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Introduction and Summary

In the first chapter, the gerial hypercomplex number systems with

n-units are discussed; some generalized theorenmand new results are

giwen. In the second chapter, the study concerns pith the linear-

izabion of Riemann Space which idea is primarily the result of the

present writer; connection between classical Riemann geometry and

Einstein(1929) geometry is shown here. The geodesics defined with

respect to the Linearized space are generally not the same as the

ordinary geodesics deduced from the quadratic expression unless cer-

tain conditions are satisfied. In the third chapter, we study

this linearized geometry at one particular point and consider va-

rious transformation pperties. The fact that we have cw* -

Aaen both the *-I*- and the four-dimensional dilemma of the special

theory of relativity te the theory of hypercomplex numbers is the

most interesting point O this chapter. Geometrically, it is also

shown that the space whose dimension is 4 occupies a peculiar posi-

tion in linearized geometry in that it makes the dimensions of both

spaces, actual and hypercomplex, equal. We have next established

tentatively a transition rule between qantities in spin space and
a

quantities in actul space. It isshown that this choice is not

arbitrary and,guided by the equabbn of light cone in Einstein's

relativity theory, we deuAe deduce Dirac equations in a different

way. Throughout this part of the padr:, it can be seen that the

mass term has nothing to do ith the fifth dimension, so-called,

it is merely connected with the invariant interval. In chapter
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4, the Dirac's equations receives- a little attention and are discussed

&,::aM in detail. In the last chapter, we study the connections of

hypercomplex spaces at different points. It is shown that the solution

of problems- of two or more bodies depend on the negation of "possibi-

lity of displacment of the spin space".

Owing to the limit of space and time, the author regrets to

say that may important points which could be and should be con-

siderably developed have to be left out.

NoteAby the author: As the papere s near finishing, the writer

discovered a method by which the matrix representation of a hyper-

complex system can in all future cases be easily found. The brief

discussion, accomped by an illustration, is given in the "appendix".
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§ 1.

General Hypercomplex Number Systems

Just as the interest in related branches of Geometry was

aroused by the advance of Einstein's Theory of Relativity, the

study of Hypercomplex Number Systems has come into renewed

attention by the Dirac's Theory of Linearization of the Ael-

ativitistic Quantum Equations of Electron. It seems desirable

to treat the subject in a more logical and general way as, be-

sides its intrinsic interest, the generalization of Dirac's

Theory to the problems of two or more bodies essentially de-

pend. Most results here deduced are merely generalizations
of

of previous results obtained in the special case ( sedenions),

though some new results are also worked out.

i. Generators

A set of independent numbers

. =,2,3 , ..
will be called the generators of a Hypercomplex Number System bf

order n i£ they satisfy, besides the ordinary postulates e.g.

associative, distributive laws, the following jn(ntl) relations:

(0) an Ek -Sow= L OF FI )
The system is closed with elements Fr E E. r v . E Ct

which will be called the basic elements of the system. They are,

together with Unity,I* t (--)(-Z).. = (.I--) '
in number.
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Transformations of the type A EA' (1-2)

where E is any member of the ep system and A is any arbitrary

member of the system and here A- is defined as \ A A -= , are

called canonical transformations. From the elementary theory of

the groups, it is seen that the correspondence is one to one and

that the relations (1) are kept invariant.

It is easily shown that all the basic elements ( 2 in number )

are linearly independent; we have the result that every hypercomplex

number system of order n has exactly 2 linearly independent basic

elements. It may be noted here that every basic element, possibly

for a minus sign, is is own Inverse.

If we call the property A 13 + BA = O

where A,B any elements of the system as 'ant-commutative' and the

property that A 1 = A

as 'commutative', then it can be verified that every basic element

is either commutative or anticommutative with any other basic element

of the system. This property still hids when these elements are

under the canonical transformations O2).

2. Matrix Representation.

By a Theory in Algebra, every associative algebra is equivalent

to a matrix algebra. Therefore we can represent any element of the

group by (Ask), the reason for the pper and lower indices will be

given when we consider the geometrical representations of the system.

Now every matrix of m rows and columns has mZ linearly independent
nayl

basic elements. In order that it es be gomletAly represented by
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our hypercomplex numbers, we must restrict the system by the folowing

condition i.e. L2 5 

But m is an integer, therefore n must be even; this proves

Theorem 1. No complete hyperomplex number systms of odd orders

exist. That is , the independent generators can not be 1,3,5 etc.,

but may be 2,4,6 etc. This theorem, when properly interpreted, shows
cowblc~~~ ^,,, Dan~~~ore system,

that why wehave only sedenions, quatenions but not, for instance,,

between them.

Theorem 11. There is one and only one element * in the system

which anticommutes with every generator.

That there is one can be easily verified for this is
E E, 3 Fs, ; it anticommutes with every generator. To pove

the converse, that there in only one, we proceed as follows.

Lemma la. Every generator anticommutes with a basic element

of even degree if this basic element includes this generator as a

factor; it commutes w&th if this basic element does not include this
generator as a factor.

Lemma lb. Every generator commutes with a basic element of

an odd degree if this basic element includes this generator as a

factor; it anticommutes if this basic element does not include this
generator as a fact'bt.

A basic element e.g. , ....,-

is called of odd degree if f is odd, even if f is even. The above
Lemma asserts that

1 commutes with all E
Fantocommutes with allE if A not equals; otherwise commutes.
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EdEs anticommutes with a E if /A=i o; commutes with all others.

F Ecommutes with F if * =o,peY ; anticommutes with all
others.

etc,
The truth f the Lemma is then self-evident by actually

AL
multiplyingthem out. We may now proceed to prove the second part

of Theorem 11. The most general form of an element of the system

is T C.E 2C 

The condition that it anticommutes with all the generators is

TE' t ET=o
cfrd t;it |

for all d = 1,23,3 - . This, by using Lemma 1, n

leads to a system of linear relations among the independent basic

elements which are impossible; hence every co-efficient occurred must

vanish. This gives

C.- C= C..= .
except the last one which does not appearin any of the linear re-

lations. This proves our theorem. By a similiar argument, we

can easily prove the following

Theorem 111. There is one and only one element in the sstem

which commutes with every generator. In fact this member is Unity

which commutes with every member of the sustem. ( This theorem

is a hint to indicate that in solv&Ag the problems of two bodies in

Dirac's theory, we $$~ nos use four row-and-colummed matrices. )

If we denote the element E F F -.. -

by *Eand normalized by a factor so that its square is Unity; then



every member of the set

E,E,,E, E,, -- E
anticommutes with any other member of the same set and they all satis-
fy the realtions (); they form a (ntl)-fold normalized anticommuta-

tive set. The following theorem is-easily proved:

Theorem V. The multiplier of every member of the set by any

other member of the set. normalization factor being here r , forms

together with this member itself, another normalized anticommnutative

set.
In this way, we can obtain a totalAof nt 2 (n+ l)-fold anticommuta

sets. This theorem may be called the eneralized 'ul theorem

of Eddington since it was discovered by him in the case of sedenions.

Consider two sets of elements

A: F Eo .=.... -

It is seen that the following properties hold true:

1. very memeber of the set A commutes with every member of the

set B and conversely.

2. Every member of the set A anticommutes with every member

of its own set; similiarly for the set B.

3. E anticommutes with every member of either set and

Unity commutes with every member of the either set.

They form indeed two sub-hypercomplex number systems each of order

n/2. Conversely if we have two sets of hypercomplex numbers with

these properties assigned to them, we can build from them a system

with twice as many generators as the sub-system has. That is,

we can build a sedenion system by multiplication bf two quatenions

and we ban build a Ge~zcaccc system4 by the multiplication of two
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sedenions,. It may not be out of place here to remark that in solving

problems of two bodies these properties we referred to are exactly
6)

what we require.

3. Transformation Properties.

If we subject Fto an arbitrary linear homogenes transformation,

the relations (1) will in general not hold unless the transformation

matrix T is orthogonal i.e. ,( . = g . A__= %t '-)

These transformations will also be called the canonical transformations

since they keep relations (1) invariant. Under a canonical trans-

formation F
F.o/ ,E E Ex

-i, .,d ... ,,;tn E#, E, Ed, Ed --.
which, by the help of Lemma 1 and the condition of orthogonality, g&ves
observing
the eeand4&ea that the germs on the right hand side all vanish except

those with indices different, gives

go i kid, Adz tt;4 Andy 6 En Ex / T. EaF.': Si -.z z,,,::t.,.,.-.,,,, ..
that is, E transforms like a density, hence

Theorem V For all orkt.onasl transformations of th generators with

determinant , remains invariant.
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Linearization of Riemannian Space.

The fundamental metric of a Riemannian Space of n dimensions

is given by the quadratic form

(2.1) y =
which may be written as

(2.2) (EA- 2 Ex d)j
where

(2.3) 4 Ef) -
and where is such a quantity that it anticomutes with every E .
This metric will be referred to as the CLASICAL metric. It is
evident that these Eintroduced are isomorphic with the hyper-
complex number systems of order n introduced in the first chapter,

We shall now apply the principle of linearization and consider

the expression *

(2.4) Ed. t E2 aE 
as of more fundamental importance than (2.2). It is not necessary

to enter the discussion at the present moment what this significance

is until later we have understood the meaning of (2.4 ).

*When this idea occurred to the writer who has worked it out some-
and was very glad to find out

what in detail he was unaware,4hat the same idea has ocured to

Fock and Iwanenko: Uber eine mogliche geometrische Deutung der el-

ativistischen Quantentheorie Zt. fw Phy. 54 p.798; dieselbe:

Geometrie quantique lineaire et deplacement parallels Com. Ren.

188 p. 1470; and Fock: Geometrisierung der Dikacschen Theorie

des Elecktrons Zt. fur Phy. 57 p261. However the treatment is

acme ftt different,
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(2.5)
It follows that, since eAeis covariant, Ei8 ontravariant. It can

be proved that

(2.6) FEb) = )
and

(2.7)

The Geodesics of this Geometry will be defined as

(2.8) SJfodr = o
i.e.

(2.9) { f dw -°
which gives, by easy calculation, the n linear partial differential

equations

(2.10o) /r dA =o
where Aris defined ass a

It can be proved that Aris covariant of the second rank. It

can also be shown that the geodesics (2.10) defined in out Geo-

metry do not, in general, coincide with the geodesics defined in

the classical Riemann Geometry. In fact, we have, from (2.4)

and make the convention that

whichA, = be ustified late on substituting the equal.ons

of eodesics (2.10) we obtain 4
Mutilyngby-,istinfrn and theI% I ne2-rlEr j= E d) + s - = V dr

Multiplying by Erfirst in front and then in back and add, we he

je- Cj - FE, -t Ez. A. J W =/IA.= 



(.21fA) 1 _ -aW T f EX4,r §Z
which may be written as

->ff + r^ ,u C· ctl Lkere2Irs'a, ( er (FA '1;x
In this summation only the symmetrical part of F) survives. We

can represent ;r in terms of the well-known Christoffel symbols

and some antisymmetric functions. E

w1.her) A ) 

where A is defined as
(.17) 'dr-1r

Hence

and ..

q(.I) fj t "J ' 
Thus the geodesics in our geometry reduces to

These are not the same as the classical geodesics unless the right

hand side anishes. If the condition (2- 2) were not imposed, we

would get more complicated formulae.

In order to restrict ourselves only to the fundamental quantities

( ) and ( ) to define covariant differentiation, we proceed in

the following manner of eodesic displacement.

Let a covariant vector be denoted by V, then d is, by

definition, invariant, hence (Va X is invariant along an ab-
Or

solutely defined curve. Geodesics are of such curves. OL.using

th.e equations for geodesics (2.10), we obtain the result that

i- ,r r ) eg T
is invariant. Hence either

l

l
l .

I Nl l

.i
, .
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(or11) . v r r
V v, V(A-22) VT = r;r

may be taken as the definition of covariant differentiation; the fornmT

is however preferable. That they are actually ovariant tensors can

be proved directly. From (i/) and (-~) we see that defined by

equation (.17) are tensors of the third rank.

We see that the classical Riemann Geometry corresponds to the

case when all A vanish; on the other hand, we shall show that

the covariant differentiation adopted in (-a ) is practically

identical with the definition of Einstein in his 1929 papers. For

if we write 0

4eo thl- get

I

and similiar formulae for E E" 'd E,.
We obtain, thus n.

(2-4) C (;'h.Er), r a YT

if we assume that

(.2'.47) ~ = o
Our r would then be the same a his . The assumption (-27)

is equivalent to ( see Chapter 3 ) the assumption that of distaat

parallsm of spin co-ordinates.

We could defined analogous Riemann-Christoffel Tensors in this theory

but it has little interest at for our purpose and we shall not pursue

the matter further.
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3.

Study of Hypercomplex Geometry at one point.

At one point, the g are constants; we can, therefore, by

suitable choiee of co-ordinate system, reduce the relations

to

(3.1) F E,=L 1,
which are the generators of a hypercomplex number system of order

n considered in chapter 1. That is,at a pint, the geometry (2-)

reduces to the form

(3.2) AA OI , b , 
By the considerations developed in chpater 1, it is evident that

if we study the hypercomplex numbers we can study them in the matrix-

way. We thus associate at every point of space a matrix-space

in the sence that every matrix--that is, every hypercomplex number--

we consider is a tensor in that space. Owing to the fact that

E also lies in this space and is a tensor of the same kind, we

must consider them as co-contraviriant tensors EA ofthe second
rank.. The multiplication rule would then be

(3.3) [ E E*3),, Et = .t .- E. .
This matrix-space is introduced, at least up to the present, only

in helping to describe the Geometry (3.2 ); it may be called a

"Hilfsraum" or _!&A=31?V "Auxiliary Space" if we please. But

time to time we shall also use the name "spin space" or "hyper-

complex space" when it is advisable to render the meaning more ex-

plicite.
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By way of definition M =, .-. L are covariant and invariant. It

is to be noted here that E has igenwerte 1 or -1 and that it

has an equal number of 1 as -1 igenwerte. The former is obvious

since E.O/ means that in applying E, twice successively to its

eigenvektor, it estores its original length. The latter can be

seen from the following consideration: A Fol- has necessarily

the same eigenwerte as ( since the characteristic equation is

not changed by canonical transforamtions ). If we put equal to

any of the generators say, then

that is -E. has the same eigenwerte ase+ . This proves our assertion.

Since it is invariant by definition, we can therefore subdivide the

hypercomplex space into two invariant sub-spaces H,,H2 each of which

is of dimension -/2 where m is defined as = . It can be

easily proved that every generator isrduced, cousisting of components 

with one index in H, while the other index in H, and conversely; there

is no component of any generator lies totally in H, or H . However

we do not need these properties expilicitly in this paper, we shall not.

psuh the subject further. Reader who is interested n this part may

have reference to Schouten' Paper here special case of n 4 is

treated and many of them admit an easy generalization. We consider

now the transforamtion properties in both spaces and their relations

to each other.

a) Transformations of the co-ordinates in the hypercomplex

space.

Let us denote the co-ordinate systems in the

hypercomplex space by . '"""Lo' By an arbitrary transformtion
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of the co-ordinate& ,- 4c; dC dA-; W A s-i='

hypercomplex numbers * mixed tensors of the second rank) would under-

go the transformation,

· ~. . T,, . ~ -

It is easily proved that Ta i.e. T

(3-7):. E TET -
that is, they are undergoing a canonical transformation considered in

chapter 1. E transforms into

P, ..- T. 5 Es, -· T. 
or, when the spin- ace was sub-divided by the consideration above,

(3T) = T T. tlT', -Mr;ttT/ T r.
#LS I j T

which will be invariant and only then if the transformation matrix

T is the reduced matrix i.e. T Da

where T, and T are both m/2 square matrices. That is, if the

transformation in spin space is such that it keeps both the sub-

spaces invariant, the eemetry E remains invariant. A trans-

T oJI formation of the fou Awould only change -- F. that is, interchanging

of the two sub-spaces.

b) Transformations of the co-o1dinates in the actual space.

From the arguments of chapter 1, it is seen that

the only transformations which keeps the relations (1.1) invariant

are those that are orthogonal. In that case -- Eo if the determinant

is -1 and E, remains invariant if the determinant is 1. ( It is

to be noted that the general transformations which keep the quadratic
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expression (. Z) invariant is orthogonal and that relativity trans-

formations in the case of n= 4 are restricted to those with deter-

minant 1.

A particular case of the transformations in the hypercomplex

case is that when T is in the form e where may ave any

value. This transformation does not affect any of the hypercomplex

numbers; the corresponding transformation in the actual space can

only be the identity transformations This case would have no in-

terest if we deal only with the mixed tensors in the hypercomplex

A A
space but which would play a role, an important role indeed if we

accept Weyl's idea, if we consider not only the mixed tensors but

also vectors in the hypercomplex space. his $a&es would gve

rise to the conception of "pseudo-vector".

One can easily convince oneself that the transforamtions con-

sidered above in both spaces are the most eneral Dosible transfor-

mations that keep (.1) invariant. We tabulate here the corres*

pondeces between the two spaces:

a) rans. in Matrix Space b) Trans. in Space

General Transf. leaves two sub- , Orthogonal Taansf. of deter-
spaces invariant. minant 1.

General Transf. leaves two sub- Orthogonal Transf. o deter-
spaces interchanged. minant -1.

General transf. of the tor -- Identity ransf.

A case of particular interest is that when the dimensions C
a-Pte

both spaces are thei that is when mn. This has one and only

one solution that is when m = n 4*.

* It is admittedly true that in this case an intimate relations be-

tween the two spacesAexist but I don't think this consideration 

leads to the identification of the two spaces ( as Eddington dd ).

That would only lead to the confusion of terminology and lose their



real geometrical significances.
I

Thus the space of the type (3-2) of four dimensions occupies a peculiar

position in the hypercomplex geometry. We shall therefore cons&der

this more in detail.
The hypercomplex number system of order 4 has been investigated

I.)
more or less thoroughly by various writeIs. It receives the special

name of"'Dirac's numbers" or sedenions as one generally calls it. Its

matrix representation was first discovered by Dirac. Mhe treatment

of Eddington is particularly elegant and enables one to make easy

generalizations when n is any number. We shall adopt his method here.

He starts with three 4-point matices grouped according to

(12,34), (13,24) and (14,23): ( Al. ct +1)

1o o o 00a o I a

(3'11) 5 d o lo o I 1 lgo 0 sr 00o
ajOI I 0 I 1 0

and introduces a fourth matrix 5 , the identity matrix. Further

three diagonal matiiaes with elements t 1 or -1 are introduced (their

spur is zero)

i o 011 o0 1 0
(3.12) D o, o-Ij o P f |) ° o i /11 0 a - o 1o -- I

and p=S,=l 
Then the following properties are easily proved: 1, Each

matrix commutes with the matrix of the same group; 2, 5 com- tAi

( if t i h m AL- of l°ous* * AS S

mutes with Pb if A b , otherwise they anticommute;3, the pPoduct
Sa jb is of the type S of the four-point matrices but they may

contain -1 as element or elements; and 4, the 16 products SO, Pb

ar linearly independent. With the help of them, he was able to

find the ant&-commutative sets; they are
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S0 Po SrPr tSrDp cSPt
A) Sd 3r DSgPp iSpPr 5OT

(3 13) 3) S DA Sr Sr Sp

4) 5 Y, Sp.S P. , iY r
6) Str :p Sd% Po 5 i S,

when any one of the sets is found, others can be obtained by the .Cup

"coupling theorem" of chapter 1. Two important properties should be

noted: 1, " N . ..-a , three real matricesAin the set" and 2, the
real ones are symmetrical and the imaginary ones are antisymmetrical

about the diagonal, that is HermitAbn. The property 1 does not
10) we

survive under arbitrary transforma tions but t4 one can easily con-

vince ourselves that no matter what the transformations may be the

statement that "no more than threeAmatrices can be found such that

they all satisfy the relations (1.1)" is always true. The poperty

2 does not survive except under unitary transformations or,if real

transformations only are considered,under orthogonal transformations.

The property "no more tha hree matriam can ea f Qun I=c thatJ

they all satfy the relations 1.)" was first noticed by ddington.

What is the significance of this property when applied to geometry

( 3'2 )? This means that, if the geometry (32) is to be considered

as real, one o the co-ordinates must be pure imaginary. This pro-

perty when coppled with the theorem 1 of chapter 1 gives the most

remarkable and beautiful result that Einstein's invariant interval

in the special theory of relativity is the only possible real one
we

when haveshave optional choice of dimensions lying in ,4 or 5 and

that one dimension of which must be imaginary. This is the conse-

quence of our linearization of Geometry. ddington has remarked that,

though from an entirely different consideration as here presented,



" * the matrix theory offers an explanation why one of the

dimensions of our world differs from the other three. We have

traced it down to the fact that not more than three real four-point
Z "I,)

matrices can satisfy simultaneously A = | = o ." Thus
the linearization theory, whether &n our present form or in the
consideration
*eeep&ev of Eddington ijde explains the + + - mystery of

the special theory of relativity. The space of dimensions 3 or 5

has already been ruled out by Theorem 1 of chapter 1.

So far the geometry represented by (2) has not received inter-

pretationthat is,it connects quantities in the hypercomplex space

on the one hand and the quantities in the actual space on& the

other hand. We do not know how to work with them unless some
rule

convention is made; that is,some sort of transitionAby which a

quantity in either space is translate*nto a quantity of the other

space. The folowing is a tentative discussion of this process.

Geometry ( 3- ) may be written as

which, when multiplied by an arbitrary factor, invariant, k, becomes

We then observe that in theRld relativity theory when ds - 0 that is

JO-r 0 it gives the track of light wave-quanta. We shall natur-

ally expect that when we put dro in ( 3-15-) we should get the equa-

tion of motion of light wave 'p say. How this is to be brought

out? This can be done by the following process; it is extremely

unlikely that any other process will do. We write

(3s) r, t it
as the transition rule, then it follows at once that equation (3/)
becomes, AA -4- A °



(317) ( b-o>

which, as can be verified, represents the quanta-mechanical equation

of the motion of electro-magnetic waves. We now extend this ee

to the case when An Pot ftualE 9, ( Remember that the geometry

in the classical sence here is Euclidean.) therefore k can not be

zero. Equation (3-/5) becomes

We now inquire next what is the significance of k? It is invariant

and equals zero when ds equal zero. It does not equal to zero when

ds does not equal to zero. We know that the ognl invariant satisfies
I,

these condition is the so-called roer mas. Therefore k must be

proportional to the invariant mass associated with wave function f'.

It eals to it save a numerical factor. The above equation then

becomes

where a numerical factDD is omm5ied by suitable choice of the units.

This equation is the Linearized Wave Iquation of the motion of t

with which is associated something whose d isuzero in the claskhal

sence. This equation was first discovered by Dirac and has been

associated the name of Dirac's Equations" with it. We shall discuss

it sake in detail in the next chapter.



Brief Discussion of Dirac's Equations.

In our derivation of the Dirac's equations, we were guided by

the equation of light cone in Einstein's special theory of rel-

ativity. Dirac shows that, because the necessity of the require-

ment of the General Transfomration Theory and the requirement

of the Theory of Relativity, it is almost forced upon him that

the wave equation must be linearized in the 's. This equation

gives, when an electro-magnetic field is present, not only the

ordinary wave erms but also the corrections which were experi-

mentally verified and were attributed to the spin of the electron.

The assumption of spin has created many insurmountable difficulties

wh'ifth wa hnall nnt. Anlma lobrt_ M. nnlr +h4 + 'T4no a la li_

tions settle once for all the time-wotn controversies regarding

the "relativity fine structure".* We now know that the "spin"
* Milikan and Bowen: Phil. ag. 49, 93. 

has its origin in the Geometry itself; this is evident from the
'3)

discussions of Eddington m .a that this spin term
lt. .orL o Ra

comes into geometry before any conception ofAwave has been made.

To discuss these more in detail would ipespas be out of place

here; we shall however consider some simple properties.of a mono-

chromatic wave.

Let the wave be represented by(4/) l =' e =' , ;x ;:
where v is a vector in the spin space and/:t's are constants; if

we substitute this vlaue in (3 17 ) and multiplying the quation
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left-hand-sidely by i;L, the equation bcomes

(42)L~. +e. E, E, f "4 = x.vi 
(6-2 X J--*Y~-~Pf~i; GZCcSA1 Of n OS ltl

Write

and
I = ILE. +I E t Wr3 + tiE +^=

When we assume E-/to be Heriitian #6-- as we have seen, we
obtain

T IL. +2 t A E3 h4 i }

J It E, + F t sF3 + 
where J I 7J are the Hermitian conjugates of, J respectively.

follows From J U-o ie. that T*1 = o
Therefore r= ir (AL0 f L -hWfM O (4'.3)
But if this condition is satisfied ( it can be easily verif&ed that

this is the relativity energy momentum equation.) then solutions

for which ' V° may be found. Let us denote the rank of i by

a. ; then equation~i=ohas -a. linearly independt solutions. If

the rank of T is 1 then since J*= and since 

a, 4 a; +hence a+=9 . But if we set m-.-m then

Hence, the number of linearly independent solutions of ( *Z ) is
two. This conclusion was due to Neumann. ( It can be seen thatcin

a sence these monochromatic waves are so polarized such to make

the" spin" possibility.) The condition ( .3 ) shows that if W-->-W

it is also satisfied; this would lead to nothing new in the classical

theory. But in Dirac's theory, when W--4/ ,Z = -,J=t' This



gives two other solutions with negative energy! ( This is the origin
lJ)of Dirac's recent theory of Proton and Electron.) We thus obtain four

wavre funetions , 'f t1,; since IJ -o , they are perplndicular
to each other. They thus determine two per mutually perpendicular

planes in the spin space. Every vector can be split into two com-

ponents: one in the lane determined by + > thther in theplane

determined by It 9,7. The two waves are respectively

tei(/l rtrfpn d ) etelcr withneti ew-

the latter corresponds to electron with negative enw-gy.-7 M

.-
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Connection of Hypercomplex Spaces at Different Points.

1. Homogeneous and Inhomogeneous Space anifold.

In capter 3, we have discussed the hypercomplex geometry

at a single point of the space manifold which is assummed to be

Euclidean ( in classical sence ) at this point. If there are two

or more points in the manifold, we may, as we have done, associate

a hypercomplex space with each point in question. How we are

to connect them? We consider two separate cases: 1) The hyper-

complex space at the point B may be obtained by some process of

displacement from the hypercomplex space at the point A and 2)

It is not possible to do so; that is,the two spaces are fundamentlly

distinct and we can not obtain the space at B from that at A by

any of processes employed n 1. If the hypercomplex space at

every point B of the space manifold can be obtained by some dis-

placement from a certain point A, the space will be called a

"homogeneous manifold". In an "inhomogeneus" field, we may how-

dver displace the hypercomple x space at A to B by some process

but then this displaced space a', say, cannot be made identical

with B a by any process. Since they are distinct, no connection

is possible between them*, hence the following commutative laws

muat hold

where is any hypercomplex number belonging to A' and ~ any

hypercomplex number belonging to B. We can, as seen from the end

*Except possibly the Pauli Exclusion Principle in the solution of

wave equations.
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of the section 2 of chapter 1, associate at every point a hyper-

complex space of 2m dimensions if there are only two distiont

hypercomplex spaces in the entire field and that each 'i of

dimension m=,Z and consider then all the hypercomplex spaces

in the manifold can be obtained by the displacement method. For

more than two, the process is analogeous. Hence: Adn inhomo-

geneous ame can be made homogeneous by increasing the dimensions

of the associated hypercomlex spaces. If there are an infinite

number of hypercomplex spaces, all of which are distinct, assocaited

with an equal number of points of the field, we must, in order

to make the space homogeneous that is the possibility of a dis-

placement, assocaiate at every point of the manifold a matrix spaes

of infinite number of dimensions ( matrices appearred would then be

of infinite number of rows and columns.) The Justification that

whether they may be chosen as Hermitian must be sought for fino n a

deeper investigation and will not be discussed here.

The significance of the above considerations lies in the

fact that for the problems of two or more bodies, we must, in

order to make the possibility of displacement, increase the dim-

ension of the associated hypercomplex space. The physical inter-
s paceS

predation of distinct hypercomplex s-Peu is, when applied to

wave equations, the spin associated with one electron ( a-point

in space ) is essentially disticnt from the spin asecoiated with

a different electron ( a other point of the space ). Thus

although the classical geometrical theory has no counter part

for the treatment of the problems of two or more bodies, the

spin geometry has' We can not increase the dimensions of the actual

apace but we can increase the dimensions of the auxiliary space



as much as we like without leading to any logical inconsistency.

The so-called "interaction" would either appear as geometrical
in the composition

property of two spin spaces or as a result of the Exclusion

Principle of Pauli as bthich has so far no geometrical interpret-

ation. It is extremely likely that both play important rles

and it is conjectured that the Pauli Exclusion Principle may have

its geometrical significance in the process of 'compositionl.
investigate

To &sEeeu^more fully this subject would be outside of the scope

of this thesis but I hope I shall return to this subject sooner or

later. Now we shall briefly consider the theory of linear displace-

ment of a spin quantity.

2. Displacement of spin spaces.

The method by which a hypercomplex space frame can be dis-

plced to an arbitrary but infinitesimally nearby point is called

the method of pseeudo- parallel displacement. It is called

parallel in analogous to the case when the manifold is Euclid-.

Neglecting quantities of higher orders, the displacement is in

general of the form

g e = {(et) Sx

where e is some vector (contravariaht ) the spin space.

For covariant vectors, similiar formula is obtained. In gemeral
are

we *a--a interested a only in the so-called linear displacements

for which the displacement formula is of the form

SLA= TO at

where the are entirely arbitrary with well defined modes of

transformations. If the space is homogeneous, that is the hyper-



space at one point can be obtained by the displacement of a hyper-

complex space at another point, we can make the convention that

together by suitalbe chos&ng of co-ordinates we can make

~E A A

If however the vector is pseudo-vector, we can write

displacement of ¢ v
In general, the/~vectors in the spin space has no connection at all

with the displacement of a vector in actual space, but if the above

conventions were adopted and with suitable assumptions, it can be

shown that they are connected. This result is mainly due to Schoutent

at
I must admit that it was mainly his lectures in Massachusetts In-

stitute of Technology during the winter semester of 1930-1 that

inspired me to write this paper. His work on this subject will 1Ad

appeard in the coming issue of Journal of Mathematics and Physics.

We see that the electric-magnetic terms nearly come in automatically

if we can accept the idea that these yCf are atualy the electric

magnetic potentials derived macroscopically from the formulae

= tot p~~-_ w.av5-0..

wave
and if we replace ordinary differentiation in the equations G 5-?Ji)

by the covariant differentiations. However, as the first part

of this idea is hard to be accepted unless further investigation

can prove that, we must leave this as mathematical speculation.



6.

Conclusion.

In this paper, the writer attempts to introduce a new field

which is wide open. It is evident from the considerations of

chapter 2 and 3 that the generalization of Dirac's equations

to a Riemann space is not so easy as one might expect. The de-

ductions of the Dirac's equations in chapter 3 based mainly On

the dAea idea of light cone and the ds in the theory of relativity.

One cannot expect to get the generalization by simply replacing

' * by Vt as many authorsdo but one must be guided by the Riemannr A.. a.,s/¢M.

ds and the equations of the geodesics which an uncharged~particle

is expected to take in the general theory of relativity. In yepr

5, we have presented some new features which, the author hopes,
So(t,f'v of cAhe

may ultimately lead to the problem of two bodies and to such ques-

tions ad the geometrical significance of the modern matrix quantum

theory and that why the space should be of a certain nature.

In conclusion, I wish to thank Prof. D J. truik of the Depart-

ment of Mathematics of Massachusetts Institute of Technology for

his kind interest and encouragement.
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Notes

1) that is to say, no linear relations can exist among them.

2) cf. e.g. Dickson

3) The first part of this theorem has been noticed by Mddington

in the case of sedenion&. of. &ddington: Symmetrical Treatment

of Wave Equations Pro. RQy. Soc.A Vol. 13 p. 524-542

4) Eddington: loc. cit.

5) We can easily see by multiplication.

6) of. Eddington: Interaction of Electric Charges Proc. Roy. Soc.

A Vol.124 /Ig? 

7) In fact IF may be taken as the E of the hypercomplex number

system of order n.

8) for instance

9)

10) They only survive under real transformations of the spin co-ordinate

11)

12)

13)

14) Dirac: Thepry of Electrons and Protons Proc. Roy. Soc. A Vol. 12,

P. 360

15) Neumann: Eina Bemerkungen zur Diracshen Theorie Zt. Phy. 48 p.86 8

16) The theoretical discussion of this method can be carried and ae iS

based on the properties of "composite matrix" but I shall reserve this

for a later paper.

17) fdy ;( ICta4 
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APPENDIX

On the method of finding the Matrix Representation of a Hyper-
I,)

complex Number Systems.

If the matrix representation of a hypercomplex number

system of nth order is known, we can find the matrix representation

of a hypercomplex number system of 2nth order by the following

method.

Let us denote the matrix representations of the given

hypercomplex number system by A, A A---( they are m row and

clolumned ) and let us denote the matrix eQ whose elements are

of m rowl and columne& ) -- here) =( ordered
(Ae}re Uj/.. . ,o F&

according to 11,12,13,....,21,22,23,.....33,32,33,...... etc., by
A A Al ... and let us denote the matrix whose elements are

Ptlthere S= j)At(fo^rdered as above by A" A A" .....

They f rm thus two sets of matrices

i) All A' A -

ii) A" A A.
Iandh~~t~e -,e ~ ro~~~and column/7)

and4afe roWand column 4 . We can prove the following properties:

1, every element of the group(i) commutes with every element of the

group ii; and 2, every element of one group anticommutes with every

other element of its own group. They are indeed the two sub-hyper-

complex sets considered in the chapter 1. From them, we can easily

build up all the generators of the desired hypercomplex system of

order 2n

As an example, we can illustrate by requiring to find

the sedenion system (n= 4) from a quaterion system (n=2) whose

P

"J,



matrix representation are known to be

)/ (lo0 Af : J
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These are exactly the. l and r Pf in Dirac's paper who has derived A

probably gSee experimantally. From these matrices, we can easily

build the generators of the actual sedenion system by the help of

chapter 1.

We can easily continue this process to build the 16 point-

matices which are required in dealing the problem of two bodies and

its hypercomplex number system is of order 2n and higher hyper-complex

number systems.
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