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Abstract

Humans often learn to manipulate objects by observing other people. In much the same
way, robots can use imitation learning to pick up useful skills. A system is demondtrated
here for using imitation learning to teach arobot to grasp objects using both hand and
whole-body grasps, which use the arms and torso aswell as hands. Demongtration grasp
trgectories are created by teleoperating a smulated robot to pick up simulated objects,
and stored as sequences of keyframes in which contacts with the object are gained or logt.
When presented with a new object, the system compares it againgt the objectsin a sored
database to pick a demonstrated grasp used on asimilar object. Both objects are modeled
asacombination of primitives—boxes, cylinders, and spheres—and the primitives for
each object are grouped into functiona groups that geometricaly match parts of the new
object with smilar parts of the demongtration object. These functiond groups are then
used to map contact points from the demonstration object to the new object, and the
resulting adapted keyframes are adjusted and checked for feasibility. Findly, atrgectory
isfound that moves among the keyframes in the adapted grasp sequence, and the full
trgectory istested for feasbility by executing it in the smulation. The system

successfully uses this method to pick up 92 out of 100 randomly generated test objectsin
amulation.
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Chapter 1

| ntroduction

In the ongoing quest to make useful, intelligent humanoid robots, we must find away to
provide our robots with the ability to manipulate objects. While many smple
manipulations can be hard-coded, with extensive mathematics ensuring stable grasps,
more complex manipulaions that humans find intuitively smple remain difficult to
reproduce with brute-force, andytic solutions. For such tasks, it is often easier to have
the robot learn in the same way that small children learn many things: by imitating others.

One of the most basic and important possible manipulaionsis that of grasping
objects. Picking up objectsis useful inits own right, but more importantly, in order to
use many objects, one must be able to pick them up first. The human hand is extremdy
versatile when it comes to grasping objects. Most objects can be picked up just by
wrapping a hand around an appropriate part of the object and lifting. Asdemongtrated in
Nguyen'swork on force-closure grasps (Nguyen, 1988), dmost any grasp with somewhat
opposing contacts can support an object if friction is high enough, and human hands can
generate agreat ded of friction. Robot hands can be made to have high friction by
coating them with rubber. Thus, arobot can pick up objects in the same manner, aslong
asit has a sufficiently compliant hand controller that can wrap its fingers around an
object, and a planner that can position the hand where it can grasp an appropriate part of
the object. With respect to basic hand grasping, thisis our approach—to find agood
approach position for the hand, and to alow a compliant hand controller to wrap around
the object.

However, humans can also grasp objects using body parts other than their hands.
One human ability thet is seldom examined in the grasping literature is the ability to use
practicdly any surface of the body as a potentid grasping surface. For example, atennis
racket can be grasped by tucking it under one arm, alarge box might require hugging it to
one's chest, along log can be dung over a shoulder, and a basket can be balanced atop
one's head. These are some of the more common whole-body grasps, but particularly
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when confronted with the task of grasping many objects at once, humans often come up
with very peculiar and specidized whole-body grasps.

When trying to give our robots the full range of object manipulation abilities that
humans possess, we would like to give them the ability to manipulate objects using not
only their hands, but other body partsaswell. One way to accomplish this would be to
use heuristic-based grasping. Inwork done on heuristic-based grasping, a grasp
taxonomy that describes how humans grasp different object primitivesis used to pick
which grasp should be used for various objects with different properties. Essentidly, a
st of pre-programmed graspsis used to pick up objects appropriate to each grasp.
However, whole-body grasps, as mentioned before, can include some very peculiar and
gpeciaized gragps that may not fit well into a pre-programmed grasp taxonomy. Insteed
of trying to directly program in al possible grasps that we would like the robot to be able
to perform, we can have the robot learn grasps through demonstration.

By demongrating examples of grasp trgjectories that successfully pick up objects,
we can essentidly create new heurigtics for whole-body grasping. We would still need to
figure out how to generdize the demongtration to new objects, and how to figure out
which demongtration grasp to gpply to a new object. However, with alarge enough
database of example objects and appropriate demonstration grasps, it islikely that an
object in the database will be smilar to the new object, and thus we can try the grasp that
worked for that object. If we can find asimilar configuration of grasp contacts for the
new object, thereisafair probability that we will be able to pick up the new object.

Thus, the point of thisthessisto use learning by demonstration to grasp objects
usng whole-body grasps. By examining the problem of how to represent and generdize
whole-body grasps, we are forced to creste an extremely generd representation and
learning framework that can ded with generd grasp Stuations. Besides potentialy being
useful inits own right, such aframework is potentidly generadizable to more complex
manipulation tasks than just grasping.

All work in this project isdonein smulation. The steps described here, from
building up a database of demonstration grasps, to choosing and adapting agraspto a
new object, to testing that grasp for feasibility in smulation, can be thought of as one
giant grasp planner. We would like to figure out how to allow arobot to pick up alarge
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variety of objectsin anatura way. This system would essentidly act as theimagination
for ared robot, by both planning a possible grasp of anew object and testing it for
feadhility. If agrasp issuccessful in amulation, there is afair chance that the same
grasp trgjectory used on ared robot and an actual object will be successful. If the grasp

falsin amulation, we can try a different grasp to seeif that will work better.

1.1 Project Goals

The overdl god of thisproject isto create a system that learns to do whole-body grasps
by adapting demonstrated examples of successful grasps. Firgt of dl, the user should be
able to eadly demonstrate how to pick up objects. The system should be able to
represent the resulting demonstration trgectory using a concise representation (which we
will cal agrasp sequence) that is easily generalizable to other objects. When presented
with anew object, it should be able to model the object in a useful way, and use that
modéd to find asimilar object from a database of example objects. It should then be able
to adapt the appropriate demonstration grasp sequence to accommodate the new object
geometry, adjust and test the adapted grasp sequence for feasibility, and expand the grasp
sequence representation into afull grasp trgectory. Findly, it should attempt to pick up
the object in smulation with the new grasp trgectory to seeif the trgectory isfeasble. If
the attempit is successful, it should be able to add the object to its database of example
objects, thus learning from the experience; if the attempt failed, the system should be able
to detect that it failed, and try dternate methods of grasping as appropriate.
Some parts of what was just described are covered in thisthess, while some are
beyond its scope. Those that are covered are marked with *'sin the list below.
*1) Demondtrating a grasp trgjectory
*2) Creating a concise, generdizable representation of the demonstrated grasp trgjectory
(grasp sequence)
3) Finding an appropriate model for a new object
*4) Picking asmilar object and accompanying grasp sequence from a database of
example objects

*5) Adapting the chosen demonstration grasp sequence to a new object
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*6) Adjusting and testing the adapted grasp sequence for feasibility

*7) Expanding the grasp sequence into afull grasp trgectory

*8) Attempting to pick up the object in smulation using the adapted grasp trgectory
9) Adding successful objects to a database of example objects

10) Trying dternate methods of grasping upon failure

1.2 Assumptions/Setup

Severd assumptions are important to the approach taken in this project. Theseinclude:
1) Perfect knowledge of object shape. Because thisis asmulated world, the vison
problem of modeling objectsis circumvented by smply knowing the shape of the object.
2) Perfect knowledge of the position of the object and its relative position to the robot. In
red life, senang where the object isin rdation to the robot is a difficult task; in
gmulation, such information is dways readily available.

3) High friction. The friction coefficient for contacts in the smulated world is st to

0.75, which is comparable to the static coefficient of steed on stedl, or rubber on dry
pavement.

4) Phydcs. The physics of the smulated world are supplied by Open Dynamics Engine
(ODE), which provides an imperfect mode of the world that is nonetheless areasonable
gpproximation of red-world physics.

1.3 Approach

A summary of the gpproach taken for each sep in the list of goasis asfollows.
1) Demongtrating a grasp trgjectory

Grasp trgjectories are demondrated by having a user teleoperate the smulated
robot to pick up objects in the smulated world. Sensors that report position and
orientation are strapped to the user's palms and elbows, and she can use hand-held
switches to change the smulated hands pregrasp configurations and to cause them to
close, wrapping around objects being grasped.
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2) Cresting a concise, generdizable representation of the demonstrated grasp trgectory

Grasp trgjectories are represented by a sequence of keyframes (grasp sequence),
each of which represents one of the following: the start or end of the trgjectory, or a point
in the trgjectory in which a contact between the object and abody part or the table is
gained or logt.

3) Finding an appropriate model for a new object

All objects are modeled as a combination of primitives (boxes, cylinders, or
gpheres). For smplicity, we examine only those models that have up to three primitives
in aline, with their axes of symmetry digned. However, our method is generdizable to
other primitive modes, and the modes are only used to map contact points from one
object to the other by aligning geometries. Once the contact points are generated, the
nearest points on more complex wireframe models of objects can be used if desired while
adjugting the resulting keyframes and performing the adapted grasp trgectory.
These modd s are hand-generated and assumed given; actuadly modding the objectsis
beyond the scope of thisthesis.

4) Picking asmilar object from a database of example objects

A system of ranking objects by smilarity using their gross geometric propertiesis
used to pick asimilar object from a database of example objects. Since the example
objects are ranked in order, if agrasp fallswith the first demongtration grasp, the next
grasp may betried if desired.

5) Adapting the chosen demonstration grasp trgjectory to a new object

Adapting the keyframesin a grasp sequence from atemplate object to anew
object is done by finding a good geometric matching of the primitivesin the template
object with the primitives in the new object. Thisis done by grouping the primitives
from each object into functional groups, which represent parts of the template that should
be matched with their respective parts of the new object. All possible combinations of
functiona groups for template and new object are ranked according to their qudity vaue,
which is areflection of how well they match geometricaly, aswell as how easy it isto
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move the arm into the first arm-object contact keyframe in the resulting grasp sequence
without collisons. Since the functiona group combinations are ranked, if agrasp fails
with the first choice, the next can betried if desired.

Once the functiond group pairing and relive rotation are selected, the
keyframe's contacts are mapped from the surface of the template object to the surface of
the new object using dimensionally normalized coordinates, amethod that essentidly
dretches and scales the template's functiona groups to match their equivaentsin the new
object and finds the appropriate nearest points.

The result of this step is a sequence of keyframes that represent initia guesses for
the find grasp sequence; the next step refines the keyframes to make them feasible.

6) Adjusting and testing the adapted grasp sequence for feasibility

Adjusting the adapted keyframes in the grasp sequence so that there are no
interpenetrating parts and so that the contacts fit a feasible arm geometry is done by
minimizing afunction over the am angles and the object postion/orientation. The value
of the function reflects the level of interpenetration between bodies and how well the
contacts are being made, and thus the minimum reflects the arm angles and object
position that are both feasible and best make contact between the appropriate body parts
and the object.

To test whether the resulting keyframe is any good, and to adjust the contact
forces so that the object is properly supported, the keyframe is set up in the smulation
under full gravity. If the object dips, the contact forces are increased until the object
sopsdipping. If the grasp in the keyframe cannot stop the object from dipping, it is

deemed afailure.

7) Expanding the grasp sequence into afull grasp trgjectory

To find atrgectory that moves the arms and object through the keyframesin the
adapted sequence, a probabiligtic roadmap isused. This method of motion planning
creetes a graph with feasible configurations as nodes and feasible paths between the
configurations as edges. When a path is found through a probabilistic roadmap for each
pair of consecutive keyframesin the sequence, the full trgectory is done.
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8) Attempting to pick up the object using the adapted grasp trgectory

Executing the grasp trgectory is accomplished using grasp controllers that move
the arms through the entire trgjectory, adjusting to current circumstances along the way.
At each time gtep, the next target grasp is updated with the current grasp information, and
then the controllers minimize apair of functions to figure out where to move the object
and how to move the arms to both get the object there and apply the appropriate contact
forces.

9) Adding successful objects to a database of example objects

While this component is not covered in thisthes's, the actua implementation
would be fairly smple. The current database of example objects includes three example
objects for each demonstration grasp that are provided by the user. New test objects that
are successfully picked up by one of the demongtration grasps would smply be added to
the database, under the appropriate grasp.

10) Trying dternate methods of grasping upon fallure

As mentioned earlier, both the choice of demonstration grasp and the choice of
functiond groups chosen while adapting contacts are derived from aranking. If afalure
is detected, the system could choose to try the second or third-ranked choices from either

st of grasp variations.

A summary of the process of adapting a grasp trgjectory to anew object isillustrated by a
flow chart, shown in Figure 1.1.
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Figure 1.1: Flow chart of grasp adaptation

1.4 Chapter Summary

The rest of the chaptersin this thesis can be summarized as follows:
Chapter 2: Related Work
Chapter 3: Design of the smulated robot

Chapter 4: Demonstrating a grasp trgjectory and representing it as a sequence of
keyframes (grasp sequence)
Chapter 5. Picking a smilar object (and thus a suitable grasp sequence) from a database

of example objects

Chapter 6. Adapting the chosen grasp sequence to anew object

Chapter 7: Adjusting the adapted keyframesin the grasp sequence to avoid collisons and

to prevent the object from dipping

Chapter 8: Finding afeasible trgectory through the adapted grasp sequence
Chapter 9: Executing the trgjectory
Chapter 10: Future Work

Chapter 11: Conclusions/Contributions
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Chapter 2
Related Work

A fair amount of work has been donein related areas, most notably on imitation
learning of object manipulations and movement, and on various methods of grasping.
Related research in imitation learning can be best described by three separate attributes:
what is being learned, how actions/grasps are represented, and how datais input.

Inthe ‘what isbeing leared’ area, most imitation learning research focuses on
learning assembly/pick-and-place operations (Brand, 1997), (Ehrenmann, 2002), (Kang,
1991), (Kuniyoshi, 1994), (Ogata, 1994), (Paul, 1996), (Tung, 1995). Such research
generdly looks at an input data stream, and attempts to segment the stream to identify
actions performed by a human hand. The actions are encoded in various different
frameworks, and in some cases a planner is used to cause the robot to recreate the
observed sequence, amost dways on a nearly-identical scenario. Other imitation
learning work focuses on verb learning—words such as pickup, putdown, touch, dide,
push, or shove (Bailey, 1998), (Pangburn, 1994). A human acts out an action and
asociates a verb with the action, and the system has to learn the parameters associated
with that verb. Findly, there isresearch inimitation learning of other tasks such as
tumbling an object (Pollard, 2002), balancing a pole (Schadl, 1997), air hockey
(Bentivegna, 2002), and dancing (Jenkins, 2000).

In the “how actions/grasps are represented’ area, various learned actions and
grasps can be represented by many different frameworks, each of which has varying
advantages and disadvantages in terms of ease of encoding and playback. These include
hidden Markov mode sfinite state automata (Brand, 1997), (Ogata, 1994), (Paul, 1996);
relationd/contact expresson grammars (Kuniyoshi, 1994), (Pangburn, 1994), (Siskind,
2000), (Tung, 1995), in which properties such as ‘is-picking-up’, ‘is-touching’ and ‘in-
front-of" are used to reason about the state of assembly tasks, contact wrenches (Pollard,
2002), in which atask is represented by a sequence of torques at contact points; contact
locations (Kang, 1993), (Kang, 1991) or locations and forces together (Ehrenmann, 2002)
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of ahand on an object, which are used to determine which grasp in ataxonomy is being
used; perceptuo-motor primitives congsting of lines and arcs of motion in the air
(Jenkins, 2000) or air hockey movements (Bentivegna, 2002); linear quadratic regulators
(LQR) for pole-balancing (Schal, 1997); or an assortment of properties related to
specific verbs like push or shove, such as ebow extension or acceleration (Bailey, 1998).

Finaly, in the “how dataisinput’ ares, al of the above work uses videos or
motion capture of humans performing tasks (Bentivegna, 2002), (Brand, 1997), (Jenkins,
2000), (Kang, 1993), (Kuniyoshi, 1994), (Pangburn, 1994), (Paul, 1996), (Pollard, 2002),
(Schaal, 1997), (Siskind, 2000) or teleoperation using sensors hooked to a simulated
world (Bailey, 1998), (Bentivegna, 2002), (Ehrenmann, 2002), (Ogata, 1994), (Tung,
1995).

In the world of grasping without imiteation learning, related works include systems
that use heuristic-based grasping (Bekey, 1993), (Kaneko, 2000), (M occozet, 1997),
(Rijpkema, 1991), (Sanso, 1994), which use grasp taxonomies derived from observing
how humans grasp objects and manudly creating basic rulesfor grasping. These are
used to identify stable grasps for primitive objects of different sizes and shapes. Other
related grasping work focuses on learning to grasp using reinforcement learning, which is
used to either start from scratch and learn how to grasp basic primitives (Coelho, 2000),
asinfants must do, or to sart from basic heuristics and optimize grasps for oddly-shaped
generalized cones (Kamon, 1996).

The two projects that contain aspects closest to our work are those of Pollard and
Hodgins, and Kang and Ikeuchi. While nearly al imitation learning sysems smply play
back learned motions on identical situations, Pollard and Hodgins' work (Pollard, 2002)
focuses on gpplying object tumbling tasks to objects with very different shapes. A
manipulation task is represented by a series of contact wrenches. Given anew object,
friction cones and object geometry are used to ca culate possible contact points on the
new object at which the same contact wrenches can be exerted. Findly, the motion
capture sequence recorded for the task is replayed, scaling the data gppropriately to
ensure that the contact points are changed to maich the newly-chosen points on the new
object.
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While Pollard and Hodgins work is sSmilar to oursin that they try to generdize
object manipulation tasks to objects with different geometries than those used in the input
sequence, the types of tasks that our systems are useful for differ widdly. Their method is
particularly good for tumbling tasks, for which the forces and torques applied are more
crucia. The system described in this project is particular to grasping tasks, in which
typicaly the only important forces are those needed to support the object against gravity.
Also, their method cal culates gppropriate contact points by assuming thet at any point in
time, each contact exertsforce only in one direction, at apoint. Thisisussful for large
objects that one wishes to tumble, since a hand contact will typicaly be used only to
exert force in one direction, and the hand contact can be reasonably represented by a
point contact. In our method, we assume that hand contacts involve having the entire
hand wrapped around the object at that point. Such a grasp, under our assumption of high
friction, isintended to be able to exert force in essentidly any direction. While their
method of finding appropriate contact points can be used with such ahand grasp, the
contact would have to be represented as multiple point contacts on individua fingers.
Optima contact locations such as these can be calculated with reasonable ease for 2-D
objects made into 3-D objects by adding depth. However, caculating even smple grasps
for full 3-D objects would be excessvely difficult.

Our method is good for grasping full 3-D objects for which exact, optimal
solutions would be incredibly difficult to calculate, but a generd, inexact solution would
probably work. Like heurigtic methods, our method is an easy to understand way of
mapping contacts that works well when objects are quite smilar; the assumption is that
there are enough objects in the database that a smilar enough object can be found whose
demondtration grasp will map well.

The work of Kang and Ikeuchi (Kang, 1993), (Kang, 1991) issimilar in that they
represent grasps by a ‘ contact web' —the set of contact points between ahand and an
object. However, the contact web is then only used to identify which grasp in apre-
identified hand grasping taxonomy (such as sphericd grasp, cylindricd grasp, or
precision grasp) isbeing used. The identified grasp, pre-programmed, is then used to
replay the action. With our grasping system, the set of contact points defines the grasp,
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and they are directly used to replay the action, after being adapted for use on a new object
geometry.

Nonetheless, the fact that contact locations done in thiswork and in work on
heurigtic-based grasping are sufficient for stable hand grasping is encouraging. Although
my work focuses on whole-body grasps rather than just hand grasping, whole-body
grasps are essentidly a generaization of hand grasps to include grasp surfaces other than
just fingersand palms. Thus, it makes sense that contact locations should be sufficient
for whole-body grasps aswell.

The main attributes that make this project different from the listed related works
are asfollows.

- Whole-body grasping instead of just hand grasping

- Novel grasps that are not pre-programmed can be input by demonstiration and
represented using only their contact points

- The system chooses an appropriate grasp for a new object based on object smilarity

- Contact points on anew object are chosen by finding smilar parts on both objects and
lining them up
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Chapter 3
The Simulated World

The smulated test bed used for this project congsts of a human-shaped robot Sitting at a
table, with an object to be grasped resting on the table in front of the robot. This
samulated world will be treated more or less as arobot's imagination: Stuations can be set
up, and running the Smulaion on them is akin to imagining what would happen in the

red world under the same conditions. The imagined scenario may not play out quitein
the same way asit would in the red world, but the physics engine provides us with a
limited ability to predict how the physics of the world would act on our scenario, just as
our own imaginations have some concept of how physics affects things.

In many cases, we are using the physics engine in amanner that is equivaent to
using a complicated series of equations to solve a problem, and indeed, doing so could
replace our use of the smulated world. However, by using a physics engine coupled with
asgmulaion that we can actudly watch, the process becomes much more intuitive than
trying to solve everything directly with equations.

When agrasp trgectory isfound for anew object, wetest it by executing the
trgectory in the smulation from sart to finish. We can then look at the end state of the
trgjectory, and determine whether the object is being successfully supported by the robat,
asintheleft part of Figure 3.1, or whether the grasp has failed and the object hasfdlen to
the floor or the table, asin the right part of Figure 3.1. While the adapted grasp
trgectories we find in this project are often successful, they can dso fall. Testing themin
the smulation provides afar indication of red-world feashility.

In this chapter, we will discuss the design of the smulated world, dong with
some of its abilities and limitations.
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Figure 3.1: Successful and unsuccessful grasps

3.1 The Physics Engine: ODE

The physics engine used to smulate the dynamics of the world is Open Dynamics Engine
(ODE), an opentsource library designed for smulating articulated rigid body dynamics.
ODE is designed to be reasonably fast and stable, but at the expense of some accuracy.
The dynamics of the smulation are usudly fairly redigtic, and the speed is usudly
sufficient. However, the collison detection and friction gpproximation Systems running

at reasonable speeds introduce afew limitations and issues, which will be explained in
section 3.5.

3.2 General Robot/World Design

The smulated robot used for this project has two moveable arms and a fixed torso and
shoulders. These are the only body parts that are intended for use in grasping. The robot
also has ahead, buttocks, legs, and feet, but contacts with these are not recorded and they
are essentidly treated as obstacles. Each arm has seven degrees of freedom: threein the
shoulder, one in the dbow, and three in thewrist. Additiondly, each arm has a hand with
17 degrees of freedom (three at the very base of the thumb where it joins the wrigt, two
more bend degrees in the thumb, and three bend degrees in each finger) that are
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controlled in tandem while wrapping the hand around an object. This robot sSitsin achair
at atable, and except for the arms, isfixed in place. The object to be grasped is placed on
the table in front of the robot. For the purposes of this project, no other obstacles are
placed intheworld. A picture of the smulated world is shown in Figure 3.2.

Figure 3.2: The smulated world

3.2.1 World Parameters

The robot dimensions, joint force limits, and object dengities were modeled after the
author's body dimensions and capabilities. With proper choices of units, the robot is
designed to be able to lift & most a5 Ib object at full arm extension (about 20"), for a
maximum torque of 11.3 kg nt/s>. The density of all objects to be picked up is constant
for smplicity, and is set to 267 kg/nT (17 Ibsft®). The largest object in any training or
test set employed in thisthesisis 2.8 kg (6.2 Ibs), and is picked up using both hands.
These parameters are easily scaled as needed for stronger or larger robots. As mentioned
ealier, one of the assumptionsis high friction, and thus the friction coefficient chosen is
0.75, which is approximately the dtetic friction coefficient for sted on sted, or tire rubber
on dry concrete.
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3.2.2 Global Coordinates

In this smulation, the globa coordinates are chosen to be asfollows: the zaxisis draight
up, the y-axisis straight forward (the direction the robot would be gazing in, if it had eyes
inits head), and the x-axis is pardld to the table's front edge and pointing to the robot's
right. When the 'globa coordinate frame' is referred to later in this paper, thisisthe
coordinate system in question. Directions are referred to from the robot's perspective;

graspsthat are ‘from the top' or 'from the sde’ make sense only in relation to the robot.

3.3 Robot Control

Motion of the robot is accomplished by two separate controllers: one dedling with motion
of the arms, and one dedling with grasping of the fingers.

3.3.1 Arm Motion Control

When controlling the arms, the first step isto determine the desired arm joint angles.
While recording a demonstration grasp, the desired positions of the pams and elbows are
changed into desired arm joint angles usng numericaly caculated inverse kinemétics.
Specificdly, aminimization function is used to determine the arm joint angles that
minimize the tota distance between the resulting pam and elbow positions and their
desired positions.

Once the desired arm joint angles are chosen, the arm controllers attempt to spring
the arms to the desired angles by controlling each joint separately. Control of each joint
is accomplished through what is essentidly a generdized spring and damper controller
with different coefficients during contact with objects and obstacles. Most of the contral,
however, is accomplished through the physics engine's built-in motor controllers. For
every joint, the desired velocity is set to avaue proportiona to the difference between
the desired joint angle and the actud joint angle: vy = kp(X — Xd), where vy is the desired
veloaity, K, isthe proportiona congtant, X is the current angle, and xq is the desired angle.
The physics engine, meanwhile, contrals the velocity of each joint by using as much
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force as necessary to bring the joint to the desired velocity in the next time step, up to the
maximum force specified. This can be approximately modeled as a generdized damper:
farm = kv(V — V), for fam < fmax, Wheref isthe force gpplied to the joint, f is the pecified
force limit, ky is the damping condtant, v is the current joint velocity, and vy is the desired
joint velocity. To see why this combines into essentidly a generdized spring and

damper, we can combine the two:

farm = Ky (V — Kp(X-Xq)) = kyV — KyKp(X-Xd) = K1V — K2(X-Xq)
whichisin the form of the equation for a generdized spring and damper.

When an arm comes into contact with another surface, a contact joint is created
that model s the contact force as another generalized spring and damper. If d isthe depth
of the contact, the contact force f = c,d + ¢, d', where d' is the velocity into the surface
and ¢, and ¢, are congtants. How much force is exerted by the arm into the surface and
vice versais proportiona to how far into the surface the contact point is trying to go (the
desired depth). To seethis, let uslook at the Stuation in which equilibrium is reached
and both object and arm are at rest. Inthissituation, v =d = 0. Let usconsder the
components of fam, X, and xg normd to the contact surface: fam n = ko(d-dg), wherediis
the actua depth and dy is the desired depth of the arm into the surface. At equilibrum,
farm,n = fc = ka(d-dg) = cpd. Thus, kodg = (k2-Cp)d, and the actud depth is proportiona to
the desired depth. The force exerted is proportional to the actua depth, and thusis
proportiona to the desired depth. 1f the contact point's desired location is right on the
surface, no force is exerted; at the maximum specified arm force fax, thereisamaximum
depth dmax = fmax/Cp.

Because the force exerted on the object is proportiona to the desired depth into
the object, it is possible to exert more force on the object by directing the aramsto push
farther into the surface. Aswe will see later, we use this property of the arm controllers
to adjust the force used while grasping a new object by adjusting how deep we want the
contact to be.
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3.3.2 Grasp Control

In this project, grasping with the handsis afairly basic, high-level operation. Hands are
ether grasping or not-grasping; thereis no individua positioning of fingersin optimal
locations. The theory isthat most of the time, under our assumption of high friction,
precise positioning of fingersis unnecessary. Humans can reach out and grab objects
haphazardly, even in the dark, and mogt of the time they will till be successful in picking
them up. However, thisis mosily because humans are extremely good at wrapping their
hands around objects. Our hands are very sensitive and malleable, and by our sense of
touch aone we can essentidly make them glom around objects, not only with the fingers
but aso with the surface of the palm.

The robot grasp controller attempts to wrap the hands around objectsin away that
captures the shape of the object with the fingers. Once ahand isin place and begins
grasping, the grasp controller starts bending the fingersinto afist. When any part of a
finger encounters the surface of the object, it sops and dlows the rest of the finger to
continue curling. When the tip of the finger hits the object, its shapeis set in place; the
top two bend joint angles are fixed and unchangeable for that grasp. The finger continues
to exert force on the object by continuing to bend its base joint dowly, using a
proportiona controller that tries to maintain a constant force on the object.

Different grasp types, such as precisaly grasping small objects by the fingertips,
or molding the hand around large objects, are made easier by using different preshape
configurations. In this project, there are three possible hand preshape configurations that
are available for graping. While recording a demongtration grasp, the user picks one of
the three; while adapting that grasp template, the same preshape is used on the new
object. Inthefirst, the hand starts out flat, for wrapping around larger surfaces. Inthe
second, the hand starts in an L-shape, for curling around medium-sized objects. In the
third, the hand startsin a C-shape, for picking up smaler objects between the tips of the
thumb and fingers. The three preshape configurations in their fully-open and fully-closed
gates are shown in Figure 3.3. In order to add more specific grasp types, such as
grasping a cup by the handle, a new preshape could be added—for instance, a preshape

30



could be congtructed that extends only two dightly bent fingers (to fit insde asmdl
handle) that curl when told to grasp.

L-shaped for medium objects C-shaped for small objects

Figure 3.3: Preshaped hands in open and closed configurations

The robot's hands are not nearly as sensitive, maleable, or adaptable as a human's
hands. For one thing, the pam bones cannot move relative to each other, and the fingers
can bend but not spread relative to each other. Also, once theinitia grasp is made, there
isno way to creep individua fingers into better positions as humans often do, and if the
object shifts Sgnificantly within the origind grasp, very little adaptation ispossble. This
becomes amgor problem at times when the object shiftsin away that would require re-
wrapping the fingers around the object to maintain the grasp. For ingtance, if an object is
held between the fingertips, but the object dips out from between the fingertips and
moves closer to the pam, a human would just tighten the fingers around the object.

Since our system does not change the shape of the fingers once the grasp shapeis &, it
cannot tighten the fingers properly around the object, and thereis afair chance the object
will fal out of the grasp. Nonetheless, this basic hand mode and grasp controller
manage to do afairly decent job of wrapping around objects in away that alows for
successful pick-up.
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3.4 Object Representation

In order to put an object into our smulation and pick it up, we must first generate a
modd for that object.

3.4.1 Modeling Objects with Primitives

Our drategy for picking up any arbitrary object involves firs modding it usng alimited
number of primitives. Almaost any basic shape can be a primitive, dthough in this project
we only use three primitives—spheres, boxes, and cylinders. Most common objects that
one might find on adesk can befairly closely modeled using some combination of
spheres, boxes, and cylinders. Examples of afew red-life objects being modeled by
combinations of spheres, boxes, and cylinders are shown in Figure 3.4. Other primitives
such as handles or wedges could be added to the system if needed, adding only a

moderate increase in complexity.

Figure 3.4: Redl-life objects and their primitive models

The reason for modeling objects with primitivesisthat it creates discrete blocks
with high levels of symmetry that can be digned with smilar discrete blocks in anew
object. When lining up two objects, humans are excdlent at intuitively recognizing
geometric Smilarities and rotating objects to match based on inherent symmetries. This
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approach attempts to match objects based on exactly these principles. Later onin
Chapter 6 we will introduce the concept of functiond groups, which are essentidly a
method of putting combinations of primitives of one object into blocks that match up
againgt blocks of primitivesin another object. Once these functiona groups are aligned
with each other, we can map grasp contact points from one group to its equivaent.

Modding objects with primitivesis only important for finding the initid grasp
contact points for anew object. Once those are chosen, a more complex mode can be
superimposed on its primitive mode, and the closest surface points on the complex
mode! can be found and used instead. In thisway, any object can be handled by this
method, only with less optimal results for objects that do not match their primitive
modds very well.

In this project, we limit the models we dedl with to those that have up to three
primitivesin aline, with their axes of symmetry digned. Aswill be explained in section
6.9, more generad primitive modes, such as those with more primitives, moddsnotin a
line, or primitives whose symmetry axes are not aligned, can be accommodated usng the
same method with adight increase in complexity and processing time. All the objectsin
Figure 34 fit this limited mode of up to three primitivesin aline; if you look around
your desk, you will likely find that many of the objects on it can be represented fairly
well usng even thislimited set of modds.

This project dso does not dedl with the actual modeling of red-life objects; the
vison module that would be needed to fit primitives to an object is beyond the scope of
thisthess. It isassumed that the modeling is aready done, and thus objects are input to
the system aready modeled as a set of primitives.

3.4.2 Object Coordinate Frames

When representing an object in our smulation, it is useful to attach a coordinate frame to
the object. Thisisimportant when trying to record the location of contact points, the
current location/rotation of the object, or when trying to dign the object with another
object. The coordinate frame should reflect the symmetriesinherent in the object, so that
to line up symmetry axes, dl that is necessary isto line up coordinate frames.
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In this project, an object's coordinate frame is dways centered at the center of
mass of the object. If an object has more than one primitive, the zaxisis awaysaong
the line through the centers of the primitives, and points in the direction in which the
object's bounding box extends farthest from the center of mass. Thus, the direction of the
z-axis says something about the orientation of the primitives and the digtribution of mass
of the object. For objects with only one primitive, the zaxis defaults to the globd zaxis.
Spheres dways have the globd zaxis astheir zaxes. The zaxisfor cylindersliesaong
the axis of the cylinder. The zaxisfor boxesisin the direction pardld to the faceswith
the two closest dimensions, so abox that is shaped somewhat like a cylinder will have the
z-axis in the same direction as the cylinder. When more than one zaxisis possble, asit
iswith cylinders, the one closest to the globa +z, +x, or —y-axesis chosen. The direction
of the zaxisis used later on, when trying to rate the smilarity of two objects, in section
5.2.

The x- and y-axes of the object are determined based on factors that are not
particularly important; the factors are chosen mainly to ensure cons stent assgnment of

coordinate frames. Figure 3.5 shows afew objects and their coordinate frames. This
description of coordinate frames becomes particularly important when we discuss how to
aign two objects rotationdly, in section 6.2.1.

Figure 3.5: Example objects and their coordinate frames

3.5 Limitations of the Physics Engine

Using a smulated world with a physics engine providing aless-thanperfect modd of
how bodies behave in the red world introduces afew limitations. Thefirg limitationis



that al objects and body parts must be essentidly hard and rigid. Humans have soft,
deformable surfaces that can mould themsalves around objects to some degree, ensuring
continuous contacts with high friction. With ared robot, one option to achieve asmilar
effect would be to wrap the appropriate surfaces of the robot in alayer of rubber. Inthe
amulation, asmall amount of surface deformation is modeled by alowing some degree
of penetration between objects. However, with sgnificant penetration this effect
becomes highly unrediistic and often results in bodies getting stuck inside each other, and
thus the smulated objects are forced to have farly rigid surfaces. This makes full-body
grasps, such as tucking an object under the arm, somewhat more difficult than they would
beinred life, snce surface deformation is often employed in such grasps. However,
with friction set as high asit is, such gragps are till possible aslong asthereis agood
method of ensuring that contact between the gppropriate surfaces is made and held.

The second issue has to do with friction. Friction inthissmulationisonly a
somewheat redligtic approximation. No distinction between gtatic and kinetic friction is
made, and the actud friction forces created after solving for the entire dynamic system
tend to be much lower than they should be most of the time, with brief spikesto the
vaues that would be generated with the chosen friction coefficient. Experimentaly
monitoring the norma and tangentia forces while objects dide past each other shows
that for afriction coefficient of 3, the friction forces generdly do not rise above 1.2 times
the normal force. However, in specid cases there are brief spikesin which thefriction
forces are actudly 3 timesthe norma force. This means that the effective friction forces
for agiven friction coefficient are lower than the equivaent friction coefficient in red
life, but it would not be accurate to say thet the friction coefficient is actudly lower,
because occasondly forces that high will be generated.

Findly, certain grasping strategies thet are possiblein red life are either
impossible or much more difficult in the smulation. For instance, one common method
of picking up objectsis to wedge one's fingers under the bottom edge of an object. This
behavior isimpossble in ODE regardless of the friction coefficient chosen. It is possble
to lift the object up dightly with the thumb to get the other fingers under, but such a
maneuver is extremdy difficult. Thisis because extremely precise control of individua
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fingersisrequired, but dso because afriction level st low enough to dide the fingers
under an object is aso generdly too low to alow objects to be picked up.

Another problem involves trying to do an enveloping grasp (aso known asapam
or power grasp, in which the pam is used in addition to the fingers) when the tebleis
blocking one side of the object. A human could pick up the object with fingertips firdt,
then shove the object into the pam and adjust the grasp to comfortably fit the object inan
enveloping grasp, or she could just wedge her fingers under the object before picking it
up. While this can happen on occason in this smulation by accident, it is not something
that can be reliably controlled. Thisis mostly due to the friction model—if an object can
dide enough to be rdigbly enveloped in this manner, there is not enough friction to pick
up most objects. Aswe will see later, this becomes amgor problem while trying to pick
up heavy objects with one side partidly blocked by the table.

3.6 Summary

In this chapter, we discussed the design of the robot and the smulated world. We
detailed how the robot arms are controlled by a generalized spring and damper system,
and how the hands are separately controlled by a grasp controller that attempts to wrap
the hand around an object. We aso discussed how any object can be modeled using a set
of primitives, dlowing the system to take advantage of inherent symmetries and making

it eesier to dign two objects while adapting a grasp to anew object. Findly, we

discussed some of the limitations introduced by our choice of physics engines.
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Chapter 4
Demonstrating Template Grasps

In this chapter, we will discuss how template grasp sequences are extracted from a

demondtrated grasp trgjectory.

Goal:

Given a demongtrated grasp trgectory, record the gist of the trgjectory using a
representation that is easily adaptable to new objects and that, once adapted, can be used
to creste a new trgectory that captures the gist of the demonstration.

Approach:

Using sensors that report the position and orientation of the user's palms and ebows and
whether ether hand is grasping, we alow the user to demonstrate how to pick up an
object by teleoperating the smulated robot. We posit that the gist of a grasp trgjectory
can be captured by looking only at events a which contacts with the object are added or
removed, aswd| asthe start and end states. Thisincludes contacts with the table in
addition to contacts with body parts. Thus, we record the date of the smulation a only
these events, and further pare them down to remove irrdlevant events. We cal the entire
st of events that make up the gist of the trgjectory a'grasp sequence,’ and the individua

contact events 'keyframes.'

4.1 Sensors

The main sensors employed in this project are the Nest of Birds, made by Ascension
Technology Corp. The Nest of Birdsisaset of four magnetic trackers that track position
and orientation. By strapping two to the user's elbows and two to the user's pams, the
current joint angles of the arms can be determined using inverse kineméatics. More

specificaly, the position and orientation vaues are fed into a function that is minimized
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to find the arm angles that minimize the distance between the recorded position and
orientation values and the modd's position and orientation values. The smulated robot's
arms are then sprung to the inverse kinemetics arm angles using the arm controllers
discussed in section 3.3.1.

Asexplained in section 3.3.2, the theory behind hand grasping in this project is
that precise positioning of fingersis unnecessary for basic grabbing at objects. Most
objects can be picked up just by preshaping the hand, finding an appropriate approach
position, and usng compliant finger controllers to adapt to the shape of the object. In
red life, the exact position and shape of objectsis difficult to determine even with
excdlent vison systems. We bdieve that our imprecise yet adaptive method of grasping
is more respongve to smal differences in objects than methods that involve trying to find
precise finger positions on the object's surface.

Asdiscussed in section 3.3.2, different grasp types such as precisdy picking up
small objects with the fingertips or wrapping the entire hand around a large object are
aded by having three different hand preshagpe configurations. Which of the three
preshapes that the user wishes to use is chosen using a thumb rocker switch, and can be
changed a any point during the demondtration. |f we were to add precise sensor gloves,
both these and new preshapes such as curling two fingers around a handle could be
represented and learned instead of pre-programmed. However, having afew pre-
programmed preshapesis dready sufficient to perform alarge range of grasping tasks,
and thus being able to automaticaly learn preshapesis unnecessary.

While demondtrating a grasp trgjectory using the aforementioned sensors, the user
monitors the trgjectory of the robot by watching its progress on a computer screen. The
object being grasped is entirdly in the smulaion. As mentioned in section 3.3.1, more
force can be applied to an object by making the desired depth of a contact greater. For
ingtance, if auser is demondrating the act of picking up abox with two hands—one on
either sde—moving the palm sensors to position the smulated hands exactly a the box
surface will exert dmost no force. The hands cannot actualy go through the surface of
the box regardless of how much force is exerted. However, moving the pam sensors so
that the hands are trying to be insgde the box will make the desired depth of the hand
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contacts greater, and thus the force exerted on the box will be greater. A picture of a
person performing ademondtration is shown in Figure 4.1.

Figure 4.1: The demonstration setup

4.2 Keyframe Candidates

When recording data during a trgjectory demongtration, we only record the state of the
smulation at the start state, the end state, and contact gairvloss events. The dart state—
before anything can be moved—is recorded so that the initia position and orientation of
the template object on the table can be captured. The end State isimportant because it is
the end goad—when picking up anew object in the same manner, the new trgectory must
end in the same way as the demondtration trgjectory.

We hypothesize that by recording start, end, and contact gain/loss events, we can
capture the entire gist of the grasp trgectory. Thisis because for the period in between
the gain or loss of any contacts, the same body parts must support the object for the entire
period. If we know the podition of the object and how it is being supported at the sart of
this period and at the end of this period, getting from the first state to the second state can
only involve moving the object around and/or diding it dong either the table or a body
part, while maintaining the same contacts. Thus, we can calculate a trgjectory that moves
the object from the firgt state to the second state while maintaining the contacts that were
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origindly held during this period. Even if the motion is not identical to the

demondtration trgectory, we believe that the gist of the trgjectory will remain the same.
Indeed, while grasping a new object, it may not be possible to follow even ascded and
adjusted verson of the demonstration trgjectory due to the size of the new object making
it unable to fit through the same spaces as the template object. Nonetheless, if we can
find atrgectory that gets the object to the next contact that needs to be made, the new
grasp trgectory should have the same gist as the demondtration. Thisis not necessarily
true of trgectoriesthat are not purdly grasping trgectories—the gist of a dance, for
ingance, is very different depending on what motions one goes through. However, the
gist of agrasp is based on how the object is supported, and thus contacts are important in
away that motion is not.

Asan example, let uslook at one of the demondration trgectories used in this
project—that of picking up asign by the handle and tucking it under the opposite arm.
The firgt keyframeisthe sart sate—just the Sign stting on the table. The second
keyframeis the hand grabbing the handle (gain hand contact), which islater combined
during keyframe reduction with the third keyframe, lifting it off the table (lose table
contact). The fourth keyframe is the Sgn touching the torso, as the person attempts to
dteer the Sgn under the armpit (gain torso contact). Thefifth isthe upper arm touching
the 9gn, as the arm starts to clamp down on the sign (gain upper arm contact). The sixth
isthe lower arm touching the Sign, as the arm continues to clamp down (gain lower arm
contact), which is later combined with the seventh, which isthe hand leaving the handle
(lose hand contact). The last keyframeisthe end state. The entire grasp sequence after
the keyframe reduction process discussed in the next section is shown in Figure 4.2.
While the order in which the arm and torso contacts are added is not important in this
case, the contact order can be important. It is difficult to tell when the order isor is not

important, o we must try to preserve the order regardiess.
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1. Initid start sate 2. Hand grasps handle/ 3. Sign touches torso
Sonislifted from table

4. Upper amtouchessign 5. Lower amtouchessig/. 6. Find god state
Right hand lets go

Figure 4.2: Grasp sequence for gragping asign under the arm

4.2.1 Reduction of Keyframe Candidates

While demongtrating a grasp, it is often the case that there will be unintended contact
gainor lossevents. Thisis particularly the case because while the robot's arms track the
user's arms, thereis some lag if the user moves quickly, and thusit is easy to accidentally
bump into the table or momentarily lose a contact thet is not yet important but that will
be. Thus, we need to filter out irrdlevant events that are not important to the gist of the
grasp trgjectory.

Thefirg type of keyframe reduction is combining two keyframes thet are very
closetempordly. For instance, when picking up alarge object with two hands, both
hands will likely touch the object a around the same time, but not exactly the sametime.
However, we would probably want the relevant keyframe recorded to reflect the fact that
both hands were involved at once. Thus, when two contact/|oss events happen very close
to each other in time, we combine them into one keyframe that includes the contact
information from both keyframes.
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The second type of keyframe reduction is the remova of accidental bumps. If a
contact is made and then lost soon after, with no other contact events between these two,
it is assumed that the contact was an accidenta bump, and thus both keyframes are
removed from the sequence.

Thethird type of keyframe reduction isthe remova of momentary losses. Like
with bumps, if a contact islost and then gained again soon after, with no other contact
events between the two, it is assumed that the loss of contact was an accidentd,
momentary loss, and thus both keyframes are removed from the sequence. This generaly
happens only with contacts such as the sign touching the torso in the above example; the
contact is not necessary for support, but will eventudly be once the hand lets go of the
handle.

4.3 Recorded Parameters

Recording a contact event (keyframe) consists of representing the current state of the
amulation and details about the current object contacts. First of al, the arm angles and
the object position and orientation are recorded. Both of these are used asinitid dtarting
points for the keyframe adjustment process discussed in Chapter 7; in order to make the
appropriate contacts with a new object, new arm angles and a new object
position/orientation will most likely be required. However, the new arm angles and
object postion/orientation will probably still be close to the recorded vaues; this helps to
keep the gist of the new trgectory smilar to that of the demonstration.

Besdes arm angles and object position/orientation, information about each
contact between a body part/table and the object is recorded. Thisincludesthe location
of the contact point on the object, the location of the contact point on the body part/table,
the relative orientation between the body part and the object, and the distance between
the body part and the object. Except for hand contacts, which are discussed in the next
paragraph, the distance is typicaly close to zero. During the contact mapping process
described in Chapter 6, contact points on the object are mapped from the template object
to the new object. When grasping the new object, an attempt will be made to make the
recorded |ocations on each contacting body part come into contact with the new object at
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the new, mapped contact |ocations on the object, in the same orientation as recorded. As
with the arm angles and object position/orientation, these are merely starting points for

the keyframe adjustment process described in Chapter 7; the actua contact locations and
relative orientations will likdy vary somewhat from the initiad caculated ones. The
important part is to have the same body parts contact the new object in places that capture
the gigt of the origind keyframe, with about the same orientations. For instance, when
trying to pick up anew object in the same manner as the sign, part of the new object
should be jammed between the arm and the torso, contacting upper arm, lower arm, and
torso, and these contacts should be on opposite sides of the object.

Hand contacts are treated somewhat differently than contacts with surfaces such
asarmsand torso. Firgt of al, each hand can be grasping or not grasping, and each hand
will be in one of three preshape configurations. These two facts are recorded for each
keyframe. Second, a hand usually contacts an object in numerous locations once it is
grasping. Since we do not try to individualy position fingers, but rather smply position
the hand and tdll it to Start grasping, it is not very useful to record every point at which
the hand contacts the object. Instead, we record one contact for each hand. Because we
need a sngle reference point on the surface of the demongtration object for adaptation to
the new object later on, we choose the point on the object nearest to the knuckle of the
middle finger. Once this point on the object isfound, its location on the object can be
recorded, along with the location of this point relative to the coordinate frame of the
hand, just as with other body parts contacts. This point does not need to be actualy
touching the hand; in fact, it usudly isnot. It merdy expresses the relative location of
the hand to a point on the surface of the object. The relative orientation of the hand to the
object is aso recorded, just as with any other body part.

When this contact point is mapped to a new point on a new object, the hand is
brought to the same relative location and orientation as with the template object. Thus, if
the demondtration object was grasped between the thumb and forefinger, part of the new
object will be at the same place rdative to the middle knuckle, and the thumb and
forefinger will be able to grasp that part in the same way. The distance between the
middle knuckle and the object is adso recorded, for use during keyframe adjustment; even
if the exact position on the object cannot be reached, if we can keep some part of the
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object a the same distance from the middle knuckle, we have hope of graspingina
gmilar manner.

Another difference between hand contacts and other contactsis that hand contacts
are averaged over ashort period of time. While grasping an object, there is often some
ettling as the hand closes the fingers around the object, and we want the position of the
grasp more than the initia podtion of the hand before it starts grasping. However, the
find pogtion of the grasp might be impossible to reach before grasping due to the table
blocking the object. Alternatively, it might be the case that the only way to reach the
fina pogtionisby placing the hand in theinitia grasp position and grasping. Asa
compromise, we average the hand contact over ashort period in which it is grasping the

object, and use the resulting average contact for our recorded keyframe.

4.4 Limitations

There are afew limitations to the styles of manipulation that one can demondrate, due
ather to the smulation or due to the limited information conveyed by the sensors. As
mentioned earlier in section 3.5, wedging fingers under objects isimpossible due to the
amulaion. Another grasp strategy that is commonly employed by people but that is
impossible to record is walking fingers dong the surface of an object, as one might do
after tipping a heavy box onto a corner and then trying to get one hand to the bottom
edge. Thisisentirdly impossble with our just-grasp-it style of sensing and finger

control. Findly, diding objects dong the table or along body partsis often used as a
grasp drategy, as one might do when trying to pick up abook by diding it to the edge of
the table before getting a thumb underneath it. Thisis possblein the smulation, and is
even recorded by our method—while recording keyframes, the pogitions of the contacts
are recorded, and thus one can see exactly how an object has did on the table or dong a
body part such asthetorso. However, control of such atactic, both while demonstrating
and during replay, is difficult and unrelidble, and thus, for now, we require that the user
refrain from using diding asagrasp tactic. It isimpossble to prevent any diding at dl,
sncefriction is not high enough to do so, and the process of demondirating graspsis not

precise enough to prevent any diding from taking place. Aswe will seelater, even a



small amount of diding can cause problems with our current controllers. Controllers that
can explicitly dedl with diding while executing atrgectory are included in the future
work section in Chapter 10.

4.5 Conclusions and Contributions

In this chapter, we discussed amethod of demonstrating how to pick up an object by
teleoperating aSsmulated robot. We then discussed our method of extracting the gist of
the demongtration grasp by recording only those grasp states that correspond to the start
and end of asgmulation, aswell as those points in which contacts between body
parts/table and the object are gained or lost. We call these contact events 'keyframes!’
We further discussed how to pare down keyframes that are likely to be extraneous.
Finaly, we detailed the parameters that are recorded for each keyframe, which will be
used in later chapters to adapt the demonstration grasp to new objects, and mentioned a
few limitations of the gragp demondration system.
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Chapter 5
Picking a Template Grasp

After recording a set of template grasps that we want the robot to be able to imitate, we
must provide a method of choosing which template we wish to apply to anew object. To
that end, we will rank the example objects in a database by object smilarity to decide
which is closest to the new object.

Goal:

Given a database of template grasps and corresponding example objects, and anew
object to grasp, pick atemplate grasp that a human might feasibly use to pick up the
object (anaturd grasp). Success will be determined by having a human judge the results.
More than one grasp can be a naturd grasp for a particular new object, and the optimal

choiceis not necessary for success.

Algorithm:

- For each template object and its accompanying example objects, create feature vectors
for each of three possible rotations; add them to a database of vectors

- Cresate the feature vector for the new object

- Use the sum of squared differences (squared geometric distance) between the new
object's feature vector and each vector in the database to rank the objects by smilarity

- Pick the template grasp that belongs to the highest-ranked object

5.1 Example Objects

Since some grasps are only applicable to a narrow range of objects, while others are
generdly gpplicable, it is not sufficient to supply only one sample object for each grasp.
With only one sample object for each grasp, the space of objects that should be picked up
with each grasp isfleshed out only by the distance between that object and the other
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objectsin the database; there is no way to indicate that one grasp should span a broad
range of objects, or that another is specific to only atiny region. Thiswould result ina
large number of misclassified objects. Therefore, for each grasp, we require that some
number of example objects be provided that should also be picked up by that grasp. The
more example objects provided, the higher the chance that a new object will be smilar to
an object in the database. Similarly, the more grasps provided, the higher the chance that
the database will contain a grasp particularly appropriate to anew object. In thisthesis,
we have only seven template grasps, and each has three example objectsin addition to the
template object; this seemsto be sufficient to generate feasible grasps for alarge variety
of objects. The system could be made to add more example objects to the database
automaticaly, by trying to pick up new objects and adding them to the database if the
grasp is successful.

5.2 The Features

While the database employed here isfairly smdl, we want our system to be expandable
to much larger databases. For systemsthat could potentidly be large, it is usudly agood
ideato limit festures to those that can be expressed in pre-computed vectors. Computing
afeature vector for one new object does not take long, and comparing that vector to other
pre-computed vectors does not take long. For featuresthat rely on joint properties of the
new object and the template, however, feature vectors would have to be computed for
every new object/template pair on the fly, and that could potentidly take along time.

The eight features actudly used here are al based on gross properties of the
object, such as overdl dimensons and weight. In most cases, which grasp we as humans
might choose is usudly highly dependent on the Sze and weight of the object. We might
aso look at things like surface properties and useful protrusions that would be easy for
our handsto grab. However, for this Smulation, surface properties are uniform for al
objects; they could be varied and taken into account as another festure for comparison,
but in this case they are not. Useful protrusions and object features are difficult to
express as a vector of pre-computed numbers, particularly snce this system is built for

full-body grasps. In such grasps, any surface could be a potentia grasp surface, and any
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object feature could be important or not important, depending on which grasp is used.
Instead of trying to capture such features, we will experiment to see how well atemplate
ranking system that ignores them can do.

More complicated features that rely on joint properties of or relationships between
the new object and the template can be examined after the number of choices has been
narrowed down. For instance, we would probably not use a precision grasp to pick up a
giant box with atiny protrusion suitable for such grasps, and thus gross properties would
be aufficient. However, if we can use gross properties of asmal object to narrow the
field to three different precision grasps, we can do as much caculation as we need to
match the object to each of those threein turn. For our small database of seven grasps,
the results appeared to be good enough without this extra step, and so it was not used.
However, with alarger database, this might be necessary.

The features used:

- (1) Mass of the object. Even for objects of the same shape, if we expect the weight of
one object to be greater, we are likdly to pick it up in adifferent way. Inthissmulation,
however, dl objects have uniform density for smplicity, and thus the mass of the object
contains the same information as the volume. If dengity were to vary, we would probably

want to use both mass and volume as features.

- (2, 3,4) x,y, and z dimensons of the bounding box. Asexplained earlier in section
3.4.1, the models of objects that we are using for this project consst of three primitivesin
alinewhose axes of symmetry line up. When these axes are aligned with the nearest
globa axes, we can order the dimensions by those pardld to the x-axis, y-axis, and z
axisinturn. Because we might wish to rotate the template object to match the new
object, a separate feature vector is created for each of three rotations: original (digned
with global axes), rotated +90° around the globa zaxis, and rotated -90° around the
globd zaxis. Thus, anew object trying to match asingle template in our system will be
matched againgt three separate festure vectors (one for each of three rotations) for not
only the template, but al three example objects. Thus, there would be atotd of 12
potential matching feature vectors.
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Individua dimengons are important, since many objects rely on one dimension to
be smdl enough to get a hand around them, or tuck them under an arm. Because objects
can have irrdlevant portions that enlarge the bounding box, such as a T-shaped object that
ought to be grabbed by the stem of the T, bounding box dimensons are not dways
reliable. In generd, however, they tend to contain useful information, and this problem is
somewhat compensated by the inertia matrix, discussed next.

- (5,6, 7) Ixx, lyy, and |, (the diagonal eements) of the rotationa inertia matrix. Like
with the bounding box dimensions, these are rotated as appropriate for each of the three
template object rotations. The rotationd inertia dements express how the mass of the
object is digtributed indgde the bounding box. For instance, for the example above of the
T-shaped object, if the top of the T is thin and unimportant, the bounding box dimensions
will be thrown off, but the inertiamatrix will be nearly the same asthat of just the stem of
the T, and thus the match will be fairly good.

- (8) Direction of the object zaxis.

If the object's coordinate frame z-axisis closer to the globd zaxis than the x- or y-axes,
this parameter isassgned avaue of 1; otherwise it isassgned avaue of 0. As described
in section 3.4.2, the z-axis of the object's coordinate frame is chosen in amanner that
reflects the orientation of the primitives and the digtribution of mass of the object. Thus,

if two objects both have vertica zaxes, they are likely to be more smilar than a pair of
objects where one has a vertica z-axis and one has a horizontal zaxis.

5.3 The Template Grasps

In the database used for this project, there are seven template grasps, which are shown in
Figure5.1.
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Figure 5.1: Seven template grasps

1) Precision grasp from top 2) Precison grasp from side

3) PAm grasp from top 4) PdAm grasp from side

5) Two-hand lift 6) Over shoulder

7) Tuck under arm
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Thefird five gragps are fairly generd, hand-only grasps that can collectively be
used to pick up most objects. These are meant to demonstrate the ability to grasp most
objects by smply wrapping the hand around an object appropriately. These five grasps
together perform most of the grasps in many heuristic grasping systems.  For ingtance, the
st of heurigtic gragpsin the system discussed in (Bekey, 1993) includes six grasps. The
fird isthe power grasp, which is how one grasps a hammer; this grasp is covered by
template gragps 3 and 4. The second isthe tip or precison pinch, in which the tips of
fingers are used to grasp; this grasp is covered by template grasps 1 and 2. Thethird is
the hook grip, which is how one grasps asuitcase. This grasp is not covered, but it could
be if anew preshape were added. The fourth and fifth are the pulp pinch and the latera
pinch, which are gragps that one would use on a sheet of paper and akey turningina
lock, respectively. Neither of these is covered, but again, they could be if appropriate
preshapes were added. The sixth isthe spherical grasp, which ishow one grasps a ball;
this grasp is aso covered by templates 3 and 4. The fifth template grasp in our database,
which isagenerd two-hand grasp that can be used to pick up most large objects, is not
included in this particular set of heurigtics, which only covers one-hand grasps.

The sixth and seventh template grasps are more speciaized, ful-body grasps.
These grasp sequences both essentidly start with the palm-from-top grasp, but continue
on to make use of other body parts; the under-arm tuck ends with the Sgn being
supported only by the torso, upper, and lower arms, and the over-shoulder grasp ends
with the club being supported in part by the shoulder. These two grasps demonstrate the
generd nature of the grasp representation and its ability to capture more interesting
grasps that use any available surface as a'grasp’ surface.

5.4 Example Object Set

The example object s, as discussed above, is the set of objects that augments the
template object set for comparison with the new object. If the new object best matches
an example that belongs to a particular template, that templatesgrasp isused. The
example st for each template was carefully chosen in an attempt to cautioudy span the
range of object szes that one might want to pick up with that template. Of course, with
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only three objects, it is not possible to completely span the space of object sizes. We
wish to see how well the system can extrapolate to new objects it has not seen before, and
that becomes easier when not covering every possible object size and shape. Again, the
system could be made to add more example objects to its database automatically, Smply
by attempting to pick up new objects and adding them to the database if the grasp is
successful. Since many objects can be picked up by more than one grasp, each set was
made as distinct as possible, so that each template could have a somewhat contiguous
space of itsown. Finaly, the objects chosen were designed to look like objects one
might encounter in red life. Figure 5.2 shows the objectsin the example object st.

Figure 5.2: Example object st
Template 1

Template 2
Template 3
Template 4
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Template 5

Template 7

5.5 Training Object Set

Template 6

The training objects are those that were used in pre-evauating the template- picking
agorithm, particularly in terms of adjusting hand-tweaked numerica parameters. Once
again, they are designed to resemble objects one might encounter in red life, but to have
awide variety of shapes and primitives to ensure that the system can pick appropriate
templates for very different objects. Two objects for each template were chosen that one
would mogt likely pick up with that template. The intended template was chosen
correctly for al 14 objectsin thetraining set. In later steps the example object set is used
adongside the training object set for system tweaking and automatic coefficient

generdion. Thisis because while the example set would automaticaly have perfect
choosing of templates, the adaptation of grasp contactsis no more assured in the example
objects than in the objects in any other training or test set. The training objects and the
templates they were classified under are shown in Figure 5.3.
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Figure 5.3: Training object st
Template 1

f

Template 2

Template 3

Template 4

Template 5

Template 6

Template 7




5.6 Test Objects and Results

There are three separate test sets: hand-generated, randomly generated, and impossible.

5.6.1 Hand-Generated Test Set

Like thetraining s&t, the hand-generated test set is designed to look like real objects and
to offer achalenging variety of objects that nonetheless clearly fal under one of the
templates. Of the 21 objects in the hand-generated test set, only one was classified under
an unintended template (the highlighted mug under Template 3). However, most objects
can be picked up by more than one grasp, and in this case, the template chosen isas
equaly natura asthe intended template, and thus al 21 objects are classfied correctly.
The hand-generated test objects and the templates they are classfied under are shownin
Figure 5.4.

Figure 5.4: Hand-generated test set

Template 2

Template 3

] ]
»‘ ‘

55

Template 1




Template 4

Template 7

5.6.2 Randomly Generated Test Set

Template 5

Template 6

The randomly generated set is just that: randomly generated. Each object has one to three

primitives, each with minimum bounding dimensions of 1 inch and maximum bounding

dimengons of 12 inches, and as usud the primitives are restricted to liein aline with
their axes of symmetry lined up. Each object sarts with the line through its primitives

lined up with the globa X, y, or zaxes; they are then rotated by a random angle between -

45° and +45° around the globa zaxis. Objects are dlowed to tip over due to gravity, but

are otherwise not rotated about other axes. Also, objects that are more than usualy ligble
to tip over despite being perfectly baanced when left done are diminated. All of the
eliminated objects are ones whose axis of dignment is digned with the globd zaxis, and
they include those objects whose bottom primitive is a sphere, as well as objects where
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the bottom surface area of the bottom primitive is less than 1/4 that of the overal object's
bounding box.

Of 100 randomly generated test objects, only three were classfied under template
grasps that are clearly not natural grasps for those objects. All three are highlighted in
thetablein Figure 5.5. Thefirgt isan object conssting of two cylinders connected by a
tiny bal. While the template chosen can be used to successfully pick up the object, |
would argue that the template grasp is not naturd for this object, particularly since the
object somewhat resembles an oddly-shaped mug, and thus most humans would use a
pam-from-side grasp to pick up the object usng the 'handl€. While most mugs can aso
be picked up by the main cup section using a pdm-from-top grasp, the large cylinder in
this caseistoo large for the hand to fit around. Thus, the only pam-from-top grasp left
involves wragpping the hand around the smdler cylinder from the top, and it is doubtful
that a human would pick that grasp.  Since the template picking system has no concept of
tasks or mugs, thisisnot redly itsfault. Nonetheless, | count this object as being
incorrectly classfied.

The second and third objects are both balls, one 5.8" in diameter and one 5.6" in
diameter. Both were classified under the pdm-from-side grasp. This grasp could be used
to successfully pick up ether object if it were gpplied carefully (without |etting the ball
roll away) dueto the high friction of the objectsin thissmulaion. However, most
humans would use a pdm-from-top grasp, or atwo-handed grasp to pick up balls of this
sze sncein ether case the fingers will not extend more than hafway around the ball
while wrapping around it and thus there is the possibility that the ball could roll avay. In
this case, the incorrect template was chosen because the template picking system has no
concept of theingtability of objects or the danger that they might roll away. If the balls
had been vertica cylinders, the chosen grasp would have been fine.

The remaining 97 of the 100 objects gppear to be classified under appropriate
templates. The randomly generated test objects are shown under their chosen template
graspsin Figure 5.5. Random generation does not do a good job of creating difficult
objects at the boundaries of a system without generating extremely large numbers of
examples, and thus the high success rate should be taken with agrain of sat. Some of the
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pitfals that the system can encounter are shown in the impossible test set discussed in the
next section.

Figure 5.5: Randomly generated test set
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5.6.3 Impossible Test Set

The impossble set is meant to show pitfdls that the systemisvulnerable to, aswell as
objects that are not graspable under the current database of grasps. This set is hand-
generated to consst of objects that are carefully chosen to foil the sysem. Assuch, itis
not atrue test set as the others are, in that objects were modified after repested testing to
ensurefailure. They are usualy modeled after template objects, to ensure that the
intended template is chosen, with afatd flaw added. Thesefdl in severa categories:

1) Barely too large for the hand to fit around

Objectsin this category include both objects under template 3, as well asthefirst
object under templates 4, 6, and 7. Because the template- picking dgorithm has no
concept of hand size, acommon pitfal isfor objects that are barely too large for the hand
to fit around to be classified under one-hand grasp templates. The hand size could be
explicitly incorporated into the parametersin order to avoid this pitfal. However, &t this
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timeitisnot. Without explicitly cregting objects exactly on the borderline, this does not
result in many problems.

For objects like the ones under templates 4 and 6, the object could have been
picked up feasibly and successfully by atwo-hand grasp. Indeed, for the object under
template 4, abarely larger object would be classfied as such; this object happensto lie
on the border between the two grasps. Aswe will seein the next chapter, while
designing the object to match the template bottle, | forgot that it would be possible to
grasp the object by the neck done, and redlized my mistake only when the contact-
mapping step chose to grasp the object in that manner. However, the object turns out to
be too heavy to grasp in this manner anyway, given the maximum hand forces used by
the system and the levd of friction chosen.

For the object under template 6, the length of the object causes it to match the
over-shoulder objects, without a degper understanding of the reasons for picking a
specific grasp, or at least an explicit representation of hand size, such problems will
dwaysaise.

For objects such as the two objects under template 3 or the first object under
template 7, no grasp in the grasp database is gpplicable; dl of these objects would
probably be picked up by a human by ether diding off the table (somewhat possiblein
this smulation, but not included as atemplate) or wedging fingers under edges (not
possble in this smulation).

2) Too largelheavy to grasp

The example of thistype of object isthe first object under template 5. The two-
handed grasp of this object might look feasible after contact mapping, but the object is
actudly too heavy for thearmsto lift. Thiswill be discovered during grasp adjustment,
when the object falls out of the robot's grasp.

3) Too wideto fit under thearm

The example of thistype of object is the second object under template 7. While
this object might look like something you can actudly fit under your am, in this
gmulation, an object asthick as this one cannot actualy be accommodated. Thisis due
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mainly to shortcomingsin the smulation, since the collision detection sysem and
hardness of the body parts and the object do not alow such an object to be held properly

under the arm.

4) Grasp is obstructed

Thispitfal is shown by the second example in template 5. While atwo-hand
grasp is appropriate for such an object, the two-handed grasp template is not quite
flexible enough to tilt the right hand enough to get around the protrusion. This grasp can
be successful nonetheless, but not natura, as no human would pick up this object by
digging the protrusion into hisher palm.

5) Too far/too awkward to grasp

The two exemplars of this problem are the last two objects under template 7. The
first object istoo far for the robot to grasp properly with the template grasp, and the
second istoo close for the robot to grasp, due to the awkwardness of the arm position.
Thisis because the robot is Sitting and cannot move closer or farther away from the
object. If such acapability were given to the robot, then it would be able to grasp both
objects.

62



Figure 5.6 Impossible object set

Template 3

Template 4

Template 5

Template 6

Template 7

5.7 Conclusions and Contributions

In this chapter, | showed how asmple system of ranking objects by smilarity could be
used to pick an appropriate template grasp from a database of recorded grasps with a

fairly high successrate.
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| showed the importance of having an example object set for matching against
new objects, and discussed a set of basic parameters that use only gross object
characteristics and thus can be expressed as a smple vector of numbers that do not rely
on joint properties of both template and new object. In order to take into account
rotations between objects, | introduce the idea of digning each template/fexample object's
symmetry axes with the smulation's globa axes and then generating separate vectors for
each of three possible rotations.

Findly, | demondrate this template ranking system on a database of five basic
grasps and two specidized grasps that uses three exampl e objects for each template
grasp. Tedting the system on training and test object sets yielded appropriate template
grasp choicesfor 14 of 14 training objects, 21 of 21 hand-generated test objects, and 97
of 100 randomly-generated test objects. | also demongtrated some of the pitfals of the
system with an impossible test set of 10 objects.



Chapter 6
Adapting Templatesto New Objects

Once a grasp template is chosen, we need a method of adapting the recorded grasp
sequence to fit a new object geometry. To decide which parts of the new object
correspond to various parts of the template, we will introduce the concept of functional
groups; to map contacts from one set of functiona groups to the matching set on another
object, we will introduce the concept of dimensionally normalized coordinates. This
method of matching parts of one object to geometricaly smilar parts of another object
and then mapping contacts between the two objects is the primary point of thisthess.

Definitions:
functional group: agroup of one or more primitives in an object that will be matched
againgt an analogous group of primitives in another object; this group can sometimes be

interpreted as serving a particular function in the grasp being adapted

dimensionally normalized coordinates: unit-normaized vector in the direction of a
contact point on the surface of a primitive, after that primitive has been scded to exactly

fitindde a cube

Goal:

Given atemplate object and its corresponding template grasp sequence chosenfor anew
object, generate a set of contacts for the new object that can be adjusted to successfully
pick up the object (aviable grasp). Adjustment involves minor rearrangement for am
geometry, and is a process that will be described in the next chapter. The grasp must dso
be done in amanner that might feasibly be performed by a human upon being told to use
the given template grasp to pick up the object (anaturd grasp). A successful pick upis
defined as atrgjectory of the arms and object that appears andogous to the origind grasp
Sequence, and that ends with the body having control of the object. Since this step only
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involves generating the contacts, and not actualy picking up the object, and the grasps
must be natural, the results must once again be evauated by ahuman. More than one
grasp choice will often be vaid for a given template/new object pair; the optima choice
IS not necessary.

Algorithm:

- Makealig of dl possible functiona groups for both template and new object

- Find the quality value of each vaid functiond group pair and relative rotation

- Do the same for the left-right flipped template

- Using the functiond group pairing with the highest quality vaue, trandate contact

points from the template to the new object using dimensonaly normdized coordinates

6.1 Functional Groups

One of the gods of thisthesis was to come up with a grasp representation and adaptation
scheme that was not only good for representing full-body grasps, but aso for representing
other object manipulation tasks. Theidea of functiond groupsis primarily useful for
grasps that make use of more than one body part, or in genera for objects that must be
manipulated in ways that use different parts of the object for different purposes. Asa
sample example, let uslook a ahammer. A hammer congsts of two parts. the handle and
the head. The handleis used for grasping, and the head is used for hammering.
Regardless of how many primitives we might like to modd the hammer out of, we would
idedlly like to group them into two functional groups: one for the handle, and one for the
heed. (For this example, we will ignore the fact that a hammer's head actudly has two
functions)) If we are presented with anew object that looks something like a hammer, or
that looks nothing like a hammer but that we would like to use as a hammer anyway, we
must figure out which part of the object will be used as the handle, and which part will be
used asthe head. Then we can map contacts from one to the other: the new 'handle
should be grasped with a pam grasp, and the new 'head' has a surface that we want to

bang againgt things.
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In our template grasps, the clearest example of the usefulness of functiona groups
isthe 7' template grasp, tucking asign under the arm. The handle of the sign is used for
grasping with the hand, and the flat part is used for jamming between the torso and the
am. Intheres of this chapter, we will use the example of matching the sign template
againg amuch smdler paddle whose handle consists of two parts, as shown in Figure
6.1, to demonstrate how functional groups are picked and contacts mapped.

Figure 6.1: Template and new object: Sgn and paddle

Functional groups aso work for objects that only need to be grasped and lifted, as
in template grasps 1-5. Even when the only functions are 'a part to be grasped' and 'a part
to beignored, it is necessary to match up primitive groups from one object with primitive
groups from another so that the object is grasped from the optima primitives and
irrdlevant parts do not ruin the contact mapping.

Oneimportant point to keep in mind here is that the contacts that are generated by
this method are not by any means exact, fina contact points that should be used. The
idea behind these contacts is that the gist of each grasp will be the same asthat in the
template grasps, if afeasible geometry can be found nearby. Mogt of the time, actud
contact points will differ dightly from the initialy generated contact points after
adjusment for arm geometry and collison rgjection. It isaso possble that afeasble
geometry cannot be found near the generated contacts, and this will not be detected until
later steps. However, because this method of matching assigns quality scores to both
functiond group pairings and template pairings, as long as a failure can be rdiably
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detected, it is dways possible to try second and third choices in an attempt to find agrasp
thet will be feasble.

6.2 Matching Objects by Functional Groups and Rotations

When trying to line up two objects, there are three things to consider: relative rotation,
relative trandation, and relative scaling. Without any way to limit the possihilities, there
isan infinite number of possble combinations of the three. However, our objects are
represented by primitives. By only considering groups of primitives matching dong thelr
axes of symmetry and scaled to match, the number of possibilitiesis drastically reduced.
Thisisthe advantage to using objects with such high leveds of symmetry; the number of
possi ble matches between the two objectsis reduced to a small number that we can do
more extengive caculaions on than if we were presented with the full, continuous set of
possible rotations, trandations, and scalings.

For our purposes, lining up two objects requires three things. a set of functiona
groups for the template, a matching set of functiona groups for the new object, and the
rotation between the two objects. Functional groups take care of trandation and scaing.
For agiven vaid match of functiond group sets for atemplate and a new object, the
template's functiona group centers (either the COM of the primitive, for functiond
groups congsting of only one primitive, or the center of the functiond group's bounding
box) are digned with the centers of the new object's functiona groups. That takes care of
trandation. Asfor scaing, using dimensiondly normdized coordinates, as discussed
below, is akin to dretching and scaling the template groups to match the new object's

groups.

6.2.1 Rotations

We have represented our objects with coordinate frames that reflect their axes of
symmetry, as described in section 3.4.2, and in order to dign their axes of symmetry we
need only dign their coordinate frames. It is not dways the case that the best alignment
of coordinate frames between two objects Sitting on the table is the closest one, but it
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often is—when you perform a grasp on a new object, most likely you would not want to
twist your arm too far to grasp the new object in the sameway. If we aign each object's

coordinate frame with the globa coordinate frame, often we will have the best rdltive
rotation alignment between two objects that should be grasped the same way. For
ingance, in Figure 6.2, the sgn and the paddle are correctly digned rotationdly after
aigning each with the globd coordinate frame. In this dignment, the handles are digned
on the appropriate side of the sign, and so the paddle can be picked up by the handle just
as the sign was picked up in the demonstration grasp.

Figure 6.2: Sgn and paddle aligned with global axesin asengble rotation alignment

However, sometimes the closest dignment is not the one we want. Consider this
gtuation: you are shown a demongtration grasp of a paddle Stting on the table with a
particular rotation, and then you are told to apply the same grasp to another paddle, just
like the first, but rotated 90° clockwise. Most likely, the grasp you would perform looks
something like the grasp in Figure 6.3. One way to think more formally about how you
might arrive a this gragp isto imagine trying to dign the new sgn with the
demondration sgn, mentdly rotating the demongtration sgn 90° clockwise, and noting
that they are geometricdly identica in that reative rotation.

Figure 6.3: Paddle being grasped in the same way despite a 90° rotation
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Thus, when deciding on how two objects should be rotationdly aigned, we
consider not only the nearest globa alignment of the objects as they start on the table, but
aso that dignment rotated +90° and -90° around the globa zaxis. This coversarotation
range of 270°: if welook at an object trying to match itsdlf rotated, that object rotated just
under 135° away from its origina position will aign with the nearest globd axes, at 90°
away from its origind position, and the template will maich it there after we rotate it
+90° around the globa zaxis. The sameis possible at -135° digning with -90°, for afull
range of 270°. Of course, such a severe rotation will probably not be possibleto graspin
the same manner, but this will be discovered when we eva uate the awkwardness of the
arm in determining the qudity vaue of that rotation, in section 6.4.3.

We do not attempt to align objects by rotating about any axis but the globa z
axis. Thisisbecause an object that has been tipped completdly onto its Sde on the table
will likely be grasped in a different manner than when it was upright, due to the obstacle
of thetable. Thus, there are only three possible rotations to consider, as shown in Figure
6.4. Inthiscase, you can seethat the new object is best aligned with the Sign that is
rotated +90°, snce this rotation would aign the sign's handle with the new object handle,
alowing the new object to be grasped properly, by the handle. Thisonly applies for our
world setup, in which the object is dways Stting on atable; if we were grasping objects
hovering in front of us under no gravity, we would want to consider many more possible

rotations.

New object Template

Figure 6.4: The three possible rotation dignments

Rotated +90° Rotated -90°
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6.2.2 Valid Functional Group Matches

Thishrings usto thelist of possible functiond group matches. A valid functiona group
match between template and new object must have the same number of functiona groups
in both template and new object. Furthermore, when rotated by the chosen rotation, the
two sets of groups must line up—that is, if there are multiple functiona groups, the axis
that goes through the primitives of the first object must be pardld to the axis through the
primitives of the second object. If we consder the entire template to be one functiona
group, and likewise the entire new object to be one functiona group, then any of the three
rotations can line up; one group lines up with one group regardless of rotation. If we
consider both template and new object to be two functiona groups (handle and top), then
only onerotation (in which the handles are pardld to each other) isviable.

Parts of an object that should be ignored can either be put in afunctiona group
and matched with an andogous ignored portion of the other object, or they can smply be
left out of afunctiona group entirely. If an object primitive isignored but has a contact,
that contact will be mapped onto the nearest functiond group to the primitive. Sinceitis
likdy that primitives with non-table contacts are somewhat important, this carriesan
explicit quaity score pendty, aswill be detalled later onin section 6.4.5.

Findly, functiona groups must consst of contiguous primitives. Thus, for a
three-primitive object, the two primitives on both ends cannot be in one functiona group
while the primitive in the middle isin a different functiond group.

The ligt of possible functiona group sets for a two- primitive object contains only
four sets, as shown in Figure 6.5. Here we aso introduce the color convention for the
rest of this chapter: agray primitive is not in any functiond group; it is being ignored.
Primitives of the same color are in the same functiond group; primitives of the same
color in template/new object are in matching functiona groups.
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squarein 1% group,  handlein1¥ group,  squarein 1% group,  entire object in
handle ignored square ignored handlein 2™ group  one group

Figure 6.5: The four possible functiona group sets for atwo- primitive object

Figure 6.6 shows the complete list of possible functiona group/rotation matches
between the sgn and paddle, with their respective qudity values. Asyou can see, there
are many blanks where the number of functiona groups did not line up, or where the
number lined up but the relative rotations of the two objects main axes did not. For
ingtance, the first paddle at the top left has three functiona groups, matching it against
the ssign produces no viable functiona group matches, because the sign has only two
primitives and thus cannot have three functiond groups. The fifth paddies two
functiona groups match the first sgn's two functiona groups, but after rotating the sgn
they no longer line up. The best match, with aquality vaue of 0.308162, is the one
where both the ball and the box (handle) of the paddle are matched with the handle of the
sgn, and the flat part of the paddle is matched with the flat part of the Sign.

There are 40 remaining functiona group/rotation matches left for comparison; if
we include matching againg the left-right flipped template as discussed later, there would
be 80 totd. If two three-primitive objects had been involved, there would be 197
possible combinations for both the norma template and the left-right flipped template.
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6.3 Contact Point M apping Between Functional Groups

For any given set of template functiona groups, new object functiona groups, and
rotation, we need away of mapping grasp contact points from the template to the new
object. Thisiswhere we introduce the concept of dimensionally normalized coordinates.

The reason for dimensionally normalized coordinates can perhaps be seen best
with an example. Think about someone picking up awide, squat box by diding it
towards hersdlf and hugging it to her chest (amove that is possible with this smulation,
but not covered by any of the template grasps). If another person were asked to describe
in detall how she grabbed it, she might say something like, "wdl, she put her right hand
on the back right vertical edge, about 1/3 of the way up, and her left hand on the back left
vertical edge, dso about 1/3 of theway up, and she did it towards her until the front face
touched her chest." Now, if that person were presented with atall cylinder, and asked to
grab it in the same way, that person would probably put her right hand on the cylinder at
around where the back right edge would be if the cylinder were a box, about 1/3 of the
way up, and likewise with her left hand, and then dideit towards her until the front face
touched her chest. Thisiswhat dimensionaly normalized coordinatestry to preserve:
regardless of the dimensions of the new object, the gist of the contact points will remain
the same. Inasmuch as there are still anaogous edges on the new object, use of those
edgeswill be preserved. In this example, the edges disappeared because the cylinder has
no vertica edges, but if the contact point had been at say, the top right corner, the new
contact point would lie on the cylinder's top edge. Because we are assuming that contacts
have high friction, loss of edgesistypically not a problem.

Here is amore precise definition of dimensondly normdized coordinates.
Dimensondly normalized coordinates consist of a unit-normalized vector in the direction
of acontact point on the surface of a primitive, after that primitive has been scaled to fit
ingde a cube.

If we are recording a contact point on the top edge of a cylinder, as shown in the
first part of Figure 6.7, we firg find the Cartesian location of the point in the cylinder's
coordinate frame, p = (px, Py, Pz). Then wefind the dimensions of the bounding box of
the cylinder, b = (by, by, b;). Wewish to reduce the coordinates to those on a version of
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the cylinder scaled to fit in abounding box of uniform dimension, so we divide the
Cartesian coordinates by the bounding box dimensions to get the scaled Cartesian
coordinates s = (px/bx, py/by, p-/b;). Findly, we don't care about the length of the vector,
0 we normdize it to unit length to get the dimengiondly normalized coordinates d = (d,
dy, d;) =s/ .

When finding the equivaent contacts on anew primitive, say the box in Figure
6.7, we would firg expand the dimensiondly normaized coordinates by the dimensions
of the new bounding box, b' = (by', by', b,’), to get a vector in the direction of the new
contact point, v = (dy* by, dy* by, d,*b,). Finaly, wewant the closest point on the
primitive in the direction of v, which is our new contact point.

Figure 6.7: Mapping contacts with dimensonaly normalized coordinates

Of course, this only works for angle primitives. Many functiond groups consst
of multiple primitives. When dedling with multiple primitives, we use the bounding box
of the entire group. While finding the dimensiondly normalized coordinates for a point
on amultiple-primitive group on the template, we firgt find the closest point on the
surface of the bounding box to that contact point. From there, we can scale in the same
way using the bounding box dimensonsto find the dimensiondly normdized
coordinates. When dedling with a multiple- primitive group on the new object, we
amilarly scde the dimensondly normalized coordinates usng the bounding box
dimengions, find the appropriate point on the surface of the bounding box, then find the
closest point on the nearest primitive to that surface point. An example of asngle
primitive mapping to agroup of primitives is the sgn handle to the paddle handle, as
shownin Figure 6.8.
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template: Sgn handle new object: paddle handle
Figure 6.8 Mgpping contacts with multiple- primitive functiona groups

This sort of mapping generdly works wel for sngle primitives or for multiple-
primitive groups where the primitives fill mos of the bounding box. However, the
contact quaity often degrades when the primitive surface is far from the surface of the
bounding box. For example, the left side of Figure 6.9 shows a common problematic
contact mapping between a hammer, the template for the pam-grasp-from-top, and a
box. The bounding box of the hammer isfar away from the top of the handle, but it
touches the sdes of the handle. Thus, a contact on top of the handle maps to the side of
the bounding box. The corresponding contact point on the box is thus on the side of the
box rather than on top of the box, aswe may wish it to be. Fortunately, even contact-
mapping errors as large as this one can often be corrected to yield aviable grasp in the
collison regjection step discussed in the next chapter. However, we would hope that in
this case, our system would decide that the box should be matched with only the handle
of the hammer, ignoring the head entirely. In that case, the contact would be on top of
the box, as shown in the right Side of Figure 6.9.

Entire hammer in one group; mapping is poor Only handle in one group; mapping isfine

Figure 6.9: Problematic contact mapping with multiple-primitive functional groups
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6.4 Finding Quality Values for Functional Group/Rotation
Candidates

Now that we have alig of al possble sets of functiond group pairing and relative
rotation (this includes the template functiond group s&t, the new object functiond group
s, and the rotation between the two objects), we must find the set with the highest
qudity. Qudlity isdefined as a vaue between 0 and 1, where O represents an awful
match and 1 represents the most optimal match possible (obtained only by matching an
easy-to-grasp object withitsdf). The function for qudity is 2* (1-logag(weighted sum of

and

pendty parameters)), where logdg is the logarithmic sgmoid: logsig(x) = 7
€

the pendty parameters are dways > 0. The point of the quality function ismainly to limit
an arbitrarily large sum to a vaue between 0 and 1, with extremey large vaues of the
weighted pendlty sum becoming essentidly 0 and differences between smdl vaues
becoming more prominent. Differencesin qudity vaues between sets are important
when we learn the coefficients for the weighted penalty sum, in section 6.6.

The pendty parameters are asfollows.

1) Mismatched volume ratio of unscaled template

2) Mismatched volume ratio of unscaled new object

3) Mismatched volumerratio of scaled template

4) Mismatched volume ratio of scaled new object

5) Mismatched volumeratio of part-scaled template

6) Mismatched volume ratio of part-scaled new object

7) Sum of distances between origind contact points and new contact points
8) Awkwardness of initid gragp arm position

9) Callisonsininitid gragp arm position

10) Number of contacts belonging to primitives not included in afunctiona block
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6.4.1 Mismatched Volume Ratios

The six volume rétio parameters are dl intended to measure how well the template object
matches the new object geometrically, given a particular relative rotation and functiona
group paring. Thisisaccomplished by trandating, rotating, and scaling the two objects
as gppropriate, filling the volume of each object with tiny spheres, and counting how
many of the template spheres are colliding with new object spheresand viceversa. The
mismatched volume ratio for the template object is the number of non-colliding template
spheres divided by the tota number of spheres used for the template, and likewise for the
new object. Thus, theratio isameasure of the proportion of an object that is not
calliding with the other object.

The unscaed ratios leave the absolute Sizes of the two objects done. Rdative
trandation is decided by finding the sdient functiond group, which is defined asthe
largest functiond group in the template that has non+table grasp contact points. The two
objects are then trandated so that the sdlient template group and its corresponding group
in the new object have their COMs at the same point. They are dso rotated by the given
relaive rotation. The purpose of these two parametersis to measure how well the
volumes of the two objects line up in generd when overlaid according to the given
rotation and the most important trandation. The unscaled matching volumes for the best
match of the Sgn and paddle example are shown in the first part of Figure 6.10. Asyou
can see, the square Sgn part of the Sign isthe sdient group, and it digns with the flat
cylinder part of the paddle.

The scaled ratios scae the template functiona groups bounding boxes to fit
exactly indde the corresponding new object functiona groups bounding boxes, changing
the dimensions of the template boxes to match those of the new object. Each functiond
group of thetemplateistrandated so that its COM is at the same position asthe
corresponding new object group, and rotated by the given rotation. These two ratios are
intended to give an indication of how well the two object volumes match each other after
they are scded, asthey will be when mapping contacts from one to the other. Thisis
mainly to prevent Stuations like the example above, with the entire hammer being
mapped to the box. Even when the entire hammer is scaled to fit ingde the box, much of
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the volume of the box will not be calliding. The hammer's handle, on the other hand, will
scaeto fill most of the box. The scaled matching volumes for the best match of the Sgn
and paddle example are shown in the second part of Figure 6.10.

The part-scaed ratios scale the template functiond groups bounding boxes to fit
ingde the corresponding new object functiona groups bounding boxes, but the relative
dimensions of the template boxes are kept constant. Thisis to measure how much each
template primitive must be distorted to fit in the new object primitive; if the template
primitive is much longer than the new object primitive, it will be very thin once scded
and will thus not fill much of the new object primitive. The trandation and rotation of
each primitive are done in the same way as with the scaled ratios. The part-scaled
meatching volumes for the best match of the Sgn and paddie example are shown in the
third part of Figure 6.10.

In the unscaled and part-scaled matching volumes, primitives that do not belong
to any functional group are gill represented by spheres, but they are not adlowed to
collide with the other object, and count only ¥z towards the total number of spheres used
to caculate the ratio. When scaling, they are scaled by the same amount that the nearest
functiond group isscded. They are not alowed to collide because primitives [eft out are
supposed to be ignored, and thus are not in the relevant part of the object that should be
matched againg its counterpart. However, they still count 2 towards the tota because
we do not want to encourage leaving large primitives out of functiona groups—again, as
with the example of the large box with the tiny protrusion, we probably do not want to
attempt to grasp just by the tiny protrusion, so we pendize ignoring the large box.
However, we aso do not want to pendize so heavily that smal and irrelevant parts are
included in afunctiond group just to avoid the pendty. In the scded matching volumes,
primitives that do not belong to any functiona group are ignored, much as they are when
mapping contacts.
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Unscaled Scaled Part-Scaled
Red istemplate; blue is new object; whiteis colliding.
Figure 6.10: Unscaled, scaled, and part-scaed matching volumes

6.4.2 Sum of Distances Between Original and New Contact Points

The sum of distances between the origina contact points and the new contact pointsis
meant to express how much the important pieces of the template had to distort in order to
be fitted to the new object, using the given functiond group pairing and relative rotation.
The frame of reference for both sets of contact pointsisin the lined-up object frame: the
origin for both sets of pointsisthe COM of each object, and the template frame is rotated
by the given rotation so that the points can be compared in a sensble manner. If the new
contact points are in gpproximately the same places asthe origina contact points, a good
match was probably made. If they are dl bunched into onetiny area, far away from their
origina locations, the match was probably very bad.

6.4.3 Awkwardness of Initial Grasp Arm Position

Since the object cannot have moved from itsinitia posgtion on the table before it isfirg
touched by a body part, we can get an idea of the feasibility of the grasp by seeing
whether the arm(s) can actudly bend in the necessary way to make theinitid grasp. For
this, we do a quick minimization over the arm angles of afunction that is ameasure of

how badly the contacts between the arm and the object are being made. More
specificdly, for agiven sat of arm angles, the function is the sum of the distance between
the desired contact point on the object and the desired contact point on the body parts for
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each contact. Calligons are not taken into account; this minimization findsthe arm
anglesthat best position the hand(s) to grasp the object using the desired contacts,
ignoring the fact that the hand could be colliding with the object or the table.

The parameter used here is actudly the value of the objective function for the
minimization result. If the arm cannot reach the gppropriate contacts, the contacts will be
meade very badly, and this number will be high, adding alarge pendty to the qudlity

vaue.

6.4.4 Collisionsin Initial Grasp Arm Position

This parameter is another indication of feaghility; if theinitid grasp arm positions found
while calculating awkwardness indicate that the hand should be in the middle of the
object, the grasp is probably not feasible. Thus, we pendize heavily for collisons
between the hand and the object, and less so for the hand and the table. How much we
pendize is based on how easy it isfor the collison regection phase to resolve the
calligonsin away that will probably result in avalid grasp. Minor table collisons tend
to smply push the hand up so thet the grasp is il valid, while collisons where the hand
isin the middle of the object are typicdly irreparable. However, because the hand will
often be colliding dightly with the outside of the object, which is eadly correctable by
collison rgection, we make afew quick atempts to push collisons away while
computing this parameter. To do this, we start with the original arm angles resulting
from minimization. Then we run collison detection once to find the initid callison

score, and to find the current collision points and their norma vectors. Wethenrun a
second minimization that tries to push the colliding bodies 1/4" out of each other, and
find the collison score for that scenario. We do this three times, and take the lowest
collison score. A hand in the middle of amultiple-primitive object will typicaly be
tossed back and forth by collisons with different primitives, while a hand onthe outside
surface of an object will typically be pushed out of the object.
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6.4.5 Contacts Belonging to Primitives Not in a Functional Group

Thefind parameter exists because primitives that contain non-table contacts are almost
aways important to some keyframe in the grasp sequence. If they are ignored
completely, the resulting gragp will most likely be reduced in quaity. Thus, we add a
pendty parameter that adds up the number of contacts that belong to primitivesignored
by the given functiona group pairing. Thisis because sometimes an ignored primitive
could have, for ingtance, only one incidental and unnecessary contact that did not even
continue into the next keyframe. In this case, the functiona group st that ignored that
primitive would not be pendized so heavily that it could not be chosen if it were better in
other ways than the other candidate sets.

6.5 Left-Right Flipping of Templates

Because arobot's arms are inherently ambidextrous, an equdly useful new grasp template
can be obtained by flipping everything across the plane between the two arms, so that
right grasps become left grasps and vice versa. If the template picking agorithm had
included more specific object matching after narrowing down the fidd of possbilities

(for instance, using mismatched volume ratios), the origind template could have been
didinguished from its eft-right flipped template. However, the gross properties of the
object usad in template picking do not distinguish between the two. Thus, whilefinding
the set of functiona groups'rdative rotation with the highest qudity, we look not only a
those for the original template, but also a those for the template's | eft-right flipped
equivalent.

6.6 Adjusting Coefficients

When finding the quality value for a particular functiond group paring/relaive rotation
&, it isimportant to find an gppropriate set of coefficients for the weighted sum of
pendty parameters. Thisis because some parameters are much better than others for
edimating how good a particular set is, and those should be weighted more heavily. Itis
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possible to find such coefficients by optimization based on hand-labeled examples of
good and bad matches.

An unsuccessful firgt try was done to optimize the coefficients to yidd qudity
vauesof 1 and O for good and bad grasps, respectively. However, quaity vaues vary
widely among template/new object pairs. The best qudity vaue for atwo-hand grasp
might aways be higher than the best qudity vaue for a precison grasp, and trying to
make the good grasps for al template/new object pairs have a qudity value of 1 yields
useless coefficients that are mostly zero.

In order to find useful coefficients, one must redize that the important thing is
that the order of the quality values for each template/new object pair be correct. Good
functiona group/rotation matches for a particular template/new object pair must have
higher quality vaues than bad ones; other than keeping quality vauesin reasonable
ranges, the actual numerica vaues of the qualities are unimportant.

Thus, coefficients were found by doing smulated annealing on an objective
function that condsted of a sum of pendtiesfor out-of-order qudity vaues. All possible
functiona group/rotation combinations for al objects in the example and training object
sets were hand-labeled with O (unacceptable), 1 (acceptable), and 2 (optimd). If a
particular coefficient set caused an unacceptable example to have a higher qudity vaue
than an optimd example, ahigh pendty vaue of a condant timesthe differencein
quality vaues was added. Pendtiesfor out-of-order pairs of unacceptable-acceptable and
acceptable-optimal were aso added with smdler congtants. In this way, the optimization
triesto find the coefficients that would most often rate an optima example with the
highest quality vaue for that template/new object pair, and as sldom as possible rate an
unacceptable example highest. Findly, afurther pendty was levied for the highest
qudity value of atemplate/new object pair being smaller than 0.1. Thiswasto keep the
coefficients from dl going to zero, where no qudlity vaues would be out of order.

Because the coefficient-finding pendty is proportiond to the difference in qudity
vaues, the Sze of the difference in qudity vauesis somewhat important. Thisisthe
reason for the equation for the functiona group quality value (described in section 6.4)
being theway itis. We do not care much about differences among very bad functiond
group/rotation combinations, and thus high vaues of the weighted pendty sum are
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sguashed to near-zero quality values. However, we care a greet ded that the optima
functional group/rotation combination is chosen over less optimal/bad combinations, and
thus the differencesin quality vaues for low vaues of the weighted pendty sum are
exaggerated.

The coefficients that were found in this manner yielded good results, aswill be
discussed later. The previous best hand-tweaked coefficients found unacceptable grasps
for two of the training/example objects, the optimized coefficients found acceptable
graspsfor dl objectsin the training and example sets. An interesting result of optimizing
the coefficients was that the part-scaed template ratio turned out to be usdless. This
makes sense, since the template group's bounding box is scaled to fit ingde the new
object group's bounding box. While the mismatched new object ratio will be high if the
template object had to shrink greetly to fit inddeit, the ratio of noncolliding template
pheres will generdly be very low, and doesn't add particularly useful information even
whenitisnot.

6.7 Examples of Functional Group Matching: Seven
Objects

Throughout the rest of this paper, seven objects from the hand-generated test set—one for
each template grasp—will be used to demondrate the grasp generation process in further
detail. One such example isthe sgn-paddle example used throughout this chapter.

Figure 6.11 shows the functiond group pairings as well as the resulting grasps chosen by
the contact-mapping module for al seven objects.



New object Template Resulting grasp

Template 1:
Box to

ChineeYo-Yo

Template 2:
Tiny bottle to

paper stand

Template 3;
Hammer to

Fancy bottle

Template 4:
Bottle to

barbell

Template 5:
Fat vaseto

large mug

Template 6:
Square club to

road sgn

Template 7:
Sgnto

paddle

n |

Figure 6.11: Functiona group matching and resulting grasps for seven test objects
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6.8 Results

6.8.1 Example and Training Objects

As mentioned earlier, optimization with smulated annealing found coefficients that
generated viable contact mappings for al example and training objects. All the grasps
generated appeared both natural and adaptable for successful pick-up, for a100% training
successrate. However, to avoid annoying the reader with too many tables of objects, we

will omit the example and training grasp tables.

6.8.2 Hand-generated Test Objects

Viable, natura grasps were found for al but one hand-generated test object. The grasp
generated for the mug (the highlighted last object under Template 3) could potentidly be
used to successfully pick up the object, however avkwardly, but no human would grasp it
inthat manner. The mug is aso the object that was classfied under a different grasp
template than it was intended for in the template picking step; while it could be picked up
with that template grasp, a human would probably pick it up by doing a pdm-grasp-from-
top on the cylindrical part of the mug, not the box handle part. If it were an actua

handle, a human might pick it up that way, but sinceit isnot area handle, the grasp is
poorly chosen. The other 20 of atotal of 21 hand-generated test objects appear to have
both viable and natura grasps. Figure 6.12 shows the chosen grasps for the hand-
generated test objects.

Figure 6.12: Grasps for hand-generated test objects
Template 1
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Template 2

Template 3

Template 4

Template 5

Template 6

Template 7
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6.8.3 Randomly generated Test Objects

The grasps chosen for all 100 randomly generated test objects appesar to be both viable
and natural. While three of the objects were classified under incorrect templates during
template selection, the problem with their classification was due to the grasps not being
natura, not due to them not being viable. Due to the high friction of objects used in this
smulation, al three grasps are actudly viable. Also, because we consider agrasp to be
naturd in this section if ahuman would feasibly grasp the new object in the manner
chosen if told to use the given template grasp, al three grasps for those objects are
actualy correct by our definition of correctness. Figure 6.13 shows the chosen grasps for
the randomly generated test objects.

Figure 6.13: Grasps for randomly generated test objects

Template 1

Template 2
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Template 5

Template 7

6.8.4 Impossible Test Objects

Of the grasps chosen for the ten objectsin the impossible test sat, none of them is both
viable and natura. As mentioned earlier, for the object under Template 4, the system
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correctly detected that the best palm-from-side grasp of the large square bottle is around
the neck of the bottle rather than around the main part of the bottle, snce the main part is
too largeto fit in the hand. However, later we will find that the object is actualy too
heavy to belifted in this manner despite thisworkaround. Also, while the first object
under Template 5 looks viable and natura, the object was designed to be too heavy to
pick up, and thus viahility is not achieved.

Figure 6.14: Grasps for impossible test set
Template 3

Template 4

Template 5

Template 6
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Template 7

6.9 Extensions to More Complex Object Models

As mentioned earlier, it is possble to use this method for objects congsting of primitives
not in aline, or whose primitives axes of symmetry do not line up. Such objects would
smply have more ways of lining up: if objects are not in aline, the number of possible
functiond groupsincreases. If the axes of symmetry do not line up, the number of
possible rotations increases, not only between the two objectsin generd but dso in terms
of possible rotations between individual matching functiona groups. This method does
not scae very wel in terms of complexity; the number of possible functiond groups goes
as the number of primitives squared. Since the entire ligt for the template must be
compared to the entire list for the new object, the number of comparisons goes asthe
number of primitives to the fourth power. Currently, matching a one-primitive object to
another one-primitive object takes milliseconds, matching athree-primitive object to a
three-primitive object takes afew seconds. Fortunately, most small objects can be
modeled as one or two primitives, and thus more complexity is unnecessary. If you are
tempted to model an object with too many primitives, it islikely that it would be possible
to modd it with fewer primitives with only minor loss of fiddlity.

Also, complex objects such as figurines can be modeed by afew bounding
boxes/spheres/cylinders. Once contacts are generated for the crude models, contacts can
be adapted for the actud object by finding the nearest points on the surface of the object
itself, in asmilar manner to the method used for finding contact points on the surfaces of
primitives in afunctiona group. A more complex mode of the object can then be input
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into the step that adjusts contacts for arm geometry and collision rejection, so that the
actud geometry is taken into account when finding afessible grasp.

6.10 Conclusions and Contributions

In this chapter, | detailed amethod of adapting recorded template grasps to new objects.
To solve the problem of digning parts of atemplate object with parts of a new object, |
introduced the concept of functiona groups, which isamethod of breaking up the
primitives of the template object in away that can be matched sensbly with sets of
primitivesin the new object. To map contacts from one object to the next once they are
digned, | introduced the concept of dimensiondly normdized coordinates, which are an
intuitive method of finding ana ogous contacts on a matching functiona group.

In order to pick the optima functiona group match, | discussed a set of
parameters that make up a qudity vaue for each functiona group pairing and relative
rotation between two objects. | dso outlined a method of usng smulated anneding to
optimize the coefficients that determine the quaity value for agiven set of parameters.

Finaly, | demongtrated this method with the database of seven objects on training
and test sets, with zero incorrectly classified objects on atraining set of 35 objects, one
incorrect on a hand-generated test set of 21 objects, and zero incorrect on a randomly-
generated test set of 100 objects. | aso showed some of the pitfals of thismethod using
an impossible test set with 10 objects.
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Chapter 7
Adjusting Grasps

In the previous chapter, we adapted a chosen demonstration grasp sequence to our new
object geometry. For each keyframe in the grasp sequence, the contacts that we found
need to be adjusted and checked for feaghility, a process we will discussin this chapter.

In this chapter we will make extensve use of the smulated world to test our
grasps and adjust things like arm angles or contact forces. While doing so, we often use
grasp controllers, detailed in section 7.4, to control the arms while we run the smulation.
The same controllerswill be used to execute the final grasp trgjectoriesin smulation to
test them for feasibility, aswe will seein Chapter 9. If we were going to use ared robot
to execute our grasp trgjectories after testing them for feasibility, we would again use
amilar grasp controllers. Thus, it may be useful to think of the grasp adjustment process
astrying to find conditions under which our grasp controllers can successfully pick up an
object.

As mentioned earlier in Chapter 3, such adjustments do not necessarily haveto be
meade by running scenarios in the smulaion. Running steps of the Smulation issmply
solving aset of equations, and so it would be possible to replace use of the smulation
with amore explicit set of equations that gets us the answer we desire. However, using

the smulation to find solutions makes the process more intuitive and easy to monitor.

Goal:

Given anew object and akeyframe with aninitia set of contacts adapted for that object,
find afeasble st of arm angles and object position/orientation that successfully supports
the object in amanner that appears to be anaturd grasp. If the keyframeisthelagt inthe
grasp sequence, the object cannot till be touching the table. If the keyframesinitid
contacts cannot be adapted to successfully grasp the object, report failure. Whether the
grasp is naturd or not will be determined by a human judge.
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Approach:

- Find the arm angles and object position/orientation that come closest to making the
given contacts without bodies colliding (interpenetrating)

- Set up the world with the resulting arm angles and object position/orientation, without
gravity, and alow the hands to wrap around the object if appropriate

- If not al the appropriate body parts/table are touching the object, move the arms/object
until they touch eech other

- Add gravity and seeif the object dips—if 0, increase the force applied at the contact
points that dipped until they siop dipping

- If the object continuesto dip, report falure

7.1 Finding Feasible Arm Angles and Object
Position/Orientation

The st of contacts that are passed to the contact adjustment module describe desired
contact locations on body parts'table and object, desired relative rotations between the
two, and desired distances between the two (gpproximately zero for non-hand contacts).
All the contact information but the locations of the contact points on the object are copied
over identically from the demonstration grasp; the locations on the object are aresult of
the contact mapping process described in the last chapter. For basic grasps such asthe
fird five template grasps, very little adjustment to these contacts typicaly needsto be
done. Inthese cases, dl the adjustment process usudly doesis to push the hands out of
the object if the initid contacts cause them to collide. However, for grasp sequences with
keyframes that involve more body parts—for instance, one of the keyframesin the tuck-
under-arm grasp sequence that touches upper arm, lower arm, opposite hand, and torso—
the arm geometry usualy makes the exact desired contactsinfeasble. Thus, we must
find the arm geometry and object position that comes closest to satisfying the desired
contacts while rgjecting collisons.

To accomplish this, we minimize a function thet reflects how 'bad' a given set of
arm angles and object postion/orientation is. This function is aweighted sum of severa

95



parameters whose weights are hand- sdected based on looking at how well the training set

keyframes are adjusted under those weights. The parameters are as follows:

1) Sum of squared differences between the initial guess and current arm angles
2) Squared distance between the initial guess and current object positions
3) Sum of squared differences between elements of the initid guess and current object
orientation matrices
4) For each contact:
Squared distance between the location on the object and the location on the body
part/table that should be in contact
Sum of squared differences between elements of the recorded body part/object
relative orientation matrix and the current relative orientation meatrix
Difference between the recorded body part-object distance and the current body
part-object distance (for most body parts, that distance is zero; for hand
contacts, that distance is the distance between the middle knuckle and the
object)
5) A sum of squared contact depths for colliding parts over asmdl limit (0.05")

For parameters 1-3, we refer to the 'initial guess arm angles and object
position/orientation. These do not come directly from the demongiration grasp, but rather
from aquick minimization of a function that uses the same parameters but without
looking at collisons (parameter 5), and starting from the demonstration arm angles and
object position/orientation. Thisis because cdculating collisonsis the mgjor time-
limiting Sep in performing minimization. 1f we minimize the function without collisons
firgt, we can quickly find a set of arm angles and object position/orientation that
approximately satisfies the contacts for the new object, but with possible unwanted
callisons. Using the resulting arm angles and object position/orientation as an initid
guess, dl the full minimization hasto do is to push bodies out of each other. Thisaso
makes a good solution much more likely, since if we started from the demondration arm
angles and object postion, we are much more likely to fal into an unacceptable local
minimum blocked from an acceptable solution by collisons between bodies.

96



The full minimization, with collisions taken into consideration, is accomplished
by running three separate agorithms and taking the best result. Thisis because any one
agorithm often fals into an unacceptable loca minimum despite our initid guess
minimization, but one or two of the three typicaly finds an appropriate solution. Because
they are dl minimizing the same function, one can easlly compare the results by seeing
which has the lowest objective function value. The firgt dgorithm is that used in CFSQP
(Lawrence, 1995), aminimization library based on feasible sequentid quadratic
programming. The second is the downhill mplex method in multidimensions, as
described in Numerica Recipesin C++ (Press, 2002), which is also the method used for
theinitid grasp function minimization. Thethird isthe Smulated annedling dgorithmin
the GNU Scientific Library (GSL) (Gdass, 2003).

Figure 7.1 shows the demondration keyframe, the keyframe before minimization,
theinitia guess result, and the full minimization result for athin Sgn being grasped over
the shoulder. The keyframe before minimization uses the same arm angles and object
postion/orientation as in the demongration keyframe; this picture is there merely to show
the sarting point. Theinitid guessisthe result of one quick minimization run without

callisons being taken into account. Y ou can seein this picture that the Sgn is not
touching the shoulder asit should be, due to the less thorough nature of the initia guess
minimization. The fina minimization result, on the other hand, makes the proper
contacts.

Demondration keyframe Keyframebeforemin.  Initid guess Full minimization result

Fgure 7.1: Minimization results for over-shoulder grasp of thin Sgn
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7.2 Making Contact

The result of the previous section isa set of arm angles and object position/orientation
that can be viewed as a compromise among forces trying to satisfy the contact points, get
the object and appropriate body parts/table to contact each other, make the arm angles
and object not dtray too far from theinitia guess result, and avoid collisons between
bodies. Thisresult, assuming a reasonable solution is found, 1ooks approximatdy like the
demondtration grasp, adapted to anew object. However, it is not sufficient to smply find
afeasble scenario that 1ooks like the demonstration grasp when frozen; that scenario
needs to be able to successfully grasp the object and support it against the forces of
gravity. Because the minimization result represents a compromise of forces, the force
that attempts to make the appropriate contacts between the object and body partstableis
often only mostly successful, and thus the contacts are dmost but not quite made. Also,
once the hands are alowed to grasp the object, some settling inevitably occurs, and the
resulting scenario may not look anything like the origind minimization result. Thus, we
must dlow this settling to occur, and then find away to ensure that the appropriate
contacts are fully made.

7.2.1 Grasping and Re-grasping

When an object is grasped with the hand for the first time, the fingers closing around the
object often causes it to move dightly away from itsinitid postion. Becausethe act of
grasping is based on a set of finger controllers trying to wrap around the object, each
exerting varying forces on the object, it isimpossible to predict what the find grasp will
look like on the new object before actualy grasping. Thus, after finding the best initid
location for the hand, it is necessary to set up the keyframe and let the hand wrap around
the object asit will, then dedl with the result, which may not ook anything like the
origind minimization result.

Figure 7.2 shows how grasping can gresetly change the object position and
orientation from the origind minimization result by showing both the origind
minimization result before grasping, and the Sate of the smulation after grasping for the

98



same over-shoulder grasp asin Figure 7.2. Asyou can see, the hand wrapping around the
handle has caused the Sgn to rotate until it is no longer touching the shoulder. The

origind minimization result differs from the picture in the last figure because contact
continuity (aprocess of updating contacts using the previous keyframe result, explained

in the next section) was removed while generating these pictures. With contact

continuity, the grasp survived unchanged from the previous keyframe result, and thus

little change was observed during grasping. However, thisis not always the case even

with contact continuity; often the updated grasp contact cannot be accommodated in the
new keyframe, and grasping will significantly change the object position/orientation.

Origind minimizetion result Smulation after grasping

Figure 7.2: Grasping changing object position/orientation for athin Sgn

Even if no grasping is necessary, we would like to let the scene settle a bit, so that
if theinitid scenario isterribly ungtable, we can work our way into a more stable
Studion. Thus, after |etting the hands grasp, we run the smulation for afew time steps
to dlow thingsto stle.

7.2.2 Re-adjusting To Make Contact

After the hands have grasped (if appropriate) and the scene has been dlowed to settle, we
now have a scenario that places the object approximately where we want it to be.
However, asin the examplein Figure 7.2, it is often the case that the desired contact
points are not quite in contact. On the other hand, now we know what the initia grasp
looks like once things have settled a bit. For instance, with the above example of
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grasping the thin sign, if we ask the arm to move around artiny hbit, the settled hand
position on the sign should stay about the same. Thus, we record new contact
information for the parts that are most likely in control of the object (the controlling parts,
which will be discussed in section 7.4.1), and use that information to re-run the same
minimization as before to find a scenario that is not only likely to be stable, but that
makes the desired contacts.

In order to make sure that we make the desired contacts, it is often necessary to
run minimization multipletimes. Thisis because, as discussed a the beginning of this
section, minimization is akin to having severd forces pushing toward various gods, one
of whichisthe god of making al the desired contacts. However, most of the time, the
force trying to make contact can only bring the parts very close to each other, instead of
actudly touching. Thus, we must increase the force trying to make the contacts that are
not yet successfully made. We do thisin the same way as when increasing the actua
force on contacts that are aready made—by increasing the desired depth of the contacts.
Asthe desired depth of the contact is increased, the difference between desired and actual
depths for acontact that is not yet made isincreased, and thus the objective function
pendty isincreased, putting more pressure on the minimization function to make contact.

In the contact adjustment function, we loop through the following severa timesin
order to find a scenario in which the body parts/object make the desired contacts.

- Check the current scenario to see which desired contacts are made
- For contacts that are not yet made, increase the desired depth of the contact
- Re-run minimization to find a new scenario

Once a keyframe scenario with the desired contacts is found, the origina
keyframe is replaced by the new scenario. Figure 7.3 shows the same over-shoulder
grasp asin the last section successfully going through the contact adjustment loop once.
Asyou can see, the hand grasp is unchanged; the hand has merely moved to rotate the
object until it touches the shoulder.
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Smulation after grasping After contact adjustment

Figure 7.3: Contact adjustment for an over-shoulder grasp of athin Sgn

7.3 Adjusting Contact Forces to Avoid Slipping

Once we have a keyframe where the desired contacts are made, we must adjust the force
exerted at those contacts until the object can be supported without dipping. The
amulation is started with the arms and object at the locations found in the previous

section, and is then alowed to settle for afew time steps. During thistime, the arms are
controlled by the grasp controllers detailed in the next section, which attempt to move the
arms and object in a manner that exerts the correct amount of force on the keyframe grasp
contacts. Then the settled object location, orientation, and body part contact locations are
recorded, and gravity is set to full Earth gravity. The smulation isrun for aset period of
time, with the grasp controllers till in control of the arms. Then the object's location,
orientation, and contact points are checked again. |If the object has not moved or rotated
very far, and at least one contact point for each contacting body part has held, the
keyframe is declared successful.

If there are contact points that failed to hold, the force on those contactsis
increased by increasing the desired depth of the contacts. The Smulation is reset and run
again with the grasp controllers, and the contact points are checked again. Thisloop
continues for a set number of times, after which the keyframe, and thus the entire grasp,
isdeclared afailure.

The result of adjusting contact forces to avoid dipping for the thin Sgn example
used throughout this chapter isidentica to the contact adjustment result (the last picture

101



in Figure 7.3). Thisis because no contact force adjustment was necessary in this case,
due to a stable hand grasp and gravity holding the shoulder contact in place.

7.3.1 Contact Continuity

If akeyframeis successful and manages to support the object without dippage, the
contacts from that keyframe that belong to controlling parts—those body parts that are
most likely to be contralling the object, as will be discussed in section 7.4.1—are used to
update the next keyframe's contact information. In between keyframes, if the grasp
doesn't shift much, the controlling parts will likely have the same grasp on the object, and
that information is useful in making the resulting grasp sequence moreredigtic. For
ingtance, if afull pam grasp is used on a demonstration object, but the new object istoo
small to properly palm grasp because the table isin the way, the firg keyframe will be
more like aprecison grasp. If the object is picked up in the resulting grasp trgjectory
using that first keyframe and is then brought to an end state hovering above the table, the
end grasp isnot likely to shift to apalm grasp asis used in the demongtration end state
grasp. If continuity of contacts were not taken into account, the grasp adjustment process
would try apadm grasp on the end state grasp. However, if the object were too heavy to
pick up using the precision grasp that would actualy be used, the grasp adjustment
process would not determine this fact, snce the end state grasp tried would have been a
pam grasp. Figure 7.4 demonstrates contact continuity by showing a demongtration end-
state grasp for an object being grasped in apalm grasp, the adapted grasp of asmdler
new object on the table, and the end- state grasps for the new object with continuity of
contacts and without.

Demondtration grasp

New object End grasp with

End grasp without
on-table grasp contact continuity contact continuity

Figure 7.4: Contact continuity
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7.4 Grasp Controllers

While adjusting arm angles to make contact and contact forces to avoid dipping, the ams
are controlled by grasp controllers that attempt to keep the arms and the object in the
desired locations while exerting the gppropriate contact forces. As mentioned in the
beginning of this chapter, these are the same controllers used to execute the trgectory.
Thus, for each keyframe, our grasp adjustment processis trying to find appropriate arm
angles and contact forces that can support the object using these controllers. If the
process is successful, then as long as the grasp controllers can move the arms and obyject
between the adjusted keyframes while maintaining the gppropriate forces, the overdl
grasp should be successful. The grasp controllers are particularly important for grasps
that shift, either due to gravity or just due to the forces gpplied by the robot.

At times during the process of testing a grasp, the grasp we are testing will shift
dightly, and the object will end up in alocation that we do not want it to be. This does
not necessarily mean that the grasp is bad; in fact, both the tuck-under-arm and the over-
shoulder demondiration grasps involved afar amount of shifting of the object within the
hand and diding of the object aong the torso. This merely means that we should be able
to adapt to the circumstances in the face of shifting grasps. If the object we are holding
shifts within the grasp so that it is now pointed diagondly downwards, we should be able
to rotate the hand to bring it back to where we wart it to be. Figure 7.5 shows the same
thin sign example as before being held above the tablein its origind grasp, in a shifted
grasp after gravity is added, and after the grasp controllers have a chance to adapt to the
shifted grasp.

Origind grasp Shifted grasp Controller-corrected grasp
Figure 7.5: Adapting to a shifted grasp of athin sgn held above the table
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If the grasp controllers can adjust to the grasp shifting while adjusting keyframes,
then there is a reasonable probability that they will be able to adjust to smilar shifts
occurring while executing the full grasp trgjectory, and thus we can accept the adjusted
keyframes asfeasible. If the grasp controllers cannot properly adjust to the grasp
shifting, then it islikely that the grasp controllerswill not be able to execute the grasp
successfully. For example, if the object istoo heavy to support above the table during an
avoid-table keyframe, which will be described in section 7.5, or if the grasp istoo
unstable to keep the object from falling out of the hand, the grasp controllers will not be
ableto adjust properly. In this case, we declare the keyframe, and thus the entire grasp,
infeasible.

The purpose of the grasp controllersis to figure out where the arms should move
to keep the object where the keyframe thinks it should be, and to exert the proper amount
of force at each contact point to successfully support the object. Thisisimportant both in
supporting the object againg gravity, and in adapting when a grasp shifts. Grasp control
is done through minimizing two functions to find a new set of target am angles. The
firgt figures out the best location for the object to satisfy the keyframe grasp contacts, and
the second uses that object location to figure out the proper desired arm locations to
maintain contact forces.

7.4.1 Moving the Object

To explain how the first component of grasp contral is done, we musgt firdt introduce the
concept of controlling parts. The controlling parts are those body parts that are most
likely to be in control of the object. In other words, the controlling parts are those body
partsthat, if moved, will cause the object to move with them. Thisisimportant because
if we want to move the object to a new location, we need to know where the object is
likely to be if we movethe amsto anew set of angles. Immovable body parts such as
the torso cannot be controlling parts smply because they cannot move.

Controlling parts are identified by a smple hierarchy. If ahand istouching the
object, it is assumed to be a controlling part, smply because a hand grasp tends to be
better at controlling the object than other contacting body parts. If both hands are
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touching, they are both assumed to be controlling parts. If neither hand is touching, any
arm part that touches the object is assumed to be a controlling part. If only one body part
isacontrolling part, it is assumed that the relative position and orientation between the
object and that body part are fixed, and thus wherever that part moves, the object moves
withit. If more than ore body part is a controlling part, the object position and
orientation that would result from each body part being the sole controlling part is
caculated, and then they are averaged. While the object does not necessarily act exactly
in this manner as aresult of moving the arms, the instantaneous result is usudly fairly
reasonable, and thusit is usualy a reasonable assumption to make for acontroller that re-
evauates the stuaion every time step. There are times in which this hierarchy isterribly
wrong—for ingtance, if the object is sandwiched under an arm whose hand happensto
brush the object but is entirely not in control of it—but most of the time, the assumption
produces reasonabl e results.

At each time step, the contact points between the object and body parts/table are
recorded. A copy of the target keyframe is made, the keyframe grasp contacts are
updated to reflect the current Stuation, and the controlling parts are found. A function
congsting of the same parameters as above, except without the collisons (parameter 5)
being taken into account is minimized over the arm angles. The object location for a
given st of arm anglesis caculated by assuming that the object moves with the
controlling parts, and in this manner, the best possible object |ocation/orientation that fits
the target keyframe isfound. The arm angles that get the object there are aso found, but

these are not used, for reasons we will explain in the next section.

7.4.2 Finding Desired Arm Anglesto Maintain Contact For ces

Asdiscussed in section 3.3.1, larger contact forces are obtained by picking arm angles
that attempt to push farther into the object. Thus, in order to maintain force a the
contacts, we input arm angles to the arm controllers that try to push the amsinto the
object with appropriate depths. The arm angles found while trying to figure out where
we want to move the object cannot tell us where the arm angles should be to maintain
force, because the object moves with the controlling parts while minimizing the function.
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Imagine this scenario: asign is being sandwiched between an arm and the torso, asin
Figure 7.6. The hand is not touching the sign, and thus the controlling parts are the upper
and lower ams. The minimization done to find the new object location moves the object
aong with the upper and lower arms, and because the upper and lower arms are exactly
contacting the surface of the sign, the arm angles that are found exactly contact the
surface of the newfound target object location. Now imagine that the best target object
location is exactly where the sign currently is. If those arm angles were used, no force
would be gpplied to the sgn with the arm, and thus the sgn would fal to the ground. In
order to find the desired arm angles that would gpply force to the Sgn, we must minimize
another function. Thistime we fix the object in place at the target object location, and we
find the best desired arm angles that would put the arms at the desired depth insde the
object at the keyframe grasp contact locations. However, because the object is not yet at
the target object location, and it is possible that the target object location could be far
away from the current object location, we do not use exactly the target object location
found in the last section. Instead, we take the current object location, and moveit dightly
toward the minimization target object location, and find the arm angles that best satisfy
the contacts at that location. Thus, the arms move in away that attempts to move the
object to where we want it to go, while smultaneoudy maintaining contact forces.

Figure 7.6 illustrates the grasp controller results for the under-arm grasp of asign
that is one of the example objects. The current situation is the result of using the grasp
controllers to get from the second-to-last keyframe in the grasp sequence to the end State.
In other words, the Smulation was started at the second-to-last keyframe's arm angles and
object location, and the grasp controllers were told to move to the end state keyframe.
This Stuation, while not part of the contact adjustment process, is good for illustrating the
gepsinvolved in the grasp controller.

The firg picture shows the overdl view of the current Stuation. The second
picture shows a close-up view of the arm contacts in the current state of the smulation.
The third picture shows aresult of the minimization step that tries to find the best target
object location to satisfy the contacts. In this case, the end-sate keyframe hasthe sgn
handle being tilted down from where it is now, so that is where the target object location

minimization triesto move it. However, the upper and lower arms are both controlling
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parts, and the object moves approximately with both of them, and thus the contacts are
not penetrating into the object—in fact, the lower am is not even contacting the object in
this minimization result. Thisis because, even though the lower arm contacts the object
in the current Stuation, the object location is an average of where the object would be if
the upper arm contact stayed constant and if the lower arm contact stayed constant. The
fina picture shows the result of the minimization step that tries to find the best desired
arm angles to maintain the correct contact forces for that object position. Theamsare
penetrating dightly into the object, to apply the correct amount of contact force. Thearm
anglesin this picture are the new target arm angles. While they probably will not

Ovedl view of current smulation Close-up view of arm contacts

\

Target object location minimization Contact force minimization

Figure 7.6. Grasp controllers for an under-arm grasp of asign
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actually be able to reach these angles due to difficulties with diding in the Smulation
discussed in section 4.4, using these target arm angles maintains the proper force on the
object even inits current state. This is because even though alarge portion of the target
velodity of the arms at the surfaceis tangentia to the surface, the norma component is
gtill enough to apply the correct forces.

7.5 Avoiding the Table

In our god Statement, we stated that the find grasp could not result in the object touching
thetable. In our method of testing generd grasps, there is nothing to say that if the object
is partidly supported by the table, the graspisno good. Thisisbecausethetableisa
perfectly viable support. Thefirst keyframe in which a body part touches the object
usudly involves the object being partialy supported by the table, and typicdly the hand

is only wrapped around the object as it Stson thetable. Later keyframes could use the
table as a support, particularly if agrasp sequence involved re-grasping to better position
an object to be gragped. Thus, we require only that the last keyframe be off the table,
since the object cannot be said to be properly grasped if it is still supported by the table.

To make sure that the object does not touch the table during the last keyframe, we
add one more parameter to our minimization function: tkarget — dactual, if dactual < Carget, @d
0 otherwise, where Grarger 1S the target minimum distance between the object and the table,
and dacrua 1Sthe actud distance between the object and the table. Asyou can seg, this
parameter is only nonzero if the object is closer than the target distance. This parameter
dso typicaly has ahigh coefficient, so that the there is alarge pressure toward keeping it
away from the table.

Besides making the last keyframe avoid the table, we dso sometimes add atable-
depart keyframe after the keyframe where the object loses contact with thetable. Thisis
because in the keyframe where the object loses contact with the table, the object is
typicaly partidly supported by the table, as mentioned earlier. If the next keyframeis
not the last keyframe (which is dready set up to avoid the table), it usudly involves
gaining anew contact, which can then ad in supporting the object. Whether or not the
hand can actualy lift the object off the table and to the new contact is never tested, and
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thisis quite important for a successful grasp trgectory. Thus, if the keyframe where the
object loses contact with the table is not followed by the last keyframe, we add atable-
depart keyframe just after it. The table-depart keyframe isidentical to the on-table
keyframe, except that the parameter is added to make it avoid the table, and success of
that keyframe is contingent on the object being successfully grasped in away that keeps
it off the table.

The avoid-table keyframes could dso be tested by smply removing the table, and
seaing if the arms can gill maintain their grasp on the object. However, thisisless
accurate for two reasons. First, heavy objects often cause the arms to sag somewhat, and
if the arms sag so far that the object would end up resting on the table while executing the
grasp trgjectory, we cannot redly say that the robot is successfully grasping the object.
Thus, we want to find arm angles and a desired object location for an avoid-table
keyframe that would ensure that even despite sagging, the arms would be able to support
the object above the table. Second, smply removing the table does not perturb the grasp
a dl; smply requiring the object to be in a different podtion/orientation is sometimes
enough to cause the object to fal out of an unstable grasp when it would not if the table
were amply removed. A grasp that unstable will most likdly not succeed in getting the
object off the table, and thisis something we would like to detect at this stage rather than

later on.

7.6 Results

7.6.1 Example and Training Objects

Adjusting grasps for the example and training set resulted in natura, successful grasp
sequences for al 14 objectsin thetraining set. For the example set, 20 of 21 objects had
natural, successful grasp sequences. One object—the square log that was the first object
under Template 6 in Figure 5.2—dipped out of the hand during the avoiding-table
keyframe discussed in section 7.5. The failure of this keyframe grasp was successfully
detected. The reason for thisis a common problem that we will see again and again in

the few bad gragpsin the test sets: the demonstration grasps of the over-shoulder and
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under-arm templates actudly start with precison grasps, not pam grasps. Thisis
because the table isin the way of a proper pam grasp, and because hand graspsin this
smulation cannot be reigbly shifted into an encompassing grasp, the fingertips are used
to pick up both objectsin aprecison grasp. However, the objects that fall under both
templates—Ilike the square log—are picked up far from the center of mass, and afair
amount of torque is thus required to maintain the grasp when the object is unsupported by
thetable. In short, apam grasp is required where aprecison grasp is used, and thus
farly heavy objectsin particular areligble to fal using this grasp, but even reasonably
light objects have somewhat ungtable grasps. Thisis primarily alimitation of the
smulaion—in red life, scooping an object into a proper pam grasp is easier, and thus

such grasps would be more stable in areal-world environment.

7.6.2 Hand-generated Test Set

For the various test sets, al keyframes in each object's gragp sequence (except theinitia
date of the smulation, which is nearly identical for dl gragp sequences) are diplayed.
For thefirgt five grasps, there are only two keyframes for each object; for the over-
shoulder grasp there are four, and for the under-arm grasp there are six. A falurein any
one keyframe in the sequence resultsin afailed grasp overdl, but sometimesit is
interesting to see how the other keyframes in the sequence managed to turn out.
Adjugting grasps for the hand-generated test set resulted in naturd, successful
grasp sequences for 19 out of 21 objectsin the set. The resulting keyframes are shown
below in Figure 7.7. The adjusted grasp for the mug is till unnaturd, since the
demonstration grasp was adapted in away that resulted in an unnatural grasp back in
Chapter 6, and adjusting it for feasbility does nothing to change that unnaturaness. The
resulting grasp, successful despite its unnaturaness, is highlighted under Template 4.
The other object that failed was the bulky sgn, the last object under Template 7. Aswith
the failed square log in the example s&t, the precison grasp used was insufficient for such
aheavy object. Asyou can see, the avoiding-table keyframe highlighted in the last row
under Template 7 could not support the object, and it dipped enough that the end of the
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sign touched the table. Thisfailure was successfully detected. Again, thisis dueto the
same problem explained in the example set resultsin section 7.6.1.

Figure 7.7: Adapted grasps for hand-generated test set
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7.6.3 Randomly Generated Test Set

Adjusting grasps for the randomly generated test set resulted in successful, naturd grasp
sequences for 94 of 100 objects. The resulting keyframes are shown in Figure 7.8.
Three objects were unnatura before, and are still unnatura now—the two balls
highlighted under Template 4, and the mug-like object highlighted under Template 4.
Three new objects had grasps that were not sufficiently stable, and resulted in
objects either dipping entirely or touching the table in an avoiding-table keyframe. All
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three failures were detected successfully. Thefird faled grasp was of atiny bal, only
oneinch in diameter, highlighted under Template 1. This object was difficult to grasp
using the generd, wrap-around-the-object hand controller duetoitstiny size. When
trying to grasp, the thumb and forefinger manage to somewhat pinch it, but the hand
controller was not precise enough to maintain that pinch without alowing the bal to roll
out. With abetter precison hand preshape like the one that will be described in the
future work section (Chapter 10), this could probably be grasped successfully.

The second object was the cylinder-and-bal object highlighted in the second-to-
last row under Template 4. The grasp for this object was less than optima because of the
awkward arm angles. Theinitia guess resulting from the contact adaptation process had
feasble arm angles, but aso had some minor collisions between the object and the
fingers. Such minor collisons are usudly resolved in a sensble way that does not hurt
the grasp. However, in this case, rejecting the collisions resulted in a degraded grasp,
because the arm angles required for a proper grasp with no collisons are beyond the joint
anglelimits. Thus, theinitid grasp of the object Stting on the table was not sufficiently
around the center of the ball, instead grabbing it off-center so that squeezing the fist
would cause the bl to pop out, which is exactly what happened in the second grasp. If
the object had been farther away from the robot, the arm would probably have reached a
better position around the center of the ball, and the grasp would have been stable.

The third object was the only object to fall under Template 7. Aswith the
unstable objects in the hand-generated test set and the example set, the precision grasp
used to pick up the sign-like object was not stable enough to hold it above the table.

Figure 7.8: Adapted grasps for randomly generated test set

Template 1

g <
= R L

113




Template 2

Template 3

114




115



mmmmmmm

hEthh
A =T i v
¥ b bk
oM WA A
R B
s 2 e N e
ﬁﬁ--ﬁﬁ




LR RN

Template 7

7.6.4 Impossible Test Set

Of the ten objectsin the impossible test set, none of the grasp sequences were both
successful and naturd. The grasp of the object under Template 4, despite looking
feasble, turned out to not have enough force to hold the object up. The blocky sign that
is the second row under Template 7, besides being too wide to fit under the arm, isaso
too heavy to grasp for the same reasons that the under-arm grasp of the randomly
generated sign failed. As expected, the grasp of the box with the protruding stick under
Template 5 was successful but unnatural. The grasps for dl the other objects failed for
the reasons detailed in section 5.6.3, when the impossible test set wasintroduced. Asyou
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can see, despite the system's success on a large proportion of random objectsin the
example, training, and test sets, there are il afair number of object typesthat it Hill
cannot successfully pick up.

Figure 7.9: Adapted grasps for impossible test set
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7.7 Conclusions and Contributions

In this chapter, | discussed how to adjust theinitial grasp contact points produced by the
contact adaptation method to create feasible grasps, and how to detect afailed grasp.
This process consgts of the following steps:
1) Finding the best arm angles and object position to make the keyframe grasp contacts
while avoiding collisons by minimizing an gppropriate cost function
2) Adjudting the minimization result by experimentally grasping the object under zero
gravity and compensating for shifted contacts
3) Adjusting the force a each contact point by testing the keyframe grasp under full
gravity and increasing the forces when the object dips
4) Reporting falure if the object continuesto dip
| dso discussed a grasp controller that attempts to compensate for grasps that shift
and result in unexpected Stuations. The controller uses two minimization functionsin
turn—one to figure out where best to move the object, and one to figure out what the
desired arm angles should be both to get it there and to apply forces at the contact points.
Findly, | test this grasp adjustment method on the contacts generated in the last
chapter, resulting in successful and natura grasps for 34 of 35 training objects, 19 of 21
hand-generated test objects, and 93 of 100 randomly-generated test objects. | also show
some of the objects that cannot be successfully and naturdly picked up with this system
overd| with a 10-object impossble test <.
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Chapter 8

FindingaTrajectory

Now that we have found afeasible grasp sequence for the new object, we must find paths
between the keyframesin the sequence to create afull grasp trgjectory. Often, there are
obgtacles such as the table or the head in the way of moving directly from one keyframe
to the next. Thus, this chapter deds with finding an overal drategy to get from one
keyframe to the next while maneuvering around obstacles. The specifics of how to

control the arms while actudly executing the trgectory are a separate issue, and are dedlt
with in the next chapter.

Goal:
Given asequence of keyframes, find afeasible trgectory that goes through each
keyframe in turn while avoiding obstacles and maintaining al held contacts.

Approach:
Use aprobabilistic roadmap to find a series of subgod keyframes between the origind
grasp sequence keyframes that are connected by direct, collision-free paths.

8.1 Probabilistic Roadmaps

The probabiligtic roadmap is a method for motion planning explained in (Kavraki, 1996).
Essentialy, the method congsts of building a graph—the probabilistic roadmap—whose
nodes are feasible configurations, and whose edges are feasible paths between the nodes.
The paths can be computed by any fast loca planner. New nodesto add to the graph are
randomly generated, and attempts to connect this node to the graph are done by testing
paths between the new node and a smal number of nearby, existing nodes in the graph
using the local planner. When the start and goa node are connected in the graph, a path
between the two configurations has been found.
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Asthe number of randomly generated configurations increases, the probability
that a path will be found increases. For particularly difficult problems such as those that
arise with the more difficult grasps, the number of configurations that must be tested can
be very large. However, by using agorithmsto pick configurations thet are likely to be
more useful than random ones, and by controlling how the random configurations are
generated, it becomes more likely that we will find a path in a reasonable amount of time.

Finding trgectories for the smple, grab-with-the-hands-and-lift grasps tend to be
farly straightforward, as often adding one or two gpproach configurationsis sufficient to
cregte a collison-free path. However, trgjectories for the over-shoulder grasps require a
bit of collison avoidance, and trgectories for the under-arm grasps are extremely
difficult due to the number of congtraints that must be satisfied throughout the trgjectory.

8.2 The Local Planner

In our case, theloca planner used to find paths between nodesis chosen to be as smple
aspossble it moves the arms from the start configuration angles to the god
configuration angles by interpolating arm angles. For this project, a configuration
congsts of aset of am angles and an object postion/orientation. The arm angles for any
configuration aong the path are found by interpolating the start and god arm angles.
Since we only know where the object is at the start and at the goal, we can only assume
that the object moves with the controlling parts (which are explained in section 7.4.1),
and that the grasp that the controlling parts have on the object changes smoothly from the
dart keyframe to the god keyframe. Thus, to find the object position/orientation, we
interpolate the start and goa contact information for the contralling parts, and then figure
out where the object would be for those arm angles using the new interpolated contacts.
The locd planner is used to test a path between two configurations. Moving from
the gtart configuration to the god configuration, a configuration is checked every time the
pam or elbow of either arm has moved 1/10". If al checked configurations dong the
interpolated path between the two configurations are feasible, then the path is accepted.
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8.2.1 Checking Feasibility

A new configuretion isfeagble if two conditions are met:

1) Any contacts between the body part/table and the object that are made in both start and
god configurations must remain in contact

2) Any collisons cannot be degper than those in the start and goa configurations (plus a
smdl leeway amount for contacts that ought to be held throughout)

The firgt condition ensures that the contacts that may be necessary to support the object
remain held throughout the trgjectory. If an object ought to get from one keyframe to the
next only by diding dong abody part, this condition requires that every configuration
aong the path maintain those contacts. Thisisimportant since, for ingtance, if an object
isbeing held only by an under-arm grasp, and moving to the next keyframe requires
diding the object dong the torso, lifting the arm such that the torso contact is lost means
that the object is no longer supported properly and can fall.

However, the second condition aso ensures that the object cannot collide with the
body part it is diding aong any more than it did at the Sart or god keyframes. Inthe
same Stuation, both the start and god keyframes probably include contacts with some
gmall, nonzero depth made while exerting contact forces. While executing the trgectory,
the controllers can be made to continuoudy exert the forces even while diding, but the
trgjectory mugt find configurations that alow the object to remain on the surface of the
appropriate body part. If the trgjectory dictates that the object should go through the
middle of abody part, the controllers will probably only cause the object to get stuck.

8.3 Picking New Configurations

For any new configuration with anew set of arm angles, a corresponding object
location/orientation must be found. For configurations directly aong the interpolated
path between the start and goa configurations, we used the same degree of interpolation
to interpolate the contact information, and then found the object position/orientation
based on where the object would beif it moved with the controlling parts. For random
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new configurations not directly between the start and god configurations, we can il
find the new object postion/orientation based on the controlling parts contacts, but we
need to know how to interpolate the contact information. Thus, we decide on the
interpol ation degree by mesasuring how far the new arm angles are from the start arm
angles, and how far they are from the goad arm angles, and using the distance ratio to
determine the interpolation degree. Thisway, no matter what path the arms take to get
from the start configuration to the god configuration, the grasp contacts are till assumed
to shift anoothly from oneto the other. To find the distance between two configurations,
we calculate the positions of the elbows and pams for both arms, and take the largest
distance moved by any of those four points.

8.3.1 Random Configuration Picker

The smplest and most generd agorithm for picking new configurations is one that picks
the arm angles randomly. Our random configuration picker does not choose arm angles
completely at random, however. Because most useful configurations lie somewhere near
the path from the gart to the god, our agorithm first picks a starting point that consists of
arandom configuration along the interpolated path between the two. It then decides how
much to randomly vary the arm angles, and picks random vaues to add to each arm
angle. Each arm angle is varied by arandom va ue chosen from a Gaussian with mean
zero and standard deviation of a congtant times the range of that arm angle. That
condant, in turn, is chosen by sdlecting a random vaue from the positive haf of a
Gaussian with mean 0.02 and standard deviation 0.1, and then limiting the value to be
between 0.001 and 0.25. Thus, many new configurations will be very close to the
darting point, but some will be very far from the starting point. Thisis useful because,
particularly for difficult gragps such as the under-arm grasp, the collisons are small and
the feasible configurations tend to be few and close to the direct path. These are dso the

mogt difficult to find, and thus we need to explore the nearby areas morefully.
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8.3.2 Approach Configurations

One of the most widdly ussful configurations for our purposesis an approach
configuration. An gpproach configuration is a configuration found by taking the very
first keyframe in which abody part touches the object, and increasing the distance
between the first contacting body part and the object. 1n most cases, thiswill be one or
both hands touching the object. 1n an gpproach configuration, the hands will smply be
backed a few inches away from the object. The reason thisis so useful is because
particularly for grasps in which the preshape is C- or L-shaped, the thumb tends to collide
with the object while swinging into itsinitial grasp postion. By requiring it to first hover
above the initid gragp position before descending upon the object, many collisons are
avoided. The approach configurations—currently, two are used, one at 4 inches away
and one a 1 inch away—are the first configurations picked and added to the graph, and
for most of the basic grab-the-object-and-lift grasps, adding these two is sufficient to

cregte a collison-free trgjectory.

8.3.3 Calliding and Expanding

Thisdgorithm for picking new configurations is actudly three separate dgorithms that
build upon the sameidea. The ideaiis thet, upon hitting a collison whilemoving in a
direct path from the art to the god, if we could just maneuver around the collision, we
might find a calligon-free path. Thisis somewhat like the potentid-field planner, which
attempts to maneuver around collisions even before calliding; thiswill be discussed in
the next section. There are three different methods of attempting to maneuver around the
collison: pushing bodies out of each other usng a minimization function, moving the
callison point on the object and on the body part away from each other in various
directions, and searching for random points around the collison point. Each uses, asa
garting point, a configuration along the direct interpolated path from start to god that is
infeasible, and expands from that point by trying configurations neer it.
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8.3.3.1 Pushing Bodies Out of Each Other

This dgorithm continues in the trend of using the minimization of functionsto

accomplish tasks that need to be done. In thisversion of colliding and expanding, a new
configuration is found by minimizing the same function as while adjusting graspsin

section 7.1. Thisfunction, as before, attempts to make the desired contacts while
rgecting collisons. Essentidly, anew feasible configuration is found using the

infeasible configuration as a gtarting point. This method may be somewhat dow
compared to generating random configurations. However, particularly for difficult grasps
such as the under-arm grasp, where the window of feasible configurations that make the
aopropriate contactsis extremely smal, usng minimization to find afeasble
configuration nearby is faster than trying hundreds of random, infeasible points nearby.

8.3.3.2 Moving Away From The Callision

Thisagorithm tries to move the colliding bodies awvay from each other. 1t doesthis by
finding the collison normd, and generating new configurations a varying distances by
moving the two bodies avay dong the normal, as well as aong four directions a 45° to
the normd. If afeasible configuration isfound at asmal distance dong that vector,
configurations at farther distances are then tested and added to the graph. New
configurations that place the collision points on body and object away from each other in
the correct distance are found by, again, minimizing a function over the arm angles.
Because collisons are not taken into account during the minimization, this method is
quitefast. This method is particularly useful when the collison isjust a smple bumping
of bodies, rather than a more complicated loss of contact.

8.3.3.3 Randomly Jitter Away From The Collison

This dgorithm merely uses the random configuration picker to generate random points
around the callison point. Thisis no different than running the random configuration
picker over and over again, except that only the infeasible configurations are used as

garting points, rather than any point dong the interpolated path. The point of this
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dgorithm is to focus the efforts of finding random configurations on aress that could

probably use afiner search.

8.3.4 Potential-Field Planner

Potential-field planners are a method for motion planning described in (Khatib, 1986).
Essentidly, they involve setting up artificid potentid fidds around bodies, so that
collisons can be avoided by ca culating the force that each body exerts on another body
inits range of influence, and moving them based on those forces. Bodies that should not
be calliding have arepdlent field, and the god has an dtrective fidd. Inthisway, smple
motion planning problems can be solved smoothly as bodies flow in away such that they
avoid colliding and move toward the god.

Implementing a potentid-field planner that takes into consideration dl reevant
body/object parts and the table proved to work only for very smple collisons, such as
those where the hand, not touching anything, triesto get into position for agrasp. The
point of usng the potentid-field planner was to move the arms according to the planner,
and every S0 often to generate and test the current configuration as a potentia node in the
probabilistic roadmap. However, grasps such as the under-arm grasps, where the object
is sandwiched between multiple body parts that are trying to make sure the object doesn't
penetrate too far while smultaneoudy trying to make contact, proved to be too chaotic
for the potentid field planner. It may be possible to make use of the potentid-fidd
planner if fewer bodies are taken into cong deration—for ingtance, if only the bodies that
collidein the direct interpolated path are made to avoid each other—buit this avenue has
not yet been explored. Thus, this dgorithm is mentioned only as something that was
tried, but not used.

8.4 Creating a Trgjectory Once a Path is Found
After sufficient nodes and edges are added to the graph to connect the start and goal

configurations, the shortest path through the graph using Dijkstras dgorithm. Thefina
trgectory is created by adding a keyframe (grasp configuration) for each node aong the
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path, as well as in-between keyframes every time the arms move more than some small
distance. Again, the distance that the arms move is computed by looking at the positions
of the ebows and palms, and taking the largest change in position.

8.5 Results

The process of finding atrgectory was only tested on those objects that had successful
grasps resulting from the grasp adjustment process in the last chapter. The unnatura
grasps were a so used, sSince whether a grasp sequence looks naturd or not has no effect
on whether it should be possible to find atrgectory through it. Due to the number of
pictures required to depict atrgjectory, only the trgectories generated for the seven
example test objects presented in section 6.7 will be shown here.

8.5.1 Training and Example Sets

Of the 35 objectsin training and example sets, one object had an unsuccessful grasp
sequence from the last chapter. Trgectories were successfully found for al 34 remaining
objects.

8.5.2 Hand-Generated Test Set

For the hand-generated test set, one grasp sequence was unsuccessful in the last chapter,
and thus we attempted to find trgjectories for 20 objects. Trgectories were successfully
found for 19 of those 20 objects.

Thefirgt object under Template 7 in the hand-generated test set—thedim dgn
with the bal on the end—was the only object in dl the test and training sets that could
not find atrgectory. To seewhy, let uslook at the start and god keyframes for the
segmert that could not find a path, in Figure 8.1:
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Figure 8.1: Start and god keyframes for difficult grasp trgectory segment

Asyou can se¢, in the firgt frame, the left upper arm and torso are touching the sign,
while the right hand grasps the end of the handle just above the table. In the next frame,
the left lower arm must swing around to touch the sign, but the left hand must dso
somehow duck under the Sgn so that the thumb ends up on one side of the sign while the
rest of the fingers end up on the other side. However, during this entire segment, the | eft
upper a'm and torso must continue to touch the sign; any configuration that does not meet
this requirement is deemed invdid. Also, the right hand is close enough to the table that
the left hand must be turned amaost completely horizonta in order to fit underneeth, or
the right hand mugt carefully lift the sgn handle up and back down again without losing
contact with the upper arm and torso. Finaly, the left hand must somehow get into its
fina pogtion without touching either sgn handle or right hand. If such amaneuver is
possible, it is very difficult, and would take our method an unreasonable amount of time
to discover.

To show what the generated trgjectories look like, Figure 8.2 showsthefind

trgectories for the seven hand-generated test objects we have been using as examples.
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Figure 8.2: Trgjectories for seven test objects
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Template 7

8.5.3 Randomly Generated Test Set

There were three objects in the randomly generated test set with unsuccessful grasps from
the last chapter. Tragectories were found successfully for al 97 remaining grasp
Sequences.
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8.5.4 Impossible Test Set

Only one object in this test set had a successful grasp sequence in the last chapter—the
box with the protrusion that blocks a natura grasp from taking place. The trgectory for
that object's grasp sequence was successfully generated, for a successrate of 1 out of 1.

8.6 Conclusions and Contributions

In this chapter, we discussed how to use a probabilistic roadmep to find trgjectories for
grasping problems that involve maintaining contacts. We dso discussed afew
agorithmsfor picking configurations that might be more useful than purely random ones,

or for picking random configuraionsin likely areas. Findly, we tested this method of
trgectory finding on training and test sets, and managed to successfully find trgectories

for 34 of 34 training objects, 19 of 20 hand-generated test objects, and 97 of 97 randomly
generated test objects.
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Chapter 9

Executing a Trajectory

In the last chapter, we found atrgectory represented by a series of keyframes that take us
through the adapted grasp sequence for anew object. However, it may not actually be
possible to get to the exact scenarios in the keyframes while executing this trgectory.
Thisismainly because the concept of controlling parts and the resulting object location
are just etimates, not guarantees of how the object will move with thearms. Thereis
aways the possibility of objects shifting within agrasp, and there are often difficulties
diding objects aong body partstable. Thus, executing the trgectory exactly as givenis
often impossble.

Each keyframe is represented essentidly as a set of goas and guiddines—when
moving to the next keyframe, we want to get to gpproximately the arm angles and object
position that we determined would be optima, and we want to make contactsin
approximately the locations we found while adjusting grasps, supporting the object dong
theway. Being able to adapt target keyframes to reflect changing conditionsin the
middle of actualy grasping an object is crucia to successfully executing a grasp
trgectory. If we can execute the trgjectory in amanner that closdly follows the goad's and
guiddines outlined in the grasp trgectory, adapting to changing circumstances aong the
way, the new trgectory will sill capture the gist of the origina demongration. Thus, this
chapter dedls with adjusting to the current ate of the smulation while actudly executing

the grasp trgjectory.

Goal:

Given atentative grasp trgectory for a new object, execute the trgjectory in away that
successfully picks up the object and that capturesthe gist of the origina demondration
grasp. Asbefore, a successful pick-up requires that the object be supported by the robot
and not by the table when the trgjectory isfinished. Whether atrgectory followsthe gist
of the original demondration or not will be evaluated by a human.
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Approach:
Usealoca grasp controller to run from one keyframe to the next in the tentative

trgjectory, adapting the next target keyframe as gppropriate to reflect current conditions.

9.1Grasp Controllers

The grasp controller used to execute the trgectory isidentical to the grasp controller used
while adjusting grasps in section 7.4. Briefly, the controller has two phases: one thet tries
to find the optima place to move the object, and one that figures out the desired arm
angles that would both move it towards thet location while maintaining contact forces on
the object. Both phases are accomplished by minimizing afunction over the arm angles
that starts from the current state and attempts to make the appropriate contacts,
disregarding collisons.

While executing the trgjectory, the object is Sarted initsinitid podtion on the
table, and the arms are started in their initiad positions, stretched out diagondly to the
sgde. Thefirst keyframeis set as the target, and the grasp controllers try to move the
arms to make the world reflect the informetion in the keyframe.

At each time step, the grasp controllers make a copy of the target keyframe, and
update the contact information of the controlling partsto reflect the current state of the
world. That information is then used to find the optimal arm angles as described above.
The desired arm angles are then fed to the arm controllers, which use a generdized
spring-and-damper to move the arms to the desired arm anglles, as described in section
33.1L

Running the grasp controllers with the current target keyframe continues until the
world is considered to be 'settled’. The arm angles and object locatior/rotation are kept
track of using 21 running averages (at each time step, the recorded average is multiplied
by .9 and added to .1 times the current vaue), and when the running average becomes
close enough to the current vaue for al 21 vaues, the smulation is declared to be
settled.

134



Once the amulation has settled, the next keyframe in the trgectory becomesthe
new target keyframe. When the smulation is settled on the last keyframe, the trgectory
isfinished.

9.2 Encountered Problems and Possible Solutions

9.2.1 Sliding

As mentioned earlier in section 4.4, diding bodies againgt each other in a controlled
fashion is extremdy difficult in this Smulation, particularly with friction set to ahigh
vaue. Thisisnot aproblem in most of the grasps, but for the under-arm grasp, the
demondtration inherently requires asmall amount of diding the object againgt the torso
and arm. Thus, for al the under-arm grasps, without a mechanism for dedling with
diding, the object would hit the torso and get stuck. Inred life, a person can easily ded
with difficulty diding by adding more force in adirection tangentid to the surface, or by
jiggling the object until it becomes unstuck. However, the smple controllers outlined
here have no such mechanismsto ded with diding. More work will need to be done on
the controllers to explicitly alow them to attempt to dide two bodies againgt each other,
possibly by detecting when the object is stuck and gpplying more forcein adirection
tangentid to the surface.

9.2.2 Hand Controllers

Good hand controllers and a good hand design are essentia to solid grasping, particularly
when thetactic isjust to put the hand in position and wrap the fingers around the object.
Most of the bad grasps that caused an object to drop were not bad in theory; with better
hand design and better hand controllers, the object could have been grasped successfully.
A human would have no trouble successfully completing the grasp, for indance. While
the hand controllers used here were sufficient to pick up most of the test objects, others
should have been successful, and many of the successful ones ought to have had more
stable grasps.
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The largest problem with the hand controllers becomes evident while trying to do
a2-hand grasp. Even in the demonstration grasp, the object is not redlly supported by the
pams of the hands, but rather by the tips of the fingers and part of the thumb. The
problem isthat, even if the grasp begins by touching the palms to the object before
wrapping the fingers around it, the finger controllers are not very good at exerting force
on the surface in aflexible, springy way. Currently, they try to maintain contect by
controlling their position to remain at asmall depth on the object's surface, or in other
words, to exert a constant force on the object's surface. However, they use their
maximum alotted force to hold that position. When one finger pushes further into the
object, the other fingers are sometimes lifted off the surface, and thus those fingers bend
further to make contact again, and as areault, al the fingers tend to keep bending further
and further. Forcing the fingers to hold their initid shape wrapped around the object and
only bending & the base of the finger is enough to hold onto solid grasps without curling
the fingerstoo far and losing the grasp.  For ingtance, with 1-hand grasps, the fingers are
typicdly completey wrapped around the object, and the fingers are limited from bending
further by the object itsdlf. In fact, the excess force used by the finger controllers can
sometimes be good for shoving asmal object into an enveloping grasp. However, for
larger objects, when the fingers are not limited in this manner from pushing the object
right out of the grasp, that is sometimes what happens. For 2-hand grasps, the finger
controllers have no way to prevent the pam from lifting off the surface, and thus those
grasps suffer greatly from the imprecise finger controllers. | the hand controller were
designed to limit the finger forces to exactly those needed to wrap around the object, such

problems would not exigt.

9.2.3 Detection of Unstable Grasps

Some of the grasps used to pick up the training and test objects were not very stable to
begin with, despite passing the testing-for-dippage phase of grasp adjustiment. Idedly,
we would like to detect unstable grasps while in the grasp adjustment phase, o that we
could try an dternate method of grasping before actudly executing the final grasp
trgectory. However, when a keyframe grasp holding an object in mid-air isset into
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position, unmoving, even an ungtable grasp that would never make it through the
movement required to get it into that position can sometimes be successful at just
resgting gravity. One way to fix this problem would be to actudly move the arms while
testing the keyframe grasp's ability to resst gravity. If the arms had to move dightly as
though they were getting into or out of the current keyframe, highly unstable grasps could
be diminated earlier.

9.3 Results

The results below were obtained using two separate pick-up trids: the first with low
finger forces, and the second with high finger forces. As mentioned in the last section,
the finger controllers exerting too much force often destroy otherwise successful grasps.
High finger forces are often bad for picking up smal objects and for keeping contact
during 2-hand grasps, but are often good for picking up medium-sized objects with an
enveloping 1-hand grasp. Thus, for each object, if low finger forces caused the object to

drop, higher finger forces were tried.

9.3.1 Example Set

For the example object set, which as mentioned earlier is used as an dternate training s,
16 of the 20 objects tested were picked up successfully and in away that capturesthe gist
of the demongtration grasp. One object was not tested because it failed grasp adjustment.
The results are shown in Figure 9.1.

The grasp of the second object under Template 1 (the thin cylinder) was
unsuccessful because when the fingers closed around the object, the table was in the way,
and the entire wrist was forced to lift upwards to dlow thefingersto close. The
momentum from the wrigt lifting caused the entire hand to be too high to make proper
contact, and the fingers missed entirdy while closng thefist. This could be fixed by
better arm controllers that reduce the momentum, or by closing the fist more dowly and
dlowing the arm to settle back into place before the fingers hit the object.
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The grasp of the third object under Template 5 (the oil drum) was unsuccessful
because it was smply too heavy to be held up by the 2-hand grasp. Asdiscussed inthe
last section, the 2-hand grasp actualy only uses the fingertips, and the friction forces
were not sufficient to prevent the hands from just diding on the surface insteed of lifting
the object.

The first two objects under Template 7 (two signs) were unsuccessful because the
controllers are not equipped to dea with diding; in both cases, the object hit the torso and
got stuck, and the hand wrapped around the handle broke its grasp trying to move the
stuck object. The third object under Template 7 was barely successtul, in that it managed
to end up with the object correctly sandwiched between the arm and the torso and not
touching the table, despite not diding very far from itsinitid postion when it first
touched the torso.

Figure 9.1: Trgectory execution results for example objects
Template 1
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Template 3
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9.3.2 Training Set

Template 6

Template 7

Of the 14 objects in the training set, 11 were picked up by successful grasps that followed
the gist of the demondtration grasp. Thefirst object under Template 5 was too heavy, just
like the similar object in the example set. Under-arm grasps of both signs were
unsuccessful due to the difficulty involved with diding. The results are shown in Figure
9.2

Figure 9.2: Trgectory execution results for training objects
Template 1

Template 2
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9.3.3 Hand-Generated Test Set

Template 4

Template 5

Template 6

Template 7

Of the 19 objects in the hand-generated test set that were tested, 15 were successfully
grasped in amanner that followed the gist of the demonstration grasp. Two objects were
not tested, one because no trgectory was found between the keyframes in the grasp

sequence, and one because it was too heavy, afact that was detected while adjusting

grasps. Theresults are shown in Figure 9.3.

The grasp of the last object under Template 3 (the mug) failed because it was an
inherently unstable and bad grasp. Thisfalls under the category of grasps that were
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unstable to begin with, afact that should have been detected during grasp adjustment. I
an dternate grasp were tried, amore natura grasp—for instance, grasping the cup part
rather than the handle part—could have been substituted successfully.

The grasp of thefirst object under Template 6 (the long log) failed because it was
too heavy for the hand to grasp 1-handed. Again, it was an inherently unstable grasp that
managed to get past grasp adjustment smply because the arm did not have to move.

The grasp of the second object under Template 6 (the thin Sign) failed, once (with
high finger forces) because the hand could not maintain its tenuous precision grasp of the
handle, and once (with low finger forces) because the grasp on the sign shifted too much
while trying to execute the trgjectory. The trgjectory contained a keyframe in which the
sign was very close to the head, and because the sign shifted within the grasp, it ended up
hitting the head and getting stuck trying to push through part of the head. This caused the
hand to lose its tenuous grip on the handle, dropping the sign. With hand controllers that
could cause the hand to envelop the handle into a more stable grasp, the trgectory could
have been followed more closaly, resulting in a successful grasp.

The grasp of the second object under Template 7 (the paddle) failed, again
because of the controllers inability to ded with diding.

Figure 9.3: Trgectory execution results for hand-generated test objects
Template 1

Template 2
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9.3.4 Randomly Generated Test Set

Of the 97 objects tested in the randomly generated test set, 92 managed to be grasped in a
successfully way that followed the gist of the demonstration grasp.

The two objects highlighted under Template 4 were dropped because of the
problem discussed earlier with the grasp controllers. With both objects, the hand was
curled around a cylinder in away that alowed the thumb, trying to maintain force on the
object, to shove the object out of the grasp entirely. The grasp in both cases looked
perfectly feasble, and with better finger contrallers, probably would have been
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successful. It isdifficult to see that this was the case for the second of the two
highlighted objects, because the object islying tilted against the shoulder, supported by
the ground. However, the thumb has aready lost its grip on the object, and the hand is
merely touching the object, not grasping it.

All three objects highlighted under Template 5 were dropped because of the same
problems with the grasp controllers improperly wrapping the hands around the object in a
2-hand grasp. Again, this could be fixed by better finger controllers.

Figure 9.4: Tragjectory execution results for randomly generated test objects
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9.3.5Impossible Test Set

Only one object in theimpossible test sat had a successful (abeit unnatural) grasp, and
thus it was the only object tested. This object—the box with the long protrusion that

destroys a natura 2-hand grasp, shown below in Figure 9.5—was successfully grasped,
for asuccessrate of 1 out of 1.
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Figure 9.5: The one remaining impossible test object

9.4 Conclusions and Contributions

In this chapter, we presented a basic grasp controller that adapts to the current scenario
while executing atrgectory. The controller minimizes two functions, one that decides
where the object should be, and one that decides both how to move it there and how to
maintain the appropriate contact forces. We tested the controller by using it to execute
the grasp trgjectories found in the previous chapter, and successfully picked up 27 of 34
training and example objects, 15 of 19 hand-generated test objects, and 92 of 97
randomly-generated test objects.
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Chapter 10
Future Work

Some of the intended future work has been mentioned previoudy, but here we will

outline the important aress.

10.1 Ongoing Learning System

As mentioned in the introduction, the systlem can be made to learn from previous
experience Imply by adding objects that were successfully grasped by a particular
demonstration grasp to the example object database. Inthisway, if anew object is
presented that has a geometry smilar to any object seen before, there isamuch higher
chance of picking an gppropriate grasp.

10.2 Improving Hand Controllers

As mentioned in section 9.2.2, amgor component in being able to successfully grasp
objects by the method presented in this thesis involves having good hand controllers that
can flexibly wrap around objects. A fair amount of research has been done in the area of
good hand controllers for wrapping around objects, particularly as it pertains to prosthetic
hands. Thus, one of the most useful improvements to the system would be to apply some
of these methods for creating better hand controllers.

Another aspect of the hand controllers that needs improving is the hand
preshapes—in particular, the C-shaped hand preshape. Since this preshape is primarily
used to pick up tiny objects, and humans tend to use the flat part of their fingertips to pick
up objects rather than the very ends of the fingers, better grasps of tiny objects could be
performed by changing the preshape so that the closed position endsin a pinch postion
rather than afigt.
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10.3 Sliding Controllers

Asmentioned in section 9.2.1, explicit techniques for dealing with bodies diding dong
each other will be needed to successfully execute grasps such as the under-arm grasp.
These will probably include components that detect when the object is trying to dide but
is stuck, and components that either increase force in a direction tangentia to the surface,
or decrease force in the normd direction. Thiswould aso enable gragps that explicitly
using diding, such as diding abook partway off atable to grab it by dipping athumb
undernesth.

10.4 Modeling Objects

In order to actudly use this system on red-life objects, they mugt first be modeed using
primitives such as spheres, boxes, and cylinders. The process of automaticaly generating
these modds, which as mentioned earlier is beyond the scope of thisthess, is something
that will have to be developed at some point.

10.5 Using More Complex Models

Right now the system uses only models of objects that include up to three primitivesin a
line. Inthefuture, it could be useful to extend this mode to more complex models of
objects, as discussed in section 6.9.

10.6 Probability Normalization of Quality Values

Currently, the rankings used to pick a demongiration grasp for an object and those used to
find the optima functiona group/rotation pairing are completely separate. These cannot
be easly combined, because qudity values for afunctiona group/rotation pairings cannot
be compared between demonstration grasps. An excellent 2-handed grasp might have a
lower quality vaue than amarginaly good 1-handed grasp, and thus the quality vaues
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cannot be used to compare the two. If, however, we can normaize the quaity values
used for both tasks such that they represent probabilities of success, we can combine
probabilities smply by multiplying. Thiswould enable usto eesly find the next- best
method of grasping to try when our first choice method fails.

10.7 Obstacle Representation

The smulated world used in our system currently has no obstacles other than the table
and the robot itself. However, obstacles could be added and represented in terms of the
parts of the demonstration object that are being blocked. Inthisway, if anew object is
presented of asmilar shape to an example object and aso with an obstacle blocking one
gde, the system would more readily know how to ded with it. Obstacles further away
from the object can dready be dedt with, smply because the grasp adjustment and
trgectory finding steps aready incorporate obstacle avoidance.
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Chapter 11

Conclusions and Contributions

Thisthes's examined the problem of using imitation learning, or learning by
demondtration, to teach arobot to grasp objects using typica hand gragps aswell as
whole-body grasps. A system to accomplish this task was presented that kegps a
database of example objects and their corresponding demonstration grasps, so that when
anew object is presented, a suitable grasp can be picked by finding asimilar object in the
database. The demonstration grasp contacts are adapted for use on the new object by
finding Smilar parts on both objects and lining them up. The matching parts are
essentialy scaled to match, and the demonstration object's contact points are mapped to
the new object by finding nearby points on the surface of the new object. While there are
no mathematica guarantees for success using this method, as long as a Smilar-enough
object can be found in the database, the resulting grasps are likely to be successful.
Theingpiration for this project was the fact that, for basic hand grasping of smple
objects, a heuristic grasp system that finds gppropriate locations on an object and uses
one of severd pre-programmed graspsis often sufficient. To extend this sort of grasping
to full-body grasps, and to enable the system to learn new grasps by demonstration rather
than having to pre-program heurigtic grasps, we developed the system presented in this
thess. In doing so, we made the following list of contributions:

- Showed thet complex demondtration grasp trgectories can be represented sufficiently
as a concise sequence of keyframes that record how the object is being supported during
the start and end of the smulation, as well as moments when contacts with the object are
added or removed

- Presented a method of ranking objects by geometric smilarity so that a suitable
demonstration grasp can be chosen

- Demonstrated how modeling an object using a combination of primitives such as boxes,
cylinders, and spheres dlows inherent symmetries to be used advantageoudy, and dso
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dlows smilar parts of two objects to be matched with each other easily by grouping the
primitives into functiona groups

- Presented a method of dlowing parts of one object to map to geometricaly smilar
parts of anew object by finding the optima match of functiond groups

- Discussed how to modify the contacts to use nearby contact locations that are feasible
for the arm and object geometries, and how to adjust the force exerted at those contacts
- Showed how a probabilistic roadmap can be used to find feasible trgectories for a
grasping task that involves maintaining contacts between keyframes

- Presented a smple grasp controller that attempts to adjust to current circumstances
while executing a grasp trajectory

The system was tested using a hand-generated test object set with 21 objects, and a
randomly generated test object set with 100 objects. Grasp sequences adapted from the
automatically chosen demondtration grasps that both looked natura and supported the
object successfully were found for 19 of the 21 hand-generated test objects, and 94 of the
100 randomly generated test objects. Trgectories for the adapted grasp sequences were
found and executed, resulting in successful grasps for 15 of the hand-generated test
objects and 92 of the randomly generated test objects.
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