0000 C8 1.2630
L2 1.0000 L 9 1.3152 C2 1.0067 C9 1.3863
L 3 1.0102 Lo1 0 1.4673 C3 1.0206 C1o 1.5797

L 4 1.0279 L 11 1.7207 C4 1.0426 C11 1.9307
L5 1.0544 L 12 2.2444 C5 1.0742 C12 2.8345
L 6 1.0916 L 13 4.3953 C6 1.1180
L 7 1.1429 C7 1.1784

Figure 3.14: Cauer-synthesized L and C values for a 13-section ladder designed to
match 25 transmission-line non-zero critical frequencies. The code used
to generate these values can be found in Appendix A.3

and C in Fig. 3.14 are 4.4 and 2.8 times larger than the iterated values, respectively, for

13 sections. This relative increase in end-section inductance and capacitance becomes even

more pronounced for a large number of sections.

Recall that in the Foster realizations of the transmission-line impedance (Section 2.3.1),

modal capacitance or modal inductance decrease as the mode-number v squared. The total

value of these tapering values roughly equals the total corresponding value in the Cauer

network, taking account of the increase of values toward the end of the Cauer-synthesis

procedure. The total constant modal L or C in the Foster form (Ctot/ 2 or Ltot/2), however,

is much larger than the corresponding Cauer value beyond two or three modelled resonances.
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Multi-resonant component design

The Cauer network, as asserted in Section 2.3.4 for the case of uniform L and C, is still a

volume-efficient realization of X(s) or B(s).

3.4.2 Approximation of the Cauer network with a tapped toroid

The LC ladder values computed from Cauer synthesis can be realized with the same family

laminar toroids in Fig. 3.1. By tapping a toroid nonuniformly along its length, the tap-to-tap

section inductances can be chosen to approximate the Cauer-synthesized values. The self-

inductance of a group of n turns in a series connection between taps is just the appropriate

n x n block sum of the turn-to-turn inductance matrix. 6

The process of condensing the full inductance matrix by progressive block sums is illustrated

in Eqn. 3.3.

L13 L 4 L 5
L23 L24 25

L 33 L3 4 L3 5

L4 3 L4 4 L4 5

L 53 L 54 L55
............................................

L 63 L 64

L 73 L 74

L83 L8 4

L 65

L 75

L85

L' L' LIS16 17 18

L' L' LI26 27 28

L3 6 L3 7 L3 8

L 46 L4 7 L4 8

L5 6 L5 7 L5 8............................................

L 66

L 76

L8 6

L6 7

L7 7

L87

L 68

L78

L88

zz�

LI LI L 1 LI LI LIL 1 12 13L 16 17 18

LI LI L11 LI LI LI21 22 L 233.26 27 28.........................................................................................

L.1 LI'

L 1 L 261 62

L' L'
L' L'81 82

L'3 .3.L3 6 L3 7 L38...................... ... .

L 66 L6 7 L 68

L 76 L 77 L78

L 86 L8 7 L8 8

(3.3)

The primed values are self and mutual terms already condensed by summing, and the three

next turns along the toroid - for this example of ladder development - are to be combined

6The interested reader can verify this fact by considering the inductance matrix on the left of Fig 3.7.
With the -M mutual-path open, the inductors appear in series with a total self-inductance is L1 + L2 + 2M.
Extension of this case to a 3 x 3 example demonstrates how mutual terms of the condensed inductance
matrix are formed by the row and column sums given in Eqn. 3.4.
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3.4 Cauer synthesis

)n-

L

US

_+

condensed port

Figure 3.15: Series port connection in the inductance matrix

into one section inductance. The condensed self-inductance and mutual terms are

5 5

where L 3 = E E Lij
i=3 j=3

L13 = Lj = Lij
i=3

for j > 5

where the lower-right submatrix remains undisturbed.

A more powerful method of constructing the condensed inductance matrix is illustrated

by Fig. 3.15 and Eqn. 3.5. A series connection of three ports is shown, such that the

gathered turns have a total voltage drop equal to the sum of three individual port voltages.

This series connection can be expressed algebraically as a transformation M between the n

original port voltages v, and a new set of n - 2 port voltages v':
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Inductance matrix for
Cauer-synthesized toroid

250 nH

200 nH

150 nH

100 nH

50 nH

0 nH

Figure 3.16: FastHenry models and the computed inductance matrix for a 8-section
Cauer-derived network. Pairs of adjacent tap extensions are ports for the
L matrix, where the two extensions below the toroid gap correspond to
the smallest self-inductance in the upper-left entry of the matrix. Design
details for this structure, along with scripts for generating the correspond-
ing FastHenry model, can be found in Appendix A.2.

v' = Mv = 0o

0

0

.1.1.1*iseri

0

0

0

In-k-3

V1 -

Vk+l
Vk+2
Vk+3

Vn -

(3.5)

The correponding current transformation imposes an equality condition between connected

terminals, so that i = MTi', where i' the vector of new port currents. The new inductance

matrix, under this transformation, is found by substitution:

v = sLi -=-- v' = sMLMTi' = sL'i'

Though adjacent ports are shown in this example, with only one gathering of turns, the

basic structure of M can be extended to any set of simultaneous connections.

A rendering of a Cauer network synthesized from a 36-turn base toroid of 953 nH is shown

in Fig. 3.16, full design details of which can be found in Appendix A.2. The taps start

off closely spaced at the input node on the lower left, with turns per section nk increasing
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2n d guess 2n d guess

for L2 for L3

L 's from -Lk 's from select n, to minimize select 2 to minimize select f3 to minimize
Cauer 

synthesis

final value final value
for L' 2 for L' 3

Figure 3.17: Iterative method for determining tap locations along a toroid. The nk

are the number of turns in each Cauer-synthesized section with self-
inductance Lkk. Code implementing this strategy can be found in Ap-
pendix A.3

counter clockwise toward the termination:

nk = 2, 3 ,3 ,3 ,4 ,4 ,6 ,11 turns per section

The self inductances Lk of the condensed network likewise increase as the block-sums for

the 8 nk x nk L-matrix submatrices:

Lk = 37.7, 63.9, 62.6, 63.9, 89.9, 89.9, 144.5, 282.0 nH

The discrepancy between the sum of these self inductance (834 nH) and the total toroidal

self inductance is due to adjacent-section mutual entries. As one would expect form the

turn-gathering procedure, the block sum of the condensed inductance matrix is identical to

that of the original 36 x 36 L matrix.

As in the case of section-to-section coupling discussed in Sec. 3.3, mutual inductances M

in an immediate off-diagonal add to the self-inductances of the sections they couple, and

appear as an impedance -sM in the tap between coupled sections. These mutual terms are

of the order of 10% of the tap-to-tap self-inductances, and must be taken into account for

accurate pole-zero placement in the Cauer-derived toroid. Assuming that the condensed L

matrix is diagonalized with tap extensions (as depicted before in Fig. 3.6) we have only to

consider the contribution of mutual inductances Lk-l,k and Lk,k+l to the section Lk of the

Cauer network. The progressive grouping of turns along the toroid represented by Eqn. 3.3,

however, cannot explicitly account for the mutual inductance of condensed sections yet to

be designed. The iterated method summarized in Fig. 3.17 circumvents this difficulty by

regrouping turns for each section k once the section k+ 1 is designed, refining the estimate of
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condensed section-inductance Lk with a better approximation for Lk,k+l. The initial guess

for Lk is based upon the forward mutual inductance to a block with an identical number of

turns nk. The Cauer structure of Fig. 3.16 was designed using this method.

3.4.3 Measurements of the Cauer-synthesized toroid

Fig. 3.18a shows the measured impedance of a Cauer-synthesized toroid based upon the

20 Q layout of Figure 3.1 (see figure for dimensions), with diagonalizing tap inductances

and 11 condensed sections. The phase envelope in Fig. 3.18a is more capacitive than in the

iterated cases of Figs. 3.8a and 3.12a. As further evidenced by the close approximation to

transmission-line coupling coefficients (Fig. 3.18c), Cauer synthesis can effectively raise zero

frequencies and increase coupling of lumped-line modes. The critical-frequency alignment

of Fig. 3.18b is mediocre compared to the iterated cases, however. Though poles and

zeros are both in the vicinity of harmonic coincidence, their location seems much more

uncertain (3%) than in the iterated networks. The alignment of the lowest frequency

poles and zeros is especially poor, compared to the readily achieved pole or zero alignment

in Figs. 3.8b and 3.12b. Note that overall harmonic alignment (i.e., considering poles and

zeros together) is not appreciably worse than in the iterated cases.

Critical-frequency alignment improves dramatically when we compare poles and zeros, not

to harmonically aligned values, but to the values expected after the process of turns gather-

ing outlined in Section 3.4.2. Because of the discrete choices for section-inductance available

at any given point in the network realization, the smoothly flared L and C values (typified

by Fig. 3.14) can at best be approximated. Normalizing measured poles and zeros to the

frequencies computed from the approximated Cauer network yields the alignment depicted

in Fig 3.19. Here we have i1% alignment of poles and zeros over a broad frequency range,

with tighter coincidence when the first 5 or 6 critical frequencies are considered alone.

This result is a strong endorsement for the accuracy of the inductance matrix computed

with FastHenry. Note that fringing capacitance and lead inductance were considered when

predicting the critical frequencies for Fig 3.19 (see caption). While lead inductance was

considered in the examples from Sections 3.2.3 and 3.3.2, capacitor uncertainty affected

each section uniformly in the iterated cases, appearing as a frequency and characteristic-

impedance discrepancy.
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(a) Measured Zin of Cauer-derived tapped toroid
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Cauer network
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Figure 3.18: Measured input impedance of a Cauer-derived toroid. Full details of this
design can be found in Appendix A.1.
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(c) Normalized critical frequencies of
Cauer network

2 4 6 8 10 12 14 16

critical frequency number
18 20 22

Figure 3.19: Improved frequency alignment for the Cauer-derived toroid, compared to
model prediction rather than a transmission line. 12.2 nH lead inductance
were added to first section, and 5 pF stray capacitance added to each tap.

3.4.4 Perturbations of Network Models

Our effort to model tapped toroids on a network basis has been fruitful. Methods for L-

matrix diagonalization, compensation for non-coincident critical frequencies, and placement

of impedance extrema have been considered in turn. This section introduces two depar-

tures from the results of network analysis that are difficult to analyze, because they require

eigenanalysis of a non-diagonal matrix or abandonment of lumped models altogether. Note

that because Cauer synthesis has enough degrees of freedom to place each pole and zero in-

dependently, the turns-condensation method - or some other means of varying inductance

and capacitance along a structure -could compensate for the frequency perturbations

mentioned here.

3.4.4.1 End-to-end coupling

Two turns were taken off the full PCB toroids constructed for Sections 3.2.3, 3.3.2, and

3.4.3 in order to elimate end-coupling entries in their inductance matrices. Small mutual

inductances in the anti-diagonal extremes perturb the zeros of the tapped toroidal structures

in the manner shown in Fig. 3.20a (where zeros shift from an original frequency wk to w ).
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(b) Voltage standing-wave
envelopes

(a) Shift of zero frequencies with end-to-end A/2

inductive coupling

W1 W2 W3 W4 W5 6 2/2
uncoupled --- -

03 0 3X/2

coupled w o o o 

1 W2 W 3 W4 W5 W6

4A/2

Figure 3.20: Shifting of zero frequencies for end-to-end mutual inductance

A network with 10 uniform inductors was considered for this example, with 9 uniform tap

capacitances placed at internal nodes between inductors. Mutual terms 20% as large as the

main-diagonal L-matrix entries were introduced to couple the terminal inductors. From

eigenanalysis of a state-space model incorporating this non-diagonal inductance matrix and

simulating a short termination (cf. Section 4.2.1), we conclude that odd-numbered zeros

increase in frequency and even-numbered zeros decrease.

This zero "clustering" phenomenon can be explained with reference to voltage standing-

wave envelopes along a distributed line, shown in Fig. 3.20b.7 In the distributed line,

the A/2-mode corresponds to the first zero, with integral half-wavelengths added for each

successive zero w2 < 3 < .... The A/2-mode is shorted at either and, and corresponds to a

current modeshape with one internal node. The number of current inflections increases by

one for each subsequent zero, from which we see that odd zeros have anti-symmetric end-

section flux, and the even-numbered zeros symmetric. Even-numbered zeros are effectively

"weighed down" by higher flux linkage, and move down in frequency to meet the approach

of their odd, lower-flux neighbor.

7ie., we are considering the transmission line approximated by our lumped network. The standing waves
were plotted, incidentally, from the eigenvectors of a 120th-order version of the same state-space model we
are analyzing.
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3.4.4.2 Shielding

Multi-resonant structures of the type we've considered, and air-inductors more generally, can

operate at much higher frequencies than magnetic elements incorporating lossy, permeable

materials. Air-core structures have large leakage flux, however, and require shielding to

decrease the sensitivity of their impedance to surrounding conductors and mitigate radiated

EMI. Figure 3.21 depicts the measured shift in critical frequencies for a multi-resonant

structure (the 20 Q PCB element from 3.3.2) as a 1-mil copper ground plane is brought closer

to both its faces. The dielectric for the 62 mil separation was FR4 (r = 3.5, 0.127 pF/in 2 )

and for the 5- and 10-mil separation was mylar adhesive tape (er = 1.75 including adhesive,

with 78.8 pF/in 2 and 39.4 pF/in 2 capacitance, respectively).

The critical frequency alignment starts off for the 62 mil separation with roughly the ex-

pected alignment until the 4th zero. Upon a closer approach of the ground shield, two

effects are observed. At 10 mil separation, the ground shield bucks leakage flux from the

toroid; the device stores less magnetic energy and its critical frequencies increase.8 The

harmonic alignment of poles and zeros is perhaps tolerable until the second null frequency,

though a judgment of this sort will depend on the increased eddy-current losses and har-

monics that can be tolerated in a particular application. At a 5-mil shield separation, an

increase in distributed capacitance eventually overwhelms the decrease in inductance. The

structure is now loaded by much more electrical energy that out the outset and its critical

frequencies decrease. It should be noted that the frequency shifts depicted in Fig. 3.21

appear complicated aside from general trends, especially at higher frequencies. The prob-

lem of designing a self-shielded transmission-line analog may therefore be intractable with

the network methods developed in this chapter, and could possibly benefit from full-field

simulations of the desired geometry. The design of successive pole/zero-placement experi-

ments - using Cauer approximations of the type presented in Section 3.4.2 to counteract

perturbations introduced by dual ground planes - may be the best alternative.

8It is precisely the leakage flux, incidentally, that is responsible for the harmonic alignment of critical
frequencies we seek. A toroid with perfect section-to-section coupling along its length has only one mode.
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(a) Shift of zero frequencies with

shielding
w =0

0 C

.1

(b) Shift of

w-

. Iq m --:

W =

I . .1 IUW IU 11111T

pole frequencies with

shielding
0

0

aw

w=U w

5 mil w ------ L 5 mil -

0

w

Zero Frequencies (MHz) Pole Frequencies (MHz)

62 mil 10 mil 5 mil 62 mil 10 mil 5 mil

z1 27.7 35.6 25.4 Pi 14.4 16.4 12.7

Z2 55.8 70.6 54.3 P2 45.0 53.9 40.8

Z3 86.4 116 88.7 p3 75.6 94.4 74.4

z4 116 157 126 P4 108 144 112

Z5 138 170 170 P5 134 168 160

Z6 148 206 206 P6 142 192 177

Figure 3.21: Shift of critical frequencies for three ground-shield separations
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3.5 Chapter summary

This chapter has considered critical-frequency alignment of iterated and Cauer-derived

transmission-line analogs with planar, air-core magnetic geometries. For the iterated net-

work, a relation between the critical frequencies of cascaded LC sections and the roots of

Fibonacci polynomials has been presented. This result is an analytic means of treating the

transition between a distributed line and its lumped analogs, and appears to be new in the

literature. The Cauer type of line-simulating network, with non-uniform placement of taps

in approximation of the L and C values from Cauer synthesis, was seen to have precise but

inaccurate coincidence. Because such a network realizes a specified driving-point reactance,

however, harmonic alignment can be improved.

Structure Harmonic alignment Coupling Tolerance

pole and zero
lower at high ±1% to the 10 th

Iterated frequencies decrease
as cos (2k frequencies critical frequencyas cos (2)

harmonic pole same as - ±1% to the 1 0 th
alignment diagonalized case critical frequency

harmonic pole and more even pole-zero ±3%, or ±1% within
zero alignment spacing prediction
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Chapter 4

Multi-resonant power converters

TI HE multiresonant structures developed in Chapters 2 and 3 can be used as drop-

in replacements for large passive elements in power converters. The application of

single-resonant networks to switching cells and filters was considered in Section 2.1, and

the impedance- and volume-enhancing techniques presented there will now be extended

to multiple harmonics. Like their single-resonant counterparts, transmission-line analogs

can exchange Q for bulk or efficiency and improve closed-loop bandwidth. Unlike the

single-tuned case, significantly, multiple resonances can approximate delays which enforce

waveform symmetries and can increase power or efficiency.

Consistent with the reduced losses but low magnetizing of the air-core structures we've

considered, tolerable component volumes are only possible at high switching frequencies. 1

The greatest practical challenge to power conversion in HF and VHF regimes has scarcely

been mentioned; namely, the problem of control and regulation at high frequencies. Shown

in Fig. 4 is a block diagram of an uncontrolled dc-dc converter operating at radio-frequencies,

comprising a high-frequency inverter with its output matched into a rectifier. In a practical

dc-dc application, such a converter is usually required to operate efficiently over a wide

load range (often in excess of 100:1) from a variable input voltage, and must regulate the

1The high- and low-power examples considered in this chapter, for instance, switch at 13.56 and 82 MHz,
respectively.

Vin Rload

inverter matching rectifier
network

Figure 4.1: Block diagram of an RF dc-dc converter
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(a) Vernier-regulated architecture (b) Cell-modulated architecture

Vin

Figure 4.2: Vernier-regulated architecture and cell-modulated architecture which pro-
vide on-off control for high-frequency dc-dc converters [36].

output in the face of rapid and unpredictable load and input variations. RF power circuits,

however, are particularly unsuited to these operational requirements, if they are to operate

in the frequency ranges necessary for the passive scaling we seek. In the first place, inverters

and rectifiers operate with tolerable efficiency only over a relatively narrow load range; load

impedance greatly affects the tuned networks and waveforms internal to the stage. The

controllability of these designs (e.g., to compensate for load or input variations) is also very

limited, in large part because of the requirement that they operate at a fixed frequency.

I.e., we are not able to regulate power by frequency-control techniques, in the manner of

resonant converters, nor is it practical to modulate gating waveforms at the power levels

and efficiencies we require.2

2 The high-efficiency inverters we will consider are called constant-envelope designs. Their output level is
not proportional to the drive, nor subject in any obvious way to control of the switch.
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To overcome the unsuitability of traditional RF power amplifiers in a power setting, new

cellular converter architectures of the types depicted in Fig. 4.2 have been proposed [36].

Cellular regulation schemes provide on-off commands to individual cells, each of which must

only be rated for a fraction of the system load, and which are designed to deliver constant

power (i.e., to function as switchable current sources into a constant load voltage). Cells can

be turned on and off in a thermometer code, as suggested by Fig. 4.2a, with a small variable-

output regulator (the so-called Vernier cell) controlling the output voltage with continuously

variable current. With an energy buffer at the output, alternatively, individual cells can

be turned on and off rapidly enough to control average power without a vernier cell3 (cf.

Fig. 4.2b).

The principal contribution of this chapter, a soft-switching inverter incorporating a multi-

resonant input network, should be considered within the larger context of RF dc-dc con-

verters presented in this section. Numerous ancillary issues that are not elaborated here -

notably self-oscillating gate drives and active methods of tuning a switching frequency to

excite a multi-resonant structure - are treated elsewhere [16, 17, 18, 36, 37].

4.1 Cell topologies

Several high-efficiency inverter topologies are usually considered for use in unregulated cells

like those of Fig. 4.2. The operation of these inverters (and the size of their passive elements

in particular) provides a backdrop for a new inverter topology incorporating multi-resonant

structures, presented later in Section 4.1.3.

4.1.1 Class E Inverter

A Class E inverter, used in the cellular converters of [36] and [37], is depicted in Fig. 4.3.

The input inductor Lchoke provides a dc path to the source and approximates an open circuit

at radio frequencies. The difference between the roughly constant Ichoke and iload (cf. the

3In an implementation comprising cells switching at 100 MHz, for instance, 75 kHz modulation of the
converter was demonstrated [36], and modulation frequencies ten times higher are anticipated in the next
generation.
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Lchoke Lr Cr

1/jo RL

source

Figure 4.3: Schematic of a Class E inverter, and a cup-and-bucket analogy for the
relation between its switching frequency and power delivery.

bottom plot of Fig. 4.1.1) is a sinusoidal current with dc offset which enters the FET

channel and parallel capacitance Cds4 as conduction or displacement current (Fig. 4.1.1,

middle plot). There are enough degrees of freedom in the output network (comprising

Cds, Cr, and Lr) such that the drain waveform can be shaped to have zero voltage and

zero slope simultaneously. The resulting drain waveform (Fig. 4.1.1, top waveform) offers

a broader opportunity for zero-voltage switching, and suffers less efficiency degradation for

finite switching times than converters which do not enforce zero drain current at turn-on

[38, 39].

4.1.1.1 Stresses in the Class E

Class E waveforms are treated in detail in [38, 39]. Analytical design equations assume that

the current through Lr and Cr is sinusoidal, which is strictly true only for infinite loaded

Q (QL, defined as 27rwLr/R, where R is a measure of the total average loss in the drain-

source-load mesh, and ws is the switching frequency). To treat the more general case of finite

Q, the authors cited above tabulate various dimensionless design parameters as functions of

QL. A detailed analysis of Class-E waveforms highlights the dramatic peak-to-average ratio

of switch voltage and current, indicative of the high switch stresses in this design. The peak

drain voltage Vds,pk is approximately 3.56Vin (even larger when the non-linear drain-source

capacitance of the FET is taken into account) and the peak conduction current is roughly

4Cds may be external and/or internal capacitance.
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Figure 4.4: Simulated waveforms of Class E inverter.
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1.7Vin/R. As a function of QL, the output power is described by a fit of simulation results:

R 2 +' 1.001245 0.451759 0.402444

where R is the total tank loss, including reactive-component ESR, switch conduction loss,

and the load:

R = Rload + ESRLr + ESRCr - 1.365Ron - 0.2116ESRcds

The normalized power output capability PN is a dimensionless figure of merit quantifying

device stress, with lower values corresponding to poorer switch utilization. For the Class E,

we compute a PN of
P

PN - 0.095
Vds,pk ' id,pk

which is demanding on the switch, 40% lower than the Class F (see Section 4.1.2) and

70% lower than the Class D [30, Section 13.4]. Practical implementation of the Class E do

not exhibit significantly improved efficiency over well-executed designs of other types [30,

Section 13.5], in part because the switch turn-off occurs near maximum current. Dissipa-

tion for non-instantaneous switching at high frequencies can offset much of the efficiency

improvement achieved by robust ZVS turn-on.

4.1.1.2 Class E design

The design equations used for inverter comparisons in this chapter (see the discussion of

switch and frequency selection in Section 4.3.2.1) assume a QL = 10 and set the peak drain

voltage vd to 80% of the switch drain-source standoff (Vdss). The native Cds of switches

under consideration is used in simulation, approximated by linearized Cds biased at Vin:5

CdsO
Cds -

5 the parameters n and A were fit for each switch from drain-source impedance measurements under swept
dc bias.
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tuned
Lchoke Cblock A/4-wave at fw to fw

Vin ( Rload = ZO

(a) Class F converter incorporating a transmission line

tuned tuned tuned
to 5fsw to 3fsw to fw

Lchoke Cblock

Vn n Rload

(b) Class F converter with Foster approximation of
the line impedance

Figure 4.5: A Class F inverter incorporating a transmission line, and an alternative
realization approximating the line with two parallel-tuned resonators.

The native device Cds is often not augmented by external capacitance in order to limit the

power processed by the switch. As represented by the cup-and-bucket analogy in Fig. 4.3,

the Class E delivers drain-source charge AQ toward the load once per cycle. Thus, output

power is proportional to drain-source capacitance in a Class E design. At the high frequen-

cies (10-40 MHz) considered for some of the designs of this chapter, the delivered power can

exceed I kilowatt for 40 MHz switching, an embarrassment of power which is impractical

from passive- and thermal-design considerations (see Section 4.3.2.1). For some fsw and

fixed Cds, then, the total tank resistance is set by another fit function reported in [39]:

1 0.91424 1.03175'
R = 3 4.22 19fswCds 0.99866 + _QL -

The design equations presented by the same author can now be applied in a straightforward

manner:

C 27rfswR QL - 0.104823) (100121 QL - 1.7879 and r 

Where Lchoke can be conservatively selected 10 times larger Lr, and reduced later based on

simulation of acceptable waveform distortions.
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> 2in
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4_L 4...........
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' 7rRload
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Figure 4.6: Idealized drain waveforms of the Class F inverter.

4.1.2 Class F Inverter

Fig. 4.5 depicts two examples of the Class F topology [40], [41, Chapter 5], one with a A/4-

wave length of line, and one with two parallel-tuned tanks approximating a transmission-line

impedance (a Foster-form network, see Section. 2.3). A multi-resonant structure of a Cauer

form, like those presented in Chapter 3 could also be incorporated into a Class F design,

printed directly into a PCB, for instance, with the methods described in Chapter 5. The

input inductor Lchoke, as in the Class E, has a large value and is effectively an open circuit

at radio frequencies. The capacitor Cblock is likewise a large value, chosen to approximate

an RF short. The switching fundamental sees a pure resistance RL = ZO because the

output tank (tuned to fsw) is an open circuit and the line is terminated in its characteristic

impedance. Away from fw the tank is capacitance-dominated, and terminates the line in

a short (relative to other impedances seen at the load) for high tank Q. The situation of a

shorted line now obtains (cf. Fig. 2.2), namely, the even Vds harmonics see an even number

of A/4-wave transformations of the short termination and are collapsed, while odd multiples

of fsw see an open circuit. The drain waveform is therefore half-wave symmetric about its

dc value (Vin) by the A/4-wave action of the line, and reaches a peak value of 2Vin as shown
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'in i

i +_

( IVi ;, Vload ) Rload = Z

Figure 4.7: Schematic for computation of stresses in the Class F converter

in Fig. 4.6.6

Expressed in other terms with reference to Fig. 4.7, because v, is at ground potential when

the switch is on and has only odd-harmonic content, it is a square wave with a fundamental

component equal to the inverter output:

4
Vload =- Vx 1 = Vin

ix can only deliver power to the load at the fundamental frequency because it has even har-

monic content at higher frequencies. The load current and power are therefore determined:

4 Vi, 8 i2
ix,1 = R ' Pout =

7i' Rload 71'2 Rload

By conservation of energy,

in - Pout 8 Vn
Vin Vin 71 Rload

Referring to Fig. 4.8, ix has no dc content and, except at the fundamental, no odd-harmonic

components. Decomposing ix into a sum of its fundamental and even harmonics as shown,

the odd and even parts must exactly match the dc input current Iin when the switch is off.

ix is constrained to the form shown, with a lowest value

8 VJnix = in --
71 Rload

6 this assumption of quick drain transitions is standard when comparing power-amplifier stages [30, Sec-
tion 13.6]. It is suitable for gross comparison, but simulation is required to check stresses and waveforms for
the high switching frequencies we're considering, in which duty ratios are typically in the vicinity of 0.35.
The risetime of Vds will be given more detailed consideration in the next section.
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ix,l ix (even harmonics) ix
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Figure 4.8: Switch stress in the Class F inverter.

Since the drain current id = Iin - ix, the drain current has the peak value

8 Vin

7r Rload

We therefore compute for the Class F a normalized power output capability of

2 2Rload 1

PN = 7 2 0.16
2Vn (8 Vin) 27

7r Rload

which is 68% higher than the Class E. Practical implementations can moreover, achieve

efficiencies superior to Class E [30, Section 13.6], in part because the Class F has zero current

at turn off.7 Foster-type implementations of the Class F (Fig. 4.5b) perform nearly as well

as their transmission-line exemplars, and frequently do not exhibit increased efficiencies for

more than two resonator, as depicted in the schematic [loc. cit.].

4.1.3 Class converter

We have chosen to term "Class " the topology which results by replacing the input inductor

in the Class E inverter (i.e., Lchoke Figs. 4.3 and 4.5) with a A/4 transmission line or one of

its simulating networks.8 As developed in Section 2.2 and reiterated on a frequency basis

in Section 4.1.2, if a circuit periodically imposes a voltage waveform on a A/4-wave delay

7The approximation of zero-current at turn-off holds inasmuch as the net device output capacitance is
small.

8 The name Class (I was chosen because of it similarity to "Class F" while avoiding confusions with its
variants (Class F inverse, Class EF, ... ). The converters have fundamentally similar drain waveforms.
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transmission line or
multi-resonant structure Lr Cr

RL

Figure 4.9: Schematic of the Class 4) converter

during one half of the switching cycle, the network (in periodic steady state) will become

energized so as to impose half-wave symmetry in voltage during the other half-period. 9 The

line current, conversely, will be half-wave repeating for the same line termination.

Consider the steady-state operation of the Class I for a switch duty cycle less than 50%,

depicted in Fig. 4.10. The switch imposes a constant voltage (in) across the multi-resonant

inductor during the first portion of the switching cycle (when the switch is on). At turn-off,

the differential current between the line and the load flows into the Cds, as depicted by the

shaded region over the interval in the bottom and middle plots of Fig. 4.10. The half-wave

symmetries enforced by the line ensure that the drain voltage is symmetric about the Vin;

Vin was applied across the line when the switch was on and there is now a -Vin drop along

its length. Vds therefore assumes a value of 2Vin for a time equal to the switch on time, until

the line modes ring the drain back down to zero. At this point, the switch may be turned

on with zero-voltage switching and zero drain current, and the cycle repeats.

The reflection diagram of Figure. 4.1.3 explains drain-voltage symmetries by the delay

property of a transmission line or transmission-line analog. The time axis, showing the

drain voltage during one switching period, is at the front of the figure. Capacitor voltages

- in this case along a network model of the distributed line - extend from the front of the

plot back along the length axis, so that cross-sections parallel to the time axis show the time

evolution of voltage at specific points along the line. The 2Vin step in drain voltage launches

a travelling wave down the line, which is reflected by the ac short at Vin and returns to

the drain in time for a ZVS opportunity. The plot highlights the subsidiary turn-on waves,

which can reflect and return to complicate the Vds rise at turn-off. The line-simulating

network was synthesized by the Cauer method (Section 3.4) to have 24 critical frequencies

9 This property is analogous to the manner in which an inductor becomes energized such that it imposes
zero average voltage across its terminals during periodic-steady-state operation.
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Figure 4.10: Idealized waveforms of the Class 4) inverter
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4.1 Cell topologies

source (Vin)

0

drain

time (s)

Figure 4.11: Reflection diagram showing the propagation of drain-voltage edges along

the transmission line. The returning turn-off edge creates a zero-voltage

switching opportunity for turn-on.
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Multi-resonant power converters

coincident with the full transmission line, and comprised 13 inductors tapped at internal

node by 12 capacitors (these are the section values given in Fig. 3.14). The inverter used

in this simulation is the high-power example which will be presented in Section 4.3.2.

If we assume a square-wave drain waveform like that shown in Figs. 4.10 and 4.1.3, details

of the current waveform become clear upon consideration its half-wave repetition. In the

switch on state, and with ds settled, the line current must equal the load current, and

will repeat this sinusoidal behavior during switch-on time. Because the differential current

between load and line must drive half-wave symmetric edges in Vds, this drain displacement

current must be half-wave symmetric (cf. the shaded areas of Figs. 4.10). The alternating

sign in id can only come from iload, because it is half-wave symmetric; the line current, with

its half-wave repeating content, must necessarily fall to zero during drain-voltage edges.

This condition places some practical upper limits on the characteristic impedance of the

line, which should be compliant enough to allow the switch to divert the entire load current

quickly. To ensure turn-on with zero drain current, note that the load network must appear

slightly inductive to the drain so that the load current lags the applied effort by radians,

corresponding to the rise and fall times in Vds.

4.1.3.1 Stresses in the Class I

For heavy-load conditions, for which the drain-transition interval becomes smaller with

respect to a switching period, the normalized power output capability of the Class is

simple to derive, and follows the development of Section 4.1.2. The output power P and

peak values of Vds and switch current are identical to the Class F, since the peak load current

is
4 Vin

Zload,pk --
7 Rload

The input line reflects load-current pulses such that a sinusoidal current from the line

converges with the load current at the drain, doubling the switch conduction with respect

to either incident current. We compute for the Class ), therefore, a normalized power

output capability of

Vi n.
7r 2Road 1

PN= 2 (8 a = 2- .16

Rload
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4.2 Analysis and design of the Class · inverter

FET

inductor

Figure 4.12: An 8 W Class E dc-dc converter (3.3 to 7 V) highlighting a disproportion-
ately small switch package, compared to neighboring reactive elements.

68% less demanding on the switch than the Class E, exactly like the Class F (see Sec-

tion 4.1.2).

The switch stress of all of these amplifier topologies is not as significant as one might

suspect, from a point of view of miniaturization. As pointed out in Chapter 1, the excellent

performance of modern switches has shifted many frequency- and size-scaling limits to

passive components. Consider the Class E inverter/rectifier of Fig. 4.12 [42]. The switch

is dwarfed by the neighboring inductors, especially the dc input choke, highlighting the

advantage of techniques which exchange the switch stress of this Class E inverter - with

its disproportionately small switch package - for reduced passive volume. The Class 4 is

precisely suited to such a miniaturization trade-off (over against the Class E) because of

its ability to operate at higher power without additional components, and because of the

the smaller size and superior manufacturability of its multi-resonant replacement for a bulk

input inductor. Considered against the Class F, the Class eliminates reactive elements

entirely (viz., blocking elements like Cblock and Lchoke, and both output-tank elements).

4.2 Analysis and design of the Class · inverter

The quasi-static analyses in Chapter 3 yielded fully populated inductance matrices de-

scribing the magnetic coupling between turns and groups of turns around the periphery
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z2 L1 RL1 i2 L 2 RL 2 i3 L3 RL 3 i4 L4 RL 4

Vin

Figure 4.13: States of LC ladder network

of planar toroids. While the off-diagonal entries fell off rapidly for the modelled air-core

structures, the measurements of Sections 3.2.3 and 3.3.2 highlighted the fact that small

mutual inductance entries could affect harmonic coincidence of poles and zeros. Shifts of

a few percent in critical frequencies are significant, especially as zero misalignment spoils

the symmetry conditions for ZVS.10 The switched-mode method described below can simu-

late the Class ) converter with inclusion of these mutual effects, directly incorporating the

results of FastHenry simulations.

4.2.1 Switched-mode state-space analysis of the Class inverter

First consider the states of the multi-resonant component itself, with reference to Fig. 4.13.

Note that because we will drive the structure with a switch on its right terminal (cf. Fig. 4.9,

the line-section L and C are now numbered with increasing indices as we move across the

schematic from left to right, from the termination and toward the load. In a practical

implementation, Vin, is bypassed to act as the RF termination for the lumped line, which

has been flipped end to end compared to the development in Chapter 3.11

The state equations for the ladder network are:

10Moreover, phase changes rapidly (away from 0° and coincident alignment) for conjugate poles close to
the jw-axis. These phase shifts are readily detectable in converter drain waveforms, for instance, as the
gate-drive frequency is tuned past the modes of a high-order network. Square-wave topping changes in a
complicated manner, and can overshoot its expected half-wave-symmetric rise.

1lThe largest Cauer-synthesis section of Fig. 3.16, for instance, is adjacent to the dc source.
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4.2 Analysis and design of the Class I) inverter

dvl 1
dt - C (-I1)dt C1

dv 2 1
dt - (i- 12)

C2

V3 1- = -i- i3 )
dt C3

dil = [ V1I
dt L1

dil I I
dt L 1

dil 1 V

dt L1

- ilRc, - V2 - (il - i2)RC3 - ilRLJ]

- ilRc - 2 - (il - i2)RC3 - ilRL1]

- -iR 2 - (il -i2)Rc3-ilRL I

Where in is the state vector with an an equal number of voltages and currents. C1 is

chosen to be very large, and can be given an initial condition to simulate both the dc source

and the ac short termination. The state equations can be summarized in a matrix Ain and

generalized to the case of a fully populated L as shown below.

0 C-1

1 -1 0 0

0 1 -1 0

0 0 1 -1

0 0 0 1

-1 0 0 0

1 -1 0 0

0 1 -1 0

0 0 1 -1

£,-1T
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-RC 1 - RC2 - RL1

RC2

0

0TO
TO

Rc 2

-RC 2 - RC3 - RL2

Rc 3

0

1/Cl

- 0

0

Rc 3

-RC 3 - RC4

RC4

0

1/C2
0

- RL3

0

0

Rc 4

-RC 4 - RC5 - RL4

0

0

1/C3

This method includes only the conduction losses specified in R. R can be constructed from

the calculated or measured Q of the self-inductances along a toroid, and the Q of capacitor

taps along its periphery. To model the incorporation of his network into an inverter, the

on-state resistance of a FET can be subtracted from the lower-left entry of R.

Referring to Fig. 4.9, the output tank (comprising Lr and Cr) has two states, the tank-

capacitor voltage and tank-inductor current. It is modelled by the 2 x 2 state-transition

matrix Aout:

0 1Cr
Aout ---, i1 1 lI 2

- Tr / Lr L,

d ic, ic,where L = A VrJ = AoutXoutd LAt i VL,
The multi-resonant input network and second-order output network are coupled through

the drain node and device capacitance when the switch is off. The dynamics of this coupled

system are described by a new state vector x and a new matrix A, expressed and terms of
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4.2 Analysis and design of the Class 4i inverter

Ain and Aout, with cross-coupling entries between the appropriate current states:

0

0
1

Lr

0
..........

0

0

0

O1 ... 1
.ds

.....................................................

and x =

Xout.........

VCds

xin

Switched-mode simulation proceeds by alternately simulating the undriven dynamics of A

(switch off), then the undriven dynamics of Ain and Aout (switch on). New state vectors

are assembled at the switching interfaces, with the most recent states transferred to the

next step in the cycle as initial conditions (but with the voltage on Cds nulled, notably,

at turn on, and the voltage across C1 replenished). The coupling of Ain and Aout through

the on-state resistance of the FET was ignored, and drain inductance can be considered

by introducing a negative mutual term coupling the inductors which communicate with the

drain node (see Section 4.2.2). Class 4I waveforms simulated by this method are shown in

Fig. 4.14 (see caption for details of the simulation).

Code implementing this scheme, with further elaborations to account for gating and DC

loss, is presented in Appendix A.4.12 This code was used as a design tool for selecting

the characteristic impedance of the lumped line relative to the load, and exploring effect

of various misalignments in the input-network impedance on Class ) efficiency. Diagonal,

Cauer-synthesized L matrices can easily be constructed with a misaligned first null, for

instance, to account for observed distortions in Class 4) waveforms.

4.2.2 Improvements to the basic Class P design

Two techniques for enhancing the basic Class 4) design by altering its effective switch

reactances are shown in Fig. 4.15. Fig. 4.15a shows a means of compensating for the

package inductance of the FET. Recall from the previous section that this parasitic can

12Note, incidentally, that the same code can be used to simulate a Class E inverter with the choice of
a second-order Ain (the choke state plus the capacitor C1 mimicking the DC input over a cycle). The
simulation of Fig. 4.1.1 was performed by this means precisely.
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Simulated waveforms from a transmission-line analog converter

500 , , l l 

> 400

c 300 

200-

100
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nou
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. 10
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10

a)c; 0

-o
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O
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Time (ns)

Figure 4.14: Waveforms of the Class Q) inverter of Fig. 4.9 simulated with the state-
space method described in Section 4.2.1. fsw = 13.56 MHz, D = 0.4, Vi =
200 V, IXFT21N50F switch (Cds,o = 90.3 pF at Vi,, rds = 0.45 Q), Cr =
318 pF, Lr = 533 nH, Rload = 20 Q. The input network had a Cauer-
synthesized values with 24 harmonic-coincident critical frequencies (13
inductors and 12 capacitors at internal tap nodes with the normalized
values of shown in Fig. 3.14). The first section inductance was 40 nH
first-section inductance (next to the drain node) and a high inductor Q of
300 was used to yield waveforms similar to those in Fig. 4.10.
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4.2 Analysis and design of the Class 14 inverter

(a) Cancellation of package inductance
M..... -- oo

(b) Partial absorption of drain-source capacitance into line

Figure 4.15: Two methods of compensating for switch reactances in the Class in-
verter

be modelled as a negative mutual entry between the inductors communicating with the

drain node (Lr and the first section-inductance of the artificial line) because it appears

as a mutual induction between the corresponding meshes. Added coupling (M) in the

sense shown in Fig. 4.15a offsets this parasitic package inductance by -M, as explained in

Section 3.2.2. Note that this technique is an extension of our ability to make a compact

lumped transmission line as in Chapter 3, and cannot be implemented with a transmission

line alone.

The second technique, shown in Fig. 4.15b, is sometimes implemented with distributed

lines in the Class F amplifiers which employ [40]. Recall from the cup-and-bucket analogy

of Fig. 4.3 that power delivery and frequency necessarily scale in the Class E architecture,

with no apparent means of reducing Cds and delivered power. Even if a switch is capable of

operating at tens or hundreds of megahertz, a design may be limited by the power-handling

ability of its switch and reactive elements.13 The Class can offset this frequency/power

scaling by absorbing part of the switch drain-source capacitance (Cds) into the line, either

by shortening its electrical length for constant f, or shifting to a lower fsw. Further passive

13This limitation will become clear for a practical design in Section 4.3.2.1. The achievable efficiency of a
Class E converter ultimately declines with frequency for this reason.
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Impedance of Cauer-synthesized solenoid

top

oooooo00OOOOOO000

ooooo

inner

bottom

104
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C 100 200 300

Frequency

.- -0.83 in ,

Figure 4.16: The multi-resonant structure used in the low-power Class inverter of
Fig. 4.17. The structure shown was constructed within the layup pre-
sented in Fig. 5.2.

miniaturization and higher inductor Q can be expected by a move to faster switching.

4.3 Measurements of the Class · inverter

Low-power and high-power prototypes of the Class I converter were constructed, incorpo-

rating both PCB-scale structures and transmission lines.

4.3.1 Low-power example

A drop-in, multi-resonant replacement of for the input choke of a Class E cell (Fig. 4.16)

was constructed to demonstrate Class 4> operation at power levels of several watts. The

inverter depicted in Fig. 4.17 was used in a cellular architecture in conjunction with match-

ing and rectifier stages as depicted in Fig. 4 [36]. The 569 nH input choke of the original

inverter was replaced by a 238 nH solenoid (62 mQ DC resistance) built into the thickness

of a 4-layer PCB. Cross-sections of the tapped inductor are shown in Fig. 4.16, with three

internal taps loading the structure along its length with capacitances to outer-layer ground

floods. The L and C section values - 4 inductances and 3 capacitances - were computed

by Cauer synthesis (see Section 3.4). The inductor geometries were then designed by a
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4.3 Measurements of the Class q) inverter

569 nH 68 nH 94 pF multi-resonant structure 68 nH 94 pF

V -V25 pF 35 - 25 pF 35 11-16 V v l

Measured drain voltage

40

20

n

"lass E

Class F

0 10 20 30 40 50
Time (ns)

Figure 4.17: Comparison of drain-voltage waveforms for a 82 MHz class-E inverter (a)
and an inverter in which input inductor Lin has been replaced by the multi-
resonant PCB structure of Fig. 4.16. An STMicroelectronics PD57018
65 V FET was used in both converters, though the lower drain voltage in
the multi-resonant case is compatible with a lower-voltage switch.

rectangular current-sheet approximation for the inductance of a rectangular cross-section

solenoid, reported by Grover ([5, Chapter 10]) in cgs units. With fixed pitch, board thick-

ness, and 6 turns per section, the inductances were approximated by varying their width.

Mutual inductances were neglected in the design, and the resulting harmonic incidence was

mediocre, as seen from the impedance (Fig. 4.16) measured from the narrower (drain) end

of the solenoid.

Even with the poor assumptions mentioned above, peak transistor voltage in this Class 

was significantly reduced compared to the Class E converter (cf. Fig. 4.17) measured for

Vi,,n=16 V). Both inverters maintained soft-switching at 82 Mhz: the broader, approximately

square-wave drain voltage (31 V peak) of the multi-resonant inverter delivered 1.49 A p-p

into the 13.5 Q load through the Q = 10 output filter; the class-E design, for 50 V peak

drain voltage, delivered 1.98 A p-p into the same load. The lower switch stress in the multi-

resonant case would allow the 65 V PD57018 FET of the class-E inverter to be replaced

with a 40 V member of the same family, the PD55025, with an rds,on 2.7 times smaller than

the higher-voltage FET. The efficiency of both inverters was between 80 and 84%, without

considering gate-drive losses. Notably for miniaturization, the multi-resonant structure in

this example was 42% of the Class E bulk value, though inductance reduction of 5 to 6
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times is possible with better alignment of impedance peaks and nulls, as we will see in the

next section.

4.3.2 High-power example

To begin investigating design issues for higher power levels, a board-level implementation

of the Class I( inverter for hundreds of watts was designed, tested, and compared to the

Class E.

4.3.2.1 Frequency and Switch Selection

Metal-gate vertical MOSFET devices from IXYS and Advanced Power Technology were

compared in simulations of the Class E and Class 69 to select a combination of device,

power level, and switching frequency for the proposed inverter comparison. Metal gate

device were chosen because of their high-frequency gate pole (RgCg)- 1 and consequent low

gating losses. Parameters of the candidate devices are summarized in Table 4.1. The values

of CdsO, 4, and n were obtained from drain-source impedance measurements with gate and

source shorted, under three bias conditions. The parameters were fit by minimizing the

deviation of the non-linear capacitance expression

Cds0
(S Vds n (4.1)

Vds)

to the measured capacitances. This capacitance was linearized for simulation by replacing

it with Eqn. 4.1 evaluated at Vds = Vin.

Plots of anticipated power output and efficiency for various switching frequencies, consid-

ering each device from Table 4.1 in turn, are shown in Fig. 4.18. The design equations

presented in Section 4.1.1.2 were used to obtain the trends shown, and simulation con-

firmed the results at several points along the curves.14 From the plots, the IXFT21N50F

14The simulations included more detailed switch and reactive-component losses and predicted lower effi-
ciency (typically 2%) and lower power ( 10%), but still exhibited the same relationships between devices
presented in Fig. 4.18.
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4.3 Measurements of the Class ) inverter

(a) Power vs. switching frequency for the Class E

5 10 15 20 25 30 35 40

Switching Frequency (MHz)

(b) Efficiency vs. switching frequency for the Class E

5 10 15 20 25 30 35 40

Switching Frequency (MHz)

Figure 4.18: Power and efficiency curves used for switch and switching-frequency se-
lection in the high-power inverter example of Section 4.3.2. A dc input
voltage 80% of the rated breakdown voltage of each device was used, con-
sistent with the requirements of the Class E converter and adding a 20%
safety margin.
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Device Vdss Id Cg Rg CdsO n rd,on

V A pF mQ pF V Q

IXZ210N50L 500 10 857 1180 1970 0.184 0.421 1.00
DE150201N09A 200 15 1128 1064 2119 1.263 0.650 0.20
DE150102N02A 1000 2 673 1681 1314 1.775 0.756 3.20
IXFT21N50F 500 21 3190 56 4040 1.499 0.718 0.25
IXFT12N50F 500 12 2069 72 2335 1.075 0.635 0.40
ARF449A 450 9 1332 71 2381 0.129 0.514 0.80
ARF448B 450 15 2005 73 4683 0.151 0.542 0.40
ARF447 900 6 1975 80 4412 0.049 0.500 2.00

Table 4.1: Measured and nominal parameters of the candidate MOSFETs for the
high-power inverter example of Section 4.3.2. Vd, and Id are nominal rat-
ings. rds,on has greater relative uncertainty than many other parameters,
and was increased by 1.8 times for simulations.

(produced by IXYS) was chosen because it had the highest efficiency at manageable power,

and was the least expensive switch. A switching frequency in the ISM band at 13.56 MHz

was selected because the manageable heat dissipation and passive ratings anticipated for

designs at this frequency.

4.3.2.2 Class E inverter

As a basis for evaluating the Class DI inverter, a Class E converter was designed around the

IXFT21N50F. A schematic - including parasitics - is shown in Fig. 4.19. The output-

inductor value is the combination of the Class E resonant inductance and the L-match

inductance required to match a 13 Q source impedance into the 50 Q coaxial load. The

13 Q source impedance is the tank load required for Class E operation, and was computed

for the desired tank Q, Cds, and switching frequency as outlined in Section 4.1.1.2. Eight

turns (2.3 cm winding length) of unserved 175/40 litz were wound on a plastic former with

a 26 mm diameter for the tank/match inductor. This geometry was chosen to maximize

Q (84 at 13.56 MHz) and limit the current density to under 500 A/cm 2. The input choke

was also constructed as an air core solenoid, 21 turns of 18 gauge wire on the same plastic

former used in the output tank. The gate capacitance was resonated with a lead-trimmed
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4.3 Measurements of the Class (P inverter

1in

107 V 50 Q

Figure 4.19: Schematic (with parastics) of the Class E converter of Section 4.3.2.2.

27 nH inductor, an air-core inductor of the Coilcraft Midi Spring family. This resonator
had a peak impedance of 27 Q at 13.56 MHz and nearly resistive phase as seen from the
50 Q ac drive. Silver-mica chip capacitors were used in the output network, placed in series
for higher standoff where necessary.

The 1 kW source (an HP 6015A DC power supply, 0-500 V/0-5 A) was set to 107 V and
bypassed at the board with one 10000 pF and one 6800 pF silver-mica capacitor. The
gate was driven by a 150 W Amplifier Research Class A power amplifier (Model 150A
100B, 10 kHz-100 MHz), with its gain set high enough that the switch transition could
be controlled in the presence of drain-voltage feedback and harmonic distortion of the
amplifier. High-voltage differential probes (two Tektronix P5205 100 MHz probes on a
500x attenuation setting) were used for both measurements. A Bird Series 5010 directional
power sensor was placed between the load and converter, connected on either side with
2-foot lengths of RG-58 cable. The sensor was equipped with a Bird DPM-500H forward
power sensor (500 W full-scale from 2-30 MHz) and a DPM-50H reflected sensor (50 W
full-scale from 2-30 MHz), with readout provided by a Bird Model 500-EX digital power
meter. The Load was a 50 Q Bird Model 8401 Termaline coaxial resistor, rated at 600 W
and resistive from DC to 3GHz (VSWR: DC to 1GHz = 1.1; 1 to 2.8GHz = 1.2; 2.8 to
3GHz = 1.3 maximum).

Measured drain- and load-voltage waveforms for the Class E converter are shown in Fig. 4.20
for in = 107 V. Input current, as measured by the HP 6015A supply, was 1.88 A, close

to the DC value of 1.93 A measured by a Tektronix A6303 current probe with AM503B
amplifier. The Bird meter read 163 W forward power, close to the 162.2 W computed from
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Class E measured waveforms
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Figure 4.20: Measured drain and load voltages for the Class
power comparison of Section 4.3.2.2.

160 180 200

E inverter in the high-

the output-voltage measurement. The drain efficiency was around 81% (80.6% from voltage

measurements, and 81% computed with the power meter). 85% efficiency was computed

from a ideal-switching simulation of the schamtic of Fig. 4.19, taking no account of finite

switch times. The resonant inductor was lossy, and became hot enough during converter

operation to soften its former.

4.3.2.3 Distributed Class · implementation

To first demonstrate Class (D operation at higher powers with little design effort, a prototype

converter was constructed incorporating a transmission line rather than a multi-resonant

line-simulating network. The converter schematic and components are shown in Fig. 4.21.

The input line is a 135.5-inch section of RG-58/U, a quarter wavelength at 13.61 MHz. It is

terminated at the dc bias input with 3 silver-mica snubber capacitors which are self-resonant
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4.3 Measurements of the Class · inverter

silver mica caps
broadband short

Vdc

165 V

pF
I

.n 0
coaxial
600 W

Vdrive

Figure 4.21: Multi-resonant converter constructed with a length of RG-58/U coaxial
line.

near the switching fundamental and its fourth harmonic. Without this ac short, the line's

boundary conditions are not enforced well enough to produce a square-wave voltage at the

drain. The output network is an L-match into a 50 Q coaxial power resistor, designed to

provide 20 Q seen from the source. The series element of this L-match (a 47 nH inductor)

was again absorbed into the tank inductor.

The gate capacitance was resonated as before with a 27 nH inductor, this time in series

with a 0.01 uF polypropylene blocking capacitor. This resonator had a peak impedance of

18 Q and nearly resistive phase, as seen from the 50 Q ac drive through a second 0.01 uF

blocking capacitor. The dc voltage at the gate could be set with this arrangement to vary

the switch on-time, as required for Class b ZVS conditions. A duty cycle of about 0.38 was

enforced with this technique using a gate bias of -4.4 V.

Measured drain- and load-voltage waveforms for the RG-58 converter are shown in Fig. 4.22

for Vin = 165 V. The drain waveform shows the anticipated square-wave form, ringing up

to around 320 V during the switch-off period. No power meter was available for this

measurement, and the output power computed from the load-voltage measurement was
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Class measured waveforms, with A/4-wave section of RG-58/U

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100
Time (ns)

120 140 160 180 200

Figure 4.22: Measured drain and load voltages for the distributed implementation
(Fig. 4.21) of the inverter considered in Section 4.3.2.3.
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4.3 Measurements of the Class q) inverter

205.6 W. With the input source suppliying 2.91 A at 165 V, the computed drain efficiency

is 88%. The resonant inductor (5½ turns of the same litz as in Section 4.3.2.2 wound on a

glass former 27.4 mm in diameter) was again a major source of loss.

4.3.2.4 Integrated Class implementation

A Class 4) converter with integrated air-core magnetics was designed to match the perfor-

mance of the Class E of Section 4.3.2.2 with lower device stress. The multi-resonant choke

was constructed into the thickness of a 4-layer PCB with 2 oz. copper on all layers (see

Fig. 4.23). A 59 mil core was selected for the magnetic thickness dimension, with capaci-

tors constructed across outer layers comprising 2 sheets of 2116 prepreg. The final laminate

build was 83 mil, slightly more than anticipated because of an unexpectedly small prepreg

compression. The inter-layer capacitances were smaller than designed, as a result, and the

multi-resonant structure had a principle peak at 15.7 MHz rather than 13.56 MHz.

As in Figure 3.1, the multi-resonant toroid had an outer diameter of 2.5 inches and an inner

diamter of 0.75 inches. The capacitors extended from each turn for a total diameter of 4.4

inches. Two turns of the gapped, 30-turn toroid were brought to the outer copper layers

after the drain connection and left free of soldermask. These bare turns are magnetically

coupled to the input network, providing an adjustable connection point to implement the

inductance-cancellation scheme of Fig. 4.15a. The schematic of the complete converter with

parastitcs is shown in Fig. 4.24, excluding details of the input bypassing (one each of four

discrete silver mica values was used, 10000 pF, 6800 pF, 1000 pF, and 680 pF).

Measured drain- and load-voltage waveforms for the Class q) converter with mult-resonant

inductor are shown in Fig. 4.25 for Vin = 102 V. The drain waveform has a roughly square-

wave form, ringing up to around 200 V during the switch-off period. Input current, as

measured by the HP 6015A supply, was 2.11 A for an input power of 215 W. 178 W

load power was computed from the output-voltage measurement, and the Bird meter read

163 W forward power.'5 The drain efficiency was 82.7% from voltage measurements, and

75.2% computed with the power meter. The resonant inductor was constructed as in Sec-

15 The unexpectedly large fourth harmonic at the drain could have contributed to harmonic current into
the load sufficient to explain this discrepancy. This fourth-harmonic distortion is a symptom of poor zero
coincidence, as compared with the ideal transmission line.
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tion 4.3.2.2 and was again very lossy, a likely target for efficiency improvement in subsequent

designs. The multi-resonant structure, likewise, became warm during operation. The Q of

its capacitor taps was around 50, and overall efficiency could be improved by higher quality

dielectrics and higher-build copper in the planar structure.

Inner I

Inner 2

Top copper

Figure 4.23: Copper layers of the Class b converter with integrated 20 Q multi-resonant
structure.
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4.3 Measurements of the Class 4D inverter

Figure 4.24: Schematic (with parastics) of the Class · converter of Section 4.3.2.4.

Class · measured waveforms, with 20 Q planar transmission-line analog

0 20 40 60 80 100

0 20 40 60 80 100
Time (ns)

120 140 160 180 200

120 140 160 180 200

Figure 4.25: Measured drain and load voltages for the lumped implementation
(Fig. 4.21) of the inverter considered in Section 4.3.2.3. The transmission-
line impedance was approximated with a planar, 20 Q iterated LC network,
cross-sections of which are shown in Fig. ??.
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Chapter 5

Fabrication

T HE tapped magnetic structures of Chapter 3 were built in two forms, embedded into

the thickness of a printed-circuit board or electroformed into epoxy molds on a sil-

icon or pyrex substrate. The second means of construction was intended to demonstrate

the possibilities wafer- or package-scale integration, in which multi-resonant structures can

be constructed by in additive, post-processing step on finished wafers, or embedded with

finished die in a package. The scales of the electroformed structured - millimeters rather

than inches - could be suitable (by their impedance and resonant frequencies) for power

conversion in the upper VHF and UHF.

Apart from the pyrex or silicon substrate, the PCB and wafer-scale implementations pre-

sented in this chapter are fundamentally similar from a materials-compatibility and ad-

hesion standpoint. SU-8, the epoxy used as an electroforming mold in Section 5.2 is a

Novolac resin with the same basic structure as the matrix materials in FR-4 core composite

and many semiconductor packages, but with more epoxy functionality per molecule (see

Fig. 5.1). Whereas in printed-circuit manufacture, an entire layup of patterned core and

prepreg layers is bonded and drilled, wafer-level structures are "drilled" by a parallelized

UV exposure of each epoxy coat individually. Both of these manufacturing methods rely

on mask-based imaging of conductor layers, and repeatable lamination thicknesses (see Sec-

tions 5.1.2 and 5.2.1). So, though the critical frequencies and characteristic impedance of

the networks we would like to build (cf. Fig. 3.1) shift with differential scaling among

tap capacitances, for instance, or among the loop area of turns, relative alignment in the

overall structure can still be good because with tight ratiometric control of features and

uniform thicknesses. For applications in which poor absolute tolerance is unacceptable,

a converter's switching frequency can be placed under closed-loop control to ensure that

resonant alignment of multiple harmonics is always maintained [16, 18, 17, 19].
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0
Aooxirane ring

(a) SU-8 molecule (b) Bisphenol-A Novolac

Compatibility of epoxy resins for fabrication at different scales: (a) SU-
8, the epoxy resin used with a photo-active initiator in the wafer-level
process described in Section 5.2 (b) Bisphenol-A Novolac resin used
in the PWB industry for many epoxy-impregnated fiberglass laminates,
including FR-4 cores (flame-retardant). The monomer is one-quarter of
the SU-8 molecule. Prepreg layers often incorporate different uncured
thermosetting resins, but are chemically compatible with Novolac formu-
lations and have the same bisphenol base. "Epoxy functionality" refers to
the number of oxirane rings on a resin monomer, highly stressed 3-element
groups responsible for adhesion and polymerization.
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5.1 Printed- Circuit Board Structures

(a) L J (

GOO

(b) 

1 w. .

Layup
3 oz copper (top)

9 mil 2116 prepreg

2 oz copper (inner 1)

59 mil FR4 core

2 oz copper (inner 2)

9 mil 2116 prepreg

1 3 oz copper (bottom)

[

^a~ 4ff~s~u~ ·c~-~-4,~,J,~cC~c~c~b c-

inner 1 inner 2 bottom

Figure 5.2: (a) Cross-sectional view and layup for a 4-layer PCB used to manufacture
low-power multi-resonant structures. The board in (b) incorporates blind
vias for more complete shielding of the embedded air-core magnetics.

5.1 Printed-Circuit Board Structures

A cross-section of a PCB device is shown in Fig. 5.2a, alongside mask views of inner and

outer copper layers. The toroid turns in Fig. 5.2a make a radial traverse around the core

on inner layers 1 and 2, so that the principal flux path lies within the board thickness. In

this arrangement, outer copper layers can both shield the device from stray capacitance

and tap the toroid in a distributed manner. For a high-volume process with blind vias, one

might embed the toroid completely within the PCB, as in Fig. 5.2b, for superior shielding.

The full-field problem of simultaneously designing the laminar winding and distributed

capacitance is challenging, so many prototype devices had no ground plane directly over

the toroid. By sacrificing shielding, such a design was partitioned so that section inductances
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could be scaled independently of the loading capacitance per unit length along the structure

(both distributed capacitance and tap capacitance). Toroids designed in this manner can

be shielded by placing ground planes on the far side of removable boards, clamped over

both faces of the toroid. Spaced 62 mil or more away from the magnetic structure, these

ground floods minimally perturb designs analyzed on a lumped basis (see Section 3.4.4.2).

5.1.1 Layout

The layout of all PCB structures was scripted to generate geometries in terms of the desired

signal-to-signal spacing, finished via size, and the thicknesses and permittivities of lamina-

tions. Appendix A.1 provides the relevant scripts, along with code to approximate the

layout geometry for FastHenry inductance-matrix extraction. The inner vias for low-power

structures were packed in a three-layer pattern comprising an inner dodecagon, squares,

and equilateral triangles, each with edge lengths equal to a desired via-trace-via spacing d

[43]. The circumradius of the base dodecagon for such a packing, expressed in terms of d,

is

circumradius R= · d
2

The high-current toroids used in Section 4.3.2 had a different packing scheme which placed

at least 3 vias in series at each traverse of the board thickness (see Appendix A.1 for details).

This arrangement was designed to decrease DC resistance and increase Q.
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5.2 Wafer-level Structures

5.1.2 Estimation of inner-layer thickness

Designing multilayer boards with well-defined capacitances across inner layers is difficult

because of the resin flow in prepreg layers encapsulates the underlying circuit during com-

pression and curing. Especially when the inner copper build is a substantial fraction of

prepreg thickness, the finished dielectric thickness depends on the prepreg itself (glass style,

resin content, and resin flow when pressed) and the underlying copper pattern. One could

resort to first-article construction methods or to expensive controlled-dielectric processes

(normally reserved for high-volume rf and microwave boards with critical dielectric thick-

nesses), but one simple approximation is useful where no detailed guidelines or prototypes

are available.

The contribution of underlying circuits to overall laminate-to-laminate spacing (the distance

from from the top of one finished layer to the next) is approximated by the copper thickness

multiplied by the circuit coverage (e.g., 0.30 for a pattern filling 30% of the layout area).

Prepreg build over copper is obtained by subtracting the copper thickness, so that

dielectric thickness = prepreg nominal finished thickness

- (1I - coverage) x (copper thickness)

In a 4-layer board where this effect was not taken into account, for instance, a nominal

8.613-mil prepreg stack overlay a 2-ounce inner layer of copper (2.8 mil thickness). As-

suming 30% coverage in this layer, the thickness overestimate was 22.6%, corresponding to

capacitances higher than anticipated and an 11% decrease in resonant frequencies (a 9% de-

crease was observed). Note that this thickness-correction estimate is approximate because

of uncertain copper coverage; manufacturers print calibration and venting patterns on the

sides of production panels - along with other jobs - that affect finished thicknesses.

5.2 Wafer-level Structures

A batch mnicrofabrication process suitable for constructing multi-resonant magnetic struc-

tures on the surface of integrated circuits or other substrates was also developed. The

toroids depicted in Fig. 5.3 were constructed by electroformation, in which posts were elec-
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Figure 5.3: Clockwise from lower left: (a) Die views of completed devices with 7.5 mm
outer diameter and 3.3 mm inner diameter, (b) die view of lower layer
and plating interconnect, with the beginnings of posts, (c) detail of inner
posts, (d) detail of upper-level copper connecting to the top of electro-
formed posts, (e) detail of an input-port pad, (f) outer posts, shorted to
demonstrate the effects of overplating in a region with thin epoxy build.
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5.2 Wafer-level Structures

troplated into a thick-film epoxy stencil, and connected by metal traces beneath the epoxy

and in overlying patterns to form complete turns. Plating interconnects extend radially

from the portion of the metal pattern incorporated into the toroid itself, and extend to die

boundaries so that dicing isolates regions shorted during electroformation.

5.2.1 SU-8

The electroformation process centers around MicroChem's SU-8 2005, a negative-tone pho-

tosensitive epoxy formulation (MicroChem Corp,, Newton, Massachusetts). SU-8 was origi-

nally developed for the microelectronics industry to provide a high resolution negative resist

for the fabrication of advanced semiconductor devices [44, 45]. SU-8 is supplied as a liquid

consisting of an epoxy resin, a solvent (cyclopentanone for the 2000-series formulations, or

gamma-butyrolactone for other families) and a photo-acid generator (PAG). The PAG is

responsible for initiating the SU-8 polymerization by forming a strong acid when exposed

to UV between 300 and 400 nm:

[- S+A- (PAG) z H+A - (acid) + other products

The SU-8 itself is nearly transparent at these wavelengths (the near UV), which allows

thick structures with near-vertical side walls to be fabricated. 1 Because of the highly cross-

linked matrix in the exposed SU-8 (which cures when heated above a critical temperature

during post-exposure bake), it is thermally stable up to 200°C and chemically stable after

development. Finally, its high solubility in a variety of organic solvents allows solutions with

high solids contents to be formulated, so that substrates can be coated with a relatively

thick film in a single spin.

SU-8 processing is a notorious "art," often requiring a great deal of experimentation to

yield good results for a particular thickness and particular type of feature. Presented in

sections 5.2.1.1 to 5.2.1.3 are those techniques - developed through experience, consultation

with colleagues,2 and dissatisfaction with the results of conventional processing [48, 49, 50,

51]-- that are helpful for defining clean well features in films 500 m or more in thickness.

1aspect ratios greater than 15 (for isolated sidewalls) can be achieved for films up to 100 m thick in an
optimized process [46].

2 the advice of Mark Allen at Georgia Institute of Technology was especially helpful [47].
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Figure 5.4: LHS-720 Dataplate (Omega) levelled with a an adjustable tripod (one
screw-adjustable foot of which is in the foreground). The hotplate was
coated with a thin layer of heat sink compound and a tapped aluminum
plate was placed on top. The plate has positions to hold four 4" wafers and
their O-ring molds, which are held in compression by aluminum clamps
bolted at their corners into the tapped plate.

5.2.1.1 Pour application

SU-8 2005 is a low-viscosity SU-8 formulation designed for spin-application of 5-8 pum-thick

films, though more viscous members of MicroChem's SU-8 family can coat up to 450 Am in

a single step. A substrate is normally coated using a conventional photoresist spinner, with

film thickness controlled by the spin speed and the solids content of the epoxy solution.

We abandoned spin application of thick films after extensive experimentation with SU-8

2150 and 2100 (MicroChem's most viscous epoxies). Even small axial misalignment in the

coater chuck resulted in large variations in SU-8 thickness, especially in films applied at

low RPM for a short spin time. Nonuniform epoxy thickness, complicated by the presence

of bubbles throughout the viscous epoxy formulation, prevented electroformed posts from

plating level to the tops of their molds simultaneously. Overlying interconnects failed to

cover the resulting steps, and a single defect of this type could interrupt the conduction

path around a toroid.

Films of lower-viscosity SU-8 2005, however, showed excellent thickness-uniformity when
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Hot-plate temperature profiles (C)

Z- A ~two7-hot-plaite method
................... ................. .................. ................... 

A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i................... . --
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'.. .. .../.''. '.........~~ ~ ~~~~~~~~~~~~ . . ........ * ........

................................ .. ................ ............... ................ ...a ................... . ................

........... t ....... .......... .... ............... :................... ...... ramp method .
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Time (hours)
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Figure 5.5: Pre-bake temperature profiles, suitable for SU-8 films 450 Mim to
1.2 mm thick. The ramp slope is 3C per hour. The two-hot-plate
method is recommended by the manufacturer for thinner SU-8 films
(< 450 Mum). Process guidelines are available from the MicroChem
website for SU-8 formulations 2-25, 2002-2025, 50-100, and 2035-2100
(http://www.microchem. com, last accessed May 22, 2005).

poured, uniformity that was key to the making reliable electrical connections above the

wafer plane. We metered volumes of SU-8 2005 of into molds on a meticulously levelled

pre-bake hotplate (Fig. 5.4), confining the SU-8 on 4" substrates with Double Seal Buna-N

O-Rings (Standard Size AS-568A No. -340). The solid content of SU-8 2005 is 45% by mass,

so assuming all the solvent is expelled during pre-bake, the final film thickness t is

V Psolvated

A Psolids

where V is the metered volume over the area A, and Psolvated = 995.2 kg/m3 is the density

of the 2005 formulation and Psolids = 1283.8 kg/m3 the density of SU-8 with no solvents.

For example, 6 mL of SU-8 2005 in the O-ring mentioned above (23" ID) can be expected

to yield a cured-film thickness of 518 um.

The solvents are now driven out of the SU-8 film with a 3°C ramp from 65°C to 95°C
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over 10 hours (Fig. 5.5). MicroChem suggests a two-hot-plate method for their thinner

films which, when applied to thicknesses of 450 ,um or greater did not drive out solvents

uniformly. Even for bake times many hours longer than those shown for the two-temperature

method in Fig. 5.5, films could slide and split during exposure. Cool down after pre-bake

is possibly important for reducing stresses in the cross-linked epoxy. A slow ramp through

the glass-transition region allows the film to accommodate internal stresses as it cools, and

can be approximated by turning off the hotplate and relying on its thermal capacity for

slow cool-down after the peak ramp temperature is reached.

5.2.1.2 Contrast Enhancement Lithography

The uniform, thick films made possible by the pouring method have tacky edge beads at

the interface with the O-ring mold. This bead cannot be easily removed, mechanically or

by solvents, and adheres to the mold, mask holders, and masks. When a wafer is separated

from tooling for further processing, dried or exposed SU-8 is pulled or deformed, ruining

the wafer in many cases. After pre-bake, a practical solution to this problem is to cut the

mold ring in several places, pulling the pieces radially away from the epoxy. This technique

minimizes buckling or stretching in the levelled film. During exposure, a sacrificial acetate

sheet3 can be placed over the SU-8 film to prevent adhesion to the aligner or mask. 3 mil

acetate was used successfully in this regard, and can be carefully peeled off the underlying

film after exposure, even if it tightly adheres at the edges. Leaving the dried SU-8 film

in open air for at least 10-15 minutes before exposure reduces adhesion to the acetate

protector.

The large separation between the SU-8 and mask introduced by a protecting sheet can

limit the size and fidelity of patterned features because of light scattering and aerial-image

effects. These problems are especially pronounced in well features, which are encroached by

excess polymerization from the sidewalls. The mask features defining a well may be only 4

or 5 times larger than the separation of the mask itself, which - because it is a light-field

mask - admits scattered UV from every direction.

3 mylar and cellophane were also tested. The acetate was the thinnest available (3 mil) from a local art
and craft supply.
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CEM 388-S Percent Transmittance
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Figure 5.6: Transmittance of CEM-388S Contrast Enhancement Material, produced
by Shin-Etsu MicroSi, Inc. Both in the bleached and unbleached state,
the CEM coat filters out many of the shorter wavelengths in broadband
mercury-lamp exposure tools.
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Figure 5.7: Contrast Enhancement Material applied to SU-8 lithography

CEM-388S, A Contrast Enhancement Material produced by ShinEtsu Micro-Si,4 was ap-

plied as a top-coat for all SU-8 lithography to counteract the problems of exposing thick,

tacky films. CEM is a photo-bleachable material, which is initially opaque to the exposure

wavelengths, but becomes nearly transparent upon exposure (see Fig. 5.6). CEM is added

to the basic SU-8 processing steps as shown in Fig. 5.7. A barrier coat (BC-7.5 is recom-

mended for SU-8 by ShinEtsu) is first applied and spun dry over pre-baked SU-8, followed

by the spin application of the CEM itself. Spin speeds were kept below 1 kRPM to minimize

shear forces in the dried SU-8. After conventional exposure, the CEM and barrier coat are

removed by a DI water pre-wet and the resist is developed in the ordinary manner (see

Section 5.2.1.3, below).

Because of the presence of the bleachable material, the contrast of the illumination that

reaches the photoresist is increased. Referring to Fig. 5.8, the aerial image during exposure

bleaches regions of higher intensity (open areas of the mask) at a faster rate than the lower

intensity regions (dark areas of the mask). By adjusting the bleaching dynamics so that the

photospeeds of the CEM and resist layers are properly matched, it is possible to completely
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(a) CEM exposure (a) film exposure

Figure 5.8: Schematic representation of the effect of Contrast Enhancement Material
on the exposure of an underlying film. With mask separation on the
order of 50 /im - and on the same scale as mask features - the aerial
image shows significant diffraction and scattering, as represented by the
sinc-squared power lobes shown in the figures. The scattered light off the
main lobe does not bleach the CEM coat enough to expose the underlying
film, and the mask features are effectively reproduced by the conformal,
removable CEM coat.

expose the underlying photoresist in light areas before the CEM is bleached through in

dark areas. During exposure, an in-situ "conformal contact mask" is in formed in the CEM

layer, compensating for the large working distance in the exposure system.

The effect of CEM on a developed trench feature is seen in Fig. 5.9. The occlusion in

Fig. 5.9a is polymerization in the topmost portion of the SU-8, called "T-topping." Scat-

tered light for a large mask separation develops photo-acid beyond the borders of dark

regions. This acid can diffuse and initiate polymerization sufficient to cover well and trench

features as large as 50 m, as depicted in Fig. 5.9a. This effect is particularly pronounced

with broadband exposure tools (cf. the spectrum of Fig. 5.6) because of the high absorp-

tion of the photo-acid generator at wavelengths shorter than 350 nm. CEM helps in this

regard also by acting as an I-line filter, attenuating higher UV frequencies as depicted by

the transmittance curves of Fig. 5.6. The films of Fig. 5.9 were both exposed at a dose of

400 mJ/cm 2 in a Karl-Suss MJB-3 mask aligner with a 200W Hg lamp and 365/405 nm

filters.
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(a) T-topping with no CEM (b) With CEM

Figure 5.9: Results from lithography of a 100 m-thick film of SU-8 with Contrast En-
hancement Material. The feature is the end of a trench 50 um wide. With-
out CEM, the top of the feature in (a) is covered over with a thin layer
of polymerized epoxy (the so-called "T-topping" effect). Photographs
reproduced with the permission of Kurt Broderick.

5.2.1.3 Thick-film development

The development of deep well features can be particularly troublesome, with no obvious

means other than spray development for penetrating unexposed regions to remove the tacky,

viscous SU-8. Exposure time and crosslinking density trade off with ease of development,

and light-region epoxy that is well cured entails dark regions that will be more difficult

to remove. Curing is rarely thorough immediately after the post-exposure bake, moreover,

and a brute force approach to development - excessive development time, for instance

- can swell and delaminate polymerized epoxy. One good solution is to not attempt full

cross-linking at once, but expose with a moderate dose, followed by a normal post-exposure

bake. E.g., for a 450 ,um film, a dose of 3.18 J/cm 2 (measured at 365 nm), followed by a

31 minute, two-hot-plate post-exposure bake (6 minutes at 65C and 25 minutes at 950C)

yields a film easily developed by alternating PGMEA and isopropanol rinses. The film

can be flood exposed after initial development, and further cross-linked in a second bake.

Cracking often appears after post-exposure bake because of insufficient exposure dose, so

this method was a trade-off for a particular prebake profile and film thickness, determined by

experimentation for a 500 /im film with the temperature ramp treatment of Fig. 5.5. Because

cracking is caused by the shrinkage of the SU-8, film stresses around development time can

be reduced by mask design. Features with short lengths, small areas, or appropriate fillets,
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for instance, are better able than large features to accommodate internal stress without

peeling or cracking.

Even after complete development, subsequent plating steps require that residual epoxy be

removed from the underlying metal surface. Developed wafers were treated for 15 minutes in

a Tegal Plasmod Photoresist Asher with 02 plasma set to 50 W forward power at 350 mT.

Oxygen plasma alone does not etch SU-8 significantly without fluorine radicals (SF6 or

CF4), but is sufficient to remove epoxy residues in developed regions.

5.3 Electroplating

Copper was electrodeposited into plating-resist molds in Cubath-SC, 5 a commercial acid-

copper bath. A 9 x 9 x 9" covered polypropylene tank from U.S. Plastics was leached for 8

hours according to the Enthone's guidelines, and filled with Cubath make-up. Phosphated

copper anodes (0.04 to 0.06% P) in leached anode bags6 were tried-in with a dummy cathode

over a four hour period, and the recommended initial feed of additives was metered into

the tank (SC-MD and 70/30 were added, always choosing the high volumes from the ranges

gives in the instructions). The anode dimensions were 62x64 mm, with ridges on the front

face for a total area of about 114 cm2 . Once the anode was coated with a black oxidized film,

normal plating began, with a feed of 0.8 mL SC-MD and 0.2 mL 70/30 per ampere-hour

administered every 5 hours.

A good cathode contact is crucial, and many wafers can be lost either by not making good

contact to the cathode (and etching the seed layer in tens of seconds in the oxidizing bath)

or by cracking fragile substrates with the cathode clip. A reliable method of making contact

is to fold a small sheet of copper foil over itself in several plies. This malleable foil can be

placed between the seed layer and teeth of a small alligator clip, which would otherwise

make unpredictable point-contacts to the plating traces. A robust anode clip is necessary

5 Manufactured by Enthone, Inc., a Cookson Electronics company. Cubath was chosen because of expe-
rience with an identical set-up in the Microfabrication Technology Laboratory [52]. We were not permitted
to share the MTL bath with other users, whose wafers return from plating to the clean rooms, to reduce the
risk of gold contamination. The Cubath series (bath make-up and additives) have since been replaced with
another bright acid DC copper system, the CUPROSTAR ST Series.

6all anode supplies can be purchased from Kocour Company, Chicago, IL.
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because of oxidation and dissolution at the anode; large copper clips were used here which

would have cracked the cathode. The springs and lugs of cathode clips are not copper

themselves, so these connectors should be replaced frequently before foreign metals corrode

and shed chips into the tank.

An estimate of plating time can be made from the seed area, desired copper thickness, and

plating-current density, keeping in mind that 2 Faradays of plating charge are necessary

to deposit 1 mole of Copper atoms (reduced from Cu2+ ion in solution). Cubath SC is

designed for 10-25 ASF throwing power,7 so shifting to mks units, the plating current I

can be determined from a mid-range value of current density and the seed area A

I = 17.5 ASF (3.28 foot) 2 A

The plating time t for some desired copper thickness h is

96500 C 2 F 8920 kg Cu
t= 1- F A

1 F 1 molCu 0.0635 kgM uFC m Cu

Plated copper may not be dense in certain areas, and the seed area is especially difficult to

predict in the presence of overlapping films and incomplete development, so this calculation

is approximate. Enthone recommends a specific ratio of electrode areas (1.5:1 to 2:1 between

between anode area and cathode area) which are not maintained for an immersed anode

and a cathode with small plated features. As long as the current density at the cathode is

controlled, this requirement is related to the long-term health of the anode. The area ratio

was therefore ignored, with the caveat that the anode may need to be changed after fewer

ampere-hours than its rated life.

5.4 Process flow

The complete process flow comprises three masks (see Appendix C) and three metal lay-

ers, and is outlined in Figs. 5.10-5.13. Fig. 5.10 details the deposition, patterning, and

growth of the lowest copper layer. A Ti-Cu seed layer (150 A titanium and 4000 A cop-

7This is the PWB industry's expression for 10-25 amps-per-square-foot current density.
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hv

(a) E-beam deposition (b) OCG-825 lithography

7 I -

(c) Develop

hv

I ~~~~~~~~~~~~~~~I

(d) Nitric/HF etch

NR4-8000P -

(e) NR4-8000P lithography

(g) Electroplate (h) NR4-8000P strip

Figure 5.10: Electroformation process with etched seed layer
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hv

mask 1 (LF) 

NR4-8000P -
Ti-Cu -

(a) E ' -ea deposition

(a) E-beam deposition

( NR- it. h g r........... ' p ..

(b) NR4-8000P lithography

anode --

NR4-8000P --i

(c) Develop

(e) NR4-8000P strip

(d) Electroplate

(f) Sodium persulfate etchback

Figure 5.11: Electroformation process with etchback
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SU-8 -

(a) Completed bottom layer
(b) Pour and prebake

(b) Pour and prebake

hv

(c) CEM lithography

(d) Postbake and Develop

(d) Postbake and Develop

anode --

hv

(e) Flood expose and 02 -plasma etch (f) Electroplate

Figure 5.12: SU-8 process
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hv

mask 3 (LF) --

Ti-Cu -- II U

(a) E-beam or sputter deposition (b) NR4-8000P Lithography

anode --

(t

(d) Electroplate

(e) NR-4 8000P strip (f) Sodium persulfate etchback

Figure 5.13: Top-layer interconnects
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5.4 Process flow

per) is first evaporated as shown in Fig. 5.10a. The deposited titanium is important for

adhesion of overlying films, and should not be less than 150 A thick, though a thicker film

is acceptable. Seed-layer lithography uses OCG-825-20 positive resist8 at 2 m thickness,

prepared according to the manufacturer's directions. With no hardbake, this resist film

will stand up to an Ti-Cu acid etch (Fig. 5.10d) of 60% DI water, 45% nitric acid, and 5%

HF. After resist strip and drying, negative-tone lithography with a plating resist (Futurrex

NR4-8000P 9 ) and the same mask as above defines an electroforming mold with walls at

the edges of the seed-layer pattern. Optimized processing steps for 20, 50, and 100 um are

provided by Futurrex for NR4-8000P, and a thickness can be selected based on the desired

build of electroformed copper in subsequent steps (see Appendix C for further details). For

quick alignment during experimentation with Pyrex substrates, the plating resist can be

polymerized with back-side exposure, in which the Ti-Cu seed acts as a mask (the wafer

chuck is protected with a with a sheet of acetate, in this case). Electrode current for mask 1

of Appendix C was 600 mA for 2.85 x 10- 3 m2 laid-out area, corresponding to 19.2 ASF

and a 1 hour plating time for 27 m copper build. The bottom copper layer routinely

delaminated from the substrate around this plated thickness, remaining intact only in the

region around the cathode contact.

By analogy to PCB manufacture [53], it would be simpler to electroform over an unpatterned

seed (as shown in Fig. 5.11) and etch back seed and electroformed copper to leave the

desired pattern intact. Gentle oxidizing agents like sodium persulfate and ferric chloride

can remove seed copper in this case, but leave many small islands of titanium unetched

after 20 or 30 minutes of activity. At this point, because of the higher etch rate for copper,

thicker electroformed features can begin to etch away. Etch-back with dilute nitric acid,

though faster, is likewise difficult to control because of the faster oxidation of copper. The

imperfectly etched titanium does not short adjacent traces, but is an uncontrolled factor

affecting adhesion of subsequent layers. The two-exposure method of Fig. 5.10 is therefore

favored over the etch-back technique.

The thick-build mid-layer process is depicted schematically in Fig. 5.12, and defines the

magnetic thickness dimension on the toroids of Fig. 5.3. This stage is a repetition of the

electroformation process of the bottom layer, in which the ends of the radial toroid traces

8produced by Arch Chemicals, Norwalk, Connecticut; formerly Olin Microelectronic Materials, itself
formerly Olin Ciba Geigy (OCG).

9 Futurrex, Inc., Franklin, New Jersey
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acts as seed layers for the posts which define the edges of toroid turns. For the mask set of

Appendix C, 6 mL of SU-8 2005 was metered by pipette onto the wafer with the methods

of Section 5.2.1.1, corresponding to 500 m SU-8 thickness. After the prebake detailed in

Fig. 5.5, the SU-8 was exposed with contrast-enhancement lithography (Section 5.2.1.2)

with a dose of 3.18 J/cm 2 measured at 365 nm. After rinse, development, and ashing (see

Fig. 5.7 and Section 5.2.1.3) high build posts were electroformed in a long plating step.

Electrode current corresponding to the well areas defined by mask 2 of Appendix C was

125 mA for 6.36 x 10 - 4 m2 total plating area, corresponding to 18.2 ASF and 19 hours

plating time for 496 m copper build.

After e-beam deposition of a second 4000 A Ti-Cu seed, as shown in the top-level process of

Fig. 5.13, crossbars are electroformed in a developed regions of 20 m NR4-8000P. Unlike

SU-8 - which is notoriously resistant to solvents, acids and bases - hard-baked NR4-

8000P is readily removed by Futurrex remover RR4 (Fig. 5.13e). After stripping, a slow

etch-back step in 0.5 M sodium persulfate clears unplated seed regions in several minutes

(Fig. 5.13f), leaving plated copper dimensions nearly unchanged. Such a plate and etch-

back step was necessary to improve metal step coverage over well edges; the NR4-8000P

was never required, as an etch resist would be, to cover steps in order to protect underlying

metal.

5.5 Results

The measured impedance magnitude of best-performing plated toroid, tapped with three

15 pF mica capacitors, is shown in Fig. 5.14. The structure had a 10 MHz Q of 9.8 and

an inductance of 48 nH at the same frequency. Poor contacts in the top metal layer to the

tops of electroformed posts are responsible for the low Q, which could be greatly improved

by higher copper builds in the top layer.

Top-layer steps could also be suffering from joint-cracks of the type shown in Fig. 5.15a.

Though the geometries are different in the case of protruding corners - cracking at recessed

corners is shown in Fig. 5.15a - the cracking in either case could result from stress gradi-

ents in deposited copper between regions with low plating-current density and those with

high current density. Periodic pulse-reverse plating is employed specifically to minimize
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Open-circuit impedance of electroformed toroid with three 15pF taps

0 50 100 150 200 250 300
Frequency (MHz)

350 400 450 500

Figure 5.14: Measured impedance magnitude of a wafer-level toroid. The structure
had a 10 MHz Q of 9.8 and an inductance of 48 nH at the same frequency.

(a) DC plating (b) Periodic pulse reverse plating

Figure 5.15: Cracking in recessed corners with DC plating, and no cracking with
periodic pulse-reverse plating. The inverter was a Dynatronix model
DuPR 10-1-3, set for a 5 ms forward pulse at 0.0188 ASF and a 1 ms re-
verse pulse at 0.00313 ASF. Photos courtesy of Pddraig Cantillon-Murphy.

differential stress across the copper surface. Though the Cubath additives are intended for

dc systems as low-cost alternatives to pulse reversal, ac plating in the setup of Section 5.3

did remove visible cracking in recessed corners as shown in Fig. 5.15b.
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Chapter 6

Summary and Conclusions

TI HIS thesis explores techniques for reducing the volume and values of passive com-

ponents, techniques which are compatible with a shift to HF and VHF switching

frequencies, air-core magnetics, and planar magnetic geometries. These techniques can

be exploited to realize manufacturing advantages, increase converter efficiency, or increase

power density for a roughly constant evolution of heat.

6.1 Thesis summary

Chapter 1 discusses the limits posed by passive elements to miniaturization of power elec-

tronics, and introduces a means of decreasing overall passive size by waveform storage or de-

lay. In conventional converters, single-pole or "bulk" reactive elements develop impedances

which isolate external circuitry from the switching action of the power stage. Impedance

generated in this manner is fundamentally related to energy storage and size. Higher-order

systems, whether second-order resonances or delays, take advantage of periodic switching

to develop impedance extremes by energy fidelity. By storing and internally circulating pe-

riodic applied voltages or currents, a higher-order system can develop impedance extremes

by decreasing the instantaneous work delivered through its terminals.

Chapter 2 considers second-order electrical networks and transmission lines as storage el-

ements in the sense of Chapter 1. Foundations for later chapters are introduced here,

including several lumped realizations of transmission-line impedances, and methods for

comparing the size and critical-frequency alignment of such networks. The importance of

frequency alignment of poles and zeros is considered with respect to waveform symmetries,

symmetries which enable the soft-switching converter operation discussed in Chapter 4.
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Chapter 3 treats in detail the critical-frequency alignment of a family of transmission-line

analogs formed by tapping a planar inductor along its length with capacitors. Analytic

and synthetic means of designing such structures are considered, corresponding to iterated

networks and ladder structures with individually selected inductors and capacitors. For

the iterated networks - the first type of artificial line - a relation between the critical

frequencies of cascaded LC sections and the roots of Fibonacci polynomials is presented.

This result is an analytic means of treating the transition between a distributed line and its

lumped analogs, and appears to be new in the literature. The second type of line-simulating

network, one with non-uniform placement of capacitive taps, is also treated in detail. These

networks approximate the L and C values - computed by Cauer synthesis - for a spec-

ified driving-point reactance. Planar realizations of lumped-line inductances are explored,

along with means of compensating for the mutual inductances introduced by this compact

method of construction. The impedances of the different types of approximating networks

are confirmed by experiment, and perturbations to the lumped analysis are considered,

whether from distributed ground-shield capacitance or from end-to-end magnetic coupling

in a toroid.

Chapter 4 applies the results of previous chapters to the design of a new, soft-switching RF

inverter topology (the Class ) chosen to show the dramatic reduction in passive-component

size possible with multi-resonant elements. The Class 1 is compared to the Class E inverter

in an application taken from a cellular RF dc-to-dc converter topology. The natural soft-

switching, square-wave action of the Class D contrasts favorably to the large peak stresses

of the Class E. The Class topology moreover replaces a large bulk inductance in the

Class E with a much smaller value, and is superior from the standpoint of miniaturization

and manufacturability.

Chapter 5 details a means of constructing planar multi-resonant structures at smaller scales

than the experimental structures of Chapter 3. In an additive, low-temperature molding

process compatible with batch-fabrication techniques, three layers of copper are electrode-

posited to form a toroid in the thickness of a photo-imageable epoxy film. The scales and

material compatibilities of this process make it a candidate for parallelizable manufacture

of multi-resonant structures at a wafer or package level.
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6.2 Thesis conclusions

Memory- or delay-based power electronics in general, and multi-resonant components in

particular, are an effective means of reducing the values and bulk of passive components

required to implement a power-conversion function. Multi-resonant passive networks enforce

converter waveform symmetries that can be exploited to increase efficiency or output power

with smaller reactive-component values, as seen in comparisons between the Class and

Class E inverters. By exploiting rather than fighting the parasitics which bound converter

switching frequencies, transmission-line analogs encourage a shift to higher frequencies and

nonpermeable cores. Air-core multi-resonant networks are moreover amenable to planar

manufacturing methods, and have well-characterized impedance and critical frequencies.

Iteration of network sections and Cauer synthesis can be used to design networks with pole-

zero frequencies sufficiently coincident with switching harmonics to enforce square-wave

symmetries in practice. Cauer synthesis and quasistatic inductance-matrix extraction, in

particular, are precise enough to compensate for the frequency perturbations that arise from

electrical parasitics and shielding. As a proximate goal, the components, converters, and

manufacturing techniques presented in this thesis provide a viable means for printing all

converter passives elements, including those normally considered too large for construction

with laminate techniques. The Class P inverter is especially advantageous in this regard,

as it contains no reactive blocking elements.

6.3 Future work

If the effort can be justified for a particular converter, iteration of the Cauer-synthesis and

condensation method (see Sections 3.4.2 and 3.4.4.2) could lead to a completely embed-

ded, shielded, line-simulating network in a single laminate layup. Successively designed

experiments, complemented by full-field modelling, could accommodate distributed shield

capacitance within a lumped framework to yield a compact multi-resonant structure. This

process has already been attempted with more ad hoc layout choices, and viable designs

with complete shielding - and no peculiarities such as pole or zero splitting - are known to

exist. A second degree of freedom in the magnetics design, e.g., variable packing or variable

width of turns, could provide the designer with a finely graduated selection of inductances
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(a) (b)

Vout Vout

Figure 6.1: Inverter networks with natural square-wave symmetries which incorpo-
rate multi-resonant networks (the inductors with proximate capacitor
plate). These stages can form the core of several power converter topolo-
gies.

with which to realize the Cauer-derived values. Because a detailed model of a particular

inductance matrix would be required for this approach, the techniques outlined in Fig. 4.15

should be considered to increase efficiency or operating frequency.

The fabrication methods of Chapter 5 could be improved by a broader consideration mate-

rials and construction techniques. Epoxy-based electroformation, in the first place, should

be considered alongside more conventional means of package assembly, including stamp-

ing and lead-frame assembly of the desired magnetic geometries. Magnetic materials -

high-frequency ferrite composites, in particular - could be incorporated within laminar

structures in two ways. Within the core of a planar toroid, permeable materials might alter

the leakage inductances critical for transmission-line behavior, but could increase magnetic

coupling between windings in multi-resonant transformers (see below). Thin ferrite layers

above and below an air-core structure, in conjunction with conductive planes, could provide

the low-loss shielding necessary for practical applications.

Beyond the Class E design considered in Chapter 4, many power-converter and amplifier

topologies could benefit from reduced-value passive elements and the incorporation of multi-

resonant structures. Indirect and direct switching cells with transmission elements, as

depicted in Fig. 6.2, are inverter stages with natural square-wave symmetries, and form

the core of many new converter topologies. Power amplifiers can also incorporate line-

simulating networks in their inverter networks (as in the Class 1>) or in load networks.

The Class F amplifier depicted in Fig. 6.3, for instance, often employs Foster reactance
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Figure 6.2: Multi-resonant structures can be incorporated in load networks, as exem-
plified by the Class F power amplifier.

networks to reduce the voltage stress on the switch (i.e., by developing impedance peaks

at odd harmonics of a switching fundamental for square-wave symmetry at the drain, as

in Fig. 4.5b). An integrated multi-resonant network could realize the desired impedance

characteristic in a single structure with excellent tolerance.

Transformer windings, just like uncoupled self-inductances, can also impose symmetries on

their terminal waveforms. Consider, for example, the push-pull converter of Fig. 6.3a, in

which two switches are used to generate an ac square-wave output on the transformer sec-

ondary. Replacing the center-tapped transformer with a multi-resonant transformer having

the appropriate dynamics allows one switch and a primary winding to be eliminated, as

suggested by Fig. 6.3b. The natural modes of energy storage in the magnetizing impedance

can ring magnetizing currents into the core that are a half-wave replica of those imposed

by the switch. Note that the rectifier load is not necessary for application of such an iso-

lated inverter stage; RF amplifiers, in particular, could benefit from the higher magnetizing

impedance at discrete frequencies provided by a multi-resonant primary. Though the mag-

netics design for this case is more complicated than that of a tapped inductor - perhaps

requiring permeable core material to transfer appreciable power - the analysis is probably

tractable on the lumped basis of Chapter 3..
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Figure 6.3: A voltage-fed push-pull converter, illustrating an application of multi-
resonant magnetizing reactance.

0 0

III IIa

I I I 
d1



Appendix A

Layout scripts

A.1 Eagle scripts

function [terminald,terminali,terminalo,outertapr]=eagletoroid(cx,cy,diameter,turns,taps,instructionsextensions,tapcaps,tapa

global
global
global
global
global
global
global
global
global

eagle

centerx

centery

viadiameter

dds

sss

neck

shieldside

shieldhole

fprintf (eagle, ' Set Wire_Bend 2; \n' );

fprintf(eagle, '\nChange Drill 24; \n');

extensionlength=361;

extensionwidth=20;

Cprime=202e- 12/(1456*985-305*500);

Cprime=100e- 12/getsinglecaparea( 100e- 12);

20

polylinewidth 1 =viadiameter;

polylinewidth2=viadiameter; %polygon-side width for major radial traces and taps

extensions=extensions+polylinewidth2;

% Making the global copy below allows us to pass the centerpoint as an

% argument in the top-level call, but pass the centerpoint implicitly

% to underlying functions. We get a warning if we try to make the

% actual argument variables (cx and cy) global.

centerx=cx;
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centery=cy; 30

id=250;

outertapr=O;

alpha=2*pi/(turns);

beta=pi/4-alpha/2;
gamma=pi/2-beta;

xbest= (neck/2+sss+viadiameter/2+dds*sin(gamma-alpha))/sin(alpha)-viadiameter/2;

id=2*(xbest*(sin(alpha)+tan(beta)*cos(alpha))/tan(beta)-sss/sin(beta)-dds/sqrt (2)-2*dds/sqrt(2)/tan(beta));
40

d2=sss/sin(beta);
dl=id/2+dds/sqrt(2)+2*dds/sqrt(2)/tan(beta);
d6=id/2+dds/sqrt(2)+dds/sqrt(2)/tan(beta);
x=tan(beta)*(dl+d2)/(sin(alpha)+tan(beta)*cos(alpha));
inr=d6+2*viadiameter;

outervias=floor(diameter/2*alpha/1.1/viadiameter);

outerviatheta=linspace(-(diameter/2*alpha/2-viadiameter/2-sss/2)*2/diameter, (diameter/2*alpha/2-viadiameter/2-sss/:
outerviax=diameter/2*cos(outerviatheta);
outerviay=diameter/2*sin(outerviatheta);

inrtheta=(inr*alpha/2-viadiameter/2-sss/2)/inr; 50

inx=inr*cos(inrtheta);

iny=inr*sin(inrtheta);

xi=atan(diameter/2*sin(alpha)/(diameter/2-inr));
tapnodes= [ ];

turn=0;

tapindex= 1;

stopflag=O;

for a=0:360/(turns/2):359, 60

turn=turn+1;
inlayer=0;

if turn>turns-tickleturns-1
fprintf(eagle,' \nLayer Top; \n');

stopflag=l;
else
if findstr(instructions, 'top')

fprintf(eagle,'\nLayer Route2;\n'); 70

inlayer=l;
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else

fprintf(eagle,'\nLayer Top;\n');
end

end

% vias at input turn

if turn==turns-gapturns+ 1
for i=1:length(outerviax),

viaroteagle(a,outerviax(i),outerviay(i));

end
fprintf(eagle, '\nLayer Top; \n');

wirerot(a,polylinewidth2, [outerviax], [outerviay]);

fprintf(eagle, '\nLayer Bottom; \n');

wirerot(a,polylinewidth2, [outerviax], [outerviayl);

fprintf(eagle, '\nLayer Route2; \n' );

wirerot( a, polylinewidth2, [outerviax], [outerviay]);

fprintf(eagle, '\nLayer Routel5; \n');

wirerot(a,polylinewidth2, [outerviax], [outerviay]);

if inlayer>0

fprintf(eagle,'\nLayer Route2;\n');

else

fprintf(eagle, '\nLayer Top;\n');

end
end

if turn<turns-gapturns+l turn>turns-tickleturns
viaroteagle(a,id/2,0);

viaroteagle(a,id/2+dds/sqrt(2),dds/sqrt(2));
viaroteagle(a,id/2+dds/sqrt(2),-dds/sqrt(2));

if turn> 1 findstr(' standalone' ,instructions)
for i=1:length(outerviax),
viaroteagle(a,outerviax(i),outerviay(i));

end
end

fprintf(eagle, '\nLayer Top;\n');

wirerot(a,polylinewidth2, [outerviax], [outerviay]);

wirerot(a,polylinewidth 1, [id/2+dds/sqrt (2) id/2
fprintf(eagle, ' \nLayer Bottom; \n' );

wirerot(a,polylinewidth2, [outerviax], [outerviay]);

wirerot(a,polylinewidthl,[id/2+dds/sqrt(2) id/2

id/2+dds/sqrt(2)], [dds/sqrt(2) 0 -dds/sqrt(2)]);

id/2+dds/sqrt(2)],[dds/sqrt(2) 0 -dds/sqrt(2)]);
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fprintf(eagle, '\nLayer Route2;\n');

wirerot(a,polylinewidth2, [outerviax], [outerviay]);

wirerot(a,polylinewidthl,[id/2+dds/sqrt(2) id/2 id/2+dds/sqrt(2)], [dds/sqrt(2) 0 -dds/sqrt(2)]);
fprintf(eagle,' \nLayer Routel5;\n');

wirerot(a,polylinewidth2, [outerviax], [outerviay]);

wirerot(a,polylinewidthl, [id/2+dds/sqrt(2) id/2 id/2+dds/sqrt(2)], [dds/sqrt(2) 0 -dds/sqrt(2)]);
if inlayer>0 120

fprintf(eagle,' \nLayer Route2; \n');

else

fprintf (eagle, ' \nLayer Top; \n');

end
end

if findstr(instructions, 'top'),

X0 - - - - 130
if turn<turns-gapturns+ 1iturn>turns-tickleturns;
if stopflag==1

fprintf(eagle, ' \nLayer tStop; \n');
wirerot(a,viadiameter*2,[d6 d6+viadiameter],[0 01)

polyrot('l',a,polylinewidthl*2,[id/2 id/2+viadiameter/sqrt(2) d6 id/2+viadiameter/sqrt(2)],[0 viadiameter/sqrt(2) 0 -

polyrot(' 1' ,a,polylinewidthl*2,[d6+viadiameter inx inx],[0 iny -iny]);

polyrot(' 1' ,a,polylinewidth2*2,[inx inx outerviax],[iny -iny outerviay]);

fprintf(eagle,' \nLayer Top; \n');

wirerot(a,viadiameter ,[d6 d6+viadiameter],[0 0])

polyrotisolate( '' ,a,polylinewidthl,[id/2 id/2+viadiameter/sqrt(2) d6 id/2+viadiameter/sqrt(2)],[0 viadiameter/sqrt(2)

polyrotisolate( '' ,a,polylinewidthl,[d6+viadiameter inx inx],[0 iny -iny]);

polyrotisolate(' ' ,a,polylinewidth2,[inx inx outerviax],[iny -iny outerviay]);

else

wirerot(a,viadiameter ,[d6 d6+viadiameter],[0 0])

polyrot('l',a,polylinewidthl,[id/2 id/2+viadiameter/sqrt(2) d6 id/2+viadiameter/sqrt(2)],[0 viadiameter/sqrt(2) 0 -v:

polyrot(' 1 ' ,a,polylinewidthl,[d6+viadiameter inx inx],[0 iny -iny]);

polyrot(' l',a,polylinewidth2,[inx inx outerviax],[iny -iny outerviay]);
if find(taps==turn),
wirerot(a,extensionwidth,[diameter/2 diameter/2+extensions(tapindex)],[0 0]);

rl=diameter/2+extensions(tapindex)-polylinewidth2/2; 150

r2=sqrt(2/taparc(tapindex)*tapcaps(tapindex)/Cprime+r *rl)-polylinewidth2/2;

if outertapr==0
outertapr=r2;

end

rl=rl+polylinewidth2/2; % compensate for line thickness
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th=(taparc(tapindex)*mean([r2 rl])-polylinewidth2)/mean([r2 rl]);
%th=taparc(tapindex);

thv=linspace(-th/2,th/2,5);
polyrot ( ' 1 ' ,a,polylinewidth 1,[cos(thv)*rl cos(thv)*r2], [sin(thv)*rl sin(fliplr(thv))*r2]);
tapindex=tapindex+ 1; 160

end
end

end
%--- - __

end

turn=turn+ 1;

%vias at input turn 170
if turn==turns-gapturns+ 1
for i=l:length(outerviax),

viaroteagle(alpha*180/pi+a,outerviax(i) ,outerviay(i));
end

fprintf(eagle, '\nLayer Top; \n');
wirerot(a,polylinewidth2, [outerviax], [outerviay]);

fprintf(eagle, '\nLayer Bottom; \n');
wirerot( a, polylinewidth2, [outerviax], [outerviay]);

fprintf(eagle,'\nLayer Route2;\n');

wirerot(a,polylinewidth2, [outerviax], [outerviay]); 180
fprintf(eagle,'\nLayer Routel5;\n');

wirerot(a,polylinewidth2, [outerviax], [outerviay]);

if inlayer>0

fprintf(eagle,' \nLayer Route2; \n');
else

fprintf(eagle, '\nLayer Top; \n');
end

end

190

if turn<turns-gapturns+ 1 turn>turns-tickleturns;

for i=1:length(outerviax),
viaroteagle(alpha*180/pi+a,outerviax(i) ,outerviay(i));

end
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viaroteagle(alpha*180/pi+a,x+viadiameter/2,0)

viaroteagle(alpha*180/pi+a,x+viadiameter/2+cos(gamma)*dds,sin(gamma)*dds);

viaroteagle(alpha*180/pi+a,x+viadiameter/2+cos(gamma)*dds,-sin(gamma)*dds);

fprintf(eagle, '\nLayer Top;\n');

wirerot(a+alpha*180/pi,polylinewidth2,[outerviax], [outerviay]);

wirerot(a+alpha*180/pi,polylinewidth 1, [x+viadiameter/2+cos(gamma)*dds

fprintf(eagle,'\nLayer Bottom;\n');
wirerot(a+alpha*180/pi,polylinewidth2, [outerviax], [outerviay]);

wirerot(a+alpha*180/pi,polylinewidthl, [x+viadiameter/2+cos(gamma)*dds

fprintf(eagle, ' \nLayer Route2;\n');

wirerot(a+alpha*180/pi,polylinewidth2, [outerviax], [outerviay]);

wirerot(a+alpha*180/pi,polylinewidth 1, [x+viadiameter/2+cos(gamma)*dds

fprintf(eagle,'\nLayer Routel5;\n');
wirerot(a+alpha*180/pi,polylinewidth2, [outerviax], [outerviay]);

wirerot(a+alpha*180/pi,polylinewidth 1, [x+viadiameter/2+cos(gamma)*dds

if inlayer>0

fprintf(eagle,'\nLayer Route2;\n');

else

fprintf(eagle, '\nLayer Route2;\n');

end
end

x+viadiameter/2 x+viadiameter/2+cos(gam

x+viadiameter/2 x+viadiameter/2+cos(gam

x+viadiameter/2 x+viadiameter/2+cos(gam

x+viadiameter/2 x+viadiameter/2+cos(gam

220

if findstr(instructions, 'top'),

if turn<turns-gapturns+l turn>turns-tickleturns
if stopflag==1

fprintf(eagle, '\nLayer tStop; \n');

polyrot(' l' ,alpha*180/pi+a,polylinewidthl*2,[x+viadiameter/2 x+viadiameter/2+cos(gamma)*dds inx inx x+viadian

polyrot( ' ,alpha*180/pi+a,polylinewidth2*2,[inx inx outerviax],[iny -iny outerviay]);

fprintf(eagle, ' \nLayer Top; \n' ); 230

polyrotisolate( 'l' ,alpha*180/pi+a,polylinewidthl,[x+viadiameter/2 x+viadiameter/2+cos(gamma)*dds inx inx x+viad

polyrotisolate( ' 1 ',alpha*180/pi+a,polylinewidth2, [inx inx outerviax],[iny -iny outerviay]);

else

polyrot('l' ,alpha*180/pi+a,polylinewidthl,[x+viadia xviadiameter/2+cos(gamma)*dds inx inx x+viadiamete

polyrot(' 1 ',alpha*180/pi+a,polylinewidth2,[inx inx outerviax],[iny -iny outerviay]);

if find(taps==turn),
wirerot(a+alpha*180/pi,extensionwidth, [diameter/2 diameter/2+extensions(tapindex)],[0 0]);

rl =diameter/2+extensions(tapindex)-polylinewidth2/2;
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r2=sqrt (2/taparc(tapindex) *tapcaps(tapindex)/Cprime+rl *r )- polylinewidth2/2;
if outertapr==O
outertapr=r2;

240

end

rl=rl+polylinewidth2/2; % compensate for line thickness

th=(taparc(tapindex)*mean( [r2 rl])-polylinewidth2)/mean( [r2 rl]);
%th=taparc (tapindex);

thv=linspace(-th/2,th/2,5);
polyrot( '1 ' ,a+alpha*180/pi,polylinewidth 1, [cos(thv)*rl cos(thv)*r2], [sin(thv)*rl sin(fliplr(thv))*r2]);
tapindex=tapindex+ 1;

end 250

end
end

end

turn=turn-1;

if turn>turns-tickleturns-1
fprintf(eagle, '\nLayer Bottom; \n');

stopflag=l;
else

if findstr(instructions, 'bottom' )
fprintf(eagle,' \nLayer Routel5; \n');

else
fprintf(eagle, '\nLayer Bottom; \n');

end
end

260

270

if turn<turns-gapturns+ 1 turn>turns-tickleturns

if stopflag-=1
fprintf(eagle, '\nLayer bStop; \n');
wirerot(a,polylinewidth2*2,outerviax,outerviay);

wirerot(a,polylinewidthl*2,[id/2+dds/sqrt(2) id/2 id/2+dds/sqrt(2)],[dds/sqrt(2) 0 -dds/sqrt(2)]);
fprintf(eagle, '\nLayer Bottom; \n');

end
wirerot(a,polylinewidth2,outerviax,outerviay);

wirerot(a,polylinewidthl,[id/2+dds/sqrt(2) id/2 id/2+dds/sqrt(2)],[dds/sqrt(2) 0 -dds/sqrt(2)]); 280
end
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if findstr(instructions,'bottom'),

if turn<turns-gapturns+ 1 turn>turns-tickleturns
if stopflag==1

fprintf(eagle, '\nLayer bStop;\n'); 290
polyrot('1' ,a,polylinewidthl*2,[id/2 id/2+viadiameter/sqrt(2) d6 id/2+viadiameter/sqrt(2)],[O viadiameter/sqrt(2) 0 -
polyrot(' 1' ,a,polylinewidthl*2,[d6+viadiameter inx inx],[0 iny -iny]);

wirerot(a,viadiameter*2,[d6 d6+viadiameter],[0 0])

ar=alpha;

rotated= [cos(ar) -sin(ar) ;sin(ar) cos(ar)]* [outerviax;outerviay];

xr=rotated( 1, :);

yr=rotated(2,:);

polyrot(' l' ,a,polylinewidth2*2,[inx inx xr],[iny -iny yr]);

fprintf(eagle,'\nLayer Bottom;\n');
polyrotisolate(' 1 ',a,polylinewidthl,[id/2 id/2+viadiameter/sqrt(2) d6 id/2+viadiameter/sqrt(2)],[0 viadiameter/sqrt(2)

polyrotisolate( ' ' ,a,polylinewidthl,[d6+viadiameter inx inx],[0 iny -iny]);

wirerot(a,viadiameter,[d6 d6+viadiameter],[0 0])

polyrotisolate(' 1' ,a,polylinewidth2,[inx inx xr],[iny -iny yr]);

else

polyrot('1',a,polylinewidthl,[id/2 id/2+viadiameter/sqrt(2) d6 id/2+viadiameter/sqrt(2)],[O viadiameter/sqrt(2) 0 -v.

polyrot(' 1' ,a,polylinewidthl,[d6+viadiameter inx inx],[0 iny -iny]);

wirerot(a,viadiameter, [d6 d6+viadiameter],[0 0])

ar=alpha;

rotated= [cos(ar) -sin(ar);sin(ar) cos(ar)]* [outerviax;outerviay];

xr=rotated(1,:); 310

yr=rotated(2,:);

polyrot( ' 1 ',a,polylinewidth2,[inx inx xr],[iny -iny yr]);

end
end

end

turn=turn+ 1;

if turn<turns-gapturns+ 1 turn> turns-tickleturns 320
if stopflag==l

fprintf(eagle, ' \nLayer bStop;\n');
wirerot(a+alpha*180/pi,polylinewidth2*2,outerviax,outerviay);
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wirerot(a+alpha*180/pi,polylinewidthl*2, [x+viadiameter/2+cos(gamma)*dds x+viadiameter/2 x+viadiameter/2+cos(
fprintf(eagle, ' \nLayer Bottom; \n');

end
wirerot(a+alpha*180/pi,polylinewidth2,outerviax,outerviay);

wirerot(a+alpha*180/pi,polylinewidthl1,[x+viadiameter/2+cos(gamma)*dds x+viadiameter/2 x+viadiameter/2+cos(gan
end

%----- ---- 330

if turn<turns-gapturns+2 turn>turns-tickleturns
if stopflag==l

fprintf(eagle, '\nLayer bStop; \n');

wirerot(a+2*alpha*180/pi,polylinewidth2*2,[outerviax],[outerviay]);

fprintf(eagle,'\nLayer Bottom;\n');

end

wirerot(a+2*alpha*180/pi,polylinewidth2, [outerviax], [outerviay]);

end 340

if findstr(instructions, 'bottom'),

if turn< turns-gapturns+l turn>turns-tickleturns
if stopflag==1

fprintf(eagle,'\nLayer bStop;\n');

polyrot('l' ,alpha*180/pi+a,polylinewidth2*2,[inx inx xr],[iny -iny yr]);

polyrot(' l',alpha*180/pi+a,polylinewidthl*2,[x+viadiameter/2 x+viadiameter/2+cos(gamma)*dds inx inx x+viadiam(
fprintf(eagle,' \nLayer Bottom;\n');

polyrotisolate('l' 1,alpha*180/pi+a,polylinewidth2,[inx inx xr],[iny -iny yr]);

polyrotisolate('l' ,alpha*180/pi+a,polylinewidthl,[x+viadiameter/2 x+viadiameter/2+cos(gamma)*dds inx inx x+viad
else

polyrot( ' 1 ',alpha*180/pi+a,polylinewidth2,[inx inx xr],[iny -iny yr]);

polyrot('1' ,alpha*180/pi+a,polylinewidthl,[x+viadiameter/2 x+viadiameter/2+cos(gamma)*dds inx inx x+viadiamete
end

end

end 360

end

if findstr(instructions, 'noground')

if findstr(instructions,' standalone' )&findstr(instructions, 'top')
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fprintf(eagle,' \nLayer Top;\n');

else

fprintf(eagle, '\nLayer tRestrict; \n');

end

a=O; 370

wirerot(a,polylinewidth2, [outerviax], [outerviay]);

fprintf(eagle,' \nLayer tRestrict; \n' );
for a=(turns-gapturns+ 1)*360/turns:360/turns: (turns-tickleturns- 1)*360/turns,

wirerot(a,polylinewidth2, [outerviax], [outerviay]);

end
fprintf(eagle,' \nLayer bRestrict;\n');

for a=(turns-gapturns+ 1)*360/turns:360/turns:(turns-tickleturns- 1)*360/turns,

wirerot(a,polylinewidth2, [outerviax] ,[outerviay]);

end
else 380

if isempty(findstr(instructions, 'top'))
fprintf(eagle,'\nLayer tRestrict;\n');
wirerot (a, polylinewidth2, [outerviax], [outerviay] );

fprintf(eagle, '\nLayer tRestrict;\n' );
for a= (turns-gapturns+ 1)*360/turns:360/turns:(turns-tickleturns- 1)*360/turns,

wirerot(a,polylinewidth2, [outerviax], [outerviay] );

end
end

if isempty(findstr(instructions, 'bottom'))
fprintf(eagle, '\nLayer bRestrict; \n'); 390

for a=(turns-gapturns+l)*360/turns:360/turns: (turns-tickleturns- 1)*360/turns,

wirerot(a,polylinewidth2, [outerviax], [outerviay]);

end
end

end

% soldermask stop

halfwidthmrs=shieldside/2;

if outertapr>halfwidthmrs

halfwidthmrs=outertapr; 400

end

theta=linspace(0,2*pi,turns*4);

px=[];
py=[];
for m=l:length(theta),
if theta(m)>=0O.5*2*pi/turns & theta(m)<(turns-gapturns)*2*pi/turnslfindstr('standalone',instructions)

px=[px cos(theta(m))*(halfwidthmrs+viadiameter)];
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py= [py sin(theta(m))*(halfwidthmrs+viadiameter)];

else

px=[px cos(theta(m))*(diameter/2+viadiameter)]; 410

py=[py sin(theta(m))*(diameter/2+viadiameter)];

end
end

fprintf(eagle, '\nLayer tStop;\n');

polyrot( ' 2' ,O,polylinewidthl, [px], [py]);

fprintf(eagle,'\nLayer bStop;\n');
polyrot( 2 ' ,O,polylinewidthl, [px], [py]);

%if findstr('standalone ', instructions)

%theta=linspace (0, 2*pi, turns *4); 420

%px_=cos(theta) *(diameter/2+viadiameter);

%py=sin(theta) *(diameter/2+viadiameter);

%if isempty(findstr(instructions, 'top'))

% fprintf(eagle, '\nLayer tStop;\n');
% polyrot('2', O,polylinewidthl, [px], py]);

%end

%if isempty(findstr(instructions, 'bottom'))
% fprintf(eagle, '\nLayer bStop;\n');

o polyrot('2 ', O,polylinewidthl,px], [py]);

%end 430

%end

a=360/turns;

terminald=terminalrot(0*360/turns,diameter/2,0);

terminali=terminalrot((turns-gapturns)*360/turns,diameter/2,0);

terminalo=terminalrot((turns-tickleturns)*360/turns,diameter/2,0);

if findstr(' standalone',instructions)
outerterminalx=(4*viadiameter+diameter/2)*cos(fliplr(outerviatheta)); 440

outerterminaly=(4*viadiameter+diameter/2)*sin(fliplr(outerviatheta));

if findstr('top' ,instructions)

fprintf(eagle,' \nLayer Top; \n');

polyrotisolate( ' 1 ' ,0*360/turns,polylinewidthl,[outerviax outerterminalx], [outerviay outerterminaly])

polyrotisolate('' ',(turns-gapturns)*360/turns,polylinewidth1, [outerviax outerterminalx], [outerviay outerterminaly])

fprintf (eagle, ' \nLayer tStop; \n' );
polyrot('1 ,0*360/turns,polylinewidthl*2,[outerviax outerterminalx], [outerviay outerterminaly])

polyrot(' 1' ,(turns-gapturns)*360/turns,polylinewidthl*2, [outerviax outerterminalx], [outerviay outerterminaly])
end
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if findstr( 'bottom' ,instructions) 450

fprintf(eagle,'\nLayer Bottom;\n');
polyrotisolate(' ' ,0*360/turns,polylinewidthl,[outerviax outerterminalx],[outerviay outerterminaly])

polyrotisolate( ' 1 ' ,(turns-gapturns)*360/turns,polylinewidthl,[outerviax outerterminalx], [outerviay outerterminalyl)

fprintf (eagle, ' \nLayer bStop; \n' );
polyrot( ' 1 ' ,0*360/turns,polylinewidthl*2,[outerviax outerterminalx],[outerviay outerterminaly])

polyrot( ' 1', (turns-gapturns)*360/turns,polylinewidthl*2, [outerviax outerterminalx], [outerviay outerterminaly] )

end
end

% 6-32 bolt free fit hole 460

% #25 drill .1495"

fprintf(eagle,'\nChange Drill %i;\n', shieldhole);
fprintf(eagle,'Via ''GND'' 180 round (%-5.3f %-5.3f) ;\n' ,centerx+shieldside/2,centery+shieldside/2);

fprintf(eagle,'Via ''GND'' 350 square (%-5.3f %-5.3f);\n' ,centerx+shieldside/2,centery-shieldside/2);

fprintf(eagle,'Via ''GND' ' 180 round (%-5.3f %-5.3f);\n', centerx-shieldside/2,centery+shieldside/2);

fprintf(eagle,'Via ''GND'' 180 round (%-5.3f %-5.3f);\n' ,centerx-shieldside/2,centery-shieldside/2);

fprintf(eagle, '\nChange Drill 24; \n');

% 4-layer PCB
% .062 Laminated Thickness

% Top 2 oz

8.613 mil

%o Route2 2 oz

% 59 mil

% Route15 2 oz

8.613 mil

% Bottom 2 oz

10

% Finished prepreg thickness.

% 0.063 Laminated Thickness
% Quantity Prepreg Thickness

% 1 sheet 2116 0.003813"

% 2 sheets 2116 0.008613"

% /////////// H/H, 1/1 Foil///////////
% 2 Sheets 2116 Prepreg

% XXXXXXXXXXXXX .059 Core XXXXXXXXXXXXX

% 2 Sheets 2116 Prepreg 20

% /////////// H/H, 1/1 Foil ///////////
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global eagle

global eO

global er

global erinner

global outerthick

global innerthick

global textlabelheight

global boardx

global boardy

global
global
global
global
global
global
global
global
global

boardz

viadiameter

dds

sss

neck

shieldside

shieldhole

cornx

corny

%drill-drill spacing

%signal-signal spacing

%smallest constriction in conductor

40

shieldside=3500;

shieldhole= 150;

viadiameter=40;

dds=viadiameter;

sss=20;

neck=viadiameter;

boardx=18500;

boardy= 13000;

%mil

%mil

%mil

outercuthick=2*1.4; %mil

innercuthick=2*1.4;

outerthick=8.613; %prepreg

innerthick=59; %core

boardz=innerthick;

% er=4.8 for outside layers and 3.5 for inside layers

eO=8.85e-12;

er=4.8;

erinner=3.5;
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textlabelheight=70;

eagle = fopen('final.scr','w');
fprintf(eagle,'# File generated by finalboard.m, %s\n\n',date);
fprintf(eagle,'Grid mil 0.1 off;\nSet Wire_Bend 0;\n');

fprintf(eagle,'\nLayer Dimension;\nWire 0 (O 0) (%i %i) (O 0);\n',boardx,boardy);

%silkbox(O, 0, boardx/2, boardy);

fprintf(eagle, 'Set WireBend 2; \n');

labelx=boardx- 1600;

labely=600;

linespacing= 100;

fprintf(eagle, '\nChange Size 70; \n');

fprintf(eagle,'Text ' '%s" (-5.3f %-5.3f)
fprintf(eagle,'Text ''%s ' (%7-5.3f %-5.3f)
fprintf(eagle,'Text ' %s" (.-5.3f %-5.3f)

fprintf(eagle,'Text "'%s'' (-5.3f %-5.3f)

;\n', 'LEES @ MIT (C) 2004' ,labelx,labely-O*linespacing);

;\n','Joshua Phinney',labelx,labely-1*linespacing);
; \n', ' Prof. David Perreault', labelx, labely-2*linespacing); 80
; \n ', ' March 2004 ', labelx, labely-3*linespacing);

fprintf(eagle,'Change ISOLATE 20;\n');

% gap=4 designs

% 50 ohm

% tapL= 1.0e-07

% Cph = 1.0e-10
% design = 2

* 0.0845

* 0.2791

3 3

0.0946 0.0944

0.2846 0.2966

3 4 4

0.0996 0.1052

0.3178 0.3546

5 10

% 35 ohm

%tapL = 1.0e-08 * 0.4643

%Cph = 1.0e-10 * 0.3376

%design = 1 2 2

0.6406 0.6406 0.6406 0.7119

0.3427 0.3536 0.3721 0.4018

2 2 3 3 4 9

0.7973 0.8370 0.8309

0.4514 0.5448 0.7909

% 20 ohm

%tapL = 1.0e-08 * 0.1809 0.2303 0.2303 0.2303 0.2303 0.2303 0.2460 0.2667 0.1878

%Cph = 1.0e-09 * 0.0575 0.0582 0.0597 0.0621 0.0657 0.0714 0.0806 0.0977 0.1424

% design = 1 2 2 2 2 2 2 3 4 8

% 4-turn gap self inductances

%3.4302e-07 20 ohm

%6.3450e-07 35 ohm

%9.1658e-07 50 ohm
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%#############################################################################

##############################################################################

%#############################################################################

;###################################################################### ##### ### 110

% LOWEST ROW 50 ohm iterated, 20 ohm cauer, no multires, shield

------------------------
mrdiameter=3000;

cornx=850;

corny=650;

fsw=13.56e6;

L=9.1658e-07;

C=1/(16*fsw*fsw*L);

ZO=sqrt(L/C); 120

[td,ti,to,outertapr]=eagletoroid(cornx+shieldside/2,corny+shieldside/2,mrdiameter,38,2:3 4, 'topnoground' ,ones(1,34)*0,C/344

fprintf (eagle,' \nLayer tPlace\n');

fprintf(eagle,'Text ''"%s'' (%-5.3f %-5.3f) ;\n' ,'501', cornx+shieldhole,corny);

halfwidthmrs=shieldside/2+shieldhole/2+300;

if outertapr>halfwidthmrs

halfwidthmrs=outertapr;

end

[capx,lengthCl]=loadnetwork(halfwidthmrs);

boardedge=capx+lengthCl+200;

bncsource=inputnetwork(ti,boardedge); 130

switchlayout(mrdiameter,boardedge,td)

floods(halfwidthmrs,boardedge)

% -----------------

mrdiameter=2500;

cornx=boardedge+600;

corny=700;

tapL = 1.0e-08 * [ 0.1809 0.2303 0.2303 0.2303 0.2303 0.2303 0.2460 0.2667 0.1878];

Cph = 1.0e-09 * [ 0.0575 0.0582 0.0597 0.0621 0.0657 0.0714 0.0806 0.0977 0.1424];

design = [ 1 2 2 2 2 2 2 3 4 8]; 140

taps=cumsum(design);

taps=taps+ 1;

taps=taps( 1 :end-1);
tapL=tapL- le-9;
extensions=tapL*(400/(10.8e-9-1.5e-9)); % linear approximation mils/H

tapangles= 19*ones(1,length(Cph));
tapangles(1)=12;
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tapangles(end-1)=25;

tapangles(end)=35;

tapangles=tapangles*pi/180; 150

[td,ti,to,outertapr]=eagletoroid(cornx+shieldside/2,corny+shieldside/2,mrdiameter,32, taps, topbottomnoground' ,extensions,C
fprintf (eagle,' \nLayer tPlace\n');

fprintf(eagle,'Text '%s ' (%-5.3f %-5.3f);\n', '20C', cornx+shieldhole,corny);
% use last value

halfwidthmrs=halfwidthmrs+ 150;

%halfwidthmrs=shieldside/2+shieldhole/2;

%if outertapr> halfwidthmrs

% halfwidthmrs=outertapr;
%end

[capx,lengthCl]=loadnetwork(halfwidthmrs); 160

boardedge=capx+lengthCl;

bncsource=inputnetwork(ti,boardedge);

corny=corny-20;

switchlayout(mrdiameter,boardedge,td)

corny=corny+20;

floods(halfwidthmrs,boardedge)

% no multiresonant structure: offset in x fools drawing subs

cornx=boardedge-2700; 170

oldcornxl= cornx;

corny=600;

halfwidthmrs=2000;

mrdiameter=2500;

[capx,lengthCl] =loadnetwork(halfwidthmrs);

boardedge=capx+lengthCl;

switchlayout(mrdiameter,boardedge,O)

floods(halfwidthmrs,boardedge,3000)

% -… - - - - - - - - - - - - - - 180

cornx=boardedge+200;

corny=1450;

oldcornx2=cornx;

shield;
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% MIDDLE ROW 50 ohm cauer, 20 ohm iterated, no multires, shield 190

-----------------------
mrdiameter=3000;

cornx=750;

corny=5050;

tapL= 1.0e-07 * [ 0.0845 0.0946 0.0944 0.0996 0.1052 0.1079 0.1042];

Cph = 1.0e-10 * [ 0.2791 0.2846 0.2966 0.3178 0.3546 0.4256 0.6147];

design = [ 2 3 3 3 4 4 5 10];

taps=cumsum(design);

taps=taps+l1; 200

taps=taps(1:end- 1);

tapL=tapL-le-9;
extensions=tapL*(400/(10.8e-9-1.5e-9)); % linear approximation mils/H

tapangles=19*ones(1,length(Cph));

tapangles(1)=12;

tapangles(end-1)=25;

tapangles(end)=35;

tapangles=tapangles*pi/180;

[td,ti,to,outertapr]=eagletoroid(cornx+shieldside/2,corny+shieldside/2,mrdiameter,38,taps, ' topnoground' ,extensions,Cph,tap,

fprintf(eagle, '\nLayer tPlace\n'); 210

fprintf(eagle,'Text ' '%s'' (%-5.3f %-5.3f);\n', '50C',cornx+shieldhole,corny);
halfwidthmrs=shieldside/2+shieldhole/2;

if outertapr>halfwidthmrs
halfwidthmrs=outertapr;

end

[capx,lengthCl] =loadnetwork(halfwidthmrs);

boardedge=capx+lengthCl+200;

bncsource=inputnetwork(ti ,boardedge);

switchlayout(mrdiameter,boardedge,td)

floods(halfwidthmrs,boardedge) 220

------------- - -- -- -- 

mrdiameter=2500;

cornx=boardedge+530;

corny=5150;

fsw=13.56e6;

L=343e-9;

C=1/(16*fsw*fsw*L);

ZO=sqrt(L/C); 230

[td,ti,to,outertapr]=eagletoroid(cornx+shieldside/2,corny+shieldside/2,mrdiameter,32,2:28, 'topbottomnoground' ,ones(1,28)*(
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fprintf(eagle,' \nLayer tPlace\n');

fprintf(eagle, 'Text ''%s' (%-5.3f %-5.3f); \n','201', cornx+shieldhole,corny);

halfwidthmrs=shieldside/2+shieldhole/2;

if outertapr>halfwidthmrs

halfwidthmrs=outertapr;

end
[capx,lengthC1]=loadnetwork(halfwidthmrs);

boardedge=capx+lengthCl;

bncsource=inputnetwork(ti,boardedge); 240

switchlayout(mrdiameter,boardedge,td)

floods(halfwidthmrs,boardedge)

% no multiresonant structure: offset in x fools drawing subs

cornx=oldcornx1;

%corny=500;

halfwidthmrs=2000;

mrdiameter=2500; 250

[capx,lengthCl]=loadnetwork(halfwidthmrs);

boardedge=capx+lengthCl;

switchlayout(mrdiameter,boardedge,O)

floods(halfwidthmrs,boardedge,3000)

cornx=oldcornx2;

corny=5250;

shield;

260

%################################################################### ####### ####
%o##############################################################################

%0 ##############################################################################

%0##############################################################################

%o TOP ROW 50 ohm bottom w/ no shield, 50 ohm bottom with shield, 20 ohm shielded, shield

rdiamete----------00;-------------
mrdiameter=3000;

cornx=350;

corny=9300; 270

[td,ti,to,outertapr] =eagletoroid(cornx+shieldside/2,corny+shieldside/2,mrdiameter,38,2:34,' bottomnogroundstandalone ' ,one,
fprintf(eagle, '\nLayer tPlace\n');
fprintf(eagle, 'Text ''%s'' (%-5.3f %-5.3f); \n', '50B',cornx+shieldhole,corny);
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halfwidthmrs=shieldside/2+shieldhole/2;

if outertapr>halfwidthmrs

halfwidthmrs=outertapr;

end

boardedge=2*halfwidthmrs+cornx-shieldhole/2;

floods(halfwidthmrs,boardedge)

280

mrdiameter=3000;

cornx=boardedge+200;

corny=9300;

[td,ti,to,outertapr]=eagletoroid(cornx+shieldside/2,corny+shieldside/2,mrdiameter,38,2:34, topstandalone' ,ones(1,34)*0,0/3

fprintf (eagle, '\nLayer tPlace\n');
fprintf(eagle,' Text ''%s'' (%-5.3f -5.3f); \n', '50TS', cornx+shieldhole, corny);
halfwidthmrs=shieldside/2+shieldhole/2;

if outertapr>halfwidthmrs

halfwidthmrs=outertapr; 290

end

boardedge=2*halfwidthmrs+cornx-shieldhole/2;

floods(halfwidthmrs,boardedge)

% -----------------

mrdiameter=2500;

cornx=boardedge+ 200;

corny=9300;

C=O;

[td,ti,to,outertapr]=eagletoroid(cornx+shieldside/2,corny+shieldside/2 mrdiameter,32,2:28, topbottom' ,ones(1,28)*0,C/28*o]
fprintf(eagle, '\nLayer tPlace\n');
fprintf(eagle,'Text ''%s" (%-5.3f %-5.3f);\n', '205' ,cornx+shieldhole,corny);

halfwidthmrs=shieldside/2+shieldhole/2;

if outertapr>halfwidthmrs

halfwidthmrs=outertapr;

end

[capx,lengthCl] =oadnetwork(halfwidthmrs);

boardedge=capx+lengthC1;

bncsource=inputnetwork(ti,boardedge);

switchlayout(mrdiameter,boardedge,td) 310

floods(halfwidthmrs,boardedge)

% ____--------------

mrdiameter=3000;

cornx=boardedge+200;
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corny=9300;

[td,ti,to,outertapr]=eagletoroid(cornx+shieldside/2,corny+shieldside/2,mrdiameter,38,2:34,' bottomstandalone' ,ones(1,34)*0,

fprintf(eagle, '\nLayer tPlace\n');
fprintf(eagle,'Text ' '%s'' (-5.3f %-5.3f);\n', '50BS' ,cornx+shieldhole,corny);

halfwidthmrs=shieldside/2+shieldhole/2; 320

if outertapr>halfwidthmrs

halfwidthmrs=outertapr;
end

boardedge=2*halfwidthmrs+cornx-shieldhole/2;

floods(halfwidthmrs,boardedge)

fprintf(eagle, '\nGrid Last; \nWindow Fit;\n');

330

fclose(eagle);

A.2 FastHenry model scripts

function makehenry(diameter,turns,henryname);

global henry

global viadiameter

global henrynode

global henryedge

global boardz

global dds

global sss

global neck 10

global sectionsperwedge

global skind

global viafilaments

global wirewidthfilaments

global wireheightfilaments

extensionlength=361;

extensionwidth=20;

id=250; 20

- 182 -



A.2 FastHenry model scripts

henry = fopen([henryname '.inp'], 'w');

fprintf(henry,'* File generated by makehenry.m, %s\n\n.Units mils\n.default sigma=1473.2\n',date);

fprintf(henry,'\n\n* Skin effect defaults\n.default nwinc=3 nhinc=3\n');

henrynode=l;

henryedge=l;

alpha=2*pi/(turns);

beta=pi/4-alpha/2;
gamma=pi/2-beta; 30

xbest= (neck/2+sss+viadiameter/2+dds*sin(gamma-alpha ))/sin(alpha)-viadiameter/2;
id=2*(xbest*(sin(alpha)+tan(beta) *cos(alpha) )/tan(beta)-sss/sin(beta)-dds/sqrt (2)-2*dds/sqrt(2)/tan(beta) );

d2=sss/sin(beta);
dl=id/2+dds/sqrt(2)+2*dds/sqrt(2)/tan(beta);
d6=id/2+dds/sqrt(2)+dds/sqrt(2)/tan(beta);
x=tan(beta)*(dl+d2)/(sin(alpha)+tan(beta)*cos(alpha));
inr=d6+2*viadiameter;

outervias=floor(diameter/2*alpha/1.1/viadiameter); 40

outerviatheta=linspace(-(diameter/2*alpha/2-viadiameter/2-sss/2)*2/diameter,(diameter/2*alpha/2-viadiameter/2-sss/:
outerviax=diameter/2*cos(outerviatheta);
outerviay=diameter/2*sin(outerviatheta);

inrtheta=(inr*alpha/2-viadiameter/2-sss/2)/inr;
inx=inr*cos(inrtheta);

iny=inr*sin(inrtheta);

xi=atan(diameter/2*sin(alpha)/(diameter/2-inr));
tapnodes= [ ];

for a=0:360/(turns/2):359, %don't take off any turns 50

viarothenry(a,id/2+dds/sqrt(2) ,O,dds*2)

noderothenry(a,d6,0,0);

edgehenry(henrynode-1 ,henrynode-3,viadiameter,1.4);

nodestore=henrynode- 1;

noderothenry(a,d6,0,boardz);

edgehenry(henrynode- 1,henrynode-3,viadiameter, 1.4);

noderothenry(a,d6+viadiameter,0O,boardz);

edgehenry(henrynode-2,henrynode- I,neck, 1.4)
wedgerot(asectionsperwedgeinrOboardzdiameter/2,0,boardziny*2+viadiameterouterviay(end)*2+viadiameter ,1.4); 60

%noderothenry (a, diameter/2+ extensionlength, 0, boardz);

%edgehenry(henrynode-2,henrynode-1, extensionwidth, 1.4)
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tapnodes= [tapnodes henrynode- 1];

if a>O,

viarothenryindex(a,nodestore6,henrynode- l,outerviay(end)*2+viadiameter)

else
terminalnodel =henrynode-1;

end

edgehenry(henrynode-sectionspe rwedge-rwedge-1, .5*(neck+iny*2+viadiameter),1.4);

noderothenry(a,d6+viadiameter,0,0); 70

edgehenry(nodestore,henrynode- 1,neck,1.4)

wedgerot(a,sectionsperwedge,inr,0,0,diameter/2*cos(alpha),diameter/2*sin(alpha)0 , iny*2+viadiameter,outerviay(end)*2+via

edgehenry(henrynode-sectionsperwedge2henrynode-sectinspsperwedge-1 ,.5*(neck+iny*2+viadiameter),1.4);

nodestore2=henrynode- 1;

viarothenry(alpha*180/pi+a,x+viadiameter/2+cos(gamma)*dds,0,2*dds*sin(gamma))

nodestore3=henrynode- 1;

wedgerot(alpha* 180/pi+a,sectionsperwedge,inr,O,boardz,diameter/2,0,boardz,iny*2+viadiameter,outerviay(end)*2+viadiamet

tapnodes=[tapnodes henrynode- 1];

viarothenryindex(alpha* 180/pi+a,nodestore2,henryndee- 1,outerviay(end)*2+viadiameter) 80

edgehenry(nodestore3+1,nodestore3,viadiameter, 1.4);

nodestore5=henrynode- 1;

wedgerot(alpha*180/pi+a,sectionsperwedge,inr,O,O,diameter/2*cos(alpha),diameter/2*sin(alpha) ,0, cos(xi)*(iny*2+viadiamet(

nodestore6=henrynode- 1;

edgehenry(nodestore5+l,nodestore3- 1,viadiameter, 1.4);

end

fprintf(henry,'\n\n* Define the ports\n'); 90

for i=l :length(tapnodes),
%fprintf(henry, '.external N%i N%i\n ', tapnodes (i), henrynode-1);

for i=l:length(tapnodes)-1,
fprintf(henry,' external Ni N%i\n' ,tapnodes(i),tapnodes(i+l));

end

fprintf(henry,'.external N%i N%i\n',tapnodes(i+1),henrynode-1);

fprintf(henry,'\n\n* frequency range\n');

fprintf(henry,' .freq fmin=13.56e6 fmax=13.56e6 ndec=l\n');

%fprintf(henry, '.freq fmin=O. 1592 fmaxz=O. 1592 ndec=l\n'); 100

fprintf(henry,'* The end\n. end\n');

fclose(henry);
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eval([' !fasthenry -f simple ' henryname '.inp'])
!zbuf zbuffile

eval([' !mv zbuffile.ps ' henryname '.ps'])

!rm zbuffile

!rm zbuffile_shadings 110

A.3 Cauer synthesis scripts

% only good for series inductor and terminating inductorM

function [Z,L,C]=cauersynth3(z,p,k) M

flarge=max([z p)*le6;M

Z=oldsynthesizereactance(p,z,k); M

for i=l:length(p)M
L(i)=getslope(Z,flarge);M 10

Y=synthesizereactance(Z); M

C(i)=getslope(Y,flarge); M

Z=synthesizereactance(Y); M

endM

[num den]=tfdata(Z, 'v'); 

L(i+1)=1/den(end); M

Z=tf([L(end) 1],1);M

M 20

for i=length(C):-l:l;M
Z=parz(Z,tf(l,[C(i) 0]));M

Z=Z+tf([L(i) 0],1); 
endSM

M~

M~
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function Z=synthesizereactance(p,z,k) M

den=1;M

num=1;M

for i=l:length(p),IM

if p(i)==OM

den=conv(den,[1 O]);M

elseM

den=conv(den, [1 0 p(i)*p(i)]);M 10

endM

endM

for i=l:length(z),M

if z(i)==OM

num=conv(num,[1 0o);M

elseM

num=conv(num,[1 0 z(i)*z(i)]);Di

endM

endM 20

Z=k*tf(num,den); M

function Y=synthesizereactance(Z) M

[num,den]=tfdata(Z, 'v' );M

[r,p,k]=residue(num,den); M

resid=O; M

for i=1:2:length(r),M

if i==length(r)Ml

resid=resid+tf(r(i),[1 0]);M

elseM

resid=resid+tf([2*r(i) 0],[1 0 imag(p(i))^2]);M 10

endM1

endM1

Y=l/resid;M

addpath '/home/jphinney/work/cauer'
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[h,Z]=getz( 'f ina1200hm. mat');
Lfirst=14e-9; %target value of inductor at drain node
taps=9; %number of capacitor taps

%oh.Z]J=getz( final35ohm.mat');

%Lfirst=30e-9; %target value of inductor at drain node
%taps=8; %number of capacitor taps

10

%o[h Z]=getz('final50ohm. mat ');
%Lfirst=47e-9; %target value of inductor at drain node
1%taps=7; %number of capacitor taps

L=imag(Z)/13.56e6/2/pi;

dimL=length(diag(L));
gap=4;

m=dimL/2;

if mod(m,2)==1, 20
Lbig=L(m,m);

n=m+l;
Lsmall=L(n,n);

else

n=m;

m=m+1;

Lbig=L(m,m);

Lsmall=L(n,n);

end

30
Msmall=[L(n,n+l:end) transpose(L(1:n-1,n))];
Mbig=[L(m,m+1:end) transpose(L(1:m-1,m))];

% these mutual functions are so similar for the 32-44 turn toroid cases
% that we could just use one function M=Mbig=Msmall
%plot(Msmall)

%hold on

oplot(Mbig)

%hold off

40

% generate lumped multiresonant model

% cauersynth3 yields a network with end inductances
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% i.e., zeros at 0 and highest critical frequency.

% For simulation, we'll add a large cap in series with

% the inductor farthest from the switch

% work in normalized frequency/impedance

50

z=0:2:taps*2;

p=z+l;
p=p(1:length(p)-1);
k=1; %L(1)=l for this choice of k

[Z,Lph,Cph]=cauersynth3(z,p,k);

Lph=fiiplr(Lph);

Cph=fliplr(Cph);

60

% Lph(end) Cph(end) nezt to switch

% Lph(1) Cph(l) next to input source

% vectors flipped so that state numbering increases from Vin->drain

% frequency response of normalized network can be evaluated

% (denormalized network gives errors)

Qph=60; %Q of inductors in multiresonant network at f=fsw

fsw=1/2/pi;

Rph=fsw*2*pi*Lph/Qph;

Znorm=tf([Lph(1) Rph(1)],l); 70

for i=1:length(Cph),

Znorm=parz(Znorm,tf(1, [Cph(i) 0]));

Znorm=Znorm+tf([Lph(i+1) Rph(i+ 1)],1);

end

[Zinmag,Zinphase,normw]=bode(Znorm);

Zinmag=squeeze(Zinmag);

Zinphase=squeeze(Zinphase);

fsw=13.56e6;

a=Lfirst/Lph(end)*2*pi*fsw; 80

w=normw*fsw*2*pi;

Zinmag=Zinmag*a;

%figure (1)

%semilogy (w, Zinmag)

% denormalize network
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Lph=Lph/fsw/2/pi;

Cph=Cph/fsw/2/pi;
90

a=Lfirst/Lph(end);

Lph=Lph*a;

Cph=Cph/a;

Rph=fsw*2*pi*Lph/Qph;

Z=tf([Lph(1) Rph(1)],l);

for i=1:length(Cph),
Z=parz(Z,tf(1,[Cph(i) 0]));

Z=Z+tf([Lph(i+1) Rph(i+1)],1); 100

end

Lph=fliplr(Lph);

Cph=fliplr(Cph);

turn=1;

design=[];

Lapprox=[];
Ldesign=zeros(taps+ 1,dimL-gap);

for section=1:taps+1,

Lavail=availableinductors(turn,Lbig,Mbig,Lsmall,Msmall); 110

for m=l:length(Lavail),
if section>1

Lavail(m)=Lavail(m)+mutual(turn,lastturns,m,Lbig,Mbig,Lsmall,Msmall);

end

l guess the contribution of the next section to this self-inductance

Lavail(m)=Lavail(m)+mutual(turn,m,m,Lbig,Mbig,Lsmall,Msmall);

end

lastturns=max(find(Lph(section)> Lavail));

Lapprox=[Lapprox Lavail(lastturns)];

if isempty(lastturns) 120
lastturns=l;

end

design= [design lastturns];

Ldesign(section, l:length(Lavail)) =Lavail;

turn=turn+lastturns;
if turn>=dimL-gap & section<taps+1

disp('turns exceeded! ');
break
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end

end 130

turn-1;
L=zeros(1,length(design));

tapL=zeros(1 ,length(design)-1);

for m=1:length(design),
L(m)=selfinductance(turn,design(m),Lbig,Mbig,Lsmall,Msmall);
if m>1

tapL(m- 1)=mutual(turn,design(m- 1)design(m),Lbig,Mbig,Lsmall,Msmall);

L(m- 1)=L(m- 1)+tapL(m- 1);

L(m)=L(m)+tapL(m-1); 140

end

turn=turn+design(m);

end

A.4 simulation scripts

function [Pin,Pout]=classphsim(fsw,duty ,Vin,P,Lph,Cph,Rph,Rload,Lload,Cload,Cds,rdsonnom)

linewidth=2;

mygrey=[1 11]*0.7;

% state-space hack for voltage source

Chuge=l1; %Farads!

taps=length(Cph);
Qph=Lph(1)*fsw*2*pi/Rph(1);

tstep=l1/fsw/2/100; 10

Tsw=l/fsw;

% record

tv=[];

iswv=[];
vdv=[];

xv=[];

ILin=P/Vin;
20

% input network, switch on
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nph= 1+1ength(Lph)+length(Cph);

% -1/Chuge

% 1/Cl -1/Cl
% 1/C2 -1/C2
% /Li -1/Li -RI/Li
% I/L2 -1/L2 -R2/L2 30

1/L3 -R3/L3

Cquad=diag(1./[Chuge Cph])*(-eye(nph/2)+ [zeros(1,nph/2) ;eye(nph/2- 1) zeros(nph/2- 1,1)]);

Lquad=diag(1./Lph)*(eye(nph/2)+[zeros(nph/2-1,1) -eye(nph/2-1);zeros(1,nph/2)j);
Rquad=-diag(1./Lph)*diag(Rph);
Rquad(end,end)=Rquad(end,end)-rdsonnom/Lph(end);

Ain=[zeros(nph/2) Cquad;Lquad Rquad];

Bin=zeros(nph,1); 40

Cin=eye(nph);

Din=zeros(nph,1);

switchonin=ss(Ain,Bin,Cin,Din);

7% output network, switch on

n=2;

Aout=[O -1/Cload; 50

1/Lload -Rload/Lload-rdsonnom/Lload];

Bout=zeros(n,1);

Cout=eye(n);

Dout=zeros(n,1);

switchonout=ss(Aout,Bout,Cout,Dout);

% entire converter, switch off

% xl v Cout 60
%o x2 i Lout

% x3 v Cds

% x4 v Cin

- 191 -



Layout scripts

% xend i Lph(end) (inductor closest to drain in the input network)

n=3+nph;

A=[Aout [0;1/Lload] zeros(2,nph);

0 -1/Cds 0 zeros(1,nph-1) 1/Cds;

zeros(nph,2) [zeros(nph-1,1);-1/Lph(end)] Ain;]; 70

B=zeros(n,1);

C=eye(n);

D=zeros(n,1);

switchoff=ss(A,B,C,D);

y=[O 0 0 zeros(1,nph/2) ones(1,nph/2)*ILin];

switchcycles=50; 80

for i=1:switchcycles,

%t=linspace(O, Tsw*duty);%bad for later power calculations (variable time step)

t=tstep:tstep:(Tsw*duty);

x0=y(end,1:2);

y 1=initial(switchonout,x0,t);

xO=[Vin y(end,5:end)];

y2=initial(switchonin,xO,t); 90

if isempty(tv)
tv=t;

else

tv=[tv t+tv(end)];
end

iswv=[iswv; y2(:,end)-yl(:,2)];

%xv=[xv; yl zeros(length(t),1) y2];

xv=[xv; yl (y2 (:,end)-yl(:,2))*rdsonnom y2];

100

%t=linspace(O, Tsw*(1-duty));%bad for later power calculations (variable time step)

t=tstep:tstep:(Tsw*(1-duty));

x0=[yl(end,l:end) 0 y2(end,1:end)];

y=initial(switchoff,xO,t);
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tv=[tv t+tv(end)];
iswv=[iswv; zeros(length(t),l)];
xv=[xv; y];

110

end

Pinv=xv(:,4).*xv(:,4+nph/2); %Chuge voltage times input inductor current

Poutv=xv(:,2).^2*Rload;

cyclepoints= 1/fsw/tstep

%halfcyclepoints=length(t);

Pin=mean(Pinv(cyclepoints*10:end));

Pout=mean(Poutv(cyclepoints*19:end)); 120

Poutcyclemean=zeros(length(Poutv), 1);

Pincyclemean=zeros(length(Poutv),1);

for i=l:cyclepoints,

Poutcyclemean=Poutcyclemean+Poutv( 1 :cyclepoints*switchcycles);

Poutv=[O; Poutv];

Pincyclemean=Pincyclemean+Pinv (1 :cyclepoints*switchcycles);

Pinv=[O; Pinv];

end

Poutv=Poutv(cyclepoints+ 1 :end); 130

Poutcyclemean=Poutcyclemean/cyclepoints;

Pinv=Pinv(cyclepoints+ 1:end);

Pincyclemean=Pincyclemean/cyclepoints;

figure(1)

orient tall

tstart=length(tv)-cyclepoints*5;
%tstart=l

140

tv=tv(tstart:end)*le9;
tv=tv-tv(1);

plots=4;

subplot(plots,l1,2)

h=plot(tv,xv(tstart:end,3), k-' );
set(h,' linewidth' ,linewidth);
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set(gca, 'xlim' ,[tv(1) tv(end)]);

psfraglabel(gca, 'noxlabel')

150

subplot(plots,1,3)

h2=plot(tv,xv(tstart:end,end)-xv(tstart:end,2));
hold on

hl=plot(tv,iswv(tstart:end), 'k-' );
set(hl, 'linewidth' ,linewidth);
set(h2, ' color' ,mygrey);
set(h2, ' linewidth' ,linewidth);
hold off

set(gca,' xlim' ,[tv(1) tv(end)]);

psfraglabel(gca, 'noxlabel',' notitle' ,'ylabel2') 160

subplot(plots,1,4)

h2=plot(tv,xv(tstart:end,2), 'k-' );
hold on

hl=plot(tv,xv(tstart:end,end), 'k-');
set(hl, ' linewidth' ,linewidth);
set(h2, ' color' ,mygrey);
set(h2,' linewidth' ,linewidth);

hold off

set(gca, 'xlim' ,[tv(1) tv(end)]); 170

set(gca,'ylim',[-20 20]);

psfraglabel(gca, 'ylabel3','notitle')

print -depsc . ./Figures/classphsim
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Pulse-reverse current source

See next page
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Pulse-reverse current source
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LithographyMasks

Mask 1 (Bottom layer)
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Lithography Masks

Mask 2 (Middle layer)

Mask 3 (Top layer)
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