```
Introductory Study of
Hypercomplex Number Systems and Their Applications in Geometry. by
Hin P. Soh
Submitted in Partial Fulfillment \(t\) of the Requirement for the Degree of Master of Science from the Massachusetts Institute of Technology 1931
Signature of Author
Department of Mathematics Date .Mey.25_.79\%7.
Professor in Charge of Research -
Chairman of Departmental Committee on Graduate Students
```


Table of Contents

Introduction and Summary $i i-i i i$
§ 1. General Hypercomplex Number Systems 1
§ 2. Linearization of Riemannian Geometry 7
§ 3. Study of Hypercomplex Geometry at one point 11
\oint 4.Brief Discussion of Dirac's Equations 19
§5. Connection of Hypercomplex Spaces at Diffe-rent Points22
6. Conclusion 26
Notes 27
Appendix: On the method of finding the matrix representations
of a hypercomplex number system 28

Introduction and Summary

In the first chapter, the genfal hypercomplex number systems with n-units are dispassed; some generalized theorems and new results are given. In the second chapter, the study concerns fith the linearization of Riemann Space which idea is primarily the result of the present writer; connection between classical Riemann geometry and Einstein(1929) geometry is shown here. The geodesics defined with respect to the Linearized space are generally not the same as the ordinary geodesics deduced from the quadratic expression unless certain conditions are satisfied. In the third chapter, we study this linearized geometry at one particular point and consider various transformation pmperties. The fact thet we have tyturect comecled den both the +++ and the four-dimensional dilemma of the special theory of relativity with the theory of hypercomplex numbers is the most interesting point of this chapter. Geometrically, it is also shown that the space whose dimension is 4 occupies a peculiar position in linearized geometry in that it makes the dimansions of both spaces, actual and hypercomplex, equal. We have next established tentatively a transition rule between quantities in spin space and quantities in actư space. It is shown that this choiee is not arbitrary and, guided by the equation of light cone in Einstein's relativity theory, we deude deduce Dirac equations in a different way. Throughout this part of the pabsp it can be seen that the mass" term has nothing to do tith the 'fifth dimension, so-called, it is merely connected with the invariant interval. In chapter

4, the Dirac's equations received a little attention and are discussed in detail. In the last chapter, we study the connections of hypercomplex spaces at different points. It is shown that the solution of ppoblems of two or more bodies depend on the negation of "possibility of displaciment of the spin space".

Owing to the limit of space and time, the author regrets to say that may impobtant points which could be and should be considerably developed have to be left out.
added
Note ${ }_{A}$ by the author: As the paper in near finishing, the writer discovered a method by which the matrix representation of a hypercomplex system can in all future cases be easily found. The brief discussion, accomplied by an illustration, is given in the "appendix".
§ 1.

General Hypercomplex Number Systems

Just as the interest in related branches of Geometry was aroused by the advance of Einstein's Theory of Relativity, the study of Hyper complex Number Systems has come into renewed attention by the Dirac's Theory of Linearization of the "elativitistic Quantum Equations of Electron. It seems desirable to treat the subject in a more logical and general way as, besides its intrinsic interest, the generalization of Dirac's Theory to the problems of two or more bodies essentially depend. Most results here deduced are merely generalizations of previous results obtained in the special case (${ }_{\wedge}^{\text {of sedenions), }}$ though some new results are also worked out.

1. Generators

A set of independent numbers
$E_{\mu} \quad \mu=1,2,3, \ldots \ldots n$
will be called the generators of a Hypercomplex Number System of order n if they satisfy, besides the ordinary postulates egg. associative, distributive laws, the following $\frac{1}{2} n(n+1)$ relations: (1.1) $\quad E_{(\mu \nu} E_{\nu)}=\delta_{\mu \nu} \quad$ where $E_{(\mu \mu} E_{\nu)}=\frac{1}{2}\left(E_{\mu} E_{\nu}+E_{\nu} E_{\mu}\right)$. The system is closed with elements $E_{\mu}, E_{\mu} E_{\mu}, E_{\mu} E_{\mu} E_{\sigma}$ etc., which will be called the basic elements of the system. They are, together with Unity,

$$
1+\frac{n(n-1)}{2!}+\frac{n(n-1)(n-2)}{3!}+\cdots+1=(1+1)^{n}=2^{n}
$$

in number.

Transformations of the type $\Lambda E \Lambda^{-1}$ where E is any member of the gros system and Λ is any arbitrary member of the system and where Λ^{-1} is defined as $\Lambda \Lambda^{-1}=1$, are called canonical transformations. Prom the elementary theory of the groups, it is seen that the correspondence is one to one and that the relations (1) are kept invariant.

It is easily shown that all the basic elements (2^{n} in number) 1) are linearly independent; we have the result that every hypercomplex number system of order n has exactly 2^{n} linearly independent basic elements. It may be noted here that every basic element, possibly for a minus sign, is its own Inverse.

If we call the property

$$
A B+B A=0
$$

where A, B any elements of the system as 'anti-commutative' and the property that

$$
A B=B A
$$

as 'commutative', then it can be verified that every basic element is either commutative or anticommutative with any other basic element of the system. This property still hands when these elements are under the canonical transformations (12).
2. Matrix Representation.

By a Theory in Algebra, every associative algebra is equivalent to a matrix algebra. Therefore we can represent any element of the group by ($A \mu_{\nu}$), the reason for the gypper and lower indices will be given when we consider the geometrical representations of the system.

Now every matrix of m rows and columns has m^{2} linearly independent may basic elements. In order that it be completely represented by
our hypercomplex numbers, we must restrict the syatem by the folowing condition i.e.

$$
m^{2}=2^{n}
$$

But m is an integer, therefore n must be even; this proves

Theorem 1. No complete hypercomplex number systams of odd orders exist. That is, the independent fenerators can not be $1,3,5$ etc., but may be $2,4,6$ etc. This theorem, when properly interpreted, shows that why we have only sedenions, quaptenions but not, for instance, between them.

Theorem 11. There 1s one and only one elemente in the system which anticommutes with every generator. ${ }^{3}$)

That there is one can be easily verified for this is $E_{1} E_{2} E_{3} \cdots E_{n}$; it anticommutes with every generator. To ppove the converse, that there in only one, we proceed as follows.

Lemma la. Every generator anticommutes with a basic element of even degree if this basic element includes this generator as a factor; it commutes with if this basic element does not include this generator as a factor.

Lemma 2b. Every generator commutes with a basic element of an odd degree if this basic element includes this generator as a factor; it anticommutes if this basic element does not include this generator as a factov.

$$
\text { A basic element e.g. } E_{n_{1}} E_{n_{2}} \cdots E_{n_{f}} \quad n_{1}, n_{2} \cdots n_{f}=1,2,3 \cdots n^{\prime},
$$

is called of odd degree if f is odd, even if f is even. The above Lemma asserts that

1 commutes with all E_{ν}
E_{α} antocommutes with all E_{2} if 2 not equal α; otherwise commutes.
$E_{\alpha} E_{\beta}$ anticominutes with ami E_{α} if $\nu=\alpha$ m ; commutes with all others. $E_{\alpha} E_{\beta} E_{r}$ commutes with E_{L} if $\nu=\alpha, \beta \sim r$; anticommutes with all others.
etc.
The truth of the Lemma is then self-evident by actually all
multiplying them out. We may now proceed to prove the second part of Theorem 11. The most general form of an element of the system is

$$
T=C_{0}+\sum_{\mu=1}^{n} C_{\mu} E_{\mu}+\sum_{\mu \neq \nu} C_{\mu \nu} E_{\mu} E_{\nu}+\sum_{\mu \neq \nu \neq \sigma} C_{\mu \nu \sigma} E_{\mu} E_{j} E_{\sigma}+\cdots
$$

The condition that it anticommutes with all the generators is

$$
T E_{\alpha}+E_{\alpha} T=0
$$

condition
for all $\alpha=1,2,3, \cdots \cdot n$. This, by using Lemma 1 , n nation leads to a system of linear relations among the independent basic elements which are impossible; hence every coefficient occurred must vanish. This gives

$$
C_{0}=0 \quad C_{\mu}=0 \quad C_{\mu \nu}=0 \quad \text { etc., }
$$

except the last one which does not appearing any of the linear relations. This proves our theorem. By a similar argument, we can easily prove the following

Theorem 111. There is one and only one element in the system which commutes with every generator. In fact this member is Unity which commutes with every member of the sustem. (This theorem is a hint to indicate that in solving the problems of two bodies in Dirac's theory, we can not use four row-and-columned matrices.)

If we denote the element $E_{1} E_{2} E_{3} \cdots E_{n}$ by F_{0} and normalized by a factor so that its square is Unity; then
every member of the set

$$
E_{0}, E_{1}, E_{2}, E_{3}, \cdots E_{n}
$$

anticommutes with any other member of the same set and they all satisfy the realtions $\left(\begin{array}{c}1 \cdot 1 \\ (\underline{n} \\ \end{array}\right)$; they form a $(n+1)$-fold "normalized anticommutative set". The following theorem is easily proved:

Theorem IV. The multiplier of every member of the set by any other member of the set, normalization factor being here $\sqrt{-1}$, forms together with this member itselfe another normalized anticommutative set.

In this way, we can obtain a totaliof $n+2(n+1)-f o l d$ "anticommutative sets." This theorem may be called the generalized 'coupling theorem. ${ }^{4}$) of Eddington since it was discovered by him in the case of sedenions. Consider two sets of elements
$A: \quad E_{j} E_{0}$
$\mu=1,2,3, \cdots n / 2$
B: $\quad E_{\mu^{\prime}}$
$\mu^{\prime}=\frac{n}{2}+1, \frac{n}{2}+2, \cdots n$.

It is seen that the following properties hold true:

1. Bvery memeter of the set A commutes with every memiver of the set B and conversely.
2. Every member of the set A anticommutes with every member of its own set; similiarly for the set B.
3. E_{0} anticommutes with every men ber of either set and Unity commutes with every member of the either set.
They form indeed two sub-hypercomplex number systems each of order $\mathrm{n} / 2$. Conversely if we have two sets of hypercomplex numbers with these properties assigned to them, we can build from them a system with twice as many generators as the sub-system has. That is, we can build a sedenion system by multiplication bf two quaterions and we ban build a cotonion system, by the multiplication of two
and so on
sedenions. It may not be out of place here to remark that in solving problems of two bodies these properties we referred to are exactly 6) what we require.
4. I'ransformation Properties.

If we subject E_{μ} to an arbitrary linear homogeneius transformation, the relations (l) will in general not hold unless the transformation matrix T is orthogonal i.e. $t_{\alpha \alpha^{\prime \prime}} t_{\beta \alpha^{\prime}}=\delta_{\alpha \beta}$ where $T=\left(t_{i j}\right)$. These transformations will also be called the canonical transformations" since they keep relations (1) invariant. Under ae canonical transformation

$$
\begin{aligned}
E_{0}^{\prime} & =E_{1}^{\prime} E_{2}^{\prime} E_{3}^{\prime} \cdots E_{n}^{\prime} \\
& =t_{1 \alpha_{1}} t_{2 \alpha_{2}} t_{3 \alpha_{3}} \cdots t_{\lambda \alpha_{n}} E_{\alpha_{1}} E_{\alpha_{2}} E_{\alpha_{3}} E_{\alpha_{4}} \cdots E_{n_{1}, 2}
\end{aligned}
$$

which, by the help of Lemma 1 and the condition of orthogonality, fifes observing the eoaditien that the terms on the right hand side all vanish except those with indices different, gives
that is, E. transforms like a density, hence
Theorem V, For all oxithgonal transformations of the generators with determinant 1, E_{a} remains invariant.

Linearization of Riemannian Space.

The fundamental metric of a Riemannian Space of n dimensions is given by the quadratic form

$$
\begin{equation*}
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu} \quad \mu, \nu=1,2,3, \cdots n \tag{2.1}
\end{equation*}
$$

which may be written as

$$
\begin{equation*}
\left(E_{0} d \sigma+\sum E_{\alpha} d x^{\alpha}\right)^{2}=0 \tag{2.2}
\end{equation*}
$$

where

$$
\text { (2.3) } \quad E_{(\alpha} E_{\beta)}=g_{\alpha \beta}
$$

and where E_{0} is such a quantity that it anticomutes with every $E_{\alpha}{ }^{7}$. This metric will be referred to as the CLASSICAL metric. It is evident that these E_{α} introduced are isomorphic with the hypercomplex number system of order n introduced in the first chapter.

We shall now apply the principle of linearization and consider the expression *

$$
\begin{equation*}
E_{0} d \sigma+\sum E_{\alpha} d x^{\alpha}=0 \tag{2.4}
\end{equation*}
$$

as of more fundamental importance than (2.2). It is not necessary to enter the discussion at the present moment what this significance is until later we have understood the meaning of (2.4).
*When this idea occureed to the writer who has worked it out someand was very glad to find out what in detail he was unaware that the same idea has occured to Fork and Iwanenko: Über eine mogliche geometrische Deutung der melativistischen Quantentheorie Vt. fut Phy. 54 p.798; dieselbe: Géometrié quantiqué linéaire ét déplacement paralleled Com. Rene. 188 p. 1470; and Pock: Geometrisierung der Ditacschen Theories des Elecktrons $Z t$. für Thy. 57 p. 261. However the treatment is gerent different.

Define

$$
(2.5)
$$

$$
E^{\mu}=g^{\mu \nu} E_{\nu}
$$

where $\left(g_{\mu}\right)=\left(g_{\mu \nu}\right)^{-1}$
It follows that, since E_{L} is covariant, E^{μ} is contravaraant. It can be proved that 8)

$$
\text { (2.6) } \quad E^{(\mu} E^{\nu)}=g \mu \nu
$$

and
(2.7) $\quad E^{(\mu} E_{\nu} \equiv E^{\mu} E_{\nu}+E_{L} E^{\mu}=\delta^{\mu}=0$ if $\mu \neq-$

The Geodesics of this Geometry will be defined as
(2.8)

$$
\delta \int E_{0} d \sigma=0
$$

1.e.
(2.9)
which gives
equations

$$
(2.10)
$$

$$
\delta \int E_{2} d x^{2}=0
$$

which gives, by easy calculation, the n linear partial differential

$$
A_{\mu \sigma} d x^{\sigma}=0
$$

where $A_{\mu r^{1 s} \text { defined as }}$

$$
\frac{\partial \sqrt{G_{\mu}}}{\partial x^{\sigma}}-\frac{\partial E_{\sigma}^{E_{\sigma}}}{\partial x^{\mu}}
$$

It can be proved that $A_{\mu r}$ is covariant of the second rank. It can also be shown that the geodesics (2.10) defined in out Geometry do not, in general, coincide with the geodesics defined in the classical Riemann Geometry. In fact, we have, from (2.4)

$$
(2.11) \quad \frac{d}{d 5}\left(E_{0}+E_{2} \frac{d x^{2}}{d \sigma}\right)=0
$$

and make the convention that

$$
(2 \cdot 12) \quad \frac{d}{d s}\left(E_{0}\right)=0
$$

which, may be justified later; $;$ of geodesics (2.10), we obtain
(2-13) $\quad \frac{d}{d \sigma}\left(E_{\nu} \frac{d x^{2}}{d \sigma}\right)=E_{2} \frac{d^{2} x^{2}}{d \sigma^{2}}+\frac{d E_{r}}{d \sigma} \frac{d x^{2}}{d \sigma}=E_{2} \frac{d^{2} x^{2}}{d \sigma^{2}}+\frac{\partial E_{2}}{\partial x^{2}} \frac{d x^{\alpha}}{d \alpha} \frac{d x^{\sigma}}{d \lambda}=0$ Multiplying by E^{μ} first in front and then in back and add, we hive
(2.14)

$$
\frac{d^{2} x^{2}}{\partial \sigma^{2}}+\left(E^{\swarrow} \frac{\partial E_{\mu}}{\partial x^{\sigma}}\right) \frac{d x^{\mu}}{d \sigma} \frac{d x^{\sigma}}{d \sigma}=0 \quad \text { where 2 }\left(E^{\llcorner } \frac{\partial E_{\mu}}{\partial x^{\sigma}}\right) \equiv E^{2} \frac{\partial E_{\mu}}{\partial x^{\sigma}}+\frac{\partial E_{\mu}}{\partial x^{\sigma}} E^{\iota} \text {, }
$$

which may be written as
(2.15) $\quad \frac{d^{2} x^{2}}{d \sigma^{2}}+T_{\mu \sigma}^{\cdots} \frac{d x^{\mu}}{d \sigma} \frac{d x^{\sigma}}{d \sigma}=0 \quad$ indre $2 \Gamma_{\mu \sigma}^{\cdots} \equiv\left(E^{\nu} \frac{\partial E_{\mu}}{\partial x^{\sigma}}+\frac{\partial}{\partial x}\right.$ In this summation only the symmetrical part of $\Gamma_{(\mu \sigma)}^{\sim}$ survives. We can represent $\Gamma_{\mu \sigma}^{\mu \nu}$ in terms of the well-known Christoffel symbols and some antisymmetric functions.
(2.16)

$$
\begin{aligned}
& \text { antisymmetric functions. } \begin{aligned}
\left.\mu \sigma^{\mu}\right] & =\left(\frac{\partial E_{\mu}}{\partial x^{\mu}} E_{\sigma}\right)+\left(E_{\mu} \frac{\partial E_{\nu}}{\partial x^{\nu}}\right)+\left(\frac{\partial E_{\nu}}{\partial x^{\mu}} E_{\sigma}\right)+\left(\frac{\partial E_{\sigma}}{\partial x^{\mu}} E_{\nu}\right) \\
& -\left(\frac{\partial E_{\mu}}{\partial x^{\sigma}} E_{\nu}\right)-\left(\frac{\partial E_{\nu}}{\partial x^{\sigma}} E_{\mu}\right)=2\left\{\Gamma_{\mu \nu), \sigma}+\Lambda_{\sigma \nu, \mu}+\Lambda_{\sigma \mu, \nu}\right\}
\end{aligned}
\end{aligned}
$$

where \bigwedge is defined as
(2.17)

$$
\Lambda_{\alpha \beta, \gamma}=\frac{1}{2}\left(\Gamma_{\alpha \beta, \gamma}-\Gamma_{\beta \alpha, \gamma}\right)
$$

Hence

$$
(2.18) \Gamma_{(\mu \nu), \sigma}=\left[\begin{array}{c}
\mu \nu \\
\sigma
\end{array}\right]+\Lambda_{\nu \sigma, \mu}+\Lambda_{\mu \sigma, \nu}
$$

and

$$
(2 \cdot 19) \Gamma_{(\mu \nu)}^{\cdot \sigma}=\left\{\begin{array}{c}
\mu \nu \\
\sigma
\end{array}\right\}+\Lambda_{\nu \sigma}^{\cdot \mu}+\Lambda_{\mu \sigma}^{\cdots \nu}
$$

Thus the geodesics in our geometry reduces to

$$
(2 \cdot 20) \frac{d^{2} x^{\alpha}}{d \sigma^{2}}+\left\{\begin{array}{c}
\mu \nu \\
\alpha
\end{array}\right\} \frac{d x^{\mu}}{d \sigma} \frac{d x^{2}}{d \sigma}=\left(\bigwedge_{\cdot \nu, \mu}^{\alpha}+\Lambda_{-\mu, \nu}^{\alpha}\right) \frac{d x^{\mu}}{d \sigma} \frac{d x^{\nu}}{d \sigma}
$$

These are not the same as the classical geodesics unless the right hand side banishes. If the condition (2.12) were not imposed, we would get more complicated formulae.
in order to restrict ourselves only to the fundamental quantities (E_{μ}) and (E^{μ}) to define covariant differentiation, we proceed in the following manner of geodesic displacement.

Let a covariant vector be denoted by V_{α} then $V_{\alpha} \frac{d x^{\alpha}}{d \sigma}$ is, by definition, invariant, hence $\frac{d}{d \sigma}\left(V_{\alpha} \frac{d x^{\alpha}}{d \sigma}\right)$ is invariant along an absolutely defined curve. Geodesics are of such curves. owning the equations for geodesics (2.10), we obtain the result that

$$
\left(\frac{\partial V_{\mu}}{\partial x^{\top}}-T_{\mu \tau}^{\cdot \sigma} V_{\sigma}\right) \frac{d x^{\mu}}{d \sigma} \frac{d x^{\tau}}{d \sigma}
$$

is invariant. Hence either
(2.21) $\quad \nabla_{T} V_{\mu}=\frac{\partial V_{\mu}}{\partial X^{T}}-\Gamma_{\mu \tau}^{\cdots \sigma} V_{\sigma}$
$\begin{aligned} & \text { (2.22) }\end{aligned} \quad \nabla_{T} V_{\mu}=\frac{\partial V_{\mu}}{\partial x^{T}}-\Gamma_{\tau \mu}^{\cdot \cdot \sigma} V_{\sigma}$
may be taken as the definition of covariant differentiation; the former is however preferable. That they are actually covariant tensors can be proved directly. From (2.21) and (2.22) we see that Λ defined by equation (2.17) are tensors of the third rank.

We see that the classical Riemann Geometry corresponds to the case when all \bigwedge vanish; on the other hand, we shall show that the covariant differentiation adopted in (2.21) is practically identical with the definition of Einstein in his 1929 papers. For (2.23) we write $\quad E^{\mu}=\sum_{i n}^{n} h^{\mu} E^{t} \quad$ where E^{t} are hypercomplax and (2.24) $\quad E_{\mu}=\sum_{i}^{t} h_{\mu} E^{t}$

$$
\text { numbers of order } n \text {, }
$$

We get
(2.25) $E_{(\mu} E_{\nu)}=\sum_{1}^{n} t h_{\mu}^{t} h_{\nu}$
and similar formulae for $E^{(n} E^{\mu)}$ and $E^{m} E_{\nu j}$.
We obtain, thus
(2.26) $\quad \Gamma_{\mu T}^{\cdots \sigma} \equiv\left(E^{\sigma} \frac{\partial E_{\mu}}{\partial x_{T}}\right)=\sum_{t=1}^{n} t^{\sigma} \frac{\partial^{t} h_{\mu}}{\partial x^{T}}$

if we assume that

(2.27) $\quad \frac{\partial E^{t}}{\partial x_{T}}=0 \quad t=1,2, \cdots n \quad t=1,2, \cdots \cdot n$

Our Γ would then be the same as his Δ. The assumption (2.27) is equivalent to (see Chapter 3) the assumption that of distract parall $\dot{\text { b }}$ m of spin coordinates.

We could define analogous Riemann-Christoffel Tensors in this theory but it has little interest at for our ne purpose and we shall not pursue the matter further.

$$
\xi 3 .
$$

Study of Hypercomplex Geometry at one point.

At one point, the $g_{\mu \nu}$ are constants; we can, therefore, by suitable choice of coordinate system, reduce the relations

$$
E_{(\mu} E_{\nu)}=g_{\mu \nu}
$$

to

$$
\begin{equation*}
E_{\mu} E_{\nu)}=\delta_{\mu \nu} \quad a s i m \S 1, \tag{3.1}
\end{equation*}
$$

which are the generators of a hypercomplex number system of order n considered in chapter 1. That is, at a point, the geometry (2.4) reduces to the form
(3.2) $E_{0} d \sigma+\sum E_{\mu} d x^{\mu}=0 \quad$ where E_{μ} are generator o of a hyperBy the considerations developed in chpater 1 , it is evident that if we study the hypercomplex numbers we can study them in the matrixway". We thus associate at every point of space a matrix-space in the sence that every matrix--that is, every hypercomplex number-we consider is a tensor in that space. Owing to the fact that $E_{\mu} E_{L}$ also lies in this space and is a tensor of the same kind, we must consider them as co-contraviriant tensors $E_{. \beta}^{\alpha}$ of the second rank. The multiplication rule would then be
$\left(E_{\mu} E_{\nu}\right)_{\cdot \beta}^{\alpha}=E_{\rho \cdot \tau}^{\alpha} \cdot E^{\top} \cdot \beta$.
This" matrix-space" is introduced, at least up to the present, only in helping to describe the Geometry (3.2); it may be called a
 time to time we shall also use the name "spin space" or "hypercomplex space" when it is advisable to render the meaning more explicite.

By way of definition $E_{\mu} \mu=1, \cdots \cdot n$ are covariant and E_{0} invariant. It is to be noted here that E_{0} has laigenwerte 1 or -1 and that it has an equal number of 1 as -1 Eigenwerte. The former is obvious since $E_{0} E_{0}=1$ means that in applying E_{0} twice successively to its eigenvektor, it sestores its original length. The latter can be seen from the following consideration: $\Lambda E_{0} \Lambda^{-1}$ has necessarily the same eigenwerte as E_{0} (since the characteristic equation is not changed by canonical transforamtions). If we put Λ equal to any of the generators E_{μ} say, then

$$
\begin{equation*}
E_{\mu} E_{0} E_{\mu}^{-1}=E_{\mu} E_{0} E_{\mu}=-E_{\mu}^{2} E_{0}=-E_{0} \tag{3.4}
\end{equation*}
$$

that is $-E_{0}$ has the same eigenverte as $+E_{0}$. This proves our assertion. Since it is invariant by definition, we can therefore subdivide the hypercomplex space into two invariant sub-spaces H_{1}, H_{2} each of which is of dimension $m / 2$ where m is defined as $m^{2}=2^{n}$. It can be now easily proved that every generator is ireduced, $^{\text {comsisting of components }}$ with one inder in H_{1} while the other index in H_{z} and conversely; there is no component of any generator lies totally in H_{1} or H_{2}. However we do not need these properties expilicitly in this paper, we shall not psuh the subject further. Reader who is interested fin this part may have reference to Schouten' Paper there special case of $n=4$ is treated and mayy of them admit an easy generalization. We consider now the transforamtion properties in both spaces and their relations to each other.
a) Transformations of the co-ordinates in the hypercomplex space.

Let us denote the co-ordinate systems in the hypercomplex space by $\zeta_{\alpha_{i}}{ }^{i=1, \cdots n}$. By an arbitrary transformetion
of the coordinated $\quad S_{a_{i}} \rightarrow \zeta_{L_{i}} \quad d S_{a_{i}}=\int_{i}^{n} \frac{S_{a_{i}}}{\partial \zeta_{\delta_{j}}} d S_{\alpha_{j}} i, j=1,2, \cdots n$,
hypercomplex numbers mined tensors of the second rank) would undergo the transformation,
where

$$
\text { (3.6) } T^{\text {here }}{L_{v i}}_{o_{s}}=\frac{\partial L_{x_{0}}}{\partial S_{a_{s}}} T^{a_{r}}{ }_{L_{j}} \frac{\partial S_{a_{r}}}{\partial S_{x_{j}}}
$$

It is easily proved that $T^{\prime}=1$ ie. $T^{\prime}=T_{-1}^{\prime}$

$$
(3 \cdot 7) \therefore E \rightarrow T E T^{-1}
$$

that is, they are undergoing a canonical transformation considered in chapter 1. E_{0} transforms into
(3.8) $\quad E_{0}^{L_{i}}{ }_{L_{j}}=T^{b_{i}} \cdot \alpha_{s} E_{0}^{a_{s}} \cdot a_{t} T^{\prime a_{E}} \cdot L_{j}$ or, when the spin-space was sub-divided by the consideration above,

Which will be invariant and only then if the transformation matrix
T is the reduced matrix i.e.
$(3 \cdot 10)$

$$
T=\left\lvert\, \begin{array}{ll}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right. \|
$$

where T_{1} and T_{2} are both $m / 2$ square matrices. That is, if the transformation in spin space is such that it keeps both the subspaces invariant, the geemetpg E_{0} remains invariant. A transformation of the form would only change $F_{0} \rightarrow-F_{0}$ that is, interchanging of the two subspaces.
b) Transformations of the co-otdinates in the actual space. From the arguments of chapter 1 , 1 it is seen that the only transformations which keeps the relations (1.1) invariant are those that are orthogonal. In that case $E_{0} \rightarrow-E_{0}$ if the determinant is -1 and E_{0} remains invariant if the determinant is 1 . (It is to be noted that the general transformations which keep the quadratic
of
expression (3.2) invariant is orthogonal and that relativity transformations in the case of $n=4$ are restricted to those with determinant +1 .

A particular case of the transformations in the hypercomplex case is that when T is in the form $e^{i \phi} 1$ where ϕ may have any value. This transformation does not affect any of the hypercomplex numbers; the corresponding transformation in the actual space can only be the identity transformations l'his case would have no interest if we deal only with the mixed tensors in the hypercomplex space but which would play a rôle, an important rôle indeed if we accept Weyl's idea, if we consider not only the mixed tensors but also vectors in the hypercomplex space. Ihis fiszes would give rise to the conception of "pseudo-vector".

One can easily convince oneself that the transforamtions considered above in both apaces are the most general possible transformations that keep (1.1) invariant. We tabulate here the corres殔 pondences between the two spaces:
a) Trans. in Matrix Space b) Trans. in Space

General Transf. leaves two subspaces inter changed. \qquad Orthogonal Transf. ogt deter-
minant -I. General transf. of the fory \rightarrow Identity Iransf.

A case of particular interest is that when the dimensions df both spaces are the same that is when $m=n$. This has one and only one solution thet is when $m=n=4 *$.

* It is admittediy true that in this case an intimate relations between the two spaces, exist but I don't think this consideration leads to the identification of the two spaces (as Eddingtion dad.). That would only lead to the confusion of terminology and lose their
real geometrical significances.
Thus the space of the type (3.2) of four dimensions occupies a peculiar position in the hypercomplex geometry. We shall therefore consader this more in detail.

The hypercomplex number system of order 4 has been investigated 10)
more or less thoroughly by various writess. It receives the special name of "'Dirac's numbers" or sedenions as one generally calls it. Its matrix representation was first discovered by Dirac. Whe treatment of eadington is particularly elegant and enables one to make easy generalizations when n is any number. We shall adopt his method here.

He starts with three 4-point matices grouped according to (12,34), $(13,24)$ and (14,23): (all element +1)
(3.11) $S_{\alpha}=\left\|\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right\| \quad S_{\beta}=\left\|\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right\| \quad S_{\gamma}=\left\|\begin{array}{lllll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right\|$
and introduces a fourth matrix S_{S}, the identity matrix. Further three diagonal matizizes with elements +1 or -1 are introduced (their spur is zero)

$$
\text { (3.12) } D_{\alpha}=\left\|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right\| \quad D_{\beta}=\left\|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right\| \quad D_{\gamma}=\left\|\begin{array}{|cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\|
$$

and $D_{\delta}=S_{\delta}=1$.
Then the following properties are easily proved: 1, Each
 mutes with D_{b} if $a=b$, otherwise they anticommute; 3 , the product $S_{a} D_{b}$ is of the type S_{a} of the four-point matrices but they may contain -l as element or elements; and 4 , the 16 products $S_{a} D_{b}$ are) linearly independent. With the help of them, he was able to find the anto-commutative sets; they are

1) $\quad S_{\alpha} \quad D_{\beta} \quad S_{r} D_{r} \quad i S_{r} D_{\beta} \quad i S_{\alpha} D_{r}$
2) $S_{\alpha} \quad D_{r} \quad S_{\beta} D_{\beta} \quad i S_{\beta} D_{\gamma} \quad i S_{\alpha} D_{\beta}$

3)	S_{β}	D_{α}	$S_{r} D_{r}$	$i S_{r} D_{\alpha}$	$i S_{\beta} D_{r}$
4)	S_{β}	D_{r}	$S_{\alpha} D_{\alpha}$	$i S_{\alpha} D_{r}$	$i S_{\beta} D_{\alpha}$
5)	S_{r}	D_{α}	$S_{\beta} D_{\beta}$	$i S_{\beta} D_{\alpha}$	$i S_{r} D_{\beta}$
6)	S_{r}	D_{β}	$S_{\alpha} D_{\alpha}$	$i S_{\alpha} D_{\beta}$	$i S_{r} D_{\alpha}$

when any one of the sets as found, others can be obtained by the ceup "coupling theorem" of chapter 1. Two important properties should be $\mathrm{On} l \mathrm{y}$
noted: 1," ${ }_{\text {a }}$ three real matrices in the set" and 2 , the real ones are symmetrical and the imaginary ones are antisymmetrical about the diagonal, that is Hermitian. The property 1 does not
 vince ourselves that no matter what the transformations may be the real
statement that "no more than three matrices can be found such that they all satisfy the relations (1.1)" is always true. The ppoperty 2 does not survize except under unitary transformations or, if real fransformations only are considered, under orthogonal transformations. The property "no more than three matrices can be found such that they all gatiafy the relations (1.1)" was first noticed by Edaington. What is the significance of this property when applied to geometry (3.2) P This means that, if the geometry (3.2) is to be considered as real, one the co-ordinates must be pure imaginary. This property when coypled with the theorem 1 of chapter 1 gives the most remarkable and beautiful result that Einstein's invariant interval in the special theory of relatizity is the only possible real one when hape have optional choice of dimensions living in 3,4 or 5 and that one dimenaion of which must be imaginary. This is the consequence of our linearization of Geometry. Eddington has remarked that, though from an entirely different consideration as here presented,

H the matrix theory offers an explanation why one of the dimensions of our world differs from the other three. We have traced it down to the fact that not more than three real four-point matrices can satisfy simultanequsly $E_{L}^{2}=\mid E_{(\mu} E_{b)}=0 \quad{ }^{\prime \prime}$ "Thus the innearization theory, whether in our present form or in the consideration
eexseptien of Eddington indeed explaing the +++ - mystery of the special theory of relativity. The space of dimensions 3 or 5 has already been ruled out by Theorem 1 of chapter 1.

So far the geometry represented by (3.2) has not received interpretation; that is,it connects quantities in the hypercomplex space on the one hand and the quantities in the actual space ont the other hand. We do not know how to work with them unless some rule convention is made; that is, some sort of transition ${ }^{\text {by }}$ which a quantity in either space is translatedinto a quantity of the other space. The folowing is a tentative discussion of this process.

Geometry (3.2) may be written as

$$
\begin{equation*}
E_{0}+\sum E_{\mu} \frac{d x^{\mu}}{d \sigma}=0 \tag{3.14}
\end{equation*}
$$

which, when multiplied by an arbitrary factor, invariant, k, becomes

$$
\text { (3.15) } \quad k E_{0}+\sum E_{\mu} k \frac{d x^{\mu}}{d \sigma}=0
$$

We then observe that in thepld relativity theory when $d s=0$ that is $d \sigma=0 \quad$ it gives the track of light wave-quanta. We shall naturally expect that when we put $d \sigma \rightarrow 0$ in (3.15) we should get the equation of motion of light wave ψ say. How this is to be brought outi This can be done by the following process; it is extremely unlikely that any other process will do. We write

$k / \rightarrow k \psi$
as the transition rule, then it follows at once that equation (3.15) becomes, when $\notin \rightarrow 0$

Which, as can be verified, represents the quante-mechanical equation of the motion of electromagnetic waves. We now extend this
 to the case when dis not equal, zero, (Remember that the geometry in the classical sence here is Euclidean.) therefore k can not be zero. Equation (3.15) becomes
(3.18) $\left(\sum E_{\mu} \frac{\partial}{\partial x^{\mu}}+k E_{0}\right) \Psi=0$
we now inquire next what is the significance of k? it is invariant and equals zero when de equal zero. It does not equal to zero when de does not equal to zero. We know that the only invariant satisfies these condition is the so-called"proper mass". Therefore k must be proportional to the invariant mass associated with wave function Ψ. It dais to it save a numerical factor. The above equation then becomes
(3.19) $\left(\Sigma E_{\mu} \frac{\partial}{\partial X^{\mu}}+m E_{0}\right) \Psi=0$
where a numerical factoid is ommited by suitable choice of the units. This equation 1 s the "Linearized Wave Equation" of the motion of ψ With which is associated something whose de $1 \stackrel{\neq}{\neq}$ zero in the classical 11)
sence. This equation was first discovered by Dirac and has been associated the name of "Dirac's Equations" with it. We shall discuss a little it in in detail in the next chapter.

Brief Discussion of Dirac's Equations.

In our derivation of the Dirac's equations, we were guided by the equation of light cone in Einstein's special theory of relativity. Dirac shows that, because the necessity of the requirement of the General Transfomration Theory and the requirement of the Theory of Relativity, it is almost forced upon him that the wave equation must be iinearized in the $\frac{\partial}{\partial x^{\alpha}}$'s. This eqaation gives, when an electro-magnetic field is present, not only the ordinary wave ferms but also the corrections which were experimentaliy verified and were attributed to the spin of the electron. The assumption of spin has created many insurmountable difficulties $2)$ which we shall not discuss here. Not only this, the Dirac's equations settle once for all the time-wotn controversies regarding the "relatieity fine structure".* We now know that the "apin" * Milikan and Bowen: Phil. Mag. 49, 933.
has its origin in the Geometry itself; this is evident from the 13)
discussions of Eddington that this spin term comes into geometry before any conception of wave has been made. To discuss these more in detail would tpespase be out of place here; we shall however consider some simple properties. of a monochromatic wave.

$$
\begin{aligned}
& \text { Let the wave be represented by } \\
& (4.1) \quad \psi=\bar{v} e^{2(A x+g y+h z+w t)}
\end{aligned} \quad x_{1}=y \quad x_{2}=y \quad x_{3}=z \quad x_{4}=i t
$$

where $\overline{\mathrm{V}}$ is a vector in the "spin space" and $/ 2,9^{\prime \prime}$ s are comstants; if we substitute this wlaue in (3.19) and multiplying the fquation
left-hand-sidely by $i E_{\text {. }}$, the equation e becomes
(4.2) $\left.\left(\mu E_{1}+q E_{2}+r E_{3}+\frac{W_{0}}{i} E_{4}+m_{i}\right]\right) \bar{v}=0$.
(with initath change of notations).
Write

$$
I=p E_{1}+q E_{2}+z E_{3}+\frac{w}{i} E_{4}+n c i /
$$

and

$$
J=\mu E_{1}+q E_{2} \operatorname{tr} E_{3}-\frac{w}{i} E_{4}+m i l
$$

When we assume $E^{\prime} s$ to be Hermitian emfugeter as we have seen, we obtain

$$
\begin{aligned}
& I^{*}=\mu E_{1}+q E_{2}+s E_{3}-\frac{W}{2} E_{4}-m i l \\
& J^{*}=\mu E_{1}+q E_{2}+s E_{3}+\frac{W}{i} E_{4}-m i l
\end{aligned}
$$

where I^{*}, J^{*} are the Hermitian conjugates of I, J respectively.

$$
\therefore I J^{*}=J^{*} I=I^{*} J=T=p^{2}+q^{2}+r^{2}-w^{2}+m^{2}
$$

From $I \bar{v}=0$ feme that $J^{*} I \bar{v}=0$
Therefore $\bar{v}=0$ if $\left(q^{2}+q^{2}+r^{2}-W^{2}+m^{2}\right) \neq 0$
But if this condition is satisfied (it can be easily verified that
this is the relativity energy momentum equation.) then solutions for which $\bar{v} \neq 0$ may be found. Let us denote the rank of I by
a; then equation $\overline{\bar{v}}=0$ has $4-a$ linearly independt solutions. If the rank of J^{*} is f then since $I J^{*}=0 \quad \wedge$ and since $\left.I-J^{*}=2 \mathrm{mi}\right]$ $\therefore a+b \geqslant 4$; hence $a+b=4$. But if we set $m \rightarrow-m$ then

$$
I \longrightarrow J^{*} \quad \therefore \quad a=2=4
$$

Hence, the number of linearly independent solutions of (4.2) is two. This conclusion was due to Neumann. (It can be seen thatin a sence these monochromatic waves are so polarized such as to make the"spin" possibility.) The condition (4.3) shows that if $W \rightarrow-W$ it is also satisfied; this would lead to nothing new in the classical theory. But in Dirac's theory, when $W \rightarrow-W, I \bar{v}=0 \rightarrow J^{\frac{*}{v}}=0$! This
gives two other solutions with negative energy! (This is the origin of Dirac's recent theory of Proton and Electron.) We thus obtain four wave functions $\psi_{1}^{+} \psi_{2}^{+} \psi_{1}^{-} \psi_{2}^{-}$; since $I J^{*}=0$, they are perpendicular to each other. They thus determine two per mutually perpendicular planes in the spin space. Every vector can be split into two components: one in the plane determinda by $\psi_{\mu}^{+}, \psi_{2}^{+}$theother in theplane determined by $\psi_{1}^{-} \psi_{2}^{-}$. The two waves are redpectively

$$
e^{i(\mu x+q y+n z+W t)} \quad e^{i(\mu x+q y+n z-W t)}
$$

the latter corresponds to electron with negative energy-ce

§ 5.
 Connection of Hypercomplex Spaces at Different Points.

1. Homogeneous and Inhomogeneous Space Manifold.

In chapter 3, we have discussed the hypercomplex geometry at a single point of the space manifold which is assummed to be Euclidean (in classical sence) at this point. If there are two or more points in the manifold, we may, as we have done, associate a hypercomplex space with each point in question. How we are to connect them? We consider two separate cases: 1) The hypercomplex space at the point B may be obtained by some process of displacement from the hypercomplex space at the point A and 2) It is not possible to do so; that is, the two spaces are fundamentily distinct and we can not obtain the space at B from that at A by any of processes employed an 1 . If the hypercomplex space at every point B of the space manifold can be obtained by some displacement from a certain point A, the space will be called a "homogeneous manifold". In an "inhomogeneus" field, we may however dasplace the hypercomple x space at A to B by some process but then this displaced space \mathbb{I}, say, cannot be made identical with B an by any process. Since they are distinct, no connection is possible between them*, hence the following commutative laws muat hold

$$
E_{\mu}^{\prime} E_{\alpha}=E_{\nu} E_{\mu}^{\prime}
$$

where E_{L}^{\prime} is any hypercomplex number belonging to A^{\prime} and E_{μ} any hypercomplex number belonging to B. We can, as seen from the end *Except possibly the Paull Exclusion Principle in the solution of wave equations.
of the section 2 of chapter 1 , associate at every point a hypercomplex space of $2 m$ dimensions if there are only two disticnt hypercomplex spaces in the entire field and thint each is of dimension $m=2^{1 / 2}$ and consider then all the hypercomplex spaces in the manifold can be obtained by the displacement method. For more than two, the process is analogeous. Hence: Any inhomogeneous spase can be made homogeneous by increasing the dimensions of the associated hypercomplex spaces. If there are an infinite number of hypercomplex spaces, all of which are distinct, assocaited with an equal number of points of the field, we must, in order to make the space homogeneous that is the possibility of a displacement, assocaite at every point of the manifold a matrix space of infinite number of dimensions (matrices appearyed would then be of infinite number of rows and columns.) The justification that Whether they may be chosen as Hermitian must be sought for from a deeper investigation and will not be discussed here.

The significance of the above considerations lies in the fact that for the problems of two or more bodies, we must, in order to make the possibility of displacement, increase the dimension of the associated hypercomplex space. The physical interpretation of distinct hypercomplex spaces, is, when applied to wave equations, the spin associated with one electron (apoint in space) is essentially disticnt from the spin asacoiated with a different electron (at other point of the space). Thus although the classical geometrical theory has no counter part for the treatment of the problems of two or more bodies, the spin geometry has! We can not increase the dimensions of the actual space but we can increase the dimensions of the auxiliary space
as much as we like without leading to any logical inconsistency. The so-called "interaction" would either appear as geometrical
in the composition
property ${ }_{\Lambda}$ of two spin spaces or as a result of the Exclusion Principle of Pauli kas thich has so far no geometrical interpretation. It is extremely likely that both play important roles and it is conjectured that the Pauli Exclusion Principle may have its geometrical significance in the process of "composition". investigate To aiseugs more fully this aubject would be outside of the scops of this thesis but I hope I shall return to this subject sooner or later. Now we shall briefly consider the theory of linear displacement of a spin quantity.

2. Displacement of spin spaces.

The method by which a hypercomplex space frame can be displeed to an arbitrary but infinitesimally nearby point is called the method of pseeudo- parallel displacement. It is called parallel in analogous to the case when the manifold is Euclidjon. Neglecting quantities of highbr orders, the displacement is in general of the form

$$
\delta e^{\nu}=f\left(e^{\alpha}\right) \delta x^{\beta}
$$

where e^{ν} is some vector (contravariant) $\operatorname{fon}_{\boldsymbol{A}}$ the spin space. For covariant vectors, similiar formala is obtained. In gemeral are we dessit interested in only in the so-called linear displacements for which the displacement formula is of the form

$$
\delta e^{\nu}=T_{\alpha \beta}^{\nu} e^{\alpha} \cdot \delta x^{\beta}
$$

where the $T_{\alpha \beta}^{\nu}$ are entirely arbitrary with well defined modes of transformations. If the space is homogeneous, that is the hyper-
space at one point can be obtained by the displacement of a hypercomplex space at another point, we can make the convention that

$$
\nabla E=\delta E+\partial E=0
$$

together by suitable chosen of coordinates we can make

$$
\partial E=0
$$

If however the vector is pseudo-vector, we can write

$$
\delta e^{\nu}=\Gamma_{\alpha \beta}^{\alpha} e^{\alpha} d x^{\beta}+\varphi_{\beta} e^{\nu} d x \beta \text { when e } \varphi_{2}^{\prime} \text { are parameter }
$$

In general, the $\boldsymbol{\wedge}^{\text {vectors }}$ in the spin space has no connection at all with the displacement of a vector in actual space, but if the above conventions were adopted and with suitable assumptions, it can be shown that they are connected. This result is mainly due to Schouten

* I must admit that it was mainly his lectures it

I must admit that it was mainly his lectures in Massachusetts Institute of Technology during the winter semmster of 1930-1 that inspired me to write this paper. His work on this subject will be, appeared in the coming issue of Journal of Mathematics and Physics.

We see that the electric-magnetic terms nearly come in automatically if we can accept the idea that these φ^{\prime} ' are actually the electric magnetic potentials derived macroscopically from the formulae

$$
\varphi_{\beta}=\iiint\left\{\frac{p \frac{d x^{\beta}}{d t}}{r}\right\}_{t-r}^{d V} \quad \beta=1,2,3,4,
$$

and if we replace ordinary differentiations in the equations (3.19) by the covariant differentiations. However, as the first part of this idea is hard to be accepted unless further investigation nacthen a
can prove that, we must leave this as mathematical speculation.

In this paper, the writer attempts to introduce a new field which is wide open. It is evident from the considerations of chapter 2 and 3 that the generalization of Dirac's equations to a Riemann space is not so easy as one might expect. The deductions of the Dirac's equations in chapter 3 based mainly on the dea idea of light cone and the as in the theory of relativity. One cannot expect to get the generalization by simply replacing $\frac{\partial}{\partial \times \beta^{*}}$ by $\nabla_{\beta}{ }^{*}$ as many authorsdo but one must be guided by the Riemann as and the equations of the geodesics which an uncharged particle is expected to take in the general theory of relativity. In chapter rem er 5, we have presented some new features which, the author hopes, may ultimately lead to the problem of two bodies and to such questions as the geometrical significance of the modern matrix quantum theory and that why the space should be of a certain nature.

In conclusion, I wish to thank Prof. D. J. Struik of the Department of Mathematics of Massachusetts Institute of Technology for his kind interest and encouragement.

Notes

1) that is to say, no linear relations can exist among them.
2) cf.e.g. Dickson
3) The first part of this theorem has been noticed by Eddington in the case of sedeniond. cf. Eddington: Symmetrical Treatment 21
of Wave Equations Pro. Roy. Soc.A Vol. 1姷 p. 524-542
4) Eddington: lac. cit.
5) We can easily see by multiplication.
6) cf. Eddington: Interaction of Electric Charges Proc. Roy. Soc.

A Vol. 126 M. 696
7) In fact E_{0} may be taken as the E_{0} of the hypercomplex number system of order n.
8) for instance

$$
\left.E^{(\alpha} E^{\alpha}\right)=g^{\mu \alpha} g^{2 \beta} E_{(\alpha} E_{\beta)}=g^{\mu \alpha} g^{2 \beta} g_{\alpha \beta}=g_{\mu \nu}
$$

9)
10) They only survive under real transformations of the spin co-ordinates 11)
11)
12)
13) Dirac: Theory of Electrons and Protons Proc. Roy. Soc. A Vol. 126 p. 360
14) Neumann: Fine Bemerkungen zür Diracshen Theorie Xt. Thy. 48 p. 868
15) The theoretical discussion of this method can be carried and as based on the properties of "composite matrix" but I shall reserve this for a later paper.
16) By actual Multiplication on othervarize.

APPENDIX

On the method of finding the Matrix Representation of a Hyper16) complex Number Systems.

If the matrix representation of a hypercomplex number system of nth order is known, we can find the matrix representation of a hypercomplex number system of 2nth order by the following method.

Let us denote the matrix representations of the given hypercomplex number system by $A_{1}, A_{2}, A_{3} \cdots$ (they are m row and ciolumned) and let us denote the matrix ez Ehose elements are
 according to $11,12,13, \ldots . ., 21,22,23, \ldots . .33,32,33, \ldots . .$. etc., by $A_{1}^{\prime} A_{2}^{\prime \prime} A_{3}^{\prime} \ldots$ and let us denote the matrix whose elements are $\beta_{s t} \equiv U_{i \ell}{ }_{j m}$ where $s=(i j), t=(l m)$ ordered as above by $A^{\prime \prime} \quad A^{\prime \prime} \quad A^{\prime \prime} \quad \ldots$. . They form thus two sets of matrices
1)

$$
A^{\prime}, A_{2}^{\prime} A_{3}^{\prime} \cdots \cdot
$$

ii)

$$
A_{1}^{\prime \prime} A_{2}^{\prime \prime} A_{S}^{\prime \prime}
$$

and have m^{2} romf and columnéa. We can prove the following properties: 1, every element of the group (i) commutes with every element of the group 1i; and 2, every element of one group anticommutes with every other element of its own group. They are indeed the two sub-hypercomplex sets considered in the chapter 1. from them, we can easily build up all the generators of the desired hypercomplex system of order $2 n$

As an example, we can illustrate by requiring to find the sedenion system ($n=4$) from a quaterion system ($n=2$) whose
matrix representation are known to be

$$
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad A_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

We have $A^{\prime}=\left\{\alpha_{(i j)}\left(l_{m}\right)\right\}=\alpha_{s t}$

$$
A^{\prime}=\left\|\begin{array}{llll}
\alpha_{(11)(11)} & \alpha_{(12)(11)} & \alpha_{(21)} \alpha_{(11)} & \alpha_{(22)(11)} \\
\alpha_{(11)(12)} & \alpha_{(12)(2)} & \alpha_{(21)} \alpha_{12)} & \alpha_{(22)(12)} \\
\alpha_{(11)(21)} & \alpha_{(2)(21)} & \alpha_{(21)(21)} & \alpha_{(22)(21)} \\
\alpha_{(11)(22)} & \alpha_{(14)(22)}^{\prime} & \alpha_{(21)(22)} & \alpha_{(22)(22)}
\end{array}\right\|^{*}\| \| \begin{array}{cccc}
a_{11} & 0 & a_{21} & 0 \\
0 & a_{11} & 0 & a_{21} \\
a_{12} & 0 & a_{22} & 0 \\
0 & a_{12} & 0 & a_{22}
\end{array} \|
$$

since $u_{i j}=0$ if $i \neq j$
Therefore

$$
\begin{aligned}
& A_{1}^{\prime}=\left\|\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right\| \quad A_{2}^{\prime}=\left\|\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & -i \\
i & 0 & 0 & 0 \\
0 & i & 0 & 0
\end{array}\right\| A_{3}^{\prime}=\left\|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right\| \\
& \text { and } A^{\prime \prime}=\left\|\begin{array}{llll}
u_{11} a_{11} & u_{11} a_{21} & u_{11} a_{11} & \mu_{21} a_{21} \\
u_{11} a_{12} & u_{11} a_{22} & \mu_{21} a_{12} & \mu_{21} a_{22} \\
u_{12} a_{11} & u_{12} a_{21} & u_{22} a_{11} & u_{22} a_{21} \\
u_{12} a_{12} & u_{12} a_{22} & u_{22} a_{12} & \mu_{22} a_{21}
\end{array}\right\|\left\|\begin{array}{cccc}
a_{11} & a_{21} & 0 & 0 \\
a_{12} & a_{22} & 0 & 0 \\
0 & 0 & a_{11} & a_{21} \\
0 & 0 & a_{12} & a_{22}
\end{array}\right\|
\end{aligned}
$$

Therefore

$$
A_{1}^{\prime \prime}=\left\|\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right\| \quad A_{2}^{\prime \prime}=\left\|\begin{array}{cccc}
0 & -i & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{array}\right\| \quad A_{3}^{\prime \prime}=\left\|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right\|
$$

These are exactly the p^{7} and σ^{\prime} in Dirac's them probably from experimantally. From these matrices, we can easily build the generators of the actual sedenion system by the help of chapter 1.

We can easily continue this process to build the 16 pointmatices which are required in dealing the problem of two bodies and its hypercomplex number system is of order $2 n$ and higher hyper-complex number systems.

* We car supplereat $2 y$ an equation here as

$$
*=\left\|\begin{array}{lllll}
a_{11} & u_{11} & a_{11} & u_{21} & a_{21}
\end{array} u_{11} \quad a_{21} u_{21},\right\| \begin{array}{llll}
a_{11} & u_{12} & a_{11} & u_{22} \\
a_{21} & u_{12} & a_{21} & u_{22} \\
a_{12} & u_{11} & a_{12} & u_{21} \\
a_{22} & u_{11} & a_{22} & u_{21} \\
a_{12} & u_{12} & a_{12} & u_{22} \\
a_{22} & u_{12} & a_{22} & u_{21}
\end{array} \|
$$

