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ABSTRACT

Landslides are natural phenomena which are difficult to predict because their initiation
depends on many factors and on the interaction between these factors. The annual
number of causalities caused by landslides is in the thousands, and infrastructural
damage is in the billions of dollars. To satisfy the increasingly urgent societal demand for
protection against landslides, it is necessary to systematically assess and manage
landslide hazard and risk. This can be done using principles of decision making under
uncertainty.

We develop an advanced combined hydrologic - stability model that is better capable of
assessing landslide hazards than current models used in landslide analyses. This model
allows one to evaluate landslide hazards deterministically. We use the model to study
landslide failure mechanisms, and classify these according to the manner in which a
slope gets saturated during rain. We showed that slopes with great depths to bedrock
and shallow depths to the water table, tend to fail by saturation from below, resulting in
deep seated landslides, and slopes with deep lying water tables tend to fail by saturation
from above, resulting in shallow landslides.

Landslide hazards include, by definition, uncertainties which can be expressed
probabilistically. Uncertainties arise from parameters and from models. We develop
efficient techniques to formally incorporate parameter uncertainties into the combined
hydrologic - stability model, and hence into the hazard assessment procedure. We then
show that landslide hazards are significantly influenced by the joint probability
distribution of the soil strength parameters and the strength submodel(s) used in the
stability models, and by the soil characteristic curve submodel(s) used in the hydrologic
models.

This study leads to a better understanding of landslide mechanisms and to advanced
models that assess landslide hazards more accurately than current models. The results
of parameter uncertainty investigations show which parameters are most important in
landslide analyses, and hence where it is worthwhile to obtain more information. The
results of model uncertainty investigations show which models are most important in
landslide analyses, and hence where further research needs to be undertaken.

Thesis Supervisor: Herbert Einstein
Title: Professor of Civil and Environmental Engineering

Thesis Supervisor: Daniele Veneziano
Title: Professor of Civil and Environmental Engineering
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CHAPTER 1

INTRODUCTION

Landslides are natural phenomena which are difficult to predict because their initiation

depends on many factors. The complexity of the phenomena is increased given that

these factors and the interaction between them are uncertain. The consequences of

landslides are, unfortunately, quite obvious. These consequences can be localized,
such as the La Conchita, California event on January 12, 2005, or widespread as they

occur nearly regularly during the rainy season in California or associated with hurricanes

such as Hurricane Mitch in Honduras and Nicaragua in May - October 1998. Given these

detrimental consequences, and to satisfy the increasingly urgent societal demand for

protection against landslides, it is necessary to systematically assess and manage

landslide hazard and risk. Landslide hazards and risks can be systematically assessed

using the principle of decision making under uncertainty. This has been discussed in

Einstein (1988, 1997).

Figure 1.1 is a graphical representation of decision making under uncertainty as

proposed by Raiffa and Schlaiffer (1964) and Stael v. Holstein (1974). This process is

actually also the standard decision making process used in engineering in which one

determines parameters, includes them in models and makes decisions based on the

model results. The updating cycle (Figure 1.1) can, amongst other things, represent the

observational method in geotechnical engineering (Terzaghi, 1961; Peck, 1969; Einstein,
1988).
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Figure 1.1. The Decision Analysis Cycle

This study attempts to evaluate landslide hazards (as opposed to risks which would

require assessment of consequences), and is therefore mainly concerned with the first

two phases of the decision making process. The first is the deterministic (model) phase,

and the second is the probabilistic (model) phase.
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1.1. DETERMINISTIC (MODEL) PHASE

In the deterministic phase, one selects initial variables, and creates deterministic

models. Models used in landslide analyses include models for hydrologic analyses, and

models for stability analyses.

Hydrologic models range in complexity, from simple one-dimensional infiltration models

e.g. Green and Ampt (1911); Lumb (1975), to pore pressure diffusion models e.g. Reid

et al. (1998), Ng et al. (1998); Iverson (2000) to one - dimensional e.g. Philip (1969);

Bras and Protopapas (1990), two - dimensional e.g. Freeze (1971) and three-

dimensional finite difference e.g. Schwartz (1992) and finite element models e.g.

CHASM, Wilkinson et al. (2000); HYSWASOR, Dirksen et al. (1992); SEEP/W, Geo-

Slope International Ltd. (1998). On a catchment basin scale, several physically based

water balance models have been developed e.g. Okimura and Ichikawa (1985);

Montgomery and Dietrich (1994); Burton and Bathurst (1994); Wu and Siddle (1995);

Wilson and Wieczorek (1995); TRIGRS, Baum et al. (2002). Detailed hydrologic models

that consider what happens once the water penetrates into the ground are for instance

those by Campbell (1975), for rising water table and those for advancement of a

saturation front from the surface of the slope e.g. Lumb (1975); Ho and Fredlund (1982);

Brand et al. (1984); Pradel and Raad (1995); Fourie (1996); Lim et al. (1996); Ng at al.

(1998); Rahardjo et al. (2001). Recent studies have considered the effects of infiltration

on partial saturation of soils, e.g. Cho et al. (2002); Liaug et al. (2003); Rezaur et al.

(2003); Chen et al. (2004).

Stability models combine strength model(s) with geometric and equilibrium

representations.

Stability models are largely based on the Limit Equilibrium Method which is well

established and extensively used in geotechnical engineering. Limit Equilibrium models

range in complexity from one dimensional e.g. Infinite Slope Model (Skempton and

DeLory, 1957), to two dimensional e.g. Bishop's Simplified (Bishop, 1959), and Rigorous

(Bishop, 1960), Janbu's Simplified (Janbu, 1959), and Morgenstern and Price (1962),
and three dimensional (Azzouz and Baligh, 1997) models. More advanced, finite
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element models include two - e.g. Wilson and Fredlund (1996), and three - dimensional

e.g. SLOPE/W (Geo-Slope International Ltd., 1998) models.

Strength models include those for saturated soil and unsaturated soil. The strength of

saturated soils is well understood, and strength models based on the effective stress

principle (Terzaghi, 1936) exist, e.g. Coulomb's Frictional Model. The strength of

unsaturated soils is, however, not well understood, and models that attempt to describe

unsaturated strength include the Independent State Variable Model (Fredlund et al.,

1978) and models based on the extended effective stress principle (Bishop, 1959). The

vast majority of stability models that have incorporated unsaturated strength, e.g.

Fredlund and Krahn (1977), Rahardjo et al., (1995) have used the Independent State

Variable Model (Fredlund et al., 1978).

Until recently, few of the aforementioned models (hydrologic and stability) have gained

widespread use in landslide analyses. The Green and Ampt (1911) hydrologic model

has been widely used in landslide analyses because of its simplicity, and the ability to

relate the rate of infiltration to measurable soil properties such as its porosity, hydraulic

conductivity, and the moisture content. The Infinite Slope (Skempton & DeLory, 1957)

stability model has been the most widely used stability model because of its simplicity,
and because the assumption it is based on, namely that the depth to length ratio in a

slope is small, can be justified for the majority of landslides, particularly shallow

landslides.

The problem with these models, both hydrologic and stability, is that they are too

simplistic to accurately represent reality. For example, the Green and Ampt (1911)

Model can only be used to predict moisture content advancement rather than pore

pressure distributions which are what is needed in landslide analyses. The pressures,
therefore, have to be inferred from the moisture distribution by making some simplifying

yet serious assumptions. Similarly, the Infinite Slope Model, because of the assumption

of one dimensionality, make it too simple to be used in accurate landslide analyses. This

is because one cannot adequately account for the effects of changes in the initial

(negative) pressures on stability with a one dimensional model.

The problems with these models have been recently recognized by researchers in the

field, and more advanced models, both hydrologic and stability have been developed
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and used in landslide analyses. Notably, Geo-Slope International Ltd. (1998) developed

the SEEP/W and SLOPE/W finite element models, and since their development, these

have been used extensively in landslide analyses e.g. Rahardjo et al. (1998), Ng,
(2000), Lacasse et al., (2003).

Although these models (SEEP/W and SLOPE/W) are more rigorous than other models,
there are several reasons for which better models still need to be developed, which

include:

(a) Assumptions and Simplifications:

The models do not allow one to alter and question some of the fundamental

underlying assumptions. These assumptions are those made in the models

themselves and/or in models (or submodels) used within these models, e.g. soil

characteristic curves in hydrologic models, and soil strength models in stability

models. In particular, the unsaturated strength model used in the SLOPE/W model is

the Independent State Variable model developed by Fredlund et al. (1978). While

this model has been extensively used since its development there has been a shift,
in recent years, to the original effective stress model proposed by Bishop (1959), e.g.

Geiser (2000).

(b) Landside Mechanisms:

Landslide mechanisms remain poorly understood. This is partly due to the
complexity of the phenomena, and the many factors that affect it, and partly due to

the widespread use of simple models to represent them. There exists an

interrelationship between understanding the mechanisms of landslides and

developing the models required to do so. In order to better understand the

mechanisms, models that are better suited for landslide analyses need to be

developed. Although the SEEP/W and SLOPE/W are more advanced models than

the majority of other models, they do not allow one to perform a comprehensive

landslide mechanism review. Also, only very few studies have used these models to
study the mechanisms of landslides, e.g. Liaung et al. (2003).
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(c) Probabilistic Analyses:

The SEEP/W and SLOPE/W models do not allow one to formally incorporate

uncertainties in parameters for probabilistic analyses. This is discussed further in the

next section.

Because of what has just been stated, there remains a need to develop advanced

hydrologic and stability models (and hence combined models) to more accurately assess

landslide hazards, and discuss the underlying assumptions of these assessments. There

also is a need to gain a better understanding of the mechanisms of landslides, and these

two needs are interrelated as mentioned in (b) above. These needs are addressed in the

first part of this study in which an advanced combined model to assess hazards

deterministically is developed. The advanced model is then used to perform a

comprehensive study on the mechanisms of landslides. Some of the proposed

mechanisms have been previously suggested in the literature, and some are new. The

latter can account for some of the landslides observed in the field, where the

mechanisms of failure were so far not well understood.

1.2. PROBABILISTIC (MODEL) PHASE

In the probabilistic phase, one expresses probabilities and creates probabilistic models.

Probabilistic models in hydrologic analyses include, for example those by Protopapas

and Bras (1998), Dillah (1998), Wu and Siddle (2000). Probabilistic models for stability

analyses include, for example those by Ang and Tang (1974), Low and Tang (1997), Li

and Lumb (1978), Chowdhury (1980), Hassan and Wolff (2000), Malkawy et al. (2001).

While, as stated above, several probabilistic models have been created in each of the

fields of hydrologic and stability modeling, few probabilistic models exist for combined

modeling e.g. Wu et al. (2000), Hassan (2001). As a result, only few models have been

developed to assess landslide hazards probabilistically, e.g. Hassan (2001), Wu (2003).

Furthermore, nearly all these studies consider parameter uncertainty (their inherent

spatial and temporal, and from their measurements) as the only source of uncertainty.

Only a very few studies have looked at model uncertainty, although it is an issue that

has been recognized in recent studies e.g. Einstein and Karam (2001); Lacasse et al.

(2003).

34



There is, therefore, a need to create a probabilistic model in which one systematically

incorporates uncertainties in both hydrologic and stability analyses, and hence in

combined analyses. Such a model will enable one to probabilistically assess landslide

hazards. This is addressed in the second part of this study. Efficient and innovative

techniques are developed to perform reliability based and probabilistic, using the Monte

Carlo method, landslide hazards assessments, while maintaining the same deterministic

model developed in the first part. The probabilistic model is then used to assess the

effects of model uncertainty on landslide hazards.

In view of what has been stated above, this study is organized as follows:

In Chapter 2, deterministic models for hydrologic and stability analyses are created.

When combined, these models allow one to estimate landslide hazards deterministically.

Chapter 3 makes use of the combined model developed in Chapter 2 to perform a

comprehensive study on landslide mechanisms. Landslides are classified depending on

the manner in which a slope gets saturated during a rainfall event, namely by: saturation

from below by a rising water table, or saturation from above by infiltrating rainwater. The

mechanisms by which landslides occur by saturation from above are then studied in

detail since these are not well understood. In Chapter 4, the sources of uncertainties that

enter landslide analyses are described. Sensitivity analyses are performed to evaluate

the relative importance of various hydrologic and stability parameters. Parameters that

significantly affect the results are retained for probabilistic analyses, whereas those with

little effect are dropped. In Chapter 5, uncertainties in parameters described by their

probability distributions are formally incorporated into the hazards assessment, thereby

creating probabilistic models. These probabilistic models allow one to assess landslide

hazards probabilistically. Probabilistic sensitivity analyses are then performed, and these

allow one to determine the relative significance of uncertainties in parameters on

landslide hazards. Chapter 6 deals with model uncertainty, since it is the least studied

source of uncertainty and most difficult to capture. The effects of model uncertainty on

landslide hazards, both deterministic and probabilistic are assessed. This allows one to

evaluate the relative importance of uncertainties from the models used in landslide

analyses. Chapter 7 summarizes the results of the study, and provides

recommendations for future work.
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CHAPTER 2

DETERMINISTIC LANDSLIDE HAZARDS ASSESSMENT

In this chapter, landslide hazards are assessed within a deterministic framework. This

represents the first phase of the decision analysis cycle.

Probabilistic
(Model) Phase

" Express Probabilities
and Create Probabilistic
Models

* Sensitivity Analyses
" Eliminate Variables

(Models)

Information
Updating (Model) Phase

Risk Assessment

Risk Management

Decision

Figure 2.1. The Decision Analysis Cycle
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The chapter is divided into 3 parts as follows:

In Part 2-1, the hydrologic response of a soil to a rainfall event is described. The variably

saturated flow model is derived, and a finite difference solution to the pressure based

form of the model is presented. An infiltration model is thus developed that is capable of

predicting the variation of pore pressures with depth below the ground surface and time.

In Part 2-2, the stability of a slope is assessed using the Janbu Generalized Procedure

of Slices (1973). Techniques are developed whereby the critical failure surface in a slope

can be located.

In Part 2-3, a combined hydrology-stability model is developed by combining the

infiltration model developed in Part 1 with the stability model developed in Part 2. The

combined model allows one to determine the Factor of Safety in a slope as a function of

time. By doing so, landslide hazards are assessed in a deterministic framework.
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PART 2-1:

HYDROLOGY MODEL

The hydrologic response of a slope to rainfall is very complex, and depends on a great

number of factors, both on local and catchment basin scales. Figure 2.2 illustrates some

of these factors.

Evapotranspiration Surface Conditions
- Vegetation

Runoff

Rainfall
- Intensity Infiltration
- Duration

Soil COVE
Seepage - Conducti
(Infiltration) - Characte
into rock Curves

Low K .Exfiltration
Heterogefieityfrmrk

Water Table Bedrock
- FDwegpm.- Fracture Network
- Flow Regime .- Conductivity

Inclination

Groundwater
Recharge

r
vity
ristic

Figure 2.2. Some Factors Affecting Hydrologic Response of Slope to Rain

As it rains onto a slope some of the incident rainwater will infiltrate into the slope and

some will run off the surface. This distribution of rainwater will depend on the rainfall

characteristics and the hydraulic properties of the soil. Since the soil near the ground

surface is usually unsaturated, the process of infiltration involves flow processes through

the unsaturated zone. Unsaturated soils exhibit great spatial and temporal variations in
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properties with changes in moisture content, rendering the infiltration process very

complex. Various models have been developed to estimate the rate of infiltration, which

range from simple one-dimensional (Green and Ampt, 1911), to two and three

dimensional finite difference (Philips, 1972), and finite elements models (Freeze, 1981).

The vast majority of these models are moisture content based, in that they estimate the

variation of subsurface moisture with time. This is because they have been, for the most

part, developed for use in agricultural studies. Landslide analyses, and stability models

in particular, require the determination of pressure variations with time. Though these

can be somewhat inferred from the soil characteristic curves if the soil remains

unsaturated, they have to be assumed if the soil gets saturated. For this reason, a more

adequate model is developed in this part of the chapter. Unsaturated soil properties, and

soil characteristic curves are first introduced. The governing equation for variably

saturated flow is derived, and the boundary conditions required for its solution are

described. A one dimensional finite difference scheme is developed to solve the

pressure based form of the one dimensional water flow equation. A one dimensional

analysis is sufficiently accurate since infiltration into unsaturated soil is predominantly

vertical (Philips, 1965; Romano et al., 1998). The numerical scheme is then illustrated

through examples that will illustrate concepts that are important in landslide analyses.

2-1.1. UNSATURATED SOIL PROPERTIES

In unsaturated soil, both the moisture content, 0 , and the hydraulic conductivity K, are

functions of the pressure head, y. The 0 - y and K - y curves are known as the soil

characteristic curves. Various models have been developed to estimate the

characteristic curves of a soil e.g. Gardner (1956), Brooks and Corey (1966), Bresler et

al. (1978), van Genuchten (1980). In this study, the model proposed by van Genuchten

(1980) is used. The van Genuchten (1980) model is given by:

Se =1 p 0 [2.1]

1
Se = rn < 0 [2.2]

(1+ ([

K =K 5 p O2 [2.3]

39



K = KsSe 0.5 [ _ ( __ 1/m 
2.

where:

KS is the saturated conductivity of the soil

6 and n are empirical coefficients

m =1 1
n

Se = r
05 -Or

OS is the saturated moisture content

Or is the residual moisture content, defined as the moisture content at which a

decrease in the pressure head does not produce a significant change in

moisture content (see Figure 2.4).

Consider the soil with the parameters shown in Table 2.1.

Saturated Os Or n 6 m=1 1
Conductivity, 3 3 n

Ks (m/s)
2.31E-05 0.47 0.11 1.24 0.011 0.193548

Table 2.1. Soil Hydraulic Parameters

Figure 2.3 shows the moisture content characteristic curve, also known as the retention

curve according to the van Genuchten (1980) model for the soil with parameters in Table

2.1.
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Figure 2.4 illustrate, schematically, the transition a soil goes through as it is wetted/dried,

and defines the residual moisture content,Or, and the air entry pressure,

(ua -uw)entry -

~~~~1

Air Entry Pressure,
(ua-Uwlentry

Residual Moisture Content, WATER -
0,

SOIL -
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Figure 2.4. Definition of Residual Moisture Content and Air Entry Pressure
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The residual moisture content is defined as the moisture content in the soil when it is

dry.

The air entry pressure, (ua -uw )entry, is defined as the pressure below which changes

in pressure do not produce significant changes in moisture content (see Figure 2.4).

While defined as just stated, the air entry pressure is not a physically measurable

quantity. While one can measure the air pressure ua, and the water pressure uw,

measuring the air entry pressure (ua -uw)entry is not possible. Because of this,

various methods have been developed to determine the air entry pressure. Figure 2.4

illustrates schematically one such method, which makes use of the slope of the

characteristic curve.

Figure 2.5 shows the hydraulic conductivity characteristic curve for the soil with

parameters in Table 2.1, using the van Genuchten (1980) model.

0
0
2

3.50E-05

3.OOE-05

2.50E-05

2.OOE-05

1.50E-05

1.OOE-05

5.OOE-06

O.OOE+00

1.00 E-05 1.OOE-04 1.00E-03 1.00E-02 1.OOE-01 1.OOE+00 1.OOE+01 1.00E+02 1.00E+03 1.OOE+04 1.OOE+05

Absolute Pressure (kN/m2
)

Figure 2.5. Hydraulic Conductivity Function (van Genuchten (1980) model)
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In unsaturated soil, both the moisture content and hydraulic conductivity are functional

relationships of pressure, as shown in Figures 2.3 and 2.5. Note that the characteristic

curves in Figures 2.3 and 2.5 are shown in terms of absolute pressure. These

relationships are, however, strictly only applicable when the soil is unsaturated, and

pressures are negative. When the soil is saturated, the moisture content is the saturated

moisture content of the soil, and the conductivity is the saturated conductivity.

Figures 2.3 and 2.5 show idealized soil characteristic curves that are typically much

more complex. Furthermore, experimental studies have shown that these relationships

are hysteretic, and follow different wetting and drying paths. This behavior, however, is

not considered in this study. The study uses the van Genuchten (1980) model since it

has been shown, through numerous laboratory studies, that the model gives good

approximate curves (e.g. Tinjum et. 1997; Wang and Benson, 2004; etc).

2-1.2. GOVERNING EQUATION FOR WATER FLOW IN VARIABLY SATURATED

MEDIA

Under the assumptions of a homogenous and isotropic soil, and one-dimensional

(vertical) single-phase isothermal flow (see Figure 2.6), the conservation of mass of

water equation is:

SsSa() + q 0  [2.5]
at at az0

where:

SS is the specific storage coefficient

Sa is the degree of saturation

o is the volumetric water content

y is the pressure head

t is time

q is the soil moisture flux (water flux through the soil)

z is the vertical coordinate with origin at the soil surface; taken to be positive

downwards (see Figure 1)
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The SsSa(W(j) term
at

and of the soil matrix.

in Equation [2.5] accounts for the compressibility of the water

ao
at

dz

q 
z

Figure 2.6. Schematic of Conservation of Water Mass Conservation and Sign Convention

Darcy's Law (Darcy, 1856) in one-dimension (see Figure 2.6) is expressed as:

ah
q = K(g/) a

az

where:

K(y) is the hydraulic conductivity characteristic function of the soil

h is the hydraulic head

[2.6]

Note that the flux in Equation [2.6] is positive because of the sign convention used where

positive distances are downwards from the soil surface (see Figure 2.6).
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Figure 2.7. Darcy's Law in the Vertical Direction

The hydraulic head, h can be expressed as the sum of the pressure head Y and the

gravitational head, z assuming all other components of head such as kinetic and osmotic

head are negligible (see Figure 2.7). Hence,

[2.7]

Differentiating [2.7] with respect to z yields:

ah aw

az az

Substituting [2.8] into Darcy's Law:

q = K a) +1
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Substituting Equation [2.9] into the conservation of mass of water Equation in (2] gives:

Sssa(M)+ ao)ay = a K(Y) li +1 [2.10]
aw a t az oz

dO
Defining C(y) = , the slope of the 0(y) soil moisture retention curve as the specific

moisture capacity, Equation [2.10] can be rewritten as:

(SsSa(y)+C(y)) =k' K(y)a +1 [2.11]
at az L Kaz

Equation [2.11] is the governing equation for water flow in variably saturated soils and is

commonly referred to as the compressible pressure-head based form of Richards

Equation (Richards, 1931).

(A) UNSATURATED FLOW

In unsaturated soils, changes in moisture content 0, are accompanied by changes in the

pressure head y, through the 0(y) relationship displayed on the soil characteristic

curve (see Section 2-2.1). The slope of the 0(y) characteristic curve, C(y) is non zero

(see Figure 2.3 for example) and represents the unsaturated storage property of a soil.

The hydraulic conductivity of unsaturated soils is also a functional relationship of

moisture content and can be related to the pressure head through the K(y) soil

characteristic curve (see Figure 2.5 for example). The compressibility of the water,
expressed in the specific storage term, is insignificant in relation to the specific moisture

capacity and since Sa (y) <1, Equation [2.11] is frequently approximated by:

C) =- K(y) -±+1 [2.12]
at az L K azj
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(B) SATURATED FLOW

In saturated soils, the moisture content 0 is equal to the porosity of the soil, which is a

constant, so that the specific moisture capacity C(y) = 0. The hydraulic conductivity of

the soil is independent of moisture content (hence pressure head), and is equal to the

saturated conductivity of the soil. For generality, the saturated conductivity is assumed to

be a function of the depth, z below the ground surface, so that in saturated conditions,

K(y) = K,(z). Equation [2.11] thus becomes:

S, =' - -I[K, (z)( + 1) [2.13]
at az az )

The solution to Equation [2.11], and hence [2.12] and [2.13] requires the specification of

a set of boundary and initial conditions, as well as the soil characteristic curves and the

saturated conductivity function K, (z) . Initial conditions usually take the form of an initial

soil moisture content profile or equivalently, an initial pressure head distribution. The

boundary conditions relevant to the study of rainwater infiltration are discussed in the

following section.

2-1.3. BOUNDARY CONDITIONS

2-1.3.1. TOP BOUNDARY CONDITIONS

The boundary conditions at the surface of the soil can be of the following different types:

(A) KNOWN/SPECIFIED FLUX

The first type of boundary condition is where the flux at the soil surface is known and

defined by the climatic and soil conditions. The climatic conditions impose a potential

flux given as:
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q * (0, t)= p + r -(e + i) + K

where:

q * (Ot) is the potential flux at the surface at a time, t

e is the evaporation flux

p is the precipitation flux

i is the interception flux, which is the flux intercepted from the runoff

from higher altitudes that enters the ground at the surface (see

Figure 2.8)

r is the irrigation flux

K is a parameter introduced to account for all other fluxes

Following the sign convention in Figure 2.6, fluxes into the ground are positive. The

different fluxes in Equation [2.14] are shown schematically in Figure 2.8.

Precipitation Evapotranspiration

Runoff 4 1

Interception

Irrigation

Figure 2.8. Schematic of Various Fluxes at Ground Surface

The potential flux in Equation [2.14] is the maximum possible flux that can enter the soil

at the surface. This however, is not necessarily the actual flux that enters the soil. This is

because the actual flux infiltrating into the soil is limited by the ability of the soil to
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transmit water. The upper bound to the rate soil can transmit water is known as the

infiltration capacity or potential infiltration rate of the soil (Horton, 1933) and is given by:

q(O, t) = K( ±) + 1 [2.15]
L az I z=O

A schematic showing the typical variation of potential infiltration with time, and hence

increasing moisture content is shown in Figure 2.9.

0

0

0.

Time

Figure 2.9. Schematic of Potential Infiltration Rate versus Time

Therefore, at any time t, the actual infiltration flux into the soil is given by the smaller of

the potential flux in [2.14] and the infiltration capacity of the soil in [2.15]. It is the

minimum because of the sign convention used in this study, where fluxes into the soil

are taken to be positive. So, the actual infiltration flux is given by:

qt(t) = min[q(O, t), q * (0, t)] [2.16]

where:

qt(t) is the actual flux at the soil surface
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During evaporation the fluxes are out of the soil, both q * (0, t) and q(O, t) are negative

(out of the soil), and a minimum pressure head is usually specified at the surface

corresponding to dry air conditions:

yt = ymin and Ot = O(Ymin) =r0 r [2.17]

where:

Or is the residual soil moisture content as defined in Section 2-2.1.

The actual flux is now given by:

qt (t) = max[q(O, t), q * (0, t)] [2.18]

If q * (0, t) and q(0, t) have opposite signs, then:

qt (t) = 0 [2.19]

To illustrate the behavior of the fluxes at the soil surface, consider a time varying

imposed flux as shown in Figure 2.10.
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q*(oT) Imposed Flux at z = 0

T1 ~2 T 3  T4 ~5 6 7 T 8  Tq T1o Time, T

2.10a. Imposed Flux at Soil Surface

q(0,T) Actual Flux at z = 0

Ks -- - - - -- --------------- -- - ------ -----------

T1 12 T T4  T5  T6 17 T8  T T1 0  Time, T

2.10b. Actual Flux at Soil Surface

O(c,T) Soil Moisture at z = E

Os ------ ------------------------------------------------

r ------------------------------ -- --------------------------------

T1 T2 T3  T4  T5  T6  T7  T8  T9 T10  Time, T

2.10c. Moisture Content at Distance g from Surface

Figure 2.10. Modeling a Known Flux Boundary Condition at the Soil Surface
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Explanation of Figure 2.10:

0 ! t T 2

For all times 0 t T2 the imposed flux at the soil surface q*(0,t)is positive, and

infiltration into the soil occurs. Initially, the soil is assumed to have low moisture content

as shown in Figure 2.10c. Therefore, the infiltration capacity of the soil is high, and is

greater than the imposed flux. The actual flux as given in Equation [2.18] is equal to the

imposed flux as shown in Figure 2.10b. All the water infiltrates into the soil increasing the

moisture content. Figure 2.10c shows this at a small distance F below the ground

surface. With increasing moisture content, the infiltration capacity of the soil decreases

until it becomes equal to the imposed flux at time T, . For all times T1  t T2 the actual

flux is equal to the infiltration capacity of the soil (see Figure 2.10b). The moisture

content at , continues to increase. All excess water either ponds on the surface or is

observed as surface runoff.

T 2  t T5

For times T2 5 t T5 , the imposed flux q * (0, t) is negative and evaporation occurs.

The infiltration (negative now) or evaporative capacity of the soil is high since the

moisture content is high at times slightly greater than T2 . The actual infiltration

(evaporation) rate is therefore equal to the imposed flux from T2 to T3 because the

infiltration (evaporative) capacity is greater than the imposed flux. Water evaporates

from the soil as shown in Figure 2.10c, and as this takes place the infiltration

(evaporative) capacity decreases. At a time T3 the infiltration (evaporative) capacity

becomes equal to the imposed flux, and for T3  t T4 the actual flux is equal to the

infiltration (evaporative) capacity of the soil. The moisture content continues to decrease

as shown in Figure 2.10c. At T4 , the infiltration (evaporative) capacity of the soil

becomes positive, and since the imposed flux is negative, the actual flux is zero since no

upwards flow is possible. The moisture content at E decreases until the residual

moisture content is reached at time T5 . In essence therefore, what happens in times

between T2  t T5 is similar to what happens for 0 < t T2 expect that fluxes are

negative and evaporative.
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T5  t T6

For T5  t T6 , the imposed flux is positive and since the infiltration capacity of the soil

is very large because of its low moisture content, the actual flux is equal to the imposed

flux. The moisture content at , increases (see Figure 2.1Oc).

T6 t T 7

For T6  t T7 , the imposed flux is negative and the actual flux is equal to the imposed

flux. The moisture content at c decreases (see Figure 2.1 Oc).

T8  t T10

For T8  t T10 , the imposed flux is positive and because of the large infiltration

capacity of the soil caused by the low moisture content, the actual flux is equal to the

imposed flux. The moisture content at E increases. At T8 , the infiltration capacity

becomes equal to the imposed flux and for T8  t T9 the actual flux is equal to the

infiltration capacity. The moisture content continues to increase until at T9 saturation is

reached (see Figure 2.10c). From this time onwards, the actual flux can only be equal to

the saturated hydraulic conductivity (see Figure 2.10b).

(B) KNOWNISPECIFIED PRESSURE HEAD

Another type of boundary condition at the top of a soil profile is where the pressure head

(or equivalently, the soil moisture) is specified. In this case:

W t = known or 0 t = known [2.20]

where:

Wt is the pressure head at the soil surface

ot is the moisture content at the soil surface
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This condition occurs when the soil profile gets saturated and infiltration becomes

governed by pressure head at the surface due to the ponding of surface water.

2-1.3.2. BOTTOM BOUNDARY CONDITIONS

The boundary conditions at the bottom of the soil profile relevant to rainwater infiltration

include:

(A) CONSTANT OR TIME VARYING GROUNDWATER TABLE

One type of bottom boundary conditions is where the depth to the water table from the

ground surface zw is known. This is a situation of interest, for example, in the presence

of a shallow water table of known depth. Consider Figure 2.11 for example, where the

depth to the water table is shallow and known. We define a modeling depth zm as the

depth of the soil layer, from the ground surface, that is to be modeled using an infiltration

model. In the case of a shallow water table, the modeling depth zm is the depth to the

water table zw , which is known (see Figure 2.11). Since, the moisture content of the

soil at the water table is equal to the saturated moisture content and by definition, the

pressure head is equal to zero, the bottom boundary condition can be specified as:

Yb = Y(z = zw) = 0 or Ob =O(z =zw)= Os [2.21]

where:

Wb is the pressure head at the bottom of the soil profile to be modeled

0 b is the moisture content at bottom of the soil profile to be modeled
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Pressure Head, y

Negative 0 Positive

Moisture Content, 0

0

z zm

......................................................

Figure 2.11. Schematic of Bottom Boundary Condition where the Groundwater Level is Shallow
and Known

(B) SPECIFIED PRESSURE HEAD

Another type of bottom boundary condition is where the pressure head at the bottom of

the soil profile is specified. There is a subtle but important difference between this

boundary condition and the one described in (a) above. In (a), the groundwater table
depth is known and hence the pressure head at this depth is known. In (b), the pressure
head is not known, but assumed and specified. This situation may occur, for example, in
the presence of a deep water table. Consider Figure 2.12 for example, where the water
table is deep.
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Pressure Head, y

Negative 0 Positive

Moisture Content, 0
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-~ 4bz
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Figure 2.12. Schematic of Bottom Boundary Condition where the Groundwater Level is Deep and
Bottom Pressure Head is Specified

Typical moisture content and pressure profiles are shown in Figure 2.12. Figure 2.12

shows that the suction is almost constant up to a certain depth below the ground

surface. This is because the maximum suction attainable in the soil is limited by the pore

size distribution, grain size distributions, as well as other factors. The modeling depth

Zm is therefore less than the water table depth z,. The bottom boundary condition can

be specified as:

Yb y(z = zm) = assumed / specified, or

b= O(z = zm) = assumed/ specified [2.21]

where:

Wb is the pressure head at the bottom of the soil

Ob is the moisture content at the bottom of the soil
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2-1.4. NUMERICAL SOLUTION OF FLOW EQUATION

Equation [2.11] is a nonlinear partial differential equation for which analytical solutions

are limited to few special cases. Numerical methods are, therefore, used to obtain

solutions. Finite difference and finite element methods have been used to solve Equation

[2.11]. Finite element methods are advantageous for irregular geometries in two and

three-dimensional flow domains. In one dimension, finite difference methods are

advantageous in that they are relatively easy to visualize and to implement in numerical

routines. One dimensional analyses are also sufficiently accurate since infiltration into

unsaturated soil is predominantly vertical (Philips, 1965; Romano et al., 1998).

Moreover, detailed simulations performed by van Genuchten (1980) showed that finite

difference schemes generate more stable solutions than finite element schemes when a

steep moisture front is present because of the almost instant decrease in moisture

content that are typically associated with steep moisture fronts.

In this study, a finite difference numerical scheme is developed to solve for the pressure

based form of the variably saturated flow equation (see Equation [2.11]). The scheme

simultaneously solves for flow in saturated and unsaturated soil, and its solution is

implemented in a spreadsheet.

Consider a one dimensional vertical unsaturated flow domain, where the governing

equation of flow is given by the one dimensional form of Richards' Equation:

[K( + 1] [2.22]
at C(i)+SsSa(\)) [z z

where:

y = y(z, t) = h - z is the pressure head

dO
C(Y) = -- is the specific moisture capacity

dy

t is the time

h = h(z, t) is the hydraulic head

z is the vertical coordinate, taken to be positive downwards
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0(y) is the volumetric water content

K(y) is the hydraulic conductivity function

The finite difference grid for the implicit scheme used in this study is shown in Figure

2.13. The time index is denoted by i and the space index by j.
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Figure 2.13. Finite Difference Grid, Implicit form for Numerical Solution
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The partial differential terms (except for the spatial ay/az term) in Equation [2.22] are

expanded about the point (i+1, j) to give:

i+1 _

ay - j Yj[2.23)
at At

[K(y)(" + 1) = K y j-+1 +1 -K Y/+ +1
az +j Azj1/2 L - (1/2 K& j-1/ 2 ++12-z j+ 1/ 2

[2.24]

The spatial derivatives are approximated as:

+1 +1 i+1
- YJ- YJ[2.25]

az j-/ Az--,

(a i+1 Y +1 _i +1 [2.26]

az )j+1/2 Az

Since the partial derivatives of Equation [2.26 are expanded about the point (i + 1,j), the

C(y) and Sa (V) terms should also be evaluated at the same point. This however, would

introduce too many unknowns and the C(y) and Sa (Vf) terms are evaluated at the

previous time step i.e. at point (i,j). For similar reasons, the K(y) terms are also

evaluated at the previous time step.

A geometric mean approximation is used to evaluate the K(y) terms between spatial

nodes (Hoverkamp et al., 1977; Belmans et al., 1983) as:

KKy =[2.27]
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Where the hydraulic conductivities in [2.27] are obtained from the soil characteristic

curve, K(y).

Substituting Equations [2.23] through [2.27] into Equation [2.22] yields:

i+1 t

At'

1

C(i/<)+SsSa( //)

i+1 i+1

Azj-1 2 I+
i+1 i+

- K (Vf J 1/2 f Az

[2.28]

i+1 i+i i+tiRearranging Equation [2.28] to move the unknowns y+i, Y 1 and y _+ to the left

hand side of the equation gives:

iA+ B +1 i+1AjWj+i + B JW 1 ±Diyji = E [2.29]

AtiK(V/Xi 2 )

(C(< )SsSa (Vr ))Aza 2 Az
[2.30]

AtiK(Vw/
2)

(C(/) + SSa (V/ ))Azj-1/ 2 Az _1
+

At K V/)z+1/ 2

C( j)+ S"Say w) z _vAz

[2.32]At K(Vi - 1/2

(C(Vfi)+S SS (V))z-2 Azy

AtIK(y/i/
2 )

(C(V/)+ SsSa (y, ))Azj-y1 2

At IK(Vfj +1/2)

(C(Vfi ) + S' S. (V/ j) z j
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where:

B =1+ [2.31]

Ej = V/ + [2.33]
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For this one dimensional study, where the soil profile is of finite depth, the depth is

divided into n segments creating n + 1 nodes as shown in Figure 2.14.

Figure 2.14. Soil Profile Discretization

Equation [2.29] is written at the interior nodes, i.e. j = 1 through j = n -1 (see Figure

2.14). At the top j = 1 and bottom j = n nodes, boundary conditions are introduced to

give rise to two additional equations:
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[2.34]

[2.35]

A1y2+1 + B y1+1 = E1

Bnn ++Dn? 1=En

Equation [2.34] is the boundary condition at the top of the soil profile. Note that this

boundary condition cannot be specified at exactly the soil surface where z =0, and

instead has to be specified at an incremental distance Az from the surface, and hence

at j = 1.

Equations [2.29], [2.34] and [2.35] generate a linear system

unknowns. These equations are written in matrix form as:

B1

D2

0

A1

B 2

D3

0

A 2

B 3 A 3

0 0

0

B,

of n equations with n

i+1
Y1

i+1
Y2

i+1
Yn-1

i+1
'4'

or

Af (Yx,4)T+1 = e(YWQ) [2.36]

where:

is a column vector of pressure heads at n discrete nodes at time

K+1
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Af (Y W, ) is a tridiagonal n x n matrix, i.e. one whose structure has non-zero

entries on the leading, and two adjacent diagonals, and zero

entries elsewhere

e(W0 , ()is an n x 1 vector function

is a vector with the parameters that control the functions K(y)

and C(W) at each node of the soil profile

Since Af (WK ) is a tridiagonal matrix, a direct, fast and simple algorithm, such as the

Thomas Algorithm can be used to solve Equation [2.36] for the pressure head

distribution y(z,t). Details of this are provided in Appendix A. The soil moisture profile

O(z, t) is then determined from W(z, t) and the soil characteristic curve O(W) .
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2-1.4.1. NUMERICAL IMPLEMENTATION OF BOUNDARY CONDITIONS

2-1.4.1.1. TOP BOUNDARY CONDITION

(A) KNOWN/SPECIFIED FLUX

The equation for the boundary condition at the soil surface for the case of known flux is

derived by first computing qt using Equation [2.18] as the feasible flux. Then Equation

[2.36] with j = 1 takes the form:

1 1

C(XJ)+SsSa() Azl/ 2 -qt

i
3/2

i+1 i+1
i Y2

Az,

+1
At K W3/2) 

+1

+C( ) S) a (+ y ) )z /2Azi

F At

(C(1) + SsSa (14) Z 1/:

At K yi/2 +1

(C(Yi) + ssa i) zl/2Azi -

At(
qt - 'K(y31/ [2.38]

2 _ C(Y )+ SsSa (tYi) 1/2 _

At jK /2
A1 +

C(y )+ SsSa(Wy )4z1/2Az 1] [2.39]

[2.40]

[2.41]

B1 = 1-A 1

D, =0
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i+1
AIi -Wi

At1

or

+1 [2.37]

If we let:



E, =\J4 -r At'

(C(14)+ SsSa(yl)Zi/ 2

At' 
K(_ t _- C )+s Sa ) z3/22

Then Equation [2.38] can be rewritten as:

i+1 i+1=Ajy 2 ±Bjyj -~E, [2.43]

Equation [2.43] has exactly the form of Equation [2.29] and the numerical scheme in

Appendix A can be implemented.

(B) KNOWN/SPECIFIED PRESSURE HEAD

If we denote the specified pressure head at the surface by hsurface, the equation for the

boundary condition at the soil surface for the case of known pressure head is expressed

as:

i+1 i
Wi

At'

C(qi)J+JSsSa(J J)) Azi/ 2

K hsurface -Y+1
Y1/2 Azj

+11
-K 1+1 _ +1 +

K32 
Az 

±

[2.44]

At KC A) S a(y/ 2 )

(Cy)+ SsSa (yi~Zl/2Azj
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) [2.42]

If we let:

A1 + I [2.45]



B1 =1--A1 +
AtIK(yi

(C(Y1) + SsSa(XiJ )zl/ 2 Azl

D, =0

y'1 + .C(wi + (Y, 1) Zg21 )- K(4 12 -- + StI. K(2 )surface

)Sa (1 ) z 1/2 C(Wi)+ SSa(Wi) ZI/2Az1

[2.481

Then Equation [2.44] can be rewritten as:

1i+ i+1Alyj2 +Blyl -E, [2.49]

Now, Equation [2.49] has the form [2.29] and the numerical scheme in Appendix A can

be implemented.

A difficulty that may arise with numerical solutions to the flow problem is that during the

application of a specified flux at the soil surface, the top boundary condition may switch

from being head controlled to being flux controlled and vice versa. An appropriate

procedure for the selection of the top boundary condition may determine the success or

failure of a numerical scheme. Figure 2.15 shows the decision procedure for top

boundary condition selection.
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Is the top layer saturated?

Figure 2.15. Decision Procedure for Selection of Top Boundary Condition

where:

q* (0, t)

q(0, t)

qin (0, t)

is the potential flux at the surface at a time, t

is infiltration capacity of the soil at the surface

is the inflow at the surface and is computed as:

qin (0, t) is given by:

[2.50]

where:

qb (Az, t) is the flux at the bottom of the first soil compartment
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qt (0, t) is the actual flux at the top of the soil layer and

qt (0, t) = max[q(0, t), q * (0, t)]

The first criterion considers if the soil layer at the surface of the profile is saturated or

unsaturated at the beginning of every time step. For the first time step, this is determined

from the initial (in situ) moisture content profile.

If the soil layer is saturated at the start of the time step, then the second criterion

determines whether at the end of the time step the soil layer is still saturated or becomes

unsaturated.

If the soil at the surface remains saturated then the top boundary condition is in the form

of a specified pressure head yt =hP, where hP is the ponding depth at the soil

surface. If ponding is neglected, the specified top pressure head becomes Vyt = 0.

If the soil becomes unsaturated at the end of the time step then the top boundary

condition is in the form of a specified flux where the flux qt(O,t) is the larger of the

applied flux (rainfall intensity) q(0, t) and the potential infiltration rate q* (0, t).

q t(0, t) = max[q(0, t), q * (0, t)] [2.51]

If the soil layer at the surface is unsaturated at the beginning of a time step then the top

boundary condition is a specified flux which is again the larger of the applied flux (rainfall

intensity) q(0, t) and the potential infiltration rate q*(0, t).

qt (0, t) = max[q(0, t), q * (0, t)] [2.52]
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2-1.4.1.2. BOTTOM BOUNDARY CONDITION

(A) SPECIFIED GROUNDWATER LEVEL z,

When the groundwater level is at a known or specified depth, zw, the thickness of the

nth compartment of the unsaturated zone varies with time and increasing moisture

content because the increase in moisture content causes a rise in the water table level

(see Figure 2.16). The thickness of the nih compartment, and hence the water table

depth has to be computed at each time step. For equally spaced nodes, the n th

compartment thickness is expressed as:

Azn = zw - nAz [2.53]

The numerical scheme, however, requires that all nodes have constant thickness Az,

and hence the bottom boundary condition cannot be specified at the exact location of the

water table. This is overcome by taking the nih node to be at the center of the last

compartment, i.e. the node that lies just above the water table in the unsaturated zone

(see Figure 2.16). For small Az, we can assume that the pressure distribution is linear

and directly write:

n = " [2.54]
2

Once y is specified, the numerical scheme can be implemented.
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Az
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Figure 2.16. Bottom Boundary Condition of a Groundwater Table

(B) KNOWN/SPECIFIED PRESSURE HEAD

When the bottom boundary pressure head is specified, and this not need be zero, the

pressure head values at all other nodes can be computed directly.

EQUATIONS FOR BOTTOM BOUNDARY CONDITION

In both cases of a known water table depth, and known or specified pressure head, the

bottom boundary condition is in the form of a specified pressure head. We denote this by

hbottom . The equations for the boundary condition at the bottom of the soil layer are

then given by:
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i+1 _ i
tn -s

At1

1

C(An)+ SsSa(\Jn) Zn[ i+1W' +1+1 -h'+1
K f(' in- 1  +1 -K(i n bottom

n-1/2 Azn- 1 n+1/2 Azn

[2.55]

If we let:

A= 1+

C(I-)

At K y 1/+S'K(Y z/2 )

+S S~ ('4 )Azzl/

Cn) a(wn) zn - Kwn

(t Wn+1/2)

'+ SsSa(n zn+1/ 2 Azn

Dn =0

At) 
K v'

1)}(C(Win) +SsSa (Yn4 ))zf+l/2 Aznl j~1

[2.58]

+1/2 )lbottom

[2.59]

Then Equation [2.55] can be rewritten as:

A avai+1 + B i+1 = EAnwn ±B~W- 1 =E [2.60]

Equation [2.60] now has exactly the form of Equation [2.29] and the numerical scheme

can be implemented.
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2-1.4.2. DETAILS OF SPREADSHEET IMPLEMENTATION

The governing equation for variably saturated flow was derived and its solution was

given in Section 2-2.2. The flow problem can be solved using an implicit backwards finite

difference scheme as is described in Appendix A. In this study, a spreadsheet is used for

this purpose, the details of which are outlined in the following steps:

Step 1. Select the number, n of compartments that divide the soil layer (see Figure 2.14)

Step 2. Specify the soil hydraulic properties. These include:

a. Saturated conductivity (or saturated conductivity function KS (z))

b. Saturated 0s and residual Or moisture contents

c. Specific storage coefficient S.

d. The parameters needed to compute the soil characteristic curves. These

parameters will depend on the model that is used to describe the characteristic

curves. The van Genuchten (1980) Model, for example, requires the specification

of two parameters n and 6 (see Section 2-2.1). Other soil characteristic models

will require specification of different parameters. If the characteristic curves are

obtained through laboratory measurements, these can be specified directly.

Step 3. Specify the initial conditions in the soil. These most frequently are in the form of

an initial moisture content distribution.

Step 4. Enter the formulae for the soil characteristic curves in separate columns for the

pressure head and hydraulic conductivity as functions of the soil moisture distribution.

Hence, the initial pressure and conductivity distributions are obtained.

Step 5. Enter the formula for the specific moisture capacity C(Y), C(y) = dO
dy

Step 6. Compute the degree of saturation from:

S(Y) = O(Y) -Or [2.61]
Os -Or
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where:

Or is the residual soil moisture content

0S is the saturated soil moisture content

Step 7. Enter the formula for the geometric mean averaging of the conductivity, and

compute both K -1/2) and K(Y '+1/2) as given in Equation [2.27].

Step 8. Enter the Equations for A,, B1, D I and E,. These are given in Equations [2.30]

to [2.33].

Step 9. Specify the Boundary Conditions

Step 10. Compute the final pressure distributions at the end of each time step. The final

moisture content profiles are obtained from this and the soil characteristic curves.

Step 11. Repeat steps for as many times intervals as required

2-1.4.2.1. SPREADSHEET IMPLEMENTATION OF TOP BOUNDARY CONDITION

SELECTION SCHEME

A scheme is required for the appropriate selection of the top boundary condition which

may change from head controlled to flux controlled and vice versa. The decision

procedure for this is shown in Figure 2.15, and is implemented in a spreadsheet is as

follows:

Assume that the soil near the ground surface is initially unsaturated. This is very

frequently the case, unless high antecedent rain has brought the entire soil profile to

complete saturation.

Step 1. Compute the potential infiltration rate at the soil surface according to Equation

[2.15].
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Step 2. The actual infiltration rate (Equation [2.16]) into the soil is determined using the

MAX statement in Microsoft Excel that selects the maximum of the potential infiltration

rate at the surface and the specified water application flux. The maximum is used as the

actual infiltration rate into the soil and appears in the Equation [2.48] for E1 . (Note that

the maximum is selected because of the sign convention used which requires both the

potential infiltration rate and the rainfall intensity to be negative).

Step 3. The top boundary condition is initially flux controlled with the flux computed as in

Step 2.

Step 4. The moisture content in the first soil compartment (near the surface) is computed

from the resulting pressure head at the end of a time step and the soil characteristic

curves. By dong so, one determines whether the soil is saturated or remains unsaturated

at the end of the time step.

Step 5. If the soil at the surface remains unsaturated, then the top boundary condition is

flux controlled as in Step 3. Steps 1 to 4 would be repeated in the spreadsheet solution.

Step 6. If the soil at the surface becomes saturated, then the top boundary condition

switches from being flux controlled to being head controlled. A value of the top pressure

head needs to be specified, and is taken to be zero. This assumes that no ponding takes

place.

Steps 5 and 6 are incorporated into the spreadsheet model using the IF statement in

Microsoft Excel that appears in the Equations for both Bland E1 .

These take the respective forms shown in the Equations [2.62] and [2.63] below:

B, 1-Al + /2 01 = 0 2.2B1 = I (C(Wi±)+Ssa(4)z1/2 Azl ' [2.62]

1--A,, 01 <Os
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+ C~x}4) ± At k K(W'/ 2 ) -[ Kvl S~j) I 2 ZIj1 l/ 2)bsurfaceO 01 Q
Ei = ~

V - -C(Wt+SSa(Yi) Z1/j 1 + Kk/2) 01 < 0s

[2.63]

where:

hsurface is the pressure head at the soil surface due to ponding and is assumed

zero in this study

Step 7. The remainder of the analyses (and equations) remains the same and Steps 1

through 9 are repeated for all time steps.

2-1.5. MODEL VALIDATION

The efficiency and accuracy of the spreadsheet based finite difference numerical

scheme is validated with two numerical example analyses from the literature. The first

compares the model with a Fortran 90 computer code developed in Protopapas and

Bras (1988). The infiltration example devised by Warrick et al. (1971) is used for this.

The second compares the model with the finite element model, HYDRUS (Vogel et al,

1978), and the infiltration experiment in Wierenga and Brusseau (1995) is used for this.

Example 1: Warrick et al. (1971)

Warrick et al. (1971) devised a numerical infiltration experiment where water is allowed

to infiltrate into a 125 cm deep, homogenous soil profile having the following soil

characteristic curve functions:
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W 0.6829 - 0.095241n|W|

0.4531 - 0.02732 InlIW

F 19.34 x 10-5 -3. 4095

K(y) =

1516.80|xL 0.97814

y -29.484 cm

- 29.484 < y -14.495 cm

y -29.484 cm

- 29.484 < y -14.495 cm

[2.64]

[2.65]

where K(y) is given in cm/day and y in cm.

Equivalently,

Y exp<

{exp(

0.6829-0

0.09524 )
0.4531-0)

0.02732 )

0 < 0.36

[2.66]
0.36 < 0 0.43

19.34 x 10-5 exp

K(1) = <

L516.8o exp 0.44L

- 2.3283 + 3.40950

0.09524 )
32 + 0.978140

0.02732 )

0 0.36

[2.67]
0.36 < 5 0.43

These characteristic functions are plotted in Figures 2.17 and 2.18.
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Figure 2.18. Hydraulic Conductivity Curve

The initial conditions are in terms of a stated initial subsurface moisture content

distribution as:

O(z,0) = (0.15 + 0.0008333|z|
0.20

-60 z<O cm

-120 < z -60 cm

78

"E

0

0
2.

-0

1 101 00 1000 10000 100000

1000-

100-

10-

0.11

cc

0
0.01

0.001

0.0001

0.00001
0.1 10000 100000

[2.68]



The boundary conditions are given as:

Top of soil layer: Constant flux

qt= 37.8 cm/day [2.69]

Bottom of soil layer: Specified pressure head

y(-125,t)= -159.19 cm [2.70]

The solution obtained by the model developed in this study is shown by the circled

symbols in Figure 2.19, and the Protopapas and Bras (1988) solution is shown by the

solid line.

Moisture Content (cm3 /cm3 )

0.1 0.15 0.2 0.25 0.3 0.35 0.4

20

40-

- 60 5 hr

80 -

9 hr

100

120 ----

Figure 2.19. Comparison of Soil Moisture Profiles from Spreadsheet Based Finite Difference
Scheme (symbols) and from Protopapas and Bras (1988) (solid lines)
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Figure 2.19 shows that the results from the spreadsheet model are in very good

agreement with those from the Protopapas and Bras (1988) analyses, thereby validating

the model.

Example 2: Wierenga and Brusseau (1995) Infiltration Experiment

A second numerical example devised by Wierenga and Brusseau (1995) is used to test

the validity of the spreadsheet model. It consists of applying water on top of an initially

uniformly moist (0 = 0.08 cm 3 /cm 3 ) homogenous soil. The soil characteristic curves

are shown in Figures 2.20 and 2.21.
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Figure 2.20. Moisture Retention Curve
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Figure 2.21. Hydraulic Conductivity Curve

Water is applied at a constant rate of 2.5 cm/h for the first 4 hours, followed by a zero

application rate. Wierenga and Brusseau (1995) used the HYDRUS (Vogel at al., 1996)

computer program, which is designed to simulate one-dimensional water flow, and uses

the Galerkin finite element techniques to numerically solve Richards Equation.

Figures 2.22 and 2.23 compare the results obtained by the spreadsheet model with

those from Wierenga and Brusseau (1995), in terms of moisture content and pressure

head profiles respectively. The results from the spreadsheet model are shown in

symbols and those from Wierenga and Brusseau (1995) are shown as solid lines.
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Figure 2.22. Moisture Content Profiles Generated by HYDRUS (solid lines) and
Based Numerical Scheme (symbols)

the Spreadsheet
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Figure 2.23. Pressure Head Profiles Generated by HYDRUS (solid lines) and
Based Numerical Scheme (symbols)

the Spreadsheet
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The agreement between the HYDRUS (Vogel et al., 1978) program results and the

results of the spreadsheet based scheme is excellent.

Both examples in this section verify the spreadsheet based numerical scheme

developed in this study to solve the variably saturated flow problem. The spreadsheet

based solution has the advantages of being relatively easy to set up, requires no

computer coding and utilizes virtually no computer processing time.

2-1.6 MODEL DEMONSTRATION

We illustrate the model using two examples that are relevant to the study of landslides,
as will be shown in later chapters. In the first, the water application rate is less than the

saturated conductivity of the soil in which case all the water infiltrates into the soil. The

water is unable to saturate the soil, and flow takes place in unsaturated soil at a rate

equal to the application rate. In the second example, the water application rate is greater

than the saturated conductivity of the soil, in which case positive pressures develop as

flow takes place in both saturated and unsaturated soil. The infiltration rate is equal to

the potential infiltration rate of the soil.

Example 1: Application Rate Less than Saturated Conductivity

Consider a layer of soil of height 5 m, composed of the soil with hydraulic parameters

shown in Table 1 in Section 2-1.1. The soil characteristic curves using the van

Genuchten (1980) Model were shown in Figures 2.3 and 2.5. An initial and constant

moisture content Oi = 0.4 is assumed throughout the soil layer. A constant application

rate of 10 cm/day is applied at the top of the soil column for a duration of 8 hours. The

moisture content and pore pressure profiles are at selected times in Figures 2.24 and

2.25 respectively.
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Figure 2.24. Moisture Content Profiles with Time (case when q < Ks)

Figure 2.24 shows that saturation is not reached in the soil, throughout water application.
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Figure 2.25. Pressure Head Profiles with Time (case when q < Ks)
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Figure 2.25 shows that the pore pressures remain negative, and flow takes place in

unsaturated soil. Figures 2.24 and 2.25 also show that when water application is

stopped after 8 hours, moisture (and hence excess pressure) redistribution takes place.

This is shown at the time of 10 hours. The rate of redistribution will depend on the soil

hydraulic characteristics. This process will continue until all the excess pressures

completely dissipate and equilibrium conditions (initial conditions) are restored.

Figure 2.26 shows the rate of infiltration with time.

100 -
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25 4
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Figure 2.26. Actual Infiltration Rate with Time (case when q < Ks)

Figure 2.26 shows that the rate of infiltration remains constant throughout the water

application, and is equal to the water application rate. This is because the application

rate is less than the potential infiltration rate of the soil, and so all the water infiltrates into

the soil.

This example shows that when the water application rate is less than the potential

infiltration rate of the soil, all the water infiltrates into the soil, but it is incapable of

completely saturating the soil. As flow takes place in unsaturated soil, moisture

increases, and pressures increase but remain negative.
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Example 2. Application Rate Greater than Saturated Conductivity

In this example, the water application rate is taken to be 375 cm/day for duration of 8

hours. The initial moisture content is taken to be Oi = 0.4. Figure 2.27 shows the

moisture content profiles at selected times, and Figure 2.28 shows the corresponding

pore pressure.
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Figure 2.27. Moisture Content Profiles with Time (case when q > Ks)

Figure 2.27 shows that saturation is reached at the top of the soil, and this saturated

zone travels into the soil layer in the form of a saturating wetting front.
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Figure 2.28. Pressure Head Profiles with Time (case when q > KS)

Figure 2.28 shows that positive pressures develop within the infiltrating wetting front as it

travels into the soil layer. Figure 2.29 shows the infiltration rate throughout water

application.
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Figure 2.29. Actual Infiltration Rate with Time (case when q > Ks)
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At early times, since the potential infiltration rate is greater than the rainfall intensity, the

actual infiltration rate is equal to the rain intensity. As the potential rate decreases with

time, infiltration takes place at this potential rate, which is shown in Figure 2.29. The

potential rate of infiltration continues to decrease with time, and water application,

tending towards the saturated conductivity of the soil. This decrease in infiltration rate

can also be observed in Figure 2.27 which shows the decrease in the rate of wetting

front advancement with time. Figure 2.28 also shows this, as pressures, though continue

to increase with time, do so at a decreasing rate.

2-1.7. CONCLUSIONS

This part of Chapter 2 discussed unsaturated soil properties, and developed a one

dimensional finite difference pressure based solution to the variably saturated flow

equation. It was necessary to develop this pressure based procedure since the majority

of models solve the moisture based equation, and pressures are what are needed in

stability, and hence landslide analyses. The model solves simultaneously for saturated

and unsaturated within a spreadsheet environment. Particular attention was paid to the

top boundary condition since this may vary during a rainfall event. The model was

validated by comparing the results obtained in numerical examples published in the

literature. Two examples demonstrated the capabilities of the model, and highlighted

some of the characteristics of infiltration processes. One of the biggest shortcomings of

the model is that it assumes that rainwater infiltrates into soil as a stable wetting front,
and neglects the possibility of fingering and preferential flow that has been shown to

develop in both heterogeneous and homogenous soils. This is further discussed in

Chapter 5. Nevertheless, the model provides a powerful tool with which one can

estimate subsurface pore pressures that are generated during a rainfall event, and will

be used in subsequent chapters.
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PART 2-2:

STABILITY MODEL

Many Limit Equilibrium models have been developed over the years to analyze the

stability of slopes e.g. Bishop Simplified (1955), Bishop Rigorous (1959), Janbu

Simplified (1957), Janbu Generalized (1973), Spencer (1973), Morgenstern and Price

(1965), Fredlund et al. (1978), Chen (1982), amongst others. These models satisfy

different conditions of static equilibrium based on the assumptions that make the

problem of slope stability statically determinate. These models are discussed in more

detail in Chapter 5.

In this part of Chapter 2, spreadsheet techniques are described by which the stability of

slopes can be assessed using the Janbu Generalized Method of Slices (1973). In the

Janbu Generalized Method (1973), assumptions are made concerning the point of

application of the normal force on a base of a slice, and concerning the point of

application of the interslice normal forces. Vertical force equilibrium for each slice, and

horizontal force equilibrium for the entire slide mass are satisfied, thereby producing an

expression for the Factor of Safety with respect to force equilibrium. The Janbu Method

(1973) has been selected for stability analyses in this study, since shallow landslides

tend to have shallow, planar failure surfaces, and the model will give reliable results for

such geometries (Graham, 1984; Abramson, 1995).

A technique is described whereby the Factor of Safety is computed on a specified failure

surface. A method to search for the critical failure surface is then described. The

method makes combined use of a spreadsheet's circular iteration option and its

optimization tool.
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2-2.1. JANBU'S GENERALIZED PROCEDURE OF SLICES (1973)

Consider Figures 2.30a and 2.30b.

P
EXTERNAL LOADS

Tb

Eb

y
b

Boundary Forces:
Ea, Ta at x = a; Eb, Tb at x = b

Ax

Arbitrary
Origin

Figure 2.30a. Section through Slope Illustrating Notation used in Janbu's Generalized Procedure
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Ax

AP

AQ

T

z E hQ
E+AE

ht

T+AT 
(u)

Figure 2.30b. Enlarged Diagram of a Slice

With the notations in Figures 2.30a and 2.30b the equations of equilibrium in the

horizontal and vertical directions and the equation of moment equilibrium, neglecting

second order terms, of a slice are given by (Janbu, 1973):

S = (p + t)Ax - tAx tan a (Vertical Equilibrium) [2.70]

AE = AQ + (p + t)Ax tan x - xAx(1 + tan 2 X) (Horizontal Equilibrium) [2.71]

AE AQ
T = -E tan ct + ht - hQ (Moment Equilibrium) [2.72]

Ax Ax
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where:

S = GAx

G is the mean total stress normal to the base of a slice

p =yz + q + -- is the total vertical stress acting on a slice
Ax

P is an external point load (see Figure 2.30a)

Q is an external point load (see Figure 2.30a)

q is a uniformly distributed external stress (see Figure 2.30a)

AT
t=

Ax

at and ht are defined in the next section, and other parameters are defined in

Figures 2.30a and 2.30b

The mobilized shear stress r at the base of a slice is expressed in terms of the

Coulomb strength criterion and the global Factor of Safety F as (Fellenius, 1954):

C'1+(Cy - uw ) tan [2'3T = [2.73]
F

where:

c' is the cohesion of the soil

uw is the mean pore water pressure at a base of a slice

is the angle of shearing resistance of the soil

For the overall horizontal equilibrium:

AE = Eb - Ea [2.74]
i=1

where Eb and Ea are defined in Figure 2.30a and n is the total number of slices.
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From Equations [2.70] through [2.74], Janbu (1973) proposed the set of Equations

shown in Figure 2.31 as the working formulae for slope stability analyses by an iterative

procedure.

B= AQ+(p+t)Ax tan a

A'= [c'+(p + t - uw) tan ']Ax

A = A '

n

A

F =

Ea -Eb +jB

AE=BA F

dE AE AEI+AEi+1

dx Ax Axi+ Ax,+ 1

[2.75]

[2.76]
I + (1)tan 'tana

1+ tan2 ci

[2.78]

[2.79]

[2.80]
n

E=Ea + JAE
i=1

[2.82]

T=-Etan t +ht
AE

Ax
AQ

-h qAx

AT
t =

Ax

A

F(1+ tan 2)Ax

[2.83] AT = Ti - TI 1

[2.85]

[2.86] C-'= p + t - t tan ct - u

Figure 2.31. Janbu's Equations for the Generalized Procedure of Slices (Notation same as

Figure 2.30)
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2-2.1.1. ASSUMPTIONS

The slope stability problem is statically indeterminate and assumptions have to be made

to make it solvable. In the Janbu Generalized Method of Slices (1973) assumptions hare

made regarding the line of action of the normal interslice force E for each slice. In

Janbu's (1973) formulation this is denoted by the height ht above the base of a slice

1
(see Figure 2.32). Janbu (1973) assumes that ht = - hi,i+1, where hi,i+ 1 is the height of

3

the vertical interface between two adjacent slices i and i + 1 (see Figure 2.32).

AX(i) AX(~+i)I-.

jqi1)

ht(,)

Ei-, i

ht(i-i:

Figure 2.32. Additional Notation used in Janbu Generalized Procedure of Slices
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To evaluate the interslice shear force T in Equation [2.83] of Figure 2.31, it is necessary

to compute the angle at as defined in Figures 2.30b and 2.32. By geometry, each

tanct is a function of ht , Ax and tan a. For a generic slice i, it can be shown that:

tan-,,,) = (ht(i) - ht(i-1)) + Ax(i) tan c(i) [2.88]n t(1) =[AX(.)

The average tan at value adjacent to a particular interface, denoted by tan ct(i)

is computed from:

tan aGt(i) ={tan ct(i) + tan xt(i+1)} [2.89]

tan cct(i)

(ht(i-1) - ht(i)) + Ax(i) tan c() (ht(i) - ht(i+1)) + Ax(i+1) tan (i+l)

2 Ax(i) Ax(i+) [2.90]

tan at(i) in Equation [2.90] is then used in Equation [2.83] of Figure 2.31 to compute T.

Having made these assumptions, the stability problem becomes solvable and one can

proceed to determine factors of safety for specified failure surfaces.

2-2.2. DETERMINISTIC SLOPE STABILITY ANALYSES FOR A SPECIFIED FAILURE

SURFACE

A spreadsheet based procedure is described by which the Factor of Safety for a

specified failure surface can be computed using Janbu's Generalized Procedure of

Slices (1973). The procedure is largely based on the one proposed by Low and Tang

(1997) with some major modifications that are essential to study landslides, and are

detailed in subsequent sections of this chapter.
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2-2.2.1. BASIC PROCEDURE

The spreadsheet procedure for assessing the stability of a slope using Janbu's

Generalized Procedure of Slices (1973) involves solving Equations [2.75] to [2.87] in

Figure 2.31. An iterative procedure is required to solve these because the Factor of

Safety in Equation [2.79] is a function of A, and hence n., and na itself is a function of

the Factor of Safety (see Equation [2.77] of Figure 2.31).

The procedure is implemented using Microsoft Excel, although other software packages

can also be used. The advantage of using spreadsheet procedures over specialized

computer programs is that the spreadsheet procedure is relatively easy to set up and

computations are very fast. Moreover, the user will have an appreciation of what is being

implemented.

The basic input parameters of the model are:

a. The slope geometric properties (topography and/or slope angle)

b. The soil parameters (unit weight and strength)

c. The horizontal (x) and vertical (y) coordinates of a specified failure surface from

an arbitrarily set datum (origin)

d. The hydraulic parameters from which the pore pressures on a specified failure

surface can be computed

e. The external loads, P and Q, and the boundary forces, Ea and Eb (see Figure

2.30a)

After specifying the input parameters, the Factor of Safety on a specified failure can be
computed through an iterative process based on Figure 2.31.

Prior to this, it is necessary to introduce additional notations used in the procedure, and
these are shown in Figure 2.33.
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Figure 2.33. Additional Notation used in Spreadsheet Approach

Consider an arbitrary Point A on the specified failure surface. The coordinates of A are

(XBA, YBA). The coordinates of the slope surface at A are (XTA = XBA, YTA), and the

coordinates of the water table at A are (XWA = XBA ,WA). If the depth of the water

table from the slope surface at A is zwA , then the coordinates of the water table at A are

(XBA, YWA = YTA -ZWA)-

To illustrate the procedure, consider the slope shown in Figure 2.34.
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5'& - 10 15 x m) 20 25 30 35

Figure 2.34. Slope Geometry and Soil Properties

We assume the slope is dry, and the pore pressures on the failure surface are zero. We

also assume that the external loads and boundary forces are all zero. The spreadsheet

procedure is shown in Figure 2.35.

tan a Ax p u c' tan#' AQ 0 tanat
1.438561 2 2.877123 0 1 0.67 0 0.959041 0.825921
0.836078 4 7.473558 0 1 0.67 0 1.532145 0.609027
0.584753 4 9.906881 0 1 0.67 0 1.770149 0.478533
0.444597 4 10.77428 0 1 0.67 0 1.821279 0.398566
0.34485 4 10.68207 0 1 0.67 0 1.739412 0.336359
0.257978 4 9.843383 0 1 0.67 0 1.541716 0.277905
0.169487 4 8.303241 0 1 0.67 0 1.226031 0.214982
0.069209 4 6.008026 0 1 0.67 0 0.776644 0.105141
-0.16004 4 2.394717 0 1 0.67 0 0.021595 -0.20159
-0.64785 0.1 0.064785 0 1 0.67 0 0

a _

E T
Slice # B A' n, A AE AE/Ax AT t

1 7.900921 5.679799 0.46091 12.32302 2.598269 2.598269 1.96435 -0.26207 -0.26207 -0.13104
2 21.86744 21.52371 0.730445 29.46658 9.187836 11.78611 2.073264 -4.00152 -3.73944 -0.93486
3 21.60959 28.75991 0.870821 33.02618 7.39828 19.18439 1.415938 -6.67395 -2.67243 -0.66811
4 18.47397 31.83994 0.941981 33.80105 3.92923 23.11362 0.54543 -8.21892 -1.54497 -0.38624
5 14.65665 32.476 0.982573 33.05201 0.434217 23.54783 -0.30193 -8.44571 -0.22679 -.0.0567
6 10.42761 31.0818 1.007335 30.85546 -2.84963 20.6982 -1.06798 -7.39865 1.047064 0.261766
7 5.993587 27.6933 1.019576 27.1616 -5.69417 15.00403 -1.64993 -5.24846 2.150183 0.537546
8 1.871814 22.12057 1.015091 21.79171 -7.50526 7.49877 -1.86251 -2.23493 3.013528 0.753382
9 -1.88767 11.90278 0.930041 12.79813 -7.39476 0.104009 -1.82893 -0.01853 2.216406 0.554101

10 -0.01623 0.116786 0.57281 0.203882 -0.10396 -1.03962 0.018529 0.185288

Eb

100.9

98

c' = 10 kN/m2

12 - 2
=20 kN/m

10 -

~ 6/

4 - FAILURE
SURFACE

TI

0.863776 1.503491
1.865716 4.978813
2.647539 7.69016
3.036058 9.038217
3.177709 9.52954

F3.112 18 7 9.302274
2.840348 8.359385
2.333092 6.599936
1.342392 3.163651
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................ ..... E.
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XB and YB are the horizontal and vertical coordinates of the specified failure surface

from an arbitrarily chosen datum.

YT is the vertical coordinate of the slope surface (topography) from an arbitrarily chosen

datum

Note that since the slope has been sectioned into 10 slices, there will be 11 points, and

hence one needs to specify 11 coordinates. In general, if one chooses n slices to

analyze the slope, one would need to specify (n+1) coordinates.

All other parameters were previously defined in Figures 1 and 2. The shaded cells

indicate the input parameters, and unshaded cells are automatically computed by the

spreadsheet as detailed below.

PROCEDURE:

Step 1. Section the slope into any desired number of slices (ten in this example)

Step 2. Set up a spreadsheet with columns similar to the one shown above

Step 3. Enter the input data

Step 4. Enter a value of 1 in the Factor of Safety cell initially. This is later changed in

Step 6 below.

Step 5. Enter formulae for B, A', n. and A from Figure 2.31. All columns from AE to

a' are blank at this time.

Step 6. Enter formulae for the summation of the A and B columns from Figure 2.31.

Step 7. Enter formula for the Factor of Safety from Figure 2.31. Activate the iteration

option in Microsoft Excel by clicking on Tools/Options/Calculation/Iterate, and set

maximum change to 0.000001. This can be set as desired for accuracy.

Step 8. Enter formulae for the remaining columns (AE to a') from Figure 2.31 in their

respective columns.

Step 9. Press the iteration key (F9 in Microsoft Excel) to perform iterations.

Figure 2.35. Spreadsheet Procedure for Janbu Generalized Method of Slices for a Specified
Failure Surface
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By following Steps 1 to 9 a Factor of Safety of 2.32 is obtained. The iteration is

automatic in the spreadsheet.

The following additional notes have to be made with respect to the steps in Figure 2.35

(reference is made to Figure 2.31 for equations):

a. In Step 2, the formula for the Factor of Safety (Equation [2.79] in Figure 2.31)

cannot be entered until I A and I B are defined. An empty cell (which is taken to

have a value of zero by Microsoft Excel) is also not permissible because it will lead to

division by zero when the formulae for are entered. Hence, a temporary value e.g. 1

should be entered in the Factor of Safety cell.

b. When the formula for the Factor of Safety is finally entered in Step 7, a circular

reference is formed, because the Factor of Safety is a function of A, and hence na,

which is in turn a function of the Factor of Safety. By activating the iteration option, the

Factor of Safety value and the four columns B, A', n. and A will reach convergence.

The converged values at this stage are only transitional, since the Equations for AE and

t have still not been entered (empty cells are taken to be equivalent to zero). These

results are not shown in Figure 2.35.

c. In Step 7, in the Tools/Options/Calculation dialog box, the default maximum

iteration is 100, which is adequate for most stability problems. However, this number can

be set higher as desired. One can also press a key (The F9 key in Microsoft Excel) to

test if convergence has been reached.

d. In Step 8, when the formulae for AE, AE/Ax, T and AT are entered, the

spreadsheet performs normal calculations without iteration since no new circular

reference is formed. With the entering of Equation [2.85] in the column t, a second

circular reference is introduced and all the columns in the spreadsheet that contain

equations are computed until iteration converges in Step 9, as the F9 key is pressed,.

The converged final results are shown in Figure 2.35.
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2-2.2.2. SITE CONDITIONS

In this section, various additions to the basic procedure described in Section 2-2.2.1. are

described. These extensions intend to better describe site conditions, and include slope

geometry, strength parameters, and hydraulic conditions. The most important of these

are:

(a) Computing pore pressures from the location of a water table, and an assumed

subsurface flow regime.

(b) The introduction of unsaturated soil strength in the analyses

These modifications allow one to analyze of the stability of slopes while incorporating

unsaturated soil mechanics, which is essential for the study of landslides, particularly

shallow landslides. Without these, a comprehensive slope stability analysis for landslide

studies cannot be preformed.

2-2.2.2.1. SLOPE GEOMETRY

The geometric properties of the slope (topography) can be obtained directly from a

scaled drawing of the slope. The measured coordinates are entered in the XB and YT

columns. If a scaled drawing is not available, and for idealized problems, it is frequently

assumed that the angle the slope makes to the horizontal, P is constant. By specifying

the slope angle, a function can be inserted in the YT column of the spreadsheet that

automatically computes the Y coordinate of the slope surface as a function of the X

coordinate and the specified slope angle. This takes the form:

YT = XB tan3 [2.91]

Thus, by specifying P and using Equation [2.91], the slope topography is defined.
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2-2.2.2.2. PORE PRESSURE DISTRIBUTION

The slope shown in Figure 2.34, was assumed dry. In this section, two methods are

outlined by which the effects of pore pressures on a failure surface can be accounted

for. The first method assumes a constant pore pressure ratio, ru along the failure

surface. This is the method used by Low and Tang (1997). The second method assumes

the presence of a water table at a known depth zw below the ground surface. From this,

and an assumed subsurface flow regime (seepage parallel or non-parallel to slope), the

pore pressures on a specified failure surface are determined.

(A) PORE PRESSURE RATIO, ru

The pore pressure ratio, ru is defined as:

ru u [2.92]

where uw is the pore pressure at the base of a slice, and h is the average height of the

slice. This average slice height is obtained by first computing the height of each side of a

slice by taking the difference between the vertical coordinate of the top of the slope, YT

and the vertical coordinate of the failure surface, YB. The average height of the slice is

then obtained by averaging the heights of the sides of the slice. Hence, h is expressed

as:

h = hii 1 + hii 1 I (see Figure 2.32) [2.93]
2

where hiji 1 is the height of the common side between slices i and i - 1, and hi+i1 is the

height of the common side between slices i and i + 1. Thus:

h = -4YTi Bi )+ y~i,1 - YBi 1 [2.94]
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By determining the average slice height from Equation [2.94], and by specifying the

value of ru, an equation is introduced in the u, column of the spreadsheet (see Figure

2.35) that computes the average pore pressure on the base of a slice as:

uW =hru [2.95]

This is done for each slice so that the average pore pressure distribution along the

failure surface is defined.

To illustrate this, we revisit the slope shown in Figure 2.34. We assume a constant value

ru = 0.4 on the failure surface. The pore pressure distribution along the failure surface

is computed and plotted in Figure 2.36a.
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Figure 2.36a. Pore Pressure Distribution on Failure Surface for Constant ru = 0.4
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(B) WATER TABLE

A more realistic method to determine the pore pressures on a specified failure surface is

to set (if known) or assume (if unknown) a water table at a particular depth zw below

the slope surface, from which the subsurface pore pressures are determined.

When the geometry of the slope is such that its length is significantly greater than its

depth, the slope can be regarded as an infinite slope. The water table in an infinite slope

typically follows the ground surface. Under steady state conditions, flow takes place

parallel to the slope both below and above the water table, and one can show that the

steady state pore pressures, assuming full capillarity, vary linearly with depth below the

ground surface (see Figure 2.36b) as:

uw = (z - zw)7w cos2 P3 [2.96]

where:

z

zw

is the depth to the failure surface from the ground

is the depth of the water table below the ground surface

Expressing z and zw in terms of the coordinate system shown in Figure 2.36b, one can

express uwi, the pore pressures on the base of slice i as:

uWi = ((Y-ri - YBi) - (Ti - Ywi ))Y w coS2 [2.97]

ui (Ywi - YBI)y w cos2 P3 [2.98]

where (see Figure 2.36b):

YBi is the y - coordinate of the base of the slice from the origin
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Ywi is the y - coordinate of the water table from the origin
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Figure 2.36b. Steady State Pore Pressure Distribution in Infinite Slope (Full Capillarity)

Equation [2.98] for the subsurface pore pressures can be entered into the column uW of

the spreadsheet in Figure 2.35, and the pore pressures along the failure surface are

computed accordingly.

2-2.2.2.3. UNSATURATED STRENGTH

The role of suction in increasing the stability of slopes is well known and has been

studied in the literature (e.g. see Fredlund et al., 1995; Morgenstern and Krahn, 1997;

Ng, 2000). This is of fundamental importance in the study of slope stability, and in

particular shallow landslides. Several models to describe the strength of unsaturated

soils have been proposed. Two such models are the Effective Stress Model (Bishop,
1959) in conjunction with the Coulomb criterion and the Independent State Variable

Model (Fredlund et al., 1978). Models for unsaturated strength are described in Chapter

5. The majority of slope stability studies in the literature that consider unsaturated
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strength, and these are not many because unsaturated strength is not well understood,
employ the Independent State Variable Model (Fredlund et al., 1978). The reasons for

this are described in Chapter 5. In this study, however, we adopt the Effective Stress

Model (Bishop, 1959) since it is a more physically based model that can be directly

related to soil properties. Other reasons include the recent advancements in

experimental procedures, which are described in Chapter 5. These have made it

possible for the Effective Stress Model (Bishop, 1959) to better describe unsaturated

strength as is done in several more recent studies on unsaturated strength. The model

is however yet to be widely employed in stability analyses, and this study will be, one of

the first few to adopt model. In this section, we briefly describe the Effective Stress

Model, and show how it can be incorporated into stability analyses within the

spreadsheet procedure. For a more detailed discussion on unsaturated strength, the
models to describe it, and a comparison of these models, reference is made to Chapter

5.

EFFECTIVE STRESS MODEL (Bishop, 1959)

In the Effective Stress Model, the effective stress in the soil is described by an extension

to Terzaghi's effective stress principle as (Bishop, 1959).

a'= (c - ua)+ X(ua - uw) [2.99]

where:

a' is the effective stress

X is the effective stress parameter

The shear strength, -c can then be evaluated as:

-r = c'+{(a - ua)+ X(ua - uw)}tan4' [2.100]

which is identical to the saturated Coulomb relation where c' and ' are the saturated

strength parameters.
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x in Equation [2.99] is an empirical parameter representing the proportion of soil suction

that contributes to the effective stress. y has a value of 1 for saturated soils and 0 for

dry soils. Considerable attempts have been made to quantify 7 both theoretically and

experimentally e.g. Kogho et al., 1993; Modaressi and Abou-Bekr, 1994; Khalili and

Khabbaz, 1998). In this study, we employ the relationship proposed by Khalili and

Khabbaz (1998) who express y as:

- -~ -0.55
(ua -uw)

(ua - uw )entry

where:

[2.101]

(ua - uw)
(ua - uw )entry

(ua - uw )entry

is the suction ratio

is the air entry suction (as defined in Part 1 of this chapter).

The unsaturated shear strength in Equation [2.100] can be used in Janbu's Generalized

Procedure of Slices to assess the stability of slopes by replacing uw in the uw column

by X(ua - uw). The effective stress is therefore computed according to Equation [2.99].

An IF statement is used that instructs the spreadsheet to compute the effective stress

parameter X when the failure surface is above the water table and assign a value of z =

1 when the failure surface is below the water table. This takes the form:

-- 0.55
(ua - uw) ,if the failure surface is in unsaturated soil

{ (ua - uw )entry j
1, , if the failure surface is in saturated soil

[2.102]
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2-2.2.2.4. SOIL STRATIFICATION

The spreadsheet procedure has, thus far, been described for a uniform and

homogenous subsurface. It is relatively straightforward to include a heterogeneous

subsurface into the procedure. There are two main types of stratification, namely parallel

to slope, and horizontal. These are shown schematically in Figures 2.37 and 2.38.
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Figure 2.37. Site Conditions and Strength Parameters for Parallel to Slope Stratification
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An IF statement is used in the soil strength parameters c' and

the spreadsheet to use the strength properties of Soil 1 when

soil 1, and those of soil 2 when the failure surface lies in Soil 2.

c ' of Soil 1,
c' of Soil 2,

' of Soil 1,

' of Soil 2,

So, for example, for Point C

parameters of Soil 1, whereas

Soil 2.

' columns that instructs

the failure surface lies in

This takes the form:

if failure surface lies in Soil 1
if failure surface lies in Soil 2

if failure surface lies in Soil 1
if failure surfaces lies in Soil 2

[2.103]

in Figure 2.37, the spreadsheet selects the strength

for Points A and B it selects the strength parameters of

Second IF statements can be used within the IF statement in [2.103] that further instruct

the spreadsheet to use either the saturated or unsaturated soil parameters depending on

whether the failure surface lies above or below the water table. So, for example, in

Figure 2.38, the spreadsheet selects the unsaturated strength parameters of Soil 1 for

Point A, the saturated strength parameters of Soil 1 for Point B, the saturated strength

parameters of Soil 2 for Point C, and the unsaturated strength parameters of Soil 2 for

Point D.

BEDROCK

A special case of stratification, either parallel to slope or horizontal, is the presence of

bedrock. This can be accounted for using the same methods described in the previous

sections, where the strength parameters of Soil 2, are those of the bedrock. If these

strength parameters are known, they can be used directly, and if they are not known,
then assuming intact rock, very high values of strength parameters can be used.

Thus far, the subsurface was assumed to be composed of only two soils. Slopes with

multi-layered soils can assessed in a very similar way to what was described, using

simple modifications in the spreadsheet, which can be extended to include any number

of soil layers.
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2-2.3. DETERMINISTIC ANALYSES WITH SEARCH FOR THE CRITICAL NON-

CIRCULAR SLIP SURFACE

In Section 2-2.2., spreadsheet techniques were described by which the factor of safety

was computed for a specified failure surface using Janbu Generalized Method of Slices

(1973). In this section, spreadsheet techniques are described by which the critical

(minimum factor of safety) deterministic failure surface is located. The problem is set up

as an optimization (minimization) problem that is solved using a spreadsheet's

optimization tool. The objective function is the factor of safety that is to be minimized by

varying the coordinates of an initial trial failure surface, subject to various physical

constraints.

The problem is formally set out as follows (with notation as in Figure 2.40):

Objective function:

Z: minimize F [2.104]

where F is the Factor of Safety

By varying:

XB(1), XB(n) and YB(i) for iz=2,...,n-1 [2.105]

where XB(i) YB(i) are the coordinates of the failure surface, and n is the number of

slices the slope is sectioned into.

Subject to:

XB(1)min XB(1) XB(1)max [2.106]

XB(n)min XB(n) XB(n)max [2.107]

where:

XB(1)n=, XB(1)max, XB(n)in= and XB(n)max are physical constraints placed on the X

coordinates of the first and nth slice (see Figure 2.40). These are set judgmentally.
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YB(1) = YT(1) and YB(n) = YT(n)

which sets the vertical coordinates of the first and last points on the failure surface to be

equal to the ground surface.

for i = 2,..., n-1 [2.109]

where YT(i) are the Y coordinates of the slope surface

i) > 0 for i =1,..., n [2.110]

where cT(i) is the effective stress acting on the bottom of a slice (see Figure 2.40), and

this constraints ensures no negative effective stress values are obtained.

This problem is set up and solved using a spreadsheet's built-in optimization tool e.g.

Solver in Microsoft Excel as described in Figure 2.39.
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Step 1. An initial trial failure surface is selected.

Step 2. The slope is sectioned into any desired number of slices, n.

Step 3. An arbitrary origin is set from which the horizontal (XB) and vertical (YB)

coordinates of the failure surface at the interface between two adjacent slices are

inserted in the appropriate columns in Figure 2.35.

Step 4. The Y coordinate of the ground surface at the interface between adjacent slices

is also measured from the origin and placed into the YT column of Figure 2.35. This

defines slope topography.

Step 5. The Factor of Safety for the trial failure surface is then computed according to

Equation [2.79] of Figure 2.31.

Step 6. Two sets of physical constraints are placed on the minimization problem (see

Equations [2.106] to [2.109]).

[2.1081

YB(i) ' YT(i)



Figure 2.39. Spreadsheet-Based Optimization Procedure to Determine Critical Failure Surface
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The first set constrains the boundaries of the failure surface by constraining the

coordinates of the crest (XB(1),YB(1)) and toe (XB(n),YB(n)) of the failure surface to

ensure physically reasonable failure surfaces. The vertical coordinates of these points

are set to be equal to the vertical coordinates of the ground surface. The horizontal

coordinates of these points are also constrained to limit the horizontal extent of the

failure surfaces through which the optimization tool iterates. This would restrict the

location of the crest and toe of the slope in a way that has physical meaning. Judgment

is required to specify and ensure that these constraints are acceptable. These

constraints are shown schematically in Figure 2.40.

The second set of constraints is placed on the effective normal stress a' acting at the

base of each slice. The effective normal stress is computed according to Equation [2.87]

of Figure 2.31 and constraints are placed such that these stresses are non-negative.

Step 7. The spreadsheet's built-in optimization tool (Solver in Microsoft Excel) is then

invoked to minimize the factor of safety by varying some of the X and Y coordinates of

the failure surface. After choosing an initial trial failure surface, and the cells to be varied

and the constraints are specified, the spreadsheet optimization tool (Solver in Microsoft

Excel) is invoked to search for the critical failure surface on which the factor of safety is

minimum.

Step 8. All other columns of Figure 2.35, such as the hij, tan 0 , uw , ht and tan ct , are

automatically recalculated by the relevant equations in Figure 2 each time the failure

surface (XB, YB) is varied.
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Figure 2.40. Schematic showing Constraints of Spreadsheet Optimization Procedure

To illustrate the spreadsheet optimization procedure, consider the slope shown in Figure

2.41.
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Figure 2.41. Geometric and Strength Properties and Initial Trial Failure Surface
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An initial trial failure surface is selected as shown in Figure 2.41.

2-2.3.1. PORE PRESSURE DISTRIBUTION

(A) CONSTANT PORE PRESSURE RATIO

We assume that the pore pressures on a failure surface are determined from a constant

pore pressure ratio ru = 0.4 , using Equation [2.95]. The Factor of Safety for the initial

failure surface, is computed to be 1.47.

The spreadsheet optimization procedure in Figure 2.39 is used to determine the critical

failure surface in the slope which is shown in Figure 2.42.

12
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8 -

INITIAL FAILURE
6 SURFACE

CRITICAL FAILURE
SURFACE

2

- 115 20 25 30 35 40
x (M)

Figure 2.42 Initial and Critical Failure Surfaces for Pore Pressures Obtained from a Constant
Pore Pressure Ratio ru = 0.4

A Factor of Safety of 1.45 is computed for the critical surface, and this is the minimum

Factor of Safety in the slope.

(B) WATER TABLE

Consider the slope in Figure 2.41, but with a water table located at a depth of 4 m below

the ground surface. An initial trial surface is chosen, and is shown in Figure 2.43.
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Figure 2.43 Slope Geometry, Hydraulic Condition, and Initial Failure Surface

The Factor of Safety on the initial surface is computed to be 2.37, assuming the

Coulomb Model for saturated and unsaturated strength, and full capillarity. The

spreadsheet optimization procedure is implemented to locate the critical failure surface

and the results are shown in Figure 2.44.
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10- 10 /V WATER
TABLE

INITIAL FAILURE
6 - SU RFACE

- RITICAL FAILUR
SURFACE

5r-7 0 5 20 25 30 35 40

Figure 2.44. Critical Failure Surface for a Water Table at a Depth of 4 m below the Ground
Surface Assuming Coulomb Model and Full Capillarity
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The Factor of Safety on the critical failure surface is computed to be 2.28, and this is the

minimum factor of safety in the slope.

2-2.3.2. UNSATURATED STRENGTH

Unsaturated soil strength is introduced into the optimization procedure by adopting the

Effective Stress Model (Bishop, 1959) for unsaturated strength, with an air entry suction,

(ua - uw )entry = 0.1 kPa. The effective stress parameter X can be computed from the

air entry suction according to Equation [2.101] for different values of suction. The

spreadsheet optimization procedure is applied, and the critical failure surface is as

shown in Figure 2.45.
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12-

10

2

WATER
TABLE

INITIAL FAILURE
SURFACE

- CRITICAL FAILURE
SURFACE

30 35 4010 15 25

- ' x (M)

-2

...... - .

Figure 2.45. Initial and Critical Failure Surfaces adopting the Effective Stress Model (Bishop,
1959) for Unsaturated Soil

A factor of safety of 1.92 is obtained as the minimum factor of safety in the slope on this

surface. The value of the Factor of Safety is lower than that when the Coulomb Model (F

= 2.37) was assumed because of the lower unsaturated strength. The shapes of the

critical surfaces are also different as shown in Figures 2.44 and 2.45.

116



2-2.3.3. BEDROCK

The search procedure for the critical failure can be extended to account for the presence

of an underlying layer of bedrock at a known or given depth below the ground surface.

This is done by assigning very high values for the strength parameters of the bedrock

assuming it is intact, e.g. c'= 1OOkPa . By doing so, when the optimization tool is invoked

to minimize the factor of safety, intermediate failure surfaces that lie within the bedrock

are avoided because of the high assigned strength. Consider the slope in Figure 2.46,

and assume the presence of bedrock parallel to the slope surface at a depth of 7 m

below the ground surface. We adopt the Effective Stress Model (1959) for unsaturated

strength with an air entry suction, (ua - uw )entry = 0.1 kPa. A search for the critical

failure surface is performed and the results are shown in Figure 2.46.

-- --- - 4 5 .. .- ............. . ... ....-- .... ........ ....... .... ...... ...... ..... .. .

SOIL

10 - WATER
TABLE

CRITICAL FAILURE
SURFACE (BEDROCK)

E5
BEDROCK

-55 * ~ 10 -. E 25 30 35 4;0

CRITICAL FAILURE
SURFACE (NO

BEDROCK)

Figure 2.46. Critical Failure Surface in the Presence of Bedrock

A Factor of Safety of 1.98 is obtained as the minimum Factor of Safety in the slope.

Figure 2.46 shows that the critical surface lies entirely within the soil layer in the

presence of bedrock, at the soil bedrock interface. The assumption is made that the

strength parameters of the interface are those of the soil, and hence this result. Figure

2.46 also shows the critical surface in the absence of bedrock. A Factor of Safety of 1.92
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was obtained on this surface. The presence of bedrock confines the critical surface to

the soil layer, and by doing so, causes the increase in Factor of Safety.

2-2.4. COMMENTS ON THE METHOD OF SLICES

Setting up the problem of locating the critical failure surface as an optimization problem,
makes it straightforward to solve using a spreadsheet optimization tool. However,
several comments have to be made with regard to numerical difficulties encountered

when searching for the critical surface using a stability model based on the Method of

Slices, such as the Janbu (1973) Generalized Method (Abramson, 1995; Bromhead,
1994). These include:

1. The possibility that statically inadmissible failure surfaces may be generated as

the failure surface geometry is being varied during the optimization process. An initial

failure surface may be selected such that the optimization process fails to converge

using the Generalized Procedure of Slices. In Microsoft Excel this appears as a "NUM"

in the factor of safety cell. To avoid failure surfaces that lead to divergence during

iteration, Low and Tang (1997) propose a two stage optimization strategy. In the first

stage the formula in the t column (see Figure 2.35) is deleted (taken as zero by Microsoft

Excel). A temporary failure surface is obtained by the optimization tool. In doing so, the

second circular iteration introduced by t is eliminated, and divergence is prevented. This

is followed, in the second stage, by reinstalling the formula in the t column. The final

converged failure surface is obtained by the optimization tool.

2. The possibility of obtaining a critical failure surface on which the Factor of Safety

is a local minimum during the optimization procedure, but is not the global minimum in

the slope, where global refers to the entire subsurface of the slope. This arises because

depending on the particular geometric constraints in the optimization problem, and the

initial selected trial failure surface, there may be multiple solutions to the problem. This

gives rise to non-unique solutions, and during the iterative process the spreadsheet may

converge to one of these. Consider Figure 2.47. If the initial trial surface is chosen to be

that labeled surface 1, the spreadsheet converges to the critical surface labeled 1, and a

Factor of Safety of 2.34 is obtained. If however, initial trial surface 2 is selected, the
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resulting critical surface is the one labeled 2, and the Factor of Safety on this surface is

1.92.

1 6 - ------ ------- 1 ...... ... ...... . .......... - .-- -- --- -- ------ ---------

14 -

12

10- INITIAL WATER

8 CRITICAL SURFACE SURFACE1 TABLE

Ef FROM INITIAL 1

6 - ' INITIAL SURFACE

2

Figure 2.47. Comparison of Different Critical Surfaces Resulting from Different Initial Trial
Surfaces

Evidently, because of the lower Factor of Safety, critical failure surface 2 is the critical

surface in the slope. This again is a problem that arises when dealing with the Method

of Slices, and one way around the problem is to select several initial trial failure surfaces

located at different depths below the surface of the slope. Once local critical failure

surfaces, if different, are obtained, the factors of safety associated with these can be

compared, and thus the global minimum factor of safety failure surface and true critical

failure surface can be determined.

3. A third potential problem when dealing with the Method of Slices is that of large

angles that bases of slices make to the horizontal. The greater the number of slices used

in the analyses, the more accurate the results, but there is the problem of very steep

base angles that may give rise to incorrect results. This problem has been recognized in

the literature, and as a general guideline it has been suggested that the base angle

ci 45+± , where ca is the base angle (Bromwell, 1977; Morgenstern, 1978). In

Appendix B, we derive, theoretically, the maximum permissible angle in an Infinite Slope
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in terms of the slope angle and soil parameters. This has not been previously reported in

the literature, and we show that under certain conditions, the widely accepted

a< 45 + may be an unconservative estimate. This problem of maximum
2)

permissible angle in the Method of Slices is incorporated into the spreadsheet

procedure. When analyzing a specified failure surface, and after the slope is sectioned

into the desired number of slices, the spreadsheet automatically computes the base

angles of all slices, and reports to the user if an angle is too large for the analysis. This is

done by using an IF statement that compares the actual base angle to the maximum

angle. This is also incorporated into the search procedure such that if the spreadsheet

iterates through failure surfaces with too steep base angles, it will automatically report

the problem. The solution to this problem is a compromise on the number of slices used

in the analyses, where on the one hand a greater number of slices leads to more

accurate numerical results, but on the other hand, may give rise to this problem of

maximum angle.

2-2.5. MODEL VALIDATION

Thus far, the analyses have been performed on hypothetical slopes to illustrate the

capabilities of the spreadsheet optimization tool to search for the critical failure surface.

In this section, we validate the model by back analyzing a failed slope in Walton's Wood,
England.

THE LANDSLIDE AT WALTON'S WOOD

In 1963, a landslide occurred at Walton's Wood, about 1Y miles north of Madeley,
Staffordshire (Skempton &. Early, 1969). This site was where an embankment for the M6
motorway was to be built. A scaled drawing showing the geology is shown in Figure

2.48. The soil properties as measured at the Imperial Collage laboratories in London are

also shown in Figure 2.48.
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Figure 2.48. Geology and soil properties of the landslide site at Walton's Wood

The first 5 m of the slope is composed of a colluvium cover inclined at an angle of about

110 to the horizontal. The landslide occurred within the colluvium and the actual failure

surface is shown in Figure 2.49.
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Figure 2.49. Actual Failure Surface of Landslide
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The slope topography, location of the water table, and the soil strength parameters are

input the spreadsheet. The state of stability of the slope is then analyzed using Janbu's

Generalized Procedure of Slices (1973) by searching for the critical failure surface,

starting with the initial failure surface shown in Figure 2.50.
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Figure 2.50. Initial Trial and Predicted Failure Surfaces

The resulting predicted critical failure surface is shown in Figure 2.50. Figure 2.51

compares the predicted surface (solid line) with the actual failure surface (dashed line) of

the landslide.
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Figure 2.51. Comparison of Predicted Critical Failure Surface and Actual Failure Surface of
Landslide

The Factor of Safety for the critical failure surface shown in Figure 2.51 is computed to

be 0.99 indicating failure along this surface.

Figure 2.51 shows that the predicted failure surface is in very good agreement with the

observed failure surface. Minor discrepancies occur because of the discretiztion of the

problem into slices, as well as other factors such as the accuracy of the Generalized

Method of Slices (1973).

It should be noted here that this slope has been the subject of extensive studies, and the

soil strength parameters have been determined through intensive laboratory tests. This

makes it a good example to study, and test the validity of the spreadsheet procedure.

Furthermore, since the failure surface is shallow and planar, Janbu's Generalized

Procedure of Slices (1973) is well suited to analyze the state of stability.
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2-2.6. CONCLUSIONS

This part of Chapter 2 presented methods by which the stability of a slope on a specified

failure surface can be assessed using Janbu's Generalized Method of Slices (1973). The

method is based on a spreadsheet solution, and details of representing realistic site

conditions which include, fundamentally, the incorporation of suction and unsaturated

strength. Without these, a comprehensive landslide study is not possible. These include,

A method was presented within the spreadsheet framework by which a search for the

critical failure surface, and hence minimum Factor of Safety in a slope can be performed.

The method was validated by back analyzing a failed slope at Walton's Wood, and the

results are in very good agreement with the actual slide. These methods will be used as

the basis for stability analyses in this study.
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PART 2-3:

COMBINED MODEL

Various combined hydrology and stability models have been proposed in the literature

e.g. Anderson et al, (1990), Wilson and Wieczoreck (1996), Fredlund et al, (1998),

Crozier (2000). These, however, suffer from different shortcomings because of the

assumptions made in either the hydrologic or stability model, or both. The more

advanced infiltration and stability models developed in Parts 2-1 and 2-2 of this chapter

allow one to develop a combined model better suited for landslide analyses than the

current models being used in the literature. This, in turn, one to better estimate of

landslide hazards.

In Part 2-1, the basic flow principles involved during the process of infiltration were

described, and a model was developed that solved the pressure based form of the

variably saturated flow equation. This model allows one to predict pore pressure profiles

with time, given various initial and boundary conditions.

In Part 2-2, the basics of quantitative stability analyses were described, and a model was

developed that allows one to determine the state of stability of a slope, in terms of Factor

of Safety. This was first done for a specified failure surface, and then a search procedure

was described whereby the critical failure surface in the slope could be established.

In this part, the infiltration model is combined with the stability model. The combined

model uses the output of the infiltration model (variation of pore pressures with time) as

input in the stability model, which allows one to determine Factors of Safety in a slope as

a function of time. By doing so, the spatial and temporal hazards of landsliding can be

assessed. This is done in the same spreadsheet environment as the infiltration and

stability models.
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2-3.1. STATE OF STABILITY AT A PARTICULAR TIME FOR SPECIFIED FAILURE

SURFACE

The infiltration model developed in Part 2-1 gives the variation of pore pressures with

depth (pressure profiles) at successive times given certain initial and boundary

conditions. Section 2-2.3.1 described two methods to compute the pore pressures

acting along a specified failure surface during steady state conditions, namely from an

average pore pressure ratio ru, or from the known depth zw of a water table below the

ground surface. In this section, the pore pressures are extracted from the infiltration

model, and used in the stability model. This allows one to determine the transient state

of stability of a slope. An inherent assumption is made in the analyses, namely that any

rainfall event occurs with the same intensity on the slope. This implies that the intensity

or infiltration flux on the slope surface is the same at any particular time. By making this

assumption, one models the infiltration process in one dimension, the vertical dimension,

and the resulting pressure distributions apply to all sections along the slope. This

effectively eliminates the need to estimate pressures in the horizontal direction and only

those in the vertical direction are predicted. This is a reasonable assumption since

rainfall events, most frequently, occur on a large area, and would therefore occur on the

entire slope, as it is unlikely that rainfall would only take place on a certain section of the

slope only.

To do all this, the LOOKUP function in Microsoft Excel is used, which instructs the

spreadsheet to look up the depth to the failure surface, and report the value of the pore

pressures which are extracted from the hydrology model. The results of the hydrologic

analyses can be presented in tabular form, where the pore pressures are expressed as

a function of depth (see Figure 2.52a). By doing so, the LOOKUP function in Excel in the

stability model (see Figure 2.52b) takes the form:

uw = LOOKUP("Failure Surface Depth", "Pressure Profile Depth", "Pore Pressures")
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Pore pressures from hydrologic analyses input into stability model
using the LOOKUP function

Pore Pressures,
Depth u (kN/m2)

0.05 -1.528008654
0.1 -1.483639663 16.99992 5 7 1

0.15 -1.443789408 16.39 5 7 12 1.9239 3.154366 0.600522 1.923929 -1.80511

0. 1474882 14.15 5 5.5 10.5 2.3352 oas2 .4 4.269143 -1.56376
0.2 -1.407648898 3 12.15 5 4 9 2.2327 0.69672 2 4.567U89 -1.62393
0.25 -1.37461196 4 10.15 5 2.5 7.5 2.0945 .526 2 4.327202 -1.705

0.3 -1.344213174 5 8.15 5 1 6 2.1307 0.7681 2 4.225254 -1.68376

0.35 -1.316087856 6 6.15 5 .0.5 4.5 1.9071 0.638176 2 4.0376 -1.S1S

0.4 -1.289945343 7 4.15 5 -2 3 1.9558 0.774384 2 3.862924 -1.75638
a 2.15 5 -3.5 1.5 1.4516 0.497884 2 3.407461 -2.082280.45 -1.265550594 0.15 5 -s 0 0 -0.01 0.019193 2 1.441614 -2.93412

0.5 -1.242711204 10 -0.10278 5 -5 0 0 0 0.03956 10.22783 -0.01 -2.93412

Figure 2.52a. Results of
Hydrology Model at a
Particular Time (only

shown for small depths
upto 0.5m)

Figure 2.52b. Stability Model Set-Up (Part of)

Figure 2.52. Combined Model Spreadsheet Set-Up

With the notation in Figure 1, the LOOKUP function takes the form:

uw = LOOKUP((YT - YB), z,u)

where:

uw pore pressures acting on failure surface

YT is the vertical coordinate of the slope surface

YB is the y - coordinate of the failure surface

[2.111]

z column of the depths below the ground surface at which the pore

pressures are computed in the hydrologic model (see Figure 2.52a)

u pore pressures obtained from infiltration model (see Figure 2.52a)

With the function in Equation [2.111] for the pore pressures (in the uw column of Figure

2.52b), the spreadsheet automatically extracts the appropriate pore pressures from the

results of the hydrology model at any particular time, t. The Factor of Safety along the

specified surface is then computed as was described in Part 2-2.
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To illustrate the procedure consider the slope shown in Figure 2.53.
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Figure 2.53. Slope Properties and Initial Critical Failure Surface

The slope geometric and soil strength parameters are shown in Figure 2.53. In addition,

the soil hydraulic parameters are chosen as:

Saturated moisture content of soilOs = 0.37

Residual moisture content of soil Or = 0.03

Saturated conductivity Ks = 300cm /day = 2.89 x 10- 5 m / s

Specific storage coefficient Ss = 0.0025

The soil characteristic curves (see Part 2-1) are used to describe unsaturated properties.

The models developed by van Genuchten (1980) are used (see Part 2-1). The

parameters of these models are chosen to be n = 2.24 and 8 = 0.03. The resulting soil

characteristic curves are as shown in Figures 2.54 and 2.55.
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The air entry pressure (see Part 2-1) is obtained from Figure 2.54, and estimated to be

(ua - uw )entry = 1kN / in. A more detailed procedure to do this was provided in Part 1 of

this chapter. The air entry pressure is used in the Effective Stress Model (Bishop, 1959)

for unsaturated soil strength (see Part 2-2.2).
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2-3.1.1. INITIAL STATE OF STABILITY

A failure surface is specified and this is shown in Figure 2.53. Assuming an infinite slope

and full capillarity, steady state conditions imply that flow occurs parallel to the slope

surface in both the saturated and unsaturated zones. The corresponding pore pressures

vary linearly with depth as:

uw = (Z - zw)Y COS2 [2.112]

where:

uw is the mean pore water pressures at a depth z below the ground surface

zw is the depth of the water table below the ground surface

YW is the unit weight of water

is the inclination of the slope to the horizontal

Equation [2.112] results in positive pressures in the saturated zone of the slope below

the water table where z > zw , and negative pressures in the unsaturated zone, above

the water table where z < zw (see Figure 2.56). The initial (antecedent) moisture

content in the slope can be inferred from Equation [2.112]. Below the water table the

moisture content is equal to the saturated moisture content of the soil, and above the

water table, the moisture content is less than the saturated value, and is related to the

pressures in Equation [2.112] through the soil characteristic curves, e.g. Figure 2.54.

However, in the majority of natural settings/slopes, the initial moisture content

distribution, particularly near the surface of the soil is dictated by antecedent rain

conditions. During wet seasons, the antecedent (initial) moisture distribution is likely to

be greater than that inferred from Equation [2.112]. For this example, we assume a

constant antecedent moisture content of i = 0.08 near the surface of the slope, through

a depth, we call, zi (see Figure 2.56) below the ground surface. This corresponds to an

initial pressure of about ui = -12kN/m 2 , which is obtained from the soil moisture

retention curve (see Figure 2.54). The depth z, is then obtained as the depth at which
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the pore pressures in Equation [2.112] are equal toui. The initial pore pressure

distribution is then obtained by specifying the value of ui = --12kN/m2 for all depths

smaller than zi , and evaluating the pressures according to Equation [2.112] for depths

greater than zi. This is illustrated in Figure 2.56.

Pore Pressures
Specified/obtained --- -

from Initial Moisture

SOIL
------- --- ~---

1: .1 WATER
zi zz' TABLE

zw

z>Zw

Pore Pressures -- -
Computed from
Equation [2.112]

_.....-ve 
+ve

Figure. 2.56. Illustration of Initial Pressure Distribution

In this example, the initial pressure distribution on the failure surface is shown in Figure

2.57 at time t = 0 hrs.
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Figure 2.57. Initial Variation of Pore Pressures on Specified Failure Surface (t = 0 hr)

A Factor of Safety of 1.12 is obtained on the specified failure surface shown in Figure

5.27, using the Janbu Generalized Procedure of Slices (1978) and the slope is initially

stable.
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2-3.1.2. STABILITY DURING/AFTER RAIN

We assume a rainfall event with constant intensity, I = 165mm / hr occurs for duration of

8 hours. Figure 2.58 shows the water content distribution at selected times, prior to,

during and after rain, and Figure 2.59 shows the corresponding pore pressure profiles.

Water Content (m3 m3
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

5

- 0- hr -* 2hr

+-4hr -w-6hr

--- 8hr -10hr

Figure 2.58. Moisture Distribution Profiles at Selected Times
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Figure 2.59. Pore Pressure Profiles at Selected Times

Figure 2.58 shows that as the rainwater infiltrates into the slope it saturates the soil

above it, as the moisture content is equal to the saturated moisture content. This is

because the rain intensity is greater than the saturated conductivity of the soil at the

surface. Figure 2.59 shows that positive pressures develop within the infiltration depth at

specified times during rain. These pressures continue to build up gradually with

increasing rainfall. At times greater than 8 hours, moisture and pressure redistribution

takes place.

The state of stability of the slope can be assessed at any particular time. Consider time t

= 5 hrs for example. The pore pressures along the specified failure surface are shown in

Figure 2.60.
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Figure 2.60. Variation of Pore Pressures on Specified Failure Surface at Time t = 5 hrs

Note that the pressures along the failure surface are different from the initial pressures

shown in Figure 2.57. The difference occurs in the first few meters below the ground

surface where infiltrating rainwater causes an increase in pressures. The state of

stability of the slope is assessed and a Factor of Safety of 1.1 is obtained. This is smaller

than the initial Factor of Safety on failure surface because of the loss of strength due to

the increase in pressures.

In this section, the stability of a slope was assessed at a given time for a specified failure

surface. This serves as the basis of the analyses performed in the following sections.

2-3.2. TEMPORAL STABILITY ON A SPECIFIED FAILURE SURFACE

Once the spreadsheet is set up to compute the Factor of Safety on a specified failure

surface for a particular time, t, as described in Section 2-3.1, the analyses can be

extended to assess stability as a function of time. Stability can be assessed prior, during

and after a rainfall event. This is achieved using a VBA code in Microsoft Excel. The

code follows the steps shown in Figure 2.61.
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Step 1. Compute the Factor of Safety on the failure surface using the pore pressures at

time t = to. This is the initial state of stability.

Step 2. Increment the initial time t = to, by At such that t1 = to + At.

Step 3. Compute the pore pressure variations at a time t1 =to + At for given soil

hydraulic parameters, and known characteristics of rainfall, and initial and boundary

conditions.

Step 3. Extract the pore pressures along the failure surface at t1 = to + At and input

these into the stability model.

Step 4. Compute the Factor of Safety at time t1 = to + At.

Step 5. Repeat Steps 2 to 4 at times ti = ti- 1 + At, for i = 2,..., r , where r is the final

chosen time for analyses.

Figure 2.61. Procedure for Temporal Stability Analyses for a Specified Failure Surface

The results are in the form of a plot of Factor of Safety with time. To illustrate this, we

reconsider the slope shown in Figure 2.60, along with the specified failure surface shown

in the same figure. We assume a constant intensity I = 165mm / hr rainfall occurs for

duration of 8 hours. The moisture content and pore pressure profiles are shown in

Figures 2.58 and 2.59 respectively.

The procedure described in Figure 2.61 is then applied to determine the state of stability

of the slope as a function of time during and after rain. Figure 2.62 shows the variation of

the Factor of Safety along the failure surface with time.
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Figure 2.62. Variation of Factor of Safety with Time for a Specified Failure Surface

Figure 2.62 shows that there is a decrease in Factor of Safety with time as the infiltrating

rainwater increases the subsurface pressured thereby decreasing soil strength. This

decrease in Factor of Safety is not very significant in this example, because of the

location of the specified failure surface which is located deep in the slope. The Factor of

Safety begins to increase at times greater than 8 hours as rain is stopped, and

redistribution takes place.

2-3.3. TEMPORAL STABILITY WITH SEARCH FOR CRITICAL FAILURE SURFACE

The temporal analyses presented in Section 2-3.2 can be extended to include a search

for the critical failure surface at each time step. The method for locating the critical

surface was described in Part 2-2.3, and involves an optimization procedure. By
performing this search at every time step, the critical surface is located and the minimum

Factor of Safety in the slope is computed. The procedure for doing this is in Figure 2.63.
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Step 1. Compute the Factor of Safety on the failure surface using the pore pressures at

time t = to. This is the initial state of stability.

Step 2. Increment the initial time t = t0 , by At such that t1 = to + At.

Step 3. Compute the pore pressure variations at a time tj =to + At for given soil

hydraulic parameters, and known characteristics of rainfall, and initial and boundary

conditions.

Step 4. Extract the pore pressures along the failure surface at tj = to + At and input

these into the stability model.

Step 5. Invoke the spreadsheet's built-in optimization tool (Solver in Microsoft Excel) to

locate the critical failure surface at time t1 = to + At, starting with an initial trial surface.

Step 6. Compute the Factor of Safety is computed on this surface. This is the minimum

Factor of Safety in the slope at t1 = to + At.

Step 7. Repeat Steps 2 to 6 at times ti = ti_1 + At, for i = 2,..., r , where r is the final

chosen time for analyses.

Figure 2.63. Procedure for Temporal Stability Analyses with Search for Critical Failure Surface

The results are in the form of variation of minimum Factor of Safety in the slope as a

function of time. Since the critical surface is located at each time step, these can also be

shown. From these results, one can conclude whether a slope will remain stable or fail

as a result of a particular rainfall event. In the case where failure takes place, the critical

failure surface can be located, and the time to failure from the onset of rain can be

determined. The analyses, therefore, allow one to estimate landslide hazards (spatial

and temporal).

The procedure described in Figure 2.63 is applied to the slope shown in Figure 2.64.

The search for the critical failure surface procedure requires specification of an initial trial

surface. For this, a shallow surface is chosen that is located above the water table

shown in Figure 2.64.
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Figure 2.64. Shallow Initial Trial Surface

A plot of the minimum Factor of Safety with time is shown in Figure 2.65.

139

)



1.5 -

1.3 -- - - - --- - - -

1.2 - - - - -- - -

1- .2 ----- - ---------- - -- --- ---- -- - -- --- -- --- ------ ------------ --- ---- -- --

-. - - --- ---- -- --- -- ----- -------- ------ - ------------ ----- - ---

LL 0.9 - -------

0.8 - ---- ---

0. ---------------- -- - ------------------ -- - ---

0.5
0 1 2 3 4 5 6 7 8 9 10

Time (Hours)

Figure 2.65. Variation of Factor of Safety with Time with Search for Critical Failure Surface
Starting from an Initially Shallow Trial Surface

Figure 2.65 shows that the minimum Factor of Safety decreases with time, and is less

than one at a time of about 5 hours. This indicates slope failure as a result of rain. The

critical failure surfaces obtained at different times are shown in Figure 2.64.
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Figure 2.66. Illustration of Critical Failure Surfaces with Time Starting from a Shallow Initial Trial
Surface

Figure 2.66 is intended to illustrate the different critical surfaces obtained during the

search procedure that forms part of the part of the process to determine the minimum

Factor of Safety in the slope. The critical failure surface at a time of 5 hours, along which

failure will occur is shown in Figure 2.67.
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Figure 2.67. Critical Failure Surface in Slope

Figure 2.67 shows that the slope will fail along a shallow failure surface. Failure takes

place as a result of the decrease in unsaturated strength caused by infiltrating rain.

A comparison of Figures 2.62 and 2.65 shows that a search for the critical failure surface

is necessary for a comprehensive stability study. Based on a specified failure surface

(Figure 2.62) one would conclude that the slope would survive the rainfall event,

whereas if a search was performed for the critical surface (Figure 2.65) one would

conclude that the slope would fail.

142

-- 61



2-3.4. DISCUSSION

The combined hydrology stability model developed in this chapter allows one to evaluate

the stability of a slope for a single rainfall event as a function of time. It can be

appreciated that different rainfall characteristics, and antecedent moisture conditions, will

result in different pore pressures profiles, and hence different Factors of Safety with

time. This is the spatial hazard of landsliding. In a specific slope, failure can occur as a

result of a wide range of rainfall characteristics (intensity and duration) for given

antecedent conditions. The combined model developed in this chapter allows one to

determine the combinations of rainfall intensities and durations that can lead to slope

failure. This, in turn, allows for the definition of a landslide initiation threshold in terms of

the intensity and duration of the triggering event. Combinations of intensity and duration

lying above the threshold are capable of initiating landsliding in the slope, and those that

lie below are not. Figure 2.68 shows a schematic of such an initiation threshold derived

for a hypothetical slope.

LANDSLIDE TRIGGERING THRESHOLD

1000

E

C

100

10
1 10 100 1000

Duration (h)

Figure 2.68. Schematic of Landslide Initiation Threshold
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Caine (1980) performed a review of previously published worldwide data on

rainfall-induced landslides and plotted intensity-du ration combinations known to

have caused landslides. This is shown in Figure 2.69.

1000- - ------- ----- ----- ------ --

100 - - -- - --

E

CU

0.1
0.01 0.1 1 10 100 1000 10000

Duration (h)

Figure 2.69. Worldwide Landslide Initiation Threshold (after Caine, 1980)

The probability that a triggering rainfall will occur can then be determined from the

intensity distribution of the local rainfall records. This probability represents temporal

hazard of landsliding, which can now be assigned a quantitative value.

In addition, such initiation thresholds can and have been used in real-time landslide

warning systems such as in California (Keefer et al., 1987).

2-3.5. CONCLUSIONS

In this chapter, a combined hydrologic stability model was developed based on the

Infiltration model developed in Part 2-1, and the stability model in Part 2-3. This model is

more advanced, and better suited for landslide analyses than other models proposed in

the literature, because it has been specifically designed for this purpose. It includes:
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(a) An infiltration model that solves the pressure (as opposed to moisture content)

based form of the flow equation, and therefore considers both saturated and

unsaturated flow.

(b) The incorporation of suction and unsaturated strength into stability analyses.

(c) A search for the critical failure surface, and hence minimum Factor of Safety in

the slope.

These factors are essential for the study of landslides, particularly shallow landslides.

The model allows one to asses the state of stability of a slope prior, during and after

rainfall as a function of time. This is done for a specified failure surface. A method was

outlined whereby the critical failure surface, and hence minimum Factor of Safety in the

slope, can be determined as a function of time, thereby estimating the spatial hazard of

landsliding. Landslide initiation thresholds for a specific slope can be established using

the combined model. This, coupled with the local rainfall records allows one to estimate

temporal landslide hazards. Therefore, landslide hazards can be assessed

deterministically.
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CHAPTER 3

FAILURE MECHANISMS

3.1 INTRODUCTION

Landslides occur in various parts of the world under different geological and climatic

settings. Over the years, a significant.amount of research has been devoted to identify

the mechanisms of rainfall induced landslides, but these remain poorly understood. The

reasons for this include the inherent complexity of the phenomena, the limited field data

available and the fact that current models used to study landslides are too simplistic. In

general, rainfall induced landslides occur because rainwater increases subsurface pore

pressures, which cause a reduction in soil strength that may ultimately lead to failure.

This chapter, after describing some of the previous work by others, presents a

comprehensive study on landside failure mechanisms. The latter is made possible by the

development of more advanced hydrologic and stability models that were discussed in

Chapter 2. Landslide failure mechanisms are classified into two categories related to the

manner in which a slope is saturated during a rainfall event, namely saturation from

below by a rising water table, and saturation from above by rainfall infiltration. For each

category, conceptual failure mechanism(s) are first proposed, and then illustrated with a

series of hypothetical slopes.

3.2 PREVIOUS WORK

One of the earliest studies on landslides was that conducted by Campbell (1975), who

proposed that during rainfall a saturated zone develops at the hydraulic conductivity

discontinuity between the soil and the underlying bedrock. This zone progresses

upwards with continued rainfall causing a rise in the water table, and the generation of

excess pore pressures. In certain slopes, this increase in pore pressures could be

sufficient to trigger a landslide at the strength interface between the soil and bedrock.

This mechanism, although widely accepted to this day, failed to explain why many

landslides observed in the field were shallow, with failure surfaces within the first couple

of meters of soil. Several studies attempting to explain these shallow landslides followed.
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These studies showed that the infiltration of rainwater has an adverse effect on its

stability by increasing pore pressures in the unsaturated zone of the slope.

However, the magnitude of increase in pressures necessary to trigger a landslide,

remains a matter of debate. Based on this, landslide studies can be separated into three

categories according to the effects the rainwater has on suction (since the pore

pressures are initially negative in unsaturated soil) as:

(a) Suction is eliminated during rainfall: One of the first studies on shallow landslides

was conducted by Lumb (1975) who proposed that rainwater infiltrates into a slope in

the form of a downward traveling saturated wetting front that eliminates the suction

above it. This leads to a reduction in unsaturated soil strength and ultimately failure.

This mechanism was also suggested in subsequent studies e.g. Morgenstern and

Matos (1975), Brand et al. (1984), Pradel and Raad (1995). Figure 3.1 shows a

schematic of this mechanism.

Initial Pressure
Distribution

Hydrostatic
Pressure

Y \

Water
NTable

Negative 4- 0 -* Positive

Suction I
elimination

.. . .---.

Wetting
Front

Failure
Surface

VAWater
N- -Table

Negative 4 0 0. Positive

Figure 3.1. Schematic of Failure Mechanism by Elimination of Suction (Negative, 0, Positive
Indicate sign of pore pressures)

The problem with these studies is that they are largely conceptual, in that they provide

limited support by analyses, and/or field measurements. This initiated further research

and ensuing studies can be separated as follows:
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(b) Positive pore pressures during rainfall: These studies support the notion that positive

pore pressures need to develop during a rainfall event to cause failure, and the

elimination of suction does not reduce strength sufficiently to cause landsliding e.g.

Johnson and Sitar (1990), Reid (1992), Angeli (1995). These studies provide a strong

analytical basis in the form of combined hydrologic and stability modeling e.g. Costa

(1998). Figure 3.2 shows a schematic of this mechanism.
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Sdistribution

'' \

- --- Water
\ Table

Negative 4- 0 -- Positive

Positive
pressures

Failure
Surface

.. _..- W ater
Table

Negative 4- 0 - Positive

Figure 3.2. Schematic of Failure Mechanism by Development of Positive Pressures (Negative, 0,
Positive Indicate sign of pore pressures)

Field observations of failed slopes, though limited, have also shown that positive

pressures develop during rainfall e.g. Johnson and Sitar (1995). Because of the strong

theoretical and practical support, this mechanism is generally accepted amongst

investigators.

(c) Suction is reduced during rainfall: These studies are based on the notion that even

the reduction of suction during rainfall can be sufficient to initiate a landslide. e.g. Ho and

Fredlund (1982), Rahardjo et al., (1995). These studies incorporate unsaturated soil

mechanics, since failure is assumed to take place in soil that remains unsaturated.

Figure 3.3 shows a schematic of this mechanism.

148

- - - - - - - - - - - - - - - - - - - - - - - - - --



Initial Pressure
\ distribution

Hydrostatic ,
Pressure

YW\

Suction
reduced

-- --4
Failure
Surface

-W
Water

\ Table

Negative 4- 0 -- + Positive

- Water
Table

Negative +- 0 -*- Positive

Figure 3.3. Schematic of Failure Mechanism by Reduction of Suction (Negative, 0, Positive
Indicate sign of pore pressures)

These mechanisms remain conceptual and studies provide little or no theoretical

support, a problem that is compounded by the limited understanding of unsaturated soil

behavior. Furthermore, there have been very limited and unreliable field observations

where changes in suction have been recorded during rainfall, which is understandable

since these changes in suction are often very rapid, and difficult to measure.

There is, therefore, no general agreement on the mechanisms that lead to shallow

landslides and these remain poorly understood. To better understand these

mechanisms, a combined hydrologic stability model was developed in Chapter 2, and is

used to conduct an extensive study of rainfall-induced slope failure. A summary of the

results, and the conclusions that can be drawn from them are provided in the following

sections.
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3.3 FAILURE MECHANISMS

Landslides are complex phenomena and their initiation is affected by a great number of

factors. These factors can be classified into three major categories: geometric factors,
geologic factors, and hydrologic factors, while recognizing that other factors also play a

role. Table 3.1 attempts to list some of these factors.

Geometry Geology Hydrology Others

Soil Rock Site Trigger

Slope Thickness Location of Location of Rainfall Surface

Inclination Bedrock Water Table Intensity Conditions

Stratigraphic Fracture Subsurface Rainfall such as

Setting Geometry Flow Duration Vegetation,

(Homogenous/ Regime Cracks and

Heterogeneous) Micro-Pores

Strength Strength Antecedent

Properties Moisture

(Saturated and Content

Unsaturated)

Unit Weight Conductivity

(Saturated and

Unsaturated)

Hydraulic

Conductivity

Characteristic

Curves

Grain and Pore

Size Distribution

Porosity

Conductivity

Table 3.1. Some Factors that Affect Landslide Initiation

Figure 3.4 shows in schematic form, some of the factors listed in Table 3.1.
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Figure 3.4. Schematic of Some Factors that Affect Landslide Initiation

A critical combination of these factors, and the interaction between them is required for

landslide initiation. In this section, landslides are classified into two categories related to

the manner in which a slope is saturated during a rainfall event, namely saturation from

below by a rising water table, and saturation from above by rainfall infiltration. For each

category, conceptual failure mechanisms are first proposed, and then illustrated with a

series of hypothetical slopes using the combined hydrologic stability model developed in

Chapter 2.

Prior to performing numerical analyses, it is necessary to specify realistic values (ranges

of values) for each of the parameters that enter the landslide analyses. For this purpose,

a compilation of the values of various parameters was obtained through an extensive
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study of published work (e.g. Lacasse and Nadim, 1998; Kulhawy, 1997, 1998; Duncan,

2000) where landsliding was documented. These are presented in Table 3.2, and

illustrated in Figure 3.5.

PARAMETER VALUE OR

SYMBOL DEFINITION RANGE

z Depth of the soil layer below the ground

surface

zw Depth to the water table below the ground 0 - z (m)

surface

hw Depth of the water table above the bedrock 0 - z (m)

Angle of shearing resistance 15 -350

(00)

c' Cohesion 0 -100 kN/m 2

P Slope angle 25-450

7s Saturated unit weight of soil 18 - 22 kN/m2

7w Unit weight of water 9.81 kN/m 2

IS Hydraulic Conductivity (m/s) 1 x 10-7 -1 x 10 4

(ua - uw )entry Air Entry Pressure 0 - 100 kN/m 2

D Rainfall Duration (h) 2 - 16 h

I Rainfall Intensity (mm/hr) 10 - 300 mm/hr

Os Saturated Moisture Content

01 Antecedent Moisture Content or <O> <O

Or Residual Moisture Content 0 <Or <Os

n van Genuchten Parameter 0.5 - 3.5

6 van Genuchten Parameter 0.001 - 0.03

Table 3.2. Symbols and Typical Range of Values of Parameters used in Landslide Analyses
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Figure 3.5. Schematic of Parameters in Landslide Analyses

In the following sections, the Coulomb Model is used to describe saturated soil strength,
and the Bishop (1959) Model is used for unsaturated strength. As stated in Chapter 2,
Part 5-2, this model is considered to be a more intuitive model than the Independent

State Variable Model (Fredlund et al., 1978) and so is used.
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3.3.1 FAILURE BY SATURATION FROM BELOW

In order to model the effects of infiltration on subsurface pore pressures and stability of a

slope, it has been traditionally assumed that a saturated zone develops at the hydraulic

conductivity interface between the soil and the underlying bedrock. This occurs both due

to the effects of infiltrating rainwater, and recharge from higher slope sectors. This zone

progresses upwards with continued rainfall causing a rise in the main water table, and

the generation of excess pore pressures. Given favorable site conditions, this increase in

pore pressures could be sufficient to trigger a landslide at the strength interface between

the soil and bedrock. This is illustrated in Figure 3.6.

Pot
Fa
Su

Rise in Rainfall
Water
Table.

ential
ilure
rface

Shallow Water
Bedrock Table

Increase in -
Saturated Zone forms Pressures

3using Rise in Water Table

Negative 4- 0 -- Positive

Figure 3.6. Schematic of Failure Mechanism caused by Saturation from Below (Negative, 0,
Positive Indicate sign of pore pressures)
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This mechanism was first suggested by Campbell (1975), and remains to this day, a

widely accepted mechanism for deep seated slides. To demonstrate this mechanism,

consider the hypothetical slope shown in Figure 3.7.

c'= 10kN/m 2

10 = 30O

10 - (Ua-UJentry= 30k<N/m2 r

_ WATER TABLE

BEDROCK

5 1 15 '25 30
INITIAL CRITICAL

x (M) FAILURE SURFACE

300

35 4,b

Figure 3.7. Slope Geometry and Strength Parameters

The saturated soil strength parameters are shown in Figure 3.7, and the Effective

Strength Model (Bishop, 1959) (see Chapter 2 Part 2-2) is used to describe unsaturated

strength, with an air entry pressure of (ua - uw )entry = 30kN / m2 . The water table is

assumed to be at a depth of 3m below the ground surface. A search for the critical

failure surface is performed, as detailed in Chapter 2, Part 2-2, and the results are

shown in Figure 3.7.

The critical failure surface is located at the strength discontinuity between the soil and

bedrock (see Figure 3.7). A Factor of Safety of 1.2 is computed on this surface, and

hence the slope is stable.

We now assume a rainfall event takes place that causes a 1m rise in the water table.

The subsurface pore pressures are altered as shown in Figure 3.8.
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Figure 3.8. Initial and Final Pressure Distributions

The new critical failure surface is located with the new hydraulic conditions and is shown

in Figure 3.9.

c'= 1OkN/m
2

0'= 300

(U,-Uw),ntry= 30kN/rm2
- WATER TABLE

S 

DSOIL

BEDROICK

25 30

(m) CRITICAL FAILURE
SURFACE

Figure 3.9. Critical Failure Surface for a Rise in Water Table
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The Factor of Safety on the surface in Figure 3.9 is computed to be 0.90, indicating a

landslide. The failure surface lies at the soil bedrock interface resulting in a deep seated

landslide.

This example illustrates that a rise in the water table can lead to a reduction in soil

strength that can be sufficient to trigger a landslide. This demonstrates the failure

mechanism caused by saturation from below. Since this mechanism is the most widely

accepted and commonly adopted mechanism for deep seated landslides, no further

discussion is provided in this section.
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3.3.2 FAILURE BY SATURATION FROM ABOVE

As mentioned in the introduction to this Chapter, the mechanisms of landslides caused

by infiltrating rainwater from the surface of the slope downwards are poorly understood.

While there is common agreement between investigators that infiltrating rainwater has

an adverse effect on slope stability, there is no general agreement on the processes by

which landsliding occurs. These processes, and the mechanisms of the resulting

landslides are therefore studied in more detail in this section.

Prior to rainfall, the initial moisture content distribution in the slope is defined by the

location of the water table and antecedent rain. A subsurface pore pressure distribution

is associated with this moisture content distribution through the soil characteristic curves,

and the subsurface flow regime. As it rains and rainwater infiltrates into the soil, the

moisture content increases. This causes an increase in the pore pressures, which may

ultimately lead to instability. In this study, a distinction is made between failure

mechanisms depending on whether infiltrating rainwater reduces suction, eliminates

suction, or causes positive pressures to develop. The specific hydrologic response of the

soil will depend on the rainfall intensity in relation to the saturated conductivity of the soil

at the slope surface, as well as on the soil intrinsic hydraulic properties. In general, if the

intensity is less than the saturated conductivity, the rainwater cannot fully saturate the

soil and all the rainwater infiltrates into slope causing a reduction of suction. If the

intensity has similar magnitude to the saturated conductivity, a wetting front develops

and infiltrates into the slope eliminating suction, and if the intensity is greater than the

saturated conductivity positive pressures develop.

To illustrate these mechanisms, the combined hydrology-stability model that was

developed in Chapter 2 will be used to assess the state of stability of hypothetical

slopes, prior and during/after a rainfall event.

Recall, from Chapter 2, that this model combined a variably saturated flow model, with a

slope stability model. Both variably saturated flow, and slope stability through soil

strength, depend on unsaturated soil properties. Unsaturated soil properties can be

described using the soil characteristic curves, namely the soil moisture retention curve,

and the hydraulic conductivity curve. These were described in Part 2-1 of Chapter 2.
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Figure 3.10 shows a schematic of the soil moisture retention curve, along with the

definition of some of the parameters that were introduced in Part 2-1 of Chapter 2.
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Content, Or
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Figure 3.10. Schematic of Soil Moisture Retention Curve

In particular, Figure 3.10 illustrates the definition of the air entry pressure,

(ua -, uw )entry, which is the pressure below which changes in pressure do not produce

significant changes in moisture content (see Figure 3.10). There is some ambiguity in

the definition of the air entry pressure, and as a result various methods have been

developed to determine the air entry pressure. Depending on the method adopted,
different air entry pressure may be evaluated. The air entry pressure will be determined
for different soils, and compared throughout this Chapter. However, in light of what has
been just stated above, these comparisons are made for qualitative value rather than
rigorous quantitative value.
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Several models have been developed to describe the soil characteristic curves. The

models developed by van Genuchten (1980) will be used in this Chapter. These were

described in Chapter 2, Part 2-1.

It is worth mentioning here that the air entry

the Effective Stress Model (Bishop, 1959)

Chapter 2. Figure 3.11 shows a schematic

unsaturated strength.
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suction, also affects unsaturated strength, if

is used, as was described in Part 2-2 of

of the influence of the air entry suction on

Soil 1

Soil 2

Air Entry
Pressure of

Soil 1

0 20 40 60 80 100 120

Absolute Pressure (kN/m 2)

140 160 180 200

Figure 3.11. Schematic of Influence of Air Entry Suction on Unsaturated Strength

The air entry pressure will therefore affect both hydrologic and stability analyses. Again,

because of the ambiguous definition of the air entry suction, no strong, rigorous

quantitative conclusions will be made regarding it in this Chapter, and instead

conclusions are made for qualitative value.
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3.3.2.1 REDUCTION OF SUCTION

When the intensity of a rainfall event is less than the saturated conductivity of the soil at

the surface, all the rainwater infiltrates into the slope and suction in the wetted zone is

reduced. This is to say that the pore pressures increase, but remain negative, as is

shown in Figure 3.12.

Thin Zone of
Saturated Soil

Potential -
Failure ''' Reduction of
Surface . Suction A Rainfall

Infiltration

Bedrock

- Deep Water
Table

Negative 4 0 -- Positive

Figure 3.12. Schematic of Failure Mechanism (Reduction of Suction) (Negative, 0, Positive
Indicate sign of pore pressures)

This reduction of suction causes a corresponding reduction in soil strength. In this

section, we show that in certain slopes a reduction in unsaturated strength can be

sufficient to initiate a landslide.

Consider the slope shown in Figure 3.13.
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c'= 0.7kN/m 2

p'= 260

(ua-uw),ty=2kN/m2
SOIL

v WATER TABLE

BEDROCK

10

INITIAL CRITICAL
FAILURE SURFACE

350

Figure 3.13. Slope Properties and Initial Critical Failure Surface

The slope geometric and soil strength parameters

hydraulic parameters are taken to be:

are shown in Figure 3.13. The soil

Saturated moisture content of soil O = 0.47

Residual moisture content of soil Or = 0.11 (see Chapter 2 Part 2-1)

Saturated conductivity KS = 250cm/ day = 2.89 xl- 5m / s

Specific storage coefficient Ss = 0.005 (see Chapter 2 Part 2-1)

It is necessary to adopt models to describe unsaturated soil properties through the

characteristic curves. For this purpose, the models developed by van Genuchten (1980)

are used (see Chapter 2 Part 2-1). The parameters of these models are chosen to be

n = 3 and 6 = 0.007, and the resulting soil characteristic curves are as shown in Figures

3.14 and 3.15.
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Figure 3.14. Moisture Retention Characteristic Curve
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Note that the air entry pressure in Figure 3.14 is about (ua -uw )entry = 2kN/m 2 . This is

used in the Effective Stress Model (Bishop, 1959) Model for unsaturated soil strength

(see Chapter 2 Part 2-1).

INITIAL CONDITIONS

Let the water table in a slope be located at a depth of zw m below the ground surface.

Assuming an infinite slope and full capillarity, so that hydrostatic conditions prevail,

steady state conditions dictate that flow occurs parallel to the slope surface in both the

saturated and unsaturated zones. The corresponding pore pressures vary linearly with

depth as:

uW = (z - Zw)7w COS2 [3.1]

where:

uW is the mean pore water pressures at a depth z below the ground surface

zw is the depth of the water table below the ground surface

Yw is the unit weight of water

p3 is the inclination of the slope to the horizontal

A problem arises when adopting Equation [3.1] for the pressure distribution throughout

the unsaturated soil, namely that very high, sometimes unrealistic pressures result away

from the water table. Furthermore, the initial pressure distribution will also be governed

by the initial moisture content distribution, which in turn depends on antecedent rainfall.

So, instead of using Equation [3.1] throughout the unsaturated zone, it is only used at

depths close to the water table, and an initial and constant pressure is assumed at

shallow depths below the ground surface. This initial pressure will depend on the initial

moisture content as stated previously. This is shown schematically in Figure 3.16.
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Figure 3.16. Illustration of Initial Pore Pressure Distribution Selection (Negative, 0, Positive
Indicate sign of pore pressures)

In this particular example, an initial moisture content of O; = 0.25 is assumed. This

results in an initial pressure of about ui = -22kN / m2 , which is obtained from the

characteristic curves (see Figure 3.14). Note that this initial moisture content indicates

relatively dry conditions, since it is slightly greater than the residual moisture content of

the soil. The soil characteristic functions are also used to determine the depth below the

ground surface, zi at which this moisture content is reached under the assumption of full

capillarity (see Figure 3.14). The initial pressure distribution is then obtained by

specifying the value ui = -22kN / m2 at depths smaller than zi, and computing the pore

pressures at depths greater than zi from Equation [3.1] (see Figure 3.16).
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The Coulomb model is used to describe saturated strength, and the Bishop (1959)

model is used to describe unsaturated strength. A search for the critical failure surface in

the slope is performed, and the results are shown in Figure 3.13. A Factor of Safety of

1.23 is obtained as the minimum Factor of Safety in the slope, and hence the slope is

initially stable.

STABILITY DURING/AFTER RAINFALL

We assume a rainfall event with constant intensity, I = 75mm / hr occurs for duration of 8

hours. Note that this intensity is less than the saturated conductivity of the soil at the

surface. Figure 3.17 shows the water content distribution at selected times, prior to,
during and after rain, and Figure 3.18 shows the corresponding pore pressure profiles.
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Figure 3.17. Moisture Content Profiles at Selected Times
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Figure 3.18. Pore Pressure Profiles at Selected Times

Note that the moisture and pressure profiles at time

describe initial conditions.

t=O hr in Figures 3.17 and 3.18

Figure 3.17 shows that the rainwater increases the moisture content in the soil, as

infiltration takes place. The intensity of the rain is insufficient to fully saturate the soil,
and so the soil does not reach full saturation as shown in Figure 3.17. The initial suction

in the soil is reduced, and the pore pressures remain negative, because the intensity of

the rain is less than the saturated conductivity of the soil. This is shown in Figure 3.18.

Figure 3.18 shows that the maximum pore pressures occur at the end of the 8 hour

rainfall event. Moisture and pressure redistribution takes place immediately after the
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cessation of rain e.g. t=10 hr. Given the pressure profiles in Figure 3.18, the procedure

described in Chapter 2, Part 5-2, is then used to asses the stability of the slope.

It is worth making a couple of comments prior to this:

Stability models require the specification of a pore pressure distribution. The majority of

current landslide studies adopt or assume a single pressure distribution (at a particular

time) in stability analyses. This is frequently taken to be the maximum pressures during

rainfall, as it is assumed that these would result in lowest stability conditions.

However, as will be shown in this Chapter, deciding on which pressure distribution (time)

to use in stability analyses is not a simple problem. It is a critical combination of factors

that lead to instability, and this critical combination need not necessarily imply maximum

pore pressures. For a comprehensive landslide study, one needs to determine the

variation of Factor of Safety with time, both during and after the end of rain. From this,

the critical failure surface, on which the Factor of Safety in the slope is minimum can be

obtained.

Another problem that arises is that of specifying a potential failure surface. Many of the

current landslide studies rely on stability models that require the assumption of a failure

surface on which Factors of Safety are computed. Fewer, more comprehensive studies,

employ a search for the critical failure surface, as described in Chapter 2, Part 2-2. But

such analyses, require the selection of an initial trial failure surface from which the

critical surface is located. Different critical failure surfaces may be obtained depending

on the chosen initial failure surface. This is because the stability problem is

indeterminate, and so, Factors of Safety on these critical surfaces may be local minima

but not global minima. This problem was discussed in Chapter 2, Part 2-2. Hence, it is

necessary to select several initial surfaces from which the critical failure surface, along

which the Factor of Safety is a global minimum can be located.

In this study, two initial surfaces are selected, a deep surface and a shallow one. A deep

failure surface is defined as being located below the water table, along the soil bedrock

interface. A shallow failure surface is one located above the water table, in the

unsaturated zone of the slope. Figure 3.19 shows the initial shallow failure surface, and
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Figure 3.20 shows the initial deep failure surface. Figure 3.21 shows an arbitrary failure

surface which is also used in the analyses.
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Figure 3.19. Initial Shallow Failure Surface

10 SotL

SOIL

v WATER TABLE _

BEDROCK

10

5

10

INITIAL
350 FAILURFE

DEEP
URFACE

15

x (M)

20 25

Figure 3.20. Deep Failure Surface
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Figure 3.21. Arbitrary Failure Surface

The resulting critical failure surfaces obtained from each case, and the variation of

Factor of Safety with time is computed. This is shown in Figure 3.22. Figure 3.22 also

shows the variation of Factor of Safety with time on an arbitrarily chosen failure surface,

without a search for the critical failure surface.
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The shallow failure surface line in Figure 3.22 shows the variation of Factor of Safety on

critical failure surfaces that are obtained from the initially shallow trial failure surface in

Figure 3.19. Similarly, the deep failure surface line shows the variation of Factor of

Safety on critical failure surfaces that are obtained from the initially deep trial failure

surface in Figure 3.20. Figure 3.22 shows that starting with an initial shallow failure

surface results in the critical failure surface in the slope for which the Factor of Safety is

a global minimum. Failure occurs along a shallow failure surface at time of about 6

hours, when the Factor of Safety falls below a value of one.

As an illustration of the search for the critical failure surface process, Figure 3.23 shows

the different critical failure surfaces at different times that are obtained starting from the

initially shallow failure surface in Figure 3.19.
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Figure 3.23. Critical Failure Surfaces with Time Starting with Shallow Initial Failure Surface

Figure 3.22 also shows the variation of Factor of Safety with time along an arbitrarily

specified failure surface. This surface is kept constant with time (no search is performed)

and hence changes in Factors of Safety occur only as a result of changes in pressures.
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Several comments can be made with regard to Figure 3.22:

(a) It is evident that landslide analyses that do not employ a procedure to search for

the critical failure surface are incomplete. This is because if the variation of

Factor of Safety with time were computed on a specified failure surface, even if it

is the initial critical failure surface, Factors of Safety are not the minimum in the

slope, and hence are overestimated leading to unconservative conclusions.

(b) Figure 3.22 shows that starting with different initial failure surfaces may result in

different critical failure surfaces, and hence different Factors of Safety with time

(see shallow and deep initial failure surface lines in Figure 3.22). As stated

previously, these result in local minimum Factors of Safety that may not be

global. It is therefore necessary to start with different initial failure surfaces to

locate the critical one on which the Factor of Safety is a global minimum.

In this example, the location of critical failure surface changes with time. Initially and in

the early stages of rainfall, the critical surface is located deep and this is shown by the

lower Factor of Safety for the deep slope in Figure 3.24. With time, and continued rain,
the critical surface becomes located shallower as infiltrating rain increases the pressures

near the soil surface. The final critical surface on which failure occurs is shallow. This is

also shown in Figure 3.24.
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Figure 3.24. Variation of Factors of Safety and Critical Failure Surfaces with Time

The final critical surface on which the Factor of Safety is a global minimum is shown in

Figure 3.25.
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Figure 3.25. Critical Failure Surface

It is worth noting that the critical failure surface lies in the unsaturated zone of the slope,

where the soil strength has been reduced by the infiltrating rainwater, and the resulting

landslide is shallow, and translational as can be seen from the shape of the failure

surface. Failure occurs at a time of about 6 hours (see Figure 3.24), and therefore

occurs during the rainfall event, at a time when the generated pressures are close to

maximum (see Figure 3.18).

This example shows that when in some slopes, and when the infiltrating rainwater

reduces suction, it can cause sufficient loss of strength to generate a landslide. This is

an important result since it remains a matter of debate amongst investigators whether a

reduction of suction is sufficient to cause slope failure or whether positive pressures

necessarily have to develop.
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3.3.2.2 ELIMINATION OF SUCTION

When the rainfall intensity is close in magnitude to the saturated conductivity of the

surface soil, all the rainwater infiltrates into the slope at a rate equal to the saturated

conductivity. An infiltrating wetting front develops and migrates into the slope eliminating

the suction in the wetted soil above it, as is shown in Figure 3.26.

Potential -
Failure Elimination of
Surface . Suction

Wetting
Front

Bedrock

Rainfall

. Deep Water
Table

Negative 4- 0 -- + Positive

Figure 3.26. Schematic of Failure Mechanism (Elimination of Suction) (Negative, 0, Positive
Indicate sign of pore pressures)

The infiltrating rainwater causes a reduction in strength, which given certain site

conditions, can be sufficient to initiate a landslide.
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To illustrate the mechanism of failure by elimination of suction, we reconsider the slope

analyzed in Section 3.3.2.1, which is shown again in Figure 3.27.

c' = 0.7kN/m2

p'= 260

(ua-uw)enety= 2 kN/m2
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Figure 3.27. Slope Properties and Initial Critical Failure Surface

Note that this is the same slope, with the same properties that was considered in Section

3.3.2.1. Specifically, the slope geometric properties (slope angle, and length), soil

strength parameters, and characteristic curves (Figures 3.14 and 3.15) are the same as

those considered previously.

Initially, a Factor of Safety of 1.23 is computed on the critical failure surface shown in

Figure 3.25, and so the slope is initially stable.

We now assume that a rainfall event with constant intensity, I = 125cm / hr occurs for

duration of 8 hours. Note that this intensity is close in magnitude to the saturated

conductivity of the soil. Figure 3.28 shows the water content distribution at selected

times, prior to, during and after rain, and Figure 3.29 shows the corresponding pore

pressure profiles.
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Figure 3.28. Moisture Content Distributions at Selected Times
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Figure 3.29. Pore Pressure Profiles at Selected Times
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Figure 3.28 shows that a wetting front develops with the soil fully saturated, and

migrates down the slope with time. This is shown as a zone of saturated soil forming at

early times into the rainfall event (e.g. see Figure 3.28 at 2 hours), which travels into the

soil, as a saturated zone with time. As this happens, the suction is eliminated above the

wetting front as shown in Figure 3.29.

To assess the stability of the slope during and after rain, a search for the critical failure

surface is performed at each time using the pore pressure distributions shown in Figure

3.29. Figure 3.30 shows the variation of Factor of Safety with time.

Deep Failure Surface
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- ~ ~ ~ ~ ~_ -I--- 
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0 1 2 3 4 5
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6 7 8 9

Figure 3.30. Variation of Factors of Safety and Critical Failure Surfaces with Time

3.30 shows that initially, the critical failure surface is located deep into the slope

soil bedrock interface, and the slope is stable. With time, and as the rainwater
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eliminates suction (see Figure 3.29), the Factor of Safety decreases. The location of the

critical failure surface changes, at a time of about 2 hours, when it becomes shallow, and

is located in the unsaturated zone of the soil above the water table. The Factor of Safety

continues to decrease with time, and failure occurs at a time of about 3 2 hours. The

failure surface is shallow and translational. The critical failure surface is shown in Figure

3.31.
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Figure 3.31. Critical Failure Surface

Figure 3.32 compares the variation of Factor of Safety with time for both cases of

reduction of suction, and elimination of suction.
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Figure 3.32. Comparison of Variations of Factors of Safety for Reduction and Elimination of
Suction

Figure 3.32 shows that initially, the Factor of Safety is the same in both cases of

reduction and elimination of suction. This is to be expected, since the initial conditions

have been chosen to be the same. However, with time, and as the rainwater infiltrates

the slope, the Factor of Safety at any time is smaller in the case of elimination of suction

than in the case of reduction of suction. This is because the higher rainfall intensity leads

to larger pore pressures (compare Figures 3.18 and 3.29) on the potential failure

surface. Failure occurs in the case of reduction of suction at a time of about 6 hours,
which is close to the end of rainfall (at 8 hours). Failure in the case of elimination of

suction occurs at an earlier time of about 3 % hours.
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3.3.2.3 DEVELOPMENT OF POSITIVE PRESSURES

When the intensity of rainfall is greater in magnitude than the saturated conductivity of

the soil at the surface, the soil is unable to transmit the infiltrating rainwater at that rate,

and excess water ponds on or, more likely because of inclination, runs off the slope

surface. Infiltration takes place at the potential infiltration rate (see Chapter 2, Part 2-1)

of the soil and positive pressures are generated behind an infiltrating front, as is

illustrated in Figure 3.33.

Potential
Failure . Positive

Surface ' Pressures
Rainfall

Infiltration.

Bedrock

. Deep Water
Table

Negative 4- 0 -- Positive

Figure 3.33. Schematic of Failure Mechanism (Development of Positive Pressures) (Negative, 0,
Positive Indicate sign of pore pressures)

The infiltrating rainwater causes the development of positive pressures, which given

certain site conditions, can reduce soil strength sufficiently to initiate a landslide.
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To illustrate the mechanism of failure by positive pressure development, we reconsider

the slope analyzed in the previous two sections, which is shown again in Figure 3.34.

c'= 0.7kN/m2

4' = 260

(ua-uw)entry=2kN/m
2

10

5 -

SOIL

v WATER TABLE

BEDROCK

-10 15 20 253,

-x (m)

INITIAL CRITICAL
FLRAILURE SURFACE

35)

Figure 3.34. Slope Properties and Initial Critical Failure Surface

The soil strength parameters are shown in Figure 3.34, and the soil characteristic curves

are the same as those that were shown in Figures 3.26 and 3.27.

Initially, a Factor of Safety of 1.23 is computed on the critical failure surface shown in

Figure 3.34, and so the slope is initially stable.

We now assume that a rainfall event with constant intensity, I = 250mm / hr occurs for

duration of 8 hours. Note that this intensity is greater in magnitude than the saturated

conductivity of the soil. Figure 3.35 shows the water content distribution at selected

times, prior to, during and after rain, and Figure 3.36 shows the corresponding pore

pressure profiles.
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Figure 3.35 shows that rainfall causes the full saturation of the soil, and the saturated

zone migrates into the soil with continuing time, and rainfall.

As this happens, and since the rainfall intensity is greater than the saturated conductivity

of the soil, positive pore pressures develop in the saturated zone as shown in Figure

3.36. Figure 3.37 shows the variation of Factor of Safety with time.

1.5

1.4

1.3

1.2

' 1.1

0

05

0

L2 0.9

0.8

0.7

0.6

0 1 2 3 4 5 6 7 8 9 10

Time (Hours)

Figure 3.37. Variation of Factors of Safety and Critical Failure Surfaces with Time

Figure 3.37 shows that at early times, the critical failure surface is located deep in the

slope, along the soil bedrock interface. As it rains, and positive pressures develop near

the surface of the soil, the critical failure surface becomes shallow as shown in Figure

3.37. Failure occurs at a time of about 2 Y2 hours after the start of rain, along a shallow

translational failure surface. This failure surface is shown in Figure 3.38.
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Figure 3.39 compares the variation of Factor of Safety with time for the cases of

reduction of suction, elimination of suction and development of positive pressures.
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Figure 3.39. Comparison of Variation of Factors of Safety for Reduction of Suction, Elimination of
Suction, and Development of Positive Pressures
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Figure 3.39 shows that initially, the Factor of Safety is the same for all three cases

considered, because the initial conditions are taken to be the same for each. With time,

and as the rainwater infiltrates into the slope, the Factor of Safety decreases in all three

cases. The decrease is greatest in the case when positive pressures develop because

this is the case where the largest pressures develop in the unsaturated zone of the

slope. These larger pressures cause a greater reduction in strength, and therefore lower

Factors of Safety. Failure occurs in all three cases during the rainfall event. The failure

surface in all cases is shallow and translational located above the water table, where

infiltrating rainwater has altered pressures (reduced or eliminated suction, or developed

positive pressures). The time to failure is smaller in the case of the development of

positive pressures than in the case of elimination of suction which is lower than in the

case of reduction of suction. This is because the larger generation of pressures causes a

quicker reduction in strength sufficient to cause failure. Failure, in all three cases, occurs

during the rainfall event, at times less than 8 hours.
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FURTHER EXAMPLES

Based on the previous discussion, and examples, it is evident that that slopes that fail by

the reduction of suction, will also fail by the elimination of suction, and development of

positive pressures. This is because greater rainfall intensities cause larger build ups of

pressures (elimination of suction, and development of positive pressures) on a potential

failure surface, and greater reductions of strength to cause failure.

Alternatively stated, there are slopes that fail by the elimination of suction, that would

otherwise remain stable when suction is simply reduced. Similarly, there are slopes that

fail by the development of positive pressures, that would otherwise remain stable when

suction is reduced or eliminated.

To illustrate this, consider the slope shown in Figure 3.40.

c' = 2kN/m2

V = 240

(Ua-Uw)entry= 1 kN/m 2

SOIL

WATER TAE

-o BEDROCK

5 .- 0 15

INITIAL CRITICAL
FAILURE SURFACE

20 25

Figure 3.40. Slope Properties and Initial Critical Failure Surface
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Note that this slope is less steep than the slope considered previously, and that the soil

strength is larger than the example in Section 3.3.2.1.

The hydraulic parameters are assumed to be:

Saturated moisture content of soil Os = 0.47. This is the same Os

Section 3.3.2.1.

Residual moisture content of soil Or = 0.11 (See Figure 3.10). This

the example in Section 3.3.2.1.

as in the example in

is the same Or as in

Saturated conductivity Ks = 2.3 x 10 5 m /s. This Ks is different from the Ks in the

example in Section 3.3.2.1, it is smaller.

Specific storage coefficient Ss = 0.0025 (see Chapter 2, Part 2-1). This Ss is different

from the Ss in the example in Section 3.3.2.1, it is smaller.

The van Genuchten (1980) model is used to describe the soil characteristic curves with

the parameters n =1.24 and 6 = 0.011. The resulting characteristic curves are shown in

Figures 3.41 and 3.42. The van Genuchten (1980) parameters considered in this

example are different from the ones considered in the example in Section 3.3.2.1, and

so the characteristic curves are also different. They are different in such a way that the

characteristic curves in this example, particularly the moisture retention curve, has a

steeper slope than in the example in Section 3.3.2.1 (compare Figures 3.41 and 3.42 to

3.14 and 3.15). The air entry pressure, is smaller in this example, than in the example

considered in Section 3.3.2.1 (compare Figure 3.41 to 3.12).
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INITIAL CONDITIONS AND STATE OF STABILITY

We assume that the initial moisture content in the unsaturated zone of the slope is

Oj = 0.4, indicating wet antecedent conditions. The initial moisture content and pore

pressure distributions in the slope are as shown in Figures 3.43 and 3.44 respectively at

time t = 0.

The initial pore pressure distribution is used in the stability model to locate the critical

failure surface in the slope, which is shown in Figure 3.40. A Factor of Safety of 1.55 is

computed along this surface and hence the slope is initially stable.

STABILITY DURING/AFTER RAINFALL

We assume a rainfall event of constant intensity I = 150mm / hr takes place for a

duration of 6 hours. This intensity is greater in magnitude than the saturated conductivity

of the soil. The moisture content distribution and pore pressures profiles are shown at

selected times in Figures 3.43 and 3.44 respectively.
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Figure 3.43. Moisture Content Profiles at Selected Times
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Figure 3.44. Pore Pressure Profiles at Selected Times

Figure 3.43 shows that the rain is sufficiently intense to fully saturate the soil. Because of

this, the soil becomes fully saturated, and this saturated zone travels into the slope with

continued time and rainfall. The soil, therefore, gets saturated from the surface

downwards with increasing time and rainfall. Figure 3.44 shows that at any time t during

rainfall, positive pressures develop above the infiltration depth, again because the

intensity of the rainfall is greater than the saturated conductivity of the soil. Two

interesting observations can be made with regard to the generation of positive pressures

during rainfall, and in reference to Figure 3.44. First, the maximum pore pressures do

not occur at the end of rainfall, but rather at an earlier time, e.g. the maximum pressures

at time t = 4hr are greater than those at t = 6hr. This is a result of the hydrologic

assumption that no ponding takes place on the surface and any excess rainwater runs

off. Consequently, the positive pressures that develop are dissipated. Second, as

redistribution takes places, for times greater than t = 6hr in Figure 3.44, positive

pressures are observed throughout a greater depth of soil. The combined effect of these

two observations again emphasizes the need for stability analyses to be performed in
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relation to time to obtain the correct critical failure surface and minimum Factor of Safety

in the slope.

The variation of Factor of Safety with time, and the critical failure surfaces are shown in

Figure 3.45.
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Figure 3.45. Variation of Factor of Safety and Critical Failure Surfaces with Time

Figure 3.45 shows that initially, the critical failure surface lies deep at the soil bedrock

interface. As the rainfall increases the pressures in the otherwise unsaturated zone of

the slope, the critical surface becomes shallower. Failure occurs at a time of about 3 %A

hours, along a shallow translational failure surface as shown in Figure 3.45.
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This example illustrates that when the intensity of the incident rainfall is greater than the

saturated conductivity of the surface soil, the rainwater infiltrates into the slope

generating positive pressures, which consequently result in loss of strength, and

ultimately landsliding.

We now analyze the stability of the slope during two other rainfall events. Both events

are for a duration of 6 hours, but in the first event, the rainfall intensity is less than the

saturated conductivity of the soil, leading to a reduction of suction, and in the second

event the rainfall intensity is similar in magnitude to the saturated conductivity, leading to

the elimination of suction.

Figure 3.46 shows the moisture distributions, and Figure 3.47 shows the pressure

distributions when the rainfall intensity is less than the saturated conductivity of the soil.

Similarly, Figure 3.48 shows the moisture distributions, and Figure 3.49 shows the

pressure distributions when the rainfall intensity is close in magnitude to the saturated

conductivity of the soil.
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Figure 3.50 shows the variation of Factor of Safety with time for the three cases of:

(a) Development of positive pressures, when the rainfall

than the saturated conductivity of the soil

(b) Reduction of suction, when the rainfall intensity is

saturated conductivity of the soil

(c) Elimination of suction, when the rainfall intensity

saturated conductivity of the soil
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Figure 3.50 also shows the variation of Factor of Safety on a deep failure surface,

located at the soil bedrock interface, for the case of reduction of suction.

Several observations are made with regard to Figure 3.50:

(a) The Factor of Safety drops below a value of one only in the case when the rainfall

intensity is greater than the saturated conductivity of the soil, and positive pressures
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develop. In both cases of reduction, and elimination of suction, the Factor of Safety

remains above one during and after rainfall, indicating that the slope remains stable.

(b) If one compares the results in Figure 3.50 to those in Figure 3.39, and one considers

one case for a shallow failure surface, e.g. the case of elimination of suction, then

the decrease in Factor of Safety from the initial value is greater in this example (in

Figure 3.50), than in the previously considered example (Figure 3.39). The reason

for this is the particular shape of the characteristic curves. In this example, the

characteristic curves of the soil, particularly the moisture retention curve (Figure

3.41) are less steep than the ones in the example in Section 3.3.2.1 (Figure 3.26). As

a result, the same change in moisture content causes a larger change in pressures.

We can therefore conclude that soils with shallower characteristic curves, particularly

moisture retention curves tend to develop larger pressures during a rainfall event,
and so are less stable than soils with steeper characteristic curves.

(c) For the case of reduction of suction, i.e. in the case when the rainfall intensity was

small, the critical failure surface in the slope remains located deep, at the soil

bedrock interface. As rainwater infiltrates into the slope, it reduces the suction near

the soil surface, and causes a reduction in strength, and hence a drop in Factor of

Safety on a shallow failure surface. However, at no time during the rainfall event is

this drop large enough so that the shallow failure surface is the critical one (see

Figure 3.50). The critical surface on which the Factor of Safety is minimum remains

located at the soil bedrock interface.

(d) The dissipation of positive pressures takes place at a faster rate than when suction is
eliminated or reduced. This is because of the larger difference in head, which is the

driving force for flow and redistribution.

(e) Following on what has been said in point 4, redistribution can take place at a slow

rate after rainfall has ended. This can have significant consequences, specifically

that the state of stability of a slope may decrease even after the end of rainfall. This
is demonstrated in the following example.
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Consider the slope shown in Figure 3.51.

c'= 1.75kN/m2

= 290

(Ua-Uw)entry= 1 kN/m2
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15
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20 25 30

Figure 3.51. Slope Properties and Initial Critical Failure Surface

The soil strength parameters are shown in Figure 3.51. These strength parameters are

greater than the ones of the soil considered in the example in Section 3.3.2.1, and

shown in Figure 3.11.

The hydraulic parameters are assumed to be:

Saturated moisture content of soil Os = 0.47. This is the same Os as in the example in

Section 3.3.2.1.

Residual moisture content of soil Or = 0.11 (See Figure 3.10). This is the same Or as in

the example in Section 3.3.2.1.

Saturated conductivity Ks = 2.89 x10-5 m/s. This Ks is the same Ks

example in Section 3.3.2.1.
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Specific storage coefficient Ss = 0.002 (see Chapter 2, Part 2-1). This Ss is different

from the Ss in the example in Section 3.3.2.1, it is smaller.

The van Genuchten (1980) model is used to describe the soil characteristic curves with

the parameters n = 2.8 and 8 = 0.015. The resulting characteristic curves are shown in

Figures 3.52 and 3.53. The van Genuchten (1980) parameters considered in this

example are different from the ones considered in the example in Section 3.3.2.1, and

so the characteristic curves are also different. They are different in such a way that the

characteristic curves in this example, particularly the moisture retention curve, has a

slightly steeper slope than in example in Section 3.3.2.1 (compare Figures 3.52 and 3.53

to 3.14 and 3.15). The air entry pressure is smaller in this example than in the example

in Section 3.3.2.1 (compare Figure 3.52 to 3.12).
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Figure 3.52. Moisture Retention Characteristic Curve
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Figure 3.53. Hydraulic Conductivity Characteristic Curve

The initial state of stability of the slope is assessed, and a Factor of Safety of 1.2 is

computed on the critical failure surface shown in Figure 3.51.

We now assume a rainfall of intensity I = 105mm / hr takes place for duration of 4 hours.

Note that this intensity is close in magnitude to the saturated conductivity of the soil. The

resulting moisture content and pore pressures are shown in Figures 3.54 and 3.55.
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Figures 3.54 shows that at early stages in the rainfall event, the soil near the surface is

near saturation, since the moisture content is close to the saturated moisture content of

the soil. Figure 3.55 shows that the initial negative pressures are eliminated during rain.

An important observation is made with regard to Figures 3.54 and 3.55. After the

cessation of rain at 4 hours, moisture (and pressure) redistribution takes place, e.g. at t =

6 and 8 hr. Because of the specific hydraulic properties of the soil, redistribution takes

place at a slow rate, allowing pressures to continue to increase at significant depths

below the ground surface. This allows large pressures to be maintained for a significant

time after the end of rain.

The stability of the slope is assessed and the results are shown in Figure 3.56.
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Figure 3.56 shows that failure occurs, after the rain stops, at a time of about 4% hours.

Failure occurs as a result of the slow redistribution of moisture caused by the specific

hydraulic properties of the soil. This is an important observation since the majority of

current landslide studies tend to only asses the stability of a slope during rainfall, by

using the maximum generated pressures in stability analyses. This is based on the

assumption that failure will occur during the rainfall event, which is not necessarily the

case as shown in this example. As a matter of fact, if one were to perform such analyses

in this example, the slope would have been deemed stable. Hence, a complete landslide

study should include stability analyses both during and after rainfall.

This mechanism can also explain field observations of failed slopes and landslides that

have occurred after the cessation of rain, such as in the La Conchita, California

Landslide that occurred in January 2005.

This example also reinforces what had been stated in the introduction of this chapter,
namely that a critical combination of factors need not imply maximum pressures that

develop during rain.

There are other mechanisms than those which were described in this section, by which

positive pressures can be generated by infiltrating rainwater. These can occur in both
homogenous and heterogeneous soils, and are described in the following sections. Note

that these mechanisms are still classified as failures caused by the generation of positive

pressures.

3.3.2.3.1. GRADUAL DEVELOPMENT OF LARGE PRESSURES (PERCHED WATER
TABLE)

It is widely accepted that large (hydrostatic) positive pressures can develop when a
lower conductivity soil layer, such as a clay layer, retards an infiltrating front. This leads
to the development of a so-called perched water table above the lower conductivity
layer. This mechanism is illustrated in this section. In addition, we also show that the
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gradual development of positive pressures can occur in homogenous soils, a
mechanism that has, for the most part, been overlooked in the literature.

3.3.2.3.1a. HETEROGENEOUS SOILS

When a low conductivity heterogeneity exists in the subsurface of an otherwise
homogenous soil layer, infiltrating rainwater may be sufficiently retarded to allow for
large (hydrostatic) positive pressures to develop. This positive pressure accumulation is
known as a so called perched water table. This is shown schematically in Figure 3.57.

--- Perched Water
Potential -. Table (Positive
Failure .. N Pressures)

Surface '
Rainfall

Low Conductivity
Heterogeneity (e.g. clay

Bedroc

N

~

k-

. Deep Water
Table

egative 4- 0 - Positive

Figure 3.57. Illustration of Failure Mechanism (Perched Water Table in Heterogeneous Soil)
(Negative, 0, Positive Indicate sign of pore pressures)

To illustrate the development of a perched water table, we consider the slope with
geometric properties shown in Figure 3.58.
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Figure 3.58. Slope Properties and Initial Critical Failure Surface

The soil strength parameters are shown in Figure 3.58, and while the angle of shear

resistance is almost the same as the one in the example in Section 3.3.2.1, the cohesion

is greater.

The hydraulic parameters are assumed to be:

Saturated moisture content of soil Os = 0.47. This is the same Os as in the example in

Section 3.3.2.1.

Residual moisture content of soil Or =0.11 (See Figure 3.10). This is the same Or as in

the example in Section 3.3.2.1.

Saturated conductivity Ks = 2.89 x 10- 5 m/s. This Ks is the same Ks

example in Section 3.3.2.1.

Specific storage coefficient Ss = 0.002 (see Chapter 2, Part 2-1). This Ss is different

from the Ss in the example in Section 3.3.2.1, it is smaller.
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The van Genuchten (1980) model is used to describe the soil characteristic curves with

the parameters n = 1.5 and 8 = 0.01. The resulting characteristic curves are shown in

Figures 3.59 and 3.60. The van Genuchten (1980) parameters considered in this

example are different from the ones considered in the example in Section 3.3.2.1, and

so the characteristic curves are also different. They are different in such a way that the

characteristic curves in this example, particularly the moisture retention curve, has a

shallower (smaller) slope than in example in Section 3.3.2.1 (compare Figures 3.59 and

3.60 to 3.14 and 3.15). When this is the case, large changes in pressures take place for

small changes in moisture content. The air entry pressure is smaller in this example than

in the example in Section 3.3.2.1 (compare Figure 3.59 to 3.12).
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Figure 3.59. Moisture Retention Characteristic Curve
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Figure 3.60. Hydraulic Conductivity Characteristic Curve

To investigate the effects of a low conductivity heterogeneity in the subsurface, we first

consider a slope made up of a homogenous soil, with the strength parameters shown in

Figure 3.58, and hydraulic parameters in Figures 3.59 and 3.60. We then compare the

results of this case to the case when a low conductivity heterogeneity is present in the

subsurface.

HOMOGENOUS SOIL LAYER

We assume an initial moisture content of Oj = 0.37, and assess the initial stability of the

slope. A Factor of Safety of 1.17 is computed on the critical failure surface shown in

Figure 3.58. The failure surface is located deep at the soil bedrock interface.

We now assume a rainfall event of intensity I = 60mm / hr takes place for duration of 8

hours. This intensity is almost of the same magnitude as the saturated conductivity of

the soil. The subsurface moisture content profiles and corresponding pore pressure

distributions at various times are shown in Figures 3.61 and 3.62 respectively.
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Figure 3.61 shows that a wetting front forms at early times during the rainfall event, with

the soil at saturation. The wetting front migrates into the slope with time, eliminating the

suction above the infiltrated zone. This is shown in Figure 3.62.

Figure 3.63 shows the variation of the Factor of Safety with time.
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Figure 3.63. Variation of Factor of Safety with and Critical Failure Surfaces

Figure 3.63 shows that the Factor of Safety decreases with time as the rainwater

eliminates suction in the infiltration zone. At a time of about 3 hours, the critical failure

surface in the slope is shallow and translational located above the water table as shown

in Figure 3.63. The Factor of Safety does however, remain above the value of one, and

hence the slope remains stable throughout the rainfall event.
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HETEROGENEOUS SOIL LAYER

We assume that a low conductivity heterogeneity of 0.5 m thickness is located at a depth

of 1.5 m below the ground surface. We assume that the saturated conductivity of this

heterogeneity is Ks =4 x0- 6 m/s. The variation of conductivity with depth is thus as

shown in Figure 3.64.

O.E+00 5.E-06
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1.E-05 2.E-05 2.E-05 3.E-05 3.E-05 4.E-05

Figure 3.64. Saturated Conductivity Distribution in Soil

Because of the lower hydraulic conductivity in the heterogeneity, the hydraulic properties

of the soil will be different to those in the surrounding soil. The characteristic curves of

the heterogeneity are shown in Figures 3.65 and 3.66.
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Figure 3.66. Hydraulic Conductivity Characteristic Curve

The moisture retention curve is the same in both soils because we have retained the van
Genuchten (1980) parameters. The hydraulic conductivity curve is however different
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because of the different saturated conductivity of the heterogeneity. This is show in

Figure 3.66.

For clarity of discussion, the saturated strength properties of the heterogeneity are

assumed to be the same as those of the surrounding soil. This, of course, need not be

the case, and Chapter 2 illustrated how heterogeneous strength properties can be

incorporated into the analyses.

We now assume a rainfall event of intensity I = 60mm / hr takes place for duration of 8

hours. The subsurface moisture content profiles and corresponding pore pressure

distributions at various times are shown in Figures 3.67 and 3.68 respectively.
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Figure 3.67. Moisture Content Profiles at Selected Times
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Figure 3.68. Pore Pressure Profiles at Selected Times

Figure 3.67 shows that in the presence of the heterogeneity, a wetting front develops

and infiltrates into the slope. When the front reaches the heterogeneity, it is retarded by

the lower conductivity heterogeneity. As this happens, the soil above the heterogeneity

is at full saturation. Figure 3.68 shows that there is a pore pressure build up above the

heterogeneity. As the wetting front is retarded by the heterogeneity, positive pressures

develop above it, and these pressures increase with time. This is in contrast to the case

when no heterogeneity was present, shown in Figure 3.62, where no positive pressures

develop and suction is simply eliminated.

When the positive pressures become large in magnitude, and close to hydrostatic, a so-

called perched water table is said to have developed. A temporal analysis is performed

and the resulting variation of the Factor of Safety with time is shown in Figure 3.69.
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Figure 3.69. Variation of Factor of Safety and Critical Failure Surfaces with Time

Figure 3.69 shows that in the presence of the heterogeneity, the decrease in Factor of

Safety is sufficient to cause failure, since it drops below a value of one. This occurs at a
time of about 3 hours into the rainfall event. The critical failure surface is shallow, and
located at a depth close to the hydraulic discontinuity (because of build up of pressures).
The gradual development of positive pressures above a low conductivity heterogeneity
causes sufficient loss of strength to generate a landslide.
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3.3.2.3.1b. HOMOGENEOUS SOILS

It has been traditionally assumed that large positive pressures could only develop behind

an infiltrating front if the front is retarded by a low conductivity heterogeneity as shown in

Section 3.3.2.1. More recent studies however, have shown that large positive pressures

may also develop in homogenous soil layers, where the saturated conductivity of the soil

decreases with depth below the ground surface (e.g. Bevan, 1982; Bras, 1988). This

decrease in conductivity is not infrequent, and can be attributed to a variety of factors

which include the depositional processes involved in soil formation, desiccation and

cracking of the soil surface, vegetation, etc. In this section, we show that the rate of

decrease of conductivity can have important implications on the stability of a slope

during a rainfall event. In particular, we show that in certain slopes, large positive

pressures can develop resulting in a landslide. Various attempts have been made in the

literature, to mathematically describe the variation of conductivity with depth (e.g. Bevan,
1982). Bevan (1982) relates the decrease of conductivity with depth using an

exponential function, such that:

K s (z) = K s (z = 0)exp(-Xz) [3.2]

where:

k is a constant

Ks(z = 0) is the saturated conductivity of the soil at the surface

Consider the slope shown in Figure 3.70.
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Figure 3.70. Slope Properties and Initial Critical Failure Surface

The soil strength parameters are shown in Figure 3.70. In this example, the cohesion is

greater than that of the soil in Section 3.3.2.1.

The hydraulic parameters are assumed to be:

Saturated moisture content of soil Os = 0.47. This is the same Os as in the example in

Section 3.3.2.1.

Residual moisture content of soil Or = 0.11 (see Figure 3.10). This is the same Or as in

the example in Section 3.3.2.1.

Saturated conductivity KS =2.89x10-5m/s. This Ks is the same Ks

example in Section 3.3.2.1.

Specific storage coefficient Ss = 0.001 (see Chapter 2, Part 2-1). This Ss is different

from the Ss in the example in Section 3.3.2.1, it is smaller.
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The van Genuchten (1980) model is used to describe the soil characteristic curves with

the parameters n = 1.9 and 6 = 0.017. The resulting characteristic curves are shown in

Figures 3.71 and 3.72. The van Genuchten (1980) parameters considered in this

example are different from the ones considered in the example in Section 3.3.2.1, and

so the characteristic curves are also different. They are different in such a way that the

characteristic curves in this example, particularly the moisture retention curve, has a

shallower (smaller) slope than in example in Section 3.3.2.1 (compare Figures 3.71 and

3.72 to 3.14 and 3.15). When this is the case, large changes in pressures take place for

small changes in moisture content. The air entry pressure is smaller in this example than

in the example in Section 3.3.2.1 (compare Figure 3.71 to 3.12).
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Figure 3.71. Moisture Retention Characteristic Curve
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Figure 3.72. Hydraulic Conductivity Characteristic Curve

To investigate the effects of decreasing saturated conductivity of the soil with depth

below the ground surface, we first consider a slope made up of a soil with constant

saturated conductivity with depth. We then compare the results of this case to the case

when the saturated conductivity decreases with depth below the ground surface.

CONSTANT SATURATED CONDUCTIVITY SOIL

We assume an initial moisture content of Oj = 0.38 and asses the initial state of stability

of the slope. The critical surface is shown in Figure 3.70, and a Factor of Safety of 1.21

is computed.

We now assume a rainfall event of intensity I = 40mm / hr for a duration 8 hours. The

moisture content and pore pressure profiles at selected times are shown in Figures 3.73

and 3.74 respectively.
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Figure 3.74. Pore Pressure Profiles at Selected Times
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Figure 3.73 shows that the rainfall event causes the saturation of the slope at the

surface. A wetting front forms, and travels downwards with time and rainfall. Small

positive pressures develop behind the infiltrating front as is shown in Figure 3.74. The

stability of the slope during the rainfall event is assessed, and the variation of Factor of

Safety with time is shown in Figure 3.75.
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Figure 3.75. Variation of Factor of Safety with Time and Critical Failure Surfaces

Figure 3.75 shows that initially the critical failure surface is located at the soil bedrock

interface, and the slope is stable. As it rains, there is a decrease in the Factor of Safety,

and at a time of about 4 Y hours, the critical failure surface in the slope becomes
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shallow, and located above the water table. The Factor of Safety continues to decrease

with time, but remains above the value of one, and so the slope remains stable during

the rainfall event.

DECREASING SATURATED CONDUCTIVITY SOIL

We now assume that the saturated conductivity of the soil decreases with depth. We

adopt the relationship proposed by Bevan (1982) for saturated conductivity, and assume

that Ks(z = 0) = 2.9 x 10-5m/s and the constant . =1.15 x10-5 m- so that Ks(z) is

assumed to decrease exponentially with depth as shown in Figure 3.76.
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Figure 3.76. Assumed Variation of Saturated Conductivity with Depth Below Ground Surface

Furthermore, we assume that all other soil properties remain constant with depth below

the ground surface, and the only variable is the saturated conductivity of the soil. The

moisture retention curve will, therefore remain the same as the original soil moisture
retention curve and is shown in Figure 3.77. The soil hydraulic conductivity characteristic
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curve will, on the other hand, vary with depth depending on the saturated conductivity.

This is shown in Figure 3.78.
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Figure 3.77. Moisture Retention Characteristic Curve

3.50E-05

3.OOE-05

2.50E-05

2.00E-05

1.50E-05 +-

1.00E-05

5.OOE-06

F F

A

0.OOE+00 4
1.OOE-05 1.OOE-04

f4 I

Curve at surface z= m

Curve at z=1 m

curve at z=2 m

Curve at z=3 m

1.lOE-03 1.OOE-02 1.OOE-01 1.OOE+00 1.OOE+01 1.OOE+02 1.OOE+03 1.OOE+04

Absolute Pressure (kN/m
2
)

1.00 E+05

Figure 3.78. Hydraulic Conductivity Characteristic Curve

222

E

0

-_--

(ua - Uw )entry

1.00

E

C
0

-

)E+06

F.



We now assume the same rainfall event of intensity I = 40mm / hr for a duration 8 hours.

The moisture content and pore pressure profiles at selected times are shown in Figures

3.79 and 3.80 respectively.
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Figure 3.79. Moisture Content Profiles at Selected Times
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Figure 3.80. Pore Pressure Profiles at Selected Times
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Figure 3.79 shows that a wetting front develops, and migrates down the slope with time.

Figure 3.80 shows that large positive pressures develop behind the infiltrating front.

These pressures develop gradually, and slowly increase with time. The rate and

magnitude of this increase is dependent on the rate of decrease of conductivity with

depth. This illustrates that large positive pressures (limiting to a perched water table) can

develop without the necessity of the presence of a low conductivity layer, as has been

commonly assumed in many landslide studies.

The stability of the slope is assessed, and the variation of Factor of Safety with time is

shown in Figure 3.81.
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Figure 3.81. Variation of Factor of Safety and Critical Failure Surfaces with Time
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Figure 3.81 shows that initially the critical failure surface is located at the soil bedrock

interface. The Factor of Safety then decreases with time, and failure takes place at a

time of about 5 hours. Failure occurs along a shallow failure surface that is located

above the water table. This is shown in Figure 3.81.

Figure 3.82 compares the variation of Factor of Safety with time in both cases when the

hydraulic conductivity is constant with depth and when it decreases.

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

- --- -- Shallow Failure Surface
Constant Conductivity

---------- --- ----- --- ------ ------ ------ - -- -- -- -------
---------- --- ------------ - - --I- - - - - - - -

Deep FaiTure Surface

- - ------ - ---------- ----- ----------- -- -----

Shallow Failure Surface
- - - -- -Decreasing Conductivity

------ --------- -- ------ ------ -------- ------ -- ------------ ------ -- ----- ------

------- --- - ---------- -- ---- --- - --- - - - - -- -

0 1 2 3 4 5 6 7 8 9 10

Time (Hours)

Figure 3.82. Comparison of Variation of Factor of Safety with Time for Constant and Decreasing
Conductivity with Depth

Figure 3.82 clearly shows that failure occurs in the case when the hydraulic conductivity

decreases with depth. This is because of the large positive pressures that are generated

behind the infiltrating front. These pressures reduce the soil strength sufficiently to

generate a shallow landslide.
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3.3.2.3.2. SUDDEN DEVELOPMENT OF LARGE PRESSURES

The landslide mechanisms described thus far have been based on the gradual increase

of pressures caused by infiltrating rainwater. There have, however, been several field

observations and reports of the sudden occurrence of landslides documented in the

literature, e.g. Lambe (1980), Torres et al. (1998). The mechanisms of such landslides

are not understood. In this section, we propose a possible mechanism to explain the

sudden occurrence of such slides.

Figure 3.83a shows an initial pressure distribution in a slope. If during a short, intense

rainfall, the rate of infiltration is equal to the potential infiltration rate (saturated hydraulic

conductivity), suction is eliminated down to a certain depth (Figure 3.83b). Suppose that

the rainfall intensity suddenly exceeds the infiltration rate, whether due to a rapid

increase in intensity (not uncommon given the high natural temporal variability of rainfall

events), or a rapid decrease in conductivity (for the possible reasons explained Section

3.3.2.1) or a combination of both.

Large positive pressures (approaching hydrostatic) rapidly develop behind the wetting

front as illustrated in Figure 3.83c, and may cause an associated sudden failure. This

phenomenon which was observed by Lambe (1980), and Torres et al. (1998) cannot be

explained by the usual gradual change from negative to hydrostatic pressure conditions.

Moreover, this phenomenon can occur in homogenous soils without the requirement of a

low permeability layer to retard the front, as will be illustrated in this section.
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To numerically illustrate this mechanism, consider the slope with geometric and strength

properties shown in Figure 3.84.
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Figure 3.84. Slope Properties and Initial Critical Failure Surface

The soil strength parameters are shown in Figure 3.84. In this example, the cohesion

and the angle of shearing resistance of the soil are greater than that of the soil in Section

3.3.2.1.

The hydraulic parameters are assumed to be:

Saturated moisture content of soil 0s = 0.47. This is the same Os as in the example in

Section 3.3.2.1.

Residual moisture content of soil Or = 0.11 (see Figure 3.10). This is the same Or as in

the example in Section 3.3.2.1.

Saturated conductivity Ks = 2.3 x10- 5 m/s. This Ks is smaller than the Ks of the soil

in the example in Section 3.3.2.1.

Specific storage coefficient Ss = 0.0025 (see Chapter 2, Part 2-1). This Ss is different

from the Ss in the example in Section 3.3.2.1, it is smaller.
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The van Genuchten (1980) model is used to describe the soil characteristic curves with

the parameters n = 1.05 and 6 = 0.017. The resulting characteristic curves are shown in

Figures 3.85 and 3.86. The van Genuchten (1980) parameters considered in this

example are different from the ones considered in the example in Section 3.3.2.1, and

so the characteristic curves are also different. They are different in such a way that the

characteristic curves in this example, particularly the moisture retention curve, has a

significantly shallower (smaller) slope than in example in Section 3.3.2.1 (compare

Figures 3.85 and 3.86 to 3.14 and 3.15). Because of this, small changes in soil moisture

can cause very large changes in pressures. The hydraulic conductivity curve is also

significantly shallower, and this is shown in Figure 3.86, which is to the same scale as

Figure 3.13. The air entry pressure is the same in this example than in the example in

Section 3.3.2.1 (compare Figure 3.85 to 3.12).
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Figure 3.85. Moisture Retention Characteristic Curve
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Figure 3.86. Hydraulic Conductivity Characteristic Curve

To investigate the effects of a sudden increase in rainfall intensity on the stability of

slopes, we first consider a rainfall event with constant intensity. We then compare the

results of this case, to the case where the rainfall intensity suddenly increases.

CONSTANT RAINFALL INTENSITY

We assume an initial moisture content of Oj = 0.4, and the initial state of stability of the

slope is assessed. The critical failure surface is shown in Figure 3.84, and a Factor of

Safety of 1.22 is computed indicating a stable slope.

We assume a rainfall event with intensity I = 10mm / h takes place for a duration of 8

hours. Figure 3.87 shows the moisture distributions, and Figure 3.88 shows the pore

pressure distributions at selected times.

230



0.25 0.3

Water Content (m3/m3)
0.35 0.4

Figure 3.87. Moisture Content Profiles at Selected Times

Pressure (kN/m 2)

-35 -30 -25 -20 -15 -10 -5

-+-Ohr --- 2hr

-o-4hr -6-6hr

-c-8hr -- 10hr

Figure 3.88. Pore Pressure Profiles at Selected Times

231

0.2
0 +-

0.45 0.5

1

2

CL
0

3

-- 0 hr -*- 2 hr

---- 4hr -- 6 hr

-e- 8 hr - 10 hr

4

5

-40 0 5 10

2 -

3-

4-

0e



Figure 3.87 shows that the initial moisture content in the soil is increased as a result of

infiltration, and that the initial suction is reduced, and almost eliminated as shown in

Figure 3.88. Figure 3.89 show the variation of Factor of Safety with time.

Deep Failure Surface
....... .......

10
-----------

5 15 20 25 jr

.04

Shallow Failure Surface
........... ..................... ........................... ............................. ............. ...................... ............

10
-----------

5

S Is 20 25

-04

0

0

LL

1.7-

1.6 -

1.5-

1.4 -

1.3-

1.2

1.1

0.9-

0.8-

0.7 -

0.6-

0 1 2 3 4 5 6 7 8 9

Time (Hours)

Figure 3.89. Variation of Factors of Safety and Critical Failure Surfaces with Time

Figure 3.89 shows that the Factor of Safety decreases with time as a result of rainfall.

The critical failure surface, however is located deep into the slope at the soil bedrock

interface, as shown in Figure 3.89. At no time does the Factor of Safety on a shallow

failure surface drop below the one on the deep failure surface. Since the Factor of Safety

remains above a value of one, the slope remains stable as a result of the rain.
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SUDDEN INCREASE IN RAINFALL INTENSITY

We now assume a rainfall event takes place for a duration of 8 hours, where for the first

4 hours, the rainfall intensity is I= 10mm / h, and then there is a sudden increase in

intensity from I = 10mm / h to I = 150mm / h for the following 4 hours. The hydrologic

response of the slope to this type of event in terms of moisture content and pore

pressure profiles is shown in Figures 3.90 and 3.91 respectively.
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Figure 3.90. Moisture Content Profiles at Selected Times
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Figure 3.91. Pore Pressure Profiles at Selected Times

Figure 3.90 shows that during the first 4 hours of rain, the intensity is insufficient to fully

saturate the soil since it is less than the saturated conductivity of the soil at the surface.

The moisture content increases as a result of rain but complete saturation is not reached

as is shown in Figure 3.90. This is also reflected in the pore pressures (see Figure 3.91),

where suction is reduced but not completely eliminated by the infiltrating rainwater.

These results, for times t < 4 hours, are the same as those obtained in Figures 3.87 and

3.88.

When the sudden increase in intensity occurs at a time of 4 hours, saturation is reached

and an immediate response is observed in the subsurface pore pressures (see Figure

3.91). Positive pressures are rapidly generated behind the infiltrating water as is shown

in Figure 3.91.

The immediate development of positive pressures is attributed to the sudden increase in

rainfall intensity only. Had the soil conductivity been assumed to decrease with depth as

for example in Section, a more dramatic response in terms of pore pressures would

have been observed. The only requirement for a sudden increase in pressures to occur
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is for the rain intensity to suddenly exceed the potential infiltration rate of the soil at any

depth. It is interesting to show this phenomenon through the rainwater infiltration rate

into the soil. This is done in Figure 3.92.
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Figure 3.92. Variation of Infiltration Rate with Time (Sudden Development of Positive Pressures)

Figure 3.92 shows that during the early stages of rain, all the rainwater infiltrates into the

soil, at a rate equal to the rainfall intensity. When the sudden increase in intensity

occurs, it exceeds the potential infiltration rate, and there is a sharp increase in the

infiltration rate into the soil. This causes the sudden generation of large positive

pressures.

The positive pressures continue to increase with continued rainfall, though gradually and

pressure redistribution takes places at the end of rain (see Figure 3.91).

The stability of the slope is assessed, and the variation of Factor of Safety with time is

shown in Figure 3.93.
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Figure 3.93. Variation of Factors of Safety and Critical Failure Surfaces with Time

Figure 3.93 shows that there is a decrease in the Factor of Safety with time, and as a

result of infiltration. Importantly, Figure 3.93 shows that there is a sharp drop in the

Factor of Safety on a shallow failure surface at a time of about 4 hours. This is the time

when the sudden increase in rainfall intensity was assumed to occur (see Figure 3.92).

Failure occurs at a time shortly after the sudden increase in intensity, and occurs on a

shallow failure surface located above the water table, as shown in Figure 3.93.
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This is in contrast to what was observed when the intensity of the rainfall was assumed

constant and not to increase with time, in which case no failure was observed (see

Figure 3.89). Figure 3.94 compares the variation of Factor of Safety in the case of

constant rainfall intensity, and the case where a sudden increase in intensity is

assumed.
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Figure 3.94. Comparison of Variation of Factor of Safety with Time for Sudden Increase and
Constant in Rain Intensity

We therefore conclude that the sudden increase in intensity is responsible for the

sudden generation of pore pressures, that lead to a sudden loss of strength, and a

sudden landslide.

In summary, this example illustrates that under certain conditions, large positive

pressures may suddenly develop behind an infiltrating front that ultimately result in a

sudden landslide. This occurs when the rainwater penetration rate suddenly exceeds the

potential infiltration rate of the soil, and this can be as a result of a sudden increase in

rainfall intensity and/or a rapid decrease in soil conductivity with depth. This mechanism

may be responsible for the many sudden landslides observed and reported in the

literature, which have remained inadequately explained.
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3.3.2.4. INTERMEDIATE FAILURES

It is interesting to note that landslides associated with the saturation of the soil from the

surface downwards have failure surfaces that are shallow but are not necessarily entirely

within the zone wetted by infiltrating rain. In fact, extensive numerical examples (not

presented here) show that in many slopes, a portion of the failure surface is frequently

located below the wetted zone. In such instances, landsliding occurs because of the

increase of pressures along only a section of the failure surface that has been saturated

by infiltrating rain. The portion along the failure surface on which pressures are

increased may be large or small depending on the properties of the slope and the rainfall

event. Figure 3.95 shows a schematic of this failure mechanism.

Potential Rainfall
Failure

Surface \ -

Infiltration

Bedrock

. Deep Water
Table

Negative 4- 0 -+ Positive

Figure 3.95. Illustration of Failure Mechanism (Intermediate Failure) (Negative, 0, Positive
Indicate sign of pore pressures)
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In this section, we study the effects of an increase in pore pressures along a section of a

potential failure surface, and show that this can have important consequences with

regard to location of the failure surface, and hence type (and mass volume) of a

landslide. In particular, we show that it is possible for failure to occur along a deeper

failure surface than was encountered in the examples discussed in Section 3.3.2.1s.

This results in deeper seated landslides with more circular failure surfaces than were

previously encountered. The mechanism that leads to landsliding is therefore an

increase in pore pressures along a section of the failure surface, which results in a

corresponding decrease in strength along the same portion that may be sufficient to

initiate a landslide. This increase in pore pressures may be in the form of a reduction of

suction, elimination of suction, or the development of positive pressures. This

mechanism is not entirely different to the ones proposed in previous sections, since

failure still occurs as a result of saturation of the soil from the surface of the soil

downwards, and in fact should still be classified as such.

It is nonetheless important to study such mechanisms because they have not been

previously proposed, and provide an explanation for field observations that have

documented relatively deep seated slides that occurred without a significant rise in the

main water table.

We illustrate this mechanism numerically using the slope shown in Figure 3.96.
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Figure 3.96. Slope Properties and Initial Critical Failure Surface

The soil strength parameters are shown in Figure 3.84. Note that in this example, the

cohesion of the soil is significantly greater than the cohesion of the soil considered in the

example in Section 3.3.2.1, and that the angle of shearing resistance of the soil is

smaller in this example.

The hydraulic parameters are assumed to be:

Saturated moisture content of soil Os = 0.47. This is the same Os as in the example in

Section 3.3.2.1.

Residual moisture content of soil Or = 0.11 (see Figure 3.10). This is the same Or as in

the example in Section 3.3.2.1.

Saturated conductivity Ks = 3.5 x 10- 5 m/s. This Ks is larger than the Ks of the soil in

the example in Section 3.3.2.1.
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Specific storage coefficient Ss = 0.0025 (see Chapter 2, Part 2-1). This Ss is different

from the Ss in the example in Section 3.3.2.1, it is smaller.

The van Genuchten (1980) model is used to describe the soil characteristic curves with

the parameters n = 0.75 and 8 = 0.025. The resulting characteristic curves are shown in

Figures 3.97 and 3.98. The van Genuchten (1980) parameters considered in this

example are different from the ones considered in the example in Section 3.3.2.1, and

so the characteristic curves are also different. They are different in such a way that the

characteristic curves in this example, particularly the moisture retention curve, has a

significantly shallower (smaller) slope than in example in Section 3.3.2.1 (compare

Figures 3.97 and 3.98 to 3.14 and 3.15). Because of this, small changes in soil moisture

can cause very large changes in pressures. Furthermore, the air entry pressure is

smaller in this example, than in the example of Section 3.3.2.1 (compare Figure 3.97 to

3.12).
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Figure 3.97. Moisture Retention Characteristic Curve
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Figure 3.98. Hydraulic Conductivity Characteristic Curve

An initial moisture content of Oi = 0.4 is assumed, and the initial stability of the slope is

assessed and the resulting critical surface is shown in Figure 3.96. A Factor of Safety of

1.18 is computed and the slope is stable.

We assume a rainfall event of constant intensity I = 100mm / h occurs for a duration of 8

hours. This intensity is greater than the saturated conductivity of the soil at the surface,

and hence one would expect saturation to be reached (see Figure 3.99) and positive

pressures to develop (see Figure 3.100).
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Figure 3.100 shows that positive pressures develop throughout the infiltration depth,
behind the wetting front.

The stability of the slope is assessed using three initial trial failure surfaces; a shallow

surface, a deep surface, and an intermediate surface with a depth in between the first

two. These are shown in Figures 3.101, 3.102 and 3.103 respectively.
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Figure 3.101. Shallow Failure Surface
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Figure 3.102. Deep Failure Surface
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Figure 3.103. Intermediate Failure Surface
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The variation of Factor of Safety with time starting from each of the failure surfaces is

shown in Figure 3.104.
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Figure 3.104. Variation of Factor of Safety with Time Starting with Various Initial Failure Surfaces

Figure 3.104 shows that the critical failure surface in the slope is initially located deep

along the soil bedrock interface. However, with rainwater infiltration, this critical surface

moves upwards towards the slope surface. At a time of about 4 hours into the event,
failure occurs along an intermediate failure surface.

The critical surfaces with time are shown in Figure 3.105.
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Figure 3.105. Variation of Factor of Safety and Critical Failure Surfaces with Time

Figure 3.105 shows that initially, the critical failure surface in the slope is located deep in

the slope. With time, and rainfall, failure occurs along an intermediate failure surface.

Part of the failure surface is above, and part is below the water table. The landslide is

large, and rotational in shape. The landslide is therefore classified as having an

intermediate failure surface. The rainfall alters the pore pressures on only a portion of

the failure surface, and this is sufficient to cause failure. This is because suction plays an
important role in the initial stability of the slope, and changes in suction, though only on a

portion of the failure surface, can have significant effects.
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3.4 RESULTS AND DISCUSSION

The series of examples presented in this chapter illustrate various landslide failure

mechanisms. These, along with extensive further studies on different slopes not shown

here, allow one to draw some general conclusions as to the type of landslide a particular

slope is most susceptible to. The conclusions are made with respect to the slope

geometric, geologic and hydrologic properties, as well as the properties of the triggering

event. A distinction is made between those slopes susceptible to failure by saturation

from below, and those susceptible to failure by saturation from above. Prior to doing so,
it is worth mentioning a few factors that decrease the state of stability of a slope, and

promote slope failure, whether it be by saturation from below, or from above. These

factors include:

(a) Slope Angle: The greater the slope angle the less stable a slope is, and so,
slopes with steep inclinations tend to be less stable than slopes with shallow

inclinations

(b) Depth to Bedrock (Thickness of soil layer): The greater the depth to the bedrock

from the ground surface, or, the thicker the soil layer, the greater the weight of

soil that may potentially fail. As a result, slopes with thick soil layers tend to be

less stable than slopes where the thickness of the soil layer is small.

3.4.1 FAILURE BY SATURATION FROM BELOW

Slopes susceptible to failure by saturation from below are typically slopes where the

depth to the water table is shallow. An example with a shallow water table was used to

illustrate the mechanism of failure by saturation from below in Section 3.2. When the

depth to the water table is shallow, the extent of the unsaturated zone of the slope is

small, and the moisture content in the unsaturated zone is typically large, and suction is

typically small. As a result, suction does not play a very important role in increasing the

stability of the slope. The critical failure surface in the slope, initially, typically lies along

the soil bedrock interface, where the pore pressures are maximum. This was shown in

Section 3.2.

During a rainfall event, infiltrating rainwater percolates directly to the water table since

the depth is shallow, and because of the high moisture content and therefore high

conductivity of the soil. The rainwater causes a rise in the water table, promoting failure
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along the strength discontinuity between soil and rock, where the pore pressures are

maximum. A rise in the main water table usually takes place slowly, during long duration

rainfall events. It also occurs during low intensity rainfall, such that all the incident rainfall

infiltrates into the slope, reaching the water table directly. During high intensity rainfall, a

small, saturated zone of soil may develop near the slope surface, and any additional

rainfall is observed as surface runoff. The rainfall characteristic that promote failure by

saturation from below are therefore, small intensity, and long duration. Table 3.3

attempts to list, in relative terms, the factors that contribute to failure by saturation from

below.

Geometry Geology Hydrology

Soil Rock Site Trigger

Slope Thickness: Thick Location of Location of Water Rainfall

Inclination: Bedrock: Table: Shallow Intensity:

Steep Deep Low

Stratigraphic Setting Fracture Subsurface Flow Rainfall

(Homogenous/ Network: Regime: Duration:

Heterogeneous): None/Intact Hydrostatic/Steady Long

Homogenous Rock State Flow

Strength Properties Strength: Very Antecedent Moisture

(Saturated and High Content: High

Unsaturated): Low

Saturated

Unit Weight Conductivity:

(Saturated and Very Low

Unsaturated): High

Conductivity: High

Pore Size Distribution:

Uniform

Grain Size Distribution:

Uniform

Porosity: High

Conductivity: Very high

Characteristic Curves: Not

very important

Table 3.3. Factors Contributing to Failure by Saturation from Below
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The factors in Table 3.3 are shown graphically in Figure 3.106.

Surface Conditions
- Vegetation (Root Strength, Unit Weight)
- Cracks: Many

Rainfall
- Intensity: Low
- Duration: Long

Bedrock
-. - -.- -' - Strength: Very High

Water Table - Conductivity: Very Low
- Depth: Shallow
- Flow: Steady State

Inclination: Steep

Soil Cover
Type: Important
Thickness: Small
Strength: Low
Saturated
Conductivity: High
Characteristic
Curves: Not so
Important

Figure 3.106. Illustration of Factors Contributing to Failure by Saturation from Below

The factors in Table 3.3, and shown in Figure 3.106 contribute to failure by saturation

from below. The hydrologic factors, e.g. shallow water table, high conductivity of soil,
and low conductivity of bedrock, cause the infiltrating rainwater to percolate directly to

the water table, causing it to rise. As this happens, the pore pressures along the soil

bedrock hydraulic conductivity interface increases. The stability factors, e.g. low

saturated strength of soil, high strength of rock, promote failure along the soil bedrock

interface because of the strength discontinuity. The combined effect of these factors is to
promote landsliding by saturation from below.
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3.4.2 FAILURE BY SATURATION FROM ABOVE

Slopes susceptible to failure by saturation from above are typically slopes where the

depth to the water table is relatively large.

When this is the case, the extent of the unsaturated zone of the slope is large, and the

moisture content in the unsaturated zone can typically become small leading to high

values of suction. The high suction plays an important role in increasing the stability of

the slope.

During a rainfall event, a wetting front forms near the soil surface, and migrates

downwards into the slope with increasing time and rainfall. This typically occurs during

high intensity, short duration rainfall. The infiltrating rainwater increases the pore

pressures (decreases the suction) in the unsaturated zone of the slope, causing the loss

of strength, which ultimately leads to failure. Failure occurs along a shallow failure

surface, close to where the pore pressures (suction) have been altered by rain.

Section 3.3 demonstrated this using several example slopes, where the depth to the

water table was large, and the effects of changes in suction were significant.

Table 3.4 attempts to list, in relative terms, the factors that contribute to failure by

saturation from above.
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Geometry Geology Hydrology

Soil Rock Site Trigger

Slope Thickness: Thick Location of Location of Rainfall

Inclination: Bedrock: Deep Water Table: Intensity:

Steep Deep High (Higher

than

Conductivity

of Soil)

Stratigraphic Setting Fracture Network: Subsurface Flow Rainfall

(Homogenous/ None/Intact Regime: Duration:

Heterogeneous): Transient flow in Short

Homogenous or unsaturated soil

Heterogeneous

Strength Properties Strength: High Antecedent

(Saturated and Moisture

Unsaturated): Low Content: Low

Unsaturated (High initial

suction)

Unit Weight Conductivity: Low

(Saturated and

Unsaturated): High

Conductivity: Low

Pore Size Distribution:

Non-Uniform

Grain Size Distribution:

Non-Uniform

Porosity: Low

Conductivity: Low

Characteristic Curves:

Very Important. Shallow

moisture retention curve

with Low air entry

pressure

Table 3.4. Factors Contributing to Failure by Saturation from Above

The factors in Table 3.4 are shown graphically in Figure 3.107.
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Surface Conditions
- Vegetation (Root Strength, Unit Weight)
- Cracks: Few

Rainfall
- Intensity: High
- Duration: Short

Water Table Bedrock
- Depth: Deep - Strength: High
- Flow: Transient.* - Conductivity: Low

Inclination: Steep

Soil Cover
- Type: Important
- Thickness: Large
- Strength: Low

Unsaturated
- Conductivity: Low
- Characteristic

Curves: Very
Important

Figure 3.107. Illustration of Factors Contributing to Failure by Saturation from Above

The factors in Table 3.4, and shown in Figure 3.107 contribute to failure by saturation

from above. The hydrologic factors, e.g. deep water table, and low conductivity of soil,
promote the slow infiltration of rainwater in the unsaturated zone, causing an increase in

the pore pressures in the unsaturated zone of the slope. The stability factors, e.g. low

unsaturated saturated strength of soil, promote failure in the unsaturated zone of the

slope. The combined effect of these factors is to promote landsliding by saturation from

above.

Since the failure surface in shallow landslides is in unsaturated soil, unsaturated soil
properties (through characteristic curves) are of particular significance. Suction plays a
key role in such failures, and it influences both the strength, and the hydraulic properties

of the soil.
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STRENGTH

As stated previously, slopes that fail by saturation from above are slopes which are

initially held stable by the high initial suction in the unsaturated zone of the slope. Failure

takes place when this initially high suction is reduced, or eliminated by infiltrating

rainwater.

The strength of such slopes is such that it sensitive to changes in moisture content, i.e.

small changes in moisture content by infiltrating rainwater cause large changes in

unsaturated strength.

This can be translated in terms of the soil moisture characteristic curve. Soils that

experience large changes in pressure from small changes in moisture, have soil

moisture retention curves that are shallow, with a small air entry pressure. This is

illustrated in Figure 3.108.

Pressures t
to zero quic

as soil ge
saturate

-

Soil 2: Steer
end Slope, High a
kly Soil 1: Shallow entry pressur

ts Slope, Small air
d entry pressure

-C-a-g-i - - - -1---__ _ - -

Changein
moisture

Small air entry
-__ pressure Large change

in pressure

ir

0 V'4
1.lOE-06 1.OE-05 1.OOE-04 1.OOE-03 1.OOE-02 1.OOE-01 1.OOE+00 1.OOE+01 1.OOE+02 1.OOE+03 1.OOE+04 1.OOE+05 1.OOE+06

Absolute Pressure (kN/m 2
)

Figure 3.108. Properties of Moisture Retention Curve that Promote Failure by Saturation from
Above for Two Soils with Different Air Entry Pressures
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In Figure 3.108, for Soil 1:

(a) Small changes in moisture content cause large changes in pressures (see Figure

3.108). For example, a rainfall event that increases the initial moisture content

from 0.15m 3 /m 3 to 0.25m3 /m3 increases the pressures by more than two

orders of magnitude (see Figure 3.108). When this is the case, even low intensity

rainfall events are capable of reducing the initial suction in the soil significantly, or

eliminating it.

(b) The small air entry value causes the pressures (suction) to quickly tend to zero

as the soil gets saturated during rain. This way, as the soil is saturated, the

suction is eliminated, and with continued rain, positive pressures begin to build

up.

Both points (a) and (b) above, cause the initial suction to be reduced and eliminated

during a rainfall event, as the moisture content in the soil increases.

If, now, one considers two soils with the same air entry pressure, as shown in Figure

3.109, then:

(a) What has been stated in regard to Figure 3.108 is true, namely that Soil 1, with

the shallow characteristic curve will experience a larger change in pressures for a

given change in moisture content

(b) But the strength of this soil, Soil 1, remains greater than that of Soil 2. This is

because the suction in the soil, after the increase in moisture content is greater in

Soil 1 than it is in Soil 2.
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Figure 3.109. Properties of Moisture Retention Curve that Promote Failure by Saturation from
Above for Two Soils with Same Air Entry Pressure

From Figure 3.109, we can therefore conclude that the strength of Soil 1, the soil with

the shallower characteristic curve is greater than that of Soil 2.

Various attempts have been made to formally relate the strength of unsaturated soils to

the soil characteristic curve. This is discussed in more detail in Chapter 5. Nonetheless,

the strength of unsaturated soils, and how it is related to the soil characteristic curves

remains a matter of debate amongst investigators, and research continues in this field,

e.g. at the laboratories at MIT. The simple illustrations above do, to a certain degree

show the effects of the soil characteristic curve on strength.

The effect of the shape of the soil moisture retention curve on unsaturated strength can

also be examined by considering the Effective Stress Model (Bishop, 1959) for

unsaturated soil strength. The arguments that follow have not been previously presented

in the literature, and the idea of attempting to relate the Effective Stress Model to the

shape of the characteristic curve is new. According to the Effective Stress Model,

unsaturated strength can be described as:
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T = c'+[(a - ua) + X(ua - uw )]tan p' [3.3]

where:

G is the total normal stress

(ua - uw ) is the soil suction

C' is the effective cohesion

is the angle of internal friction of the soil

T is the shear strength of the soil

x is the effective stress parameter, and:

-0.55
1(ua -uw) [3.4]

(ua - uw )entry

where:

(ua - Uw) is the suction ratio
(Ua - Uw )entry

(ua - Uw )enrty is the air entry suction

We note that the suction ratio (ua -uw) is representative of the slope of the soil
L(ua -uw)entry j

characteristic curve. Hence, the effective stress parameter X in Equation [3.4] is also a

function of the slope of the characteristic curve. For a fixed air entry pressure,

(ua - uw )entry, and a constant (specified) moisture content, the steeper the slope of the

characteristic curve, the smaller the value of the soil suction (ua -uw). This is

illustrated in Figure 3.109. For example, at a moisture content 0.3 m3 /m 3 , the suction

in Soil 1 (steep characteristic curve) is greater than the suction in Soil 2 (shallower

characteristic curve) at that same moisture content.
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As shown in Figure 3.109, the steeper the characteristic curve the smaller the value of

the soil suction. Since the effective stress parameter X in Equation [3.4] is inversely

proportional to the soil suction, the smaller the value of the suction, the larger the value

of the effective stress parameter. The unsaturated strength of a soil in Equation [3.3] is

directly proportional to the effective stress parameter, and so the larger the value of X,

the greater the unsaturated strength.

Unsaturated strength, according to the Effective Stress Model, is however, directly

proportional to the soil suction. Since the soil suction decreases with increasing

steepness of the characteristic curve, there is a decrease in the soil strength. These are

two opposing effects, and their combined effect can be examined by re-writing the

strength equation in [3.3] as:

- 1-0.55

= c'+ (G-ua)+ (ua - uw) (ua -uw) tan '
(ua - uw )entry

[3.5]

Simplifying Equation [3.5] gives:

= c'+ (a - ua) + [u 1 -u )er 5
(ua - uw )entry

(ua - uw)0.45 tan ' [3.6]

T = c'L+(a - ua) + [(ua - uw )entry .55(ua - uw)0.45 tan4' [3.7]

If one assumes that the exponents of the soil suction, and the air entry are both 0.5, then

Equation [3.7] can be expressed as:

S= C'+( - ua) +ua -uw)entry (ua -uw ) tan ' [3.8]

Equation [3.8] shows that the unsaturated strength is approximately proportional to the

square root of the air entry pressure, and the square root of the soil suction.
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Therefore:

(a) Soils with smaller air entry pressures tend to exhibit lower unsaturated strength,

and

(b) The greater the suction, the greater the soil strength

Therefore, soils with steeper characteristic curves tend to have lower unsaturated

strength than soils with shallow characteristic curves for the same air entry pressure,

and at the same moisture content.

The air entry pressure, and the shape of the soil characteristic curve can be related to

physical properties of soils as:

(a) The value of the air entry suction can be attributed, amongst other factors, to the soil

pore size distribution. In general, soils with large pore sizes tend to have small values of

the air entry suction, whereas soils with small pore sizes tend to have high values of air

entry suction.

(b) The shape of the soil moisture retention curve can be attributed, amongst other

factors, to the soil grain size distribution. In general, soils with a uniform grain size

distribution tend to exhibit steep characteristic curves, whereas soils that are well graded

exhibit shallow characteristic curves. .

With this in mind, and with what has been stated above, we can conclude that uniform

soils, tend to be more susceptible to failure by saturation from above than well graded

soils. This is because well graded soils tend to show greater unsaturated strength, since

the soil suction is greater at the same moisture content.

These observations are, however, general guidelines, and the problem is more complex.

This is because strength will also depend on the saturated strength parameters, c' and

<'as shown in Equation [3.8]. These parameters will, in general, be different for soils

with different characteristic curves, and this has to be taken into consideration.
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CONDUCTIVITY

Slopes that fail by saturation from above are slopes that are composed of soils with low

unsaturated hydraulic conductivity. This allows for large pressures to develop behind an

infiltrating front, because the front is retarded by the low conductivity.

In terms of the conductivity characteristic curve, this would imply a curve with a shallow

slope that is located near the origin, where the absolute pressure is zero.

When the slope of the conductivity curve is shallow, large changes in suction, will cause

small changes in conductivity and the conductivity remains low. When the conductivity

curve is located close to the origin, i.e. when the air entry pressure is small, the

conductivity of the soil remains at a low unsaturated value for large changes in suction.

At high values of suction, the conductivity of the soil is very small, since the curve is

located near the origin. This is illustrated in Figure 3.111.

Relatively small change in
conductivity, which remains

unsaturated

I f I I

-
Shallow Slope

7
N

N

Large
change in
pressure
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Curve located near origin:
-- (a) Conductivity remains

unsaturated for large changes
in suction
(b) At large suction values,
conductivity is very low

1.OOE+03 1.00E+041.OOE-01 1.00E+00 1.00E+01 1.00E+02
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Figure 3.111. Properties of Hydraulic Conductivity Curve that Promote Failure by Saturation from
Above
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In general, soils with a uniform grain size distribution tend to exhibit steep conductivity

curves, whereas soils that are well graded exhibit shallow conductivity curves. We

therefore conclude that uniform soils, tend to be more susceptible to failure by saturation

from above than well graded soils. This conclusion is consistent with the one made in

previously with regard to strength.

3.5 CONCLUSIONS

Landslides can occur in a wide variety of different geological and hydrogeological

settings, and many factors add to the complexity of the phenomena. This chapter

presented some of the most important factors, both hydrological and geological, that

play an important role in landslide initiation. A distinction was made between landslide

mechanisms depending on the manner is which a slope gets saturated during rain. In

particular, mechanisms were classified depending on whether the slope gets saturated

from the bottom upwards, by a rising water table, or from the surface downwards, by

infiltrating rainwater. Examples on different slopes presented in this chapter, and the

following discussions show that, in general:

(a) Slopes with great depths to bedrock and shallow water tables, tend to fail by

saturation from below, with failure surfaces typically along the soil bedrock

interface resulting in a deep seated landslide

(b) Slopes with deep water tables tend to fail by saturation from above, with shallow

failure surfaces that are located above the water table.

A comprehensive study of the mechanisms of shallow landslides was performed since

these are poorly understood. These landslides occur because of changes in the initial

suction in the unsaturated zone of the slope that plays a key role in stabilizing slopes.

We showed that decreases in suction by infiltrating rainwater can reduce soil strength

sufficiently to initiate a landslide. In particular, we showed that reduction of suction can

generate a landslide. This is an important result since it remains a matter of debate

amongst investigators in the field. Suction can also be eliminated during a rainfall event,
or positive pressures may develop, and failures can occur in both cases.
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It has been traditionally assumed that a low conductivity heterogeneity must be present

in the subsurface to retard an infiltrating front sufficiently for positive pressures, in the

form of a perched water table to develop. While we showed that this is true, we also

showed that the presence of a low conductivity heterogeneity is not necessary for

positive pressures to develop. We described two methods, previously unaddressed in

the literature, in which positive pressures may develop behind an infiltrating front in a

homogenous soil, ultimately causing failure. The first is when the saturated conductivity

of the soil decreases with depth below the ground surface, and the second is when rate

of infiltration suddenly exceeds the water transmission rate of the soil. In the first case,

positive pressures develop gradually behind an infiltrating front. This causes the gradual

loss of strength that leads to a landslide. In the second case, positive pressures develop

rapidly behind an infiltrating front causing the sudden of strength, that generates an

immediate landslide. This mechanism explains many field observations of sudden

landsliding, e.g. Lambe (1959), and Torres et al. (1998).

A mechanism by which larger landslides with deep failure surfaces was also proposed.

This mechanism is based on the saturation of the slope from above by infiltrating

rainwater which increases the pressures along a section of a potential failure surface. As

this happens, there is a decrease in the unsaturated soil strength along that section of

the failure surface, and this decrease can be sufficient to generate a landslide. This

mechanism may explain why such slides with deep failure surface have been observed

in the field, without a rise in the main water table.

Several other important observations were made with regard to landslide modeling

including:

a. Landslide studies should investigate all possible failure mechanisms so as not to

overlook the critical mechanism, and avoid unconservative results.

b. Landslide studies should include a search for the critical failure surface, as

opposed to postulating and specifying one particular surface, even if it is the

initial critical surface.

c. This search should start from several initial trial surfaces.
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d. A time dependent analysis of the state of stability of a slope is essential since it

was shown that failure may take place both during a rainfall event, and after the

end of rain, because of pressure redistribution.

This landslide study has enabled a much better understanding of landslide failure

mechanisms, though it has also been shown that these mechanisms can be very

complex, and depend on a large number of factors.
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CHAPTER 4

UNCERTAINTIES

In this chapter, the uncertainties that enter the different stages of the landslide hazards

assessment procedure, and their effects are described. The chapter is divided into two

parts. Part 4-1 describes the sources of uncertainties and how they enter landslide

analyses. Part 4-2 provides practical solutions to the uncertainty problem. Influence

diagrams are used to simplify the hazards assessment procedure (decision analyses),

and sensitivity analyses are performed to evaluate the relative influence of parameters

on the landslide analyses. This allows one to formally retain parameters with the

greatest influence for probabilistic analyses in Chapter 5, and eliminate parameters with

the least influence.

4.1. SOURCES OF UNCERTAINTIES

Given that uncertainties are so important in geology and geotechnical engineering,

attempts have been made to categorize them, e.g. Baecher (1978, 1972) Christian et al.

(1994), Lacasse and Nadim (1996). In this study, we use the categories formulated in

Einstein and Baecher (1982) and reviewed in Einstein (1995) namely:

- Innate spatial (and temporal) variability of geological factors or of nature in general

- Errors introduced by measuring and estimating engineering properties, including

statistical fluctuation

- Model uncertainties

- Load uncertainty

- Omissions

In this chapter, emphasis is placed on the first three sources of uncertainties, particularly

the first two. Chapter 6 is devoted to model uncertainty. This is done because the "load"

in landslide problems is related to nature. Omissions, to quite an extent are related to
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the care and completeness of work, hence, beyond keeping in mind that they represent

a potential problem, they will not be considered.

It should also be noted that when formally assessing uncertainties, this can be done both

by the relative frequency or the subjective approach. These approaches and their

applicability have been discussed by Baecher (1972), Einstein and Baecher (1982), and

Einstein (1995).

SOURCES OF UNCERTAINTIES IN THE STAGES OF THE LANDSLIDE DECISION

ANALYSIS

Figure 4.1 shows the decision analysis cycle. Applying this decision making process to

the landslide problem can take the form shown in Figure 4.2. This particular diagram

was introduced by Einstein (1988) to duplicate the standard landslide mapping

procedure which is done in steps similar to the sequence of boxes on the left side of

Figure 4.2. The updating cycle (Updating in Figure 4.1) can, amongst other things,
represent the observational method in geotechnical engineering (Terzaghi, 1961; Peck,
1969; Einstein, 1988).
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Deterministic
(Model) Phase

" Select Initial Variables
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and Create Probabilistic
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" Eliminate Variables
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UpdatingInformationUpdating(Model) Phase

Risk Assessment

Risk Management

Decision

Figure 4.1. The Decision Analysis Cycle

State of Nature

-- Identify and Describe Dangers

Determine Probabilities and
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Danger = Hazard

U

Risk Determination

Actions, Management
(Zoning, Countermeasures,

Possible Multi -Step
Probability Determination

Prior Probabilities

ndicators and
Likelihood Functions

Posterior Probabilities

U

U

Warning, Additional
Exploration)

Figure 4.2. Decision Analytical Approach to Landslide Risk Assessment and Management
(U=Updating)
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While the structures in Figures 4.1 and 4.2 imply that the uncertainties, expressed in the

form of probabilities, enter only in particular steps, uncertainties actually enter

everywhere. Nevertheless, Figures 4.1 and 4.2 have the advantage of structuring the

decision making process, and they will therefore, be used as a basis for the uncertainty

discussions in this study.

4.1.1. STATE OF NATURE

Here most of the uncertainties are caused by innate spatial and temporal variability.

However, if the state of nature is explored and tested, i.e. observed, measured and

documented, it also involves measurement, estimation and statistical fluctuation errors.

Also, if as they usually do, interpretation of exploration and testing rely on a model,

model uncertainty enters. Figure 4.3 schematically shows examples for the sources of

uncertainty in determining the state of nature, while Table 4.1 attempts to list parameters

describing the state of nature and to what extent they are affected by each of the

sources of uncertainty.
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STATE OF NATURE SOURCES OF UNCERTAINTY
Measurement Model Uncertainty

Spatial/Temporal Uncertainty (model =

Variability interpretation of
Error Bias exploration or test

results)
TRIGGER ZONE
GEOLOGY
SOIL
Thickness H M L L
Stratigraphic Setting L M M L
(homogenous/heterogeneous)
Strength Properties M M M L
Unit Weight L L L L
Pore Size Distribution M M M M
Grain Size Distribution M M M M
Porosity M M M M
Cond.ulctivity M M L M
BEDROCK
Fracture Geometry M M H M
Strength L M M H
Conductivity M M M M
SURFACE CONDITIONS
Vegetation M L L L
Cracks and Micro-Pores M M M M
HYDROLOGY
Depth to Water Table M M L L
Subsurface Flow Regime M M H M
Antecedent Moisture Content M M M M
RAINFALL
Intensity H H M H
Duration M M L L
SLOPE GEOMETRY
Inclination M L L L
Dethto Bedrock- M M L L

LEGEND:
H In most cases
M In some cases
L Rarely

Table 4.1. State of Nature with Sources of Uncertainty (example landslide trigger zone)

4.1.2. IDENTIFY AND DESCRIBE DANGER/THREAT

This process involves combining the state of nature observations into an entity, namely,

the physical description of the soil/rock mass that might move, how it might be triggered
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and how it might move, the latter possibly subdivided into main movement and runout or

more components. Generic, qualitative or quantitative descriptions (Varnes, 1984;

UNESCO, 1991; IUGS, 1997; TRB, 1994) of the possible landslide phenomena exist

and can be applied to the particular location of the danger. Uncertainties can range from

not knowing which phenomena will occur to extent and timing. Table 4.2 is an attempt at

associating uncertainties with phenomena. (Not surprisingly these uncertainties will be

mostly subjectively expressed.)

SOURCES OF UNCERTAINTY
Measurement Model Uncertainty

DANGER IDENTIFICATION Spatial/Temporal Uncertainty (model =

Variability interpretation of
Error Bias exploration or test

results)
Type of Phenomenon x x x

Size of Phenomenon x x x x

Exact Location x x x

Time x x (x)

Table 4.2. Sources of Uncertainty Affecting Danger Identification. (x) Applies when Model
includes Temporal Components

A step further or in parallel with the identification and description of the danger will be a

description of the mechanism which in turn can be in form of empirical relationships, e.g.

between rainfall intensity/duration and landslide incidence, all the way to mechanistic

models at a variety of levels of detail, e.g. see Chapter 3.

Uncertainties associated with the description of the state of nature (see above) will

propagate into the identification and description of dangers. In addition, model

uncertainty will be another major source of uncertainty. This is discussed in more detail

in Chapter 6.

4.1.3. DETERMINE PROBABILITIES

In this step one associates the previously mentioned uncertainties with probabilities and

obtains a probability of the danger materializing, i.e. hazards. This process can, on the

one hand, be in form of a subjective, intuitive assessment of the state of nature and the

resulting landslide with a direct subjective association of probabilities to the landslide.

This was done e.g. in the often described case of creeping slopes in the area of Villars,
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where Noverraz (1988) directly predicted acceleration, stationarity or deceleration.

Clearly this can be only done by experts. At the other extreme of determining

probabilities is the propagation of uncertainties through an analytical model of the

mechanism where each parameter is associated with a probability be that in form of

distributions or moments. Such probabilistic modeling can be done with tools ranging

from First Order Second Moment (FOSM) Analyses (Cornell, 1972; Ang and Tang,
1978) to Point Estimate Methods (Rosenblueth, 1977), to Monte Carlo simulations (Ang

and Tang ,1984). Chapter 5 discusses probabilistic modeling using such tools, based on

the mechanistic models developed in Chapter 2. In this step, another important

uncertainty enters, namely the dependence or independence of parameters. This is

considered a type of model uncertainty and is discussed in more detail in Chapter 6.
Having said this, the dependence/independence of parameters is also affected by
measurement uncertainties in that the measurements may reveal dependency where

there is none in reality or vice versa.

4.1.4. RISK DETERMINATION AND ACTIONS OR RISK MANAGEMENT

Since this study is concerned with hazards determination, no further discussions are

made here with regard to the risk determination and risk management stages. Reference

is made to Einstein (1997) and Einstein and Karam (2001) for a more detailed

discussion.

In summary, different types of uncertainties enter all the phases of the hazards

assessment procedure (decision analysis cycle), rendering the problem of uncertainty

capturing complex. The problem is made even more complex when one considers the

uncertainties in the decision cycle (Figure 4.1) itself that come about from the

simplifications made. Possible solutions to these problems are presented in the next
section. Section 4.2.1 deals with simplifications to the decision analyses through the use
of influence diagrams, and Section 4.2.2. deals with the simplifications to the parameter

uncertainty problem through the formal elimination of variables using sensitivity

analyses. There remains the problem of model uncertainty, and this is dealt with in detail

in Chapter 6.
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4.2. SOLUTIONS TO THE UNCERTAINTY PROBLEM

With what has been stated in Section 4.1, it is clear that describing uncertainties poses

significant problems. Since it is necessary to be able to do something about landslide

assessments in spite of these complexities, a possible approach, which makes use of

influence diagrams to simplify the decision analyses procedure is outlined in this section.

4.2.1. SIMPLIFICATION WITH THE DECISION MAKING PROCESS

4.2.1.1. INFLUENCE DIAGRAMS

Figures 4.1 and 4.2 already gave an indication of how to simplify the decision making

process namely through elimination of variables and simplification of models. This

simplification can be systematically structured using influence diagrams, and it can be

implemented based on sensitivity analyses.

Influence diagrams are classic tools of decision analysis which represent all state- and

decision variables, and connect them amongst themselves and with the results, to show

dependencies. They are very helpful in structuring a problem but require substructuring

if a problem is complex, see e.g. Ashley et al. (1979). Figures 4.4 and 4.5 are attempts

at structuring the "state of nature", and "describe danger" parts of the landslide decision

making processes. Clearly, state of nature involves mostly state variables except for the

decisions regarding observation/exploration. The next step, danger description, involves

decisions on models/mechanisms. Once the general structure has been set out (Figure

4.5), danger description can be substructured using more detailed influence diagrams

such as those for hydrologic modeling (Figure 4.6) and stability modeling (Figure 4.7).
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GEOLOGY

Soil
Properties

Depth
Joints

Exploration

Surface Observed Laboratory
Mapping Movement Tests

Updated
State of Nature

Figure 4.4. Possible Influence Diagram for
State of Nature Assessment

VEGETATION

STATE OF RAINFALLNATURE(TGER
Strength, Fdraulic, (TRIGGER

Geonoetric Intensity
Properties Durtion

HYDROLOGIC MODEL

STABILITrY M ODEL

Stable/UnstabiMda Fiu

Figure 4.5. Possible Influence Diagram for
Danger Assessment
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SOIL SURFACE
Type, Fbrosity, Flre CONDITIONS RAINFALL

Size Distribution, Vegetation WATER BEDROCK TOPOGRAPHY Rainfall Record
Saturated Coefficiant di Runcf TABLE Location Runoff Intensity

Conductioity, Evapotranspiration Location Conductiity Duration
Storatvity Cracks

Flkw Conduits
Fill w ith Water

Antecedent Moisture Content

Soil Characteristc Curves

Brooks and CarnpbellGardner(1956) Corey(1966) (1974)

Unsaturated Soil Initial Fore Pressure
Properties , K(O) [Distribution

Infiltration Model Catchment Model Water Balance Model
e.g. Green &Anpt e.g. O'Loughlin(1986); Moore e.g. Wilson & Wieczorek

(1911); Lumb (1998) Grayson (1991) (1995)

Final Fbre
Pressure

Distribution

Figure 4.6. Possible Influence Diagram for Hydrologic Modeling

The unsaturated soil properties, K(y), and initial pressure distribution can be directly

measured, either in the field or in the lab. Alternatively, these can be related to the

antecedent moisture content indirectly through the soil characteristic curves. Models

exist for these curves. These are, therefore, shown in Figure 4.6 with boxes that have

dashed lines indicating that these models can and are often used, but this is not

necessary.
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SOIL SURFACE

Saturated Strength CONDITIONS BEDROCK
PrmtrVegetation Strength TPGAH

C'aeo, Root Stength Characteristcs

Unsaturated Strength Cracks
Parareters Zeo Strength

Saturated Unsaturated
Strength Strength

'AodeVCriteron ModeVCriteron

Fredlund et al. Bishop
Coulorb (1978) (1959)

Pore Pressure
Assumed Failure Distribution

Surface Geometry\ (from Hydrologic
Strength ModelModel)

STABILITY MODEL

Infinite Slope Vorgenstern &
(1959) Price (1965) Janbu(1978)

Stable/Unstab Mode of Failure

Figure 4.7 Possible Influence Diagram for Stability Modeling

where:

the ovals represent state variables (models) which are uncertain (random)
quantities that are relevant to the decision problem. These are usually not
in the control of the decision maker, e.g. state of nature.

the rectangles represent decision variables (models) that are usually in
the control of the decision maker, e.g. choice of stability model

the diamonds are values or output in the decision process.

dashed symbols imply temporary/intermediate steps
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The influence diagrams can be expanded by comments on the connecting lines. Such

comments would be largely based on judgment. For instance, one can mention the

degree of uncertainty and the importance of a particular variable on the connecting line.

This can then be used to eliminate some of the variables.

4.2.2. SENSITIVITY ANALYSES

A formal elimination of variables has to be done with sensitivity analyses. This includes

both state and decision variables. Models have to be selected to perform sensitivity

analyses, and these, by themselves are subject to model uncertainty, which is discussed

in Chapter 6.

4.2.2.1. HYDROLOGIC SENSITIVITY ANALYSES

It has been extensively documented in the literature (e.g. Freeze, 1980) that the most

uncertain parameter in hydrologic analyses is the saturated conductivity of the soil. The

saturated conductivity typically exhibits very large spatial and temporal variability, and

this is evident in the typical values that have been documented for the coefficient of

variation of hydraulic conductivity which ranges from 50% - 500% (Freeze, 1980; Harr

1984; Benson et al., 1999). This will also become evident through the sensitivity

analyses that are performed in this section. The effects of different parameters on

hydrologic analyses are first performed using the widely used Green - Ampt (1911)

hydrologic model, and then using the finite difference model developed in Chapter 2.

4.2.2.1.1. GREEN - AMPT (1911) MODEL

The Green - Ampt (1911) is a simple one-dimensional infiltration model that assumes

infiltration occurs vertically downwards from a slope surface in the form of a migrating

wetting front according to Darcy's Law. Because of its simplicity, it the model remains

one of the most widely used ones, particularly in landslide analyses. The input

parameters of the model are the saturated hydraulic conductivity of the soil, the soil

wettable porosity (which is the difference between the saturated and residual moisture
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contents), and /, a constant soil suction head assumed to act in front of the wetting

front. The model's output is in the form of the depth to which complete soil saturation

occurs. The model is described in more detail in Section 6-1.2 of Chapter 6.

Figures 4.8 to 4.11 show the effects of the different input parameters on moisture

content profiles in a layer of soil at a time of 2 hours after the start of infiltration.

Similarly, Figures 4.12 to 4.15 show the moisture profiles at time 4 hours.
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3
/m

3
)

0.35

K=275cri'day
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. _ __. ... .... ... ... ... .. .... ..... .... ...

Figure 4.8. Sensitivity of Hydrologic Analyses to Hydraulic Conducitivity at 2 Hours (Green -
Ampt Model)
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Hours (Green - Ampt Model)
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Figures 4.8 to 4.11 and 4.12 to 4.15 show that the most influential parameter in

hydrologic analyses is the hydraulic conductivity of the soil. The conductivity has the

greatest effect on the depth to which saturation occurs (depth of penetration of wetting

front), and hence the pore pressures above this depth. Appendix C-1 shows the

sensitivity of other hydrologic parameters to the various input parameters of the Green -

Ampt (1911) model, and the results presented there again show that the hydraulic

conductivity of the soil is the most influential parameter.

It is, however, worth making a few more comments regarding Figures 4.8 to 4.15 in the

context of landslide analyses:

a. The Green - Ampt (1911) model can only be used to predict moisture profiles

with time. This is a significant drawback since it is the pore pressures (and not

the moisture contents) that are needed for stability, and hence landslide

analyses. The effects of different parameters on hydrologic analyses can
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therefore not be thoroughly examined using the model. Nonetheless, some

general results can be drawn.

b. The initial or antecedent moisture content distribution of the soil depends on the

distribution of rainfall over a certain period of time, say through a season. The

initial moisture distribution governs the initial pressure (suction) distribution

through the soil characteristic curves. Therefore, the initial moisture distribution

influences the initial state of stability of a slope. The influence becomes less

important as the soil is saturated (see Figures 4.10 and 4.14). This was

discussed in more detail in Chapter 3.

c. The saturated moisture content of the soil has an influence on the analyses as

well, which is not very evident in Figures 4.11 and 4.15 because of the simplicity

of the Green - Ampt Model. Specifically, the saturated moisture content will

determine the amount of water required to cause saturation to a particular depth.

This, in turn, is what affects the rate of advancement of a wetting front, and the

pore pressures that develop.

Given what has been stated above, it is necessary to conduct more in-depth sensitivity

analyses, and this can only be done using a more advanced model, such as the one

developed in Chapter 2. These analyses are presented next.
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4.2.2.1.2. ADVANCED HYDROLOGIC MODEL

A better understanding of the effects of different parameters on hydrologic analyses is

gained by performing sensitivity analyses using the infiltration model developed in

Chapter 2. The input parameters for the infiltration model include the soil properties, i.e.

saturated conductivity, saturated and residual moisture contents, specific storage

coefficient and the characteristic curves (see Chapter 2), as well as the initial

(antecedent) moisture content distribution in the soil. To investigate the effects of the

input parameters, we assume a soil layer consisting of a uniform soil with, saturated

moisture content Os = 0.47cm3 /cm 3 , residual moisture content Or = 0.11cm 3 /cm 3 , and

saturated conductivity KS = 250cm/day . The van Genuchten (1980) model is used to

describe the soil characteristic curves, and this model has two parameters, n and 8 (see

Chapter 2). The parameters are taken to be n = 3, and 8= 0.0068, and the characteristic

curves are shown in Figures 4.16 and 4.16. We assume an initial and constant moisture

content O = 0.23cm3 /cm 3 , which results in an initial and constant pressure distribution

shown in Figure 4.18 at time t = 0 hours.

We then assume a constant infiltration flux at the soil surface equal to 175 cm/day for

duration of 8 hours. Figure 4.18 shows the resulting distributions at times of 4 and 8

hours. These two cases are used as base cases for sensitivity analyses. The influence

of the different parameters on hydrologic analyses are then investigated at these two

times of 4 and 8 hours. Figures 4.19 to 4.25 show the effects of the various parameters

on the pore pressure profiles at a time of 4 hours, and Figures 4.26 to 4.32 show the

effects of the various parameters on the pore pressure profiles at a time of 8 hours, at

the end of infiltration.
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Figure 4.26. Sensitivity of Hydrologic Analyses to Saturated Moisture Content at 8 Hours
(Advanced Finite Difference Model)
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Figure 4.28. Sensitivity of Hydrologic Analyses to Parameter n of the van
Model at 8 Hours (Advanced Finite Difference Model)

Genuchten (1980)

PRESSURE HEAD (cm)

-300 -250 -200 -150 -100 -50

Figure 4.29. Sensitivity of Hydrologic Analyses to Parameter a of the van
Model at 8 Hours (Advanced Finite Difference Model)

Genuchten (1980)

290

-100

n=2.9

n=3.0
+-=3 .1
n=3.2

-50
0

50

100

150

200

3

-4
250 I

300

350

400

450

500

-+- =0.0055 -
-- 6=0.0060
+- 8=0.0065

-=0.0070

-~~ -=.07

0
0

50

100

150

- 200

0
m
:9

*250 I1

*300

350

400

450

500

0



PRESSURE HEAD (cm)

-250 -200 -150

-K=100 cm
K=200 cm

---a-- K=250 cm

K=400 cm
---- K=500 cm

-300 -100 -50

Figure 4.30. Sensitivity of Hydrologic Analyses to Hydraulic
Finite Difference Model)

Conductivity at 8 Hours (Advanced

PRESSURE HEAD (cm)
-300 -250 -200 -15

0,=0.21
-, 0.23

0,=0.25

Fiur 431 Snstiit o ydolgi Aalse t -Iita (Atceet MosueCneta

- I --__ __ --____- ___- ____- ___- ___- ___ -___ --_____ -___-___ -___ -___
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Figure 4.32. Sensitivity of Hydrologic Analyses Storage Coefficient at 8 Hours (Advanced Finite
Difference Model)

Several comments can be made with regard to Figures 4.19 to 4.32:

a. The hydraulic conductivity of the soil has the greatest influence on the pore

pressures that are generated during the infiltration process. This confirms the many

observations, both theoretical and experimental that have been documented in the

literature, e.g. Freeze (1977), Brass and Protopapas (1998).

b. The Storage Coefficient (see Chapter 2 for definition) has the least effect. In fact,
Figure shows that the Storage Coefficient has no effect on the resulting pressure

distributions. This is because the infiltration rate is lower than the saturated conductivity

of the soil, allowing for all the water to penetrate through. The soil remains unsaturated,

and so the Storage Coefficient has no effect. To better understand the effects of Storage

Coefficient, the infiltration rate is increased to 325 cm/day, such that it exceeds the

conductivity of the soil, allowing for positive pressures to be generated. Figure 4.33

shows the effects of Storage Coefficient on the pressure profiles at a time of 4 hours.
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Figure 4.33 shows that although the Storage Coefficient has an effect on the results in

this example, it remains the least influential parameter in the analyses.

c. The initial (antecedent) moisture content governs the initial pressures in the soil,
and in the context of landslide analyses, therefore, the initial state of stability of the soil.

Furthermore, the antecedent moisture content also governs the hydraulic conductivity of

the soil, in such a way that higher moisture contents imply lower initial suction, and

hence larger hydraulic conductivity. This is evident through the soil characteristic curves,
e.g. Figures 4.16 and 4.17. The rate of water transmission during rainfall is, however,
dependent on both the hydraulic conductivity as well as the suction (driving) head

through Darcy's Law. The opposing effects of increased conductivity and smaller suction

head have complex effects on water transmission through the soil during rainfall.

Therefore, the role of antecedent moisture content is important in landslide analyses,
though complex. This was discussed in more detail in Chapter 3.

d. The soil characteristic curves also play an important role in determining the initial

pressure distribution in the soil (see Figures 4.21, 4.22 and 4.27, 4.28), and this was
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also discussed in Chapter 3. The effects on the pressures that develop during infiltration

are less evident.

In conclusion, given the results presented in this section, and those in Appendix C-1, the

hydraulic conductivity of the soil is retained for probabilistic analyses in Chapter 5,

whereas other parameters are eliminated.

4.2.2.2. STABILITY SENSITIVITY ANALYSES

In this section, sensitivity analyses to investigate the influence of different parameters on

stability analyses are performed. This is done first using the Infinite Slope Model

(Skempton & DeLory, 1959), and then using the more advanced stability model

developed in Chapter 2.

4.2.2.2.1. INFINITE SLOPE MODEL (SKEMPTON & DELORY, 1959)

The Infinite Slope Model (Skempton & DeLory, 1957) is a Limit Equilibrium stability

model that is based on the assumption that the depth to length ratio is a slope is very

small. In such cases, the stability of a slope can be modeled in one dimension, z, the

depth below the ground surface (see Figure 4.34). The Factor of Safety in an Infinite

Slope can be expressed as (Skempton & DeLory, 1957):

F c tan ' +F - z~(y

Yszsinscosp tanfl L z _ Ystanf)

where the parameters in Equation [4.1] are defined in Table 4.3, and Figure 4.34.

Equation [4.1] can also be written as:

F = c' tan4' - wtan4' [4.2]
Yszsinpcosp tan.? Ystanfl
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where m is the degree of saturation in the slope defined as n = w , and hw and H are
H

defined in Figure 4.34.

The model has been chosen for sensitivity analyses because it remains to this day, the

most widely used model in landslide analyses, and it is relatively easy to vary

parameters in the model. This is because the model assumes that the failure surface is

always along the soil bedrock interface, and hence one can simply vary parameters and

investigate the effects on the results of stability analyses.

PARAMETER SYMBOL VALUE OR RANGE

Depth to soil-bedrock interface/failure surface (m) H

Depth below ground surface (m) z 0 - H (m)

Cohesion (kN/m2 ) c' 10 -100 kN/m 2 (0 kN/m 2 )

Angle of shearing resistance ' 10 - 400 (00)

Saturated unit weight of soil (kN/m2) 7s 18 - 22 kN/my

Slope angle P 10-600

Unit weight of water (kN/m 2) 7w 9.81 kN/m2

Depth of water table from ground surface (m) zw 0 - H (m)

Table 4.3. Definition of Parameters and Range used in Sensitivity Study
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Figure 4.34. Slope Geometry and Definition of Parameters

Figures 4.35 to 4.38 show the influence of different parameters on stability analyses for

the range of values given in Table 4.3.
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Figure 4.35. Effect Angle of Shearing Resistance and Slope Angle on Factor of Safety
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Figure 4.38. Effect of Unit Weight and Slope Angle on Factor of Safety

Based on the results in Figures 4.35 to 4.38, it is for instance, obvious that unit weight

can be eliminated as a variable. The soil strength parameters c' and 4' are the most

influential parameters, and these are retained for probabilistic analyses in Chapter 5.

Prior to performing probabilistic analyses, one can take the sensitivity analyses a step

further, and vary two parameters simultaneously, while including correlation. Figures

4.39, and 4.40 show this for positive and negative correlation of the parameters c' and 4',
although this may practically not be a very meaningful example since one can be

reasonably certain that c' and 4' are negatively correlated. These types of sensitivity

analyses do however serve to show where correlation can be important and where not.
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More extensive sensitivity analyses involving one, and two parameters using the Infinite

Slope Model are given in Appendix C-2.

4.2.2.2.2. ADVANCED STABILITY MODEL

In this section, the sensitivity of stability analyses to various parameters is investigated

using the advanced stability model that was developed in Chapter 2. In order to perform

meaningful sensitivity analyses, so that the results can be directly compared, it is

necessary to show the results on plots of, say, Factor of Safety against slope angle, as

was done in the previous section. This was simple using the Infinite Slope Model since

the assumption that the critical failure surface is at the soil bedrock interface is (almost)

inherent. This is not the case with the advanced model that was developed in Chapter 2.

Recall that the model includes a search for the critical failure surface in a slope along

which the Factor of Safety is minimum. Therefore, prior to any analyses, it is necessary

to select various slopes, with differing inclinations to the horizontal, which will be used in

the sensitivity study. It is also necessary to locate the critical failure surface in each of

these slopes. Figures 4.41 to 4.46 show six slopes that have been chosen for this

purpose, along with the soil and geometric properties, and critical failure surfaces. The

slopes are inclined at angles 100 to 600 to the horizontal in increments of 100. In each

slope, the depth to the bedrock from the ground surface is taken to be 5 m, and the

depth of the water table is 3 m, thus keeping the ratio m (see previous section for

2
definition) constant at m = -. The length of the slope is also kept the same at 35 m.

5
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Figure 4.41. Slope 1 Parameters Used in Sensitivity Analyses
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Figure 4.42. Slope 2 Parameters Used in Sensitivity Analyses
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Figures 4.47 to 4.51 show one parameter sensitivity analyses, based on the slopes

shown in Figures 4.41 to 4.46.
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Figure 4.47. Effect of Cohesion and Slope Angle on Factor of Safety (Advanced Model)
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Figure 4.48. Effect of Angle of Shear Resistance and Slope Angle on Factor of Safety (Advanced
Model)
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Figure 4.49. Effect of Water Table Depth and Slope Angle on Factor of Safety (Advanced Model)
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Figure 4.51. Effect of Unit Weight of Water and Slope Angle on Factor of Safety (Advanced
Model)

Figures 4.47 to 4.51 are consistent with the results obtained using the Infinite Slope

Model that are shown in Figures 4.35 to 4.38. They also show that most influential

parameters are the soil strength parameters c' and '.

Figures 4.52 and 4.53 show two parameter sensitivity analyses for the soil strength

parameters including correlation, and again the results are consistent with those shown

in Figures 4.39 and 4.40.
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The results of the sensitivity of stability analyses presented in this section, as well as

those in Appendix C-2, show that the most influential parameters are the soil strength

parameters and these are retained for probabilistic analyses in Chapter 5. The results of

two parameter sensitivity analyses show that correlation between the strength

parameters is important. This is considered as a type of model uncertainty, and this is

studied in more detail in Chapter 6.

4.3. CONCLUSIONS

In this chapter, the sources of uncertainty were classified, and how they enter the

different stages of the landslide decision analysis procedure were described. Solutions

to the uncertainty problem were presented through simplifications to the decision making

procedure. This involves the use of influence diagrams and sensitivity analyses.

Sensitivity of hydrologic and stability analyses were performed. The results show that the

saturated conductivity of the soil is the major contributor to uncertainties in hydrologic

analyses, and the soil strength parameters are the major contributors to uncertainties in

stability analyses. These parameters are retained for probabilistic analyses in Chapter 5.

Other parameters have little influence, and are left out of probabilistic analyses.

Sensitivity analyses also serve an important purpose in decision making by simplifying

the relationships and pointing out where it is necessary and worthwhile to get detailed

information on uncertainties. For example, it was shown that correlation between the soil

strength parameters is important. The issue of model uncertainty was brought up and is

dealt with in more detail in Chapter 6.
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CHAPTER 5

PROBABILISTIC LANDSLIDE HAZARDS ASSESSMENT

In this chapter, landslide hazards are assessed within a probabilistic framework. This

represents the second phase of the decision analysis cycle.

Probabilistic
(Model) Phase

" Express Probabilities
and Create Probabilistic
Models

" Sensitivity Analyses
" Eliminate Variables

(Models)

Updating Information
(Model) Phase

Risk Assessment

Risk Management

Decision

Figure 5.1. The Decision Analysis Cycle
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Techniques are developed whereby uncertainties are systematically incorporated into

the hazard assessment procedure by introducing uncertainties in the hydrologic and

stability models developed in Chapter 2.

In Part 5-1, Monte Carlo methods are used to propagate uncertainties through the

infiltration model that was developed in Chapter 2, based on uncertain hydraulic

conductivity.,The results are in the form of mean values and standard deviations of pore

pressure profiles that are generated during a rainfall event.

In Part 5-2, the basic principles of slope reliability analyses are introduced. The reliability

of slopes is assessed using second moment reliability methods and based on the

Hasofer and Lind (1974) reliability index. From an assumed distribution of the Factor of

Safety in a slope, probabilities of failure are estimated.

In Part 5-3, Monte Carlo methods are used to propagate uncertainties through the slope

stability model developed in Chapter 2. The results are in the form of generated relative

frequency density plots for the Factor of Safety, which are used to estimate probability

distributions. From these distributions, probabilities of slope failure are computed. The

results are compared with the second moment results in Part 5-2.

In Part 5-4, reliability methods are used to asses slope reliability during rainfall. This

combines the analyses performed in Parts 5-1 and 5-2. The results are in the form of the

variation of the Hasofer and Lind (1974) reliability index with time during and after a

rainfall event. From this, and an assumed distribution of the Factor of Safety, a plot of

the variation of slope reliability with time is derived. When this is coupled with

probabilities of rainfall occurrence, landslide hazards (spatial and temporal) are

estimated in a second moment context.

In Part 5-5, Monte Carlo Methods are used to asses slope reliability during rainfall in a

full probability distribution context. This combines the analyses performed in Parts 5-1

and 5-3. The results are in the form of the variation of probability of slope failure (or

reliability) with time during and after rain. Landslide hazards (spatial and temporal) are

computed based on these results and probabilities of rainfall occurrence. The results of

the Monte Carlo Methods are compared to those of second moment analyses.

In this Chapter, no correlation is assumed between uncertain parameters, e.g. soil

strength parameters c' and '. Correlation is studied in detail in Chapter 6.
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PART 5-1:

UNCERTAINTY PROPAGATION IN VARIABLY SATURATED FLOW

Flow in variably saturated soils with uncertain hydraulic properties is studied. Chapter 2

dealt with basic flow principles and derived the equation for variably saturated flow as:

(SS() + C()) =a K(W) jt +1 [5.1]
at az az)

where:

SS is the specific storage

S(y) is the degree of saturation

dO
C() = - is the specific moisture capacity

dy

K(y) is the conductivity characteristic function

The solution to Equation [5.1] requires specification of the soil characteristic curves,

0(y) and K(y). Several models have been developed to describe the soil

characteristic curves. One such model is the van Genuchten (1980) model which was

discussed in Chapter 2 and is given by:

S(y) =1 and O(y) =O y 0 [5.2]

S(y) = 0 (y) - ( 1 y < 0 [5.3]
Os -Or 1+(Sy)

K(y)= KS y 0 [5.4]

K(y)=KsS(y)" (1-(1- S(y) W < 0 [5.5]
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where:

Or is the residual moisture content

O. is the saturated moisture content

6 and n are empirical coefficients, and m = 1-1/n, and all other parameters

are defined above.

Uncertainty in hydraulic parameters will lead to uncertainty in the soil characteristic

curves, and hence uncertainty in flow modeling Equation [5.1]. Because of the high non-

linearity and complexities involved, it is not practical to perform a complete probabilistic

characterization of the model's output in terms of pore pressures. Consequently, a

probabilistic sensitivity analysis using Monte Carlo techniques is used to predict the

second moment characteristics of the model's output. Using the Monte Carlo technique,

one or more of the hydraulic parameters are randomized from known or assumed

probability distributions. Based on their probability distribution functions, N values of

each hydraulic parameter are randomly selected. For each sample set, the soil

characteristic curves, K(y) in Equations [5.4] and [5.5], and 0(Y) in Equations [5.2]

and [5.3], are computed and the flow model is solved to generate N outcomes of the

pressure head y(t) and moisture content 0(t) profiles at any given time, t. At time t, the

first and second moments (mean and variance) of the N outcomes are determined at

each node in the profile. The number of simulations, N is made large enough so that the

mean and variance of y(t) and 0(t) are insensitive to the value N.

In this study, the soil saturated hydraulic conductivity Ks is assumed uncertain. It has

been extensively documented in the literature (e.g. Philips, 1978; Cherry, 1979; Bear,

1988; Freeze and Cherry, 1990) that the soil hydraulic conductivity is the most uncertain

soil hydraulic parameter and is the main contributor to uncertainty in hydrologic

analyses. Uncertainty in KS will result in uncertainty in the K(y) characteristic curve of

Equations [5.4] and [5.5].

The hydraulic conductivity is assumed to follow a Lognormal distribution (Freeze, 1980)

with known/specified mean value and standard deviation. N values of Ks are randomly
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generated. For each value of Ks, the soil characteristic curves are computed using the

van Genuchten (1980) model in Equations [5.2] through [5.5]. The flow Equation [5.1] is

then solved for each value of KS to result in a sample of N pressure head y(t) and

moisture content 0(t) profiles at any given time, t. The mean value and standard

deviation of these profiles is computed, thus characterizing uncertainty, in a second

moment context. The Monte Carlo technique is implemented in a spreadsheet, and

details are given in the following section.

5-1.1. SPREADSHEET IMPLEMENTATION

Chapter 2 described a spreadsheet based finite difference method by which the flow

equation in variably saturated media can be solved deterministically. In this section, this

method is extended to account for uncertainties in the soil hydraulic conductivity.

5-1.1.a. RANDOM NUMBER GENERATION

A cell in the spreadsheet is designated as a cell for random number generation.

Microsoft Excel's random number generator is used to randomly generate numbers from
the uniform distribution between 0 and 1 in this cell. This can be done by either using

Excel's Random Number Generator Add-In or by typing the function "=RANDO" in the
cell. Note that every time the F9 key is pressed, a different number is returned in the cell.

Let U denote this variable. The probability density function fU(u), and cumulative

distribution function FU(u) are given by:

fU(u) = , 0 u 1 [5.6]0, otherwise

F1  u, 0 u 1
FU(u) =, otherwise [5.7]

0, otherwise
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5-1.1.b. TRANSFORMATION OF VARIABLES

Using a transformation of variables, the random numbers generated from the uniform

distribution are transformed into random numbers generated from any desired

distribution. The transformation is as follows:

Suppose that one wants to generate numbers for a variable X, with cumulative

distribution function FX(x), i.e. X - FX(x).

Let U= FX(x) . x(u) = F2 (u). Since FX(x) is a monotonically increasing function of x,

Fu(u) is expressed as FU(u)=FX(F-1(u)))=u. Therefore, using the transformation

x(u) = F 1 (u) one can generate variables X with the desired distribution X - FX (x). A

graphical representation of this transformation is shown in Figure 5.2. Figure 5.2a shoes

the probability density function of the uniformly distributed variable that is generated

using the random number generator. This is transformed through x(u) = F 1 (u) which is

shown in Figure 5.2b, to result in a variable X with the desired distribution as shown in

Figure 5.2c.
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2

Figure 5.2a. PDF of Uniform Variable Figure 5.2b. Transformation of Variables

x

Figure 5.2c. PDF of Transformed Variable
Figure 5.2. Graphical Illustration of Transformation of Variables

In this study, the hydraulic conductivity of the soil is assumed uncertain and to follow a

lognormal distribution, i.e.KS 2LN(mjnK , ) where mhK and cy 2

parameters of the distribution. The theoretical probability density function of the hydraulic

conductivity is given by:

fKKs (Ks) =expr
Ks1JlnKs -2n

1 In Ks - minKs
2 TlnKS
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The cumulative distribution function of Ks, FKs (Ks) is obtained by integrating fK (Ks).

This is done numerically. The value of FK (KS) for any given Ks, and parameters of

the distribution can also be obtained, in this case of a lognormal variable, using the

'=LOGDISTO' function in Microsoft Excel.

So, to generate random values of K, from a lognormal distribution with known

parameters, random numbers are first generated using the '=RANDO' function. This

results in variables u with density function as shown in Figure 5.2a. These are then

transformed to random numbers of a lognormal distribution using the '=LOGINVo'

function in Microsoft Excel. This corresponds to the x(u) = F 1(u) transformation in

Figure 5.2b. The '=LOGINVO' function is inserted into the K, cell, and every time the F9

key is pressed, a new value for KS is generated based on the lognormal distribution with

the specified parameters (Figure 5.3c).

5-1.1.c. MONTE CARLO SIMULATIONS

Each time the F9 key is pressed, a random KS is generated and the soil characteristic

curves, K(y) and 0(y) are computed based on a lognormal Ks. The flow model

developed in Chapter 2 is automatically solved to result in pore pressure y(t) and

moisture content 0(t) profiles at all times, t. A Visual Basic Subroutine is recorded in

Microsoft Excel to automate the process of Monte Carlo simulations, and results in

tables of values of pressure head and moisture content at all desired times.

5-1.2. NUMERICAL EXPERIMENTS

In this section, numerical infiltration experiments are performed on a soil, and the Monte

Carlo Method is used to investigate the effects of uncertain hydraulic conductivity on

predicted pore pressure y(t) and moisture content 0(t) profiles. The van Genuchten

(1980) Model is used to describe the characteristic curves of the soil. The saturated

water content of the soil is taken to be Os = 0.47m3 / m3 and the residual water content

is Or = 0.1 1m 3 / m3 . The parameters of the model are taken to be n = 1.24 and 6 =
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0.011 (see Equations [5.2] to [5.5]). The resulting characteristic curves are shown in

Figures 5.3 and 5.4.

0.5 -

0.45

0.4 -

0.35

0.3 -

0.25

0.2

0.15

0.1---- -

0.05 ----

0
1.OOE-06 1.OOE-05 1.OOE-04 1.OOE-03 1.OOE-02 1.OOE-01 1.OOE+00 1.OOE+01 1.OOE+02 1.OOE+03 1.OOE+04 1.OOE+05 1.OOE+06

Absolute Pressure (kN/n?)

Figure 5.3. Soil Moisture Retention Curve

3.50E-05

3.OOE-05 1

2.50E-05

2.OOE-05

1.50E-05

1.OOE-05

5.OOE-06

1. OE-05 1.OOE-04 1.OOE-03 1.OOE-02 1.OOE-01 1.OOE+00 1.OOE+01 1.OOE+02 1.OOE+03 1.OOE+04 1.OOE+05

Absolute Pressure (kN/nf)

Figure 5.4. Hydraulic Conductivity Curve

317

Ns

CD
V
0

4)

0

3:

|



Two numerical infiltration experiments are performed on the soil with different 3
IKs)

ratio, where q is the water application rate. The initial conditions are uniform initial

moisture Oi =0.4 m3 / m3 (and hence initial pressure which is computed from the soil

moisture characteristic curve in Figure 5.2).

EXAMPLE 1: q- <1
Ks

In the first example, water is introduced at the top of a layer of soil at a rate of

q = 25cm/day for the first eight hours, followed by a zero application rate. The ratio

q q 25is therefore taken to be - = -- <1 for the first eight hours, followed by
Ks Ks 250

K9 =0. Since the q ratio is less than 1, the water supply rate is insufficient to
Ks Ks

fully saturate the soil. The initial suction in the soil would be reduced during water

application. The hydraulic conductivity of the soil is assumed deterministic. The flow

equation is solved, and the moisture content at selected times are shown in Figure 5.5.

Water Content (m1/m3 )

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0 -

2

0.

3-

-a--O hr * 2hr

4 - -- 4 hr + 6 hr

-+-8hr - 10 hr

5

Figure 5.5. Moisture Content Profiles for Deterministic Ks and K <1
I s-
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The pore pressure profiles are shown in Figure 5.6.

Pressure (kN/m)

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10

Figure 5.6. Pressure Head Profiles for Deterministic KS and

Figure 5.6 shows that the initial suction is reduced as a result of

remain negative as " <1. Moisture and pressure redistribution

t > 8 hours, as shown in Figures 5.5 and 5.6 respectively.

water application but

takes places at times

The hydraulic conductivity is randomized as described in Section 5-2.1. The mean value

and standard deviation of the moisture profiles are shown in Figures 5.7 and 5.8, and the

mean value and standard deviation of the pressure profiles are shown in Figures 5.9 and

5.10.
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Mean Water Content (m1m3)

0.25 0.3 0.35 0.4

Figure 5.7. Mean of Moisture Content Profiles for Lognormal Ks and

Standard Deviation of Moisture (m3
/m

3)
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Figure 5.8. Standard Deviation of Moisture Profiles for Lognormal Ks and
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Mean Pressure (kN/m2)

-40 -35 -30 -25 -20 -15 -10

-- Ohr -&- 2 hr -*-4hr
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3!
3

Figure 5.9. Mean of Pressure Profiles for Lognormal KS and

Standard Deviation of Pressure (kN/m2)
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Figure 5.10. Standard Deviation of Pressure Profiles for Lognormal K. and ( <1
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EXAMPLE 2: >I
Ks

In the second example, the water application rate is 375cm / day for the first eight

hours, followed by a zero application rate. -= - 5 >1 for the first eight hours,
Ks 250

followed by 9 Since q is greater than 1, the water supply rate is large

enough to fully saturate the soil. As the soil reaches saturation, the initial suction is

eliminated and positive pressures develop within the saturated zone. The moisture

content and pressure head profiles for deterministic KS are shown in Figures 5.11 and

5.12 respectively.

Water Content (m3/mn)

0.25 0.3 0.35 0.4 0.45 0.5

Figure 5.11. Moisture Content Profiles for Deterministic Ks and q > 1
(Ks s
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Pressure (kN/m)
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Figure 5.12. Pressure Head Profiles for Deterministic Ks and

5 10

KS( 

KS is randomized and assumed Lognormal. The mean value and standard deviation of

the moisture

and standard

content profiles are shown in Figures 5.13 and 5.14, and the mean value

deviation of pressure head profiles are shown in Figures 5.15 and 5.16.
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Mean Water Content (nm1n)
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Figure 5.13. Mean of Moisture Content Profiles for Lognormal KS and >
(Ks )
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Figure 5.14. Standard Deviation of
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Standard Deviation of Pressure (kN/m)
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Figure 5.16. Standard Deviation of Pressure Profiles for Lognormal KS and >1
Ks

5-1.3. RESULTS AND DISCUSSION

The results of the two numerical examples show that expected (mean) values of the

moisture and pressure profiles when the saturated conductivity of the soil, KS, is

uncertain are (almost) the same as the profiles for deterministic KS. This is true in both

examples, and is shown in Figures 5.5 and 5.7 for moisture content, and 5.6 and 5.9 for

pressure when q <1, and in Figures 5.11 and 5.13 for moisture, and 5.12 and 5.15
(Ks)

for pressure when q > 1. These figures show that the profiles are the same whether
(Ks)

Ks is deterministic or uncertain. Uncertainty in KS does, however, propagate through

the flow equation to result in uncertainty in the moisture content and pressure head

profiles. This uncertainty is expressed by the standard deviations in the moisture

(Figures 5.8 and 5.14) and pressure (Figures 5.10 and 5.16) profiles.
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Several observations can be made with regard to the uncertainty in water content

profiles in Figures 5.8 and 5.14.

a. The peaks in the standard deviations at any time t occur at the wetting front

where the slope of the moisture content profile is greatest. Consider Figure 5.13 for

example. At a time of 2 hours, the wetting front has infiltrated the soil to a depth of about

1.5 m. The standard deviation in the water content profile is greatest at that depth of

about 1.5 m as shown in Figure 5.14. Similarly, at a time of 4 hours, both the wetting

front and the maximum standard deviation occur at a depth of about 2.5 m.

b. The peaks in standard deviations (maxima) travel downwards with time as the

wetting front penetrates the soil deeper. With time and continued water application, the

wetting front infiltrates deeper into the soil, and since the maximum standard deviations

occur at the wetting front, these also travel downwards with the front, e.g. the peak is at

depth 1.5 m at t = 2 hours, 2.5 m at 4 hours, and so on. This is true both during and after

water application, as can be seen at time 10 hours. When water is no longer applied,

moisture redistribution takes place at a rate governed by the hydraulic conductivity

function. Flow of water (moisture) therefore continues, and there is uncertainty in this

flow, because of the uncertainty in KS , and this is reflected in the standard deviation at

time 10 hours.

c. The standard deviations (uncertainty) cover a greater range with increasing

infiltration depth (and time). In Figure 5.14, at a time of 2 hours, the uncertainty in water

content is localized near the wetting front at depths of about 1 m to 2 m, and there is

virtually no uncertainty in the profiles at other depths. With time, say at 8 hours, the

uncertainty in the profiles covers a larger range of depths from about 2.5 m to 4.5 m.

d. The standard deviations in moisture profiles depends on the water application

rate, and more specifically on the (q ratio in such a way that as the _ ratio

increases, so do the standard deviations. This is illustrated in Figures 5.8 and 5.14,

which show greater uncertainty with increasing K ratio. Therefore, for a soil with a

given KS , as the water application rate increases, uncertainty in the results also

increases.
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Very similar observations can be made with regard to the uncertainty in pressure head

profiles, expressed as standard deviations shown in Figures 5.10 and 5.16. Specifically

that:

a. Peaks in the standard deviations at any time t occur at the wetting front where

the slope of the pressure head is greatest (see Figures 5.15 and 5.16 for example).

b. These peaks travel downwards with time as the wetting front penetrates the soil

deeper. In Figure 5.16 for example, at a time of 2 hours, the peak is at about 1.5 m, and

at 8 hours is at about 3.5 m.

c. The standard deviations (uncertainty) in the results cover a larger range with

increasing infiltration depth (time). In Figure 5.16, the uncertainty covers depths 1 m - 2

m at time 2 hours, and 2.5 m - 4 m at time 8 hours.

d. The uncertainty increases with increasing (q J ratio as shown in Figures 5.10
KS

and 5.16.

These results can be explained by considering the soil characteristic curves shown in

Figures 5.3 and 5.4. Uncertainty in K, leads to uncertainty in the soil hydraulic

conductivity characteristic curve, since it is a function of K as expressed in Equations

[5.4] and [5.5]. This uncertainty results in uncertainty in the soil moisture characteristic

curve, since these two curves are related.

The largest uncertainties in the computed moisture profiles occur near the wetting front

where the change in moisture content is greatest. This is the location where the change

in hydraulic conductivity of the soil is greatest (as dictated by K(y)), and so uncertainties

in K8 will result in the largest uncertainties near the wetting front. Moreover, the sharper

the wetting front, the larger the uncertainties.

As a consequence, the largest uncertainties in pressures will also occur near the wetting

front (as dictated by0(y)), and will be larger for sharper fronts. This explains the peaks

in standard deviations of the pressure profiles that are observed near the wetting fronts.
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The effects of the ratio, also become evident by examining the soil characteristic

curves. As the Kj ratio increases, the change in moisture content (and pressure

heads), and hence uncertainties in KS will propagate to larger uncertainties in the

computed moisture profiles (and pressure heads).

From the results and discussions presented above, it is evident, though not surprising

that the sharpness of a wetting front, and the uncertainties associated with the moisture

(and pressure) profiles depends on the characteristic curves.

To demonstrate this further, consider the infiltration experiment in Example 1 performed

on a different soil, with the characteristic functions shown in Figures 5.17 and 5.18.

0 5 -------.------- ~ ----- -- -------

0.45-

0.4-

0.35-

0.3-

0.25-
0

S0.2

0.15-

0.1 -
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n-
1.OE-06 1.OQE-05 1.OOE-04 1,OOE-03 1.OOE-02 1.OE-01 1.OOE+00 1.00E+01 i.OOE+02 1.OOE+03 1.OOE+04 1.OOE+05 1.00E+06

Absolute Pressure (kN/m)

Figure 5.17. Soil Moisture Retention Curve (Soil 2)
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Figure 5.18. Hydraulic Conductivity Curve (Soil 2)

The van Genuchten (1980) model is used to describe the soil characteristic curves. The

model parameters n and 5 are purposely chosen so that the characteristic curves are

steeper than those of the soil considered previously and shown in Figures 5.3 and 5.4.

Furthermore, they have been fitted in such a way that the soil moisture curves of both

soils intersect at a water content equal to the initial water content 0i = 0.4 m3 /m3 . By

doing so, the initial water content 0; = 0.4 m3 /m3 that was used in Example 1, can also

be used in this example, allowing one to directly compare the results of both cases.

Monte Carlo techniques are used to propagate uncertainty through the flow model using

the properties of the second soil, using the same K ratio the one in Example 1. The

mean water content profiles are shown in Figure 5.19.
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Figure 5.19. Mean of Moisture Content Profiles for Lognormal Ks and q < 1 (Soil 2)
(KS)

Figures 5.19 shows that a sharp wetting front forms in the soil

characteristic curves, and infiltrates into the slope with time. Figure

uncertainty in the moisture profiles.
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Figure 5.20. Standard Deviation of Moisture Content Profiles for Lognormal KS and <1
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Figure 5.21a compares the moisture profiles in both soils, and Figure 5.21b compares

the standard deviations in the profiles.
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Figure 5.21a. Comparison of Mean Moisture Profiles in both Soils (Symbols are for soil with

steep curves, dashed lines for soil with mild curves)
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Figure 5.21b. Comparison of Standard Deviations in Moisture Profiles in both Soils (Solid lines

are for soil with steep curves, dashed lines for soil with mild curves)
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Figure 5.21a shows that the wetting front that develops in the soil with steeper

characteristic curves is significantly sharper than the one that develops in the soil

Example 1 with the milder characteristic curves. As a consequence, the uncertainty in

the profiles is also larger as demonstrated in Figure 5.21 b. The uncertainty is however,
more localized, when compared to the uncertainty in the profiles with the soil with the

milder curves that exhibit smaller uncertainty that is spread over a larger range.

In conclusion, soils with steeper soil characteristic curves tend to develop sharp wetting

fronts, and as a consequence tend to show large uncertainties that are localized near

the wetting front. Soils with milder characteristic curves tend not to develop distinct

wetting fronts, and as a result, show smaller uncertainties that are spread over a large

range.

The shape of soil characteristic curves is governed by grain size distribution, pore size

distribution (soil structure), as well as percentage fines, amongst other factors.

(a) Uniform soils tend to show characteristic curves that have steep slopes, whereas well

graded soils tend to show characteristic curves with less steep (milder) slopes. This

is because in a uniform soil, water drains out of most of the pores at the same

(similar) value of suction. This is illustrated in Figure 5.22.

(b) Regarding the influence of fines, the greater the clay content, in general, the greater

the water retention at any particular suction, and the less steep (or milder) the slope

of the characteristic curve. In a sandy soil, most of the pores are relatively large, and

once the large pores are emptied at a given suction, only a small amount of water

remains. As a result, the slope of the characteristic curve is steep.

(c) In a clayey soil, most of the pores are relatively small. When this is the case, more of

the water is adsorbed, so that decreasing the suction causes a more gradual

decrease in water content, and hence the slope of the characteristic curve is less.

This is illustrated in Figure 5.22.
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Figure 5.22. Comparison of Characteristic Curves for Uniform and Well Graded Soils

The results in this section, therefore show that uniform soils tend to develop sharper

wetting fronts than well graded soils. As a consequence, the uncertainty in the profiles at

the front is large. Well graded soils do not develop distinct wetting fronts and the

uncertainty in the pressure (and moisture) profiles is spread over a large area.

In all the analyses in this study the uncertainty in KS is held constant, although it is

obvious that larger uncertainties in KS will lead to larger uncertainties in moisture

content and pressure head computations. Furthermore, KS has been assumed to be the

only uncertain hydraulic parameter. The analyses could be extended to include

uncertainties in other parameters.
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5-1.4. CONCLUSIONS

Monte Carlo techniques were used to propagate uncertainty through the finite difference

variably saturated flow model developed in Chapter 2. The hydraulic conductivity of the

soil was assumed uncertain and to follow a lognormal distribution with known

parameters. These parameters can be, for example, estimated from field or laboratory

data obtained at random locations. Based on these moments and the assumed

lognormal probability distribution, this study used Monte Carlo techniques to solve the

one dimensional flow equation and estimate the mean value and variance of the

moisture content and pressure head profiles for a specified water application rate and

duration.

The results of numerical experiments show that uncertain soil hydraulic conductivity

does not affect the mean value of the moisture content and pressure head profiles, but

results in uncertainty in these profiles. The uncertainty in both profiles increases with

increasing ( ratio, and water application duration. Peaks in standard deviation of

the moisture and pressure profiles occur at the wetting front where the slope of these

profiles is maximum. The values of standard deviation at these peaks are directly related

to the soil moisture content and hydraulic conductivity characteristic curves.

Characteristic curves are related to grain size and pore size distribution. Uniform soils

tend to develop sharp wetting fronts with a high degree of localized uncertainty, whereas

well graded soils do not develop distinct fronts, and as a result uncertainty is

widespread.

If it is assumed that horizontal flow components are negligible compared to the vertical,
an assumption extensively used and theoretically backed, the results in this section can

be considered as good representations of those in a three dimensional field.
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PART 5-2:

BASIC PRINCIPLES OF RELIABILITY ANALYSES

In this part of the chapter, the basic principles of reliability analyses are introduced.

Spreadsheet based techniques are developed with which one can systematically

incorporate the inherent uncertainties in parameters into stability analyses. Methods are

developed whereby the so called Hasofer and Lind (1974) reliability index can be

computed within the spreadsheet environment. This is first done for a specified failure

surface, and then extended to include a search for the critical reliability based failure

surface in the slope, on which the Hasofer and Lind (1974) reliability index is minimum.

This corresponds to the surface along which failure is most probable. Basic reliability

charts are developed in two and three dimensions. Through a series of examples, the

effects of uncertainties in parameters defined by their standard deviations, on the

Hasofer and Lind (1974) reliability index (and slope reliability) are investigated.

5-2.1.a. FAILURE PROBABILITY

The probability of failure of a slope can be formulated in terms of a general performance

function G(X), where X is a vector of random variables, and G(X) is a function relating to

the state of stability of the slope. G(X) is a function of the Factor of Safety commonly

taken to be:

G(X) = F(X) -1 [5.9]

where F(X) is the Factor of Safety.

The probability of failure is the probability that the vector of random variables X belongs

to the failure region, DF. This is expressed as:

P[failure] = PF = P[X e DFl [5.10]

The probability of failure in can be expressed in terms of the performance function as:
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PF = P[G(_X) <0] [

Let fx (X) denote the joint probability density function of the vector of random variables

X. The probability of failure of a slope is given by the integral of fx (X) over the failure

domain defined by G(X) < 0. Hence,

[5.12]PF = . Jfx(X)dx,...dxn
XeDF

Consequently, the probability of safe performance, or the reliability of the slope is given

by:

P[safety] = PS = Reliability = P[X e Ds] [5.13]

where Ds is the safe domain.

And, the reliability of the slope is given by:

Reliability = f... JfX(X)dx1...dxn
XEDS

In terms of the performance function:

Reliability = P[G(X) > 0] [5.15]

Since the events 'failure' and 'safety' are mutually exclusive and collectively exhaustive,

one can relate the reliability of a slope to the probability of failure as:

Reliability = 1- PF [5.16]
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With the performance function as defined in Equation [5.9], the probability of failure in

terms of Factor of Safety in the case of one variable is given by:

1

Pf = P[F < 1] = ffFS(F)dF [5.17]

This is illustrated in Figure 5.23.

1 E[F] F

Figure 5.23. Failure Probability for G(_)=F-1

5-2.1.b. THE RELIABILITY INDEX

The performance function, as defined by Equation [5.9], is a function of several random

variables. To determine the reliability (or probability of failure) in Equations [5.12] and

[5.14], the probability density function of the performance function must be evaluated.

This requires multiple integration of the joint probability density function of the random

variables over the entire safe (or failure) domain. The joint probability density function of

the random variables is generally not well defined and the performance function is very

often implicit. Hence, evaluating the probability density function of the performance

function is often not possible. In addition, even if the joint probability density function of
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the random variables is known, the multi-dimensional integrals in [5.12] and [5.13]

present mathematical difficulties.

To overcome these difficulties, the method of moments is used to estimate the expected

value and variance of the performance function from the expected value and variance of

the random variables on which the performance function depends. The results are

expressed in terms of the reliability index, P. The reliability index [ provides more

information and is a better indication of the stability of a slope than the performance

function (e.g. Factor of Safety) alone because it incorporates information on the

uncertainty in the values of the performance function. It also provides a good

comparative measure of safety; slopes with higherp are considered safer than slopes

with lower[p. The reliability index also provides a means by which the probability of

failure can be estimated by assuming the shape of the probability distribution of the

performance function.

Several definitions of the reliability index exist. These depend on the form of the

performance function, and different reliability indices are obtained from different

performance functions formats. The most commonly used definition of reliability index in

slope stability analyses is the Mean-Value First-Order Second-Moment (MFOSM)

reliability index (Ang and Tang, 1975). In MFOSM, the performance function is expanded

about the mean values of the parameters E[Xi]and only the first order terms are kept.

The reliability index, [3,for uncorrelated variables is then given by:

E[G(X)] E[G(X)]
c[G(X)] 2

(G(X) )Var[Xi]

where:

ai OGX indicate that the partial derivatives are evaluated at the mean point
EX].
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For correlated variables, the reliability index is expressed as:

E[G(X)]

2G(X) Var[Xi]+2 OG() _G() Covxi, x
i=1 aXi M i=1 aXj a Xi

Taking the performance function and limit

in [5.19] can be expressed as:

E[F] -1
a[F]

[5.19]

state as G(X) = F - 1 = 0, the reliability index

E[F] - 1

F Var[Xi]+ 2 aF ) aF Cov[Xi,X]
i=1 m M i=1 aXiaXj

[5.20]

where:

n is the number of random variables (parameters)
E[F] is the expected value of the factor of safety

c[F] is the standard deviation of the factor of safety

Because the performance function is usually implicit in slope stability analysis, the partial

derivatives in Equations [5.19] and [5.20] are frequently approximated numerically (Li,
1991; Wolff, 1994; Christian et al., 1994).

5-2.1.c. THE HASOFER AND LIND (1974) INVARIANT RELIABILITY INDEX

To overcome the problem of dependence of reliability index on performance function,

Hasofer and Lind (1974) proposed an invariant definition of the reliability index. In this

format, all the random variables X are transformed into a standardized parameter space

Z by an orthogonal transformation such that:

Zi = X1 - E[Xi]
UX;
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and E[Zi]=0, Var[Zi]= 1, and Cov[Zi,Zj]=0.

Hasofer and Lind (1974) defined the reliability index as the minimum distance between

the origin and the limit state surface in the transformed parameter space Z.

Expanding the performance function, G(Z) in a Taylor series at the most probable failure

point Z and retaining only the first order terms gives the so-called Hasofer and Lind

(1974) reliability index p as:

n zaG(Z)

E[G(Z)] _ 1 azi ,
p = = [5.22]
a[G(Z)] n aG(Z) 2

wher aG(Z

where indicate that the partial derivatives are evaluated at the most probable
az. I

failure point (Z ).

Geometrically, p is the shortest distance from the origin (mean value vector of Z) to the

failure boundary in transformed space. This is shown schematically in Figure 5.24 for the

two dimensional case.
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Figure 5.24. Hasofer and Lind (1974) Reliability Index in Transformed Variable Space

An iterative procedure is usually required to locate the most probable failure point and

P (Hasofer and Lind, 1974; Parkinson, 1978; Ditlevsen 1981; Ang and Tang; 1984). A

number of iterative algorithms for the calculation of P are available in the literature, but Li

and Lumb (1987) and Li and White (1987) observed that the algorithm proposed by

Parkinson (1978) is the most convenient for probabilistic slope stability analyses. Li and

Lumb (1987) presented an exact procedure for computing P for a performance function

formulated using Morgenstern and Price's (1988) Method. Chowdhury and Xu (1992)

have also presented an algorithm similar to that proposed by Parkinson (1978).

In the space of the original variables, the Hasofer and Lind (1974) reliability index can be

expressed in matrix form as (Veneziano, 1974):

Pf= min 1(X-E[X x (X - E[_X])
XeDF

[5.23]

where:
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X is a vector representing the set of random variables

E[X] is the vector of expected or mean values of X

X is the covariance matrix of the vector X

DF is the failure region

In the space of the original variables, the quadratic form in Equation [5.23] corresponds

to ellipsoids centered about the mean value vector E[X]. The general equation of the

ellipsoids is given by:

(X - E[X])T 1 (X - E[X]) =2 [5.24]

Each axis of an ellipsoid is parallel to a corresponding coordinate axis if the variables are

uncorrelated. In the case of correlated variables, the axes of the ellipsoid are tilted. One

can define a one standard deviation (1 - a ) dispersion ellipsoid, with P = 1 in Equation

[5.24]. Equation [5.24] is plotted in Figure 5.25 for a generic two dimensional case of two

variables X, and X 2 , with mean values m, and M2 , and standard deviations cy and

9 2 respectively. This is done for different values of the correlation coefficient p. When

X, and X 2 are uncorrelated, the axes of the ellipse are parallel to the coordinate axes.

This is shown and labeled p =0 in Figure 5.25. When X, and X 2 are correlated, the

ellipse rotates and changes its aspect ratio.
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Figure 5.25. 1 - a Dispersion Ellipsoid in Two Dimensions for Different p

In order to illustrate the meaning of reliability index in the present context of slope

stability, consider a two dimensional problem, where the soil strength parameters c' and

4' are considered random variables, with all other parameters deterministic. A basic

reliability chart is shown in Figure 5.26.
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Figure 5.26. Illustration of Basic Reliability Chart for Two Dimensional Problem

The mean values and standard deviations of c and 4 are denoted by me, a.C and

m , cy respectively. The failure surface in Figure 5.26 is defined by F(c,4) = 1, or

equivalently by the performance function G(c,4) = F(c,) - 1 = 0, where F is the factor of

safety which is a function of c and 4). This failure surface separates the c - 4 random

space into two regions; a safe region and a failure region. Assuming that c and 4 are

negatively correlated, the 1 - a dispersion ellipsoid is tilted as shown in Figure 5.26. The

Hasofer and Lind (1974) reliability index is interpreted as the distance from the mean

point to the largest P - a dispersion ellipsoid, centered at the mean vector E[X] that lies

within the safe region. This P -a dispersion ellipsoid is tangential to the failure surface

boundary as shown in Figure 5.26. The point at which the p -a dispersion ellipsoid is

tangential to the failure surface is the critical failure point. This corresponds to the most

probable failure point if c and 4 are have Joint Normal Distribution. (Shinozuka, 1978).
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Probabilities of failure can be related to the reliability index if the distribution of the Factor

of Safety or performance function is known or assumed. In the case of a normally

distributed Factor of Safety, the probability of failure is given by:

PF = P[F(X) < 1] = ((-PHL) [5.25]

where (D is the standard normal cumulative distribution function.

If the input variables are not normally distributed, Equation [5.31] provides an
approximation to the probability of failure.
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5-2.2. SLOPE RELIABILITY ANALYSES

5-2.2.1. MEAN VALUE FIRST ORDER RELIABILITY INDEX

In this section, the Mean-Value First Order Reliability Index formulation is applied to the

Infinite Slope Model (Skempton and DeLory, 1957). An advantage of doing so, is that an

explicit expression for the reliability index can be derived. The Factor of Safety in an

infinite slope can be expressed as (Skempton & DeLory, 1957):

F = C'+[(s - 7w)z + zw7w ]cos2 Ptan [5.26]
Ysz sin Pcos p

The Factor of Safety is expressed as a function of a random vector X of all the uncertain

parameters in Equation [5.26], and:

F = G(X) [5.27]

Since Equation [5.26] is a non-linear function of X, It is necessary to linearize F = G(X)

to propagate uncertainty in a first-order second moment context. This is done by a

Taylor's series expansion about the mean values of the parameters. The partial

derivatives of the factor of safety with respect to each parameter have to be determined,

and F = G(X) is approximated to the first order as:

F = G(X)=G'(X) = G(_Mx) + I (Xi - mX) [5.28]
i=1i m

1
where G(X)= indicates a first order approximation to G(X), and n is the number of

uncertain parameters in X.

The partial derivatives in Equation [5.28] for the Infinite Slope Model assuming 7w is

deterministic are shown in Equations [5.29] to [5.34].
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&Ys

z yssinpcosp

+ zw
z

+ zwyw tan4
ys tan P

____ 1 ' a213(1+ tan 2  p)-Itan 1-m + I
a3P ~tan2 P )ZY Sta YS )+(s)

+ tan2 mp

[5.34]

The Mean-Value First Order Reliability Index is then given by:

E[G(X)] _

a[G(X)]
E[G(X)]

V a r[ X + 2CXva GXXi
~ mVar[Xi]2Z aDiG(-LC)CovXi,Xj]

where E[G(X)] = G(E[X])

A vector B of the partial derivatives can be expressed as:
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The vector B can be considered as an influence coefficient vector i.e. the coefficients

that translate changes in each parameter from its mean, to corresponding changes in

the Factor of Safety. This is explored in more detail in the following example.

Consider the slope shown in Figure 5.27.

c'=35kN/m2

p'=300
y=20kN/m 2

SOIL

H

10 15 20

ROCK

SOIL BEDROCK
INTERFACE/FAILURE

SURFACE

z

j--zj-"-

x (M)

25

Figure 5.27. Slope Geometry and Definition of Parameters

The expected values (E[X]) and coefficients of variation (V[X]), defined as

,V-ar[X]V[X] = [X] of the parameters are taken to be those in Table 5.1.
E[X]
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Parameter, X Symbol E[X] V[X]

Cohesion (kN/m 2) c' 35 0.1

Angle of shearing resistance 4' 30 0.05

Saturated unit weight of soil (kN/m 2) YS 20 0.01

Slope angle P 35 0.05

Depth to failure surface (m) z 15 0.05

Unit weight of water (kN/m 2 ) 7w 9.81 0

Depth of water table from ground surface (m) zw 10 0.05

Table 5.1. Expected Values, E[X], and Coefficients of Variation, V[X], of Parameters

The expected value of the Factor of Safety is computed to be E[F] = 0.938. Assuming

uncorrelated parameters, the contribution of each parameter to the variance of the

Factor of Safety is shown in Table 5.2.

PARAMETER, aF VARIANCE, 2 %

X axj M Var[Xi] ax .V[Xi] CONTRIBUTION

c' 0.007094518 12.25 0.000616569 9.34

' 0.02780067 2.25 0.001738974 26.36

7s -0.003429478 0.04 4.70453E-07 0.0071

P -0.033256698 3.0625 0.003387149 51.35

z -0.034528884 0.5625 0.000670637 10.16

zw 0.026962512 0.25 0.000181744 2.75

Var[F] = 0.006595544 100%

Table 5.2. Contribution of Each Parameter to Var[F]

The results in Table 5.2 are shown graphically in Figure 5.28.
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Figure 5.28. Percentage Contribution of Each Parameter to Var[F]

Figure 5.28 provides some insights into the contributors to the uncertainty in the Factor
of Safety, and shows that the greatest contributions come from uncertainties in slope
angle, the soil strength parameters, c' and j' and uncertainties in location of failure

surface (expressed as depth in this example). The Mean Value First Order Second
Moment reliability index is computed to be P = 0.762. If the Factor of Safety is assumed

to be normally distributed, the probability of failure is given by Pf = 0(p) = 0.777258.

5-2.2.2. 'RELIABILITY ANALYSES AND THE HASOFER AND LIND (1974)
RELIABILITY INDEX

5-2.2.2.a. RELIABILITY ANALYSES FOR A SPECIFIED FAILURE SURFACE

In this section, a spreadsheet based approach is described by which the Hasofer and
Lind (1974) reliability index can be computed for a specified failure surface using
Janbu's Generalized Procedure of Slices (1973). This approach was first introduced by
Low (1996), and later used by Low and Tang (1997). In this approach, one literally sets
up a dispersion ellipsoid in the spreadsheet and minimizes its size subject to the
constraint that it be tangent to the failure surface. In doing so, one works in the space of
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the original variables, thereby bypassing the steps of transformed space and rotated

frame of reference (see Section 5-2.3).

It is convenient to write the reliability index as:

i= min 1i I [5.37]

where:

IF- is the inverse of the correlation matrix

The spreadsheet approach is best illustrated by an example. For this purpose, consider

the slope in Figure 5.29.

C' 10 kNMrr

12-

12 Y 20 NMM

10

8

6 -

FAILURE
SURFACE

2-

-- 10 15 20 25 30 35 40

Figure 5.29. Slope Geometry and Soil Properties

Figure 5.29 shows the slope geometric, and soil strength parameters, as well as a

specified failure surface. In Chapter 2, a method to locate the critical deterministic failure
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surface in a slope was described. This method is implemented for the slope in Figure

5.29 starting using the failure surface shown in that figure as an initial failure surface.

The resulting critical failure surface is shown in Figure 5.30.

12 -

10 -

8 -

6-

4
CRITICAL FAILURE

SURFACE
2

0 15
x (M)

20 25 30 35 40

Figure 5.30. Critical Deterministic Failure Surface in Slope

A Factor of Safety of F =1.47 is obtained on this surface.

For reliability analyses, one needs to specify the mean values and covariance matrix

between the uncertain qualities. For simplicity, we assume that the soil strength

parameters c' and <', and the pore pressure ratio ru are the only uncertain quantities.

These are the main contributors to the uncertainty in Factor of Safety if the slope angle

is deterministic (see Chapter 4). Having said this, the same procedure applies still

applies if other parameters are considered uncertain. The procedure is described in

Figure 5.31.
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Step 1. A spreadsheet is set up as in the deterministic case, which was discussed in

detail in Part 2 of Chapter 2.

Step 2. The mean values E[Xi], standard deviations a[Xi], and correlation matrix

F of the uncertain quantities are specified (see Figure 5.32).

Step 3. A check is performed to ensure that the specified covariance matrix is

positive definite. This is done by computing the determinant of the covariance matrix,

labeled det[F] and ensuring it is strictly greater than zero. This is done using the

'=DET[]' function is Microsoft Excel. Since this involves a matrix manipulation, one

needs to hold the Shift and Ctrl Keys while pressing Enter.

Step 4. All formulae that involve the uncertain quantities (c', b', and ru in this case)

are computed based on the "X values", which are originally taken to be equal to the

mean values. These are highlighted in Figure 5.32. So, for example, the c' values in

the c' column are set to be equal to the cell which contains the "X value" of c' (see

Figure 5.32).

Step 5. Intermediate computations:

The transpose of is computed using the '=TRANSPOSEO' function in

Microsoft Excel. The inverse of the correlation matrix is computed using the

'=MINVERSEO' function, and the product 1  is computed

using the '=MMULTO' function.

Step 6. p is then computed as p3 = --1 Xi-m, , using the '=SQRTo'

function.

Step 7. Solver is invoked from the Toolbars Menu to minimize Pf, by changing the "X

values", subject to the constraints F(X) = 1, X 0 and a' 0. The result is

X~ IX -1T V - m-
F m in 5_1 Xd P fi

Figure 5.31. Spreadsheet Procedure for Computing Pon a Specified Failure Surface
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Figure 5.32. Spreadsheet Solution for Computing for Specified Failure Surface

The spreadsheet procedure in Figure 5.31 is implemented to obtain the Hasofer and
Lind (1974) reliability index on the critical deterministic failure surface shown in Figure
5.30. The solution obtained by the spreadsheet is shown in Figure 5.32. The reliability
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index is computed to be P = 2.23. This is the shortest distance, in units of standard

deviation, from the mean value vector (mc,m ,mru ) to the failure surface. The final "X

values" are (0.799, 32.32, 0.567), shown as shaded cells in Figure 5.32, and represent

the point at which the expanding dispersion ellipsoid is tangential to the failure surface,
defined by F =1.

5-2.2.2.b. RELIABILITY ANALYSES WITH SEARCH FOR CRITICAL FAILURE
SURFACE

In this section, a method is described by which the critical probabilistic (reliability based)

failure surface in the slope is located using spreadsheet techniques. This is to an extent,
very similar to the spreadsheet procedure described in Figure 5.31, with the exception of
allowing some of the coordinates of the failure surface to change during the iterations

involved in computing P. The steps of the procedure are shown in Figure 5.33.

Step 1. The mean values, standard deviations, and correlation matrix of the
uncertain quantities are specified. A check for positive definite covariance matrix is
performed.

Step 2. All formulae that involve the uncertain quantities are computed based on the
"X values", which are originally taken to be equal to the mean values.

Step 3. The column vector for each variable is set up for computing 13.
Gi

Step 4. P is computed as in Step 6 of Figure 5.31.

Step 5. Solver is then invoked to minimize 13, by changing the "X values" and the

shaded cells of the coordinates of the failure surface (see Figure 5.34), subject to the

constraints F(X) = 1, X 0 and a'> 0. Additional constraints are imposed on the

first and last coordinates of the failure surface to avoid unreasonable results. The
constraints on these coordinates were discussed in detail in Part 2 of Chapter 2.

Figure 5.33. Spreadsheet Procedure for Reliability Analyses with Search for Critical Probabilistic
Failure Surface
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The spreadsheet solution is shown in Figure 5.34.

y Ec. tan+, Ru
1 0.67 0.4

x E[XQ q[X
c' 0.02$W091 1 0.2

32.3,231 33.2 3.382

Ru .3 0.4 0.1

Xs YB YT hq h,
SHce # 13 13 0 tan a Ax p u c tan+' AQ 0 tana,
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Figure 5.34. Spreadsheet Solution for Reliability Analyses with Search of Critical Probabilistic
Failure Surface
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The Hasofer and Lind (1974) reliability index is computed to be P = 2.09. The XB and

YB columns define the critical reliability based failure surface in the slope which takes

into account the uncertainties in the input parameters. Figure 5.35 shows the

deterministic and reliability based failure surfaces.

12-

10-

8C

DETERMINISTIC
FAILURE SURFACE

4

RELIABILITY BASED
FAILURE SURFACE

-15 20 25 30 35 41

Figure 5.35. Critical Deterministic and Probabilistic Failure Surfaces in Slope

The critical failure surfaces obtained from deterministic and reliability based analyses are

different (Figures 5.32 and 5.34). As a consequence, the reliability indices on both

surfaces are different (Figures 5.32 and 5.34). This is investigated in more detail in the

next section.

5-2.2.3. APPLICATION OF SPREADSHEET TECHNIQUES TO GENERAL SLOPES

In this section, techniques are described whereby the reliability analyses performed in

the previous section can be used for more general problems involving slopes with

defined geometry, unsaturated soil strength, depth to water tables and seepage

conditions, depth to bedrock, and other site conditions. The spreadsheet based

approach is used to analyze the reliability of different slopes in various scenarios. The

soil strength parameters c' and 4' are assumed uncertain, although other parameters

can be included as variables. The effects of the degree of uncertainty in c' and $' is

investigated. Prior to doing so, it is necessary to define a range of typical values which
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are taken to be Vc' =10 -25%, and Vp = 10 -33% (Harr, 1984; Kulhawy, 1992;

Lacasse and Nadim, 1994; Duncan, 2000), where V = ,the coefficient of variation.
m

EXAMPLE 1: Deep Failure Surface (Very Deep Bedrock)

Consider the slope shown in Figure 5.36.

-5

15-

10

c' = 10 kN/m2

,'= 200

(Ua-U )entry= 5kN/m2

35 4
5- 10 15 20 25 30

FAILURE SURFACE
x (M)-5

~1o

Figure 5.36. Slope Geometry and Strength Parameters

The slope geometry is shown in Figure 5.36, and the water table is taken to be at a

depth of 4 m below the ground surface with seepage parallel to the slope surface. The

soil strength parameters are taken to be those shown in Figure 5.36, and the Effective

Stress Model (Bishop, 1959) is used for unsaturated soil strength with an air entry

suction of (ua - uw) = 5kN/m 2 (see Part 2 of Chapter 2). All parameters are assumed

deterministic initially.

In Chapter 2, a method was described by which the critical deterministic failure surface

can be located in a slope with known parameters. This method is applied and the

resulting critical failure surface is shown in Figure 5.36. A Factor of Safety of 1.15 is

computed on this surface.
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We now assume that the soil strength parameters c' and 4' are uncertain, while all

other parameters remain deterministic. The mean values and standard deviations of c'

and 4' are taken to be:

c'- (mc' =1OkN /m 2 , c' = 2kN/m 2 ) and #'- (mv = 200, cg = 2.50)

c' and 4' are assumed uncorrelated, and the correlation matrix is F = K
-0 1

The spreadsheet procedure described in Figure 5.31 is implemented to obtain the

reliability index along the deterministic failure surface in Figure 5.36. A value of P = 1.66

is obtained. The critical combination of c' and 4' is c'* = 8.5kN / m2 and C'* = 16.30.

A reliability chart for this slope can be derived by determining all the combinations of c'

and 4' that would cause failure along the deterministic failure surface, and is shown in

Figure 5.37.

30 -

25-
S-a disperson ellipsoid

(Determnistic)

20 -------- ------- --- - - -
1-a disperson ellipsoid

-e- 15
SAFE REGION

Most Probable
10 - Failure Point (c'*,'*10- ailre PintFailure Boundary

(Deterministic)

UNSAFE REGION

0
0 0.5 1 1.5 2 2.5 3

c' (x 9.81 kNIm2)

Figure 5.37. Reliability Chart on Critical Deterministic Failure Surface, and 1 - a and - a
Dispersion Ellipsoids
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Figure 5.37 shows the 1-cy and P -cy dispersion ellipsoids. Note that both these

ellipsoids are centered around the mean value vector of c' and #', and their axes are

parallel to the corresponding coordinate axes. This is because no correlation is assumed

between the variables. Figure 5.37 also shows the P - a dispersion ellipsoid is

tangential to failure surface at the critical failure point (c'*,4'*). If c' and 4' are jointly

normally distributed, then (c'*,4'*) corresponds to the most probable failure point.

The reliability analyses have been based on a critical failure surface found from a

deterministic search. The spreadsheet procedure in Figure 5.33 can be implemented to

determine the critical reliability based failure surface and obtain the Hasofer and Lind

(1974) reliability index on that surface. Recall that this is not the same as the critical

deterministic based surface, because during the optimization procedure in the search for

the reliability index, not only are the values of the random variables (c' and 4' in this

case) allowed to vary, but also the coordinates of the failure surface. The results are

shown in Figure 5.38.

c= 10 kN/M2

200

(ua-uk )entry= 5kN/m2
10

5
CRITICAL

RELIABILITY BASED
SFAILURE SURFACE

CRITICAL
DETERMINISTIC

FAILURE SURFACE

Figure 5.38. Critical Deterministic and Reliability Based Failure Surfaces

Figure 5.38 also shows the critical deterministic failure surface, and shows that the

critical reliability failure surface is different from the deterministic one. This is due to
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uncertainties in c' and 4', which are taken in account when searching for the critical

reliability based failure surface.

The Hasofer and Lind (1974) reliability index along this surface is computed to be

P = 1.31, and the critical failure combination of c' and 4' is c'= 8.9 kN/m 2 and 4'= 170.

A reliability chart is derived in this case, after defining the failure surface boundary from

combinations of c' and #' that cause failure on the reliability based failure surface .This

is shown in Figure 5.39.

04T disperson ellipsoid
(Reliability)

25-

20 ---- - -- --- -- - -- - - - - -

1-a disperson ellipsoid SAFE REGION

o- 15-
Failure Boundary

MostProbble(Reliability)Most Probable
10- Failure Point (c'*,+'*)

5 - UNSAFE REGION5-

0
0 0.5 1 1.5 2 2.5 3

c' (x 9.81 kN/m
2)

Figure 5.39. Basic Reliability Chart Based on Probabilistic Critical Failure Surface

Figure 5.39 shows the 1-- a and P - a dispersion ellipsoids, as well as the critical failure

point, which is the most probable failure point in the case of normally distributed

variables. There is a difference in the values of P when the deterministic failure surface

is used to evaluate P, and when the reliability based surface is used. This is because of

the different failure surfaces in each case (see Figure 5.38) and is shown in Figure 5.40.

361



30 - -

p -a disperson ellipsoid
(Reliability)

25
2-a disperson ellipsoid

(Determnistic)

20 - -- -- -- - - - -- - - - --- -
1-a disperson ellipsoid SAFE REGION

e-15-

Failure Boundary
MostProbble(Reliability)Most Probable

10 Failure Points Failure Boundary
(c*etermnstic

5- UNSAFE REGION

0
0 0.5 1 1.5 2 2.5 3

c' (x 9.81 kN/m
2)

Figure 5.40. Reliability Chart for Deterministic and Reliability Based Analyses

The reliability index computed from the deterministic failure surface is larger than the

one determined from the critical reliability based failure surface. This implies a smaller

probability of failure, and hence using the deterministic failure surface to evaluate p will

lead to unconservative results. If the Factor of Safety is assumed Normal

Pf = -- '(-P) = 0.05 (deterministic) and Pf = 1(-P) = 0.095 (reliability). The difference can

therefore be significant. This is important since the majority of the analyses in the

literature rely on the deterministic surface for the evaluation of P, and as shown in this

example, results are unconservative because of the overestimation of P.
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EXAMPLE 2: SHALLOW BEDROCK

Consider the slope shown in Figure 5.41.

15 .. .... ... ...... .... . .........---- *- .--- * * * - --- --

C' = 15 kN/m 2

=250 p' = 25*SOIL
10 (ua-UJw)enty =10 kN/m2

5

- ROCK

-1.0 -5 5 10 ,/'15 20 25 30 35 4b

x (m)

-10 -FAILURE SURFACE

Figure 5.41. Slope Geometry and Strength Parameters

The saturated soil strength parameters are shown in Figure 5.41. The air entry pressure

is taken to be (ua - uw )entry =1 OkN /m 2 . Recall that this is obtained from the soil

moisture characteristic curve (as explained in Chapter 2), and is used in the Effective

Stress Model for unsaturated strength (see Chapter 2). The water table is assumed at

depth 4 m below the ground surface, and the depth to bedrock is 7 m. Based on these

parameters, the deterministic failure surface is located and shown in Figure 5.41. A

Factor of Safety of 1.18 is computed.

We now assume that the saturated soil strength parameters are uncertain, with mean

values and standard deviations of c' and 4' as:

c'- (mc' = 15kN / m 2 , ac' = 5kN / m2 ) and '- (mv = 250, zg = 50) and c' and #'

are assumed uncorrelated.

The reliability index on the critical deterministic shown in Figure 5.41 is computed and a

value of P = 0.93 is obtained. A reliability chart is derived and is shown in Figure 5.42.
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Figure 5.42. Reliability Chart Derived From Deterministic Analyses

The p - a dispersion ellipsoid is shown in Figure 5.42, and is tangential to the failure

boundary at the critical failure point c'* = 12 kN/m 2 and p'* = 21.40.

The critical reliability based failure surface is located given the uncertainty in strength

parameters, and is shown in Figure 5.43.

15 - - ------ -----

1EFLSOIL

5-

- ROCK

-10 -5 1) 5 10 ,/'15 20 25 30 35 40O
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Figure 5.43. Critical Reliability Based Failure Surface
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The critical reliability based failure surface is different than the deterministic one. A value

of P = 0.72 is computed, and the critical failure point is c'* = 13 kN/m 2 and <'* 220.

The reliability chart based on the reliability surface is shown in Figure 5.44.

35 -- - --
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Figure 5.44. Reliability Chart Based on Probabilistic Critical Failure Surface

The smaller value of P based on reliability analyses highlights the importance of

performing reliability analyses to determine P , as in the case of Example 1. If the Factor

of Safety is assumed Normal Pf = 1D(-D) = 0.129 (deterministic) and Pf = tD(-P) = 0.232

(reliability). Using the deterministic surface will lead to unconservative results.

A comparison of the results in Examples 1 and 2 shows the importance of incorporating

uncertainties into stability analyses. In Example 1, the Factor of Safety was computed to
be 1.15, and F = 1.18 in Example 2. Based on these results alone, one would conclude

that the slope in Example 2 is safer. When uncertainties are included, the probability of
failure of the slope in Example 1 is 0.095, and 0.232 in Example 2. The slope in Example
1 is therefore more reliable.
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EXAMPLE 3: Effects of Parameter Uncertainty

We reconsider the slope shown in Figure 5.41, and assume that the soil strength

parameters are:

c'~ (mc'=15kN/m 2 , ac' = 2.5kN/m 2)

'- (mt' =250, 7. = 50)

c' and 4' are assumed uncorrelated, and the correlation matrix is:

F = 1 0 1
10 1

Note that the standard deviation of c' is taken to be smaller than the one is Example 2.

also note that the Factor of Safety in the slope is the same as that obtained in Example

2, since uncertainties are not taken into account in Factor of Safety computations. The

reliability index on the critical deterministic failure surface is computed to be 3 =1.07,

and the reliability chart is shown in Figure 5.45.

35 ---.-- -- - --- - -- -----
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Figure 5.45. Reliability Chart Derived From Deterministic Analyses
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The reliability based critical surface is located and shown in Figure 5.46.
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Figure 5.46. Critical Reliability Based Failure Surface

A reliability chart is derived, and shown in Figure 5.47, along with the - - dispersion

ellipsoid.
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Figure 5.47. Reliability Chart Based on Probabilistic Critical Failure Surface
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The reliability index is computed to be p = 0.85. Figure 5.48 compares the reliability

charts.

35 --------

P -a disperson ellipsoid
(Deterministic)
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c' (x 9.81 kN/m2)

Figure 5.48. Reliability Chart for Deterministic and Reliability Based Analyses

Figure 5.48 shows that different failure boundaries are obtained whether the

deterministic or reliability based critical surfaces are used, and this leads to the

difference in the values of p which is reflected in the different - dispersion

ellipsoids.

The values of P computed in this example is greater than the P computed in the

Example 2. This implies a safer slope, and is a result of the smaller uncertainty in c' that

is assumed in this example. Smaller parameter uncertainty, would result in smaller

uncertainty in Factor of Safety, and hence larger values of P (or smaller probability of

failure).

Graphically, the 1 - a dispersion ellipsoid is smaller when the uncertainty in the

parameter(s) is smaller, and so it can grow larger in size before touching the failure

boundary. This implies larger values of Pf, as shown in Figure 5.48.
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It is interesting to note that the ratio Pdeterministic increases with increasing parameter
Preliability

uncertainty. This ratio is greater in Example 2 than in this example, as

det erministic 0.93 Pdeterministic 1.07 What this indicates is that the deviation
Preliability 0.72 freliability 0.85

between computing p from the deterministic surface from computing Pfrom the

reliability based surface increases as parameter uncertainty increases. Deterministic

based reliability indices therefore become more and more unconservative as parameter

uncertainty increases.

5-2.3. CONCLUSIONS

This part of the chapter introduced basic concepts of reliability analyses, and described

techniques by which uncertainties in parameters can be systematically incorporated into

the analyses. The Hasofer and Lind (1974) reliability index was formulated as an

optimization problem that was solved using spreadsheet techniques in the space of the

original variables. This includes a search for the critical reliability failure surface in a

slope. The reliability index corresponds to the dispersion ellipsoid that is tangential to the

failure boundary defined in the case of slope stability by F = 1. A method to derive

reliability charts was also introduced.

Numerical examples were used to illustrate the effects of parameter uncertainty, on

slope reliability.

Several important conclusions were made.

1. Larger (Compare Examples 1 and 2) or same (compare Examples 2 and 3) Factors

of Safety do not necessarily imply more reliable slopes. A more rational approach to

assessing the state of stability of slope is through the reliability index which

incorporates uncertainties in parameters.

2. Larger uncertainties in parameters lead to lower values of the Hasofer and Lind

(1974) reliability index, and hence larger probabilities of slope failure.

3. Reliability analyses performed on the critical deterministic failure surface results in

larger values of P and are therefore unconservative. This is important since many of
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current analyses are based on using this surface for reliability analyses. As

parameter uncertainty increases, the deviation between the reliability based P and

the deterministic based p increases and deterministic analyses become more and

more unconservative.
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PART 5-3:

PROBABILISTIC SLOPE STABILITY ANALYSES

In this Part of the chapter, probabilistic slope stability analyses are performed. Monte

Carlo techniques are used to derive a probability distribution for the Factor of Safety,

based on assumed probability distributions for the soil strength parameters. The

simulated Factor of Safety distribution is compared to the theoretical Normal and

Lognormal probability distributions. The probability of slope failure is obtained from the

simulated distribution. This is compared to the results of the second moment reliability

analyses performed in Part 5-2.

5-3.1. THE MONTE CARLO TECHNIQUE

The Monte Carlo Method and its application within a spreadsheet were described in Part

5-1. This involves generating random numbers from the uniform distribution between 0

and 1, and transforming these numbers to random variables from an assumed

distribution. In this section, the soil strength parameters c' and 'are assumed random

variables that follow the Normal distribution with known parameters (mean values and

standard deviations). The same procedure applies if other parameters are assumed

uncertain. A similar procedure also applies if the strength parameters are assumed to

follow different distributions. The case of uncorrelated c' and 4' is considered. Such is

the case if, for example, c' and 4'are assumed to be independent.

To generate random values of c' and j' from a Normal distribution with known

parameters, if c' and 4' are assumed uncorrelated, random numbers are first generated

using the '=RANDO' function. These are transformed to random numbers of a Normal

distribution using the '=NORMINVo' function in Microsoft Excel. The '=NORMINVo'

function is inserted into the c' and 4'cells, and every time the F9 key is pressed, new

values of c' and 4' are generated based on the Normal distribution with the specified

parameters, mc' and Gc' for c', and mv and ay' for #'.
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This procedure is used to generate random values of c' and 4'. The Factor of Safety is

computed for each combination of c' and #'. A random sample of the Factor of Safety is

therefore obtained, and its probability distribution can be estimated for a large sample.

The probability of failure can then be approximated from the generated distribution of

Factor of Safety as;

1

PF = fF(c',$')dF [5.38]
-00

where fF(c', ') is the generated probability distribution of the Factor of Safety, F.

5-3.2. STATISTICAL ANALYSES OF GENERATED DISTRIBUTIONS OF FACTOR OF

SAFETY

In this chapter and in Chapter 6, statistical analyses are performed on the distributions of

Factor of Safety that are generated using Monte Carlo techniques. This is done to gain a

better understanding of the shape of these distributions. Attempts are also made to fit

theoretical probability distributions to the generated distributions of the Factor of Safety.

In this section, we briefly describe some of these statistics, the techniques used to fit

probability distributions, and their implementation within a spreadsheet. In particular, we

develop a simple and elegant method in which the Method of Maximum Likelihood is

used to estimate the distribution parameters of the theoretical distribution which is fitted

to the generated distribution of the Factor of Safety.

5-3.2.1. DISTRIBUTION STATISTICS

As an initial attempt to better understand the shape of the distribution of the Factor of

Safety, two statistical indicators are used that describe the deviation of the distribution

from the Normal distribution.

5-3.2.1.1. COEFFICIENT OF SKEWNESS

The coefficient of Skewness characterizes the degree of asymmetry of a distribution

around its mean. Positive skewness indicates a distribution with an asymmetric tail

extending toward more positive values. Negative skewness indicates a distribution with
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an asymmetric tail extending toward more negative values. The coefficient of skewness

is computed as:

E[(X - E[X])3 15.39]
{EF(X - E[X])2 3

where E[] is expectation

71 is computed using the function "=SKEWO" in Excel.

5-3.2.1.2. COEFFICIENT OF KURTOSIS

Kurtosis characterizes the relative peakedness or flatness of a distribution compared

with the normal distribution. Positive kurtosis indicates a relatively peaked distribution.

Negative kurtosis indicates a relatively flat distribution.

The coefficient of kurtosis is computed as:

72 E[(X - E[X])4] [5.40]

E[rX - (E[X]) 2 )]

Y2 is computed using the function "=KURTo" in Excel.

5-3.2.2. DISTRIBUTION FITTING

Theoretical probability distributions are fitted to the generated distributions of the Factor

of Safety. Three distributions in particular are considered, namely the Normal,
Lognormal and Gamma distributions.
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5-3.2.2.a. NORMAL DISTRIBUTION

2

Y )1fX (x) = 1-e-(

where:

m = E[X] is the mean or expected value of X

a2 = Var[X] is the variance of X

5-3.2.2.b. LOGNORMAL DISTRIBUTION

fX (X) = 1 e
xVa

II In x-min x 2

cyln x [5.42]

where:

min X = 2ln(m) -In(2 + m2
2

InX =-2n(m)+In(a2 m 2)

with m and T as defined previously.

5-3.2.2.c. GAMMA DISTRIBUTION

fx(X) e-xxxr-1
F(r)

m = E[X] =

a2 = Var[X] r

with m and cy as defined previously.
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The three distributions considered are characterized by two parameters. In order to fit

these distributions to the generated distributions of the Factor of Safety, the parameters

of the distributions have to be estimated. Parameter estimation can be done using

classical analyses, or using Bayesian techniques. In the classical analyses, the

parameters of the distributions can be estimated using interval estimation, or point

estimation. In this study, we consider point estimation using classical analyses.

The two most commonly used methods for point estimation of distribution parameters

are the Method of Moments and the Method of Maximum Likelihood.

5-3.2.2.1. METHOD OF MOMENTS

The Method of Moments is a long established procedure for finding point estimators. In

the Method of Moments, the sample moments are equated to those of the fitted

distribution in order to estimate the parameters.

Therefore,

n
m= E[X]=X= i Xi [5.48]

1=1

2-2 1 n_
CY 2 Var[X] n = (X -X [5.49]

1=1

where:

X = Xi is the sample average, that is computed using the "=AVERAGEo" function
i=1

-2 1 n
C2= Xj (- X is the sample variance, that is computed using the "=VARo" function

i=1

Using these estimates for the expected value and variance of X, and the relations of the

parameter distribution to these, one estimates the parameters using the Method of

Moments.

NORMAL DISTRIBUTION
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The distribution parameters are m = E[X] and a2 = Var[X], and the estimates in [5.48]

and [5.49] are used directly.

LOGNORMAL DISTRIBUTION

The distribution parameters are mInx and GnX, and these are estimated as by

substituting for m and a2 in Equations [5.48] and [5.49], into Equations [5.43] and [5.44].

GAMMA DISTRIBUTION

The distribution parameters are r and X, and these are estimated as by substituting for

m and a2 in Equations [5.48] and [5.49], into Equations [5.46] and [5.47].

5-3.2.2.2. METHOD OF MAXIMUM LIKELIHOOD

The Method of Maximum likelihood is preferred to the Method of Moments to estimate

distribution parameters because it makes more use of information contained in a

sample, and the estimators are asymptotically unbiased, with minimum mean squared

error.

For a random variable X with known or assumed probability distribution, fX(x), and a

sample {x1,..., Xn }, the likelihood function of 0, where 0 represents the set of unknown

parameters is defined as:

n
f(o) = ffx(xi 1 0) [5.50]

i=1

The Maximum Likelihood estimates of the distribution parameters are those that

maximize the likelihood function in Equation [5.50]. For many distributions, it is

convenient to express a log-likelihood function L(O), as:
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L(O) = ln{(O)} [

n
L(O) = fx(xi I [5.52]

i=1

Maximizing log-likelihood to obtain the Maximum Likelihood estimators to distributions

parameters is the same as maximizing likelihood since the logarithm function is

monotonic.

Maximizing likelihood (or log-likelihood) can be done by imposing stationary conditions

on the likelihood (or log-likelihood) function and solving for the parameters 0. This,

however, is not always possible since no analytical form of the partial derivatives exists

e.g. for the Gamma distribution, and one has to resort to numerical methods.

SPREADSHEET IMPLEMENTATION OF THE METHOD OF MAXIMUM LIKELIHOOD

Numerical methods may be required to maximize the likelihood (or log-likelihood)

function. One method for doing this is to write a computer code, such as in VBA in Excel,

for this purpose. This, however, may be time consuming both to write and implement.

This is particularly true is high accuracy is desired. A simpler and more elegant approach

is to set up the problem as an optimization problem, and make use of a spreadsheet's

optimization tool, such as Solver in Excel. The method is described in the following

steps.

Step 1. Arrange the sample values of the variable X in a column, and compute the

sample mean and variance. This is done using the "=AVERAGEo" and "=VARO"

functions in Excel.

Step 2. Compute the Method of Moments estimators for the parameters of the

distribution using the sample mean and variance in Step 1, as described in Section 5-

3.2.2.1.

377

[5.51]



Step 3. Compute the likelihood (Equation [5.50]) and log-likelihood (Equation [5.51])

functions at each sample point xi. The probability density at each sample point xi is

computed using the following functions in Excel: "=NORMDISTO" for the Normal

distribution, "=LOGNORMDISTO" for the Lognormal distribution and "=GAMMADISTO"

for the Gamma distribution.

Step 4. Compute the log-likelihood function of the sample by summing the log-likelihood

at each sample point xi. Note that in the majority of spreadsheets one has to work with

the log-likelihood function instead of the likelihood function, particularly when the number

of sample points is very large. This is because the log-likelihood function involves a

summation of the log-likelihoods at each of the sample points (as opposed to a product

for the likelihood function). The spreadsheet is capable is dealing with sums of large

numbers, but there may be difficulties in obtaining the product as this becomes very

large for large samples.

Step 5. Specify initial estimates of the distribution parameters. Good initial estimates to

these parameters are the Method of Moment estimators, which are determined from the

sample average and variance, as described in Step 2.

Step 6. Set up the problem as an optimization problem in Excel. This is done using the

optimization tool Solver. The objective function is to maximize the log-likelihood function

of the sample by varying the parameter estimators.

Step 7. Invoke Solver to maximize log-likelihood and obtain the Method of Maximum

Likelihood estimators to the distribution parameters. Convergence criteria can be

specified to ensure the desired accuracy.

By performing Steps 1 to 7, the Method of Maximum Likelihood estimators are obtained

very rapidly. The procedure is slightly slower for larger samples, but remains much

quicker than running other numerical methods based on varying the values of the

estimators to determine those that maximize log-likelihood.
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5-3.2.3. STANDARD ERROR TERM

As a simple goodness of fit test of the fitted distribution to the generated distribution of

Factor of Safety, we compute an error term as:

e = x -' [5.53]

where:

e error term

xi the relative frequency of the generated distribution

x' the theoretical probability density of the distribution

One can use better measures of goodness of fit, such as the Kolmogorov-Smirnov test

for Normality, and/or fit different distributions to the generated distribution, but that is not

the intention in this study. The relative values of e are used as simple quantitative

measures to compare the fit of the generated distribution to the Normal, Lognormal and

Gamma distributions.
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5-3.3. NUMERICAL EXAMPLES

We illustrate the Monte Carlo procedure using the slope shown in Figure 5.49.

Figure 5.49. Slope Geometry and Strength Parameters

We assume that the saturated strength parameters are uncertain and

parameters:

uncorrelated, with

c'- (mc' = 15kN / m2 , c' = 5kN /m 2); ' (m = 250, cy = 50 ) -]

This slope was analyzed in a second moment reliability context in Example 2 of Section

5-2.2.2.3, and a reliability index was computed to be P = 0.72 on the critical reliability

based failure surface. The probability of slope failure was computed from the reliability

index by assuming a distribution for the Factor of Safety. When the Factor of Safety was

assumed to be Normally distributed, PF = D(-P), and in this example,

PF = 1(-P) = 0.234.

We analyze the reliability of the slope using Monte Carlo techniques. We assume that c'

and #' follow a Normal distribution, and by doing so the probability density functions of

each parameter becomes known, since the parameters of the distribution are known
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(specified). A random sample is generated for c' and 4', and from this, a random

sample of the Factor of Safety can be generated on the failure surface.

Figure 5.50 shows the probability density function of the Factor of Safety that is obtained

from the Monte Carlo analyses, and Figure 5.51 shows the cumulative distribution

function.

2 -- - - ~~ ~~ - -- ~~- - - - - -~ - -------- - - --.---- ---------~- - -~ - -~- -- - -- - ~

1.8

~'1.6

1.4

1.2

C

t- 0.8-

0.6-

W 0.4

0.2-

0 0.5 1 E[F] 1.5 2 2.5 3

Factor of Safety

Figure 5.50. Simulated Probability Density Function of Factor of Safety for Normally Distributed
and Uncorrelated c' and '
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Figure 5.51. Simulated Probability Distribution Function of Factor of Safety for Normally
Distributed and Uncorrelated c' and 4)

To gain a better understanding of the distribution of Factor of Safety, we compute the

statistics described in Section 5-3.2. These are shown in Table 5.3.

Simulated Distribution
Expected Value, E[F] 1.163
Standard Deviation, -[F] 0.220
Skewness 0.1734
Kurtosis 0.1384
Probability of Failure 0.230

Table 5.3. Summary Statistics of Simulated Distribution

Table 5.3 shows that the value coefficient of Skewness of the distribution is small

indicating a symmetric distribution about the expected value. Table 5.3 also shows that

the value of the coefficient of Kurtosis is small indicating no significant peakedness of

the distribution when compared to the Normal distribution.

We use the Method of Maximum likelihood in Section 3-2.2.2. to estimate the

parameters of the Normal, Lognormal and Gamma distributions that best fit the

generated data. These are shown in Table 5.4.
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Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F]/a[ln(F)]/ % e Failure

Normal 1.163 0.220 0.158 0.229
Lognormal 0.133 0.196 0.350 0.249
Gamma 27.865 23.950 0.195 0.241

Table 5.4. Fitted Distributions to Simulated Distribution

Table 5.4 shows that the error term for the Normal distribution is the smallest amongst

those distributions considered, indicating that Normal distribution fits the distribution of

the Factor of Safety in Figure 5.50 better than the Lognormal and Gamma distributions.

We compare the simulated distribution with the fitted Normal distribution for probability

density in Figure 5.52, and cumulative distribution in Figure 5.53.
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Figure 5.52. Comparison of Simulated Probability Density of Factor of Safety with Fitted Normal
Distribution for Normally Distributed and Uncorrelated c' and <'
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The distribution of the Factor of Safety can be approximated by the Normal distribution

when c' and 4' follow a Normal distribution, as shown in Figures 5.52 and 5.53. The

actual simulated distribution, however, is not exactly Normal, but is well approximated by

the Normal distribution. No attempt has been made to fit an exact distribution to the

Factor of Safety, or test, rigorously, the goodness of fit to the Normal.

The simulated cumulative distribution function of F is used to approximate the probability

of slope failure, and in this example, PF = 0.233.

The probability of failure computed from reliability analyses (PF = D(-P) = 0.234) is

almost the same as that computed from Monte Carlo analyses (PF = 0.233). This is

because the distribution of the Factor of Safety is well approximated by the Normal

distribution (see Figure 5.52). Since this is the case, the assumption of Normality in

computing PF = tF(-P) is valid.

In this example, Example 2 Section 5-2.2.2.3 was analyzed. There is no particular

reason for this, and the results would have been the same if Example 1 was analyzed

instead. Tables 5.5 and 5.6 summarize the statistics of the distribution, and the

Maximum Likelihood parameters of the fitted distributions.
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Simulated Distribution
Expected Value, E[F] 1.178
Standard Deviation, a[F] 0.134
Skewness 0.0613
Kurtosis 0.0042
Probability of Failure 0.091

Table 5.5. Summary Statistics of Simulated Distribution

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r cT[F]/ca[ln(F)]/ k e Failure

Normal 1.178 0.134 0.140 0.093
Lognormal 0.157 0.116 0.330 0.087
Gamma 76.926 65.330 0.239 0.087

Table 5.6. Fitted Distributions to Simulated Distribution

Table 5.6 again shows that the simulated distribution is well approximated by the Normal

distribution, and this is shown in Figure 5.54.

3.5-

3-

2.5

2 2-

01.5-

0

0.5 -

0,
0 0.5 1.5 2 2.5

Factor of Safety

Figure 5.54. Comparison of Simulated Probability Density of Factor of Safety with Fitted Normal
Distribution for Normally Distributed and Uncorrelated c' and 4 '

The probability of failure is computed to be PF = 0.091, which compares well with that

obtained from second moment analyses, PF = CD(--) = 0.095.
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5-3.4. CONCLUSIONS

in this section, the Monte Carlo Method was used to asses slope reliability. This was

done using spreadsheet techniques. A numerical example illustrated the method. The

results were compared to those obtained by second moment reliability analyses based

on the Hasofer and Lind (1974) reliability index, and are in good agreement. This is

because the probability distribution of the Factor of Safety for Normally distributed

strength parameters, though not exactly Normal, is well approximated by the Normal

distribution.
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PART 5-4:

RELIABILITY BASED LANDSLIDE HAZARDS ASSESSMENT

In this part of the chapter, the reliability of slopes during and after rainfall events is

assessed in a second moment context, producing the second moment assessment of

landslide hazards. This combines the uncertainty analyses performed on the infiltration

model in Part 5-1, with the slope reliability analyses performed in Part 5-2. The results

are in the form of the variation of the Hasofer and Lind (1974) reliability index with time

during and after a rainfall event. From this, and an assumed distribution of the Factor of

Safety, the variation of the probability of slope failure with time can be approximated.

Uncertainty in assessing landslide hazards arises from uncertainty in the rainfall

characteristics, soil hydraulic parameters, as well as strength parameters, and slope

geometry. These were discussed in more detail in Chapter 4. In this part of Chapter 5,
the major contributors to uncertainty are assumed to be the soil hydraulic conductivity,

and soil strength parameters. Other parameters can be included in the analyses, in a

very similar way as to what is done in this part.

The Factor of Safety in a slope is not a direct function of the hydraulic conductivity of the

soil, but is a function of the pore pressures that are generated during rain. Therefore,
assessing the effects of uncertainties in hydraulic conductivity on uncertainties in

computed Factors of Safety in a second moment reliability context requires an

estimation of the mean values and standard deviations of the generated pore pressures.

One way to do this is to deterministically model flow, and use the computed pressures

as estimates to the mean values. The standard deviations (variances) of the pressures

need to be specified by assuming (or specifying values of) coefficients of variation for the

pore pressures. This has to be done judgmentally, and typical coefficients of variation

can be obtained from published literature or specified subjectively. These can be in the

form of specified numbers that are assumed constant with time, or time dependent

functions.
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Alternatively, as an initial step, uncertainties in hydraulic conductivity can be propagated

through the flow model into uncertainties in pore pressures using the Monte Carlo

method (see Part 5-1). The second moment characteristics (mean values and standard

deviations) of the pore pressure profiles can be estimated based on the results. These

second moment characteristics can then be used in the slope reliability analyses.

If we assume that the soil strength parameters are uncertain, the vector of uncertain

quantities that the Factor of Safety is a function of is:

U1

un

un

- (E[X],x) [5.54]

where:

u,...,Iun are the mean pore pressures acting on the base of slices 1, ... , n.

E[X] is the mean value vector of X

Z is the covariance matrix of X

E[X] contains the mean values of the pore pressures u1,...,un. These are obtained

from deterministic or Monte Carlo analyses of the flow model as explained previously.

Similarly, I contains the standard deviations (variances) of the pore pressures

U1,..., un , which are set judgmentally, or obtained from Monte Carlo analyses.

5-4.1. PROCEDURE

Since the Factor of Safety in [5.39] is a function of X, second moment reliability

analyses can be performed as described in Figure 5.55.
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Step 1. Perform Monte Carlo analyses on the flow model, and obtain the second

moments of the pore pressure profiles with time. This was described in Part 5-1. The

results are in the form of variation of mean values and standard deviations of the pore

pressures with depth below ground surface, and with time (see Part 5-1).

Step 2. Divide the total timetr desired to perform the analyses into discrete time steps

ti. The total time is the duration of rain plus some specified time after cessation of rain.

Step 3. Set up a spreadsheet as was described in Part 5-2, and specify an initial trail

failure surface.

Step 4. Specify the mean value vector, E[X], and covariance matrix, ZI, of the vector

X, where X is the vector of uncertain quantities acting along the base of a slice of the

failure surface.

Some parameters, such as the soil strength parameters, are assumed to have second

moments (mean values and variances) that are depth and time independent. Their mean

values and variances are, therefore, constant and their respective numerical values are

specified as numbers in E[X] and 1.

The mean values and standard deviations of the pore pressures on the other hand are

functions of both depth below the ground surface, and time. So, formulae are inserted

into the cells containing these values. These formulae instruct the spreadsheet to extract

the mean values and standard deviations of the pore pressures at the base of each slice

of the failure surface from the results of the Monte Carlo analyses at any time step ti.

The '=LOOKUPO' function in Excel is used for this.

Xi- T Xi -Mi m
Step 5. Compute P from F= ,where IF is the inverse of

the correlation matrix of X.

Step 6. Solver in Excel is invoked to minimize p , by changing the 'X values', and

allowing the coordinates of the initially specified to be varied. By doing so, the Hasofer

and Lind (1974) reliability index is computed at time ti.

Step 7. Repeat Steps 4 to 6 for all times ti, ti = 0, . . ., tr

Figure 5.55. Spreadsheet Procedure for Slope Reliability Analyses During Rainfall
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Note that the procedure in Figure 5.55 assumes that the second moments of the pore

pressures are obtained from Monte Carlo analyses. This is shown in Step 4. If, on the

other hand, one assumes that the second moments are time independent, then one

simply specifies the values in E[X] and E, and no formulae are required.

At time ti, the spreadsheet varies the coordinates of the failure surface in search for the

critical surface (see Step 6 in Figure 5.55). As this is done, the mean values and

standard deviations of the pore pressures change since they are a function of depth

below the ground surface. These are automatically extracted by the spreadsheet from

the Monte Carlo results atti during each iteration of failure surface using the functions in

Step 4.

The procedure described in Figure 5.55 assumes that the pore pressures at different

depths are uncorrelated. Correlation can be included into the analyses by specifying the

correlation coefficients between the ul,...,un in the covariance matrix Z. This again

can be either specified judgmentally, or estimated from the results of the Monte Carlo

analyses. In the latter case, the correlation coefficients between ul,..., un can be

estimated using the '=CORRELO' function in Excel at each time step. This function is

inserted into the off-diagonal terms (covariances) of the covariances matrixZ. More

generally, one can attempt to estimate a correlation function between ui,...,un. This

function would be a function of the lag in depths between any two variables ui, and uj,

i.e. 1(i - j)j, and time.

Initially, at time t = 0 hours, if one assumes hydrostatic conditions, and the location of the

water table is known, then the subsurface pore pressures can be defined. This is to say

that there is perfect correlation between the pore pressures uI,...,un, since u= 0 at the

water table by definition.
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When it rains, and rainwater infiltrates into the slope, the pore pressures above the

maximum infiltration depth are altered. While there still may be a certain degree of

correlation between the pore pressures above the infiltration depth, correlation is

reduced. Correlation between the pore pressures below the water table is, however,
unaffected by rain, and remains high.

While the variables ul,...,un are probably correlated, particularly at depths greater than

the maximum infiltration depth since hydrostatic conditions prevail, ul,...,un are

assumed uncorrelated in this study. The justification for this assumption is in the fact that

the main contributors to the uncertainties in the Factor of Safety will be the strength

parameters (variance and covariance terms) followed by the uncertainties in pressures

(variance terms). Hence, the covariance terms between pressures will have smaller

values, and are less significant than the variance and covariances terms of the strength

parameters and of the variance terms of the pressures.

The procedure in Figure 5.55 can be extended to include strength parameters that are

either functions of depth or of time or both. In such cases, formulae are entered into the

strength parameter cells that instruct the spreadsheet to compute the mean values and

standard deviations of the parameters at each depth, and time step. Correlation can also

be included in a similar manner. This is similar to what is done in Step 4 of Figure 5.55

for the pore pressures.

The procedure is automated using a VBA code in Excel. The results are in the form of a

plot of the Hasofer and Lind (1974) reliability index with time during and after rain. From

an assumed distribution of Factor of Safety, this can be transformed into a plot of

probability of failure (reliability) with time.

The procedure is best illustrated by examples. For this, we consider two examples

where in the first, the rainfall intensity is less than the saturated conductivity of the soil,
and in the second, the intensity is greater than the conductivity.
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5-4.2. NUMERICAL EXAMPLES

EXAMPLE 1: LANDSLIDE HAZARDS WITH RAINFALL INTENSITY LESS THAN

SATURATED CONDUCTIVITY

Consider the slope shown in Figure 5.56.

10 -

5 -

c' = O.5kN/m 2

<'= 280

y =20 kNM2

SOIL

ROCK

15

x (m)

- 5. 1 0
FAILURE -
SURFACE

20 25 30

Figure 5.56. Slope Geometric and Strength Parameters

The slope geometric and soil strength parameters are shown in Figure 5.56. The soil

hydraulic parameters are taken to be:

Saturated moisture content of soil O = 0.47

Residual moisture content of soil Or = 0.11 (see Chapter 2)

Saturated conductivity KS = 250cm I day = 2.89 x 1 0-'m / s

Specific storage coefficient SS = 0.005 (see Chapter 2)
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The van Genuchten (1980) Models are used to describe the soil characteristic curves,
with parameters n = 3 and 6 = 0.007 (see Chapter 2). The soil characteristic curves

are as shown in Figures 5.57 and 5.58.
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The moisture content in the soil is initially assumed to be constant Oi = 0.25.

We assume a rainfall event with constant intensity, I= 75mm / hr takes place for duration

of 8 hours. When all parameters are deterministic, Chapter 2 described a procedure

whereby the variation of Factor of Safety in slope with time can be computed as a

function of time. The results of the deterministic analyses are shown in Figure 5.59.
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0
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0.T -(H--rs)

0.r

0.6

0 1 2 3 4 5 6 7 8 9
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Figure 5.59. Variation of Factor of Safety with Time from Deterministic Analyses

Figure 5.59 shows that the Factor of Safety decreases with time as rainwater infiltrates

into the slope. The minimum Factor of Safety occurs at time 8 hours, which corresponds

to the end of rain. Since the Factor of Safety is greater than 1 at all times, the slope

remains stable. The Factor of Safety increases after this time as pressure redistribution

takes place.

Figure 5.56 shows the critical deterministic failure surface at time t = 8 hours. This is the

surface on which the Factor of Safety is minimum.

We now assume that the soil hydraulic conductivity is uncertain, and follows a

Lognormal distribution as Ks - LN ( MKs = 250cm / day, c2 =(125cm / day)2 ). The

Monte Carlo techniques described in Part 5-1 are used to compute the mean values and
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standard deviations of

5.60 and 5.61.

the pore pressure profiles with time. These are shown in Figures

-5
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Figure 5.60. Variation of Mean Values of Pore Pressure Profiles with Time
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Figure 5.61. Variation of Standard Deviation of Pore Pressure Profiles with Time

The results of the Monte Carlo analyses in Figures 5.60 and 5.61 are used to compute

the mean values and standard deviations of the pore pressures acting on a failure
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surface at any time ti. These are used in Step 4 in the procedure for reliability

computations described in Figure 5.55. So, for example, consider time t = 4 hours. If the

depth to the base of slice j from the ground surface is 1.5 m, then the mean value of uj

in vector E[X] would be about E[uj]= -12kN/m 2 (see Figure 5.60 at t=4 hr), and the

standard deviation of uj in vector Z would be abouta[uj] = 3kN/m 2 (see Figure 5.61

at t=4 hr). These are automatically obtained using the '=LOOKUPO' function in Excel.

The expected values and standard deviations of the pore pressures acting on the bases

of other slices are obtained in a similar way.

We assume that the soil strength parameters are uncertain, with parameters:

c' (m.' = 0.5kN / m2 , m' = 0.125kN / m2); ' (mv = 280, av = 70 )F 1 1

Having specified these parameters, we now have set up the problem for second

reliability analyses, since E[X] and Z are entirely specified. P is computed as in Step 5

of Figure 5.55.

P is then minimized in Step 6, and during each iteration, the appropriate values of

E[uj], and a[uj] are used. This results in the Hasofer and Lind (1974) reliability index at

time ti.

The critical values of the parameters in X, (X ) are obtained. These correspond to the

most probable failure point (see Part 5-2) if X has Joint Normal distribution. The

problem has dimensions of (2+n), where n is the number of slices, and the 2 comes

from the 2 soil strength parameters. The Hasofer and Lind (1974) reliability index

corresponds to the hyper ellipsoid in (2+n) space that is tangential to the failure

surface, defined by F(X) = 1 in (2 + n) space.

The process is then repeated for all times i.
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Figure 5.62 shows the variation of the Hasofer and Lind (1974) reliability index with time.
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Figure 5.62. Hasofer and Lind (1974) Reliability Index with Time

The shape of variation of reliability index with time in Figure 5.62, follows that of the

Factor of Safety with time in Figure 5.59. That is to say that the reduction in Factor of

Safety with time is reflected in the reliability index, while incorporating uncertainty in

parameters. The reliability index decreases with time during rain, and with pressure build

up. As rain stops at t=8 hours, pressure redistribution takes place causing an increase in

reliability index. The critical reliability based failure surface at time t = 8 hours is shown in

Figure 5.63.
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Figure 5.63. Critical Reliability Based Failure Surface at t = 8 hours

This is the surface along which failure is most probable, while taking into account the

uncertainties in the vector X.
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Figure 5.64. Probability of Slope Failure with Time
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EXAMPLE 2: LANDSLIDE HAZARDS WITH RAINFALL INTENSITY GREATER THAN

SATURATED CONDUCTIVITY

Consider the slope shown in Figure 5.65.

c' = 0.5kN/m
4'20 FAILURE

(Ua-Uw)entry=1 kN/m SOIL
10-

s ..--'ROCK

-. 5.4 20 2s 30 3s .

0--- -- * - --- ---------------------.-..-- -.....--.-- - -

Figure 5.65. Slope Properties and Failure Surface

The slope geometric and soil strength parameters are shown in Figure 5.65, and the

hydraulic parameters are:

Saturated moisture content of soil 0Q = 0.47

Residual moisture content of soil Or = 0.11

Saturated conductivity Ks = 200cm / day = 2.31 x 10- 5m / s

Specific storage coefficient S = 0.0025

The van Genuchten (1980) model is used to describe the unsaturated soil curves with

the parameters n = 1.24 and 5 = 0.011. The resulting curves are shown in Figures

5.66 and 5.67.
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The soil is initially assumed to be at constant moisture content Oi = 0.40 . A rainfall

event of constant intensity I = 375cm / day = 155mm / hr takes place for duration of 8

hours.

We assume that the soil hydraulic conductivity is Lognormally distributed as,

Ks -LN ( MKs = 200cm / day, cv2 = (100cm / day)2).

The mean values and standard deviations of the pore pressure profiles with time are

shown in Figures 5.68 and 5.69.
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Figure 5.68. Variation of Mean Values of Pore Pressure Profiles with Time

401

10

2-

(V

-+--Ohr -*-- 2hr

-o-4 hr -- 6 hr

-a-8 hr - 10 hr



Standard Deviation of Pressure (kN/m2
)

0 2 4 6 8 10
0

2

3

+ 0 hr -A- 2 hr -K-4 hr
4

-+- 6hr -8hr -a-10hr

5

Figure 5.69. Variation of Standard Deviation of Pore Pressure Profiles with Time

We assume that the soil strength parameters are uncertain, with parameters;

c'~ (MC' =0.5kN/m 2 , ac' = 0.017kN/m 2 ), 4'- (mv = 200, og = 6.670), and c' and

' are assumed uncorrelated. The variation of the reliability index with time is shown in

Figure 5.70.

1 ----- -,- - - -- ~--- ,- ----- ---- --- ----- , - - -, - - ---- - ---

0 .9 ----------- - - - - - -- - -- --

0.8 - - - ------ - ---- - - - - - -

0.7 - --- - -- - - -- - - -- - -- - - - -- - -- -

x
$ 0.6 - - - - - - I - -- --- - - -

--. --- --- - -- -- -- -- - - - - - - --- - - - - - - - ------- -------- -- ---- ---- -- --- ---- - - --- -- ---- - -

0.3 ---- - - - - - - - ---

0.2 - ----- - - - - - -- -- -

0 .1 ---- - - -- - - - - - - -- - -

0
0 1 2 3 4 5 6 7 8 9 10

Time (Hours)

Figure 5.70. Hasofer and Lind (1974) Reliability Index with Time
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Assuming a Normal distribution for the Factor of Safety, probabilities of failure with time

can be computed and are as shown in Figure 5.71.

0.7-. -

0 .3 - - - - -- - - ----- - -- -- -- - --- - - -- --- ------- -- - - --- --- - - ----- -- - - 1

0 .2 -- - ---- - - --- - - - --- -- - - -- -- ---- --- ----- - - - --- ---- -- ------ - - --- - - -- - - -

LL

0 .1 - - - - - --- -- - - - - - -- - - -- -- - - -- --- - -- -- -- -- - - -- --- - -- - ---- - - - - - - - -

0

2

0 1 2 3 4 5 6 7 8 9 10

Time (Hours)

Figure 5.71. Probability of Slope Failure with Time

Figures 5.62 and 5.70 provide plots of the variation of reliability index with time. These

functions are continuous functions with time, although they are computed at discrete

time intervals, as discussed in Figure 5.55. The time interval is taken to be 1 hours when

obtaining Figures 5.62 and 5.70 (and hence 5.63 and 5.71). Clearly, the smaller the time

interval, the more accurate the results, and the accuracy of Figures 5.62 and 5.70 can

be improved this way. This would lead to smoother curves that show the decrease of

reliability index with time, as the rainwater infiltrates the slope deeper, and causes an

increase in pressures on the failure surface. Another way to increase accuracy is in the

convergence criteria when obtaining P. Since P = ' ,'-- ' i the
I Gi -GiI

criteria for convergence in Excel during the optimization procedure can be made more

stringent. This would also lead to increased accuracy.
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5-4.3. CONCLUSIONS

In this part of the chapter, techniques were described whereby the reliability of slopes

during and after a rainfall event could be assessed in a second moment context. The

procedure involves specifying the second moment characteristics of uncertain quantities

and computing the Hasofer and Lind (1974) reliability index based on these as a function

of time. The reliability based critical failure surface is also obtained by the iterative

procedure. By assuming a probability distribution for the Factor of Safety, the probability

of slope failure (or reliability) can be computed as a function of time. If the Factor of

safety is assumed to be Normal, the probability of failure is given by PF = ID(-P). This

can be used as an estimate to the failure probability when the Factor of Safety is non

Normal. The procedure was demonstrated in two example slopes, where in the first the

rainfall intensity is less than the saturated conductivity, and rainwater reduces the initial

suction in the soil. In the second, the rainfall intensity is greater than the saturated

conductivity, and positive pressures develop.
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PART 5-5:

PROBABILISTIC LANDSLIDE HAZARDS ASSESSMENT

In this section, Monte Carlo techniques are used to assess slope reliability, and hence

landslide hazards during and after rainfall events. Uncertain parameters are assumed to

follow specified probability distributions. Random numbers of each parameter are

generated from the appropriate distribution, and the variation of Factor of Safety with

time is computed for each generated set. This results in a random sample of Factors of

Safety at each time, t . From this, the probability distribution of the Factor of Safety at

each time t can be approximated. The probability of failure at each time t is then

estimated from the probability distribution of F.

5-5.1. PROCEDURE

The uncertain parameters are assumed to be the soil hydraulic conductivity, and

strength parameters. Other parameters can be included in a similar way as is described

in this section. The procedure is as described in Figure 5.72.
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Figure 5.72. Procedure for Probabilistic Slope Stability Analyses During Rainfall Using Monte
Carlo Methods

406

Step 1. Divide the total timetr desired to perform the analyses into discrete time

stepsti. This total time is the duration of rain plus some specified time after cessation of

rain.

Step 2. At time ti, generate a random set (Ks , c', $') of the uncertain parameters from

the assumed distributions. Normal and Lognormal distributions are assumed, although

other distributions can be included in a similar fashion.

Step 3. For the generated value of Ks at time ti, the flow model is solved, and the pore

pressure variation with depth below ground surface is computed.

Step 4. The pore pressures are used along with the generated values of c' and #'to

compute the Factor of Safety at time ti.

Step 5. Repeat the process for all times ti, t = 0, . tr. This results in one sample of

the variation of Factor of safety with time.

Step 6. Repeat Steps 2 to 5 k times. This results in a sample of size k for the variation of

Factor of Safety with time. Obviously, k has to be large for accuracy of results.

Step 7. Derive the probability distribution of Factor of Safety at each time ti.

Step 8. Estimate the probability of slope failure (or reliability) from the derived distribution

of F at each t .

Step 9. Repeat Steps 7 and 8 for all times ti, ti= 0, . . ., tr . This results in the variation

of probability of failure with time.



5-5.2. NUMERICAL EXAMPLES

To illustrate the procedure, we reconsider the two examples analyzed in Part 5-4.2.

EXAMPLE 1: LANDSLIDE HAZARDS WITH RAINFALL INTENSITY LESS THAN

SATURATED CONDUCTIVITY

Reconsider Example 1 in Part 5-4.2, with the slope shown in Figure 5.56. We assume

that the soil hydraulic conductivity is Lognormally distributed, as:

K - LN ( MKs = 250cm / day, c2 =(50cm / day)2)

The soil strength parameters are assumed Normally distributed and uncorrelated, with

parameters:

c'- N(mc' = 0.5kN / m2, Gc' = 0.125kN / m2

V-' N(mv = 280, cg = 70)

and F = 1 j. c' and 4' are also assumed to be independent of KS.
10 1

Assuming these distributions, the procedure described in Figure 5.72 is implemented.

Figure 5.73 shows a plot of the Coefficient of Variation, V, of the Factor of Safety with

time, where the Coefficient of Variation, V is defined as:

V[F] = Var[F] [5.55]
E[F]

where E[F] is the expected value of the Factor of Safety, and Var[F] is the variance.
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Figure 5.73. Coefficient of Variation of Factor of Safety with Time

Figure 5.73 shows that the coefficient of variation of the Factor of Safety remains more

or less constant with time. This is because of the assumption that the uncertainty in the

parameters (strength and conductivity) is independent of time.

Therefore, with time, and as the expected value of the Factor of Safety decreases, so

does the standard deviation (see also Figures 5.74 to 5.77).

Since a large sample of Factor of Safety values is obtained at any time ti during the

Monte Carlo procedure, one can show such distributions as relative frequency density

plots. Figures 5.74 to 5.77 do this for various times. These are used as estimates to the

true probability density of the Factor of Safety.
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Figure 5.74. Relative Frequency Density of Factor of Safety at Time, t = 3 hours
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Figure 5.75. Relative Frequency Density of Factor of Safety at Time, t = 4 hours
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Figure 5.76. Relative Frequency Density of Factor of Safety at Time, t =5 hours
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Figure 5.77. Relative Frequency Density of Factor of Safety at Time, t = 8 hours
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Figure 5.78 shows these distributions on the same plot.

1.6 

-t3 

s

1.2 --- t=4 hrs

- t=5 hrs
--- t=6 hrs

1 -*--t=8 hrs

0

0.8-

0.6-
U.

2 0.4-

0.2

0
0 0.5 1 1.5 2 2.5 3

Factor of Safety

Figure 5.78. Distribution of Factor of Safety at Selected Times

Figure 5.78 shows that the distribution of Factor of Safety moves leftwards, towards the

origin with time. As this happens, the probability of slope failure increases, since the

1
area under the density plots where F <1, or PF = fF(c',')dF increases. Since the

coefficient of variation of the Factor of Safety remains more or less unchanged with time

(see Figure 5.73), as the expected value of the Factor of Safety decreases so does the

standard deviation. As this happens, the distribution of F becomes more centered about

the expected value causing an even greater increase in probability of failure with time.

One can also plot the distribution of the Factor of Safety for times after the end of rain, in

which case the distribution would move rightwards away from the origin. This would

happen as the excess pressures developed during rain dissipate. As this takes place,

the probability of failure decreases. This continues to take place until all the excess

pressures have dissipated, and the steady state conditions in the slope prior to rain are

restored. The distribution of Factor of Safety returns to its original distribution at t = 0

hours. Figure 5.79 shows a plot of the distribution of Factor of Safety as redistribution

takes place, at times t = 9 hours, and t = 10 hours.
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Figure 5.79. Distribution of Factor of Safety at Selected Times after Rain Showing Redistribution

Figure 5.80 shows the probability of failure with time.
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Figure 5.80. Variation of Probability of Failure with Time from Monte Carlo Analyses
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Figure 5.80 shows that as it rains, and rainwater infiltrates into the slope, the probability

of failure increases. This takes place until the end of rain (t = 8 hours), when the

pressures redistribute causing a reduction in the failure probability.

In order to gain a better understanding of the effects of pore pressures, and uncertainty

in pore pressures (through uncertainty in hydraulic conductivity) on the uncertainty in the

Factor of Safety we examine the distributions in Figures 5.74 to 5.77 in more detail. We

compute the statistics and Maximum Likelihood distribution parameters presented in

Section 5-3.2 at various times, and these are shown in Tables 5.7 to 5.16.

Simulated Distribution
Expected Value, E[F] 1.445
Standard Deviation, a[F] 0.419
Skewness 0.4238
Kurtosis 0.6415
Probability of Failure 0.138

Table 5.7. Summary Statistics of Simulated Distribution at time 3 hours

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r c[F]/ a[ln(F)]/ X e Failure

Normal 1.445 0.419 0.246 0.144
Lognormal 0.323 0.309 0.330 0.148
Gamma 11.882 8.224 0.158 0.143

Table 5.8. Fitted Distributions to Simulated Distribution at time 3 hours

Simulated Distribution
Expected Value, E[F] 1.370
Standard Deviation, c[F] 0.400
Skewness 0.4895
Kurtosis 0.6629
Probability of Failure 0.138

Table 5.9. Summary Statistics of Simulated Distribution at time 4 hours

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F]/a[ln(F)]/ X e Failure

Normal 1.445 0.419 0.246 0.144
Lognormal 0.323 0.309 0.330 0.148
Gamma 11.336 7.846 0.158 0.143

Table 5.10. Fitted Distributions to Simulated Distribution at time 4 hours
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Simulated Distribution
Expected Value, E[F] 1.253
Standard Deviation, a[F] 0.365
Skewness 0.4942
Kurtosis 0.6682
Probability of Failure 0.251

Table 5.11. Summary Statistics of Simulated Distribution at time 5 hours

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F]/ [ln(F)]/ x e Failure

Normal 1.253 0.365 0.295 0.244
Lognormal 0.181 0.308 0.344 0.279
Gamma 11.362 9.071 0.167 0.264

Table 5.12. Fitted Distributions to Simulated Distribution at time 5 hours

Simulated Distribution
Expected Value, E[F] 1.137
Standard Deviation, cY[F] 0.336
Skewness 0.4911
Kurtosis 0.6903
Probability of Failure 0.360

Table 5.13. Summary Statistics of Simulated Distribution at time 6 hours

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r c[F]/GY[ln(F)]/ X e Failure

Normal 1.137 0.336 0.302 0.342
Lognormal 0.082 0.313 0.376 0.396
Gamma 10.999 9.673 0.187 0.376

Table 5.14. Fitted Distributions to Simulated Distribution at time 6 hours

Simulated Distribution
Expected Value, E[F] 1.078
Standard Deviation, a[F] 0.319
Skewness 0.4986
Kurtosis 0.6812
Probability of Failure 0.428

Table 5.15. Summary Statistics of Simulated Distribution at time 8 hours
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Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F]/a[ln(F)]/ X e Failure

Normal 1.078 0.319 0.317 0.403
Lognormal 0.029 0.313 0.361 0.463
Gamma 10.992 10.195 0.167 0.442

Table 5.16. Fitted Distributions to Simulated Distribution at time 8 hours

Several observations can be made with regard to Tables 5.7 to 5.16:

" With increasing time, the expected value of the Factor of Safety decreases, and

there is a corresponding increase in the probability of failure.

* At any time, t, the value of the coefficient of Skewness is small, indicating small

asymmetry in the distribution around the mean. This is shown in Figure 5.78.

* The value of the coefficient of Skewness increases with time. This shows that the

distribution of Factor of Safety becomes more asymmetric with tirne, as is also

shown in Figure 5.78.

" The value of the coefficient of Kurtosis remains more or less the same with time.

This indicates that the relative peakedness of the distribution of Factor of Safety

compared to the Normal distribution remains the same. This is also illustrated in

Figures 5.78.

" The fit of the Normal distribution to the simulated distribution of Factor of Safety

is better at early times, and becomes less and less accurate with time. This is

shown by the error e terms that increase with time in Tables 5.7 to 5.16.

" At any time t, the best fit distribution to the simulated distribution of Factor of

Safety is the Gamma distribution.

Tables 5.7 to 5.16 show that at early times during rain the distribution of Factor of Safety

can be approximated by the Normal distribution. With increasing time, the distribution of

the Factor of Safety tends further away from the Normal distribution. This happens

because as time increases, so do the pore pressures on the failure surface. As the pore

pressures increase, so do the uncertainties in the pore pressures caused by

uncertainties in the hydraulic conductivity. This was discussed in more detail in Section

5-1.3. Therefore, with increasing time, the impact of the uncertainties in pore pressures

on the uncertainty in the Factor of Safety increases. As a consequence, the influence of
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the pore pressures on the shape of the distribution of the Factor of Safety also

increases. With time, the Factor of Safety is better approximated by the Gamma

distribution than by the Normal (or Lognormal) distributions. This is shown in Figure 5.81

which shows the simulated distributions of Factors of Safety (shown in symbols) at

various times, and the fitted Gamma distributions (shown by dashed lines).
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Figure 5.81. Comparison of Simulated (Symbols) Distribution of Factor of Safety with Fitted
Gamma Distributions (Dashed Lines)

Figure 5.82 compares the distribution of the Factor of Safety at time t = 3 hours with the

Normal and Lognormal distributions, and Figure 5.83 does so for time t = 8 hours.
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Figure 5.83. Comparison of Distribution of Factor of Safety with Fitted Normal and Gamma
Distributions at t = 8 hours

Figures 5.82 and 5.83 show the increase in the deviation of the distribution of Factor of

Safety from the Normal distribution with time. This deviation is in the form of a change

from a symmetric distribution to a more asymmetric distribution. This is also evident in

Figures 5.74 to 5.77. The distributions of Factors of Safety are better approximated by
the Gamma distribution than by the Normal distribution. As this takes place, and since
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the since the coefficient of variation of Factor of Safety remains more or less unchanged

with time (see Figure 5.73), the probability of failure increases further. This is also shown

in Tables 5.7 to 5.16 which show the greater failure probability for the Gamma

distributions than for the Normal distributions.

Recall from Part 5-3.2 that when the strength parameters c' and 4' are the only

uncertain parameters, then the distribution of Factor of Safety could be well

approximated by the Normal distribution. This means that at any time during rain, the

distribution of F would be well approximated by the Normal distribution if c' and j' are

the only uncertain parameters. We assume that the saturated conductivity is

deterministic. Figure 5.84 compares the coefficient of variation (see Equation [5.55]) of

the Factor of Safety when only the strength parameters are assumed uncertain, with

when both strength and hydraulic parameters are uncertain.
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Figure 5.84. Comparison of the Coefficient of Variation of Factor of Safety with Time when
Strength Parameters are Uncertain and when Strength and Hydraulic Parameters are Uncertain

Figure 5.84 shows that the coefficient of variation of Factor of Safety is slightly greater

when both strength and hydraulic parameters are uncertain, because the increased

uncertainty causes an increase in the variance (and standard deviation) of the Factor of

Safety. Figure 5.84 therefore shows that with the parameters assumed in this example,
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uncertainty in the strength parameters is the largest contributor to the uncertainty in the

Factor of Safety, while the uncertainty in pore pressures does not have a very significant

impact. However, the uncertainty in pore pressures has an effect on the shape of the

distribution of Factor of Safety. Figure 5.85 shows the distribution of the Factor of Safety

at times, t= 3 hours, t = 5 hours and t = 8 hours.
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Figure 5.85. Comparison of the Distributions of Factor of Safety with Time when Strength
Parameters are Uncertain (Dashed Lines) and when Strength and Hydraulic Parameters are

Uncertain (Solid Lines and Symbols)

The solid line distributions with symbols in Figure 5.85 are those for the case when both

the strength and hydraulic parameters are uncertain, and the dashed lines are those for

the case when only the strength parameters are uncertain. Figure 5.85 shows that when

only the strength parameters are uncertain, the distribution of the Factor of Safety

remains symmetric with time. It can be shown that these distributions are well

represented by the Normal distribution. When uncertainty in the hydraulic conductivity

(and hence pressures) is introduced, it causes a change in the shape of the distribution

of Factor of Safety, and the shape becomes asymmetrical. The distributions are better

approximated by the Gamma distribution than by the Normal distribution.

In conclusion, when the rainfall intensity is less than the saturated conductivity of the

soil, the uncertainties in the strength parameters are larger contributors to uncertainty in

the Factor of Safety than uncertainties in conductivity (and hence pressures). The
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uncertainty in conductivity, does however, affect the shape of the distribution of the

Factor of Safety. The distributions deviate from the Normal distribution, and this

deviation increases with increasing time (and pressures). The distributions, particularly

at larger times, are better approximated by the Gamma distribution than by the Normal

distribution.

The intent here is to gain a better understanding of the distribution of Factor of Safety

and the changes it goes through with time. The intent, however, is not for a rigorous

assessment of these distributions, and/or to fit probability distribution models to the

simulated distributions. The assessment is simple and comparative, considering only the

Normal, Lognormal and Gamma distributions, and the true distributions of Factor of

Safety are neither exactly.

We now compare the results of the Monte Carlo analyses, with those from the second

moment reliability analyses performed in the Section 5-4.2. This is done in Figure 5.86.
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Figure 5.86. Comparison of Probabilities of Failure from Second Moment and Monte Carlo
Analyses

Figure 5.86 shows that there is, in general, good agreement between the results of both

methods to assess slope reliability. This is particularly the case at early times during the
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rainfall event, when the distribution of the Factor of Safety more closely follows a Normal

distribution.

With time, and as the distribution of Factor of Safety deviates from Normality the

discrepancies between the results increases.

Nevertheless, second moment reliability analyses, and computed probabilities of failure

based on P, provide a good means by which slope reliability can be assessed, and the

results are comparable to those obtained from probabilistic analyses.

EXAMPLE 2: LANDSLIDE HAZARDS WITH RAINFALL INTENSITY GREATER THAN

SATURATED CONDUCTIVITY

In a second example, we consider Example 2 presented in Section 5-4.2, where the

rainfall intensity is greater than the saturated conductivity of the soil, allowing for positive

pressures to develop. Figure 5.87 shows a plot of the coefficient of variation (see

Equation [5.55]) of Factor of Safety with time.
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Figure 5.87. Coefficient of Variation of Factor of Safety with Time

Figure 5.87 shows that the coefficient of variation of Factor of Safety remains more or

less the same during the rain event. The coefficient of variation is greater in this
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example, than in Example 1 (see Figure 5.73), because the coefficient of variation of the

strength parameters is greater in this example, while the coefficient of variation of the

conductivity is the same. Larger uncertainties in c' and 4' translate to larger

uncertainties in the Factor of Safety, and hence larger coefficients of variation for the

same expected value of Factor of Safety.

Figure 5.88 shows the distribution of Factor of Safety at selected times, and shows the

leftwards shift towards the origin with time, causing a decrease in the expected value of

the Factor of Safety.
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Figure 5.88. Distribution of Factor of Safety at Selected Times

We compute the statistics and Maximum Likelihood distribution parameters presented in

Section 5-3.2 at different times, and these are shown in Tables 5.17 to 5.22.

Simulated Distribution
Expected Value, E[F] 1.283
Standard Deviation, aY[F] 0.471
Skewness 0.2761
Kurtosis 0.0995
Probability of Failure 0.288

Table 5.17. Summary Statistics of Simulated Distribution at time 4 hours
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Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F]/c[ln(F)]/ X e Failure

Normal 1.284 0.471 0.133 0.273
Lognormal 0.173 0.426 0.213 0.343
Gamma 6.231 4.851 0.364 0.322

Table 5.18. Fitted Distributions to Simulated Distribution at time 4 hours

Simulated Distribution
Expected Value, E[F] 1.144
Standard Deviation, a[F] 0.430
Skewness 0.4538
Kurtosis 0.4633
Probability of Failure 0.390

Table 5.19. Summary Statistics of Simulated Distribution at time 5 hours

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r c[F]/G[ln(F)]/ X e Failure

Normal 1.147 0.428 0.188 0.366
Lognormal 0.079 0.375 0.290 0.416
Gamma 6.187 5.394 0.211 0.422

Table 5.20. Fitted Distributions to Simulated Distribution at time 5 hours

Simulated Distribution
Expected Value, E[F] 1.009
Standard Deviation, a[F] 0.358
Skewness 0.3152
Kurtosis 0.3838
Probability of Failure 0.509

Table 5.21. Summary Statistics of Simulated Distribution at time 8 hours

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]I/ E[ln(F)]/ r ac[F]/a[ln(F)]/ X e Failure

Normal 1.010 0.358 0.194 0.489
Lognormal -0.035 0.347 0.476 0.540
Gamma 6.491 6.427 0.417 0.542

Table 5.22. Fitted Distributions to Simulated Distribution at time 8 hours

Similar comments can be made with regard to Tables 5.17 to 5.22 as were made with

regard to Tables 5.6 to 5.17 in Example 1. Particularly that the distributions of Factor of

Safety deviate from the Normal distribution with time and increasing pressures. This is
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shown by the increase in the error e term with time. The increase in e is not as

significant in this example as it was in Example 1. In addition, the distributions of Factor

of Safety are best approximated by the Normal distribution at all times. Figure 5.89

compares the generated distributions (symbols) with the fitted Normal distributions

(dashed lines) at times t = 3, 5 and 8 hours.
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Figure 5.89. Comparison of Simulated (Symbols) Distribution of Factor of Safety with Fitted
Normal Distributions (Dashed Lines)

The K ratio is greater in this example than in Example 1, and therefore uncertainty

in the pressures is greater than in the first example (compare Figures 5.61 and 5.69).

The effect of larger ( ratio is an increase in the coefficient of variation of the Factor
Ks

of Safety when compared to the case of deterministic conductivity, and this is shown in

Figure 5.90.
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Figure 5.90. Comparison of the Coefficient of Variation of Factor of Safety with Time when
Strength Parameters are Uncertain and when Strength and Hydraulic Parameters are Uncertain

Figure 5.90 shows that in this example, the difference in coefficients of variation of

Factor of Safety when the conductivity is deterministic and uncertain is greater than in

Example 1, which is shown in Figure 5.84.

However, although the ( ratio is greater, the coefficient of variation of the strength
Ks

parameters is also greater. In Example 1, the coefficient of variation of the strength

Vc' Var[c'] = =Var[4'I 1 QVar[c']-
parameters Vc' ==] V 1 - - and in this example Vc' =

E[c'] E[f' 4 E[c']

Var[*'] 1
V I= , - . Consequently, the distributions of c' and 4' have a greater

E[$ l 3

influence on the distribution of the Factor of Safety. Since the strength parameters are

greater contributors to the uncertainty in Factor of Safety than the conductivity (and this

is shown by the slight difference in coefficients of variation of the Factor of Safety when

the conductivity is deterministic and when it is uncertain in Figures 5.84 and 5.90), the

shape of the distribution of Factor of Safety tends towards the one where only the

strength parameters are uncertain. Section 5-3.2 showed that when c' and #' are
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Normally distributed, the Factor of Safety is well approximated by the Normal

distribution. Therefore, in this example, and because of the larger coefficients of

variation of the strength parameters, the distribution of Factor of Safety at any time is

better approximated by the Normal distribution than by the Lognormal distribution, or the

Gamma distribution as in Example 1.

Figure 5.91 compares the distributions of the Factor of Safety at t = 4 hours and t = 8

hours, when only the strength parameters are uncertain, and when the strength and

hydraulic parameters are uncertain.

1.6-

1.4-

-6- t=4 hrs
1.2 -

-ot=8 hrs

1 -

0.6

0
0 0.5 1 1.5 2 2.5 3

Factor of Safety

Figure 5.91. Comparison of the Distributions of Factor of Safety with Time when Strength
Parameters are Uncertain (Dashed Lines) and when Strength and Hydraulic Parameters are

Uncertain (Solid Lines)

The solid line distributions with symbols in Figure 5.91 are those for the case when both

the strength and hydraulic parameters are uncertain, and the dashed lines are those for

the case when only the strength parameters are uncertain. Figure 5.91 shows that the

shape of the distribution of Factor of Safety is almost the same when the conductivity is

deterministic and when it is uncertain.
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Figure 5.92 shows the probability of failure with time.
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Figure 5.92. Variation of Probability of Failure with Time from Monte Carlo Analyses

The results are compared with those obtained from second moment reliability analyses

in Figure 5.93.
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Figure 5.93. Comparison of Probabilities of Failure from Second Moment and Monte Carlo
Analyses
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The agreement between the results of second moment and Monte Carlo analyses is

very good. The results compare better in this example than in Example 1, because the

shape of the distributions of Factor of Safety remain well approximated by the Normal

distribution with time.

5-5.3. TEMPORAL LANDSLIDE HAZARDS

The analyses performed in this (and the previous) part of Chapter 5 are inherently

spatial in nature, because they are on the single slope scale. The probabilities of failure

that are computed from the analyses are in the strict sense conditional probabilities of

failure. These are probabilities of failure conditioned on the rainfall characteristics that

are assumed in the analyses. The results are therefore in the form of

P[failure ra inf all i] . This rainfall can be, for example, the nth year storm. The temporal

probability of occurrence of such a rainfall i, e.g. annual, can be obtained from the local

rainfall records. The unconditional (annual or other) probability of slope is then, from the

definition of conditional probability:

P[failure] = P[failure I ra inf all i] x P[rainf all i] [5.41]

This represents the temporal hazard of landsliding. Performing such an analyses,
therefore, allows one to compute landslide hazards, which by definition include spatial

and temporal components. The analyses could be extended to include several storms,
and the total probability theorem, in one form or other, can be used to estimate landslide

hazards.

5-5.4. COMMENTS ON PROBABILITIES OF FAILURE

Reliability indices and probabilities of failure provide a rational means in which

uncertainties in parameters are systematically incorporated into the analyses.

Probabilities of failure, whether computed from reliability analyses, or form Monte Carlo

methods, do not have the meaning of true frequentist probability. These probabilities,
therefore, have to be treated in a relative sense rather than absolute probabilities. This is

because of the assumptions, and simplifications made in the models that are used to
compute the probabilities. The probabilities are also, lower bounds on the probability of
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failure because of factors neglected in the analyses (Christian et al., 1994). Though the

attempt has been made to keep these omissions to a minimum, they still exist, and

therefore, the results are conservative in the sense that these are not considered.

5.5-4. UPDATING

Once landslide hazards have been assessed, decisions are made. This is shown in

Figure 5.1. Decisions can be in the form of countermeasures, which are either active,

such as tiebacks, or passive such as a protective gallery. Decisions can alternatively be

in the form of obtaining more information, on the parameters, for example, through

laboratory studies, or in the field. This is represented by the information phase in Figure

5.1. Decisions can also be to do nothing. In either case, new information is acquired, and

landslide hazards can, and should be updated. This is represented in the updating cycle

shown in Figure 5.1.

The updating cycle is the essence of the observational approach (Terzaghi, 1961; Peck,
1969; Einstein, 1978), and is modeled via Bayes' theorem:

f"(i I Z) = kf(Z I 0i)f'(0i) [5.42]

where:

f' (0) is the a priori probability distribution of the state 0i

V"(0 I Z) is the a posteriori probability distribution of that state Oi given the

observed information Z.

0(Z1 Ii) is the likelihood of observing Z given 0i

k is a normalization constant

Engineering judgment, professional opinion, and expert knowledge can be expressed as
subjective probabilities, and Bayes' theorem provides a means by which this information
can be combined with observations.
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5-5.5. CONCLUSIONS

Techniques were developed whereby uncertainties are systematically incorporated into

the landslide hazard procedure, allowing one to probabilistically assess these hazards.

This was done by developing techniques based on second moment analyses, and

Monte Carlo Methods that allow one to propagate uncertainties through the combined

hydrology stability model that was developed in Chapter 2. The result is a more

advanced probabilistic model that is better capable of representing reality than current

models used in landslide analyses.

Results from hydrologic analyses showed that pore pressure distributions, and

uncertainties in these distributions depend on the shape of the soil characteristic curves.

Uniform soils tend to develop sharper wetting fronts than well graded soils. As a

consequence, the uncertainty in the pressure (and moisture) profiles at the sharper front

is large. This uncertainty is localized in a small area of soil near the wetting front. On the

other hand, well graded soils do not develop distinct wetting fronts and as a result, the

uncertainty in the pressure (and moisture) profiles is small. This uncertainty is spread

over a large area of soil near the wetting front.

Results from stability analyses showed that reliability indices and probabilities of failure

are a better measure of stability than the Factor of Safety since uncertainties in

parameters are taken into account. Larger Factors of Safety do not necessarily imply

more stable slopes. Results from second moment reliability analyses are in good

agreement with probabilistic analyses based on the Monte Carlo method. This is

because the probability distribution of the Factor of Safety can be well approximated by

the Normal distribution.

Results from combined hydrologic and stability analyses showed that uncertainties in the

soil strength parameters have a greater influence on probabilities of slope failure, and

landslide hazards, than uncertainties in the hydraulic conductivity of the soil. As a

consequence, the probability distribution of the Factor of Safety depends, to a large

extent, on the probability distributions of the soil strength parameters. The influence of

uncertainties in hydraulic conductivity becomes more apparent at greater times during a

rainfall event, as the pore pressures along a potential failure surface increase.
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Nonetheless, in general, if the soil strength parameters are Normally distributed, the

distribution of Factor of Safety at any time is also Normal.

The analyses are spatial in nature because they are performed on the single slope

scale. When coupled with the local rainfall records the temporal component of landslide

hazards can be estimated. This presents probabilistic phase of the decision analysis

procedure for landslides. Decisions are made based on the results of the probabilistic

hazards assessment. These can be in the form of obtaining new information, or taking

action. In either case, landslide hazards can, and should be updated, which is typically

done using Bayesian analysis.
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CHAPTER 6

MODEL UNCERTAINTY

Landslide hazards assessment relies heavily on modeling. Models include those for

hydrologic and stability analyses, as well as others. Figure 6.1 shows possible models

used in hydrologic analyses, and Figure 6.2 shows those used in stability analyses.

These models vary in scale, dimensionality and complexity. They are all, however,

analytical models resulting from the theories assumed to apply to physical processes,

and are therefore subject to uncertainties as they attempt to represent reality. The issue

of model uncertainty has been given little attention in the literature, and this is the case

in both fields of hydrologic and stability analyses. It is therefore not surprising that very

few studies have dealt with the issue in combined hydrology and stability analyses,

particularly in the context of landslide analyses. This is because model uncertainty is the

most difficult source of uncertainty to represent and capture. It is however, an issue that

is gaining that has recently been gaining some attention e.g. Einstein (1995); Einstein

and Karam (2001); Lacasse (2003).

This chapter attempts to raise awareness of the problem of model uncertainty, and

highlight some of the effects it may have on landslide hazards assessment through the

effects on hydrologic, stability and combined modeling. The chapter is divided into three

parts. Part 6-1 deals with hydrologic model uncertainty, and Part 6-2 deals with stability

model uncertainty. Emphasis is placed on Part 6-2. Parts 6-1 and 6-2 are in turn

subdivided into two parts. The first deals with model uncertainty that arises from

idealizations and simplifications made in each model, and this includes models that are

used within the same models, e.g. different soil characteristic models can be used within

the same hydrologic model, and different soil strength models can be used within the

same stability model. The second part deals with model uncertainty that arises from the

models themselves, and assesses the effects of using different models (hydrologic and

stability) on landslide hazards. Part 6-3 compares the effects of hydrologic and stability

model uncertainty, and some general conclusions are drawn with regard to the relative

effect of each on landslide hazards. Figure 6.3 shows a schematic outline of the chapter.
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Figure 6.1. Possible Models used for Hydrologic Analyses
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Figure 6.2. Possible Models used for Stability Analyses
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Figure 6.3. Schematic Outline of Chapter 6. The Effects of Different Submodels and Models
(shown in lightly shaded boxes) on Hydrologic, Stability, Combined Modeling and Landslide

Hazards (shown in dark boxes) are Investigated

The arrows in Figure 6.3 indicate the sequence with which landslide hazards are

assessed. One starts off with a trigger model, and evaluates the hydrologic response of

a slope to the triggering event. This output, in the form of pore pressure distributions with

time, is then used in a stability model to evaluate the state of stability of a slope, using

indicators such as Factors of Safety in the deterministic case, and reliability indices and

probabilities in the probabilistic case. The combined hydrologic - stability model is then

used to evaluate landslide hazards.

From Figure 6.3, and the sequence that has just been mentioned, it is evident that model

uncertainty from hydrologic models (and submodels) has an effect on the results of
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hydrologic modeling (pore pressures) as well as on landslide hazards. This is

investigated in Part 6-1 of this Chapter, and hence the reason for the Part 6-1 indicated

in the combined model and landslide hazards boxes in Figure 6.3. Similarly, model

uncertainty from stability models (and submodels) has an effect on the results of

hydrologic modeling (pore pressures) as well as on landslide hazards. This is

investigated in Part 6-2 of this Chapter, and hence the reason for the Part 6-2 indicated

in the combined model and landslide hazards boxes in Figure 6.3. Doing this allows one

to compare the relative influence of model uncertainty from hydrologic models, and

stability models on landslide hazards, and this is done at the end of the Chapter.

Various example slopes will be used to investigate the effects of different models and

submodels shown in Figure 6.3 on hydrologic, stability and landslide hazards. Unless

otherwise stated the following models and submodels are used:

For hydrologic analyses:

(a) The infiltration model developed in Chapter 2, Part 2-1 is used, with the van

Genuchten (1981) model (see Chapter 2, Part 2-1) as a submodel for the soil

characteristic curves.

(b) For probabilistic analyses, the hydraulic conductivity of the soil is assumed to

follow a Lognormal Distribution.

For stability analyses:

(a) The stability model developed in Chapter 2, Part 2-2 that is based on the Janbu

Simplified Model is used, with the Effective Stress Model (see Chapter 2, Part 2-

2) as a submodel for unsaturated soil strength.

(b) For probabilistic analyses, the soil strength parameters c' and #':

i. Are assumed to follow Normal Distributions.

ii. Are assumed to be uncorrelated. While one can be reasonably certain

that c' and ' are (negatively) correlated, particularly in soils, we assume

that they are uncorrelated in order to evaluate the effects of a particular

model (submodel) at any one time, rather than the combined effects of

the model (submodel) and correlation. Correlation is investigated in detail

in Section 6-2.1.3.1 of the Chapter.
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PART 6 -1

MODEL UNCERTAINTY IN HYDROLOGIC ANALYSES

Figure 6.1 showed possible models for hydrologic analyses. These are typically models

for the trigger (rainfall), as well as models to describe what happens when rainwater

enters the soil.

Rainfall models include models for characterizing a particular rainstorm (characterization

models), and models for predicting the occurrence of storms (occurrence models).

Characterization models enter hydrologic analyses as input parameters or boundary

conditions, e.g. see Chapter 2. Occurrence models attempt to predict, probabilistically,

the occurrence of rainstorms. They enter landslide analyses to estimate the temporal

component of landslide hazards (see Chapter 5). These models are subject to model

uncertainty, but a detailed investigation is beyond the scope of this study.

Models to represent what happens to the rainwater as it enters the soil range from

infiltration models on the single slope case, to subsurface flow models on the catchment

or regional scale. In this chapter, emphasis is placed on infiltration models. Infiltration

modeling is affected by two sources of model uncertainty:

(a) From models used within the infiltration model, such as the soil characteristic

curve models (see Chapter 2), and

(b) From the infiltration model itself.

Note that different soil characteristic models can be used within the same infiltration

model, and the same soil characteristic models can be used in different infiltration

models.

Figure 6.4 shows a schematic of what will be studied in more detail in Part 6-1 of this

chapter.
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TRIGGER MODEL(S)

Figure 6.4. Schematic showing Hydrologic Modeling.
The effects of the different submodels (shown in the lightly shaded box) and the different types of

hydrologic models (shown in lightly shaded box) on the results of hydrologic analyses (pore
pressures in the dark shaded box) and on landslide hazards (dark box) are investigated

6-1.1. MODEL UNCERTAINTY FROM SUBMODELS IN INFILTRATION MODELS

Different simplifications and assumptions/submodels are made in different infiltration

models, leading to the different complexity (and dimensionality) of such models. In this

Section we study the effects of different submodels on the results of hydrologic analyses

and landslide hazards. For example, the infiltration model developed in Chapter 2,

assumes one dimensional vertical infiltration, whereas the process of infiltration is much
more complex. There is however, one overriding assumption that is inherent to the vast

majority of infiltration models, namely that of stable infiltration.
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6-1.1.1. STABLE INFILTRATION

In this Section, we asses, qualitatively, the assumption of stable infiltration in hydrologic

modeling. This is shown in bold in Figure 6.5.

Figure 6.5. The effects of stable infiltration (shown in bold in the lightly shaded submodels box)
on the results of hydrologic analyses (pore pressures in the dark shaded box) and on landslide

hazards (dark box) are investigated

When the rate of water application e.g. rainfall is less than the saturated conductivity of

the soil, the intensity is not sufficient to fully saturate the soil. The vast majority of

infiltration models, including the one developed in Chapter 2, assumes that water

infiltrates the soil in the form of a stable and planar wetting front. Numerous laboratory
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infiltration experiments have, however, shown that in many cases, preferential flow paths

develop through which water flows (Hill, 1952). Traditionally, it had been believed that

this phenomenon only occurs in heterogeneous soils, but more recent studies e.g. Hill

and Parlange (1972), Liu et al. (1994) have shown that this can occur in homogenous

soils as well.

In heterogeneous soils, the phenomenon can be attributed to funneling, which is flow

directed by heterogeneous structures (Kung, 1998), and/or channeling, which is flow

thorough cracks and micro-pores (Tindall and Kunkel, 1997). In homogenous soils, the

phenomenon, also known as fingering, is caused by gravity driven wetting front

instability when the infiltrating flux is insufficient to fully saturate the soil (Hill, 1952). This

condition can occur with a uniform application rate, or when there is an increase in

hydraulic conductivity of the soil with depth, e.g. when a fine-textured soil overlies a

coarser layer (Culligan et al., 1997). During infiltration, the wetting front will encounter

inherent microscopic heterogeneities that cause small perturbations in the front. If the

pressures acting to destabilize flow exceed those to stabilize it, then a finger will develop

from this perturbation (Kueper and Frind, 1994).
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6x
P Fluid 1

P, Fluid 2

P2

qu18x
P1 ='y 16x- k

k

P2 = 726X qU2 Xk

where:
q is the water application rate

y is unit weight
u is viscosity

k is permeability

P1 - P2 = (71 - Y2 )5X - (U1 U2) k

Condition for instability, and finger formation is:

P1 > P2

Since in the case of water infiltration, Fluid 1 is water, and Fluid 2 is air:
71=7w, t1=iUw and 72=0, D2 =0,

the condition for instability is expressed as:

Yw Ks
UW

where:

Ks is the hydraulic conductivity

Figure 6.6. Wetting Front Instability
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q < Ks

Figure 6.7. Finger Development and Characteristics

Attempts have been made to describe finger properties (Glass et al., 1975; Hill, 1952),
characterized by width X and spacing w (see Figure 6.7) and several numerical

infiltration models have been developed to model the process of fingering (e.g.

Hendrickx and Yao, 1996; Glass et al., 1991; Dekker and Ritsema, 1994). These models

remain crude at best, because of the complexities involved in the process. These

models are, therefore, themselves subject to model uncertainty.

The effect of finger development and preferential flow is that infiltration takes place at a

greater rate than that described by a stable infiltration model, such as the one in Chapter

2. The rate of infiltration is equal to the velocity of flow through the fingers. This velocity

uf = f where qf is the water flux through the fingers, and 0 is the moisture content
0

(see Figure 6.7). It has been observed experimentally that qf ~ Ks the saturated

conductivity of the soil, and hence uf ~ where il is the soil porosity.
fl
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The implications of finger development with regard to landslide analyses can be

significant. The infiltrating rainwater can percolate directly, and much quicker than

described by stable models, to the water table causing it to rise. If such is the case, the

failure mechanism by which landsliding would take place would be different than that

predicted by a stable model. Failure would take place by saturation from below (see

Chapter 3) as opposed to failure by saturation from above (see Chapter 3) which is what

is predicted by the stable model.

6-1.1.2. GRADUAL DEVELOPMENT OF PRESSURES

Another assumption frequently used in hydrologic analyses is that of the gradual

development of pressures during rainfall. If, however, during a short intense rainfall the

rate of infiltration is equal to the rainfall intensity, suction is eliminated down to a certain

depth. Once the rainfall intensity exceeds the infiltration rate, whether due to a decrease

in the infiltration rate with time, or due to an increase in rainfall intensity large pressures

rapidly develop behind the wetting front, and may cause an associated sudden failure.

This phenomenon which was observed by Lambe (1980), cannot be explained by the

assumption of a gradual change of pressures from negative to hydrostatic conditions.

Moreover, this phenomenon can occur in homogenous soils without the requirement of a

low permeability layer to retard the front. This mechanism for the sudden generation of

large pressures was discussed in Chapter 3. Hydrologic models that make the

assumption of gradual change of pressures are incapable of capturing this phenomenon.

This is particularly true for models that are based on the solution to the moisture based

form of the variably saturated (or unsaturated) flow Equation (see Part 2-1 of Chapter 2).

6-1.1.3. CHARACTERISTIC CURVE SUBMODEL UNCERTAINTY

More advanced infiltration models that solve for the unsaturated and/or variably

saturated flow Equation require the specification of unsaturated soil properties through

models for the characteristic functions of the soil. This was discussed in Part 2-1 of

Chapter 2. Various characteristic curve models have been proposed in the literature e.g.

Gardner (1956), Brooks and Corey (1966), Bresler et al. (1978), van Genuchten (1981).

These are subject to model uncertainty as they attempt to represent the true behavior of

unsaturated soils.
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In this Section, we try to illustrate model uncertainty that from the characteristic curve

models. We investigate the effects of assuming different characteristic curve models on

the pressure profiles that results from hydrologic analyses, and the implications these

have on estimated landslide hazards. This is shown in bold in Figure 6.8.

Figure 6.8. The effects of characteristic curve models (shown in bold in the lightly shaded

submodels box) on the results of hydrologic analyses (pore pressures in the dark shaded box)

and on landslide hazards (dark box) are investigated

For this purpose we consider the models developed by van Genuchten (1981) and those

by Bresler et al., (1978). The van Genuchten (1981) models were described in Chapter
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2, Part 2-1 (see Equations [2.1]

study thus far. The Bresler et al.,

to [2.4]), and have been used in the analyses in this

(1978) model is given by:

Se =1

Se =

K=Ks

K = K5sj r~j

Y Yentry

Y <Yentry

Y 't'entry

Y < Yentry

where:

a and P are empirical coefficients

Yentry is the air entry pressure head value

Ks is the saturated conductivity

O -
Se = r where Os is the saturated moisture content, and Or is the residual

Os -Or

moisture content, defined in Chapter 2, Part 2-1.

As with the van Genuchten (1980) model, the Bresler et al., (1978) model has two

parameters, a and P. These need to be specified/assumed, and are subject to

parameter uncertainty.

To investigate the effects of characteristic curve model uncertainty on hydrologic

analyses, and landslide hazards, we consider the slope shown in Figure 6.9.
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Figure 6.9. Slope Geometric and Strength Parameters

The slope geometric and soil strength parameters are shown in Figure 6.9.

6-1.1.3.a. VAN GENUCHTEN (1980) SUBMODEL

The van Genuchten (1980) Model (see Chapter 2) is used to describe the soil

characteristic curves which are shown in Figures 6.10 and 6.11.
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A rainfall event with intensity, I = 75mm / hr is assumed to occur for a duration of 8

hours. The moisture content and pressure profiles at different times are as shown in

Figures 6.12 and 6.13 respectively.

Water Content (m31m3)

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

CL

3-

o-0 hr - -2 hr

+- 4 hr +*6 hr
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5

Figure 6.12. Moisture Content Profiles with Time using the van Genuchten (1980) Model
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Figure 6.13. Pressure Profiles with Time using the van Genuchten (1980) Model
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6-1.1.3.b. BRESLER ET AL. (1978) SUBMODEL

In order to perform a meaningful comparison of both characteristic curve models, the

parameters cx and P of the Bresler et al., (1978) model (see Equations [6.1] to [6.4]) are

chosen in such a way so that the initial suction in the soil corresponding to the initial

moisture content of Oi = 0.25 (see Figure 6.12) is the same for both models. This is

shown in Figure 6.14.

Figures 6.14 and 6.15 show the moisture content and hydraulic conductivity

characteristic curves using both models.
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Figure 6.14. Comparison of Moisture Characteristic Curve Using Two Characteristic Models
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Figure 6.15. Comparison of Conductivity Characteristic Curve Using Two Characteristic Models

The difference in the curves of Figures 6.14 and 6.15 already illustrates characteristic

curve model uncertainty for the specified parameters of each model, even when these

have been chosen to best match each other.

Figure 6.16 shows moisture content profiles during the rain event using the van

Genuchten (1980) model, and Figure 6.17 shows these using the Bresler et al., (1978)

model.
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Figure 6.16. Moisture Content Profiles with Time using the van Genuchten (1980) Model
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Figure 6.17. Moisture Content Profiles with Time using the Bresler et al., (1978) Model
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Figure 6.18 shows pressure profiles using the van Genuchten

6.19 shows these using the Bresler et al., (1978) model.

(1980) model, and Figure
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Figure 6.18. Pressure Profiles with Time using the van Genuchten
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Figure 6.19. Pressure Profiles with Time using the Bresler et al., (1978) Model
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Figures 6.16 and 6.17, and 6.18 and 6.19 illustrate the effects of characteristic curve

model uncertainty on the results of hydrologic analyses. Comparing Figures 6.18 and

6.19 shows that the moisture profiles are sharper when the van Gentchen (1978) model

is used. This is because the moisture retention curve using the van Genuchten (1980)

model is steeper, and the results in Figures 6.18 and 6.19 are consistent with what has

been described in more detail in Part 5-1 of Chapter 5.

Figure 6.20 compares the pressure profiles, which will be used in stability analyses later,

using both models.

Pressure (kN/m
2
)

-20 -15 -10 -5 0 5 10

Figure 6.20. Comparison of Pressure Profiles from van Genuchten (1980) Model (Dashed Lines)
and Bressler et al. (1980) Model (Solid Lines and Symbols)

The difference in the results in Figure 6.20 illustrates the effects of characteristic curve

model uncertainty on the results of hydrologic analyses, through the different pressure

profiles.
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Figure 6.21 shows the variation of Factor of Safety with time using both models, and

illustrates the effects of characteristic model uncertainty on deterministic landslide

hazards assessment.
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Figure 6.21. Comparison of Deterministic Results using the van Genuchten (1980) and Bresler et
al., (1978) Models

Figure 6.21 shows that even though the parameters have been chosen to give the same

initial conditions (and the same initial Factor of Safety at t = 0 hrs in Figure 6.21), the

Factor of Safety can be significantly different depending on the model chosen. This is

particularly the case at earlier times during the rain event, as different models predict

different degrees of saturation (see Figures 6.16 and 6.17), and hence different pore

pressures (see Figures 6.18, 6.19 and 6.20) on the failure surface, which as shown in

Figure 6.9 is at depth of about 2 m below the ground surface. The results from both

models converge with time, as both models predict the complete saturation of the soil at

the failure surface, and the pore pressures become similar in magnitude. So, for a

shorter duration rain event, say 3 hours, each model would predict significantly different

results, and the effects of characteristic model uncertainty would be more substantial.

For longer duration rain, both models predict saturation and the results from both models

are similar.
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We now investigate the effects of characteristic model uncertainty on probabilistic

landslide hazards assessment. We assume that c', $' and Ks are uncertain with the

following distributions:

c'- N(mc' = 0.5kN / m2 , ac' = 0.0125kN/ ); '~' N(mv = 280, og = 70);

Ks - LN (mKs = 250cm / day, cKs = (125cm/day)2 ); and these parameters are

uncorrelated.

The uncertainty in the saturated conductivity will lead to uncertainty in the soil

characteristic curves using each of the van Genuchten (1980) and Bressler et al. (1978)

models. Since these models predict different characteristic curves, the uncertainty in

these curves will also be different, and in this example we investigate the effects of the

different uncertainty on probabilistic landslide hazards.

Figure 6.22 shows the variation of probability of slope failure with time using both

characteristic curve models.
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Figure 6.22. Comparison of Probabilistic Results using the van Genuchten (1980) and Bresler et
al., (1978) Models
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Figure 6.21 shows that the effects of characteristic model uncertainty on probabilistic

analyses can be significant. The difference in the probabilities of failure in Figure 6.23 is

solely due to the different characteristic models. This difference is greatest at early

times, when the pore pressures on the failure surface are most different (see Figure

6.21). The results become more similar when the pressures on the failure surface

become similar (see Figure 6.21) with increasing time.
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6-1.2. MODEL UNCERTAINTY FROM HYDROLOGIC MODELS

Various hydrologic models have been proposed over the years, some of which are

shown in Figure 6.1. Infiltration models are hydrologic models that predict pore

pressures in the subsurface given certain hydrologic boundary conditions, e.g. rainfall.

These models are used in landslide analyses. Infiltration models differ in two major

ways; in whether they solve for the moisture based or pressure based form of the flow

Equation (see Chapter 2), and in dimensionality. In this Section, only one dimensional

models are considered. In this Section we study the effects of model uncertainty from

different hydrologic models on the results of hydrologic analyses and landslide hazards.

This is shown schematically in Figure 6.23.

TRIGGER MODEL(S)

6-1.2.
HYDROLOGY MODEL:

HYDROLOGIC -Models that solve for pore
SUBMODELS pressuris

6-1.2.P26 PART 6-2.1.
Models that solve for PART 6-2.2. 4_ STABILITY
moisture distributions, and STABILITY MODEL SUBMODELS
pressure dis 'tributions are
inferred from these

PART 6-2.1 AND 6-2.2.
FACTOR OF SAFETY
RELIABILITY INDEX

PROBABILITY OF FAILURE

Figure 6.23. The effects of different hydrologic models (shown in bold in the lightly shaded
hydrologic models box) on the results of hydrologic analyses (pore pressures in the dark shaded

box) and on landslide hazards (dark box) are investigated
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Section 6-1.2.1 deals with models that solve for the pressure based form of the flow

Equation, and 6-1.2.2. deals with models that solve for the moisture based form of the

flow Equation.

6-1.2.1. MODELS THAT SOLVE FOR PRESSURE BASED FORM OF FLOW

EQUATION

Models that solve the pressure based form of the flow Equation result in pressure

profiles with time. These are used directly in stability models when assessing landslide

hazards. One such infiltration model was developed in Chapter 2, where the model

output is in the form of pore pressures for a set of initial and boundary conditions. The

model is a finite difference solution to the one dimensional variably saturated flow

Equation. Further details of the model are given in Part 2-1 of Chapter 2. To illustrate

model uncertainty from hydrologic models, we compare the results from this model with

those from HYDRUS (Vogel et al., 1996). Water is applied on top of an initially uniformly

moist (Oi = 0.08 m3 / m3) homogenous soil. The soil characteristic curves are shown in

Figures 6.24 and 6.25.
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Figure 6.24. Moisture Retention Curve
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Figure 6.25. Hydraulic Conductivity Curve

Water is applied at a constant rate of 2.5 cm/h for the first 4 hours, followed by a zero
application rate. Figures 6.26 and 6.27 compare the results obtained by the spreadsheet

model with those from Vogel et al. (1996).

The results from the spreadsheet model are shown in symbols and those from Vogel et
al. (1996) are shown as solid lines.
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Figure 6.27. Moisture Content Profiles Generated by HYDRUS (solid lines) and the Spreadsheet
Based Numerical Scheme (symbols)

460

-250 -200 -50 0

0e

4 hrs

100-

1 day

200 -

4 days:

300 -

400 -

-u

4 hrs

Y1 day

4 days



The results in Figures 6.26 and 6.27 show that there is not a significant difference

between the results using the two models. Both models solve for the one dimensional

pressure based form of the variably flow Equation (and hence the same mathematical

Equation) with the same initial boundary conditions. The results are almost the same,
differences may occur in the efficiency of solutions.

6-1.2.2. MODELS THAT SOLVE FOR MOISTURE BASED FORM OF FLOW

EQUATION

Models that solve the moisture based form of the flow Equation result in moisture

profiles with time. Pressures and pressure profiles are then inferred from these moisture

distributions, through the soil characteristic curves, and used in stability models when

assessing landslide hazards. In general, this is not a problem if the soil remains

unsaturated, i.e. the water application rate (rainfall intensity) is less than the saturated

conductivity of the soil, because there is a unique relationship between moisture and

pressure described by the moisture retention curve. However, if the soil becomes

saturated, then problems arise, because no unique solution exists for pressure. In other

words, pressures can be greater or equal to zero at saturated moisture content. The

pressures have to be inferred from the moisture distribution. It is therefore, desirable to

use models that solve the pressure based form of the flow Equation in the context of
landslide hazards assessment, and this is one of the reasons behind the development of
the infiltration model in Chapter 2. Nonetheless, the majority of infiltration models that

have been developed in the literature solve the moisture based form, because they have

been developed in different fields of study, e.g. agriculture, and used as such. It is

therefore, still necessary to study model uncertainty that arises from such infiltration

models. More so, because some of these models are indeed still being used in landslide

analyses, and in particular, one of the most widely used infiltration models is the Green
and Ampt (1911) model.

GREEN - AMPT (1911) MODEL

The Green - Ampt (1911) Model is a simple one-dimensional physically based infiltration
model that relates the rate of infiltration to measurable soil properties such as its
porosity, hydraulic conductivity, and the moisture content. The model has been shown to
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give reasonable predictions when compared to more rigorous approaches based on

unsaturated flow (Wallace, 1975). Because of this, and its simplicity, it is an extensively

used model.

The model is based on the following assumptions, which are illustrated in Figure 6.28:

a. The soil surface is maintained constantly wet by ponded water of negligible

depth

b. There is a distinct, sharp wetting front that separates a wetted zone from an

unsaturated zone in the soil with an initial constant moisture content Oi

c. The saturated hydraulic conductivity in the wetted zone, Ksis constant

throughout the soil, and does not change with time

d. There is a constant soil suction just in front of the wetting front

e. The effects of runoff and evapotranspiration are negligible

~ ,~ho

Saturated Zone
0=0s Infiltration

K(O)=Ks Depth, zs

Wetting Front

Unsaturated Zone
o<os

K(O)<Ks

- --- ------- --------------- Water Table

Figure 6.28 Schematic of an advancing wetting front
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The Green & Ampt (1911) model assumes that infiltration occurs vertically downwards

from a slope surface that is ponded to a depth, ho into the soil in the form of a migrating

wetting front according to Darcy's Law (see Figure 6.28).

The rate of infiltration, f(t) is defined as the rate at which the rainwater enters the soil

surface. The cumulative infiltration, F(t) is the accumulated depth of water infiltrated

into the soil during a given period of time and is equal to the integral of the infiltration

rate over that period:

t
F(t) = f(T)dT [6.5]

0

where:

t is a dummy variable of time in the integration.

Conversely, the infiltration rate is the time derivative of the cumulative infiltration:

f(t) = dF(t) [6.6]
dt

The infiltration rate in [6.2] according to the Green & Ampt (1911) model is given by:

f(t) = Ks yA J(t) [6.7]
F(t)_

where:

Ks is the saturated hydraulic conductivity of the soil

y is the constant soil suction head in front of the wetting front, y = (ua - uw)
Yw

AO is the change in moisture content

F(t) is the cumulative infiltration in [6.1]
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Since the infiltration rate is the time derivative of the cumulative infiltration, a differential

Equation is obtained as:

dF(t) - K [AO + F(t)1
dt L s F(t) j

F(t)-yAOlin 1+ F(t) Kst
yAO)=

[6.8]

[6.9]

Equation [6.9] is the Green & Ampt (1911) Equation for cumulative infiltration, F(t). The

time required to saturate the soil to a depth, zs, is given by:

yln y +zs
( _

[6.10]

There are two requirements for a particular rainfall event to saturate the soil to zs:

a. Rainfall intensity must exceed the infiltration rate into the soil, i.e. I f(t)

b. Rainfall duration must be long enough to saturate soil to zs i.e. the rainfall

duration, D Ts.

From these requirements, it is possible to relate the minimum intensity Imin and the

minimum duration Dmin to saturate soil to zs as:

AO
Imn=Dmin Lz -ylnKY + zs 5 zs +Y

(Y )] zs )

Application of the Green & Ampt (1911) model requires an estimate of the assumed

constant suction head y ahead of the wetting front. The American Society of
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Agricultural Engineers (1983) has published typical values to be used as Green & Ampt

(1911) parameters for various soils classes.

To illustrate

Figure 6.29,

the effects of infiltration model uncertainty, consider the slope shown in

with the characteristic curves in Figures 6.30 and 6.31.
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Figure 6.29. Slope Geometric and Strength Parameters
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A rainfall event with intensity, 1=75mm/hr is assumed to occur for a duration of 8

hours. The moisture content and pressure profiles at different times obtained using the

finite difference model developed in Chapter 2 are shown in Figures 6.32 and 6.33

respectively.
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Figure 6.33. Pressure Profiles with Time using the van Genuchten (1980) Model
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We now analyze the response of the slope to rainfall using the Green - Ampt (1911)

Model. We assume the value of y = 2m. This value of y is chosen because it is close

to the value of the initial pressure head in the soil that corresponds to an initial moisture

content of Oi = 0.25. This is illustrated in Figure 6.34. Choosing this value of y will allow

for a better comparison of the results of the Green - Ampt (1911) Model with those

obtained from the finite difference infiltration model developed in Chapter 2.

We use the Green - Ampt (1911) Model to derive moisture content profiles with time,
and these are shown at various times in Figure 6.34.

Water Content (nlm3)
0.25 0.3 0.35 0.4 0.45

Figure. 6.34. Moisture Content Profiles with Time for Green - Ampt (1911) Model with y = 2m.

Figure 6.35 compares the moisture profiles obtained by the Green - Ampt (1911) Model

with those obtained by the infiltration model developed in Chapter 2.
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Figure 6.35. Comparison of Moisture Content Profiles with Time for Green - Ampt (1911) Model
(Dashed Lines) and Infiltration Model (Solid lines with Symbols)

The solid lines with symbols in Figure 6.35 are the results of the infiltration model, and

the dashed lines are the results using the Green - Ampt (1911) Model. Since the Green

- Ampt (1911) model is a model for saturated infiltration, it is only capable of predicting

depths to full saturation. This reflected in Figure 6.35, where the soil is either fully

saturated (O=Os=0.47) or at initial moisture content, (O=Qi=0.25). This also explains the

sharp change in moisture content for the Green - Ampt (1911) model in Figure 6.35.

Figure 6.35, therefore, illustrates the effects of infiltration model uncertainty on the

results of hydrologic analyses.

The problem mentioned at the beginning of this Section arises when using the Green -

Ampt (1911) model for landslide analyses, namely that the model is incapable of

predicting the generated pressures during rain, and these have to be inferred. We

consider two boundary (extreme) cases of possible generated pressures:

a. The case where the initial suction is eliminated in a thin layer of soil at the

surface. In this case, the pressures would be reduced throughout the infiltration

depth as shown in Figure 6.36, which is idealized.
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b. The case where the initial suction is eliminated throughout the infiltration depth.

This is shown in Figure 6.37, which again is idealized.

There is a third boundary (extreme) case for the pressures, namely the development of

full hydrostatic pressures within the infiltration depth. This is not considered in this

example because the rainfall intensity is less than the saturated conductivity of the soil.
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Figure 6.36. Pressure Profiles with Time for Green - Ampt (1911)
Reduces Suction
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Figures 6.38 and 6.39 compare these two boundary cases to the results from the

infiltration model of Chapter 2, and illustrate model uncertainty on the results of

hydrologic analyses based on pressures.
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Figure 6.38. Comparison of Pressure Profiles with Time for Green - Ampt (1911) Model (shown
as dashed lines) and Infiltration Model (shown as solid lines and symbols) for Case where

Suction is Reduced
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Figure 6.39. Comparison of Pressure Profiles with Time for Green - Ampt (1911) Model (shown
as dashed lines) and Infiltration Model (shown as solid lines and symbols) for Case where

Suction is Eliminated
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The dashed lines in Figures 6.38 and 6.39 are results obtained by the Green - Ampt

(1911) Model, and the solid lines with symbols those obtained by the infiltration model

developed in Chapter 2.

The Green - Ampt (1911) results in Figures 6.38 and 6.39 can be used as a basis to

asses the stability of the slope shown in Figure 6.29 as a result of rain. The variation of

Factor of Safety with time is shown in Figure 6.40.
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Figure 6.40. Variation of Factor of Safety with Time During Rain Using Green - Ampt (1911)
Model

The results are compared with those obtained by the infiltration model in Figure 6.41.
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Figure 6.41. Comparison of Variation of Factor of Safety with Time During Rain Using Green -
Ampt (1911 ) and Infiltration Models

Figure 6.41 clearly shows that there is a significant difference in the results of the

infiltration model developed in Chapter 2, and those obtained for the two boundary cases

using the Green - Ampt (1911) Model. The results of the infiltration model lie in between

those predicted by the Green - Ampt Model. Both the infiltration model and the Green -

Ampt when suction is assumed to be reduced, predict a decrease in Factor of Safety,
but that the slope remains stable throughout rain. The Green - Ampt with the

assumption that suction is eliminated throughout the infiltration depth predicts slope

failure. Figure 6.41 therefore clearly shows the significance of hydrologic model

uncertainty on landslide analyses, as different conclusions on stability are arrived at

using the different hydrologic models.

To conclude, there are two types of hydrologic models, those that solve the pressure

based form of the flow Equation, and those that solve the moisture based form, and

assume pressures. Model uncertainty from the former is not very significant, because

the models solve the same mathematical Equation, with the same initial and boundary

conditions. Model uncertainty is significant in the latter and different assumptions

regarding pressure distributions can result in very different results and conclusions on

stability.
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PART 6 -2

MODEL UNCERTAINTY IN STABILITY ANALYSES

Figure 6.2 shows possible models used in stability analyses. These include models to

describe soil strength, and models to asses slope stability. Both types of models are

subject to model uncertainty. It is worth mentioning here that different strength models

can be used in the same stability model, and the same strength model can be used in

different stability models.

In this Section, we investigate the effects of model uncertainty on stability analyses, and

landslide hazards. Since stability models are idealized, submodels/assumptions are

made to simplify the problem of stability. The effects of these submodels on stability

analyses, and landslide hazards are first evaluated using the same stability model, the

Janbu Generalized Method of Slices (1978). These submodels include failure models,

models for soil strength, and the parameters used in the strength models, as well as

others. We then investigate the effects of using different stability models to asses the

landslide hazards of the same slope.

Figure 6.42 shows a schematic of what will be studied in more detail in Part 6-1 of this

chapter.
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STABILITY
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Figure 6.42. Schematic showing Stability Modeling.
The effects of the different submodels (shown in the lightly shaded box) and the different types of

stability models (shown in lightly shaded box) on the results of stability analyses (Factors of
safety, reliability indices and probabilities of failure in the dark shaded box) and on landslide

hazards (dark box) are investigated
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6-2.1. MODEL UNCERTAINTY FROM SUBMODELS IN STABILITY MODELS

In this Section, we study the effects of model uncertainty form submodels in stability

models on stability modeling and landslide hazards assessments. This is shown

schematically in Figure 6.43.

TRIGGER MODEL(S)

PART 6- 1.1.1

SUBMODELS HYDROOART 6-1ODEL

PART 6-1.1 and 6-1.2.
PORE PRESSURES

4-

I

Figure 6.43. Schematic showing Stability Modeling.
The effects of the different submodels (shown in the lightly shaded box) on the results of stability
analyses (Factors of safety, reliability indices and probabilities of failure in the dark shaded box)

and on landslide hazards (dark box) are investigated
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6-2.1.1. FAILURE SUBMODEL/MECHANISM UNCERTAINTY

A failure model (mechanism) must be postulated in order to perform stability analyses
using Limit Equilibrium Stability Models. These types of stability models are discussed in
more detail in Section 6-2.2. In this Section, we briefly discuss the importance of
postulating the critical failure mechanism. Figure 6.44 shows in bold what is studied in
this Section.

Figure 6.44. The effects of failure model/mechanism (shown in bold in the lightly shaded stability
submodels box) on the results of landslide hazards (dark box) are investigated
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Uncertainty arises from the chosen failure model, and this type of uncertainty can be the

most significant source of uncertainty in stability analyses. Uncertainty in failure

mechanisms arises because of the representation of these mechanisms with models or,

even more fundamentally, in the knowledge about the mechanisms. This is particularly

true in the study of landslides, since these mechanisms are poorly understood. Chapter

3 provided a study on landslide failure mechanisms in an attempt to increase

understanding, which will, in turn, reduce this type of uncertainty. However, the study is

by no means complete and failure model uncertainty presents a significant source of

uncertainty in stability analyses.

The problem is somewhat dealt with by using stability models that include a search for

the critical failure surface in a slope (see Part 2-2 of Chapter 2). But even these types of

analyses are subject to failure model uncertainty since an initial trial failure surface has

to be chosen, and the results can vary significantly depending on this initial surface. This

problem was discussed in more detail in Part 2-2 of Chapter 2, and in Chapter 3.

To illustrate the effects of failure model uncertainty on landslide analyses, we consider

the slope shown in Figure 6.45.

10 SOIL

5 FAILURE MODEL 1
ROCK

20 25 30 35

x 6MT

FAILURE MODEL 2

Figure 6.45. Slope Geometry and Two Failure Models
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Two failure models are assumed, the first is a shallow translational landslide, and the

second is a deeper, more rotational failure surface located at the interface between soil

and rock.

A rainfall event of intensity I = 375cm / day = 155mm / hr is assumed to take place for a

duration of 8 hours. The stability of the slope is assessed for both failure mechanisms,

and the results are shown in Figure 6.46.

0 1 2 3 4 5
Time (Hours)

6 7 8 9 10

Figure 6.46. Variation of Factor of Safety with Time for Two Failure Models

Figure 6.46 shows that if the mechanism of shallow landsliding is adopted, then one

would conclude that failure would occur as a result of rain. If, however, the mechanism

of a deep slide is adopted, then the slope would remain stable. These are evidently

significantly different conclusions regarding stability that come about from the different

assumed failure mechanisms. The effects of failure model uncertainty can therefore be

very important.

Moreover, Figure 6.46 shows that the failure model a slope most likely will fail in may

vary with time. At early times, the more critical failure surface is the deeper surface,
since the Factor of Safety on that surface is smaller than on the shallow surface.

However, as it rains, and rainwater infiltrates into the slope, the shallow failure model
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becomes more critical, since the effects of rain are greater than at depths. This is shown

in Figure 6.46.

Therefore, in stability modeling that assumes a specific failure surface, this must be

done by selecting different locations, and shapes of the failure surface. In modeling that

includes a search for the critical failure surface, several initial trial failure surfaces must

be chosen to ensure the final surface is the correct critical failure surface. This was

discussed in more detail in Chapter 3.
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6-2.1.2. SEEPAGE DIRECTION SUBMODEL UNCERTAINTY

In this Section, we investigate the effects of seepage direction on stability analyses, and

deterministic and probabilistic landslide hazards assessment. . Figure 6.47 shows in

bold what is studied in this Section.

TRIGGER MODEL(S)

SUBMODELS HYDROLOGY MODEL

PART 6-1.1 and 6-1.2.
PORE PRESSURES

4-

Figure 6.47. Effects of seepage direction (shown in the lightly shaded submodels box) on the
results of stability analyses (Factors of safety, reliability indices and probabilities of failure in the

dark shaded box) and on landslide hazards (dark box) are investigated
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6-2.1.2.1. BACKGROUND

It is commonly assumed that seepage in an infinite slope is parallel to the slope. The

geometry of infinite slopes constrains the direction of the pore pressure gradient to be

normal to the ground surface, but it does not constrain the gradient magnitude. lverson

(1991) showed that the infinite slope geometry constraints on the pore pressure gradient

are considerably less stringent than the assumption of parallel to slope seepage. In the

X' direction parallel to the slope (see Figure 6.48), because the water table in an infinite

slope is parallel to the ground surface, the pore pressure gradient is equal to zero.
aX'

The gradient of pore water pressures in the Y' direction (see Figure 6.48) perpendicular

to the slope, on the other hand is not constrained by the infinite slope geometry as

strictly as uw
ax'

12

XSAT

4 -

-00

- 5 - 10 15 20 25 30 35 4b

-2

Figure 6.48. Notations and axes used for seepage direction

Iverson (1991) showed that:

auw (sin p=u 7w1 ta + cosf p [6.12]
OY' tn
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where:

P is the slope angle

X is the seepage direction from the normal to the slope (see Figure 6.48)

S= 900 corresponds to parallel to slope seepage. Seepage directions X > 900

correspond to in-slope seepage, whereas directions k <90' correspond to out of slope

seepage.

While the assumption of parallel to slope seepage may be justified below the water

Table where the soil is saturated, and moisture content is constant and equal to the

saturated moisture content of the soil, it is not as justified in the unsaturated zone of the

slope. Moisture content typically increases with depth below the ground surface in the

unsaturated zone, producing a component of flow perpendicular to the slope.

The saturated analyses by Iverson (1991) can be extended to include the effects of

seepage direction on the pore pressures in both the saturated and unsaturated zones of

the soil. A more general expression for the pore pressure variation accounting for the

effects of non-parallel seepage throughout the subsurface is:

u(z)=uw(z) 8u cos P [6.13]

where:

uw(z) is the pore pressure distribution in the vertical direction z (see Figure 6.48)

SUW is the pore pressure gradient in the direction perpendicular to the slope surface,

and expressed in Equation [6.12].

Note that when X = 900 (parallel to slope seepage) Equation [6.13] reduces to [6.12].

The derivation of Equation [6.13] and its application, as discussed in the following

Section have also been presented in Einstein and Karam (2001).
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In saturated soil, because of constant moisture content, _uw is as expressed in

Equation [6.12]. In unsaturated soil, juw depends on the variation of moisture

content in both the horizontal and vertical directions in the slope, as well as the soil

moisture retention curve. uw can still be expressed in the form show in Equation

[6.12] with an appropriate k value. Note that the seepage direction in saturated

(PAsaturated) and unsaturated soil (Xunsaturated) need not be the same.

6-2.1.2.2. SEEPAGE DIRECTION SUBMODEL UNCERTAINTY IN STABILITY

ANALYSES

A good example to illustrate the effects of seepage on slope stability is shown in Figure

6.49.

8 -

30

4 =90*(s op pa al e a)

Z 20

- -=135d
0

14 0 5 10 15 20

DEPT DBUTAUCE()
-o-- X=4500

-i' X=13
0

0 4_-_-

2=20

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DEPTH BELOW GROUND SURFACE (in)

Figure 6.49. Effect of Groundwater Flow Direction on Factor of Safety in the Infinite Slope Model
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The Infinite Slope Stability Model (Skempton and DeLory, 1950) is used to asses the

stability of the slope in Figure 6.49, with different seepage directions. Figure 6.49 shows

the effects of seepage on stability analyses. While the effects are not very significant

numerically in saturated soil below the water table, they are important above the water

where the soil is unsaturated. Figure 6.49 is not intended to provide a rigorous

assessment of the effects of groundwater flow direction on stability, since the direction of

flow is assumed to be the same above and below the water table and constant over the

entire depth (both are unnecessary restrictions), but to provide a comparison of different

assumptions using the same stability model. A more rigorous assessment of the effects

of seepage on stability is shown in Figure 6.50.

-------- 4----

12

10

4

2

NON-PARALLEL TO
SLOPE SEEPAGE

PARALLEL TO SLOPE
SEEPAGE

- - - --- -

/ 5 > 15 25 30

FAILURE SURFACE

x (Mn)

Figure 6.50. Pore Pressure Distributions on Failure Surface for Seepage Parallel and Non-
Parallel to Slope in the Unsaturated Zone of the Slope

Figure 6.50 compares the pore pressure distribution along the failure surface in a slope

for the cases of seepage parallel and non parallel to slope. For the non parallel seepage

case, flow is assumed to occur parallel to the slope below the water table, but at an

angle kunsaturated = 1200 above the water table. The pressures are greater (less

negative) in the unsaturated soil when kunsaturated =1200, compared to when seepage

is parallel to the slope and Xunsaturated = 900. This causes a reduction in effective

stress, which causes a corresponding reduction in strength in the unsaturated soil. This
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is reflected in stability analyses performed on the slope, where a Factor of Safety of 1.13

is computed when in slope seepage (,unsaturated = 1200) is assumed, compared to a

Factor of Safety of 1.15 in the case of parallel to slope seepage (kunsaturated = 900)

Different seepage directions will also have an effect on the location of the critical failure

surface (minimum Factor of Safety) in a slope. Figure 6.51 compares the critical failure

surfaces that are obtained when seepage is assumed to take place parallel to the slope

in both saturated and unsaturated soil (kunsaturated = 900), and when

kunsaturated 1200 in the unsaturated soil, with parallel to slope seepage in saturated

soil.

- 14 -

12 -

10

8

6 -FAILURE
SURFACE

4 - .(PARALLEL
SEEPAGE)

2 -

0 -5 5 - 10 15 20 25 30 35 40

FAILURE SURFACE
(NON PARALLEL

X (M) SEEPAGE)

Figure 6.51. Critical Failure Surfaces in Slope for Parallel and Non-Parallel to Slope Seepage in
the Unsaturated Zone of the Slope

A Factor of Safety of 1.15 is computed on the critical failure surface with seepage

parallel to the slope in both the saturated and unsaturated zones of the slope. A Factor

of Safety of 1.11 is obtained on the critical failure surface with Xunsaturated =1200.

Figure 6.51 shows that seepage direction has an effect on the location of the critical

failure surface. The difference in Factors of Safety in this example is not very significant
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numerically, because of the particular hydraulic conditions in the slope, and the failure

surface lying in mostly saturated soil. But as will be illustrated in the next Section,

seepage direction can have significant influence on landslide hazards, and is particularly

relevant to shallow landslides, where failure can take place in unsaturated soil.

6-2.1.2.3. SEEPAGE DIRECTION SUBMODEL UNCERTAINTY IN LANDSLIDE

HAZARDS ASSESSMENT

In this Section, the effects of seepage direction on landslide hazards are analyzed. For

this purpose, we consider the two following examples.

LANDSLIDE HAZARDS WITH RAINFALL INTENSITY LESS THAN SATURATED

CONDUCTIVITY

In this example, the rainfall intensity is less than the saturated conductivity of the soil at

the surface, and so all the rainwater infiltrates into the slope, and causes an increase in

moisture content, but saturation is not reached. Consider the slope shown in Figure

6.52.

c'= 0.5 kN/m 2

' = 280
y = 20 kN/m 2

(UaUw)entry = 1 OkN/m
Ks= 250 cm/day

/'_

) , 10

-

SOIL

ROCK

15

x (m)

20 25 3:0

Figure 6.52. Slope Geometric and Strength Parameters
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The slope geometric and soil strength and hydrologic parameters are shown in Figure

6.52 and the soil characteristic curves are shown in Figures 6.53 and 6.54.
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A rainfall event with intensity, I = 75mm / hr is assumed to occur for a duration of 8

hours. Figure 6.55 shows moisture profiles, and Figure 6.56 shows pressure profiles at

selected times.
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Figure 6.55. Moisture Content Profiles with Time using the van Genuchten (1980) Model
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The stability of the slope is assessed for different values of lunsaturated in the

unsaturated soil, while assuming parallel to slope seepage in the saturated soil. The

results are shown in Figure 6.57.
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Figure 6.57. Variation of Factors of Safety with Time for different k and I < Ks
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Note that the value of X = 900 in Figure 6.57 corresponds to parallel to slope seepage.

Figure 6.57 shows that there is a significant difference in the Factors of Safety for the

different values of k. The difference is greatest at early times during the rainfall event,

when the soil on the failure surface is still unsaturated. With time and continued rain,
moisture content in the soil on the failure surface increases (see Figure 6.56), and the

effects of different values of k decrease. They do, nonetheless, have significant effects

on the results, and lead to different conclusions regarding stability.

We now assume that the soil strength parameters and hydraulic conductivity are

uncertain with the following distributions:

C'- N(mc' = 0.5kN/m 2 , ac' = 0.0125kN/m 2); 4'~ N(mv = 280, Yg = 70)

Ks - LN (mKs = 250cm / day,cK =a(12cm/day) 2 ); and these parameters are

uncorrelated.

Figure 6.58 shows the variation of the probability of failure with time for the case of

parallel to slope seepage, X = 900, and for the case when X = 1200.
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Figure 6.58. Variation of Probability of Failure with Time for different X and I < KS

Figure 6.58 clearly shows that different values of X can lead to different probabilities of

slope failure, and illustrates the effects of seepage direction on landslide hazards.
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LANDSLIDE HAZARDS WITH RAINFALL INTENSITY GREATER THAN SATURATED

CONDUCTIVITY

In this example, we consider the slope shown in Figure 6.59.

I5 *40 20

X (M)

25 30 35 40

Figure 6.59. Slope Properties and Failure Surface

The soil characteristic curves are shown in Figures 6.60 and 6.61.
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A rainfall event of intensity I =375cm/ day = 155mm / hr (greater than the saturated

conductivity of the soil at the surface) is assumed to take place for a duration of 8 hours.

Figure 6.62 shows moisture profiles, and Figure 6.63 shows pressure profiles at selected

times.
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Figure 6.62. Moisture Content Profiles with Time using the van Genuchten (1980) Model
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Figure 6.63. Pressure Profiles with Time using the van Genuchten (1980) Model
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The stability of the slope is assessed for different values of X in the unsaturated soil,

while assuming parallel to slope seepage in the saturated soil, and the results are shown

in Figure 6.64.
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Figure 6.64. Variation of Factors of Safety with Time for different k and I > Ks

Figure 6.64 illustrates the effects of different values of X on stability. The difference in

the results is greatest at early times during the rainfall event, since the rainwater has not

yet penetrated the soil deep enough to saturate the entire failure surface (see Figure

6.63). With time and increasing infiltration depth, the rainwater saturates the soil on the

failure surface completely. As a consequence, the effects of k on stability decrease. At

a time of about 4 hours, the soil on the entire failure surface is saturated, and k has little

effects on stability, since it is assumed that parallel to slope seepage takes places in

saturated soil.

We now assume that the soil strength parameters, and hydraulic conductivity are

uncertain and follow the distributions:

C'~ N(mc' = 0.5kN / m2 c' = 0.017kN ); / m ' N4#'~ (mp = 200, (Y =6.670 )
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Ks - LN (MKS = 200cm / day, as =(100cm / day)2 ); and these parameters are

uncorrelated.

Figure 6.65 shows the variation of the probability of failure with time for the case of

parallel to slope seepage when X = 900, and for the case when X = 1200.
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Figure 6.65. Variation of Probabilities of Failure with Time for different X and I > KS

Figure 6.65 shows that the effects of k on the probability of slope failure, and hence

landslide hazards, is again most significant at early times. The effects become less
significant with time and rainwater infiltration as soil on the failure surface gets saturated.

6-2.1.2.4. DISCUSSION ON SEEPAGE DIRECTION SUBMODEL UNCERTAINTY

The two examples presented in the preceding Sections illustrate the effects of different

values of ?, on stability analyses, and landslide hazards. The results show that X can

have significant influence on both deterministic and probabilistic results, and therefore

on landslide hazards. The effects are more significant in the first example, where the
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rainfall intensity is less than the saturated conductivity, and the soil remains unsaturated.

S= 900 in Figures 6.57, 6.58, 6.64 and 6.65 corresponds to parallel to slope seepage.

Figures 6.57 and 6.64 show that seepage directions k > 900, which are more likely in

unsaturated soil, result in lower Factors of Safety. This is also shown in Figures 6.58 and

6.65 by higher probabilities of failure. Thus, the assumption of parallel to slope seepage,
which is commonly adopted in stability analyses, can be unconservative. This result is

particularly relevant to the study of shallow landslides, where failure may occur in

unsaturated soil.

6-2.1.2.5. CONCLUSIONS ON SEEPAGE SUBMODEL UNCERTAINTY

The effects of seepage direction on slope stability analyses, and landslide hazard

assessments were investigated. This is a type of model uncertainty that comes about

because of different assumptions in the same stability model. We showed that different

seepage directions can significantly affect stability analyses and landslide hazards

assessments.

Seepage directions k > 900 cause an increase in pore pressures and hence a decrease

in strength if the soil is unsaturated. Conversely, seepage directions k > 900 cause a

reduction in pore pressures, and hence an increase in shear strength if the soil is

saturated. Correspondingly, seepage directions k <900 tend to decrease the strength of

saturated soil, and increase the strength of unsaturated soil. This is particularly relevant

to the study of shallow rainfall induced landslides where failure can occur in unsaturated

soil as a result of changes in suction. For such failures, we showed that the assumption

of parallel to slope seepage can lead to unconservative results, by overestimating

Factors of Safety and underestimating probabilities of failure.
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6-2.1.3. PARAMETER DISTRIBUTION SUBMODEL UNCERTAINTY

Second moment reliability and probabilistic analyses such as those performed in

Chapter 5 require the assumption of models for the distribution of uncertain parameters.

These models include models for:

(a) Correlation between parameters, and

(b) The probability distribution of parameters

In this Section, we investigate the effects of different parameter models on slope

reliability and probabilistic analyses, and on landslide hazards. Emphasis is placed on

the soil strength parameters as uncertain parameters.

6-2.1.3.1. CORRELATION SUBMODEL UNCERTAINTY

The issue of model uncertainty from correlation between strength parameters was

alluded to in Chapter 4, where the Infinite Slope Stability Model (Skempton and DeLory,

1950) was used to perform sensitivity analyses by varying c' and 4' assuming positive

and negative correlation. The analyses showed that different correlation can have

significant effects on stability analyses. In this Section, we investigate the effects of

correlation between c' and 4' more rigorously through the effects on slope reliability

and probabilities of failure, as well as on landslide hazards assessments. Figure 6.66

shows in bold what is studied in this Section.
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TRIGGER MODEL(S)

PART 6-1.1.1

HDROLOEI S HYDROLOGY M|ODEL

PART 6-1.1 and 6-1.2.
PORE PRESSURES

4

Figure 6.66. Effects of correlation (shown in the lightly shaded submodels box) on the results of
stability analyses (Factors of safety, reliability indices and probabilities of failure in the dark

shaded box) and on landslide hazards (dark box) are investigated
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6-2.1.3.1.1. CORRELATION SUBMODEL UNCERTAINTY IN MEAN VALUE FIRST

ORDER SECOND MOMENT (MFOSM) RELIABILITY ANALYSES

Consider the slope shown in Figure 6.67.

c'=35kN/m 2

=300
y=20kN/m 2

zwz 5

SOIL

10 . -' 15 20

ROCK

20

15

10

5.

--0-

-5

-10

-15

SOIL BEDROCK
INTERFACE/FAI LURE

SURFACE

Figure 6.67. Slope Geometry and Definition of Parameters

The reliability of the slope in Figure 6.67 was assessed in Chapter 5, Part 5-2.2.1 by

computing the mean value first order second moment reliabilty index based on the

parameters and their uncertainty shown in Table 6.1.

Parameter, X Symbol E[X] V[X]

Cohesion (kN/m 2) c' 35 0.1

Angle of shearing resistance ' 30 0.05

Saturated unit weight of soil (kN/m 2 ) Ys 20 0.01

Slope angle P 35 0.05

Depth to failure surface (m) z 15 0.05

Unit weight of water (kN/m 2 ) Yw 9.81 0

Depth of water Table from ground surface (m) zw 10 0.05

Table 6.1. Expected Values, E[X], and Coefficients of Variation, V[X], of Parameters
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The Mean Value First Order Second Moment reliability index was computed to be

P = 0.762, resulting in a probability of failure Pf = = 0.78, when the Factor of Safety

was assumed to be normally distributed.

An advantage of the Mean Value First Order Second Moment reliability index applied to

the Infinite Slope Model is that analytical expressions for the partial derivatives that are

required to compute P can be derived. In particular, the derivatives of the Factor of

Safety with respect to c' and 4' were given as:

8F 1 aF - 1[6.14]
ac' yszsinpcos[

F _zys + (zw - z)y ] sec2 4' [6.15]
L ' z7s tan P

The first order second moment approximation to the variance of the Factor of Safety is

given by:

n 2 a n c1 F C v X ,XVar[F] = Var[Xi]+ 2 [6.16]
i=1 m M= W aiajm

where:

Xi and Xj are the uncertain parameters of the vector X = [c' $' Ys p z zw T

The contribution to the variance of the Factor of Safety from the covariance terms

between c' and #' is given by:

( DF Cov[c',4'] [6.17]
ac' a 'm
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where and C F are the partial derivatives given in Equations [6.14] and [6.15],
ac' 4'

evaluated at the mean values of c' and 4'.

Since the mean values of all parameters are positive (or zero), the sign of the product in

Equation [6.17] will depend on the sign of Cov[c',4'], since -- (- is positive. For

the slope shown in Figure 6.67 and parameters in Table 6.1, the product in Equation

[6.17] becomes:

(aF ~(8F
2(Cov[c',']= 0.002p [6.18]

ac' a ' M

where p is the correlation coefficient.

Equation [6.18] is a linear function of p, and the contribution to the variance of the

Factor of Safety depends on the sign of p.

No correlation between the strength parameters, c' and #' implies if the value of one of

the parameters is known, no conclusion can be made on the value of the other. The term

in Equation [6.18] is zero, and there is no contribution to the variance of the Factor of

Safety.

Positive correlation between c' and 0', implies that when c' increases (or is above its

mean value) 0' increases also (or is above its mean value). The term in Equation [6.18]

is positive, increasing the variance of the Factor of Safety. As the uncertainty in the

Factor of Safety increases, P decreases, leading to higher reliability.

Alternatively, negative correlation between the strength parameters, C' and 0', implies

that when c' increases (or is above its mean value) 0' decreases (or is lower than its

mean value). The term in Equation [6.18] is negative, reducing the variance of the Factor

of Safety. As the uncertainty in the Factor of Safety decreases, P increases, leading to

lower reliability.
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In practice, one can be reasonably sure that the strength parameters are negatively
correlated and this correlation leads to an increase in slope reliability compared to when
the parameters are uncorrelated. The relative contribution of correlation to the variance
of the Factor of Safety is shown in Figures 6.68, 6.69 and 6.70 for different correlation.

-ANGLE OF SHEAR
RESISTANCE

WATER TABLE

SLOPE ANGLE

Figure 6.68. Relative Contribution of Uncertainty in Parameters to Uncertainty of Factor of Safety
(Uncorrelated Strength Parameters p = 0 )
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COVARIANCE
BETWEEN
STRENGTH COHESI

PARAMETERS

WATER TABLE
DEPTH

SLOPE ANGLE

-ANGLE OF SHEAR
k RESISTANCE

Figure 6.69. Relative Contribution of Uncertainty in Parameters to Uncertainty of Factor of Safety
(Strength Parameters Correlated p = -0.25)

COVARIANCE COHESION
BETWEEN
STRENGTH
PARAMETERS

-ANGLE OF SHEAR
RESISTANCE

WATER TABLE
DEPTH

SLOPE ANGLE

Figure 6.70. Relative Contribution of Uncertainty in Parameters to Uncertainty of Factor of Safety
(Strength Parameters Correlated p = -0.5)
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Figures 6.68 to 6.70 show that the contribution of correlation between strength

parameters to the variance of the Factor of Safety can be significant. In fact, in this

example, it is greater than the contribution from other parameters, such as the location

of the water table (degree of saturation in the slope) and cohesion.

6-2.1.3.1.2. CORRELATION SUBMODEL UNCERTAINTY IN HASOFER AND LIND

(1974) RELIABILITY ANALYSES

To illustrate the effects of correlation model uncertainty on the Hasofer and Lind (1974)

reliability index, and reliability analyses we consider the slope presented in Figure 6.71.

10

c= 15 kN/m2

=25010- 2 =10NSOIL
(u-Uw)entry =10 kN/m2

- ROCK

25 30 35 4P-10

Figure 6.71. Slope Geometry and Strength Parameters

The reliability of this particular slope was analyzed in Example 2 of Part 5-2 in Chapter 5

where c' and 4' were assumed uncorrelated. Figure 6.72 shows the reliability chart that

was obtained on the critical deterministic failure surface shown in Figure 6.71, and the

reliability index was computed to be P = 0.93.
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0-a disperson ellipsoid
30-

25 ------------------------ --------- ---------------

20
Most Probable SAFE REGION

Failure Point (c'*,+'*)
15

10 - UNSAFE REGION

5-

0 -
0 0.5 1 1.5 2 2.5 3 3.5

c' (x 9.81 kN/m2)

Figure 6.72. Reliability Chart Derived From Deterministic Analyses for Uncorrelated Variables

We now assume that c' and 4' are negatively correlated, with correlation coefficient

p = -0.25. The reliability index on the deterministic surface in Figure 6.71 is computed

to be P =1.11, when (negative) correlation is introduced. A reliability chart is derived and

is shown in Figure 6.73.
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0-a disperson ellipsoid

30

20

Most Probable
15 - Failure Point (c'*, '*)

10 10 - UNSAFE REGION

5-

0*
0 0.5 1 1.5 2 2.5 3 3.5

c' (x 9.81 kN/m2)

Figure 6.73. Reliability Chart Derived From Deterministic Analyses Assuming Negatively
Correlated Soil Strength Parameters

Figure 6.73 also shows the P - cy dispersion ellipsoid, which is tangential to the failure

boundary at the critical failure point c'* = 11.8 kN/m 2 and '* =21.60. The P - a

dispersion ellipsoid in Figure 6.73 is tilted because of the assumed correlation between

c' and '. The direction of the tilt is in the direction of the major axis of the ellipsoid

(which is also in the direction of the failure boundary), when negative correlation is

assumed.

Figure 6.73 compares the P- a dispersion ellipsoids in the case of no correlation, and

when correlation is assumed.
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35 - - - - - - - -- - -

P-a disperson ellipsoid
30 (correlation)

30

25 - ------------- ----- - -- - ----- (- odisperson ellipsoid

20-

Most ProbableSAEEGN
15 Failure Point (c'*,O'*)

10-
10 UNSAFE REGION

5-

0 -
0 0.5 1 1.5 2 2.5 3 3.5

c' (x 9.81 kN/m 2
)

Figure 6.74. Comparison of Reliability Charts Assuming Uncorrelated and Negatively Correlated

Soil Strength Parameters (Deterministic Case)

The size of the 13-c- dispersion ellipsoid when correlation is included is larger than the

one when no correlation is included. The tilt in the dispersion ellipsoid allows it to

increase in size more than when the ellipsoid is not tilted before hitting the failure

boundary. As a result P is larger in the case of correlated variables (P1=1.11) compared

to the case of uncorrelated variables (P=0.93). Because of this, the reliability of the

slope is also greater in the case of correlated variables than in the case of uncorrelated

variables.

The analyses performed above are based on the critical deterministic failure surface.

When the parameters are uncertain, the uncertainty affects the location of the critical

failure surface. This was discussed in Part 5-4 of Chapter 5. There exists, therefore, a

critical reliability based failure surface that is obtained after including the uncertainty in

parameters. The procedure to locate this failure surface was shown in Figure 5.34 in

Chapter 5.
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We locate the critical reliability based failure surface in the slope in this example, which

is shown in Figure 6.75.

1o SOIL

CRITICAL RC
DETERMINISTIC

FAILURE SURFACE

-5o -5 5 10 .- 115 20 25 30 35

CRITICAL
RELIABILITY BASED
FAILURE SURFACE

Figure 6.75. Critical Reliability Based Failure Surfaces Assuming Negatively Correlated Soil
Strength Parameters (square symbols) and Critical Deterministic Failure Surface (triangle

symbols)

Note that although the critical deterministic failure surface in the slope is the same

whether or not correlation is assumed between uncertain parameters (this is reflected in

the same failure boundary in both cases in Figure 6.74), the critical reliability surface is

different. This is shown in Figure 6.75. This is because the reliability index depends on

both the uncertainty in parameters, as well as the correlation between them.

A value of P = 1.01 is computed and the critical failure point is c'* =11.9 kN/m 2 and

21.90 . The reliability chart is shown in Figure 6.76.
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3-a disperson ellipsoid

25 -- --- -- - --

20
SAFE REGION

Most Probable
15 Failure Point (c'*,'*)

10 UNSAFE REGION

5 -

0
0 0.5 1 1.5 2 2.5 3 3.5

c' (x 9.81 kN/m2)

Figure 6.76. Reliability Chart Assuming Negatively Correlated Soil Strength Parameters

Figure 6.77 compares the reliability charts for the cases of correlation and no correlation,

and shows the difference in the failure boundary that result from the different critical

reliability failure surfaces.

35 - - - - - -- ---------- - -- -

j3-a disperson ellipsoid
30 (correlation)

25 ----- ----- -m------ ---- - - - (m *.m ) D-o disperson ellipsoid
(no correlation)

20 SAFE REGION

15

Failure Boundary
UNSAFE REGION Failure Boundary (no correlation)10 (correlation)

5

0
0 0.5 1 1.5 2 2.5 3 3.5

c' (x 9.81 kN/m2)

Figure 6.77. Comparison of Reliability Charts Assuming Uncorrelated and Negatively Correlated
Soil Strength Parameters (Reliability Case)
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The reliability index was computed to be P = 0.72 in the case when no correlation is

assumed (see Example 2 in Part 5-2 of Chapter 5).

The effect of correlation on reliability analyses is evident by comparing the reliability

indices for the cases of correlation and no correlation. This is true whether reliability

analyses are based on the critical deterministic failure surface (P = 0.93 for no

correlation vs. P = 1.11 for correlation) or the critical reliability based failure surface

( P = 0.72 for no correlation vs. P = 1.01 for correlation).

This is illustrated graphically in the reliability charts shown in Figures 6.74 and 6.77. The

reliability index in the case where negative correlation is assumed between the soil

strength parameters is larger than when no (negative) correlation is assumed in both

Figures 6.74 and 6.77. Because of the tilt in the ellipsoid when correlation is introduced,
the ellipsoid can grow larger in size before becoming tangential to the failure boundary

(see Figure 6.77 for example). This implies a larger value of P than in the case when no

correlation is assumed.

The effects of correlation can also be demonstrated by comparing probabilities of failure

that are computed from P, as PF = tD(--3) assuming that the Factor of Safety is Normally

distributed. In this case, on the critical deterministic failure surface (PF = 0.176 for no

correlation vs. PF = 0.133 for correlation) and on the critical reliability based failure

surface (PF = 0.235 for no correlation vs. PF = 0.157 for correlation).

Reliability analyses, therefore, that assume uncorrelated strength parameters lead to
lower probabilities of failure (through larger P) and are therefore conservative. This is

important, and may have significant practical implications when designing or managing
slopes.
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6-2.1.3.1.3. CORRELATION SUBMODEL UNCERTAINTY IN PROBABILISTIC SLOPE

STABILITY ANALYSES

In this Section, we use the Monte Carlo techniques developed in Chapter 5, Part 5-3 to

asses the effects of correlation between strength parameters on probabilistic slope

stability analyses. In Part 5-3 of Chapter 5, the Monte Carlo Method and its application

within the spreadsheet environment to generate random numbers from the Normal

distribution was described. This involves generating random numbers from the uniform

distribution between 0 and 1, and transforming these numbers to random variables from

the Normal distribution. This was demonstrated for the case of uncorrelated c' and 4',
where each parameter was generated from its appropriate distribution. In the case when

correlation between c' and #' is introduced, c' and 4' become dependent. Random

numbers of the vector ,1 need to be generated from the specified/known distribution of

the vector. In this study, we assume that c' and 4'are joint normally distributed, in which

case, the vector , is jointly Normal, and values of c' and 4' need to be generated

from the Multivariate (Bivariate in this case) Normal distribution.

To do so, one needs to first specify the distribution parameters of the vector C], i.e. the

mean values and standard deviations of c' and f' , as well as the covariance (or the

correlation coefficient p) between them.

The covariance matrix, 1, of K] can be expressed as:

=FVar[c'] Cov[c','] [6.19]
Cov[c','] Var[']j
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[2 1
%c' poc'4'

_2 I
[pa0 I(TV~ G2~

[6.20]

The covariance matrix in [6.20] is a square, symmetric and positive definite matrix.

Because of this, using a Choleski decomposition, I can be expressed as:

_ = CCT [6.21]

where:

C is a lower triangular matrix, the Choleski Matrix.

CT is the transpose of C, an upper triangular matrix.

With _ as expressed in [6.21], the Choleski Matrix C is given by:

c, G, FP2]

Now, suppose we have a

variates with Z - N (0, 1).

vector Z = ,
IZ21

where Z1 and Z2 are standard Normal

If we express ,j=M+CZ, then the vector Ic'1L,iis joint Normally distributed with

mean value vector m = Lmc'i, and covariance matrix Z in Equation [6.20], since the

covariance matrix of Z is I, where I is the identity matrix.
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Using this, to generate random variables from the Bivariate Normal distribution, two

(independent) random numbers X1 and X2 are generated from the U[0,1] distribution.

This is done using the '=RANDO' function in Excel. These are transformed into two

standard Normal variables Z1 and Z2 from the Standard Normal distribution. This is

done using the '=NORMSDISTo' function. Values of c' and #'are then obtained by the

operation:

[,] =m+CZ [6.23]

Or:

[:M]= + [ ][ [6.24]
#' M$'_p ad 1-2 IZ21

The '=MMULT(' function is used for the operation in [6.24] in Excel, and so the process

can be automated within the spreadsheet.

A function in Visual Basic Editor is developed to return the Cholesky Matrix, and is used

as one would use matrix manipulations in Microsoft Excel, i.e. holding down the Shift

and Ctrl Keys while pressing the Enter Key. This is shown in Figure 6.78.
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Figure 6.78. Cholesky Function

This process is used to generate random values of c' and ', and the Factor of Safety

is computed for each combination of c' and 4'. A random sample of the Factor of Safety

is therefore obtained, and its probability distribution can be estimated for a large sample.

The probability of failure can then be approximated from the generated distribution of

Factor of Safety as:

1

PF ffF(c',$')dF [6.25]
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Function Cholesky(Mat As Range)

Dim A, L() As Double, s As Double

A = Mat
n = Mat.Rows.Count
m = Mat.Columns.Count

If n <> m Then

Cholesky = "Not Symmetric!"
Exit Function

End If

ReDim L(l To n, 1 To n)

For j = 1 To n
s =0
For k = 1 To j - 1
s = s + L(j, k) ^ 2
Next k

L(j, j) = A(j, j) - s
If L(j, j) <= 0 Then Exit

For L(j, j) = Sqr(L(j, j))
For i j + 1 To n

s = 0
For k = 1 To j - 1
s = s+L(i, k)*L(j, k)
Next k

L(i,j)=(A(i,j)-s)/L(j,j)
Next i

Next j
Cholesky = L
End Function



where fF(c',$') is the generated probability distribution of the Factor of Safety, F. The

probability in Equation [6.25] is the probability that the Factor of Safety lies below the

critical value 1.

EXAMPLE 1: SHALLOW BEDROCK

In the first example, we asses the stability of the slope shown in Figure 6.79.

c'= 15 kN/m 2

,' = 250

(ua-uw)entry =10 kt

5 10 '15 20

x (m)

FAILURE SURFACE-10 -

-- 45-'

-5

Figure 6.79. Slope Geometry and Strength Parameters

We assume that the vector is assumed Joint Normal and distributed as:

c'L 1.5 52 (p
25 ' (p)(5)(5)

)(5)(5)

52 1)
where p is the correlation coefficient between c' and < '.

517

.15-

10 -

5 -

N/M2
SOIL

- ROCK

-10
I

25 30 35 4y0



The case when c' and <' are assumed uncorrelated was analyzed in Part 5-3 of

Chapter 5, and the relative frequency/probability distribution of the Factor of Safety is

shown again in Figure 6.80.

3 --- --- - -----

2.5

d)

2 -

0

S1.5

U
CD

0 .

0-

0 0.5 1 1.5 2 2.5 3

Factor of Safety

Figure 6.80. Simulated Distribution of Factor of Safety for Uncorrelated Variables

The expected value of the Factor of Safety is E[F] = 1.18, and the standard deviation is

o[F] = 0.22. The probability of failure is computed according to Equation [6.25], and is

PF =0.233.

518



We now assume that c' and (' are negatively correlated, with p = -0.25. The simulated

distribution of Factor of Safety is shown in Figure 6.81.

3-

2.5-

C

S2-

0.5-

0--
0.5 1.5 2 2.50

Factor of Safety

Figure 6.81. Simulated Distribution of Factor of Safety for Correlated Variables

The expected value of the Factor of Safety is E[F] = 1.18, and the standard deviation is

a[F] = 0.17. The probability of failure is computed to be PF = 0.158.

Figure 6.82 compares the simulated distributions in Figures 6.80 and 6.81.
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Figure 6.82. Comparison of Simulated Distributions of Factor of Safety for Correlated and
Uncorrelated Variables

Figure 6.82 illustrates the effects of correlation on the distribution of the Factor of Safety.

Correlation (negative) between c' and #' seems to have little effect on the expected

value of the Factor of Safety, but the standard deviation is significantly reduced. As a

result, the probability of failure is reduced when c' and ' are correlated.

Figure 6.83 shows the effects of different degrees of correlation between c' and #' on

the distribution of the Factor of Safety.

3.5

o2.5 -

S2-
0

C

4) 1

Z I

0.5-

0
0 0.5 1.5

Factor of Safety

2 2.5 3

Figure 6.83. Simulated Distributions of Factor of Safety for Different Degrees of Correlation

Figure 6.83 shows that the stronger the (negative) correlation between c' and 4'the

smaller the variance (standard deviation) of the Factor of Safety. The expected value of

Factor of Safety on the other hand remains the same (almost). So does the shape of the

distribution. Therefore, the stronger the (negative) correlation, the smaller the probability

of failure.

In order to gain a better understanding of the effects of correlation on the distribution of

Factor of Safety, we compute the statistics and the distribution fitting parameters that
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were presented in Part 5-2 of Chapter 5. This is done for the case when p = 0 in Tables

6.2 and 6.3. These are the same results as were obtained in Part 5-2 of Chapter 5.

Simulated Distribution
Expected Value, E[F) 1.178
Standard Deviation, a[F] 0.134
Skewness 0.0613
Kurtosis 0.0042
Probability of Failure 0.091

Table 6.2. Summary Statistics of Simulated Distribution for p = 0

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F]/a[ln(F)]/ X e Failure

Normal 1.178 0.134 0.140 0.092
Lognormal 0.157 0.116 0.330 0.087
Gamma 76.926 65.330 0.239 0.087

Table 6.3. Fitted Distributions to Simulated Distribution for p = 0

The results for the case when p = -0.1 are shown in Tables 6.4 and 6.5, and the

summary statistics for when p = -0.25 are shown in Table 6.6.

Simulated Distribution
Expected Value, E[F] 1.176
Standard Deviation, a[F] 0.110
Skewness -0.0484
Kurtosis 1.1055
Probability of Failure 0.054

Table 6.4. Summary Statistics of Simulated Distribution for p = -0.1

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F]/a[ln(F)]/ k e Failure

Normal 1.176 0.109 0.165 0.054
Lognormal 0.158 0.094 0.301 0.046
Gamma 115.390 98.118 0.227 0.048

Table 6.5. Fitted Distributions to Simulated Distribution for p = -0.1

Simulated Distribution
Expected Value, E[F] 1.176
Standard Deviation, a[F] 0.072
Skewness -0.04187
Kurtosis 10.0606
Probability of Failure 0.005

Table 6.6. Summary Statistics of Simulated Distribution for p = -0.25
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A comparison of Tables 6.2, 6.4 and 6.6 shows the effects of correlation on the

distribution of the Factor of Safety. In particular, that correlation does not affect the

expected value of the Factor of Safety, but significantly reduces variance (standard

deviation). This causes a significant reduction in the probability of failure. The Skewness

as correlation is increased remains very close to zero as in the case of uncorrelated

variables. This implies that the distribution is symmetric about the mean, and can be well

approximated by the Normal distribution in the case of correlated variables, as was the

case where the variables were uncorrelated (see Part 5-4 of Chapter 5). This is also

reflected in Tables 6.3 and 6.5 that show that the best fit distribution (with minimum error

term) is the Normal distribution, which gives similar results to the ones computed from

the simulated distribution. The Kurtosis on the other hand increases significantly with

correlation. This shows that as correlation between c' and 4' increases, the distribution

of Factor of Safety becomes more and more peaked. This was shown in Figure 6.83.

EXAMPLE 2: DEEP FAILURE SURFACE (VERY DEEP BEDROCK)

We also investigate the effects of correlation on the slope shown in Figure 6.84.

c' = 10 kN/m2

=200

10 (ua-u )entry= 5kN/m

-55.- 10 15 20 25 30 35 4

F e . e r a S FAILURE SURFACE
-5 -X (M)

Figure 6.84. Slope Geometry and Strength Parameters
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We assume that the c' and ' are distributed as:

c'~ N(mc' =1OkN / m2 , ac' = 2kN/m2 ); '- N(m' = 200, g = 2.50)

The distributions of Factor

Figure 6.85.
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of Safety for various degrees of correlation are shown in
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Figure 6.85. Simulated Distributions of Factor of Safety for Different Degrees of Correlation

Similar comments can be made with regard to effects of correlation on the distribution of

Factor of Safety in Figure 6.85 as was done in Figure 6.83.

The results in Figures 6.83 and 6.85, which show that correlation seems to have little

effect on the expected value (and shape of the distribution of the Factor of Safety), but

reduces the variance are interesting. This is because the results are what one would

expect to get using First Order Second Moment (FOSM) approximations.

Using FOSM, the Factor of Safety is linearized about the mean values of the parameters

c' and 4', and:
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a. The expected value of the Factor of Safety is the Factor of Safety evaluated at

the expected values of c' and 4'.
b. The variance of the Factor of Safety decreases (as a linear function) with

increasing negative p.

c. The distribution of Factor of Safety is Normal when c' and 4' are Normal.

The results in Figures 6.83 and 6.85 are consistent with points a. to c. above, and seem

to suggest that the Factor of Safety Equation can be approximated by a linear function of

c' and 4', particularly around the mean values of c' and 4'.

To explore this further, we plot the Factor of Safety against c' (with 4' at its expected

value) in Figure 6.86 and against 4' (with c' at its expected value) in Figure 6.87.

25 - --------------- ---- ---

+ Slope 1
2 +-Slope 2

1.5

0

U.

0.5- E[c']

0 0.5 1 1.5 2 25 3 3.5 4 4.5

Cohesion (x 9.81 kN/m2

Figure 6.86. Factor of Safety against Cohesion (with 4' at its expected value)

524



2.5 T --

2- -+--Slope 1
-a- Slope 2

.~1.5-

0

0-0.5 E[4']

0 5 10 15 20 25 30 35 40 45

Angle of Shear Resistance (#*)

Figure 6.87. Factor of Safety against Angle of Shear Resistance (with C' at its expected value)

Slope 1 in Figures 6.86 and 6.87 refers to the slope in Example 1, and Slope 2 to the

one in Example 2.

Figures 6.86 and 6.87 show that the Factor of Safety can indeed be approximated by a

linear function in c' and ', particularly around the mean values of these parameters.

This explains why the expected values of the Factors of Safety remain almost the same

in Figures 6.83 and 6.85. Since the Factors of Safety in Figures 6.86 and 6.87 are

approximately linear, one would expect the variance of the Factor of Safety to decrease

linearly with increasing (negative) correlation. This is, in fact, the FOSM approximation

as well. We plot the variance of Factor of Safety for different values of p in Figure 6.88

for both slopes.
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Figure 6.88. Variance of Factor of Safety against Correlation

Figure 6.88 shows the decrease of variance of Factor of Safety with correlation

coefficient. Though the decrease is not exactly linear, it can be approximated by a

straight line (the R2 value for the best fit line for Slope 1 is R2 -0.98, and that for

Slope 2 is R = 0.92). The linearity of Factor of Safety with c' and 4' also explains why

the distribution of Factor of Safety can be approximated by the Normal distribution when

c' and #' are Normal, whether or not correlation is assumed between c' and '.

We compare the results of the probabilistic analyses in

second moment reliability analyses.

Slope 1 with those from the

Second Moment

Reliability Analyses

P1 I PF = 1D(-P)

Probabilistic Analyses

E[F] GF PF

c' and ' Normal and 0.72 0.235 1.18 0.22 0.233

uncorrelated

c' and #'Jointly Normal 1.01 0.157 1.18 0.17 0.158

with p = -0.25

Table 6.7. Comparison of Results from Second Moment Reliability and Probabilistic Analyses
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Table 6.7 shows that the results from second moment analyses are in very good

agreement with those from probabilistic analyses, based on the Monte Carlo method.

This is because, and as shown in Figure 6.83, the distribution of Factor of Safety is well

approximated by the Normal distribution, in which case computing probabilities of failure

from PF = (D(-p) leads to accurate results. A more detailed discussion on the linearity of

Factor of Safety, and a comparison of the results of FOSM, reliability and probabilistic

analyses is provided in Appendix D.

6-2.1.3.1.4. CORRELATION SUBMODEL UNCERTAINTY IN LANDSLIDE HAZARDS

ASSESSMENTS

In order to investigate the effects of correlation on landslide hazards, we consider the

slope shown in Figure 6.89.

10

5

FAILURE
SURFACE

c'= 0.5 kN/m 2

' = 280
y = 20 kN/m 2

(Ua-Uw)entry = 1 OkN/m
Kr= 250 cm/day

SOIL

15

x (m)

Figure 6.89. Slope Geometric and Strength Parameters
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We assume that c' and ' are Joint Normally distributed with parameters:

C' -NH 0.5] 0.01252 (-0.25)(0.0125)(7)
~ L N ,Lo2 oo 2 7 7 Ji.e. p~ = -0.25 andC ' 28 ]'(-0.25)(0.0125)(7) 72

Ks -LN(mKS =250cm/day,T 2 -(125cm/day) 2 )Ks

and c' , #' and Ks are uncorrelated.

We assume a rainfall event with intensity, I = 75mm / hr occurs for a duration of 8 hours.

Figure 6.90 shows moisture profiles, and Figure 6.91 shows pressure profiles at selected

times.

0.2

0

2

0
a

3

4

0.25 0.3

Water Content (m/m 3 )

0.35 0.4 0.45 0.5

Figure 6.90. Moisture Content Profiles with Time using the van Genuchten (1980) Model
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Figure 6.91. Pore Pressure Profiles with Time using the van Genuchten (1980) Model

Figure 6.92 compares the distribution of Factor of Safety at selected times when c' and

#' are correlated with those when c' and j' are uncorrelated.
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Figure 6.92. Comparison of Simulated Distributions of Factor of Safety at Selected Times for
Correlated and Uncorrelated Variables
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Figure 6.92 shows the effects of (negative) correlation between c' and <' on the

distribution of Factor of Safety. Specifically that correlation causes a significant reduction

in the variance of the Factor of Safety at any time, t. Because of this, the distribution is

more peaked when correlation is included between the strength parameters. Tables 6.8

and 6.9 show summary statistics for the case of uncorrelated strength parameters, and

Tables 6.10 and 6.11 show the statistics when the strength parameters are negatively

correlated.

Simulated Distribution
Expected Value, E[F] 1.44
Standard Deviation, a[F] 0.418
Skewness 0.433
Kurtosis 0.449

Table 6.8. Summary Statistics of Distribution for Uncorrelated Strength Parameters (t=3 hours)

Simulated Distribution
Expected Value, E[F] 1.08
Standard Deviation, a[F] 0.32
Skewness 0.489
Kurtosis 0.65

Table 6.9. Summary Statistics of Distribution for Uncorrelated Strength Parameters (t=8 hours)

Simulated Distribution
Expected Value, E[F] 1.44
Standard Deviation, a[F] 0.228
Skewness 0.851
Kurtosis 1.2996

Table 6.10. Summary Statistics of Distribution for Correlated Strength Parameters (t=3 hours)

Simulated Distribution
Expected Value, E[F] 1.06
Standard Deviation, cy[F] 0.144
Skewness 1.280
Kurtosis 2.856

Table 6.11. Summary Statistics of Distribution for Correlated Strength Parameters (t=8 hours)

Tables 6.8 and 6.9, and 6.10 and 6.11 show that the expected values of the Factor of

Safety are more or less the same when correlation is introduced than when the strength

parameters are uncorrelated. They also show the decrease in the standard deviation

when correlation is included. The distributions for correlated strength parameters are

much more peaked, and this is reflected in the higher values of the coefficient of
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Kurtosis. The peakedness of the distribution decreases with time as shown in Tables 6.9

and 6.11. This is because as time passes, pore pressures are greater and hence the

uncertainty in the pressures is also greater. Having said this, it is evident that the effects

of correlation are significant at any time, t, despite the fact that the hydraulic conductivity

of the soil is also uncertain. This is because the uncertainties in c' and $', and hence

correlation between them, have a much greater effect on the uncertainty in the Factor of

Safety, and hence distribution of Factor of Safety at any t, than the hydraulic

conductivity. This was discussed in more detail in Part 5-5, of Chapter 5.

The probability of failure at any time t can be computed using Equation [6.25], and this is

done for the correlated and uncorrelated cases in Figure 6.93.

0.8 - ---- , - -- ,---- -.-- .- - - -.

0.7 ---------------- ------- --------- ------------ --------------- --------------- ------- - p 0- - - - - - - -

p= -0.25
0.6 -- ---- ---- --- -- - - - --- ---- - - - - - --- ------------ - - -- ------ - -0.7 ---- ------ - --- -- --- - - --- -

0 .4 --- -- -- ----- ----- ------- - - --- - -- - - - - - - ---- --- - - --- ---- - -
0.6- --- -- ------ ----- -- ----- ---- ---

05 I

L.

0

2

0 A

0 1 2 3 4 5 6 7 8

Time (Hours)

Figure 6.93. Comparison of Probability of Failure for Correlated and Uncorrelated Variables

The effects of correlation between c' and 4' on probabilities of failure and hence

landslide hazards are evident in Figure 6.93. Figure 6.93 shows that landslide hazards

assessments are significantly affected by the correlation model assumed between the
strength parameters.
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6-2.1.3.2. PARAMETER PROBABILITY DISTRIBUTION SUBMODEL UNCERTAINTY

A problem arises when the soil strength parameters c' and #' are assumed to be

Normally distributed, namely that negative values of these parameters can occur. This is

true whether c' and #' are assumed correlated or not. Negative values of c' and #' are

impossible, and this causes problems with the assumption of Normality, whether in a

theoretical context, or simulation context (as with the Monte Carlo Method for example).

To overcome this problem, different probability distributions of c' and 4' can be

assumed that ensure strictly positive values. These can take the form of bounded

distributions, and one such distribution is the truncated Normal distribution. Another,

more commonly adopted distribution is the Lognormal distribution. The assumption of

Lognormal strength parameters has also been suggested in recent experimental studies,

e.g. Griffiths et al., (2002).

In this Section, we investigate the effects of assuming Lognormal strength parameters

on probabilistic slope stability analyses, and landslide hazards. Figure 6.94 shows in

bold what is studied in this Section.
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Figure 6.94. Effects of parameter distribution models (shown in the lightly shaded submodels box)
on the results of stability analyses (Factors of safety, reliability indices and probabilities of failure

in the dark shaded box) and on landslide hazards (dark box) are investigated
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6-2.1.3.2.1. PROBABILITY DISTRIBUTION SUBMODEL UNCERTAINTY IN SLOPE

RELIABILITY ANALYSES

In this Section, we investigate the effects of Lognormal soil strength parameters on slope

reliability analyses. When the soil strength parameters have Lognormal distribution, the

problem has to be transformed into Normal space in order to perform reliability analyses.

The variables c'- LN(minc',GlEc) and '~ n ), need to be transformed to

Normally distributed variables, and this is done through the logarithm transformation.
2 2Nmf(~G,) lc 2Since, c'- LN(minc'',Gnc.) and 4'- LN(min',7 ), then Inc'~ N(mc',c , ) and ln4'~

N (m ,,,), where:

m' = 22n(minc')- In(a2 , + m2 C.) (6.23)
c 2 2n I

G 2ln(minc.)+n(a nc, + m2) (6.24)

M =2ln(min +)- In(y 2 +m2) (6.25)
22 2n' I

C 2, = -2 n(min +) + In( 1 2 + m2.) (6.26)

The failure boundary, defined by combinations of c' and 4' that result in Factors of

Safety equal to 1, also needs to be transformed into Normal space. This is done by

replacing c' and 4', in the Factor of Safety Equation with e and e , therefore

defining the failure boundary in In c' and In 4' space. Once the problem is transformed

into Normal space, the procedures described in Chapter 5, Part 5-4 can be employed,
and the Hasofer and Lind (1974) reliability index can be computed as shown in Figure

5.38.

The problem can be transformed further into standard Normal space, by defining two

new variables c'* and 4'* as:
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c'* (In c'-mC')
C'

(ln$'-m -)

[6.27]

[6.28]

C1* and 4'* are both standard Normal variables such that they have zero mean values,

and unit variances. The problem can then be solved as described in Figure 5.38 of

Chapter 5 in the standard Normal space.

To illustrate this, consider the following examples:

EXAMPLE 1: SHALLOW BEDROCK

Consider the slope shown in Figure 6.95.

4t5.--

10-

5-

-5

c' = 15 kN/m 2

<p' = 25
(Ua-Uw)entry =10 k

25 30 35 40

45 1

Figure 6.95. Slope Geometry and Strength Parameters
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We assume that the soil strength parameters c' and 4' follow Lognormal distributions

as: c'- LN(mc' = 15kN / m2 , c~' = 5kN / m2 ); 4'- LN(mv = 250, ay p' =50 ); and c' and

4' are uncorrelated. Note that the parameters of these models are the same as those for

the Normal distributions models that were used in Part 5-3 of Chapter 5.

Figure 6.96 shows the failure boundary, and - a dispersion ellipsoid in the transformed

Normal space, In c' and In 4'.

3.5 - - --

3-a disperson ellipsoid

3.25- (~0~W

SAFE REGION

S 3-
- Most Probable

Failure Point (c'*,0'*)

FAILURE
BOUNDARY

2.75 -

UNSAFE REGION

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

In (c')

Figure 6.96. Failure Boundary, and a - Dispersion Ellipsoid in Transformed Normal Space

Figure 6.97 shows the failure boundary, and P - a dispersion ellipsoid in the transformed

standard Normal space, c'* and 4'*, where c'* and 4'*, are as given in Equations

[6.27] and [6.28] respectively, and are Normal variables with zero mean and unit

variance (hence standard Normal variables).

536



-6-

SAFE REGION

Figure 6.97. Failure Boundary, and P - a Dispersion Ellipsoid in Standard Normal Space

The Hasofer and Lind (1974) reliability index is computed to be P = 0.66, and assuming

a Normal distribution for the Factor of Safety, this corresponds to a probability of failure

of Pf = 1D(-P)= 0.256. Comments on this probability of failure are provided in Table 6.15.
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EXAMPLE 2: DEEP FAILURE SURFACE (VERY DEEP BEDROCK)

Consider the slope shown in Figure 6.98.

-----15'-

c' = 10 kN/m
2

'= 200

(Ua-u )entry= 5kN/m2
10 -

5-

30 35 40

x (M)-5

10 -

Figure 6.98. Slope Geometry and Strength Parameters

We assume that: ' L ' 2c" LN(mc = 1 OkN/ m ac, = 2kN /m2 ); 4'~ LN (mv = 200,

c, = 2.50), and c' and ' are uncorrelated.

We transform the problem to Normal space, and Figure 6.99 shows the failure boundary,

and P - a dispersion ellipsoid in the transformed Normal space, In c' and In 4'.
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2.7r-
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Figure 6.99. Failure Boundary, and P - a Dispersion Ellipsoid in Transformed Normal Space

Figure 6.100 shows

transformed standard

the failure boundary, and p - a dispersion ellipsoid in the

Normal space, c'* and $'*.

2.5 -

SAFE REGION

-5 -2.5

-2.5

UNSAFE REGION

P-a disperson ellipsoid

2.5

FAILURE BOUNDARN

C'*

Figure 6.100. Failure Boundary, and P- a Dispersion Ellipsoid in Standard Normal Space

The Hasofer and Lind (1974) reliability index is computed to be P3= 1.54, and assuming

a Normal distribution for the Factor of Safety, this corresponds to a probability of failure

of Pf = D(--P)= 0.06. Comments on this probability of failure are provided in Table 6.15.
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6-2.1.3.2.2. DISTRIBUTION SUBMODEL UNCERTAINTY IN PROBABILISTIC SLOPE

STABILITY ANALYSES

We investigate the effects of Lognormal strength parameters on probabilistic slope

stability analyses by considering the following examples:

EXAMPLE 1: SHALLOW BEDROCK

Consider the slope shown in Figure 6.101.

15

10

5-

-5

-10

( r= 15 kN/M2

4) = 250
(ua-uw)entry = 10 kl'

-------.... ... . --- - -- - - ---- 
...........

/M2

ROCK

I5 5 10 ,- 15 20

x (m)

FAILURE SURFACE

25 30 35 40

-gure e5 a S

Figure 6.101. Slope Geometry and Strength Parameters

We assume that the soil strength parameters c' and 4' follow Lognormal distributions

as: c'- LN(mc' = 15kN / m2 , ac' = 5kN / m2); ' LN(m = 250, 50 =5); and c' and

4' are uncorrelated.

Monte Carlo techniques are used to generate random samples of c' and 4' from their

respective distributions. The technique for generating random variables from a

Lognormal distribution was discussed in Part 5-1 of Chapter 5. A random sample of
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Factor of Safety is therefore computed. Figure 6.102 shows the relative

frequency/probability distribution of the Factor of Safety.

2 - - - - - - - - - -

1.8

0 .6

2
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Co 1.4-

1.2-

0.2

0.2IX 0.4

0

0 0.6 152 .

Factor of Safety

Figure 6.102. Simulated Distribution of Factor of Safety for Lognormal Soil Strength Parameters

The expected value of the Factor of Safety is computed to be E[F] = 1.16, and the
standard deviation is a[F] = 0.23. The probability of failure is computed according to

Figure 6.102 as PF = 0.248.

The shape of the distribution of the Factor of Safety is different from that obtained in

Section 6.3.3.1.3, when c' and 4' are Normal. To gain a better understanding on the

shape of the distribution of the Factor of Safety, we compute the summary statistics that
are shown in Table 6.12.

Simulated Distribution
Expected Value, E[F] 1.163
Standard Deviation, a[F] 0.227
Skewness 0.7404
Kurtosis 1.1846
Probability of Failure 0.248

Table 6.12. Summary Statistics of Simulated Distribution for Lognormal c' and '
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Comparing Tables 6.2 and 6.12 shows the difference in the distributions of Factor of

Safety when c' and 4' are Normal compared to when they are Lognormal. The Kurtosis

in both cases is more or less the same, indicating no change in the peakedness of the

distribution. The Skewness is different however. While when c' and 4' are Normally

distributed the Skewness is almost zero, Table 6.12 shows that the Skewness is

significant when c' and 4' are Lognormal. This implies an asymmetry in the distribution

of Factor of Safety, and this is reflected in Figure 6.102.

Table 6.13 shows a summary of fitted theoretical distributions to the generated

distribution of Factor of Safety.

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F]/a[ln(F)]/ k e Failure

Normal 1.163 0.227 0.582 0.237
Lognormal 0.132 0.192 0.120 0.245
Gamma 26.134 22.473 0.267 0.241

Table 6.13. Fitted Distributions to Simulated Distribution for Lognormal c' and 4'

Table 6.13 shows that the lognormal distribution leads to the smallest error term, and

hence is the best fit distribution. These results show that the distribution of the Factor of

Safety in Figure 6.102, follows the Lognormal distribution more closely than it does the

Normal distribution. Figure 6.103 shows this, by comparing the simulated distribution

with the fitted Normal and Lognormal distributions.
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Figure 6.103. Comparison of Simulated Distribution of Factor of Safety with the Fitted Normal
and Lognormal Distributions

The chosen/assumed probability distribution model for the uncertain strength parameters

therefore has an effect on the shape of the probability distribution of the Factor of Safety.

This illustrates distribution model uncertainty. Since the distribution of Factor of Safety is

different, so is the probability of failure.

In the case of Lognormally distributed c' and 4', the distribution of the Factor of Safety

is well approximated by the Lognormal distribution. In this example, the probability of

failure is greater when c' and J' are Lognormal compared to when they are Normal.

Figure 6.104 compares the distribution of Factor of Safety when c' and 4' are Normal

and when they are Lognormal.
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Figure 6.104. Comparison of Simulated Distributions of Factor of Safety with for Normal and
Lognormal Strength Parameters

Figure 6.104 shows that this is the case, since the area under the distribution when c'

and 4' are Lognormal where F < 1 (i.e. probability of failure), is greater than that under

the distribution when c' and 4' are Normal.
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EXAMPLE 2: DEEP FAILURE SURFACE (VERY DEEP BEDROCK)

Consider the slope shown in Figure 6.105.

' = 10 kN/m2

0'= 200

(ua-u )entry= 5kN/m2
10

5-

30 35 40

-5

5 - 10 15 20 25

x (in)

Figure 6.105. Slope Geometry and Strength Parameters

We assume that: c'- LN(mc' =10kN/m 2 , GC0 = 2kN/m 2 ); -'~ LN (mp = 20 0 ,

og = 2.50), and c' and #' are uncorrelated.

Figure 6.106 shows the simulated distribution of Factor of Safety, and Figure 6.107

compares the simulated distribution with the fitted Normal and Lognormal distributions.
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Figure 6.106. Simulated Distribution of Factor of Safety for Lognormal Soil Strength Parameters

The expected value of the Factor of Safety is E[F] = 1.18, and a[F] = 0.14.
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Figure 6.107. Comparison of Simulated Distribution of Factor of Safety with the Fitted Normal
and Lognormal Distributions

Table 6.14 shows a summary of the parameters of the fitted distributions in this example,

and shows that the distribution of Factor of Safety is better approximated by the

Lognormal distribution than by the Normal distribution, when c' and ' are Lognormal.
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Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F]/a[ln(F)]/ k e Failure

Normal 1.176 0.136 0.390 0.098
Lognormal 0.155 0.115 0.107 0.088
Gamma 74.995 63.790 0.158 0.092

Table 6.14. Fitted Distributions to Simulated Distribution for Lognormal c' and V

Figure 6.108 compares the distributions of Factor of Safety when c' and 4' are Normal,

and when c' and 4' are Lognormal.

3.5 r
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Figure 6.108. Comparison of
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of for Normal and Lognormal Strength

The probability of failure when c' and 4' are Normal is PF = 0.091, and PF = 0.08 when

c' and 4' are Lognormal. This is illustrated in Figure 6.108, which shows the larger

failure probability when c' and 4' are Normal. This result is different to the one obtained

in the first, where the probability of failure was greater when c' and #' are Lognormal.

Therefore, no general conclusion can be made regarding the value of the probability of

failure when c' and 4' are Normal compared to when they are Lognormal. The

probability of failure will depend on the expected value and variance of the Factor of

Safety in the particular slope. Although these may be similar in magnitude for both cases

of Normal and Lognormal c' and #', the particular values of expected value and

variance of Factor of Safety are important. These, in turn, will depend on the expected
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values and variances of the uncertain parameters c' and #'. If the Factor of Safety has

expected value much greater than the critical value of one, and a small variance, then

the probability of failure for Lognormal c' and 4' would be smaller than that when c' and

4' are Normal. If, on the other hand, the expected value of Factor of Safety is close to

the value of one, and it has a large variance, then probability of failure for Lognormal c'

and 4' would be greater than that when c' and 4' are Normal.

In summary, we conclude that the distribution of Factor of Safety in a slope will depend

on the distribution model for c' and 4'. When c' and 4' are Normal, the distribution of

Factor of Safety is well approximated be the Normal distribution, and when c' and 4'
Lognormal, the distribution of Factor of Safety is well approximated be the Lognormal

distribution. No general conclusion can be made regarding the magnitude of the

probability of failure which will depend on the particular case under consideration. These

results illustrate the effects of parameter model distribution on the results of probabilistic

slope stability analyses.

Table 6.15 summarizes the results of reliability and probabilistic analyses performed on

the slopes in Examples 1 and 2.

Second Moment

Reliability Analyses Probabilistic Analyses

S PF = D(-P) E[F] (F F

SLOPE 1

c' and 4'Normal 0.72 0.235 1.18 0.22 0.233

c' and 4' Lognormal 0.66 0.256 1.18 0.23

SLOPE 2

c' and 4' Normal 1.31 0.095 1.17 0.13 0.091

c' and 4' Lognormal 1.54 0.060 1.18 0.14 0.080

Table 6.15. Comparison of Results from Second Moment Reliability and Probabilistic Analyses
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Table 6.15 shows that the results of reliability analyses are in good agreement with

probabilistic analyses when c' and 4'are Normal, because the distribution of Factor of

Safety can be approximated by the Normal distribution. The agreement between the

results is however, not as good when c' and 4'are Lognormal. There are two reasons

for this: The first is because the failure boundary in the transformed space of In c' and In

4' is non linear leading to inaccuracies in reliability analyses. The second is because the

distribution of Factor of Safety is better approximated by the Lognormal distribution,
when c' and 4' are Lognormal. In Example 1, the probability of failure is overestimated,

and in Example 2 it is underestimated. A more thorough discussion on this is provided in

Appendix D.
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6-2.1.3.2.3. DISTRIBUTION SUBMODEL UNCERTAINTY IN LANDSLIDE HAZARDS

In order to investigate the effects of parameter distribution model on landslide hazards,

we reconsider the following two examples.

LANDSLIDE HAZARDS WITH RAINFALL INTENSITY LESS THAN SATURATED

CONDUCTIVITY

In this example, we consider the slope shown in Figure 6.109.
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)5~ 10
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Figure 6.109. Slope Geometric and Strength Parameters

We assume a rainfall event with intensity, I = 75mm / hr occurs for a duration of 8 hours.
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Figure 6.110 shows
selected times.
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moisture profiles, and Figure 6.111 shows pressure profiles at
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Figure 6.110. Moisture Content Profiles with Time using the van Genuchten (1980) Model
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Figure 6.111. Pressure Profiles with Time using the van Genuchten (1980) Model
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Figure 6.112 shows the expected value of the Factor of Safety with time into the rainfall

event.
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Figure 6.112. Expected Value of Factor of Safety with Time for Lognormal Strength Parameters

We now assume that the strength parameters are hydraulic conductivity are uncertain

and distributed as:

c'~ LN(mc' = 0.5kN / m 2, ac' =0.125kN/m2), ' LN(mv = 280, cg = 70)

Ks ~ LN (mKs = 250cm / day ,Y = (125cm/ day)2

and c', *' , and Ks are uncorrelated.

Figure 6.113 shows the probability distribution of the Factor of Safety at selected times.
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Figure 6.113 shows how the distribution of Factor of Safety moves towards the origin

with increasing time into the rain event. This causes a decrease in the expected value of

the Factor of Safety which is reflected in Figure 6.112.

To gain a better understanding of the shape of the distributions of Factor of Safety we

examine the statistics shown in Tables 6.16 through 6.23. Tables 6.16 and 6.17 present

the statistics for time t = 4 hours, Tables 6.18 and 6.19 for time 5 hours , Tables 6.20

and 6.21 for time 6 hours, and Tables 6.22 and 6.23 for time 8 hours.

Simulated Distribution
Expected Value, E[F] 1.378
Standard Deviation, a[F] 0.432
Skewness 1.5795
Kurtosis 5.5139
Probability of Failure 0.168

Table 6.16. Summary Statistics of Simulated Distribution at time 4 hours

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F]/a[ln(F)]/ k e Failure

Normal 1.377 0.432 0.755 0.191
Lognormal 0.277 0.291 0.168 0.170
Gamma 11.656 8.462 0.356 0.174

Table 6.17. Fitted Distributions to Simulated Distribution at time 4 hours
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Simulated Distribution
Expected Value, E[F] 1.247
Standard Deviation, a[F] 0.381
Skewness 1.5500
Kurtosis 6.2325
Probability of Failure 0.268

Table 6.18. Summary Statistics of Simulated Distribution at time 5 hours

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F] /a [ln(F)]/ X e Failure

Normal 1.246 0.381 0.803 0.259
Lognormal 0.179 0.285 0.197 0.265
Gamma 12.162 9.757 0.393 0.260

Table 6.19. Fitted Distributions to Simulated Distribution at time 5 hours

Simulated Distribution
Expected Value, E[F] 1.139
Standard Deviation, a[F] 0.354
Skewness 1.4633
Kurtosis 4.0728
Probability of Failure 0.393

Table 6.20. Summary Statistics of Simulated Distribution at time 6 hours

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F]/a [ln(F)]/ X e Failure

Normal 1.139 0.354 0.866 0.348
Lognormal 0.087 0.289 0.230 0.382
Gamma 11.794 10.359 0.434 0.368

Table 6.21. Fitted Distributions to Simulated Distribution at time 6 hours

Simulated Distribution
Expected Value, E[F] 1.084
Standard Deviation, a[F] 0.345
Skewness 1.8008
Kurtosis 9.0610
Probability of Failure 0.466

Table 6.22. Summary Statistics of Simulated Distribution at time 8 hours

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r a[F]/a[ln(F)]/ X e Failure

Normal 1.084 0.345 0.827 0.404
Lognormal 0.036 0.294 0.157 0.451
Gamma 11.393 10.512 0.371 0.433

Table 6.23. Fitted Distributions to Simulated Distribution at time 8 hours
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Several conclusions can be made with regard to Tables 6.16 through 6.23:

a. The expected value of the Factor of Safety decreases with time, which leads to an

increase in the probability of failure.

b. The coefficient of Kurtosis is greater than one at all times, indicating a more peaked

distribution relative to the Normal distribution.

c. The coefficient of Skewness remains more or less the same with time, and is greater

than zero. The distribution is therefore not symmetric about the mean value of Factor

of Safety as it would be if the distribution were Normal.

d. The best fitted distribution seems to be the Lognormal distribution, as it is the

distribution that has the lowest error term e. This indicates that the distribution of

Factor of Safety is better approximated by the Lognormal distribution than by the

Normal or Gamma distributions.

The results in this Section are different than what was obtained in Part 5-5 of Chapter 5,
when c' and 4' were assumed to be Normally distributed:

In Part 5-5 of Chapter 5, we first concluded that the distributions of c' and 4' have a

larger effect on the distribution of the Factor of Safety than the distribution of the

saturated conductivity of the soil. We also concluded that when c' and 4' are Normal,

the distribution of Factor of Safety could be well approximated by the Normal (at early

times after the start of rain) and Gamma distributions (at later times after the start of

rain), because of the non-Normality of the saturated conductivity. In this example, when

c' and 4' are Lognormal, they have a sufficient effect on the distribution of Factor of

Safety that it is better approximated by the Lognormal distribution than by the Normal

and/or Gamma distributions.

In Section 6.3.3.2.1 we showed that when c' and ' are uncertain and Lognormally

distributed, then the Factor of Safety is well approximated by the Lognormal distribution.

So, if the hydraulic conductivity were deterministic in this example, then at any time t, i.e.

for a given pressure distribution, the only uncertain parameters are c' and 4' and these

are Lognormally distributed, so we would expect the Factor of Safety to be Lognormally

distributed as well. This indicates that the uncertainty in c' and ', and hence the
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distributions of c' and 4' have a larger effect on the resulting distribution of the Factor of

Safety than the distribution of the hydraulic conductivity, confirming the results obtained

in Section 6.3.3.2.1.

The probability of failure at any time t is computed from the distributions in Figure 6.113

1
as PF fF(c',')dF, and this is shown in Figure 6.114.
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Figure 6.114. Probability of Failure with Time for Lognormal Strength Parameters

Figure 6.114 shows the increase in failure probability with time. Figure 6.115 compares

the probability of failure when c' and 4' are Lognormal with those when c' and 4' are

Normal (which were obtained in Part 5-5 of Chapter 5).
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Figure 6.115. Comparison of Probability of Failure for Normal and Lognormal Strength
Parameters

Figure 6.115 shows that at early times into the rain event, the failure probability is slightly

greater when c' and 4' are Normal, but at later times it is greater when c' and 4' are

Lognormal. The reason for this is explained in Figure 6.116, which compares the

distribution of Factor of Safety at selected times when c' and 4' are Lognormal with

those when c' and 4' are Normal.
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Figure 6.116. Comparison of Probability Distribution of Factor of Safety at Selected Times for
Normal and Lognormal Strength Parameters

The distributions in Figure 6.116 show that at early times, the failure probability is slightly

greater when c' and 4' are Normal, but at later times it is greater when c' and j' are

Lognormal. These results confirm what had been stated in Section 6-2.1.3.2.1, namely

that one cannot generalize whether the probability of failure when c' and 4' are

Lognormal will be greater or less than the probability of failure when c' and #' are

Normal.

Figures 6.115 and 6.116 both illustrate the effects of parameter distribution model

uncertainty on landslide hazards.
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LANDSLIDE HAZARDS WITH RAINFALL INTENSITY GREATER THAN SATURATED

CONDUCTIVITY

In this example, we consider the slope shown in Figure 6.117.

C'= 0.5 kN/m2
= 200 FAILURE

y = 20 kN/m2  SURFACE
0 (Ua-Uw)entry = 10kN/m

K= 200 cm/day

5-

-5

ROCK

1)5

-6..+o

20

x (M)

25 30 35 40

.4Q..[.~.-.

Figure 6.117. Slope Properties and Failure Surface

We assume a rainfall event of intensity I = 375cm/day =155mm / hr occurs for a

duration of 8 hours. Figure 6.118 shows moisture profiles, and Figure 6.119 shows

pressure profiles at selected times.
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Figure 6.120 shows the expected value of Factor of Safety with time.
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Figure 6.120. Expected Value of Factor of Safety with Time for Lognormal Strength Parameters

We now assume that the soil hydraulic conductivity and strength parameters are

distributed as:

Ks - LN (mKs = 200cm/day,(72 (100cm/day)2);Ks

2 2C'- LN(mc, :-- 0.5kN / m , ac- = 0.01 7kN / m LN(m , = 200, cy - = 6.670 ), and c ,

' and Ks are uncorrelated.

The probability distributions of the Factor of Safety at different times are shown in Figure

6.121, and show a shift towards the origin with increasing time into the rainfall event.
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Tables 6.24 through 6.29 summarize the statistics and properties of the fitted

distributions for this example.

Simulated Distribution
Expected Value, E[F] 1.274
Standard Deviation, a[F] 0.490
Skewness 1.5702
Kurtosis 5.3409
Probability of Failure 0.315

Table 6.24. Summary Statistics of Simulated Distribution at time 4 hours

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r c[F]/c[ln(F)]/ k e Failure

Normal 1.274 0.490 0.749 0.288
Lognormal 0.176 0.360 0.086 0.312
Gamma 7.741 6.077 0.292 0.300

Table 6.25. Fitted Distributions to Simulated Distribution at time 4 hours

Simulated Distribution
Expected Value, E[F] 1.144
Standard Deviation, cy[F] 0.450
Skewness 1.5428
Kurtosis 4.7662
Probability of Failure 0.438

Table 6.26. Summary Statistics of Simulated Distribution at time 5 hours
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Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r c[F]/a[ln(F)]/ X e Failure

Normal 1.144 0.450 0.828 0.374
Lognormal 0.066 0.366 0.122 0.428
Gamma 7.456 6.516 0.347 0.407

Table 6.27. Fitted Distributions to Simulated Distribution at time 5 hours

Simulated Distribution
Expected Value, E[F] 1.023
Standard Deviation, G[F] 0.387
Skewness 1.8782
Kurtosis 8.9039
Probability of Failure 0.558

Table 6.28. Summary Statistics of Simulated Distribution at time 8 hours

Fitted Maximum Likelihood Parameters Error Term, Probability of
Distribution E[F]/ E[ln(F)]/ r c[F]/GT[ln(F)]/ k e Failure

Normal 1.023 0.387 0.889 0.476
Log normal -0.038 0.345 0.139 0.544
Gamma 8.289 8.100 0.376 0.520

Table 6.29. Fitted Distributions to Simulated Distribution at time 8 hours

Similar comments can be made with regard to Tables 6.24 through 6.29 as were made

with regard to Tables 6.16 through 6.23. The distribution of the Factor of Safety is

Skewed and better approximated by the Lognormal distribution than by the Gamma or

Normal distributions. This is shown in Figure 6.121. We also note that the fit to the

Lognormal distribution is better in this example than in the previous example, because of

the smaller error term. This is because of the greater uncertainty in the strength

parameters, expressed by the larger coefficients of variation Vc' = Var[c']
E[c']

Var[p'] 1 .Var[c'] Var[']
Vv = -= - in this example, compared to V.' = = V =E['] 3 Elc'] E[']

11 in the previous example. Consequently, the effects the distributions of c' and j'
4

have a greater effect on the distribution of the Factor of Safety, and since these are

Lognormal, the distribution of the Factor of Safety tends towards the distribution when
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only c' and 4' are uncertain (and the conductivity is deterministic) which is a Lognormal

distribution as was shown in Section 6.3.3.2.1.

Figure 6.122 compares the probability of failure when c' and #' are Lognormal with

those when c' and 4' are Normal (which were obtained in Part 5-5 of Chapter 5).
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Figure 6.122. Comparison of Probability of Failure for Normal and Lognormal Strength
Parameters

Figure 6.122 shows that in this example, the probability of failure when c' and 4' are

Lognormal is greater at all times than the failure probability when c' and 4' are Normal.

Figure 6.123 compares the distributions of Factor of Safety at different times when c'

and 4' are Lognormal with those when c' and 4' are Normal (which were obtained in

Part 5-5 of Chapter 5).
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Figure 6.123. Comparison of Probability Distribution of Factor of Safety at Selected Times for
Normal and Lognormal Strength Parameters

Figures 6.120 and 6.121 again illustrate the effects of parameter distribution model

uncertainty on landslide hazards, and that these effects can be significant.

6-2.1.3.2.4. SUMMARY ON PARAMETER DISTRIBUTION SUBMODEL

UNCERTAINTY

Chapter 5, Part 5-5, investigated the effects of parameter uncertainties on landslide

hazards, and we showed that uncertainties in c' and 4' have a greater effect on

uncertainties in the Factor of Safety than the saturated conductivity of the soil. In this

Section, we showed that the distributions of c' and #' have a greater effect on the

distribution of the Factor of Safety than the distribution of the conductivity of the soil. The

results are summarized in Tables 6.30 to 6.34:
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Coefficient of Distribution

Parameter Distribution Variation of Factor of Comments

(Uncertainty) Safety

C Normal Small or Large Factor of Safety

4' Normal Small or Large approximately linear

Normal function of c' and 4' and

Ks Deterministic Zero distribution of Factor of

Safety is Normal

Table 6.30. Distribution of Factor of Safety for Normal Strength Parameters and Deterministic
Conductivity

Coefficient of Distribution

Parameter Distribution Variation of Factor of Comments

(Uncertainty) Safety

C Lognormal Small or Large
Distribution of Factor of

4' Lognormal Small or Large Lognormal
Safety is also Lognormal

Ks Deterministic Zero

Table 6.31. Distribution of Factor of Safety for Lognormal Strength Parameters and Deterministic
Conductivity

Coefficient of Distribution

Parameter Distribution Variation of Factor of Comments

(Uncertainty) Safety

' Normal Large Uncertainties in c' and 4'

0' Normal Large more important than in Ks
Normal and govern distribution of

Ks Lognormal Typical Factor of Safety which is

Normal

Table 6.32. Distribution of Factor of Safety for Normal Strength Parameters (Large Uncertainty)
and Lognormal Conductivity
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Coefficient of Distribution

Parameter Distribution Variation of Factor of Comments

(Uncertainty) Safety

C Normal Small Uncertainties in Ks

Normal Small become important but not

Gamma/ as important as c' and '

Normal and distribution of Factor
Ks Lognormal TypicalofSetisama of Safety is Gamma/

Normal

Table 6.33. Distribution of Factor of Safety for Normal Strength Parameters (Small Uncertainty)
and Lognormal Conductivity

Coefficient of Distribution

Parameter Distribution Variation of Factor of Comments

(Uncertainty) Safety

C Lognormal Small or Large Uncertainties in c' and #'

Lognormal Small or Large more important than in Ks

Lognormal and govern distribution of

Ks Lognormal Typical Factor of Safety which is

Lognormal

Table 6.34. Distribution of Factor of Safety for Lognormal Strength Parameters and Lognormal
Conductivity

We therefore conclude that the distribution of the Factor of Safety, in terms of both

shape and parameters (expected value and variance) is dependent on the distributions

of c', 4' and Ks as well as the parameters (uncertainties) of these distributions. c' and

j' are the main contributors to the uncertainty in Factors of Safety, and hence their

distributions affect the distributions of Factor of Safety more than the distribution of K. -

No general conclusion can be made as to whether probabilities of failure (hazards) are

greater or less based solely on the distribution of c' and 4' e.g. when c' and 4' are

Normal compared to when they are Lognormal. Probabilities of failure will depend on the

particular case under study.
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6-2.1.3.3. FACTOR OF SAFETY PROBABILITY DISTRIBUTION SUBMODEL

UNCERTAINTY

In this Chapter, and in Chapter 5, attempts were made to fit theoretical probability

distributions to the Factor of Safety in a slope. This was done for stability analyses, and

coupled hydrologic and stability analyses. Suppose that these derived distributions are

used to assess landslide hazards. One assumes the Factor of Safety in a slope (or

series of slopes in a certain region) to follow a theoretically derived distribution, and

assesses hazards based on these distributions. There are uncertainties associated with

doing this, because uncertainties arise when fitting theoretical probability distributions to

simulated distributions of the Factor of Safety. There are two types of uncertainties that

enter:

(a) Model uncertainty when assuming that the true distribution of the Factor of Safety

follows a theoretical probability distribution such as the Normal, Lognormal or Gamma

distribution.

(b) Parameter uncertainty when estimating the parameters of these probability models.

The Method of Maximum Likelihood was used for this purpose in this study, and

estimating the parameters of the distribution depend on the sample of Factor of Safety

obtained using Monte Carlo analyses. These parameters will therefore be different for

every sample of Factor of Safety, and are so subject to parameter uncertainty.

Uncertainties in the distribution of the Factor of Safety translate to uncertainties in

estimating probabilities from these distributions, e.g. the probability of failure P[F] <1,

and hence uncertainties in estimating landslide hazards.

6-2.1.4. CONCLUSIONS ON DISTRIBUTION SUBMODEL UNCERTAINTY

The effects of parameter distribution model uncertainty on probabilistic slope stability

analyses, and landslide hazards were assessed. We showed that these effects can be

significant, and can lead to different conclusions regarding stability and landslide

hazards. In particular, we showed that including (negative) correlation between the

strength parameters reduces the uncertainty (variance) in Factors of Safety and

therefore reduces probabilities of failure. We showed that assuming Lognormal
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distributions for the strength parameters (as opposed to Normal distributions) changes

the shape of the distribution of the Factor of Safety, and this affects probabilities of slope

failure and landslide hazards. No general conclusion can be drawn with regard to

whether probabilities of failure are greater (or less) in the case of Lognormal parameters

compared to Normal parameters, and these have to be determined on a case by case

basis. Furthermore, when assessing landslide hazards, for a specific case, which

probability of failure is greater (when the strength parameters are Normal and when they

are Lognormal) can change with time as shown in Figure 6.115. In Figure 6.115 at early

times, the probability of failure when the parameters are Normal is greater, but at later

times, when they are Lognormal it is greater.

Fitting probability distributions to the Factor of Safety is also uncertain, as uncertainties

enter in estimating the parameters of these distributions, e.g. mean value and variance,

and the distributions themselves, e.g. normal, lognormal, gamma or other. This is

another source of uncertainty that can affect landslide hazards assessments.
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6-2.1.4. STRENGTH SUBMODEL UNCERTAINTY

Stability analyses require submodels of models to represent soil strength. While the

strength of saturated soils is well represented by the Coulomb Model, the strength of

unsaturated soils is not well represented. This is mainly because of the lack of

understanding of the mechanisms that generate unsaturated strength. In this Section,

after providing some theoretical background, we investigate the effects of unsaturated

strength model uncertainty on slope reliability and probabilistic analyses, and on

landslide hazards. Figure 6.123 shows in bold what is studied in this Section.
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Figure 6.123. Effects of unsaturated strength models (shown in the lightly shaded submodels
box) on the results of stability analyses (Factors of safety, reliability indices and probabilities of

failure in the dark shaded box) and on landslide hazards (dark box) are investigated
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6-2.1.4.1. BACKGROUND

Models to represent the strength of soils need to be adopted to perform stability

analyses. The shear strength of saturated soils is described using the Coulomb Model

and the effective stress concept (Terzaghi, 1936):

t = c'+(a - uw )tan ' [6.26]

Or:

T = c'+y'tan#' [6.27]

where:

G is the total normal stress

uw is the pore water pressure

a' is the effective normal stress c3'= (a - uw)

C' is the effective cohesion or shear stress when the net or effective normal stress

is equal to zero

is the angle of internal friction of the soil

Ir is the shear strength of the soil

The shear strength of unsaturated soils is, however, much less understood. Over the

years, several models have been proposed to predict the unsaturated shear strength.

The philosophy behind these models is different with regard to the contribution of suction

towards unsaturated strength.

Bishop (1959) originally proposed a shear strength Equation for unsaturated soils by

extending the effective stress principle (Terzaghi, 1936) for saturated soils. The model

can be expressed as:

T = c'+[(cy - ua) + x(ua - uw )]tan 4' [6.28]

572



where X is a so called effective stress parameter, and represents the proportion of

suction, (ua - uw) that contributes to strength.

Significant difficulties were encountered in the interpretation and experimental

determination of the parameterX, and interest in the model was lost for some years.

Fredlund et al. (1978) proposed a relationship to explain the shear strength of

unsaturated soils in terms of two independent stress state variables as:

T = c'+(G - ua)tan '+(ua - uw )tan #b [6.29]

This model assumes a linear variation of unsaturated strength with suction, (ua -uW),

and the parameter b , is constant, and can be empirically set. Although it is widely

recognized that the relationship between unsaturated strength and suction is non linear,
the model has, and continues to be widely used as a model for unsaturated strength,
because of its simplicity. This is particularly the case in slope stability studies.

In recent years, however, there has been growing interest in the originally proposed

effective stress approach by Bishop (1959). This is partly because of the need for a

better model for unsaturated strength, and partly because advancements in
experimental procedures have allowed for the better determination of X.

In the next Section, the two models for unsaturated soil strength, namely the Effective
Stress Model (Bishop, 1959), Independent State Variable Model (Fredlund et al., 1978)
are described in more detail. These two models, along with the Coulomb Model for

saturated strength, are then used to investigate the effect of strength model uncertainty
on stability analyses.

6-2.1.4.1.a. INDEPENDENT STATE VARIABLE SUBMODEL (Fredlund et al., 1978)

In the Independent State Variable Model, the net normal stress, (a -ua) and suction,

(ua - uw ) are considered independent stress state variables. In doing so, an extended
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Coulomb criterion for unsaturated soils can be formulated (Fredlund et al., 1978).

Assuming a planar failure envelope, the unsaturated shear strength can be written as:

T = c'+(a-ua)tan'+(ua -uw)tan#b [6.30]

where:

a is the total normal stress

ua is the pore air pressure

(Ua - uw ) is the soil suction

a' is the effective normal stress a'= (a - u )

C' is the effective cohesion or shear stress when the net or effective normal stress

is equal to zero

is the angle of internal friction of the soil

b is the angle indicating the rate of change in shear strength relative to changes in

suction, (ua -uW)

T is the shear strength of the soil

Figure 6.124 shows a three-dimensional schematic of the proposed unsaturated failure

envelope in T - (a -ua) - (ua - uw) space.
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Shear Strength, T Suction, (Ua- uw)
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Net Normal Stress, (a - ua)

Figure 6.124. Schematic of Independent State Variable Model Failure Envelope for Constant b

The envelope in Figure 6.124 is planar for constant parameter b. In such cases, b is

the slope of shear strength against suction plot when the net normal stress is held

constant. This is illustrated in Figure 6.125.
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Total Cohesion, c

ct

Suction, (Ua - U,)

Figure 6.125. Schematic of Increase in Total Cohesion with Suction

The angle b provides an additional component of soil cohesion caused by suction. The

total cohesion of the soil, c therefore, has two components, and can be expressed as:

c = c'+(ua -uw)tan b [6.31]

The shear strength Equation for unsaturated soils can then be reduced to the same

format as that used for saturated soils:

T = c + (a - ua)tan $' [6.32]

where c is the total cohesion in Equation [6.31].
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As saturation is approached, the pore air pressure ua becomes equal to the pore water

pressure, uw . When ua = uw , c = c', and Equation [6.32] reverts to the Coulomb

Model for a saturated soil.

T = c'+(a - uw )tan #' [6.33]

This model for unsaturated strength has been extensively used in the literature, because

of the assumption of linearity of unsaturated strength with suction. This is particularly

true since the parameter $b has been empirically set in many of these studies.

However, it has long been recognized that the parameter $b is highly non-linear with

suction (Satija, 1978; Ho and Fredlund, 1982; Gan et al., 1988, Gan and Fredlund, 1988;

Rahardjo et al., 1995).

Rahardjo et al. (1995) describe experimental procedures by which $b can be

determined, and showed that $b is equal to 4' for a saturated soil, decreases with

decreasing degree of saturation and stabilizes to a constant value at relatively large

suctions, the values of which depend on the type of soil. These laboratory procedures

have proven to be demanding and time-consuming, particularly for fine-grained

materials, in which the coefficient of permeability of the material is very low. The

equipment used for this purpose is generally expensive and sophisticated, and the level

of expertise required for the determination of $b is often beyond that of many

geotechnical engineering laboratories. In addition, due to the strong non-linearity of $b

with suction, the predictive capacity of the approach is limited to situations where the

suction range used in the laboratory to establish $b is the same as that expected in the

field (Khalili & Khabbaz, 1998). Hence, for good predications of strength, the testing

suction range must cover what is expected to be encountered in the field.

Given these limitations, and the recent advancements in experimental procedures, there

has been growing interest in the originally proposed Effective Stress Model (Bishop,
1959).
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6-2.1.4.1.b. EFFECTIVE STRESS SUBMODEL (Bishop, 1959)

In the originally proposed Bishop (1959) Model, the shear strength is determined on the

basis of the effective strength parameters c' and 4'and a single stress variable defined

as:

('= (c - Ua) + X(ua - uw )

where:

x

[6.34]

is the effective stress

is the effective stress parameter

Unsaturated shear strength is expressed as:

U = c'+[(G - Ua ) + X(ua - uw )]tan ' [6.35]

The pore air pressure uw is frequently assumed to be zero, in which case Equation

[6.35] reduces to:

T= c'+[(a) + X(-uw)]tan ' [6.36]

The effective stress parametery, has a value of 1 for saturated soils and 0 for dry soils.

When X = 1, unsaturated strength in Equation [6.35] becomes:

T = c'+a'tan #' [6.36]

which is identical to the saturated Coulomb Model where c' and 4' are the saturated

strength parameters.

The advantage of the effective stress model is that the change in the shear strength with

changes in total stress, pore water pressure and pore air pressure is related to a single

stress variable, a'= (a - ua) + X(ua - uw). As a result, a complete characterization of the
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soil strength requires matching of a single stress history rather than two or three

independent stress variables, as in the Independent State Variable Model where the

state variables are U'= (U - ua), and suction (ua - uw). Furthermore, the approach

requires very limited testing of soils in an unsaturated state.

However, a major difficulty of the effective stress approach has been in the

determination of the parameterx. X in Equation [6.35] is an empirical parameter

representing the proportion of soil suction that contributes to the effective stress.

Considerable attempts have been made to quantify , both theoretically and

experimentally. Most attempts have focused on finding a relationship between X and the

degree of saturation Sr (Vanapalli et al., 1996; Oberg and Sallfors, 1997; Bao et al.,

1998). Vanapalli et al. (1996), for example, propose:

X = ( - j [6.37]

where:

O is the moisture content in the soil

Os is the saturated moisture content of soil (see Chapter 2)

Or is the residual moisture content of soil (see Chapter 2)

Other attempts have also been made to quantify x using simple capillary models, but

with little or no success. More recent approaches (Kogho et al., 1993; Modaressi and
Abou-Bekr, 1994; Khalili and Khabbaz, 1998) consider X as a function of the suction,

and have attempted to relate X to the soil water characteristic curve (see Chapter 2).

Khalili and Khabbaz (1998) propose a unique relationship between the effective stress
parameter X and the ratio of the suction over the air entry value, based on the shear

strength data of 14 soils reported in the literature. X is expressed as:
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-- -0.55

= (ua -uw ) [6.38]
(ua - uw )entry_

where:

(ua - uw) is the suction ratio
(ua - Uw)entry

(ua - Uw )enrty is the air entry suction (as defined in Chapter 2).

The fit to the data has a correlation coefficient of 0.94.

Geiser (2000) tested the applicability of the single effective stress relationship proposed

by Khalili and Khabbaz (1998), based on an extensive experimental program on various

silts at the Swiss Federal Institute of Technology at Lausanne, and confirmed the

relationship.

In this study, the Independent State Variable Model (Fredlund et al, 1978) with constant

parameter <b and the Effective Stress Model (Bishop, 1959), with the parameter X as

proposed by Khalili and Khabbaz (1998) are used. Strength model uncertainty is

assessed using these models in both deterministic and probabilistic slope stability

analyses. The effects of strength model uncertainty on landslide hazards are then

investigated.

6-2.1.4.2. STRENGTH SUBMODEL UNCERTAINTY FOR PLANAR FAILURE

SURFACE

The strength of unsaturated soil is described using the Independent State Variable

Model, and the Effective Stress Model for different parameter values. The variation of

strength using the different models in relation to suction (ua - uw ) is shown in Figure

6.126.
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Figure 6.126. Illustration of Strength Model Uncertainty

Figure 6.126 illustrates the effects of parameter uncertainty (different values of the

parameters in the same strength model) and strength model uncertainty.

A simple and good example to illustrate the effects of model uncertainty on stability

analyses considers the stability of the slope in Figure 6.127. Figure 6.127 shows the

results of Infinite Slope Stability analyses on the slope using the different strength

models, and therefore illustrates the effects of strength model uncertainty on stability

analyses.
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Figure 6.127. Effect of Strength Model Uncertainty (Figure 6.126) on Stability

Two boundary cases are used in the Coulomb Model, that of full capillarity, and that of

no contribution from suction towards stability. The case of full capillarity corresponds to

hydrostatic pressures in both the saturated (positive pressures) and unsaturated

(negative pressures) zones of the slope. The case of no suction corresponds to

hydrostatic pressures in the saturated (positive pressures) and zero pressures in the

unsaturated zone of the slope. These are boundary cases because they consider the

maximum and minimum possible contributions of suction towards strength.

Figure 6.127 shows that different strength models result in different values of the Factor

of Safety, and different conclusions on stability. The Coulomb model with full contribution

from suction, and no contribution from suction are upper and lower bounds to the Factor

of Safety. Neither case accurately represents reality, but provide an envelope within

which and the actual Factor of Safety (from the actual unsaturated soil strength) lies.
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6-2.1.4.3. STRENGTH SUBMODEL UNCERTAINTY IN SLOPE DETERMINISTIC AND

RELIABILITY ANALYSES

To illustrate the effects of strength model uncertainty on slope stability analyses, we

analyze the stability of a slope using three models for unsaturated strength, namely the

Effective Stress Model, the Independent State Variable Model, and the Coulomb Model.

EFFECTIVE STRESS MODEL

Consider the slope shown in Figure 6.128. We

parameters shown in Figure 6.128, and

assume the saturated strength

an air entry pressure of

10 -

5-

(ua -uw)entry =10kN/m 2 . This air entry pressure is used in the Effective Stress

Model for unsaturated strength (see Equations [6.35] and [6.38]).

c = 15 kN/m 2

=250
=a 22 S O IL

(ua-uw)entry =10 kNIm2

- ROCK

5 10 , 15 20

x (M)

CRITICAL FAILURE
SURFACE

Figure 6.128. Slope Geometry and Strength Parameters

This slope was analyzed in Chapter 5, Part 5-3, and the Factor of Safety in the slope

was computed to be 1.18 on the critical deterministic failure surface.
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We now assume that the soil strength parameters are uncertain and that,

c'~ (mc' =15kN / m2 , ac' = 5kN /m2); (' (m. = 250, cy ' =50) ; and that c' and j'

are uncorrelated.

The critical reliability based failure surface is located as shown in Figure 6.128, and the

Hasofer and Lind (1974) reliability index is computed to be 0.72. A simple reliability chart

is shown in Figure 6.129.

35 - - - -

P-a disperson ellipsoid

30

20
Most Probable SAFE REGION

-- Failure Point (c'*, '*)

15

10 UNSAFE REGION

5-

0 -

0 0.5 1 1.5 2 2.5 3 3.5

c' (x 9.81 kN/m 2)

Figure 6.129. Reliability Chart Based on Critical Reliability Based Failure Surface

INDEPENDENT STATE VARIABLE MODEL

We adopt the Independent State Variable Model (Fredlund et al., 1978) for unsaturated

soil strength. In addition to the saturated soil strength parameters, the angle of shearing

resistance with respect to suction is taken to be #b = 150 . The critical deterministic

failure surface is located and shown in Figure 6.130.
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Figure 6.130. Critical Deterministic Failure Surface with Independent State Variable Model

A Factor of Safety of 1.15 is obtained on this surface, and this is the minimum Factor of

Safety in the slope.

We now assume that the saturated soil strength parameters c' and 4' are uncertain,

with mean values and standard deviations given by:

c'~ (mc' = 15kN/m2, c. = 0.5kN/m2 );

assumed uncorrelated, and we assume the unsaturated soil parameter

deterministic.

The reliability index based on the deterministic surface shown in Figure 6.130 is

computed to be 0.78.

A search for the critical reliability failure surface is performed, and the results are shown

in Figure 6.131.
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Figure 6.131. Critical Reliability Based Failure Surface with Independent State Variable Model

The Hasofer and Lind (1974) reliability index is computed to be P = 0.74 and the critical

failure point is c'* = 12.8 kN/m 2 and j'*=220. The reliability chart is shown in Figure

6.132.

35 - - ----- ------------- ------------- ------------

I -c disperson ellipsoid
30

25 --- ------ - -- ----------- - --- - -- - - --

20-

Most Probable SAFE REGION
Failure Point (c'*,
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10 UNSAFE REGION

5

0
0 0.5 1 1.5 2 2.5 3 3.5

c' (x 9.81 kN/m 2)

Figure 6.132. Reliability Chart Using Independent State Variable
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p = 0.74 using the Independent State Variable Model is close in magnitude to the

3 = 0.72 when the Effective Stress Model was assumed. The greater value of P with

the Independent State Variable Model than the Effective Stress Model suggests a more

stable slope. This is in contradiction to the conclusion made based on the Factor of

Safety alone, where in the case of the Effective Stress Model F = 1.18, and the slope is

more stable than in the case when the Independent State Variable Model was used, and

F = 1.15. This can be explained by examining parameter uncertainty, and the

unsaturated soil strength models in both cases. In the Effective Stress Model,

unsaturated strength is computed based on the effective stress parameters c' and #',
as:

T = c'+( - Xuw )tan ' [6.39]

where:

x is the effective stress parameter

In the Independent State Variable Model, unsaturated strength is computed based on

the effective stress parameter c' and the parameter * b as:

T- = c'+( -uw)tan b [6.40]

When the effective stress parameters c' and 4' are assumed uncertain, while all other

parameters (particularly X and 4b) are deterministic, uncertainty in the shear strength,

and hence in the Factor of Safety is greater in the Effective Stress Model (Equation

[6.39]), compared to the Independent State Variable Model (Equation [6.40]). This

results in a larger value of P when the Independent State Variable Model is adopted,

because of the smaller uncertainty in the Factor of Safety (assuming the uncertainty in

c' and #' is the same in both models). In this example, the difference in the computed

reliability indices is not very significant numerically (P = 0.74 using the Independent

State Variable Model and P1= 0.72 using the Effective Stress Model), but different

nonetheless.
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COULOMB MODEL

Reconsider the slope shown in Figure 6.133. We assume the Coulomb Model for soil

strength in both saturated and unsaturated soil. We therefore assume the saturated or

effective strength parameters of the soil in both the saturated and unsaturated zones of

the soil. A Factor of Safety F=1.24 is computed in the slope.

We assume that the strength parameters are uncertain parameters c' and #', with

mean values and standard deviations:

c - (mc' = 15kN / m2 , ac' = 5kN/ ); '~ (my = 250, , =50) ; and that c' and 4'

are uncorrelated.

The critical reliability based failure surface in the slope is located and shown in Figure

6.133.

10
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10 -
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-10-

Figure 6.133. Critical Reliability Based Failure Surface with Coulomb Model

The reliability index P =1.03 is computed and the critical failure point is c'* = 12 kN/m 2

and '* = 20.70. The reliability chart is shown in Figure 6.134.
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Figure 6.134. Reliability Chart Derived using Coulomb Model

The critical reliability failure surface, computed Hasofer and Lind (1974) reliability index,
and the failure boundary are different in the case when the Coulomb Model is adopted

for unsaturated strength, compared to when the Effective Stress, and Independent State

Variables Models were used.

Adopting the Coulomb Model neglects the difference between saturated and unsaturated

strength, leading to larger unsaturated strength, and hence a safer slope. This is

reflected in the greater value of Factor of Safety (F=1.24 using the Coulomb Model

compared to F=1.18 using the Effective Stress Model, and F=1.15 using the

Independent State Variable Model) in deterministic analyses, and P in the reliability

analyses (jP = 1.03 using the Coulomb Model, compared to P = 0.72 using the Effective

Stress Model and P = 0.74 using the Independent State Variable Model).

We therefore can conclude that the unsaturated strength model has an effect on both

slope deterministic and reliability analyses. Table 6.35 summarizes the results of the

analyses performed in this Section.
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Table 6.35. Comparison of Results of Deterministic and
Strength Models

Reliability Analyses Using Different

Table 6.35 shows that the results of deterministic (Factor of Safety) and reliability (P

and PF = D(-P)) analyses are affected by the model used to describe unsaturated

strength.

In deterministic analyses, in addition to describing unsaturated strength differently,

different unsaturated strength models lead to different critical deterministic failure

surfaces, and different Factors of Safety.

In reliability analyses, in addition to describing unsaturated strength differently, different

unsaturated strength models lead to different critical reliability based failure surfaces,

and hence different failure boundaries and different reliability indices. This is reflected in

Figure 6.135 which shows the effects of strength model uncertainty on the failure

boundary, and reliability index.
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MODEL TO DESCRIBE DETERMINISTIC RELIABILITY ANALYSES

UNSATURATED STRENGTH ANALYSES PF = *t-1)
(FACTOR OF

SAFETY)

Coulomb Model 1.24 1.03 0.151

Effective Stress Model (Bishop, 1.18 0.72 0.236

1959)

Independent State Variable Model 1.15 0.74 0.229

(Fredlund et al., 1978)
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Figure 6.135. Comparison of Reliability Charts Derived Using Different Strength Models

Table 6.35 and Figure 6.135 show that there is a significant numerical difference in the

results between the Effective Stress and Independent State Variable Models, and the

Coulomb Model. Adopting either unsaturated strength model results in a less stable

slope, with a smaller Factor of Safety, and larger probability of failure compared to the

Coulomb Model.

The difference in the deterministic and reliability analyses (see Table 6.35, and Figure

6.135) using the Effective Stress Model, and the Independent State Variable Model is

not very significant numerically in this example. There are two reasons for this:

(a) The slope geometry in this example (see Figure 6.133) is such that the critical

failure surface lies, for the most part, below the water table in saturated soil, and

hence unsaturated strength does not play a very significant role. This is not

always the case as will be shown in a later Section (6-2.1.4.7).

(b) The specific value of the parameters that are assumed in both strength models

(X in the Effective Stress Model and <b in the Independent State Variable

Model) are such that both models result in unsaturated strengths that are close in
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magnitude at any given suction value. This again is not always the case as will

be shown a later Section (6-2.1.4.7).

ADDITIONAL EXAMPLES

Since in the Independent State Variable Model, the net normal stress, (a - ua) and

suction, (ua - uw) are considered independent stress state variables (see Figure

6.124), it is worth investigating the effects of uncertain $b on slope reliability analyses.

For this purpose, we consider two additional examples that concern the slope shown in

Figure 6.136.

In the first example the soil strength parameters, c', 4' and 4b are assumed uncertain

and uncorrelated. Specifically, we assume c', 4' and 4b have mean values and standard

deviations as:

c' - (MC' =1.5kN/m 2 , aC. =0.5kN/m 2 ); 4'~(m =25 , cy4) = 50)

b ~(m b =15 0 , acb =5 0 ).

The critical reliability based failure surface is located, and shown in Figure 6.136.
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Figure 6.136. Critical Reliability Based Failure Surface Using Independent State Variable Model
with Uncertain Strength Parameters

The Hasofer and Lind (1974) reliability index is computed to be f = 0.735. The critical

failure point is c'* = 12.8 kN/m 2 , '* = 220, and 4b* = 14.80. The reliability index

when the parameter b is assumed uncertain (P = 0.735), is slightly lower than in the

case when #b is deterministic (P = 0.74). The lower value of P is because of the added

uncertainty to the Factor of Safety when $b is assumed uncertain. The critical value of

b* =14.80 is close in magnitude to the mean value, and so it doesn't affect the value of

f significantly. This is because of the particular site conditions in this example, where

the critical failure surface lies, for the most part, in saturated soil as is shown in Figure

6.136.

Had the critical surface been in unsaturated soil, the effects of uncertain pb on P would

have been greater.

We now introduce correlation between the strength parameters. Clayey soils, typically

exhibit high values of cohesion c' and low values of angle of shear resistance '. These

types of soil also typically exhibit high unsaturated strengths because of the ability to
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sustain high values of suction given their pore size (grain size) distribution. Sandy soils,

on the other hand, typically exhibit high values of angle of shear resistance and lower

values of cohesion. These types of soil, usually exhibit low unsaturated strength

because they sustain large suction values because if the larger pore (and grain) size

distribution. With this in mind, c' and 4b are assumed to be slightly positively correlated,

and ' and b are assumed to be negatively correlated.

c'

With the vector of strength parameters as [' , the correlation matrix is taken to be:

*b

1 - 0.25 0.1~

11= - 0.25 1 - 0.1
0.1 -0.1 1

The chosen values of correlation coefficient in F assume negative correlation is

b bassumed between c' and $ , and positive correlation is assumed between #' and # .

The Hasofer and Lind (1974) reliability index is computed to be P = 0.84. This value of

P = 0.84 is greater than the value of P = 0.735. We therefore conclude that the inclusion

of (realistic) correlation between the soil strength parameters, saturated and

unsaturated, has the effect of increasing P, and hence slope reliability compared to

when no correlation is assumed.

6-2.1.4.4. STRENGTH SUBMODEL UNCERTAINTY IN PROBABILISTIC SLOPE

STABILITY ANALYSES

In this Section, we briefly investigate the effects of strength model uncertainty on

probabilistic slope stability analyses. We consider the slope shown in Figure 6.137.

This slope was used in the reliability analyses performed in the previous Section 6-

2.1.4.5. The Effective Stress Model is first used for unsaturated strength, and the results
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are compared to those obtained using the Independent State Variable Model for two

cases, where in the first, the parameter 4b is assumed deterministic, and in the second

b is assumed uncertain.

10 -

5-

c'= 15 kN/m2

=250
<p' w=e25 SOIL
(ua-uw~ntry =10 kN/m2

-' ROCK

25 30 35 40

.... .. - --- 1 - ..... .. ----- --- --- -- ----- ------ ---------- - - -------- --- ----- --- --

Figure 6.137. Slope Geometry and Strength Parameters

Figure 6.138 compares the distribution of Factor of Safety when the Independent State

Variable Model with deterministic 4b =150 is used with that when the Effective Stress

Model with (ua - uw )entry = 1 OkPa is used. In both cases the uncertain parameters are

the effective strength parameters c' and 4'. The parameters of both models have been

purposely chosen to give similar results so that the effects of model uncertainty (as

opposed to parameter uncertainty) can be better investigated.
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Figure 6.138. Comparison of Distribution of Factor of Safety Using the Effective Stress and
Independent State Variable Models (Effective Strength Parameters Uncertain)

The expected value of the Factor of Safety when the Independent State Variable Model

is used is E[F] = 1.17 compared to E[F] = 1.18 when the Effective Stress Model is used,

and the standard deviation is GF = 0.21 compared to GF = 0.22. The probability of

failure is PF = 0.212 compared to PF = 0.233. Figure 6.138 shows that the shape of the

distribution of the Factor of Safety is not affected by the strength model used. The

expected value and standard deviation, however, are. When the Independent State

Variable Model with constant pb = 150 is used, there is a slight reduction in the standard

deviation. The reason for this was explained in Section 6-2.1.4.5. This, coupled with the

lower expected value leads to a smaller probability of failure when the Independent State

Variable Model is used compared to the Effective Stress Model. The difference in the

results between both models is not very significant numerically. The reasons for this

were particular to this example, and discussed in Section 6-2.1.4.5, and are mainly due

to the geometry of the slope, and the particular values of X and pb

Figure 6.139 compares the results of probabilistic analyses when the Independent State

Variable Model with uncertain *b is used. b is assumed to be Normally distributed as

~ N(m b =15 0 , acb =5 0 ).
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Figure 6.139. Comparison of Distribution of Factor of Safety Using the Effective Stress and

Independent State Variable Models (Effective Strength and b Parameters Uncertain)

The expected value of the Factor of Safety is E[F] = 1.17, and the standard deviation is

(F = 0.215. The probability of failure is PF = 0.215. Including uncertainty in pb has the

effect of increasing the uncertainty in the Factor of Safety (GF = 0.215 compared to

GF= 0.21) and hence increasing the probability of failure (PF = 0.215 compared to

PF= 0.212). This was also discussed in Section 6-2.1.4.5.

The results of the probabilistic analyses are in good agreement with those from reliability

analyses in Section 6-2.1.4.5. This is because of the shape of the distribution of Factor

of Safety in Figures 6.138 and 6.139, which can be well approximated by the Normal

distribution. Therefore the estimation of the probability of failure using PF = cD(-P) in

reliability analyses is accurate.

The results in this Section show that although strength model uncertainty affects the

results of probabilistic analyses, the effects are not very significant numerically. This is

because of the location of the failure surface in the slope in Figure 6.137, specifically

that it lies mostly in saturated soil, where strength is described by the Coulomb Model.

These effects would have been much more prominent if the failure surface was in

unsaturated soil, as we will show in the following Section.
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6-2.1.4.5. STRENGTH SUBMODEL UNCERTAINTY IN LANDSLIDE HAZARDS

ASSESSMENTS

The effects of strength model uncertainty on landslide hazards are assessed. Two

numerical examples are considered. In the first, the rainfall intensity is lower than the

saturated conductivity of the soil, and the initial suction is reduced by infiltrating rain. In

the second, the rainfall intensity is greater than the saturated conductivity of the soil,

allowing for positive pressures to develop. The Effective Stress and Independent State

Variable Models are used for unsaturated strength with different parameters in each

model.

LANDSLIDE HAZARDS WITH RAINFALL INTENSITY LESS THAN SATURATED

CONDUCTIVITY

This example considers the slope shown in Figure 6.140.

SOIL

-
5

ROCK

25 
30

S10

FAILURE
SURFACE

10

Figure 6.140. Slope Geometric and Strength Parameters
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We assume a rainfall event with intensity, I = 75mm / hr occurs for a duration

Figure 6.141 shows moisture profiles, and Figure 6.142 shows pressure

selected times.
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Figure 6.141. Moisture Content Profiles with Time using the van Genuchten (1980) Model
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Figure 6.142. Pressure Profiles with Time using the van Genuchten (1980) Model
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The variation of Factor of Safety with time is computed using the Effective Stress Model

for unsaturated strength, with different values of the air entry pressure (ua -uw )entry-

The results are shown in Figure 6.143.
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Figure 6.143. Variation of Factor of Safety with Time Using the Effective Stress Model with
Different Parameters

Figure 6.143 shows the effects of assuming different values of the air entry pressure

(ua - uw )entry on the Factors of Safety. There is a significant difference in the results at

early times during the rain event, because the soil on the failure surface is unsaturated,

( -- 0.55
with high values of suction. As a result, the parameter x (ua -uw) is

(ua - uw )entry

significantly different for different values of (ua - Uw )entry. This leads to a large

difference in unsaturated strength, and Factors of Safety.

With time, and increasing depth of rainwater infiltration, the moisture content increases

in the soil along the failure surface, leading to a reduction in suction (see Figure 6.142).
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- w -- 0.55

As this takes place, the parameter x = (ua -uw) increases and tends
_ (ua - uw )entry_

towards the saturated value of X=1, causing a reduction in strength and Factor of

Safety. The relationship between strength and suction is non-linear, as presented in

Equation [6.35]. At times t > 6 hours, the rainwater has increased the moisture content

on the failure surface sufficiently so that the suction is less than the air entry value

(ua - uw )entry for both cases when (ua - uw )entry = 1OkPa and

(ua - uw )entry =15kPa. Because of this, the parameter y takes on a value of X = 1 in

both these cases, and as a result strength is defined by the saturated strength Coulomb

Model. This is the reason for the two Factor of Safety curves in Figure 6.143 leading to

identical results in both cases for times t > 6 hours. This is not the case, however, when

(ua - uw )entry = 5kPa, since the soil remains at moisture content less than the

saturated value (see Figure 6.141). As a result the Factor of Safety is lower in this case

for times t > 6 hours, as shown in Figure 6.143. Figure 6.143 also illustrates parameter

model uncertainty since different values of the air entry pressure are used in the

Effective Stress Model. The effects of parameter uncertainty are highlighted in Figure

6.143, which shows significantly different results depending on the chosen value of air

entry suction.

The variation of Factor of Safety with time is then determined using the Independent

State Variable Model for unsaturated strength for different and constant values of b

The results are shown in Figure 6.144.
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Figure 6.144. Variation of Factor of Safety with Time Using the Independent State Variable Model
with Different Parameters

Figure 6. 441 shows that different results are obtained for the different values of * The

difference is greatest at early times during the rain event, when the soil is unsaturated,

and its strength is defined by the unsaturated strength model in Equation [6.30]. As time

passes and the moisture content (and pressures) in the soil on the failure surface

increases (see Figures 6.141 and 6.142), unsaturated strength is reduced, and this is

observed in the reduction of Factor of Safety with time. Figure 6.144 shows that the

Factor of Safety for lower values of b is smaller than for larger values of pb at any time

during rain. This is because in the Independent State Variable Model unsaturated

strength is proportional to the parameter b . Figure 6.144 also illustrates parameter

uncertainty since different values of 4 b are used in the unsaturated strength model.

Figure 6.144 shows the importance of parameter uncertainty since different conclusions

on stability are reached depending on the chosen value of
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In the Independent State Variable Model, unsaturated strength is a linear function of the

parameter pb if b is constant, and this is reflected in Figure 6.144. Figure 6.144 shows

that the difference in Factor of Safety at any time is the same between when $b = 200

and $b = 22.50 and when 4 b = 22.50 and pb =250. This is to say that the difference

in Factor of Safety at any time between any two values of b , is a linear function of the

difference in the values of 4 b. This is not the case for the Effective Stress Model, and as

shown in Figure 6.143. The strength relationship is non-linear and this is evident in

Figure 6.143.

Figure 6.145 compares the variation of the Factor of Safety with time for both strength

models with different parameters. The intent here is to show the wide range of results,

and not for showing specific values.
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Figure 6.145. Comparison of Variation of Factor of Safety with Time Using Different Strength
Models with Different Parameters
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Figure 6.145 illustrates the effects of strength model uncertainty on stability analyses,

and deterministic landslide hazard assessments. These effects can be very significant,

and lead to different conclusions with regard to stability of the slope during the rain event

(failure vs. no failure).

We now assume that the soil strength parameters and saturated conductivity are

uncertain, and follow the distributions:

C'~ N(mc' = 0.5kN / m2 , c' = 0.125N / m2 ); g'~ N '- (mv = 280, cyv = 70)

K - LN ( iK= 250cm /day , ( 2  = (125cm/day)2 ); and these parameters are

uncorrelated.

Monte Carlo techniques are used to estimate the probability of slope failure from

generated distributions of the Factor of Safety at different times. This is done using both

unsaturated strength models, with different parameters. Figure 6.146 shows the

probability of failure with time when the Effective Stress Model is used for strength.
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Figure 6.146. Variation of Failure Probability with Time Using the Effective Stress Model with
Different Parameters
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Figure 6.146 clearly shows the effects of assuming different parameter values for

(ua -uw)entry on landslide hazards, and hence illustrates parameter uncertainty using

the Effective Stress Model. As in the deterministic case, the difference in the results is

greatest at early times, when the suction in the soil on the failure surface is large.

The variation of probability of failure with time is then estimated using the Independent

State Variable Model for unsaturated strength, and the results are shown in Figure

6.147.
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Figure 6.147. Variation of Failure Probability with Time Using the Independent State Variable
Model with Different Parameters

Figure 6.147 shows the influence of parameters uncertainty on landslide hazards, and

illustrates parameter uncertainty using the Independent State Variable Model for

strength.

Figure 6.148 shows the variation of probability of failure with time for the different

strength models, with the different parameters. Again, the intent in Figure 6.148 is to

show the large difference in the results rather than specific values.
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Figure 6.148. Comparison of Variation of Failure Probability with Time Using Different Strength
Models with Different Parameters

Figure 6.148 shows that significantly different results are obtained by using the different

strength models. It highlights the effects of strength model uncertainty on landslide

hazards, which clearly can be very important.
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LANDSLIDE HAZARDS WITH RAINFALL INTENSITY GREATER THAN SATURATED

CONDUCTIVITY

In this example, we consider the slope shown in Figure 6.149.
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Figure 6.149. Slope Properties and Failure Surface

We assume a rainfall event of intensity I = 375cm/ day = 155mm / hr to occur for a

duration of 8 hours. Since the intensity of the rain is greater than the saturated

conductivity of the soil, the rain fully saturates the soil, and allows for pore pressures to

develop. Figure 6.150 shows moisture profiles, and Figure 6.151 shows pressure

profiles at selected times.
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We asses the stability of the slope deterministically using the Effective Stress Model with

different values of the air entry suction (Ua - uw )entry and the results are shown in

Figure 6.152.

0 1 2 3 4 5 6 7 8

Time (Hours)

Figure 6.152. Variation of Factor of Safety with Time Using
Parameters

Effective Stress Model with Different

Figure 6.152 shows the effects of different (ua - Uw )entry values, on the results and so

illustrates parameter model uncertainty using the Effective Stress Model. The difference

is greatest at early times during rain. This is when the soil at the failure surface is

unsaturated, and strength is descried by the Effective Stress Model. At times t > 4 hours,
the rainwater has penetrated deep enough to fully saturate the soil on the failure surface

(see Figures 6.150 and 6.151). X =1 and the soil strength is described by the Coulomb

Model. As a consequence, the results are the same for all values of (ua - uw )entry

considered as shown in Figure 6.152.

Figure 6.153 shows the results of deterministic analyses when the Independent State

Variable Model is used for unsaturated strength.
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Figure 6.153. Variation of Factor of Safety with Time Using Independent State Variable Model
with Different Parameters

Figure 6.153 illustrates parameter model uncertainty by showing that the variation of

Factor of Safety depends on the value of b , and different values can lead to different

results. The effects of different *b are greatest at early times. As it continues to rain,

and the rainwater saturates the soil, the results converge as shown in Figure 6.153,
since soils strength is described by the Coulomb Model.

Figure 6.154 compares the results from using both unsaturated strength models with the

different parameters.
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Figure 6.154. Comparison of Variation of Factor of Safety with Time Using Different Strength
Models with Different Parameters

Figure 6.154 shows that different results are obtained using the different strength

models, and shows the effects of strength model uncertainty on deterministic landslide

hazard assessments. There is a clear difference in the results, particularly at early times

during rain, when the soil is still unsaturated. With time, and as the soil gets saturated,
the difference in the results becomes not very significant numerically. Having said this,
the difference is important because it leads to different conclusions regarding stability.

We now assume that the soil strength and hydraulic parameters are uncertain with the

following distributions:

C'~ N(mc' = 0.5kN / m2 , ac' = 0.017kN / m2); ' N '- (mp = 200, oa = 6.670);

Ks - LN (mKs = 200cm /day , = (100cm/day)2 ); and these parameters are

uncorrelated.

Figure 6.155 shows the probability of failure with time using the Independent State

Variable Model with different parameter values, and Figure 6.156 shows the probability

of failure with time using the Effective Stress Model with different parameters.

611

1.7-T

1.6 4

U,

0

U

2 3 4 5

Time (Hours)

-------------- I------------1 ------------- ------ - +- 6 1
4'150

----------------- ------------ ------------ ------- $=200-
(Ua- -'.t,5~------------- ------------ -- ------------------ - ( a u~ ny 5~
(ua - Uw)ety = 10kPa

----------- ----- -- ------------ ------ (u - u)enty=15kPa

- -- - ---- --- -- - - --

------- ------ - ------- - - ---- - --

---- ---------- -- - - ------ --- --- ----

0 8 9

----------

------------

-- --- ------

-------- ---

--------

------------ ------------- -- -------

---- ------- ----- ----- -

---- - - - --- -

----------- --- ------- ----- - -- - -

--- -- ---- ---- -- -

1



0 .8 ................... ---- ---- --- .... .. ... ... ............ -....... ........... -- ....... ............. ....... .... ------------ ------------- -",* ........... ..................... ....... .... ... ...................... ......... .... ....... ... ....... ........ *'*'*'*"** ..... ..... ..

0.7 ----------------------------------------------------- ---------------- ---------------- ---------------- ---------- ----- - -------------

'=l 2.50
Ob=0.6 ------------------ --- 150 ------------ --------------- ---------------

b= 200

---------------- ----------- -------------- - ---------------- ------- -- ---0.5 - - ------ -- -----
U.

0.4 - -- --- -------- ----------------- ---- ------- - - ---- ----- -- ------------------------------ ----- -- ---- ---------------
M
0

CL 0.3 ------------------ ---------------------------- ----- ----- ----- ---- ---------------------------------- ---- ----------- ----------------

0.2 --------------------------- - ---------------- - ----------------------- --------
---------------- ---------------- -------

0.1 ------------ ------------- ---------------- ---------------- ---------------- ------ --------- ---------------- --------------
0-0 1 2 3 4 5 6 7 8

Tine (Hours)

Figure 6.155. Variation of Failure Probability with Time Using the Independent State Variable
Model with Different Parameters
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Figure 6.156. Variation of Failure Probability with Time Using Effective Stress Model with
Different Parameters
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Figure 6.157 compares the variation of probability of failure with time when the Effective

Stress and Independent State Models are used for unsaturated strength for select

parameter values.
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Figure 6.157. Comparison of Variation of Failure Probability with Time Using Different Strength
Models with Different Parameters

Figure 6.157 illustrates the effects of strength model uncertainty on landslide hazards.

The effects of are greatest at early times during the rain event, and become less

significant with time, as the rainwater fully saturates the soil on the failure surface. As

this happens soil strength is described by the Coulomb Model in all cases.

6-2.1.4.6. CONCLUSIONS ON STRENGTH SUBMODEL UNCERTAINTY

In this Section, (unsaturated) strength model uncertainty was investigated in the context

of deterministic and reliability based slope stability analyses, as well as the effects on

landslide hazards, both deterministically and probabilistically.

We showed that the extent to which (unsaturated) strength model uncertainty affects the

results depends, not surprisingly, on the location of the failure surface relative to the
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water table. When the failure surface lies in saturated soil, the effects are not very

significant, but when the failure surface lies in unsaturated soil, the effects are

considerable.

Since shallow landslides have failure surfaces that typically lie in unsaturated soil, where

changes in moisture (and suction) are important (see Chapter 3), unsaturated strength

model uncertainty is particularly relevant, and significantly affects the results of landslide

hazards assessments, whether these are deterministic or probabilistic.
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6-2.2. MODEL UNCERTAINTY FROM STABILITY MODELS

In this Section, the effects of using different stability models for slope stability and

reliability are investigated. The aim is to provide insights into stability model uncertainty

that arises from the stability model itself.

The Equations for the Factors of Safety against force and moment equilibrium are

derived using the General Limit Equilibrium (GLE) Model (Fredlund et al., 1981). The

GLE provides a general theory wherein other methods of Limit Equilibrium can be

viewed as special cases. Fredlund et al. (1981) developed the GLE Model adopting the

Independent State Variable (Fredlund et al., 1978) Model for unsaturated strength. In
this Section, the GLE Model is developed using the Effective Stress Model (Bishop,
1959) for unsaturated strength, since this is the model for strength used throughout this

study. Techniques are developed to solve the Equations for the Factor of Safety using

the GLE Model in a spreadsheet. These are simpler and quicker to implement than

current numerical analyses, which require specialized computer software, e.g. SLOPE/W
(Geo-Slope International Inc., 1998). The GLE Model is then used to investigate stability
model uncertainty for deterministic and probabilistic slope stability analyses, and the
effects on landslide hazards assessments.

Figure 6.158 shows a schematic of what will be studied in more detail in this Section.

615



TRIGGER MODEL(S)

PART 6- 1.1. I

HYDROLOGIC PAHY RT 6-1 EL
SUBMODELS HYRLGMOE

PART 6-1.1 and 6-1.2.
PORE PRESSURES

PART 6-2, U E
STABILITY SUBMODELS~

I

Figure 6.158. Effects of different stability model (shown in the lightly shaded stability models box)
on the results of stability analyses (Factors of safety, reliability indices and probabilities of failure

in the dark shaded box) and on landslide hazards (dark box) are investigated
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6-2.2.1. LIMIT EQUILIBRIUM STABILITY MODELS

The Limit Equilibrium Method is a well-established method that is extensively used for

stability analyses. The main assumptions of the Limit Equilibrium Method include:

a. A failure mechanism must be postulated, involving slip surfaces which may be

planar or curved.

b. A failure model, in terms of soil strength parameters, must be adopted.

c. The static equilibrium of both the overall mechanism and of each element or slice

(see Figures 6.159 and 6.160) must be satisfied by resolving forces in two

orthogonal directions and by taking moments of boundary forces. However, all

Limit Equilibrium Methods do not satisfy the three criteria of force and moment

equilibrium.

d. Internal stresses in the soil 'blocks' are not considered.

e. The factor of safety is uniform along the slope surface such that the same

proportion of strength is mobilized on all the slip surface.

All Limit Equilibrium Models for slope stability analysis divide a slide mass into n smaller

slices. Each slice is affected by a general system of forces as shown in Figures 6.159

and 6.160.
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Figure 6.159. Definition of Parameters for Circular Failure Surface
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The variables are defined as:

W the total weight of the slice of width b and height h

N the total normal force acting on the base of the slice

Sm the shear force mobilized on the base of the slice

E the horizontal interslice normal force (the L and R subscripts designate the left

and right sides of the slice)

X the vertical interslice shear force (the L and R subscripts designate the left and

right sides of the slice)

R the radius for a circular failure surface or the moment arm associated with the

mobilized shear force Sm for arbitrary failure surface

f the perpendicular offset of the normal force, N from the center of rotation or from

the center of moments

x the horizontal distance from the centerline of each slice to the center of rotation

or to the center of moments

h the vertical distance from the center of the base of a slice to the ground surface

(X the angle the base of a slice makes to the horizontal

f the length of the base of a slice

For a system with n slices, there are (6n - 2) unknowns. Since only 4n Equations of

static equilibrium (3n from static equilibrium, n from a model relating shear strength to

normal stress e.g. Coulomb) can be written, the solution is statically indeterminate.

Assumptions are therefore necessary to make the problem solvable. Stability Models

differ in the assumptions they make to solve the problem. Common stability models and

the assumptions each make are:

Bishop's Simplified Method assumes that all the interslice shear forces are zero,
reducing the number of unknowns by (n - 1). This leaves (4n - 1) unknowns and

horizontal equilibrium is not satisfied for one slice.

Janbu's Simplified Method also assumes all the interslice shear forces are zero, leaving

(4n - 1) unknowns. Moment equilibrium is not satisfied.
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Janbu's Generalized Method assumes a location of the thrust line, reducing the number

of unknowns to (4n - 1). Moment equilibrium, though satisfied with this assumption, is

not rigorously satisfied. It will be if the correct location of the thrust line is assumed.

Morgenstern - Price Method rigorously satisfies static equilibrium by assuming that the

interslice resulting force inclination varies according to a 'portion' of an arbitrary function.

This leaves 4n unknowns and 4n Equations.

Table 6.36 lists the common models and the conditions of static equilibrium that are

satisfied by each.

Force Equilibrium Moment
Stability Model Assumption

Horizontal Vertical Equilibrium

Janbu Yes Yes No
X = 0

Simplified

Janbu Arbitrary Yes Yes Not Rigorously

Generalized location of X

Bishop X 0 Yes No Yes

Simplified

Location of X Yes Yes Yes
Morgenstern - functional

Price
relationship

Table 6.36. Methods of Stability Analysis and Conditions of Static Equilibrium

A General Limit Equilibrium (GLE) Model (Fredlund et al., 1981) can be developed to

encompass most of the assumptions used by various models and may be used to

analyze circular and noncircular failure surfaces. As a result, various Limit Equilibrium

stability models are special cases of the GLE Model.

Fredlund et al. (1981) derive the GLE Equations for force and moment equilibrium based

on the Independent State Variable Model for unsaturated strength (see Section 6-

2.1.4.2). In this study, the GLE formulation is derived using the Effective Stress Model
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for unsaturated strength (see Section 6-2.1.4.3). Prior to doing so, it is worth noting that

as with the Infinite Slope Model, all Limit Equilibrium models suffer from the drawback

that they can only be used upto a certain angle of inclination of any particular slice. This

angle was derived for the Infinite Slope Model in Appendix B.

6-2.2.1.a. GENERAL LIMIT EQUILIBRIUM (GLE) MODEL

The mobilized shear force at the base of a slice can be written using the shear strength

Equation for an unsaturated soil with the Effective Stress Model as:

Sm =- -c'+(u - ua)+ X(ua - uw) tan '} [6.41]F

where:

x is the effective stress parameter

is the length of the base of the slice

F is the Factor of Safety, defined as the factor by which the shear strength

parameters must be reduced in order to bring the soil mass into a state of limiting

equilibrium along the failure surface

The normal force at the base of a slice, N, is derived by summing forces in the vertical

direction:

W - (XR - XL)- Sm sina ~Ncos a = 0 [6.42]

Substituting Equation [6.42] into [6.41] and replacing the (aC) term with N gives:

W-(XR - XL)-- + Ntn F siniNcos a= [6.43]

If the pore air pressure ua = 0 .

Rearranging results in:
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W - (XR - XL) - uwxf ta} sin cc
F F

C s a + t a n ' s i n C ,

[6.44]

The Factor of Safety, F, in Equation [6.44] is equal to the moment equilibrium Factor of

Safety Fm, when solving for moment equilibrium, and is equal to the force equilibrium

Factor of Safety, Ff , when solving for force equilibrium.

The vertical interslice shear forces XR and XL, in the normal force Equation [6.44] can

be computed using an interslice force function, as described later.

Two independent Factor of Safety Equations can be derived, one with respect to

moment equilibrium, and the other with respect to horizontal force equilibrium.

FACTOR OF SAFETY WITH RESPECT TO MOMENT EQUILIBRIUM

Moment equilibrium can be satisfied with respect to an arbitrary point above the central

portion of the failure surface. Consider moment equilibrium for the surface shown in

Figure .

[6.45]Wx Nf - ISmR = 0

Substituting Equation [6.41] into [6.45], and replacing the (c-?) term with N gives:

[6.46]Wx -Nf= F {c' + (N - uwxf)tan 'R
Fm

where:

Fm is the Factor of Safety with respect to moment equilibrium

Rearranging yields:
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m c'C + (N - uwxf)tan 'R
Fm = - YZNf [6.47]

FACTOR OF SAFETY WITH RESPECT TO FORCE EQUILIBRIUM

The Factor of Safety with respect to Force Equilibrium is derived by summing forces in

the horizontal direction for all slices:

I Sm cos a - INsinoa = 0

Substituting Equation [6.41] into [6.48] replacing the (a-) term with N gives:

1 Y {c'e+ (N - uwxf)tan 4'}cos a= N sin a

where:

Ff is the Factor of Safety with respect to force equilibrium

[6.48]

[6.49]

Rearranging yields:

Ff =
{c' e + (N - uwXf)tan '}cos a

ZN sin a
[6.50]

The interslice normal forces, ER and EL are computed by summing horizontal forces

on each slice (see Figures 6.159 and 6.160):

ER -EL = Ncosatana - Sm cosa [6.51]
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Substituting for N cos a from Equation [6.42] into Equation [6.51], and rearranging

gives:

ER -EL = {W -(XR -XL)-Sm sin atan a -Sm cos c [6.52]

And simplifying:

ER = EL + {W -(XR -XL)}tana Sm [6.53]
COS cc

The interslice normal forces are calculated from Equation [6.53] by integrating from left

to right across the slope. The assumption is made that the interslice shear forces, X, can

be related to the interslice normal forces, E, by a mathematical function (Morgenstern

and Price, 1969):

X = ;f (x)E [6.54]

where:

f(x) is a functional relationship which describes the manner in which the magnitude of

X/E varies across the slip surface

k is a scaling constant which represents the proportion of the function, f(x), used for

solving the factor of safety Equation.

Having defined this functional relationship, the interslice shear forces, X, can be related

to the interslice normal forces, E, and the Factor of Safety equations can be solved.

Several functional relationships f(x) have been proposed in the literature for slope

stability analyses. Examples include: a constant function, half-sine, trapezoidal, etc.

The Bishop Simplified Model satisfies moment equilibrium, while assuming that the

interslice shear forces X = 0. Factors of Safety from the Bishop Model, therefore,

correspond to the moment Factors of Safety in the GLE Model (Equation [6.47), with

k = 0 in Equation [6.54].
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The Janbu Simplified Model satisfies force equilibrium, while assuming that the interslice

shear forces X = 0. Factors of Safety from the Janbu Simplified Model, therefore,

correspond to the force Factors of Safety in the GLE Model (Equation [6.50]) with

k = 0 in Equation [6.54].

6-2.2.1.b. SPREADSHEET IMPLEMENTATION OF THE GLE MODEL

The Factor of Safety Equations with respect to moment and force equilibrium (Equations

[6.47] and [6.50]) are non linear. The Factors of Safety Fm and Ff appear on both sides

of the Equations, since they appear in Equation [6.44] for the normal force. So, iterative

techniques are required to solve for these. Several of these techniques have been

proposed in the literature, e.g. Fredlund (1985). A much simpler and quicker technique is

described in Figure 6.161, which makes use of a spreadsheet's iterative circular

function.

Step 1. Specify appropriate cells for the interslice normal, ER and EL and shear forces

XR and XL (see Figure 6.162). Insert the Equation for ER (Equation [6.53]) and

EL (EL =- ER ) into the cells. Set XR = XL = 0 for the first iteration.

Step 2. Specify a cell as the initial estimate of the Factor of Safety and set this cell to 1
for the first iteration as in Figure 6.162.

Step 3. Insert the Equations for the shear force (Equation [6.41]) and normal force

(Equation [6.44]) as in Figure 6.162. Use the estimate of the Factor of Safety (Step 2) in

these Equations.

Step 4. Select the Tools - Options - Iteration - Calculation tab in Excel. Set the

Calculations to Manual and set the Iterations to 10,000.

Step 5. Compute the Factor of Safety according to Equation [6.47] for moment

equilibrium and [6.50] for force equilibrium.

Step 6. Compute XR and XL and ER and EL from the computed value of F in Step 5.

Step 7. Set the cell for the Factor of Safety to be equal to the estimate of F cell

designated in Step 2. Once this is done, the spreadsheet automatically iterates through
the values of F and convergence is reached very quickly.

Figure 6.161. Spreadsheet Procedure for Iterative Procedure in GLE Model
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Xs ye YT hijh
Slice # 13 13 0 tan a Ax p u c' tan#' AQ 0 tana,

1 31.22 13 5.13 1.0732218 4.78 5.13 0.8475 1.5 0.4663077 0 1.71 0.822147
2 28.27 11 6.24 1.0542373 2.95 11.37 1.68 1.5 0.4663077 0 2.08 0.762533 44

3 23.77 8.6906 6.800599 0.6377778 4.5 13.041 2.1004 1.5 0.4663077 0 2.266866308 0.587684

4 19.77 6.3812 6.811198 0.58 4 13.612 2.1084 1.5 0.4663077 0 2.270399282 0.59995

5 15.77 4.0718 7.071797 0.6425 4 13.883 2.3038 1.5 0.4663077 0 2.35726559 0.558283

6 11.77 1.7624 6.582396 0.455 4 13.654 1.9368 1.5 0.4663077 0 2.194131898 0.485783
7 7.77 -0.547 5.972995 0.425 4 12.555 1.4797 1.5 0.4663077 0 1.990998205 0.37995

8 3.77 -2.856 4.213594 0.1375 4 10.187 0.1602 1.5 0.4663077 0 1.40453118 0.213283
9 -0.23 -5.166 1.604192 -0.075 4 5.8178 -1.797 1.5 0.4663077 0 0.534730821 -0.04149

10 -5.16 -5.16 0 -0.337526 4.77 1.6042 -3 1.5 0.4663077 0 0 -

Slice Width, Height a h (m) I (m) x (m) f (m) R (m) u y W (kN) c' f XR xL Initial m = {cos + (tan Norma

Number b (m) , H (m) Estimate +' sin a)/F)) I
of F Force,

N

10.00 4.78 2.57 47.02 0.00 7.01 0.00 0.00 0.00 0.85 2.00 24.52 1.50 0.47 21.60 0.00 1.48 0.77 -2.93

9.00 2.95 5.69 46.51 0.00 4.29 0.00 0.00 0.00 1.68 2.00 33.54 1.50 0.47 17.03 -21.60 1.48 0.90 -9.16

8.00 4.50 6.52 32.53 0.00 5.34 0.00 0.00 0.00 2.10 2.00 58.68 1.50 0.47 -11.95 -17.03 1.48 0.67 75.93

7.00 4.00 6.81 30.11 0.00 4.62 0.00 0.00 0.00 2.11 2.00 54.45 1.50 0.47 24.24 11.95 1.48 1.18 33.80

6.00 4.00 6.94 32.72 0.00 4.75 0.00 0.00 0.00 2.30 2.00 55.53 1.50 0.47 -22.12 -24.24 1.48 0.61 83.52

5.00 4.00 6.83 24.47 0.00 4.39 0.00 0.00 0.00 1.94 2.00 54.62 1.50 0.47 19.97 22.12 1.48 0.72 76.00

4.00 4.00 6.28 23.03 0.00 4.35 0.00 0.00 0.00 1.48 2.00 50.22 1.50 0.47 -15.94 -19.97 1.48 1.22 36.38

3.00 4.00 5.09 7.83 0.00 4.04 0.00 0.00 0.00 0.16 2.00 40.75 1.50 0.47 5.89 15.94 1.48 0 78 64.40
2.00 4.00 2.91 -4.29 0.00 4.01 0.00 0.00 0.00 -0.25 2.00 23.27 1.50 0.47 -13.88 -5.89 1.48 0.95 33.22

1.00 4.77 0.80 -18.65 0.00 5.03 0.00 0.00 0.00 -0.32 2.00 7.65 1.50 0.47 8.34 13.66 1.48 1.10 13.49

FORCE FACTOR OF SAFETY

c'I cos a (N- c'icos a + (N- Nsin a Sm X 1 X
ul)tan4'cosa uI)tan#'cosa

7.17 -2.82 4.35 -2.15 4.30 21.60 Ob 0(
4.43 -5.25 -0.83 -6.65 -0.81 17.03
6.75 25.45 32.20 40.83 25.72 -11.95 -17.
6.00 9.70 15.70 16.96 12.23 24.24 11.9
6.00 28.47 34.47 45.15 27.60 -22.12 -24.
6.00 28.64 34.64 31.47 25.64 19.97 22.1
6.00 12.85 18.85 14.23 13.80 -5.94 19.
6.00 29.45 35.45 8.77 24.10 5.89 15.E
6.00 15.91 21.91 -2.48 14.80 -13.86 -5.8
7.16 6.66 13.82 -4.31 9.82 8.34 13.8

W-(XR- W-(XR-

XL) tan XL) tan
ac a -

Sm/cos
a

49.49 43.19
76.09 77.26
40.67 10.16
38.70 24.57
37.04 4.24
23.87 -4.29
23.06 8.07
4.22 -20.11
-1.15 -15.99
-0.71 -11.08

0.00
0.00

-43.19
'-34.07
23.91
-48.48
44.24
-39.95
31.88
-11.77
27.76

0.00
43.19
34.07
-23.91
48.48
-44.24
39.95
-31.88
11.77

-27.76
16.68

Figure 6.162. Spreadsheet Implementation of GLE Model
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6-2.2.2. STABILITY MODEL UNCERTAINTY ON CIRCULAR FAILURE SURFACE

A simple and good example to compare different Limit Equilibrium Stability Methods has

been presented in Fredlund and Krahn (1977). The slope with the circular failure surface

shown in Figure 6.163 was analyzed, and the results are presented in the same Figure

6.163, as a function of k.

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

SAME STABILITY MODEL DIFFERENT ASSUMPTIONS

Figure 6.163. Comparison of Factors of Safety for a Simple Circular Slip Surface (modified after:
Fredlund and Krahn (1977). ru is the pore pressure ratio (see Chapter 2)

In Figure 6.163, Ff is the Factor of Safety with respect to force equilibrium and Fm is the
Factor of Safety with respect to moment equilibrium using the General Limit Equilibrium

Model (Fredlund and Krahn, 1977).
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The Bishop Simplified Method is a special case of the moment equilibrium factor of

safety when the interslice shear forces are set to zero i.e. k = 0. Similarly, the Janbu

Simplified Method is a special case of the force equilibrium factor of safety when the

interslice shear forces are set to zero i.e. k = 0. For the Morgenstern and Price Method,

both force and moment equilibrium are satisfied for a specified function f(x), and hence

corresponds to where Ff = Fm in Figure 6.

Figure 6.163 illustrates the significance of model uncertainty in two ways. First, it shows

the different Factors of Safety obtained from different stability models for the case where

the interslice shear forces are set to zero (X = 0 ). Second, it shows the effects of

different assumptions using the same stability model with different values of X.

The effects of model uncertainty (for values of ?, less than the Morgenstern - Price) are

greatest when k = 0, which corresponds to the Simplified stability models. Since these

are the most widely adopted models for stability analyses, stability model uncertainty can

have significant effects on the results.

Figure 6.163 shows the sensitivity to the force Factor of Safety with respect to X. Clearly

adopting different values of X can result in significant differences in force Factors of

Safety, and hence conclusions on stability. The moment Factor of Safety, on the other

hand, is not as sensitive to different values of X.

6-2.2.3. STABILITY MODEL UNCERTAINTY ON NON CIRCULAR FAILURE

SURFACE

We investigate stability model uncertainty for non circular failure surfaces for two slopes.

In the first slope, the failure surface is shallow, and translational because of the assumed

presence of shallow bedrock. In the second slope the failure surface is deep and

rotational (but non circular). The terms deep and shallow are used in a relative sense.

In both examples, stability model uncertainty is investigated in a deterministic context

(Factors of Safety), a second moment reliability context (reliability index and reliability

charts) and probabilistic context (Monte Carlo Methods). Different coefficients of
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variation, and correlation are assumed for the uncertain strength parameters in each

example. Specifically, we investigate stability model uncertainty by:

a. Comparing the Factors of Safety obtained using different stability models

b. Comparing the Reliability Indices from second moment analyses, and Reliability

Charts using different stability models.

c. Comparing the Probabilities of Failure from second moment reliability and Monte

Carlo analyses.

EXAMPLE 1: SHALLOW FAILURE SURFACE (SHALLOW BEDROCK)

Consider the slope shown in Figure 6.164.

-10

10-

5

-5

-10

c' = 15 kN/M2

<p' = 250SI

(ua-uw~ntry =10 kN/M2

- ROCK

10 , '15 20

FAILURExSURFACE

Figure 6.164. Slope Geometry and Strength Parameters

DETERMINISTIC ANALYSES (FACTORS OF SAFETY)

The soil strength parameters shown in Figure 6.164 are used for deterministic analyses.

We compute the Factor of Safety on the failure surface shown in Figure 6.164 for

different stability models, namely the Janbu Simplified and Generalized Models, and the

Bishop Simplified Model. The GLE Model is used to assess stability against force and
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moment equilibrium using different but constant values of k. The results

Figure 6.165.

Q
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are shown in

Figure 6.165. Variation of Force and Moment Factors of Safety with X

When X = 0, the force Factor of Safety corresponds to the Janbu Simplified Model, and

the moment Factor of Safety corresponds to the Bishop Simplified Model. The point of

interSection of the two Factor of Safety curves gives the value of X at which both force

and moment equilibrium is satisfied. This corresponds to the Morgenstern - Price Model.

The Janbu Generalized Model cannot be shown on such a plot because the value of X

is not known, only the direction of the thrust is assumed.

The results are presented in Table 6.37.

Stability Model Factor of Safety

Janbu Simplified 1.16

Janbu Generalized 1.23

Bishop Simplified 1.23

Morgenstern - Price 1.22

Table 6.37. Comparison of Factors of Safety from Different Stability Models on a Specified Non
Circular Failure Surface
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Table 6.37 shows that assessing stability using different models results in different

Factors of Safety, though slightly different, can affect conclusions on stability. The Factor

of Safety using the Janbu Generalized Model is the same as that obtained using the

Morgenstern - Price Model. This is because of the shape of the failure surface is

translational, and force equilibrium governs. The Bishop Model results in a slightly

smaller Factor of Safety.

Figure 6.165 shows the sensitivity of the force Factor of Safety to X, and shows the

sharp rise in Ff with increasing k. The moment Factor of Safety, on the other hand, is

less sensitive to k. This demonstrates model uncertainty from different assumptions in

the same stability model, in addition to showing the effects of different models on

stability analyses.

RELIABILITY ANALYSES (RELIABILITY INDICES)

We now assume that the soil strength parameters are uncertain with the following

second moment parameters:

c'- (mc' =15kN / m2 , Yc' = 5kN / m2); '~ (m - = 250, cg =50 ), and we assume that

c' and p' are uncorrelated.

JANBU SIMPLIFIED MODEL

The reliability index computed using the Janbu Simplified Model is p = 0.92. A Reliability

Chart is derived and shown in Figure 6.166, which also shows the P -a dispersion

ellipsoid.
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03-a disperson ellipsoid

30

25 ------------------------- - --- ---- - -
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c' (x 9.81 kN/m 2
)

Figure 6.166. Stability Chart and p3-7 Dispersion Ellipsoid using the Janbu Simplified Model

JANBU GENERALIZED MODEL

The reliability index computed using the Janbu Simplified Model is f=1.0.5. The

Reliability Chart and the p-a dispersion ellipsoid are shown in Figure 6.167.

35

s-a disperson ellipsoid
30-

25 ------------------ ----- --- - - --- -----------

20 -MostProbabl
SAFE REGION

15 - Most Probable
Failure Point (c'*,+'*):

10 -UNSAFE REGION

5-

0-
0 0.5 1 1.5 2 2.5 3 3.5

c' (x 9.81 kN/m 2
)

Figure 6.167. Stability Chart and y-a Dispersion Ellipsoid using the Janbu Generalized Model
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BISHOP SIMPLIFIED MODEL

The reliability index computed using the Bishop Simplified Model is p=1.08. The

Reliability Chart and the p -a dispersion ellipsoid are shown in Figure 6.168.

35 - ---------- ------ - ---- - - -- --- - ------ - - - -

P-c disperson ellipsoid
30
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c' (x 9.81 kN/m2)

Figure 6.168. Stability Chart and (3-a Dispersion Ellipsoid using the Bishop Simplified Model

MORGENSTERN - PRICE MODEL

The GLE Model is used to determine the value of k at which force and moment

equilibrium are both satisfied (see Figure 6.165), and this value is used in the GLE

Model to result in the Morgenstern - Price Model. The reliability index computed is

computed to be P = 1.06 , and the Reliability Chart and (3- a dispersion ellipsoid are

shown in Figure 6.169.
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Figure 6.169. Reliability Chart and p - a Dispersion Ellipsoid using the Morgenstern - Price
Model

The Reliability Charts shown in Figures 6.166 through 6.169, are different in that not only

are the P - a ellipsoids different, but they also do not have the same failure boundary.

This is because different stability models require different combinations of c' and <' to

bring the Factor of Safety to its critical value of one. Stability model uncertainty is

therefore also illustrated in its effect on Reliability (and Stability) Charts. Figure 6.170

shows the derived Reliability Charts, with the failure boundaries, and 3 - a ellipsoids for

the stability models considered.
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Figure 6.170. Illustration of Different Reliability Charts Obtained by Different Stability Models for
Same Slope

The intent of Figure 6.170 is to compare, graphically, the effects of model uncertainty on

Reliability Charts, and computed Reliability Indices.

Table 6.38 summarizes the Reliability Indices obtained from each stability method.

Stability Model Reliability Index, p

Janbu Simplified 0.92

Janbu Generalized 1.05

Bishop Simplified 1.08

Morgenstern - Price 1.06

Table 6.38. Comparison of Reliability Indices obtained by Different Stability Models on a
Specified Non Circular Failure Surface

By assuming a probability distribution for the Factor of Safety, probabilities of slope

failure can be computed using the reliability indices in Table 6.38. If we assume that the

Factor of Safety is Normally distributed, then probabilities of failure can be computed as

PF = (-P)-
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Table 6.39 shows probabilities of failure from different stability models.

Stability Model Reliability Index, Probability of Failure

Janbu Simplified 0.92 0.179

Janbu Generalized 1.05 0.147

Bishop Simplified 1.08 0.140

Morgenstern - Price 1.06 0.145

Table 6.39. Comparison of Reliability Indices and Probabilities of Failure obtained by Different
Stability Models on a Specified Non Circular Failure Surface

Using the GLE formulation, we show the variation of the Reliability Index with k in

Figure 6.171. This is done for both the force and moment Equations of Factor of Safety.
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X

Figure 6.171. Variation of Reliability Index with X

Assuming that the Factor of Safety is Normally distributed, the Reliability Index plot in

Figure 6.171, is transformed into a probability of failure plot, as is shown in Figure 6.172.
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Figure 6.172. Variation of Failure Probability with k Assuming Normal Factor of Safety

Figures 6.171 and 6.172 clearly show the effects of stability model uncertainty on

computed Reliability Indices and probabilities of failure. They also show the effects of

different assumptions using the same stability model. This is illustrated for different

values of X.

PROBABILISTIC ANALYSES (MONTE CARLO TECHNIQUES)

The Monte Carlo Method is used to estimate the probability of slope failure from an

assumed distribution of the uncertain strength parameters. By doing so, the effects of

stability model uncertainty on probabilistic analyses are examined. This is done by
generating a distribution of the Factor of Safety from which probabilities of failure are

directly computed. Monte Carlo analyses will also allow one to examine the effects of

stability model uncertainty on the distribution of the Factor of Safety.

We assume the strength parameters are Joint Normally distributed with parameters:

C'~ N(mc' = 15kN / m2 , ac' = 5kN / m2); g'~ N(m p = 250, c- = 50 ); p = 0
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The Monte Carlo Method for generating correlated random variables from the Bivariate

Normal distribution for correlated variables was discussed in Section 6-2.1.3.1.3.

Figure 6.173 compares the distribution of the Factor of Safety obtained using the

different stability models.

2.5 , - - ~ - - -

0
0 0.5 1.5 2 2.5

Factor of Safety

Figure 6.173. Comparison of Generated Distributions of Factor of Safety Suing Different Stability
Models

Table 6.40 summarizes the expected values and standard deviations, as well as

computed probabilities of failure using the different stability models.

We also attempt to investigate the effects of stability model uncertainty on the shape of

the distribution of the Factor of Safety. In order to do this quantitatively, we compute an

error term, e, as:

e = x [6.53]

where:

e

xi

x'

error term

the relative frequency of the generated distribution

the theoretical probability density of the distribution

638

2-

1.5-
0

S0.5

-4- Janbu

--- Janbu

- -Bishop

--6- Morgen

Simplified
Generalized

Simplified
stern - Price

i m1% - I-

-

1



Where the theoretical distribution is taken to be the Normal distribution, since in Chapter

5 Part 5-3, we showed that the Factor of Safety closely follows a Normal distribution for

Normally distributed strength parameters.

Stability Deterministic
Modlty A nsc Reliability Analyses Probabilistic Analyses
Model Analyses

Error
Factor of

Safety P PF = Ct(--0) E[F] c-F PF Term,
e

Janbu
1.16 0.92 0.179 1.19 0.23 0.183 0.095

Simplified

Janbu

Generalized 1.23 1.05 0.147 1.24 0.21 0.144 0.212

Bishop 1.23 1.08 0.140 1.25 0.22 0.147 0.159
Simplified

Morgenstern 1.22 1.06 0.145 1.24 0.24 0.149 0.249
- Price

Comparison of Deterministic, Reliability and
Stability Models

Probabilistic Results from Different

Table 6.40 shows that different Factors of Safety, reliability indices and probabilities of
failure are obtained using the different stability models. The difference is more significant
in the probabilities of failure than in the Factors of Safety. The Janbu Simplified Model

underestimates the reliability index and overestimates the probability of failure when

compared to the rigorous Morgenstern - Price Model, because of the assumption that

2. = 0. This is a conservative assumption since interslice forces are assumed to be zero.

The Bishop Model overestimates the reliability index and underestimates the probability

of failure because of the assumption that X = 0, and because of the regular shape of the

failure surface. The Bishop Model satisfies moment equilibrium, but fails to satisfy force
equilibrium. When the failure surface is regular and translational, forces are important,
and this leads to an underestimation of the failure probability using the Bishop Simplified
Model.
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For each stability model, the results of second moment reliability analyses, and

probabilistic analyses using Monte Carlo techniques are in good agreement, e.g. For the

Janbu Simplified Model, PF = 1D(-P) = 0.179 using reliability analyses, and PF = 0.183

using Monte Carlo techniques.

The agreement is good, because, as shown in Figure 6.173, the distribution of the

Factor of Safety is well approximated by the Normal distribution. This is also shown

through the small value of the error term, e, in Table 6.40.

The error term, e, remains more or less the same for the different stability models. This

implies that the derived distributions of the Factors of Safety using different models,

shown in Figure 6.173, all closely follow the Normal distribution.

We therefore conclude that the different stability models, do not have a significant effect

on the shape of the distribution of Factor of Safety. This is to be somewhat expected

since they are based on the same GLE Model, and hence same basic mathematical

form. The distribution is well approximated by the Normal distribution for all the stability

models considered.
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EXAMPLE 2: DEEP ROTATIONAL FAILURE SURFACE

In this example, we consider the slope shown in Figure 6.174.

Figure 6.174. Slope Geometry and Strength Parameters

DETERMINISTIC ANALYSES

The soil strength parameters shown in Figure 6.174 are used for deterministic analyses.

Deterministic stability analyses are performed using the GLE Model, and the variation of

Factor of Safety with k is shown in Figure 6.175.
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Figure 6.175. Variation of Force and Moment Factors of Safety with X

The value of X where both force and moment equilibrium are satisfied is X = 0.33, and

this is used in the GLE Model to result in the Morgenstern - Price Model. The Factors of

Safety from the different stability models are shown in Table 6.41.

Stability Model Factor of Safety

Janbu Simplified 1.18

Janbu Generalized 1.40

Bishop Simplified 1.47

Morgenstern - Price 1.46

Table 6.41. Factors of Safety Using Different Stability Models

Table 6.41 shows that different stability models result in different Factors of Safety, and

conclusions on stability. The Bishop Simplified Model gives a value of Factor of Safety

that is close to that obtained by the Morgenstern - Price Model. This is because of the

rotational shape of the failure surface, where moment equilibrium governs. Both the

Janbu Simplified and Rigorous Models, particularly the Simplified Model, underestimate

the Factor of Safety compared to the Morgenstern - Price because these models satisfy

force equilibrium, and not moment equilibrium.
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RELIABILITY AND PROBABILISTIC ANALYSES

Stability model uncertainty on slope reliability is investigated in second moment

reliability, and probabilistic contexts. We assume that the soil strength parameters are

uncertain with the following second moment parameters:

c'~ (mc' = 7.5kN/ m2), 1.875kN/M2) and '- (mv =220, a, =7.30)

We assume that c' and #' are uncorrelated. The Reliability Index is computed using the

different stability models. Figure 6.176 compares the reliability charts obtained using the

different models.

35 - -------- - - - - -

30 Janbu Simplified

Janbu Generalized

Bishop Simplified
25

(mr',m,.) Morgenstern - Price
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BOUNDARIES FROM
DIFFERENT STABILITY

5M UNSAFE REGION

0 -

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

c' (x 9.81 kN/m2)

Figure 6.176. Illustration of Different Reliability Charts Obtained by Different Stability Models on
Same Slope

Figure 6.176 also shows the different failure boundaries, and the different P-a

dispersion ellipsoids that are obtained by the different stability models. Probabilities of

failure are estimated from PF = qD(-P) assuming that the Factor of Safety is Normal, and

the results are presented in Table 6.42.
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Monte Carlo techniques are used to generate probability distributions of the Factor of

Safety for the different stability models, from which probabilities of failure are computed

directly. The results of the analyses, which are not presented here, show that using

different stability models affect the expected value and standard deviation (variance) of

the Factor of Safety, but have little effect on the shape of the distribution. These are the

same observations as those made in Example 1 and shown in Figure 6.173, and Table

6.40.

The results

Table 6.42.

of deterministic, reliability and probabilistic analyses are summarized in

Table 6.42. Comparison of Deterministic, Reliability and Probabilistic Results from Different
Stability Models

Tables 6.40 and 6.42 demonstrate the effects of stability model uncertainty on computed

Factors of Safety, reliability indices and probabilities of failure. Figures 6.170 and 6.176

show these effects on reliability charts.

In the first example, where the failure surface is shallow and translational, Factors of

Safety that are similar in magnitude are obtained using different stability models. Janbu's

Generalized Model gives results that are in good agreement with the rigorous
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Stability Deterministic Reliability Analyses Probabilistic

Model Analyses Analyses

F PF = <D(-p) E[F] GF PH

Janbu
1.18 0.51 0.305 1.21 0.38 0.300

Simplified

Janbu
1.40 0.87 0.192 1.42 0.45 0.188

Generalized

Bishop 1.47 1.02 0.154 1.47 0.46 0.153
Simplified

Morgenstern - 1.46 0.98 0.163 1.45 0.46 0.160
Price



Morgenstern - Price Model. The discrepancies in the results are greater in reliability

analyses and failure probabilities. This difference is, however, not very significant

numerically.

In Example 2, the failure surface is deep and rotational. There is a more significant

difference in Factors of Safety from different stability models in this example than in

Example 1. This is much more evident in the computed probabilities of failure, and can

lead to different conclusions on slope stability (reliability). The results from Bishop's

Model are in good agreement with the rigorous Morgenstern - Price Model, whereas

Janbu's Simplified Model underestimates Factors of Safety, and hence overestimates

failure probabilities significantly.

The shape of the failure surface, therefore, is an important factor in determining the

degree to which stability model uncertainty affects stability analyses, both deterministic

and probabilistic.

Generally, for shallow translational failure surfaces, Janbu's Models compare well with

the Morgenstern - Price Model, and although Bishop's Model underestimates Factors of

Safety and failure probabilities, the results are comparable. Model uncertainty from

stability models, is therefore not very important when the failure surface is translational.

For deep rotational failure surfaces, Bishop's Model compares well with the Morgenstern

- Price Model. Janbu's Models, particularly the Janbu Simplified Model can significantly

underestimate Factors of Safety and failure probabilities. Model uncertainty from stability

models, is therefore important when the failure surface is rotational.

For each stability model, Tables 6.40 and 6.42 show that probabilities of failure

estimated from reliability analyses are in good agreement with those from the Monte

Carlo analyses. This is because the distribution of Factor of Safety is well approximated

by the Normal distribution when the uncertain parameters are the soil strength

parameters, and these are Normally distributed, whether correlated or uncorrelated (see

Figure 6.173). The stability models considered in this study follow the same general

mathematical form of the Factors of Safety Equations in [6.47] and [6.50]. The difference

lies in the value of ?,, the interslice force function, which is assumed constant for each

stability model, i.e. X = 0 for Janbu's Simplified and Bishop's Models, and X = X * a
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constant corresponding to the value of X when both force and moment equilibrium are

satisfied in the Morgenstern - Price Model. Hence the assumption of Normality of the

Factor of Safety in computing probabilities of failure from PF = 'D(-P) holds. This is true

for different coefficients of variation of the uncertain parameters, and correlation.

6-2.2.4. STABILITY MODEL UNCERTAINTY IN BACK ANALYSIS OF SLOPES

In Chapter 2, we presented the case of a failed slope in Walton's Wood, England (Early

and Skempton, 1959). The site conditions are shown in Figure 6.177.
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Figure 6.177. Site Conditions and Actual Failure Surface of Landslide

We performed some back analyses of the failed slope, using c'=O and '=14.8 as

measured properties. Figure 6.178 shows a simple stability chart in terms of the

effective stress parameters c' and 4' for that particular slope. A single set of laboratory

tests were conducted and the results are shown as the encircled cross in Figure 6.178.

We indicate with contour lines around this point how possible spatial variability and

measurement uncertainties would show up. Figure 6.178 also illustrates model

uncertainty from different stability models. It shows the results from stability models

previously considered as well as those from the Ordinary Method of Slices (Fellenius,
1950). The region (band) of model uncertainty is not very significant numerically (with
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the exception of the conservative infinite slope model) because of the regular nature of

the failure surface. However, these differences can be critical in assessing the stability

of slopes as in the Walton's Wood case where different models lead to different

conclusions regarding stability (failure or no failure). The Infinite Slope Model suggests

slope failure as the measure data lie in the unstable zone, whereas the other stability

models suggest a stable slope. So, different conclusions on stability are reached

depending on the stability model used.
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Figure 6.178. Measurement and Model Uncertainty in a Simple Stability Chart for the Walton's
Wood Landslide (Model Uncertainty Calculated, Measurement Uncertainty Estimated - see text)
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6-2.2.4.5. STABILITY MODEL UNCERTAINTY IN LANDSLIDE HAZARDS

ASSESSMENTS

In this Section, the effects of stability model uncertainty on landslide hazards are

investigated. This is done in both deterministic and probabilistic contexts on two example

slopes.

EXAMPLE 1: SHALLOW LANDSLIDE WITH TRANSLATION FAILURE SURFACE

Consider the slope shown in Figure 6.179.

c'= 0.5 kN/m2
<|'=200 FAILURE

y = 20 kN/m 2

- (Ua-Uw)entry = 10kN/m
K= 200 cm/day

5-
ROCK

> 5 -0 20 25 30 354:

x (M)

Figure 6.179. Slope Properties and Failure Surface

A rainfall event of intensity I = 375cm / day =155mm /hr is assumed to take place for a

duration of 8 hours. Figure 6.180 shows moisture profiles, and Figure 6.181 shows

pressure profiles at selected times.
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Figure 6.180. Moisture Content Profiles with Time using the van Genuchten (1980) Model
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Figure 6.181. Pressure Profiles with Time using the van Genuchten (1980) Model
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The stability of the slope is assessed using different stability models, and the results are

shown in Figure 6.182.
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Figure 6.182. Variation of Factor of Safety with Time Using Different Stability Models

Figure 6.182 illustrates stability model uncertainty in deterministic landslide hazards

assessment. The effects in this particular example are not very significant numerically.

We now assume that the soil hydraulic and strength parameters are uncertain and follow

the distributions:

c'- N(mc' =0.5kN/m 2 , ac' = 0.017kN / m2 ); '~ N(m - = 200, c' = 6.67 0 ) and

K -LN( MKS =200cm/day, a 2  =(100cm/day) 2).

c', ' and KS are assumed uncorrelated.

Figure 6.183 shows the effects of stability model uncertainty on probabilistic landslide

hazards assessment.
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Figure 6.183. Variation of Failure Probability with Time Using Different Stability Models

Figure 6.183 again shows that the results are not very significant numerically in this
particular example. This is because of the translational, and regular shape of the failure
surface (see Figure 6.179). The fact that the hydraulic conductivity of the soil is
randomized does not have a significant effect on the differences in the computed
Factors of Safety in Figure 6.183. This makes sense, since randomizing the hydraulic
conductivity will have the same effects in each of the stability models, and hence the
stability analyses considered. The results in Figure 6.183 and conclusions made there
from, are the same as those made in Section 6-2.2.4, namely that stability model
uncertainty does not have a significant influence on slope stability analyses, and
landslide hazards assessment when the failure surface is regular. This is discussed
further in the next Section.
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6-2.2.6. DISCUSSION ON STABILITY MODEL UNCERTAINTY

The results in Sections 6-2.2.4 and 6-2.2.6 show that the effects of stability model

uncertainty on deterministic and probabilistic landslide hazards assessment depend on

the shape of the failure surface. The effects are not very significant numerically for

regular translational surfaces, and become more significant as the surface becomes

more irregular and rotational. In such instances different stability models can lead to

different conclusions regarding slope stability and reliability, and hence different

estimates of hazard.

Comparing the results from different simplified models (Janbu's and Bishop's) with those

obtained from the rigorous Morgenstern - Price Model, we conclude that the shape of

the failure surface, in general, will also dictate the best method for analyzing the state of

stability (or reliability) of a slope.

1. For shallow, long planar failure surfaces that are parallel to the ground surface,

models that satisfy force equilibrium, such as the Janbu Simplified and Rigorous

Models can be used with reliable accuracy.

2. For failure surfaces that can be approximated by arcs or circles, models that

satisfy moment equilibrium, such as the Bishop Simplified Model can be used

with reliable accuracy.

3. For better accuracy, and whenever possible, the Morgenstern - Price Model

should be used.

4. For important landslide hazard assessments, the GLE model should be used to

assess stability (and reliability) for different values (functions) of X, since it

encompasses other stability models.

652



6-2.2.7. CONCLUSIONS ON STABILITY MODEL UNCERTAINTY

Stability model uncertainty and its effects on slope stability and reliability analyses were

investigated. This was illustrated for circular and non circular failure surfaces. Two

examples slopes were used to study the effects of stability model uncertainty in slopes

with non circular failure surfaces. The first assumes a shallow translational failure

surface, and the second assumes a deep rotational surface. We showed that the extent

of stability model uncertainty is dependent on the shape of the failure surface. The

results can vary significantly when the failure surface is rotational, leading to different

conclusions regarding stability.

The effects of stability model uncertainty are more significant in probabilistic analyses

than they are in deterministic analyses.

The shape of the distribution of Factor of Safety from Monte Carlo analyses is unaffected

by the model used to asses stability, since they have the same mathematical form given

by the GLE Model. The Factor of Safety is well approximated by the Normal distribution,
when the uncertain parameters are the soil strength parameters, and these are Normally

distributed. As a consequence, estimating probabilities from second moment reliability

analyses give results that are in good agreement with those from Monte Carlo analyses,
irrespective of the stability model used.

The effects of stability model uncertainty on landslide hazards were also investigated.

Landslides caused by the saturation from the surface downwards by infiltrating rainwater

(see Chapter 3) typically have failure surfaces that are shallow and translational. Stability

model uncertainty does not have a significant effect on hazard assessments of such

slides because of the regular nature of the failure surface. However, and as was

discussed in Chapter 3, there are other landslide mechanisms that lead to different

shapes of the failure surface. When the failure surface is located deep along the soil

bedrock interface, for example, for landslides caused by saturation from below, then

stability model uncertainty will have a more significant impact on the results of hazards

assessments. This was shown in Example 2 of Section 6-2.2.4. We can therefore

conclude that stability model uncertainty has to be investigated on a case by case basis

when assessing landslide hazards, and its importance should be determined from such

analyses.
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6-3. CONCLUSIONS ON MODEL UNCERTAINTY

In this Chapter, model uncertainty and its effects on hydrologic and stability modeling,

and landslide hazards assessments was studied. .

Model uncertainty in hydrologic models comes from the hydrologic models themselves,

and from models (submodels) used within the hydrologic models, particularly the soil

characteristic curve models.

There are two types of hydrologic models:

(a) Models that solve the pressure based form of the flow Equation, and

(b) Models that solve the moisture based form, from which pressures are inferred.

Model uncertainty from the type (a) models is not very significant, because the models

basically solve the same mathematical Equation, with the same initial and boundary

conditions. For such models, model uncertainty from the models themselves in not very

significant, but model uncertainty from the submodels (particularly the soil characteristic

curves) is a significant source.

Model uncertainty from type (b) models is very significant. Moisture distributions are

inferred from pressure distributions, and assumptions are required to do so. Different

assumptions can result in very different results and conclusions on stability. Model

uncertainty from submodels (characteristic curves) plays a less important role in

contributing to model uncertainty in the results.

Model uncertainty in stability models comes from the stability models themselves, and

from models (submodels) used within the stability models. These submodels are models

such as for unsaturated soil strength, parameter probability distributions, and correlation.

Stability analyses require one to postulate a failure mechanisms, even, to a certain

extent those models that search for the critical failure surface. It is essential that the

postulated mechanism be the appropriate/critical one, and several trial failure surfaces

need to be assessed prior to determining the critical failure mechanism.
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There are two types of (Limit Equilibrium) stability models, simplified models, such as

Janbu's and Bishop's, and rigorous, such as the Morgenstern - Price Model. Model

uncertainty from the stability models themselves is not very significant because this

depends on the shape of the failure surface, and in general, shallow landslides exhibit

regular translational failure surface. Model uncertainty from the submodels can however,

be very significant. The results on different slopes show that:

(a) Correlation between strength parameters has a significant effect on slope

landslide hazards, more so than the actual probability distribution of the

parameters (Normal and Lognormal)

Since shallow landslides frequently have failure surfaces in unsaturated soil:

(b) The unsaturated strength model has a significant effect on landslide hazards

(c) Seepage direction, particularly in unsaturated soil, also has a significant effect on

landslide hazards

In general, if appropriate hydrologic models (those that solve for pressures) and stability

models (with the critical postulated failure mechanism) are used in landslide hazards

assessment, then model uncertainty from the submodels used in stability analyses are

the most significant source.

The results show where models need to be developed and used. Model uncertainty from

correlation models can be, to a certain extent, approximated through extensive

laboratory experiments and field measurements. Seepage direction, can also, to a

certain extent, be measured in the field.

There is however a need to develop more adequate, and reliable unsaturated strength

models, and means to estimate the parameters of such models. These models will,

undoubtedly, depend on the soil characteristic curves, and so, as an initial step, there is

a need to develop more adequate models to represent unsaturated soil properties, and

methods to determine the parameters of such models. This will, in turn, reduce model

uncertainty in hydrologic analyses that arises from the characteristic curve models used

in the analyses.
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This Chapter aimed at bringing to attention the importance of model uncertainty in

landslide analyses, which rely heavily on models, rather than to provide specific

solutions to the problem. It is by no means a rigorous assessment of model uncertainty

and its effects on landslide analyses, but showed how complex the issue is. Only the

effects of a particular source of model uncertainty were studied at one time, e.g. from

strength models in the same stability model, and this was complex enough. The issue

becomes much more complex and difficult to study if model uncertainty from two or more

sources is considered at the same time. For example, assessing the effects on stability

of different strength models used in different stability models, or on landslide hazards of

different strength models in the stability model, with different characteristic curve models

in the hydrologic model. Another example involves investigating the effects of the

(negative) correlation between the soil strength parameters, at the same time as another

source of model uncertainty on stability analyses, and landslide hazards.

In order to do this, one would essentially need to consider two sources of model

uncertainty, and evaluate their effects on stability, hydrologic, and/or combined modeling

(landslide hazards) simultaneously. As an example, consider models for strength, and

stability. These are two sources of model uncertainty that affect stability analyses, and

landslide hazards. If one were to investigate the effects of model uncertainty from both

sources, then what one needs to do is consider the effects of using different strength

models in different stability models. If one considers only two models for strength, the

Effective Stress Model (Bishop, 1959), and the Independent State Variable Model

(Fredlund et al., 1978), and only two models for stability, Janbu's Generalized Model

(Janbu, 1979), and Bishop's Simplified Model (Bishop, 1959), then one would need to

evaluate the effects of using the following combinations of models on stability analyses

and landslide hazards:

(a) The Effective Stress Model (Bishop, 1959) in Janbu's Generalized Model (Janbu,
1979), and the Independent State Variable Model (Fredlund et al., 1978) in

Bishop's Simplified Model (Bishop, 1959).

(b) The Effective Stress Model (Bishop, 1959) in Bishop's Simplified Model (Bishop,
1959), and the Independent State Variable Model (Fredlund et al., 1978) in

Janbu's Generalized Model (Janbu, 1979).
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In addition to:

(c) The Effective Stress Model (Bishop, 1959) and the Independent State Variable

Model (Fredlund et al., 1978) in Janbu's Generalized Model (Janbu, 1979).

(d) The Effective Stress Model (Bishop, 1959) and the Independent State Variable

Model (Fredlund et al., 1978), in Bishop's Simplified Model (Bishop, 1959).

While points (c) and (d) involve investigating the effects of model uncertainty from one

source (strength), and have been discussed in this Chapter, points (a) and (b) involve

investigating the effects of model uncertainty from two sources. This has not been done

in this Chapter, although it can be done in a similar way to what has been done in this

Chapter. The results of the model uncertainty investigations are not immediately

obvious, in that it is not clear whether model uncertainty from two sources leads to

greater/smaller uncertainty in stability analyses, and landslide hazards assessments.

Detailed investigations of this type eventually need to be done to address this. It is also

quite evident that the number of combinations of models that this needs to be done for

quickly increases as the number of models considered increases, and hence will require

extensive further studies.

The issue of model uncertainty becomes even more complex, and almost impossible to

study if parameter uncertainty in the models is considered as well, since these are

related, i.e. more refined models are better at representing reality, and reduce the effects

of model uncertainty, but also may require specification of a greater number of

parameters than simpler models, and these are subject to parameter uncertainty.

While this is not considered in this Chapter, the Chapter did, nonetheless, shed some

light into the effects of model uncertainty on landslide hazards assessments, and

showed that these effects can be very significant. In particular, it highlighted the relative

significance of the different types of model uncertainty. This helps in determining where

it is worthwhile to refine and/or use better models. It also presented ways in which model

uncertainty can be assessed, and given their significance these should be accounted for,

one way or another, in landslide hazards and risk assessments.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1. CONCLUSIONS

Landslides are natural phenomena which often have detrimental consequences.

Landslide hazards can be systematically assessed by using the principle of decision

making under uncertainty (Figure 7.1). This was done in this study.

Collect Information

Probabilistic
(Model) Phase

" Express Probabilities
and Create Probabilistic
Models

" Sensitivity Analyses
" Eliminate Variables

(Models)

Updating Information
(Model) Phase

Risk Assessment

Risk Management

Decision

Figure 7.1. The Decision Analysis Cycle
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Specifically, this study attempted to evaluate landslide hazards, and is therefore mainly

concerned with the deterministic, and probabilistic phases of the decision making

process shown in Figure 7.1.

In the deterministic phase, one selects the initial variables, and develops deterministic

models. In Chapter 2, a model to assess landslide hazards in a deterministic context

was developed. The model is based on combined hydrologic and stability analyses, for

which advanced hydrologic and stability models had to be first developed:

(a) Hydrologic Model:

The hydrologic model is a one dimensional finite difference infiltration model. It is more

advanced than other infiltration models being currently used in landslide analyses

because:

i. It solves the variably saturated flow equation, and is thus capable of accounting

for both saturated and unsaturated flow processes.

ii. It involves a variable top boundary condition which automatically changes from

being flux driven, when the layer of soil near the slope surface is not fully

saturated and rainwater enters the soil, to being head driven, when the layer of

soil near the slope surface is fully saturated, and the soil cannot accept

additional rainfall, which is observed as surface runoff.

(b) Stability Model:

The stability model is a two dimensional limit equilibrium model that is based on the

Janbu Generalized procedure of Slices (1978). It is more advanced than other stability

models being currently used in landslide analyses because:

i. It includes a search for the critical failure surface in a slope, along which the

Factor of Safety is minimum

ii. It incorporates unsaturated soil strength, which is critical in landslide analyses,

particularly in shallow landslides. Specifically, the Effective Stress Model (Bishop,

1959) is used for unsaturated strength, a model which is re-gaining popularity

amongst investigators in the field, and has, thus far, not been widely used in

landslide analyses.
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(c) Combined Model:

When combined, the hydrologic - stability model is more advanced than current

combined models being used in landslide analyses, because it includes a time

dependent state of stability analysis. This combined model allows one to assess

landslide hazards deterministically.

The combined model was then used to study the mechanisms of landslides in Chapter 3.

We showed that there are two distinct ways in which landslides can occur, which are

related to the manner in which a slope gets saturated during rainfall, namely saturation

from below by a rising water table, and saturation from above by infiltrating rainwater. It

was shown that in general:

(i) Slopes with great depths to bedrock and shallow depths to the water table, tend to

fail by saturation from below, with failure surfaces typically along the soil bedrock

interface resulting in a deep seated landslide. Such landslides occur because the

rise in the water table causes an increase in the pore pressures at the soil bedrock

interface.

(ii) Slopes with deep water tables tend to fail by saturation from above, with shallow

failure surfaces that are located above the water table. Such landslides occur

because the infiltrating rainwater increases the pore pressures (reduces or

eliminates the initial suction, or causes positive pressures to develop) in the

otherwise unsaturated zone of the slope. Since the mechanisms of these shallow

landslides are not well understood, they were studied in detail in Chapter 3. We

showed that when the infiltrating rainwater reduces the initial suction, this may be

sufficient to generate a landslide. This is an important result since it remains a matter

of debate amongst investigators in the field. While it is well known that positive

pressures can develop when a low conductivity heterogeneity, e.g. a clay lens, exists

in the subsurface, we showed that there are several other mechanisms by which this

can happen. Positive pressures can develop:

(ii)-1. Gradually, for example when there is a decrease in the hydraulic

conductivity of the soil with depth, or
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(ii)-2. Suddenly, when rate of infiltration suddenly exceeds the water

transmission rate of the soil, for example, when there is a sudden increase in

rainfall intensity.

This can occur in both homogenous and heterogeneous soils, and these positive

pressures can ultimately generate a landslide.

We also showed that failure can take place during a rainfall event as a result of the

increase in pore pressures, or after the end of rain, because of pressure

redistribution. For the same strength parameters, and initial conditions, we showed

that uniform soils tend to be more susceptible to failure than well graded soils,
because of the lower contribution of suction to unsaturated strength.

Landslide hazards include, by definition, the expression of uncertainties in probabilistic

form, and these uncertainties enter all the different stages of the landslide hazard

procedure. Chapter 4 described the sources of uncertainties as they relate to landslide

analyses. Deterministic sensitivity analyses were performed to investigate the relative

effects of different parameters on hydrologic and stability analyses. We showed that the

most influential variable in hydrologic modeling is the hydraulic conductivity of the soil,
and the most influential variables in stability modeling are the soil strength parameters.

These results allow one to formally eliminate the other variables that have a less

significant influence on the results.

In Chapter 5, techniques were described by which parameter uncertainties can be

formally incorporated into the hazard assessment procedure. These techniques are

efficient, spreadsheet-based and simple to implement and allow one to evaluate the

reliability of a system, e.g. slope, using second moment reliability methods, based on the

Hasofer and Lind (1974) reliability index, and probabilistically based on the Monte Carlo

method. Specifically, this showed the following effects of parameter uncertainties:
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(a) Hydrologic Modeling:

Hydrologic modeling showed that sharp wetting fronts tend to develop in uniform

soils, and that, consequently, uncertainties in the moisture profiles are large and

localized near the wetting front. Well graded soils do not develop sharp wetting fronts

and uncertainties in the moisture profiles are small and spread over a large depth.

(b) Stability Modeling:

Stability modeling showed that the distribution of the Factor of Safety in a slope is

closely related to the probability distribution of the strength parameters. When the

soil strength parameters are Normally distributed, the distribution of the Factor of

Safety can be well approximated by the Normal distribution. Because of this, and

because a linear approximation of the Factor of Safety Equation with respect to the

strength parameters is a good one, the results of First-Order Second Moment and

Second Moment reliability analyses, and probabilistic analyses based on Monte

Carlo methods are in good agreement.

(c) Combined Modeling:

Combined modeling showed that the soil strength parameters have a greater effect

on landslide hazards than the soil hydraulic conductivity. As a result, the distributions

of the Factors of Safety with time during and after a rainfall event, are highly

dependent on the distributions of the strength parameters. We therefore conclude

that with regard to parameter uncertainty, for more accurate landslide hazards

evaluations, better information on the distributions of the strength parameters is

required.

Chapter 6 studied model uncertainty and its effects on landslide hazards assessments.

This is the least understood and most difficult source of uncertainty to capture. Model

uncertainty arises because of the simplifications and assumptions in the models (and

submodels) used in hydrologic, stability and combined modeling. Chapter 6 showed the

following sources and effects of model uncertainties:
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(a) Hydrologic Modeling:

Model uncertainty in hydrologic models comes from the hydrologic models themselves,

and from models and submodels used within the hydrologic models.

i. Hydrologic models can be classified into models that solve the flow Equation for pore

pressures, and models that solve the flow Equation for moisture distributions from

which pressure distributions are inferred. Model uncertainty from the former is not

significant, but it is from the latter because assumptions need to be made to infer

pressure distributions from moisture distributions, and different assumptions can lead

to significantly different pressure distributions.

ii. Submodels typically used in hydrologic models include those for the soil characteristic

curves such as the van Genutchen (1978) and Bresler et al. (1981) models, as well as

models for stable infiltration, amongst others. It was shown that the characteristic

curve submodels are the most significant source of model uncertainty from

submodels, and in fact, these are a more significant source of model uncertainty than

the hydrologic models themselves.

(b) Stability Modeling:

Model uncertainty in stability models comes from the stability models themselves, and

from models and submodels used within the stability models.

i. Stability models (Limit Equilibrium) can be classified into models that satisfy force

equilibrium, models that satisfy moment equilibrium, and models that satisfy both

force and moment equilibrium, known as rigorous models. Model uncertainty from

stability models depends on the shape (geometry) of the failure surface. In the case of

shallow landslides with regular, translational failure surfaces, model uncertainty from

stability models is not a very significant source.

ii. Submodels typically used in stability models include those for unsaturated soil

strength, such as the Effective Stress Model (Bishop, 1959), and the Independent

State Variable Model (Fredlund et al., 1978), parameter probability distribution,
seepage direction, amongst others. It was shown that the submodels for unsaturated
soil strength, and correlation between strength parameters are the most significant
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source of model uncertainty from submodels. These are a more significant source of

model uncertainty than the stability models themselves.

(c) Combined Modeling:

Model uncertainty in combined models comes from the model uncertainty in hydrologic

and stability models. We showed that model uncertainty from stability models, are more

significant sources of model uncertainty in combined models, and hence landslide

hazards assessments, than model uncertainty from hydrologic models.

Although Chapter 6 does not provide specific solutions to the model uncertainty problem,

it does shed some light into the effects of model uncertainty on landslide hazards

assessment, and where better models need to be developed. This is discussed in the

following section.

7.2. Recommendations and Future Work

Despite recent efforts and advances in the field of landslides, a comprehensive hazard

assessment still remains a challenge. This is due to the complexity of the phenomena,

the many factors that affect it, and the associated incomplete understanding of the

mechanisms involved. There are several ways in which current landslide analyses can

be improved which include:

(a) More accurate information on parameters

(b) Better understanding of landslide mechanisms

(c) Developing better hydrologic, stability and combined models and submodels

(d) Formal incorporation of uncertainties

Obtaining more accurate information on parameters (point (a) above) decreases

parameter uncertainty, and leads to improved landslide analyses. Chapters 4 and 5

studied parameter uncertainty, and in light of the results recommendations are made in

the following section.
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There exists an interrelationship between understanding the mechanisms of landslides

(point (a) above) and developing the models required to do so (point (b) above). In order

to better understand the mechanisms, models that are better suited for landslide

analyses need to be developed. These models, in turn, require a better understanding of

the mechanisms. A cyclic process of modeling landslides, and understanding their

mechanisms needs to be applied. Because of this, recommendations are made to

develop better models (point (b) above) in the following section. Based on this, landslide

mechanisms can be better understood.

Chapters 5 and 6 studied uncertainties, and presented techniques in which uncertainties

can be formally incorporated into the assessment procedure (point (d) above).

Recommendations based on the results of these Chapters are made in the following

section.

(a) More accurate information on parameters

The results of the deterministic sensitivity analyses in Chapter 4, and the probabilistic

analyses in Chapter 5 have shown which parameters are most important in landslide

analyses. Based on the results of these Chapters, the following recommendations are

made:

(i) Hydrologic Models

We showed that the most important parameter in hydrologic modeling is the hydraulic

conductivity of the soil. A better knowledge of the hydraulic conductivity through

extensive field and laboratory tests is therefore recommended for more accurate

landslide hazards estimations.

(ii) Stability Models

We showed that the most important parameters in stability modeling are the soil strength

parameters. A better knowledge of these parameters through extensive field and

laboratory tests is recommended for more accurate landslide hazards estimations. We,
in particular, showed that the correlation between strength parameters has a significant
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influence on stability modeling, and so better techniques to estimate correlation is

recommended for more accurate landslide hazards evaluations.

(iii) Combined Models

We showed that the soil strength parameters have a greater effect on landslide hazards

than the soil hydraulic conductivity. We therefore conclude that for more accurate

landslide hazards evaluations, better information on the distributions of the strength

parameters is required.

The recommendations in this section relate to obtaining more accurate information on

parameters. Issues relating to obtaining more accurate information must thus, be taken

into account. These are issues which include representative sampling whether in the

field or in the laboratory, sample disturbance, testing methods and procedures, etc.

Ideally, an optimal sampling/testing/exploration plan can be devised and used.

(b) Developing Better Models and Submodels

Improvements to the models and submodels used in landslide analysis include:

(i) Trigger Models

The trigger in rainfall induced landslides, is rainfall, and rainfall models need to be

developed and used in landslide analyses. Rainfall models used in current landslide

studies, including this one, simply assume that a rainfall event can be represented by a

mean rainfall intensity, and a duration of the rainfall. Better models that model the

variation of these characteristics with time are needed to more accurately represent

these events.

(ii) Hydrologic Models and Submodels

Chapter 6 studied the effects of hydrologic model uncertainty on hydrologic analyses,
and landslide hazards, both quantitatively and qualitatively. It showed that the most

significantly source of uncertainty comes from submodels used for the soil characteristic
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curves. So better models for these are needed for more accurate landslide hazards

assessments. This is described in the following. Also described are some of the most

important improvements that need to be made in hydrologic models.

(ii)-1. Submodels

Characteristic Curve Submodels: In Chapter 6, we showed that the submodels for the

soil characteristic curves can have a very significant influence on hydrologic analyses,
and landslide hazards. There is, therefore, a need to develop better models to represent

the characteristics of unsaturated soils. To be able to do this, better laboratory

equipment, and techniques to measure unsaturated properties, particularly the soil

suction need to be developed. Research is currently being undertaken at the

laboratories at MIT to do this (e.g. Sjoblom, 2000; Toker, 2002, 2004). Developing better

models to represent the soil characteristic curves will, most probably, require the

introduction of additional parameters. Difficulties may be encountered in measuring

these parameters, and the added parameter uncertainty because of the introduction of

additional parameters need to be taken into consideration when developing better

models. There is an added complication regarding the soil characteristic curves,
specifically that they exhibit hysteresis. This is important since wetting of the soil occurs

during rainfall, and infiltration, and drying occurs at the end of rain, during moisture

redistribution.

Unstable Infiltration Submodels: One of the fundamental assumptions of the

infiltration model developed in Chapter 2, and the vast majority of commonly used

infiltration models is that of stable infiltration. During stable infiltration, rainwater is

assumed to infiltrate the slope in the form of a stable wetting front. While this is the case

when the rainfall intensity (application rate) is greater than the saturated conductivity of

the soil at the surface, experimental evidence has shown that this is frequently not the

case when the rainfall intensity (application rate) is less than the saturated conductivity

of the soil, e.g. Hills (1969), Parlange (1982), Culligan and Parlange (1998). When the

rainfall intensity (application rate) is less than the saturated conductivity of the soil,
preferential flow or fingering takes place in both heterogeneous and homogenous soils.

Several models have been developed to predict finger development and propagation

e.g. Dekker, 1998, but these remain crude at best. This is because the mechanisms of
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finger development are poorly understood. With the better understanding of these

mechanisms, and the development of more representative models, these should be

incorporated into infiltration models, such as the one developed in Chapter 2, thereby

accounting for finger phenomena.

(ii)-2. Models

Multi - Dimensionality: The majority of hydrologic models used in current landslide

analyses are one-dimensional, and although the processes of infiltration are

predominantly vertical, two and three dimensional effects can be included to refine the

model. While during the infiltration process, when it is raining on a slope, water travels

downwards into a slope, this is not necessarily the case during the redistribution

process, after the end of rain. Under some circumstances, moisture (and pressure)

redistribution in the horizontal direction can be significant. This is the case, for example,
when the hydraulic conductivity of the soil in the horizontal direction is of similar

magnitude as the hydraulic conductivity in the vertical direction.

Coupled Infiltration and Subsurface Flow Models: Hydrologic models that have been

used in landslide analyses have been either infiltration models, or subsurface flow

models. Infiltration models, such as the model developed in Chapter 2, model the effects

of rainwater infiltration on the single slope scale. These models predict the changes in

moisture (and pressure) distributions as the rainwater enters the slope from the surface.

Subsurface flow models, on the other hand, are models for groundwater flow usually on

the regional, e.g. catchment basin scale. These models predict changes in moisture (and

pressure) distributions, or in effect groundwater levels, and subsurface flow regimes.

They include regional scale effects such as recharge from higher altitude slope sectors,
convergent or divergent flow with changes in topography, exfiltration from bedrock,
amongst other factors. In order to better model the effects of rainfall on the hydrologic

response of a slope, it is necessary to develop a model that includes both an infiltration

model, as well as a groundwater recharge model. This model would, in essence, be a

combination of an infiltration model such as the one developed in Chapter 2, and a

subsurface flow model. In doing so, the complete hydrologic response of slopes to

rainfall can be determined, and this would include simultaneously assessing the effects

of infiltrating water, and subsurface flow regimes, such as groundwater recharge, etc.
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(iii) Stability Models and Submodels

Chapter 6 studied the effects of stability model uncertainty on stability analyses, and

landslide hazards, mostly quantitatively but also qualitatively. It showed that the most

significantly source of uncertainty comes from submodels used for unsaturated soil

strength, correlation between strength parameters, and seepage direction. So better

submodels for these need to be developed for more accurate landslide hazards

assessments. This is described in the following. Also discussed are improvements and

refinements that need to be made to the majority of stability models used in current

landslide analyses. There naturally is a long list of such improvements, but selected are

a few that are most important.

(iii)-1. Submodels

Unsaturated Strength Submodels: The results of this study have shown that the

submodels used in stability analyses can have a very significant influence on hydrologic

analyses, and landslide hazards. Submodels for unsaturated soil strength, parameter

probability distribution and correlation, and seepage direction are particularly important.

While the probability distributions and correlation between parameters, can be estimated

by extensive laboratory studies, and seepage direction can be estimated by field

measurements and observations, there is a need to develop better models to represent

unsaturated soil strength. Developing better models for unsaturated strength will, as an

initial step, require the development of better models for the soil characteristic curves,
since unsaturated strength is dependent on these. This was described in (a) of the

preceding section. As was also stated in point (a) developing better models, typically

requires the introduction of additional parameters, and the added parameter uncertainty

associated with these parameters needs to be accounted for.

(iii)-2. Models

Limit Analysis Stability Models: The majority of stability models used in current

landslide analyses, as well as the stability model developed in Chapter 2, rely on Limit

Equilibrium Methods. These are relatively simple and easy to implement with common

tools such as a spreadsheet as described in Chapter 2. Upper and Lower Bound
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Solutions to the statically indeterminate stability problem have been developed and have

found occasional use. These are based on Limit analysis, which takes advantage of the

lower and upper bound theorems of plasticity theory to provide rigorous bounds on the

true solution of a stability problem. Statically admissible stress fields are constructed for

lower bound analysis and kinematically admissible velocity fields are constructed for

upper-bound analysis of soil slopes. Models to solve these are more computationally

intensive and often require finite element analyses. For a better landslide hazards

assessment, such finite element models can be used in conjunction with Limit

Equilibrium Methods to determine the state of stability of a slope more accurately.

Having said this, and because of the complexity of Upper and Lower Bound Solutions,
as well as the finite element method itself, care has to be taken to ensure that any model

developed as such must remain easy to understand and simple to implement.

Model Dimensionality: The majority of stability models being used in current landslide

analyses are one (e.g. Infinite Slope Model, Skempton and DeLory, 1959), or two

dimensional (e.g. Janbu's, 1959, 1978, and Bishop's 1959, Models) models. These
models assume that the geometry of landslides, particularly shallow landslides is such
that the depth to length ratio is small, and that the width of landslides is great. In such
geometries, three dimensional effects are not very significant. Having said this, three
dimensional effects become important when the landslide geometry is not as what has

just been described. Different models exist to include three dimensional effects, and

these should be accounted for in more accurate stability models.

Displacements: The majority of stability models are 'static' models in the sense that
they do not include the effects of movements in slopes on stability. These movements or
displacements can be important particularly in the case of slow moving (active)

landslides, and creeping slopes. While displacements have been somewhat accounted
for in various landslide hazards studies, this has been, for the most part, done
subjectively. A better knowledge of the creep phenomena is needed before better
models to represent it can be developed, and later included in stability analyses.
Alternatively, these displacements can be accounted for through an updating process
(the updating cycle in Figure 7.1), where the prior state of stability of a slope is updated
given the observations of slope movements (displacements) through a Bayesian type
analysis, to result in the posterior state of stability. While this is a possibility, there has,
as of yet, not been any attempt to account for displacements this way.
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Progressive Failure: The majority of stability models used in current landslide analyses,

do not include progressive failure. The mechanisms by which progressive failure takes

place are not yet well understood, and this is reflected through the lack of models to

represent progressive failure. Nevertheless, it is important to include progressive failure

particularly since landslide tend to occur in mountainous regions.

Following on what has been said above specifically that landslides tend to occur in

mountainous regions, it is also important to include regional effects in stability modeling.

These are large scale effects, such as the effects of failing higher altitude slopes on the

stability of lower altitude slopes. This, in general, will require models to predict landslide

velocity, and runout distance (and volume). These processes are also not well

understood making it difficult to include them in current stability models.

Vegetation: The majority of stability models used in landslide analyses do not include

the effects of vegetation on stability. Vegetation is general influences the stability of a

slope in two opposing ways:

i. The vegetation root strength increases the stability of a slope by literally holding

together the soil at the slope surface. Attempts have been made to include root strength

in stability analyses as a component of the cohesion of a soil, but this has not gained

wide acceptance. Better models are needed to include the effects of root strength on

stability.

ii. The weight of vegetation on a slope surface (particularly large trees) adds a

destabilizing component to slopes, and hence decreases stability. While this has been

recently acknowledged, it is not widely accounted for in stability analyses.

(iv) Combined Models

Combined models couple hydrologic models with stability models. Developing better

hydrologic and stability models, therefore, will lead to the development of better

combined models. There is another issue, however that arises, namely that of model

validation.
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The infiltration model developed in Chapter 2 was validated by comparing the results of

numerical analyses to the results from infiltration experiments. The stability model

developed in Chapter 2 was validated by assessing the stability of a failed slope and

comparing the location of the predicted critical failure surface with the one obtained from

field observations. The combined hydrologic - stability model developed in Chapter 2,
was, however, not validated. To do so requires the simultaneous validation of the

hydrologic and stability models. This, in turn, requires simultaneous information on

rainfall characteristics, and site conditions (hydrologic and stability) from failed slopes.

There are only limited data making such a validation very difficult. What is, in essence,
lacking are quality data collection and storage of historic landslide events in the form of

reliable landslide inventories. For this, it is necessary to combine all possible efforts for

the development of comprehensive landslide databases. Maximum use should also be

made of modern communication tools for the exchange of such information. A properly

organized data collection, storage and exchange is thus required for the purpose of

building such inventories and evaluating landslide hazards.

(c) Formal incorporation of uncertainties

This study, Chapters 5 and 6 in particular, investigated uncertainties from parameters,

and from models.

i. Parameter Uncertainty: Chapter 5 studied parameter uncertainty, and described

simple, easy to implement techniques with which these uncertainties can be

systematically incorporated into the hazards assessment procedure. These

techniques were applied to the case when the hydraulic conductivity of the soil, as

well as the strength parameters were uncertain. They can be extended to include

more variables in a similar way to what was described in Chapter 5. In particular,
there is a need to assess uncertainties in the parameters of the trigger, namely the

rainfall intensity and duration. While the techniques in Chapter 5 can be used to do

this, this has not been done in this study.

ii. Model Uncertainty: Chapter 6 studied model uncertainty, and showed this source of

uncertainty can have significant effects on landslide hazards. While the Chapter

demonstrated which sources of model uncertainty are most important, it did not

provide ways in which uncertainty from models can be rationally included in landslide
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analyses. This needs to be done. Furthermore, model uncertainty from only one

source was studied in Chapter 6, and further extensive studies that investigate the

effects of model uncertainty from two or more sources need to be performed.

The Earth's surface is a dynamic system, constantly evolving through the actions of

geological, geomorphological and meteorological processes. Landslides form one

aspect of this evolution that occurs in a wide variety of geological, hydrogeological and

climatic conditions. Given the complexities involved, the task of assessing landslide

hazards is formidable. Nevertheless, given the very considerable losses, human and

economic, there is a clear responsibility to do all that can be done to anticipate and

mitigate these hazards. Landslide hazards assessment is of fundamental importance to

policy makers and government agencies, and serves as an aid to rational land use

planning and sustainable development. Finally, most importantly the ultimate aim of

landslide hazards assessments is to save lives, and this requires bringing all the relevant

disciplines together in a fully integrated manner.
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APPENDIX A

SOLUTION OF A TRIDIAGONAL LINEAR SYSTEM OF

EQUATIONS

In this appendix an algorithm for solving a tridiagonal linear system of n equations with n

unknowns is presented. The method is based on the factorization of the original matrix

as the product of a lower and an upper triangular matrix. Let the original system be:

b, c, 0 . . . . f

a 2 b 2 c 2  2

0 a 3 b 3 c 3  2

an.1 bn_1 Cn_1 Xn-1 fn-1

0 . 0 bn cn xn

or

Ax =f [Al]

Let:
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Wi

a
2

0

0 0

V2) 0

a
3

0

W
3

0 an_1 Wn_1

0 0 an wn

0

0
0

1

0

0

P2

1

w0i0

a 2 1 +w 2

a 3P3

1

00
P_1I
1

Wi

a 2

0

0

a32 + w 3

v-a lp-1

an anPn_1+wn0

or

LU = A [A2]

with obvious definitions of L and U.

Thus, the factorization is realized with:

p

or

Pi =

Wi

i = bi - aA-1 i = 2,...,n

W1 = b1

C 
1

b1 -alp3,
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[A3]

[A4]

[A5]

Ci [A6]
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From [Al] and [A2]:

LUx = f

or

Ux = L-f

Writing:

L~ f = y

or

Ly = f

The solution of the original system is reduced to the solution of the two triangular

systems:

Ly =1

And

Ux = y

In order to link this with the development of the finite difference scheme in Chapter, we

notice b, =B,; c, =Ai; ai=-D,; and

defined in Chapter 2.

The solution of Ly = f is:

Y i

fi =E, where B1 , Al, D, and Ei

fi _ f,
W1 b,

[Al 4]
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[A8]

[A9]

[A10]

[Al1]

[Al 2]

[A13]

are



1 fi - aiyi 1 fi - ayi _1

wi bi -aipii
[A15]

Then, the solution to Ux = y is:

x,= ya= " sa1

b -an$n_1

x = y1 - IX1+1 = -I xi+1 n -

Let o 1 (i) and o 2 (i) be two intermediate variables defined as:

o(i) =

CO y2

o1(1) = -Pi
= c A

b1 B1

(02b) 1 bYf - (f ) AE

01 (i)= -Pi
ci

b, - aA B - DIo(i -1)

fl -ayp1

bi -aA31
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[A16]

[Al 7]

Then,

[A18]

[Al 9]

And,

[A20]

[A2 1]

0)2(1) 
yi

[A22]

i= 2,..., n

i = 1,2, ...,In-1

A-
01(i()=

Bi - Dioi(1 - 1)



f -a f_-1o2(i-1) _ fi -aj i.10_2(i-1)

PA -ai i_1) Ci

E.- DImj(i-1)02 (i-1)
-Ai

Hence,

( 2 0) Di 1 (i-1)o2 (i-1)- E

01(i) and o 2 (i) for i=1,...,n -1 are computable using only the knowledge of system

matrix and the constant terms.

Once, wo(l) and C2(1) have been computed from [A20] and [A21], the 01 (i) and

(02() can be computed from [A22] and [A23]. Then we have:

_fn -any_1 fn -an n_1'2(n-1)
- n b n - a nP n_ 1 b n - a n n 1

[A24]n - Dnol(n -1)02(n -1)
Xn - B n - D o l (n - 1)

and

xi = Px+1

[A25]
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APPENDIX B

THEORETICAL MAXIMUM SLOPE ANGLE FOR USE IN THE

INFINITE SLOPE STABILITY MODEL

The Factor of Safety for an infinite slope (see Figure B1) can be expressed as

(Skempton & DeLory, 1957):

F = c' tan' zw - z yw tan#' [B1]
yszsinpcosfl tanfi L z ystanfl

which is re-written as:

F = c' n+ yt' [32]
yzsinxcosax tana ytanuj

where

c' is the cohesion of the soil

is the angle of internal friction of the soil

y is the unit weight of the soil

YW is the unit weight of water

(X is the inclination of the slope to the horizontal

z is the depth below the ground surface

z, is the depth of the water table below the ground surface

m is the degree of saturation of the soil, m = zw- zj
z_
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I ....................2 0

Figure B1. Infinite Slope Geometry and Definition of Parameters

Rearranging Equation [B2] yields:

[B3]F+ -m tan
'szsinpcosy y) tan3

For a slope with given soil and hydraulic properties, one would expect the factor of

safety to be a monotonically decreasing function of the slope angle. However, this is not

be the case for an infinite slope, with the Factor of Safety in Equations [B1]. There exists

an upper bound to the slope angle above which the Infinite Slope Model breaks down.

B2. DETERMINATION OF MAXIMUM SLOPE ANGLE

B2.1 ANALYTICAL SOLUTION

If the Factor of Safety in Equation [B3] is not a monotonically decreasing function of the

slope angle within the range 0 3P 90, then there exists at least one local minimum

680

15 -

10 -

5

SOIL

5 WATER
TABLE

25-5

-5

-10

-15 -

SZw 0 1 .. 15 20

z .-- 'ROCK

SOIL BEDROCK
Z x (M) INTERFACE/FAILUR

SURFACE
E



within this range. To obtain these minima, we differentiate Equation [B3] with respect to

the slope angle.

aF_

c' (sin Pfcos p)-2 [(sin p)(- sin P) + (cos P)(cos P)] -tan ' 1
zy s

c' (sin pcos W)2 [cos2 p - sin 2

zYs
p]- tan ' 1

-mYw (tanp)-2 sec2 P
Ys)

-mYw sec2P]
Ys ) tan 2

Simplifying Equation [B5] and substituting for sec 2 p = 1+ tan 2 P :

- + c' -tanp'(1
ap zy, sin2 p zy, cos2 p

[B6]-m _ I+ _tan2

YS ) tan2p

Since si12 =cos ec 2 P
sin~f

1 1
+tan 

2 and 1
Cos 2

= sec 2 P = (1+ tan2 p), Equation [B6]

becomes:

N = _ c'y )( I+ 1 ) Y+ c' )
C9 P zys) tan2 pf zys

aF

Factorizing

K=

1 out
tan2 P

+ tan2 P)- tan#' 1-

+ tan 2 P)-tan ' 1- m + tn
YS )( tan2

m ' I+(c'J}L 1+ 1 2
YS zYs tan2

of Equation [B8]:
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:11tan' )tan2 

Setting = 0 in Equation [B9]

'1+ tan 2 p)- tan14I - Ymw + 1+ tan 2  [B9]

bL vfYS )azy ng

to obtain the critical value of the slope angle:

aF
tan 2 tan2(

+tan2 p )- {tan4'C-M W
1YS j±( C,)(I +tan2p )}=0

[B10]

The solutions to Equation [10] are:

1. Trivial solution: tan 2 P = oo and p = 90

tan 2 p)- tan'1-mI w + tan 2 p = 0

Expanding Equation [B11]:

(1P+ Ctan4 p

( C'tan4 p
tan 4' (1

-mYw + C]tan2 0

[B12]

m Yw tan2 P - tan' (1- m

We now define two dimensionless parameters:

(a) A dimensionless stability number, A =

(b) A dimensionless pore pressure parameter B =
YS)
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[B13]1 w + C ) = 0

2. C tan2 p(1 + + C ) 1(

tan #' 1 my + C - tan '



Equation [B13] can be expressed in terms of the parameters A and B as:

A tan4 p-B tan 'tan 2 P-{A+B tan 4'} = 0

Solving Equation [B14] for tan 2 p:

tan 2 P =
B tan 4'±J(B tan )2 +4A(A+Btan#')

2A

tan P is found from Equation [B15] as:

a B 2

tanp B tan 4'±F tan 2 4 + 4A(A+ Btan#')

2A
[B16]

Hence, the slope angle can be expressed as:

[B17]~tantKB tanl ±VB2 tan 2 P'+4A(A + B tan )2
2A

Equations [B15] to [B17] can be written out in full in terms of the soil properties, as is

done in Equations [B18] through to [B20]:

I-m ) tanm ±-4(' ' + -a

zy S

[B18]
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[B15]
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L-
tan f=

mYw
7S

tan ' -m 1 tan' +4 L ( i 1
yS z( Z

-mYW
-M s7 tan')

2 C1
(zyS

2

[B19]

p=tan- LI tan
Ys

-m7W
Ys 13 m YW

7S
tan '

2

tan' +4 -
) zysA) zYs

C'
2

(ZYS

2

[B20]

From Equation [B20] slope angles can be found at which the factor of safety is at a local

minimum in terms of the soil and slope hydraulic properties. These slope angles are

interpreted as the maximum slope angles that can theoretically be used in the infinite

slope stability model.

B-2.2. SPECIAL CASES:

A. COHESION, c'= 0

When the cohesion of the soil c'= 0, the dimensionless stability number A = 1= 0
(zyS

and there is no solution to Equation [B20]. The factor of safety at any particular depth is

obtained by substituting c'= 0 into Equation [B1] to get:

F = tan+' z- zl( y,tan'
tanf3 L z jy Ttanf3

[B21]

Rearranging Equation [B21] yields:
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F = 1 m 7,tan#'
Ys tan)

Differentiating Equation [B22], and setting to zero to obtain maximum slope angles:

aF
= 1 )ftand' 1

tan2
tan2 p) = 0

The solutions to Equation [B23] are:

1. Trivial solution: tan 2 P = oo and p = 90

+ tan 2 p)= 0

Assuming that 4'> 0 and since tan ' (1-m Y > 0, the solution to Equation [B24] is:

tan 2 p = -1 [B25]

The roots of Equation [B25] are imaginary, complex conjugates i.e. tan P = ± i and no

real solution for P is obtained. Hence, if the cohesion of the soil c'= 0 the infinite slope

stability model can be used for all slope angles within the range 0 p 90.

B. ANGLE OF SHEARING RESISTANCE, #'= 0

When the angle of shearing resistance of the soil 4'= 0, there are two solutions to the

differential Equation [B10]:

1. Trivial solution: tan 2 o = c and p = 90
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2. Substituting for tan '= 0 in Equation [B19], we obtain tan P = l and p = 45.

This result is independent of the value of the stability number A = l. Hence, if the

angle of shearing resistance of the soil 4'= 0, the infinite slope stability model can only

be used upto a slope angle of P = 45, independently of the cohesion of the soil.

B-2.4. NUMERICAL SOLUTION

We develop a simple computer program (attached at the end of this Appendix) to verify

the analytical results obtained in Equations [B18] through to [B20]. The program has a

user interface, where several parameters can be input, namely:

a. The cohesion c'and the angle of shearing resistance 4' of the soil

b. The depth to the soil-bedrock interface z, from the ground surface

c. The depth to the water table zw , from the ground surface.

The computer program computes the factor of safety at a depth z according to Equation

[B1], for various slope angles and determines the slope angle for which the factor of

safety is minimum. The procedure followed is as follows:

1. The program starts off by computing the factor of safety for P0 = 0, which is

infinite irrespective of the soil properties.

2. The slope angle is then increased by an increment A$P, where any desired AP is

specified by the user.

3. The factor of safety is then computed for slope angles P, = P0 + APl,

2= 2 1 + AP = P0 + 2Apf, and so on.

4. This process is continued until the computed factor of safety reaches a minimum

value when $ = pmax, after which it starts to increase for slope angles greater

than Pmax. The program stops the iterations and displays the slope angle pmax -
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B-2.5. COMPARISON OF ANALYTICAL AND NUMERICAL RESULTS

To compare the analytical result in Equation [B20] with the numerical result from the

computer program, we compute the maximum slope angle for a specific case where

A =C= 0.1 and
=y (S

B = 1-- m = 0.77
7S

(corresponding to a value of m = 0.5 for

YS = 21.3 kN/m2 ) as a function of the angle of shearing resistance4' of the soil. The

results are shown in Figure B2.
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Figure B2. Comparison of Analytical and Numerical Maximum Slope Angles

The results shown in Figure B2 are almost identical. Minor deviations are attributed to

the granularity of the iterations, AP and inherent calculation errors in the written code.

The problem of maximum angle has been recognized in the literature, and it has been

suggested that the Rankine Active a= 45 + angle be used as maximum base angle

(Bishop, 1959; Abramson, 1998). Figure B3 shows a plot of the results of this Appendix
with the Rankine Active angle.
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Figure B3. Comparison of Results in Appendix and Rankine Active

Figure B3 shows that under certain conditions, depending on the A and B parameters,

the Rankine Active condition can be lead to errors (e.g. <'> 600 in Figure B3), and lead

to unconservative results since the Factor of Safety is overestimated.
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B-3. COMPUTER CODE

#include <stdio.h>
#include <math.h>

#define PI 3.14159

int main(int argc, char *argv[])

{
float gw = 9.81;
float c, gs, zw, z, phi, beta;
float F, prevF, cutoffbeta;
float betastep, phistep;
float betastart, phi_start;
float betaend, phiend;
int answer;
FILE *fptr = stdout;

FILE *fptr2 = stdout;
float radphi, radbeta;

printf("C = "1);

scanf("%f",&c)
printf("\nGs =1);
scanf("%f",&gs);
printf("\nZ =11);
scanf("%f", &z)

printf("\nZw ="1);
scanf("%f",&zw);

printf("\n\n");
printf("Beta <start> <end> <delta> =");

scanf("%f %f %f",&betastart, &betaend, &betastep);

printf("\n\n");
printf("phi <start> <end> <delta> =");

scanf("%f %f %f",&phi_start, &phi-end, &phi_step);

printf("\n\n");
printf("Output to a file ? (1=yes) (O=no)");
scanf("%d",&answer);

if ( (answer == 1)

p
fptr = fopen("mechanics.txt'","w");

fptr2 = f open ("mechanics2.txt", "w")

phi = phistart;
beta = betastart;

while (phi <= phiend)
f
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fprintf(fptr, "Phi = %f\n",phi);
fprintf(fptr,"Beta F\n");
rad-phi = phi*PI/180.0;

beta = betastart;

prevF = 99999.999;

while (beta <= betaend)

radbeta = beta*PI/180.0;
F = (c/(gs * z * sin(radbeta)*cos(radbeta))) +

(tan(rad_phi)/tan(radbeta)) +
( ((zw/z)-l) * ( (gw * tan(rad-phi)) /

(gs*tan(radbeta))));

fprintf(fptr,"%f %f\n",beta, F);

if ( (F < prevF) && (prevF 0)

prevF = F;

else if ( (F > prevF) && (prev_F 0)

cutoffbeta = beta;

prevF = 0;

beta = beta + betastep;

printf ("cutoff beta = %f\n",cutoffbeta);

fprintf(fptr2,"%f %f\n",phi, cutoffbeta);
phi = phi + phi_step;

}
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APPENDIX C

SENSITIVITY ANALYSES

PART C-1. HYDROLOGIC SENSITIVITY ANALYSES

In this Appendix, results of sensitivity analyses on the Green - Ampt (1911) hydrologic

model are presented. The rate of infiltration according to the Green - Ampt (1911) Model

is given by:

f(t) =Ks Y+zs
Zs

where:

Ks is the saturated hydraulic conductivity of the soil

kv is the constant soil suction head in front of the wetting front,

(ua -uw)
Yw

zs is the depth of saturation (advancement of wetting front)

f(t) is the cumulative infiltration rate in [C-1.1]

The time required to saturate the soil to z, is:

Ts = zs
Ks .

where:

AG is the change in moisture content AO = Os - j

Oj is the initial (antecedent) moisture content

Os is the saturated moisture content (porosity)
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It is possible to relate the minimum intensity, Imin , to the minimum duration, Tmin that will

cause saturation to zs by:

n1 mn AO zs - n +zszs +

Tmin I ( )]( zS )
[C-1.3]

Further details of the model are given in Chapter 6. In this Appendix, sensitivity analyses

are performed to investigate the effects of the input parameters which are shown in

Table C-1.1 on:

(a) The infiltration rate in [C-1.1]

(b) The minimum time required to saturate the soil to a particular depth

(c) Rainfall characteristics (intensity and duration) required to saturate the soil to a

particular depth

PARAMETER VALUE OR RANGE
SYMBOL DEFINITION

zs Depth of saturation 0 -zw (depth to water
table)

Constant matric suction head 0.25 - 2.0 (m)

Os Saturated moisture content (Porosity) 0.2 - 0.5

01 Initial (antecedent) moisture content 0.05 - 0.39
Ks Saturated conductivity of soil 0.036 - 1800 (mm/h)

Table C-1.1 Definition of parameters and range used in sensitivity study

Table C-1.2 shows the parameters chosen for the base case scenario.

PARAMETER VALUE OR RANGE
SYMBOL DEFINITION

zS Depth of saturation 6m
W Constant matric suction head 0.75 m
0S Saturated moisture content/Porosity 0.4
0i Antecedent moisture content 0.1

Ks Saturated conductivity of soil 18 mm/h
Table C-1.2 Parameters used for Base Case
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Figure C-1.1. Sensitivity of Infiltration Rate to Depth of Saturation
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Figure C-1.2. Sensitivity of Infiltration Rate to Constant Matric Suction
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Figure C-1.3. Sensitivity of Infiltration Rate to Saturated Conductivity
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C-1.2. Sensitivity of Minimum Time Required to Saturate Soil
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Figure C-1.4. Sensitivity of Time Required to Saturate Soil
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Figure C-1.5. Sensitivity of Time Required to (Initial) Antecedent Moisture Content
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Figure C-1.6. Sensitivity of Time Required to Saturate Soil to Particular Depth
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C-1.3. Sensitivity of Rainfall Characteristics Reauired to Saturate Soil

10000

1000

100

-S
10 1

0.1
10 100 1000

Rainfall Duration, (h)

Figure C-1.10. Sensitivity of Rainfall Characteristics to Matric Suction Head
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Figure C-1.11. Sensitivity of Rainfall Characteristics to Moisture Content
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PART C-2. STABILITY SENSITIVITY ANALYSES

In this Appendix, the influence of different parameters on stability analyses is presented

using the Infinite Slope Model. Part C-2.1 deals with one parameter sensitivity analyses,

and Part C-2.2 deals with two parameter sensitivity analyses that include correlation.

Parts C-2.3, and C-2.4 deal with sensitivity analyses performed as a function of the

depth of the failure surface below the ground surface. This will give an indication to the

relative importance of different parameters in relation to the location of the failure

surface. 2-

The slope in consideration is shown in Figure C-2.1, and the variation of Factor of Safety

is shown in Figure C-2.2. This will be used as the base case for the sensitivity analyses,

which will allow one to better investigate the effects of each parameter on the stability

analyses by comparing the results to this case.
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C-2.1: ONE PARAMETER SENSITIVITY ANALYSES
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Figure C-2.3. Effect of Angle of Shear Resistance and Slope Angle on Factor of Safety
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Figure C-2.4. Effect of Cohesion and Slope Angle on Factor of Safety
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Figure C-2.5. Effect of Degree of Saturation and Slope Angle on Factor of Safety
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Figure C-2.6. Effect of Saturated Unit Weight of Soil and Slope Angle on Factor of Safety
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C-2.2: TWO PARAMETER SENSITIVITY ANALYSES
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Figure C-2.7. Effect of Positive Correlation between c' and 4', and Slope Angle on Factor of
Safety
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Figure C-2.8. Effect of Negative Correlation between c'and 4),and Slope Angle on Factor of
Safety
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Figure C-2.9. Effect of Positive Correlation between 4' and Degree of Saturation, and Slope
Angle on Factor of Safety
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Figure C-2.10. Effect of Negative Correlation between 4' and Degree of Saturation, and Slope
Angle on Factor of Safety
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Figure C-2.11. Effect of Positive Correlation between ' and Unit Weight of Soil, and Slope Angle
on Factor of Safety
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Figure C-2.12. Effect of Negative Correlation between 4' and Unit Weight of Soil, and Slope
Angle on Factor of Safety

706



7 .m=O (Dry); c'=5kN/m
2

-t- m=0 33 c'=15kN/m
2

+- m=0.5; c'=30kN/m
2

-- m=0.66: c'=55kN/m
2

6

5

4 -

Lii
LL

02

I-
0 4

0

UL
3

2

0
0 10 20 30 40 50 60

SLOPE ANGLE

Figure C-2.13. Effect of Positive Correlation between c' and Degree of Saturation, and Slope
Angle on Factor of Safety
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Figure C-2.14. Effect of Negative Correlation between c' and Degree of Saturation, and Slope
Angle on Factor of Safety
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Figure C-2.15. Effect of Positive Correlation between c' and Saturated Unit Weight of Soil, and
Slope Angle on Factor of Safety
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Figure C-2.16. Effect of Negative Correlation between Degree c' and and Saturated Unit Weight
of Soil, and Slope Angle on Factor of Safety
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Figure C-2.17. Effect of Positive Correlation between Degree of Saturation and Saturated Unit
Weight of Soil, and Slope Angle on Factor of Safety
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Figure C-2.18. Effect of Negative Correlation between Degree of Saturation and Saturated Unit
Weight of Soil, and Slope Angle on Factor of Safety
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In the above analyses, the failure surface has been assumed to be at the strength

discontinuity at the soil bedrock interface, while lying in the soil. This is done since the

Infinite Slope Model requires an assumption of the location of the potential failure

surface.

This is, however, not necessarily the case, particularly in the context of rainfall induced

landslides, where the failure surface may be shallow. This was discussed in detail in

Chapter 3. It is therefore, also interesting to plot the variation of Factor of Safety with

depth below the ground surface. This depth can be thought of as being representative of

the depth of the potential failure surface below the ground surface.
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Figure C-2.19. Factor of Safety against Depth for Base Case
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C-2.3: ONE PARAMETER SENSITIVITY ANALYSES
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Figure C-2.20. Effect of Slope Angle and Depth on Factor of Safety
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Figure C-2.21. Effect of Angle of Shear Resistance and Depth on Factor of Safety
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Figure C-2.22. Effect of Cohesion and Depth on Factor of Safety
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Figure C-2.23. Effect of Angle of Degree of Saturation and Depth on Factor of Safety
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Figure C-2.24. Effect of Unit Weight and Depth on Factor of Safety
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PART C-2.4: TWO PARAMETER SENSITIVITY ANALYSES
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Figure C-2.25. Effect of Positive Correlation between $' and Slope Angle,
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Figure C-2.26. Effect of Negative Correlation between 4' and Slope Angle, and Depth on Factor
of Safety
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Figure C-2.27. Effect of Positive Correlation between c' and Slope Angle, and Depth on Factor of
Safety
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Figure C-2.28. Effect of Negative Correlation between c' and Slope Angle and Degree of
Saturation, and Depth on Factor of Safety
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Figure C-2.29. Effect of Positive Correlation between Slope Angle and Degree of Saturation, and
Depth on Factor of Safety
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Figure C-2.30. Effect of Negative Correlation between Slope Angle and Degree of Saturation,
and Depth on Factor of Safety

716



7
-- c'=0kN/m2 = 10"
-a-c'=10kN/m2? C = 15"

c'=25kN/mi
2 4 = 20'

6 c'=50kN/m2 = 25'

-- c'=75kN/m2 ; 30"

014-

0

-

0

0 2.5 5 7.5 10 12.5 15

DEPTH BELOW GROUND SURFACE (m)

Figure C-2.31. Effect of Positive Correlation between c' and *' and Depth on Factor of Safety
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Figure C-2.32. Effect of Negative Correlation between c' and 4', and Depth on Factor of
Safety
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Figure C-2.33. Effect of Positive Correlation between ' and Degree of Saturation, and Depth on
Factor of Safety
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Figure C-2.34. Effect of Negative Correlation between $' and Degree of Saturation, and Depth on
Factor of Safety
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Figure C-2.35. Effect of Positive Correlation between c' and Degree of Saturation, and
Depth on Factor of Safety
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Figure C-2.36. Effect of Negative Correlation between c' and Degree of Saturation, and
Depth on Factor of Safety
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APPENDIX D

A COMPARISON OF SLOPE STABILITY METHODS

The instability of natural slopes is a major geologic hazard in many regions of the world.

The degree of stability of a slope may be expressed through the factor of safety F, which

is the ratio between a soil resistance measure and the associated applied load. Hence

values of F larger than 1 are associated with stability and values smaller than one

indicate unstable conditions. For natural slopes that exhibit low depth to length ratios

(so-called infinite slopes) the factor of safety is given by (Skempton and DeLory, 1957):

F c tan tan' (D-1)
yzsinaxcosa tana ytanct

where

c' is the cohesion of the soil

is the angle of internal friction of the soil

-y is the unit weight of the soil

- W is the unit weight of water

U. is the inclination of the slope to the horizontal

m is the degree of saturation of the soil

As indicated above, the failure criterion is F

parameters in Table 1 has F= 1.15 and is stable.

< 1. For example, a slope with the

z (m) 5

zW (m) 2.5
m 0.5

c' (kN/m 25
30

a 35
y (kN/m 2) 20

y, (kN/m 2) 9.81

Table D-1. Slope Parameters
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However, if the parameters are uncertain, there may be a nonzero probability of slope

failure. Of the variables in Table D-1, the most uncertain ones are the strength

parameters c' and 4', with typical coefficients of variation Vc, = 0.20 and Vg = 0.25.

Experience has shown that they follow a Normal distribution.

In the following, we investigate how uncertainty on c' and 4' affects the reliability of

infinite slopes. We start by using a first-order second-moment (FOSM) approach and

then compare results with a second-moment (SM) analysis and Monte Carlo simulation.

D-1. FIRST-ORDER SECOND-MOMENT (FOSM) RELIABILITY INDEX

A first approximation to the reliability of slopes is obtained by linearizing the function in

Eq. D-1 around the mean value of the strength parameters. This gives

F(c', 4') = F(mc',m ) + F $' (c'-mC') + aF(c', 1' m ('-m ') (D-2)
ac,

where

aF(c',4') 1 aF(c',')[ y-my 1
c' ~yzsinpcosp ' 0$' y tan Pcos 2 4 ,

The Mean-Value First Order Reliability Index is then given by:

3FOSIM = E[F(c',I)')] -1 (-3)
Var[F(c',')]

Assuming that the parameters in Table D-1 are mean values and that c' and 4' are the

only random quantities, are independent, and have coefficients of variation V. = 0.20

and Vc = 0.25, one finds E[F(c',4')] =1.15, Var[F(c',')] = 0.0467, and PFOSM = 0.714.

Under the assumption of normality, the probability of slope failure is
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Pf = <D(-0.714) = 0.237, where D is the standard normal cumulative distribution

function.

D-2. SECOND-MOMENT (SM) RELIABILITY INDEX

A more accurate evaluation of slope reliability is obtained by using the actual nonlinear

expression of F in Eq. D-1 and calculating the second moment reliability index. Figure D-

la shows the failure boundary (obtained by setting F = 1) in the space of the original

variables c' and <', and the largest dispersion ellipse contained in the safe region.

Figure D-lb shows the same geometrical objects in the space of the variables

C* = (c'-m') and *=linearly transformed to have zero mean and unit

variance. The second moment reliability index P corresponds to the radius of the tangent

circle in Figure 1 b. The reliability index can be obtained using an iterative procedure as

shown in Figure 1c, or using the optimization procedures discussed in Chapter 5, Part 5-

2.

In this example, p = 0.739 and the associated probability of failure is Pf = F(-P)= 0.230.

Due to the small nonlinearity of the function F(c',4'), these results are close to those

from FOSM analysis.
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Figure D-1a. Failure boundary and critical dispersion ellipse in the space of the original
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Figure D-1 b. Failure boundary and critical dispersion disc in the space of the
transformed variables
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Transformed Space Z ~ (0,I)

x-SPACEz-SPACE

X
2

1. Select initial unit vector, ao

2. Find zo = PO
where P0 = min{3p:p e DF}

3. Linearize B around zo

Let y be the unit external vector:

grad g(z)
- grad g(4)1

z-0

ag(z)4o *I

1. Select initial unit vector, co

2. Find x0 = m + 6%c e B and calculate

PO as:

f30 =6( 07Yco r2

3. Linearize B at x0 . (Calculate y
z space).

as in

4. The next search direction cc is that of the
P point according to the linearized
boundary.
From analytical geometry,

5. Go back to Step 2 until convergence.

4. Go back to step 2 with u. replaced with cc =y .
*

Iterate until convergence in P and z*.

Figure D-1c. Iterative Technique to Compute Reliability Index
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D-3. MONTE CARLO SIMULATION

The exact probability of failure can be obtained by either numerical integration of the

joint density of c' and #' over the unsafe region in Figure D-1a, or alternatively through

Monte Carlo simulation. Using the latter approach, we have simulated 20,000 (c', V')

pairs and for each pair we have calculated the value of F using Eq. D-1. The empirical

probability density function of F is shown in Figure D-2. The empirical probability of

failure is P = P[F <1] = 0.223. Again due to near-linearity of the function F(c',p') , this

probability is close to those obtained through FOSM and SM analysis.

9 A

1.50

z

1.00

0

0.50 -

0.0 J-

0.0 0.5 1.0 1.5 2.0 2.5

FACTOR OF SAFETY

3.0 3.5 4.0

Figure D-2. Empirical probability density function of the factor of safety

D-4. DISCUSSION

Suppose that, in a given geological setting, the slope parameters (including c' and 4')
are similar, but that the slope angle a may vary. It is then of interest to determine how

the probability of failure varies as a function of a. By repeating the Monte Carlo

simulations for different slope angles a, one obtains the results in Figure D-3.
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Figure D-3. Probability of slope failure as a function of slope angle

Figure D-4 compares the results of FOSM, SM, and Monte Carlo simulations, and

confirms the good agreement between the different types of analyses.

Monte Carlo
-.- SM Reliability
-&- FOSM Reliability

5 10 15 20 25 30 35

SLOPE ANGLE

Figure D-4. Comparison of Failure Probability for Different Types of Analyses

Based on Figure D-3 (and/or D-4), agencies can prioritize where action needs to be

taken. For example, one may decide to intervene on slopes with a probability of failure
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greater than a given value. These actions can be active, such as providing drainage or

tie-backs, or passive, such as building protective galleries. Drainage has the effect of

reducing the degree of saturation in the slope, hence reducing the weight of water and

increasing stability.

1.00

0.75 -

U-
0

0

0.50-

0.25

0.00
0 0.25 0.5 0.75

DEGREE OF SATURATION

Figure D-5. Probability of slope failure against degree of saturation

Figure D-5 shows the probability of failure as a function of degree of saturation, all other

parameters having the mean values in Table D-1. Plots of this type allow decision

makers to determine optimal intervention levels.

D-5. CORRELATION

In the following, we investigate the effects of correlation between the strength

parameters c' and 4' on slope reliability.

D-5.1. FIRST-ORDER SECOND-MOMENT (FOSM) RELIABILITY INDEX

The First Order Second Moment Analysis that resulted in PFOSM = 0.714, and under the

assumption of normality, Pf = <D(-0.714) = 0.237, assumed that the strength parameters
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c' and #' are independent. Now suppose that c' and 4' are correlated with correlation

coefficient p.

Var[ F(c', $')] (aF(c', I') 2
ac'

aF(c',') 2 2 (aF(c',') aF(c',')) '2 ac' ) ( p'

GC' 0y. (D-4)

aF(c',4')

ac' )
and aF(c',) (since (y-myw)>1) are

PFOSM = E[F(c',4')]-1 is inversely proportional
Var[F(c',')]

relationship in Eq. D-4 is shown in Figure D-6.

0

-0.50 -0.25

both positive quantities and so

to the correlation coefficient p, and the

0.00 0.25 0.50

CORRELATION COEFFICIENT

Figure D-6. Failure Probability for Different Correlation using FOSM

D-5.2. SECOND-MOMENT (SM) RELIABILITY INDEX

Correlation causes the dispersion ellipse in Figure D-1a to tilt. The direction of tilt is such

that the ellipse can grow larger in size for negative correlation before hitting the failure

boundary, and is smaller for positively correlation. Figure D-7a shows the dispersion

ellipse for p = 0.5, and Figure D-7b shows it for p= -0.5.
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Figure D-7a. Dispersion Ellipse for p= 0.5
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Figure D-7b. Dispersion Ellipse for p= -0.5

Figure D-8 shows the failure probability for different degrees of correlation.
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D-5.3. MONTE CARLO SIMULATION

Correlation between c' and 4' is included in the analysis using a triangular, or so-called

Cholesky decomposition of the covariance matrix, ;, which is possible because the

covariance matrix is symmetric, and positive definite.

; = CCT (D-5)

where C is a lower triangular matrix, the so-called Cholesky Matrix, and CT is the

transpose of C. The Cholesky Matrix is given by:

paC a at usi

Combinations of (c', f') are simulated using:

I (D-6)
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c' [mc']

=
+

pa P(+

0 Z2

C 1P2][ Z2]I

where Z1 and Z2 are standard Normal uncorrelated variables.

Figure D-9 shows the failure probability from Monte Carlo simulations for different

degrees of correlation.

ILj

IL

0

-0.50 -0.25 0.00 0.25 0.50

CORRELATION COEFFICIENT

Figure D-9. Failure Probability for Different Correlation using Monte Carlo Simulations

Figures D-6, D-8 and D-9 show that correlation can have a significant influence on

probabilities of failure, e.g. the failure probability for p= 0.5 is 1.5 times that when p= -

0.5.
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D-6. DISTRIBUTION OF PARAMETERS

In the following, we investigate the effects of Lognormal c' and ', i.e

2 c, n ' N( i ,T2c'- LN (min ' ) and '~ LN ( in' ) on slope reliability.

D-6.1. SECOND-MOMENT (SM) RELIABILITY INDEX

To estimate the second-moment reliability index, we transform the problem into Normal

space by:

Transforming c' and 4' to Normal variables through the natural logarithm function.

Since, c'- LN (minc',4 2 c,) and 4'- LN (min',y , then In c' - N (m,,a ,) and In4'~

N m where:

2 2l

2c = 2l~i ' DGnc m2n,)

and similar Eqs. (D-7) and (8) relate m- and a2 to mino, and ano"

Transforming the failure boundary, which in Normal space is given by:

enc' tan(e'n ) 'ywtan(en')
F e= + -m
yzsincosca tancL -ytanca

(D-7)

(D-8)

(D-9)

The second moment reliability index can then be obtained by transforming In c' and In 4'

int sandrdNomalvaiales cn*(lnco-M.') (In4)~'-~)
ino tadad oralvaiale, '*=and4* ,and

a0 ,1
applying the

iterative procedure shown in Figure D-1c, or using the techniques described in Chapter

5.
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Figure D-10 shows the failure boundary and dispersion ellipse in transformed Normal

space, and Figure D-11 shows this in standard Normal space.
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We compute a reliability index f = 0.656 and the associated probability of failure is

Pf = <D(-P)= 0.255.

D-6.2. MONTE CARLO SIMULATION

The exact probability of failure can be obtained by simulation from the appropriate

Lognormal distributions of c' and 4'. We have simulated 20,000 (c', 4') and computed

a probability of failure Pf = P[F <1] 0.238, from the empirical distribution shown in

Figure D-12.

2.00
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0

0.50-

0.00 1

0.0 0.5 1.0 1.5 2.0 2.5

FACTOR OF SAFETY

3.0 3.5 4.0

Figure D-12. Empirical probability density function of the factor of safety for Lognormal

c' and 4'

Due to the non-linearity of the failure boundary (see Figure D-1 0) and the Non-Normal

distribution of the Factor of Safety (see Figure D-12), there is a larger discrepancy

between the results of SM analyses and Monte Carlo Simulations, than in the case of

Normally distributed c' and #'.
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D-7. CONCLUSIONS

In this Appendix, different techniques were used to evaluate slope reliability. The results

show that estimates of the probability of failure from FOSM and SM reliability techniques

are in good agreement with those obtained using Monte Carlo simulations. This is

because of the linear nature of the failure boundary, and the approximately normal

distribution of the Factor of Safety. The agreement between the results is better when

and 4' are Normally distributed than when they are Lognormally distributed.

In this example, the probability of failure for Lognormal c' and 4' is larger than that in

the case of Normal c' and 4'. This, however, is a result that cannot be generalized and

depends on the particular values of the means and standard deviations of c' and 4'.
The effect of correlation was investigated and we showed that this can be as important

as the actual distributions of c' and J'.
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