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Introduction and Summary

In the first chapter, the geﬁ%al hypercomplex number systems with
n-units are disuussed; some generalized theoremsand new results are
glwen, In the seeond chapter, the study concerns with the linear-
1zabion of Riemann Space which idea 18 primarily the result of the
present writer; connection between classical Riemann geometry and
Einstein(1929) geometry is shown here. The geodesics defined with
respect to the Linearized space are generally not the same as the
ordinary geodesicecs deduced from the quadratic expressioﬁ unless cer-
tain conditions are satisfied, In the third chapter, we study
this linearized geometry at one particular point and consider va-
rious transformation pepperties. The fact thit we have Yl Com—ccled
gson both the +++- and the four-dimensional dilemma of the special
theory of relativity hﬁ: the theory of hypercomplex numbers is the
most interesting point ;; this chapter, Geometrically, it is also
shown that the space whose dimension is 4 occupies a peculiar posi-
tlon in linearized geometry in that it makes the dimemsions of both
spaces, actual and hypercomplex, equal, We have next established
tentatively a transition rule between qﬁhtities in epin space and
quantities in actii space, It isshown that this choise is not
arbitrary and,gulded by the egquatbon of light cone in Kinstein's
relativity theory, we deude deduce Dirac equations in a different
way. Throughout this part of the p&@pr; it can be seen that the

fmasé'term‘has nothing to do with the.fifth dimension; so-called,

it is merely connected with the invariant interval, In chapter




it

4, the Dirac's edquations receive-d a little attention and are dlscussed
=243 in detall, In the last chapter, we study the connections of
hypercomplex spaces at different points, It is shown that the solution
of ppoblems of two or more bodies depend on the negation of "possibi-
11ty of displadment of the spin space",
Owing to the limit of space and time, the author regrets to
say that may impobtant points which could be and should be cone
slderably developed have to be left out,
added.

Noteﬁby the author: As the paper "8 near finishing, the writer
discovered a method by which the matrix representation of a hyper-
complex system can in all future cases be easlly found, The brief

discussion, accomﬁﬁza by an illustration, 18 given in the "appendix".




§ 1.

General Hypercomplex Number Systems

Just as the interest in related branches of Geometry was
aroused by the advance of Einstein's Theory of Relativity, the
study of Hypercomplex Nymber Systems has come into renewed
attention by the Dirac's Theory of Linearization of the Rel-
ativitistic Quantum Equations of Electron. It seems desirable
to treat the subject in a more logical and general way as, be-
sides its intrinsic interest, the generalization of Dirac's
Theary to the problems of two or more bodies essentlially de-
pend, Most results here deduced are merely genera%izatione

°

of previous results obtained in the speciallcase (Asedenions),

though some new results are also worked out,

1, Generators
A set of independent numbers
E:“ A=l 23y e n
will be called the generators of a Hypercomplex Number System &f
order n if they satisfy; besides the ordinary postulates e.g.
associative, distributive laws, the following #n(n+l) relations:

(1) E.E., = For whnne E;,‘E,,,=—2L/E,;F,+F,.E..)_

The system 18 closed with elements E_ E/“E'b , E;_ E E, ede,

/Aﬂ

which will be ealled the basic elements of the system, They are,
together with Unity,

“-D(n-2 n n

) _._-—-"(;‘_‘,‘) + hla)ln-2 )y =G0 =2

in number,
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Transformations of the type /\ EA (-2)

where E is any member of the grem system and A is any arbitrary
member of the system and where A-l is defined as N\ [\_‘ =] , are
called canonical transformations. From the elementary theory of
the groups, 1t is seen that the correspondence is one to one and
that the relations (1) are kept invariant,

It is easily shown that all the basic elements ( 2" in number )
are linearly 1ndependent?; we have the result ﬁhat every hypercomplex
number system of order n has exactly 2"'11near1y independent basie
élements. It may be noted here that every basic element, possibly

for a minus slgn, 1s i§s own Inverse.

If we call the property A B + 8 A — D

where A,B any elements of the system as 'antf-commutative' and the

property that A B — B A

as 'commutative', then it can be verified that every basic element
18 either commetative or anticommutative with any other basic element
of the system, This property still hazds when these elements are

under the canonical transformations (12),

2. Matrix Representation,

By a Theory in Algebra, every associative algebra is equivalent
to a matrix a.lgebra? Therefore we can represent any element of the
group by (A*4,), the reason for the wpper and lower indices will be
glven when we condider the geometrical representations of the system.
Now every mgt.rix of m rows and columns has m?2 linearly independent

ma
basic elements., In order that it m:g be completely represented by
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our hypercomplex numbers, we must restrict the system by the folowlng

condition 1i.e.
m* = 2"

But m is an integer, therefore n must be even; this proves

Theorem 1, No complete hypercomplex number systmms of odd orders
exist. That is , the independent @enerators can not be 1,3,5 ete.,
but may be 2,4,6 etec, This theorem, when properly interpreted, shows

Qan -~ mome system
that why we have only sedenions, quaptenions but not, for instance,,
between them,

Theorem 11, There is one and only one element @ in the system
which anticommutes with every generatorf)

That there is one can be easily verified for this is

E: E;Ei """ 15, 3 it anticommutes with every generator. To pgbve
the converse, that there im only one, we proceed as follows,

Lemma la, Every generator anticommutes with a basic element
of even degree 1f this basic element includes this generator as a
factor; 1t commutes wishk if this basic element does not include this
generator as a factor,

Lemma 1lb, Every generator commutes with a basic element of
an odd degree if this basic element includes this generator as a
factor; it anticommutes if this baslic element does not include this

generator as a factbome.

A basic element e.g. - e e =1, 2,3
E'ﬂl EH; En‘, n'l"" nf’ , ’
1s called of odd degree if f 1s odd, even if f is even. The above
Lemma agserts that

1 comrutes with all Ei

E‘ antocommutes with all E‘_ if 4 not equal« ; otherwise commutes,



EEP anticomnutes With a3 E,_ if £=dnpB ; eommutes with all others,
f y=o,pery ; anticommutes with all
E‘E"g Ercommutes with E. ir @9 , P 8
others,
etce.
| The truth 6f the Lemma is then self-evident by actually
all
multiplying ,them out, We may now proceed to prove the second part
of Theorem 11, The most general form of an element of the system
n
is +
T= C. + SCE +2 C ,,E,E,,“’Z C”,EaEEf
° M Va ~
m=l Vit 4 AFLFC
The condition that it anticommutes with all the generators 1s

T Ea( +E, T=°
wd.ﬂon

for all o =12,3,----"n , This, by using Lemma 1, eemddtion

leads to a system of linear relations among the independent basic

elements which are impossible; hence every co-efflcient occurred must

vanish, This gives
Co =0 C;.= (] ‘ C =0 : .l/w.)

oo
except the last one which does not appearin any of the linear re-
lations, This proves our theorem, By a similiar argument, we
can easlly prove the following

Theorem 111, There 1s one and only one element in the system
which commutes with every generator,  In fact this member is Unity
which commutes with every member of the sustem. ( This theorem
is a hint to indicate that in solvahg the problems of two bodies in

Dirac's theory, we gan not use four row-and-colummed matrices. )

If we denote the element E E_ E) - E';

by & E; and normalizedé by a factor so that its square is Unity; then



every member of the set
E; ,E;,, £;;7 Ei) T ES@
anticommutes with any other member of the same set and they all satis-
fy the realtions (li!'); they form a (n-rl)-fold“normalized anticommuta-
tive setf The following theorem is easily proved:
Theorem 1V, The multiplier of every member of the set by any ‘

other member of the set, normalization factor being here J-1 » Lforms

together with this member 1tself, another normalized anticommutative
gset.
(V]
In this way, we can obtain a totalof n+2 (n+1)-fold anticommutatiwe
o

sets. This theorem may be called the generslized 'goupling thg:gmf27

of Eddington since 1t was dlscovered by him in the case of sedenions,

Consider two sets of elements

A: E,:-Ea M= 1,2,% - n/2-
B: E,«.’ w'=Eh, g1, -

It is seen thas the following properties hold true:

1, Bvery memeber of the set A commutes with every member of the
set B and conversely.

2., Every member of the set A anticommutes with every member
of its own set; similiarly for the set B,

3 Ea antlcommutes with every menber of either set and
Unity commutes with every member of the either set.
They form lndeed two sub-hypercomplex number systems each of order
n/2, Conversely if we have two sets of hypercomplex numbers with
these properties assigned to them, we can build from them a system
with twice as many generators as the sub-system ha::} That 1s,

‘we can bulld a sedenion system by multiplication bf two quatenions
a%56 wmb

and |
. we ban build a cetenion systen;( by the multiplication of two



a,df.u on
sedeniong; It may not be out of place here to remark that in solving

problems of two bodies these properties we referred to are exactly

6
what we require,

3., ‘lransformation Properties,

If we subject g;»t° an arbitrary linear homogenéhs transformation,

the relations (1) will in general not hold unless the transformation

matrix T is orthogonal 1l.e. /to( o tp e rS;p v T= (—’t‘j).

" ”

These transformations will also be called the canonical transformations

since they keep relations (1) invariant. Under ae canonical trans-

formation E; E? f? E?
”—
=1, t‘ul;. 3oy Zpan E“' E’" E’{J T
which, by the help of Lemma 1 and the condition of orthogonality, s:wves
observing

$he gondidien that the germs on the right hand side all vanish except
those with 1ndicea different, gives

E 2 1 2., t st Lnct £, E = -_/T'
that is, Ei transforme like a density, hence
Theorem V, For all orhtbgonal transformstions of the generators with

determinant ;,_éi remains invariant,
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Linearization of Riemannian Space.

The fundamental metric of a Riemannian Space of n dimensions
is given by the quadratic form
V74
(2.1) dn = 3)‘» diy* A My 2=) 2% N

which may be written as

(2.2) (E;Ar-l-z E, o{}(°91= 0

where

(2.3) E;( Ep) = Z"P | -
and where E, is éuch a quantity that 1t anticomutes with everyE‘;.
This metrie wlll be referred to as the CLASSICAL metric., It is
evident that these F_ introduced are igomorphic with the hyper-
complex number systems of order n introduced in the first chapter,

We shall now apply the principle of linearization and consider

the expression # |

(2.4) E,dr + 2 E =0
as of more fundamental importance than (2.2), It is not necessary
to enter the discussion at the present moment what this significance

is until later we have understood the meaning of (2.4 ).

#When this 1dea occureed to the writer who has worked it out some-
and was very glad to find out

what in detail he was unaware,;hat the same 1dea has occured to
Fock and Iwanenko: ﬁber eine mbéliche geometrische Deutung der =mel-
ativistischen Quantentheorie Zt. fue Phy. 54 p.798; dieselbe:

7 4 ’ /
Geometrié quantique lineaire é% deplacenent parallele Com. Ren.,
188 p. 14703 and Fock: Géometrisierung der Disacschen Theorile

des Elecktrons 2t. fur Phy, 57 p.261. However the treatment is

somewihst different,



Define

(2.5) b g aee (37)= (3]

. .
It follows that, since Eis covariant, E is contravariant. It can

%)
be proved that

(2.6) E“EY = ;/‘”
and = 6 ;8 AAF &

(2.7) E“E, =F*E+EE"= Jd% o) 4u-v

The Geodesics of this Geometry will be defined as

(2.8) JfE,dr =0

i.e.

”.."3
(2.9) d‘j E"‘IX ?

which gives, by easy calculation, the n linear partial differentlal

equations
(2.10) A,«d‘ d/x =0 E
‘ -
where 'M.ie defined as ) E' d

zir ?1’“’
It can be proved that /%ﬂ,_ia,covariant of the second rank., It
can also be shown that the geodesics (2,10) defined in out Geo=-
metry do not, in general, coincide with the geodeslics defined in
the classical Riemann Geometry, In fact, we have, from (2.4)
(2.”) d F +E d v —
(B Egr) =
and make the convention that
(2-12) =0 .
( .E‘-) conJerdtlﬂl.s
which uﬁgg be Justified 1ategge=l=a3 on substituting the equats ons .
of geodesiecs (2 10), we obtain
3 ) 4+ AE. dlx E 4%+ T‘ %%—20
(213) T E %% M' +%& 3¢ =BG :,‘
Multiplying by E? first in front and then in back and add, we gye




7 |
, 2E ). p+h OEp
(_Q.I‘H %1 +(E”B’E& MM%—.O M(ﬁ X” })(L-j%

)T bb(”'

which may be written as " d4
L M a DY % - ‘
(1'15) —aaﬁ. T_ o Ao =0 where?/ /ur =(E x”' )X" E)
In this summation only the symmetrical part of f- )survives. We
can reoresent ];': in terms of the well-known Christoffel symbols

and some antlisymmetric functions.
2E.

ai) 20]- B E,) +(B ) + (A E) + (3 E)
(LEﬁ bEpg") [ Jﬂa—-"/\cruu- /\cp«,J

R A

where /\ is defined as

(«1"7) Adp,r = ‘é’ ( r;p,r - ];3;,/)

Hence

(218) r;%_: [A;f] + /\W}#ﬂr/\,r)‘,
and ' % -
(219) {;,) {/‘j -+ A A,ar )

Thus the geodesics in our geometry reduces to

@-29) o\x“ L EE- (N, 4 m Aﬁ;)%f%g

These are not. the same as the classlcal geodesics unless the right

hand side banishes. If the condition (2-/2) were not imposed, we
would get more complicated formulae.

in order to restrict ourselves only to the fundamental guantities
( E/;) and (Eﬂ) to define covariant differentiation, we proceed in
the following manner of geodesic displacement, 3

Let a covariant vector be denoted 'by V,( then ,; %- is, by
definition, 1invariant, hence a’a‘-(vc( A(T) is invariant alogg an ab-
solutely defined curve. Geodesics are of such curves, G&Wmusing

th-e equations for geodesics (2.10), we obtain the result that

(3F -7 V) HH

is invariant, Hence eilther



lo

)XT
or Dv
(2-22) V. \fu > r"’“ Ve

may be taken as the definition of covariant differentiation; the former
is however preferable, That they are actually covariant tensors can
be proved directly. From (22/) and (22) we see that /\ defined by
equation (2/7) are tensors of the third rank,

We see that the classigcs]l Riemann Geometry corresponds to the
case when all /\ vanish; on the other hand, we shall show that
the covariant differentiation adopt.ed in (2-2/)) is practically
1deﬁtica1 with the definition of Kinstein in his 1929 papers. For

01 EFSL R EY akee [ o hgpecemephe

and n dero e n,
@29  E,~*f,E” 7
We thus get ! . :
(2 a%) E“ E,, 2 £ ﬁ ﬁ
and similiar formulae for E“‘E" E*E.,. B
We obtain, thas n - ﬁ“ '
w0 e (ETR) =2, AT $ ’
4 =l

Af we assume tha.t.

(@ap  2E° t= 1.2,
: }XT e
Our r would then be the same ae his /\ . The assumption (2-27) i

7=5b L

is equivalent to ( see Chapter 3 ) the assumption iket of distaat
parall¢sm of spin co-ordinates.
We could defined =analogous Riemann-Christoffel Tensors in this t.heory'
vmwmedoia le
but it has 11_ttle interest &% for our, purpose and we shall not pursue

the matter further,
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& 3.

Study of Hypercomplex Geometry at one point.

At one point, the g,, are constants; we can, therefore, by |

sultable cholse of eo-ordinate system, reduce the relations

EwEir = dmr
to . \
(3.1) FnEn=8, ==3}

which are the generators of a hypercomplex number system of order

n considered in chapter 1., That is,at a point, the geometry (24)
reduces to the form : : Sz °-4Er _
(.2)  E,dr+5 E.dxt=0 whkee E, “gmﬂﬂ,aj?faﬁm
By the conslderations developed 1n¢2;;j:er 1, it 1is evident that

if we stugy the hypercomplex numbers we can study them in the.iatrix-
way: We thus aasociaté at every point of space a matrix-space

in the sence that every matrix--that is, every hypercomplex number--

we consider is a tensor in that space, Owing to the faet that
lg;lz,also lies in this space and 1s a tensor of the same kind, we

: ot
must conslder them as co-contravariant tensors EF. ofthe second

B
rank, The multiplication rule would then be

o0
(3.3) [E-:,.E,"j p = E,'..“T E'g .

This matrix-space 1s introduced, at least up to the present, only

in helping to describe the Geometry (3,2 ); it may be called a
"Hilfsraum" or Eﬁn:!iﬁ!l!:!iiﬁ# "Auxiliary Space" if we please., But
time to time we shall also use the name "spin space" or "hyper-
complex space" when 1t 1is advisable to render thé meaning more ex-

plicite.
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By way of definition E;.AM=L'”‘"-are covariant and li invariant, It
is to be noted here that [E, has higenwerte 1 or -1 and that it
has an equal number of 1 as -l gﬁgenwerte. The former is obvious
gince Eili==/ means that in applying Ei twice successively to its
eigenvektor, 1t mestores its original length. The latter can be
seen from the following consideratlon: A Eo A—' has necessarlly
the same eligenwerte as li, ( since the characteristlie equation is
not changed by canonical transforamtions ). If we put A equal to
any of the generators [E“_say, then |

6#)  EEE-EEE=-E’E =L
that 15-—£i,has the same eigenwerte as+fF, . This proves our assertion,
Since it is invarlant by definition, we can therefore subdivide the '
hypercomplex space into two invarlant sub-spaces H, Ha each of which |
18 of dimension Mm/2 where m is defined as » =27 , It ean be '

noew i
easily proved that every generator 1qAroduced, comsisting of components}

with one index in H, while the other index in H_ and conversely; there L
is no component of any generator lies totally in H, or H; . However .
we do not need these properties expilicitly in this paper, we shall not{
psuh the subject further, Reader who 1s interested &n this part may |
have reference £o Schouten' Paper Where specisl case of n = 4 is
treated and magy of them admlt an easy generalization, We consider
now the transforamtion properties in both spaces and their relations
to each other,

a) Trangformations of the co-ordinates in the hypercomplex
space,

Let us denote the co-ordinate systems in the

hypercomplex space by 4:“‘4=””2 By an arbitrary transforms tion
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/3.

of the co-ordinated ([, — /. al,. = )f.. dg TRy
L] 'y )gﬁ

hypercomplex numbers ¢ mizmed tensors of the second rank) would under-
go the transformation, ,
L L, ots T,

3.5) =

( ég; . ‘ty- _7- . oLg li;° - oy —T— . 1GJ

here
) 6 T " )—’MI" TT %

. 01-5 c“: ) ’ ’ b gj')'

It 1s easily proved that T T'=| i.e. T ‘=7

367):. E — TET"

that 18, they are undefgoing a canonical transformation considereé in

RGYES

chapter 1. l;; transforma into ,
I; L, %xs 7‘ d
(g 8) E.O .z = T . “5 ED - #s . r’/‘

or, when the spin-gpace was sub-divided by the considaration above,

2. I. ’ “’ L' ,n‘
&
(3-9) ‘—"-ET_“ —ZT az;,—T
n, <l ‘c"?*
which will be invariant and only then if the transformation matrix

'r is the reduced matrix i.e, , T O
0 T"J ' ”
ol 1o T
where T, and T, are both m/2 square matrices. That is, if the
transformation in spin space is such that it keeps both the sub-

spaces invariant, ke geoeomeiwy l; remains invariant, A transe

formation of theggz;gywould only changqflé-f7that is, interchanging
of the two sub-spaces.,

b) Transformations of the co-ofdinates in the actual space.

From the arguments of chsapter 1, it is seen that

the only transformations which keep#é the relations (l.1) invariant
are those that are orthogonal. In that case f—-F, if the determinant
is -1 and..E; remains invariant if the determinant is 1, ( It is
to be notéd that the general transformations which keep the quadratic
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of
expressionA( 5’-2.) invariant 1s orthogonal and that relativity trans-

formations in the case of n= 4 are restricted to those with deter-
minant + 1,

A particular case of the transformations in the hypercomplex
case 1g that when T is in the form e ‘4 1 where 9 may have any
value, This transformation does not affect any of the hypercomplex
numbers; the corresponding transformation in the actual space can
only be the identijy transformetiong This case would have no in-
terest if we deal only with the mixed tensors in the hypercdmplex
space but which would play a rgle, an important rgle indeed if we
accept Weyl's idea, if we consider not only the mixed tensors but
also vectors in the hypercomplex space, Inis #iwves would ghve
rise to the conceptton of "pseudo-vector".

One can easlly convince oneself that the transforamtions con-
sidered above in both apaces are the most general possible transfor-
mations that keep (1.1) invariant, We tabulate here the corres#

rondences between the two apaces:

a) Trans, in Matrix Space b) ZTrans. in Space
General Transf, leaves two sub- __ Orthogonal Tmansf, of deter-
spaces invariant, minant 1.
General Transf, leaves two sub- _ _Orthogonal Transf. og$ deter-
spaces interchanged. minant -1,

General transf, of the Sory  — Identity Transf,

A case of particular interest 1s that when the dimensions ¢
both spaces are thehw that is when m=n, 7This has one and only
one solution thét 1s when m= n = 4#»,

# It 1s admittedly teue that in this case an intimate relations be-
tween the two space's";gxist but I don't think this consideration &
leads to the identification of the two spaces ( as Eddington did?)).
That would only lead to the confusion of terminology and lose their
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real geometrical signiflicances,

p——

Thus the space of the typé (3-2) of four dimensions occuples a pecullar
position in the hypercomplex geometiry. We shall therefore constder
this more in detail.

The hypercomplex number system of order 4 has been investigated
more or less thoroughly by various wrlten:? It receives the speclal
name of"'Dirac's numbers" or sedenions as one generally calle it. Its
matrix representation was first discovered by Diraec. The treatment
of Eddington is particularly elegant and enables one to make easy
generalizations when n is any number, We shall adopt his method here.,

He starts with three 4-point matices grouped according to

(12,34), (13,24) and (14,23): ( oL omenb -”)

ol oo oolo
oo sei3H] s iH] o]

-0 9

oeo|
o lo
] oo
0o 00

and introduces a fourth matrix 135 , the identliyy matrix, Further
three diasgonal mattiEes with elements + 1 or -1 are introduced (their

spur is zero)

oo o ] o 00 » |1 0 o0

. =flol oo =|lo -] 00 =1l o~-100
(512) Pd. 0o0-lo0 'DF e 0 ]o r o0 -lo
e 0 0- o 0 0-] o 0 of

Then the following properties are easily proved: 1, Each
matrix commutes with the matrix of the same oup; - .
kst 2 ‘g@,ff}‘é commetative)
mutes with pb it a=b s Otherwise they anticommute;j\j, the ppmoduct
S‘ Pb 1s of the type 5‘_ of the four-point matrices but they may
contain -1 as element or elements; and 4, the 16 products Sa D,,
ar9 linearly independent. With the help of them, he was able to

find the anté-commutative sets; they are
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)) Sx Pg SrPr S % v &P

2) Sa », Sp Pe '»SpPr e 5&_1’;;
313 » 55 . SH iR %%

4) e Pr S« b ¢ Skj&

) Sr D op iRk 3T

&) Sy T Sa P t 54175 1 Sr Dy
when any one of the sets 4s found, others can be obtained by the eeup
"eoupling theorem" of gfﬁfter 1. Iwo 1mpoptzﬁz properties should be
noted: 1, " Newmors=tham three real matrices,in the set" and 2, the
real ones are symmetrical and the imaginary ones are antisymmetrical
about the diagonal, that is Hermitddn, The property 1 does not
survive under afbitrary transformationé€£ut 4% z:e can easily con-
vince ourselves that no matter what the transformations may be the
statement that "no more than three,matrices can be found such that
they all satisfy the relations (1.1)" ie always true., The property
2 does not surviwe except under unitary transformations or,if real
$ransformations only are considered,under orthogonal transformations.
The property "_n_ém than three matrices g¢an be found such ihat
they all gatiafy the relations (1.1)" was first noticed by £ddington,
What is the significance of this property when applied to geometry
( 32 )? This means that, if the geometry (3-2) is to be considered
s real, one of the co-ordinates must be pure imaginary. This pro-
perty when cogpled with the theorem 1 of chapter 1 gives the most

remarkable and beautiful result that Einstein's invariant interval

in the special theory of relatiwity is the only possible real one
we
when hewe have optional choice of dimensions lying in 3,4 or 5 and

that one dimension of which must be imaginary. This is the conse-

RPN T ST  CMEEG  E——————  S——————  ———

quence of our linearization of Geometry. Lddington has remarked that,

though from an entirely different consideration as here presented,
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* ... the matrix theory offers an explanation why one of the
Aimensions of our world differs from the other three, We have
traced it down to the fact that not more than three real four-point
matrices can satisfy simultaneuusly E—: 2=I @E,} =0 ."”)Ttms

the linearization theory, whether &n our present form c->r in the
consideration :

eonsepsien of Eddington indeed explains the + ++ — mystery of

the special theory of relativity. The space of dimensions 3 or 5
has already been ruled out by Theorem 1 of chapter 1,

So far the geometry represented by (3-2) has not received inter-
pretation;jthat is,1t connects quantities in the hypercomplex space
on the one hand and the quantities in the actual space oné the
other hand, We do not know how to work with them unless some
convention is made; that is,some sort of t.ranaitiog‘:%; which a
quantit-y in elther space 1is tra.nslatage.nto a quantity of the other
space, The folowing is a tentative discussion of this process.

Geometry ( 3-Z) may be wrlt.t’,“en as

(3-14) E+SE %5 = |
which, when mmltiplied by an arbltrary factor, invariant, k, becomes
(3-15) #Et72 E, %—%,'fu
We then observe thal in thgpld relativity theory when d8 = O that is
Ao =o it glves the traek of light wave-quanta., We shall natur-
ally expect that when we putdrroin (3-/5°) we should get the equa-
tion of motion of light wave }” say. How this 1s to be brought
out? This can be done by the following process; it is extremely |
unlikely that any other process will do, We write

(3-16) ﬁ-%‘-‘ —> -;—fi ﬁ/—aiy/

as the transition rule, then it follows at once that equation (3-/§)

becomes , ﬂﬂcw 75 —0
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(37) ( SE %(7) G0,

which, a8 can be verified, represents the quanta-mechanical equation
of the motion of elgctro-maggz}ic waves, We now extend this cess
to the case !ggg_gs:hnj equal zZero, ( Remember that the geometry
in the classical sence here is Euclidean,) therefore k can not be
zero, Egquation (3/5) becomes

(318) (Zé%(u "“iEo) ¢ =0
We now inquire next what is the significance of k? It 1s invariant
and equals zero when ds equal zero, It does not equal to zero when
ds does not equal to zero, We know that the only invariant satisfiles
these condition is the so-calledfpggngr_gaﬂsz Therefore k must be
proportional to the invariant mass assoclated with wave functionrfy.
It épals to 1t save & numerical factor, The above equation then

becomes

(319) (j 5)%;-#%5,)?‘0

where a numerical factpr 1s ommitted by sultable choice of the units,
. V.
This equation i1s the Linearized Wave Bquation of the motion of QV
F#+
with which is assoclated gomething whose ds 1§Azeroﬂ;n the clsskcal
sence, This equation was first discovered by Dirac 'and has been
assoclated tke name of "Dirac's Equations“ with it. We shall discuss

a futthe :
1t4ncaa in detail in the next chapter,
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g 4.

Brief Discussion of Dirac's Equations,

In our derivation of the Dirac's equations, we were guided by

the equation of light cone in Einstein's special theory of rel-
ativity. Dirae shows that, because the necessity of the require-
ment of the General Transfomratlion Theory and the requirement

of the Theory of Relativity, it is almost forced upon him that

the wave equation must be linearized in the }Ezi's. This eqamation
gives, when an electro-magnetic field is present, not only the
ordinary wave $erms but also the corrections which were experi-
mentally verified and were attributed to the spin of the electron,
The assumption of spin has created many insurmountdble difficulties
which we shall not discuss htr:? Not only this, the Dirac's equa-
tions settle once for all the time-wodn controversies regarding
the "relativity fine structure".*# We now know that the "spin"
# Milikan and Bowen: Phil., Mag. 49, 933. - E

has its origin in the Geometry itself; this 1s evident from the
13)

discussions of Eddington EPreer—Boy—808>—7 that this spin term
_ o2lefron or
comes into geometry before any conception of ,wave has been made,
To discuss these more in detall would 4w»espass be out of place
here; we shall however consider some simple properties.of a mono-
chromatic wave,
the wave be r
Let e __e e"pfisgr}%?.*‘%yz s W)
(4-1) y=v e

where Vv 1s a vector in t.he“Spin space” and /57--'3 are comstants; if

¥, =¥ Ny=y n=a x=1%

we substitute this wlaue in (3.7 ) and multiplying the gquation
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left-hand-sidely by iE » the eguations bécomes

4 (pE +3E tnE s W g, ami]) T =0
| ” (NM) o’“;[ﬂa d@a" C'f natit;;...a)_
Write

I= pEAJEAEAYE, imif

and =}|.E;*JE2.T’ZE:3*%I_E’* +mcz]

Vhen we assume [ //.; to be Hermitlan eondusetes as we have seen, we

obtain W, .
= pE+3E+2E "-——.-E4 -mil

j = '1.E "'ZE 'f"\‘E +-——-—Eq —m'/

where I* j are the Hermitian conjugates of 1',.7 respectively.

R -r—jI =7y =7~ . ,L"-l'zz-f-h.t"' W_z +m*

follows »
From 7T 77 =0 fwvems that J I # =o
Therefore r=v 1f //;’--:-1"-#4."- w’* -fmz} FO0 (sl-._a)

But if this condition is satisfied ( it can be easily veriféed that
this is the relativity energy momentum equation.) then solutions

for which 7 #0 may be found., Let us denote the rank of 7 by

a ; then equation[ F=ohas 4-a linearly independt. solutions, If
the rank of J* 15 4 then since Ir* .;b:nd since J -7 _,2pu7
L atpz 4 ; hence a+F=%_, But if we set m—» -m then

I— 7% . a=1=4

Hence, the number of linemrly independent solutions of ( 42) is
two., This conclusion was due to Neumamf)( It can be seen thatin
8 gsence these monochromatic waves are so polarized suchi:o make
the"spin' possibility.) The condition (43 ) shows tnat if W—>—W
it is also satisfted; this would lead to nothing new in the classical

theory. But in Dirac's theory, when W->—W/ y IF=0-» T 5=e! This
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gives two other solutions with negative energy! ( This i1s the origin
of Dirac's recent theory of Proton and Electroﬁ?) We thus obtain four
wave functions ‘/’r 'f': ‘f,_ ‘/;-; since T .T*=0 ,"" they aré pergéndicular
to each other, They thus determine two se® mutually perpendicular
planes 1n the spin space. Evefy vector can be split into two com-
ponents: one in the blane determindd by 4’,': ¢} thepther in theplane
determined by l,‘,' ’f,_". The two waves are redpectively

e_i(/tx-fﬂ'm! +We) ; S(px+gy+aZ-We)

the latter corresponds to electron with negative energy--teo=tie
r- 3

ererpsi=tine-directiond
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§ 5.

Connection of Hypercomplex Spaces at Different Points.

1. Homogeneous and Inhomogeneous Space lianifold.

In chapter 3, we have discussed the hypercomplex geometry
at a single point of the space manifold which is assummed to be
Euclidean ( in classical sence ) at this point, If there are two
or more points in the manifold, we may, as we have done, associate
a hypercomplex space with each point in guestion., How we are
to connect them? We consider two separate cases: 1) The hyper-
complex space at the point B may be obtained by some process of
displacement from the hypercomplex space at the point A and 2)
It 18 not posslible to do so; that is,the two spaces are fundamentlly
distinct and we can not obtain the space at B from that at A by
any of processes employed &n 1. If the hypercomplex space at
every point B of the space manifold can be obtained by some dis-
Placement from a certain point A, the space will be called a
“homogeneous manifold". In an "inhomogeneus" field, we may how-
aver didsplace the hypercomple x space at A to B by some process
but then thls displaced space &', say, cannot be made identical
with B am by any process. Since they are distinct, no conneetion
is possible between them*, hence the following commutativé laws
muat hold / /
E’E = EE,
where Zaf;s any hypercomplex number belonging to A' and £, any

Al
hypercomplex number belonging to B, We can, as seen from the end

;ﬁicept posslbly the Paull Exclusion Principle in the solution of

wave equations.
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of the section 2 of chapter 1, associate at every point a hyper-
complex space of gg'dimensiona ¢ if there are only two disticnt
hypercompl/ex spaces in the entire field and that each 18 of
dimension _n_:=2.,;’ and consider then all the hypercomplex spaces
in the manifold cap be obtained by the displacement method, For
more than two, the process 1s analogeous, ‘gggggg Any inhomo-
geneous spage can be made homogeneous by 1ncreasigg the dimensions
of the associated hypercomplex spaces., If there are an infinite
number of hypercomplex spaces, all of which are distinct, assocalted
with an equal number of points of the fleld, we must, in order
to make the space homogeneaus that 1s the possibility of a dis-
placement, associitte at every point of the manifold a matrix spac@
of infinite number of dimensions ( matrices appearsed would then be
of infinite number of rows and columns,) The justification that
whether they may be chosen as Hermitian must be sought for tnfrom a
deeper investigation and will not be dlscussed here,

The signifiecance of the above considerations lies in the
fact that for the problems of two or more bodies, we must, in
order to make the possibility of displacement, increase the dim-
ension of the associated hypercomplex space. The physical inter-
presation of distinct hypercomplex éﬁ;igg‘is, wheﬁ applied to
wave equations, the spin associated with one electron ( a point
in space ) 1is essentially disticnt from the spin asscolated with
a different electron ( &% other point of the space ). Thus
although the classical geometrical theory has no counter part
for the treatment of the problems of two or more bodies, the
spin geometry has! We can not increase the dimensions of the actual

Bpace but we can lncrease the dimensions of the auxiliary space
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as much as we like without leading to any logical inconslstency.

The so-called "interaction" would either appear as geometrical

_ in the composition

propertonf two spin spaces or as & result of the Exclusion

Principle of Pauli kas Which has so far no geometrical interpret-

ation, It is extremely likely that both play important rdles

and it is conjectured that the Paull Exclusion Prineiple may have

its geometrical significance in the process of ¥ composition®,
investigate

To d&seusshmore fully this mubject would be outside of the scope

of this thesis but I hope I shall return to this subject sooner or

later. Now we shall briefly consider the theory of linear displace=-

ment of a spin quantity.
2, Displacement of spin spaces.

The method by which a hypercomplex space frame can be dis-
plced to an arbitrary but infinitesimelly nearby point is called
the method of ﬁseeudo- parallel displacement. It is called
parallel in analogous to the case when the manifold 1s Euglidje.
Neglecting quantities of highér orders, the dlsplacement is in

ganeral of the form

S eU = {(ed) fYXF

L m
where € 13 some vector (contravaridnt ) s@nthe spin space.
For covariant vectors, similiar formmla 1s obtained. In gemeral
are
we da—=wt Iinterested im only in the so-called linear displacements

for which the displacement formula is of the form

se'=T,, = IxF

v
where the -T;P are entirely arbitrary with well defined modes of

trensformations, If the space 1s homogeneous, that is the hyper-
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space at one point can be obtained by the displacement of a hyper-

complex space at another point, we can make the convention that
VE =TE +3E

{
together by suitabpe choséng of co-ordinates we can make
NE =0

If however the vector 1s pseudo=-vector, we can write
v _ B e 1P whaa ‘,p’-L a2 P““’”’“ﬂt 7
§e s I:;; C“QQY ! 4%' ax wethe pratd et pode

d t,
displacement of

In general, tthvectors in the spin space has no connection at all
with the displacement of a vector in actual space, but if the above
conventions were adopted and with suitable assumptions, it can be

shown that they are connected. This result 1s mainly due to Schouteny

* at
I must =dmit that it was mainly his lectures in Massachusetts In-

stitute of Technology during the winter semmster of 1930-1 that
insplired me to write this paper. His work on this subject will §g7

appearaa in the coming issue of Juournal of Mathemetics and Physics.,
“ .

We see that the electric-magnetic terms nearly come in automatically
/
i1f we can accept the idea that these Haﬂ are gctually the electric

magnetic potentials derived macroscopically from the formulae

ﬂf% 4 | /3=/,1.,1~,'1‘}

wave
and 1f we replace ordinary differentiations in the equations {3- !?’)

by the covariant differentiations. However, as the first part

a..
can prove that, we must leave this asﬁmathematical speculation.

of this idea is hard to be accepted unless further investigation
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% 6.

Conclusion.

In this paper, the writer attempts to introduce a new field
which i1s wlde open, It is evident from the considerations of
chapter 2 and 3 that the generalization of Dirac's equations
to a Riemann space 1s not so easy as one might expect., The de-
ductions of the Dirac's equations in chapter ¥ 3 based mainly én
the dieé idea of 1light cone and the ds in the theory of relativity.
One cannot expect to get the generalization by simply replacing

%p—x' by Vp ¥ as many authorsj\do but one must be gu;‘defm?ZL,phe Riemann

ds and the equations of the geodeslies which an unchargednparttii:ﬁr
1s expected to take in the general theory of relativity. In echapbér
5, we have presanted zzaghsiytggaturee which, the author hopes,
may ultimately lead to the,problem of two bodies and to such ques-
tions ;s\the geometrical significance of the modern matrix quantum
theory and that why the space should be of a certain nature.

In conclusion, I wish to thank Prof, D, J. 8truik of the Depart-
ment of Mathematics of Massachusetts Institute of Technology for

his kind interest and encouragement.
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Notes

1) that is to say, no linear relations can exiat among them.

2) cf, e.g. Dickson

3) The first_part of this theorem has been noticed by Lddington
in the case of sedeniﬁnﬂ. ct, E'ddlng'l’.on: Symmetrical ‘reatment
of Yave Equations Pro. Roy., Soc.A Vol. 1:4 Pe 524=542

4) Eddington: loe. cit,

5) We can easlly see by multiplication,

‘6) cf., Eddington: Intersction of Electric Charges Proc. Roy. Soc.
A Vol. 126 p-694 |

7) In fact Ei may be taken as the éf of the hypercomplex number
system of order n.

8) for instance '
BV = 9 Bulyym 1T e T
9) |
10) They only survive under real transformations of the spin eo-ordinateJ
11)

12)

13)

14) Dirac: Thepry of Electrons and Protons Proc. Roy. Soc. A Vol. 126
p. 360 .

15) Neumenn: EingeBemerkungen zur Diracshen Theorie Zt. Phy. 48 p.868

16) The theoretical discussion of this method can be carried and are S
based on the properties of “composite matrix" but I shall reserve this

for a later paper,

17) ﬁi?‘“CI:‘L n4u11%ﬁ&da»ﬁzm.ap oUosy purae.




a8

APPENDIX

On the method of finding the Matrix Representation of a Hyper-
16)
complex Number Systems.

If the matrix representation of a hypercomplex number
system of nth order is known, we can find the matrix representayion
of a hypercomplex number system of 2nth order by the following
method,

Let us denote the matrix representations of the given
hypercomplex number system by 4, , A.? As--( they are m row and
ciolumned ) and let us denote the matrix e whose elements are

2.

( of m® rowand columnda ) dsL—~4'l“%ere $=( 2y ) ﬂ"v‘L, orde zed

(wkeve Ujm &
according to 11,12,13%,....,21,22,23,.....33, 32 335ecs0ne etc., by
Al

Pst_‘i"d‘;.yhere s=(ij)t=({%)ordered as above by A" A® A" ,.... .

A% A} ... and let us denote the matrix whose elements are

They form thus two sets of matrices
1) AY Al A}
11) AY AT A% -

2 v /7)
and faye m~ _ rows and columng&. We can prove the following properties:

1, every element of the group (i) commutes with every element of the
group i1; and 2, every element of one group anticommutes with every
other element of its own group., They are 1indeed the two sub-hyper-
complex sets consldered in the chapter 1. From them, we can easily
builld up all the generators of the desired hypercomplex system of

order 2n

As an example, we can illustrate by requiring to find

the sedenion system (n=4) firom a quaterion system (n=2) whose



matri® representation are known to be

| _fo -1 _/1l0
/’l';(‘l’o ﬂl“/g oz) /43 0 -/ :

e have A'={d{‘J) (1‘()} = s

*

A yti) Kty %) %) %o an © au o
Llrr)  olyzyr) ol =) 0(-\31) (1) = o a, o ay
o((”)[z)) 0{01_){1]) O((«u) (z1) d(ﬂ.)(z)) Q. o Qzre o

/ o Fez o q
A(n)(x) A(HEY) HA(z1)(2*) Aga)ae) *
) s o= y l-# '
Auee Uij =2 A 2%
Therefore
o o ! [ 0 o -1v © , 1 ¢ o0 o
/ -
A’:—-' e o ° | A = e 0 - A =)l o I o o
I 2 - 3
I o o o o o e O -1 O
0 ! o © o v o 0 o o0 -}
0 _ .
and A" = Undy, £y @y, Uy, a,, “y, 4, P an T P 0
ﬂ,, a,, A Qv My 412 Ui 4,0 Q. 4a,, o o
U,y d;, Gry Asa ay Uer Ay o o e, Q.
Uz s Upa d,, U2, Hr2 8y | o o a,, @,
Therefore
o) o o o -+ 0 o ] 0 oo
Iy 0 o " . n
- I 0 A — ;] 0 0 o A -1l ¢ -1 o0 o0
A{ : - 3
60 o | g 0 0 - o o 1o
t o 0o 0 v« 0 o0 0 0 -]
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These are exactly the f pand o »2in Dirac's paper who has derived A
probably frem experimantally. From these matrices, we can easily
build the generators of the actual sedenion systdm by the help of
chapter 1.

ie can easily continue this process to build the 16 point-
matices which are required 1n dealing the probgem of two Bodies and
its hypercomplex number system is of order 2n and higher hyper-complex

number systems,

We conm anpplinet By a2 i Pkt

an u, a, “z, a,, 4, Q31 “l"
= Ay Uy, A4, Anidn A U
4. Ay AUy 2 4y Az, U,

all all al'- Usz LY “[:. Q22 “"



