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Abstract. Mathematical models for description of
physical phenomena often use the statistical descrip-
tion of the individual phenomena and solve those us-
ing suitable methods. If we want to develop numerical
model of optical communication system based on trans-
mission through single mode optical fibres, we need to
consider whole series of phenomena that affect various
parts of the system. In the single-mode optical fibre we
often encounter influence of chromatic dispersion and
nonlinear Kerr effects. By observing various different
degradation mechanisms, every numerical model should
have its own limits, which fulfil more detailed specifica-
tion. It is inevitable to consider them in evaluation. In
this paper, we focus on numerical modelling of degra-
dation mechanisms in single-mode optical fibre. Nu-
merical solution of non-linear Schroedinger equation is
performed by finite difference method applied in MAT-
LAB environment and split-step Fourier method, which
is implemented by VPIphotonics software.
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1. Introduction

Development of technologies and the related growth of
requirements on transmission capacity of optical com-
munication systems leads to development and imple-
mentation of new technologies. Numerical modelling
becomes inevitable for research and design of new de-
vices and systems [1], [2].

Nowadays for efficient transmission of big amount of
data, single-mode optical fibres (SMF) are used, which
have the best premise to fulfil the transmission re-
quirements of broad-band services utilising wavelength
division and polarisation division multiplexing. The
main problems related to long-distance high-speed op-
tical communication systems are caused by linear and
nonlinear phenomena. Based on physical descriptions
and by implementing various different numerical meth-
ods for solving them, we can nowadays express trans-
mission and signal characteristics of almost all optical
components [3].

There are several well-established numerical meth-
ods for numerical modelling of transmission signal via
SMF fibre [1], [3], [4], [5]. Numerical methods that
are used very often are pseudo-spectral time differ-
entials and elements. From implementation aspects,
split-step Fourier method (SSFM) and finite difference
method (FDM) are most suitable. These methods are
implemented by various algorithms depending on their
computational efficiency and accuracy [3], [6].

2. Theory

Propagation of the optical pulse in SMF fibre usu-
ally described by the nonlinear Schroedinger differen-
tial equation (NLSE) [1], [3].

Using NLSE in Eq. (1), we can describe propaga-
tion of modulated optical signal in SMF by using com-
plex envelope A(z, t), which includes all degradation
mechanisms. NLSE describes signal propagation in
nonlinear dispersive fibre, while it can take various
shapes, which depends on examination of individual
phenomena and established simplifications. This form
of Schroedinger equation includes attenuation, chro-
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matic dispersion and self-phase modulation. NLSE can
be for SMF expressed as follows:

∂A(z, t)

∂z
= jγ|A(z, t)|2A(z, t)−

− j β2
2

∂2A(z, t)

∂t2
− α

2
A(z, t), (1)

where parameter γ is non-linear coefficient
(W−1·km−1), β2 (ps2·km−1) characterizes group
velocity dispersion (GVD) and parameter α represents
fibre loss [3], [7].

The loss of power depends on the wavelength of the
light and on the propagating material. Modern opti-
cal fibres have loss approximately 0.2 dB·km−1 in the
proximity of wavelength λ0 = 1550 nm.

The dispersion of fibre influences propagation of op-
tical signal in the time domain, i.e. transmission prop-
erties. Each spectral component of transmitting sig-
nal is therefore propagated through fibre with different
group velocity.

Nonlinear coefficient of refraction index is a param-
eter dependent on wavelength [8]. Its value for sili-
con glass is approximately 2.6 · 10−20 (m2· W−1) and
depends on dopant concentration inside the core. If
the refraction index is dependent on the light inten-
sity entering this environment, we speak about Kerr
phenomena. This change of refraction index, which is
different in different parts of pulse significantly influ-
ences changes in shape and pulse polarisation during
propagation [3], [7].

2.1. Gaussian Shape of Optical Pulse

In the optical communication systems, the transmit-
ting signal can have various shape. For approxima-
tion is done very often using Gaussian function of pulse
shape:

A(z, t) =
√
Pine

−1 + jC

2

( t

T0

)2m

, (2)

where Pin refers to input power, C represents the ini-
tial chirp (optical pulses generated by directly mod-
ulated lasers and by certain types of externally mod-
ulated lasers show frequency chirp, which represents
the change of optical carrying frequency of given pulse
because of the modulation), T0 represents the initial
width of optical pulse during decrease to 1/e from max-
imal amplitude and m is parameter of optical pulse
shape (for Gauss pulse m = 1, m = 3, for so called
Super-Gauss pulse) [3].

3. Numerical Methods for
Modelling SMF Fibre

SSFM method is commonly used for analysis of non-
linear effects in optical fibre. However, its use is time
consuming in scenarios like solving coupled nonlinear
Schrodinger equations for systems with wavelength di-
vision multiplex. FDM method has several schemas for
solving such equations. They have different computa-
tional complexity and solution accuracy. We differ-
entiate implicit, explicit and Crank-Nicholson scheme.
These numerical methods are a suitable tool for solving
NLSE, which in general does not have any analytical
solution [3], [6], [9], [10], [11].

3.1. SSFM Method

Split-step Fourier method is a numerical pseudo-
spectral method, which name is derived from the
method of NLSE result computation. The computa-
tion is performed in small steps and linear and non-
linear part are solved separately. The inevitability of
this method is utilisation of algorithms FT and IFT
(Fourier and inverse Fourier transformation), because
solving of linear phenomena (dispersion and loss) is re-
alised in spectral domain, while nonlinear phenomena
are solved in time domain. Using fast Fourier transfor-
mation algorithm speeds up the computation [3], [7],
[11].

For understanding the method, we state simplified
form of the algorithm from Eq. (1):

∂A

∂z
= (D̂ + N̂ )A, (3)

where D̂ considers linear effects and N̂ considers non-
linear Kerr effects, which we can express by following
equations [7], [11]:

D̂A = −jβ2
∂2A

∂τ2
− α

2
A, (4)

N̂A = iy|A|2A, (5)

Since the mechanisms considered in numerical SSFM
method are solved as individually acting effects, we
can express the resulting complex envelope A(z+h, τ),
which integrates individual analytical solutions:

A(z + h, τ) = A(z, τ)ehD̂ehN̂ , (6)

where h represents the computational step size.

3.2. FDM Method

Finite difference method is a numerical method for dif-
ferential equations approximation. One of the biggest
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advantages of FDM method is that whole computation
is performed only in time domain. It uses approxima-
tion of function derivation f ′(x) in given point using
function values in neighbouring points. Explicit FTCS
scheme has the following form [6], [10]:

fn+1
i − fni
4t

= D

[
fni + 1 + fni − 1− 2fni

(4x)2

]
. (7)

Using rules of FTCS scheme, the solution of
Schroedinger Eq. (1) is as follows:

A(z + hz, t) =

A(z, t)
[
1− 2R+ jγ|a(z, t)|2hz − ∞

2
hz
]
+ (8)

+R[A(z, t+ ht) +A(z, t− ht)],

R = −j β2
2

hz

ht2
, (9)

where hz represents step size of the computation in
space and ht represents the step size of the computa-
tion in time.

4. Experiments

We can efficiently perform simulations of individual
physical effects in the field of optical communication
systems using MATLAB. We applied FTCS scheme
was applied in this environment, where we transmit-
ted optical pulse of Gaussian form of wavelength λ0 =
1550 nm. We used SMF fibre with dispersion param-
eter D = 16 ps·(nm·km)−1 and nonlinear refraction
index n2 = 2.475 · 10−20 m2·W−1 with zero attenua-
tion [3]. Input power bounded into optical fibre was
Pin = 1 mW and length of optical fibre was in range
L = 10−100 km. Input and output signal are displayed
in Fig. 1 (fibre of length L = 50 km was used). Very
small dispersion of pulse is because of bandwidth of
optical signal is considered zero and duration of Gaus-
sian pulse is very long in comparison with the fibre
dispersion.

Fig. 1: Propagation of optical pulse in SMF fibre of length
L = 50 km using FTCS scheme applied in MATLAB
environment.

Fig. 2: Propagation of optical pulse in SMF fibre of length L =
50 km using SSFM scheme applied in VPIphotonics.

Virtual Photonics Incorporated (VPIphotonics) en-
vironment provides tools for optical network simula-
tion, systems and devices. For simulation of optical
pulse propagation through SMF fibre, it uses SSFM
method. In VPIphotonics, we performed the simula-
tion in the same conditions as in the previous case.
Transmission of optical signal with optical fibre length
50 km is depicted in Fig. 2.

Figure 3 and Fig. 4 displays maximal values of out-
put signal amplitudes and full width at half maximum
FWHM in dependency of optical fibre length for both
methods used.
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Fig. 3: Maximal values of output signal amplitudes in depen-
dency of optical fibre length in both MATLAB and
VPIphotonics environment.

Based on Fig. 3 we can conclude that mean relative
variance between FDM method applied in MATLAB
environment and SSFM method applied in VPIpho-
tonics is 3.2 ·10−5 %. By comparison of FWHM values
in graph on Fig. 4, we can conclude that the accuracy
of simulation results can be obtained with mean rela-
tive variance 0.0516 %, meaning that the both models
have comparable results.
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Fig. 4: FWHM in dependency of optical fibre length in MAT-
LAB and VPIphotonics.

5. Conclusion

In this paper, we present results of application of FDM
method and SSFM method for numerical modelling of
degradation mechanisms in SMF fibre. Analysing the
results obtained by numerical model realised in MAT-
LAB environment using FDM method FTCS scheme
and model implemented in VPIphotonics, which uses
SSFM method. We conclude that measurement of
FWHM of optical pulse propagation can be performed
with mean relative variance approximately 0.05 %.
Model that we created in MATLAB has comparable re-
sults with a model in the VPIphotonics. These models
may be used for further study of optical pulse propaga-
tion through SMF fibre, i.e. signals in multi-channelled
optical systems.
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