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Abstract

The research contributes to the uncertainty management of engineering systems by

proposing and demonstrating a way to implement flexible platform strategy to re-

spond to future uncertainties. In today's competitive market, where market segments

are becoming more fragmented, pressure to develop and market diverse sets of prod-

ucts is increasing. To meet such market needs and reduce production cost at the

same time, product platform strategy has been implemented in several different in-

dustries. Using a core set of common platform elements and variant-specific unique

elements, a family of products can be produced to satisfy various market segments.

However, the growing cost of platform development and undesired side effects of the

strategy (e.g. performance tradeoff, cannibalization) is forcing companies to design

their platforms with flexibility, so they can accommodate product variants, differ-

entiate these variants, and be economically flexible to respond to specified future

uncertainties. This thesis introduces a design process to architect flexible product

platforms. The proposed process is demonstrated in two automotive application case

studies. In the first case study, a vehicle floor pan is designed to satisfy two different

length requirements, while being economically robust to future specification change

and component demand. The second case study investigates a vehicle platform, where

the flexible body in white (BIW) platform is designed for a family of three vehicle

variants through identification of critical elements subset. Results showed that the

flexible BIW platform is less profitable than the inflexible BIW platform, but when

the degree of future uncertainty increases, the flexible design eventually becomes more

profitable. This research provides additional examples that yet again confirms the

general proposition "flexibility gains value as the degree of uncertainty increases."

Thesis Supervisor: Olivier L. de Weck
Title: Assistant Professor of Aeronautics & Astronautics and Engineering Systems
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Chapter 1

Introduction

1.1 Prologue: Analogy of Flexibility

1.1.1 The Roman Empire

After the civil war ended in 31 B.C., the Roman Empire underwent a structural reform

under the leadership of Augustus Caesar. Roman legions, over 300,000 in regular and

reserve troops, were posted in the outer provinces, strategically and far away from

each other to minimize the chance of rebellion against the Imperial throne. These

provinces were under direct Imperial control, while the inner provinces, where no

armies were present, were controlled by the Senate. By instituting this political and

military administrative system, Augustus succeeded in achieving political stability,

which became the foundation of Pax Romana, a period of peace and prosperity.

However, the instituted system based on preclusive security strategy was not with-

out its own weakness. If any foreign invaders breached its outer defenses, there were

no military forces to stop them inside. So, it would take a long time to respond

to the threat. But at the time of Augustus' reign, the Roman Empire dominated

the Mediterranean region and northwestern Europe with no competition. Therefore,

this system worked well, despite its weakness to outside disturbances, such as foreign

invasions.

During the 3 rd century A.D., Emperor Diocletian addressed this weakness by creat-
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Figure 1-1: Roman Military Strategy (3 rd Century)

ing comitatenses, a central mobile army, which could respond to foreign invasions more

rapidly (shown in Figure 1-1). This was accomplished by stripping 100,000 troops

from border provinces and placing the mobile army on a strategic location within

the empire. Thus, two distinct types of armies were developed. In the provinces,

stationed along the borders, were the frontier armies made up of resident soldiers

(limitanei) and commanded by a leader (dux). A larger, better trained, and more

mobile field army (comitatenses) was under the command of masters of infantry and

cavalry (magistri peditum, equitum) [771. The Roman Empire thus acquired flexibility

to respond to foreign threats. However, this reform resulted in significant strength

reduction in border legions, making the entire frontier more prone to foreign invasion.

Additionally, there was only one complete mobile army unit, so when the war broke

out in two fronts, they were ill prepared to engage in both fronts.

The Roman Empire acqiored flexibility to respond to uncertain foreign military

threat, but the newly implemented flexible strategy weakened its border defenses

significantly, increasing chances of uncertain invasion. According to the Byzantine

historian Zosimus [11], this military reform contributed significantly to the decline of

the Roman Empire. This lesson - which is at the core of this thesis - is that flexibility

is desirable when a system of any kind is faced with exogenous uncertainty, but must

be implemented carefully to minimize undesirable side effects.
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1.1.2 The Automotive Industry

Today's automotive market is a fiercely competitive market where many global motor

companies are competing for market shares. In the 50's, the market was dominated by

the American Big Three (GM, Ford, and Chrysler), capturing 95 percent of total U.S.

market share in 1955. Three companies produced their vehicles on mass production

strategy based assembly lines. This was evident, since six models accounted for 80%

of all cars sold in 1955 [86]. It was easy to "defend" their market shares with small

number of vehicle models back then.

Since then, the automotive market evolved significantly. Customers started to

demand variety in vehicle models. Several Asian and European competitors started

to gain market shares in the United States. Market segments started to become

more fragmented, creating a need (or opportunity) for more diverse, yet low-volume

vehicles. In 2004, Mark Chernoby, Vice President at DaimlerChrysler Corp. stated

"twenty years ago we didn't have as much competition, the market wasn't as frag-

mented, and you could enjoy high volume... .we can no longer expect to enjoy these

huge half-million-per-model sales volume any more [13]." The traditional mass pro-

duction strategy could not keep up with market trend, since switch costs for changing

to a new product is very high.

To reduce this inefficiency in cost and to respond to the need of customers, au-

tomotive manufacturers implemented product platform strategy. By sharing key ele-

ments among various products in the product family, firms were able to develop new

products quickly, at reduced cost. One of the key concepts of product families is

the distinction between common and unique elements, where common elements are

used in all product variants while unique elements are specific to a single variant. In

some ways, a product platform may be viewed as a central reserve (similar to comi-

tatenses) or infrastructure from which multiple product variants can be derived, as

seen on Figure 1-2.

However, in recent years potential drawbacks of the product platform strategy

have become apparent. By sharing too many elements among different vehicles, vari-
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Figure 1-2: Product Platform and Family

ants were not differentiated sufficiently from each other, losing their unique brand

identity. An example of this is the Chrysler K platform, which at one point, was

the base platform for virtually every car the company developed [13]. In addition,

sharing elements between high end vehicles and low end vehicles resulted in canni-

balization of sales of high-end vehicles by low-end vehicle variants [16]. Finally, due

to the high cost of platform development, the firms that own the platform were re-

luctant to accept new product innovations that couldn't be implemented into already

existing platforms. What was needed is a product platform strategy that is indeed

an effective strategy to reduce development time and cost, while remaining flexible

enough to support multiple vehicle variants from a single platform.

One of the main drivers for such strategy improvement arises from the general in-

crease in the number of models to satisfy a wider range of customer markets which, in

turn, is becoming more and more fragmented due to more demand for customization.

At the same time, motor companies are under severe pressure to keep costs down to

be competitive in a highly competitive market, with a very low profit margin. As

results, companies are trying to reduce the number of vehicle platforms, since each

platform costs upwards of a billion dollars to create and sustain. Figure 1-3 shows

a projection of the number of vehicle variants per platform for major automotive

manufacturers. What each company defined as its vehicle platform may differ.

Note that for each company, the expected average vehicle models per platform

generally increases in the future. This trend implies that each vehicle platform must

26



Average Vehicle Models per Platform

Source: PWC 2003
6.00

5.00

4.00 DCX
-L---Ford

3.00- Honda

X- Toyota
2.00

1.00

0.00
2002 2003 2004 2005 2006 2007 2008 2009

Year

Figure 1-3: Projected Number of Vehicle Models / Platform for Automakers

accommodate a greater number of vehicle variants, thus requiring a wider platform

bandwidth in terms of product attributes and system-level design variable values.

From the discussion above, it is clear how the incorporation of flexibility into

the vehicle platform can help companies achieve objectives for the number of desired

product variants per platform, and create a distinct variety for each product in terms

of performance and brand distinction, while reducing costs and development time.

This raises a key research issue: how can we identify critical areas within a product

platform to incorporate flexibility for maximizing product distinctiveness and element

commonality, while minimizing switching cost, so that one may respond to changing

customer needs, policy decisions and emerging technologies?

1.2 Research Background

In the late 1980's, the mass customization paradigm [18, 62] emerged. Mass cus-

tomization focuses on serving the need of individual customers through high product

variety, while achieving economies of scale through high volume production using

flexible manufacturing processes. The rise of paradigm was a result of the emergence
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of global markets, which created new market segments based on age, gender, ethnic-

ity and lifestyle, resulting in a product variety increase and with development time

decrease [69].

Manufacturers were forced to seek more efficient and flexible product design and

manufacturing strategies to satisfy regional policies and regulations, demand for more

product variety, rising costs for raw materials, labor costs, manufacturing resources,

and faster evolution of new technologies. Two of the most successfully implemented

strategies were the lean manufacturing strategy [86] and the product platform strat-

egy [9, 51]. The lean manufacturing strategy attempts to reduce manufacturing costs

by decreasing or totally eliminating inefficiencies in the supply chain, as well as in

fabrication and assembly processes. The product platform strategy attempts to save

costs by sharing core elements among different products in the product family. A

significant amount of scientific research results have been published in the field of

lean manufacturing and platform strategy, but there still are many opportunities for

further research. In this thesis, major emphasis is placed on the product platform

strategy, especially on the question of how to incorporate flexibility in product plat-

forms. A major contribution of the thesis is the introduction of a flexible product

platform design process, taking into account exogenous uncertainties, and a concept

of flexible elements, which lie in-between common and unique elements.

Flexibility is defined as "the property of a system that is capable of undergoing

classes of changes with relative ease [3]." This property is embedded in many en-

gineering systems and products to account for any unforeseen future changes in the

operating environment, customer needs, and technological advances. One such exam-

ple is the Black & Decker power tool family. They created various product variants

by using common set of motors which have same diameter, but different lengths. The

common motor casing, to accommodate motors with different length, had built in

"degree of freedom" in terms of interior motor space [51].

With continuous fragmentation of product market segments and diversifying cus-

tomer needs, incorporating the right amount of flexibility in engineering, product de-

velopment and manufacturing has become a key strategic initiative for many product
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manufacturers. The product platform is no exception. One of the original purposes

of the product platform was to create a flexible infrastructure for a family of prod-

ucts. But the big question is how to identify places to embed flexibility? How much

flexibility is needed? How much will the flexibility cost? What is the future benefit of

flexibility? This thesis attempts to address the aforementioned questions by formu-

lating a design process for flexible product platforms that can be applied to systems

of increasing complexity.

1.3 Thesis Problem Formulation

In this section, the relevance of the thesis research is demonstrated through a simple

example. Then the objectives of the research are stated, followed by the limitation

of research scope.

1.3.1 Axiomatic Design Generic Example

Figure 1-4 shows FRDP (Functional Requirement - Design Parameter) representation

of three different systems. The first system is uncoupled, meaning that only one DP

is associated with each FR. The second system is decoupled, meaning that if DP is

changed in sequence, it can "guarantee the independence of FR [80]." Third system

is a coupled system, where change in a single DP affects multiple FRs.

FR, FR2  FR3  FR, FR2  FR3  FR, FR2  FR 3

DP1  X DP1  X DP 1  X X

DP2  X DP2  X X DP2  X X

DP 3  X DP3  X X X DP3  X X

Uncoupled System Decoupled System Coupled System

Figure 1-4: Three Systems in FRDP Form

Let's assume that, in the future, FR1 will change, and the system architect wishes
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to incorporate flexibility in the system to absorb the change. If flexibility is incorpo-

rated in DP 1 for uncoupled and decoupled systems, other DPs and FRs will not be

affected by change in FR1 . However, it is no longer the case with the coupled system.

DP1 and DP 3 are candidate DPs for the coupled system.

If uncertainty increases, and FR1 and FR2 are both uncertain, then the issue of

incorporating flexibility becomes more challenging. For uncoupled system, DP1 and

DP 2 can be independently changed to accommodate future uncertainties in FRs. For

the decoupled system, the flexibility can be incorporated into DP 2 to accommodate

changes in both FRs, or DP 3 can be flexible as well. In the coupled system, it is not

clear where to embed the flexibility.

Finally, if all three FRs are uncertain, situation becomes even more difficult. For

the uncoupled system, the flexibility can be incorporated in all DPs to suit changes

in FRs. For the decoupled system, the flexibility can be incorporated into DP 3 in a

way that it will not affect other DPs, but other DPs must be investigated as well.

For the coupled system, on the other hand, it becomes very difficult to identify where

the flexibility should be incorporated.

In the last case, where all FRs are uncertain, the uncoupled system required

flexibility in all three DPs. However, adding flexibility to each DP is relatively simple,

since flexible design for each DP can be tailored to the corresponding FR. In the

decoupled system, it is not the case. Flexibility in DP 3 (if it is chosen as key DP)

must be incorporated in such a way to meet the requirement in all three FRs, thus

making it difficult to come up with a satisfying design. For the coupled system, it

becomes even more difficult. One way to find critical DPs, assuming all FRs are

differentiable by all DPs, is to find the first derivatives for all FRs and DPs. The

Jacobian matrix of coupled system is shown in Equation (1.1).

[FR1  o DFR 1
OFR aDP1 aDP3

=_ - 0 FR 2  aFR2aDP aDP 2 aDP 3
aFR3  o aFR3
LDP1 aDP 3 .

Observing sensitivities of each FR with respect to corresponding DPs can reveal the
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priorities of DPs which can be candidates for incorporating flexibility. Much research

has been accomplished to identify sensitive DPs. However, once these DPs are identi-

fied, how can they be made flexible so they can respond to uncertainties in a specific

FR without affecting other FRs? This can be accomplished only through investiga-

tion of the physical system itself, and redesign of related elements that affects that

particular DP. Additional challenge comes from the fact that for each DP, there might

be several physical elements which need to be redesigned to achieve such flexibility.

After such redesign, the new flexible system then must be economically evaluated,

under several different uncertainty scenarios, to see if the incorporated flexibility has

value. This research gap awaits to be explored.

Most large complex engineering systems today (including product platforms) are

coupled systems, where a single DP may affect several FRs. When certain FR's trend

becomes uncertain in the future, it is very difficult to change the system to meet the

goal of that FR, largely due to such coupling and economic impact of making such

changes. If a critical subset (if it exists) of the system can be identified and made

flexible, the system can be flexible to changes induced by future uncertainties with

relative ease, compared to a system that has no flexibility. To address this issue,

especially for product platforms, this thesis proposes a design process, stated in the

next section.

1.3.2 Thesis Objective

The main objectives of the thesis is to formulate and demonstrate a new processes

to design flexible product platforms. The proposed process is shown in Figure 1-5.

Detailed formulation of the process is presented in Chapter 3.

The process starts with identification of product family, uncertainty, uncertainty

related attributes, and relevant system-level design variables. Then the product fam-

ily's system-level design variable bandwidths are determined through revenue opti-

mization. Established design variables are mapped to platform elements, and through

the change propagation analysis, critical elements are identified. Identified elements

are designed with incorporated flexibility to satisfy required design variable band-
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Step T: Identify Markets, Variants, and Uncertainties

Step II: Determine Uncertainty Related Key Attributes and Design Variables

Step III: Optimize Product Family and Platform Bandwidth

Step IV: Identify Critical Platform Elements

Step V: Create Flexible Design Alternatives

Step VI: Determine Costs of Design Alternatives

Step VII: Uncertainty Analysis

Figure 1-5: Flexible Product Platform Design Process

width and to respond to uncertain changes in the future. Costs for incorporating

such flexibility for the platform is calculated. Finally, the value of the flexibility is

determined through the uncertainty analysis, and the final decision to implement the

flexible design is made. It is hoped that this thesis will contribute to the advancement

of the field of engineering systems by introducing a framework to design flexible prod-

uct platforms, a complex engineering system, and demonstrating the process through

industry-based case studies.

1.3.3 Limitation of Thesis Scope

The thesis focuses on the development of a design process framework for flexible

product platforms. Its contribution is to establish a systematic process to create a

flexible platform that can be changed with relatively smaller increase in cost than

the inflexible platform, when required by exogenous uncertainties. Carrying pre-

identified uncertainties through the entire process, flexible design alternatives are

defined, including their initial investment costs, and switch costs for making changes.

The main emphasis of this research is to identify and incorporate flexibility in the

critical elements of the product platform, and demonstrate the value of flexibility

under future uncertainties. Figure 1-6 graphically shows the boundary of the thesis

research.
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Figure 1-6: Thesis Research Scope

The design process focuses on the early-stage conceptual product platform devel-

opment strategy. It deals with a new platform development, where a set of specific

uncertainties must be known beforehand, and the architecture of the product plat-

form must also be known. The number of desired product variants in the product

family is known as well.

Certain steps in the platform design process, namely Step IV (identify critical

platform elements) and Step V (generate flexible design alternative), shown in Figure

1-5, require engineering expertise. This is not an automated "push button" process.

Additionally, due to the nature of design, there are many non-unique solutions that

can satisfy given criteria.

1.4 Literature Review

A brief overview of relevant literature is presented. The main focus of this thesis is

the flexible product platform design process development. However, there are many

related fields that contribute to this research, directly and indirectly. Listed and

discussed here are literature that are closely related to the product platform design

research. They include conjoint analysis, attribute-to-design parameter mapping,

system decomposition, optimization theory and algorithms, product design, system
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architecture, product platform concepts and methodologies, flexibility in engineering

design and manufacturing, and uncertainty and decision analysis.

Conjoint analysis [1, 14, 32, 33, 82] is the most widely used technique to identify

and quantify customer needs on a measurable scale. Using conjoint analysis, firms

can 1) identify critical product attributes that affect customers' perceived product

values; 2) estimate the likely success of a new product in a competitive environment

as a function of its critical attributes; and 3) efficiently design and position products

within market segments to maximize net return.

Mapping identified customer needs to designable engineering metrics is accom-

plished by implementing several techniques. A widely used method to accomplish

this task is Quality Function Deployment (QFD) [4, 36], which employs a needs-

metric matrix for mapping customer needs to identify and quantify proper design

variables. Another popular method is principal component analysis [22], which can

identify the most influential design variables when several data points are available.

Once engineering design variables and governing equations for customer preferred at-

tributes are established, they must be decomposed to minimize feedback. Numerous

articles are published in the area of system decomposition, where complex rela-

tionships of design variables are graphically expressed and decomposed for modular

design or feedback free design. One widely used concept is the Design Structure Ma-

trix (DSM), first proposed by Steward [78] and later refined and applied to industrial

products and processes by Eppinger et. al. [24].

The field of optimization is well researched. Arora [6] provides a good overview

of basic mathematical theories and applications of gradient-based single objective op-

timization. However, many system and engineering problems need to be optimized for

multiple objectives. As result, the field of multiobjective optimization emerged,

where multiple objectives are optimized, instead of a single objective. See Sawaragi

et. al. [70]. Recently, recognizing the importance of system design involving mul-

tiple disciplines, multidisciplinary design optimization has gained significant

importance. In addition, a number of new optimization algorithms have been de-

veloped. The current trend of optimization algorithm development is shifting from
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traditional gradient-based algorithms to more heuristic algorithms, based on natural

phenomenons. Examples of the most widely used heuristic algorithms are genetic

algorithm [28] and simulated annealing [43].

Product design and development is a key research field that has continuously

received great attention. There are many publications in the areas of product design

processes [60, 61, 80, 83] and product design paradigms, such as design for assembly

[7, 84, 851, design for manufacturing [8], and design for variety [49], of all which are

parts of Design for X methodologies. In addition, the field of system architecture

is gaining more attention as products themselves become more complex. Maier and

Rechtin [47] published a book that presents a basic heuristic framework for system

architecting. Crawley [17] is currently expanding the theory on system architecture

as well.

A product design and development strategy, which is the core of this thesis, is the

product platform strategy [65], the term coined by Meyer and Lehnerd [51]. The

strategy focuses on sharing core elements (components, interfaces, processes) among

different variants of a product family, achieving reductions in development cost and

time, while diversifying a number of product variants. According to Simpson [75], a

product platform strategy is mostly implemented in modular and scalable product

families. Examples of platform applications in modular families include Sony Walk-

man [68], ink jet and laser jet printers [25], modular component-based structures

[63], and automotive components [83]. Examples of scalable platform applications

include aircraft engines [66], airplanes [67] and automobiles [9, 57]. Numerous ar-

ticles on product platform strategy have been published. Topics include platform

design methodology [21, 30, 54, 58, 73, 76], platform-related metrics and definitions

[44, 49, 52, 59, 87] as well as economic evaluation [27, 31, 45, 46]. It is surprising

that almost no literature exists on the question of how product platforms can assist

in responding to uncertainty through incorporation of flexibility. The discussion is

usually dominated by the tradeoff between commonality (re-use) and distinctiveness,

for a known set of variant functional requirements.

In summary, this thesis will focus on product platform design to incorporate flex-
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ibility [13, 79] in critical platform elements, including components, interfaces and

manufacturing processes. Manufacturing flexibility is a mature research area.

Classic papers by Sethi and Sethi [74] and Brown et. al. [10] outline different classi-

fications of flexible manufacturing systems. Additionally, a publication by Fine and

Freund [26] developed generic formulation of flexibility evaluation method and applied

it to optimize flexible manufacturing investment for profit.

The prime motivation for embedding flexibility in product platform elements

themselves is to exploit opportunities arising from future uncertainties, such as unmet

or shifting customer needs, product demands, government regulations and technology

innovations. Once alternatives for embedding flexibility in product platforms have

been identified, their future value must be estimated and subjected to a decision-

making process. A widely accepted method in industry and academia is decision

analysis [15]. The recent rise of real options theory [71, 81] introduced new views

on future risk assessment and exploitation.

1.5 Research Gap Analysis

1.5.1 Platform Design Related Literature

In this section, literature closely related to the proposed research are described in

detail. Once these published design processes are presented, a research gap analysis

is done to identify gaps in the field of product platform design, and how the newly

proposed process can fill the gap. Several publications are available in the area of

product platform design. In this section, five papers are closely reviewed in detail.

They are papers published by Simpson et. al. [76], Martin and Ishii [49], Li and

Azarm [46], and Gonzalez-Zugasti et. al. [30, 31].

Simpson et. al. [76] proposed the Product Platform Concept Exploration Method.

In the paper, the authors state that it is a "formal method that facilitates the synthesis

and exploration of a common product platform concept that can be scaled into an

appropriate family of products." The method applies to scalable product platforms
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and families, and consists of five steps; 1) market segmentation grid creation, 2) factor

and range classification, 3) meta-model creation an validation, 4) product platform

specifications aggregation, and 5) product platform and family development. The

method is demonstrated through a universal motor case study, where a family of ten

motors are designed by varying the stack length. The compromise Decision Support

Problem formulation [53] is used for the optimization problem formulation. This work

presents a systematic way to determine the product platforms and families.

Martin and Ishii proposed another platform design method, called Design for

Variety method, to develop modularized product platform [491. The authors used

Generational Variety Index (GVI) and Coupling Index (CI) [48] to design platform

architectures that can be easily changed in the future. In the paper, GVI is defined

as an "indicator of the amount of redesign required for a component to meet the

future market requirements." The CI "indicates the strength of coupling between the

components in a product. The stronger the coupling between components, the more

likely a change in one will require a change in other." The method is demonstrated

through a water cooler example, where GVI and CI for seven major components

are calculated. Then, for components with high GVI and CI, flexible designs were

generated to reduce GVI and CI, thus lowering future redesign (switch) cost. The

results presented by authors indicate that the product platform designed using DFV

method had significantly lower switch cost when it is required to change in the future

from external drivers or internal drivers.

Li and Azarm [46] developed a design process for product line (family) design

under uncertainty and competition. The design process is divided into the design

alternative generation stage and the design evaluation stage. During the design alter-

native generation stage, each design alternative is optimized through multiobjective

optimization. In the design evaluation stage, each design alternative is evaluated

using Multi-Objective Genetic Algorithm [56], due to the combinatoric nature of the

formulated optimization problem. In the end, the best product line (family) is chosen

using the selection rule, which takes into account designer's utility of the product

line balance. The proposed design process is demonstrated through a case study,
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where a cordless screw driver family is designed. Of three major components (mo-

tor, gear, battery), the motor was designated as the platform component a priori.

Through optimization of the other components, authors identified best designs for

several different uncertainty scenarios.

Finally, Gonzalez-Zugasti et. al. introduced a quantitative method to architect

product platforms [30], and a framework to assess value of product platform based

family using the real options approach [31]. In the first paper [30], the proposed

method was implemented to an interplanetary spacecraft family, where three candi-

date platform designs based on telecommunications technology (X-band, Ka-band,

optical) were optimized for mass, cost, and launch margin, given the pre-determined

set of future NASA missions. In the second paper [31], the interplanetary space-

craft family was evaluated under uncertain future mission requirements and platform

development investments, using the real options approach.

1.5.2 Research Gap

In the previous section, five publications closely related to the proposed research were

discussed in detail. They do cover several areas of product platform design. Then

the question is, how does the newly proposed process differ from previously published

design processes? Figure 1-7 shows side-by-side comparison of the proposed design

process with published design processes.

First, of all previously published methods, none of them deals with complete end-

to-end design process, where the uncertainty is mapped to product attributes, design

variables, components, flexible designs, then to relevant costs for economic evaluation.

Second, in most processes, the notion of "flexible elements" and its evaluation is not

apparent. In the methods proposed by Li and Azarm, and by Gonzalez-Zugasti

et. al., the focus of the process was to identify common and unique elements for

maximum performance and/or profit, but no mention of flexible elements. In the

work published by Martin and Ishii, flexible design alternatives were presented in the

case study, but the economic consequence and subsequent uncertainty analysis was

not presented. Work by Simpson et. al. deals with scalable ("flexible") universal
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Figure 1-7: Comparison of Product Platform Design Methodologies

motor, but only optimizes them for current needs. Finally, most of the previous work

deals with very simple examples, thus not capturing the intricacy of true engineering

systems design. From the discussion above, it is clear that the newly proposed process

will fill the research gap that exists in product platform design process. A graphical

representation of research gaps is shown in Figure 1-8.

Research Gap I Research Gap 2

-- -- - - - - - - - -- - - - - - - - - - - - - - ------- - - - --

Optimum Product Incorporating Flexibility in Evaluation of
Platform Design for Product Platform Elements for Flexibility

Today Future Uncertainty
------------ ---------------------------- ---------

Step I, II, I Step IV, V, VI Step VII

Figure 1-8: Research Gap

The first research gap represents a comprehensive end-to-end design process, and

the second research gap represents evaluation of flexible elements under future un-

certainty. This thesis proposes a design process that identifies critical elements in

the product platform for incorporating flexibility. Once the flexibility is incorporated

into identified product platform elements, uncertainty analysis must be performed to
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estimate how valuable the flexible design is, compare to the inflexible design. The

broader objective of this thesis is to fill a gap in the research area of uncertainty

management for large complex engineering systems by proposing a framework to in-

corporate flexibility in complex systems to deal with uncertainties.

1.6 Guide to Thesis

A brief overview of subsequent chapters is presented in this section to guide readers

to the structure of this thesis. Short description of each chapter is presented.

In Chapter 2, a general overview of the product platform is presented. This

chapter presents definition, classification, deployment strategy, pros and cons, and

practical applications of product platforms.

Chapter 3 presents the theoretical framework of the flexible platform design pro-

cess. The process first defines the boundary of product family and related uncer-

tainties. Then the family is positioned in market segments for maximum revenue.

A critical set of platform elements is identified, and is designed with incorporated

flexibility. Uncertainty analysis reveals the benefit of the flexibility in the product

platform, thus completing the process.

Chapter 4 presents a case study that demonstrates the incorporation of flexibility

in a single element. In the case study, an automotive floor pan is flexibly designed

to accommodate vehicles of different lengths, while being cost-efficient under future

uncertainties in demand and component specification change.

Chapter 5 presents a case study to illustrate the proposed design process in Chap-

ter 3. The case study investigates an automotive vehicle platform, where the Body in

White (BIW) assembly structure is designed flexibly to mitigate risks and to profit

from opportunities, which arise from future uncertainties. Finally, a thesis contribu-

tion and conclusion are summarized in Chapter 6, with discussion of promising future

research topics and directions.
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Chapter 2

Product Platform Overview

In this chapter, the product platform concept is investigated from a broad perspec-

tive. A general overview of the product platform concept is presented, including its

definition, classification, deployment strategies, advantages and disadvantages, and

its role within the corporate strategy. Practical examples and actual business cases

of platform implementations are also presented.

2.1 Overview of Product Platform

2.1.1 Definition

Various definitions of the term product platform have been offered by academia and

industry:

" "A platform is both an object and a process [9]."

* "The collection of the common elements, especially the underlying core tech-

nology, implemented across a range of products [50]."

" "The set of common components, modules, or parts from which a stream of

derivative products can be efficiently developed and launched [51]."

* "The collection of assets (i.e., components, processes, knowledge, people and

relationships) that are shared by a set of products [65]."
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Summarizing from definitions above, product platforms can be defined as a com-

mon infrastructure that serves as a backbone for multiple product variants. This can

include common components, processes, and interfaces that allow end products to

achieve unique variety in their product attributes by adding unique elements to prod-

uct platforms. Unique elements are only found in individual variants, but not in the

common platform. Thus, the classical distinction is between unique parts, which are

only found in one variant at-a-time, and common parts, which, taken as a whole,

form the product platform.

In this thesis, the goal is to extend the definition of product platform to include

flexible elements as well. Product platforms can be redefined as follows

An infrastructure (system) that consists of common and flexible elements (compo-

nents, processes and interfaces), which enables production of distinctive product vari-

ants and product families by adding unique elements, without changing common core

elements.

Figure 2-1 graphically shows the relationship between the product platform and prod-

uct family.

Product Family
Unique Elements

for Varianti Variant

Product Platform
Unique Elements

+ for Variant 2 Variant 2

Common Flexible
Elements Elements

Unique Elements = : IVariant 3
for Variant 3

Figure 2-1: Relationship Between Product Platform and Product Family

In the figure, the product platform is a collection of common and flexible elements,

when combined with unique elements, becomes a part of product variants, which

in turn, are members of the product family. Flexible elements in this thesis are

defined as elements that can accommodate each product variant's different requirement

through modification at lower additional investments, relative to other unique elements

that can achieve the same purpose. Throughout the thesis, the two terms (product
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platform and flexible elements) will be used with the definitions declared in this

section. Explanation of basic product platform elements (components, processes,

interfaces and architecture) are presented below.

o Components: This is what most people imagine when the term product plat-

form is mentioned. Many product families share common components across their

product variants. Usually, these components are key to achieving the functional re-

quirements of product variants, and contain core technologies, common to all product

variants. In some cases, core components vary in size for a variety of purposes (e.g.

maintaining common manufacturing processes or differentiated product performance

specifications). A perfect example is Black & Decker's scalable motor for its power

tool family, where the motor, a platform component, varies in stack length to achieve

different power output levels, so it can be used to leverage products in different market

segments.

o Processes: Several different processes can be part of a product platform. Key pro-

cesses are the product design process and the manufacturing process. Standardizing

the design process is an important aspect of the product platform. Robertson and

Ulrich go into detail on this subject, outlining how the high level planning process for

product platforms should be managed [65]. By standardizing the design process, the

knowledge necessary to design products can be retained more easily. Perhaps more

important in some industries than others, enforcing common manufacturing processes

can reduce both fixed and variable costs. In 1999, the Mitsubishi Charisma and the

Volvo S/V40 were built in the NedCar plant with 80% of the production process and

30% of the components in common [9]. There is much ongoing research to make

manufacturing processes share common elements through flexible manufacturing.

o Interfaces: To architect a successful product platform, a set of common interfaces

must be established to ensure a high degree of modularity in the system, which can

lead to wide product variety. One good example of an interface-based product family

is the vehicle panel meter family designed by Nippondenso [84]. Panel meters were

designed with common interfaces for ease of assembly. This allowed the company to
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assemble any panel meter variant with virtually no switchover time, enabling them to

respond to small order quantities very quickly. The personal computer is another good

example of common interface utilization. Finally, when a product family is modular,

the importance of common interfaces in the platform and between the platform and

the unique components increases sharply.

e Architecture: Most importantly, the underlying product architecture for a prod-

uct family should be the same. For automotive vehicles, one product family can be

Body-Frame-Integral architecture based, while another product family can be Body-

On-Frame architecture based. For the Sony Walkman product family, the tape player

architecture stayed the same while "cosmetic" items around them were changed in

order to meet different customer needs. Also, as discussed by Robertson and Ul-

rich [65], product architecture plays an important role in how product platforms can

be deployed to produce multiple product variants. A modular architecture is the

preferred choice for platform based products. By combining different modules, the

company can achieve product variety with a small number of modular components.

For some products, however, modularity - while desirable - is difficult or impossible

to achieve. There are indications that products which operate at high power levels,

or which are subject to tight light-weighting, aerodynamic and packaging constraints

are more likely to feature an integral architecture and platform design. Mass, power

and packaging efficiencies are much more important for portable electronic devices

and automobiles than they are for static industrial machinery [37].

The final form of the product platform is a collection of common and flexible

components, processes, interfaces and architectures that allows the company to offer

product families with distinct variants at low cost.

2.1.2 Classification and Deployment Strategies

In general, platforms can be categorized into modular platforms and scalable plat-

forms [29].

* Modular (Functional) Platforms: Modular platforms allow creation of func-
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tionally different product variants. A good example of such a platform is the Blended

Wing Body aircraft from Boeing. Using a common platform, the firm is potentially

able to create different product family portfolios, which consist of tanker, commercial

airplane, global transport, and bomber portfolios.

9 Scalable Platforms: Scalable platforms allow the creation of functionally identical

products with different capacities. Camera film is a good example. Using the same

film casing and the film itself as a platform, products with different numbers of

exposures (e.g. 12, 24, 36 exposures) and film qualities (e.g. ASA 100, 200, 400) can

be manufactured and offered to suit different consumer needs.

Once the decision to implement the platform is made, the company need to choose

the right deployment strategy. Figure 2-2 illustrates various platform strategies which

are implemented throughout various industries. In the figure, each cell represents

a specific market segment for a particular product. With a single platform, the

firm can cover different market segments using different approaches. Some of the

most widely practiced platform strategies are No Leveraging, Vertical Leveraging,

Horizontal Leveraging, and Beachhead Strategies [51].

No Leveraging

Market

Vertical Horizontal Segment
Leveraging Leveraging

Beachhead Approach

Figure 2-2: Product Platform Deployment Strategies

* No Leveraging Strategy: The platform is designed exclusively for a single market

segment. There is no other market segments that share this particular platform. This
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strategy is usually implemented for a high performance product with relatively high

development cost limits and limited performance tolerance range.

* Vertical Leveraging Strategy: The platform is shared among low-end, mid-

range and high-end market segments within the same brand. It is "vertical" in a

sense that a single platform is implemented from a low to a high end of the market

segment.

e Horizontal Leveraging Strategy: The platform is shared across different brands

but within the same class of market segment. A good example would be the Volk-

swagen A platform (see Figure 2-6), which covers medium vehicle market segments

for Volkswagen, Skoda, Seat and Audi.

9 Beachhead Approach: This is the most ambitious platform strategy. A single

platform is implemented across different market segments horizontally and vertically.

2.1.3 Advantages and Disadvantages

A benefit of the product platform strategy was pointed out by Robertson and Ulrich,

who stated that "by sharing components and production processes across a platform

of products, companies can develop differentiated products efficiently, increase the

flexibility and responsiveness of their manufacturing processes, and take market shares

away from competitors that develop only one product at a time [65]." There are many

benefits that can be realized by sharing various elements in the product platform.

The most obvious benefit realized is cost savings from economies of scale when

common components are used across the product family. These cost savings start

with the need to design, test and validate fewer parts and assemblies, which propa-

gates to manufacturing, supply chain and product servicing in the field. In another

instance, by acquiring the flexibility to produce an entire product family using a

flexible manufacturing process, the company has the ability to produce the "right"

product variants at the "right" time, in the "right" quantities. Another advantage is

that in some industries, the cost and time saving gained from commonality can be

invested in product features that influence consumer purchasing patterns in products

46



whose core functionality has essentially been standardized (e.g. interior design and

styling for automobiles).

Interface-based product platforms do not emphasize re-use of parts per se, but

specify clear part and module interfaces and common "hard" points. Identified inter-

faces and points provide more freedom in component and module design, as long as

interface standards are strictly followed. Many modular products have this benefit,

allowing manufacturers more freedom for product variety. Modern computers are a

good example. With standardized interfaces for CPUs, sound cards, video cards and

external peripherals, there is great freedom to customize the product to any user's

needs.

Design process based product platforms offer yet another unique benefit. By

standardizing design processes, firms can retain and store knowledge more efficiently.

Additionally, once designers are trained to follow the standard process, they can come

up with systematic design solutions faster, potentially reducing development costs and

time to market.

Even though there are many advantages of a product platform strategy, system

architects must also carefully examine disadvantages of this strategy to create the

best platform architecture for their particular needs. One of the foremost drawbacks

is the loss of product variant "performance" or distinctiveness due to component

sharing. Since common components cannot be customized to optimize each product

variant taken one-at-a-time, each variant must sacrifice some of its "performance"

for the common good of the product family or firm as a whole. This can result

in a potential loss of market share. The second drawback is the phenomenon of

cannibalization [16], in which the market share of high end products is usurped by

low end products of the same product family. This occurs when consumers are aware

of extensive component sharing between high end and low end products in the same

family. In Europe during the late 1990's, Volkswagen lost some market share to Skoda,

its cheaper Czech brand vehicle, when Volkswagen produced both Volkswagen and

Skoda vehicles from the same product platform. German car buyers, usually brand

conscious and fiercely loyal to German labels, recognized that buying a Skoda that
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shared 60% common parts and equivalent quality standards with a Volkswagen could

save them more money.

Serious performance flaws and safety problems may be caused unintentionally

by sharing a common platform. The Audi TT had to be retrofitted with a rear

spoiler from its original version, which was built off the Volkswagen A platform.

The rear spoiler improved handling and prevented the tail from spinning out at high

speeds. The perils of building both front- and rear-wheel-driven vehicles from the

same platform are now much better understood than they were in 1999.

Finally, the product platform itself might act as a resistor to new technologies,

especially if the current product platform is a big money maker. It is very expensive

to develop a new platform and to implement it throughout all manufacturing plants.

The added opportunity cost of plant downtime makes developing new platforms fi-

nancially unattractive. So, ironically, platforms promote innovation in the short-term

by facilitating the design and production of a multitude of product variants, but

they may well dampen long-term innovation by locking down large investments in

standardized design processes, manufacturing tools and supply chain contracts.

2.1.4 Macro-Perspective

The ultimate goal of a product platform strategy is to provide the firm with a core

infrastructure (consists of common and flexible elements) that allows production of

customized product family variants with a minimum increase in overall product fam-

ily complexity and development, production, and maintenance cost, while remaining

flexible to future changes in technology, customer needs and regulations. By shar-

ing common elements among different product variants, the firm can save money

through economies of scale and reduction of development resources. Additionally,

sharing common elements saves development time since core technologies or compo-

nents that are part of the platform do not need to be developed again. As a complex

engineering system, product platforms occupy a very important place within the cor-

porate strategy. Figure 2-3 shows a broad view of a generic corporate strategy and

the position of the product platform within that strategy.
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Figure 2-3: Product Platform in Broad Context

The corporate strategy is decomposed into three major plans: marketing plan,

platform family plan, and manufacturing plan. All three plans must be executed in

harmony to achieve the overall corporate goal: profitability. The marketing plan seg-

ments the market(s) and specifies which product variants compete in which segments

against which competitors. The platform plan assigns platforms to the variants in

one or more product families. The manufacturing plan assigns individual platforms to

individual production plants. The three plans are highly interrelated. An example of

this interrelationship is through the manufacturing capacity. It is desirable to achieve

a high utilization rate for the production plants (target: 85-100% of plant capacity),

which requires flowing and balancing actual and expected sales volumes, as shown in

the flow of demand from the right side of Figure 2-3 to the left side. This is a difficult

undertaking, fraught with uncertainty and significant financial implications.
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2.2 Applications of Product Platforms

2.2.1 Examples

There are many different examples of product platform applications, not limited to

the manufacturing industry, which are described below.

* Lego Toys: Lego building blocks are perhaps one of the best examples for standard

interface-based product platforms. Using standard interfaces for each building block,

while varying the length, color and shape of each piece, a variety of imaginative shapes

can be produced.

e Cooked Food: Common manufacturing process-based product platforms are uti-

lized in the food industry (e.g. McDonald's, Subway). For example, the process for

making a sandwich is the same - get the bread, spread mayonnaise and mustard,

insert sandwich meat, put additional condiments, and assemble them together. The

process remains the same, but the assembled components vary (e.g. wheat/rye bread,

no mayo or mustard, lettuce, tomato, etc).

* Credit Card: A credit card platform is a modular platform, where the basic ar-

chitecture stays the same, with modular components added or subtracted for product

differentiation. Credit cards have a common architecture (or policy) of lending money

and getting it back with interest. Product differentiating modular components are

credit limits, interest rates, car rental coverage, travel insurance, reward points and

buyer protection.

* USB Key: A USB key platform has a common architecture, components and pro-

cesses. Differentiation occurs in the substitution of key memory for different storage

capacity and outer casings for aesthetic appeal.

e MP3 Player: The product platform for MP3 players is the same as the USB

key platform, but with added module options for radio reception and music replay

capability. Different platforms can be designed around the data storage architec-

ture (XD, memory stick, flash memory, etc). Differentiation occurs through external

appearance, modular options (e.g. radio) and data storage capacity.
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* Swiss Army Knife: The product platform for a Swiss Army Knife consists of

common components, assembly processes, and assembly interfaces. Standardized

components (e.g. knife, screw drivers, and other accessories) are assembled using a

common interface. By adding and subtracting different components (tweezers, pin-

cers, corkscrew, magnifying glass, screwdrivers, can openers), product differentiation

can be achieved.

* Automobile: An automobile platform is a complex system comprised of common

components (e.g. engine, powertrain, chassis), common processes (e.g. design and

manufacturing processes), and common interfaces (e.g. common engine mounting

points for V6 and V8 engines) and many more. The details of automobile platforms

differ significantly between manufacturers.

* Power Tools: The power tool product platform for Black & Decker consists of

the motor, motor housing and motor-side interface to the tool attachments. Prod-

uct differentiation is achieved through variation of motor length (for different power

requirements) and tool ends.

2.2.2 Business Case: Black & Decker Power Tools

Industry
(Heavy

Use)

Mid-
Range

Home
(Light
Use)

Saws Drills & Drivers Lighting

Figure 2-4: Black & Decker Power Tool Family
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Black & Decker, a power tool company, was faced with the dilemma of product

variety increases and proliferating cost during the 1970's [511. The proliferation of

product variants threatened to become unmanageable. The company decided to cre-

ate a common product platform, which consisted of an electric motor module and

standard interfaces to the motor module. Product differentiation was achieved by

varying the motor lengths for different market segments (requiring different power

outputs) and business application ends (handle and power tool). By standardizing

their core components and processes, they enjoyed immense success, capturing major

market share through rapid product differentiation. Figure 2-4 shows various product

families offered by Black & Decker, with corresponding market segments.

2.2.3 Business Case: Sony Walkman
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Figure 2-5: Sony Walkman Product Platform

Documented by Sanderson and Uzumeri, Sony enjoyed huge success in its portable

Walkman product family [68]. Sony's product platform was its tape player mech-

anism, which was the core of their product architecture. By differentiating their

product family variants through different outer casings (Business Walkman, Sports

Walkman, etc) and modular components (e.g. recording mechanism, radio module,

etc), they were able to capture the portable music player market quickly and hold

a leader position for a long time. Figure 2-5 shows key components of the Sony

Walkman platform.
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For Sony, the decision to make the tape player mechanism a part of its product

platform was a wise business decision, since that particular technology changes very

slowly, mainly because it is constrained by several other established standards and

government regulations.

2.2.4 Business Case: Volkswagen Vehicle Family

Source: DaimlerChiyler
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Figure 2-6: Volkswagen A Platform and Product Family

In the late 1990's, Volkswagen was recognized as the leading product platform

implementer in the automotive industry. Volkswagen defines a product platform as

"a unit that has no impact on the vehicle's outer skin and that is a chassis including

the inner wheelhouses [9]." Volkswagen's product platform consists of common com-

ponents, such as front axles, rear axles, front end, rear end, wheels, steering system,

brake system, center floor, fuel tanks, exhaust systems, and seat frames. In 1998,

Volkswagen owned four out of top ten vehicle platforms (by production volume).

Figure 2-6 shows product variants derived from the Volkswagen A Platform.

At one time, Volkswagen shared over 65% of its components within its product

families, resulting in huge cost savings from economies of scale. However, its common
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component platform strategy also had some drawbacks. Volkswagen suffered from

cannibalization by its platform sharing partner, Skoda, as mentioned earlier. There

were issues concerning unforeseen performance drawbacks on the Audi TT. Finally,

brand blending from sharing too many components became an issue. In 2002, to

address these problems, Ferdinand Piech, then chairman of Volkswagen, switched the

company's product platform strategy from a "Four Platform Strategy" to an "Eleven

Module Strategy," putting more emphasis on common interfaces and giving more

freedom to module designers to achieve more distinctive product variety. Platform

managers who had previously overseen platform design and commonality decisions

became "module managers."

Indeed, the distinction between a platform strategy and a module-based re-use

strategy has become somewhat blurred in recent years. Nevertheless, a platform

can also be thought of as the major module (either physical or via common/flexible

interface definitions) that is responsible for achieving the product's core functionality.

2.3 Chapter Summary

This chapter reviewed the product platform concept from various perspectives. The

definition, classification, deployment strategies, advantages and disadvantages, and

the role of product platform within the corporate strategy have been discussed. Sev-

eral examples of product platform applications were presented, followed by real busi-

ness cases for product platform implementation.

Product platforms are complex engineering systems that offer efficient solution to

today's manufacturers, allowing them to create great variety in their product fam-

ilies, while re-using their developed resources. This strategy has the advantages of

potential cost savings and minimizing system complexity, but it also has potential

disadvantages ranging from performance tradeoffs, cannibalization and damping of

long-term innovation. It is the job of system architects to design platforms to fulfill

the needs of various stakeholders. In Chapter 3, a detailed, step-by-step formulation

of a newly proposed design processes for flexible product platforms is presented.
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Chapter 3

Flexible Product Platform Design

Process

3.1 Introduction

This chapter presents a formal mathematical formulation of the flexible product plat-

form design process. The formulation starts with the following hypothesis:

If a critical subset of elements within the product platform is made flexible, it can

make the whole platform flexible to a specified set of uncertainties

Given a set of product variants in a product family, the system architect must

design a product platform system with flexibility for the company to benefit from

(and to protect from) future uncertainties. To do so, the architect must identify a set

of critical elements that can make the system flexible to these future uncertainties.

In this chapter, a formulation of a flexible platform design process is presented to

support the stated hypothesis. There is much literature that addresses the platform

design process. Detailed summary of relevant literature are presented in Chapter 1.

Subsequent sections outline a mathematical formulation for a newly proposed

design process. In this process, a new index is introduced. The Change Propagation

Index (CPI) measures the degree of change propagation for a single element in the

system. The formulation of CPI is presented in this chapter, and will be demonstrated
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through case studies in Chapter 4 and 5.

3.2 Design Process Framework Overview

The process is designed to be utilized during the early stages of product platform

development to establish a system-level platform definition. This process precedes

the actual product development process where each individual product variant is

designed in detail. Figure 3-1 outlines framework for the flexible platform design

process.

I II III Iv
Identify Market, Determine Uncertainty Optimize Product Identify Critical

Variants and Related Key Attributes Family and Platform Platform Elements
Uncertainties and Design Variables Bandwidth

Product Attribute and Platform
Family Design Variable Bandwidth

Selection Identification Optimization

H Go Back to Step V

No VI VI V
Satisfactory Uncertainty Determine Costs of Create Flexible

Solution? Analysis Design Alternatives Design Alternatives

Yes Platform
1z Evaluation Flexible Platform Development (Step IV ~VI)

Figure 3-1: Flexible Product Platform Design Process

The process begins by identifying target market segments, product variants, and

critical uncertainties that the new product platform must be able to accommodate

(Step I). Once the initial product definitions are established, uncertainties related

functional product attributes and related system-level design variables are identified

(Step II). The identified set of design variables for each product in the product family

is optimized to yield maximum product family revenues (Step III).
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Through the optimization, optimized values of system-level design variables for

each product variant is identified. Aggregating design variable values for all variants,

the design variable bandwidths for the product family are determined. Given the

requirement to achieve bandwidth for uncertainty related design variables, a critical

set of elements, affected by the design variable change, is determined (Step IV).

Using identified elements and given bandwidth requirements, flexible platform design

alternatives are generated (Step V). Initial investment, variable costs, and switch

costs for design alternatives are calculated (Step VI). The final platform evaluation

step consists of uncertainty analysis (Step VII), wherein the benefit of each design

alternative is estimated under various scenarios with varying degree of uncertainty.

Finally, the best flexible platform design alternative is selected. Subsequent sections

present mathematical formulations and detailed explanations for each step of the

design framework.

3.3 Step I: Identify Market, Variants, and Uncer-

tainties

Product
Variants

Pi M3  M6

Product M2 M
Platform

P3 M1  M4

Figure 3-2: Market Segments and Product Variants

The first step of the process is to identify target market segments from a set
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of segments M, desired product variants set P, and a set of uncertainties U that

are related to M and/or P. It is assumed that all product variants in a product

family set P will be placed on a common product platform. However, this may not

be true in some cases where the differences between each variant is too great. In

those situations, multiple platforms may be required. It is another research topic not

covered in this thesis, but the work in this topic is done by Seepersad et. al. [72, 73].

Graphical representation of M and P is shown in Figure 3-2. Each set is expressed

mathematically as follows:

M = [Mi, M 2 , ... ,Mnml

P = Pi, P2, ... , Pn,] (3.1)

U = [Ui, U2, ... , Un.] -

First, a product specific market segments need to be defined. A set of market

segments M for a specific product is typically defined through clustering analysis

[5, 39]. Defining market segments has several advantages. First, it allows compa-

nies to identify segments with significant opportunities in terms of sales volume and

profitability. A market segment with a large number of customers can create an op-

portunity for high revenue products, while a market segment with a small number,

but high-income customers can create an opportunity for high-quality luxury prod-

ucts with a high profit margin. Second, through examination of market segments and

current product portfolios, companies can identify gaps in their product lines, thus

creating a justification for developing additional product variants. Also, firms can

strategically position their product families in key market segments. However, these

advantages depend on how clearly and how accurately the initial market segments

are defined.

There are several clustering methods available. The most popular is the hierarchi-

cal method. Two different approaches in the hierarchical method are the divisive and

the agglomerate approaches. In the divisive approach, the entire sample population

is initially treated as one big cluster, which is then divided into two clusters. Two

divided clusters are further divided into smaller clusters, until each cluster only has
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one sample. The agglomerate approach takes exactly the opposite direction. It starts

with several clusters of one sample each, and combines the closest two clusters into

one cluster. The algorithm continues to merge clusters until the number of cluster

becomes one. In many cases, the agglomerate approach is used.

Once the set of market segments M is defined, a set of product variants P can

be positioned in the individual market segment. According to Ulrich and Eppinger

a product is "something sold by an enterprise to its customers [831." A product

provides value to customers by offering customer-preferred attributes in material form

or services. A product variant can be expressed as a vector of customer preferred

product attributes (JA) and price (P).

A A= (3.2)

_Pj

where pi represents an individual product variant, JA,i is the vector of customer

preferred attributes, and Pi is the price of the product i. A product variant has

specific values for each attribute in the attribute vector JA,i and the specific price

Pi. Therefore, the product variant set P can be expressed as a collection of specific

product attributes' values and prices, as shown in Equation (3.3):

= J JA,2 ... JA,np 1 (3.3)
P 1  P 2  ... Pn,

The last item to be defined in this step is a set of critical uncertainties U. A prod-

uct platform is a large complex system with a very long life cycle. The platform must

be designed not only to accommodate several product variants, but to be flexible to

future uncertainties that will affect its product portfolio. Identifying critical uncer-

tainties is a very important step, since where and how flexibility is incorporated into

the product platform almost solely depends on the nature of uncertainties. Typical fu-

ture uncertainties for systems like product platforms include variant demand, variant

specification (e.g. attribute values, dimensions, styling), and addition/subtraction of

new/existing variants. Other uncertainties (which are outside the scope of this thesis)
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are emergence of new technologies and shifts in regulations and standards.

3.4 Step II: Determine the Uncertainty Related

Key Attributes and Design Variables

In the previous step, the market segments set .M, product variants set P, and uncer-

tainties set U are identified. One of the key objectives for companies is to strategically

position their product variants in key market segments to generate maximum revenue.

Each market segment Mj can be expressed as a range of customer-preferred attribute

values and price, in which a specific product variant's JA,i and the price Pi must fall

within:

My = JA~J : (JAJ)min - JA,i - (JA,j)max

Pi : (P)i < Pi < (P)ax

Depending on the number of competitors, and the companies' product attributes

values and customer's preferences for a specific market segment Mj, firms need to

set their ith product's JA,i and Pi values within the established range of Mj to gain

market share and a competitive position.

JA can be expressed as function of a system-level design variables vector XA.

Then Equation (3.3) can be expanded as:

JA, (XA,l) JA, 2 (XA,2) ... JA,np (XA,n,) (3.5)
P 1  P 2  ... Pnp

Even though there can be many different product attributes within JA, the ones

that are of special interest in this thesis are product attributes that are related to

the set of uncertainties defined in Equation (3.1). A product attribute vector, re-

lated to a set of uncertainties U, can be expressed as Ju, where Ju C JA. These

attributes are significantly affected by uncertainties identified in Step I and need to

be mapped to system-level design variables. The strategy here is to optimize the

product family's system-level design variables and product attribute values for max-
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imum revenue (given current preferences), design the product platform to meet the

optimized requirement in design variables and attributes values, and then incorporate

flexibility in the product platform to respond to future uncertainties specified, while

being profitable.

The next step is to establish the relationship between the uncertainty specific

product attributes Ju and the Ju related system-level design vector XU, where Xu C

XA. In mathematical terms it is expressed as

Ju = f (Xu) . (3.6)

Given the target market segment M assigned for each pi, upper and lower bounds

of the uncertainty specific system-level design variables vector Xu,i for a product

variant pi must be within the limits of Mj.

3.5 Step III: Optimize Product Family and Plat-

form Bandwidth

In Step II, the product attributes vector JA and its subset, Ju for uncertainties set

U is defined. Additionally, a system-level design variables vector Xu, related to Ju

is identified as well. Also, for each product variant pi, a variant and uncertainty

specific design variables vector Xu,i is defined. Upper and lower bounds of Xu are

implicitly stated in Equation (3.4), where upper and lower limit of attributes values

are bounded by the market segment's limit values.

For each pi, defined as function of Xu,i and its upper and lower bounds established,

all pi in the product variants set P need to be placed within their respective market

segment space to generate maximum revenue as a portfolio. This can be stated

mathematically:

61



np

maximize Rv, (JU,i (Xu,i) , Pi)
i = 1(3.7)

subject to h (Ju,i (Xu,i)) , g (Ju,i (Xu,i))

where Rp, is the total revenue generated by the ith product variant, h and g are

inequality and equality constraints that must be satisfied. Individual product variant

revenue Rp, is further explained in Equation (3.8):

Rpi = Ms, (JA,i (XA,i) , Pi) PiDT (3.8)

where msi is the market share for the ith product variant in the market segment set M

and DT is the total current demand existing for the market segment set M. Market

share is a function of product attributes values JA and variant price P. However, in

this thesis, only attributes related to Ju and price P, will be perturbed, while other

attributes will be fixed to a specific value for each product variant i (thus Equation

(3.8)). Estimating a reliable market share for given values of JA,i and Pi is, in itself,

a very large research field. It is usually accomplished through conjoint analysis [1],

where companies estimate customers' preference sensitivities for particular products

by changing product's attribute values. In the case study presented in Chapter 5,

a proprietary market simulator is used to obtain the market share for each product

variant.

Once the maximum revenue generating solution for Equation (3.7) is obtained

through optimization, Xu,i and Ju,i values for each product variant are determined,

thus defining the bandwidth of the product platform in both the customer-preferred

attribute space and the system-level design variable space. Figure 3-3 shows band-

widths of a hypothetical product platform in design variable and attributes space.

There can be more number of design variables than the number of product attributes

and vice versa.

For each design variable in Xu, where Xu = [1 , X2 , ... , Xn,], a required value

range is established. At this point, the system architect needs to analyze the results

to see if bandwidths of design variables can actually be achieved in the product
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Figure 3-3: Platform Bandwidth in Design Variable and Product Attribute Space

platform. Sometimes it may be possible to accommodate bandwidths in all desired

attributes and design variables. In other cases, compromises (in terms of design

variable bandwidths, resulting in product variant performance penalties) must be

made to build all variants off of a single platform. On the other end of the spectrum,

if the bandwidths of design variables are very large, this can result in omission of

product variants from the platform entirely.

3.6 Step IV: Identify Critical Elements

After establishing the platform bandwidth, each x, where x C Xu, must be mapped

to a set of specific physical elements. This is a very important step, a prelude to

identifying critical platform elements that need to be flexible to achieve the desired

design variable bandwidth, dictated by the result of optimization in Step III. This

step will be demonstrated using a generic example.

Figure 3-4 is a graphical and Design Structure Matrix (DSM) representation of

a generic system. Within the system, there are eight elements (A - H) connected to

each other, which makes up the whole system. Elements can be connected physically,

or through information (e.g. computer programs). The DSM represents the system

using a matrix format, with I's indicating connectivity between elements.
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A B C D E F G H

A 1 1 _1_
B 1 1 1 1
C 1 1
D 1 1
E I _ I _ I
F 1 1 1
G 1 1
H 1 11

[ j DSM

Figure 3-4: Graphical and DSM Representation of a Generic System

It is very important to establish the connectivity of the sub-system elements before

mapping system-level design variable set Xu to related product elements, which in

Figure 3-4 consists of elements A through H. The reasons are 1) when the system-level

design variable is required to be flexible, the architect needs to identify system ele-

ments affected by such change; 2) when the identified elements are changing, one must

observe the change propagation sent to other elements (which may not be directly

related to Xu) to estimate the propagation effect.

The next task is that, for every x in XU that needs to be flexible in terms of

variable range, the architect must observe how the change Ax propagates throughout

the entire system, if there is any propagation. Then, what initiates such changes, and

why does flexibility needed to be embedded to accommodate such changes?

" The first reason is the bandwidths of design variables determined by the revenue

optimization in Step III. This bandwidth is visible through the radar chart

plotted (as seen in Figure 3-3).

" The second reason is that for certain variables, that are sensitive to the product

family revenue and/or market share, might benefit from the flexibility in the

future, even if the initial required bandwidth across the variants is zero or very

small.

" The third reason is that changes might be required in response to changes in

other coupled elements of the system through change propagation.
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* The last reason, which is not considered in this thesis, is that in the future,

unknown additional product variants might be added, possibly within the pre-

established platform bandwidth. One of the difficulties with this in practice is

that the true bandwidth of a platform can often be established via testing the

prototype in the field.

For a given change, it is important to estimate how much change is required and

how it propagates throughout the system. Figure 3-5 shows how change Ax can prop-

agate throughout the system. This figure represents the final system configuration

after the change (due to Ax), showing the direction of change propagation.

System Multiplier: A, C

AX A Carrier: B, D, F, G

zz 77 Absorber/Constant: E, H

Figure 3-5: Change Propagation Due to Ax

The terms multiplier, carrier, absorber and constant are defined by Eckert et. al.

[23] to classify elements that react to changes. Multipliers are elements that "gener-

ate more changes than they absorb." Carriers are elements that "absorb a similar

number of changes to those that they cause themselves." Absorbers are elements

that "can absorb more change than they themselves cause." Finally, constants are

elements "that are unaffected by change." In Figure 3-5, each element is classified,

with multipliers indicated as circled elements. Then the questions are: how can these

classes of elements be identified quantitatively, and how does quantification of such

elements guide the system architect to a better flexible product platform design?

The first question can be answered through the development of one or more quan-

titative metrics to measure the degree of change propagation for individual elements.

Once each element's reaction to change can be measured quantitatively, then the sys-

tem architect can identify, for a given design change, critical elements for embedding
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flexibility. To measure the degree of change propagation for a single element, a new

metric is introduced. It is called the Change Propagation Index (CPI). For a single

element i, CPI measures the degree of physical change propagation caused by this

element when the change is required on the element. Equation (3.9) is shown below:

no t nin

CPI, = AEo0 , - E AEin,k (3.9)
j=1 k=1

In Equation (3.9), nout is the number of elements to which the ith element is con-

nected, in the direction of outward propagation change; nin is the number of elements

to which the ith elements is connected, in the direction of inward propagation change;

AEOutj is a binary number (0,1), indicating whether the jth element is changed be-

cause of element i; AEin,k is also a binary number for the kth element indicating

whether it is propagating change to ith element. The introduced metric measures

how the actual element physically propagates change to other elements.

However, just measuring the degree of physical change propagation is not enough.

One must consider the economic impact caused by Ax, to the system and its relevant

elements. For each element changed, the change related investment cost (switch cost)

needs to be identified. This provides the system architect with two quantitative

measures for each element: one indicating the degree of physical change propagation,

and the other indicating the economic consequence of such change.

In Figure 3-5, the final state of change propagation is shown for a system, after

it is altered by the design variable change Ax. This final state can be expressed in a

matrix form, shown in Figure 3-6. The sum of each column indicates the total number

of changes going outward from a specific element (E AEout). The sum of each row

indicates the total number of changes coming into a specific element (Z AEin). Sub-

tracting 1 AEin from E AEOut yields a CPI value for a specific element. Depending

on the value, an element can be classified according to the terms defined previously.

A positive CPI indicates that the element is a multiplier (marked as M); a zero CPI

indicates that the element is a carrier (marked as Ca); a negative number indicates

that the element is either an absorber (marked as A) or constant. If there are no
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outgoing changes from a particular element, and the element itself does not change,

then it is classified as constant. Otherwise, the element is an absorber. The utilization

of such a matrix is similar to both the Coupling Index (CI) and the Design Variety

Index (DVI) matrices, introduced by Martin and Ishii [48].

Propagating Change

A IB IC ID IE IF IGH

Receiving
Change

Ein
A 0

T 2

F _ 1 _ 1 2

H 1 1 11 3 -
3 2 2 2 2I

Class IMICIMI C A. _I A

Figure 3-6: Change Propagation in DSM

A X

Figure 3-7: Economic Impact of the System for Ax

Figure 3-7 shows the changed state of the system, changed by Ax, with relevant

switch cost (hypothetical) listed for each element involved in the change propagation.

Note that for element A (the change initiating element), total incoming change is

set to 0, since there is no component sending changes to that particular component.

The switch cost is the cost of engineering design change and additional fabrication

and assembly tooling/equipment investment for design change. For the case study
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presented in Chapter 5, the switch cost consists of tooling investments required for

implementing the changed design. Observing CPI and the switch cost incurred for

each element in the system, following recommendations can be made for selecting

critical elements and designing them to be flexible:

" Multiplier elements require careful attention. These are elements that, through

adding more changes, make the system harder to change. These are prime

candidates for incorporating flexibility.

" One must investigate elements connected to the multiplier element to under-

stand the nature of change. This information will be used to make a decision on

which elements to incorporate flexibility (or add "buffer" to absorb the change,

as Eckert calls it) for reducing, or even eliminating the change propagation.

* Carrier elements must be examined as well. For example, a carrier element

might receive changes from five elements and sends out five changes, making it

more expensive than a multiplier element that receives change from one element

and sends it out to two elements.

" Elements with high switch costs, even though they may not be multipliers, also

require special attention. These elements, through high switch costs, make it

financially difficult to change the system.

" Elimination of physical propagation and reduction of economic impact must be

carefully balanced. In some cases, physical propagation can be eliminated, but

it may require prohibitive investment to do so. In other cases, economic impact

may be reduced, but may results in more change propagation. All these factors

must be weighted to reach a reasonable decision for incorporating flexibility.

Each and every element involved in the system needs to be investigated in order

to determine the critical elements for incorporating flexibility. Effort must be made

to: 1) eliminate the propagation of change by making the multiplier elements and/or

other elements around it flexible, turning them into absorbers or carriers, and 2)
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redesign elements (with high switch cost) so when it is subject to change, it can

be changed with significantly lower switch cost. One practical example comes from

the automotive industry. When the engineers design a front motor compartment

(for example) they have an option to design the compartment to accommodate a

V8 engine, even though it may only require a V6 engine initially. This will incur

extra upfront investment, but when the future situation requires implementation of

a V8 engine configuration, the built-in option can reduce or eliminate the change

propagation to other major parts of the vehicle.

3.7 Step V: Create Flexible Design Alternatives

With target elements identified in Step IV, the system architect needs to change

these elements so they propagate smaller degrees of change and/or require lower

switch cost than the inflexible design. This is accomplished by embedding flexibility

into key elements, ones that have the greatest impact. According to de Neufville

[20], flexibility is an option, where it has an "ability to adjust a design of a system

in significant ways that enable the system managers to redirect the enterprise in a

way that either avoids downside consequences or exploits upside opportunities." The

option (flexibility), according to Hull [38], "gives the holder the right to do something.

The holder does not have to exercise this right." However, this flexibility will incur

additional investment and might result in additional system complexity. This raises

important questions: how much flexibility is needed; and how should flexibility be

embedded into these elements?

To answer the first question, one needs to examine the platform bandwidth ob-

tained by the revenue optimization in Step III. The upper and lower limit values of

XA, established through Equation (3.7), sets the range within which elements must

be flexible. Additionally, sensitive system design variables in Xu need to be exam-

ined. For future uncertainty in identified product attributes, it might be a good idea

to incorporate flexibility in these design variables, so the attributes values can be

changed easily when the need arises.
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Addressing the second question about incorporating flexibility into identified el-

ements, the system architect must consider several factors related to identified ele-

ments:

" Initial demand for each product variant in set P

" Demand trend for each product variant in set P

" Change of each product variant in set P due to U

" Frequency of uncertain change.

The initial demand and expected demand trends of pis in set P are very impor-

tant when incorporating flexibility into a particular element. Embedded flexibility

should be biased towards a particular pi to yield favorable overall cost expenditure

throughout the life of the platform to amortize investments in flexible parts and tool-

ing. Also, adding flexibility to account for U may reduce the overall life cycle cost.

In Chapter 4, these factors are addressed through the case study of a single flexible

element design using a vehicle floor pan example. Considering all factors discussed,

the architect can generate a set of different platform design alternatives.

The last factor listed - the frequency of specification changes - is an important

one. The more frequent the specification change, the more valuable the flexibility will

be. The issue regarding the change frequency is addressed in the case study of the

vehicle product platform, presented in Chapter 5.

One of the challenges in this stage is the non-uniqueness of the design space.

For a given functional requirement of achieving desired platform bandwidth, multiple

flexible designs can be generated. A creative design process is necessary, and such

processes are well documented by Pahl and Beitz [61]. After the flexible design

alternative generation is finished, the system is then divided into two portions: 1)

the product platform portion, which consists of common elements that stay constant,

and flexible elements that, with minor modification, can be used for multiple number

of product variants, and 2) the unique portion, which consists of unique elements,

customized for a single variant. How and where to divide such system is an ongoing
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research topic. One of the best known methods is the DSM based decomposition

[24], where the system elements can be grouped into different modules thus creating

"platform module" and "unique module." At the end of Step V, the product platform

is defined.

3.8 Step VI: Determine Costs of Design Alterna-

tives

Flexible design alternatives are generated in Step V to achieve the platform bandwidth

requirement set in Step III, and to minimize change propagation arising from specific

design changes. As stated in the previous section, the flexibility incurs extra upfront

costs initially, but results in lower switch cost when the system is required to change.

To determine whether generated design alternatives are flexible to change, accurate

cost estimates for each alternative need to be calculated. Costs are divided into

following categories:

" Initial capital investment cost Kiit, which include fabrication and assembly

equipments and corresponding tooling investments;

" Variable cost Ctotal, which is the unit cost of each product multiplied by the

number of products produced;

" Switch related capital investment cost Kwitch, which consists of design change

related investment costs.

The initial capital investment cost Kinit is the required upfront investment cost for

all relevant elements, needed to initiate the production of product family P. In

the manufacturing industry, it usually includes investment costs for fabrication and

assembly lines, along with required tooling and development costs. The variable cost

Ctotal is the total recurring cost to produce the product family P. The switch-related

capital investment cost Kswitch is perhaps the most critical cost. The switch cost

occurs when the product platform or product variants require change due to future
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uncertainties. If the platform is rigid, that is, not designed to accommodate change,

the switch cost may be very expensive. If the platform is flexible to change, the switch

cost should be lower than the switch cost of the inflexible platform.

To verify that generated design alternatives are more flexible than the original

design, CPIs and switch costs for the same set of changes (identified in Step IV)

are calculated. For a particular change, one design is more flexible if it incurs lower

switch costs than the other design. However, one must consider the extra "price," paid

upfront, to make the system flexible. Whether the upfront investment is worthwhile

depends on whether the flexibility is truly needed and can be amortized over the

course of the product platform life cycle.

The price of the option, or flexibility, paid upfront is additional cost related to

the flexible design, in real options terminology. This initial investment allows system

architects to change particular aspects of the product platform or product variants

at a later time, with significantly reduced switch costs, when surrounding circum-

stances necessitate such changes. With upfront investment cost, variable cost, and

switch cost identified, the benefit of each design alternative must be evaluated through

uncertainty analysis.

3.9 Step VII: Uncertainty Analysis

From the previous step, the cost of flexibility, including initial investment costs, vari-

able costs, and switch costs, have been calculated for each design alternative gener-

ated in Step V. Once all costs are identified, design alternatives must be evaluated

under scenarios with various degree of uncertainty, to determine their economic per-

formance. The underlying hypothesis is that flexibility has more value as the degree of

uncertainty grows. For each design alternative, the expected future benefit, expressed

in terms of the expected present value can be generically stated as:

E [NPV]i = f (RT,2 , Kinit,i, Ctotali, Kswitch,i, U) (3.10)

where the total expected benefit E[NPV] for the ith design alternative, is a function
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of the total product family revenue RT,i, the initial capital investment Kinit,i, the total

variable cost Ctotal,i, and the switch cost Kswitch,i incurred due to U, as defined in Step

I.

After evaluating the proposed design alternatives under several scenarios, the

system architect can select the most beneficial design for a given uncertainty set U.

There might be a situation where none of the design alternatives are satisfactory.

In this case, the architect can go back to Step I to reformulate the problem and

boundary conditions, or go back to Step V and rework the design alternatives (see

loop in Figure 3-1). Finally, the system architect can define the product platform as

a set of common and flexible elements for all product variants in the product family,

based on the results of the uncertainty analysis.

3.10 Chapter Summary

In this chapter, a flexible product platform design process is introduced. The proposed

process begins by defining the target market segments, product variants, and uncer-

tainties. The product variants' information from this step is mapped to system-level

design variables and optimized for maximum revenue, thus establishing boundaries

for the product platform bandwidth in the system-level design variable space. It is

then mapped to the platform elements space, and using the newly introduced metrics,

is then classified as different element classes. Flexibility is then embedded into critical

elements, generating different design alternatives. Generated design alternatives are

then evaluated under scenarios of various uncertainty to determine the most econom-

ically beneficial design. In each step of the proposed process, several alternative tools

and methodologies can be used to accomplish the desired objective. Table 3.1 lists

popular methods and tools that can be used for each design step.

In next two chapters, the developed design process is demonstrated through de-

tailed case studies. Chapter 4 presents a detailed case study of single elements design,

where an automotive vehicle floor pan is designed with flexibility. Chapter 5 presents

a case study, wherein an automotive vehicle platform is flexibly designed to respond
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Table 3.1: Popular Methodologies and Tools for Individual Process Step

Design Step Available Methodologies and Tools
Step I Clustering Analysis [39]

Conjoint Analysis [1]
Principal Component Analysis [22]

Step II Quality Function Deployment [36]
Response Surface Method [55]

Step III Gradient Based Optimization [6]
Heuristic Based Optimization [28, 43]

Change Propagation Analysis [23]
Step IV Engineering Expertise [61]

Quality Function Deployment [36]
Brainstorming [61]

Step V Concept Screening Matrix [83]
Concept Scoring Matrix [83]

Step VI Parametric Cost Model [12, 34, 41, 42]
Decision Tree Analysis [15]

Step VII NPV Analysis [19]
Real Options Analysis [71, 81]

to a set of future uncertainties.
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Chapter 4

Flexible Platform Component

Design under Uncertainty

This chapter demonstrates a portion of the proposed design process (Chapter 3)

through a case study of single flexible component design. Several research papers have

been published in the area of design under uncertainty. Li and Azarm proposed a

framework for product design selection [45] under uncertainty and competition. Mar-

tin and Ishii [49] demonstrated their design process through design of water cooler

for future design changes, but did not carry out the uncertainty analysis to examine

the value of their design. In this chapter, the main focus is to demonstrate the part

of the proposed design process by designing flexible platform components, using mul-

tidisciplinary design optimization framework and uncertainty analysis. Subsequent

sections outline the mathematical formulation for a single flexible component design

and is demonstrated through a case study, where flexible design alternatives of an au-

tomobile floor pan are generated, economically optimized, and analyzed under future

demand and specification uncertainty. This chapter is based on a journal article by

Suh et. al. [79].
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4.1 Theoretical Formulation

The overview of the framework is shown in Figure 4-1. For each phase, the cor-

responding step number of the proposed process from Chapter 3 is shown. First,

critical uncertainties for selected platform component are identified (Step I). Second,

several flexible component design alternatives are generated in response to these un-

certainties (Step V). Next, each design is optimized economically, while satisfying

the component performance requirements (Step VI). Economically optimized designs

are then evaluated in terms of long term cost by calculating the total expected cost

expenditure over the lifetime of component production - expressed in terms of present

value (E[NPC]) - accounting for future uncertainties. A Monte Carlo simulation is

used to evaluate the E[NPC] over the total platform component lifetime (Step VII).

Mathematical problem statements for each step are discussed below.

Step I Step V - VI Step VII

Uncertainty Component Design Design Alternative Uncertainty
Identification Alternative Generation Optimization Analysis

Design I Performance
Evaluation

Design 11
Future Demand Uncertainty Design

Design III Analysis Selection
Design Change

- Economic
Optimization

-----------------------------------

Figure 4-1: Flexible Platform Component Design Process

4.1.1 Uncertainty Identification

Define a set of critical uncertainties Ucomp.

Ucomp - [Ucomp,1, Ucomp,2, ... , Ucomp,nu] (4.1)

where ucomp,i is one of nu individual uncertainties identified for the selected prod-
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uct platform component. Possible uncertainties for platform components are future

demand and design specification changes for particular platform component variants.

4.1.2 Component Design Alternative Generation

Generate a set of component design alternatives Vcomp, comprised of n, different

design alternatives for a specified number of platform component variants.

Vcomp - [Vcomp,1, Vcomp,2, ... , Vcomp,nv] (4.2)

where each design alternative Vcomp,i can be expressed as a vector function of two

vectors.

Vcompi = [Jz (Xcomp) , Jc (Xcomp)] (4-3)

Jz is a component performance vector, expressed as function of component design

vector Xcomp, and JC is a component economic vector, which can also be expressed

as functions of Xcomp. Jc is further decomposed into

Jc (Xcomp) = [ci (Xcomp) , K (Xcomp) ; i = , ... , (4.4)

where ci(Xcomp) is the variable unit cost of the ith component out of n, components in

the family, and K(Xcomp) is the total non-recurring investment cost for that particular

design alternative.

4.1.3 Design Alternative Optimization

Each design in the flexible component design alternative set Vcomp is optimized for

minimum economic cost, while the component performance objective Jz must be

satisfied.

Minimize JC (Xcomp) (4.5)

Subject to h (Xcomp) , g (Xcomp)
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The performance vector Jz is part of optimization constraint h(Xcomp) and g(Xcomp),

where a particular design alternative must satisfy a specific level of performance

requirement.

4.1.4 Uncertainty Analysis

Once all design alternatives in Vcomp are optimized, they are economically evaluated,

under uncertainty, to determine the expected lifetime cost expenditure expressed in

terms of present value (E[NPC]):

E [NPC] = f (Jc,i (X*omp,i) , Ucomp) ; i - 1, ..., nv (4.6)

Comparing E[NPC] of all flexible design alternatives in the set Vcomp, the best design

is selected.

The proposed design process is demonstrated through the case study of a vehicle

floor pan, an important vehicle platform component that requires dimensional flexi-

bility to accommodate a vehicle family with two different wheelbase configurations.

4.2 Case Study: Automotive Floor Pan

The vehicle floor pan is a part of the body component that has been well studied in the

automotive industry. Most studies, however, focus on optimization of its structural

performance as part of Body in White (BIW). No literature, to author's knowledge,

mentioned long term economic impact of such optimized floor pan design, especially

the flexible floor pan that must satisfy requirements of multiple vehicle variants.

A major automotive manufacturer is developing a new vehicle platform for its

family of vehicles. Several critical platform decisions are made a priori. The proposed

vehicle platform strategy is to share a common underbody structure, which consists

of common front and rear compartments, and the flexible floor pan, a part of the

vehicle platform. The floor pan is an important component that connects the front

compartment and the rear compartment of the automotive underbody structure. The
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width of the common underbody is fixed and is the same for all vehicles, and the only

dimensional variation is vehicle length, determined by the vehicle wheelbase. The

wheelbase is adjusted by incorporating dimensional flexibility into the floor pan. It is

decided that only two variants of the floor pan (long and short) will be produced for

this platform at any given time since vehicles from this platform will be either long

wheelbase or short wheelbase vehicles. Figure 4-2 shows a CAD representation of the

underbody structure and the flexible floor pan.

Common Vehicle Underbody

Long Vehicles
(Long Wheelbase)

|Short Vehicles
(Short Wheelbase)

Flexible Floor Pan

Figure 4-2: Vehicle Underbody Structure

All floor pans are to be fabricated from steel using transfer press technology. The

objective is to create the most cost efficient flexible design to achieve dimensional

flexibility in vehicle length by adding geometric flexibility into the floor pan. The life

of the vehicle platform is set to 15 years, and it is updated every five years. Since

the floor pan is a part of the platform, its life cycle is identical to the time line of the

platform.

In this case study, the theoretical formulation presented in Section 4.1 is imple-

mented to the vehicle floor pan. First, critical uncertainties related to the floor pan

are identified. Second, several flexible floor pan designs are generated. For each flex-

ible floor pan design, the floor pan is optimized for minimum mass, which in turn,

minimizes investment and variable costs, while satisfying structural performance re-

quirements. Once component variant unit costs and investment cost of optimized

floor pans are calculated, total expected lifetime cost expenditure, expressed in terms

of net present value (E[NPC), is calculated using component variant unit costs and
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investment costs during the uncertainty analysis stage. Comparing E[NPC] for each

flexible design, the best design is selected.

4.2.1 Uncertainty Identification

The first step is to identify future uncertainties related to the component. In this case

study, two critical uncertainties are identified. They are future demand for long and

short floor pans (Ds(t), DL(t)), and potential future changes in the floor pan length

itself (Ls(t), LL(t)), as function of time, as shown in Equation (4.7):

U = [ui, U2]

U= [Ds(t), DLt) (4.7)

U2 = [Ls(t), LL (t)]

Future demand for long and short floor pans is determined by aggregating future

demand for vehicles that use short and long floor pans. In addition, floor pans'

geometric specification during the lifetime of the platform could be uncertain. In

this study, the floor pan lengths for both long and short floor pans are treated as

uncertain. Traditionally, one assumes that platform specifications will not change

over time. However, since platforms are usually long-lived compared to the variants

that are derived from them, there is a need for flexibility in order to accommodate

uncertainty in variant specification change in the future. This need for flexibility flows

down to individual components of the platform, such as the floor pan examined here.

4.2.2 Component Design Alternative Generation

The second step is to generate flexible design alternatives for embedding dimensional

flexibility into the floor pan. After considering platform constraints and other design

criteria, four design alternatives are generated and shown in Figure 4-3.

The first alternative is a customized (inflexible) design, where two separate floor

pans are designed for short and long variants. Floor pans are fabricated using separate

stamping dies and tools, requiring separate investments for floor pans of different
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I: Customized II: Bottom-Up

Small Large

III: Top-Down IV: Unbiased

Figure 4-3: Proposed Floor Pan Design Alternatives

length. This is the baseline design, with no geometric flexibility embedded into the

floor pan itself.

For the second design, called "bottom-up" design, the main floor pan is designed

to fit the short floor pan length specification. To satisfy the long floor pan length

requirement, an extension piece is spot welded to the main floor pan. This design

allows the addition of floor pans with different lengths through the addition of the

extension piece with dimensional restriction Lmin < L, where Lmin is the minimum

floor pan length achievable by this design, bounded by the length of the short floor

pan. Separate stamping dies are required for the short floor pan and the extension

piece. Moreover, additional investments are required for spot welding facilities due

to the extra welding process for the long floor pan.

The third design, called "top-down" design, incorporates flexibility into the floor

pan in a different way. The main floor pan is designed to meet the long floor pan length

requirement. To manufacture the short floor pan, the end of the original floor pan is

simply trimmed to meet the geometric specification. This design requires stamping

and blanking dies for fabrication of the long floor pan, plus additional investments

for short floor pan fabrication (trimming die). Because of the additional tooling

investments (non-recurring cost), extra labor for fabrication, extra time required,
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and the recycling cost of trimmed piece (recurring production cost), the unit cost of

the short floor pan is greater than the long floor pan. This assumes that the long floor

pan is manufactured first, then is trimmed for the short floor pan length requirement.

The floor pan has the dimensional restriction L < Lmax, where Lmax is the maximum

floor pan length achievable by this design, bounded by the length of the original floor

pan.

The last design is the most flexible design, where two equal-length pieces are

welded together to achieve any floor pan length requirement with lower and upper

bound Lm i L < Lmax. This design requires stamping and blanking dies for fab-

rication of two equal length pieces, plus additional investments for welding facilities.

The cost of floor pan fabrication and assembly is the same for both the long and

short floor pans, unbiased toward any floor pan size in terms of the unit cost, since

the same sub-components and manufacturing processes are used. This is the design

with the highest degree of flexibility, where sub-components can be adjusted (by slid-

ing) to any floor pan length within the pre-established lower and upper bound. Key

dimensions for short and long floor pans are shown in Table 4.1.

Table 4.1: Floor Pan Geometric Specifications

Key Dimensions Short Floor Pan Long Floor Pan
Length (mm) 1180 1305
Width (mm) 1445 1445

Thickness To be determined To be determined

Design II and Design IV require additional spot welding for sub-component as-

sembly. Extra spot welding is required in addition to spot welding required for a

standard floor pan assembly. Following the automotive industry welding practice,

the long floor pan for Design II and all floor pans for Design IV require 35 additional

spot welding connections each, assuming 50 mm clearance between each weld connec-

tion. Given the overall floor pan dimensions, floor pan geometry will be optimized

for minimum overall mass.

Four different design alternatives have been presented, each with its own advan-

tages and disadvantages. In the subsequent section, an optimization process for each
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design alternative is presented in order to quantify the benefits and costs of each

alternative.

4.2.3 Design Alternative Optimization

Optimization Framework

----------------------------------------------------------------
MATLAR

Design Change 1

Floor Pan Cost cS, cL, K EnmiAnyss E[NPCI
Calculation

Ms WS,ML Wt
Dos. DO.L E[Ds(t)], E[DL(t)] No

[XS, XL]

Finite Element Rendin Saif Yes , . NPCI
Analysis Torion Constraints? Converge?

ANSYS

No Ycs

End

Figure 4-4: Design Alternative Optimization Flow Chart

Figure 4-4 shows the flow diagram of the multidisciplinary optimization for each

floor pan alternative. Given geometric design vectors for short and long floor pans

(Xs, XL), finite element models of short and long floor pans are generated (see Figure

4-5) and analyzed for bending and torsion requirements. Concurrently, masses of the

floor pans (Ms, ML), calculated from floor pan design vectors, are passed onto the

cost model, yielding the total investment cost (K) and the unit cost for short and

long floor pans (CS, CL), given the initial annual demand for each floor pan (Do,s, Do,L)

and the total number of welding connections (ws, WL). Cost data is then passed onto

the economic analysis model, where the total expected lifetime cost expenditure is

calculated in terms of present value (NPC), given the expected, deterministic fu-

ture demand for short and long floor pans (E[Ds(t)], E[DL(t)]), based on historical

data. The mathematical statement in Equation (4.5) is implicitly embedded in this

optimization framework, since minimizing the mass of the floor pan will minimize
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the investment and production costs of floor pans, which in turn, will minimize total

cost expenditure over the specified time horizon. This is true since the heavier floor

pan results in higher material cost, and more costly machine investment. Once the

the NPC converges to a minimum value while satisfying structural constraints, the

optimization loop stops. The finite element analysis model, cost model, and eco-

nomic analysis model, which are used in the optimization framework, are explained

in subsequent sections.

Finite Element Analysis Model

H5 H4 H3 H2 H1

- L3 H7

L15 L3Ll L L 7L 5 L

Figure 4-5: Design Features and Finite Element Model of Simplified Underbody

In this case study, a simplified finite element model of the underbody is created

and a finite element analysis is conducted. In the automotive industry, the floor

pan is usually analyzed as part of the BIW structure, not alone. Since the actual

finite element model of automotive body was not available, it was necessary to use

simplified underbody model, as shown in Figure 4-5. The commercial finite element

analysis software package ANSYS is used. Both ends near the front and rear axles

are fixed. The geometry of the floor pan is controlled by design vectors Xs (for the

short floor pan) and XL (for the long floor pan). Each design vector has 31 design

variables - 17 length variables, 8 height variables, 5 width variables, and a thickness

variable. Figure 4-5 shows the finite element analysis model with design variables.

All design variables affect the structural performance, but only the thickness is used

for subsequent cost analysis.
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The displacements obtained in the bending and torsion analysis are used to com-

pute the bending and torsion stiffness. In an overall design involving the entire under-

body platform, the interactions with other components must be considered because

the floor pan affects the entire vehicle stiffness and bending performance.

Cost Model

A process-based cost model, developed at MIT [12, 34, 41, 42], is utilized to construct

the cost relationships in this case study. The following assumptions are made.

" The investment costs consist of line equipment and tooling investments for the

blanking, stamping and welding processes. Transfer press technology is assumed

for the fabrication of the floor pan, with long and short floor pans sharing the

same press line for fabrication and welding processes.

" Welding lines for all designs are assumed to be flexible, i.e. they can accom-

modate any floor pan lengths within the pre-established boundary. Flexible

welding tool investment costs are assumed to be twice the costs of inflexible

welding tools.

" Blanking die investment is 10% of a new stamping die investment.

" Only two different floor pan lengths (long and short) are produced at any given

time.

" Production volume of the floor pan is equal to the demand for the floor pan.

The MIT process-based cost model is used to calculate the unit cost of the floor

pan as a function of floor pan mass and the annual demand. Once CS, CL, and K are

determined, they are passed onto the economic analysis model.

Economic Analysis Model

Given the total investment cost and the unit cost of short and long floor pans, the

model calculates the total expected cost expenditure for each design alternative in
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terms of current net present value. The following assumptions are made for the

economic analysis model:

" The total life cycle of the vehicle platform is set to 15 years (T = 15). This

assumes that there will be three generations of vehicle models with five years

of production life cycle each.

" Blanking dies, stamping dies and welding tools are refurbished every five years

when vehicle models are remodeled. Costs for refurbishing are assumed to be

25% of a new die and tool cost, assuming no engineering design changes. In this

case study, it is assumed that unless there is a change in floor pan lengths, there

will be no new investment costs for floor pans other than refurbishing costs.

" Investment for new tooling or refurbishing occurs a year before the start of the

new model production. For this case study, the investment occurs during year

0, 5 and 10.

The following figure shows the fixed investment schedule for the floor pan produc-

tion.

Year 0 ~~----*Year 5 Year 10-Y1r1

New Stamping Die New / Refurbish New / Refurbish End of Platform
(Long and Short) (Long and Short) (Long and Short)

Figure 4-6: Investment Time Line for Floor Pan

Net present cost (NPC) is the total present value of future cost expenditure over

a fixed time period, including the initial investment. In this case study, for each

proposed flexible design alternative, the total expected lifetime cost expenditure is

used as a measure of the economic performance, given uncertainties in future demand.

NPC is calculated using Equation (4.8).

NPC = T (F t  (4.8)
6(1+ rt
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where T is the number of time periods and TC is the total cost incurred at time

period t. The discount rate r captures the time value of money. Discount rates

typically used in industry can be as high as 20% per year [19]. In this case study, an

annual discount rate of 6% is used. The equation for calculating TC at time period

t is

TCt C0
total,t + Kt (4.9)

where Ctotal,t is the total variable cost from the component production and Kt is the

total capital investment at time period t when a specific flexible design alternative is

implemented. The total variable cost Ctotal,t for the time period t is

nc

Ctotai,t = (ciE [Dt,j]) (4.10)
i=1

where ci is the unit cost of ith component variant and when a specific flexible design

alternative is implemented at time t. E[Dt,j] is the expected demand of the zth cOm-

ponent variant at time t (see Equation (4.13)). The component variant unit cost ci

is

ci = C,i + ca,i; i = 1... nc (4.11)

where cf,j is the fabrication cost of the ith component variant and Ca,i is the assembly

cost of the ith component variant. Fabrication cost consist of material, labor, energy,

equipment, tooling, building depreciation, maintenance and overhead cost. Assembly

cost also consists of material, labor, energy, equipment, tooling, building depreciation,

maintenance and overhead cost. Detailed explanation of these cost elements are

presented in Chapter 5, Section 5.7. The fabrication costs are calculated by the cost

model, and passed onto the economic analysis model. The assembly cost is pre-

determined from the proprietary assembly cost model as a function of the number of

welding connections and the total expected annual production volume. Finally, Kt,

the total capital investment cost at time period t, is
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Kt = Kine,t + Ktool,t

where Kine,t is the total line investment cost and Kt.0 I,t is the total tooling investment

cost at time period t. Line investment cost is one-time initial investment to setup press

machines and assembly machines. Tooling investment cost is the tooling required for

component fabrication and assembly, and must be refurbished every five years, at

25% of the new tooling cost.

In this economic analysis model, future demand for short and long floor pans are

estimated using historical sales data (1997 - 2003) of the vehicles that are planned to

be built on this particular vehicle platform. The assumption is that the past historical

trend will continue in the future. Expected demand (without demand volatility) for

a particular component at time t is

E [Dtl = Doe(at); t - 1, ... , Tf (4.13)

where D0 is the initial annual demand, a is the drift coefficient indicating the trend

of demand, and Tf is the number of time periods in the future. The drift coefficient

(a) and the volatility coefficient (Ov) are for a particular vehicle sold, and can be

calculated from Equation (4.14) and Equation (4.15), assuming historical data are

available. The volatility coefficient a, is an important parameter required for future

uncertainty analysis later on.

Th

S(ln Dh,t - In Dh,t_1)
(a a ) = T= (4.14)

2 vTh

0T = stdev [ln (Dh,t) - ln(Dh,t_1)]tTh (4.15)

Th is the total number of historical time periods observed and Dh,t is the historical

vehicle demand at time t. Once floor pans for each design alternative are optimized,

the optimum designs are evaluated under future uncertainty.
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Table 4.2 lists required parameters for the economic analysis model and uncer-

tainty analysis later on. The initial annual vehicle demand (D,), trend coefficient (a)

and volatility coefficient (CV) are obtained from historical data (1997 - 2003) of real

vehicles that are planned to be developed on this particular vehicle platform.

Table 4.2: Economic Analysis Parameters

Parameters Short Floor Pan Long Floor Pan
Do 60,000 405,000
a -5.52% 2.09%
av 13.27% 7.35%

Optimization Results

The objective of the optimization is to minimize the net present cost of floor pan

fabrication and assembly over the life of the product platform, which is set to 15 years,

given forecasted deterministic demand for each floor pan. Using the optimization

framework described in the previous section, the optimal XS and XL are obtained,

yielding results shown in Table 4.3. Optimized floor pan masses, thicknesses and

NPC for each design alternative are listed.

Table 4.3: Optimization Results for Individual Design Alternatives

Design Alternatives I II III IV
Floor Pan Length Long Short Long Short Long Short Long Short

Mass (kg) 16.06 14.37 16.26 14.54 16.06 14.52 16.06 16.06
Thickness (mm) 0.94 0.93 0.94 0.94 0.94 0.94 0.94 0.94

NPC (Normalized) 100.0 99.9 100.8 113.6

In the optimization, the floor pan thickness is treated as a continuous design

variable. NPC values for design alternatives are normalized by the NPC value of

Design I. Design II, III and IV have uniform thicknesses for long and short floor

pans since they are using the same floor pan for both lengths. Also, masses for the

long floor pan in Design II and both floor pans in Design IV account for the 15

mm overlap required for spot welding. Long and short floor pans for Design I have

different thicknesses, since the floor pans are customized for different lengths. From
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the optimization, with deterministic demand, Design II (bottom-up) resulted in the

smallest cost expenditure. While the cost differences between alternatives appear

small, one must keep in mind that profit margins are very tight in the automotive

industry. We will see that these small differences are amplified, once uncertainty and

flexibility are considered.

4.2.4 Uncertainty Analysis

Uncertainty analysis of floor pan design alternatives during the lifetime of a vehicle

platform is critical for estimating the overall economic performance of each flexible

design alternative. In this case study, the identified uncertainties are future demand

for each floor pan, and the potential engineering change (floor pan length) during

major remodeling of the vehicle family every five years. For the future floor pan

demand, even though expected production demand is known, the actual demand

from customers is very much uncertain. It is assumed that the floor pan length

change occurs within pre-defined dimensional limits Lmn < L < Lmax.

It is further assumed that the initially chosen design alternative will be imple-

mented throughout the life of the platform. Geometric Brownian Motion (GBM)

is used to model uncertain future demand for short and long floor pans, assuming

the historical trend continues in the future within a pre-established yearly volatility.

GBM is also used to simulate future vehicle demand in the work by Georgiopoulos

et. al. [27], to calculate the vehicle portfolio profit. Annual demand for different

floor pans varies from year to year with increasing uncertainty as the future forecast

horizon increases. Floor pan demand at time t + 1 can be estimated by

Dt+i= Dte - (4.16)

Where Dt is the demand at time t, a is the drift coefficient, a, is the volatility

coefficient from Equation (4.15), At is the unit change in time (a year for this case

study), and c is a normally distributed random number with N(0,1). Substituting

Equation (4.16) into Equation (4.10) and calculating the actual NPC for time period
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t in Equation (4.8), the actual NPC for each design alternative can be calculated.

Figure 4-7 shows an example plot of the expected demand and one possible outcome

of the actual demand over the specified time period.

Demand vs. Time

250000

200000

150000 -E[Del

S100000- ~GBM[D,]

50000

0
1 9 17 25 33 41 49 57 65 73 81 89 97

Time Period

Figure 4-7: Example of Future Demand Forecast Model Using GBM

Simulating the actual demand scenarios many times through the Monte Carlo simu-

lation, expected NPC can be calculated as

#Simulation

Z NPCz
E[NPC = (4.17)

#Simulation

Deterministic Analysis

Before the actual uncertainty analysis, a deterministic analysis based on the fixed floor

pan production volume is performed. Figure 4-8 shows deterministic cost expenditure

from the floor pan production over the lifetime of the vehicle platform (expressed in

terms of NPC) as a function of floor pan production volume ratio (long:short). The

initial ratio for this case study is shown as a dashed line. The crossover point is the

production volume ratio where, when crossed, one design starts to perform better

than the other design. The assumption is that the annual production volume ratio

remains constant (based on the total long and short floor pan production volume

of 465,000 units) throughout the life of the vehicle platform. The NPC values are

normalized with respect to the NPC value of Design I when the production volume
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ratio is 0:10.

E[NPC] vs. Production Volume Ratio
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Figure 4-8: NPC of Each Design Alternative vs. Product Volume Ratio

Design III has the best economic performance over most ranges in terms of overall

cost expenditure. Additionally, Design III has very little sensitivity to the change

in the production volume ratio. This is due to the fact that the unit cost difference

between the long and short floor pan is very small, making it insensitive to the

production volume ratio change. The slope of Design III is negative, while the other

lines have positive slopes. This is due to the fact that for Design III, the short

floor pan is more expensive than the long floor pan, i.e. the more long floor pans

are produced, the smaller the total costs. Design IV, the design with the highest

degree of flexibility, does not perform well compared to the other design alternatives.

However, this design is also not sensitive to the production volume ratio, since the

unit costs for short and long floor pans are the same. Finally, if there is a case where

the initial production volume ratio is positioned near the crossover points between

each design NPC line, the future trend of the production volume ratio becomes an

important criterion for the selection of the best design alternative.

The results indicate that under deterministic conditions, with current demand

trends, it would be best to choose Design II, since it has the smallest net cost expen-

diture. However, since the actual future demands for both long and short floor pans

are uncertain, we need to capture all possible instances of future demand scenarios to
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make the best design selection. In the next section, results of the uncertainty analysis

are presented.

4.2.5 Simulation Results

Four different scenarios are evaluated, in ascending order of increasing uncertainty.

They are summarized in Table 4.4.

Table 4.4: Evaluated Scenarios

Scenarios Short Floor Pan (Year 5, 10) Long Floor Pan (Year 5, 10)
I Fixed Fixed
II Uncertain Fixed
III Fixed Uncertain
IV Uncertain Uncertain

Initially, it is assumed that there is no uncertainty in floor pan lengths (Scenario

I), i.e. there is only demand uncertainty. Next, the length of one floor pan is treated

as uncertain (Scenario II and III), its length requirement changing at year 5 and

year 10. Finally, lengths of both floor pans are treated as uncertain (Scenario IV).

Subsequent sections outline how the uncertainty affects each design alternative, and

the results are presented in Table 4.5.

Scenario I: No Floor Pan Length Change

Since there is no uncertainty in floor pan lengths in this scenario, the only investment

costs incurred in year 5 and 10 are refurbishing costs of fabrication dies. Monte Carlo

simulation is performed to estimate the expected lifetime cost expenditure for each

design alternative. Each simulation comprises 25,000 runs.

Scenario II: Uncertain Short Floor Pan Length

This time, the short floor pan length is treated as uncertain. The short floor pan

length changes occur in year 5 and 10, when the vehicle family goes through major

redesign. Each design alternative will incur different investment costs in years 5 and

10.
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" Design I: A new stamping die and blanking die for the short floor pan are

required. Long floor pan dies are refurbished only.

" Design II: New investments for both short floor pan and the extension piece are

required. For this design, flexibility does not have any benefit over the inflexible

design.

* Design III: The blanking die that trims the long floor pan into the short floor

pan must be redesigned.

" Design IV: No new investments, other than refurbishing costs, are required.

Flexibility is already built in.

Again, Monte Carlo simulation is performed for each design alternative.

Scenario III: Uncertain Long Floor Pan Length

This time, the long floor pan length is treated as uncertain. The long floor pan length

changes occur in year 5 and 10, when the vehicle models are redesigned. Each design

alternative will incur different investment costs.

" Design I: A new long floor pan stamping die and a blanking die is required.

Short floor pan dies are refurbished only.

* Design II: A new extension piece is required to accommodate the new length.

Blanking and stamping dies for a new extension piece are required. Short floor

pan dies are refurbished only.

" Design III: A new stamping die and blanking die for the long floor pan are

required. The blanking die for the short floor pan is refurbished only.

" Design IV: No new investments, other than refurbishing costs, are required.

Flexibility is already built in.

94



Scenario IV: Uncertain Short and Long Floor Pan Lengths

Finally, both long and short floor pan lengths are treated as uncertainties. The floor

pan length changes occur in year 5 and 10 when the entire vehicle family goes through

a major change up. Each design alternative will incur different investment costs.

" Design I: New stamping and blanking dies for both long and short floor pan are

required.

" Design II: Investment costs for the short floor pan and extension piece are

required.

" Design III: New investment costs for the large floor pan (blanking and stamping

dies) and blanking die (for short floor pan trimming) are required.

" Design IV: No new investments, other than refurbishing costs, are required.

Flexibility is already built in.

Simulation Results

The following table lists E[NPC of each design alternative for all evaluated scenarios.

Values are normalized with respect to the E[NPC] value of Design I for Scenario I.

Table 4.5: E[NPC] of Design Alternatives for Simulated Scenarios

Design I Design II Design III Design IV
Scenario I 100.0 99.9 100.8 113.6

Scenario II 100.9 101.2 100.9 113.6
Scenario III 101.0 100.3 101.8 113.6
Scenario IV 101.9 101.2 101.9 113.6

From the simulation, it appears that Design II has the best economic performance

among all designs in most scenarios (except Scenario II). Design III, another flexible

design, had equal or worse economic performance than the inflexible Design I. This

can be attributed to the fact that the production volume trend (shown in Figure

4-8) shifted to the region where Design I and Design II are more favorable. Another

interesting result is that Design IV, the most flexible design, had the worst economic
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performance overall, regardless of degrees of uncertainty. This raises a possible future

research question, "how much flexibility is optimal when the degree of uncertainty is

known?"

The final analysis consists of comparing the difference between the economic per-

formance of flexible designs to that of the inflexible design as the degree of uncertainty

increases. Figure 4-9 shows the NPC difference between flexible designs (Design II,

III, and IV) and the inflexible design (Design I) as the degree of uncertainty in floor

pan length increases. Numbers are normalized with respect to the cost difference

between Design II and Design I, for degree = 0.

Value of Flexibility vs. Degree of Uncertainty
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150 -- - -- -- --------150

100 -4- E[NPC (II)] - E[NPC (I)]

-4-- E[NPC (III)] - E[NPC (I)]

U 50 --- E[NPC (IV)] - E[NPC (I)

0

31 2

-50

Uncertainty in Floor Pan Length

Figure 4-9: Value of Floor Pan Flexibility

The abscissa represents the degree of uncertainty in the floor pan lengths. The floor

pan lengths can be certain for both long and short floor pans (degree = 0), uncertain

for one of the floor pans, long or short (degree = 1), or uncertain for both floor pans

(degree = 2). The ordinate represents the difference between the average cost expen-

diture of flexible designs (Design II, III, and IV) and the inflexible design (Design I).

A negative value indicates an overall cost savings of the particular design alternative

with respect to Design I. As observed in Figure 4-9, it is clear that flexibility has

more value as the degree of uncertainty increases.
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4.2.6 Discussion

The analysis results reveal important issues that must be considered when designing

flexible platform components. They are: the way flexibility is incorporated into the

component, the degree of flexibility, and the production volume ratio trend between

variants in the product family.

First, the way flexibility is embedded into a component has very significant eco-

nomic consequences in terms of expected net present cost over wide production volume

ratio range. Design I and Design II were sensitive to the production volume ratio,

while Design III and IV were economically robust to uncertain production volume

ratios, due to small differences in long and short floor pan manufacturing costs.

Second, consideration must be given to the degree of future uncertainty. As

demonstrated in previous section, the value of flexible designs increased as the degree

of uncertainty increased. However, Design IV, the design with "continuous" flexibil-

ity, was too expensive and it failed to give the best return even when the degree of

uncertainty increased. However, as the frequency of design change increases, Design

IV will be more valuable, since its switch cost is zero.

Finally, the future trend of the production volume ratio between variants in the

same product family is an important factor. When the initial production volume ratio

is near the crossover point (shown in Figure 4-8), the future production volume ratio

trend must be observed carefully in order to select the best design. In this case study,

while Design III was the most cost efficient option over most production volume ratio,

it did not do well due to the volume ratio shift towards the region where other designs

(Design I and II) are more efficient.

The case study provides a stepping-stone for flexible complex systems design (e.g.

product platforms). For critical elements in the complex system, the architect can

apply the knowledge and insight from this study to incorporate flexibility into those

elements. As result, complex systems can respond to future uncertainties more easily.

However, one must first identify critical elements in the system, then observe their

effect to the system when they change to respond to uncertainty. This is not covered
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in the case of single component design, but is addressed in Chapter 5.

4.3 Chapter Summary

This chapter presented a case study of flexible platform component design. Embed-

ding flexibility allows manufacturers to respond to changing market needs with a

minimum increase in investment costs and complexity. Once important product plat-

form criteria and future uncertainties are identified, several flexible design alternatives

are generated. Each design alternative is optimized for minimum cost expenditure

while satisfying performance constraints. Uncertainty analysis is performed to deter-

mine the best design alternative. In the case study, flexible design alternatives for

a vehicle floor pan are generated and evaluated for lifetime cost expenditure under

uncertain demand and uncertain geometric specifications.

Results revealed that how flexibility is built into the component has significant

economic consequences over the lifetime of the platform component. Additionally,

it is demonstrated that as the degree of future uncertainty increases, the value of

component-embedded flexibility increases. Analysis also demonstrated that too much

flexibility may not result in the best economic performance, which gives rise to the

question "what is the optimal degree of flexibility?" Production volume trends for

component variants are very important factors to consider when there are several

competing flexible design alternatives. In Chapter 5, a full-scale case study is pre-

sented for a vehicle platform, where a BIW must be made flexible to a specified set

of future uncertainties, using knowledge gained from the single component design.
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Chapter 5

Case Study: Automotive Vehicle

Platform Design

5.1 Case Study Background

In Chapter 3, a new flexible platform design process is introduced. This chapter

demonstrates the proposed design process framework through a new automotive ve-

hicle platform case study, where the new platform must accommodate a family of

vehicle variants, and be flexible to deal with future uncertainties, using common and

flexible elements.

A major automotive company is planning to add a new product platform to its

portfolio of platforms. The new platform will accommodate three vehicle variants,

each belonging to a distinct vehicle market segment defined by the company. All

three variants are passenger sedans. Also, the new platform will replace two older

platforms that were bases for aforementioned vehicle variants. Additionally, three

vehicles will have different requirements in styling, production volume, and certain

key design parameters, including the length of the wheelbase. Table 5.1 shows the

initial production volume and wheelbase specifications for three vehicle variants.

Since the new platform must accommodate vehicle models which were originally

produced from two platforms, the bandwidth of the vehicle platform may be in-

creased. Additionally, the new platform must be flexible enough to accommodate the
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Table 5.1: Individual Vehicle Information

Vehicle Variants pi P2 P3
Annual Production Volume 280,000 125,000 60,000

Wheelbase Short Short Long

initial vehicle variant differentiation, styling, and uncertain changes in the future. To

achieve these objectives, the system architect must identify a critical subset of vehicle

elements, incorporate flexibility into these elements to design the flexible vehicle plat-

form, and evaluate the flexible design under various degrees of uncertain scenarios to

determine if flexible design has more value than the inflexible design. In subsequent

sections of this chapter, the process presented in Chapter 3 is demonstrated. In this

case study, a Body in White (BIW), an important vehicle sub-system, is investigated

in detail. At the end, the final BIW product platform elements are defined, along

with recommendation on when to implement such flexible BIW platform design.

5.2 Step I: Identify Market, Variants, and Uncer-

tainties

5.2.1 Market Segments

The automotive market is divided into several market segments, each market segment

clustered according to the type, size, and price of vehicle. For the specific company

in the case study, the vehicle market segment is initially divided into five different

segments, grouped according to vehicle type, such as sedan, sport, utility, pickup and

van. Each segment is then further divided into smaller segments, according to vehicle

size and price. Figure 5-1 shows all of the vehicle market segments, with further

sub-division of sedan market segments into smaller segments.

The vehicle market segment set Meh can be expressed as:

Mveh = [MULXSDN, MPLXSDN, MLLXSDN,...], (5.1)
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(Sedan Market)

Ultra Luxury Sedan (ULXSDN)

Premium Luxury (PLXSDN)

Large Luxury (LLXSDN)

Entry Luxury (ELXSDN)

Large Sedan (LARSDN)

Medium Sedan (MEDSDN)

Low Sedan (LOWSDN)

Economic Sedan (ECOSDN) Sedan Sport Utility Pickup Van

Figure 5-1: Automotive Market Segmentation

where each market segment is mathematically expressed as ranges of customer pre-

ferred attributes set JA and the price P, as described in Equation (3.4). For auto-

mobiles, there are several attributes that influence customers' preferences for certain

classes of vehicles. A detailed discussion of JA for this case study is presented in later

sections.

5.2.2 Product Variants

Since all three candidate vehicle variants are sedans assigned to different sedan market

segments, the case study will closely focus on sedan market segments in particular.

Let's define the product family Pveh as:

Pveh [P1, P2, P31, (5.2)

where each pi in set Pveh is described by specific values of JA and P. Detailed ex-

planations of JA and P for this automotive market is presented in the next section.

Three variants are positioned in following market segments:

Table 5.2: Market Segment Designation for Each Product Variant pi

Variant Mveh,i Market Segment

P1 MMIDSDN Mid Size Sedan

P2 MLARSDN Large Sedan

P3 MLLXSDN Large Luxury Sedan
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For each p, the lower and upper limits of JA is established by the boundary of its

assigned market segment Mveh,i. Specific values for lower and upper limits Of JA for

each market segment Mveh,i is listed in Table B.3 in Appendix B.

5.2.3 Uncertainties

With market segments Mveh and the vehicle variants set Pveh defined, the last task in

this step is to identify a set of uncertainties Uveh, where each uncertainty u is related

to the product platform and family in one way or another. In this case study, the

following set of uncertainties is defined:

Uve h = ID-p (t) Sp (t) .(5.3)

D- is the future demand of the vehicle family P as a function of time t, and S- is the

styling change of the vehicle family as a function of time t. The identified uncertainty

set Uveh will be used to design and evaluate a flexible product platform through the

case study.

5.3 Step II: Determine Critical Key Attributes and

Design Variables

5.3.1 Key Attributes

For automobiles, the customer-preferred set JA has several attributes. Many of the at-

tributes are listed in Figure 5-2. Another useful set of vehicle attributes are published

by Cook [16].

Some attributes are related directly to vehicle performance, and some attributes are

"perceived" by customers. From these attributes, four attributes related to the un-

certainties Uveh, are identified. They are:

JUveh = [RM, IE, FE, AC5 o - 70] (5.4)
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Performance Attributes Customer Perceived Attributes Other Attributes

Brake Pedal Feel

50 - 70 mph Acceleration (AC 50-70) Ease of Ingress/Egress (IE)

Fuel Economy (FE) Handling on Curves

Reliability (JD Powers) Interior Quietness Price (P)

Towing Capacity Passenger Roominess (RM)

Towing Caity Quality of Workmanship
Ride

Visibility

Figure 5-2: Customer Preferred Vehicle Attributes

RM is customer perceived vehicle roominess, IE is the ease of front ingress/egress,

FE is the fuel economy, and AC 50-70 is the acceleration time interval from 50 to 70

mph. RM and IE are scores between 0 - 100, and represents the percentage of

customers who are either "very satisfied" or "satisfied" with a specific vehicle. These

scores are past data, obtained through a market survey of customers who owned the

vehicle for six months or less. RM and IE, are selected as key attributes which

are related to one of the uncertainties identified - styling. Vehicle styling is mostly

influenced by the shape of BIW. Similarly, RM and IE are attributes which are

also influenced by the BIW shape in key places as well. Since the styling cannot be

quantified easily, RM and IE are used as constraint attributes that must maintain

certain level of scores, while styling changes in the future, thus addressing the styling

uncertainty.

Another uncertainty addressed is vehicle family demand. For individual vehicle

variants, its demand is determined by values of vehicle attributes listed in Figure

5-2. However, in this case study, four attributes - FE, AC 50 _70 , RM and IE - are

investigated in detail. The reason for selecting these attributes are: 1) These four

attributes are the most important attributes for market segments where Pveh are

targeted, and 2) FE and AC 5 0 -7 0 are vehicle performance attributes affected by the

vehicle size, thus affected by RM and IE. Other attributes values, not included in

JUeh, are treated as constants in this case study.
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5.3.2 Design Variables for Key Attributes

Once the set of key attributes Juveh is identified, the next step is to establish the

mapping relationship between the attribute space and the system-level design vari-

able space, described by the system-level design variable set Xuve*. For many engi-

neering performance attributes, mapping from the attribute space to the system-level

design space can be straightforward and analytical. However, in this case study,

two attributes, RM and IE, are customer perceived attributes, and establishing the

analytical relationship between two spaces is no longer clear.

In order to identify relevant system-level design variables for RM and IE, the

principal component analysis [22, 40] is used to develop the attribute translator model.

The theoretical formulation of the analysis is well documented in aforementioned

references. In this thesis, a brief description of the analysis for two attributes (IE

and RM) is presented.

The analysis starts with the assumption that there exists a set of design vari-

ables that influences people's perception of vehicle roominess (RM) and ease of front

ingress/egress (IE). Shown in Figure 5-3 are relevant system level design variables,

identified for each attribute. Dimensions in the figure are SAE (Society of Automo-

tive Engineers) standard dimensions [2], and the explanation of dimensions is listed

in the nomenclature section.

The first step is to gather relevant data for different vehicles. RM scores and

dimensions for 94 vehicles, produced between 1997 to 2001, are collected for the anal-

ysis. For IE scores and dimensions, 57 vehicles, produced between 1995 to 2000, are

used. See Appendix A for gathered data. Using collected data, principal components

are identified through singular value decomposition. RM and IE scores can then be

expressed as linear regression of obtained principal components. IE and RM scores

for each pi in set Pveh can be expressed as

IEi = f (XIE,i) (5.5)

RM = f (XRM,i)
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IE RM

L18

H122

S97
H63

H30 H31

2 _W20

W3

Figure 5-3: System Level Design Variables for IE and RM

XIE,i = [H5j, H11j, H30, H50j, H112j, H115j, H122j, L18j]

XRM,i = [H30j, H31j, H612 , H63j, H122j, L48j, S97, W3j, W20i, W27j].
(5.6)

These two models and important dimensions were developed and found by Dr.

Sangdon Lee at GM (2002). Once the equations for RM and IE are defined, the next

step is to establish the relationship between RM, IE, FE and AC 5 0 -70 . It is observed

that RM and IE affects FE and AC 5 0-7 0 through changes in mass and aerodynamic

drag. The statistical analysis results show that for one point improvement in RM

(in 0 - 100 scale), the vehicle mass increases by about 25 lbs, and for one point

improvement in IE, approximately 12.5 lbs of mass is added to the total vehicle

mass. Aerodynamic drag is also affected by RM and IE, since improvement in RM

and IE scores generally result in a larger vehicle, which increases the frontal area and

the aerodynamic drag of the vehicle. Using the statistical analysis results, FE and

AC 5 0 -7 0 for each pi in set Pveh can be expressed as functions of IE and RM:
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FE = f (IE, RM) ()

AC50o0,i = f (IEj, RMj).

After establishing coupling equations for identified attributes, now is the time to

define independent variables, dependent variables, and constants. As it is shown in

Figure 5-3, RM and IE share many system-level design variables, which are them-

selves coupled (similar to a coupled system example, presented in Chapter 1 in FRDP

form). The following design variables are selected as independent design variables for

each pi in Pveh, which will be used for optimization in Step III:

XUveb,Z = [L48j, W3j, W20, H5j, H50, Pw,]. (5.8)

* L48: One vehicle variant is a long wheelbase vehicle, while the other two vehicles

have short wheelbases. Differences in wheelbase dimension require different L48

for long and short wheelbase vehicles. One needs to determine values of L48

that can bring the maximum revenue to the vehicle family through optimum

RM scores.

" W3: From the principal component analysis, it was determined that W3 is one

of the most sensitive dimensions that affects RM.

" W20: Another design variable that affects RM.

" H50: The overall BIW height dimension that highly affects IE and RM through

influencing several important dependent variables.

" H5: Important dimension for IE.

" Pw: Weighted Average Price of a Vehicle Variant.

The individual variant's price Pw,i is the weighted average price of the variant's dif-

ferent trim level. For some product variants, there are many different trim levels (e.g.

V6 engine variant, V8 engine variant, manual transmission, automatic transmission),

all with different prices. The P,,i is obtained by:
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PW'i = E sIIT Py (5.9)
j=1 msi

where ntrim is the number of different trim levels for vehicle variant i, msij is the total

market share of jth trim level vehicle for ith variant, P3 is the price of jth trim level

vehicle, and msi is the total market share for the ith vehicle variant.

- - -Greenhouse

H122

W27---6- - - Q ---- ------

W27

Figure 5-4: Vehicle Styling Differentiation with W27 and H122

There are several dependent variables which are expressed as functions of indepen-

dent design variables, defined in Equation (5.8). Dependent variables are Hil, H30,

H31, H61, H63, and S97. The last task is to identify constants, which are either

common or unique for each vehicle variant. They are L18, W27, H112, H115, and

H122. L18, H112, and H115 are the same for all vehicle variants. W27 and H122

are variant-unique, for styling differentiation purposes through different greenhouse

(passenger compartment above the belt line) design, as shown in Figure 5-4.
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5.4 Step III: Optimize Product Family and Plat-

form Bandwidth

5.4.1 Product Family Optimization

In Chapter 2, the system goal of the product platform is to provide a system to a

company to maximize profit through product variety and cost reduction. To maximize

the profit, the first task is to position each vehicle variant of the vehicle family Pveh in

the corresponding market segment Mvh,i within the established market segment set

Mveh to generate maximum revenue as a product family. Using relationships defined

in previous sections, the revenue maximization problem for the vehicle variant set

Pveh can be formulated as shown in Equation (5.10).

3

maximize Ri; R1 = msi (JUv,01 PW,i) Pw,iDT
i=1

with respect to XUve PWi} (5.10)

subject to h (JUveh,i (XUveh,j)) , g (JUveh,i (XUveh,i))

In the equation, the individual vehicle market share msi is a critical value that cannot

be easily obtained. This information is obtained through a proprietary market simu-

lation software, which simulates the North American automotive market for the 2002

model year, as a function of aforementioned vehicle attributes. The market simula-

tion model is integrated into the overall optimization framework with an Excel based

attribute translator model and commercial optimization software (iSIGHT). This is

necessary to yield realistic results from the market model. One of the limitations

of the market model is that if it is not constrained through engineering models, it

results in a unrealistic solution (e.g. it would suggest a large SUV with 50 mpg fuel

economy as one of the top selling vehicle variants). Another issue, which is outside

of this research scope, is the simulation model accuracy. For the sub-models in the

framework, its results are within their tolerance limits of expected values.

For the optimization variable constraints, lower and upper bounds of indepen-
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dent design variables and corresponding vehicle attributes are listed in Appendix B.

Figure 5-5 shows the simulation model framework for the product family revenue

optimization.

---------
iSIGHT

Design Change

Attribute Translator (RM) No

p RR
w2, Xp2 FE, AC Calculation IFE AG C e Renue I Converge

P,0' p3 IECalculation insp

*E Excel
Attribute Translator (IE) IE

Automotive Market End
Excel I I Simulator

Figure 5-5: Revenue Optimization Framework for Vehicle Family Pveh

Using the developed optimization framework, the XUVCh for each vehicle variant

in the product family Pveh is optimized for maximum product family revenue. Once

all optimized attribute values and design variable values are determined, the vehicle

platform bandwidths, both in design space and the attribute space, are determined.

L48 Bandwidth
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Figure 5-6: L48 Bandwidth for Vehicle Variants and Platform

Figure 5-6 shows bandwidth of design variable L48 for each vehicle variant and

the optimized value. Taking the maximum and minimum L48 values, the bandwidth
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of this design variable for the vehicle family is established. Bandwidth plots for

all independent design variables are presented in Appendix B. Since there are six

independent design variables, their bandwidths can be shown in one chart, using the

radar chart format. Tables 5.3 lists optimized values (normalized) of Xuveh and Juveh'

They are normalized with respect to the maximum value of each design variable

among three vehicle variants.

Table 5.3: Optimized Xuveh and Juvh for P (Normalized)

Variants L48 W20 W3 H5 H50 P IE RM AC 5 0 7o FE

Pi 0.42 1.00 1.00 0.92 1.00 0.52 0.95 0.97 0.89 1.00
P2 0.42 1.00 1.00 1.00 1.00 0.61 1.00 0.99 0.99 0.99

P3  1.00 1.00 1.00 0.95 1.00 1.00 0.97 1.00 1.00 0.91

Figure 5-7 shows the radar chart for platform bandwidth (normalized) in both

design variable and attribute spaces. The origin indicates the absolute zero, meaning

that the value of the design variable is zero.

Platform Design Variable Bandwidth

L48
1.
0.

0.

H5H 3

1.0
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/ .4
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-4 FE

ACSO-70

Figure 5-7: Design Variables and Attributes Bandwidths for Vehicle Family Pveh

It can be seen that for some design variables, values for all vehicle variants are

either the same or very close, indicating very small or no bandwidth required for

those design variables. Three independent variables, H5, L48 and P" require signif-

icant bandwidths. Design variable P, is the domain of the marketing or planning,
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and will be used during the uncertainty analysis phase (Step VII) to calculate the

overall product family profit. The next task is to perform a sensitivity analysis of the

optimum solution, to identify additional design variables which are sensitive.

5.4.2 Sensitivity Analysis

The sensitivity of the product family revenue with respect to the product design

variable set XUveh for pi, is shown in Figure 5-8.

Revenue Sensitivity (pi)

C)

0 +1 %
U - 1%

-1.0% -0.8% -0.6% -0.4% -0.2% 0.0% 0.2% 0.4% 0.6% 0.8% 1.0%

Total Revenue Change (%)

Figure 5-8: Revenue Sensitivity Chart (p1)

The sensitivity chart shows the percent change in total vehicle family revenue per

percent change in each design variable. First, and foremost, it is noted that, with

exception of L48, all other design variables are negatively correlated with total rev-

enue. It means that when these design variable values increase, it decreases total

family revenue. The reason for this phenomenon is that as the vehicle size increases

to improve IE and RM, it degrades FE and AC 50 7 0 values, resulting in decreased

market share and total family revenue.

Sensitivity analysis results show that the weighted average vehicle price P, is the

most sensitive parameter that influences the entire vehicle family revenue. However,

since we are interested in system-level design variables directly related to customer at-
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tributes, focus will be on geometric system-level design variables. The most sensitive

design variable is H50, the upper body opening to ground - front. It has signifi-

cant affect on total revenue, especially for pi. This is due to the high market share

commanded by p1. Detailed sensitivity analysis results are presented in Appendix B.

H50 is a highly sensitive design variable since it affects several vehicle attributes,

which in turn, affects the total revenue generated. However, referring back to Table

5.3, H50 values for all three vehicle variants are the same, thus not requiring any dif-

ferentiation. It is also observed that the optimized values of H50 are all located at the

lower bound of the design variable value, indicating it is an active constraint, which

will decrease even more if the constraint was not present. This is due to the affect of

H50 on FE and AC 5 0-7 0 . If H50 decreases, it negatively affects RM and IE. How-

ever, FE and AC 5 0 _70 improves (due to the vehicle size reduction), resulting in overall

revenue increase of the vehicle variant. Even though this particular dimension does

not require any differentiation currently, incorporating flexibility for this particular

dimension may be advantageous. The reason is that when the customer's preference

changes in the future (e.g. they want roomier car, or cars with better ingress/egress

features), the company can respond to this uncertainty with much more ease.

In this section, results for optimization and sensitivity analysis of the vehicle family

Pveh are presented. Results show that some design variables require bandwidths in

order to achieve the desired vehicle performance level, thus achieving the maximum

revenue. Some variables are highly sensitive, becoming a desirable candidates to

incorporate flexibility. Once these critical design variables are identified, they need

to be mapped to the physical space, where the critical platform elements must be

identified to incorporate flexibility. For a single component, this is relatively easy,

but for complex systems, such as product platforms, it may be very difficult. Step IV

demonstrates this mapping process.
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5.5 Step IV: Identify Critical Elements

5.5.1 Identifying Basic Elements

In Section 5.4, the bandwidths of the vehicle platform in the attribute and design

variable space are established through vehicle family revenue optimization. Figure 5-

9 shows the independent design variables and differentiating constants (H122, W27).

H122

H502

H1220

W27

H5

WheelbaseH

Figure 5-9: Design Variables Requiring Flexible Bandwidth

In the beginning, it is stated that this case study will investigate BIW in detail.

One then needs to select design variables which are BIW related and study the effect

of those variables on the BIW. To this end, four design variables are selected. They

are L48, W27, H122, and H50.

In Section 5.1, it is initially stated that vehicle variants have two different wheel-

bases. This difference in wheelbase is reflected in the initial L48 lower and upper

limit declaration. Then L48 for each variant is optimized for RM which resulted in

maximum revenue. W27 and H122 require differentiations to achieve styling distinc-

tion of product variants in the product family. H50 is a very sensitive dimension, if

made flexible, can add value under future uncertainty. H5 is a design variable related

to interior seating, so it is not selected. For W3 and W20, results of the optimization
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yielded values which are either same or very close. Desired ranges of these values can

be achieved through the differentiation of interior trim. Therefore, W3 and W20 are

omitted from this analysis. Once BIW related design variables and their bandwidths

are decided, change propagation analysis for these variables need to be performed to

identify critical BIW elements.

0 A 0 B 0 C 0 :

Length , , A Length

Figure 5-10: Example of Non-Unique Lever Design

The challenge of this phase is the non-uniqueness of the physical elements space.

Identified design variables can be mapped to the physical elements space in many

ways, generating many non-unique solutions. Figure 5-10 shows a simple example of

such case. The lever is constructed out of smaller levers A, B, and C to meet the

length requirement. If the length must be increased by ALength, it can be achieved

in number of ways. Only one lever's length can be changed (A, B, or C), or it can

be combination of two levers (A + B, A + C, B + C), or it can be combination

of all three levers. To address this problem, the system architect must decompose

the system to bound the physical element space, thus constraining the physical space

with which one must work with.

The BIW of a passenger car is shown in Figure 5-11, with proposed system-level

decomposition. It is decomposed into a three box configuration. The front box is

the motor compartment, the second box is the passenger compartment, and the last

box is the cargo compartment. Since the key attributes mentioned, RM and IE

respectively, are attributes that are directly related to the passenger compartment in

addition to the styling aspect, the system architect must investigate the passenger

compartment to identify critical elements as candidates for incorporating flexibility.
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H50

L48

Motor Compartment Passenger Compartment Rear Compartment

(Common) (Flexible) (Common)

Figure 5-11: Body in White (BIW) of a Passenger Sedan

The motor compartment and cargo compartment are assumed to be common.

Once the boundary of the "flexible" domain is established, components in the BIW

structure need to be identified. Body components can be decomposed down to several

levels. In this case study, the BIW is decomposed down to its individual component

level, where individual components are end-items, supplied to the BIW assembly line

directly. The architecture of the body is a Body Frame Integral structure, consists

of steel body. There are 21 components (excluding the motor compartment compo-

nents) which are part of passenger and cargo compartments. Next, the connective

relationship between individual components needs to be established and expressed in

DSM format. The CAD data of a current production vehicle (shown in Figure 5-12)

is used to construct the DSM (shown in Figure 5-13). This is the CAD model of

current P2. Figure 5-12 is the same CAD model as shown in Figure 5-11 without the

front motor compartment.

Figure 5-12: CAD Model of Current P2
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Comoonents Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Body Outer Panel (RH) ASM 1 I
Body Outer Panel (LH) ASM 2 1 _

Body Inner Panel (RH) ASM 3 1 I _ I 1 1 1
BodyInner Panel (LH) ASM 4 1 1 1 1

Front BodHinee Panel (RH)ASM 5 1 1
Front Body Hinge Panel (LH) ASM 6 1 1 _

Center Pillar Suttot (RH) ASM 7 I
Center Pillar Suort (LH ASM 8 1 1

Rocker Inner Panel (RH)ASM 9 1 1 I I I I
Rocker Inner Panel (LH) ASM 10 1 I _ _ __

Rear Wheel Hou'ng(RH ASM I I _ _

Rear Wheel Housing (LH) ASM 12 1 _ _

Plenum Panel ASM 13
Dash Panel ASM 14

Front Floor Panel ASM 15 __ _ _

Rear Floor Pan ASM 16 ___ _ _ _
Rear Reinforcement A 17 _ _

Rear Reinforcement B 18 1 1
RoofPanel 19 1 1_

Front Roof Support 20 1 1 _

Rear Roof Suport 21 1 1 1

Figure 5-13: Design Structure Matrix of BIW Components

For achieving required bandwidths for previously specified system-level design

variables, the architect must 1) identify components that need to change, and 2) how

such changes propagate throughout the BIW. To see the change propagation more

easily, network representation is constructed (see Figure 5-14). The link represents a

physical connection, where each component is connected to another by spot welding.

Front Roof Support

Roof Panel

Rear Roof Support

etrlar he el Rer hella

BoyInner Support (LH) Support (RH-) BdIne
Panel (LH)IPae R

FRHP (LH) Dash Panel FBHP (RH)

Panel (LH) Floor Pan Pnl(H

Rocker Inner 
Rocker Inner

Panel (LH) Pnl(H

Rear Floor Pan

Rear Wheel Rear Wheel
Housing (LH) Housing (RH)

Rear Reinforcement A

Rear Reinforcemen B211 1:1

Figure 5-14: Network Representation of Body in White

There are four system-level design variables, mentioned previously, that require

differentiations for each vehicle variant. Additionally, styling uncertainty is a key
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factor that causes body change to occur. For each specified design variable change,

one must identify multipliers and carriers that send out significant amount of change

to other components. Once these components are identified, the architect can design

them to reduce the degree of change propagation or switch cost by incorporating

flexibility into the multiplier/carrier component itself or components that the mul-

tiplier/carrier component is propagating changes to. The following section presents

change propagation analysis for specified design variable changes.

5.5.2 Change Propagation Analysis: Lengthwise and Styling

As a result of revenue optimization in Step III, it was determined that the vehicle plat-

form must achieve bandwidth for L48 - the second row knee clearance. This requires

BIW to be differentiated in the length direction through different wheelbase. Another

source of the length change comes from the styling differentiation in the lengthwise

direction. We need to investigate cases where length and styling requirement changes

in the future, within the optimized L48 bandwidth.

The change originates from the body outer panel, the outermost body compo-

nent that is perceived by the customer, and the most important component for the

vehicle styling. The change propagates throughout the BIW, and the final change

propagation state is shown in the DSM form in Figure 5-15.

Component Nne Cag1 3 56 7 89 10 11 12 1 4 15 16 17 19 19 20 21 Recive

~II~~EEE I -I El IH0
Bodyl~m erMPanel(RH)ASM 3 1 1
Rod InnerPanel (LH ASM 4 1 1

Front Body Hinge Panel (RH) ASM 5
FrontBod Hine Panel (H) ASM _ 0

Cener Pillar Sumort(RH) ASM 7 0
Center Pillar Sunort (LH) ASM 8 0
Rocker Inner Panel (RH) ASM 9 1 1
Rocker Inner Panel (LH ASM 1
Rom Wheel Housin (RH)ASM I0
Rear Wheel Housina (LH) ASM 12 0

Plenum Panel ASM 13 0
Dash Panel ASM 14 0

Front FlorPanel ASM I5 _ 2

Rear Floor PnASM 16
Rear Reinforcement A 17
Rear Reinforcement B I _

RoolPanel 19 _2

ront'Raof r 20 I 11 ! 3
earRoofsU o 21 I1 1 3

F

Total Change Propagned Outwads (E ) 2 2 3 3 0 " a 1 # 1

Comonent Class M M M M Ca Ca

Figure 5-15: Change Propagation DSM

I 1 1 :1 9 6 1 4 2 1 0
6. 9 _20 -2 11190 0 1-3 -

f[[or I LgCa A nAg

for BIW Length Change

117

-



It shows CPI values for all components affected by the length change, and classifies

each component into four pre-defined classes, depending on the value of CPI. A

total of ten components are affected by the lengthwise direction change. Once these

components are identified, then the switch cost for making such a change needs to be

calculated. Switch related investment costs for all components are calculated using

the process based cost model [41]. The investment cost consists of blanking tool

investment, stamping tool investment, and welding tool investment cost. Table 5.4

list initial investment costs and BIW length related switch costs for the ten identified

components. The assumption is that these components are customized for each vehicle

variant, and if there is any changes in BIW, they would be changed as well. Costs

are normalized with respect to the initial investment cost of the body outer panel.

Table 5.4: BIW Length Change Related Investment Cost for Critical Components
(Same for All Variants)

Component Name Initial Investment Switch Cost
Body Outer Panel (RH & LH) 100.0 100.0
Body Inner Panel (RH & LH) 134.3 134.3

Rocker Inner Panel (RH & LH) 45.9 45.9
Floor Pan 120.5 120.5

Roof Panel 39.9 39.9
Front Roof Support 3.5 3.5
Rear Roof Support 3.5 3.5

Figure 5-16 summarizes all change propagation related information into a graphi-

cal format. Above the name of a particular component, its component class (for this

particular change) and related switch cost is listed.

Once all critical BIW components, with relevant switch costs are identified, this

information is used to generate flexible BIW design alternatives in Step V. For detailed

comparison of change propagation and economic impacts of inflexible BIW design and

flexible BIW design, see Appendix C.

Final comment on the length related change propagation is that the degree of

propagation may depend on the magnitude of the dimensional change. For example,

if the length changes by only a small amount, only a small portion of BIW component
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Ca 39.9
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133 CCente r Wlae Center Pillar
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A: Absorber Rear Reinforcement A

C: Constant 
Rear Reinforcement B

Figure 5-16: Change Propagation for BIW Length and Styling Change

may be affected. However, as the magnitude of length change increases beyond certain

threshold, it may require significant structural change, resulting in greater degree

of change propagation and possible addition of extra components to accommodate

change. This is a very important issue to consider, but is not covered in this thesis.

5.5.3 Change Propagation Analysis: Styling Only

There are three dimensions that affect styling. They are H50, H122, and W27. As

seen in Figure 5-9, vehicle styling can be differentiated by changing the greenhouse

(vehicle body segment above the belt line) related dimensions, thus not affecting the

vehicle length. H122 and W27 values are unique for each vehicle variant, requiring

differentiations in related BIW elements. For H50, the optimization results from Step

III indicated that it is the same for all three vehicle variants. Therefore, even when

the vehicle styling changes, value of H50 must remain the same. Change propagation

analysis is performed to determine components that are affected by differentiating

aforementioned dimensions. Figure 5-17 shows the DSM for change propagation,

along with relevant CPI values for components involved.

A total of seven components are affected by such change. If these components
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Name
3 20 21

BdOuter Panel IRM ASM 1
Body Outer Panl (LID ASM 2 0
BodInner Panel (R ASM 1
Body Inner Panel (LH) ASM 4 1 1

FrontB Hine Panel (RM ASM 5 0
Front BodHine Panel (LMASM 6 1

Center Pillar Siton oRH3ASM 7 1
Center illar Suert(LI) ASM 8 0
Rocker Inner Panel (RHftASM ± - -

Rocker ine Panel(L) ASM 10 1
Rear Wheel Hmsine (RH) ASM I 1
Rear Wheal Housint (LH) ASM 12------------------------ 1_

Plen Panel ASM 13--
DashPanel ASM 14 1 1

FrotFloor anel ASM i- _

Re Floor Pn ASM 16 0
Rear Re'nforcement A 17 0
Rea Reinforcemn B - -0

RoofPanel 19 1 1 2
Front Roof2 Suort I1 1 1 3
RearRoofSuoort- - - - - -1 3

Total Chanee Proaezated Outwards
Ct

Comonent Clas

a a a a a a a a a a a a a a

MIMIMIMI I I I ...I.I I ..I I I I I I _ Cal A I A

Figure 5-17: Change Propagation DSM for BIW Styling Change

are variant-unique and must be redesigned every time styling changes, it will result

in significant switch cost. Table 5.5 lists initial investment cost and switch cost for

the involved components. Again, the cost is normalized with respect to the initial

investment cost of the body outer panel.

Table 5.5: BIW Styling Change Related Investment Cost for Critical Components

Component Name Initial Investment Switch Cost
Body Outer Panel (RH & LH) 100.0 100.0
Body Inner Panel (RH & LH) 134.3 134.3

Roof Panel 39.9 39.9
Front Roof Support 3.5 3.5
Rear Roof Support 3.5 3.5

The final state of change propagation is shown in Figure 5-18. The component

class, along with its normalized switch cost, is shown above each component involved.

For styling change, propagation analysis results for both inflexible BIW design

and flexible BIW design (generated in Step V) are listed in Appendix C.

5.5.4 Critical Elements Selection

From the change propagation analysis, ten components are identified as key com-

ponents that change as results of required vehicle differentiation and future changes
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A 3.5

Front Roof Support

Ca 39.9
aRoof Panel
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Rear Roof Support
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Floor Pan

Rocker Inner 
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Figure 5-18: Change Propagation for BIW Styling Change

in styling. Table 5.6 summarizes information gathered from the change propagation

analysis.

Table 5.6: Critical Components for Flexible BIW Design

Component Name Class Switch Cost Switch Cost
(Length) (Styling Only)

Body Outer Panels Multiplier 100.0 100.0
(RH & LH)

Body Inner Panels Multiplier 134.3 134.3
(RH & LH)

Rocker Inner Panels Carrier 45.9 -
(RH & LH) (Length Only)
Floor Pan Absorber 120.5 -

(Length Only)
Roof Panel Carrier 39.9 39.9

Front Roof Support Absorber 3.5 3.5
Rear Roof Support Absorber 3.5 3.5

Four components - body outer and inner panels (RH & LH) - are multipliers for

both cases. Switch costs for these components are very high, since every time design

changes they must be completely redesigned and tooling reinvested. Four panels

are key components that need to be designed to incorporate flexibility. Rocker inner
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panels are only affected when the vehicle length changes. The floor pan is an absorber

by definition, since it does not send out any change to other components. However,

to accommodate incoming changes, it requires significant amount of switch cost. The

roof panel incurs high investment cost as well. The front and rear roof supports are

small components with relatively small switch costs.

For the specified set of critical system-level design variables, it is determined that

only ten components need to be changed. These are critical components that, if

made flexible, can make the vehicle platform flexible to uncertainties in styling and

individual vehicle differentiation. In the next section, the flexible vehicle platform

design is presented in detail.

5.6 Step V: Create Flexible Design Alternatives

In Section 5.5, critical BIW components that are affected by the specified uncertainties

and attributes are identified through the change propagation analysis. The task is to

reduce the magnitude of change propagation through flexible component design, or

reduce the economic impact. The knowledge gained about flexible single component

design from Chapter 4 is used to incorporate flexibility in identified BIW components.

5.6.1 Passenger Compartment Decomposition Strategy

In order to satisfy the required dimension bandwidths and differentiation in vehicle

styling, the following system-level decomposition strategy is proposed to make the

BIW flexible to change.

The passenger compartment is decomposed into three sub-compartments. The

lower front passenger compartment remain common for all three vehicle variants.

The lower rear passenger compartment must be flexible in order to accommodate

the design variable bandwidth for L48. The upper passenger compartment, also

known as the "greenhouse," will be either unique or flexible for differentiation in W27,

H122 and the overall vehicle styling. The decomposition for upper compartment

is made right on the vehicle belt line, the line between the door and the window.
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Flexible/Unique Upper

W27 Passenger Compartment

A-14a 122 C-Pillar
IB-Pillar

H50

Common Lower Front Flexible Lower Rear Passenger
Passenger Compartment Compartment

Figure 5-19: BIW System Decomposition Strategy

The vertical decomposition occurs behind the B-pillar, to give flexibility for L48

adjustment. Latest models from the Mercedes-Benz, namely E-500 and CLS-500, are

good examples of how styling can be differentiated by differentiating the greenhouse.

Their shape differs above the belt line, with E-500 in more traditional sedan styling,

while CLS-500 has more sporty appearance. Two vehicle models were inspected in

detail, comparing similarities. Body outer panels for both cars, when compared, had

identical A-pillar and C-pillar contours, but different B-pillar. The reason for such

differentiation is that for CLS-500, B-pillar is widened to compensate for its hard-top

configuration (no window frame).

Once the system-level decomposition strategy is defined, the system architect

must examine each component to incorporate flexibility to achieve the overall decom-

position strategy goal. In Section 5.5, key components for required design variable

changes are identified. The decomposition strategy for two key components, body

outer panel and body inner panel, are presented here. Components are decomposed

so it would be more economical to change when the design requirement changes. It is

assumed that the proposed decomposition meets quality and manufacturing criteria.

123



5.6.2 Single Component Decomposition: Body Outer Panel

The body outer panel is a critical component that is visible to customers. It proba-

bly is the most sensitive component to styling changes. Figure 5-20 shows how the

component can be decomposed.

Body Outer Panel - Upper

W27 (Unique)

H122
t2 H50 Decomposition

AM,1100 ILine

L48

Body Outer Panel - Lower
(Common)

Figure 5-20: Body Outer Panel Decomposition

The lower body outer panel is common for all three vehicle variants. The upper

body outer panel is customized for each vehicle variant for styling differentiation,

as well as critical design variables differentiations as shown. Note that the panel is

not decomposed exactly as suggested in Figure 5-19. This is due to the fact that, if

decomposition is made on the C-pillar section, it will be easily seen by the customer,

thus creating a quality problem. The proposed decomposition line can be covered

by the front and rear doors. Common and unique portion of the body outer panel

are welded together to create the body outer panel for each vehicle variant. The

welding interfaces for all three vehicle variants are also common. When the styling

or length of the vehicle changes, only unique portion of the body outer panel need

to be redesigned. Common portion and the welding interface remains the same.

The proposed decomposition will incur extra investment in blanking, stamping and

welding tools, but when the design changes, will result in lower switch costs.
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5.6.3 Single Component Decomposition: Body Inner Panel

The body inner panel design is affected by the body outer panel design. It is also

connected to other important inner components, such as rocker inner panels, front

body hinge panels, and rear wheel housing. This component is also a multiplier and

incurs high switch cost whenever a change occurs. To reduce the impact of change,

it is decomposed into three different pieces as shown in Figure 5-21.

Decomposition Body Inner Panel -
Line Upper (Unique)

W27

H122
H50 h.

L48

EBody Inner Panel -

Lower Rear (Flexible)

Body Inner Panel - Lower FotBlanking (for Shorter Variants)
(Common)

Figure 5-21: Body Inner Panel Decomposition

The lower front body inner panel is common for all three vehicle variants, and

the upper body inner panel is customized for each variant, similar to the upper body

outer panel. However, for the body inner panel, there is a flexible piece (lower rear

body inner panel) as shown in the figure. This piece must be designed to meet the L48

bandwidth requirement, while meeting the manufacturing and quality requirements

as well. One way to achieve these requirements is to design the flexible piece to meet

the long vehicle specification, then to meet the short vehicle specification, trim the

end (where it is welded to the common piece). This will results in flexible design,

while minimizing potential manufacturing and quality defects by reducing the number

of additional welding points. The wheel house section of the piece is common for all

three vehicles, since it is usually designed to accommodate the biggest tires used by
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the vehicle family. This particular component is decomposed in a similar way as

proposed in Figure 5-19, since it is not seen by the customers.

5.6.4 Other Components

From the remaining six components - rocker inner panel (RH & LH), floor pan, roof

panel, front roof support and rear roof support - the roof panel is the only component

that must be designed uniquely for each variant every time the design change, since it

must comply to the styling restrictions imposed by the particular design change. The

flexible floor pan design was discussed in detail in Chapter 4. In this case study, the

flexible floor pan design used is "top-down" design, where the floor pan is designed for

long variants, then trimmed down for short variants. This design is the compromise

between economic benefit and manufacturing/quality criteria, which is not mentioned

in this thesis. Rocker inner panels and roof supports are designed in the same way

as the floor pan, to achieve the flexibility required.

5.6.5 Flexible Assembly Process

Assembly related investment is perhaps the biggest cost driver during the initial

investment phase. The automotive industry is no exception. In order to accommodate

the flexible component designs proposed in the previous section, the BIW assembly

line must also be flexible. Shown in Figure 5-22 is the BIW assembly process (based

on the actual process) and the proposed area to incorporate flexibility.

Motor Compartment 10 Underbody Inner Framing Outer Framing
Assembly Line Assembly Line Assembly Line Assembly Line

Common Flexible Flexible Flexible

Figure 5-22: Flexible BIW Assembly Line

The motor compartment is common for all vehicle variants, requiring no flexibil-

ity in the assembly process. However, remaining downstream processes do require

flexibility in assembly tooling to accommodate different vehicle variants. A detailed

assembly sequence for the underbody assembly line is shown in Figure 5-23.

126



Flexible Flexible Common Common

Floor Pan Rocker Wheel Rear
Panel LH House LH Seatback

Common

Motor - Underbody Assembly Mainline (Flexible) - Complete
Compartment Underbody

Rear Rocker Wheel
Compartment Panel RH House RH Studs

Pan

Common Flexible Common Common

Figure 5-23: Detailed Underbody Assembly Line

Each component coming in is labeled as either common components or flexible com-

ponents, which requires dedicated or flexible tooling (and additional welding line in

some cases), respectively. In this particular assembly line, the floor pan and rocker

inner panels are flexible components that require flexible assembly processes. Finally,

the underbody assembly line itself requires flexible assembly tooling.

5.6.6 Vehicle Platform Elements Selection

As a result of the system decomposition strategy, several components and assembly

processes became "flexible" elements, as parts of the vehicle platform. Table 5.7 shows

platform element comparison between the inflexible BIW design and the flexible BIW

design.

Note that in the inflexible BIW design, components and processes are divided

into either common or unique elements. In the flexible BIW design, several unique

elements are redesigned to become flexible elements. Change propagation analysis

results and economic impact results of the newly designed flexible components are

shown in Appendix C.

In this section, a system level BIW decomposition strategy is presented. Fol-

lowing the overall decomposition strategy, each individual component is decomposed

according to its requirements. Additionally, it is determined that some sections of the
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Table 5.7: BIW Platform Elements Comparison (Inflexible vs. Flexible)

Elements Inflexible BIW Flexible BIW
Common Motor Compartment Motor Compartment
Platform Rear Compartment Rear Compartment
Elements Body Outer Panels - Lower

Body Inner Panels - Lower Front
Body Inner Panels - Lower Rear

Flexible Rocker Inner Panels
Platform None Floor Pan
Elements Roof Panel Supports (FR & RR)

BIW Assembly Line
Body Outer Panels
Body Inner Panels

Unique Rocker Inner Panels Body Outer Panels - Upper
Elements Floor Pan Body Inner Panels - Upper

Roof Panel Roof Panel
Roof Panel Supports (FR & RR)

BIW Assembly Line

BIW assembly line required flexibility to accommodate flexible components. Finally,

a flexible BIW platform is defined.

5.7 Step VI: Determine Costs of Design Alterna-

tives

In the previous section, the overall system decomposition strategy for BIW and flex-

ible design for each component is presented. The next step is to determine the cost

of flexible BIW design. For this case study, the process based cost model, developed

at MIT [12, 34, 41, 42], is used to determine the capital investment cost and the

unit cost of each vehicle. As it is mentioned in the previous section, the architecture

of BIW is Body Frame Integral, using steel as its material. Company-specific cost

parameters are used for accurate cost calculation. The following sections explain the

details of capital investment cost and the unit cost of each vehicle.
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5.7.1 Capital Investment Cost

Capital investment cost is divided into component fabrication related investment

costs and the BIW assembly related investment costs. Figure 5-24 shows the capital

investment cost decomposition.

Investment Cost

Fabrication

Blanking and Blanking and
Stamping Line Stamping Tooling

(Refurbish every
five years)

Figure 5-24: BIW Related Capital

Assembly

Welding Line Assembly Tools

(Refurbish every
five years)

Switch Cost

Investment Cost Decomposition

Fabrication Related Investment

Fabrication related investment cost is divided into two different categories: line in-

vestments and tooling investment. To manufacture BIW components, blanking and

stamping press lines are required. Several different types of presses are required, de-

pending on the size of the components. For ten critical BIW components, four types

of presses are used: transfer, tandem, progressive, and roll form. Presses are treated

as equipment, that is, amortized over a specified number of years, longer than the

total life of the product platform (15 years). Line investment cost for ten compo-

nents are determined as a function of their mass and the annual expected production

volume.

Tooling investment consists of blanking and stamping die investments. Tooling

investment cost are amortized over the life of vehicle production, which is five years

in this case. Stamping die cost is a function of component's material, mass, and the

press technology used. Blanking die investment is assumed to be 10% of the stamping
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die cost. Blanking and stamping dies are refurbished every five years at 25% of the

cost of new dies, given no engineering design changes occur in the components. If

any design change occurs, it is assumed that a new die will be designed.

Assembly Related Investment

BIW assembly investment cost is divided into two categories: line investment and

tooling investment. Line investment consists of equipment costs that are required

to assemble the BIW. Tooling investment consists of assembly fixture investment.

Line investment is amortized over a fixed period of time, similar to the blanking and

stamping line investment.

Assembly fixtures can either be flexible or fixed. Investment cost of flexible assem-

bly fixtures is assumed to be twice that of the fixed assembly fixture cost. However,

since the flexible assembly fixture is not model specific, it is treated as "equipment"

rather than tools, and its cost is amortized over the life of the product platform. The

refurbishing costs of assembly fixtures (both flexible and fixed) are assumed to be

25% of the new fixture investment, occurring every five years. The switch cost occurs

when the engineering design changes BIW. Fixed tooling will require 100% of its tools

to change, while the flexible tooling does not require any change.

Despite the longer amortization period for flexible tooling, it will result in higher

up-front investment cost and higher refurbishing cost than the fixed tooling. However,

when the BIW design changes more often, its switching cost is significantly less than

the situation where fixed tooling is used.

Another important consideration is the production capacity. Since there is an

absolute capacity limit for a single BIW assembly line, multiple lines are required to

assemble required number of BIW units. The relationship between capacity utilization

and flexibility is a very important field, but is outside of this thesis scope.

Classifying Different Investment Cost Types

In this case study, we are interested in three types of investment costs: initial invest-

ment cost, refurbish cost, and switch cost.
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" Initial investment cost (Kinit): It is the upfront investment cost required for BIW

fabrication and assembly. The investment occurs a year before the beginning of

the actual production. It includes investment in equipment and tooling.

* Refurbish cost (Kref): It is the cost to refurbish fabrication and assembly tooling,

given no engineering change in BIW design. The cost is incurred every five years,

and the cost is committed a year before the actual refurbishing takes place. The

refurbishing cost is assumed to be 25% of the cost of new tools.

* Switch cost (Kwitch): Switch cost occurs when the BIW design is changed. It

is the investment cost for accommodating such change, which in this case is the

cost of new fabrication and assembly tooling. If BIW design change occurs more

frequently than every five years, some tools will be replaced with new ones, thus

they do not require refurbishment. This changes total refurbishing costs.

5.7.2 BIW Unit Cost

The unit cost of BIW usually depends on the choice of material, the cycle time of

production, the mass of its components and the annual production volume. Figure

5-25 shows the cost decomposition for the BIW unit cost.

BIW Unit Cost

Fabriatn Assembly

Material -- LbrMaterial -- Labr

Energy Equipment Energy -- Equipment

Tooling Building Tooling Building

Maintenance- Overhead Maintenance Overhead

Figure 5-25: BIW Unit Cost Decomposition

Costs are divided into fabrication related costs and assembly related costs and are

the total sum of listed costs.
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" Materials: cost of materials used. For BIW component fabrication, it is the

cost of the steel sheet used. For assembly, it is the cost of spot welds.

" Labor: cost of direct labor required to perform fabrication and assembly oper-

ations, divided by the annual production volume of the component.

" Energy: cost of energy used per unit fabrication and assembly.

" Equipment: cost of amortized equipment investment cost, divided by the annual

production volume of the component.

" Tooling: cost of fabrication/assembly tooling, amortized over the component

production life, divided by the annual production volume of the component.

" Building: cost of amortized building investment cost, divided by the annual

production volume of the component.

" Maintenance: maintenance cost of component related equipment, tooling and

building, divided by the annual production volume of the component.

" Overhead: cost of indirect labor required to perform fabrication and assembly

operations, divided by the annual production volume.

5.7.3 Investment and Unit Cost of Critical BIW Components

In Section 5.6, a flexible BIW design is generated. The costs of the flexible design and

the original inflexible design, customized for each vehicle, need to be determined in

order to evaluate its economic benefits under future uncertainties. Table 5.8 shows,

for each vehicle variant, initial estimated annual production volume, expected volume

trend, maximum expected production volume during the life of the vehicle platform,

and the number of required BIW assembly lines per particular product variant.

The number of required assembly lines is based on the maximum expected produc-

tion volume during the lifetime of the vehicle platform (15 years). In each assembly

line, over 200,000 units of BIW can be assembled per year. Assembly lines with

fixed tooling are dedicated to one vehicle variant, while assembly lines with flexible
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Table 5.8: Individual Vehicle Information

Vehicle Variants Pi P2 P3
Annual Production Volume 280,000 125,000 60,000

Annual Volume Trend 6.11% -0.34% -5.52%
Maximum Expected Annual Volume 650,000 125,000 60,000

BIW Assembly Lines Required 3 1 1

tooling can accommodate all vehicle variants. Following assumptions are made for

determining relevant costs:

" The life of the vehicle platform is set to 15 years, corresponding to three cycles

of nominal vehicle design change (five years each).

" From the analysis in Step IV and V, only ten components (body outer and inner

panels, rocker inner panels, floor pan, roof panels, front and rear roof supports)

require differentiation while the other components remain common. For this

case study, only costs related to these components are calculated, thus the cost

difference is quantified.

" Two design alternatives are considered. The first design alternative is the inflex-

ible BIW design, where ten differentiating components are uniquely customized

for each vehicle variant. The second design alternative utilizes flexible compo-

nents, as defined in Step V of the design process. The assembly process for

inflexible BIW design assumes fixed tooling, while the process for flexible de-

sign utilizes flexible tooling in identified assembly sequences, as shown in Figure

5-22.

" Fabrication and assembly tools are refurbished every five years, at 25% of the

new tooling cost, assuming no engineering change occurs.

* Once the initial investment costs and unit costs are determined, they are as-

sumed to be fixed for the remainder of the platform life.

For two design alternatives compared, fabrication and assembly conditions are

different, and are listed in Table 5.9.
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Table 5.9: BIW Design Alternative Comparison

Design Alternatives Inflexible BIW Design Flexible BIW Design
Identified Components Customized for Each Variant Flexible

(One Piece Components) (Decomposed Components)
Assembly Process Customized for Each Variant Flexible

(Dedicated Tooling) (Flexible Tooling)

Investment Costs

For each design alternative, the initial capital investment cost, refurbishing cost, and

the switch cost are calculated. As it is stated in the initial assumption, investment

costs for ten components are calculated. Table 5.10 lists normalized values of initial

investment cost, refurbishing cost, and switch cost of inflexible and flexible BIW

designs. Values are normalized to the initial investment cost of customized BIW

designs.

Table 5.10: Normalized Investment Costs

Design Alternatives Customized BIW Flexible BIW
Initial Investment Cost (Kinit) 100.0 134.2

Refurbish Cost (Kref) 10.6 17.9
Switch Cost (Kswitch) 31.9 5.4

(BIW Styling Change Only)
Switch Cost (Kswitch) 42.3 5.5

(BIW Styling and Length Change)

Numbers indicate that the flexible BIW design, with flexible assembly lines, re-

quires approximately 34% more upfront investment cost than the inflexible BIW

design. The inflexible BIW design is also more cost efficient in terms of refurbishing

costs. However, the flexible BIW design, with flexible assembly line, far outperforms

the inflexible design in terms of switch cost when the styling and the length of BIW

need to be changed. This shows the costs and benefits of flexible BIW design, where

extra investment is required initially, but changes can be accommodated with signif-

icantly lower investment costs.

Observing the investment costs, it is clear that the flexible BIW design is more

expensive to implement, but has the potential to perform more economically when
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the frequency of styling change increases. It will be demonstrated in Step VII of

the process, the uncertainty analysis phase, when adding flexibility is worthwhile and

when is not.

Unit Costs

The total unit costs of ten BIW components for each vehicle variant are calculated.

Total unit costs include all cost elements shown in Figure 5-25, and are calculated as

function of annual production volume, component mass (for fabrication), and number

of spot welding required (for assembly). Table 5.11 lists normalized unit BIW cost

(ten components only) of each vehicle variant for two different design alternatives

being compared. Unit costs are normalized with respect to the unit cost of pi for

customized BIW.

Table 5.11: BIW Unit Cost

Variants

Pi

P2

P3

of Vehicle Variants for Different Design Alternatives

Inflexible BIW Flexible BIW
100.0 104.2
107.0 107.4
122.7 115.8

Note that for pi and P2, unit cost of flexible BIW design is higher, as expected,

due to high investment cost to amortize, and additional welding costs for flexible

components. However, the unit BIW cost of p3 for flexible BIW design is lower

than the cost of the inflexible BIW design. This is due to the effect of common

component sharing, where the flexible BIW shares more common components with

smaller variants, thus lowering the unit cost through economies of scale.

In this section, the nature of capital investment cost and unit cost are explained in

detail. Using the process based cost model, relevant investment costs and unit costs

for inflexible and flexible BIW designs are calculated. A cost comparison showed

that the flexible design will cost more to implement than the inflexible BIW design,

but incurs significantly lower switch cost when the vehicle design changes. Higher

investment also affects BIW unit costs, resulting in higher unit cost for flexible BIW

design. However, some vehicle variants benefitted from common components sharing,
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resulting in lower unit cost than the inflexible BIW design based variants. Whether

or not this additional cost of flexibility is beneficial, has not yet been determined.

5.8 Step VII: Uncertainty Analysis

5.8.1 Problem Formulation

In Step VI, all relevant economic costs for inflexible and flexible BIW design are

calculated. Costs include initial investment cost (Kinit), refurbishing cost (Kref),

switch cost (Kswitch), and BIW unit cost. Using identified costs, uncertainty analysis

can be performed to evaluate the economic feasibility of each design under various

degrees of uncertainty. The following assumptions are made prior to the uncertainty

analysis.

" All costs in this section are normalized with respect to the initial investment

cost of the inflexible BIW design (identified in Section 5.7).

" The economic evaluation period is set to 15 years, corresponding to three cycles

of vehicle design change (five years each).

" Fabrication and assembly tools are refurbished every five years,unless they are

being replaced.

" Geometric Brownian Motion is used for future demand prediction.

" The demand of individual vehicle variants is equal to the production volume.

" The demand of individual vehicle variants cannot exceed the maximum assembly

lines capacity set by the number of assembly line designated for each variant

(for inflexible BIW design).

" The same capacity rule applies to the flexible BIW design for equivalent com-

parison to the inflexible BIW design, even though the flexible tooling in all

assembly lines enable flexible capacity utilization for flexible BIW design.
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" Styling changes and length changes occur within the design variable bandwidths

defined from the results of optimization in Step III.

" When the styling changes, it is assumed that all three vehicle variants change

together.

" To calculate the total vehicle family lifetime profit for each design alternative,

the net present value (discounted cash flow) method is used.

" The annual discount rate is set to 6%.

Table 5.12 lists demand forecast related parameters for each vehicle. a is the demand

trend coefficient, and o, is the demand volatility coefficient. These parameters are

calculated from the actual vehicle sales data (annual) between 1997 - 2003. Equations

(4.14) and (4.15) are used.

Table 5.12: Individual Vehicle Information

Vehicle Variants Pi P2 P3

Initial Production Volume 280,000 125,000 60,000
Trend Coefficient (a) 6.11% -0.34% -5.52%

Volatility Coefficient (a,) 11.25% 6.62% 13.27%

Assuming a 15 year time horizon, expected demand for each vehicle variant (no

volatility) is shown in Figure 5-26. Expected demands are calculated using Equation

(4.13) in Chapter 4, using coefficients from Table 5.12.

Within the boundary of pre-stated assumptions, expected demand trend, and

volatility, two BIW design alternatives are evaluated under several different scenarios.

Table 5.13 lists descriptions of various scenarios, in which two designs are evaluated

for the economic performance.

Scenarios I through IV are scenarios with various degree of uncertainty. It starts

with investigation of scenarios with uncertain production volume. Styling change

uncertainty is added to increase the degree of uncertainty in Scenario III and IV,

in addition to annual production volume uncertainty. Scenarios V through VIII in-

vestigate instances where styling is changing above the vehicle belt line only, but
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Expected Demand for Vehicle Variants
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Figure 5-26: Expected Demand for p1, P2, and p3 for the Life of the Platform

Table 5.13: Evaluated Scenarios

Scenario Scenario Description
I Production Volume (PV) with future trend (no volatility)
II PV with future trend and volatility (uncertain PV)
III Styling change above belt line every five years
IV Styling + length change every five years
V Styling change above belt line every four years
VI Styling change above belt line every three years
VII Styling change above belt line every two years

VIII Styling change above belt line every one year
IX Styling + length change every four years
X Styling + length change every three years
XI Styling + length change every two years
XII Styling + length change every one year

with increasing frequency, and under uncertain future demand. Scenarios IX through

XII investigate instances where the styling is changing in the length direction with

increasing frequency, but within the L48 bandwidth defined from the optimization

in Step III of the process. Length change results in higher switch costs, since more

component changes are required.

Net present value (NPV) of the total product family profit is used to measure the

economic performance of each design alternative. The net present value is obtained

by the following equation:
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15 C F
NPV= E ( t (5.11)

t0(1 + rOt

where

3

CF = (Ri,t - Ctotai,i,t) - KInitt - Kref,t - Kswitch,t (5.12)
i=1

and

= 
(5.13)

Ctota,i,t = Di,tCveh,i-

NPV is the total sum of time discounted cash flow over period of 15 years; CFt is the

total cash flow at time t; r is the discount rate; Ri,t is the revenue generated by the sale

of ith vehicle variant at time t; Ctotal,i,t is the total variable cost incurred to produce

the ith variant; Kinit,t is the investment occurs at time t; Kreft is the refurbishing

related investment occurs at time t; Kswitch,t is the switch related investment occurs

at time t; Dit is the demand of ith vehicle variant at time t; P ,, is the weighted

average price of the ith vehicle variant, obtained from Step III; and cveh,i is the unit

cost of the ith vehicle variant. In this case study, since only the BIW of the vehicle is

investigated, the unit cost of BIW will be used as the unit cost Cveh-

5.8.2 Scenarios I - IV

Figure 5-27 shows the detailed cash flow schedule over the life of the vehicle platform

for Scenario III (Inflexible BIW). The first column shows the time period in years.

The second column shows the amount of initial investment and the time period it

is invested. The third column shows the time line for switch cost investments when

uncertain change occurs. The fourth column shows the total variable cost occurred

for the particular time period. The fifth column shows the total revenue generated

from sales of three vehicle variants in the product family. The sixth column shows

total cash flow (not discounted) for each specific time period. The seventh column
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shows time discounted value of the cash flow from the sixth column. Total profit,

in present value, is shown at the bottom of the seventh column. Detailed cash flow

schedules for all scenarios are presented in Appendix D and E.

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 0.00 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 0.00 29.45 2,529.70 2,500.25 2,358.72
2 0.00 0.00 0.00 30.21 2,577.49 2,547.28 2,267.07
3 0.00 0.00 0.00 31.05 2,631.92 2,600.87 2,183.74
4 0.00 0.00 0.00 31.97 2,693.21 2,661.24 2,107.95
5 0.00 2.58 31.99 32.98 2,761.64 2,694.08 2,013.17
6 0.00 0.00 0.00 34.08 2,837.47 2,803.39 1,976.28
7 0.00 0.00 0.00 35.27 2,921.01 2,885.74 1,919.18
8 0.00 0.00 0.00 36.56 3,012.60 2,976.05 1,867.21
9 0.00 0.00 0.00 37.95 3,112.61 3,074.66 1,819.89
10 0.00 2.58 31.99 39.45 3,221.42 3,147.40 1,757.49
11 0.00 0.00 0.00 41.06 3,339.48 3,298.42 1 737.56
12 0.00 0.00 0.00 42.80 3,467.23 3,424.43 1,701.84
13 0.00 0.00 0.00 44.66 3,605.19 3,560.53 1,669.31
14 0.00 0.00 0.00 46.66 3,753.88 3,707.21 1,639.70
15 0.00 0.00 0.00 48.81 3,913.87 3,865.06 1,612.75

Scenario III NPV (Inflexible BIW) 28,531.88

Figure 5-27: Calculation of NPV for Scenario III (Inflexible BIW)

In order to perform the uncertainty analysis, Monte Carlo simulation is conducted

to determine the range of future vehicle demand. For each scenario (with exception

of Scenario I, where no uncertainty is present), simulation consists of 25,000 runs to

represent a full range of outcomes.

O Inflexible BIW1
N Flexible BIW

U

Total Lifetime Profit
(Case I IV)

28600.0
28500.0
28400.0
28300.0
28200.0
28100.0
28000.0

Total Profit INornalized) Profit Difference
Inflexible BIW Flexible BIW (Flexible - Inflexible)

1 28560.47 28507.99 -52.48
II 28563.21 28510.81 -52.40
111 28531.88 28505.57 -26.31
IV 28521.94 28505.42 -16.51

I II III IV

Scenarios

Figure 5-28: Total Profit for Each Design (Scenarios I - IV)

Figure 5-28 shows the total average lifetime profit in NPV for each design, over

the life of the product platform. The table next to the graph shows the normalized

profit for each design, along with the profit difference between the inflexible BIW and
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Scenario IV (Flexible- Inflexible)
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Figure 5-29: Profit Difference of Two BIW Designs (Scenario IV)

the flexible BIW design. For scenarios II - IV, profit values represents the average

value of the Monte Carlo simulation.

In Scenarios I - IV, the inflexible BIW design performed better than the flexible

BIW design. Even for Scenario IV, where the uncertainty is greatest among all

four scenarios, inflexible BIW design outperformed the flexible BIW design. The

profit difference distribution between the flexible BIW and inflexible BIW design

for Scenario IV is shown in Figure 5-29. Profit difference ranges from -21 to -12, in

normalized value, with an average profit difference value around -16. Results suggests

that under these circumstances, the flexible BIW design should not be implemented.

However, when the frequency of styling change increases, results may be different.

5.8.3 Scenarios V - VIII

In Scenarios V - VIII, styling for all vehicles is changed in increasing frequency. In

these scenarios, styling is changed above the vehicle belt line only (no length change),

thus not affecting any length related components. The rationale for increasing styling

change frequency is that there might be a situation where, to maintain current demand

trend, the company must change vehicle styling more frequently to refresh the product

family every few years or so. Mean lifetime profit for each design alternative is

calculated, and the Monte Carlo simulation is performed. Results are shown in Figure

5-30.
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Total Lifetime Profit
a Inflexible BIW (Styling Change Abovea Flexible BIW Vehicle Belt Line)

28600.0

> 28500.0 -

9 28400.0 -

28300.0
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2ionnn ,A ,

Total Profit (Normalized) Profit Difference
Inflexible BIW Flexible BIW (Flexible - Inflexible)

I1 28531.88 28505.57 -26.31
v 28512.33 28502.30 -10.03
VI 28489.39 28498.47 9.07
VI 28429.29 28488.42 59.13
VI 28276.26 28462.83 186.57

In V V Vu VII
Scenarios

Figure 5-30: Total Profit for Each Design (Scenarios III, V - VIII)

Scenario VI (Flexible - Inflexible)
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Figure 5-31: Profit Difference of Two BIW Designs (Scenario VI)

As the frequency of styling change increases, the profit difference between the

inflexible BIW design and the flexible BIW design initially decreases. The crossover

point occurs when the styling change frequency increases from every four years to

every three years. When the styling changes every three years (Scenario VI) or more

frequent, the flexible BIW design outperforms the inflexible BIW design in terms of

total profit. Figure 5-31 shows the profit difference distribution between the flexible

BIW design and the inflexible BIW design for Scenario VI, where the styling changes

every three years. From the distribution graph, it is clear that, given current demand

trend and volatility, the flexible BIW will always gain more profit than the inflexible

BIW design, even though the difference may be small. The cause of this trend is due
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to the switch cost incurred every time vehicle styling changes. Total profit of flexible

BIW design did not decrease as rapidly as that of inflexible BIW design. This is due

to the low switch cost of flexible BIW design, making it more robust under increasing

uncertainty.

5.8.4 Scenarios IX - XII

Scenarios IX through XII evaluates situations where styling changes result in a vehicle

length change, within the established L48 bandwidths from the optimization results

in Step III.

O Inflexible BIW Total Lifetime Profit

* Flexible BIW (Styling Change - Length)

28600.0
2850xbTotal Profit FormalizedB Profit Difference~ 2800.0I I FE -E U - I Iinflexible BIW Flexible BIW IFlexible - Inflexibe)

28400.0
28300.0
28200.0
28100.0
28000.0

IV IX X XI XII

Scenarios

IV 28521.94 28505.42 -16.51
IX 28495.90 28502.05 6.15
X 28465.56 28498.11 32.55
XT 28386. 04 28487.76 1 101.73
XI 28183.59 28461.43 277.84

Figure 5-32: Total Profit for Each Design (Scenarios IV, IX - XII)

Scenario IX (Flexible - Inflexible)
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Figure 5-33: Profit Difference of Two BIW Designs (Scenario IX)

Since there are more components and tooling that require modifications when

the vehicle length changes, switch costs for both designs are higher. However, due
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to significantly lower switch cost, the flexible BIW has better economic performance

once the styling changes every four years (Scenario IX) or more often. Figure 5-33

shows the Monte Carlo simulation result for Scenario IX, displaying the range of profit

difference between the flexible BIW design and inflexible BIW design.

Value at Risk Curve (Scenario XII)

4-

100% 

80%

60%

40%

20%

0%

/

I /
/

I -
I -

15000 20000 25000 30000 35000 40000
15000 20000 25000 30000 35000 40000

NPV

- NPV (Inflex) - - - - NPV (Flex)
- 95% VAR for NPV (Inflex)- - - - 95%VAR for NPV (Flex)

Figure 5-34: Value at Risk Curve for Scenario XII

Finally, Value-at-Risk curve for Scenario XII is plotted for both inflexible BIW

design and flexible BIW design in Figure 5-34. According to Hassan and de Neufville

et. al. [35], the flexibility usually change both the expected values and its distribu-

tion. The changes in distribution illustrate how flexibility reduces losses and exploits

opportunities. In Figure 5-34, value of flexibility is evident. The 95% NPV line for

flexible BIW design is to the right of the inflexible BIW design, indicating higher prof-

its. Value-at-Risk curve can provide important information for the decision makers

to appreciate the value of flexibility.

5.8.5 Value of Flexibility for H50 Dimension

During the sensitivity analysis in Step III of the process, it is determined that H50 is

a very sensitive variable, if flexible, can influence the total product family revenue. It

is also determined that H50 is an active constraint. If the constraint is relaxed, how

does this affect total revenue, and how long does it take to break even? Table 5.14

shows results for the break even analysis. The constraint on H50 is relaxed by 1%
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from its current lower limit. It is assumed that all three variants' H50 are changing

at the same time. Again, costs are normalized with respect to the initial investment

cost for inflexible BIW Design.

Table 5.14: Break Even Analysis Results for H50 Change

Design Inflexible BIW Flexible BIW
Switch Cost (Kwitch) 31.9 5.4

Additional Annual Revenue 12.7 12.7
Break Even Point 2.5 Years 0.5 Years

The results clearly shows the superiority of the flexible design, when H50 is

changed for additional revenue. Given the same amount of revenue increase, the

flexible design is able to break even within six months, while the inflexible design

required approximately two and half years to break even. This shows that if such

sensitive dimensions can be changed with lower switch cost, it will bring more profit

to the company than designs with high switch cost.

5.8.6 Discussion

Evaluating two different BIW designs under scenarios of various uncertainties pro-

duced interesting results. When uncertainty is not present, or very small, the inflex-

ible BIW design performed better. However, as the degree of uncertainty increased,

the profit difference between two designs decreased, and at certain point, the flexible

BIW design started to show more economic benefit. The reason is that the magni-

tude of switch costs for the inflexible BIW design is much higher than the flexible

BIW design, and when the frequency of design change increased, the flexible BIW

design became more robust to change in terms of economic profit, outperforming the

inflexible design. Figure 5-35 shows recommended situations when the flexible BIW

design should be implemented.

The recommendation is that, under uncertain styling change frequency with given

vehicle family demand trend and volatility, it is beneficial to implement the flexible

BIW design if styling changes every three years or less , or if styling in length direction

changes every four years or less. While the actual styling change is an exogenous
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Figure 5-35: Recommended Situations for Implementing Flexible BIW Design

uncertainty (since vehicles are not designed ten years ahead of their release), the

frequency of the styling change is a controlled decision variable that can be decided

by the management of the company. Given this situation, Figure 5-35 offers decision

makers a useful quantitative guideline to make decision on whether the flexibility

should be implemented into the BIW or not.

Another important outcome is that the results quantitatively demonstrated in-

creasing value of flexibility as the uncertainty increased, again confirming the results

in options analysis. In this case study, expected economic profit of flexible BIW de-

sign became greater than the profit of inflexible BIW design once the frequency of

design change increased above certain level, thus showing the value of flexibility.

Additional analysis of the sensitive dimension change (H50) showed that the flex-

ible BIW design clearly had cost advantage when such situation arises. When the

customer's preference on vehicle RM and IE changes, it can be easily accommodated

through adjustment of H50, without too much burden of economic impact.

Finally, it is demonstrated that a small critical subset of flexible BIW components

allowed the whole BIW to be flexible to uncertainties defined in the beginning of

the design process. Ten BIW components and the flexible assembly process made

BIW flexible to future styling changes, while being economically robust in terms of

total life time profit. This supports the initial research hypothesis, which stated "if a
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critical subset of elements within the product platform is made flexible, it can make

the whole platform flexible to a specified set of uncertainties." Is this true for any

engineering system? An answer to this question requires more extensive research into

different types of engineering systems, and is left as promising future work.

5.9 Chapter Summary

In this chapter, the design process introduced in Chapter 3 is applied to a vehicle

platform case study, designed to accommodate three different vehicle models, while

being flexible to future demand and styling changes. The process is followed step by

step, using combination of quantitative analysis and expert engineering knowledge

for each step.

Two specified uncertainties are mapped to quantifiable vehicle attributes, then to

critical system-level design variables which require bandwidth and/or are sensitive

to aforementioned attributes. Once the system-level design variables bandwidths are

determined through a revenue optimization, critical BIW components are identified.

Flexible design alternatives are generated for critical components of the BIW. The

cost of flexible design, both in component fabrication and the assembly process, are

calculated using the process based cost model. Uncertainty analysis is performed to

determine the economic benefits of inflexible and flexible BIW designs.

The results showed that the flexible design gains more value as the degree of

uncertainty increases in the future. It is also demonstrated that, for a specific set

of uncertainties, if a critical subset of the platform is made flexible, then the vehicle

platform became flexible to respond to aforementioned uncertainties, confirming the

initial research hypothesis.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Product platforms are engineering systems with long life cycles. The research fo-

cused on embedding flexibility in them, so that they can actively respond to future

uncertainties in a more economical way.

Chapter 1 introduced the motivation for flexible platform design, published re-

search up to date, research gap analysis, problem formulation, and the boundary

of the research scope. Chapter 2 investigated product platforms from various per-

spectives, and presented several business cases which implemented product platform

strategies. Chapter 3 presented a theoretical framework for flexible platform design

process. Chapter 4 demonstrated a part of the proposed design process through a

single platform element case study, where a vehicle floor pan was designed to be

flexible to future uncertainties in demand and specification changes. In Chapter 5, a

detailed case study is presented, where a vehicle platform is designed to accommodate

three different vehicle variants, while remaining flexible to future styling changes and

demand.

In this thesis, a design process is developed to help architect flexible product

platforms and its elements. The process is demonstrated using real industry case

studies. It is demonstrated that using the proposed process, critical platform elements

can be identified, and flexibility can be incorporated into these elements in a way to
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benefit from future uncertainties. It is shown that embedding flexibility results in an

initial investment increase, but has the benefit of reduced switch cost when exogenous

uncertainties require changes to the product family. It is also quantitatively shown

that, as the degree of uncertainty increases, the value of flexibility increases. Finally,

it is shown that a critical subset of product platform, if made flexible, can make entire

platform flexible to specified future uncertainties.

6.2 Contributions

The research presented in this thesis contributes to the field of product platform de-

sign methodology, and by extension, engineering systems research. Figure 6-1 graph-

ically shows contribution of this research. Four claims are made as research contri-

butions. They are: 1) development of general design process for incorporating and

evaluating flexibility in product platforms; 2) bandwidth optimization framework for

product family revenue optimization; 3) formalization of change propagation analysis

through development of quantitative metric and general guideline; and 4) introducing

a thought process to incorporate flexibility in platform elements design.

Overall Design Process ----------------------- ----------------

IV

I I II I

Identify Market, Determine Uncertainty Optimize Product Family Identify Critical
Variants and Related Attributes and and Platform Bandwidth Platform Elements
Uncertainties Design Variables *

Optimization Framework Change Propagation---------- -------------- I----

------------------------------------- - -I

VII VI V
Uncertainty Determine Costs of Create Flexible Design

al Desi Alternatives Alternatives

Flexible Design Generation and Evaluation

-------------------------------------------------------------

Figure 6-1: Research Contributions
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6.2.1 Overall Design Process for Flexible Product Platforms

The comprehensive design process introduced in this thesis offers an end-to-end pro-

cess to design flexible product platforms, accounting for future uncertainties. Through

integration of traditional product platform based family design methodology, change

propagation analysis, flexible elements design principles, and future uncertainty anal-

ysis, it is now possible to incorporate flexibility in critical subset of the product

platform for future uncertainties and evaluate the benefit to make profitable decision.

As shown in Figure 1-7, this research filled the gap not covered by previous research

in academia.

6.2.2 Product Platform Bandwidth Optimization Framework

The developed optimization framework performs bandwidth optimization of vehicle

variants to maximize product family revenue, subject to technical feasibility con-

straints. It establishes desirable bandwidth for functional attributes and system-level

design variable. In traditional platform design methods, one forces a pre-defined set

of design variables to be common among variants. In this framework, system-level

design variables were allowed to vary to find optimum positions.

6.2.3 Formalization of Change Propagation

Introduced by Eckert et. al. [23], change propagation in complex systems is a very

important issue. In this research, a new index for measuring the change propagation

(CPI) is introduced. Using CPI, relevant switch costs for system elements, and the

generalizable guideline proposed (see Section 3.6), system architects are able to for-

mally identify critical elements that propagate change to other system elements, or

elements that require high switch costs.

6.2.4 Flexible Platform Elements Design

Improving on the work published by Martin and Ishii [48], general guideline for flexible

platform design is established in this research (see Section 3.7) and is demonstrated
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through a single platform element design example. What differentiates this work

from previous research is the addition of uncertainty analysis to evaluate incorpo-

rated flexibility in a single platform element and in a product platform. This can

provide decision makers with more lucid insight into the cost-benefit tradeoff of flexi-

bility under various circumstances. Other useful guideline for flexible platform is also

published by Rajan et. al. [64].

6.3 Future Work

Recommendations are made to improve the process presented in this thesis. Many

questions and issues which were raised in the course of research, but were not ad-

dressed in the thesis. These issues can lead to future research topics.

One of the most important future contributions can be made in the field of un-

certainty management, if aforementioned design framework can be applied to other

complex systems. Once the proposed process can be demonstrated through several

examples, it can become a generalizable system design framework.

Another area of promising future research is model validation. In Chapter 5,

several attribute translation models and the market simulation model are used to ob-

tain the optimization results. However, if the uncertainty in the model framework is

greater than the objective sensitivity itself, it would invalidate the sensitivity analysis

results, thus making downstream results less credible. Active research is being done

in the area of meta-modeling, where modeling methodologies for high precision ap-

proximation response surface model of detailed simulation model is being introduced.

In complex engineering system simulations, capturing such fidelity, while reducing

the computation time, is becoming increasingly important.

Change propagation analysis needs much work in the future. Eckert et. al. [23]

have studied change propagation in complex system design, but their focus is more

towards management related change. In this thesis, an attempt was made to analyze

technical change propagation to identify critical elements that can potentially be made

flexible. A good theoretical formulation and representation of change propagation is
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a very promising future research topic.

One of the limitations of this research is that the number of product variants is

decided beforehand, and the bandwidth of the product platform is established through

the revenue optimization. In future research, these can be treated as uncertain factors

which influence the flexible platform design. How does flexibility in the product

platform add value if additional product variants are added to the product family

that were not in the original mix? What would happen if one of the product variants

must be added with its system-level design variable values that are outside of the

established bandwidth? How can product platforms be designed differently if such

bandwidth requirements become uncertain in the future? These are all valid and

important questions, that can be researched in the future.

Finally, one must consider the management of platform portfolio. Product plat-

forms cannot be stretched indefinitely without compromising individual product vari-

ant's performance. This raises an important research topic of multiple platform strat-

egy. Some of the fundamental questions asked are:

" Given a number product variants, what is the best number of platforms to

derive from?

" What is the optimal assignment of the product variants to the set of platforms,

given a set of target market segments and competitors?

" What criteria should be used to decide on platform extent?

" Given above conditions, how to incorporate flexibility in each platform, and

how much?

Work done by de Weck et. al. [21] investigated this issue through development of

"sweet spot analysis" for product platform portfolio profit optimization. Work by

Seepersad et. al. [72, 73] attempted to find the optimal platform extent through

utilization of compromise Decision Support Problem and linear physical program-

ming. They demonstrated the method using a family of eight absorption chillers.

Aforementioned research provide some insights into issues previously listed, but it
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still remains a rarely researched field, waiting to be explored. It is author's hope

that, with knowledge from previous literature, combined with knowledge gained from

this thesis, system architects can design "optimum" product platform portfolio, with

"optimum" degree of incorporated flexibility, which can respond to "right" set of

uncertainties that may be different for each market segment.
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Appendix A

Sample Data Used for Principal

Component Analysis (IE & RM)

Sample Hil H112 H115 H122 H30 H5 H50 L18 TE Score
1 780 204 364 60.9 261 510 1282 407 73.0
2 792 211 379 59.2 242 507 1298 413 75.2
3 780 206 365 60.9 261 514 1283 407 73.0
4 771 178 358 62 254 516 1287 499 88.8
5 801 216 360 61.5 247 467 1268 419 62.2
6 784 222 361 62 244 472 1256 426 60.6
7 783 207 365 60.4 261 496 1282 401 69.7
8 765 211 360 63.1 250 486 1251 463 69.7
9 801 216 360 61.5 242 467 1268 426 62.9
10 770 207 345 63 210 432 1202 391 50A
11 790 216 370 60 272 511 1301 421 72.7
12 789 213 369 60 272 511 1300 421 73.6
13 779 220 355 57.7 240 493 1272 384 59.5
14 773 213 385 63.2 225 484 1257 433 72.2
15 784 209 375 59 233 491 1275 389 69.0
16 762 194 363 63 240 480 1203 399 66.3
17 783 214 373 62.1 278 529 1297 508 83.8
18 782 195 363 59.9 221 524 1306 432 81.5
19 788 211 363 55.6 221 517 1305 392 71.1
20 784 212 391 63.1 225 491 1275 414 74.2
21 779 222 355 57.9 241 498 1273 365 57.6
22 792 222 356 57.9 229 485 1276 362 56.1
23 783 223 356 60.8 227 461 1244 405 54.7
24 770 207 345 63 210 432 1202 391 504
25 783 214 352 62 227 457 1240 419 57.7

Figure A-1: Sample Data (1 - 25) Used for IE Attribute Calculation (Dimension
Units in mm, H122 in Degrees)
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Sam le _il HI12 H1 5 H122 _H30 H5 H50 L18 Score
26 793 195 371 58.5 247 505 1298 457 82.7
27 786 222 376 57.6 270 496 1282 425 69.1
28 783 221 356 60.8 233 461 1244 401 55.1
29 783 221 356 60.8 227 461 1244 401 55.1
30 794 225 357 59 251 486 1320 378 60.0
31 779 220 355 58 241 498 1277 365 58.6
32 767 212 347 57 258 470 1235 398 56.5
33 779 220 355 58 241 495 1274 384 59.9
34 792 217 354 58 224 477 1269 379 57.7
35 785 226 357 62.2 251 486 1277 388 57.6
36 773 207 385 63.2 225 485 1258 433 74.6
37 789 209 376 59 233 496 1285 389 70.6
38 769 209 377 62 218 482 1250 401 67.
39 790 230 357 62 224 543 1330 398 68.1
40 776 210 380 62 217 482 1271 414 71.0
41 765 219 352 60.5 241 466 1230 349 49.7
42 801 218 363 61.5 247 470 1271 419 62.7
43 794 222 354 60 241 468 1263 357 52.2
44 762 230 370 63 240 487 1249 399 58.4
45 792 219 356 58 224 477 1269 400 59.5
46 784 210 390 63.1 225 492 1275 414 74.8
47 785 228 362 62.3 251 486 1274 378 56.8
48 767 212 348 57 258 470 1219 398 55.6
49 783 224 358 61 227 458 1245 364 50.7
50 785 228 362 62.3 251 486 1270 341 53.0
51 801 218 363 61.5 242 470 1271 426 63.4
52 778 174 359 56 258 512 1298 495 89.9
53 783 223 357 61 227 461 1244 304 45.9
54 783 221 356 61 233 460 1243 401 54.9
55 779 220 355 58 241 498 1277 365 58.6
56 792 220 356 58 229 485 1277 362 56.9
57 783 223 357 61 227 461 1244 405 55.0

Figure A-2: Sample Data (26 - 57) Used for IE Attribute Calculation (Dimension
Units in mm, H122 in Degrees)

H302

L18

-Hig2 Hure mn

Figure A-3: Key Dimensions for IE
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Sam le W20 W3 L48 H63 H30 S97 H61 H122 W27 H31 RM Score
1 380 1493 99 958 255 5.5 974 64 28 276 91.3
2 352 1415 -28 955 240 6.8 1000 63 58 268 73.0
3 365 1423 -34 927 239 6.8 1009 66 49 289 82.5
4 365 1443 -6 954 278 6.8 1010 62.1 49 335 82.5
5 334 1326 16 928 233 5.5 961 60.8 45 279 58.7
6 334 1326 35 940 227 5.5 961 60.8 45 279 58.7
7 346 1362 65 938 244 6.3 972 62 30 262 69.5
8 346 1362 56 952 244 6.3 972 62 30 262 69.5
9 374 1470 100 938 225 5 976 63.1 47 277 79.3
10 374 1499 72 948 230 4.6 984 62.8 44 289 73.6
11 374 1530 66 972 229 7 970 57.9 98 275 80.3
12 362 1423 42 915 267 7.3 993 60 17 321 83.1
13 375 1388 95 975 254 7 982 62 30 296 79.5
14 334 1368 2 955 242 6 968 63 42 249 70.2
15 334 1387 22 946 247 6 989 61.5 54 268 70.2
16 365 1474 56 951 261 6.3 1000 60.9 53 300 75.3
17 353 1474 56 951 261 5.76 999 60.4 48.67 300 75.5
18 365 1474 56 951 261 6.3 1000 60.9 53 300 76.5
19 380 1500 105 953 250 5 976 63 43 276 86.2
20 380 1500 151 945 255 5.6 974 64 26 282 83.7
21 370 1451 126 964 270 6.5 991 57.6 63 292 80.5
22 350 1370 38 934 249 5.76 990 62 35 286 66.8
23 347 1341 -24 937 253 5.76 998 59 55 286 66.0
24 353 1440 22 942 240 5.76 959 62.3 48.67 249 71.8
25 353 1474 23 976 251 5.76 987 59 48.67 273 68.4
26 346 1406 70 955 266 6.5 1000 59 51 295 74.1
27 346 1410 70 955 265 6.5 1000 59 51 295 68.8
28 374 1532 182 974 236 4.5 992 59.7 70 322 86.7
29 374 1548 144 975 233 5 979 59 82 323 81.9
30 374 1478 62 972 218 5.2 960 63.5 37 256 71.2
31 330 1310 -3 931 241 7 990 59.3 72 274 72.5
32 330 1290 -7 892 241 6.5 962 60 66 263 60.7
33 334 1326 22 928 227 5.5 961 60.8 44 274 72.3
34 334 1326 42 940 227 5.5 961 60.8 44 274 72.3
35 346 1363 56 930 244 6.3 972 62 30 272 77.2
36 346 1361 52 943 244 6.3 972 62 30 272 77.2
37 365 1477 38 928 250 6.5 974 63.1 56 261 81.6
38 365 1485 38 928 250 6.5 974 63.1 56 261 84.8
39 365 1485 38 928 250 6.5 974 63.1 56 261 84.8
40 380 1498 103 935 260 6.7 995 61.5 56 300 81.5

Figure A-4: Sample Data (1 - 40) Used for RM Attribute Calculation (Dimension

Units in mm, S97 in Degrees)
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Sam le W20 W3 L48 H63 H30 S97 H61 H122 W27 H31 RM Score
41 380 1498 105 935 250 5 974 63 43 276 86.1
42 380 1495 100 951 255 5.6 974 64 26 276 87.4
43 365 1472 50 951 261 6.5 999 60.4 33 300 77.8
44 374 1502 100 969 240 6.5 960 61 41 309 73.0
45 374 1502 106 961 240 5.6 986 57.7 76 280 77.5
46 367 1413 28 914 237 3.7 959 60.1 31 302 85.8
47 359 1466 51 950 221 5.76 990 61.1 48.67 305 90.8
48 353 1483 34 949 251 6 975 60 68 286 69.9
49 346 1409 70 955 266 6.5 1000 59 51 300 76.4
50 378 1497 77 952 221 5.5 967 63.3 52 247 73.5
51 350 1370 38 934 249 5.76 990 62 35 286 66.5
52 343 1357 11 934 232 7.4 993 62.5 41 293 76.6
53 374 1499 69 972 241 6 983 58 84 275 71.1
54 374 1503 156 965 242 5.8 1011 59.2 77 311 86.6
55 353 1474 56 951 261 5.76 999 60.4 48.67 300 82.1
56 365 1474 56 951 261 6.3 1000 60.9 53 300 78.8
57 374 1469 83 919 225 4.8 970 63.2 54 268 80.5
58 370 1457 115 930 268 5.8 1000 63.7 61 302 67.7
59 340 1357 -74 906 210 5.3 978 63 45 257 71.2
60 340 1357 -74 906 210 5.3 978 63 45 257 68.9
61 363 1415 52 967 272 8 999 60 82 286 79.1
62 340 1378 -10 965 227 6 998 62 50 277 69.9
63 374 1501 94 965 240 5.7 969 61.5 29 277 77.1
64 374 1496 114 972 218 5 966 62 36 262 77.2
65 334 1327 -26 928 227 5.5 961 60.8 44 274 48.3
66 334 1327 -5 940 227 5.5 961 60.8 44 274 48.3
67 334 1374 2 929 242 6 956 63 35 249 68.4
68 334 1387 23 946 242 6 989 61.5 54 263 684
69 370 1457 115 920 268 5.8 996 63.7 61 301 70.3
70 394 1576 146 966 220 6 992 56.2 80 304 88.6
71 394 1538 151 953 221 5 996 59.9 73 304 72.0
72 380 1500 105 953 250 5 976 63 43 276 88.0
73 364 1445 95 956 269 9.5 1016 62.7 43 322 85.0
74 353 1425 38 960 208 4 1008 61 94 302 92.4
75 334 1336 23 945 248 7.5 1011 59.5 48 288 68.2
76 347 1349 -51 942 253 7 993 59 55 286 61.8
77 342 1364 -10 978 281 7 998 60.8 52 345 80.7
78 370 1483 106 963 280 7.3 983 60 72 343 91.9
79 353 1425 38 930 208 4 978 61 94 302 92.4
80 364 1445 95 925 266 9.5 1002 62.5 43 308 85.0

Figure A-5: Sample Data (41 - 80) Used for RM Attribute Calculation (Dimension
Units in mm, S97 in Degrees)
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Sam le W20 W3 L48 H63 H30 S97 H61 H122 W27 H31 RM Score
81 374 1499 72 948 230 4.6 984 63 44 289 73.6
82 346 1363 56 930 244 6.3 972 62 30 272 75.1
83 365 1485 38 928 250 6.5 974 63.1 56 261 81.6
84 374 1502 72 949 230 6 985 62.8 43 292 73.5
85 365 1472 50 951 261 6.5 999 60.4 33 300 77.8
86 380 1498 103 935 260 6.7 995 61.5 56 300 81.5
87 346 1409 70 955 267 6.5 1000 59 51 300 74.7
88 365 1481 51 927 247 6 967 63.5 62 253 77.7
89 374 1532 182 974 236 4.5 992 59.7 70 322 86.7
90 374 1478 62 972 218 5.2 960 63.5 37 256 70.5
91 374 1501 94 965 240 5.7 969 61.5 29 277 74.3
92 374 1502 100 965 240 6.5 989 61 41 309 73.0
93 365 1474 56 951 261 6.3 1000 60.9 53 300 75.6
94 370 1465 72 952 213 5.93 1025 60.3 68 299 72.3

Figure A-6: Sample Data (81 - 94) Used for RM Attribute Calculation (Dimension
Units in mm, S97 in Degrees)

H122

H61

397,

H3.

H63 W20

I 27

W3

H31

Figure A-7: Key Dimensions for RM
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Appendix B

Vehicle Platform Optimization and

Sensitivity Analysis Results

Table B.1: Lower and Upper Bounds XuVeh (H5 left out at the request of the company)

Independent Design Variables Units Lower Bound Upper Bound
H5 (pi) mm 5** 6**
H5 (P2) mm 5** 6**
H5 (p3) mm 5** 6**
H50 (Pi) mm 1392 1448
H50 (P2) mm 1392 1448
H50 (p3) mm 1392 1448
L48 (pi) mm 55 130
L48 (P2) mm 55 130
L48 (p3) mm 130 180
P. (Pi) $ 25000 29000
P. (P2) $ 29000 33000
Pw (p3) $ 45000 60000

W20 (pi) mm 390 410
W20 (P2) mm 390 410
W20 (p3) mm 390 410
W3 (pi) mm 1498 1532
W3 (P2) mm 1498 1532
W3 (p3) mm 1498 1532
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Table B.2: Values of Constants for Ea

Design Variables ] Units Value

H122 (P2) degree 61.0
H122 (p3) degree 59.7
L18 (pi) mm 389
L18 (P2) mm 389
L18 (ps) mm 389
W27 (p1) mm 55
W27 (P2) mm 41
W27 (p3) mm 70

ch p

Table B.3: Lower and Upper Bounds of Vehicle Attributes Ju,,,h
Vehicle Attributes Units Lower Bound Upper Bound

AC 50 _7 0 (P1) Second 3.72 3.82
AC 5 0 7 0 (P2) Second 3.72 3.82
AC 50 70 (p3) Second 3.71 3.77

FE (pi) mpg 20 27
FE (P2) mpg 20 27
FE (p3) mpg 18 25
IE (p1) % of Customers Satisfied 65 90
IE (P2) % of Customers Satisfied 65 90
IE (P3) % of Customers Satisfied 65 90
RM (pi) % of Customers Satisfied 70 90
RM (P2) % of Customers Satisfied 70 90
RM (ps) % of Customers Satisfied 70 90
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H112 (Pi)
H112 (P2)
H112 (ps)
H115 (Pi)
H115 (P2)
H115 (p3)
H122 (pi)

mm

mm

mm

mm

mm

mm

degree

220
220
220
385
385
385
61.5
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p1 p2  p3

Vehicle Variant

Figure B-1: Bandwidth of H5

H50 Bandwidth

Variant

Bandwidth Fixed

Value

p1 p2

-H5 (Maximum)

-H5 (Minimum)
2 H5 (Optimum)
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H50 (Minimum)
*H50 (Optimum)

p3
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Figure B-2: Bandwidth of H50
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L48 Bandwidth
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Figure B-3: Bandwidth of L48
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Figure B-4: Bandwidth of P,
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W3 Bandwidth
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Figure B-5: Bandwidth of W3
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Figure B-6: Bandwidth of W20
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Revenue Sensitivity

Pw ()1) _ __.

H50 (p1)

H5(pl)

W3(pl)

W20 (p1)

L48 (p1)

P w(p2)

H50 (p2)

H5 (p2)

W3 (p2

W20 (p2

L48 (p2)

P w(p3

H50 (p3)

H5 (p3)

W3 (p3

20 (p3

L48 (p3)

-0.8%

I-I-

-0.6% -0.4% -0.2% 0.0% 0.2% 0.4% 0.6% 0.8% 1.0%

Total Revenue Change (%)

Figure B-7: Total Revenue Sensitivity With Respect to XUveh
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Appendix C

BIW Change Propagation Analysis

This appendix presents change propagation analysis results for the inflexible and flex-

ible BIW design. Details of each design are described in Chapter 5. Ten components

are identified as critical components that are affected by pre-specified uncertainties

and attributes. Figure C-1 shows two BIW design alternatives. The inflexible BIW

design utilizes customized uni-piece components for each vehicle variant, and the flex-

ible BIW design decomposed critical BIW components, so that certain parts can be

used in all variants with small switch costs.

Inflexible BIW Design Flexible/Unique Upper

nPassenger 
Compartment

Passenger Compartment

Flexible BIW Design Flexible Lower Rear
Passenger Compartment

Figure C-1: BIW Design Alternatives
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Table C. 1 lists initial investment costs for each component, both in inflexible BIW

and flexible BIW design. Initial investment cost consists of blanking tool, stamping

tool, and welding fixture tool costs. Costs are normalized with respect to the initial

investment cost of the body outer panel (inflexible BIW design). For body outer

panel, body inner panel, and rocker inner panel, right side (RH) and left side (LH)

components have same amount of investment cost.

Table C.1: Initial Investment Costs for Critical BIW Components

Component Initial Investment Cost Initial Investment Cost
Name (Inflexible BIW Design) (Flexible BIW Design)

Body Outer Panel 100.0 -
Body Outer Panel - Lower - 73.5
Body Outer Panel - Upper - 87.3

Body Inner Panel 134.3 -
Body Inner Panel - Lower Front - 82.9
Body Inner Panel - Lower Rear - 76.5

Body Inner Panel - Upper - 76.6
Rocker Inner Panel 45.9 53.4

Floor Pan 120.5 206.5
Roof Panel 39.9 39.9

Front Roof Support 3.5 3.9
Rear Roof Support 3.5 3.8

A

M: Multiplier Front Roof Support

CA: Carrier 
Ca

A: APanl 
'H Roo PlPanel

C: Constant
A ..

Rear Roof Support

M M A MM

A L Oue od ne Floor PanBd ne Rd ue

CA CA

Figure C-2: Lengthwise Change Propagation Effect on Inflexible BIW

As expected, flexible components require more upfront initial investment cost.

However when the situation requires designers to change vehicle length or styling,

there are significant differences in switch related investment costs between the in-

flexible and flexible BIW design. Figure C-2 and C-3 show the change propagation
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Figure C-3: Lengthwise Change Propagation Effect on Flexible BIW

Table C.2: Switch Costs for Critical BIW Components (Length Change)

Component Component Switch Cost Switch Cost
Name Class (Inflexible BIW) (Flexible BIW)

Body Outer Panel Multiplier 100.0-
Body Outer Panel - Lower - - -

Body Outer Panel - Upper Multiplier - 45.1
Body Inner Panel Multiplier 134.3

Body Inner Panel - Lower Front -

Body Inner Panel - Lower Rear Carrier - 2.9
Body Inner Panel - Upper Multiplier - 35.9

Rocker Inner Panel Carrier 45.9 4.0
Floor Pan Absorber 120.5 3.9

Roof Panel Carrier 39.9 39.9
Front Roof Support Absorber 3.5 1.6
Rear Roof Support Absorber 3.5 1.6

within the system when the BIW's length changes for both inflexible and flexible BIW

designs, along with classification of each component. For the flexible BIW in Figure

C-3, dashed boundaries represent inflexible BIW design's component equivalent.

Table C.2 lists change related switch costs for critical components. Again, costs

are normalized with respect to the initial investment cost for body outer panel (in-

flexible BIW). From the component classification and switch cost observation, several

comments can be made. For the body outer panel, lower component is entirely elimi-

nated from the change propagation path. The upper body outer panel still propagates
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change, but its switch cost is much cheaper than its inflexible counterpart. Similar

comments can be made for the body inner panel. Lower front component is elim-

inated, since it is a common component for all three vehicle variants. Lower rear

body inner panel is a carrier that sends out change to the rocker inner panel. How-

ever, its switch cost is very small. Upper body inner panel, a unique component for

each vehicle variant, is still a multiplier, but with lower switch cost than its inflexible

counterpart.

Another change propagation analysis is performed for the case when the styling

changes above the vehicle belt line only, without changing the vehicle length. As it

is stated in Chapter 5, attributes (IE and RM) related variables H50, H122, and

W27 need to be either differentiated, or must remain fixed for each vehicle variant.

Figure C-4 and C-5 show the change propagation within the system when the BIW's

style changes for both inflexible and flexible BIW designs, along with classification

of each component. For the flexible BIW in Figure C-5, dashed boundaries represent

inflexible BIW design's component equivalent.

A

M: Multiplier Font Roof Support

CA: Carder CA

A: Absorber ,Roof PaneI

C: Constant A-

Rear Roof Support

M M M M

Pl H Panel (LH)(R H

Figure C-4: Styling Change Propagation Effect on Inflexible BIW

Table C.3 lists change related switch costs for seven critical components affected by

styling change above the vehicle belt line. Again, costs are normalized with respect to

the initial investment cost for the body outer panel (inflexible BIW). The result shows

that there are less number of changing components than when the length changed,

and the flexible components in the flexible BIW design incurred lower switch cost

when subject to change. It is clear that the flexible BIW design is indeed more

flexible to specified changes than the inflexible BIW design. However, the flexibility

is achieved at a price: higher initial upfront investment cost. The question of "which
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Figure C-5: Styling Change Propagation Effect on Flexible BIW

Table C.3: Switch Costs for Critical BIW Components (Styling Change)

Component Component Switch Cost Switch Cost
Name Class (Inflexible BIW) (Flexible BIW)

Body Outer Panel Multiplier 100.0
Body Outer Panel - Lower - --

Body Outer Panel - Upper Multiplier - 45.1
Body Inner Panel Multiplier 134.3

Body Inner Panel - Lower Front - -

Body Inner Panel - Lower Rear - - -

Body Inner Panel - Upper Multiplier - 35.9
Rocker Inner Panel - -

Floor Pan - --

Roof Panel Carrier 39.9 39.9
Front Roof Support Absorber 3.5 1.6
Rear Roof Support Absorber 3.5 1.6

design is more advantageous?" can only be answered through the future uncertainty

analysis, presented in Chapter 5.
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Appendix D

Expected Profit (in NPV) for

Uncertainty Scenarios I - VI

In this appendix, the expected BIW manufacturing costs and expected profit (in

terms of NPV) for uncertainty scenarios I - VI, presented in Chapter 5, are listed.

All costs are normalized with respect to the initial investment cost of the inflexible

BIW design (same for all scenarios).

Table D.1: Expected Annual Production Volume for Each p

Year Pi P2 P3
1 280,000 125,000 60,000
2 297,639 124,581 56,775
3 316,390 124,164 53,724
4 336,322 123,748 50,837
5 357,509 123,334 48,105
6 380,032 122,920 45,520
7 403,973 122,509 43,073
8 429,422 122,098 40,758
9 456,475 121,689 38,568
10 485,232 121,282 36,495
11 515,000 120,875 34,534
12 548,295 120,471 32,678
13 582,836 120,067 30,922
14 619,554 119,665 29,260
15 658,854 119,264 27,687
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Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 0.00 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 0.00 29.45 2,529.70 2,500.25 2,358.72
2 0.00 0.00 0.00 30.25 2,577.49 2,547.24 2,267.03
3 0.00 0.00 0.00 31.13 2,631.92 2,600.79 2,183.67
4 0.00 0.00 0.00 32.10 2,693.21 2,661.12 2107.85
5 0.00 10.58 0.00 33.15 2,761.64 2.717.91 2,030.98
6 0.00 0.00 0.00 34.29 2,837.47 2,803.18 1,976.13
7 0.00 0.00 0.00 35.53 2,921.01 2,885.48 1,919.01
8 0.00 0.00 0.00 36.87 3,012.60 2,975.74 1,867.01
9 0.00 0.00 0.00 38.31 3,112.61 3,074.29 1,819.67
10 0.00 10.58 0.00 39.87 3,221.42 3,170.97 1,770.65
11 0.00 0.00 0.00 41.55 3.339.48 3,297.93 1,737.31
12 0.00 0.00 0.00 43.35 3,467.23 3423.89 1,701.57
13 0.00 0.00 0.00 45.28 3,605.19 3,559.91 1,669.03
14 0.00 0.00 0.00 47.35 3,753.88 3,706.53 1,639.40
15 0.00 0.00 0.00 49.56 3,913.87 3,864.30 1.612.44

Scenario I NPV (Inflexible BIW) 28,560.47

Figure D-1: E[NPV for Scenario I, Inflexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 134.17 0.00 0.00 0.00 0.00 -134.17 -134.17
1 0.00 0.00 0.00 29.94 2,529.70 2,49976 2,358.27
2 0.00 0.00 0.00 30.79 2,577.49 2,546.70 2,266.55
3 0.00 0.00 0.00 31.73 2,631.92 2,600.19 2,183.17
4 0.00 0.00 0.00 32.76 2,693.21 2,660.45 2,107.33
5 0.00 17.99 0.00 33.87 2,761.64 2,709.77 2,024.90
6 0.00 0.00 0.00 35.08 2,837.47 2,802.38 1,975.57
7 0.00 0.00 0.00 36.39 2,921.01 2,884.61 1,918.43
8 0.00 0.00 0.00 37.81 3,012.60 2,974.80 1,866.42
9 0.00 0.00 0.00 39.33 3,112.61 3,073.28 1,819.07
10 0.00 17.99 0.00 40.97 3,221.42 3,162.47 1,765.90
11 0.00 0.00 0.00 42.73 3,339.48 3,296.75 1,736.69
12 0.00 0.00 0.00 44.62 3,467.23 3,422.61 1,700.93
13 0.00 0.00 0.00 46.64 3,605.19 3,558.55 1,668.39
14 0.00 0.00 0.00 48.81 3,753.88 3,705.06 1,638.75
15 0.00 0.00 0.00 51.13 3,913.87 3,862.73 1,611.78

Scenario I NPV (Flexible BIW) 28,507.99

Figure D-2: E[NPV] for Scenario I, Flexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 0.00 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 0.00 29.45 2,529.70 2,500.25 2,358.72
2 0.00 0.00 0.00 30.21 2,577.49 2,547.28 2,267.07
3 0.00 0.00 0.00 31.05 2,631.92 2,600.87 2,183.74
4 0.00 0.00 0.00 31.97 2,693.21 266124 2,107.95
5 0.00 10.58 0.00 32.98 2,761.64 2,718.07 2,031.10
6 0.00 0.00 0.00 34.08 2837.47 2,803.39 1,976.28
7 0.00 0.00 0.00 35.27 2,921.01 2,885.74 1,919.18
8 0.00 0.00 0.00 36.56 3,012.60 2976.05 1,867.21
9 0.00 0.00 0.00 37.95 3,112.61 3,074.66 1,819.89
10 0.00 10.58 0.00 39.45 3,221.42 3,171.39 1,77089
I1 0.00 0.00 0.00 41.06 3.339.48 3.298.42 1,737.56
12 0.00 0.00 0.00 42.80 3,467.23 3424.43 1,701.84
13 0.00 0.00 0.00 44.66 3,605.19 3,560.53 1,669.31
14 0.00 0.00 0.00 46.66 3,753.88 3,707.21 1,639.70
15 0.00 0.00 0.00 48.81 3,913.87 3,865.06 1,612.75

Scenario H NPV (Inflexible BIW) 28,563.21
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Figure D-3: E[NPV] for Scenario II, Inflexible BIW Design



Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 134.17 0.00 0.00 0.00 0.00 -134.17 -134.17
1 0.00 0.00 0.00 29.94 2529.70 2.499.76 2,358.27
2 0.00 0.00 0.00 30.75 2,577.49 2,546.74 2,266.59
3 0.00 0.00 0.00 31.65 2,631.92 2.600.27 2,183.24
4 0.00 0.00 0.00 32.63 2,693.21 2,660.58 2,107.43
5 0.00 17.99 0.00 33.70 2,761.64 2,709.95 2,025.03
6 0.00 0.00 0.00 34.87 2,837.47 2.802.60 1,975.72
7 0.00 0.00 0.00 36.12 2,921.01 2,884.88 1,918.61
8 0.00 0.00 0.00 37.49 3,012.60 2,975.12 1,866.63
9 0.00 0.00 0.00 38.95 3,112.61 3,073.66 1,819.29
10 0.00 17.99 0.00 40.53 3,221.42 3,162.90 1,766.15
11 0.00 0.00 0.00 42.23 3,339.48 3,297.25 1,736.95
12 0.00 0.00 0.00 44.05 3,467.23 3,423.18 1,701.22
13 0.00 0.00 0.00 46.01 3,605.19 3,559.18 1,668.68
14 0.00 0.00 0.00 48.11 3,753.88 3,705.77 1,639.07
15 0.00 0.00 0.00 50.35 3,913.87 3,863.52 1,612.11

Scenario It NPV (Flexible BIM) 28,510.81

Figure D-4: E[NPV] for Scenario II, Flexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 0.00 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 0.00 29.45 2,529.70 2,500.25 2,358.72
2 0.00 0.00 0.00 30.21 2,577.49 2,547.28 2,267.07
3 0.00 0.00 0.00 31.05 2,631.92 2,600.87 2,183.74
4 0.00 0.00 0.00 31.97 2,693.21 2,661.24 2,107.95
5 0.00 2.58 31.99 32.98 2,761.64 2,694.08 2,013.17
6 0.00 0.00 0.00 34.08 2,837.47 2,803.39 1,976.28
7 0.00 0.00 0.00 35.27 2,921.01 2,885.74 1,919.18
8 0.00 0.00 0.00 36.56 3,012.60 2,976.05 1,867.21
9 0.00 0.00 0.00 37.95 3,112.61 3,074.66 1,819.89
10 0.00 2.58 31.99 39.45 3,221.42 3,147.40 1,757.49
11 0.00 0.00 0.00 41.06 3,339.48 3,298.42 1,737.56
12 0.00 0.00 0.00 42.80 3,467.23 3424.43 1,701.84
13 0.00 0.00 0.00 44.66 3,605.19 3,560.53 1,669.31
14 0.00 0.00 0.00 46.66 3,753.88 3,707.21 1,639.70
15 0.00 0.00 0.00 48.81 3,913.87 3,865.06 1,612.75

Scenario III NPV (Inflexible BIM) 28,531.88

Figure D-5: E[NPV] for Scenario III, Inflexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 134.17 0.00 0.00 0.00 0.00 -134.17 -134.17
1 0.00 0.00 0.00 29.94 252970 2499.76 2,358.27
2 0.00 0.00 0.00 30.75 2,577.49 2,546.74 2,266.59
3 0.00 0.00 0.00 31.65 2,631.92 2,600.27 2,183.24
4 0.00 0.00 0.00 32.63 2,693.21 2,660.58 2,107.43
5 0.00 16.65 5.35 33.70 2,761.64 2,705.93 2,022.03
6 0.00 0.00 0.00 34.87 283747 2,802.60 1,975.72
7 0.00 0.00 0.00 36.12 2,921.01 2,884.88 1,918.61
8 0.00 0.00 0.00 37.49 3,012.60 2.975.12 1,866.63
9 0.00 0.00 0.00 38.95 3,112.61 3,073.66 1,819.29
10 0.00 16.65 5.35 40.53 3,221.42 3,158.89 1763.91
11 0.00 0.00 0.00 42.23 3,339.48 3,297.25 1,736.95
12 0.00 0.00 0.00 44.05 3,467.23 3,423.18 1,701.22
13 0.00 0.00 0.00 46.01 3,605.19 3,559.18 1,668.68
14 0.00 0.00 0.00 48.11 3,753.88 3,705.77 1,639.07
15 0.00 0.00 0.00 50.35 3,913.87 3,863.52 1,612.11

Scenario M NPV (Flexible BIM) 28,505.57
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Figure D-6: E[NPV for Scenario III, Flexible BIW Design



Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 0.00 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 0.00 29.45 2,529.70 2,500.25 235872
2 0.00 0.00 0.00 30.21 2,577.49 2,54728 2267.07
3 0.00 0.00 0.00 31.05 2,631.92 2.600.87 2,183.74
4 0.00 0.00 0.00 31.97 2,693.21 2661.24 2*,107.95
5 0.00 0.05 42.14 32.98 2,761.64 2,686.47 2,007.48
6 0.00 0.00 0.00 34.08 2,837.47 2803.39 1.976.28
7 0.00 0.00 0.00 35.27 2,921.01 2,885.74 1,919.18
8 0.00 0.00 0.00 36.56 3,012.60 2,976.05 1,867.21
9 0.00 0.00 0.00 37.95 3,112.61 3,074.66 1.819.89
10 0.00 0.05 42.14 39.45 3,221.42 3,139.79 1,753.24
11 0.00 0.00 0.00 41.06 3.339.48 3,298.42 1,737.56
12 0.00 0.00 0.00 42.80 3,467.23 3,424.43 1,701.84
13 0.00 0.00 0.00 44.66 3,605.19 3,560.53 1,669.31
14 0.00 0.00 0.00 46.66 3,753.88 3,707.21 1,639.70
15 0.00 0.00 0.00 48.81 3,913.87 3,865.06 1.612.75

Scenario IV NPV (Inflexible BIW) 23,521.94

Figure D-7: E[NPV] for Scenario IV, Inflexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 134.17 0.00 0.00 0.00 0.00 -134.17 -134.17
1 0.00 0.00 0.00 29.94 2,529.70 2.499.76 2,358.27
2 0.00 0.00 0.00 30.75 2,577.49 2,546.74 2266.59
3 0.00 0.00 0.00 31.65 2.631.92 2.600.27 2,183.24
4 0.00 0.00 0.00 32.63 2,693.21 2,660.58 2,107.43
5 0.00 16.61 5.50 33.70 2,761.64 2,705.82 2.021.95
6 0.00 0.00 0.00 34.87 2,837.47 2,802.60 1,975.72
7 0.00 0.00 0.00 36.12 2,921.01 2.884.88 1,918.61
8 0.00 0.00 0.00 37.49 3,012.60 2,975.12 1,866.63
9 0.00 0.00 0.00 38.95 3,112.61 3,073.66 1.819.29
10 0.00 16.61 5.50 40.53 3,221.42 3,158.78 1,763.85
11 0.00 0.00 0.00 42.23 3,339.4 3.297.25 1,736.95
12 0.00 0.00 0.00 44.05 3.467.23 3423.18 1.701.22
13 0.00 0.00 0.00 46.01 3,605.19 3,559.18 1,668.68
14 0.00 0.00 0.00 48.11 3,753.88 3,705.77 1,639.07
15 0.00 0.00 0.00 50.35 3,913.87 3,863.52 1,612.11

Scenario IV NPV (Flexible BIW) 23,505.42

Figure D-8: E[NPV] for Scenario IV, Flexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 000 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 0.00 29.45 2,529.70 2,500.25 235872
2 0.00 0.00 0.00 30.21 2,577.49 2,547.28 2,267.07
3 0.00 0.00 0.00 31.05 2,631.92 2.600.87 2.183.74
4 0.00 0.00 31.99 31.97 2,693.21 262924 2,082.61
5 0.00 2.58 0.00 32.98 2,761.64 2,726.07 2,037.08
6 0.00 0.00 0.00 34.08 2,837.47 2,803.39 1,976.28
7 0.00 0.00 0.00 35.27 2,921.01 2885.74 1,919.18
8 0.00 0.00 31.99 36.56 3,012.60 2,944.05 1.847.14
9 0.00 0.00 0.00 37.95 3,112.61 3074.66 1819.89
10 0.00 2.58 0.00 39.45 3,221.42 3,179.39 1,775.36
11 0.00 0.00 0.00 41.06 3,339.48 3298.42 1,737.56
12 0.00 0.00 31.99 42.80 3,467.23 3,392.44 1,685.94
13 0.00 0.00 0.00 44.66 3,605.19 3,560.53 1,669.31
14 0.00 0.00 0.00 46.66 3,753.88 3,707.21 1,639.70
15 0.00 0.00 0.00 48.81 3,913.87 3,865.06 1,612.75

Scenario V NPV (Inflexible BIW) 28,512.33
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Figure D-9: E[NPV] for Scenario V, Inflexible BIW Design



Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 134.17 0.00 0.00 0.00 0.00 -134.17 -134.17
1 0.00 0.00 0.00 29.94 252970 2.499.76 2,358.27
2 0.00 0.00 0.00 30.75 2,577.49 2,546.74 2,266.59
3 0.00 0.00 0.00 31.65 2,631.92 2,600.27 2,183.24
4 0.00 0.00 5.35 32.63 2,693.21 2,655.23 2,103.19
5 0.00 16.65 0.00 33.70 2,761.64 2,711.28 2,026.03
6 0.00 0.00 0.00 34.87 2,837.47 2,802.60 1,975.72
7 0.00 0.00 0.00 36.12 2,921.01 2,884.88 1,918.61
8 0.00 0.00 5.35 37.49 3,012.60 2,969.77 1.863.27
9 0.00 0.00 0.00 38.95 3,112.61 3,073.66 1,819.29
10 0.00 16.65 0.00 40.53 3,221.42 3,164.24 1.766.90
11 0.00 0.00 0.00 42.23 3,339.48 3.297.25 1.736.95
12 0.00 0.00 5.35 44.05 3,467.23 3,417.83 1,698.56
13 0.00 0.00 0.00 46.01 3,605.19 3.559.18 1,668.68
14 0.00 0.00 0.00 48.11 3,753.88 3,705.77 1,639.07
15 0.00 0.00 0.00 50.35 3,913.87 3,863.52 1,612.11

Scenario V NPV (Flexible BIW) 28,502.30

Figure D-10: E[NPV] for Scenario V, Flexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 0.00 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 0.00 29.45 2,529.70 2500.25 2,358.72
2 0.00 0.00 0.00 30.21 2,577.49 2,547.28 2,267.07
3 0.00 0.00 31.99 31.05 2,631.92 2,568.87 2,156.8
4 0.00 0.00 0.00 31.97 2,693.21 2,661.24 2,107.95
5 0.00 2.58 0.00 32.98 2,761. 2,726.07 2,037.08
6 0.00 0.00 31.99 34.08 2,837.47 2,771.40 1,953.72
7 0.00 0.00 0.00 35.27 2,921.01 2.885.74 1,919.18
8 0.00 0.00 0.00 36.56 3,012.60 2976.05 1,867.21
9 0.00 0.00 31.99 37.95 3,112.61 3,042.67 1,800.95
10 0.00 2.58 0.00 39.45 3,221.42 3,179.39 1,775.36
11 0.00 0.00 0.00 41.06 3,339.48 3,298.42 1,737.56
12 0.00 0.00 31.99 42.80 3,467.23 3,392.44 1,685.94
13 0.00 0.00 0.00 44.66 3,605.19 3,560.53 1,669.31
14 0.00 0.00 0.00 46.66 3,753.88 370721 1,639.70
15 0.00 0.00 0.00 48.81 3,913.87 3,865.06 1,612.75

Scenario VI NPV (Inflexible BIW) 28,489.39

Figure D-11: E[NPVI for Scenario VI, Inflexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 134.17 0.00 0.00 0.00 0.00 -134.17 -134.17
1 0.00 0.00 0.00 29.94 2,529.70 2,499.76 2,358.27
2 0.00 0.00 0.00 30.75 2,577.49 2,546.74 2,266.59
3 0.00 0.00 5.35 31.65 2,631.92 2,594.92 2,178.75
4 0.00 0.00 0.00 32.63 2,693.21 2,660.58 2,107.43
5 0.00 16.65 0.00 33.70 2,761.64 2,711.28 2,026.03
6 0.00 0.00 5.35 34.87 2,837.47 2797.25 1,971.95
7 0.00 0.00 0.00 36.12 2,921.01 2,884.88 1,918.61
8 0.00 0.00 0.00 37.49 3,012.60 2,975.12 1,866.63
9 0.00 0.00 5.35 38.95 3,112.61 3,068.31 1,816.13
10 0.00 16.65 0.00 40.53 3,221.42 3,164.24 1,766.90
11 0.00 0.00 0.00 42.23 3,339.48 3,29725 1,736.95
12 0.00 0.00 5.35 44.05 3,467.23 3,417.83 1,698.56
13 0.00 0.00 0.00 46.01 3,605.19 3,559.18 1,668.68
14 0.00 0.00 0.00 48.11 3,753.88 3,705.77 1,639.07
15 0.00 0.00 0.00 50.35 3,913.87 3,863.52 1,612.11

Scenario VI NPV (Fexible BfW) 28,493.47
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Figure D-12: E[NPV] for Scenario VI, Flexible BIW Design
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Appendix E

Expected Profit (in NPV) for

Uncertainty Scenarios VII -XII

In this appendix, the expected profit (in terms of NPV) for uncertainty scenarios

VII - XII, presented in Chapter 5, are listed. All costs are normalized with respect

to the initial investment cost of the inflexible BIW design (same for all scenarios).

Table E.1: Expected Annual Production Volume for Each p

Year Pi P2 P3

1 280,000 125,000 60,000
2 297,639 124,581 56,775
3 316,390 124,164 53,724
4 336,322 123,748 50,837
5 357,509 123,334 48,105
6 380,032 122,920 45,520
7 403,973 122,509 43,073
8 429,422 122,098 40,758
9 456,475 121,689 38,568
10 485,232 121,282 36,495
11 515,000 120,875 34,534
12 548,295 120,471 32,678
13 582,836 120,067 30,922
14 619,554 119,665 29,260
15 658,854 119,264 27,687
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Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 0.00 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 0.00 29.45 2,529.70 2500.25 2,358.72
2 0.00 0.00 31.99 30.21 2,577.49 2,515.28 2.238.59
3 0.00 0.00 0.00 31.05 2,631.92 2,600.87 2.183.74
4 0.00 0.00 31.99 31.97 2,693.21 2,629.24 2,082.61
5 0.00 2.58 0.00 32.98 2.761.64 2,726.07 2,037.08
6 0.00 0.00 31.99 34.08 2,837.47 2,771.40 1,953.72
7 0.00 0.00 0.00 35.27 2,921.01 2,885.74 1,919.18
8 0.00 0.00 31.99 36.56 3,012.60 2,944.05 1,847.14
9 0.00 0.00 0.00 37.95 3,112.61 3,074.66 1,819.89
10 0.00 2.58 31.99 39.45 3,221.42 3,147.40 1,757.49
11 0.00 0.00 0.00 41.06 3,339.48 3,298.42 1,737.56
12 0.00 0.00 31.99 42.80 3,467.23 3,392.44 1,685.94
13 0.00 0.00 0.00 44.66 3,605.19 3,560.53 1,669.31
14 0.00 0.00 31.99 46.66 375388 3,675.22 1,625.55
15 0.00 0.00 0.00 48.81 3,913.87 3,865.06 1,612.75

Scenario VII NPV (Inflexible BIW) 28,429.29

Figure E-1: E[NPV] for Scenario VII, Inflexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 134.17 0.00 0.00 0.00 0.00 -134.17 -134.17
1 0.00 0.00 0.00 29.94 2,529.70 2499.76 2,358.27
2 0.00 0.00 5.35 30.75 2,577.49 2,541.39 2,261.83
3 0.00 0.00 0.00 31.65 2,631.92 2,600.27 2,183.24
4 0.00 0.00 5.35 32.63 2.693.21 2,655.23 2,103.19
5 0.00 16.65 0.00 33.70 2,761.64 2,711.28 2,026.03
6 0.00 0.00 5.35 34.87 2,837.47 2,797.25 1,971.95
7 0.00 0.00 0.00 36.12 2,921.01 2,884.88 1,918.61
8 0.00 0.00 5.35 37.49 3,012.60 2,969.77 1,863.27
9 0.00 0.00 0.00 38.95 3,112.61 3,073.66 1,819.29
10 0.00 16.65 5.35 40.53 3,221.42 3,158.89 1,763.91
11 0.00 0.00 0.00 42.23 3,339.48 3,297.25 1,736.95
12 0.00 0.00 5.35 44.05 3,467.23 3,417.83 1,698.56
13 0.00 0.00 0.00 46.01 3,605.19 3,559.18 1,668.68
14 0.00 0.00 5.35 48.11 3,753.88 3,700.42 1,636.70
15 0.00 0.00 0.00 50.35 3,913.87 3,863.52 1,612.11

Scenario VII NPV (Flexible BIW) 29.488.42

Figure E-2: E[NPV] for Scenario VII, Flexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 0.00 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 31.99 29.45 2,529.70 2, 468.25 2,328.54
2 0.00 0.00 31.99 30.21 2,577.49 2,515.28 2,238.59
3 0.00 0.00 31.99 31.05 2,631.92 2,568.87 2,156.88
4 0.00 0.00 31.99 31.97 2,693.21 2629.24 208261
5 0.00 2.58 31.99 32.98 2,761.64 2,694.08 2,013.17
6 0.00 0.00 31.99 34.08 2,837.47 2,771.40 1,*953.* 72
7 0.00 0.00 31.99 35.27 2,92.01 2,853.75 _1,897.90
8 0.00 0.00 31.99 36.56 3,012.60 2,944.05 1,847.14
9 0.00 0.00 31.99 37.95 3,112.61 3,042.67 1,800.95
10 0.00 2.58 31.99 39.45 3,221.42 3,147.40 1,757.49
11 0.00 0.00 31.99 41.06 3,339.48 3,266.42 1,720.71
12 0.00 0.00 31.99 42.80 3,467.23 3,392.44 1,685.94
13 0.00 0.00 31.99 44.66 3,605.19 3,528.53 1,654.31
14 0.00 0.00 31.99 46.66 3,753.88 3,675.22 1,625.55
15 0.00 0.00 0.00 48.81 3,913.87 3,865.06 1,612.75

Scenario VIII NPV (Inflexible BIW) 29,276.26
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Figure E-3: E[NPV] for Scenario VIII, Inflexible BIW Design



Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 134.17 0.00 0.00 0.00 0.00 -134.17 -134.17
1 0.00 0.00 5.35 29.94 2,529.70 2,494.41 2.353.22
2 0.00 0.00 5.35 30.75 2,577.49 2,541.39 2,261.83
3 0.00 0.00 5.35 31.65 2,631.92 2,594.92 2,178.75
4 0.00 0.00 5.35 32.63 2,693.21 2,655.23 2.103.19
5 0.00 16.65 5.35 33.70 2,761.64 2,705.93 2,022.03
6 0.00 0.00 5.35 34.87 2837.47 2,797.25 1,971.95
7 0.00 0.00 5.35 36.12 2,921.01 2,879.53 1,915.05
8 0.00 0.00 5.35 37.49 3,012.60 2,969.77 1,863.27
9 0.00 0.00 5.35 38.95 3,112.61 3,068.31 1,816.13
10 0.00 16.65 5.35 40.53 3,221.42 3,158.89 1,763.91
11 0.00 0.00 5.35 42.23 3,339.48 3,291.90 1,734.13
12 0.00 0.00 5.35 44.05 3,467.23 3,417.83 1,698.56
13 0.00 0.00 5.35 46.01 3,605.19 3,553.83 1,666.17
14 0.00 0.00 5.35 48.11 3,753.88 3,700.42 1,636.70
15 0.00 0.00 0.00 50.35 3,913.87 3,863.52 1,612.11

Scenario VII NPV (Flexible BW) 28,462.93

Figure E-4: E[NPV] for Scenario VIII, Flexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 0.00 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 0.00 29.45 2,529.70 2500.25 2,358.72
2 0.00 0.00 0.00 30.21 2,577.49 2,547.28 2,267.07
3 0.00 0.00 0.00 31.05 2,631.92 2,600.87 2,183.74
4 0.00 0.00 42.33 31.97 2,693.21 2,618.91 2074.42
5 0.00 0.00 0.00 32.98 2,761.64 2,728.66 2,039.01
6 0.00 0.00 0.00 34.08 2,837.47 2,803.39 1,976.28
7 0.00 0.00 0.00 35.27 2,921.01 2,885.74 1,919.18
8 0.00 0.00 42.33 36.56 3,012.60 2,933.72 1,840.65
9 0.00 0.00 0.00 37.95 3,112.61 307466 1,819.89
10 0.00 0.00 0.00 39.45 322142 3,18198 1,776.80
11 0.00 0.00 0.00 41.06 3,339.48 3,298.42 1,737.56
12 0.00 0.00 42.33 42.80 3,467.23 3,382.11 1.680.80
13 0.00 0.00 0.00 44.66 3,605.19 3,560.53 1669.31
14 0.00 0.00 0.00 46.66 3,753.88 3,707.21 1,639.70
15 0.00 0.00 0.00 48.81 3,913.87 3,865.06 1,612.75

Scenario IX NPV (Inflexible BIW) 28,495.90

Figure E-5: E[NPV for Scenario IX, Inflexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 134.17 0.00 0.00 0.00 0.00 -134.17 -134.17
1 0.00 0.00 0.00 29.94 2,529.70 2,499.76 2,358.27
2 0.00 0.00 0.00 30.75 2,577.49 2,546.74 2,266.59
3 0.00 0.00 0.00 31.65 2,631.92 2,600.27 2,183.24
4 0.00 0.00 5.51 32.63 2,693.21 2,655.07 2,103.07
5 0.00 16.61 0.00 33.70 2,761.64 2,711.32 2,026.06
6 0.00 0.00 0.00 34.87 2,837.47 2,802.60 1,975.72
7 0.00 0.00 0.00 36.12 2,921.01 2,884.88 1,918.61
8 0.00 0.00 5.51 37.49 3,012.60 2,969.61 1,863.17
9 0.00 0.00 0.00 38.95 3,112.61 3,073.66 1,819.29
10 0.00 16.61 0.00 40.53 3,221.42 3,164.28 1,766.92
11 0.00 0.00 0.00 42.23 3,339.48 3,297.25 1.736.95
12 0.00 0.00 5.51 44.05 3,467.23 3,417.67 1,698.48
13 0.00 0.00 0.00 46.01 3,605.19 3,559.18 1,668.68
14 0.00 0.00 0.00 48.11 3,753.88 3,705.77 1,639.07
15 0.00 0.00 0.00 50.35 3,913.87 3,863.52 1,612.11

Scenario IX NPV (Flexible BIW) 28,502.05
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Figure E-6: E[NPV] for Scenario IX, Flexible BIW Design



Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 0.00 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 0.00 29.45 2,529.70 2,500.25 2,358.72
2 0.00 0.00 0.00 30.21 2,577.49 2,547.28 2,267.07
3 0.00 0.00 42.33 31.05 2.631.92 2.558.54 2,148.20
4 0.00 0.00 0.00 31.97 2,693.21 2,661.24 2,107.95
5 0.00 0.00 0.00 32.98 2,761.64 2,728.66 2,039.01
6 0.00 0.00 42.33 34.08 2,837.47 276106 1946.44
7 0.00 0.00 0.00 35.27 2,921.01 2,85.74 1,919.18
8 0.00 0.00 0.00 36.56 3,012.60 2,976.05 1867.21
9 0.00 0.00 42.33 37.95 3,112.61 3,032.33 1,794.83
10 0.00 0.00 0.00 39.45 3,221.42 3,181.98 177680
11 0.00 0.00 0.00 41.06 3,339.48 3,298.42 1.737.56
12 0.00 0.00 42.33 42.80 3,467.23 3,382.11 1.680.80
13 0.00 0.00 0.00 44.66 3,605.19 3,560.53 1,669.31
14 0.00 0.00 0.00 46.66 3,753.88 3,707.21 1,639.70
15 0.00 0.00 0.00 48.81 3,913.87 3,865.06 1,612.75

Scenario X NPV (Inflexible BIW) 28.465.56

Figure E-7: E[NPV] for Scenario X, Inflexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 134.17 0.00 0.00 0.00 0.00 -134.17 -134.17
1 0.00 0.00 0.00 29.94 2,529.70 2,499.76 2,358.27
2 0.00 0.00 0.00 30.75 2,577.49 2.546.74 2.266.59
3 0.00 0.00 5.51 31.65 2,631.92 2.594.76 2,178.61
4 0.00 0.00 0.00 32.63 2,693.21 2,660.58 2,107.43
5 0.00 16.61 0.00 33.70 2,761.64 2,711.32 2,026.06
6 0.00 0.00 5.51 34.87 2,837.47 2,797.10 1,971.84
7 0.00 0.00 0.00 36.12 2,921.01 2,884.88 1,918.61
8 0.00 0.00 0.00 37.49 3,012.60 2,975.12 1,866.63
9 0.00 0.00 5.51 38.95 3,112.61 3.068.15 1,816.03
10 0.00 16.61 0.00 40.53 3,221.42 3,164.28 1,766.92
11 0.00 0.00 0.00 42.23 3,339.48 3,297.25 1,736.95
12 0.00 0.00 5.51 44.05 3,467.23 3,417.67 1,698.48
13 0.00 0.00 0.00 46.01 3.605.19 3,559.18 1,668.68
14 0.00 0.00 0.00 48.11 3,753.88 3,705.77 1,639.07
15 0.00 0.00 0.00 50.35 3,913.87 3,863.52 1,612.11

Scenario X NPV (lexible BIW) 28,493.11

Figure E-8: E[NPV for Scenario X, Flexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 0.00 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 0.00 29.45 2,52970 250025 2,358.72
2 0.00 0.00 42.33 30.21 2,577.49 2,504.95 2,229.40
3 0.00 0.00 0.00 31.05 2,631.92 2,600.87 2,183.74
4 0.00 0.00 42.33 31.97 2,693.21 2618.91 2074.42
5 0.00 0.00 0.00 32.98 2,761.64 2,728.66 2,039.01
6 0.00 0.00 42.33 34.08 2,837.47 2761.06 1,94644
7 0.00 0.00 0.00 35.27 2,921. 1 2,885.74 1,919.18
8 0.00 0.00 42.33 36.56 3,012.60 2,933.72 1,840.65
9 0.00 0.00 0.00 37.95 3,112.61 3,074.66 1 819.89
10 0.00 0.00 42.33 39.45 3,221.42 3,139.65 1,753.16
11 0.00 0.00 0.00 41.06 3,339.48 3,298.42 1,737.56
12 0.00 0.00 42.33 42.80 3,47.23 3,382.11 1,680.80
13 0.00 0.00 0.00 44.66 3,605.19 3,560.53 1,669.31
14 0.00 0.00 42.33 46.66 3,753.88 3,664.89 1,620.98
15 0.00 0.00 0.00 48.81 3,913.87 3,865.06 1,612.75

Scenario XI NPV (Inflexible BI 28386.04
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Figure E-9: E[NPV] for Scenario XI, Inflexible BIW Design



Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 134.17 0.00 0.00 0.00 0.00 -134.17 -134.17
1 0.00 0.00 0.00 29.94 2,529.70 2,499.76 2,358.27
2 0.00 0.00 5.51 30.75 2,577.49 2,541.23 2,261.69
3 0.00 0.00 0.00 31.65 2,631.92 2,600.27 2,183.24
4 0.00 0.00 5.51 32.63 2,693.21 2,655.07 2,103.07
5 0.00 16.61 0.00 33.70 2,761.64 2,711.32 2,026.06
6 0.00 0.00 5.51 34.87 2,837.47 2,797.10 1,971.84
7 0.00 0.00 0.00 36.12 2,921.01 2,884.88 1,918.61
8 0.00 0.00 5.51 37.49 3,012.60 2,969.61 1,863.17
9 0.00 0.00 0.00 38.95 3,112.61 3,073.66 1,819.29
10 0.00 16.61 5.51 40.53 3,221.42 3,15877 1,763.84
11 0.00 0.00 0.00 42.23 3,339.48 3,297.25 1,736.95
12 0.00 0.00 5.51 44.05 3,467.23 3.417.67 1,698.48
13 0.00 0.00 0.00 46.01 3,605.19 3,559.18 1,668.68
14 0.00 0.00 5.51 48.11 3,753.88 3,700.27 1,636.63
15 0.00 0.00 0.00 50.35 3,913.87 3,863.52 1,612.11

Scenario XI NPV (Flexible BIW) 28,487.76

Figure E-10: E[NPV] for Scenario XI, Flexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 100.00 0.00 0.00 0.00 0.00 -100.00 -100.00
1 0.00 0.00 42.33 29.45 2,529.70 2,457.92 2,318.79
2 0.00 0.00 42.33 30.21 2,577.49 2,50495 2,229.40
3 0.00 0.00 42.33 31.05 2,631.92 2,558.54 2,148.20
4 0.00 0.00 42.33 31.97 2,693.21 2,618.91 2,074.42
5 0.00 0.00 42.33 32.98 2,761.64 2,686.33 2,007.38
6 0.00 0.00 42.33 34.08 2,837.47 2761.06 1,946.44
7 0.00 0.00 42.33 35.27 2,921.01 2,843.41 1,891.03
8 0.00 0.00 42.33 36.56 3,012.60 2,933.72 1,840.65
9 0.00 0.00 42.33 37.95 3,112.61 3,032.33 1,794.83
10 0.00 0.00 42.33 39.45 3,221.42 3,139.65 1,753.16
11 0.00 0.00 42.33 41.06 3,339.48 3,256.09 1,715.27
12 0.00 0.00 42.33 42.80 3,467.23 3,382.11 1,680.80
13 0.00 0.00 42.33 44.66 3.605.19 3,518.20 1,649.47
14 0.00 0.00 42.33 46.66 3,753.88 3,664.89 1,620.98
15 0.00 0.00 0.00 48.81 3,913.87 3,865.06 1,612.75

Scenario XII NPV (Inflexible B ) 28,183.59

Figure E-11: E[NPV for Scenario XII, Inflexible BIW Design

Year Investment Refurbish Cost Switch Cost Variable Cost Total Revenue Cash Flow Present Value
0 134.17 0.00 0.00 0.00 0.00 -134.17 -134.17
1 0.00 0.00 5.51 29.94 2,529.70 2,494.26 2,353.07
2 0.00 0.00 5.51 30.75 2,577.49 2,541.23 2,261.69
3 0.00 0.00 5.51 31.65 2,631.92 2,594.76 2,178.61
4 0.00 0.00 5.51 32.63 2,693.21 2,655.07 2,103.07
5 0.00 16.61 5.51 33.70 2,761.64 2,705.82 2,021.94
6 0.00 0.00 5.51 34.87 2,837.47 2,797.10 1,971.84
7 0.00 0.00 5.51 36.12 2,921.01 2,879.38 1,914.95
8 0.00 0.00 5.51 37.49 3,012.60 2,969.61 1,863.17
9 0.00 0.00 5.51 38.95 3,112.61 3,068.15 1,816.03

10 0.00 16.61 5.51 40.53 3,221.42 3,158.77 1,763.84
11 0.00 0.00 5.51 42.23 3,339.48 3,291.74 1,734.05
12 0.00 0.00 5.51 44.05 3,467.23 3,417.67 1,698.48
13 0.00 0.00 5.51 46.01 3,605.19 3,553.68 1,666.10
14 0.00 0.00 5.51 48.11 3,753.88 3,700.27 1,636.63
15 0.00 0.00 0.00 50.35 3,913.87 3,863.52 1,612.11

Scenario XII NPV (Flexible BIW) 28,461.43
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Figure E-12: E[NPV] for Scenario XII, Flexible BIW Design


