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Abstract— _ _ three algorithms that target adversaries with differergrgjths.
Network coding substantially increases network throughpt. The adversary can always inject packets, but his listening
But_smce it involves mixing of information |nS|d¢_the netwak, ”power varies. When the adversary is omniscient, i.e., he ob-

a single corrupted packet generated by a malicious node cal ¢ L h i twork d hi
end up contaminating all the information reaching a destindion, serves ransmISS|0n_s on_ een |re. _ne ork, our codesachie
preventing decoding. the rate ofC' — 2z, with high probability. When the adversary’s
This paper introduces the first distributed polynomial-time rateknowledge is limited, either because he eavesdrops only on a
optimal network codes that work in the presence of Byzantine sypset of the links or the source and destination have aabev-r

nodes. We present algorithms that target adversaries with ifferent secret-channel, our algorithms deliver the higher rat€ efzo
attacking capabilities. When the adversary can eavesdroproall The intuit ’ derlvi Il of lorith is th t.th
links and jam zo links , our first algorithm achieves a rate of € Intuiion underlying all of our algorithms IS that the

C — 2z0, where C is the network capacity. In contrast, when the aggregate packets from the adversarial nodes can be thought
adversary has limited snooping capabilities, we provide gorithms of as a second source. The information received at the desti-
that achieve the higher rate ofC' — zo. nation is a linear transform of the source’s and the advgssar

Our algorithms attain the optimal rate given the strength of ¢ mation. Given enough linear combinations (enoughecbd
the adversary. They are information-theoretically secure They

operate in a distributed manner, assume no knowledge of thePackets), the destination can decode both sources. Théajues
topology, and can be designed and implemented in polynomial however is how does the destination distill out the source’s

time. Furthermore, only the source and destination need to & information from the received mixture. To do so, the sowsce’
modified; non-malicious nodes inside the network are oblidus to jnformation has to satisfy certain constraints that thackir’s
the presence of adversaries and implement a classical digtuted data cannot satisfy. This can be done by judiciously adding
network code. Finally, our algorithms work over wired and wireless
networks. redundancy at the source. For example, the source may add
redundancy to ensure that certain functions evaluate to zer
on the original source’s data, and thus can be used to distill
|. INTRODUCTION the source’s data from the adversary’s. The challenge asede

Network coding allows the routers to mix the informatidrerein is to design the redundancy that achieves the optimal
content in packets before forwarding them. This mixing hases.
been theoretically proven to maximize network throughdit [ This paper makes several contributions. The algorithms
[17], [13]. It can be done in a distributed manner with low compresented herein ar¢he first distributed algorithms with
plexity, and is robust to packet losses and network fail{8gs polynomial-time complexity in design and implementatiget,

[21]. Furthermore, recent implementations of network ngdiare rate-optimal.In fact, since pure forwarding is a special
for wired and wireless environments demonstrate its prakttase of network coding, being rate-optimal, our algorittaise
benefits [16], [6]. achieve a higher rate than any approach that does not use

But what if the network contains malicious nodes? A maetwork coding. They assume no knowledge of the topology
licious node may pretend to forward packets from sourceatml work in both wired and wireless networks. Furthermore,
destination, while in reality it injects corrupted packétso implementing our algorithms involves only a slight modifioa
the information flow. Since network coding makes the routefsthe source and destination while the internal nodes can
mix packets’ content, a single corrupted packet can endcuoptinue to use standard network coding.
corruptingall the information reaching a destination. Unless this
problem is solved, network coding may perform much worse
than pure forwarding in the presence of adversaries.

The interplay of network coding and Byzantine adversariesWe illustrate the intuition underlying our approach using
has been examined by a few recent papers. Some detecththéoy example in Fig. 1. Calvin wants to prevent the flow of
presence of an adversary [10], others correct the erromgéets information from Alice to Bob, or at least minimize it. Alliks
into the codes under specific conditions [7], [12], [19], amchave a capacity of one packet per unit time. Further, Calvin
few bound the maximum achievable rate in such adverse etoinects to the three routers over a wireless link, shown in
ronments [3], [28]. But attaining optimal rates using disited Fig. 1 as a dashed hyperedge. The network capaCitys by
and low-complexity codes is still an open problem. definition the min-cut from Alice to Bob. It is equal Bopackets.

This paper designs distributed polynomial-time ratefopti The min-cut from Calvin to the destination s, = 1 packet
network codes that combat Byzantine adversaries. We pregenunit time. Hence, the maximum rate from Alice to Bob in

Il. ILLUSTRATING EXAMPLE



to find x. (This is because thg;s andz always appear as the
product termg3;Z in (1).) Hence he is left withl equations and
6 unknowns.

The first idea we use is that white is a whole unknown
packet ofn bytes, each of the coefficient is a single byte.
by Thus, instead of devoting a whole vectorotytes for added
Z i redundancy (as in (2)), Alice just needs three extra bytes of
_ Cavin @ . . . redundancy to compensate for thgs being unknown
Fig. 1—A simple example. Alice transmits to Bob. Calvin injects ’
corrupted packets into their communication. The grey nodesin Alice imposes constraints on her data to help Bob to decode.
the middle perform network coding. For instance, a simple constraint could be that the first byte
each packet equals zero. This constrain provides Bob wi#eth
additional equations. So, rewriting (1) for the first byteeaich

Alice

this scenario is bounded by — zp = 2 packets per unit time

as proven in [12]. . .
We express each packet as a vectondiytes, wheres is packet,_B(_)b would get a scaled version of thés i.e., they are
all multiplied by z;.

a sufficiently large number. The routers create random flinea

combinations of the packets they receive. Hence, everyainit y1,1 = aqx11 + Pz = Bran

time Bob receives the packets: Yo,1 = a2 + faz1 = Poz1 €)
§1 = %+ /iE Y31 = as3x31 + B321 = G321
Y2 = «QoXo+ [oZ (1) Our second observation is that the scaled version ofdfse
V3 = asXs+ (37, suffices for Bob to decod&. This can be seen by a simple

- . . algebraic manipulation of (1). Bob can rewrite the equation
where x;'s are the three packets Alice set,is the packet. g b (1) d

Calvin senta; and g; are random coefficients. in (1) by multiplying and dividing the second term with and

In our example, the routers operate over bytes;ithebyte appending (2) to obtain

in an outgoing packet is a linear combinationi&f bytes in the Vi = X1+ (5i21)(Z/%1)

incoming packets. Thus, (1) also describes the relatiowdxet Y2 = ooXe+ (0221)(Z/21) @)
the individual bytes iny;’s and the corresponding bytes #’'s Vs = a3Xsz+ (0321)(2/71)

andz. X3 = X1 + Xa.

ce that Bob already knows all thregz; terms from (3).
term(z/z1) can be considered a single unknown because
Bob does not care about estimating the exact valug. ddow

Since the routers mix the content of the packets, Alice ctan,(] ti

just sign her packets and have Bob discard all packets vslqﬂé

incorrect signatures. To decode, Bob has to somehow dfsill

Xy's from the;'s he receives. Bob has4 equations witht unknowns and they can be solved
As a first attempt at solving the problem, let us assUMe acode as before.

that Bob knows the topology, i.e., he knows that the packets

he receives are produced using (1). Further, let us assume th ON€ complication still remains. If Calvin knows the con-

he knows the random coefficients used by the routers to c3FaNts on Alice’s data, he knows that the first byte of each
the packets, i.e., he knows the values @fs and 3;'s. To packet is zero. So to ensure that Bob does not obtain any

decode, Bob has to solve (1). These are three equations fjifmation about thef;’'s from (4), Calvin can just set the

four unknownsz, %1, s andxs. Hence, Bob cannot decodellrSt PYte in his packet; to zero.

To address the above situation, Alice needs to add redunThere are two ways out of this situation. Suppose Alice
dancy to her transmitted packets. After all, as noted abfmve could communicate to Bob a small message that is secret from
the particular example in Fig. 1, Alice’s rate is bounded byC2lvin. In this case, she could compute a small number of
packets per unit time. Thus, Alice should send no more thaashes of her data, and transmit them to Bob. These hashes

packets worth of information. She can use the third packetdorrespond to constraints on her data, which enables Bob to

added redundancy. Suppose Alice sets decode. If Alice cannot communicate secretly with Bob, she
_ _ _ leverages the fact that Calvin can inject only one fake packe
X3 = X1 + X2. (2) since calvin's packet i& bytes long, he can cancel out at most

This coding strategy is public to both Bob and Calvin. Cof-nashes. If Alice injects: + 1 hashes, there must be at least
bining (2) with (1), Bob obtains a system dfequations with On€ hash Calvin cannot cancel. This hash enables Bob to find

4 unknowns, which he can solve to decode. the 8;'s and decode. Notice, however, that the- 1 additional
But in the general case, Bob knows nothing about ganstraints imposed on the bytesiip andZ; means that Alice
coefficients used by the routers, the topology, or the olefgh only transmit at most — 1 bytes of data to Bob. For a
network transform. To keep the example tractable, we assiff@e number of bytes in a packet, this rate is asymptotically
that thes;’s are unknown to Bob, whereas the other coefficiefidimal against an all-knowing adversary [3].
are known. The rest of this paper considers the general problem of
Given (1) and (2), Bob is faced with equations and’ network coding over completely unknown topology, in the
unknowns, and thus cannot decode. But note that Bob doegpresence of an adversary who has partial or full knowledge of
need to find boths;’s and z; finding their product is sufficientthe network and transmissions in it.
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3 /,b‘ [ Scheme | Charles et.al. [4]] Jaggi et.al. [12]] Ours |
Info. Theoretic Security No Yes Yes
Distributed Yes No Yes
Internal Node Complexity High Low Low
Decoding Complexity High Exponential Low
General Graphs No Yes Yes
Universal No No Yes

TABLE | —Comparison between the results in this paper and some
prior papers.

in wireless networks by modeling malicious nodes as locally

X R bounded Byzantine faults, i.e., nodes can overhear and jam

P Y packets only in their neighborhood [23].

Fig. 2—A simple scenario showing how network coding improves ~ The interplay of network coding and Byzantine adversaries

throughput. All links have a capacity of one packet per unit & was first examined in [10], which detects the existence of an

time. By sending the XOR ofa; and b; on the middle link, we can adversary but does not provide an error-correction scheme.

deliver two packets per unit of time to both receivers. This has been followed by the work of Cai and Yeung [28],
IIl. RELATED WORK [3], who genera_llze standard_ bounds on e_rr_or—corre_ctlrtgaso

et}gﬁnetworks, without providing any explicit algorithms for

r

We start with a brief summary of network coding, follow

: ! o hieving these bounds. Our work presents a constructsigre
by a survey of prior work on Byzantine adversaries in netso

achieve those bounds.

. The problem of correcting errors in the presence of both

A. Network Coding Background network coding and Byzantine adversaries has been coesider
The idea underlying network coding is often illustratechgsiby a few prior proposals. Earlier work [19], [7] assumes a

the famous butterfly example by Ahlswede et.al [1]. Considentralized trusted authority that provides hashes of thgnal

the network in Fig. 2, where sourcg& wants to deliver thepackets to each node in the network. More recent work by

stream of packets; to both R; and Rs, and sourceS, wants to Charles et al. [4] obviates the need for a trusted entity utide

send the stream of packéisto the same two receivers. Assunessumption that the majority of packets received by eacle nod

all links have a capacity of one packet per unit of time. Ifteva is uncorrupted. In contrast to the above two schemes whigh ar

only forward the packets they receive, the middle link beesnoryptographically secure, in a previous work [12], we cdesi

a bottleneck, which for every unit of time, can either dealiwge an information-theoretically rate-optimal solution to Ztine

to Ry or b; to Re. In contrast, if the router feeding the middlattacks fowired networks, which however requires a centralized

link XORs the two packets and sends® b;, as shown in thedesign. This paper builds on the above prior schemes to cmmbi

figure, both receivers obtain two distinct packets in everit wtheir desirable traits; it provides a distributed solutitat is

of time. information-theoretically rate optimal and can be desitjard
Work on network coding started with a pioneering papeatplemented in polynomial time. Furthermore, our algorith

by Ahlswede et al. [1], which establishes the value of codimave new features; they assume no knowledge of the topology,

in the routers and provides theoretical bounds on the cgpadid not require any new functionality at internal nodes, and

of such networks. The combination of [20], [17], [13] showgork for both wired and wireless networks. Table | highlight

that, for multicast traffic, linear codes achieves the maximsimilarities and differences from prior work.

capacity bounds, and coding and decoding can be done in

polynomial time. Additionally, Ho et al. show that the above

is true even when the routers pick random coefficients [8]. i

Researchers have extended the above results to a variety of/¢ Use @ general model that encompasses both wired and

areas including wireless networks [21], [15], [16], enef8y], wireless networks. To simplify notation, we consider orthe t

secrecy [2], content distribution [6], and distributedratge [14]. gg::ilr?gt]io%f (I;?JTsniqrﬁirI]:ritcl)nr%;;ct)r:ezvslrrllgcigd?r?;raclgotr(i)th?ws'rngle

techniques generalize to multicast traffic.

IV. MODEL & DEFINITIONS

B. Byzantine Adversaries in Networks

A Byzantine attacker is a malicious adversary hidden in

a network, capable of eavesdropping and jamming com#iu-Threat Model

nications. Prior research has examined these attacks in th&here is a source, Alice, and a destination, Bob, who
presence of network coding and without it. In tla@sence communicate over a wired or wireless network. There is atso a
of network coding, Dolev et al. [5] consider the probleattacker Calvin, hidden somewhere in the network. Calvinsai
of communicating over a known graph containing Byzantiteeprevent the transfer of information from Alice to Bob, dr a
adversaries. They show that fér adversarial nodes, reliabléeast to minimize it. He can observe some of the transmission
communication is possible only if the graph has more thard can inject his own. When he injects his own packets, he
2k + 1 vertex connectivity. Subramaniam extends this requietends they are part of the information flow from Alice to
to unknown graphs [25]. Pelc et al. address the same prolierin.



Calvin is quite strong. He is computationally unbounded.
knows the encoding and decoding schemes of Alice and E
and the network code implemented by the interior nodes.
also knows the exact network realization.

B. Network and Code Model

This section describes the network model, the packet fqri
and how the network transforms the packets.

Network Model: The network is modeled as a hypergraph [2
Each packet transmission corresponds to a hyperedge etir
from the transmitting node to the set of observer nodes.
wired networks, the hyperedge is a simple point-to-poimk.li
For wireless, each such hyperedge is determined by inst:
neous channel realizations (packets may be lost due toda
or collisions) and connects the transmitter to all nodetshkear
the transmission. The hypergraph is unknown to Alice and t
prior to transmission.

n — packet size

X= 1 I IB — Batch Size
L
On - redundant symbols

P n — packet size .

A — | | I_HZ_No.ofpackets
°  Calvin injects

P n — packet size

Y —> T IB +2,

Fig. 3—Alice, Bob and Calvin’s information matrices.

from Alice to Bob, assuming no adversarial interference,
i.e., the max flow. It can be also expressedttas min-cut
from source to destinatior{For the corresponding multicast
case,C is defined as the minimum of the min-cuts over all

Source: Alice generates incompressible data that she wis ~ destinations.) N

to deliver to Bob over the network. To do so, Alice encoae® The error probability is the probability that Bob's recon-
her data as dictated by the encoding algorithm (described irStruction of Alice’s information is inaccurate.
subsequent sections). She divides the encoded data imoeisat® 1€ rate, R, is the number of information bits in a batch
of b packets. For claritywe focus on the encoding and decoding @mortized by the length of a packet in bits.

of one batch. e The rateR is said to beachievableif for any ¢ > 0, any

A packet contains a sequencesofsymbols from the finite 9 > 0, and sufficiently large, there exists a block-length-
field F,. All arithmetic operations henceforth are done over N€twork code with a redundanéyand a probability of error
symbols fromF,. (see the treatment in [18]). Out of the €SS thare. . _ S
symbols in Alice’s packetgn symbols are redundancy added A code is said to beniversalif the code design is indepen-
by the source. dent of zo.

Alice organizes the data in each batch into a maifixas
shown in Fig. 3. We denote the, j)'"* element in the matrix by V. NETWORK TRANSFORM

. . . h . - . - . h - ) . . )
x(i, j). Thei™ row in the matrixX is just thei"* packetin the  Thjs section explains how Alice’s packets get transformed
batch. Fig. 3 shows that similarly to standard network cq8Es a5 they travel through the network. It examines the effeet th

some of the redundancy in the batch is devoted to sendingi\fersary has on the received packets, and Bob's decoding
identity matrix, I. Also, as in [9], Alice takes random ””eaﬁroblem.

combinations of the rows of{ to generate her t.ransmitted The network performs a classical distributed network
packets. As the packets traverse the network, the intend#s 44e [9]. Specifically, each packet transmitted by an irern

apply a linear transform to the batch. The identity matfigge is'a random linear combination of its incoming packets.
receives the same linear transform. The destination d&ss0¥,s the effect of the network at the destination can be

the linear relation between the packets it receives andethQgnmarized as follows.
transmitted by inspecting how was transformed.

Adversary: Let the matrixZ be the information Calvin injects YV=TX+Tz7-vZ, ®)

into each batch. The size of this matrixdg x n, wherezo is where X is the batch of packets sent by Alicg, refers to the
the size of the min-cut from Calvin to the destination. packets Calvin injects into Alice’s batch, aadis the received
Destination: Analogously to how Alice generate¥, the des- batch. The variabld refers to the linear transform from Alice
tination Bob organizes the received packets into a mairixt0 Bob, whileTz_.y refers to the linear transform from Calvin
Theit" received packet corresponds to e row of Y. Note to Bob.

that the number of received packets, and therefore the numbeAs explained in§lV, a classical random network code’

of rows of Y, is a variable dependent on the network topologjcludes the identity matrix as part of each batch. The ident
The column rank okY’, however, isb + zo. Bob attempts tomatrix sent by Alice incurs the same transform as the rest of
reconstruct Alice’s information¥, using the matrix of receivedhe batch. Thus,
packetsY'.

T=TI+Tz_vL, (6)
_ where7” and L are the columns corresponding s location
C. Definitions in Y and Z respectively, as shown in Fig. 3.
We define the following concepts. In standard network coding, there is no adversary, Zes
e The network capacity denoted byC, is the time-averaged) and L = 0, and thus7’ = 7. The destination receives a
of the maximum number of packets that can be delivedssbcription of the network transform if and can decod& as



[ Variable | Definition | (3) Limited Adversary Model: In this model, Calvin is limited

b Number of packets in a batch. _ in his eavesdropping power; he can observe at mpsansmit-
o Number of packets Calvin can inject. ted packets. Exploiting this weakness of the adversarylteesu
Zr Number of packets Calvin can hear. ted p iy P 9 . .
p Length of each packet. in an algorithm that, like the Omniscient Adversary aldamit
3 Fractional redundancy introduced by Alice. operates without a shared secret, but still achieves thehigite
T Proxy of the transfer matrixI’ representing the Possible via the Shared Secret algorithm. In particulagi}
network transform. we prove the following.
TABLE Il —Terms used in the paper. Theorem 3:If z; < C — 2zp, the Limited Adversary

P . orithm achieves a rate af' — zp with code-complexity
T~'Y. Inthe presence of the adversary, however, the destmagt%r%c2 + (nd)2C*). This is the maximum achievable rate.

needs to solve (5) and (6) to extract the valueXof
By substitutingZ’ from (6), (5) can be simplified to get

Y = TX+Tsy(Z— LX) 7) VII. SHARED SECRETMODEL

= TX+E, (8) In the Shared Secret model, Alice and Bob have use of a

. . . . . strong resource, namely a secret channel over which Alioe ca
whereE is ab x n matrix that characterizes Calvin’s interfer[- 9 y

- . {ransmit a small amount of information to Bob that is secret
ence. Note that the matr_iR, which BOk? knows, acts asgoxy from Calvin. Note that since the internal nodes mix corrdpte
transfer matrixfor 7', which he doesn’t know.

. and uncorrupted packets, Alice cannot just sign her packeds
Note that in (5), all terms other than are unknown. Further pted pack J 9 P
o . have Bob check the signature and throw away corrupted packet
it is non-linear due to the cross-product terfisy and7,_.v Z. . : )
- . Alice uses the secret channel to send a hash of her informatio
In contrast, (8) is linear in the unknowr’s and E. The rest

of this work focuses on solving (8) under different assuomi X 10 B(.)b’ which BOb. can use to distill the corrupted packets
., he receives, as explained below.
on Calvin’s strength.

Shared Secret: Alice generates her secret message in two

VI. SUMMARY OF RESULTS steps. She first choosés parity symbolsuniformly at random
. rom the fieldF,. The parity symbols are labeleq, for d €
We have three main results. Each result corresponds &01,6.1. ., C}. Corresponding to the parity symbols, Alicgarity-

distributed, rate-optimal, polynomial-time algorithnatfdefeats check matrixP is defined as ther x C' matrix whose(s, )"

an adversary of a particular type. The optimality of thetesa . )
has been p);oven pby prior xgrk 3], [58], [12%_ our Worentry equalgr;)?, i.e.,r; to thei*" power. The second part of

however, provides a construction of distributed codesfitlgms lice’s S(_acret message is the C' hash matrle, computed as
] : the matrix productX P. We assume Alice communicates both
that achieve optimal rates.

the set of parity symbols and the hash matfixto Bob over

(1) Shared Secret Model:This model assumes that Alice anghe secret channel. The combination of these two creates the
Bob have a very low rate secret channel, the transmissiongiited secret, denot&d between Alice and Bob. The size of
which are unknown to Calvin. It considers the transmissibnggig C(b+ 1) symbols, which is small in comparison to Alice’s
information via network coding in a network where Calvin C@¥ormation.X . (The size ofX is bxn; it can be made arbitrarily

observe all transmissions, and can inject some corruptqnac\%\r?e compared to the size 8fby increasing the packet size
Theorem 1:The Shared Secret algorithm achieves a rate;,0f

. . 5 L .
gchiez\;)at\)l\llgr]racig.c’e complexityO(nC). This s the maXIrnumAlice’s Encoder: Alige implements the classical random net-
In §VII, we prove the above theorem by constructing an alg%@rk encoder described #1V-B.

rithm that achieves the bounds. Note that [7] proves a simBab’s Decoder: Not only is P used by Alice to generaté#,
result for a more constrained model where Alice shares a \ryis also used by Bob in his decoding process. To be more
low rate secret channel with all nodes in the network, and fiecise, Bob computes P — T'H using the messages he gets
operations performed by internal nodes are computatipeall from the network and the secret channel. We call the outcome
pensive. Further, their result guarantees cryptograpguarity, the syndrome matrixs.

while we provide information-theoretic security. By substituting the value off and using (8), we obtain

(2) Omniscient Adversary Model: This model assumes an S=YP-TH=(Y - TX)P = EP. )
omniscient adversary, i.e., one from whom nothing is hiddien
particular, Alice and Bob have no shared secrets hidden fos, if no adversary was present, the packets would not be
Calvin. It also assumes that the min-cut from the adverse@yrupted (i.e.£' = 0) and S would be an all-zero matrix. As
to the destinationzo, is less thanC//2. Prior work provesshown in§lV, X then equals/'~'Y. If Calvin injects corrupt
that without this condition, it is impossible for the sourgickets,S will be a non-zero matrix.
and the destination to reliably communicate without a gecre Claim 1: The columns ofS span the same vector-space as
channel [12]. In§VIIl, we prove the following. the columns ofF.

Theorem 2:The Omniscient Adversary algorithm achiev&daim 1, proved in the Appendix, means that Calvin’s interfe
a rate ofC' — 2z¢ with code-complexityO((nC)?). This is the ence,E, can be written as linear combinations of the columns
maximum achievable rate. of S, i.e., E = AS, whereA is aC x n matrix. This enables



Bob to rewrite (8) as the matrix product Alice then proceeds to the standard network encoding. She
R ¥ rearrangeX, a lengthbn vector, into theb x n matrix X. The
Y =T 5] { i } : (10) j'" column of X consists of symbols from the;j — 1)b+1)""
through (jb)!* symbols of X. From this point on, Alice’s
Bob does not care about, but to obtainX, he must solve (10).encoder implements the classical random network encoder de
Claim 2: The matrix[T" S] has full column-rank. scribed in§lV-B, to generate her transmitted packets.

Claim 2, proved in the Appendix, means that Bob can decode by

simply inverting the matri>{T S] and multiplying the result byBob’s Decoder:As shown in (8), Bob’s received data is related
Y. Since Alice encodes at a rafe= C — zo, the shared secreto Alice and Calvin’s transmitted data as=7'X + E. Bob’s
algorithm achieves the optimal rate shown by prior work [12pjective, as irgVIl, is to distill out the effect of the error matrix
Of code design, encoding and decoding, both encoding Enand recover the vectak. He can then retrieve A|iCQ’S data
decoding require®(nC?) steps. The costliest step for AlicBy extracting the firs{bn — b> — dn) symbols to obtaifU.

is the computation of the hash matriX, and for Bob is the
computation of the syndrome matrix

To decode, Bob performs the following steps, each of which

corresponds to an elementary matrix operation.

The scheme presented above is universal, i.e., the panamete

of the code do not depend on any knowledge abgutvhich in
some sense functions as the “noise parameter”
Alice therefore has flexibility in tailoring her batch size the

size of the data which she wishes to transmit and the packe

size allowed by the network.

VIIl. OMNISCIENT ADVERSARY MODEL
What if we face anomniscient adversaryi.e., Calvin can

of the neIWOorkDetermmmg Calvin's strengthBob first determines the

strength of the adversary, which is the column rank of
g“zﬁy. Bob does not knowz_.y, but sinceT’ andTz_.y
Span disjoint vector spaces, the column rank’ofs equal
to the sum of the column ranks @f and7z_.y. Since the
column rank off" is simply the batch sizg, Bob determines
zo by subtractingy from the column rank of the matrix'.

e Discarding irrelevant information:Since the classical ran-

observe everything, and there are no shared secrets betwe%m network code is run without any central coordinating

Alice and Bob? We design a network error-correcting code to

defeat such a powerful adversary. Our algorithm achievedea r

of R = C'—2z0, which is lower than in the Shared Secret model.
This is a direct consequence of Calvin's increased strength

Recent bounds [3] on network error-correcting codes shaw th
in fact C' — 2zp is the maximum achievable rate for networks
with an omniscient adversary.

Alice’s Encoder: Alice encodes in two steps. To counter
the adversary’s interference, she first generatedy adding
redundancy to her information. She then encodesssing the
encoder defined iglV-B.

Alice adds redundancy as follows. Her original informatios

is a lengthtbn — dn— b2) column vectofU. (Here the fractional
redundancy, is dependent onp, the number of packets Calvin
may inject into the network.) Alice converts into X, a length-
U
R

1

bn vector , whereI is just the column version of the

b x b identity matrix. It is generated by stacking columns of

the identity matrix one after the other. The second teRn,
represents the redundancy Alice adds. Tééundancy vector
R is a lengthén column vector generated by solving the matrix
equation forR.

U

R

I

whereD is adn x bn matrix defined as theedundancy matrix

D =0.

D is obtained by choosing each element as an independ.en

and uniformly random symbol from the finite fieldl,. Due

to the dependence dP on § and thus orzp, the Omniscient
Adversary algorithm isiot universal. The redundancy matrix

is known toall parties — Alice, Bob, and Calvin — and hence
does not constitute a shared secret.

authority, the packets of information that Bob receives
may be highly redundant. Of the packets Bob receives, he
selectively discards some so that the resulting matrilkas

b+ zo rows, and has full row rank. For him to consider
more packets is useless, since at miost zp packets of
information have been injected into the netwobkfrom
Alice andzo from Calvin. This operation has the additional
benefit of reducing the complexity of linear operations
that Bob needs to perform henceforth. This reduces the
dimensions of the matrif’, since Bob can discard the rows
corresponding to the discarded packets.

Estimating a “basis” for E: If Bob could directly estimate

a basis for the column space @&f, then he could simply
decode as in the Shared Secret algorithm. However, there is
no shared secret that enables him to discover a basis for
the column space ofF. So, he instead choosespsoxy
error matrix 7" whose columns (which are, in general,
linear combinations of columns of both and E) act as

a proxy error basisfor columns of E. This is analogous to
the step (8), where the matrik acts as a proxy transfer
matrix for the unknown matrix’.

The matrix T” is obtained as follows. Bob selects,
columns fromY such that these columns, together with the
b columns of7", form a basis for the columns &f. Without

loss of generality, these columns correspond to the figst
columns ofY (if not, Bob simply permutes the columns of
Y to make it so). Theéb + zp) X zo matrix corresponding
these firstzo columns is denoted™ .

hanging to proxy basisBob rewritesY in the basis
corresponding to the columns of thé + zp) x (b + z0)
matrix [T T). ThereforeY can now be written as
1 FZ 0 ]

Y:[T”T][ 8 Fx I (11)



F)Z( is defined as théb + z0) x (n — (b + 20)) Fir.s_tly, since the Omniscient Adverse_lry algprithm hgs abpro
. . ability of error that decays exponentially with the size bét
.mat”ff re pr_esentanon of th_e coI_umgskif(oth)((a ' th?‘” thoseinput, it isn’t guaranteed to perform well to transmit justraall
in [T T7) |n.the new baS|s,. W'trf anq F* defined as message. Secondly, the randomness in the padded symhmwls als
the §ub-matr|ces of appropriate dimensions. ensures strong information-theoretic secrecy of the ssealtet
Bob splits X as X' = [X; X, X3], where X, corresponds tomegsage, i.e., we can then show (in Claim 5) that Calvin’s bes
the first zo columns of X, X3 to the lastb columns of X, agtimate ofany functionof the secret information is no better
and X, to the remaining columns oX. We perform linear nan if he made random guesses.
algebra_ic man_ipulations on (11), to r(_aduce itto a forminckhi  ajice’s information X decomposes into two parf&; X].
the variables inX are related by a linear transform solely e yses the information she wishes to transmit to Bob, at rat
guantities that are computable by Bob. Claim 3 summarizes - _ . _ A, as input to the encoder of the Shared Secret
the effect of these linear algebraic manipulations (p“mfailgorithm, thereby generating tiex n(1 — A) sub-matrixX;.

Appendix). _ _ _ _ Here A is a parameter that enables Alice to trade off between
Clalm 3: The.mqtrlx quatlo)? (12) |sZexactIy equivalent {Re the probability of error and rate-loss.
the matrix equatiod' X, = 7' (F* + X, F7). _ The second sub-matriX,, which we call thesecrecy matrix
To complete the proof of correctness of our algorithm, wedngen510g0us to the secr@used in the Secret Sharing algorithm
only the following claim, proved in the Appendix. described ir§VIl. The size of X, is b x An. In fact, X5 is an
Claim 4: For § > n(zo + ¢), with probability greater thangncoding of the secret Alice generates in the Shared Secret
¢~"*, the system of linear equations algorithm. Theb(C + 1) symbols corresponding to the parity
Xy, = T (FX + X, F?) (12) symbols{rs} and the hash matrix/ are written ip the form
DX — 0 (13) of_ a lengthb(C + 1) colu_mn vector. This vector is apper_1ded
with symbols chosen uniformly at random frdi to result in
is solvable forX. the length(C' — zo — 6n)An vector U’. This vectorU’ could
The final claim enables Bob to recovéf, which contains function as the inpull to the Omniscient Adversary algorithm
Alice’s information at rateR = C — 2zp. Of code design,operated over a packet-siZen, with a probability of decoding
encoding and decoding, the most computationally expensiver that is exponentially small ichn; however, we actually
is decoding. The costliest step involves inverting the dineise a hash olU’ to generate the inpuU to the Omniscient
transform corresponding to (12)-(13), which is of dimensiddversary algorithm. To be more precisé, = VU’, where
o). O V is any squareMDS code generator matri% of dimension
(C —zpo —dn)An, known to all parties Alice, Bob, and Calvin.
IX. LIMITED ADVERSARY MODEL As we see later, hashiflg’ with V strengthen the secrecy 8f

We combine the strengths of the Shared Secret algorif@ffl enables the proof of Claim 5 below). Alice then uses the
and the Omniscient Adversary algorithm, to achieve the érighcoder for the Omniscient Adversary algorithm to genefate
rate of C = C — 20, without needing a secret channel. TH®™M U. , ,
caveat is that Calvin's strength is more limited; the numaler "€ two components of’, i.e., X; and X5, respectively
packets he can transmito, and the number he can eavesdrSBrreSpond to the information Alice wishes to transmit tdoBo

Here

on, z;, satisfy the technical constraint and an implementation 'of the low ratg secre‘; channel. The
fraction of the packet-size corresponding 1, is “small”,
220 + 21 < C. (14) i.e., A. Finally, Alice implements the classical random encoder

We call such an adversarylamited Adversary described irgIV-B.

The main idea underlying our Limited Adversary algorithBpb’s Encoder: Bob arranges his received packets into the ma-
is simple. Alice uses the Omniscient Adversary algorithmtttx Y = [Y1 Y>]. The sub-matrice¥; andY> are respectively
transmit a “short” message to Bob at rafe— 2zo. By (14), the network transforms ok and X.

21 < C'—2zp, the ratez; at which Calvin eavesdrops is strictly Bob decodes in two steps. Bob first decodtego obtainS.
less than Alice’s rate of transmissiai — 2zo. Hence Calvin He begins by using the Omniscient Adversary decoder to obtai
cannot decode Alice’s message, but Bob can. This meansd\lidee vectorU. He obtainsU’ from U, by multiplying by V1.
message to Bob is secret from Calvin. Alice then builds ugd® then extracts fromJ’ the b(C' + 1) symbols corresponding
this secret, using the Shared Secret algorithm to transmeitt® S. The following claim, proved in the Appendix, ensures that
bulk of her message to Bob at the higher rate- 2. S is indeed secret from Calvin.

Though the following algorithm requires Alice to know Claim 5: The probability that Calvin guessé&scorrectly is
and z;, we describe ir§IX-A how to change the algorithm toat mosty—*(“+1), i.e.,S is information-theoretically secret from
make it independent of these parameters. The price we pdyaiyin.

a slight decrease in rate. Thus Alice has now share®l with Bob. Bob use$ as the side

Alice’s Encoder: Alice’s encoder follows essentially the schenfidformation used by the decoder of the Shared Secret digorit

described above, except for a technicality — the infornmesioe ) .

. ia th . | ithm i Secret Sharing protocols [24] demonstrate that using MD& @enerator
transmits .tO Bob via the Omniscient Ad've.rsary algorit M H3trices guarantees that to infer even a single symb&i'ofrom U requires
padded with some random symbols. This is for two reasahsentire vectoiU.
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from Calvin, with probability at least — Cng~! he cannot choosewhere A is given by
interference such that the matrix produ¢P has a lower column rank _

than doesE (the proof of this statement follows from [12]). O —fiaT  —fouT ... —foouT | T 0 0
—fi2T —fod ... —fiuT |0 T O 0
—fisT  —fasT ... —foosT o T 0 0
B. Proof of Claim 2 : . : : 0 0
The proof of Claim 2 follows directly from [11]. Essentiallit is a —f1,aT —fg,aT —fzo,aT 00 0 o0 T
consequence of the fact that with high probability over mekicode
design, " and.S both individually have full column rank, and the vectot D i
spaces their columns intersect only in the zero vector. l¢m0) the . . . . . . .
transform corresponding t&° 5] has full column rank. 0 This matrix A is described by smaller dimensional matrices as

entries. The matrixi’ has dimensiongb + zo) x b. The j* row
of matrices in the top portion of matriXd describes an equation
corresponding to thg'” column of the matrix equation in Equation 12.
C. Proof of Claim 3 The bottom portion ofA corresponds to Equation 13.

Bob can recover the variableX (7, j) if and only if the above
Rewriting the right-hand side of (11) and substituting Torfrom (7) matrix A has full column rank. We now analyz to show that this
results in is indeed the case (with high probability) for sufficientarde jn.

R . < " 7 Lete > 0 be a small constant. Since, with high probabilifyhas
TX +Tz-v(Z - LX) =T[0 F" L]+ T"[I-c £~ 0].  (15) fy|| column-rank, the lastb columns of the matrix (represented by the

Since the columns o are spanned by the columns [ T7_y], right side of A) have full column rank with probability at least— e.

therefore we may writd”’ asT'M, + Ty_.y Ma, where the matrices We now address the left columns of. Consider performing

. . . mn operations from right to left, to zero out thes in the left
é\/ll and M; represent the appropriate basis transformation. Thus @%g of thgtop rows oA (thgt is, to zero out the upper left sub-matrix
ecomes 4

of A). A has full column rank iff after this process the lower left sub
TX + Tzv(Z—-LX)= matrix of A has full column rank. We show that this is the case with
R < . 7 high probability over the random elements Bf (when dn is chosen
T ([0 F I,,]) + (TM1 JrTZHYM2) [l F 0]. (16) to be sufficiently large).
R Let fi;'s be the values appearing in the upper left sub-matrix
Since the vector spaces spanned by the columriE ahd 72—y are of A. We show that for any (adversarial) choice ff's, with high
disjoint (except in the zero vector), therefore we may campae term propability, the act of zeroing out thé's yields a lower left sub-
multiplying the matrix7’ on both sides of 16 (we may also compaffatrix of A with full column rank. Then using the union bound on all
the term corresponding @7y, but this gives us nothing useful)possible values of;; we obtain our assertion.
This comparison gives us the equation For any fixed values off;;, let C(j), for j = 1 to bzo, denote
Py — 0 X 1] LM, ., 77 0. 17) the columns of the lower left sub-matrix of after zeroing out the

1"s. For eachyj, the vectorC(j) is a linear combination of the (lower
We split the matrix equation (15) into three parts, corresiing to part of the);*" column of A with columns from the lower right sub-
the sub-matrices(;, X» and X3] of X. Thus (17) now splits into thematrix of A. As the entries ofD; are independent random variables

three equations uniformly distributed inF,, the columnsC(y) for j = 1,...,bzo0
. R consist of independent entries that are also uniformlyritisted inF,.
TX: = TMlI.,, (18) standard analysis shows that the probability that the cotu@i(j) are
TXy = TFX+TMF?, and (19) not independent ig”#0 =", For the union bound we would like this

. - (20) probability to be at mosy~ 0" = ¢~ (»=(b+20))z0=ne Thyg, it

5 = ) suffices to takén = n(zo+¢) for an error probability of at most™"°.
The equation (20) is triviaL since it 0n|y reiterates tm equa|s Recall that = Q—Zo. We conclude that the total rate &f transmitted
columns of an identity matrix. The equation (18) allows ugstimate in our scheme ig(n—b)b—dn)/n = ((n—C)(C —220) +log, ¢)/n.
that M, equalsX;. We are finally left with (19), which by substituting®s » grows large, the rate approach@s— 2z¢ as desired. 0
for M; from (18) reduces to

E. Proof of Claim 5

The vectorU was generated fronU’ via an MDS code generator
matrix (see Footnote 1), and a folklore result about netwookles
is that with high probability over random network code dasihe
linear transform between Alice and Calvin also has the MDperty.
Thus, for Calvin to infer even a single symbol of the length—

We rewrite the termX: FZ in (21) as(FZ7 X¥)T. We denote by © ~ nd?nA vectorﬁ’, .he needs to hgve regeived at le@St— zo -

X/ the vector obtained by stacking the columnsXof one after the nd)nA linear combinations of the variables in the secrecy maXfix

other. LetD = [D; D], whereD corresponds to the last columns Since Calvin can overheay packets, he has access:tmA equations
of D and D: corresponds to the remaining columns Df Define that are linear in the unknown variables. The differencavbet the
a = n — (b+ zo0). Denote by F'X the vector formed by stackincthumber of variables unknown to Calvin, and the number of tons
columns of the matrMTFX one after the other, and bt ; the (i,/)"™ Calvin has, is linear imA — for large enoughA, this difference is
entry of the matrix””". The system of linear equations (12)-(13) C48rger thanb(C + 1), the length of the vectds. By a direct extension

be written in matrix form as of [24], Calvin’s probability of guessing any function Sfcorrectly is

4 X)\ _( TFX g b, 0
X, — DI

TXy =T (FX n XlFZ) . (21)

O

D. Proof of Claim 4






