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Abstract
Tbe invention, deveopm t and co wda of fibes such as Kevlar. whic possess unique
mecnharicdl and chemical properties, from processing liquidystaine polym melts and soldutios is of
uemons tedhm i in lmpodcrystaeine polymers ae di gi by strong molecula
aligmnen which results in the unie propties d closely resemble a crystalline solid. It has been
estaised that te tensile modulus of these fibers shows a stron d ndence on the molecular orientation
with respect to the fiber axis (Yang, 1993). Since substantial orientation is achieved during the fiber
spining flow, a model that would relate the developmnt of miostructu in this flow to the macroscopic
properties would be a very useful process design tool in predicting and controlling the pXhuct pXopertes,
qptimizing product properties, and minimizing poducion costs. The aim of this research is to contribute
to the devedoImnet of such a design tool.

Achieving this goal involves 1) identifying a realistic constitutive equation for Ikpid-crystlne polymers
and 2) using the corstitutive equation to develop a finite element model for the complex fiber spinning
flow. Four stages can be Identified in the fiber spinning flow a) spireret flow which involves flow
through a co on, b) die swell experienced by the polymer solution as it comes out of the spinneret,
c) fibe drawing which involves extesion stretching of the polymer solution and d) solidification or
coagulation where the solvent is extracted from the polymer solution and the micmsnuctre is frozen in
the resultant solid. The solidification issue is not addressed n this thesis.

The recently developed Bhave a at. (1993) constitutive equation, which is a molecular model, gives
physically meanngful viscosity predictios that compae very well with experimental data for a wide
variety of iquid-crystalline polymer systems as opposed to the Leslie, Erlcksen and Pwodi (LEP) model
(1970, 1976 and 1979) and the Doi (1981) model which are widely discussed in literatu Consequenly
the Bhave et aL cositutive equation is used to model the fiber spinning process.

A oedmenslonal model was developed for the fiber drawing region by using the lubrication
ppoximation. The Blhave c a model uses a closure approximatio to get a closed form of the

cosaltotve equation. When the cose appoximatio is used, moleular tumblng (Larson and Ottnger.
1991) in simple shea flow are no pred d. Th fiber drawing analysis was threfore cated out using
the Bhave t aL contutive equation and by directly solving th probability dstribution function for the
moleular oriea to test the effect of closure. The results indice that the clomre approximation is
valid at modeae and high Deborah number (De) n this extnLoaly dominated flow. The technique
used to solve diectly for the distribution fnction also ndicates a path for solving other complex flow
problems with molecular mndels where aWppoximmons of uncertahin vdity must be used to obtain a
closed-form colatutive equaion. The fiber drawing model p d clearly show the sensitivity of the
veocity, sres and structure devpm to the initial mir T le finl order predicted for an
initidal mics uctue which would exist In a simple uniaialu e tal flow is always slightly higher
than tt predicted with an Initial equlibrium miosmnct the conmespdoning tension equired for



achieving the same drawdown in the fiber radius is 20% higher. The sensitivity to the initial condition
is contrary to that observed in the modeling with isotopic viscoelastic constitutive equations (Fisher and
Denn, 1976 for example). where the downstream velocity and stress profiles are found to be insensitive
to the choice of the initial stress condition. Sensitivity of the liquid-crystalline polymer fiber drawing
model to the initial microstctunnal condition requires 2-D calculations that couple to the upstream
spinneret flow. The 2-D calculations are also necessary to assess the assumption of radial homogenity
used in the one-dimensional fiber drawing model. Model predictions of steady state fiber drawing data
(Prilutski, 1984) are good. However, the data are for extremely small flow rates and the order hardly
changes from the equilibrium value. Consequenty, the model predictions with the equilibrium initial
miostrctre and the initial mi c predicted in a simple uniaxial elongational flow are the same.

Two-dimensional finite element calculations based on the EVSS-G formulation developed by Brown et
al. (1993) were carried out for the flow thnocgh the spinneret. Flow through 2:1 and 4:1 contractions with
cubic and conical boundary shapes were examined The response in the molecular orientation is described
in terms of the average orientation angle with respect to the spinneret axis () and the degree of order (S).
With increasing De. near the exit, the average molecular aligment with the spinneret axis improves across
the entire spinneret cross section (X increases from negative values to zero) and the degree of order also
increases. The homogenity in S and X at high De is much better for dies designed with short downstream
tube lengths. To maximize and homogenize S and X the 4:1 conical contraction geometry was found to
be best among the geometric configurations examined. The pressure drop per unit volumetic flow rate
is also least in the 4:1 conical contraction. No recirculation regions were observed for the spinneret
geomtries and range of De examined. Spinneret calculations at moderate and high concamations revealed
no qualitative difference in the development of order. Dieswell for liquid-crystalline polymers is small;
in fact it is comparable to a Newtonian dieswell (Prilutski, 1984). Consequntly. the molecular
deorientation is expected to be small and the initial miosuctue and radial homogenity assumptions in
the one-dimemional fiber drawing model can be assessed from the spinneret calculations The spinneret
calculations show that the microstructure is homogenous for short land lengths in the limit of which the
radial homogenity assumption in the one-dimensional fiber drawing model is expected to be valid.

An important processing issue in fiber spinning is the apperance of periodic oscillations along the length
of the fiber beyond a certain drawdown in the fiber radius (known as the critical draw ratio) which leads
to the formation of an undesirable nonuniform fiber. This phenomenon is known as draw resonance. A
linear stability analysis of the fiber drawing equations was carried out to predict the onset of draw
resonance instabilitites. A strong correlation between an apparent fiber drawing dongational viscosity and
the critical draw ratio is predicted by the analysis. Agreement with linear stability data (Prlutski. 1984)
is found to be qualitative.

Future work must be directed to the development of an integrated model for the fiber spinning process.
An outstanding issue that must be resolved to develop such a model is the numerical difficulty associated
with a sudden change in the boundary data at the die exit (Apelian 1987; Crochet and Keunings, 1982)
whtich is cruald in polymeric systems due to memory effects. Determination of the singularity, known
as the die swell singularity, through analytical means would help address the numerical diffmculty through
the ncorporation of the singular behavior in the finite element algorithm via singular finite lements. The
liqud-crysta! model exhibits a singularity in the ess at the die exit that is Newtonian. However. the
singular behaior is not well understood even for a Newtonian model. An analysis based on an expansion
scheme for the f r surface height is presented in this thesis from which the singular behavior in the stress
can be detrnmined and ncorrated into the numerical algorJt. No experimental data on the
development of order during the fiber spinning pocss elxists in literature to rigorously test the model
predios. Future work must also address this imtant lssue.
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Chapter One

Introduction

1.1 Importance of Fiber Spinning of Liquid-crystalline polymers

The invention, development, and commercialization of fibers made by processing liquid-

crystalline polymeric melts and solutions prepared from high-molecular weight organic

compounds is of tremendous technological importance. Liquid-crystalline polymer

solutions, such as PPD-T/sulfuric acid (Kevlar® is poly(p-phenylene terephthalamide)),

phase separate due to the electrostatic and steric interactions that result from the rigidity

of the polymer chain backbones at polymer concentrations as low as one to two percent

by volume and fonn anisotropic phases with a high degree of molecular orientation even

in the quiescent state. This orientational ordering is evidenced by the ability to exhibit

birefringence under static conditions (Elliot and Ambrose, 1950; Meyer et al., 1985). In

polyaramid PPD-T (Fig. 1.1), for example, the X bonding electrons on either side of the

planar phenylene rings and the conjugated double-bond character of the carbon-nitrogen

and carbon-oxygen bonds lend structural rigidity to individual backbone moieties (Zero

and Aharoni, 1987). During processing these molecules are aligned by the flow, yielding

products with highly ansotropic properties.

The unique mechanical, electrical, chemical, and optical properties of liquid-

crystalline polymers have been exploited industrially to produce specialty polymers
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(White and Fellers, 1978; Berry and Sroog, 1978; Cifferi and Ward, 1979; Samulski and

Du Pre, 1979; Jenkins and Jenkins, 1983). Liquid-crystallin polymers such as Kevlar®

have been used to make composites with ultra-high modulus and tensile strength and high

strength-to-weight ratio which are exploited in a host of applications such as aircraft parts,

satellites and automobiles bullet proof vests, fiber optic and telecommunication cables

and recreational equipment such as tennis racquets, skis and hulls of racing yachts.

Kevlar® engineered short fibers offer excellent thermal stability, wear and chemical

resistance, and non-abrasiveness which makes them ideally suited for friction products and

gaskets; they are a key ingredient in brake and clutch linings and other industrial

applications for an effective asbestos-free formulation. Other liquid-crystalline polymers

besides Kevlar® manufactured commercially include para-linked aromatic polyamides,

polyesters. polyazomethanes. polyacrylonitriles, polyphenylenebenzobisthiazoles for use

in high performance aircraft (Samulski, 1985). Organic precursors to coke and

manufactured graphite (petroleum and coal-tar pitches) when carbonized, undergo

aromatic polymerization to yield large, flat, polynuclear aromatic molecules. As the

molecular weight approaches 1500, usually near 450°C, the molecules condense to form

a liquid-crystal which has been termed the carbanaceous mesophase or mesophase pitch.

The ;mesophase pitch is of considerable technological importance in the spinning of high-

modulus and high-strength carbon fibers. Besides the unique mechanical properties of

interest in this thesis, liquid-crystalline polymers are also used in polymer dispersed films

for light control applications and in optical information processing and display devices

(Wissbrun, 1981).
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The processing of highly anisotropic polymeric fluids is understandably very

different from that of Newtonian or isotropic viscoelastic polymeric fluids. The

development of the stuctural orientation of the polymeric molecules, the directions in

which the molecules orient, the degree to which they orient, the interplay between the

polymer rheology, fluid flow and development of order, and other processing parameters

affect the final internal structure of the polymer product formed. Furthermore, the

microstructure formed strongly affects the properties of the product. Figure 1.2

(reproduced from Yang, 1993) shows the strong dependence of the tensile moduli of an

as-spun and a heat treated Kevlar® fiber on the molecular orientation angle with respect

to the fiber axis determined from X-ray scattering measurements; the tensile moduli

dependence is stronger for smaller orientation angles. Figure 1.2 also shows that the

tensile modulus is slightly higher for the heat treated fiber. However, subsequent thermal

treatment, for example by annealing (Rutledge. 1990) above 450'C, in order to produce

a more favorable microstructure, i.e. an increase in the degree of crystallinity but not the

molecular orientation itself, is expensive.

Therefore, in order to be able to predict and control the properties of the product,

optimize product properties and minimize production costs, it is vitally important to

understand the flow behavior of the anisotropic melts and solutions from which they are

produced and the development of microstructure during processing. Since a high degree

of molecular orientation is achieved during the fiber spinning process, A, model that would

relate the development of the microstructure in this flow to the macroscopic properties

would be a very useful process design tool. The objective of this thesis, in short, is to
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Figure 1.2: The tensile modulus of Kevlar* as a function of molecular orientation with
respect to the fiber axis is illustrated for an as-spun fiber and a heat treated fiber. The
modulus is in grams-per-denier which is roughly 1/8 of a Giga-Pascal (reproduced from
Yang. 1993).
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contribute to the development of such a process design tool. Figure 1.3 illustrates a

typical global approach to process modeling. A constitutive equation that accurately

predicts the experimental data in simple heological flows is required before a realistic

process model can be developed. Recognizing this aspect of the problem, the outline of

this thesis is divided into two parts.

1.2 Outline of Thesis

Section 1.2 summarizes the work on developing appropriate constitutive models for

liquid-crystalline polymers. Section 1.3 discusses issues related to developing a model

for a complex flow such as the fiber spinning flow.

1.2.1 Constitutive Modeling of LiquidCrystalline Polymers

Viscoelastic fluids in general exhibit nonlinear properties such as shear thinning and

elasticity. Liquid-crystalline polymer melts and solutions, in addition to the above

nonlinear properties, possess anisotropic properties which are associated with the

microscopic structural order. A constitutive model that attempts to describe such systems

must provide a detailed understanding of how the microstructure responds to the flow

field and leads to anisotropic effects. In addition, it must be able to predict the

equilibrium phase transitions observed in such systems.

The two most widely discussed models in literature are the Leslie, Ericksen and

Parodi (LEP) model (1970, 1976, 1979) and the Doi model (1980). A discussion on the

merits and failings of these models is presented in Chapter 3. A detailed description can
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be found in Menon (1990). A recent model due to Bhave et aL (1993) overcomes the

serious shortcomings of the LEP and the Doi models. The Bhave et al. model is

discussed in detail in Chapter 3. A brief discussion on the LEP, Doi and Bhave et al.

model follows.

The LEP model is a continuum theory approach and extends Franks's (1958)

theory of elasticity developed for liquid-crystals at rest to a dynamic situation to model

polymeric liquid-crystals. The model provides no description of the presence of structural

order at equilibrium and of phase transitions that take place in these solutions as the

polymer concentration is increased. The model also does not predict nonlinear effects

such as shear thinning in the viscosity. The molecular model due to Doi (1980) extends

the Kirkwood and Auer (1951) diffusion equation for a dilute solution of rodlike

molecules to the concentrated liquid-crystalline polymer solutions by using the reptation

argument developed by Doi and Edwards (1978) to modify the rotational diffusivity and

by introducing the Maier-Saupe (1958, 1959) approximation to Onsager's free energy

expression for rod-rod interaction to account for intermolecular forces of interaction

between the polymer molecules. The model is able to predict the concentration driven

phase transition at equilibrium and also nonlinear effects such as shear thinning in the

viscosity. However, the shear thinning predicted in the viscosity is aphysical due to the

absence of a hydrodynamic contribution to the stress tensor.

The Bhave et al. (1993) model is also a molecular model developed from a kinetic

theory framework. Similar to Doi's model, it incorporates the Maier-Saupe mean field

potential to describe intermolecular forces of interaction between the polymer molecules.
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The resulting evolution equation for the microstructure is similar to that obtained by Doi.

Consequently, it predicts the same phase transition at equilibrium. However, the stress

tensor includes hydrodynamic effects which leads to physically plausible shear thinning

predictions in the viscosity. In fact, as demonstrated in Chapter 3, the model is able to

predict shear thinning viscosity data accurately for a variety of liquid-crystalline polymer

solutions. Hence, the Bhave et al. constitutive equation is chosen to develop a model for

the fiber spinning process. The Bhave et aL model also has a shortcoming which is

associated with the usage of a closure approximation. This aspect is discussed in brief

in the following section and in detail in Chapters 3 and 4.

1.2.2 Modeling of the Fiber Spinning Process

Numerical simulations of liquid-crystalline polymer flows with realistic constitutive

equations is very much a new field. Few simulations exist with realistic constitutive

equations due to the nonlinear nature of the equations; abrupt changes in the molecular

order close to the phase transition also increase the mathematical complexity of the

equations. Hence, most of the simulations to date have been with the LEP model due to

its relative mathematical simplicity. Menon (1990) provides a summary of the flow

simulations that exist with the LEP model. Menon (1990) was the first to develop a finite

element model using the Bhave et al. constitutive equation and a slightly modified version

of the EVSS (Elastic-Viscous-Split-Stress) formulation, discussed in Chapter 5, for the

flow between eccentric cylinders. Though a finite element method based on the EVSS

formulation performs well under steady state conditions, Brown et al. (1993) demonstrate
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that it can predict fictitious numerical instabilities in the linear stability of a planar

Coette flow and they suggest a modified formulation, the EVSS-G formulation, that

overcomes the problem. Hence, the finite element calculations in this thesis are with the

EVSS-G fornnulation.

A schematic diagram of the fiber spinning process is shown in Fig. 1.4. Four

primary regions can be identified in the fiber spinning flow: (1) the spinneret flow which

involves the flow through a contraction, (2) die swell experienced by the polymer solution

as it comes out of the spinneret, (3) fiber drwing which involves extensional stretching

of the polymer solution and (4) solidification or coagulation where the solvent is extracted

from the polymer solution and the mictuce is frozen in the resultant solid. The

solidification issue is not addressd in this thesis.

Traditionally, in literature, fiber spinning is synonymous with the fiber drawing

region. The fiber drawing region is also interchangeably addressed as the fiber spinning

region in this thesis. A number of analyses of the fiber drawing flow with viscous and

viscoelastic, but isotropic, constitutive equations exist in literae. An extensive account

of the modeling efforts directed towards the fiber drawing region is provided in Chapter

2.

Kase and Matsuo (1965) followed by Matovich and Pearson (1969) were the first

to derive one-dimensional fiber drawing equations for steady, axially symmetric,

isothermal, viscous flows of Newtonian fluids. Most of the fiber drawing models to date

use the slender body momentum equation derived by these authors. A number of steady

state and linear stability analyses that predict draw esonance instabilities (periodic
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fluctuation in the take-up fiber cross-sectional area that occurs even at constant extrusion

and take-up speeds) exist for viscous models. However, omission of fluid elasticity and

memory are serious assumptions when modeling polymeric systems whose viscoelastic

behavior is well established (Bird et al, Vol. 1, 1987). Fisher and Denn (1976) were the

first to develop a fiber drawing model with a viscoelastic constitutive equation. A key

difference between the analysis with a viscoelastic model and a viscous model is the

requirement of an initial stress specification at the inlet due to upstream memory effects.

Since the initial stress is not known a priori, Fisher and Denn studied initial conditions

ranging from a Newtonian limit to a purely elastic limit and found, surprisingly, that the

development of the downstream velocity and stress profiles is insensitive to the choice

of the initial stress condition. Equivalently, it is important to test the effect of different

initial microstructural order on the development of downstream order in liquid-crystalline

polymers; as already discussed in connection with Fig. 1.2, even a small change in the

fiber orientation could lead to a large change in the tensile modulus. This issue is

addressed in Chapter 4. Model predictions of the experimental data obtained by Prilutski

(1984) for a 40 wt% hydroxy propyl cellulose in acetic acid solution and a linear stability

analysis to predict the onset of draw resonance instabilities are also presented in Chapter

4.

A drawback with molecular models is the usage of a closure approximation to

tackle complex flow problems, since solving the original diffusion equation for the

molecular orientation distribution function is computationally very involved. Recent work

by Larson and Ottinger (1991) shows that the original diffusion equation predicts
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molecular tumbling at low-to-intermediate shear rates in the start-up of a simple shear

flow, which, as demonstrated by Bhave et al. (1993), is not predicted with the closure

approximation. A Legendre polynomial expansion technique commonly used in the

solution of the diffusion equation in simple shear and extensional flows is extended to the

fiber drawing flow to test the effect of the closure approximation. The results are

discussed in Chapter 4. The expansion technique used in the fiber drawing analysis

indicates a path for solving more complex flow problems with molecular models where

approximations of uncertain validity must be used to obtain a closed-form constitutive

equation.

The results discussed in Chapter 4 demonstrate the need to carry out two-

dimensional finite element calculations going back into the spinneret to accurately predict

the degree and homogenity of the initial orientation in the fiber drawing region.

Development of stable and convergent finite element formulations for viscoelastic flow

simulations has been the object of much study the last decade or so (King et al, 1988;

Rajagopalan et aL, 1990; Marchal and Crochet, 1987; for example). The equation set is

of mixed type, i.e. elliptic momentum-continuity pair and hyperbolic constitutive equation

(Joseph et aL, 1985 for the upper-convected Maxwell model; Joseph and Saut, 1986 for

the Oldroyd-B model; Menon, 1990 for the liquid-crystal model), which requires mixed

finite element formulations that respect the mathematical type of the equations. The

merits and demerits of commonly used formulations such as the EEME and the EVSS

formulation are discussed in detail in Chapter 5. A very recently developed formulation,

the EVSS-G formulation, proves to be more robust than either the EEME or the EVSS
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formulation (Brown et aL, 1993). Finite element results based on a slight variation of the

EVSS-G formulation are presented in Chapter 6 for the liquid-crystalline polymer flow

through the spinneret. The effect of Deborah number, polymer concentration, contraction

ratio and die design on the development of molecular order and orientation is discussed

in detail in Chapter 6. The implications of the spinneret calculations on processing and

the regions of validity of the fiber drawing analysis in parameter space are also discussed

in Chapter 6.

An integrated model for the spinneret and fiber drawing flows is required in order

to fully optimize the spinneret and fiber drawing flows in creating a fiber with a high

tensile modulus. Such an integrated model would have to include the die swell region

as well. Apelian (1987), Crochet and Keunings (1982) and others have demonstrated

numerical difficulties in die swell calculations of Newtonian and viscoelastic models

which are associated with the die swell singularity; the die swell singularity arises from

the singular behavior in the stress components at the die exit due to a sudden change in

the boundary data from no slip along the die wall to shear free on the extrudate surface.

The singular behavior at the die exit is not completely understood even for a Newtonian

flow. Consequently, one of the aims of this thesis is to better understand the die swell

singularity through analytical means which would aid in evaluating the numerical

predictions close to the singularity; such an evaluation is essential in viscoelastic

calculations due to the sensitivity of the final swell to the accuracy of the stress field

close to the die exit (Apelian, 1987). An elaborate discussion of the regions of validity

of the singularity analyses published in literature is presented in Appendix A. A
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singularity analysis that is more general in scope than the analyses to date is also

presented in Appendix A.



Chapter Two

Background on Fiber Spinning

Fiber spinning is a process in which a filament is extruded through a die, and drawn

down in cross-sectional area by being taken up at a velocity greater than the extrusion

velocity. A schematic diagram of the fiber spinning process was shown in Fig. 1.4. The

filament is initially a melt or a solution; the point of solidification or coagulation is

variable, and depends on the heat transfer or rate of solvent loss along the filament. The

primary experimental variables are: the draw ratio, DR, which is the ratio of the take-up

velocity to extrusion velocity; the length of the draw zone, L; and the take-up or extrusion

velocity, vL.

There are at least two distinct instability phenomena of interest. Draw resonance

is a long wavelength (of the order of the spinning length) periodic variation in take-up

area, which sometimes occurs despite a constaii extrusion rate and a constant take-up

speed, persisting over a long period of time with well defined and unchanging period and

amplitude. Another distinctly different instability is related to the problem of determining

whether a liquid may be spun, or when a liquid filament will break, and is known as the

problem of spinnability.

Tables 2.1 and 2.2 summarize the experimental and theoretical investigations that

have been carried out in fiber spinning under isothermal and nonisothermal, steady state

and draw resonance conditions.
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Viscoelastic

Newtonian

Several
workers e.g.
Prilutski '84 -
polybutene

Weinberger et
al. '75 -
,ilicone oil

Kase '74 -
:onstant
iscosity PET;
DRl=20

Case '74 -
'ET

Power-law

Han et al. '72
experiments
with
polypropylene
with n=0.1 17.

DR,6 could not
be determined

accurately

No Shear
thinning

Sridhar et al.
'86 - Boger
fluid; PIB in
polybutene

Shear thinning

Spearot & Metzner
'72 - LDPE

Zeichner '73 -
HDPE, LDPE,
polystyrene and
polypropylene

rsou & Bogue '85 ·
polypropylenes

[shihara & Kase '76
)bserved draw
resonance at draw
ratios of 48.6 and 50C
for two shear
thinning PET melts

Chang & Denn '79
Jetermined critical
iraw ratios for
polyacrylamide in
:orn syrup

rsou & Bogue '85
determnnined critical

raw ratios as a
function of De for
polypropylenes

shihara & Kase '76
arried out

cxperiments with
'ET in the unstable
egion

Table 2.1 Experimental investigations in fiber spinning
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Viscoelastic

Power-law

Shah & Pearson
'72; Kase '85

Shah & Pearson
'72 - numerical
Kase '85 -
anP.2ytical

D t,, > 20 for
n>l
D,<ct < 20 for
n<l

Shah & Pearson
'74

Ishihara & Kase
'76

No Shear
thinning

Sridhar et al.
'86 - Oldroyd
B model. Goof
agreement with
Sridhar et al.
'86 data

Shear thinning
/ _ _~iin

Fisher & Denn '76 -
White-Metzner model

Phan-Thien '78 - PIT
model. Reasonable
agreement with data of
Spearot & Metzner '72
and Zeichner '73

Fisher & Denn '77 -
Marrucci's '72
temperature dependent
Maxwell model

Fisher & Denn '76 -
White-Metzner model

Fisher & Denn '77 -
Marrucci's '72
temperature dependent
Maxwell model.
Qualitative prediction
of Ishihara & Kase '76
jata
Fisher & Denn '76 -
White-Metzner model.
Reasonable agreement
with Ishihara & Kase
'76 data

Table 2.2 Theoretical investigations in fiber spinning
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2.1 Experimental Observations

2.1.1 Draw Resonance

Draw Resonance is the name given to periodic fluctuations in the take-up area with

constant extrusion and take-up speeds. The draw ratio when these fluctuations start to

appear is known as the critical draw ratio, DR,cait The spinning process is usually stable

for all draw ratios below DRcrrt. The draw resonance phenomenon seems to have been

first described by Christensen (1962) in a discussion of extrusion coating with

polypropylene. Three groups of experimenters have studied draw resonance under

controlled conditions, where the spinning was carried out isothermally, followed by rapid

quenching. Weinberger and co-workers (Donnelly and Weinberger, 1975; Cruz-Saenz et

al, 1976), and Kase (1974) and Ishihara and Kase (1976) studied respectively, silicone oil

and polyethylene terephthalate (PET), both of which have small relaxation times and

viscosities which are nearly independent of deformation rate. The critical draw ratio

DR,cat based on maximum diameter, is approximately 20 for silicone oil. The data of

Kase (1974) is in the unstable region, but he too extrapolates to stability at a DR.it

slightly over 20. This value is relevant to the theoretical discussion to follow. The other

polymers studied in isothermal spinning by these investigators and by Zeichner (1973);

high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene are

all shear thinning, though the LDPE and HDPE samples tested appear to be extension

thickening and polypropylene appears to be extension thinning. In all cases DR,cit is less

than 20, in some cases an order-of-magnitude less.

One series of isothermal experiments on two PET melts by Ishihara and Kase
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(1976), deviates from the above description and provides an important check on theory.

They spun at constant draw ratios of 48.6 and 50 over various lengths. They found that

the magnitude of the ratio of maximum-to-minimum diameter in draw resonance,

decreased with decreasing length of the melt zone. Draw resonance disappeared

completely for one melt and nearly disappeared for the other at a spinning length of

5x10-3 m, the shortest distance which could be achieved experimentally. As regards

constant viscosity PET, it can be concluded that draw resonance normally sets in at a

draw ratio of 20, but there is an upper stable region at higher draw ratios for sufficiently

short spinning lengths. A high draw ratio means that the same drawn filament diameter

can be achieved with a larger spinneret diameter, hence, greater throughput and less

pressure drop in the spinneret. Lamb (1967) also reports an upper stable region for

polypropylene.

Chang and Denn (1979) carried out experiments with a 0.05 wt% polyacrylamide

in corn syrup. The viscoelastic liquid has a nearly constant viscosity that is close to that

of the Newtonian liquid (corn syrup). The spinline forces were observed to be one to two

orders of magnitude greater than those in the Newtonian liquid. Filament breakup

occured at a constant stress which was an order of magnitude greater than the breakup

stress for the Newtonian solvent and three orders of magnitude greater than the shear

modulus. A delay in the onset of draw resonance was observed for high throughputs,

though the Deborah number De defined in Section 2.2.2 was in the same range for both

low and high throughputs.

The effect of nonisothermal conditions on spinning cannot be completely defined
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if the experiments are not carried out under controlled conditions. For long melt zones,

where the Stanton number St (dimensionless heat transfer coefficient, proportional to

length and inversely proportional to powers of flow rate and filament diameter) is high,

Kase (1974) and Vassilatos (1975) find that, qualitatively, the draw resonance is damped

with increasing length (increasing St). Lamb also observed stabilization (1967). Ishihara

and Kase (1976) carried out well defined nonisothermal spinning experiments with PET.

Reviews by Petrie and Denn (1976), Denn (1980), and White (1981) give extensive

citation of experimental and theoretical literature on draw resonance.

2.1.2 Sensitivity and Spinnability

Sensitivity is more important than stability from a processing point of view. Sensitivity

refers to the amplification of small input disturbances, resulting in a nonuniform product.

Ziabicki (1976) shows data on product variations due to variations in cross-flow air.

Sensitivity was first considered by Pearson and Matovich (1969). Denn (1980) cites more

work in this area.

Spinnability refers to the ability to pull a melt out into a long thread. The

practical limitation in commercial spinning is generally filament breakage, so that the

prediction of spinnability is of considerable practical interest. It is usually not possible

to draw either low or very high molecular weight melts into long filaments. Petrie and

Denn (1976), and Ziabicki (1976) have given a good summary of the work in this area.
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2.2 Theoretical investigations

A number of theoretical investigations (Kase & Matsuo, 1965; Kase, Matsuo &

Yoshimoto, 1966; Matovich & Pearson, 1969; Pearson & Matovich, 1969; Shah &

Pearson, 1972, 1974; Kase, 1974; Ishihara & Kase, 1975, 1976; Denn, Petrie, & Avenas,

1975; Fisher & Denn, 1976; Phan-Thien, 1978; Sridhar, Gupta, Boger, & Binnington,

1986) have been carried out to characterize the fiber spinning of isotropic polymers under

isothermal, steady-state, and draw resonance conditions. In sections 2.2.1 and 2.2.2 the

results from these investigations are discussed.

2.2.1 Inelastic flow modeling-viscous and power-law models

Kase and Matsuo (1965) were the first to formulate the melt spinning equations in the

correct form. Matovich and Pearson (1969) also derived the one-dimensional fiber

spinning equations for steady, axisymmetric, isothermal, viscous flows of Newtonian

fluids by using a perturbation expansion with the slenderness ratio being the perturbation

parameter. Most of the fiber spinning models to date use their version of the slender

body momentum equation. Matovich and Pearson (1969) also derived fiber spinning

equations for second order fluids which treat elastic effects as a perturbation of the

Newtonian stress i.e. viscous forces are much more significant. They also discuss

possible extensions to nonisothermal flows. A stability analysis of an isothermal

Newtonian spinline was published first by Kase et al. (1966). Pearson and Matovich

(1969) also studied the linear stability of the Newtonian model to infinitesimal

disturbances. They obtain analytical results for the amplification factor in terms of the
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frequency of the disturbance and the draw ratio for three sets of boundary conditions.

They show that for certain draw ratios the lowest of which is 20.21, the small disturbance

theory implies an infinite response to fluctuations in the input of a certain period. Gelder

(1971), however, demonstrated by using an eigenvalue approach that the process is in fact

unstable for all draw ratios greater than 20.21. The critical draw ratio of 20.21 is in good

agreement with the isothermal spinning data for polysiloxane (Donnelly & Weinberger,

1975) and polyethylene terephthalate (PET) (Kase, 1974; Ishihara & Kase, 1975 also

deduce the critical draw ratio of 20.21 for the Newtonian model) which have small

relaxation times and viscosities that are nearly independent of deformation rate. Though

Gelder derives this limit using a finite difference code, Pearson (1985) reports an

analytical result that agrees well with the numerically determined critical draw ratio. We

too obtained the same result by solving the set of differential equations analytically by

decoupling them.

Shah and Pearson (1972) present a stability analysis for isothermal power-law

fluids for the (i) purely viscous case, and (ii) the case of significant viscous and inertial

forces. For the purely viscous case they have determined that the critical draw ratio

DRcrit is > 20 for the power-law constant n >1, and <20 for n<l. In the presence of

inertial and viscous forces they found that the critical draw ratio can be correlated to a

quantity R,=n-1+3-Re for n>l, where Re is the Reynolds number. For R,>0.5 they obtain

very high critical draw ratios. However, their computed effect of inertia is too large

(Denn, 1980). Kase and Katsui (1985) have obtained analytical solutions to transients in

melt spinning of isothermal power-law and Newtonian fluids by a transformation to

52



Lagrangian coordinates. Their results agree with the numerical results of Shah and

Pearson (1972).

Shah and Pearson (1972) have also extended the stability results of Pearson and

Matovich (1969) for Newtonian fluids to the non-isothermal case. They plot critical draw

ratio DRi; vs. S = k-Stest, where St is the Stanton number (defined previously), and k

is the dimensionless temperature viscosity coefficient defined by Tr-lae- , where =(T-

Ta)/(TI-Ta ) is the dimensionless temperature at any axial position along the filament. 1ia

is the viscosity at the ambient temperature Ta To is the melt temperature at the point of

exit from the spinneret. They show that for S>l.0, very large values of DRcit are

obtained. In a subsequent paper (Shah and Pearson (1972)) they present results for the

general case where surface tension, gravity, and inertia are also important. When viscous

and inertial forces alone are important they plot D~;, vs. S = kSte + 4Reeke ' .

For St>0.6 very large values of DRcrit are obtained. They also discuss stability of non-

isothermal power-law fluids (Shah and Pearson, 1974). The relation between DR.,it and

power-law index proves to be monotonic, whereas the effect of cooling seems to be far

less important with shear thinning fluids than with Newtonian fluids. Kase (1974), who

includes a term which allows the viscosity to become infinite when the temperature drops

to the temperature of solidification, and Pearson et al. (1976) have solved the linear

stability problem for an inelastic fluid which solidifies prior to take-up. They conclude

that fiber spinning would be unconditionally stable provided solidification took place at

a fixed temperature on the threadline and the solidified fiber was completely rigid.

DR.t of 20 is in good agreement with isothermal spinning data for constant
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viscosity melts as described above. The power-law results do not agree well with the data

of Zeichner (1973) and Cruz-Saenz et al. (1976) for shear thinning melts. LDPE is

extension thickening (n>l) so that DgR t > 20 predicted by theory does not agree with

the data of Cruz-Saenz et al. For non-isothermal spinning, the prediction that flow is

stabilized at high St is in qualitative agreement with experiments (Kase, 1974; Vassilatos,

1975; and Lamb, 1967). Solidification is shown to enhance stability greatly as indicated

by experiments (Ziabicki and Kedzierska, 1960) which is consistent with theory. The

power-law analyses do not include fluid elasticity, so that quantitative comparison is

probably meaningless.

2.2.2 Viscoelastic Flow Modeling

As mentioned in section 2.2.1, most of the fiber spinning models to date use the slender

body momentum equations derived by Matovich and Pearson (1969). Starting from the

three-dimensional conservation laws and using the Oldroyd-B model, Bechtel et aL (1988)

have derived approximate, one-dimensional equations for viscoelastic free jets; in doing

so they use the classical velocity assumptions of von-KArmgn and a slender-jet asymptotic

scaling. Their model identifies the physical effects of gravity, inertia viscoelasticity, and

surface tension in terms of the slenderness ratio. They show by a reduction to

axisymmety and suppression to leading order of some of these effects that previous one-

dimensional models do correspond to the lowest order equations in their asymptotic

.A linear stability analysis of spinning a 

A linm stability analysis of spinning a viscoclastic liquid has been carried out by
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Fisher and Denn (1976), following an earlier approximate analysis by Zeichner (1973),

for a shear thinning generalization of the Maxwell fluid known as the White-Metzner

model. The stress 'c is related to the deformation gradient as follows:

IC + G (z='C() -= -l()'(jl) (2.1)

where Vl(?) = m ' l1 is the power-law viscosity and G is the constant shear modulus.

DR,.it depends on "n" and the Deborah number defined as

(2.2)xo VoDe = -
L

where vo is the velocity at the maximum die swell and L is the length of the melt zone.

The result for the stability analysis is shown in Fig. 2.1. For De-O, the results of Shah

and Pearson are recovered. For DRDe"/n - 0.1, where DR is the DRcrit computed for an

inelastic liquid, the critical draw ratio begins to increase, indicating a stabilizing effect of

elasticity, and shortly thereafter the stability envelope turns on itself, indicating a region

of stability at high draw ratios.

The results are in good agreement with the isothermal data of Zeichner (1973) on

polystyrene, and Ishihara and Kase (1976) on PET, including a quantitative prediction of

the value of L for which stabilization was achieved at a draw ratio of 50 in the latter

experiments. The stabilization by decreasing L, corresponds to approaching the neutral

stability curve at a fixed DR by increasing De. However, the mean relaxation time (/lG),

which for the nearly shear-rate-independent-viscosity PET is determined by setting n =

1, required to match experimental velocity profiles and force measurements, is

consistently 2-4 times those measured in shear flow (Denn et al. 1975, Fisher and Denn
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Figure 2.1: Critical draw ratio as a function of De for the White-Metzner model. n is
the power-law viscosity index (reproduced from Fisher and Denn, 1976).
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1977, Chang and Denn 1979). This is a consequence of multiple relaxation times

resulting in strain hardening (Denn, 1980). Since extensional flow is stronger than shear

flow longer relaxation times are more important as more molecular stretching occurs for

the same deformation gradient, leading to more rapid diameter attenuation and higher

forces than would be predicted for a fluid with the same mean properties but a single

relaxation time (Denn and Marrucci, 1977).

Phan-Thien (1978) used the Phan-Thien and Tanner (PIT) model (derived from

the Lodge-Yamomoto type of network theory) with multiple relaxation times and

rheological properties measured in shear flow, to predict the behavior in a continuous

drawing experiment. The comparisons with the polystyrene data of Zeichner (1973) and

polyethylene data of Spearot and Metzner (1972) are good.

There have been two nonlinear analyses of the stability of isothermal spinning.

Ishihara and Kase (1975, 1976) solved the transient nonlinear equations for Newtonian

and inelastic power-law liquids by direct numerical simulation, whereas Fisher and Denn

(1976) used the methods of nonlinear stability theory they described earlier for a

Newtonian model (Fisher and Denn (1975)). The calculations of Fisher and Denn (1976)

show that the system is stable to finite disturbances below the critical draw ratio

computed from linear theory, and that for higher draw ratios there will be sustained

oscillations with a period and amplitude close to that observed experimentally in draw

resonance. The stable region at high draw ratios for the viscoelastic liquid is also stable

to finite amplitude disturbances, and the calculations of diameter oscillations by Fisher

and Denn (1975,1976) near this upper region ae in reasonable agreement with the
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diameter variations measured by Ishihara and Kase (1976). The isothermal spinning data

of Chang and Denn (1979) are in accordance with the stability predictions of the Maxwell

model with a single relaxation time and deformation rate dependant shear modulus at

slow throughputs, but a delay in the onset of draw resonance at higher throughputs and

the same range in De cannot be predicted possibly because the longer relaxation times

become more important leading to greater elastic effects and consequently a higher critical

draw ratio.

Fisher and Denn (1977) extend their analyses to include the effect of heat transfer

between filament and surroundings. The analysis is restricted to a Maxwell model with

a single relaxation time and deformation rate independent viscosity and modulus. The

model appropriate for nonisothermal conditions is given by Marrucci (1972). The effect

of cooling is to increase the initial rate of diameter attenuation of the viscoelastic

filament. Cooling inhibits draw resonance, and the interaction of cooling and

viscoelasticity results in a stabilization at high St which cannot exist for an inelastic

liquid. Short spinlines (high De) will be stabilized by elasticity and long spinlines (high

St) by cooling. General features of draw resonance data for PET (Ishihara and Kase,

1976) in the form of intensity of diameter fluctuations as a function of length of the melt

zone are predicted by a linear stability analysis of the nonisothermal equations.

Denn et al. (1980) have studied profile development near the spinneret for low

speed isothermal spinning of a Newtonian fluid using a finite element code developed by

Nickell et al. (1974) to determine the validity of the thin filament approximation

developed by Matovich and Pearson (1969). They find that the thin filament equations
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used in most analyses, is valid within one spinneret diameter. The approach to the

asymptotic uniform velocity profile is the same for all cases (gravity drawn free-jet,

drawn jet with gravity, drawn jet without gravity, surface tension included), regardless of

the magnitude of the imposed drawing force, or Froude number (Fr), or the ratio Re/Fr.

They find that the magnitude of extrudate swell decreases with increasing force at the

spinneret, and disappears for a sufficiently large force. Also free extrudate swell provides

a reasonable estimate of the initial behavior only when the drawing force is very small

relative to the product of the spinneret area and shear stress. Thus they conclude that

spinneret conditions can be taken as initial conditions for the asymptotic equations with

little error for a long spinline and are preferrable to free extrudate swell correlations.

However their studies were performed under conditions not observed in commercial

practice, and hence the validity of using spinneret conditions as initial conditions is open

to question.

Keunings et al (1983) have also carried out profile development simulations for

Maxwell, PIT, and Oldroyd-B fluids. They reach spinline force levels where viscoelastic

effects are significant. They find that thin filament equations are valid within two

spinneret diameters, but downstream of the point of maximum extrudate swell which

occurs within a spinneret diameter. They demonstrate that the use of the spinneret area

and velocity as initial conditions for the thin filament equations is adequate and conclude

that the uncertainty about the location of the origin of the thin filament equations will not

be important in long spinlines. Also important in the solution of the thin filament

equations derived using viscoelastic constitutive equations are the initial conditions on the
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axial and transverse stress components, zz and rr However, the initial conditions on fizz

and t'r are related, and once an initial condition is specified on ~r, the initial condition

on r2zz can be determined from the thin filament momentum equation. The calculations

of Keunings et aL (1983) support the practice of taking the transverse stress Ty to be zero

for integration of the thin filament equations.

The isothermal spinning flow of isotropic polymeric liquids thus appears well

understood. As discussed in Chapter 1, the ai'isotropic liquid-crystalline fibers such as

Kevlar® are also of significant technological importance. The liquid-crystalline fibers

possess unique tensile properties that derive from the high degree of molecular orientation

with the fiber axis during the spinning process. However, the only investigation that has

appeared in the literature on the fiber spinning of anisotropic liquid-crystalline polymeric

solutions is due to Prilutski and Metzner (1986); as will be discussed in Chapter 3, these

experimental results for a 40 wt % solution of hydroxy propyl cellulose in acetic acid are

inadequate since they are limited to very small extension rates and they do not attempt

to determine the molecular orientation during the fiber spinning process which is of

considerable importance. Thus, no investigation, experimental or theoretical, has appeared

in the literature that has attempted to characterize the molecular orientation dynamics

during the spinning process. As already discussed in Chapter 1, the aim of this thesis is

to develop a model for the fiber spinning process that would predict the evolution of the

molecular orientation during the spinning process and study the effect of various process

and design parameters on the molecular orientation dynamics.
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Chapter Three

Liquid-Crystal Flow Modeling

Liquid-crystals are materials which possess properties of both liquids and crystals (de

Gennes, 1974). In liquids, the centers of gravity of the molecules have no long range

order. In crystals, the centers of gravity of the molecules are located on a three-

dimensional lattice. Liquid-crystals are ordered liquids. They possess either oriented

molecules or a regular spacing between two-dimensional liquid layers. Molecules which

can be oriented to form liquid-crystals are generally either long rods or flat disks.

Schematic diagrams of liquid-crystals formed from rods and disks are shown in Fig. 3.1.

Liquid-crystals are usually lyotropic or thermotropic (de Gennes, 1974). Lyotropic

liquid-crystals are formed from a solution of rigid rods dissolved in a non-mesogenic

solvent (Wissbrun, 1981). A lyotropic liquid-crystalline phase can be formed from an

isotropic solution of rods by increasing the concentration of rods. Thermotropic liquid-

crystals are formed from small, pure organic molecules such as PAA (p-azoxyanisole).

Phase transitions in such systems are most naturally induced by a change in temperature.

Depending on the type of symmetry in the order these liquid-crystalline phases are

classified as nematic, cholesteric or smectic (Freidel, 1922). A brief description of the

primary features of these phases follows. A detailed description is provided by de Gennes

(1974).
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Figure 3.1: Schematic diagram of isotropic and liquid-crystalline rods and disks.
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\-Nematic phases

Liquid-crystalline polymers most commonly form nematic phases. Lyotropic liquid-

crystalline polymers processed commercially are almost exclusively nematic. In these

phases the molecules possess long-range orientational order, but there is no long-range

positional order (Fig. 3.2a). The preferred direction of orientation is commonly referred

to as the "nematic director". The molecules are not all oriented along the director but are

distributed at angles with respect to the director orientation. The degree of order for

nematic liquid-crystals has been traditionally characterized by a scalar order parameter S.,

defined as

S =1 (3(cos20 - 1) (3.1)

where is defined as the angle between the molecular axis and the director, and <>

denotes an average with respect to the orientation distribution function (Hermans and

Platzek, 1939; Born and Green, 1949). S can take on values in the range -0.5 < S < 1.

S=O corresponds to a state of random, isotropic order, and S=I to perfect orientational

order with the molecular axes aligned parallel to the director vector. Maier and Saupe

(1958) derived an approximation to the mean field intermolecular potential for rod-rod

interaction obtained by Onsager (1949), that predicts a first-order phase transition with

concentration from an isotropic to a nematic state for rod-like molecules. McMillan

(1971) used a modified form of this potential to model the corresponding phase transitions

for disc-like molecules.

Cbolesteric phases

Cholesteric phases, in addition to the long range orientational order present in nematics,
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possess a director that varies helically in space along an axis perpendicular to the plane

of the director (Fig. 3.2b). They are also addressed as helical phases or chiral nematics.

Polymers with flexible backbones and rigid side-chains like DNA and polypeptides tend

to form cholesteric liquid-crystals. The helical pitch is often comparable to the

wavelength of light and this results in the materials being highly colored. This property

is exploited in watch display devices. The helical pitch is very sensitive to temperature

changes which is used in accurate temperature detection.

Smectic phases

Smectic phases possess long range orientational and positional order. The molecules are

arranged in well defined layers with long range orientational order in each layer and long

range positional order in the dimension perpendicular to the layer plane (Fig. 3.2c).

Therefore, like crystalline solids, smectic phases have X-ray patterns showing sharp Bragg

diffraction lines. When the organic precursors to coke and manufactured graphite

(petroleum and coal-tar pitches) are carbonized, carbonaceous mesophases composed of

disc-like molecules are formed that tend to be either nematic or smectic.

3.1 Experimental observations

The majority of the theological work with polymeric liquid-crystals (PLCs) has been in

simple shear flow. Prilutski (1984) cites a number of references in this area. More recent

work in simple shear and oscillatory flows of lyotropic liquid-crystals are due to

Doraiswamy and Metzner (1986), Suto et al. (1989), Grizzuti et al. (1990), Picken et al.

(1990) and Moldenaers et al. (1991). However, extensional flows dominate the flow field
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used for fiber formation. Prior to Prilutski, the only extensional flow data which gave

stretch rate as a function of location on the spinline are those of Onogi et al. (1980) for

the hydroxy propyl cellulose (HPC)/water system. They report that the material deforms

uniformly until about halfway down the spinline, at which point it stops stretching and

maintains a constant velocity. Later it became known that with the concentration and

solvent they used, HPC has an yield stress (Prilutski, 1984). A material with a yield

stress will exhibit draw resonance at low stretch rates. So, their data cannot be used for

comparative purposes.

Prilutski carried out his experiments with an HPC/acetic acid system which forms

a mesophase at 30 wt% HPC. Prilutski performed his fiber spinning experiments at two

concentrations, 23 wt% (isotropic phase) and 40 wt% HPC (anisotropic phase). Several

runs were carried out at different draw ratios and flow rates, and velocity and axial stress

profiles were generated. Gravity spinning experiments were also performed to test the

importance of gravity in extensional flow. Metzner and Prilutski (1986) have reported

the axial stress data as a function of the elongation rate for the 40 wt.% HPC solution in

their paper on theological properties of polymeric liquid-crystals.

A schematic diagram of the fiber spinning apparatus is reproduced from Prilutski's

thesis in Fig. 3.3. The torsion bar is connected to a force measurement equipment which

registers the force resulting from the torque exerted by the stretching filament. Once the

force exerted by the polymer solution at the spinneret is known, the axial stresses in the

stretching filament are determined as a function of axial position by solving the thin

filament momentum equation, Eq. 4.21 presented in Chapter 4. A displacement or
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fiber spinning apparatus used by Prilutski
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position transducer is used for calibrating the alignment of the torsion bar with the knife

edge. Without proper alignment the spinneret could support forces of 10 dynes without

appreciable movement. The knife edge also supports a thin walled tubing through which

the liquid-crystal polymer solution flows from a reservoir into the spinneret via a

spinneret tube that is connected at right angles to the torsion bar. A detailed description

of the materials of construction and the operating procedure is provided by Prilutski

(1984). All experiments were performed at low flow rates to minimize the pressure offset

resulting from spinneret tubing distortions, which causes an offset of the force reading at

the spinneret resulting in erroneous computed values of the axial stresses in the filament.

The pressure offset problem is really serious for high viscosity fluids. More recent work

by Khagram et aL (1985) suggests that fiber spinning can be carried out at much higher

flow rates by replacing the take-up wheel with capillary suction. But the aqueous

xanthum gum used in their spinning experiments has a very low viscosity for which case

tubing distortions are minimal. The capillary suction device is most useful only for fluids

that do not adhere to the take-up wheel.

For the small flow rates used by Prilutski, the velocity profiles match the

Newtonian behavior closely. To make meaningful comparisons with the commercial

production of PLCs, spinning data at high flow rates are required. Prilutski also observed

draw resonance at three different final stretch rates and reported the values for the

cornesponding critical draw ratios.
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3. Liquid-Crystal Constitutive Equations

As mentioned in Chapter 1, the constitutive equations most widely discussed and used for

liquid-crystalline polymers are due to Leslie-Ericksen-Parodi and Doi. These models are

discussed in Section 3.2.1. Due to the serious limitations of these models discussed in

detail by Menon (1990), a better constitutive equation is necessary. The Bhave et al.

(1993) constitutive equation overcomes these limitations and is discussed in Section 3.2.2.

3.2.1 Leslie-Ericksen-Parodi and Doi constitutive equations

Of the models for PLCs that have appeared in literature, the two most widely discussed

models are due to Leslie-Ericksen-Parodi (1970,1976,1979) and Doi (1980,1981). The

Leslie-Ericksen-Parodi (LEP) model is a continuum theory approach and extends Frank's

(1958) theory of elasticity developed for liquid-crystals at rest to a dynamic situation to

model PLCs. The model provides no description of the presence of structural order at

equilibrium and of phase transitions that take place in these solutions as the concentration

of polymer is increased. The model cannot distinguish between weak and strong velocity

gradients. Any gradient is sufficient to perfectly orient the molecules along the director

vector. As a result, the viscosity and elongational viscosity are deformation rate

independent. Consequently, it cannot describe the non-linear effects like shear-thinning

observed in PLCs (Wissbrun, 1981) at high deformation rates. Also the

phenomenologically derived expression for the extra stress tensor involves five adjustable

parameters which are difficult to determine experimentally.

Doi developed a molecular model for liquid-crystalline polymer solutions (1980)
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by generalizing the Doi-Edwards theory for a semi-concentrated solution of rigid rod-like

polymer molecules (1978). He develops a conservation equation for the orientational

distribution function starting from the theory of Kirkwood and Auer (1951) and using the

Maier-Saupe approximation (1958, 1959) to Onsager's expression for free-energy (1949)

of a solution containing rod-like polymeric molecules to describe the intermolecular

interaction between the rod-like molecules. Doi also develops an expression for the stress

tensor from Onsager's expression for the free-energy of a solution of rod-like molecules.

The derivation assumes that Onsager's expression for the equilibrium free-energy can be

used to describe non-equilibrium states. Unlike the Leslie-Ericksen-Parodi theory, the

model provides a description of the phase transitions that occur as the concentration of

polymer is increased, and also predicts non-linear effects such as shear-thinning at high

deformation rates. But an asymptotic analysis in the high shear rate limit yields a power-

law index of -8/7 in the viscosity which predicts an aphysical shear stress maximum. The

main flaw in the model is that it does not account for the effects of hydrodynamic drag

in the stress tensor expression. For a more elaborate discussion of the limitations of this

model refer to Menon (1990) or Bhave (1992).

3.2.2 Bhave et al. constitutive equation

This model is developed for a solution of rigid rod-like macromolecules by using the

principles of non-equilibrium statistical mechanics. The polymer solution is modeled as

a collection of rigid dumbbells, each of length L, suspended in a Newtonian solvent. This

model accounts for the ability of polymer molecules to orient in flow fields and ignores
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the less important stretching and bending motions which are of minor importance in

determining the heological properties of such solutions. A pictorial representation of the

dumbbell, with the notation used to locate it in physical space is shown in Fig. 3.4. Each

dumbbell consists of two equal mass beads connected by a massless rod. It is assumed

that the interaction with the solvent takes place only at the beads. The two beads are

denoted by v = +1 and -1. The position vector of the bead v with respect to an arbitrary

origin is rv, and rc is the position vector of the center of mass of the dumbbell. The unit

vector along the axis of the dumbbell is u which gives the orientation of the rod-like

molecule. The coordinates of a dumbbell can be completely specified by u or the polar

angles 0 and since the length of the dumbbell is fixed.

The distribution function for the dumbbells in configuration space is given by

f(u,t) and (u,t)du is the fraction of dumbbells in the orientation range u to u+du where

du=sinOddOd. To compare with any macroscopic experimental response an average value

for the corresponding physical quantity must be obtained. If the property B depends only

on the configuration coordinates the average value is given by

(B) = B(u) f(u,t) du (3.2)

S is an average property called the orientational order tensor or structure tensor,

which is defined as follows:

S(t) = (u- = (uu-) f(ut) d (3.3)

The nematic director is given by the eigenvector corresponding to the dominant

eigenvalue of the structure tensor and the degree of order is given by the invariant of the
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structure tensor S = [(3/2)S:S]Jn. S takes on values between -1/2 and 1. A state of

random order corresponds to S=O and perfect order to S=l1; S=-1/2 corresponds to random

orientation in a plane perpendicular to the director.

The kinetic theory for the development of the constitutive equation involves two

main parts: (i) derivation of an equation for the distribution function which determines

the distribution of dumbbells in orientation space for a non-equilibrium situation and, (ii)

derivation of a stress tensor expression which takes into account the various mechanisms

by which the system of forces (Brownian, hydrodynamic, and polymer-polymer

intermolecular interaction forces) shown in Fig. 3.5 are transmitted through the fluid. The

physical meaning behind the forces considered relevant and the mathematical expressions

used to account for them is described briefly in the ensuing paragraphs.

The thermal fluctuations in the solution cause the dumbbells to be bombarded

constantly and jostled about in an irregular manner by the solvent molecules. The

randomizing force is called the Brownian force. The time average of the rapidly

fluctuating Brownian force on bead v can be expressed in terms of the distribution

function fu,t) as (Bird et al., vol 2 (1987)),

Fb) = vkT 0 .[-lj] (V = 1) (3.4)

where

X- = + (a-f)uu (3.5)

The above is an empiricism to account for anisotropy in the Brownian motion and is

related to the notion of "reptation"; that is, when the polymer concentration increases the

rotational motion of an individual polymer molecule becomes severely restricted by
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surrounding polymer molecules and the Brownian motion is restricted to the direction

along the length of the rod-like polymer molecule. For isotropic Brownian motion,

a=l-l. This form was first used by Bird and DeAguiar (1983) in connection with an

encapsulated elastic dumbbell model and is also described in Bird et al (1987). Menon

(1990) demonstrated that if the liquid-crystal constitutive equation is derived introducing

anisotropy into the Brownian motion no qualitative change in the material functions are

predicted. Consequently, for this thesis, Brownian motion is assumed to be isotropic, so

that 4=8.

As the dumbbell moves through the solution it experiences a drag force caused by

the interaction between the solvent and polymer molecules. In a solution of dumbbells

possessing some degree of orientational order the resistance to motion in the direction

perpendicular to the dumbbell axis can be expected to be somewhat higher than that

encountered along its axis. This resisting force called the hydrodynamic drag force is

represented by a modified Stoke's law expression that has different friction coefficients

in the directions of dumbbell rotation and axial translation (Bird et al., vol 2 (1987)).

FV^) = IV([[(V*] VV) (3.6)

where,

t = l[u + 1(8 - uu)] (3.7)

The Stokes expression assumes that the force is proportional to the difference between

the bead velocity averaged with respect to the velocity distribution [[iv]l, and the velocity

vv of the solution at the bead. The fluid velocity field v is assumed to be homogeneous,

so vv = (vo + c.rv), which implies a constant velocity gradient over the length scale of
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the dumbbell. This is a very reasonable assumption (Bird et al., 1987). is called the

friction tensor. The anisotropic drag coefficient a lies in the range 0 < <1. When a=l

the hydrodynamic drag is fully isotropic. Decreasing the value of a corresponds to

increasing the ratio of resistance encountered perpendicular to the dumbbell to that

encountered along the axis.

In non-dilute liquid-crystalline polymer .;olutions the polymer molecules interact

with each other. These forces cause the molecules to become aligned even in the absence

of flow. As the polymer concentration is increased the intermolecular spacing decreases

and the interaction forces become stronger. The degree of alignment of polymer

molecules in such systems is also found to increase. The intermolecular interaction

potential is modeled by means of the Maier-Saupe approximation to the mean-field

potential for rod-rod interaction derived by Onsager (1949). The mean field potential

which is supposed to act on the test rod by the surrounding rodlike molecules can be

written as

- = 2ndL2kTff(u)sin(u,u/)du (3.8a)

Expanding sin(u,u) in terms of irreducible tensors (Bird et al., 1987), and dropping the

first term which is irrelevant to orientational ordering and higher order terms involving

tensors of rank greater than two gives the Maier-Saupe approximation to the mean field

potential in the form

t = -_ ()kT - ):<uu - 6> (3.8b)
3 3

In Eq. 3.8b the dimensionless concentration N is = clndL2, where n is the number density

of the dumbbells, d and L are the diameter and length of the polymer molecule, and cl
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is a numerical factor of order unity. The interaction force is given by,

F)-r (3.9)
(L au

Combining the equation of motion for the entire molecular model and the

configuration or orientation conservation equation for fu,t) which states that the

dumbbells leaving one orientation must end up in another, Bhave et al. obtain a diffusion

equation which describes the time evolution of the distribution function f in a

homogenous flow. For a spatially inhomogenous flow in which translational diffusion of

the macromolecules can be ignored the diffusion equation must be modified; the partial

derivative of the distribution function with respect to time is replaced by the substantial

derivative which gives the following equation forf

o__f a K luuulf - f.a¢± ' (3.10)
Dt 6XAuau ) t 6k7XI auJ)

As mentioned previously, u is the unit vector along the axis of the rod-like

macromolecule; K = Vv; a is a parameter which describes the anisotropic drag that a

molecule experiences as it moves relative to the solution ( = 1 being isotropic and a =

0 fully anisotropic, i.e., motion is allowed only along the axis of the molecule); and

X=.L/12kT is a time constant for the solution where r is the scalar factor which appears

in the definition for the friction tensor given by Eq. 3.7. If, for example, the flow is

spatially inhomogenous only in the z direction, the distribution function ftu,z,t) is defined

so that(u,z,t)du is the fraction of molecules at position z whose orientation is in a range

du about u.

The extra stress is given by
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C = - - 3nkT(u - I3) - 6nkT7Xc(uuuu> - n(ua) (3.11)

where jr = Vv + Vvt is the rate-of-strain tensor, and < > denotes an average with respect

to the distribution function. This is the same expression as is found for a dilute solution

of rigid dumbbells in which the external force Fv(e) is replaced by the intermolecular force

Fv¢°) (Bird et al., 1987). It is clear that with the current formulation of Eqs. 3.3 and 3.11,

and the definition for the average, <>, given by Eq. 3.2, the orientational order tensor

and the stress tensor can be evaluated only after the distribution function is determined

by solving the diffusion equation, Eq. 3.10. However, solving for the distribution

function even in a typical, steady state, two-dimensional, non-axisymmetric, spatially

inhomogenous flows, say, using a finite-difference scheme, would be computationally

very intensive because of the discretization required in several independent variables; 0

and in orientation space, and x and y coordinates in physical space. The flow

calculations would be greatly simplified if the averages that appear in Eqs. 3.3 and 3.11

can be evaluated without solving for the distribution function and a closed form

constitutive equation for S and x that does not involve f is obtained.

Closed Form Constitutive Equation

It is possible to obtain a closed form of the constitutive equation which enables the stress

tensor to be written solely in terms of the macroscopic structure tensor S given by Eq.

3.3. The ability to work in terms of S instead of the complete distribution function

greatly simplifies the solution of flow problems. However, in order to write the

constitutive equation solely in terms of S it is necessary to invoke a closure

approximation (Hand, 1962) of the form A:<uuuu> = A:<uu><uu> for a symmetric
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tensor A

The final approximate constiautive equation obtained by Bhave et al. in this way

is

t= - 'Nlsv - 3nkT[1 - )S - N(SS) + N(S:S)(S+ 8) + 2(S)(S + 1 (3.12)

where the evolution of the structure tensor S is given by the equation set

S(1 DS - -.S - St = F(S)+G( S) (3.13)

F = - (1 - N)S - N(S-S) + N(S:S)(S + 8)] (3.14)

G(iS) = - 2(ic:S)(S + 1) (3.15)
3 3

The subscript (1) in the evolution equation denotes the convected time derivative (Bird et

aL, VoLl, 1987). As pointed out in the introduction, Marrucci (1991) and Larson and

kttinger (1991) show that use of the closure approximation results in the evolution

equation's not describing molecular tumbling at low shear rates in steady shear flow.

Although similar errors due to the closure approximation are not anticipated in

elongationally dominated flows such as fiber spinning, its correctness has not been

verified for elongationally dominated flows. The effect of the closure approximation on

the order and the elongational viscosity in a simple elongational flow and a fiber spinning

flow is discussed in Sections 4.2 and 4.3.

Consider the polymer contribution to the stress in Eq. 3.12. The first three terms

involving nonlinear contributions from the structure tensor S represent the net of the

randomizing effect of Brownian motion and the ordering effect of intermolecular forces.
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The last term involving the deformation gradient v arises from the hydrodynamic drag

contribution. A comparison with Doi's model indicates that inclusion of the effects of

the hydrodynamic drag force results in extra terms involving the deformation gradient K

in the stress tensor expression and the anisotropic drag coefficient a in the evolution

equation for the structure tensor.

Menon (1990) studied the predictions of the closed form of the constitutive

equation for two choices of the time constant A

J = (3.16)
Xo(l -S2 )2

The first choice follows directly from the kinetic theory model and is independent of the

degree of order and equals a constant AO. The second expression is the same as that

obtained by Doi and Edwards using reptation arguments for Brownian motion of

concentrated solutions. This assumes that the rotation of a rod-like molecule in such a

solution is hindered by the presence of other molecules and that the molecule moves by

translating in a tube-like region about its axis. The order dependent time constant also

implies that the diffusion coefficient which scales as /A increases as the rod-like

molecules beome aligned.

Like Doi's theory, the model provides a description of the equilibrium phase

transitions by setting =0. The equilibrium phase diagram is shown in Fig. 3.6. The

polymer solution is fully isotropic upto N=813, and is a mixture of isotropic and

anisotropic phases until N=3.0. Beyond N=3.0 the polymer solution is completely

anisotropic. Bhave et al. have studied the break-up of the phase diagram under shear,
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uniaxial, and biaxial extensional flows At high shear rates, the viscosity predicted by

Doi's theory and Bhave et al. model scale respectively like:

(Doi) TI - t 7

2T3 (X = o) (3.17)

(Bhave) - = -Sy7
7-6YMO = (1 -S22)

As can be seen, Doi's prediction implies that the shear stress passes through a maximum

with increasing ¥, an aphysical prediction, whereas the Bhave et al. model predicts

physically plausible shear stress for both 's.

Bhave et al. have computed a variety of theological properties for this constitutive

equation. Predictions of the model and the experimental results for the shear-rate-

dependent viscosity obtained by Doraiswamy and Metzner (1986) for 40 wt% HPC in

acetic acid, Picken et al. (1990) for 20 wt% DABT in sulfuric acid, and the unpublished

data of Ramalingam and Armstrong for Kevlar spin dope which is about 20 wt% PPTA

in sulfuric acid shown in Fig. 3.7. are in good agreement. In fact, the experimental data

show a shear thinning region with a slope close to -2/3. Thus, the Bhave et al. model

seems better in viscosity predictions and also more physically plausible than Doi's model.

It is also clear that the viscosity prediction of the Bhave et al model with X= is better

than the viscosity prediction with X=o(l-S2 ) 2 which predicts more shear thinning in the

viscosity than is indicated by the data. More details on the comparison with Doi's model

are discussed by Menon (1990).

The 20 wt % PPTA in sulfuric acid is solid at room temperature. Consequently,

viscosity measurements were carried out at 800 C the temperature at which the
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Figure 3.7: Comparison of the viscosity predictions of the Bhave et al. model with the
data of (a) Doraiswamy and Metzner (1986) for 40 wt% HPC in acetic acid, and (b)
Picken et a. (1990) for 20 wt% DABT in H2SO,.
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Figure 3.7c: Comparison of the viscosity predictions of the Bhave et al. model with the
unpublished data of Ramalingam and Armstrong for a 20 wt % PPTA in H2SO4 (Kevlar®
spin dope) liquid-crystalline solution.
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liquid-crystalline polymer solution is typically processed. The molecular weight of the

sample is about 40,000. The viscosity was determined by using a RMS-800 Mechanical

Spectrometer and a Capillary Viscometer. In the Mechanical Spectrometer, 60 mm

parallel plates with a gap of 1.25 mm between the plates were used to measure the

viscosity. In the Capillary Viscometer, a 0.05 in capillary was used to measure the

viscosity.

It is important to prevent exposure of the PPTA sample to moisture for more than

4-5 minutes since the sulfuric acid comes out of the polymer solution. The exposure to

moisture was prevented in the Mechanical Spectrometer by carrying out the experiments

inside a oven heated by Nitrogen. In carrying out viscosity measurements with the

Capillary Viscometer, the air above the plunger in contact with the sample and the air

below the sample were purged with Nitrogen every few minutes.

Viscosity measurements with the Mechanical Spectrometer were limited to the

zero-shear-rate viscosity region due to the sample coming out of the gap between the

parallel plates at intermediate and high shear rates. Viscosity at intermediate and high

shear rates were determined by using the Capillary Viscometer.

Since the fiber drawing flow, which is examined in Chapter 4, is predominantly

an extensional flow it is of interest to examine the elongational viscosity predictions of

the Bhave et al. model in a simple uniaxial elongational flow; the elongational viscosity

predictions can be used to judge the departure of the fiber drawing flow from a simple

elongational flow and answer questions on the suitability of using the fiber drawing flow

to determine the elongational viscosity of a liquid-crystalline polymer solution. The
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elongational viscosity predictions of the Bhave et aL model are shown in Fig. 3.8 for

N=4.0 and several values of a. It is clear that for o and X=Xo(l-S2 )2 the elongational

viscosity is constant at low elongation rates though the constant values are different for

different values of a. For = o and a=1.0 (isotropic hydrodynamic drag), fi is slightly

extension thickening at intermediate elongation rates and asymptotes to a constant value

at high elongation rates. With increase in the drag (a < 1), il extension thins at

intermediate elongation rates; however, rl asymptotes to the same constant value predicted

for =1.0 at high elongation rates. The elongational viscosity predictions are quite

different with =(1-S 2 )2 at high elongation rates; il extension thins for all values of a.

In fact, Menon (1990) carried out an asymptotic analysis to determine the asymptotic

behavior in the elongation viscosity at high elongation rates for the Doi model and the

Bhave et al. model. The elongational viscosity predicted by Doi's theory and Bhave et

' al. model scale respectively like:

(Doi) _ -

to ( Aao) (3.18)

(Bhave) ~ -1-2/3 ( = o(l- _ S2 )2 )

Since the elongational viscosity predictions are very different for the two choices of X,

it is importa.t to ascertain which choice of A is better for the elongational viscosity

predictions of liquid-crystalline polymer solutions. As will be shown in Chapter 4, the

only available elongational viscosity data due to Prilutski (1984) are at small elongation

rates, and since, the elongational viscosity predictions are qualitatively different only at

intermediate and high elongation rates, it is not possible to conclude which choice of A
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is better based on elongational viscosity data. However, since the predictions of the

Bhave et al. model in a simple shear flow, for which data is available for a variety of

liquid-crystalline polymer solutions, are much better with X, o, fiber spinning and finite

element results discussed in Chapters 4 and 6 are presented only for this choice of time

constant. The reader interested in the fiber spinning predictions with b=o(1-S 2 )2 can

obtain more information from Appendix B.
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Chapter Four

Analysis of Isothermal Spinning of Liquid-crystalline

Polymers

The purpose of this chapter is to develop an isothermal fiber spinning model for nematic,

rod-like, liquid-crystalline polymeric solutions in order to predict the molecular orientation

induced along the spinline, as well as the velocity and axial stress. The fiber spinning

model is developed from the constitutive equation of Bhave et al. (1993) which is an

extension of the earlier kinetic theory of Doi (1980, 1981). Since the fiber spinning flow

is an extensionally dominated flow it is expected that the orientation states,

mathematically represented by the nematic director, that prevail in a steady, simple,

uniaxial elongational flow would also prevail in the fiber spinning flow. A derivation is

presented in Section 4.1 for the possible orientations that the nematic director could

assume in a simple elongational flow. As discussed in Section 3.2.2, Bhave et al. invoke

a closure approximation to obtain a closed form of the constitutive equation. Marrucci

(1991) and Larson and Ottinger (1991) show that use of the closure approximation results

in the evolution equation's not describing molecular tumbling at low shear rates in steady

shear flow. Although similar errors due to the closure approximation are not anticipated

in elongationally dominated flows such as fiber spinning, its correctness has not been

verified for elongationally dominated flows. The effect of the closure approximation on

the order and the elongational viscosity in a simple elongational flow is discussed in
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Section 4.2. The development of the steady state fiber spinning model, the effect of

closure approximation and different initial microstructural orientations, the predictions of

available experimental data and the "viscous" nature of the fiber spinning model

developed using Doi's constitutive equation are discussed in Section 4.3. A linear

stability analysis of the fiber spinning model to predict the onset of draw resonance

instabilities and the model predictions of the draw resonance data of Prilutski (1984) are

discussed in Section 4.4.

4.1 Orientation States for the Nematic Director in a Steady, Simple

Elongational Flow

In the nematic region, liquid-crystalline solutions are oriented preferentially about a

concentration and flow dependent director vector, traditionally denoted by the symbol n.

At equilibrium, however, the nematic director could be pointing in any direction. Doi

(1981) demonstrated that the arbitrariness in the nematic director disappears in shear flow

with the flow direction deciding the direction of spontaneous orientation much like the

spontaneous orientation of a ferromagnet in a magnetic field. Doi, however, limited his

analysis to finding the nematic director in the plane-of-shear (xy-plane in Fig. 4.1a).

Bhave et al. show that the nematic director perpendicular to the plane-of-shear (also

called the logrolling state) is another orientation allowed by the flow. In this section, the

possible orientations for the nematic director in a simple, steady, uniaxial elongational

flow are determined from a perturbation scheme for the structure tensor S. These

orientations for the nematic director are also expected to prevail in the extensionally
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Figure 4.1: Schematic diagram of (a) a simple shear flow where the xy-plane is the
plane-of-shear, and (b) a simple uniaxial elongational flow where the z-axis is the axis
of symmetry.
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dominated fiber spinning flow.

The steady state perturbation expansion for the structure tensor S

S = So+ + (( -J (4.1)

with the dimensionless elongation rate trJa as the perturbation parameter (jat/al c 1)

is introduced into Eqs. 3.13-3.15 which describe the evolution of the structure tensor. At

zeroth order in the perturbation parameter the following equation for the equilibrium

stcture So is obtained

0(1): (- N)s - N(SoS) + N(S:S)(So+ 8) = 0 (4.2)
3 3

We can check that the expression

SO = So("nr0n-. 4 (4.3)

satisfies Eq. 4.2 with the scalar quantity So defined by the following equation

S(l- 3) - 4NSo + NSo2]= 0 (4.4)

The range of So is then -1/2 .So <1. Negative values of So are obtained for the liquid-

cystalline phase that exhibits oblate symmetry about the nematic director and positive

values for prolate symmetry.

The nematic director no compatible with the flow can be determined from the

equation at O(./fO).
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O( - S. -- - 1--)S 1 - N(SoS1 +S1-SO) + N(SO0 SO)S1
T 3 (4.5)

+ 2N(S ) - So)(So * 2cS)(S+ )

In general, the nematic director in the limit of equilibrium is given by

,o = sinocos4 0o8 + sinOsino68, + cosoSz (4.6)

If the elongational flow is symmetric about the z direction (Fig. 4.lb), the transpose of

the velocity gradient is given by the equation

-t 0 0

= -2t (4.7)
2

O O iJ

Introducing Eqs. 4.3, 4.4, 4.6 and 4.7 into Eq. 4.5, and taking the dot product with no

from the right, the following component equations are obtained after much algebraic

simplification

x-direction

3(1 +S0)sinOocoso - Socos20o( 1 -450) + 3Sosinocoso = -sin0ocosO (4.8)

y-direction

( 1+SO)sinO sin co2(1 -4S) + 2sinsinosin (4.9)
3

z-direction

2( +SI )OSOO +S{(Ios20 0 l + 2S.- 4y- coso0 (4.10)2(l*So)coso sC Zeol (1-4So)+*5 2o °

4 is a scalar function of the concentration N and the components of So and SI . Let us

examine the possible solutions to Eqs. 4.8-4.10: (1) Assume that sin 0o, cos 0o , sin 0o and

cos#o are all non-zero. Cancelling the non zero terms cos 0o and sinosin %0 that multiply
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Eqs. 4.9 and 4.10 respectively, and eliminating 4 between Eqs. 4.9 and 4.10 gives So=-2

which is impossible according to Eq. 4.4. Note that when the non zero terms sinocos 0

and sinOsinio which multiply Eqs. 4.8 and 4.9 respectively are cancelled, Eqs. 4.8 and

4.9 are the same; (2) Assume that sin0o = O; that is, the nematic director is aligned with

the flow direction (z-direction). Then Eqs. 4.8 and 4.9 are trivially satisfied. Setting

cos 0 =- 1, Eq. 4.10 reduces to 34=2+2So-4So 2 which is a valid equation for the components

of S 1 in terms of SO; (3) Assume that cosO = 0; that is, the nematic director is in the

plane perpendicular to the flow direction (xy-plane). Then Eq. 4.10 is trivially satisfied.

Equations 4.8 and 4.9 reduce to the same relation 34=-l-So+2So2 which is a valid equation

for the components of S l in terms of So; (4) Assume that either sino or coso = 0. In

either case, combining Eqs. 4.8 and 4.10 or 4.9 and 4.10, So=-2 which is impossible

according to Eq. 4.4. Note that in the solution choices (2) and (3), the equation set for

the components of Sl would be completed by taking the dot product of Eq. 4.5 with the

unit vectors perpendicular to no.

Thus, Eqs. 4.8-4.10 demonstrate that the nematic director can only be in the stretching

direction (z-direction) or in the plane perpendicular to the stretching direction (xy-plane).

However, the calculations of Bhave et al. show that only the nematic director along the

stretching direction exists at moderate to large d/da. Consequently, the fiber spinning

analysis is restricted to this nematic director.

The analysis presented here employs a formal perturbation expansion whereas

Doi's derivation in shear flow does not; the expansion also accounts properly for

perturbations in the nematic director about the equilibrium limit no as opposed to Doi's
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derivation. When employed in shear flow, the pertubation expansion technique yields the

same expression obtained by Doi for the nematic director in the plane-of-shear, in

addition, the analysis predicts the nematic director perpendicular to the plane-of-shear,

which corresponds to the logrolling state studied by Bhave et al.

4.2 Steady Simple Elongational Flow

Bhave et al. show that the only observable phase for the liquid-crystalline solution in

uniaxial elongational flow at moderate to large M/: is the phase which exhibits prolate,

uniaxial symmetry about the direction of stretching. In particular, for the choice of N

used in the fiber spinning calculations the prolate phase without uniaxial symmetry ceases

to exist at M£os = 0.25. For a = 0.1 (which is chosen for the fiber spinning calculations)

this corresponds to At = 0.025. Consequently the analysis of the kinetic theory equations

presented in Section 3.2.2 is restricted to the prolate phase with uniaxial symmetry. In

this section, analytical expressions are derived for the structure tensor and the elongational

viscosity without and with closure to quantify the effect of closure on these quantitites.

Form of the Structure Tensor and the Elongational Viscosity

See et al. (1990) exploit the fact that the simple elongational flow is a potential flow and

write the solution to the distribution function in terms of the Maier-Saupe potential and

a potential for the flow. For a liquid-crystalline solution which exhibits prolate, uniaxial

symmetry about the direction of stretching,f = flO,t), where 0 is the angle subtended by

the molecular axis and the direction of stretching, the z-axis. Consequently, only the xx,

yy, and zz components of S are nonzero. In addition, the xx- and yy-components are
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equal, and S is traceless. Hence,

I [3/2 $(4.1 1ab)

When this form for S is combined with Eq. 3.8 for the Maier-Saupe potential, the

distribution function can be written as

[9 £ +3NSlcose
1 e2 2
X=- lI9!<43NSHcoO (4.12)

oJe ~ ~ sin d0
where the conditions df/dO = 0 at 0 = 0 and a and the normalization requirement Jfdu =

I have been used. Note that this result is implicit since fis contained in S which appears

in the integrand. A comparison with the distribution function reported by Bird et al.

(Vol.2, 1987) for a dilute solution of rigid dumbells shows that inclusion of the Maier-

Saupe intermolecular potential introduces an additional exponential term, and anisotropy

in the drag produces the dimensionless group ./)J instead of ,X From Eq. 3.3 for the

structure tensor S and Eq. 4.1 lb for S the equation

+1 I [9 a +3NS]t2

ft2e7' dt

3S_-_ ___ - 1 (4.13)
2 +1f [9 'X3NS 12 2

PTZ dt
-1

is obtained which when substituted into Eq. 4.1 la completely defines the structure tensor.

An unoriented isotropic state corresponds to S=O, and it is expected that 0 < S < I for

prolate symmetry in the order in the presence of flow. Equation 4.13 is implicit in S and

requires an iterative procedure to solve for S. From the expression for the stress in Eq.
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3.11, the elongational viscosity is found to be

ni-3is

nkT)L

+1 l. . 2

-1 J(l-t 2)e2 dt
(44)
(4.14)

-1

+ NS (lt 2)t2e d1
-I

Once S has been de ined from Eq. 4.13, the elongational viscosity can be evaluated

by means of this result

Test of Closure ApproximatIon

Next, results are obtained for S and fi which are analogous to Eqs. 4.13 and 4.14 but

which are based on the closure approximation. Equation 4.1 la,b is used to represent the

structure tensor for prolate, uniaxially symmetric order, and it is substituted into the

evolution equation with the closure approximation given in Section 3.22 to get the

following cubic equation for S

2 N 2 2N (4.15)

The general solution to this cubic equation is

Sl E F + B
iV2N

S2 - (E+ t I B + I ij(E-F) (4.16)

2 2N 2

2N 2
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where

B= IN- 2A
3 a

E= [3B (O+ N_1, 3 B3 1X3
L8N3 4'N a 8N3 + (4.17)

F 8 2 - 3 4N a j3+-

and D is the discriminant

@- = i [[3N1 8 £ +26]N3+181( e ) + 18(ex)-7512 +
24N2 I 0 0 (4.18)

(72 - 80() + 864()2 -324( 3)]N- 108(.a)2+216(t) -972()t
a a Cs a a a J

Of the three solutions, solutions S2 and S3 are neglected since they do not possess prolate

symmetry. Solution 1S possesses prolate symmetry and exists for all values of the

concentration and elongation rate. Combining Eqs. 4.16 and 3.12, and dropping the

subscript I in S1 gives the following result for the elongational viscosity

4-3i S2 + 3S N 25+ I(4.19)_7 652 + -(2S+ 1 -S)) (4.19)nkfl7.3 3
The effects of the closure approximation on (a) the equilibrium phase transition

and (b) the response of order and viscosity in an elongational flow are examined next.

The equilibrium phase diagram (S vs. N) can be determined from the above equations by

setting .Jc to Xero; Fig. 4.2 shows the equilibrium phase diagrams with and without the

closure approximation. Closure does not change the qualitative behavior of the phase

transition, but there are quantitative differences in the critical concentration N for the

isotropic-nematic phase transition (where the isotropic phase ceases to exist) and the order
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S at the onset of the stable nematic phase. ibe critical concentrations with and without

closure, N-3.G and 5.0 respectively, agree with the reported values of several authors

(Doi, 1980;, See et aL, 1990, and Bhave et a, 1993 with closure, and See et al. (1990);

and Bhave, 1992 without closure). In fitting the model predictions to experimental data,

the differences in Nc for the two approaches can be accounted for simply by normalizing

concentrations by the phase transition concentration. For example, a 40 wt % solution

of hydroxypopylcellulose in acetic acid has a critical concentration of 30 wt %; in either

the closure or no closure model, the dimensionless concentration N is taken so that NINc

= 4/3. However, compensating for the difference in the equilibrium order at N = N is

not easy. This differece leads to all the observed differences of the two approaches in

describing a simple elongational flow and also the fiber spinning flow examined in detail

in the next section. Note tha since S -+ I for NINc, I for either model, the differences

in results for the two are expected to decrease as concentration increases.

In Fig. 4.3 the effect of closure on the order and the elongational viscosity in a

steady elongational flow is examined for NINc - 413. The differences in the order at low

and moderate elongation rates result from the equilibrium order's being much higher

without closure Differences in the elongational viscosity at these elongation rates,

however, are well within a factor of 2. In spite of the quantitative differences, the closure

model capturs the essential trends in the order and the viscosity, which suggests that the

closure model should be adequate for describing the physics of the prolate-ordered,

uniaxially symmetric fiber spinning model. This hypothesis is tested in Section 4.3 where

the fiber spinning equations without the closure approximation are solved by expanding
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the distrnbution f in terms of Legendre polynomials The results also discussed

in Section 43. clearly demaonsate that the closure approximation affects the velocity and

the stress profiles only at small elongation rates, and even then the quantitative diffetences

are well within a factor of 2.

43 Steady-State Fiber Spinning Model

A iquid-cstalline polymerc solution is formed into a fiber by extruding it at volume

flow rate Q through a spinneret and winding the resulting filament on a spool. A

schematic diagram of the process was shown in Fig. 1.4. The velocity of the fiber at the

wind-up spool is grate than the extrusion velocity, so that the fiber is under tension F.

In addition to being stretched during the travel between the spinneret and the take-up

spool the polymer may pass through a solidification bath, be cooled, experience solvent

evaporation, or be coagulated. The following analysis models the stretching of the

polymer before it is solidified To keep the analysis simple, only isothermal spinning is

considerd and the concentration is assumed to be uniform.

A cylndical coordinate system is used with the origin at the position where the

axial velocity profile can first be assumed independent of radial position and where the

adiusra of the fibe i not changing rapidly, that is, iRNa I bc . This point should

occur just downstream from the point of maximum exmtudae swell. At =0 the velocity

of the fiament is v In this problem, vo is not specified directly, but is fixed by

specifying the take-up velocity vL and the draw ratio DR. At a distance L downsram

from the origin the polymer solidifies. For z > L the velocity of the fdament is assumed
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constant (no further stetching occurs) so that vL is fixed by the speed at the wind-up

spool

For an incnpressible liquid, the mass conservation equation is

d (Av)=O (420)

where A and vZ are the ia cross-sectional area and axial velocity of the ffiament. A

differential momentum balance results in the following exprssion for momentum

conservation in the z-direction (Bird aL, VoL. 1, 1987, pp. 51-52):

dvz [ d dlnv] s, d nv (4.21)
pd z [_ _ - n j dz 24A dz 

in which -T. is a normal stress difference, a is the surface tension, and g is the

acceleration due to gravity. It is usefiJ to rewrite the momentum equation explicitly in

sems of ,-t.; Multiplying Eq. 4.21 by xR2 and eanging the terms gives after one

ion

t -tr -F + 
Q

- i. pvtv - V + (422)-2 +J vZ0J- Pg I d)

The continuity equation has been used to eliminate A. The development so far is general

to any constitutive equatio To pfceed futher, a constitutive relation for r must be

spxed.

4.3.1 Bhave el L Conuttutae Equa4on

The lquidk ystl structure and stres enor for this constittive equation are given by

Eqs. 3.12-3.15. For IaRfi| c I, to lowest order only the duasqal componens of the
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velocity gradient tensor a onzero and (VvP)=fVvw Consequently. Eq. 4.1 lab

is used for the sructire tensor but S is allowed to vary with z; ie. S S(z). The

evolution equation for the sucture (min terms of S) and the stress tensor (in terms of the

normal stress difference) are then given by

dS ( -S)(2+ )dlnv, S 
dz dz vz,, 3

dv
-z?-Xtr = -3(s1,+2nkTLS2 ) z - 3nkTS 1 (424)

The next step is to introduce the dimensionless axial coordinate ~, velocity *. and

stess components T,

. * . Z T, F 2) (425)L ~VL (FlxR)
In terams of these dimersionless variables, the govening equations for the spinning

problm can be writtn as

;o2rmpoet of Catjon of mo

TT t - + (e I) 2T F 2(DI) 2))Re( I ). ,() (4.26)1)T ICa i t F j 
d1 I (4.27)

Smnr on

D d 
9r

(4.28)
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Evolution eguation for the strctme tensor

dS N
dS = (I -S)(2S+ d1)n -e - (I -S)(2S+ 1) (429)

where the Deborah number De. capillary number Ca, Reynolds number Re, Froude

number Fr. dimensionless thradline tension T. and dimensionless solvent viscosity p arise

and are defined by

AVLl ,sVLIL PVLLDe L Ca ; Re-
L asIRL 11,
2 L (4.30)
2 F

Fr ' T= ·F 2
gL rxnkTR2 tl, + nkT'

The parameter T is unknown a priori,. but is determined once De and DR are specified.

The fiunction 1 is given by the interal in the last term of Eq. 4.22.

The thre boundary conditions and one algebraic constraint needed to solve the

system of equations. Eqs. 4.26-4.29. and also to determine the parameter T are

at -0.

* I/-D

s S or S Sq
II 0 (4.31)

at I,

Since nothing is known about the flow inside the capillary and the spin t, two values

that bracket the range of possible initial values of S that the threadline might see ar

chosen arbitrarily. These are S S, that is, S has the value it would have in a simple

eloadonal flow for the same edonpon r t a exists at ; aO, and S =rS that is,
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S has its equilibium value (coresponding to the stable prolate ortcr) at the concentration

N. The value for S is given by S in Eq. 4.16. However, the elongation rate at the

origin is not known a priori and the initial order must be determined along with the

solution of the fiber spinning problem. The equilibrium order can be determined from

Eq. 4.15 by setting tAJ/ to zeo. A shooting method (Press ert a, 1986) in conjunction

with a stiff ordinary differential equation solver that uses a semi-implicit Runge-Kutta

scheme (Press & Teukolsky, 1989) is used to solve the system of algebraic-differential

equations.

432 Direct Soluton of Diffusin Equati n

Consistent with the small slope approximation and axisymmetry of the fiber spinning

flow, the distribution function is taken as fOz). The diffusion equation and the

deviaoric stress for a spatially inhomogenous flow was presented in Section 3.2.2.

Introducing the prolate, uniaxially symmetric form of the structure tensor and exploiting

the fact that c is diagonal with the small-slope approximation for the fiber spinning flow,

allows the diffusion equation to be written ir e dimensionless form

De f I~ 8 T Ded d# I 8 (Sin2 CI6.0 , - ' (sin )+ (9m +3NS)- (st29cosf) (4.32)7 X -smine 'N 'N a d; sin9X
The prsence of the underlined operator suggests a Legndre polynomial expansion for

the distribution function (Bird t ., Vol.2 1987). Introducing the expansion

fl9,.) 2 p a;() P(c ) (4.33)

into Eq 4.32 ives
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E 6 P' = - n(n+l)aP, + (9= -+3NS)E ac,,P, (434)
O n - "O a dnto =X-2

where P,(coso) is the n Legende polyomial and

n(n-lXn-2)
(2n+1)(2n-1)

n2 n(n+l)2-3(n+lXn+2) n2 .- :)!+3n(n- l)c = 2+ 2 .. s)(2n+l)(2n+3) (2n-1)(2n+l) 4.)
(n+lXn+2Xn+3)

(2n+ IX2n+3)
Al other c =- 0

The orthogonality of the Legendre polynomials cm then be exploited to obtain a

system of M coupled ordinary differential equations for the coeffiients ({(;)) from the

above equation. Since the rodlike molecules have no polarity the distribution function

must have refection symmet about the = plane. Consequently the expansion for

f has only even Legendre polynomial tms, and this can be used in the computational

scheme to include more terms in the axpu ion and improve the accurcy. Note also

from Eq. 4.34 that das/d;=O. so tut ao is independent of r Using the normalization

condition for the distribution function Jfdu I gives the value of as

ao =1 (4.36)
4x

which is the isotropic equilibrium contribution to the distribution function.

Since the exact form of the disibution functio is known for a simple

elong-nal flow, ddthis flow is used to demonrat the convergnce of the coTespong

Lelgmenr polynomial ppns In with irasing number of terms (see Fi& 4.4). It can
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be seen that for W=100.0, when f is close to a delta function. 50-60 even Legendre

polynomial tenms are reuired to obtain good agreenmet; it takes only a couple of seconds

m a SARDENT minicomnpuer to determine this many terms.

In order to solve the fiber spinning problem without the closure approximation

Eip 428 and 4.29 which have incorporated this approximation must be replaced.

Equation 4.29, the evolution equation for the structure tenr, is replaced by the diffusion

equation for the distribution function as given in Eqs. 4.34-4.35. Once the distribution

fmK tin is known, the stress tensor is calculated from Eq. 3.11, rather than Eq. 3.12

which was used to obtain Eq. 4.28. In solving Eq. 4.34 and also evaluating Eq. 3.11 it

is ueful to write the order S in terms of the Legendre coefficients as

M x

5 3: a (COS2- 3 )P(cos) sinGdD
.O° o (4.37)

- 2xE ajP 2(cos)P(cosO)sinOcd9 _-2()
naO 0 5

so that the range of a2 is limid to 0 Sa2() 5/4t. Similarly c<uuuu> and c<ua )/au>

me MEpe sed in terms of ;6 the difference n-%$ is evaluated (cf. Eq. 3.11), and the

MUcing equation is soved for the dime.nless velocity gradient to give

_, p- TT N l 1q4 12x.2 3 

DX d# 3 3 35 35 5 (4.38)

2. .. 4 , -l
35 35 5

is rmult eplaces Eq 4.28 in the fiber spinning model,

Equaion 4.26, 4.27, 4.34 and 4.38 we the govening equations for the fiber
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spinning problem without the closure approximation. The boundary conditions used are

those listed in Eq. 431. For S(O)=S£, the distribution function is given by Eq. 4.12. The

same equation is used to determine the distribution function for the equilibrium condition

by setting Wa to zero. Once the distribution function is known at 5 = 0, the initial

values of the coefficients ({a(O)} are determined from the orthogonality of the Legendre

polynomials. As with the analysis incorporating closure, for the initial condition S(0)=S,

the elongation rate at the origin is not known a priori, and the initial value of the

Legendre coefficients must be solved along with the fiber spinning equations. A shooting

method (Press et al., 1986) in conjunction with an ordinary differential equation solver

that uses a fourth order Runge-Kutta scheme is used to solve the system of algebraic-

differential equations. For De=10, which is the maximum value of the Deborah number

for which results are reported in this thesis, 61 even Legendre polynomial terms were

used. This required solving a system of 62 coupled, nonlinear differential equations (1

(momentum)+ 1 (stress)+ 60 ({an( )}); ao is known) and one unknown algebraic

parameter T which took less than 20 seconds on the STARDENT with a "good" initial

guess for the algebraic parameter. Typically, convergence was obtained in 3-5 Newton's

iterations for the algebraic parameter.

4.33 Results and Discunson

This section begins with a presentation of the steady-state results in which the effects of

gravity, surface tension, and inertia are neglected. In addition results are presented only

for a = 0.1 for which the drag is highly anisotropic. Whereas a has no effect on the
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shape of the viscosity T(?), it has a qualitative effect on the shape of the elongational

viscosity ij(t) as demonstrated by Bhave et al.. They show that . is almost constant for

isotropic hydrodynamic drag (corresponding to a = 1.0) and is severely extension thinning

when the drag is highly anisotropic (a =0 corresponds to fully anisotropic drag). As can

be judged from the discussion to follow, the same qualitative behavior is observed in the

fiber spinning flow. The nearly constant elongational viscosity for a = 1.0 is associated

with Newtonian-like velocity and stress profiles, and for this reason velocity, order, and

stress profiles are presented only for a = 0.1 in this Chapter. The reader interested in the

fiber spinning predictions for a = 1.0 is referred to Appendix B. Later in this section

model comparisons with data for a 40 wt. % hydroxypropylcellulose solution which has

a 30 wt.% critical concentration are presented, so a value for the dimensionless

concentration that is 4/3 times the critical value is chosen in the ensuing calculations.

Hence N=4.0 is taken for the closure model and N=2013 for the exact model.

In Figs. 4.5a-c and 4.6a-c results are shown for the dimensionless axial velocity

0, the order parameter S, and the dimensionless normal stress difference as functions of

the dimensionless axial distance for the two initial conditions S(O) = St and Seq,

respectively. For clarity results are presented only for 3 different values of De, but the

range chosen is sufficient to highlight all the important trends. First the effect of the

initial condition on these results for the closure model is examined, and then the

importance of the closure approximation for the two different initial conditions is studied.

In connection with these steady-state results the possibility of using fiber spinning to

measure the elongational viscosity is noted. Finally the model predictions are compared

with experimental data
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Fig. 4.5a demonstrates that as De increases the velocity profiles become more

concave initially, but with further increase in De the profiles become less and less

concave and finally become Newtonian. For all De > 10 the velocity profiles are

Newtonian. The corresponding order increases with De from the equilibrium value to

almost perfect order, and does not show much dependence on r . A comparison of Fig.

4.5a with 4.6a and 4.5b with 4.6b, reveals that a change in the initial condition alone

affects both the velocity and structure development. For S(O) = S as De is increased

from zero, the velocity profiles become less concave than the Newtonian limit and remain

so for large De's in contrast to the initial condition S(0) = S where they become

Newtonian for De 1. The structure development is affected in an obvious way by

requiring S(0) = Seq. It is interesting that the final order for the fiber with the initial

alignment S. is slightly higher than that for S(0) = Seq, so that the higher degree of initial

order in the S(0) = S problem is never fully compensated for in the spinning section of

the S(0) = Seq problem. This result is universal for all De studied. Figure 1.1 shows that

the tensile modulus is very sensitive to even small changes in the molecular order when

the order is close to being perfect, i.e. the molecules are predominantly oriented with the

fiber axis, whence, the small difference in the order at the end of the spinning section for

the two different initial conditions could be significant Comparing Fig. 4.5c with 4.6c

shows that the force required to achieve the same drawdown is also higher for S(0) = S.

Though not immediately obvious, the force required is as much as 20% higher at large

De's. A rigorous comparison of the required spinning forces requires an accurate

accounting of the initial diameter of the fiber, in this analysis it is assumed that the initial
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radius Ro is the same, even though the upstream die swell will probably depend on the

local order parameter S as well as the tension F itself. From these results it is concluded

that the velocity and stress profiles are sensitive to the choice of the initial condition in

contrast to results reported for fiber spinning models with isotropic, viscoelastic

constitutive equations.

The effect of the closure approximation on the threadline behavior for the initial

condition S(O)--S, is examined next. There is very little difference in the velocity profiles

for all De. For small De, the order is much higher without closure as expected from the

equilibrium phase diagram in Fig. 4.2. The higher equilibrium order results in a slightly

lower normal stress difference, which is paralleled by the lower elongational viscosity

when closure is not used as seen in Fig. 4.3b. For moderate and large De's there is

almost no difference in the velocity, structure, and stress profiles.

For the equilibrium initial condition, the velocity profiles obtained with and

without closure are in good agreement at low De and have only small quantitative

differences at intermediate and high De. As with S(O) = S,, the order as De -- 0 is

higher without closure. At moderate and high De, the order profiles do not match near

= 0 since the equilibrium values are different, but approach one another as C - 1.

Inspite of the lack of agreement in the order at the beginning of the spinning section, the

stress profiles show very good agreement at moderate and high De throughout the

spinline. The final value of the predicted order is also independent of the closure

approximation at moderate and high De. The conclusion is that the closure approximation

has only a small effect on the velocity and stress profiles, and hence, in the rest of the
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analysis only the closure model is used

An interesting aside of this study is that it suggests that the fiber spinning flow

can be used to measure the elongational viscosity of a liquid-crystal polymer solution.

A similar observation was previously made by Mackay and Petrie (1989) for flexible

polymers To see this an apparent elongational viscosity ila is defined as the ratio of the

normal stress difference to elongation rate at the end of the spinline

(-z 'r,,) L (4.39)

In Fig. 4.7 the prediction of the constitutive equation for the elongational viscosity 1 is

compared with the apparent elongational viscosity ia. defined this way. For draw ratios

ranging from 3 to 20 the agreement between i and qa for the two choices of o is found

to be nearly quantitative, independent of initial conditions, suggesting that fiber spinning

flows can be used to determine i for a liquid-crystal polymer solution provided that the

normal stress difference tu- can be measured. Note that very nearly the same qI is

obtained independent of draw ratio. The agreement between qia and ij for the rodlike

molecules considered in this analysis is much better than that for flexible polymers. It

is interesting that for = 1.0, is only slightly extension thickening; and the

corresponding threadline velocity profiles are Newtonian. For a = 0.1, the elongational

viscosity shows substantial thinning, but is constant at high and low elongation rates. The

velocity profiles in Fig. 4.Sa correspondingly show Newtonian behavior at high and low

De, and at intermediate De the velocity shows the more concave shape typical of shear

thinning, power-law liquids. These observations suggest that, at least qualitatively, the

spinning results for the liquid crystal model of Bhave et aL can be understood with a
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power-law model analysis in which the shear thinning index n is chosen to match that of

"a. for t.

In the definition of Ta the choice of location for evaluating the normal stress

difference and the strain rate is important for getting good agreement between ii and ila

for the equilibrium initial condition. This sensitivity is illustrated in Fig. 4.7b by plotting

TriV,~, which is the ratio of the normal stss difference to the elongation rate at the

origin. As can be seen the agreement with ii is very poor. The difference arises because,

at the origin, the initial equilibrium order has not adjusted to the elongational nature of

the flow. Even for the apparent elongational viscosity based on the exit conditions, there

is some deviation from ij at high elongation rates (high De), because the residence time

is small and consequently the initial equilibrium order is convected further downstream

before any substantial increase in the order occurs to satisfy the exit boundary conditions.

Model predictions of the velocity and normal stress are compared with data of

Pnrilutski in Fig. 4.8 at the indicated concentration for both initial conditions in S. Only

the data points downstream from the initial die swell (Prilutski reports a 5% die swell)

are considered in order to be consistent with the assumptions in the model. Since the

liquid-crystal model predicts an isotropic-nematic phase transition at a dimensionless

cocentration of N = 3.0, and the HPClacetic acid system undergoes a phase transition

at 30 wt% HPC, a dimensionless concentration of 4.0 is used for the 40 wt. %

HPRacetic-acid solution. In order to calculate the dimensionless group P (Eq. 4.30), the

number density n was estimated by using a number averaged molecular weight M. of

1.67xo10 and a solution density of 1.07 gmcc reported by Prilutski. This results in
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nkT=6.28x104 Pa for the 40 wt.% solution. Prilutski computes a rotational diffusivity Dr*

of 5.7s' for Doi's model from his viscometric data, which gives X of 0.003 s for the

constitutive equation we use. Finally, was found to be 6.4x10'6 for a solvent viscosity

qls of 0.0012 Pas. The Deborah number and draw ratio are calculated from the fiber

spinning data Since the anisotropic drag coefficient a cannot be determined from

viscosity data, is varied until the normal stress difference at the inlet is within the error

bounds (±30 Pa) of the experimentally measured value.

Figure 4.8 shows that the model predicts the velocity distribution very well, but

not the normal stress difference. Further consideration suggests that for small De, gravity

and surface tension are probably important and that the momentum balance should also

include these forces. Inclusion of these forces results in much better normal stress

difference predictions. The particular choice of initial condition does not seem to alter

either the velocity or normal stress predictions because De is very small. Thus available

experimental data do not favor one initial condition over the other.

Though the model predictions compare well with the data, it should be kept in

mind that all data are at very low De, due to the experimental limitations on the flow rate.

Therefore in all of Prilutski's steady-state experiments the elongation rates attained are

low enough that the viscosity hardly varies from the zer-elongation-rate-apparent-

viscosity f,0 Consequently a Newtonian model with viscosity p = fa3 would fit the

data well. Note, however, that a Newtonian model with the viscosity equal to the zero-

shear-rate viscosity of the liquid-crystal solution would underpredict the spinline axial

sarss behavior because the liquid-crystal solution does not obey Trouton's ratio. Larger

elongation rates are encountered in the commercial production of polymeric liquid-crystals
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because of higher throghuts and shorter spinning len Consequently De will also

be much higher. Data at higher De are needed for a rigorous test of the model-

4.3.4 An Aside - Is the Fiber Spianing Model Developed with Doi's Constitutive

Equation "Viscous" in Nature?

In this section the behavior of the fiber spinning equations derived using Doi's

consitutive equation is explored in the absence of gravitational, surface tension and

inertial effects. The development of the fiber spinning equations parallels the

development with the constitutive equation of Bhave et al. described in Section 4.3.1.

In the absence of gravity, surface tension and inertia the momentum equation given by

Eq. 4.26 reduces to

T - T- - (4.40)

Doi's expreson for the stress tensor is obtained if the solvent viscosity term and the

hydrodynamic drag term in Eq. 3.12 are neglecte The stress tensor equation for the

fiber spinning model then reduces to

TZZ -Trr 3 S - (2S 1( - ) (4.41)
T ( 3

Doi's equations for the evolution of the structure tensor am obtained if the time constant

A in Eq. 3.14 is replaced by the following expression

X a XAo(l - 3 (S (4.42)
2

and a is takn to be unity. Ihe evolution equation for the fiber spinning problem is then

given as follows
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d = ( -S)(2S+1) * S _D -S(2S+ 1) (4.43)
dC dr 9(IS2)2De 3 )

Combining Eqs 4.40 and 4.41 the following algebraic relation between the velocity and

order is obtained.

T (3(-.2s+ lx -_S) (4.44)

Differentiating Eq. 4.44 and substituting the result in Eq. 4.43 gives the following

differential equation for S which depends only on S.

S(1- N IXI -))
dS T 3(4.45)

5P 3D 2 1 + (I -SI S2X3S+ I

Equation 4.45 along with the entry condition on the velocity, I = 1/DR, expressed in

terms of the initial order S(O) through the relation given in Eq. 4.44 constitues an initial

value problem for S in terms of the unkno algebraic parameter T. The meter T

is set by the requirament on the exit velocity, 0 = 1.

Neglecting gravity, surface tension and inertial effects it is clear from Eq. 4.28 that

it is not possible to obtain an explicit relation between and S for the Bhave et al.

constitutive equation unlike the Doi model (cf. Eq. 4.44) due to the velocity gradient

rmn ddl, that arises from hydrodynamic and solvent montribution to the sress. Thus,

$(0) canm be detmined from (O) as with the Doi modeL Cosequenty. to solve the

fiber spinning equti ried using the Bhave et a constitutive equation, Eqs. 4.26

4.29, an initial can on the on rder is required i to the initial condition

on the velocity. Analoously, with isotrop vioeas models such as the White

Metner model (F r and Denn, 1976), an initial sre ion is required in
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addition to the initial condition on the velocity due to upstream memory effects. For the

Doi model, the order S along the spinline, and consequently the stress according to Eq.

4.41., are completely specified without having to supply an additional initial condition on

the order due to the explicit relation between q and S! In fact, this behavior is analogous

to the viscous models such as the Newtonian or power-law models where the spinline

stress is completely specified by entry and exit conditions on the velocity alone.

The paradoxical visous-like' behavior arises from the absence of a term

involving the velocity gradient in the stress tensor. The analysis here exposes a serious

limitation with Doi's model in the complex fiber spinning flow. The behavior of Doi's

model in other complex flow situations must be examined carefully.

4A Linear Stability Analysis

Because the steady-state analysis shows little impact of using the closure approximation

and becase the closed form of the constitutive equation obtained by using the closure

approximation is much more convenient to use than the diffusion equation/stress tensor

equation pair. the model of Bhave et al. is used to study the stability of the fiber spinning

flow. The developntnt of the linear stability equations and boundary conditions is

preseted in Section 4.4.1. Results from the linear stability analysis are presented and

discussed in Section 4.4.2.
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4.4.1 Governing Equations and Boundary Conditions

The stability of the steady-state fiber spinning to infinitesimal disturbances is determined

by linearizing the system of partial differential equations about the steady-state. The

dependent variables are allowed to depend on both time and axial position and are

distinguished from their steady-state counterparts by denoting the steady-state solutions

with a subscript "on; for example, the steady-state axial velocity vz is denoted by vo.

The continuity equation is

aA+ t av z ) = (4.46)

and the momentum equation has an additional acceleration term

±z + io vz a a ilnvz] a, alnvz (4.47)
% Ct Z- L Z A (z- a-2 A g

The time derivative of S. which was dropped in the steady-state analysis must be added

to the structure evolution equation.

a' + Vi =. (lS -)(2 +1) z - 1) (4.48)at + Yrz = (zS) (I
Finally, the stress tensor equation is unaffected and is still given by Eq. 4.24.

Again it is convenient to solve the momentum equation for the normal stress

difference
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F(t) + s -2 A(Ot) ds
A A(z) + jf dALt)j A0 (4.49)

A rA(Z as + at

The primary variables involved in the linear stability equations are A, vz , and S. Thus

each of them, as well as the force F, are written as a small, time-dependent perturbation

about the steady-state

A(z,) = Ao(Z)( + a(z)e vLt # )

vZ(z,t) - vzo(z)( + v(z)e LL)

S(z,t) = S(z)(l + s(z)e LL)

F(t)= FO(l + fe vL )

(4.50)

where a,v,sfll. Note that a, v, and s depend on z but that f is a constant. The

parameter that appears in the exponent is the dimensionless eigenvalue.

The same dimensionless scalings as used in the steady-state analysis are introduced

next. Retaining tenns linear in the perturbation variables gives

da dv
PO0 = - 0' - 8adt;dt

v d% o v 4S; d 0 S oTo (a-f)
oW dX (2o + 3/(1-3)) s 3De(2So + 3/(1-3))

3S o(l- (+2So-6SO) + N/(1-) 

+ Re<oL(.4q. 3(2So 4+ /(1 -13))

2Ca O-4(OoDR)"l2)a+Reo -o)a+O FrV+ ea -

(4.51)

(452)
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d 2 Re Re 8v + 4a+v) (4.53)
d; Fr0 d;

ds dSo doo
oSOd-: - SoS -o -0 -(v+s) + -HI(v,s,SO) +2l; d; H2(S)(4.54)

,o( +S - 2So2) dv H2(So) S
+S_ + De_ s

where

Hl(v,s,So) = v + So(v+s) - 2S2(v+2s)

H2 (S) = So( (- ) + 3 - 2NSoJ (4.55)

In Eq. 4.52, 11.o refers to the steady-state solution to Eq. 4.27.

The eigenvalue 8 and the perturbation variables are allowed to be complex. The

set of equations is locally stable for Re 8) < O. Thus, the critical draw ratio, DRrit,, at

which draw resonance first appears corresponds to Re68) = 0. For all DR > DRirv

spinning profiles predicted by the model are unstable.

To solve for the 5 complex unknowns, a, v, s, 12, and 8, 10 boundary conditions

are needed. Equations 4.51-4.55 are developed by assuming that draw resonance is

caused by a time-dependent variation in the take-up force at a fixed take-up velocity and

a fixed extrusion rate. It is further assumed that the degree of extrudate swell is

unaffected by the downstream conditions, in which case the cross sectional area in the

extrudate swell region will be constant. These assumptions are the same as those adopted

by Fisher and Denn (1976) in their analysis for the White-Metzner model. With these

assumptions the boundary conditions for a, v, s, and 12 are
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at 5 = 0,

Refal, Re(v), Reis), Re{12) = 0
Imfa), Imlv), Ims), Im(1l2 = 0 (4.56)

at = 1,

Re(v), Im(v = 0

It is worth noting that even though the perturbation variables are zero at = O, their

gradients are not zero, because of the forcing term involving the constant f. The absolute

value of the arbitrary magnitude of the disturbance f does not affect the critical draw

ratio.

The steady-state and linear stability equations were solved simultaneously to

determine the critical draw ratio. As with the steady-state equations, a shooting method

in conjunction with the semi-implicit Runge-Kutta stiff ordinary differential equation

solver was used to determine the critical draw ratio.

44.2 Results and Discussion

As mentioned in the introduction, by using an eigenvalue approach to linear stability

Gelder (1971) showed that the Newtonian model is unstable for all draw ratios greater

than 20.21. Shah and Pearson (1972) in their work with the inelastic, power-law model,

show that extension thinning (n < 1) and thickening (n > 1) predict critical draw ratios

less than and greater than 20.21, respectively. Also, the more pronounced the extension

thinning, the smaller the critical draw ratio is observed to be. This is consistent with the

fact that if the viscosity decreases with increasing extension rate along the fiber length,

the ability to dampen fluctuations also decreases, thus lowering the stability. A similar
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correlation is observed between ila and the stability for the liquid-crystal model.

The dependence of DRot on De is shown in Fig. 4.9. First consider the effect of

a on DRit for S(0) = S$. Recall from Fig. 4.7 that a = 1.0 produces a slight extension

thickening in the apparent elongational viscosity. Correspondingly, there is very little

variation in DRait from the Newtonian value as De increases. However, for a = 0.1 in

the region where rla extension thins (note that UL = De(d/d); = 1 varies nearly linearly

with De, since (d/d);C = does not vary much with De as seen from the velocity profiles

in Figs. 4.5a and 4.6a), the critical draw ratio is lower than the Newtonian stability limit

of 20.21; and its magnitude depends on the degree of extension thinning. As the apparent

elongational viscosity approaches a constant limiting value at large elongation rates, DR crit

increases and finally reaches the Newtonian stability limit. A similar correlation between

la and DRcrit is observed for S(0) = Se except at the high De asymptote where DRcrit is

greater than the Newtonian stability limit. The reason for the departure is possibly

associated with an increase in the elongational viscosity down the spinline at high De.

Next consider the effects of surface tension, gravity, and inertia on stability.

Comparisons with the steady-state experimental data showed that surface tension and

gravity are important at least at low De. In addition, inertial effects are probably

important at high De. Recall that Shah and Pearson (1974) studied the stability to

infinitesimal disturbances in the inlet velocity with the take-up force held constant for a

Newtonian fluid. They showed that whereas inertia and gravity are stabilizing, surface

tension is destabilizing. Chang et al. (1981) also studied the effect of inertia, gravity, and

surface tension on the stability of a Newtonian fluid, but to infinitesimal disturbances in
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the take-up force in which the inlet and take-up velocities are kept fixed, and obtained the

same qualitative trends. However, they demonstrate that the results of Shah and Pearson

overpredict the stabilizing effect of gravity and underpredict the destabilizing effect of

surface tension, which indicates that the onset of draw resonance is more sensitive to

fluctuations in the take-up force than the inlet velocity. The stability of the Newtonian

fluid to infinitesimal disturbances in the take-up force was also studied in this analysis

in order to obtain a basis of comparison for the stability of the liquid-crystal model at

small values of the Deborah number. The results so obtained agree well with those

reported by Chang et al. (1981).

The stability of the liquid-crystal model for a = 1.0, when inertial, gravitational

and surface tension effects are taken into account, is shown in Fig. 4.10 for several values

of De. Whereas the exit conditions are used to define the dimensionless groups in this

analysis, Shah and Pearson (1974) and Chang et al. (1981) employ the inlet conditions.

Transformnation from one basis to the other can be easily made through Eq. 30 and by

recognizing that the Weber number, We, is defined as (pvL2)1(os2R). As with the

Newtonian model, inertia and gravity are stabilizing, whereas surface tension is

destabilizing. The Newtonian limit is reproduced at low De as expected, provided that

the zero-elongation-rate elongational viscosity, d0 , is used to define the dimensionless

groups Re, Re/Fr and Re/We. The agreement with the Newtonian results is not quite as

good if 3%To is used to define these dimensionless groups, as Shah and Pearson (1974) and

Chang et al. (1981) did in their analyses of the Newtonian model; the underlying reason

for this difference is that, whereas the Newtonian elongational viscosity obeys the Trouton
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formula, ii for the liquid-crystal model does not. It is interesting that the stability

behavior shown in Fig. 4.10 changes very little with De, which may not be surprising

given that the Newtonian stability limit is preserved for all De with a= 1.0, as discussed

previously in connection with Fig. 4.9. For other choices of a, say a=0. 1, the effect of

De on a stability diagram such as Fig. 4.10 is certainly tangible. Since the critical draw

ratio in the limit of zero Re, Re/Fr and Re/We varies with De for a = 0.1 (cf. Fig. 4.9),

the critical draw ratio for some finite, but equal, value of the dimensionless groups Re,

Re/Fr and Re/We would necessarily be different from the Newtonian limit (small De) at

least for moderate values of De, because of the predicted extension thinning effect on the

stability.

Prilutski (1984) has reported DRst values for three different final stretch rates.

The data are shown in Fig. 4.11 along with the linear stability prediction of the model.

The drop in DRit from 18.18 to 4.8 over a narrow range of tL is significant. Surface

tension might be expected to play a role in the destabilization. However, the

dimensionless group Re/We is inversely related to De for fixed Ro. Thus the destabilizing

effect of surface tension is insufficient, since Re/We is of order 0.1 for De = 0.01 (cf. Fig.

4.10) encountered in the steady-state experiments; and De :, 0.01 in the stability

experiments (Prilutski, 1991). Consequently the destabilization must be an extension

thinning effect. However, in the steady-state experiments very little extension thinning

was observed, since high elongation rates were never reached. Since the flow rates and

the lengths of the spinlintr at which the critical draw ratios were determined are not

known, a comparison is attempted by considering two different scenarios by which draw

resonance can be obtained experimentally: (1) increase the flow rate while keeping the
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length fixed and (2) decrease the length while keeping the flow rate fixed. In the first

situation the length is assumed to be the same as that in the steady-state experiment with

which we have compared our model predictions. In the second situation the flow rate is

assumed to be the same as that in the steady-state experimental data. Model parameter

values are those determined from the comparison with the steady-state experimental data.

Figure 4.11 shows that the comparison with the data is poor for both situations. As

evident from Fig. 4.9, a much lowez value of e would be required to predict the observed

extension thinning instability. Next an attempt was made to find values of a and A for

which the comparison with the data is good, provided that the effects of gravity, surface

tension, and inertia are ignored. It can be seen that for o of 0.05 and a X of 3.95x10'2

s the neutral stability curve fits the data well. No attempt was made to determine the

neutral stability behavior beyond an elongation rate of 40 s' , since no data exist in that

region. However, the critical draw ratio increases beyond an elongation rate of 30 s '1.

and it is expected to approach the Newtonian value at high elongation rates. Prilutski

reports good agreement with his draw resonance data by using Doi's constitutive equation.

However, in his analysis Prilutski replaces Doi's model with an equivalent generalized

Newtonian fluid model with a variable power-law index n where n is determined from

the dependence of i on t. Menon (1990) shows that fl for Doi's model is a constant at

small values of e but extension thins at intermediate and high values of e; in fact, at high

values of t, extension thins sharply according to Eq. 3.18. Thus, according to the

power-law analyses of Shah and Pearson (1972) and Kase (1985), DR,crt is constant at the

Newtonian value of 20.21 for small values of t, but decreases sharply to 1.0 for high

values of t when extension thins at a power-law index of 0.0 according to Eq. 3.18.
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Consequendy. y,good agreement with the data is obtained by Prilutski. Note, however, that

Pri'lutskis analysis does not include memory effects which is important in modeling LCP

flows as indicated by the steady state results In addition, the experimental data at the

onset of draw resonance are not well chaaceried; that is. the flow rate, spinline length

and spinline ension at the onset of draw resonance are not known. Well characterized

experimental data at the onset of draw esonance is neto accurately judge the

model predictions. To the best of our knowledge the stability analysis presented here is

the fast for the full liquid-crystal constitutive equation.

4.5 Conchsons from Fiber Spinning Analysis

By using the constitutive equation of Bhave et at. (1993) for nematic rodlike liquid-

crystalline polymer solutions, isothermal fiber spinning models with and without the

closue approximation that predict the development of microstructure, velocity, and

normal stresses along the spinline were developed, and the effect of two different initial

microstructural conditions on the spinning process was examined. A linear stability

analysis of the fiber spinning equations was also carried out to predict the onset of

instabilities such as draw resonance. The steady-state results show that velocity, structure,

and sress profiles are sensitive to the choice of the initial condition. The closure

approximation has only a small effect on the velocity and stress profiles and appears to

give reasonably accurate results for the prolate, uniaxially symmetric fiber spinning

model. Model predictions agree well with the steady-state data of Prilutski (1984) for the

hydroxypropylcellulose (HPCYacetic acid system, but the data are for small De and
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consequently do not conclusively support one initial microstructural condition over the

other. inear stability predictions in which the model parametes are determined from

the comparison with the steady-state data and values for the unknown length of the

spinlie (varying the flow rate) or the flow rate (varying the length of the spinline) are

assumed are poor. The critical draw ratio is overpredicted by an order of magnitude at

higher elongation rates. Good quantitative agreement is obtained only if the time constant

X is roughly 10 times that in shear flow and the anisotropic drag parameter a is a factor

of 20 smaller than the value that fits the steady-state fiber spinning data. Another

intesting result of this study is that the apparent elongational viscosity defined by Eq.

37 compares well with the elongational viscosity i predicted by the constitutive equation,

thereby suggesting that the fiber spinning flow can be used to determine ?f for a liquid-

crystal polymer solution. In addition, the neutral stability curve constructed from a

power-law approximation to the apparent elongational viscosity curve, gives a good

estimate of the neutral stability curve determnnined by solving the full linear stability

equations.

In the spinning of liquid-crystalline polymer solutions where the spinline distance

over which the polymer solution can be regarded as isothermal or over which the

concentration can be regarded as constant is extremely small, the one-dimensional, small

slope approximation is questionable. The one-dimensional approximation also assumes

cross-sectional homogenity in the order, velocity and stress. Moreover, the one-

dimensional simulations presented here suggest that upstream conitions are importan;.

It becomes necssary then to develop a two-dimensional, numerical model for the fiber

spinning problem which couples to the upstream spinneret flow. Two-dimensional flow
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calculations through the spinneet, which constitutes the upstream portion of the fiber

spinning process, jew discussed in Chapters 5 and 6.

4.6 Direct Solution of Diffusion Equation: A Comparison of Legendre

Polynomial Expansion Technique (LPET) with the Double agrangian

Method (DLM) of Szeri and Leal

The effect of closure approximation for rigid rod models has been the object of much

study lately (for e.g. Advani and Tucker, 1987; Kamal and Mutel, 1989; Altan et al.,

1989; Lason and Cttinger, 1991; and Szeri and Leal, 1993). As mentioned in Section

3.2.2 Larson and Ottinger (1991) show that use of the closure approximation results in

the evolution equation's not describing physical phenomena such as molecular tumbling

at low shear rates in a steady shear flow of a concentrated liquid-crystalline polymer

solution. The approximation poses few problems in elongationally dominated flows and

does not modify any physical phenomena, at least for prolate molecular orientation about

the stretching axis as demonstrated in Sections 4.' and 4.3. A more serious problem

associated with the closure approximation is the appearance of spurious negative values

in the distribution function as demontrated by Szeri and Leal (1993) for a planar Couette

flow of a dilute solution of rigid rods. Moreover, a statistically averaged quantity such

as the stuctre tensor S, which is a measure of the variance in the order, could hide

signifcant local information about the distribution density in orientation space if the

distribution density is skewed about the maximum value or exhibits other complex

phenomena such as scondary local peaks in the distribution. Though the distribuuion
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function provides useful information about the local orientation of the particles, the

solution of the diffusion equation could be computationally prohibitive for complex flows

especially with standard finite-difference schemes such as the one used by Kamal and

Mutel (1989). More sophisticated methods are the double Lagrangian technique of Szeri

and Leal (1993) used to solve the planar Couette flow of a dilute suspension of rigid rods

and the LPET discussed in Section 4.3.2 in connection with the fiber spinning of

concentrated liquid-crystalline polym;e solutions. In the ensuing paragraphs the bases

behind the two methods are contrasted and their merits and demerits are discussed briefly.

The double Lagrangian method employed by Szeri and Leal is addressed as such

since it is Lagrangian in orientation space and physical space. The technique is

Lagrangian in orientation space since it tracks a particular particle trajectory in orientation

space. It is Lagrangian in the physical space since it tracks the distribution function

associated with a fluid element in physical space. In contrast the LPET uses the

conventional Eulerian form of the diffusion equation. Thiat is, instead of tracking particle

trajectories, it conserves the number of system or material points as they move through

a particular region of orientation space. The evolution of the distribution function is also

Eulerian in physical space.

Let uo be the orientation vector associated with a particle at time t=O. At a future

time t, the orientation of the particle, (t,uo), is determined by solving the following

partial differential equation for the map between the initial and deformed configurations

in orientation space (Szeri and Leal, 1993):
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a 1- 2Q + G[i -.tuiuiu] - DOdet(V )V[( ) (457)

G is a particle shape factor, Q is the vori ity tensor, and Do is the Brownian diffusivity.

The distribution function associated with a fluid element in physical space, f*(tu o) is

tracked by the following equation

f*(t,uo) (458)

f(O,uo) det(Voi(tuo))

which is a Lagrangian form of the conservation statement for the distribution function.

The Eulerian form of the distribution function, f(tu) and the Lagrangian form of the

distribution function f*(tuo ) are related by the definition

f*(t,uo ) = f(t,u) Iu=ia(tuo) (4.59)

Calculation of the stresses for an initially isotropic orientation (f*(O,uo)=1/4x) requires

integral moment evaluations such as

<uu>(t) = fr(tuo)uudu =1 fr(tu.o)a(tu o)duo (4.60)

The stresses are coupled to the mass and momentum transport equations in the solution

of flow problems.

By simply releasing a set of particles, whose initial distribution of orientations is

known, their orientations are allowed to evolve in a natural way according to Eq. 4.57.

At a later time, more particles will be concentrated where sharp peaks in the orientation

are encountered and few where they are not. In the evaluation of moment integrals, such

as Eq. 4.60, a higher resolution will result where the integrand is large numerically and

a lower resolution will result where the integrand is small numerically. Thus, the
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reformulation of the governing equations in a Lagrangian form allows the double

Lagrangian method to determine the discretized form of the coordinate map f(t,Uo), and

hence the moment integrals, in a self-adaptive way. In contrast, the LPET cannot be

selective about the number of Legendre polynomials required to depict sharp and non-

sharp peaks in the distribution function. If both sharp and non-sharp peaks are

encountered many polynomials are wastefully employed in depicting non-sharp or

sparsely populated regions. Equations for the evolution of different initial orientations

are decoupled in the double Lagrangian method which makes it easy to parallelize the

solution of these equations. With LPET the evolution equations for the Legendre

coefficients are coupled.

LPET also has its advantages. In flow problems, the solution of the momentum

conservation equation is coupled with the difffusion equation through the stress tensor.

The stress and other statistical measures of the order require numerical evaluation of the

integral moment equations with the double Lagrangian method, whereas, the moment

evaluations, though complicated, are expected to be analytical for many flow situations

with LPET. In the double Lagrangian method the stress associated with a fluid element

is calculated in a way that is Lagrangian in physical space (cf. Eq. 4.60). This

information must then be coupled with the macroscopic flow equations which are

generally solved in an Eulerian frame of reference. In the planar Couette flow, the fluid

elements trace parallel trajectories in the flow direction, say, the x-direction; that is, the

flow is transationally invariant. Thus, tracking the fluid elements (and the associated

stress) through physical space is not an issue and a grid in the gradient direction, the y-
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direction, that gives an adequate numerical representation for the divergence of the stress

that appears in the macroscopic momentum equation at time t=O is expected to be

adequate at a later time t. However, most complex flows are not transationally invariant.

A situation may arise in a flow where the fluid elements are "close enough" at time t=O

to provide an adequate approximation to the divergence of the stress but are "not close

enough" at a later time t to provide an adequate approximation to the divergence of the

stress; that is, the discretization in physical space at time t is coarse. It may be necessary,

then, to introduce more fluid elements at time t=O so that a refined enough discretization

in physical space can be achieved at time t. This can lead to wasteful discretization

where it is not needed; for example at time t=O. Thus, the double Lagrangian method

may not be easily amenable to local discretization in the physical domain. In contrast,

LPET is amenable to local refinement in the physical domain.

It would be interesting to first make a quautitative evaluation of the two methods

by performing a direct calculation of the planar Couette flow using a spherical harmonic

expansion sincu results already exist with the double Lagrangian method. The two

methods then need to be compared in more complex flows that are not translationally

invariant and where local refinement in the physical domain are expected to improve

compuational efficiency. The possiblity of using expansion techniques that use wavelets

or other basis functions which minimize the number of terms required to capture sharp

peaks in the orientation distribution also needs to be explored.
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Chapter Five

Two-dimensional Flow Problems

Most processing flows of interest, such as extrusion flows, flows through contracting dies

and injection molding flows, are not simple flows, but mixtures of shear and extensional

flow components in different proportions. These complex flows, unlike simple shear and

extensional flows, are governed by sets of nonlinear partial differential equations, which

in general must be solved numerically with techniques such as finite-element methods

(FEM) or finite-difference methods. The equation set to be solved for the liquid-

crystalline flow problem is composed of the equation of conservation of mass, the

equation of conservation of linear momentum, and the constitutive equation which

comprises the evolution equation for the structure tensor and the equation for the stress

tensor which relates the stress in the fluid to the velocity gradient and the structure tensor.

The numerical solution of similar equation sets for viscoelastic flow problems hnd

met with failure until King et al. (1988) showed that the primary cause of these

difficulties was associated with using numerical methods not consistent with the

mathematical type of the system of equations. They showed that an understanding of the

interaction between the mathematical type of the equations and the numerical procedure

employed is essential to the development of stable and convergent FEM algorithms. The

governing equation set has six characteristics associated with the six canonical variables

for the equation set: two imaginary characteristics associated with incompressibility, two
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real streamwise characteristics associated with the normal stress components, and two

characteristics associated with the components of the momentum equation that may

change type from imaginary to real for flows with inertia (Joseph et al., 1985). The

Explicitly Elliptic Momentum formulation (EEME) of King et al. (1988) respects the

mathematical type of the equations. The momentum equation is written in terms of a

second-order partial-differential operator that is elliptic when the change of type has not

occurred. Using the EEME formulation, King et al. (1988) computed stable and accurate

solutions for steady viscoelatic flows of an Upper-Convected Maxwell (UCM) model

between concentric and eccentric cylinders with the inner cylinder rotating, and for steady

flow of a UCM fluid between a stationary inner ellipse and a rotating outer cylinder

(King, 1987).

For an Oldroyd-B model, the stress is the sum of a polymer contribution and a

solvent contribution. The polymeric contribution is described by the UCM model and the

solvent contribution is described by the Newtonian model. Consequently, an Oldroyd-B

model reduces to the UCM model in the limit of zero solvent viscosity. Joseph et al.

(1985) found that the mathematical type of the system of equations governing a two-

dimensional flow described by the Oldroyd-B model is qualitatively different than in the

limit of zero solvent viscosity. Including the solvent viscosity introduces higher-order

derivatives into the equation set, and the seven canonical variables associated with the

equation set governing flow are: the pressure, the three components of the velocity

gradient tensor and the three components of the polymeric part of the deviatoric stress

tensor. The corresponding characteristics are: two imaginary characteristics associated
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with incompressibility, two more imaginary characteristics associated with the components

of the momentum equation and three real streamwise characteristics associated with the

components of the polymer part of the stress tensor. Consequently, the inclusion of a

Newtonian solvent contribution changes the mathematical type of the equations governing

a two-dimensional flow. Rajagopalan et al. (1990) developed the Elastic-Viscous Split

Stress (EVSS) formulation that respects the mathematical type of the system of governing

equations even for viscoelastic constitutive models with a non-zero Newtonian solvent

viscosity. An elliptic operator is constructed for the momentum conservation equation

by extracting a viscous contribution from the polymeric part of the stress in addition to

the Newtonian viscous contribution from the solvent part of the stress. Using the EVSS

formulation Rajagopalan et al. (1990) computed stable and convergent solutions for the

steady flow of an Oldroyd-B fluid between eccentric cylinders with the inner cylinder

rotating and for steady flow through an axisymmetric corrugated tube.

Mixed finite element methods for computation of viscoelastic flows governed by

differential constitutive equations vary not only in the formulation but also in the

polynomial approximations used for the velocity, pressure and stress fields. Computations

of the linear stability of the UCM model in a homogenous, rectilinear shear flow by

Brown et al. (1993) revealed that the frequently used biquadratic polynomial

approximation to the velocity and the stresses and bilinear approximation to the pressure

predict a fictitious numerical instability beyond a critical value of De with either the

EEME or the EVSS formulation. In fact theoretical results demonstrate that this flow is

always stable. Brown et al. (1993) developed the EVSS-G formulation for which the

144



numerical instability disappears; linear stability calculations for the homogenous,

rectilinear shear flow are stable to values of De in excess of 50 and converge with mesh

size and time step. The EVSS-G formulation differs from the EVSS formulation in that

it includes smooth interpolation of the velocity gradient tensor which is compatible with

a bilinear approximation to the stress tensor, as opposed to the interpolation of the rate-of-

strain tensor and a biquadratic approximation to the stress tensor. The EVSS-G

formulation is described in greater detail in Section 5.3.2.

The boundary conditions imposed on the flow domain for a boundary-value

problem must also respect the mathematical type of the governing equations. Menon

(1990), paralleling the analysis of Joseph et al. (1985) for an Oldroyd-B model, studied

the mathematical type of the system of PDE's governing two-dimensional flows of liquid-

crystalline polymer solutions described by the constitutive equation presented in Section

4. The results from the analysis are discussed in Section 5.1.2.

A description of the flow through a spinneret, which can be represented

simplistically by the flow through an axisymmetric contraction (cf. Fig. 5.1), is presented

in Section 5.2. Studying such a flow is crucial to the processing of liquid-crystalline

polymers. The unique strength of LCP's such as Kevlar, which possess a modulus

comparable to steel but at one-fifth the weight, result from the high degree of molecular

orientation present in the final product. In a LCP fiber most of the orientation results

from the contraction flow through the spinneret and the spinning process that follows.

Consequently, it is very important to understand the interplay between the polymer flow

and the development of molecular orientation during extrusion and spinning to predict and
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control the properties of the final product.

The axisymmetric flow geometry we have chosen, which is shown in Fig. 5.1, has

some inherent advantages. The contraction boundaries are smooth and tapered, in contrast

with the flow through an abrupt contraction (Yeh et al., 1984, Coates et al., 1992) or a

tapered contraction with sharp corners at the junctions upstream and downstream. It is

clear from Eq. 3.12 that the asymptotic singular behavior in the stresses near sharp

corners must be the same as the velocity gradient, i.e. Newtonian-like, since the

components of the structure tensor S are bounded. The asymptotic analysis first

performed by Dean and Montagnon (1949) and later extended by Moffatt (1964) for an

inertialess Newtonian flow near a sharp comer reveals that the asymptotic singular

behavior in the stresses and pressure in a tapered contraction with sharp corners is weaker

than the singular behavior in the stresses and pressure in an abrupt contraction close to

the reentrant corner. However, the local velocity gradient at the reentrant corner is still

infinite which leads to drastic changes in the solution field around the comer. In fact, due

to the high shear rates which exist on the upstream and downstream wall boundaries close

to the corner, the polymer molecules are aligned parallel to respective boundaries.

Consequently, the components of the structure tensor are degenerate at the sharp comer

which makes it difficult to obtain convergent results even for a 2:1 contraction at

moderate or high concentrations. Smoothing the corners overcomes this problem and

allows the computation of the solution field to higher contraction ratios at all

concentrations.

The mathematical type of the equations governing the steady two-dimensional flow
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of a LCP solution modeled by the closed form of the constitutive equation presented in

Chapter 3 is similar to the mathematical type of the system of equations governing the

flows of polymer solutions modeled by the Oldroyd-B or the Giesekus constitutive

equations as demonstrated by Menon (1990) (cf. Section 5.1.2). Consequently, a finite

element formulation based on the EVSS-G formulation of Brown et al. (1993) is used.

The important features of the EVSS-G formulation are described in Section 5.3.2. The

finite element method used for the liquid-crystalline flow problem is also presented in this

section.

5.1 Mathematical Type of Equations Governing LCP Flow

Menon (1990) studied the mathematical type of the system of equations governing the

steady two-dimensional flow of a LCP solution modeled by the constitutive equation

presented in Chapter 3 in a manner similar to the approach used by Joseph et al. (1985)

to determine the mathematical type of the equation sets governing the two-dimensional

viscoelastic flows modeled by the UCM and Oldroyd-B constitutive equations. The

governing equations are first reduced to a system of first-order quasilinear partial

differential equations. The characteristic curves which reveal information about the

mathematical type of the equation set are then determined by using a standard procedure

described in texts by Whitham (1973) or Carrier and Pearson (1988). A brief description

of this method is presented in Section 5.1.1. The method assumes that at least some of

the characteristics are real i.e. the system of equations may all be hyperbolic or of mixed

hyperbolic and elliptic character. The method cannot be used directly to determine the
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characteristics of a system which is totally elliptic.

5.1.1 Classification of a System of Quasilinear, First-Order, Partial Differential

Equations

A general quasilinear first-order system of partial differential equations can be written as

E -f ) (5.1)
i-l I axi

where u = (up, u2,....uk) is a k-dimensional vector comprising the canonical variables and

Ai is a k x k matrix which like the inhomogenous vectorf may depend on the components

of x and u. If Ai is independent of u andf is either linearly dependent or independent

of u then Eq. 5.1 is a linear system.

The characteristics of the equation set 5.1 are defined as curves along which the

equations can be transformed to ordinary differential equations in a coordinate system

with components parallel and orthogonal to the characteristic curves. The prescription of

Cauchy data along a characteristic is insufficient to permit the determination of the

solution field in areas adjoining the characteristic (Carrier and Pearson, 1988). Cauchy's

theorem of causality governs the well-posedness of an initial value problem. From the

definition of a characteristic it follows that data prescribed along the characteristic curve,

(x 1x 2.... ) = constant, violate the theorem. Consequently, the characteristic curves for

Eq. 5.1 are determined from the converse of the causality theorem, which is written as

detr AE (x) =0 (5.2)

The application of the theorem of causality assumes evolutionary character of the equation
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set 5.1 and consequently possesses at least one family of real characteristics.

There is a possibility that some or all of the matrices A i in Eq. 5.1 are singular.

This indicates that some of the original coordinate axes are characteristics. Yet in some

cases where all matrices A i are singular, the system of equations are so degenerate that

they must be excluded. If the trouble is merely that the original axes coincide with

characteristics, a rotation of the axes will lead to nonsingular matrices (Whitham, 1973).

This replaces the original matrices A i by a linear combination of these matrices so that

det(vAi+ pA,) * 0 (5.3)

and the constants v and ti are both not zero. In most cases where the system of equations

are degenerate and Eq. 5.3 cannot be satisfied, the degenerate system of equations are

unnecessarily large and can be reduced to smaller systems with coefficient matrices that

satisfy Eq. 5.3 (Whitham, 1973).

Because the total derivative d along the characteristic is zero (Carrier and

Pearson, 1988), the chain rule of differentiation can be used to give

E addxi = (5.4)
i axi

It follows that

an dxE hi as (5.5)
axi i.¶,q dxj ax1

Making use of equation 5.5, equation 5.2 is written as

de l.-Ai J = 0 (5.6)
jc( x
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The slope of the characteristic curves in any pair of directions is found by solving Eq. 5.6

in those coordinate directions.

For a two-dimensional flow with coordinate axes xl and x2, which is of interest

in this study, the slope of the characteristics, a--(dx2/dxl), is found by solving the

equation

det(A2 -aAl) = 0 (57)

Thus an expression is obtained for a, say cc=a(xl, x2, u). The characteristic curves are

found analytically or by stepwise numerical integration from the relation

2 = a(xi,x 2 ,u)dr + constant (5.8)

The members of a family of characteristic curves differ only by a constant of integration.

S.1.2 Classification of System of Equations Governing LCP Flow

The equations governing the flow of a LCP solution modeled by the closed form of the

constitutive equation presented in Chapter 3 are as follows:

(Vv) = o (5.9)

Vp + IVc] O (5.10)

S= - t - nk I (l- )S -N(SS)+N(S:S)(S+ )+2(-cSXS+ 8) (5.11)

S(,) F(S) + G(rS) (S.12)

F(S) -= -)S - N(S-S) + N(S S)(S + )] (5.13)
3 3

G(S,) = - 2(wzS)(S + ) (5.14)
3 3

Equation 5.9 is the conservation of mass equation for an incompressible fluid and Eq.
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5.10 is the momentum conservation equation for inertialess flows, ie. Re=O. Because

most polymer processing flows are basically inertialess Menon (1990) analyzed the

mathematical type of the foregoing equations only in this limit.

Menon presented a mathematical type analysis of the governing equations 5.9-5.14

for a general two-dimensional flow in Cartesian coordinates. The mathematical type of

the governing equations is expected to be independent of the coordinate system. Though

not presented, Menon in fact performed a similar analysis for the case of a two-

dimensional axisymmetric flow, which has a direct bearing on the problem studied here,

and confirmed that results are qualitatively similar to the results obtained in Cartesian

coordinates.

In Cartesian coordinates, the equation set 5.9-5.14 is first reduced to a system of

quasi-linear first order partial differential equations of the form

AIM + A2uy = f (5.15)

The corresponding set of canonical variables are u(p, v/ax, aVy/ax, av./ay, SX, S,1

Syy). Using the rules for classification of a system of quasilinear, first-order partial

differential equations presented in the previous section, Menon showed that for zero

solvent viscosity the characteristics associated with the pressure, velocity derivatives and

the structure tensor components are all real, and hence hyperbolic. The hyperbolicity of

the structure tensor components means that the microstructural information in the flow

is convected hyperbolically along streamlines.

For any non-zero solvent viscosity, the characteristics associated with the seven

canonical variables are different. The characteristics associated with the structure tensor
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components are still hyperbolic. However, the characteristics associated with the pressure

and velocity derivatives are now complex, and hence elliptic. The elliptic behavior of

these characteristics result from the dominance of the solvent viscosity operator in

determining the mathematical type. Therefore it follows that for non-zero solvent

visccsity, the characteristics associated with the equation set 5.9-5.14 are of mixed type.

The mathematical type determined by Menon for the equation set governing the

flow of the LCP solutions modeled by the constitutive equation presented in Chapter 3

is similar to that of the corresponding system of equations for a polymer solution modeled

by the Oldroyd-B constitutive equation (cf. Joseph et al., 1985). Like Joseph et al.

(1985), Menon also found that the behavior of the system of equations is qualitatively

different in the limit of zero solvent viscosity (UCM model). Therefore, it is important

that a numerical algorithm used to solve a two-dimensional flow problem with the liquid-

crystal constitutive equation be consistent with the results of the mathematical type

analysis obtained by Menon.

5.2 Description of Contraction Flow Problem

The flow of a LCP solution through an axisymmetric contraction geometry is studied.

The importance of this flow problem in the processing of LCP's and the advantages of

the particular choice of boundary shape have been discussed in the introduction to this

Chapter.
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5.2.1 Flow Geometry for Contraction Flow

The contraction geometries examined in this study are depicted in Fig. 5.1a-b. The LCP

solution flows through a circular tube of radius R1 and length L1, which tapers smoothly

to a circular tube of radius R2 and length L2. The ratio of inlet to outlet radii, R1/R2 , is

the contraction ratio and is denoted by A. The small tube is taken to be long enough to

allow the velocity components to become fully developed in the small tube.

In Fig. 5.1a, the smooth contraction boundary is modeled by a cubic polynomial

C(R)=aR3 +bR2+cR+d such that C(R1 )=Rl, aC(Rl)/ar=O, C(R2)=R2, and C(R2 )/arO,

which completely specify the unknown coefficients a,b,c and d. Note that R-R(z).

In Fig. 5.lb, the smooth, tapered, contraction region is modeled by a conical

contraction with rounded corners. The two radii of curvature are presumed to be the

same. Shown in Fig. 5. c are two circles with the same radius, 9t, with the internal

common tangent of interest to the conical contraction boundary. The upstream and

downstream rounded comers blend with the conical part of the contraction at the end

points of the internal common tangent i.e. (xl,yl ) and (x2,y2) respectively. These

coordinates are set by the radii of the two circles and the separation distance between

their centers in the x and y directions.

As demonstrated by the geometric construction in Fig. 5.1c, the angle, 0,

subtended by the upstream and downstream corners at the center is the same. The angle

0 is given by the expression

sin(- t)= 29 where ant (5.16)

L(Xd-xU)2 + (,y-yd-2 9R) 2 Xd Xu
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Here, (xa,yu) and (xd,yd) are the coordinates at the junction of the upstream and

downstream tubes with the rounded comers. The angles subtended by rounded corners

of different radii are also the same which can be proved easily from basic geometric

principles. The angle, however, is now dependent upon the radii of both circles and the

distance of separation between their centers in the x and y directions. Once 0 is known,

(xl,y l ) and (x2,y2 ) are determined as follows

xI = + 9sin0; = Y - 9t(1-cos) (.17)
x2 = Xd - 9sin0; Y2 = Yd + 91t(1-cos0)

Polynomial shape functions are used in the mesh generation package developed

by Bornside (1993) to approximate curved boundaries. The next step is to determine the

polynomial shape functions that best approximate the rounded corners. A clue to the

choice of the appropriate class of polynomial functions is provided by the equation of a

circle in Cartesian coordinates

(x.vnY) are the coordinates of the(x,-..v.) are the coordinates of the

(5.18)

The positive sign is used to

describe the upper half of the circle and the negative sign the lower half. For small (xl-

x0)/9 = sinO, only a few terms in the binomial/perturbation expansion in (x-x0)/91,

y = yX0 X I Xr k (5.19)
Y = Yo 9 2( - I.(-t- 1 5- ..

are needed. This perturbation/binomial scheme can be extended easily to depict arcs that

subtend even large values of the angle 0 at the center (xo,yo) by breaking up the arcs into

small arcs and representing the small arcs by their respective perturbation expansions.
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The choice of the smooth and tapered boundary has an inherent advantage in

contrast with the flow through an abrupt contraction (Yeh et al., 1984, Coates et al.,

1992) or a tapered contraction with sharp corners at the junctions upstream and

downstream. It is clear from Eq. 3.12 that the asymptotic singular behavior in the stresses

near sharp corners must be the same as that of the velocity gradient, i.e. Newtonian-like,

since the components of the structure tensor S are bounded. The asymptotic analysis first

performed by Dean and Montagnon (1949) and later extended by Moffatt (1964) for an

inertialess Newtonian flow near a sharp corner reveals that the asymptotic singular

behavior in the stresses and pressure in a tapered contraction with sharp corners is weaker

than the singular behavior in the stresses and pressure in an abrupt contraction close to

the reentrant corner. However, the local velocity gradient at the reentrant comer is still

infinite which leads to drastic changes in the solution field around the corner. In fact, due

to the high shear rates which exist on the upstream and downstream wall boundaries close

to the comer, the polymer molecules are aligned parallel to respective boundaries as

shown in Fig. 5.2. Consequently, the components of the structure tensor are degenerate

at the sharp corner which makes it difficult to obtain convergent results even for a 2:1

contraction at moderate or high concentrations. Smoothing the corners overcomes this

problem and allows the computation of the solution field to higher contraction ratios at

all concentrations.
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Figure 5.2: Effect of sharp comer on molecular orientation.
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5.2.2 Governing Equations and Boundary Conditions

The governing equations for the axisymmetric contraction problem consists of the

equation set 5.9-5.14 written in dimensionless form. The scalings used to make the flow

variables dimensionless are shown in Fig. 5.1, and are the same as those used by Coates

(1992). The lengths are scaled with the downstream tube radius, R2. The radial and axial

velocities are scaled with the average downstream velocity, V2avg. This choice of

velocity scaling is appropriate from an experimental point of view: V2.avg depends only

on the flow rate through the geometry and not on the choice of the constitutive equation,

as other possible velocity scalings, such as the maximum downstream velocity V2 ,ax

would. The stresses and pressure are scaled with qloV2 .avg/R2, where ilo is the solution

viscosity defined in Chapter 4.

The Deborah number, De, an important dimensionless group for viscoelastic fluids

that arises from the above choice of scalings, is defined as the ratio of a characteristic

time of the fluid to a characteristic time for the flow,

De Xfluid hV2g (5.20)
tow R2

where Ah is the relaxation time constant in the limit of zero-shear-rate. The parameter j5

is the ratio of the solvent viscosity to the solution viscosity and is as defined in Chapter

4. The other parameters in the liquid-crystal constitutive equation (N and o) are already

dimensionless. With these scalings and dimensionless groups the governing equations in

dimensionless form are

V = 0 (5.21)
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DeVp + V- -Det - 3(1 - (1- N )S - N(S-S) + N(S:S)(S+ + ) +
a~p · P·(~i3~)3 3 +(5.22)

2De(cS)(S + ) = 

(1) - + 2(cS)(S+ 3) (1- )S - N(S-S) + N(S:S)(S+ )= 0 (5.23)

These equations are solved for the velocity, pressure and structure tensor in the flow

domain; note that v, p, aK and hence Y' are now dimensionless and different from the

quantities appearing in Eqs. 5.9-5.14. The stress tensor is determined subsequently from

the structure and velocity gradient by using the dimensionless equation

De = -De - 3( - (1 - N)S - N(S-S) + N(S:S)(S+ ) +
3 3 (5.24)

2De (cS)(S + 3)]

The stream function v for an axisymmetric flow is defined as

V = 1 A; v= I (5.25)

and is determined from the velocity field by solving the equation

)2V I l-a, a2 = rzr a vz (5.26)

where o n. is the zr-component of the vorticity tensor. It is convenient to write Eq. 5.26

in terms of the Laplacian operator to set up the finite-element residual equations.

Consequently, Eq. 5.26 is expressed in terms of the Laplacian operator as

V2W -2 =hy av, Cz (5.27)

The boundary conditions used to solve the above governing equations are described in the
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following section.

Boundary Conditions

The contraction geometries examined in this study are depicted in Fig. 5.1a-b. The

velocity field is assumed to be fully developed at the entrance of the large tube and the

small tube is taken to be long enough to allow the velocity to become fully developed and

minimize the effect of the axial location of the outflow boundary on the development of

the components of the structure tensor in the contraction geometry. The length of the

small tube necessary to meet this condition is larger for higher De. In general, the

downstream tube length L2 must be long enough so that

auid = De 2 c 1 (5.28)

where De is defined by Eq. 5.20, which leads to the general condition

_2 De (5.29)
R2

Thus, for De=l.0, L2/R2 1. The velocity field is presumed to be axisymmetric

throughout the flow and to satisfy the no-slip and no-penetration conditions along the

solid boundary. Along the centerline the radial velocity is set to zero. In summary, the

velocity boundary conditions are

v =0 on a Essential b.c.

vz = vz(r) on ar Essential b.c.
vr = 0 on ar ,, ar 0 arc Essential b.c. (5.30)

aZ = 0 on ar Natural b.c.

where the boundaries ar i, ar0 , ar s and ar c are as indicated in Fig. 5.1. A datum

pressure value, p=0, is set on the wall at the exit to completely specify the elliptic saddle
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point problem for velocity and pressure.

As discussed in Section 5.1.2, Menon (1990) demonstrated that for a non-zero

solvent viscosity, which is studied in this thesis, the components of the structure tensor

alone contribute hyperbolic character to the governing equation set. The hyperbolicity

demands that boundary conditions be specified only where the characteristics enter the

domain (Carier and Pearson, 1988). Menon's analysis would then require that the

boundary conditions for structure components need be specified only at the inlet of the

domain, ar i. However, the 00-component of the structure tensor is eliminated from the

problem since S is traceless, ard does not require a boundary condition specified on it.

In summary, in axisymmetric geometries these boundary conditions are

Sr = S,(r) on ar i Essential b.c.
Szz = Szz(r) on ari Essential b.c. (5.31)

S,z = Sz(r) on ar i Essential b.c.

These boundary conditions along with the equation set 5.21-5.24 presented in the previous

section completely determine the velocity, structure, and stress fields in the isothermal

flow of a LCP solution through the contraction shown in Fig. 5.1. The nonlinearity of

the liquid-crystal constitutive equation, however, requires a numerical solution for these

boundary conditions. In dimensionless form, the equations for the fully developed flow

through a pipe that govern these boundary conditions are

z-momentum equation

-LR r + De(T + 6nkTS) dv z +
2L ' dr (5.32)

N 22 23nk I -7)$r - N(Srr+Sz)S + 2N(S;, +S,+S +SrS)S, = 0
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Evolution eauation

(rr-comp) 2DeS(S,r + ) + - N(S2+S2) 

z + Sz + SrSz)(Srr+s+) = 0a 3 dr S - ) - (5.33)

(zz-comp) 2 DeSz(Szz 2 dvz + (1-)S N S2 +(53)

2 2 2 12N(S, +Sz + S + Sz)(Szz+ S) = 0

De S2 IV N(n-comp) (2 _S, dr + (1- ) S - N(Srr+Szz)Sr +
C 3 dr 3Z(5.35

v(Srrs;+ --.+ )
2Nz(S.s +S+ S r s,,s)S = 0

Equations 5.32-5.35 are four equations for the four unknown variables, dvz/dr, 5,, Szz and

Srz However, the constant pressure gradient Ap/L is not known. A volume flow rate

constaint is necessary to determine the unknown constant pressure gradient. The volume

flow rate constraint is expiessed as follows

Volume flow rate constraint

RIR 2 RI/R2

- 2 f vzrdr = 1. f .dz r2dr =
dr0 0

IN Sff2 2 (5.36)

1+ f 2L 3

De(- + 6nkTS,)

The solution to this equation set consists of a cyclic two-step procedure: (1) With an

initial guess for the pressure gradient, Ap/L, corresponding to fully developed flow at the

entrance to the large tube, equations 5.32-5.35 are solved for the primary variables dv/dr,

S, S. and Sn by Newton's method; (2) Newton's method is then employed on the

volume constraint equation to obtain a better guess for the pressure gradient. The cyclic
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two-step procedure is then repeated until the volume flow rate constraint is satisfied to

the specified tolerance.

Once the velocity gradient dv/dr is known, the axial velocity field, vz(r), is

costrncted by carrying out the integration

RIR 2

~vzr)=- f..d dr (5.37)

Equations 5.32-5.37 completely determine the boundary conditions at the entrance to the

large tube.

Once the velocity, structure and stress fields are determined for the contraction

problem, the stream function is determined from the velocity field by solving the

boundary-value problem consisting of Eq. 5.27 along with the boundary conditions

i = O on arT Essential b.c.
A= I on arc Essential b.c.

afv~ =- 0 on ar Natural b.c.

0 = on a l Natural b.c.

5.3 The FEM Method

The governing equations and boundary conditions for the contraction problem presented

in Section 5.2.2 are solved by using a finite element method. Strang and Fix (1973),

Carey and Oden (1983) among others discuss the effects of approximations made and the

convergence and stability proofs associated with the finite element method. Proofs for

existence of solutions with viscoelastic constitutive equations also exist under limiting

conditions. By separating the momentum and constitutive equations into explicitly elliptic
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and hyperbolic parts, which is similar to the EEME formulation of King et al. (1988),

Renardy (1985) has established a fixed point iteration with the UCM model to prove

existence of solution for small De. The proof requires smoothness in the velocity field

up to the second derivative. Using the viscous formulation, discussed by Rajagopalan et

al. (1990), Renardy et al. (1987) have demonstrated the existence of weak solutions with

the Oldroyd-B model for small De, again by establishing a fixed point iteration between

the elliptic saddle point problem and the yperbolic constitutive equation. A brief outline

of the finite element method follows.

5.3.1 The Method

In finite element methods the domain of interest is divided into a number of non-

overlapping subregions called elements. The complete approximating space made up of

the union of all the elements is known as the finite element mesh. The accuracy of the

method is determined by the characteristic length of the elements, h. The accuracy

improves with decrease in h. The solution in each element is approximated by means of

piecewise polynomials called basis functions. Lagrangian interpolation polynomials are

the most commonly used basis functions and are also the interpolation polynomials of

choice in this study. The form of these polynomials and the properties which makes them

convenient to use are described in most numerical analysis texts including Burnett (1987).

A summary of the two-dimensional Lagrangian polynomials commonly used for

viscoelastic flows is given by Crochet, Davies and Walters (1984).

Each element is isoparametrically mapped to a parent element. A pictorial
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representation of this non-orthogonal mapping is provided in Fig. 5.3. Over a given

element, a variable u is approximated by

N
u = E u kVk(4',r) (5.39)

k=1

where (,'n) are the isoparametric coordinates, tk is the basis function for the variable u,

and uk is the expansion coefficient representing the approximation for the variable u at

the node k. The summation in Eq. 5.39 is taken over the number of nodes in an element

at which u is approximated. For a Lagrangian biquadratic approximation N--9, and for

a Lagrangian bilinear approximation N=4.

A new idea concerning the Lagrangian finite element approximation for locally

refined quadrilateral meshes, particularly important for reentrant free surface and interface

shapes and sharp comers, was developed by Tsiveriotis and Brown (1992). The local

refinement implemented by Bornside (1993) in a stand-alone mesh generation software

package is used in this study.

A brief discussion of the local refinement idea due to Tsiveriotis and Brown

(1992) follows. Consider the collection of elements shown in Fig. 5.4 (reproduced from

Tsiveriotis and Brown, 1992), where a transition from element e3 to elements el and e2

is shown. The boundary of this one-to-two element transition is known as a transition

boundary. The characteristic of a transition boundary is that it contains two sets of nodes.

The first set of nodes are boundary nodes of the coarser element, e3 , on one side of the

transition boundary; and the second set consists of the boundary nodes of the two refined

elements, el and e2, on the other side of the transition boundary. The first set of nodes

are called regular nodes and the second set of nodes are refered to as pseudonodes.
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These nodes are shown in Fig. 5.4 for a Lagrangian bilinear approximation.

Let {in,, n2 ', n3
1), i=l,...m, be the nodes of the elements e,, e2 and e3 along the

boundaries GH, HI and GI, respectively. Then {nli, n2 )i} are the pseudonodes and n3
i })

are the regular nodes of the transition boundary GI. Also, let ({in} be the bilinear basis

function corresponding to node n and element ej. Each basis function jn is nonzero at

node n and is zero at all other nodes of element ej.

A continuity problem across the transition boundary arises since the elemental

basis functions associated with the regular nodes of the coarse element e3 cannot be

extended to the elemental basis functions associated with the pseudonodes of the finer

elements el and e2. A primary limitation of this discontinuity is that the continuity of the

nodal values of the field variables across the transition boundary is not guaranteed. The

problem is alleviated by enforcing continuity of the field variables across the transition

boundary GI through the essential conditions

m i m i

Jul "i " n2 .U "n3; Un2 E W~l"Xg3J; i~l,....,m (5.40)

so that the field variable u is now defined at the pseudonodes associated with elements

el and e2. unq is the value of u at the regular node n3. The weighting functions wnI are

related to the bilinear basis functions 3 n through the relation

W = 3(l );== ~3
3(n11) ; w, = ¥3'(2) ; i=,...,m j=l,...,m (5.41)

Equation 5.40 removes the pseudonodes from the finite element formulation. The regular

nodes along the transition boundary are introduced into the finite element formulation
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through new basis functions {nJ) obtained by patching the elemental basis functions

corresponding to the node n3 with a weighted combination of the elemental basis

functions corresponding to the pseudonodes along the transition boundary. The new basis

functions for the example shown in Fig. 5.4 are then given by

i EW ni'VI + E W 22 + lW3 3; i=2,m-1 (5.42)

=n: l = E W :l 3 +n3 E "n (5.43)n +
1 1 n2 n 2 n

~)4 =+
j=l "3 "3

where nodes n3
1 and n3 m coincide with the points G and I, respectively. These new basis

functions guarantee the continuity of the field variables across the transition boundary.

The field variable u continues to be defined by Eq. 5.39 at the nodes along the transition

boundary but with the original basis function replaced by the new basis function. Based

on these definitions local refinement can be introduced into existing finite element

formulations with minimal changes. More details on this approach are discussed by

Tsiveriotis and Brown (1992).

The dimensionless equations 5.21-5.27 are now put into weighted residual form.

The choice of weighting functions used and the fonrmulation of the residual equations is

key to the creation of a numerically stable and convergent finite element discretization.

If the Lagrangian polynomial basis functions are used as weighting functions the method
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is called Galerkin's method (Bathe and Wilson, 1976). For example, the residual equation

formed from Eq. 5.23 is written as follows,

feej [ s(l) -i+ 2(cS)(S + ) + N)S -
N(SS) + N(S:S)(S+ 6 )IS'iIV = O

where ei and ej are unit vectors corresponding to any two coordinate directions and the

weighting function used in the above residual equation is sij for the variable Sij.

Choosing the weighting functions for the field variables and the weighted residual method

is vital to the stability and convergence of the numerical algorithm and is not a trivial

matter. In the next section some measures used to determine convergence are introduced

and stability issues are discussed. Since the equations 5.21-5.27 are of mixed type the

rationale behind the weighted residual methods used in this work are discussed in Section

5.3.2.

Convergence and Stability of Finite Element Method

Numerical algorithms that predict solutions which get consistently closer to the exact

solution with mesh refinement are convergent. This motivates the need to define an

appropriate measure for the magnitude of the error. For the solution to a partial

differential equation, the appropriate measure of the magnitude of the error involves an

integral of the difference between the approximate solution and the exact solution over

the whole domain of the problem.

The L norm of an argument u is defined as
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L,(u) = UIL = [fu "dV (546)

The L operator most often operates on (u-uh) where uh is the numerical solution for mesh

size h. A measure of the magnitude of the error often used to characterize the error in

a finite element method is the L2 norm which is written for the function u as

IUIl - 2dV F (5.47)

For convergent finite element methods the L2 norm of (u-uh) obeys the relation

Iu -u hn2 < Ch m ul,2 (5.48)

as h--O where m>O and C is a constant. A positive value for m indicates that the relative

error in the approximate solution decreases as h decreases and the numerical algorithm

is convergent. Another interpretation of Eq. 5.48 is that as h--O the numerical solution

ub approaches the exact solution u and consequently L2(ub) must approach a constant

value, L2(u).

It is also necessary that the numerical algorithm used to solve the system of

governing equations be stable. Stability of the numerical approximation of the time-

dependent form of the equation set plays a vital role. For time-dependent problems the

exact solution evolves in time and frequently reaches a steady-state value. The steady-

state may be stable or unstable. Transition from one solution branch to the another occurs

at "critical points" in parameter space. It is important for the numerical algorithm to

predict these critical points accurately. A description of various types of critical points
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and the relationship of the stability of steady state solutions to the eigenvalues of the

Jacobian matrix are discussed by loss and Joseph (1990). Numerical approximations can

lead to inaccurate approximations to the eigenvalues of the Jacobian matrix resulting in

the prediction of fictitious critical points (Scheiber and Keller, 1983; Yeh et al., 1984).

Stable finite element methods either do not predict fictitious critical points or predict

critical points at higher parameter values as the finite element mesh is refined.

Simple Elliptic Problems

Thomasset (1981) considered an elliptic equation of the form

V.(X.Vu) = 0 (5.49)

where is a positive definite tensor and proved that the Galerkin finite element

approximation, ub, converges to the exact solution u at the rate

lu-u hiL = O(hk+l) (5.50)

where k is the order of the polynomial approximation. Bercovier and Pironneau (1979)

have shown that the Stokes flow equations

V-v = 0 (5.51)

V2v - Vp = 0 (5.52)

are strictly elliptic for v with the pressure, p, playing the role of a Lagrange multiplier for

satisfying the continuity equation. Thomasset (1981) and Teman (1979) consequently

proved that stable and convergent Galerkin finite element methods exist for solving the

Stokes flow equations 5.51 and 5.52. Polynomial approximations to the velocity and
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pressure must be "compatible" with each other. Brezzi (1972) and Babuska (1977)

provide a rigorous criterion for determining admissible choices for the polynomial

approximation spaces to the velocity and pressure. Biquadratic approximation functions

for the velocity and bilinear functions for the pressure satisfy this criterion. The

corresponding convergence estimates are

Ilv-vhll < Ch2llvII (5.53)
j-p hll < Ch Ipll

First-order Hyperbolic Problems

Strang and Fix (1973) discuss the convergence rates for finite element methods for a

simple first-order hyperbolic problem. For solving hyperbolic systems with symmetric

and conservative operators and whose solution is smooth, Galerkin's finite element

method is proved stable and convergent (Strang and Fix, 1973). These first-order

hyperbolic systems can be generally written in the form

au(x,+t) V s(x,u,t) + f(x,u,t) = 0 (554)
Ot

where f is the forcing term and s(x,u,t) is the flux vector such that the first-order matrices

A As (5.55)
auj

are symmetric. Johnson et al. (1984) studied the conservative first-order linear hyperbolic

equation

a-Vu + u = f (5.56)

where a and a are 0(1), and showed that Galerkin's method converges at the rate given
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by

lu-u hl -2< O(hk) (557)

and is only one power of h away from the optimal estimate for elliptic problems given

by Eq. 5.50; k is the order of the polynomial approximation. However, the estimate is

based on the assumption that the exact solution to u is perfectly smooth; and in fact the

method is unstable to disturbances in the numerical solution and the approximation error

can propagate in all directions causing spatial oscillations. For this reason, Galerkin's

method is not well suited for solving hyperbolic equations.

The Streamline Upwind Petrov Galerkin (SUPG) technique of Brooks and Hughes

(1982) is particularly well-suited to solve hyperbolic systems. If ok is the basis function

for the variable u, then the weighting function used to construct the residual equation for

Eq. 5.56 is given by

*k = k + h(a Vo k) (5.58)

For the SUPG method the numerical solution uh converges to the exact solution u

according to

lu-u hL2 + hl 2 llaV(u-u)ll, < Chk+l"2 llull (5.59)

As h-+O, the error associated with the approximation of the aVu term goes to zero; and

consequently, the approximation error in the derivatives of u are damped and do not cause

numerical instabilities as in the case of Galerkin's method.

The residual equations constructed with the chosen weighting functions are

integrated numerically over the flow domain by using nine-point Gaussian quadrature.
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A description of this and other quadrature formulae can be found in Strang and Fix

(1973). The set of partial differential equations is thus reduced to a set of nonlinear

algebraic equations. The boundary conditions, as discussed in Section 5.2.2, are applied

either as essential boundary conditions, where the residual equation at that boundary node

is replaced by the boundary condition, or as natural boundary conditions where the

boundary condition is substituted into the residual equation. The algebraic system of

equations are solved for the nodal values of the field variables by using a full Newton's

method for the particular choice of parameter values in the flow problem.

5.3.2 FEM Formulation for LCP Flow

In this section the development of a finite element formulation is described to solve the

equation set 5.21-5.27 along with the boundary conditions 5.32-5.38. A finite element

formulation that respects the mixed mathematical type of the equations must be used.

The formulation is based on the results of the mathematical type analysis due to Menon,

presented in Section 5.1.2, and is similar to the EVSS-G formulation developed by Brown

et al. (1993).

As discussed in Section 5.1.2, in the presence of a solvent viscosity, i.e. P > 0, the

equations governing the flow are of mixed type. The continuity equation 5.9 and the

momentum equation 5.10 are associated with elliptic characteristics. Consequently

Galerkin's weighted residual method is used for these equations. As mentioned in the

introduction to this chapter, King et al. (1988) showed that it is vital to the success of the

numerical algorithm to rewrite the momentum equation so that it remains elliptic. Their
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Explicitly Elliptic Momentum Equation (EEME) formulation involved rewriting the

momentum equation in terms of an elliptic second-order operator. Using this formulation

they computed stable and accurate solutions for viscoelastic flows for the UCM model.

However, the formulation is restricted to low Reynolds number flows and to viscoelastic

models with zero solvent viscosity and is not directly applicable to the liquid-crystal

constitutive equation.

Rajagopalan et al. (1990) extended the idea of writing the momentum equation in

terms of a strictly elliptic operator to viscoelastic constitutive models with a Newtonian

solvent contribution. For such models the stress is written as the sum of a solvent

contribution and a polymer contribution in dimensionless form as follows

= + p (5.60)

where the Newtonian solvent contribution is given by

= - t (5.61)
no

1o is the zero-shear-viscosity of the solution and is the sum of the solvent and zero-shear-

rate polymer contribution to the viscosity ie., lOl--s+Tlp. With their formulation, called

the Elastic-Viscous-Split-Stress (EVSS) formulation, they obtained numerically stable and

convergent results with the Oldroyd-B and Giesekus constitutive equations for the flow

between eccentric cylinders and the flow through a corrugated tube. Their formulation

involves writing the momentum equation in terms of an elliptic operator composed from

the solvent and polymeric contributions to the stress. A viscous contribution is extracted

from the polymeric part of the stress by using the formulation of Mendelson et al. (1982).
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The resulting dimensionless elastic stress is defined as

= + T (5.62)
Io

Substituting Eq. 5.62 into the momentum equation 5.10 gives

-V 2 v + V-E + Vp = 0 (5.63)

Rajagopalan et al. derive the residual equations for the components of the momentum

equation by treating the term V2v in Eq. 5.63 as the dominant elliptic operator. The term

V-£ is considered to be a nonhomogenous forcing function. Galerkin's method is used

to discretize the equations from the momentum-continuity pair. The components of the

constitutive equation are expressed in terms of the elastic stress and the SUPG method

is used to discretize these equations. Rajagopalan et al. use bilinear basis functions for

the pressure and biquadratic basis functions for the velocity and elastic stress.

Previous viscoelastic simulations (Mendelson et al., 1982; van Schaftingen and

Crochet, 1984; Beris et al., 1984) with such a formulation had met with failure due to the

presence of spurious oscillations in the stress and velocity fields which become worse

with mesh refinement. Writing the constitutive equation in terms of the elastic stress

introduces a term t() that involves second-order velocity derivatives. Interpolating the

velocity in terms of a biquadratic polynomial approximation introduces singularities in the

approximation to Xl). Mendelson et al. and others circumvented this problem by

integrating this term by parts to obtain a weak form of the constitutive equation. The

resulting boundary integral terms are evaluated by using velocity data or computed with

the rest of the residual equations. Rajagopalan et al. believe that the numerical
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instability in these calculations resulted because the treatment of the higher-order velocity

derivatives was not consistent with the constitutive equation's being hyperbolic in ;.

They alleviate this problem by a least-squares interpolation of the rate-of-strain tensor t

thus treating the termnn ) as simply nonhomogenous data. Bilinear basis functions are

used for this interpolation.

Recent calculations by Brown et al. (1993) on the linear stability of a

homogenous, rectilinear shear flow with the UCM model show, however, that both the

EEME and EVSS formulations predict numerical instabilities beyond a critical value of

De, though theoretical results prove that this inertialess flow is always stable. In fact,

their calculations clearly show that the energy of the most dangerous disturbance is

concentrated near the staticnary surface or zero streamline in the base flow irrespective

of whether the stationary surface is the top boundary, bottom boundary or the midplane

when the two solid boundaries are moving in opposite directions but with the same speed.

The origin of this numerical instability is ascribed to the coupling of the polynomial

approximations to the variables. With a new mixed finite element formulation called the

EVSS-G formulation, in which the finite element approximations are expected to be

compatible along the stationary streamline (v=0), Brown et al. do not see this numerical

instability; linear stability calculations for rectilinear shear flow are stable to values of De

in excess of 50 and converge with mesh and time step.

The EVSS-G formulation differs from the EVSS formulation in that it includes

smooth interpolation of the velocity gradient tensor which is compatible with a bilinear

approximation to the stress tensor, as opposed to the interpolation of the rate-of-strain
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tensor and a biquadratic approximation to the stress tensor. The velocity gradient is

interpolated instead of the rate-of-strain tensor to provide a continuous approximation to

l) (which appears when the constitutive equation is written in terms of Z) in the limit

v=-O so that a compatible finite element approximation to the entire constitutive equation

might be obtained in the limit v=O. A formulation similar to EVSS-G is used to set up

the residual equations for the contraction flow modeled by the liquid-crystal constitutive

equation. In this formulation the velocity gradient which is introduced as a new variable

is represented by the tensor G.

The elastic stress for the liquid-crystal model in dimensionless form is defined as

/ = rp + (l-1)i = + (5.64)

Substituting Eq. 5.64 into the momentum equation, Eq. 5.22, and expressing the

momentum equation in the EVSS-G form gives

DeVp - DeV2 v + (-P)V (De(G+Gt)

3 1- )S - N(S-S) + N(S:S)(S+ ) + 2De(Gt:S)(S+ ) = 0
3 3 3

It is important to note that in the limit De=O this formulation cannot be expected to give

stable and accurate results since the elliptic operator drops out of the equation. Equation

5.65 is well defined for all other choices in physical parameter space. The evolution

equation for the structure, Eq. 5.23, is written in EVSS-G form as

De v.VS - S-G)t - S-G) - G+Gt i2(G 8
3t + 2 :S)(S3+1 + (5.66)

N o(l- )S - N(SS) + N(S:S)(S+ ) = 
3 3
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Equation 5.66 is associated with stream-wise hyperbolic characteristics. Consequently the

residuals for this equation are constructed by using SUPG method. In constructing the

SUPG weighting function for viscoelastic constitutive equations the term a which appears

in Eq. 5.58 would be the velocity v. Since the dimensionless maximum velocity is never

very much greater than the Newtonian maximum of two, Ca, which in this case is v, is not

normalized by the norm of the velocity over that element or by the root-mean-square

value of the magnitude of the velocity, as done by many researchers including Burdette

et al. (1989) for the flow of an UCM fluid through a corrugated tube. This is important

when simulating flows with recirculation regions or stagnation points, because

normalizing this term with the root-mean-square value of the magnitude of the velocity

over the element results in large approximation and roundoff errors in areas of vanishing

velocity (King, 1988). The residuals for the continuity and momentum equations and the

equations that define the velocity gradient tensor G are constructed using Galerkin's

method. The finite element formulation for the equation set 5.21-5.23 is
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rVv)¢JdA = 0 (5.67)
D

-De Q n '(Vv) ekd + DetV1pJ -(VV) ek + VJ1((Vv)t:Vek]dA
D

+ fiv[DeVp + (l- 3)V (De(G+Gt) - 3[(1 - )S - (5.68)
D

N(SS) + N(S:S)(S+ )+2De(Gt:S)(S+) ekdA= 0 ; k = 1,2

v elocity are -inSerpolaG)t - biquadraticSG) - funGons e essential bounda

conditions for the velocity components are used to replace the corresponding residuals in
- N(S-S) + N(S:S)(S+ 3 )e.( 4 + hv'V j )dA = 0; mn = 1,2'[G - Vv]:eine,,dA = 0 (5.70)

The pressure, components of the structure tensor S, and the components of the velocity-

gradient tensor G are interpolated with bilinear basis functions. The components of the

velocity are interpolated with biquadratic basis functions. The essential boundary

conditions for the velocity components are used to replace the corresponding residuals in

the momentum equation 5.68. The pressure datum and the inlet boundary conditions for

the structure are implemented similarly. The natural boundary conditions on the velocity

are implemented through the line integral term in the momentum residual equation 5.68.

The numerical integration of the residual equations 5.67-5.70 and the solution of the
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discretized equation set for the pressure, velocity, velocity gradient and the structure fields

are described in Section 5.3.3.

The solution fields thus obtained are post-processed to determine the stress field

and the stream function. The structure tensor matrix is also diagnolized to determine the

dominant eigenvalue and the associated eigenvector, also known in liquid-crystal

terminology as the nematic director. The invariant of the structure tensor,

S={(312)(S:S)}"2, together with the nematic director determine the degree and the

direction of order of the polymer molecules in the flow.

The stress field is calculated from the structure field and the velocity gradient as

De : = -j3De(G + Gt) - 3(1 -I(1 -_N)S - N(S-S) +a.; -B"(o* f)~3(1-EI(5.71)
N(S:S)(S + 6) + 2De(Gt:S)(S + 6)]

3 3

The stream function is determined by solving the boundary-value problem consisting of

Eq. 5.27 along with the boundary conditions given by Eq. 5.38. A Galerkin finite

element method is used for this calculation. The stream function is interpolated using

biquadratic basis functions. The weak form of the residual equation is written as

Vv)Sfd + -vjSf'Vj 2v14v + - , dA 0(5.72)

The essential boundary conditions in Eq. 5.38 replace the line integral term on the

boundaries ar¢ and at,. The line integral is zero on the boundaries ari and ar as

dictated by the natural boundary conditions. The treatment here assumes that the

equations have elliptic character due to the presence of the dominant elliptic operator V2W
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and consequently it is appropriate to set conditions at the boundaries of the domain.

Finite Element Meshes

The liquid-crystal polymer flow through the smooth, tapered, contraction geometries

shown in Figs. 5.la and 5.lb was studied for two different contraction ratios, 2:1 and 4:1.

Graded mesh sizes were used in the calculations for both contractions. The element size

was primarily based on the aspect ratio, R/L, of the geometry in the particular region of

the flow. Thus in the upstream section where the flow "sees" a higher aspect ratio the

elements are coarse as compared to the downstream section where the aspect ratio is

smaller and consequently tile elements are fine. Additional refinement is also provided

close to the centerline in the contraction region and in the downstream section where a

transition from a purely elongational flow at the centerline to a mixture of shear and

elongation causes rapid changes in the molecular orientation described by the components

of the structure tensor S. The mesh sizes used in this study along with the corresponding

number of unknowns and smallest mesh size are listed in Table 5.1. The finest mesh,

M2-5, for the 2:1 contraction has 44506 number of unknowns, but most of the results are

presented for mesh M2-4 since the L2-nonn of the solution, as we will examine later in

Section 6.2.1.2, changes very little with mesh refinement beyond the refinement provided

by mesh M2-4. The meshes M4-1 and M4-2 are used for the calculations in the 4:1

contraction with the cubic boundary and the conical boundary with rounded comers

respectively. Some sample meshes are shown in Fig. 5.5 including the finest mesh used

in this study.
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Table 5.1: Finite element meshes used in the
solution presented in Chapter 6.

contraction flow calculations for the LCP

5.3.3 Solution of the Discretized Equation Set

The residual equations 5.67-5.70 are integrated numerically by using nine-point Gauss-

Legendre tensor product quadrature, to give a system of nonlinear algebraic equations of

the form,

R(u",De,N) = 0 (5.73)

where

uk -tp h h h GA h h, , 1 (5.74)- {p S ,rrSzz ,z G rrGzz ,GzrVr ,Vz I)

is the set of nodal unknowns for a discretization of characteristic size h. This nonlinear

algebraic system is solved iteratively by using Newton's method. An initial guess for the

approximate solution vector, Uo, is given. The solution vector after (j+l1) iterations, u+l h
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Mesh No. of unknowns No. of elements Smallest element size (hr x h

M2-1 11866 672 1/8 x 5/16

M2-2 22714 1344 1/16 x 5/16

M2-3 31290 1856 1/16 x 5/32

M2-4 37818 2261 1/32 x 5/32

M2-5 44506 2676 1/64 x 5/32

M4-1 37954 2268 1/32 x 5/32

M4-2 38902 2325 1/32 x 4.3/32



is given in terms of the solution vector afti j iterations as follows

k &ah (5.75)

where the correction vector is determined by solving

&} = -[T1(un)] -R(uj) (5.76)

where J-l(uh) is the inverse Jacobian matrix. The entries of the Jacobian matrix, defined

as Jm=(aRmu), are evaluated analytically. The accuracy of the analytical Jacobian

was tested for arbitrary values of the field variables and also for the special case of the

contraction flow problem by a comparison with the corresponding numt -1! Jacobian

evaluated by means of a one-sided finite difference scheme described by burdette et al.

(1989).

aRm Rm(uh + u, h)- Rm( h)

F, a=

where the perturbation Auh = 10'5. The solution for the matrix problem for the

correction vector in Eq. 5.76 is carried out with a frontal solver similar to the one

introduced by Hood (1976). The determinant of the Jacobian matrix is also evaluated,

.because a change in the sign of the determinant would indicate a limit point or bifurcation

ioint in the solution family being tracked (Keller, 1977). Newton's method converges

quadratically to the solution as long as the initial guess is within the radius of

convergence. The Newton iterations are terminated when the L2 norm of the correction

vector is less than a threshold value of 10.6.

In this study only the solutions corresponding to prolate symmetry in the

188



molecular order in the plane of the flow are tracked. Other solutions where the order

possesses prolate symmetry in the direction perpendicular to the plane of the flow (the

logrolling state studied by Bhave et al., 1993) can be easily tracked by suitably choosing

the appropriate inlet conditions for the order.

Traddcking Solution Branches

Realistic polymer processing flows operate at high De. The nematic liquid-crystalline

polymer solutions of interest in this thesis are also typically processed at high polymer

concentrations. The governing equations, Eqs. 5.21-5.26, are nonlinear under these

processing conditions and the Newton iterations typically do not converge to the solution

unless the initial guess is close to the actual solution, ie. the radius of convergence is

small. It becomes necessary then to devise parameter continuation schemes so that the

evolution of the solution in parameter space can be tracked efficiently from a known

limit; arc-length continuation is useful when limit points are encountered in parameter

space (Fig. 3.6 shows that close to equilibrium, limit points would be encountered in N

space). One obvious limit is the Newtonian limit which for the LCP model is captured

when N=O, ie. =1, and De 0. In the Newtonian limit the inertialess governing

equations are linear and the Newton iterations must converge to the solution from any

initial guess. Another limit, though specific to the contraction flow problem, which in

conjunction with parameter continuation and stepping up in contraction ratio is

computationally more efficient in computing solutions at high N and De, is the tube flow

limit. Though the governing equations are nonlinear in this limit it is easy to provide an

initial guess that is the actual solution, i.e. the fully developed inflow boundary
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conditions.

The evolution of the solution in the Deborah-number space is tracked by using

fuirst-order parametric continuation (Kubicek, 1976). Thus, if ub(Deo) is the converged

solution vector for De=De, a guess for De=Deo + ADe is estimated as

"(De + ADe) = u*(Deo) + (a; ADe (5.78)

where

tIauh] = -- '(u h(Deo)) (aR (579)

The Jacobian J(ub(Deo)) is the same as that defined in Eq. 5.76 and consequently requires

no additional computational effort i.e. the LU factorization for the last Newton iteration

for the converged solution vector ub can be used. The dimension of (aRIaDe)eO is the

same as the residual vector itsell and can be easily evaluated along with the residual

equations.

The evolution of the solution trajectories in the concentration, N, are also tracked

by using first-order continuatiort and arc-length continuation. The implementation of first-

order continuation in N is similar to the implementation in De. Arc-length continuation

is implemented in the following manner.

The arc-length As dlong the solution trajectory is defined as

As = s-sol = IU(s)-(sO)L2 + IN(s)-N(o) 2 (5.80)
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where u(so ) is a known solution at the concentration No. In addition to the residual

equations 5.67-5.70, a residual equation is constructed for the arc-length as follows:

P(u,N,s) = Is-sol 2 - lu(s)-u(sO) 2 - IN(s)-N(so)l2 = 0 (5.81)

Then for some specified step-size in the arc-length, Is-so , and initial guesses for te

solution vector u(s) and concentration N(s), a step-size in the concentration AN is

determined from the equation

p + (ap Z
AN = -- (5.82)

aP ap

where y and z are obtained by solving the equations

aRJy - -=-~, Jz = -R (5.83)

The Jacobian J(u(N)) is the same as that defined in Eq. 5.76 and requires no additional

computational effort. As with the first-order continuation, aMRIN is evaluated along with

the residual equations. More details on the derivation of Eqs. 5.82 and 5.83 are discussed

by Keller (1976).

The concentration is then updated by AN for the next Newton iteration, the

correction vector given by Eq. 5.76 is evaluated after determining the new residuals and

their Jacobians to generate a new guess for the solution vector u(s), and Eqs. 5.81-5.83

are solved once again to determine AN. The Newton iterations and the concentration

updates are repeated until a solution ub(s) is obtained that satisfies the residual equations
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5.67-5.70 and 5.81. The values chosen for the other parameters in the constitutive

equation ( and a) are indicated in Chapter 6.
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Chapter Six

Tube and Axisymmetric Contraction Flows of LCP's

The results of the calculations of liquid-crystal flow through a tube and a smooth, tapered

axisymmetric contraction geometry performed by using the finite element method are

presented in this Chapter. The calculations are aimed at understanding the variations in

the flow field, the molecular order, and the stress fields with Deborah number,

concentration and contracon ratio. The solvent viscosity of liquid-crystalline polymer

solutions is typically four or more orders-of-magnitude smaller than the scaling for the

polymeric contribution to the viscosity nkT. The value P = 1.6x105 is chosen in all

calculations. Rajagopalan et al. (1990) have shown that convergent and numerically

stable results are obtained for the entire range of viscosity ratios, 0 < J <1, with the

momentum equation cast in the EVSS formulation. Consequently, the small value of 

chosen for these calculations is not expected to pose any numerical difficulties. All

calculations are performed with a=1.0 which corresponds to isotropic hydrodynamic drag

on the polymer molecules as it moves through the solution. As demonstrated in Chapter

3, exhibits a small degree of elongation rate thickening for =1.0.

6.1 Flow through Tube Test Problem

Steady-state flow through a circular tube is a non-homogenous shearing motion with the

velocity, deformation rate, structure and stress profiles varying only in the radial direction.
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Consequently, the solution to the field variables must be the same as the inlet boundary

conditions throughout the domain, which makes it easy to test the finite element

form.ulation for different model parameter values. Moreover, the finite element results

for the flow through a tube are used as starting guesses for stepping up i contraction

ratio which is an added motivation for studying this problem. Results an, presented in

this section on the effect of De for the concentration N=4.0. This value for the

dimensionless concentration is predicted by the liquid-crystal constitutive equation for the

40 wt % hydroxy propyl cellulose in acetic acid liquid-crystalline solution. The

dimensionless tube radius and length are: R=l.0 and L=40.0. A 16x32 mesh with 16

elements in the radial direction and 32 elements in the axial direction is used.

Effect of De for N=4.0

Contour plots for the velocity, pressure, structure, velocity gradient, stress and streamlines

are shown in Figs. 6.la-o for De=0.1, 1.0 and 5.0 respectively. Contours for the axial

velocity, structure, stress and the rz-component of the velocity gradient tensor are parallel

to the z-axis which indicates that there is no axial variation in these variables. The

wiggles in the contour plots of radial velocity, rr, zr and zz-components of the velocity

gradient result from the numerical approximation to these variables which are zero

throughout the domain and is not a manifestion of numerical instabilities in the

formulation. Note that the maximum in GCO is located at the inlet (centerline) at moderate

and high De whereas it must be zero since the flow is fully developed. Thus the inlet

velocity field constructed numerically according to Eq. 5.37 approximates the true fully

developed velocity field to the accuracy dictated by the velocity gradient values Wiggles
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are also seen in the contour plots for De, and Dew Note that for o=1.0, the stress

tensor given by Eq. 3.12 can be expressed in terms of SO1 ) in dimensionless form as

follows

= -[r - 3(1-[.)(3'-S0)J (6.1)

However, for the fully developed tube flow, {rfI, {Il, IS()1), and {S(j)} are zero.

Thus, T and 't are zero and the wiggles seen in the contour plots result from the

numerical approximation to these variables which are zero throughout the domain. Note

that the DeT contours are evenly spaced (linear in r) as expected in a fully developed

tube flow.

As mentioned in Section 5.3.2, the most probable prolate molecular orientation

angle is given by the eigenvector associated with the dominant eigenvalue of the structure

tensor. The eigenvector is also called the nematic director. The eigenvectors associated

with the two remaining eigenvalues are perpendicular to the nematic director with one

located in the xz-plane and the other perpendicular to the xz-plane. The eigenvectors are

mutually orthogonal because S is symmetric. A pictorial representation is provided in

Fig. 6.2. The rest of the study concentrates only on the nematic director and all plots

showing the prolate molecular orientation angle X refer to the angle between the director

and the axial (z) direction. Radial variations in the invariant of the structure tensor,

S=[312(SS)]J'R, which quantifies the degree of order, the prolate orientation angle, X,

which locates the nematic director and the axial velocity for the corresponding De's are

shown in Figs. 6.3a-c.
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Figure 6.2 Eigenvectors associated with the structure tensor in the flow through a tube and
contraction geometries. z is along the axis of the tube and the contraction geometries. The
nematic director is indicated by n. e2 is perpendicular to n in the xz-plane and e3 is perpendicular
to the xz-plane. X is shown in degrees in subsequent figures.
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The total dimensionless pressure drop can be written as

lo<1> loAP _ COJ- -- (CO6t.2)
R

where Q is the volumetric flow rate. It is apparent from Fig. 6.23, then, that the pressure

differential required to drive a unit volume flow rate through the tube decreases with De.

This is a consequence of shear thinning. The shear thinning is most apparent from Fig.

6.3a. To highlight the shear thinning effect the fully developed Newtonian velocity

profile for the flow through a tube given by

v = 2[1 ()2] (6.3)

is shown. Shear thinning is very small for De=O. 1. However, for De=5.0. and to a lesser

extent De=1.O, the drop in the maximum centerline velocity as compared to the

Newtonian value is testimony to the presence of shear thinning.

Figures 6.3 c and b show that the director alignment with the flow direction and

the associated degree of order improve with De. Consequently, the molecular alignment

with the flow direction improves which reduces the resistance offered by the molecules

to the flow resulting in the observed shear thinning effect. Note that S and X are radially

non-homogenous, especially at high De, since the fully developed flow through the tube

is a non-homogenous shearing motion. S is highest at the wall and Z is closest to zero

for any De since the shear rate is highest at the wall; that is, the degree of order and the

director alignment with the flow direction is best at the wall.
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6.2 Flow through Contraction

In Sections 6.2.1 and 6.2.2, the LCP flow through a small contraction (A=2) is examined

for N=4.0 and 7.0. Issues such as the achievement of a fully developed solution field at

the downstream exit, convergence with mesh refinement, effect of De and concentration

are discussed. In Section 6.2.3, the effect of increasing the contraction ratio from A=2

to 4 is examined. The effect of changing the geometry from a cubic contraction to a

conical contraction with rounded comers is examined in Section 6.2.4.

62.1 Moderate Concentration; N=4.0

As mentioned in Section 5.2.1, the length of the downstream tube needs to be long

enough for the velocity to reach a fully developed profile due to the imposition of a fully

developed boundary condition on the velocity field at the exit. Once the velocity profile

becomes fully developed, that is the kinematics are fixed, there is still a rate dependent

development of S associated with the structure evolution equation; that is, the structure

field is not yet fully developed. Let us say, for example, that the velocity field becomes

fully developed for a downstream tube length of 10 (--40 in Fig. 5.5) and there is still

a rate dependent development of S; that is, S at z=50 would be different from S at z=40.

It is conjectured that the structure development in the contraction geometry when a fully

developed velocity boundary condition is imposed at z--40 would be the same as the

structure development up to z--40 when a fully developed velocity boundary condition is

imposed beyond z--40 due to the hyperbolicity of the structure development. Since the

required downstream length increases with De because of the shorter residence time
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available to the flow to become fully developed, this conjecture is examined in Section

6211.1 for De=5.0 which is the highest value of De studied in this work. In Section

611.2. convergence of the solution field with mesh refinement in the L2-norm is

established, and a suitable mesh is chosen for the flow through a 2:1 contraction. In

Section 6.2.1.3, the effect of De on the flow field, structure and the stress field (which

is postprocessed) is examined. A high degree of order and axial alignment in the director

is predicted at De=5.0; also, there is no indication of any qualitative change in the

structure development with further increase in De. Hence calculations were not continued

beyond De=5.0. No numerical instabilities were observed with increasing De with the

EVSS-G formulation and calculations can be continued beyond De=5.0.

6.11.1 Effect of Downstream Tube Length

The aim of this section is to first establish a downstream tube length, say L, that would

be sufficient to predict a fully developed configuration for the velocity at the downstream

exit to required accuracy; there must be no radial velocity and the corresponding pressure

field should have no radial dependence. Let the corresponding exit boundary be located

at z-4tx=Zo; note that the entrance to the contraction geometry is located at z=O. It is

then necessary to test the conjecture proposed in the previous paragraph that the structure

development from zO to zz o would not be affected if the downstream length is

imncreased beyond L2,0 i.e. zxit > Zo, even though the structure field at z=zo is not fully

developed. The stress is a dependent variable in this formulation depending on the

structure and the velocity gradient and hence is not shown. Information obtained from
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the structure tensor is translated into two quantities, the invariant of the structure tensor

S[3/2(S:S)l1 2 which quantifies the degree of order and the most probable prolate

molecular orientation angle X which gives the nematic director as described in Section

6.1.

An increase in De can be regarded as a decrease in the residence time available

for the flow field to reach a fully developed configuration, which can be compensated

only by an increase in the downstream tube length. It is fruitful to test and confirm the

conjecture proposed above since increasing the downstream tube length to achieve a fully

developed structure field would involve an increase in the computation time associated

with the increase in the number of elements with increasing downstream tube length. For

this contraction ratio, the downstream tube length was determined for De=5.0, which is

the highest value of Deborah number studied, by studying the approach to a fully

developed configuration in the exit velocity and by comparing the structure development

to that predicted in a contraction geometry with a downstream tube length long enough

that S and X are also fully developed; a downstream tube length that is sufficient for

De=5.0 is also expected to be sufficient for smaller values of De.

Figure 6.4a compares the downstream exit profiles in the axial velocity for five

different downstream tube lengths at De=5.0. The corresponding radial velocity and

pressure profiles are zero everywhere and are not shown. As seen from Fig. 6.4a the

axial velocity for a downstream length of 2.5 is far from being fully developed.

However, for a downstream length of 10.0 or higher the difference in the centerline

velocity is less than one percent of the fully developed value. The velocity profiles are
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"plug lihke close to the centelie, typical of shear thinning polymer solutions, as

opposedto being parabolic with a centerline velocity of two, as observed for Newtonian

solutions.

S and X for the above downtream lengths are shown in Figs. 6.4b and c. It can

be seen that S and especially X require a much longer downstream tube length to achieve

a fully developed configuration. The fully developed profiles for a downstream length

of 225, as might be expected, compare well with the results presented in Section 6.1 for

the non-homogenous shear flow through a tube.

The variation in the order at the centerline with downstream length is shown in

Fig. 6.4d. The approach to a fully developed value at the centerline is clear. In fact, a

fully developed flow should have no radial and axial velocity gradients at the centerline

and consequently the order must conespond to the equilibrium value for N=4.0. As seen

from Fig. 6.4d, the deviation from the equilibrium value is only about one percent for a

downstream length of 10.0. The variation in the centerline director angle with

downseam length is shown in Fig. 6.4e. The zero-shear-rate angle for N=4.0 is also

shown for comparison. The approach to a fully developed value in the centerline angle

is evident. Unlike the axial velocity or S. X for a downstream length of 10 is far from

the equilibrium value of -20.1 degrees However, what is of impotance is the effect of

imposing a fully developed flow field boundary condition at a downstream length of 10

on th sttur dvelpment in the contrction region and the downstream tube.

Radial profiles of the axial velocity, S and X at z-30 and 40 are compared for

d _ownstrem lengths of 10 and 225 in Fig. 6.5a-c. The agrement is excellent except for
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minor deviations in S and X at the centerline. The centerline order and angle up to z--40

(exit boundary for downstream length of 10) for the two downstream lengths are

compared in Figs. 6.5d and e. S and X near the exit boundary for the downstream length

of 10 vary only by one percent from the true value. The results in Figs. 6.5a-e

demonstrate that if the velocity at the exit is close to the true fully developed

configuration the hyperbolicity in the structure development guarantees that the S and X

solution fields in the contraction geometry would match very well with the true solution

field even though S and X are not fully developed at the exit.

The velocity profile changes only by one percent when the downstream length is

increased from 10.0 to 225.0. The S and X solution fields up to z=40, which defines the

exit boundary for a downstream length of 10.0, also show very good agreement with the

true fully developed solution field determined with a downstream length of 225. Hence,

for the rest of the calculations a downstream length of 10.0 is chosen as a good trade-off

between the increase in computation time and the accuracy of the solution for the field

variables in the contraction geometry.

6.2.1.2 Convergence with Mesh Refinement

Demonstrating the convergence of the numerical solution to the exact solution with mesh

refinement is an important consideration in finite element calculations. One measure of

convergence, defined in L2 space, is given by Eq. 5.48. As a corollary to this equation,

L2(ub) must approach L2 (u) in the limit h--0.

As possibly the most difficult calculation, convergence of solution with mesh
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refinement is tested for De=5.0, the highest value of Deborah number studied in this

work. The variation in the L2-norm of the solution field with the number of elements is

shown in Fig. 6.6. There is very little change in the solution norm for meshes with 1856,

2261 and 2676 elements. However, the L2-norm defined as

Ui2i = C[f u2rdrdzJ; n = no. of variables (6.4)

for an axisymmetric problem, fails to test the accuracy of the solution field at the

centerline due to the weighting function r. In Figs. 6.7a and b radial profiles for S and

Z at the inlet (z=O), downstream exit (--40) and where the contraction region blends with

the downstream tube (z=30) are shown. The radial profiles at the inlet extend up to

r/R2 =2, but for the purpose of comparison with the downstream profiles are shown only

up to r/R2 =l. Agreement is good everywhere except close to the centerline where some

deviations from the predictions for the mesh with 2676 elements are noticed in S and X

for the mesh with 1856 elements. Variation in S and X along the centerline is shown in

Figs. 6.7c and d. S and for the meshes with 1856 and 2261 elements show the

maximum difference from S and X for the mesh with 2676 elements near the downstream

exit. However, the difference in S and X between the meshes with 2261 and 2676

elements is very small; S differs by no more than 0.002 and X differs by no more than

half a degree.

From the results shown in Figs. 6.6, 6.7a-d it can be safely inferred that the mesh

with 2261 elements is suitable for calculations up to De=5.0 for the 2:1 contraction.

223



1 J4.-tVU

134.785

134.780

134.775

1 A 77n
Nwo o 10E

No. of Elements

Figure 6.6 Variation in the L2-norm of the solution field with number of elements in a
2:1 contraction for N=4.0. au10, 1l.6x10 '5 and De=5.O.

224

E

I .I .I ,- -

·.. I -A 

. f . .. # 9

I

I



In

If

0.

kc _

-30
0 .

rhgue 6.7 r, rT/D I n
ZO. 30 nd 40 in a

(b) ' at
w1U LC ^ -,, -

.0

225 -..



10 20 30 40

10 20 30
z/R2

Figue 6.7
centerline X

Effect of number of elements on the variation in (c) centerline S and (d)
in a 2:1 contraction for N=4.0, G=1.0, 1=l.6x1O5 and Dez.0.

226

1.0

0.9

03

N
N 0.8

0

0.7

0.6

10

0

N0

N -10

-20

-30
0 40



6.1.3 Effect of De; De=0.1, 1.0 and 5.0

The aim of this section is to study the effect of small, moderate and reasonably large

Deborah numbers on the development of the flow field, the degree of molecular order and

the orientation and examine the implications on the assumptions used in the fiber drawing

analysis discussed in Chapter 4. The discussion is divided into four sub-sections: (1)

effect of De on velocity, (2) effect of De on the degree of order S, (3) effect of De on

the director angle X, and (4) implications for fiber drawing analysis and processing; the

validity of the assumptions used in the fiber drawing analysis and design and process

conditions to improve the degree and axial homogenity in the molecular orientation are

discussed in this sub-section. Contour plots of pressure, components of structure tensor,

velocity, components of velocity gradient tensor, components of stress tensor and

streamlines are shown in Figs. 6.8a-o for De=O.1, 1.0 and 5.0. Information contained in

the contour plots for the components of the structure tensor is transformed into

information for S and X and is shown in Figs. 6.8p-q. To better illustrate the quantitative

effect of De on the axial velocity, degree of order and the molecular orientation, as the

flow progresses through the contraction geometry shown in Fig. 5.la, cross-sectional

profiles at the inlet, the downstream exit and the axial location where the contraction

region blends with the downstream tube are plotted in Figs. 6.9a-c. The radial profiles

at the inlet extend up to rlR2=2 but are shown only upto rR 2=l for the purpose of

comparison with the downstream profiles. The maximum velocity and the percentage

overshoot over the downstream exit velocity are listed in Table 6.1. The effect of De or,

the development of order and orientation along the centerline and the response to the
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Figue 6.8a Contour plots of steamlines in the flow through a 2:1 contration for N=4.0,
OI.0, Al.6x10 and De=.l, 1.0 and 5.0.
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De=O.l
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Figure 6.8b Contour plots of radial velocity in the flow through a 2:1 contraction for
Nh4.0, l., .0 =1.6x105 and De=O.1, 1.0 ad 5.0. Radial velocity is made
dimensionless with the avaage velocity in the downstream tube VU.
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Fiure 6.8c Contour piots of axial velcity in the flow through a 2:1 contraction for
J=4.0 L=.0, C=,.6x105 and DeO.1, 1:0 and 5.0. The uial velocity is made
dimensionless with the average velocity in the downstream tube V2,.

230

f~~~ _ 

- -

-
- - -

e 
* - -

__

- - --



De=O.1

--" m1"!1 11Ax max. value - 68246
* mi. value a -0027378
eL pe- 6.204

De=l1.O

x max. Value - 4242
in. value - -0 -02294

mrL pe. 3.S

* Wadaw y 00 19
et - 30463

Figr 6.84 Contour plots of pressure in the flow through a 2:1 conraction for hN4.0,
o1.0, Pw1.6xl 5 and De0.I 1.0 and 5.0.
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Fie 6.81 Contomr plots of S. in the flo. through a 2:1 contraion for N4., ~1 .0,
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Figum 6.8h Contour plot of De, in the
oI.0, JPl.6x10 5 and De-O.1, 1.0 and 5.0.

flow through a 2:1 conction for N4.0,
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Figure 6.8i Contour plots of Dem in the
ol.0, al.6x10 5 and DeO.1, 1.0 and 5.0.
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Figme 6.8 Contour plots of Des in the flow throug a 2:1 conraction for N,4.0, o1.0,
Pl.6x10' and D..l,-1.0 and 5.0.
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Filgu 6.81 Contour plots of G, in the flow. through a 2:1 contraction for N=4.0, o=1.0,
.1.6x10 5 and De=0.1, 1.0 and 5.0.
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Figure 6.8m Contour plots of Gz in the flow through a 2:1 contraction for Nr4.0, =1 .0,

fP-l.6xr' and De=.l1, 1.0 and 5.0.
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Figure 6.8n Contour plots of G. in the flow throughb 2:1 contraction for N=4.0, oa.0,

~Pl.6x10 5 and DeO., 1.0 and 5.0.

241

De=O.1

De1I.0

--- -,



x max. value 0.0110858
* man. value -.0032979

eat. spe 0.0013076

x max. value 0.011220(

* mn. value a -.0032363
ernL sp. - 0.0013142

max. velue - 0011215
mt. value a -0003318

,pc * 0.0013211

Figure 6.8o Contour plots of Gzr in the flow through a 2:1 contraction for N=4.0, o- 1.0,

p=1.6x1 5 and De=0.1, 1.0 and 5.0.
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Figue 6.9 Effect of De on the radial variation in (a) v, (b) S, and (c) X at z=0, 30 and
40 in a 2:1 contraction for N=4.0, o=1.0, r=l1.6xl0 5 and De--0.1, 1.0 and 5.0. The fully
developed downstream exit velocity profile for a power-law model with the same shear
thinning behavior as the viscosity for the liquid-crystal model is shown for comparison.
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dimensionless axial velocity gradient t(0,ztR 2) is illustrated in Figs. 6.9d-f.

Effect of De on Velocity

For a purely Newtonian solution, the fully developed dimensionless velocity profile

through the downstream tube of radius R2 is given by the equation

v=2 ( r)2 ] (6.5)

From volume conservation, the velocity through the upstream tube of radius 2R2 is then

v = 0.5 ( r )2 (6.6)

For De=0.l, there is very little shear thinning at the inlet, since the associated shear rates

are small, and consequently the velocity profiles are Newtonian. For De=l.0 and 5.0 the

maximum centerline velocity is slightly lower than the Newtonian value which is

evidence of a small shear thinning effect.

Table 6.1 shows that the maximum velocity decreases with increasing De. The

percentage overshoot, however, increases with De due to the effect of shear thinning and

the consequent decrease in the downstream velocity. Fig. 6.9d reveals that the maximum

velocity (corresponding to tg(,z/R2) = 0 near the junction of the contraction and the

downstream tube) shifts downstream with increasing De. The response in S(0,z/R2) and

X(O,zR2) to t(0zR 2) is discussed in the following sub-sections. At the junction of the

contraction region and the downstream tube, but away from the centerline, the blunt or

'plug-like" velocity profiles for De = 1.0 and 5.0 as compared to De = 0.1 (cf. Fig. 6.9a)
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Table 6.1: Effect of contraction ratio, concentration and Deborah number on the
maximum velocity and percentage overshoot on the centerline.

indicates an increase in shear thinning with De.

At the downstream exit, the velocity is close to being Newtonian for De=0. 1. The

centerline velocity is slightly lower than two, which points to a small shear tinning

effect. Shear thinning is much more pronounced for De=l.0 and 5.0. The velocity

profile predicted for a power-law model with a shear thinning index of -2/3 in the

viscosity is shown for comparison since the Bhave et al model predicts a viscosity that

has a shear thinning index of -2/3 at high shear rates, note that the Bhave et al model

predicts a constant viscosity at low shear rates. However, the fully developed flow field

at the downstream exit is non-homogenous in the shear rate, with the shear rate varying
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2:1 4:1 (cubic) 4:1 (rounded)

De N = 4.0 N = 7.0 N = 4.0 N = 4.0

Vmax 2.093 2.238 2.250 2.405

0.1 % overshoot 6.61 12.11 14.62 22.58

vmax 2.000 2.172 2.177 2.297

1.0 % overshoot 9.05 13.58 18.71 25.27

Vmax 1.960 2.104 2.186 2.281

5.0 % overshoot 13.74 17.05 26.49 31.69



from zero at the centerline to a maximum at the wall. Consequently, the viscosity shear

thinning index is not as high as -2/3 near the centerline even for De=5.0, and the

corresponding velocity profile is not as blunt or "plug-like" as the velocity profile

predicted for the power-law model.

Effect of De on the Degree of Order S

A discussion of the effect of De on S shown in Figs. 6.8p, 6.9b and e is the object of this

sub-section. The effect of De on S in the upstream tube is discussed first, which is

followed by discussions on the effect of De on S in the contraction region and the

downstream tube respectively. The effect of De on S(O,z/R2) and the response in

S(0,z/R2 ) to g(0,z/R2) is also discussed in this connection. S takes on values between the

equilibrium value of 0.683 (red part of the color spectrum in Fig. 6.8p) and the perfect

orientation value of 1.0 (dark blue part of the color spectrum in Fig. 6.8p).

The order at the inlet, as expected, is close to the equilibrium value throughout the

range of r/R2 shown for De=0.1 (cf. Figs. 6.8p and 6.9b). The higher shear rates

associated with De= 1.0 and 5.0 create a higher degree of order away from the centerline.

The centerline value must still be the equilibrium value since the shear rate is zero there.

The higher shear and extension rates in the contraction region are expected to

create a higher degree of order than the order present at the inlet. For small De, say

De=0.1, however, the order hardly changes from the equilibrium value throughout the

contraction region (red everywhere in Fig. 6.8p). The higher elongation rate (0,z/R2)

associated with De=5.0, and to a lesser extent De=l.0, leads to a much higher degree of

order at the centerline over the equilbrium value as compared to the centerline value for
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De=0.1 (cf. Figs. 6.8p and 6.9e). Shear flow, however, seems to dominate the kinematics

more than extensional flow in creating order for this tapered contraction geometry, since

the order increases monotonically from the centerline to the wall (the color changes

monotonically between the red end and the blue end of the spectrum in the contraction

region in Fig. 6.8p; Fig. 6.9b also highlights this monotonic increase in the order from

the centerline to the wall at the junction of the contraction region and the downstream

tube). Once t(0,z/R 2) starts to increase in the upstream portion of the contraction region,

there is a lag of 7-8 downstream tube radii before a sharp increase in S(0,z/R2) is

observed for De = 1.0 and 5.0; the order changes little from the equilibrium value for De

= 0.1 (cf. Figs. 6.9d and e). In fact, remarkably, the axial location where S(O,zR 2)

increases sharply coincides with the point where the director becomes aligned with the

z-axis. The lag between the maximum in S(0,z/R2) and t(Oz/R2), however, is only of the

order of one dowr.iream tube radius for all De.

At the downstream exit, S at the centerline relaxes to the equilibrium value (which

is the fully developed value) for all De since the axial velocity gradient decays to zero.

As is obvious from Fig. 6.8p and 6.9e, the downstream axial distance over which the

centerline order relaxes to equilibrium increases with De. However, the shear dominated

kinematics from the contraction region are maintained some distance away from the

centerline and there is no decrease in the order in this shear dominated region in the

downstream tube.
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Effect of De on the Director Angle X

In this sub-section the effect of De on the director angle X shown in Figs. 6.8q, 6.9c and

6.9f is discussed. Patterning the discussion after the preceding sub-section the effect of

De on X in the upstream tube is examined first which is followed by an examination of

the effect of De on X in the contraction region and downstream tube respectively. The

effect of De on X(0,z/R2) and the response in X(0,zR2) to (O0,z1R2 ) is also discussed in

this connection. Dark blue in the color coding shown in Fig. 6.8q corresponds to perfect

alignment of the director with the z-axis and as the color approaches the red part of the

spectrum the director becomes increasingly tilted with respect to the axial direction.

At the inlet, the director angle hardly varies from the zero-shear-rate prediction

of -20.1 degrees for De=0.1. The higher shear rates associated with De=5.0, and to a

lesser extent De=l.0, away from the centerline results in a director orientation that is

more closely aligned with the z-axis.

In the contraction region, the pure extension along the centerline aligns the

nematic director perfectly with the z-axis for all De (dark blue in Fig. 6.8q). This is

consistent with the perturbation analysis presented in Section 4.1 which suggested that

even at small elongation rates the director must be aligned with the direction of stretching.

However, even if the nematic director is perfectly aligned with the axis at small De, the

spread in the distribution function for the orientation about the average or director

orientation is still broad since S(Oz/R2) is not very far from equilibrium. Figures 6.9d

and f show that there is no lag in the response of X(0,z/R2) to an increase in t(0,/R 2) in

the upstream portion of the contraction; for any De, the "dip" in t(Oz/R 2) near z/R2 = 10

is accompanied by a similar "dip" in X(O,z/R2), and when (0,z/R2) increases to 0.1,
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X(0z4R2) rapidly increases to 0 degrees. Once the director becomes aligned with the z-

axis there is no change in the orientation with any further increase in 9(0,z/R2 ). X(0zIR2 )

does not change until t(0,z/R 2) approaches zero; though it appears that the director starts

to tilt from being oriented with the z-axis when t(0,zIR2 ) = 0.125 for De = 0.1, the actual

magnitude of the axial velocity gradient, Det(O,zR 2)/, (note that t(0,z/R 2) is defined to

be dimensionless) is only of the order of 0.01 s. This seems to be consistent with the

perturbation analysis which shows that even for very small extension rates the director

must be aligned with the flow direction. The downstream shift in the maximum velocity

(9(0,z/R2 ) = 0) and the corresponding shift in the onset of tilting in the director orientation

from the z-axis with increasing De is also clear. In the region away from the centerline,

the kinematics is dominated by shear flow. Consequently, the director orientation changes

rapidly from the axial orientation predicted at the centerline and is dictated by the shear

rates that exist in that region. The maximum change in the director orientation across the

contraction is observed for De=0.l; the smallest value of De studied in this thesis. In

fact, close to the wall, where only shear flow kinematics exist, the director orientation is

worse than the orientation at the entrance to the contraction geometry. This "loss of

orientation" is easily explained; in the limit of zero-shear-rate the director is oriented at

-20.1 degrees with respect to the flow direction, and since the flow is parallel to the wall,

the slope of the wall makes the director orientation with respect to the z-axis worse than

-20.1 degrees. In the downstream portion of the contraction region, where the

contraction region blends gradually with the downstream tube, the wall slope is no longer

a factor and in fact the wall shear makes the director orientation with the z-axis slightly
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better than -20.1 degrees (cf. Fig. 6.9c). As expected, for De=l.0 and 5.0, the wall slope

makes the director orientation close to the wall in the upstream portion of the contraction

region worse than the orientation close to the wall at the entrance to the geometry. In the

downstream portion of the contraction region, the radially increasing shear rate for De =

5.0, and to a lesser extent De = 1.0, makes the director oriented much more preferentially

with the z-axis than that predicted for De = 0.1 (cf. Figs. 6.8q and 6.9c).

In the downstream tube, the director orientation along the centerline is no longer

coaxial with the flow direction due to a relaxation in the extensional flow kinematics (cf.

Figs. 6.8q and 6.9f). In fact, as demonstrated in Section 6.2.1.1, for sufficiently long

downstream tube lengths (R 2 = 225 for De = 5.0) when the director orientation field

is fully developed (which match with the tube flow results presented in Section 6.1), the

director orientation along the centerline approaches the zero-shear-rate limit; for De = 0.1

and 1.0 the director orientation approaches the zero-shear-rate limit for smaller

downstream tube lengths (L/R 2 = 100 for De = 0.1 and R 2 = 150 for De = 1.0).

However, the shear flow dominated kinematics from the contraction region are maintained

some distance away from the centerline and there is very little change in the director

orientation in this shear dominated region in the downstream tube.

The increase in a(Oz/R2) from zero to ma may be thought of as an experiment

in "startup of steady elongational flow" with time scaling roughly as (z/R2)/De. Similarly

the decrease from max to 0, albeit non-monotic and going through negative values of

t(0O,/R2), may be thought of as an experiment in "relaxation following cessation of steady

elongation flow" at an elongation rate tmx. It is interesting to examine how the response
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in X(0,z/R2) differs in "startup of steady elongational flow" and in "relaxation following

cessation of steady elongational flow". The response in X(0,zIR2) shown in Fig. 6.9f to

the dimensional axial velocity gradient, Det(O,z/R2)/X s l , is illustrated for De=0.1, 1.0

and 5.0 in Fig. 6.10; t(0,z/R 2) is as shown in Fig. 6.9d. The arrows shown in Fig. 6.10

indicate the direction of flow along the centerline. It is clear that the increase in X(0,z/R2)

during "startup of steady elongational flow" traces a different path from the decrease in

X(O,zR2 ) during "relaxation following cessation of steady elongational flow"; the

difference in the X-response is small for De=0. 1 since the axial velocity gradient is small,

but becomes magnified with increasing De. Thus, the size of the "hysteresis" exhibited

by X(O,zJR2) in the response to Det(O,z/R 2) increases with De.

Implications for Fiber Drawing Analysis and Processing

To probe rigorously the validity of the one-dimensional assumptions used in the fiber

drawing analysis presented in Chapter 4, an integrated finite-element model for the

contraction, die swell and fiber drawing region is required. Though such an integrated

model is not expected to be computationally limited, it is certainly limited by a lack of

complete understanding of the effect of the die swell singu!arity on the propagation of

information of the hyperbolic structure field (equivalently, the stress field in UCM,

Oldroyd-B and Giesekus constitutive equations), which is associated with memory effects.

In Stokes flow, the singularity does not affect the final die swell since only viscous

effects are present and the effect of the singularity is confined to a small region around

the die lip as compared to viscoelastic flows where the effect of the singularity is felt

much further downstream especially at high De. The die swell singularity issue is

254



N=4.0De=O.1

........ De= 1.0

-'-- De=5.0
- L ,

, I

% ' I

A

/

t r r I t 1 r~~~~~~~~~~~I 

0.0

/

0.5

Dei(O.z/R2)/A, s-'
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discussed more elaborately in Appendix A.

Fiber spinning experiments with 40 wt % hydroxy propyl cellulose in acetic acid

(Prilutski, 1984) show that the die swell for liquid-crystalline polymers is very small; only

10-15 % even at small tension. It is reasonable to expect then that the deorientation due

to die swell is small and that the structure field predicted at the spinneret exit would

provide a reasonable estimate of the initial orientation and the homogenity of the

orientation in the fiber drawing region. Two key assumptions in the one-dimensional

model for the fiber drawing region are (1) S and X are radially homogeknous and (2) the

director is oriented with the z-axis with Sq < S(0) < St . The spinneret calculations would

give a fair idea on the region of validity of the above assumptions in Deborah number

space.

Figures 6.8p-q and 6.9b-c show that S and X will approach radial homogenity for

high De when L/R2 - 0 (z = 30 plane); in addition the director will be oriented with the

z-axis ( = 0 degrees). The degree of order predicted at the maximum centerline

elongation rate St would be a good estimate for S across the cross-section. Hence, at high

De and L/R2 0 the assumptions in the fiber drawing model would be valid provided

S(O) = St

It is apparent from Figs. 6.9b and c that for small De (De = 0.1 is the smallest

value studied in this thesis), S is reasonably homogenous about the equilibrium value

whereas X is not; up to a 10 degree variation in the director angle from the centerline to

the wall is observed at the downstream exit (R 2 = 10 in these calculations).

Calculations show that the director orientation is uniform when the X field is close to
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being fully developed (A fully developed configuration is obtained for LUR2 = 100 at De

= 0.1). The director orientation itself is close to the zero-shear-rate limit of -20.1 degrees.

Hence, at small De and a reasonably long downstream tube length, the one-dimensional

fiber drawing model would be valid provided the evolution equation for the structure is

modified to account for non-axial prolate symmetry in the director and is solved with the

initial condition S(0) = Seq, X(O) = Xzero-shear-rate However, as suggested by the

perturbation analysis in Section 4.1 and the contraction flow results at the centerline, it

is expected that the purely extensional character of the one-dimensional fiber drawing

model would rapidly align the director with the flow direction, though the degree of order

would still be close to the equilibrium value at small De. A question arises then as to

whether the extensionally dominated flow in the fiber drawing region would wipe out any

radial inhomogenity in the director orientation predicted for short downstream tube

lengths even at small De. Whether the director orientation becomes radially homogenous

and the axial length scale over which the initial inhomogenity disappears can be answered

only by a two-dimensional model for the fiber drawing region.

From a processing point of view a high degree of order and axial orientation in

the director is important to achieve high tensile strength in the fiber (cf. Fig. 1.1). Only

an integrated model would reveal how the spinneret and fiber drawing flows can be

optimized fully in creating a high degree of order and axial director orientation in the

fiber. However, the isolated spinneret and fiber drawing calculations do highlight what

each flow has to offer.

Let us denote the Deborah number in the spinneret and the fiber drawing region
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as De-,,,,t and Defiber respectively. The two are related by the expression

Despinneret = Lfber 1 (6.7)
Defnr R2 DR

where Lber is the length of the fiber drawing region and DR is the draw ratio. It is

assumed that the velocity at the spinneret exit is not different from the velocity at the

origin of the fiber drawing region.

The spinneret calculations show that at high Despinneret and UR 2 - 0, S and X

become homogenous. In addition, the director is oriented with the flow direction and the

degree of order is high. There are two advantages to creating a high degree of order and

axial orientation by operating at high Despi,,nnet: (1) the total pressure drop per unit

volumetric flow rate decreases dramatically since L/R2 -- 0, and (2) the pressure drop

required to drive a unit volumetric flow rate also decreases due to shear thinning (cf. Fig.

6.23). A limitation may arise, however, in achieving a specific drawdown in the fiber

radius in the fiber drawing region; assuming that the dependence of die swell on

Despinnre, is small (the initial fiber radius in the fiber drawing region would then vary

little with Despinneaet) the calculations in Section 4.3 show that for a high degree of initial

order the drawdown tension is 20 % higher than the drawdown tension predicted when

the initial order is at equilibrium.

The fiber drawing flow is dominated by extensional flow kinematics. Menon's

(1990) results show that if one were to compare the degree of order created in a simple

shear flow and a simple elongational flow at the same magnitude of the dimensionless

shear rate and elongational rate, the elongational flow creates a higher degree of order as
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may be expected intuitively. For example, the degree of order predicted in a simple shear

flow and a simple elongational flow at N=4.0 and t==1.0 are 0.75 and 0.85 respectively.

Thus, the extensionally dominated fiber drawing flow, as demonstrated in Chapter 4,

creates a high final degree of order even at moderate Defibr for low or high initial order.

The calculations in Section 4.3 showed that the final degree of order is slightly higher for

moderate and high Defirb if the initial order is high. Consequently, by combining a

spinneret flow operated at high Despinre t with a fiber drawing flow operated at moderate

Defitbr a fiber with a high degree of order can be synthesized. The limitation that arises

in drawing down a fiber from high initial order, as mentioned previously, is the higher

fiber drawdown tension as compared to the tension required for fiber drawdown from a

low initial order.

Unlike the flow through an abrupt contraction studied by Yeh et al. (1984) and

Coates et al. (1992), the smooth and tapered contraction boundary prevents the formation

of recirculation regions, at least for the 2:1 and 4:1 contraction ratios and the range of De

studied in this thesis, as seen from the streamline contours and should also be an

important consideration in the design of spinnerets.

6.2.2 High Concentration; N=7.0

Commercial liquid-crystalline polymers are typically processed from solutions that contain

higher polymer concentrations. For example, Kevlar is processed from a liquid-crystalline

solution of about 20 wt % PPTA in concentrated H2SO4 (Dupont, 1992), which,

undergoes a isotropic-nematic phase transition at about 9 wt % PPTA. The dimensionless
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concentration, N, for this liquid-crystalline solution is then about 7.0. In Section 6.2.2.1,

the effect of De on the flow field, structure and the stress fields is studied for N=7.0. In

Section 6.2.2.2, the effect of concentration on the axial velocity, degree of order and

orientation is illustrated.

6.221 Effect of De; De=0.1, 1.0 and 5.0

The aim of this section is to study the effect of small, moderate and reasonably large

Deborah numbers on the development of the flow field, the degree of order and director

orientation, and the stress field for N = 7.0. Contour plots of pressure, components of

structure tensor, velocity, components of velocity gradient tensor, components of stress

tensor and streamlines are shown in Figs. 6.1 la-o for De--.l, 1.0 and 5.0. Contour plots

of S and X are shown in Figs. 6.11p-q. The quantitative effect of De on the axial

velocity, degree of order and the director orientation, as the flow progresses through the

contraction geometry, is better illustrated in Figs. 6.12a-c by plotting the cross sectional

profiles at the inlet, the downstream exit and the axial location where the contraction

region blends with the downstream tube. The radial profiles at the inlet extend up to

r/R2=2 but are shown only up to r/R2=l for the purpose of comparison with the

downstream profiles. The effect of De on the development of order and director

orientation along the centerline and the response to the dimensionless axial velocity

gradient is illustrated in Figs. 6.13d-f.

260



De=O.l

De=1.O

* . WdocSrU 100

x mm. vh u .00000E+ 0

at spe * 0909091

0 uta. velue O.OO0 E00

eMt spe. a 0.0009091

De=5.O

X Um. Mvie a 1000

*· uda h * O.0h+00
O&L spa. 0.0901

ue 6.11 Cnurr plo of SUroml . i he flow tflow h ·& a 2:1 om o for

N7.0, 01.0. pul.6xl0' and Do.1, 1.0 and 5.0.

261

1 -i 



max. value - 0.005270
* mn. value -.032866
erL spc. 0.0034685

x max. vlue , 0.0054749
*· mi. value -.032433
maL apt. - 0.003"63

De=5.0

x ma. value 0006072
mi. value , -033

MtL sp. p. 0.0034971

Fiwre 6.1 lb Contour plo of radial veocty in the flow
7A.0, awl.0, sl.6x1* : and De.1, 1.0 ad 5.0.

tbrougbh a 2 conraion for

262

De=O.1

De=1.O

I . -,



De=O.1

x

! LI
- et

max. value m 2238
mn. value - -0.25925E-25

pc. 0.2034740

De=l.O

x max. value - 2.172
0 mnn. value -0.79577E-16

etL spe - 0.1974283

De=5.0

t IZ x ma. value - P.104
* mi. value = -0 A44E-S

atL pe. 0.1012916

Figue 6.1 c Contour plots of axial velocity in the flow through a 2:1 contraction for
NA7.0, o=1.0, I'.6x10 and De=0.1, 1.0 and 5.0.

263

I

I

f * -

It

I I

L-

- - -

--- (I--



De=O. 1

max. Vaoue M 39.146
n.ml value -. 0010225

antL pc. 3.559

De=l.O

T -'l X max. value - 30.423
f__ · n.min. value -0007624

meL pc. - 2766

De=5.0

X x value la?670
0 d"l. alue - _n

L a pe. ' W1

Figur 6.1 Id Contour plots of pressure in the flow through a 2:1 contraction for N=7.0,
Om1.0, V=1.6x1O'5 and De=O.l, 1.0 and 5.0.

264



De=0.1

x max. value -2016126
* man. value --28165I

caL sp - 0.0072339

De=1.O

x max. value -213069 
· __I D mi. value - -. 28448

eL p. 0.0064142

De=5.0

x max. value - m84
* mn. value -.e676

eaL p 0 06n363

Figum 6.1 le Contour plots of S, in the flow through a 2:1
Pi.6x1O 5 and DeO.1, 1.0 and 5.0.

contraction for N=7.0, o=1.0,

265

-:-�



De=O. I

x max. value o 0.5617197
* Inn. value 0.4621571
atL .p .- 0.0072330

De=1.O

xc��
x max. value - 0.568423
* mi. alue - 0.4S76"18

oaL pr a 0.0064710

De=5.0

X max. value .O0m77qE

* ml. value 00974M
eaLt. , 0.00o066

Figue 6.1If Contour plots of S$ in the flow through a 2:1 conruction for Ns7.0, o1.0,
>=1.6X01¢5 and DeuO.1, 1.0 and 5.0.

266

F

. I-IIaI

_w

-- -- --I II _
L

~~~~~-~~~~~~~~~v~~~~~~~~~

-- - -



x amx. value - 0.OO9312
* m. value a -.2436
a. spc. - 0.02323M

x max. value 0.00659417
* d value - -J2396690

onL spe. - 0223182

De=5.0

x max value a 0.006W07
* ad& value - -11093
mL ic. .* .020917

Figme 6.1 Ig Contour pts of S, in the flow through a 2:1 contraction for N=7.0, a=1.0,

l1.6x1 5 and DeO.1, 1.0 red 5.0.

267

De=O.l

De=1.O

I



De=O. 1

x max. value - 0.0148417
* mn. value - -.0088408

cnt. spc. 0.0021530

De=1.0

x max. value - 0.0298125
* min. value - -. 0743774
ant. spc. 0.0094718

De=5.0

x max. value - 0.1123120
* min. value - -.2494886
nt. spe. a 0.0328910

Figur 6.11b Contour plots of De, in the flow
o.0, >l.6xl ' 5 and Des.1, 1.0 and 5.0.

through a 2:1 contraction for N=7.0,

268



De=O. I

x max. value - 059342E-04
min. value - -. 4602300

ent spc. - 0.0418445

De=1.O

x max. value - 0.0045771
min. value - -4278

cnLt sp. - 03893231

De=5.0

X max. sutie - 0.1507134
* mln. value -17.723
ctL sp. - 1.625

Figwe 6.1 li Contour plots of De in the flo through a 2:1 contaction for AI7.0.
oul.0, ul.6x10' 3 ad De.1, 1.0 and 5.0.

269

I

- - -

_ __ _B I



De=O. 1

x

cntL

max. value - 0.0025437
min. value - -.0022059
spc. - 0.0004318

De=1.O

x max. value 0.0264057
* min. value - -.0123313
CnL ape. 0.0035215

De=5.O

x

cat

max. value - 0.1090614
min. value - -.0442381
spe. - 0.0139363

Fige 6.11j Contour plots of Des in the flow throh a
o1.0. '.m.6x10 ' and DeI0., 1.0 and 5.0.

2:1 contraction for N7.0,

270

_

L



De=O.l

De= .0

z ~ ~ ~ ~ ~ ~ ~I- 

x max. value 0.1157462
* min. value - -.0012248

cntL spc. - 0.0106337

x max. value - 0.8837038
* min. value -. 0057810
enrt spc. - 0.0808623

De=5.0

x max. value 2.704
* mn. value - -.0342808

cut. pe. - Q02489021

Fisue 6.11k Contour plots of Det, in the
o1l.0, =1.6x1O '5 and De=0.1, 1.0 and S.O.

flow through a 2:1 contraction for Nt7.0,

271

F

- - -

- - -

m



max. value 0.13815
* mi. value - -.08 73

tL pe. - 0.0202126

x max. value - 0.1469713
* min. value -.0781777

caL spc. - 0.0204681

De=5.O

X max. value - 0.181368
* Wl. value -.074667

eaL pc - 0.0QJ14

Figure 6.111 Contour plots of Grr in the flow through a 2:1 contraction for N=7.0, o=-.O,
Pl.6x10 5 and De=O.1, 1.0 and 5.0.

272

De=O.1

De=1.O



x max value - 0.1561SO
* min value - -.130038
eat ape. - 0.0277778

X max. value - 0.15M73
min. value a -. 1489072

enL a. a 0.02758M

De=5.0

X mx. vWlue* 0.1478
* adm. value -. 161269i

eL p - 0.0282313

Figne 6.11m Contour plots of Gz in the flow through a 2:1 contraction for NA=7.0,
a=1.0, 1.6xIO s4 and De=0.1, 1.0 and 5.0.

273

De=O.1

De=l.O

I �i�---1



De=0.1

x ma. value - 1.716
0 nL value - -4.047

caL sp - 0.238457

De=1.O

x mx. value 1.32t
0 min. value O -4.2
ML epe. - 0.5184348

De=5.0

x m=a. vahe - t005
* mi.. value -4.7"6
aL pe. * 0.173418

Figure 6.1 In Contour plots of G. in the flow through a 2:1 contraction for N=7.0, a]1.0,
1=.6x105 and DeuO.1, 1.0 and 5.0.

274

1��L -- -



De=O.1

x max. value - 0.0111820
* miL value -A_
rlt. pe. 0.001303

De=l.O

x mx. value - 0.01 1024
*J m value -0038839
etL rpe. 0.001354

De=5.0

X maX. value 0.0 So

* value -o*
mt. pe. 0.001344

Figure 6. 1o Contour plots of G in the flow throuh a 21 cotraction for Na7.0, n1.0,
bl.610 's5 nd DeO.l, 1.0 d 5.0.

275

| -

- .

- --
I -



r
U)06
m

CM
cD

oo

coCD

L0O

c5co
6l

oD

0
O

6
II
Ii

3

-

·

ci:r, -oI~ Cx c

aD t

E

,,.
_ m

L'J 
_ _l 1

C ;

a -"

_ 11

- _i

_ _?

s 
C >

_t

II
.1

CDco

co

0)Nco

u,0)ci
LO

6

8

11

I�·1



6
I Ia.)
01

II
v.
C

T

II

1)
11n f

4-5. X

C)M 5

C5_ w

IIN _

E

C._.3

-C
X .

C C
I, p

C N

, 

I -
; _'

r-_

C _LrVO E

2 .e
- -

C -

C: N
._ 

'3
_ 15

_

,_ ,X
. .

LL

0

044co

I
I

'a-

CO
c

CD

0

r-CO
_:

a:
Cv
c6
,V-

0)
CD
L6r

0
c69
o~

i'
t
I

I

i, 

7-·

, r e X *

I



.UUI

0.95

Cn)

0.90

0.85

0

2

I

0
0. t u.-

U.0

0

0

0

-10

-20
0

r/2 
1Figure 6.12 Effect of De on the radial variation in (a) v, (b) S and (c) t zO, 3 0and

40 in a 2:1 contraction for AN7.0 al.0, t 1.6xlOys and De. (). .0 and .0. Z at e fully
developed downstream exit velocity profile for a power-law model with the same shear
thinning behavior as the viscosity for the liuidcrysa model is shown for comparisn.

278

- _

.0



Effect of De on Velocity

The qualitative effect of De on the axial velocity is the same as that predicted for N = 4.0

(cf. Figs. 6.9a & 6.12a). As discussed in Section 6.2.1.3, the fully developed Newtonian

velocity profile through the upstream tube for a 2:1 contraction is given by equation 6.6.

For De=O.l, there is very little shear thinning at the inlet since the associated shear rates

are small and consequently the velocity profiles are Newtonian. For De=5.0, the

maximum centerline velocity is slightly lower than the Newtonian value which is

evidence of a small shear thinning effect.

Table 6.1 shows that the maximum velocity decreases with increasing De. The

percentage overshoot, however, increases with De due to the effect of shear thinning and

the consequent decrease in the downstream velocity. Fig. 6.13d reveals that the maximum

velocity (corresponding to (O,z/R2 ) = 0 near the junction of the contraction and the

downstream tube) shifts downstream with increasing De. At the junction of the

contraction region and the downstream tube, but away from the centerline, the blunt or

"plug-like" velocity profiles for De = 1.0 and 5.0 as compared to De = 0.1 (cf. Fig. 6.12a)

indicates an increase in shear thinning with De.

At the downstream exit, the velocity profile is Newtonian for De=0.l. For De=l.0

and 5.0 the enterline velocities are lower than the Newtonian value due to shear thinning.

The velocity profile predicted for a power-law model with a shear thinning index of -2/3

(n=1/3) in the viscosity is shown for comparison.
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Effect of De on S

The qualitative effect of De on the degree of order for N=7.0 is the same as that predicted

for N=4.0. The order at the inlet, as expected, is close to the equilibrium value across the

cross section of the tube for De=.l1. The higher shear rates associated with De=5.0

create a higher degree of order away from the centerline. The order is not very different

from the equilibrium value for De=l.0. S(0,0) must be the equilibrium value irrespective

of De since the shear rate is zero there.

The higher shear and extension rates in the contraction region are expected to

create a higher degree of order than the order present at the inlet. For De=0. 1, however,

the order hardly changes from the equilibrium value throughout the contraction region

(red everywhere in Fig. 6.1 lp). The higher elongation rate associated with De=5.0, and

to a lesser extent De=l.0, leads to a much higher degree of order at the centerline over

the equilibrium value as compared to the centerline value for De=0. 1 (cf. Figs. 6.11 p and

6.13e). Similarly to N = 4.0, a lag is observed between the increase in (0,z/R2) and the

response in S(0,z/R 2) for De = 1.0 and 5.0; the order changes little from the equilibrium

value for De = 0.1 (cf. Figs. 6.13d and e). The axial location where S(O,z/R2) increases

sharply coincides with the point where the director becomes aligned with the z-axis. The

lag between the maximum in S(0,z/R2) and t(0,z/R2), however, is only of the order of one

downstream tube radius for all De. Shear flow, however, seems to dominate the

kinematics more than extensional flow in creating order for this tapered contraction

geometry, since the order increases monotonically from the centerline to the wall; Fig.

6.12b shows this monotonic increase in the order from the centerline to the wall at the
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junction of the contraction region and the downstream tube.

At the downstream exit the order at the centerline relaxes to the equilibrium value

for all De since there is no axial velocity gradient to create extensional order. However,

as observed for N=4.0, the shear flow dominated kinematics from the contraction region

are maintained some distance away from the centerline and there is no decrease in the

order in this shear dominated region in the downstream tube.

Effect of De on X

The qualitative effect of De on the director orientation is also similar to the results

obtained for N = 4.0. At the inlet, the director angle hardly varies from the zero-shear-

rate prediction for De=0.l and 1.0. The higher shear rates associated with De-5.0, away

from the centerline, result in a director orientation that is more preferential with the axial

direction.

In the contraction region, the pure extension along the centerline causes the

director to be aligned with the z-axis for all De (dark blue in Fig. 6.1 lq). As explained

in Section 6.2.1.3 this is consistent with the perturbation analysis presented in Section 4.1.

Though the director is perfectly aligned with the axis even at small De, S(O,z/R2) is still

not very far from equilibrium. Figures 6.13d and f show that there is no lag in the

response of the director orientation to an increase in 9(0,dR2) in the upstream portion of

the contraction; the response in X(OzJR2) to 9(0,z/R2) is qualitatively the same as that

described in Section 6.2.1.3. The decrease in X(0z/R2) in the downstream portion of the

contraction is also qualitatively similar. In the region away from the centerline, the role

played by extensional flow in the kinematics has decayed and shea; flow has started to
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dominate the kinematics. Consequently, the director orientation changes rapidly from the

axial orientation predicted at the centerline and is dictated by the shear rates that exist in

that region. The maximum change in the director orientation across the contraction is

observed for De=O.l. In fact, close to the wall the director orientation is worse than the

orientation at the entrance to the contraction geometry. The reason for the "loss in

orientation" was discussed in Section 6.2.1.3. As discussed in Section 6.2.1.3 the wall

shear in the downstream portion of the contraction region together with the fact that the

wall slope is close to zero makes the director orientation with the z-axis slightly better

than the zero-shear-rate limit of -13.7 degrees (cf. Fig. 6.12c). The discussion in Section

6.2.1.3 on the behavior of the director orientation for De = 1.0 and 5.0 also holds for this

concentration.

6.12.2 Effect of Concentration

The velocity, degree of order and director orientation profiles for N=4.0 and 7.0, as the

flow progresses through the contraction, are compared to study the quantitative effect of

concentration. As already pointed out in the previous section, qualitatively there is no

difference in increasing the concentration from 4.0 to 7.0. Comparisons are presented in

Figs. 6.13a-c for De=l.O. The quantitative effect of concentration on the development of

S(O,zR 2) and X(Oz/R2) and their response to 9(0OR 2) is illustrated in Figs. 6.13d-f for

De = 0.1, 1.0 and 5.0.
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Effect of Concentration on Velocity

Even for De=l.0, shear thinning is small at the inlet since the associated shear rates are

small, and consequently the velocity profiles are close to being Newtonian for both

concentrations.

Table 6.1 shows that the maximum velocity and the percentage overshoot for N

= 7.0 is higher for all De. Fig. 6.13d also reveals that the maximum velocity for N = 7.0

is located further downstream for all De. The higher overshoot is associated purely with

the difference in the maximum velocities. In fact, Fig. 6.13a shows that the velocity

along the centerline at the downstream exit is higher for N = 7.0 which indicates that

shear thinning is less pronounced; this observation also holds for De = 0.1 and 5.0. The

reduced shear thinning effect for N = 7.0 could result from a postponement in the onset

of shear thinning in the viscosity to higher magnitudes of the rate-of-strain tensor (cf. Fig.

6.14).

Effect of N on S

The order along the centerline at the inlet is different for the two concentrations. The

difference arises since the order predicted at equilibrium for N = 4.0 and 7.0 are 0.683

and 0.840 respectively. A comparison of the inlet profiles also reveals that the order

increases noticeably towards the wall for N=4.0, whereas it remains close to the

equilibrium value for N=7.0 up to the range of r/R2 shown in Fig. 6.13b. The break-up

of the equilibrium phase diagram shown in Fig. 3.6 in shear or extensional flow, studied

by Menon (1990) and Bhave et al. (1993), demonstrates that the magnitude of the rate-of-

strain tensor required to increase the order by a fixed amount, increases with
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concentration which explains the above observation.

The higher shear and extension rates in the contraction region create a higher

degree of order for both concentrations. Figures 6.8p and 6.11p show that the radial and

axial increase in the order is much more substantial for the lower concentration. Fig.

6o13e shows that there is no noticeable effect of concentration on the axial location where

the sharp increase in S(O,zR2) is observed. Shear flow seems to dominate the kinematics

more than extensional flow in creating order for both concentrations for this contraction

ratio since the order increases monotonically from the centerline to the wall.

At the downstream exit, the order at the centerline relaxes to the corresponding

equilibrium value for both concentrations due to the absence of an axial velocity gradient

to create extensional order. However, at De = 5.0, S(0,z/R2) relaxes to the equilibrium

value over a shorter axial distance for N = 7.0 which may be due to the smaller difference

between the maximum and the equilibrium value.

Effect of N on X

It is apparent from Fig. 6.13c that (0,(O0) is different for the two concentrations. In the

limit of zero-shear-rate X(0,0) for N = 4.0 and 7.0 are -20.1 and -13.7 degrees

respectively. The X profiles at the inlet also show that there is a noticeable decrease in

the angle between the director and the z-axis as the radial position increases to r/R2 =l for

1J=4.0, whereas the angle is uniform for N=7.0. The break-up of the equilibrium phase

diagram in shear or extensional flow indicates that the magnitude of the rate-of-strain

tensor required to change the component values of the structure tensor by a fixed amount,

increases with concentration which accounts for the different radial dependence of X for

N = 4.0 and 7.0.
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In the contraction region, the pure extension along the centerline creates perfect

axial orientation in the director for both concentrations. However, the director becomes

aligned with the z-axis 1-2 downstream tube radii further downstream for N = 7.0. In the

radial direction, but close to the centerline, X decreases more rapidly from zero for N=4.0;

the maximum difference in Z is about 5-6 degrees. The faster radial decrease in X for

N=4.0 can be explained by the effect of concentration on the break-up of the equilibrium

phase diagram. However, away from the upstream portion of the contraction, the radially

increasing shear rate does not allow X to decrease to the zero-shear-rate limit for either

concentration. In fact, at z=30 there is a noticeable increase in X close to the wall for

both concentrations; however, the increase in X is more for N=4.0 due to the more

sensitive response to an increase in shear rate as discussed in the preceding paragraph.

In the downstream tube, X(O0z/R2) is no longer zero for either concentration due

to a relaxation in the extensional kinematics. The axial location at the onset of decrease

in X(Oz/R2) from zero is shifted downstream by 1-2 downstream tube radii for N=7.0.

However, X(OR 2) shows no dependence on De at the downstream exit for N = 7.0. The

smaller difference between X=0 and the zero-shear-rate limit for N=7.0 could explain the

observation. The shear flow dominated kinematics that exist from the contraction region

are maintained some distance away from the centerline and there is no change in X in this

shear dominated region in the downstream tube. Again, radial changes in X are more

rapid for N=4.0 than N=7.0.
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6.2.3 Effect of Contraction Ratio, A

In this section, the effect of contraction ratio on the flow field, degree of order, director

orientation and stress fields is examined by comparing the results for a 4:1 contraction

and the 2:1 contraction studied in sections 6.2.1 and 6.2.2. Comparisons are presented

for N=4.0 and De=O.1, 1.0 and 5.0. Contour plots of pressure, structure, velocity, velocity

gradient, stress, streamlines, degree of order and director orientation for the respective

contraction ratios are shown in Figs. 6.8a-q and 6.15a-q. Note that the dimensionless

pressure drop per unit volumetric flow rate defined by Eq. 6.2 and plotted as a function

of De in Fig. 6.23 is smaller for the 4:1 contraction for all De due to the larger upstream

tube radius. Cross sectional profiles of the axial velocity, degree of order and molecular

orientation for the two contraction ratios are compared in Figs. 6.16a-c. The inlet radial

profiles extend up to r/R2=4 for the 4:1 contraction and up to rR 2=2 for the 2:1

contraction. For comparison with the downstream profiles the inlet profiles are shown

only upto r/R2 =l. S(0,zR 2) and X(0zIR2) predicted for the two contraction ratios and

their responses to (0,z/R2 ) are compared in Figs. 6.16d-f. The response in the

dimensionless normal stress difference is illustrated in Fig. 6.16g.

Effect of A on velocity; De=0.1, 1.0 and 5.0

The Newtonian velocity through a tube of radius 4R2 is given by the expression

Tz = (6.8)

The Newtonian velocity through a tube of radius 2R2 is given by Eq. 6.6. It is clear from

the comparison with the corresponding Newtonian velocity profiles that the inlet velocity
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profiles for the 2:1 and 4:1 contractions are Newtonian for De=O.1. The comparison with

the Newtonian velocity profiles at De = 5.0 shows that shear thinning is more evident in

the 2:1 contraction. The larger upstream tube radius and the consequent smaller shear

rates explain the smaller degree of shear thinning in the 4:1 contraction.

Figure 6.16d shows that in the upstream portion of the contraction region,

t(0O,zR2 ) in the 4:1 contraction does not increase as much as in the 2:1 contraction for all

De. However, the local peak in (OzIR2) which coincides with the sharp increase in

S(O,dR2) is observed 1-2 downstream tube radii earlier in the 4:1 contraction as compared

to the 2:1 contraction. Table 6.1 shows that the velocity overshoot is also significantly

higher in the 4:1 contraction. In fact, since the velocity profiles at the downstream exit

are the same because the downstream tube radius is the same, the higher velocity

overshoot results exclusively from the higher maximum velocities. Fig. 6.16d also shows

that the axial position of the maximum velocity in the 4:1 contraction for De = 5.0 is

shifted downstream relative to its position in the 2:1 contraction by two downstream tube

radii. The higher maximum velocities in the 4:1 contraction, in combination with the

downstream shift in the maximum velocities, results in a stronger deceleration in the

centerline velocity (negative t(0z/R 2)) to the fully developed downstream value.

Effect of A on S; De=0.1, 1.0 and 5.0

The shear rates in the upstream tube are roughly smaller by a factor of four for the 4:1

contraction and consequently the order across the tube cross section is closer to the

equilibrium value for De=O. I (cf. Fig. 6.16b). Figures 6.15Sp and 6.16b also show that the

higher shear rates in the 2:1 contraction lead to a higher degree of order for De -= 1.0 and
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5.0.

Figures 6.8p and 6.15p show that for De = 0.1 there is little difference in S in the

upstream portion of the contraction; For De = 1.0 and 5.0, however, the degree of order

is much better in the 2:1 contraction. The higher elongation rates and consequently

higher extension along the centerline for any De in the downstream portion of the 4:1

conraction region (Fig. 6.16d) results in a higher value of S(0,/R 2) in this region of the

4:1 contraction (cf. Fig. 6.16e); in fact, the extension rates are higher not only at the

centerline but also some distance away from the centerline as reflected in the higher

degree of order in the 4:1 contraction at z = 30 in Fig. 6.16b. Figures 6.8p, 6.15p and

6.16b show, however, that there is no difference in the order near the wall for either

contraction ratio in the downstream portion of the contraction region for any De. Since

the order is dictated by the shear flow kinematics near the wall, it appears that there is

little difference between the kinematics in the two contraction ratios in the downstream

portion of the contraction region.

Figures 6.16e, 6.16b. 6.8p and 6.15p show that the order at and near the centerline

in the initial portion of the downstream tube is higher in the 4:1 contraction due to the

higher order created in downstream portion of the contraction region. The rapid decrease

in the order, however, wipes out any differences in the order by the time the downstream

exit is reached. Figure 6.16b shows that there is no difference in the order at the

downstream exit for any De.
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Effiet of A on ; De=0l, LO and 5.0

For De=0.1, the shear rates in the upstream tube are small for both contraction ratios and

consequently the director orientation is close to the zero-shear-rate limit (cf. Figs. 6.8q

and 6.15q); as with the degree of order, the director orientation with the z-axis is slightly

better in the 2:1 contraction (Fig. 6.16c). For De = 1.0 and 5.0, however, the higher shear

rates away from the centerline in the 2:1 contraction result in smaller negative values in

X-

In th, upstream portion of the contraction region, near the wall, X is more negative

than the zero-shear-limit at De = 0.1 for either contraction ratio (Figs. 6.8q and 6.15q).

The greater wall slope, however, results in more negative values of X in the 4:1

contraction as compared to the 2:1 contraction. When De = 5.0, the higher shear rates

in the 2:1 contraction lead to a director orientation that is better than the zero-shear-rate

limit, whereas, the orientation remains worse than the zero-shear-rate limit in the 4:1

contraction. A more severe 'dip" or loss of orientation is also observed along the

centerline in the upstream portion of the 4:1 contraction region (Fig. 6.16f). However,

responding to the sharp increase in t(0,z/R2), the director in the 4:1 contraction becomes

aligned with the z-axis earlier by one downstream tube radius. Once X(OzR 2) becomes

zero there is no change in X(0,z/R2) with any increase in (0,zIR2) for either contraction

ratio. Paralleling the downstrm shift in the axial location of t(0,z/R2)= in the 4:1

contation as compared to the 2:1 contraction, the axial location at the onset of decrease

in X(0zR 2) below zero is also shifted downstream by 1-2 downstream tube radii in the

4:1 contraction as compared to the 2:1 contraction. In fact, the downstream shift and the

consequent better alignment in the director with the z-axis for a longer axial distance is
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apparent not only along the centerine but also away from the centerline for any De in the

4:1 contraction as demonstrated by Fig. 6.16c at z = 30.

The stronger deceleration at and near the centerline in the downstream tube of the

4:1 contration as compared to the 2:1 contraction results in a director orientation that is

closer to the zero-shear-rate limit at the downstream exit in the 4:1 contraction for any

De (cf. Fig. 6.16c and 6.16f); the difference in X(0,40) between the contraction ratios is

about 1-2 degrees. Away from the centerline there is no difference in X between the

cotaction ratios at the downstream exit. This is not surprising snce X is dictated by the

shear flow kinematics, which is identical for the two contraction ratios at the downstream

exit.

In addition to the beneficial effects of high De and a very short downstream length

from a processing standpoint, as discussed in section 6.2.1.3, a high contraction ratio is

also advantageous in creating a higher degree of order near the centerline. The higher

order near the centerline also makes the order more homogenous across the cross-section.

The director alignment with the spinneret axis is also distinctively better near the

centerine in the 4:1 contraction. Note the additional advantage associated with a smaller

pressure drop per unit flow rate in the 4:1 contraction.
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6.2.4 Effect of Change in Geometry;, Conical Cougract with Rded Corners

In this section the LCP flow through a conical 4:1 contaction shown in Fig. 5.lb is

studied. An overlay of the 4:1 cubic and conical contraction geometries used in this study

is shown in Fig. 6.17 to illustate the quantitative difference in the shape of the

contraction region Te aim is to examine the effect of the change in the design of the

contraction region on the flow field, structure and stress fields.

For the conical contraction geometry shown in Fig. 5. lb, it can be found from Eqs.

5.16 and 5.17 that (xl-x^)19 = sin < 0.2 up to 9t=25 as shown in Fig. 6.18. Thus, only

a few terms in the binomial/perturbation expansion given by Eq. 5.19 are necessary to

esent the rounded comers The maximum deviation in the approximation is expected

for the value of x farthest from xo; x, and x2 in this problem. In Fig. 6.19, the absolute

magnitudes of the difference Y-Ye-Y and the derivative of the difference y,'-e,' are

shown for second and fourth order polynomial approximations for a wide range of 91.

The fourth order polynomial is more than sufficient to approximate the rounded corners

for this range of 9t. As a test, we choose 9t10. All calculations are for N=4.0 and

o1.0.

The prsence of spikes in the pressure field at the junction of the plane of

contraction and the polynomial approximation to the rounded reentrant corner in the flow

thrwgh an Abrupt conuction is an issue when a slip boundary condition is used along

the walls of the contction boundary (Nayak, 1993). The spikes are not ooserved with

a no-slip boundary condition. The spikes possibly result from a lack of continuity in the

slopes of the plane of contrction and the polynomial approximation to the rounded comer
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or due to an improper choice of the order for the polynomial interpolant to the slip

boundary condition (Nayak, 1993). The pressure field along the wall for the conical

cotraction determined using the perturbation approximation to the rounded comers

otlined in equation 5.19 and a no-slip boundary condition does not show these spikes.

This is illustrated in Fig. 6.20 for De = 5.0.

The solution to the flow problem through the 4:1 cubic contraction on a mesh with

the same number of elements in the r and z directions as used for the 4:1 conical

contrtion was used as a starting guess to obtain a convergent solution for the 4:1

conical contraction geometry at low De (De=0. 1). First order continuation in De was then

employed to obtain convergent solution fields at higher values of De.

Contour plots of pressure, flow field, structure, stress fields and streamlines for

De=O.l, 1.0 and 5.0 are shown in Figs. 6.21a-o. Contour plots for S and X are shown in

Figs. 6.21p-q. A comparison with the contour plots for the 4:1 cubic contraction in Figs.

6.15a-q shows that qualitatively there is not much difference. The overall pressure drop

is higher for the 4:1 cubic contraction since the radius of curvature is higher at the

downsteam comer and consequently the downstream tube length apparent to the flow is

longer. A comparison of the axial velocity, degree of order and molecular orientation,

as the flow progresses through the contraction, is shown in Figs. 6.22a-c. S(0,zR 2) and

X(O,zR2) predicted for the two different contraction gecoaetries and their responses to

t(0,z/R2) are compared in Figs. 6.22d-f.
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Effect of Geometry on velocity; De=0.1, 1.0 and 5.0

As expected, there is no difference in the upstream and downstream fully developed

velocity profiles for any De (cf. Fig. 6.22a). The axial location of the local peak in

t(O0,zR2) (Fig. 6.22d) in the upstream portion of the 4:1 conical contraction region is 1-2

downstream tube radii ahead of its location in the cubic contraction geometry. Table 6.1

and Fig. 6.22d show that the maximum velocity is higher in the conical contraction and

its axial location is also shifted downstream for all De as compared to the cubic

contraction geometry; the maximum velocity is reachae over a shorter axial distance in

the cubic contraction geometry since the radius of curvature of the downstream comer is

higher. Since the maximum velocity is higher and there is no difference in the

downstream velocity, the percentage overshoot is higher in the conical contraction

geometry. As observed in Sections 6.2.1.3 and 6.2.2.1 for the flow through a 2:1

contraction, the percentage overshoot in the centerline velocity in the 4:1 conical

contraction also increases with De due to a decrease in the value of the fully developed

centerline velocity at the downstream exit with increasing De; in fact the percentage

overshoot increases with De though the maximum centerline velocity decreases with De.

The decrease in the fully developed centerline velocity at the downstream exit is effected

by increased shear thinning in the viscosity with increasing De as noted in Section 6.1.

However, high values for the percentage overshoot in the 2:1 and 4:1 contractions even

at De=O.l, when shear thinning is insignificant in the downstream fully developed flow.

Consequently, the overshoot in the velocity near the junction of the contraction and the

downstream tube also results in part from the complex interaction between the kinematics
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and the director orientation and the degree of order near the centerline in the downstream

portion of the contraction region.

The percentage overshoots are much higher for the LCP flow than that predicted

for a shear thinning power-law model; Kim-E (1984) predicts a 1.5% overshoot when the

power-law index n=0.2 for which value the shear thinning in the viscosity is significant.

The percentage overshoot is also much higher with the LCP constitutive equation as

opposed to predictions for the Giesekus, Oldroyd-B and MUCM models reported by

Coates (1992) for an abrupt contraction; the smallest overshoot for the LCP model at De

= 0.1 is 22.58 % whereas the MUCM model, which seems to predict higher overshoots

than either the Oldroyd-B or Giesekus models, predicts an overshoot of 11% at De = 2.0

in the absence of solvent viscosity.

The deceleration in the flow near the centerline in the downstream tube is much

higher in the conical contraction geometry. There is very little difference in the velocity

profiles close to the wall at z = 30 between the two contraction geometries, which

suggests that there is little difference in the kinematics in this shear dominated region for

both geometries.

Effect of Geometry on Degree of Order; De=0.1, 1.0 and 5.0

As with the velocity profiles, there is little or no difference in the order at the inlet and

downstream exit. In fact, Figs. 6.15p and 6.21p show that there is no difference in the

order in the entire upstream tube and close to the downstream exit. A comparison of

Figs. 6.15p and 6.21p shows that the degree of order increases more rapidly in the cubic

contraction geometry (dark green appears over a shorter axial distance) some distance
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prior to the downstream tube due to the higher radius of curvature. However, Figs. 6.22b

and 6.22e show that by the time the flow reaches the junction of the contraction and the

downstream tube the order is higher at and near the centerline in the conical contraction

geometry. This is explained by the higher elongation rates at and near the centerline for

all De in the downstream portion of the conical contraction geometry as compared to the

cubic contraction geometry. Figs. 6.22b, 6.15p and 6.21p also reveal that there is very

little difference in the order close to the wall between the two geometries in the

downstream portion of the contraction region and the downstream tube itself, which

suggests that there is little difference in the kinematics between the two geometries in this

shear dominated region. Figure 6.22g shows that the normal stress difference along the

centerline parallels the response in S(O,z/R2) for both geometries. The maximum normal

stress difference is higher in the conical contraction geometry since ctx is higher.

Effect of Geometry on Z; De=0.1, 1.0 and 5.0

As observed with S. X in the upstream tube is the same for both geometries. Along the

centerline, the axial location where X(Oz/R2) becomes zero is located 1-2 downstream

tube radii ahead in the conica' geometry which happens in response to the appearance of

the local peak in (0,z/R2) 1-2 downstream tube radii earlier in the conical geometry as

compared to the cubic geometry. However, due to the downstream shift in the axial

location of the maximum velocity in the conical geometry, the axial location at the onset

of decmase in z(O,zR2) from zero is also shifted downstream in the conical geometry.

Though the axial location at the onset of decrease in X(Oz/R2) from zero is shifted

downstream in the conical geometry as compared to the cubic geometry, the stronger

344



1.D

tq

0 1.0

t:S.

N 0.5
N

N

-I0
0.0

0 10 20 30 40

/R2

Fm 6.22g Effect of contracion gouy on the cmlne rsponse in the
adio__,ss naoie sue sdiffernce for N4.0, @l.0, s I.6x10r' , Des0.l, 1.0 and 5.0
ad Am4.

345

. O.



deceleration in the velocity field in the downstream tube is associated with a more rapid

decrease in X(0,zIR2 ) in the downstream tube of the conical contraction geometry. In fact,

at the downstream exit, X(0,4 0) is closer to the zero-shear-rate limit for any De in the

conical contraction geometry; the maximum difference in (0,4 0) between the two

geometries is observed at De = 0.1. Figure 6.22c shows that at z=30, X is higher by a

couple of degrees close to the centerline in the conical contraction due to the higher

elongation rates near z=30; close to the wall, X is slightly higher in the cubic contraction.

From a processing standpoint, the conical contraction geometry with rounded

comers and LJR2 - 0 creates a higher degree of order near the centerline which leads to

a more homogenous cross-sectional order. As shown in Fig. 6.23 the overall pressure

drop required to drive a unit volumetric flow rate is slightly smaller for the conical

contraction for all De due to the smaller radius of curvature at the reentrant corner which

is an advantage of the conical contraction geometry. The effect of other design

parameters such as the length of the conical contraction section and the radius of the

comers (possibly different radii for the upstream and downstream corners) should be

studied more closely.

6.25 Couette Correction for A = 2 and 4

The Couette correction for the 2:1 and 4:1 contractions computed with the formula

C -4Pl APM+L/2 Ld+L42 (6.12)
2 Xwd

is plotted as a function of De in Fig. 6.24. APtot is the total pressure drop in the
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contraction geometry. APL. +L/ is the pressure drop in the flow through a tube with the

radius set by the upstream tube in the contraction geometry and the length set by the sum

of the length of the upstream tube (I,,) arnd half the length of the contraction region

(LJ2). APLd+Lr2 is the pressure drop in a tube of radius R2 (downstream tube radius)

and a length that is the sum of the downstream tube length (Ld) and half the length of the

contraction region. The pressure drop is normalized with the fully developed wall shear

stress in the downstream tube which is the same for both contraction ratios for a

particular value of De and N.

The Couette correction in the 4:1 cubic and conical contractions is more negative

as compared to the 2:1 cubic contraction due to the smaller overall pressure associated

with the larger upstream tube radius. The Couette correction in the cubic 4:1 contraction

is slightly less negative than the conical 4:1 contraction due to the higher overall pressure

drop associated with the larger radius of curvature at the reentrant corner. The Couette

correction shows a slight increase with De for all geometries which is associated with

shear thinning in the viscosity. Coates (1992) and Debbaut et al. (1988) observed a

similar increase in C with the shear thinning Giesekus and PTT constitutive equations

respectively. Kim-E (1984) also observed an increase in C with a shear thinning inelastic

power-law model. A direct comparison was not made with the results of Coates (1992)

due to the difference in the shape of the contraction geometry and the corresponding

difference in the definition of the Couette correction.

Unlike the MUCM, Oldroyd-B or Giesekus models studied by Coates (1992),
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which capture the Newtonian value of C (C is 0.56 for the abrupt contraction geometry)

in the limit of zero De, the results for the LCP model in Fig. 6.24 clearly show that there

is no such unique value in the limit of zero De which can be attributed to the anisotropic

effect of concentration on the order even at equilibrium in the nematic region. Note the

smaller pressure drop predicted at N=7.0 for the range of De studied (cf. Fig. 6.23). The

result is not surprising since the higher concentration is associated with a higher degree

of molecular crder due to stronger intermolecular forces of interaction which reduce the

overall pressure drop. Fig. 6.23 also shows that the rate of decrease in the overall

pressure drop with increasing De is smaller for N=7.0 due to the reasons discussed in

Section 6.2.2.2.
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Chapter Seven

Conclusions

Figure 1.2 in the introduction demonstrated the strong dependence of the tensile modulus

of a Kevlar® fiber on the molecular orientation with respect to the fiber axis; even small

changes in the molecular orientation, when the orientation angle is small, lead to large

changes in the tensile modulus. Figure 1.2 also shows that thermal treatment by

annealing or other processes does not reduce the molecular orientation angle with respect

to the fiber axis, ie. improve the molecular orientation. Besides, thermal treatment

processes are expensive. Consequently, it is important to maximize the molecular

orientation during the fiber spinning process itself. A model that would relate the

development of molecular orientation in the fiber spinning process to the macroscopic

properties would be a very useful process design tool in predicting and controlling the

product properties, optimizing the product properties, and minimizing production costs.

This research contributes to the development of such a design tool.

Four stages were identified in the fiber spinning process shown schematically in

Fig. 1.4: (1) spinneret flow which involves flow through a contraction, (2) die swell

experienced by the polymer solution as it comes out of the spinneret, (3) fiber drawing

which involves extensional stretching of the polymer solution and (4) solidification or

coagulation where the solvent is extracted from the polymer solution and the

microstructure is frozen in the resultant solid. The solidification issue is not addressed
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in this thesis. Conclusions from the analysis of thd flow in the remaining three regions

are discussed below.

7.1 Conclusions from Fiber Drawing Analysis

A one-dimensional model was developed for the fiber drawing region by using the

lubrication approximation and the molecular theory based constitutive equation of Bhave

et aL (1993) for nematic, rodlike, liquid-crystalline polymer solutions. The aim of the

model is to predict the developmer of microstructure, velocity, and normal stresses along

the spinline and examine the effect of the initial microstructural condition on these

quantities. Note that the development of the microstructure is described quantitatively by

the degree of order S defined in Chapters 3 and 4.

The Bhave et al. constitutive equation uses a closure approximation to get a closed

form of the constitutive equation which simplifies the flow calculations in complex flows.

However, Larson and Ottinger (1991) demonstrated that molecular tumbling is not

predicted in simple shear flows when the closure approximation is used. The fiber

drawing analysis was therefore carried out by directly solving the distribution function for

the molecular orientation to test the effect of the closure approximation in the

extensionally dominated fiber drawing flow. The results, presented in Chapter 4,

demonstrated the validity of the closure approximation at moderate and high Deborah

number (De) in the fiber drawing flow. The technique, based on a Legendre polynomial

expansion, is the first such attempt to solve directly for the distribution function in a

complex flow and indicates a path for solving other complex flow problems with
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molecular models where approximations of uncertain validity must be used to get a closed

form constitutive equation.

The sensitivity of the velocity, stress and degree of order (S) profiles in the fiber

drawing region to the initial degree of order was examined for two different initial

conditions on S that would bracket the range of possible initial values that t,e spinline

might see. These are S(O)=S,, ie. S has the value it would have in a simple elongational

flow for the same elongation rate t as exists at the origin of the fiber drawing region =--0,

and S(O)=Seq, ie. S has its equilibrium value at the polymer concentration N. The fiber

drawing model predictions clearly show the sensitivity of the velocity, stress and order

profiles to the initial order S(0). The final degree of order predicted for S(O)=Se is always

slightly higher than that predicted for S(0)=Sq at moderate and high De; the

corresponding tension required for achieving the same drawdown in the fiber radius is 20

% higher for S(O)=Se. The sensitivity to the initial degree of order S(0) is in contrast to

that observed in the modeling with isotropic viscoelastic constitutive equations such as

the White-Metzner model studied by Fisher and Denn (1976) where the downstream

velocity and stress profiles are found to be insensitive to the choice of the initial condition

on the stress.

Another interesting result that emerges from the fiber drawing analysis is that the

apparent elongational viscosity la defined by Eq. 4.39 compares well with the

elongational viscosity Ti predicted by the constitutive equation, thereby suggesting that the

fiber spinning flow can be used to determine Il for a liquid-crystal polymer solution

provided that the normal stress difference zz- can be measured. This result is in

contrast to that observed with models for flexible polymers (Mackay and Petrie, 1989)
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where the agreement between la and il is never good over a wide range of elongation

rates.

The only data that has appeared in literature on the fiber drawing of liquid-

crystalline polymers is due to Prilutski (1984). Model predictions agree well with the

steady-state fiber drawing data of Prilutski (1984) for a 40 wt % hydroxy propyl cellulose

(HPC) in acetic acid solution; at equilibrium, the HPC/acetic acid solution undergoes an

isotropic-to-nematic phase transition at 30 wt % HPC. However, due to the experimental

limitations discussed in Chapter 3, the data are limited to small De. Consequently, even

a Newtonian model with a viscosity t = ,O3, where %a,O is the zero-elongation-rate

apparent elongational viscosity, is able to predict the data well. Data at higher values of

De is required to rigorously test the model predictions. In addition, data on the

development of molecular order along the spinline is necessary to rigorously test the

molecular bases of the model.

An important processing problem in fiber spinning is the appearance of long

wavelength (of the order of the spinning length), time periodic oscillations along the

length of the fiber beyond a certain drawdown in the fiber radius (known as the critical

draw ratio DR,ct) even at constant extrusion and take-up speeds that leads to the

formation of a fiber of nonuniform thickness which is undesirable. This phenomenon is

known as draw resonance. A linear stability analysis of the fiber drawing equations was

performed to predict the onset of draw resonance instabilities. The analysis predicts a

strong correlation between DR,cit and .a. Prilutski (1984) also reports critical draw ratio

data for different elongation rates at the take-up wheel. However, the flow rate, length
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of the spinline and the tension at the onset of draw resonance are not known. Linear

stability predictions in which the model parameters are determined from the comparison

with the steady-state data, and values for the unknown spinline length (varying the flow

rate) or the flow rate (varying the spinline length) are assumed, are poor. The critical

draw ratio data is overpredicted by an order of magnitude at higher elongation rates.

Good quantitative agreement is obtained only if the time constant A is roughly 10 times

that in shear flow and the anisotropic drag parameter a is a factor of 20 smaller than the

value that fits the steady-state fiber drawing data.

The sensitivity of the fiber drawing model to the initial degree of order S(0)

requires two-dimensional calculations that couple to the upstream spinneret flow. The

two-dimensional calculations are also necessary to assess the assumption of radial

homogenity used in the one-dimensional fiber drawing model. Conclusions on the

analysis of the spinneret flow follow.

7.2 Conclusions from Spinneret Calculations

A two-dimensional finite element model based on a slight variation of the EVSS-G

formulation proposed by Brown et al. (1993) was developed for the liquid-crystalline

polymer flow through the spinnerets illustrated schematically in Figs. 5.1a and 5.lb. The

response in the degree of order and the average molecular orientation was understood in

terms of the flow kinematics. The effect of De on the development of molecular degree

of order and orientation was examined for a 2:1 and a 4:1 contraction with cubic

contraction boundaries and also a 4:1 conical contraction with rounded corners. The
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effect of concentration on the development of order was also examined. The implications

of the spinneret calculations on the degree and homogenity of the order in the fiber

drawing region and the regions of validity of the one-dimensional fiber drawing model

in parameter space was explored. The spinneret calculations were also used to determine

what design changes would help maximize the homogenity and the degree of orientation

of the molecules with the spinneret axis so that a fiber with a high tensile modulus could

be created.

The molecular orientation is described in terms of X and S; X is a measure of the

average orientation of the molecules with respect to the spinneret axis and S is a measure

of the degree of order about the average orientation. The vector that locates the direction

of average orientation of the polymer molecules is commonly called the nematic director.

Note that X and S possess radial and axial dependence i.e. X-X(r/R2,zR 2 ) and

SE=S(r/R2 ,z/R 2). The response in X and S along the centerline and throughout the rest of

the domain was understood in terms of the flow kinematics.

The increase in X(O,z1R2) from the zero-shear-rate limit to zero degrees (perfect

alignment with spinneret axis) in the upstream portion of the contraction coincided with

the increase in 9(0,z/R2) ( is the dimensionless elongation rate). X(Oz/R2 ) approaches

zero earlier by 1-2 downstream tube radii in the 4:1 conical contraction with rounded

corners as compared to the 4:1 contraction with the cubic contraction boundary. The

approach is faster for either 4:1 contraction geometry as compared to the 2:1 contraction

with the cubic boundary. X(Oz/R2 ) is zero even for small values of the elongation rate

in the contraction region as suggested by the perturbation analysis presented in Chapter
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4. The axial location at the onset of decrease in X(OzIR2) from X(Oz/R2)=O was shifted

further downstream with increasing De which paralleled the axial shift in t(O,z/R2)=O.

The axial location at the onset of decrease in X(Oz/R2) from zero was shifted furthest

downstream for all De in the 4:1 conical contraction with rounded corners. The sharp

increase in S(O,z/R2) from the equilibrium value in the upstream portion of the contraction

coincides with (O,zlR2) becoming zero; the lag between the sharp increase in S(Oz/R2 )

and the initial increase in t(Oz/R2) is 7-8 downstream tube radii. The lag between the

maximum in S(O,zR2) and (O,z/R2), however, is only one downstream tube radius.

Close to the wall it was seen that X is dictated by the shear rates and the wall

slope. For small shear rates, X is the sum of the wall slope angle and the angle in the

limit of zero-shear-rate which makes the director orientation worse than the zero-shear-

rate limit. At high shear rates, X approaches the wall slope angle. S always increases

from the centerline towards the wall for all De and for all geometries which suggests that

shearing plays a more dominant role in the kinematics in improving the degree of order.

The director, however, is best aligned with the spinneret axis (X=O) on the centerline in

the contraction region. X approaches zero close to the wall at high De in the downstream

portion of the contraction where the wall slope is no longer a factor.

The results in Chapter 6 clearly demonstrate that the degree of order and the

director orientation with the spinneret axis improve with De in the downstream tube.

With increasing De, homogenity in S and X is much better as LR 2 - 0 (L is the

downstream tube length which is also called the land length). Close to the wall, there is

little change in S and X between z=30 (the junction of the contraction and the downstream

tube) and z=40 (the downstream exit) for any De; the difference in S and X between the
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2:1 and 4:1 contractions is insignificant in this shear dominated region. However, there

is a significant decrease near the centerline in X for all De and also in S at moderate and

high De between the axial locations z=30 and z---40. For short land lengths (I/R 2 -* 0),

S emerges with a higher value near the centerline in the 4:1 conical contraction geometry

as compared to the 2:1 or 4:1 cubic contraction geometrs for the range of De studied.

Consequently, for short land lengths, the radial homogenity in S is also better in the 4:1

conical contraction for the range of De studied. However, even in the 4:1 conical

contraction, the radial homogenity in S is best at high De. X is also more radially

homogenous at high De; the homogenity in X is better in the 4:1 conical contraction as

compared to the 2:1 or 4:1 cubic contraction geometries. At low De, the inhomogenity

is primarily in X-. For LJR2 1, however, Z too becomes homogenous.

Qualitatively, there is no difference in the development of S and X for the

concentrations N = 4.0 and 7.0. Changes in S are smaller for N = 7.0 since the

differential between the equilibrium value (S=0.683 for N=4.0 and S=0.840 for N=7.0) and

the maximum value (S=1.0 for any concentration) is smaller for N=7.0. Changes in X are

also smaller for N=7.0 since the differential between the zero-shear-rate value (X=-2 0.1

degrees for N=4.0 and z=-13.7 degrees for N=7.0) and the maximum value seen in the

2:1 or 4:1 contraction geometries (X0 degrees) is smaller for N=7.0.

Also of interest in processing is the total pressure drop in the geometry. The

results demonstrate the effect of De, contraction ratio and the change in the shape of

contraction boundary on the pressure drop per unit volumetric flow rate (Ap/Q). The

increase in molecular alignment with the flow direction with increasing De reduces the
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viscosiey which leads to a decrease in ApIQ with increasing De irrespective of the

contraction ratio, shape of the boundary or concentration. The pressure drop, however,

is smaller in the 4:1 contraction due to the larger upstream tube radius. The pressure drop

in the 4:1 cubic contraction is higher than the 4:1 conical contraction since the flow

"sees" the small tube radius for a longer distance due to the larger radius of curvature at

the junction of the contraction and the downstream tube. The results also show that Ap/Q

in the limit of small De is lower for the higher concentration due to better molecular

alignment at equilibrium. Unlike the MUCM, PTT, or Giesekus constitutive equations

where the Newtonian limit is reached in the limit of small De (Coates, 1992), Ap/Q in the

limit of De -+ 0 is concentration dependent for the liquid-crystal model. A Newtonian

limit is encountered only in the isotropic concentration regime. The Couette correction,

C, shows a slight increase with De which seems to be typical of shear thinning models

(Coates, 1992; Kim-E, 1984; and Debbaut et al, 1988). No recirculation regions were

observed for either the 2:1 or 4:1 contractions with the geometric configurations used in

this thesis or for the range of De studied.

The results clearly show that De, contraction ratio, shape of geometry, all have an

effect on S and X at the spinneret exit. To maximize S and X, and to achieve a high

degree of radial homogenity in S and X, it is best to operate at high De with dies designed

with short land lengths (R 2 - 0). Ap/Q also drops dramatically when the land length

is reduced. The 4:1 conical contraction is better than the 2:1 or 4:1 cubic contractions

in maximizing and homogenizing S and X for the same De. The pressure drop per unit

volumetric flow rate is also smaller. The effect of higher contraction ratios and smaller

contraction lengths (which results in higher taper angles for the same contraction ratio)
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on maximizing S and X needs to be investigated more thoroughly. Increasing the

contraction ratio or the taper angle by shortening the contraction length is expected to

reduce the pressure drop. However, onset of recirculation regions is also likely, which

suggests that there may be an optimal contraction ratio for processing.

It has been experimentally observed that the die swell for liquid-crystalline

polymers is small i.e. the die swell is comparable to a Newtonian die swell (Prilutski,

1984). It is reasonable then to expect that the molecular deorientation in the die swell

region is small and that the spinneret calculations alone, without an integrated fiber

spinning model, can provide a good check on the two key assumptions in the one-

dimensional fiber drawing analysis; namely, (1) S and X are radially homogenous and (2)

the director is oriented with the z-axis with Sq < S(O) < St.

The implications of the spinneret calculations on the one-dimensional fiber

drawing analysis was examined in Chapter 6. As already discussed previously, S and X

are radially homogenous at high De and short land lengths (R 2 0). It was

determined that at high De and short land lengths (L/R2 -o 0), it is best to use S(O)=S,

in solving the one-dimensional model where t is the maximum elongation rate on the

centerline. The assumption X(O)=O in the one-dimensional model is also appropriate and

need not be modified. For small De, S is radially homogenous and close to the

equilibrium value. X is inhomogenous near the junction of the contraction and the

downstream tube, but becomes homogenous at the zero-shear-rate limit for L/R2 3 1. In

this limit it appears best to modify the one-dimensional model to allow for non-axial

alignment in the director and solve with the initial conditions S(O)=Sq and X(0)=-Xzo-bsh-
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rate, The inhomegenity in X, however, may not be serious, and IJR 2 1 may not be

necessary, since the extensionally dominated fiber drawing flow is expected to align the

director with the flow direction even at small elongation rates as suggested by the

perturbation analysis in Chapter 4. However, before claiming the validity of a one-

dimensional model with S(O)=Seq and X(O)=O when De is small, the axial length scale

over which the inhomogenity in X disappears must be clearly established. This requires

a two-dimensional model for the fiber drawing region that couples to the upstream

spinneret flow.

The study of the spinneret and fiber drawing flows of liquid-crystalline polymers

by using a kinetic theory based constitutive equation has revealed important information

on the dynamics of orientation of the polymer molecules during the fiber spinning process

and its impact on minimizing the production costs and improving the process design so

that a fiber with a high tensile modulus can be created. However, in order to fully

optimize the fiber spinning process it is necessary to quantitatively understand the

orientation dynamics of the polymer molecules in the die swell region. This is possible

only with an integrated model for the spinneret, die swell and fiber drawing flows. The

primary issue to be tackled in the development of such a model is the singularity in the

stress at the die exit which happens due to a sudden change in the boundary data. This

singularity is commonly called the die swell singularity. The die swell singularity issue

is discussed in the following section.
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73 Conclusions from Die Swell Singularity Analysis

The die swell singularity, as mentioned in the previous section, happens due to a sudden

change in the boundary data, i.e. no slip boundary condition on the die or spinneret wall

to a shearfree boundary condition on the free surface of the polymer solution. Apelian

(1987), Crochet and Keunings (1987) and others report numerical difficulties with

Newtonian and viscoelastic models that are associated with the die swell singularity.

Therefore, understanding the singularity through analytical means was made one of the

aims of the thesis prior to carrying out any numerical calculations in the die swell region.

Determination of the nature of the singularity would greatly help in assessing the accuracy

of the numerical predictions close to the singularity; the memory effects associated with

viscoelastic constitutive equations are expected to convey information about the

singularity downstream much more so than viscous models which makes it crucial to

understand the singularity for these models.

For constitutive models such as MUCM, shear thinning PTT and the liquid-crystal

models, the Newtonian singular behavior is dominant, and consequently, understanding

the Newtonian singularity alone should be sufficient to design and evaluate the numerical

treament of the singularity; once the singularity is determined it could be incorporated

through singular elements into the finite element model.

Singular behavior in the stresses is also predicted in the flow around sharp corners.

However, the analytical tractability using the local, self-similar expansion for the stream

function postulated by Dean and Montagnon (1949) and Moffat (1964) is greatly

simplified due to the absence of curvature effects associated with surface tension. The
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curvature of the free surface near the die exit associated with surface tension makes the

local analysis difficult even for a Newtonian problem.

The analyses in literature on the die swell singularity are confusing since they do

not clearly specify their regions of validity. These analyses are summarized, and their

regions of validity detailed, and presented in Appendix A. By introducing an expansion

for the free surface height valid close to the singularity, it was demonstrated clearly that

when surface tension is not involved in a dominant balance with the total normal stress

associated with the fluid, the dominant singular behavior in the stresses is O(r 11/2) where

r is the radial distance from the singularity; in addition, the free surface exits parallel to

the die wall. This result is the same as Michael's (1958) result for a planar free surface

and Trogdon and Joseph's (1981) result for linearized free surface boundary conditions.

If surface tension is involved in a dominant balance with the total fluid normal stress, an

analysis based on the expansion for the free surface height clearly shows that the

dominant singular behavior in the stress and the free surface exit angle (a) cannot be

determined from the local analysis. However, as suggested, a match with Trogdon and

Joseph's eigenfunction expansion results, which are expected to be accurate away from

the singularity, would determine the coefficients in the expansion for the free surface

height and also a and the dominant singular behavior.

An important question that arises from the die swell singularity analysis is whether

or not curvature associated with surface tension involved in a dominant balance with the

total fluid normal stress close to the singularity. Calculations with the MUCM model

(Apelian, 1987) demonstrate the sensitivity of the downstream swell on the accuracy or

magnitude of the stress field close to the die exit (cf. Fig. A.4). Consequently, the
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downstream swell in viscoelastic calculations is expected to be sensitive to the particular

choice of the dominant balance posed by the above question. Future work must address

this question so that an integrated model that models the die swell region accurately can

be developed for the fiber spinning process. Future work must also be directed towards

experimentally characterizing the molecular orientation dynamics during the fiber spinning

process so that the molecular bases of the model for liquid-crystalline polymer solutions

can be tested rigorously.
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Appendix A

Die Swell Singularity Analysis for a Newtonian Fluid

Many mathematical models for viscoelastic flows of commercial interest contain regions

where the local velocity gradients and stresses become large and in some cases infinite

due to the presence of sharp corners or abrupt changes in the boundary data. These flow

singularities complicate both the mathematical and numerical analysis of a given flow

configuration. One such singularity is encountered at the die exit. Figure A.I shows the

flow through a channel and the subsequent die swell flow of the free jet. The flow

singularity occurs due to an abrupt change in the boundary condition from no-slip on the

channel wall to shear free on the extrudate free surface.

It is believed that the computational difficulties in calculating extrusion flows of

Newtonian and viscoelastic liquids are caused by this flow singularity (Apelian, 1987;

Crochet and Keunings, 1980; and Crochet and Keunings, 1982). Figures A.2 and A.3

show the stress contours from the calculations of Apelian (1987) and Crochet and

Keunings (1980) for the planar die swell of a Newtonian and a UCM fluid respectively,

close to the singularity. The Newtonian stress fields, which are in the limit of zero

surface tension, contain oscillations near the singularity that propagate downstream. The

oscillations are most severe in the shear stress along the free surface. Figure A.3

illustrates the oscillations in the pressure, shear stress and longitudinal stress at De=0 (the

Newtonian model is recovered in this limit) and De=0.5 for the UCM model. The
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oscillations worsen as De is increased to 0.5 and also propagate further downstream as

compared to the Newtonian limit. As mentioned in Chapter 6, it is the lack of

understanding of this singular behavior that is the outstanding issue in carrying out two-

dimensional finite element calculations for the entire fiber spinning process in which the

upstream spinneret flow and the downstream fiber drawing flow are coupled through the

die swell.

Apelian (1987) reports a final swell ratio, h(x=o) (according to the notation in Fig.

A. 1), of 1.19 for a Newtonian fluid in the limit of zero surface tension on a mesh whose

smallest element size near the die exit is 0.01. Crochet and Keunings (1982) and Silliman

and Scriven (1979) report the same final swell ratio on meshes whose element sizes are

much coarser near the die exit. Thus, the final die swell appears to be insensitive to the

propagation of information from the die swell singularity; this result is not surprising

since the Newtonian fluid in the absence of inertia is associated with purely viscous

effects which are dissipated in a small region close to the singularity. The final swell

ratio computed for the viscoelastic MUCM model by Apelian (1987) as a function of De

and for different meshes is shown in Figure A.4; the capillary number Ca=0.015 used in

these calculations corresponds to a large surface tension effect. The smallest element

sizes close to the singularity for meshes M4 and MS used by Apelian are 0.01 and 0.005

respectively; mesh M6 has twice the discretization in the x-direction as mesh M5 close

to the singularity. The results in Fig. A.4 demonstrate the sensitivity of the final swell

ratio to the mesh refinement close to the singularity as De increases; that is, the

downstream flow is affected by the propagation of information from the singularity for
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Fige A.4: The effect of mesh refinement close to the singulrity and De on the finrmal
swell rtio, h(xm), for the planar die swell of a MUCM fluid. 'he capillay number
C40.015 in these calculaions, Tbe smallest element size close to the singulaity for
meshes M4 and MS are 0.01 and O)5 respectively; mesh M6 has twice the discreization
as mesh MS in the x-direction close to the singularity (reproduced from Apelian, 1987).

380



the viscoelastic MUCM model. Consequently, accurate treatment of the singularity is

necessary in modeling viscoelastic die swell flows.

The analyses by Dean and Montagnon (1949) and Moffat (1964) elucidate the

singularity associated with a Newtonian flow past a sharp corner. Experimental data for

the 5.0% PIB in C14 (Quinzani, 1991) near the reentrant corner in a planar contraction

flow shows excellent agreement with the predictions of the Newtonian model (Coates,

1992) which leads one to hypothesize that the Newtonian singular behavior is dominant

in polymer solutions even at the die exit. Asymptotic analyses for constitutive equations

such as the MUCM, PIT and the liquid-crystal model discussed in this thesis, also

suggest that the Newtonian singular behavior should be dominant at the die exit for these

models. However, the dominant Newtonian singular behavior itself is not known for the

die swell problem except under limiting conditions. One such limit is the stick-slip or

the infinite surface tension limit. In fact, in the stick-slip limit, the finite element

calculations of Apelian (1987) show that the MUCM model exhibits a dominant

Newtonian singular behavior close to the die exit which confirms the predictions of the

asymptotic analysis. For all these reasons, understanding the Newtonian die swell

singularity would definitely result in more effective treatment of the singularity in

viscoelastic flow calculations.

The aim of this section is to define the governing equations and boundary

conditions associated with the Newtonian die swell singularity problem, summarize the

work on the understanding of the die swell singularity, examine their regions of validity

and finally present an analysis that is possibly more general in scope than the analyses
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to date.

A.l Die swell Problem Description

The fiber spinning flow discussed in this thesis is cylindrically symmetric, i.e.

axisymmetric. However, the die swell singularity analyses in the literature are confined

to a flow that is planar perpendicular to the page due to the analytical tractability using

a separable expansion for the sream function of the form proposed by Dean and

Montagnon (1949). The singular behavior in the stresses predicted by these analyses,

however, is not expected to be differer ' axisymmetric flow since these are local

analyses and close from any point on the circular die orifice the flow is expected to

appear locally planar. Hence, the discussion in this section is restricted to planar die

swell. A planar two-dimensional die swell is illustrated in Fig. A. 1. A more restrictive

assumption used in some of the singularity analyses is neglect of curvature in the plane

of the page, whence, surface tension forces do not play a role in the normal force balance

on the free surface. All the analyses also assume that inertial effects are unimportant near

the singularity.

The x and y coordinates in Fig. A.I have been nondimensionalized with half the

channel width. The dimensionless free surface height is given by h(x). Both velocity

components are made dimensionless with the fully developed plug flow velocity, V, at

the exit. The governing equation and boundary conditions relevant to the local singularity

analysis are then
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+( T- _(d)2)( ))
=0

or

4 Ca2 Wdh

i dx _(dh)2) = 0 on
dx

+ ( 2

ax2
y = h(x), x20

Normal stress balance

d2h

I dx 2

Cia 3 -
(I +(d&)2)T

d 

.'(1-VYOI 
_ (d)2)

dxt

avU78

1 + (_.) 2
'dx

+a- d
, tb s)

on y = h(x),x20
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or

d2h a2v U-(d)2)-(a2w -a r
y dx - a2 A 2 on y = h(x).x>O (A.6)C a 1 dh2)O'(1 + (dh)2

where Ca = (Vas). Here, gI is the viscosity, V is the fully developed downstream

velocity and a s is surface tension. It is common to determine the singular behavior in the

stresses in the polar (r,O) coordinate system indicated in Fig. A.1. The change from (x,y)

to (r,6) is achieved through the transfonnation x = - r cos and y = - r s-in. The partial

differential operators are related as follows

= os . = sino + (A.7)

A.2 Overview of Singularity Analyses in Literature

A.21 Michael's (1958) Analysis without Surface Tension

Michael postulated that the intersection of the free surface and the plane of the page is

a straight line close to the die exit, and he implicitly discounts surface tension in the

normal force balance. The free surface emerges at an unknown angle az (Fig. A. 1) which

is to be determined from the governing equation, Eq. A, and the boundary conditions,

Eqs. A.2, A.4, A.5S and A.6, cast in polar coordinates. The biharmnnonic governing

equation for the stream function admits solutions of the form

384



n=l

(A.8)where

fn(O) = [Arsin(L +)0 + Bncos(3 +l) + Cnsin(.n -1) + Dncos(.n -1)O]

and X, is the eigenvalue associated with the index n such that O0<L2<<<.. and

An , Bn, Cn and D. are arbitrary constants. Michael showed that for the above solution

to satisfy the boundary conditions non trivially, sina = O0. For a = xt, which is the mode

of practical significance in this problem, the dominant eigenvalue X, is 1/2. The

corresponding dominant asymptotic behavior in the stresses is - T(O) r 12) as r -- 0.

The force per unit width of the boundary into the plane of the page is given by ftij d r

0

Thus, the r m behavior in the stresses results in a finite force at the singularity.

A.2.2 Richardson's (1970) Analysis - Stick-slip Problem (Ca - 0)

The problem described in Section A.1 reduces to the stick-slip problem in the limit of

infinite surface tension (Ca -+ 0). In the stick-slip limit (Fig. A.5) the normal stress

balance on the free surface given by Eq. A.6 is not considered. By using the separable

expansion-for v given by Eq. A8, enforcing the no-slip and no-penetration conditions at

0=0, and requiring the kinematic constraint and the zero shear stress condition at 0=,

Richardson demonstrated that the dominant term in the neighborhood of the singularity

is O(rt). Solutions with a more singular behavior e.g., O(r32), are theoretically

possible but are excluded on physical grounds since they involve a infinite force at the

singularity.
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A..3 Smres's (1979) Analysis - Any Surface Tension

Michael's analysis presumes that the free surface is planar in which case the curvature

is not a factor in the normal stress balance. Sturges argues that the planar free surface

assumption may not be valid, however, for the die swell problem. Sturges postulates that

with the curvature unrestricted, instead of using Eq. A.6 as a boundary condition in the

local analysis it could be used to determine the free surface shape once ¥t is found.

Based on this postulate and the fact that the kinematic constraint and the zero shear stress

condition on the free surface can be applied on the tangent plane O=a for small r, he

obtains the following eigenvalue equation for I

Xsin2a - sin2ao n = 0 where n = 1,2,-- (A.9)

on using the separable expansion for v given by Eq. A.8 and also enforcing the no slip

and no penetration conditions on the wall. The angle a is as indicated in Fig. A.1.

Sturges claims that since it is not possible to determine a or the constants in the

expansion for v without additional boundary conditions, the quantities must be determined

from the global flow geometry. Thus Sturges's analysis suggests that the local analysis

is insufficient to determine a when curvature is included. Eq. A.9 predicts the worst

singularity (O(r2)) for a = 3ir2. Michael's result (O(rlr1 2)) is obtained at oc--. Though

Sturges's observation that the die swell free surface need not be plane is accurate, it is

not clear why a cannot be determined by a local analysis if the normal stress balance is

included as a boundary condition as in the analysis of Michael. This aspect is examined

in Section A.4.

387



A.24 Trogdon and Joseph (1981) Analysis - Arbitrary Surface Tension

Trogdon and Joseph (1981) use a different approach from Sturges to deal with the die

swell free surface curvaure. Exploiting the fact that the Newtonian die swell is small.

12-13 % of the channel width, they postulate a Taylor series expansion for the field

variables (generally denoted by Vj) on the free surface which takes the following form

N. _ 1)2* o~h~x)-2) (A. 10)Vjxh(x)) = Vxl) + (h(x)-l) (xl) + O((h(x)-l) 2)

Note that near the singularity the Taylor series must be demonstrated to be convergent

since the expansion would be singular due to the velocity gradient and higher order

derivatives growing to infinity. They then introduce the following new variables

= P-VPo

I5P-Po (A. ll)

Vy= Vy

where ()D refers to the downstream fully developed solution. They also apply the free

surface boundary conditions at y=l since h(x)-lcl. The governing equations and the

linearized boundary conditions derived by Trogdon and Joseph in terms of these new

variables are

Govening EQuation

,4C 0 (A12)

No sli and no pa tion

at _ (8 O on y , 1. xSO (A.13)
7;x-r
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-V dhTx dvXO = 0 ony= 1, x>0 (14)

The above equation assumes that v-v. o even for x - O which is invalid since the

continuity in the velocity at the die exit would require v,=O.

Zero shear stress condition

a a- = 0 on y= 1, x>O (A.15)
ax2 ay2

Eq. A. 15 assumes that ddx c 1.

Normal stress balance

2 p - 2 on y = 1, x0O (A.16)
Cavo ax2

The kinematic constraint has been used to express d2h/dx2 in terms of the modified stream

function. Eq. A. 16 also assumes that dhldx c . After making the transformation to polar

coordinates, as discussed in Section A. 1, Trogdon and Joseph arrive at the conclusion that

the dominant singular behavior in the stress is O(r' i 2) for any surface tension. Applying

the free surface boundary conditions on y=l or 9=x along with the a priori assumption

dh/dx ( I leads to ,-xt (Fig. A. notation). As mentioned earlier, the expansion in Eq.

A. 10 is singular when velocity derivatives are involved and it is necessary to demonstrate

that the series expansion is convergent, i.e. since the series would be in powers of r, for

small r, close to the singularity it is suffcient to show that tenrm involving higher order

derivatives are negligible compared to terms involving lower order derivatives. Trogdon

and Joseph do not address this issue. However, the final result they obtain. as will be

shown in Section A.3, does lead to a convergent expansion.

Employing the linearization implied by the expansion in Eq. A. 10, Trogdon and

389



Joseph have solved the die swell problem over the entire domain by using an

eigenfunction expansion for the axisymmetric problem; the eigenfunction expansions are

exressed in terms of Bessel functions in the radial direction and exponentially decaying

functions in the axial direction. From this analysis they conclude that the shear stress on

the boundary of the pipe is insensitive to changes in the surface tension parameter as the

exit plane is approached and that the singular behavior is not inconsistent with the

pedictions of the local analysis. Their eigenfunction expansion also indicates that the

free surface slope goes to zero as x -O for any surface tension which is consisent with

the local analysis.

A.3 A Linearized Analysis of the Die swell Singularity

It is clear that the assumptions leading to Eqs. A. 14, A. 15 and A. 16 in Trogdon and

Joseph's analysis are questionable near the singularity. The axial velocity v must

approach eWro as x -+ 0. Also, (h(x)-l) c 1 can be satisfied without requiring that dh/dx

cl close to the die exit. We carry out an analysis paralleling Trogdon and Joseph but

without requiring the above assumptions and without introducing the new variables given

by Eq. A.l 1. A power series expansion for h(x)-l or h(r)-l (since variables are linearized

about IO=) in r

h(r)- I hO I+ / + + (rP2+l1) where p2>p,>0 (A.17)
for sm-al r is arbitrarily introduced to account for curvature effects. The constants (h}

and exponents (Ip) are to be determined from the kinematic constraint and the normal

stress balance.
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A discussion of the linearized approach without the restricting assumptions of

Trogdon and Joseph follows. By employing the separable expansion in Eq. A.8 and the

no slip and no penetration conditions which are independent of the linearization, the

components of the velocity are found to be

v(x,l) = 2Cr'sin)y + 2C2r-sin + (A 18)

v,(xl) = 2Brsinyx + 2B2 rsinA2, +

Substituting Eq. A.17 into the kinematic constraint then yields

r11): ho = l' P = 0

~~~~~~1 ~(A.19)

0(r2): h, C2 CIB2in) c,= i (Ail9

It can verified that other choices for po and p, cannot be more dominant. The constants

and the eigenvalues are yet to be determined. Since this is an eigenvalue problem there

will be an arbitrary constant i.e. a constant such as B, cannot be determined (see Eqs.

IC.3-6 and IC.3-8 in Bird et al (Vol. 1), 1987 for example). The zero shear stress

condition at dominant order gives

O(r- t ): 2XlCIsinLx - ClB(I-- 1l)oXlSX 0 (A.20)
8,2

It is clear that since pO=0 the dominant term in the expansion for h(x)-1. given by Eq.

A. 17. does not contribute to the d2hldx2 appearing in the curvature term associated with

the normal force due to surfae tension. The dominant orders at which the total normal

stress associated with the fluid and the surface tension appear are
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4 c 2 -C
2

- 1' 2)(Csin - BI(I- )cosi)
Ij B BI

o~('l) I pl l + lh (A.21ab)
Ca +c, )3

1
It is clear that the zero-sbear-stss quiement also leads to zero total normal stress

associated with the fluid which arises due to the linearization and the subsequent

appliation of the fiee surface boundary conditions at O=-. It is also clear that the surface

tnsion cannot be involved then in a dominant balance with the total normnnal fluid stress

at O('-). Now pl-I ZL-I or pl- ; l,-1. Note that p-lI can never match with the

next order in the total normal ress which is O(r') i.e. p-lI = 2-.l- < 12-1 always.

Cosequenty the srfce tension is unable to match with the total normal sutress

associaed with the fluid at O0(r"-') and Eq. A.21b must be zero ie. hl=O.

Let us next examine the validity of the singular expansion given by Eq. A. 10. The

cxpnsioas for the velocity components ae as follows

av __P

vY vx.l) + (h(x)-l) .( 1) + (h(x)-1)2 Y(xI) -22)
ay (A.22)

which gives

_V 2Crn4i. 2C'2lsin +

C, xoli C,1
2 , (A.23)
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v = vX(xl) (h(x)-1)..(x) + (h(x)-l)2 ..1.(xl) +- (
(A24)

which gives

v= 2BrIsinLx + 2B 2 rsin +

C1 ,C 1
2 A(A25)

+ -((-2Clsinx+4BIcos)LX)r + + + -) +

B, Bt

The second, third and other underlined terms in the expansion that are O(rl) must be

neglected compared to the fist underlined term if the singular expansion is to be valid

at O(r1). It can be verified that Ci=O leads to coal=O from the zero-shear-stress

condition. C,=O and the requirement that h,=O also leads to

h(r)-l = r 2 ) where p2>--- (A.26

which might be expected to validate the singular expansions given by Eqs.A.22 and A.24

a O(fr). However h=O also leads to v(x,l=O at O(ri) from Eq. A. 19.

Finally, the validity of the singular expansion must be verified at this order.

Continung the above paedure it can be shown that for the singular expansions to be

convgent, C0=O for all n and consequently h(r)-I must be zero through all orders in r.

Oder choices besides Cn=O do not appear to satisfy simultaneously the singular

epnSeins for both velocity components.

Thus, a valid linealried set of fte surface boundary conditions applied at On

leads to the following conclusions: (1) Surface tension cannot be involved in a dominant

b*=ma with the total normal stess associated with the fluid. This leads to Michael's

raitk that the dominant behavior in the sess is O(r'l2), (2) lhe free surface has to

erge parallel to the wall sinc C is zero. In fact the fre surface has w crt
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since h(r)-I is zero throgh all orders in r in order for the singular expansion to be valid.

AA A Die swell Si-gularity Analysis without Linearization

The analysis by Stmlges shows that if cuvantune is involved in a dominant balance with

the fluid normal stress, the dominant singular behavior varies with ca However, he does

not consider the boundwy condition on the normal sress in the local analysis and

consequently concludes that a and the unknown constants in the stream function

expansion can be deermind only from the global flow geomeny, which is different than

the analysis of Michael without curvature, where consideration of the normal stress

boundary condition in the local analysis detennined aL The aim of this analysis is to

detennine if a local analysis determines a when curvature is involved in a dominant

balance with the total normal stress associated with the fluid, and if not, to propose a

scheme that allows a to be detemined from the global solution.

The analysis in Sction A3 shows that linearization about O=z leads to a zero total

normal stress associae with the fluid. This decouples surfae tension from a dominant

balance with the fluid normal stress and leads to the determination of constants (h,) in

th series expansion for b(r)-l in r for small r. When the series expansion given by Eq.

A. 17 is expanded abort the tangent pluane O, ie. ho-sna and po=O, and is introduced

into the kinnematic straint aftnr the no penetation and no slip boundary conditions have

been used to eliminate the consutants A, and D, we Iet

O(r ): f,(a) 27)

and the constants ad expnts in the expansion for h(r)-I are given by
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O(r"): ho = -sim; Po =O

OC(r): h = f 2(a)(2+1 ) (A.28)
cosa@, + l)f '(a)

where f(c(a) and f'(a) ie. df(a)/d ae given by

f.() c= Bcos(,+l)a - cos(,- )ac +

(CA)- 1)
Cnsin l - L 1) (A.29)

f.'(a) - B(lO- )sin - l|c Z- , +1 in ..+ l)CE +
CA, - )[cos(X- ) - cos(a + 1)a]

T zero shear stress condin on the O=a plane at dominant order gives

O(r' ): f (a) = O (A3)
where f"(a) is d2f(a)yd9 2. Equations A.27 and A.30 give th eigenvalue quation

XI sin2a - sin2ca., ,, 0 (A.31)

which is the same as Eq. A.9 obtained by Stuges but for the dominant eigenvalue.

Evaluating the total normal stess at the free surface associated with the Newtonian

fluid at O=ct gives

OVrL . 4BI)-I2(XJi + I)sina (A.32)

which shows that unlike the result obtained with linearzation about Gs, the fluid normal

stess need not be tro. Surface tension is not d pd in his case and can be involved

in a dominmt balance with the fluid normal stres. i. pt-l -l= 1 -l. The dominant

balance Sives

O(r . Ca (A.33)

If surfc tension is not involved in the dominant balance then the fluid normal se

must be e, Lt. sidM O, and Michl's result is obtined. Thn are only two equtions.
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Eqs. A31 and A33, for four unknowns ,. a, B, and h,; Eq. A.28 only relates the

coefficients asociated with f2 (a) to the coefficients associated with f(a). External

informaton is required to determine h,, a, Bl and I,. The eigenfunction expansion

metod used by Trogdon and Joseph to solve the die swell problem with the lineaization

assumption is expected to be satisfacty away from the singularity since the linearied

expansions would not be singular and the assumption they use in the kinematic constraint

discssed in Section A.2.4 would be accepable. If h, and B, are determined from a

malch with the eigenfunction expansion in the limit of small r. the dominant singular

behavior 0(r1- ') and a can be detaermined from Eqs. A31 and A.33. Note the

appearance of the Ca scaling in Eq. A.33. If the series expansion

h(r)-l -sinar + hlr + (rV") where p>A (A.34)
is lo be valid for small r it is clear that the matching region must shrink to smaller values

of r with incrasing Ca. That is Ihr+ I c I-r sin I leads to the condition

rx C (A.35)

The analysis indicates that ct (the free surface exit angle) and the dominant

singular behavior (O(r1 -')) ae different depnding on whether or not curvature is

ivolvd in a dominant baln with the fluid normal ess If curvature is not involved

in e dominant balance then the local anlysi decides a and I Le. aAx and X.,=1/2.

If curva is involved in the dominant balance, then a and k, cannot be decided

iepently by the local analysi As Isugeated, a match with the eigenfunction

expansion results of Trogdon and Joseph is a possible way to dtermine a and .
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An important question that arises from the die swell singularity analysis is whether

or not curvatre associated with surface tension involved in a dominant balance with the

total fluid normal stress close to the singularity. Viscoelastic calculations with the

MUCM model (Apelian, 1987). which has a dominant Newtonian singularity, clearly

demonstraled the sensitivity of the downstream swell on the accuracy of the stress field

close to the die exit (cf. Fig. A.4). Since the dominant Newtonian singular behavior in

the stress is different depending on whether or not curvature is involved in a dominant

balance with the total fluid normal stress, the above question is expected to have an effect

on the downstream swell in viscoelastic calculations Future work must address this

question so that an integrated model that models the die swell region accurately can be

developed for the fiber spinning process.
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Appendix B

IFber Drawing Analysis for Liquid-Crystalline Polymers

Using Doi's Reptation Time Constant

In Chaer 3, the costrutive equation deveoped from aintic the y framewor by

Bhve et aL (1993) for liquid-crystaine polymers was pesented and its viscosity

predictions were compared with the predictions of the Doi (1981) modeL It was

deonstured that the viscosity predictions of the Bhave et aL model was much better

ththe viscosity predictions of the Doi model; in fact, the Doi model predicts a viscosity

that is apy*at at high s tesr In the ogina version of the Bhave et a

constiive equation, Menon (1990) retined two choices for the time constant ; these

chices we given by Eq. 3.16. In the current veasion only the time constant X= is used

sic the viscosity pedictions for this choice of time constant compare better with

expedmetta data thn the viscosity prdictions with A -S . Besides, elo tionl

viscoity data obtadned by Pilutski (1984) from fiber spinning exem s a re limited

to mal ati ra ud con equently cannt be used to decide which choice of time

aconstant is a opriae in an aensmonal flow. For dtie reasons, the fier drawing

lmlao and spinneret dcalations p ted in Chapters 4,5 and 6 were restrited

o the time constant A

Tbe der ependet tm costuat (l4G was fir drived y Doi (1981)

ust repado sargnents for concentraul soluions. This assumes tha the rotation of
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a rod-lke molecule in such a solution is hindered by the pesence of other rod-like

molecules and that the rod moves by translating in a tubelike region about its axis.

In this section, a fiber drawing analysis for liquid-cystalline polymers is presened

by using the constitutive equation given by Eqs 3.12-3.14 and choosing I to be )A( 1- 2)2.

In Sections B.1 and B.2 the sady-state and ine stability models and their predictions

are discussed.

BI. Steady-State Fiber Spinning Model

In Section B. 1.1. the spinning equations that prdict the velocity, normal stress and degree

of order pofiles in the filament for w=(l-~5)2 are esented. In Section B.1.2, model

peictiwons of the spinline velocity, stress and degree of order are discussed and the effect

of initial degree of order on the development of these profiles is examined. Comparisons

are also made with the peictions of the fiber drawing model presened in Chapter 4

which used XA

I1.1 Steady-State Spdmiag Equ

The assmptions used in he deivation of the spinning e ios with XkU( 1S2 we

the sme as those used in Chpr 4 in the derivation of the sptnning eqatimo with X

The dime nless vriabl are still given by Eq. 425. The sdinsioness grioups are

defind by Eq. 4.30 with . replaced by Ao in the ddefinition of De. The momentum

equation. Eq. 4.26-4.27. remains runchled. The stress esr equation, Eq. 4.28 and the

evolin equation for the smnce tensor, Eq. 4.29 must be odified for A(-S2)2;

399



the modified equation are as follows

Stss sor

-Dez;r' T -$/1 3(2S+ 1)(1-S)

d | I + 2 S2(l - s 2) 2

Ev tio n d ar i for the srucmue tensor

TE1U bdary conditions are the same a those listed in Eq. 4.31. Note, however, that

St)=S, can he different for the two choices of X; S(O)Sq is independent of the choice

Or M.

Li NU A md Dtm amtn

Figre B.1 shows the axial velocity and orientation distribution for various De's for

14.0. (which is in the nematic-phase region at equilibrium, as seen from Fig. 3.6) and

i'rosic byodyaric dr ( 1.0). The draw ratio (D--3.0) used in these

ca atious ad in Capt 4 are the same. Inrtia, gravity, and surface tension are

egleI. V iati of - s final elngtion rate, t. with De is shown in Fig.

B.L

For a NcwPtoan fluid the nal elongation rate tL is given by InD, which for a

D of 3.0 s mugly 1. 10. For De-O, the velocity pofile is expected to be Newtonian

s he w beps liea in the vdocity adient loe to equilibrium as seen from
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Eq. 3.12. But apparent elongational viscosity a defined by Eq. 4.39, is much bigger

than the Trouton elongational viscosity T=3TIs for Newtonian fluids in the limit -O as

seen from Fig. B.7, which implies a significant polymer contribution to the stress.

At a De of 10-' the velocity profile is very close to Newtonian behavior since the

degree of order S hardly varies with position and is very close to the equilibrium value

for N=4.0 determined from Fig. 3.6. As De increases, the profiles become more and more

concave, with tL becoming maximum close to a De of 1O. For De's higher than 1 S,

the profiles decrease in concavity and become "Newtonian" once again. The behavior at

high De's can be explained by rewriting Eq. B.l for the normal stress difference.

3Dep d _ 3['N (2S+ 1)(1 -)) + 2De(l _S2)2S2 d (B.3)

Solvent Brownian Intermolecular Hydrodynamic
motion potential drag

The physical origin of the various terms is marked below the equation. For high De's,

S is extremely close to 1.0 (Fig. B.lb). Thus the intermolecular force contribution

becomes negligible. The Brownian motion term is negligible compared to the solvent

term. The hydrodynamic term also becomes small compared to the viscous term, in spite

of the high velocity gradient, because (I-S2)2 - 0. So, its not surprising that the velocity

becomes Newtonian at very high De's. Infact the apparent elongation viscosity fl, equals

the Trouton viscosity of the Newtonian solvent as seen from Fig B.7, due to the

predominance of viscous forces.

The effect of anisotropic drag is illustrated in Fig. B.2. L reaches a maximum

at a lower De, and also drops faster to the Newtonian value. So the effect of anisotropy
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in the drag is to quicken the response to increasing De by increasing the degree of

orientation for the same De, as seen by comparing Figs. B.lb and B.2b.

The effect of concentration on the velocity and degree of order is shown in Fig.

B3. The concentration N=1.0 is in the isotropic region at equilibrium. Once again

velocity and R respond more quickly with increasing De as compared to the response for

N=4.0 shown in Fig. B.la and B.2a. The equilibrium order for N=1.0 is zero as

compared to 0.683 for N=4.0. It can be seen by comparing Figs. B.lb and B.3b that S

changes much more rapidly with increasing De for the lower concentration which results

in the quicker response observed in velocity and ~t with increasing De for N=l.0.

Simulations carried out with A-Ao, which predicts viscosity data better as

discussed in Chapter 3, are shown in Figs. B.4 for comparison. The velocity profiles

deviate very little from the Newtonian limit for o1.0. A closer examination of Eqs. 4.28

and B.3 explains why this is so. Since A is not multiplied by (I-S2)2, the combination

of hydrodynamic and viscous terms swamp the intermolecular potential term and the

Brownian motion term. Thus, for reasonably large De's, the dimensionless normal stress

difference can be approximated as

T - Tr 3D +2s 2) d (B.4)
T 1- d;

with an effective dimensionless viscosity given by (3De/r)(j3(l1-) + 2S2) where S is

relatively independent of axial position as seen from Fig. B.4b. This results in the normal

strss difference being linear in the velocity gradient.
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Figurgme B shows the effect of S(O)=S on the velocity and orientation profiles for

N=40 and =4(l-- S 2)2, at the same draw ratio. The velocity profiles become

incaasingly concave as De increases until there seems to be no observable change beyond

a De of 1O5. Unlike the case where S(O=S, the velocity profiles do not become

Newtonian at high De. This is not surprising since the value of (l- 2 )2 is higher for

the eqilibrium initial condition, and the viscous term does not dominate the

hydrodynamic term as much. The normal stress difference can be approximated for large

De as follows

T=-- Tf r ( + 2(1 - 2)2S2 ) (B.5)

The normal stss difference is no longer linear in the velocity gradient since S varies

much more along the spinline for the equilibrium initial condition. Consequently, the

non-Ne an lie velocity profiles for large De's are to be expected.

The effect of the equilibrium initial condition on the velocity and orientation

profiles for 'AA, are shown in Fig. B.6 for comparison. Some degree of "elasticity" is

exhibited since the velocity profiles become less concave than the Newtonian profile.

Tle velocity profile is linear for the perfectly elastic case, and can be obtained as a

limiting cse with the Maxwell model (Denn, 1976). Once again, there is hardly any

chamge with De, at high De's, either in the velocity or the orientation. The velocity

pdfie is not Newtonian for lage De's since S is not constant and has to increase from

the equilibrium value to a value close to 1.0 resulting in a non-linear relationship between

the ans md the velocity grdient as seen from Eq. B.4. For both choices of X it can
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be seen that the velocity and orientation profiles are sensitive to the choice of the initial

cuodition S(O).

The appaent elongational viscosity q, for =A( -S 2)2 and X=Ao are shown in Fig.

B7; the initial condition is S(O)=S. The simple elongational viscosity fi for the

respective A's are shown for comparison. There is very little difference between ij and

i for the entire range of t L for both choices of X which suggests that solving the one-

imesi ona l fiber spinning equations with the initial condition S(O)=S, would directly give

us ri for any Therefore, if the fiber spinning expeiments are designed such that the

one-dimensional lubrication approximation equations are valid (which implies the

existence of elongational flow alone), ij. obtained from the experiment is expected to give

a good estimate of i for the elongation rate t L. However, the validity of the lubrication

approximation itself is questionable at high De's which can only be resolved by canying

out two-dimensional FEM simulations back into spinneret

Figure B.8 illustrates the effect of concentration, a, and initial condition on it, for

A1(l-S) 2. The effect of initial condition on i, for Xo is also shown for comparison.

For small eL, %a is constant and is numerically equal to the zero-elongation-rate viscosity.

ro rio is obviously different for the two different concentrations. In the extension

rinning region, I. has a slope close to -2/3 for S(O)=S, which agrees with the

asymptotic limit predicted for n by Menon (1990). For high t, f. is bounded from

bdow by the Trouton viscosity, 3r,. For S(O)=Sq ,a has a slope slightly greater than -

23 in the extension thinning region for this draw ratio. The lower bound for ia is also

much higher than the Trouton viscosity for the equifibrium initial condition. The apparent
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eloogaional viscosity behavior for XA4 was discussed in Chapter 4. The initial condition

has very little effect on ija for this model.

Figures B.7 and B.9 show the effect of draw ratio on la for the two different

initial conditions. For S(O)=S, there is very little difference in the qia profiles, except that

",a is always lower for the higher draw ratio in the extensional thinning region, due to the

higher values for the final elongation rate. In fact, for every value of the elongation rate,

there is a unique value of the power-law index n. This result is of significance to the

stability analysis discussed in Section B.2, since analytical and numerical (Kase. 1985;

Shah and Parson, 1972) stability results exist already for power-law models. We might

anticipate that the critical draw ratio predicted by the liquid-crystal model at each and

every elongation rate CL would be comparable to the power-law result where n is

determined from the la(.L) plot. As already discussed in Chapter 4, the comparison with

the stability results for the power-law model is favorable for X=

Increasing the draw ratio, affects the apparent elongational viscosity predictions

in the extension thinning region and also the lower bound values when the initial

oandiion is S(O)=Sq. as seen from Fig. B.9. So, tL is no longer unique in n, which

ivalidan t the power-law interptation of stability for this choice of the initial condition.

However, the asymptotic slope is never smaller than -213, and the value of n for each tL

with S(O)S, appears to be the lower limiting value for the initial condition S(O)=Sq.

Model p ons of the exp-imntal data obtained by Prilutsi (1984) for N. 2.3

(r at equilibrium) and N*4.0, ae shown in Fill B. 10-B.12 for both choices of A.

For N23, the compued values of De and D are 7.84x10 3 and 7.89 rspectively. The
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model predictions of the normal stress difference are much better when gravity and

surface tension are included in the momentum balance. For this extremely small De, the

choice of X does not matter as seen from Figs. B.10 and B. 1l. Initial condition also has

little effect on the model predictions since De is very small.

For N=4.0, De and DR have been computed to be 7.63x10 3 and 3.63 respectively.

There seems to be some improvement in the predictions without the effects of gravity and

surface tension as compared to the case where N=2.3, as seen from Figs. B.10 and B.12;

model predictions for N=4.0 and X=Ao were shown in Chapter 4. The higher

concentration requires a larger tension for roughly the same De, resulting in the

diminished effect of gravity and surface tension. This is confirmed by the normal stresses

observed for N=4.0. However, inclusion of gravity and surface tension once again

improves the normal stress prediction for both choices of At

Though the model predicts available experimental data really well, it should be

kept in mind that all data are at very low De's, due to the experimental limitations

discussed in Chapter 3. Therefore in all experiments the elongational viscosity hardly

varies from the zero-elongation-rate elongational viscosity io and the elongation thinning

or thickening stage is never reached. So the particular choice of the initial condition or

A is not resolved by available experimental data. For a rigorous test of the model, data

at higher De's are required.

B.2 Linear Stability Analysis

In Section B.2.1, the linear stability equations that predict the onset of draw resonance

415



0.5

¢~
1 .I 

Prilutski's (1984) data for 23
SOS; [T, gravity, inertia, st]
S,S.,q [T. gravity, inertia, st]
SOS [only T]
N=2.3; De=7.84d-3; DR=
=Ao( 1 -S2 )2 ; =0.87

WL IIrpC/AA
,

· oI

=7.8Q. ', I ~ ~ ~

am

i
I.-It

_w

I-

I t I I 

OS

Filure B.10: Comparison of model predictions with the data of Prilutski (1984) for a
hydroxy popyl cellulose solution in cetic acid with Ns2.3, DR=7.8 9, 1,50.012 Poise,
De=7.84x13, om0.87, k4(l-S2) 2 and S()=S t and S.* (a) velocity and (b) normal stress
difference. he prediction obtained without including gravity and surface tension is
shown for comparison with S(O)=St.

416

-. U

1.5

" I.0

0.5

et n
01

* * Prilutski's (1984) data for 23 wt% HPC/AA
-- SO=S; [T. gravity, inertia. st]

.S o= S [T . g ra v ity, in e rtia , st]
---- SO=S, [only T]

N=2.3; De=7.84d-3; DR=7.8 9

=Ao(1-S2)2; o=0.87
a=0.87,:"

.... -- ... . _
O

00
......
.oo.

E

ct,t

I..
F

10 4

10

1.00.0

I

C

I

q n

,,
O

4



2o

1.5

0- 1.0

0.5

on

E
U

~:1

t
I.I

I.

I0

0.5

¢t

0.0 0.6

1.0

1.0

igure B.11: Comparison of model predictions with the data of Prilutski (1984) for a

bydroxy propyl cellulose solution in acetic acid with N=23, DRU7.89 , ril=O.012 Poise,

De=7.84x0 3 , aO.87, X.o and S(O)=S, and Sq: (a) velocity and (b) normal stress

dicterence. The prediction obtained without including pgravity and surface tension is
shown for comparison with S(O)=Sr .

417

* * Prilutski's (1984) data for 23 wt% HPC/AA
--- SO=SI [T. gravity, inertia. st]
-.-- So=S. [T. gravity, inertia, st]
-. So,=S, [only T]

-N=2.3; De=7.84d-3; DR=7.89

A=Xo; a=0.87

I

I ..

I , 4-11-I 4 --
~~~-'~~~~~~X"~~.

* * Prilutski's (1984) data or 23 w% HPC/AA
-- SO=S;, T. gravity. inertia, sl] '
...... SOS T. gravity. iertia. st] / '
---- So=St [only T] .

N=2.3; De=7.84d-3; DR=7.89o"
A=Ao; =0.87

I

_

r

II,

II

I

d

O.,0(CI

I

I

4



1.5

10

0.5

ni
00 0.5 1.0

¢

Ea

;N

i
4

I
a

± 1I
I

0.0 0.5 1.0

Figre B.12: Comparison of model prtdictions with the data of Prilutski (1984) for a
hydroxy propyl cellulose solution in acetic acid with N,4.0. DR=3. 6 3. q,,0.012 Poise.

..7.63xlO13 ca0.14. ,Ao(l-S) and S(O).St: (a) velocity and (b) normal stress
drffernce. The prediction obtained without including gravity and surface tension is
down for comparison.

418

I .... T 1 r r I I
. * * Prilutski's (1984) data for 40 tV. HPC/AA

-- T. gravity, inertia. surface tension
.---- only T

N=4.O; De=7.63d-3; DR=3 .6 3 ; SO=S"
=Xo( 1-S 2 )2 ; a=0.14

a=O. 14~~~~~~~~C

a, -

_ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~. ,_ a *
I . .I . .* * I

I -. ;-a -

-a-
a-a1

I-.-- ~ ~ ~ ~ -4 -11

* * Prilutski's (1984) data for 40 wtX HPC/AA
T. gravity. inertia. surface tension
only T
N=4.0; De=7.63dc-3; DR=3. 6 3 *--
SO=Sl; A=AO( a=0.14 

· .

I



instabilities are presented for =o(1-S 2 )2 . In Section B.2.2, the linear stability

predictions are discussed and some comparisons are made with the linear stability

predictions presented in Chapter 4 which used X=?

B.Z Iinear Stabiity Equations

The assumptions used in the derivation of the linear stability equations with 4o(1-S 2 )2

are the same as those used in Chapter 4 in the derivation of the linear stability equations

with XA. The linear stability equations for Xo were given by Eqs. 451-4.55.

Equations 451. 4.53 and 4.54 remain unchanged for X=ko(l-S2 )2. In addition, the

algebraic relation for H1 (vs,5 o) in Eq. 4.55 remains unchaged. Equation 4.52 and the

algebraic relation for H2(So) in Eq. 4.55 are modified as follows for X=o,(-S 2) 2

dv do 4S(I-3SolX-S) do_, s - _ v
(2S21-S2)2 + (1-):

OW SJ_ d e

[2C°°(I -4(DR))a+ReO(( (a - ) N +2SI o(6)a 

H2 (S0 ) 21-S (-( 3 3(&PE3J S0 (13De b(2Soa (I-S o oi * i (. 4.-.)

3(2so~(1_-sb~ ·+ B;<~-2 2

_.L DR Fr

3 3 3

'Mm boundary conditions those listed in Eq. 4.56.
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B.22 Results and DisaCssion

Stability plots (DRact vs. De) have been obtained for N=1.0 and N=4.0. The effect of c

and the initial condition S(O) have also been investigated for N=4.0. Stability plots for

are also shown for comparison.

Stability curves for N=1.0 and N=4.0 are shown in Figure B.13. For XAW DRA,

is close to the Newtonian critical draw ratio of 20.21 for all De as was observed for

N=4.0 in Chapter 4 and replotted in Fig. B.13b. As discussed in Section B.1.2, is

constant at low and high values of elongation rate or De for X=o(l-52)2. Consequently.

DR- approaches the Newtonian limit of 20.21 at low and high De. For intermediate

values of De the combination of the intermolecular potential and Brownian motion terms

on the one hand and the hydrodynamic drag term on the other have a marked effect on

stability, and DR crit decreases to about 3.5, before it rises again to the Newtonian value.

The same behavior is not observed with the X=4 model since for intermediate values of

De the hydrodynamic drag contribution dominates, and the normal stress difference looks

like Eq. B.4 without the solvent contribution. Since S is relatively constant (a high degree

of order, S=0.98, is achieved for De=100) the normal stress difference is "Newtonian"

resulting in a critical draw ratio close to 20.21. Since the hydrodynamic drag term is

bigger for the =o4 model, a comparison between the stability plots for the two A models

indicates that an increase in the hydrodynamic term would increase stability.

Stability results for N=4.0, are shown in Fig. B.13b. Figure B.14a illustrates the

quantitative effect of concentration on stability. For N=1.0, 5=0 at equilibrium, whereas

5=0.683 for N=4.0. So the Brownian motion, intermnnoleular potential and hydrodynamic
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drag terms change more rapidly with De for N=l.O resulting in the earlier response

observed. As already seen in Section B.1.2, increasing anisotropy quickens the response

to increasing De. This is confirmed by Fig. B.14b.

The effect of the initial condition S(0)=-Sq on stability, is shown in Fig. B. 15. The

coresponding stability curves for S(O)=S,, are shown for comparison. The effect of initial

condition is negligible for the =Ao model as already seen in Chapter 4. For =o(l-S 2 )2,.

for small De, when S is reasonably close to the equilibrium value, the stability curves

overlap. Beyond a De of 10.0, the stability behavior is unclear. A more thorough

analysis is required to determine the stability response at high De's.

The stability results seem to correlate well with the apparent elongational viscosity

plots shown in Figs. B.7 and B.8. It is seen from Fig. B.7 that draw ratio has very little

qualitative effect on the a profile. In fact, as discussed in Section B.1.2, the stability

pmdictions of a power-law model with variable index n, where n is determined from the

apparent elongational viscosity plot seem to compare well with the stability results of the

liquidcystal model for S(O)=St In Fig. B.7a the asymptotic slope of -2/3 (n=1/3) is

reached around a De of 105. The critical draw ratio for n=l/3 is around 3, which

compares well with the stability predictions of the liquid-crystal model. In addition, the

apparent elongational viscosity is constant for low and high De's. So the stability must

be Newtonian for these limits, which is predicted by the linear stability analysis.
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