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ABSTRACT

Instead of focusing on the cell, or the genotype, or on any single measurement modality, using
integrative biology allows us to think holistically and horizontally. A disease like diabetes can
lead to myocardial infarction, nephropathy, and neuropathy; to study diabetes in genomic
medicine would require reasoning from a disease to all its various complications to the genome
and back.

I am studying the process of intersecting nearly-comprehensive data sets in molecular biology,
across three representative modalities (microarrays, RNAi and quantitative trait loci) out of the
more than 30 available today. This is difficult because the semantics and context of each
experiment performed becomes more important, necessitating a detailed knowledge about the
biological domain. I addressed this problem by using all public microarray data from NIH,
unifying 50 million expression measurements with standard gene identifiers and representing the
experimental context of each using the Unified Medical Language System, a vocabulary of over
1 million concepts. I created an automated system to join data sets related by experimental
context. I evaluated this system by finding genes significantly involved in multiple experiments
directly and indirectly related to diabetes and adipogenesis and found genes known to be
involved in these diseases and processes. As a model first step into integrative biology, I then
took known quantitative trait loci in the rat involved in glucose metabolism and build an expert
system to explain possible biological mechanisms for these genetic data using the modeled
genomic data.

The system I have created can link diseases from the ICD-9 billing code level down to the
genetic, genomic, and molecular level. In a sense, this is the first automated system built to
study the new field of genomic medicine.
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1. Introduction

Genomic medicine has been defined by Alan Guttmacher and Francis S. Collins as the

application of our rapidly expanding knowledge of the human genome to medical

practice. 4 We commonly define genomic medicine by the individual experimental

modalities available to study the genome. As an example of this, as of this writing, there

are over 3,600 publications in MEDLINE referencing the use of single nucleotide

polymorphisms in humans, and over 7,600 publications referencing the use of

microarrays or gene expression profiling in humans. However, there are currently fewer

than 150 publications in which both technologies are cited together, and most of these

are review articles.

The current movement in molecular biology has led to a revolution in the tools available

to study and deconstruct processes and systems at a new resolution and level of

comprehensiveness. This movement has already started to improve our understanding

of human health. Technologies such as DNA sequencing and parallel expression

measurements by microarray have allowed for novel diagnostic tests to assist in

diagnosing diseases that are sometimes difficult to distinguish 5, to differentiate

subgroups of disease that differ in prognosis 6, and to determine populations of patients

that may respond to novel therapeutics. 7,8

However, genomic medicine has the potential to be more than just the sum of our

measurement modalities. A complex disease may have multiple manifestations,

complications and models. Physiology and diseases (pathophysiology) can not only be

described by component profiles in time and space (e.g. in what part of a body does a
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disease occur, the timing of disease progression), by also by the coordinate values of all

molecular biological measurements and how they change across time and space. The

more dimensions we consider coordinately in an analysis and the more components we

consider in each dimension, the most accurate the picture we get of the disease

process. I hypothesize that there may be synergy in applying all measurements and

modalities in a coordinated manner to address a complex disease. To date, a

systematic study of integration across measurements and experimental modalities in

molecular biology has not been done. This may be because of the enormous scope of

the problem. Sequencing and microarrays are just two of at least 30 large-scale

measurement or experimental modalities available to investigators in molecular biology

(listed in Table 1).

Leroy Hood has noted "what distinguishes systems biology from the more classical

biology of the past 35 years or so, which looked at genes and proteins one at a time, is

the attempt to look at all, or at least most, of the elements and their interrelationships." 9

As distinguished from "genome-scale", which carries an implication of genes being

measured, and "large-scale," which does not carry an implication as to how large, I am

using the term "nearly-comprehensive" for these measurement and experimental

modalities, in that they represent a catalog of conditions and quantities that are close to

being fully inclusive. I am not restricting to modalities with finite catalogs; I will also use

the term "nearly-comprehensive" for large, uncountable catalogs where some strategy

has been applied to add order to these catalogs.

These nearly-comprehensive modalities can be divided into three broad categories:
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1. Nearly-comprehensive measured data specific to an experimental context:

Results from measurements systems that output quantitative or qualitative data

for a large set of related properties (such as nucleotide sequence, gene

expression, or protein identification), yet are specific for a given context (such as

cell type, species, or physiological context).

2. Nearly-comprehensive computed data specific to an experimental context:

Calculated data derived from data in the first category.

3. Nearly-comprehensive applied contexts: A large set of related conditions (such

as a comprehensive sequential gene deletion or suppression) under which a

measurement or set of measurements are made. This category refers to multiple

environments into which a cell or organism may be placed, as opposed to the

first category, which refers to multiple measurements from a cell or organism.

Intersection of data sets within a single measurement modality is commonly done for a

variety of reasons. This is made casually apparent by the scores of papers in which a

Venn diagram is sketched showing the lists of genes significantly up and down

regulated in one condition that intersect with the corresponding lists under other

conditions. 10-13 Free and commercial software packages, such as Bullfrog, GeneSpring,

and others, offer functions to create Venn diagrams from gene expression data

analysis. 14,15

Drawing conclusions from the integration of microarray data sets is an important

inferential process that requires an understanding of the implications and semantics

behind set operations such as union, intersection, and difference, when applied to

9



expression data-a single measurement modality. This dissertation will address similar

inferential processes involved in the combination of large-scale measurements across

modalities. Robust understanding of the many aspects of disease requires that

researchers integrate across multiple classes of data. The number of (and prior

evidence for) generated hypotheses could increase on the order of n2, where n is the

number of near-comprehensive modalities available. This is the equivalent of Metcalf's

law, stating that a network becomes more valuable as it reaches more users. 16 It also

generates a lot more "red-herrings" or false positives, a phenomenon which is well

known to researchers just working with one large-scale modality like expression

microarrays.

While there are large classes of important inferential processes that can be brought to

bear to research in integrative biology, the science behind these inferences has not

been fully worked out. How does an expression experiment in mouse inform one about

co-expression in humans? How is a human association study informed by quantitative

trait loci in the rat? How does a mouse expression study relate to a human proteomic

study? With the large amounts of data already collected and available online, these are

questions that need to be asked if we are to realize the promise of "integrative

biology." 17-27

John Weinstein has used the term "integromic" to describe the application of genomic,

proteomic, and bioinformatics methods to yield a validated answer. 28 Here, I will

generalize, and use the term "integrome" to mean the space of inferences from all

possible combinations of large-scale modalities in biology and medicine. I see as an

important challenge the development of robust and specific automated inferential
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processes to help map out the integrome, similar to how development of automated

sequencers was crucial in mapping out the genome.

An analogy to the integrome problem may be found in development of web-

services

Technically, most of the modalities listed in Table 1 can be enumerated in terms of their

constituent nucleotides, genes, proteins, or chemicals, and identifiers and vocabularies

to describe these atoms have already been under development. 29-31 Increasing

numbers of standards have been proposed for the representation or storage of these

data. 32-37 Increasing numbers of international databases have been set up to store

these data. 38-40

However, even though analyzing the results of each individual modality may be routine,

understanding how to consider results across different modalities has not been

comprehensively described scientifically. A close analogy to this may be found in the

domain of web-services in the information technology industry. XML, a standard text-

based method for information storage and representation, has been increasingly

accepted for data exchange. Standards for web-services (called Simple Object Access

Protocol, SOAP, and Web Services Description Language, WSDL) have been

developed allowing software to automatically store, retrieve, and exchange data across

the Internet. Lincoln Stein and others have promoted the use of these standards for life-

sciences data; for instance, Ensembl allows web-services based queries of its

databases. 41,42
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Even though SOAP specifies the format of exchanged messages, the actual content of

the messages needed to achieve complex operations is unspecified. Thus, even if there

is agreement as to how to send messages, without higher level specifications, methods

to achieve particular tasks will evolve differently, leading to eventual incompatibility.

With this realization, the World Wide Web Consortium has been sponsoring the Web

Services Choreography Working Group, which is describing higher level requirements

around these services. The focus for this group is on how to accomplish the task,

versus how to structure the message.

Analogous to this, I am proposing a model for understanding how nearly-comprehensive

data can be joined, what questions can be asked from this joining, and how to draw

inferences from these operations. Our focus in connecting nearly-comprehensive data

sets is on how to accomplish and understand these experiments, versus how to

structure the file formats for the individual modalities. Similar to the Web Services

Choreography Working Group, our goal is to describe these processes in a way such

that automated systems can be designed and implemented to operate these functions.

Challenges in understanding the integrome

Understanding how to draw conclusions from the integrome is challenging for several

reasons. First, the context of the samples used becomes more important, necessitating

a detailed knowledge about the biological domain. Yet this type of information is often

represented by free-text descriptions, without the use of structured vocabularies,

making automated inference impossible.
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In addition, there is often a lack of intuition in interpreting even simple operators, such

as union, intersection, and difference, which do not have obvious meanings when

applied to, for instance, integration between genes differentially expressed in an

experiment and genes in linkage disequilibrium with a phenotype related to the

experiment.

Third, the specifics behind each experiment are crucial. For instance, there is a subtle

but important distinction between gene expression measurements where

measurements represent relative expression levels versus absolute expression levels.

Yet as shown above, investigators are increasingly asking how these types of data can

be intersected. The implications for a gene in the intersection between two of these data

sets is non-trivial, and depends on the reference sample being used. 43-45 Blind

intersections of data sets may lead to over-interpretation or misinterpretation.

Modeling experiments with nearly-comprehensive modalities and contexts

The model I propose is to consider every nearly-comprehensive experiment or data set

as three orthogonal components: context, catalog, and content. The context of an

experiment represents the steps of molecular biology experimentation performed

(e.g. the decrease of gene expression at the RNA level via RNAi) and the source of the

samples. This information might include the species used (e.g. Caenorhabditis

elegans), the organ in which samples were taken (e.g. the intestine), the cell type,

disease, and other characteristics of the source of the measurements.

The catalog represents the biological operations performed to gather data (e.g. labeling

RNA transcripts, hybridizing, then scanning to measure absolute gene expression), and
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the list of elements for which a measurement may be obtained. The content represents

the set of actual data associated with the given measured elements and given context.

A graphical representation of this model with two example data sets modeled this way is

shown in Figure 1.

Nearly-comprehensive data sets rarely contain enough information on their potential

relations to other data sets. Instead, joining two data sets often requires external

information. Sometimes this information is available in a structured form, such as tables

relating protein identifiers with gene identifiers. Occasionally, this information is not

available without in depth review and interpretation of the biological literature, such as

relating two cell types with similar properties.

Drawing inferences from two or more nearly-comprehensive data sets is dependent on

the types of data. One of the simplest inferential operations is intersection, and I will

consider how to implement intersection as a model for working out the other operations.

Phenotypic, gene, and data intersection

Given the context/catalog/content framework outlined above, I find there are three

separate aspects to the intersection of nearly-comprehensive data sets. The first is

intersection of experimental context. Intuitively, though it depends on the question being

asked, two nearly-comprehensive experiments can be intersected if they share

"biological relatedness." The second aspect of intersection is that of the measured

elements (for example, two genes across species may be held as equivalent through

homology), and the third aspect is intersection of the data elements themselves (for

example, relating a ratio of relative expression measurement to an absolute expression
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measurement). I will consider the last two of these aspects first, since they have been

worked out the most.

To perform an intersection, the catalog of measured items, such as gene transcripts,

proteins, enzymes, and metabolites, must also be identified and unified across

modalities and contexts. An example of unification across modalities is when genes

measured by expression level need to be unified with genes positioned near genetic

markers. An example of unification by context is when gene expression measurements

need to be unified between C. elegans and M. musculus. Though by no means solved,

unification across some of these contexts has been addressed, especially the use of

gene homolog and ortholog tables. 29,46 Unification across modalities is possible through

the use of translation tables that map a set of measured gene identifiers (e.g. those

provided by a microarray manufacturer) with more global gene identifiers (e.g.

LocusLink or RefSeq identifiers). As will be illustrated in chapter 5 of this dissertation,

incorrectly determined mappings can lead to false positives, including genes mapped

within and across species that are not appropriate.

After mappings for the measurement items have been identified, the actual content, or

measurements themselves must be unified. Whereas expression measurements may

appear to be directly comparable, reasoning between a LOD score and expression

measurements to infer properties of genes or phenotypes is more challenging, yet

increasing values for both measurements typically signify increasing significance.

The analysis of most large-scale modalities typically reports not only a series of

measurements, but also which of those measurements are significant. In these
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modalities of molecular biology, significance itself can represent a statistical finding (e.g.

a finding probably caused by something other than random chance), a numerical finding

(e.g. a large difference), or a biological finding (e.g. a finding only indirectly implied by

the data). Resolving significant findings between measurement modalities requires

careful consideration of the semantics.

The hardest of the three aspects of intersection to implement is contextual. Specifically,

unifying between the phenotypes studied in two nearly-comprehensive experiments is

an automation challenge. Though any nearly-comprehensive data set has a number of

contextual properties that can be represented using structured vocabularies (such as

the species used, or tissue type), many are not so easily represented (such as the

phenotype, the experiment performed, or the abnormality seen in the patient or

organism). Due to the efforts of the Microarray Gene Expression Data Society, a data

model has been established to represent the protocols and methods used for

microarray hybridization and scanning, and similar models have been proposed for

proteomics and protein-protein interaction data. 35,37,47 However, this is not the case for

representing every possible aspect of the sample, nor is it the case for many of the

other nearly-comprehensive modalities.

Even today, a researcher studying any particular biological process with a nearly-

comprehensive modality would ideally want to be able to gather as many relevant data

sets as possible. Unfortunately, the degree of relevance of a data set is currently more

likely to be assessed using unstructured contextual properties or free-text descriptions.

It is precisely this aspect of intersection that will be addressed in this dissertation.
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Different inferential operations will have different sets of requirements in terms of how

the context, catalog and content have to be unified. As shown in Figure 2, the

experimental contexts, the catalogs of measured elements and the content of data

elements will each need to be individually related to fully intersect two data sets.

Relating these may require the use of external knowledge. Even if the experimental

context and the measured elements are unified, one still has to reconcile the data

elements. The example shown in Figure 3 illustrates that directly interchanging relative

and absolute expression measurements is conceivable, but not trivial and might involve

modeling of the reference sample or considering the ratio of two absolute expression

measurements. 43

However, even if only one of the three aspects of integration can be unified, one can still

use tools such as two-dimensional hierarchical clustering 48 or relevance networks 49 to

visualize relations between the measurements and generate novel hypotheses. This

single axis relation is demonstrated in Figure 4.

Example of manual integration

I recently used a manual approach using the integrome to undertake a successful study

of the process of adipogenesis, or how fat cells develop the ability to respond to insulin

stimulation and store fatty acids. The process of fat cell development is crucial in the

development of diabetes in many individuals. I am listing this use-case here (1) to

demonstrate the value of studying the integrome, (2) to serve as an example of the

steps required to manually integrate across different measurements modalities, (3) and
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to give an example of the overall biological domain for the problem addressed in this

dissertation.

Type 2 diabetes affects approximately 15 million people in the United States. More

importantly, a U.S. child born in 2000 now has a lifetime risk of 33% for development of

type 2 diabetes. This is most likely due to the current epidemic of obesity and inactivity

in the children in the United States and worldwide.

Diabetes as a result of obesity involves increased hepatic glucose output and de-

creased glucose uptake into peripheral tissues; though muscle is the most important

site for uptake quantitatively, adipocytes are also crucially involved, suggested by the

correlation between adiposity and insulin resistance. At a cellular level, obesity results

from both increased size of white adipose tissue and adipocytes, from increased lipid

accumulation and differentiation of preadipocytes into adipocytes.5 0 Preadipocytes do

continue to undergo differentiation throughout life under the appropriate stimulation.51 In

obesity, adipocytes secrete increased levels of hormones, such as leptin, TNFoc,

resistin, and Interleukin 6, and decreased levels of adiponectin and adipsin. These

hormones are involved in energy balance, metabolism, and feedback response to the

brain, and may be involved in insulin resistance.5 2 Thus, determining the molecular

process of adipogenesis is crucial for the development of diagnostics and therapeutics

for both obesity and type 2 diabetes mellitus.

The process of adipogenesis is defined by the gain of several abilities by the pre-

adipocyte: insulin responsive glucose uptake, insulin responsive lipoprotein lipase, and

hormonal secretion. Several transcription factors involved in differentiation from

18



preadipocyte to adipocyte have been described including PPARy 53,54, C/EBPP3,

C/EBP8 55, SREBP1 50, and E2F/DP. 56 All of these transcription factors play a

predefined role during adipogenesis. Extracellular promoters and inhibitors of

adipogenesis are also known, such as insulin, IGF1, fatty acids, and many others.

Negative regulators include wnt ligands, TGF3, and others.57 However, few intracellular

factors are known that impact adipogenesis.

I have been studying the genes that alter the process of fat storage in three unique

models of disturbed adipogenesis: (1) altered adipogenesis in Hutchinson-Gilford

Progeria Syndrome (HGPS), (2) defective adipogenesis in mouse models missing key

insulin signaling components, and (3) altered fat storage from comprehensively

knocking out genes in the worm C. elegans. Adipogenesis in humans may actually be

the sum of many parallel developmental processes, including the acquisition of ability to

store fatty acids as well as the ability for insulin stimulated glucose uptake. The process

of fat storage in each of these models is not identical. My hypothesis is that there is a

core set of genes that impact the ability to store fatty acids, and the only way to find

these genes in an efficient manner is by integrating genome-scale lists of differentially

regulated genes from the three models.

Insulin receptor signaling dependence in mouse models of adipogenesis

In collaboration with the laboratory of C. Ronald Kahn at the Joslin Diabetes Center, we

have already obtained microarray expression measurements from brown preadipocyte

cell lines derived from mice lacking IRS-1, -2, -3 and -4, all immediate downstream

targets of the insulin receptor. Affymetrix U74v2A microarrays were used to measure
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approximately 12,000 expressed transcripts. Quadruplicate measurements were made

on 4 cell lines from each of the 4 knockouts and 3 separate control cell lines for

biological reproducibility, totaling 28 microarrays. When considering the phenotype of

adipogenic potential as a continuum, from wildtype, IRS-4, IRS-2, IRS-3, to IRS-1, we

found 20 genes upregulated and 61 genes down regulated across the knockouts

corresponding to the degree of difficulty of adipogenesis (an example is shown in Figure

5).

Differential gene expression in human fibroblasts from patients with HGPS

Another unexpected model of adipogenesis may be found in Hutchinson-Gilford

Progeria syndrome (HGPS), a rare condition affecting 1 in 8 million births now known to

be associated with a mutation within codon 608 of the Lamin A gene on

chromosome 1.58,59 In addition to a number of clinical manifestations, children with

HGPS progressively develop failure to thrive and loss of subcutaneous fat. At autopsy,

the subcutaneous adipose tissue is atrophic. In addition, previous reports have

indicated insulin resistance in these patients,60 including decreased insulin receptors in

HGPS lymphoblasts 61 as well as impaired insulin binding and insulin-insensitive hexose

transport.6 2 Finally, other defects in Lamin A are associated with familial lipodystrophies.

To further explore the molecular pathogenesis of HGPS, in collaboration with the

Progeria Research Foundation, we obtained and analyzed the gene expression patterns

of three HGPS fibroblast cell lines heterozygous for the codon 608 mutation to three

normal control lines. Out of 33,000 measured genes, 366 (1.1%) showed a 2-fold

significant difference, with 198 up- and 168 down-regulated genes. The products of the

differentially regulated genes participate in a large number of different biological
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processes, and many are known to function in tissues that are severely affected in

HGPS.

Differential gene expression in human fibroblasts from patients with HGPS

The laboratory of Gary Ruvkun has published a list of genes involved in C. elegans

adipogenesis, determined by a global knock-out strategy using RNAi. 63 Out of over 16

thousand genes knocked out, they found 112 genes that when knocked out increase the

fat content of the worm, and 305 genes when knocked out decrease fat content.

Manual approach to integration

After considering the caveats, we manually applied an intersection to the three lists of

genes. I am describing the manual approach here to illustrate that while such an

intersection is not hard to conceptualize, it is difficult to operationalize, and remains

beyond the reach of many biomedical researchers. Thus, this difficulty makes a good

case for automation.

1. The mouse data contains gene expression measurements made in brown

preadipocytes in four knockout mice and their littermate controls, in basal

conditions as well as in time-series response to insulin and IGF-1. I determined

that for the intersection (1) brown preadipocytes may be an acceptable

alternative to white preadipocytes, and (2) the data regarding insulin and IGF-1

stimulation was unnecessary.

2. The human data contains gene expression measurements made in fibroblasts

from three patients with Progeria validated to have the characterized mutation,

one patient with Progeria not validated to have the characterized mutation, and
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three age-matched patients. I determined that for the intersection, I would only

use data from patients verified to have the mutation.

3. The worm data contains lists of genes that cause increased or decreased fat

storage when transiently knocked out in wildtype worms or in worms where either

daf-2, tph-1, or tub-1 was already deleted. The increase and decrease was

characterized on an eight point scale. I determined that for the intersection, I

would flatten the five point scale into three points (increase, decrease, no

change) and I would use the list of genes causing changes in wildtype.

4. For mouse data: Affymetrix accession numbers from the U74Av2 array were

translated into GenBank accessions for their target sequences. GenBank

accessions were translated into current UniGene clusters. UniGene identifiers

were translated into LocusLink identifiers.

5. For human data: Affymetrix accession numbers from the U133A and U133B

arrays were translated into GenBank accessions for their target sequences.

GenBank accessions were translated into current UniGene clusters. UniGene

identifiers were translated into LocusLink identifiers.

6. For worm data: GenePair accession numbers references in Ashrafi, et al., were

translated into WormBase gene accession numbers. WormBase accession

numbers were translated into LocusLink symbols. LocusLink symbols were

translated into LocusLink identifiers. LocusLink identifiers were translated into

UniGene clusters.
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7. UniGene cluster identifiers from two and three datasets were joined using

Homologene. This resulted in few genes in the intersection.

8. Gene families were determined arbitrarily, based on gene symbol, for each

significant gene in the mouse, human and worm data. Homologous gene families

were identified in each of the three lists.

After these eight complex steps, 19 genes or gene families were found in the

intersection. One gene family found in the intersection is the wnt family of ligands,

specifically wnt6 and wnt10a. Wnt5a and wnt10b are already known to inhibit

adipogenesis. 64

Importantly, several tripartite-motif (TRIM) containing proteins were found in the

intersection, which represent a potentially novel set of genes in fat storage. Mouse

Trim30 is 3.4 fold down-regulated in IRS-1 knockout preadipocytes as compared to

wildtype. The human homolog, Trim5, is 2.3 fold up-regulated in Progeria. In biological

validation in a separate mouse model of adipogenesis, we found Trim30 decreases 1 1-

fold when measured by RT-PCR during 3T3-L1 adipogenesis (shown in Figure 6).

Though this certainly does not prove that Trim30 is necessary and sufficient for

adipogenesis, it does suggest that Trim30 is involved in the process of adipogenesis.

This case of manual intersection between three biologically relevant data sets illustrates

the value of studying the integrome, and serves as an example of the onerous steps

required to manually integrate across different measurement modalities.
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Skills needed for integrative biology

Intersection between modalities itself is useful, but the efficient use of this method

requires a practitioner trained in a specific set of skills. Automated assistance with

reasoning across nearly-comprehensive modalities is needed, and I am addressing this

need with this dissertation. At the current time, however, intersection of data across

modalities is mostly performed manually. Successful manual integration requires

biomedical knowledge, programming infrastructure skills and computer science skills:

Biomedical knowledge

1. To find samples related to a disease in order to integrate their measurements,

one needs to understand the known or hypothesized causes of diseases as well

as known implications and complications of diseases. This is context-specific

knowledge. For example, unless a researcher studying type 2 diabetes

understands that onset of that disease may be preceded by insulin resistance, he

or she may miss genomic data collected on relevant samples.

2. A researcher needs to know of the biological implications of a true-positive

finding in any measurement modality. For example, a significant difference in the

measurement of a gene's expression level by microarray could be an indication

of increased transcription, but it could also indicate a decrease in transcript

degradation, a change in the number and type of cells in the sample being

studied, or even a change in alternative splicing in the transcript, depending on

the microarray probes. If no change is seen in the level of the protein coded by

this gene, some of these other explanations may become more likely.
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3. Inferences between modalities involving genes will be more fruitful if a causal

chain of reasoning can be established from the gene-level finding and the context

of the samples. This is not just knowledge of biological pathways; this is

knowledge as to what might happen if a pathway or its components are altered or

disrupted. For example, though it may be significant if a gene appears in the

intersection of a microarray data set and a genetic association study, that gene

will be more significant if it can "explain" the disease studied in the microarray

and the genetic trait studied. Of course, novel explanations will need new

biological validation. Though limited in scope and detail, tools to automatically

link genes and proteins to pathways can suggest biological processes that may

be involved. 65,66

4. To find relevant samples, a researcher would need to know how samples and

data sets may be indexed or stored. This may involve knowledge of clinical

vocabularies, such as identifiers from the International Classification of

Diseases. 67

Programming infrastructure skills

5. The translation of modality-specific identifiers to common identifiers is important

in integrating data sets. Web-based tools are available that translate some

modality-specific identifiers to global identifiers, such as UNCHIP

(www.unchip.org), NetAffx, 68 and Resourcerer. 69

6. Finding homologs of genes is also important, especially for integrating data

between species. Data sets describing similar processes across species can be
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a rich source for the application of integrative biology, and specifically

comparative genomics. HomoloGene, developed and maintained by the NCBI, is

a database relating gene orthologs and homologs across 23 eukaryotic

species. 29 HomoloGene relations are designated as either curated or calculated

by nucleotide sequence homology. The TIGR Eukaryotic Gene Orthologs

database contains ortholog and paralog relations for genes (represented either

by tentative consensus sequences from gene or EST sequencing) for 61

eukaryotic species. 46 Familiarity with these services can allow data from

additional species to be found and integrated with existing data.

7. Fewer tools are available for determining gene families or functional families. The

results of an intersection may not be obvious. Two transcription factors with

similar protein domain structure may be involved in similar processes in two

species, yet may have different names and symbols. Paralogs, or genes from the

same super-family formed by gene duplication, can be found using

HomoloGene. 29 Linking genes to their parent families or known functional groups

(such as GeneOntology 70) before performing intersections may yield a richer

result.

Computer science skills

8. Integration of data sets requires some software application or platform in which to

perform operations. Unfortunately, there is currently no commonly available

bioinformatics tool to assist with intersections across species, never mind

modalities. However, sets of genes and operations, such as intersection, union,

and difference, can be modeled using relational databases. Lists of significant
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findings can be uploaded into a relational database system (such as Microsoft

Access, MySQL, Oracle, and others), along with tables that map between

identifiers. Queries can then be written or graphically created that join the lists of

findings across the mappings. Facility with the use of a relational database

system is crucial for integrative biology, and knowledge of query languages, such

as SQL is optimal.

9. The formal representation of biological knowledge requires an understanding of

the methods used for several decades by the artificial intelligence community.

Several formal knowledge-bases have been created for narrowly-scoped

domains in molecular biology, such as EcoCyc and MetaCyc for metabolic and

genomic data in E. coli and other bacterial species. 71,72 Though many biologists

are familiar with the graphical representation of pathways, and even how these

can be drawn using programs like GenMAPP, representing new pathways in a

computational form, like EcoCyc, requires familiarity with predicate logic and

programming languages for these predicates, such as Prolog. 73

How the rest of this dissertation is organized

Integrative biology is more than a technical issue. Proper intersection is more than just

lining up the correct columns in two data sets; it requires an understanding of the

biological context of both data sets, so that the intersection operation itself is justifiable.

Currently, that understanding is not an automated process. The biology cannot be

ignored.
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The integration of large-scale data sets across measurement modalities has already

demonstrated itself to be a synergistic process to create new knowledge and testable

hypotheses. Operations such as union, intersection, and difference can quickly expand

and focus findings around the most significant. In addition, with the large number of

publicly available data sets, from modalities including gene expression, protein

identification, and phenotypic and clinical measurements, one can get these benefits

without the increased cost of additional measurements.

As others increase the number and resolution of measurements, as the discipline of

systems biology suggests, exploration of the integrome represents approaching a

problem from multiple vantage points and focusing on the common or core question. To

do so successfully will require even more multidisciplinary expertise that is grounded in

deep understanding of the biology while embracing comprehensive quantitative

methods. Fundamental biological questions, such as aging and development, can be

asked at multiple levels, from the molecular to the cellular to the organism, so being

able to capture how those level integrate is an important step towards an operable

genomic medicine.

This dissertation will explore how integrative biology can be used to explore diseases in

genomic medicine. Specifically, I will use this dissertation to model the context, catalog

and content of genomic data within the largest publicly available database, and will use

this model to address the specific question of how large-scale genetic and genomic data

studying the same biological process can be integrated in an automated manner to

validate each other. More importantly, the dissertation will show how together they can

lead to causal mechanistic explanations of disease.

28



Chapter 2 starts with a review of previous work related to this dissertation, including

studies representative of and demonstrating the benefits of integrative biology, previous

work in integrating clinical, genomic and pharmacological data, and other work in the

representation of biological pathways and taxonomies. The previous work also includes

previous work in resolving genes from identifiers, and integrating genomic and genetic

findings.

Chapter 3 will directly address the modeling of the experimental context of genomic

samples and experiments with a structured vocabulary using automated methods. First,

I will show how I have successfully created an automated system to model the context

of genomic samples and experiments from annotations in the largest publicly available

gene expression repository. Moreover, I will show how the largest biomedical

vocabulary can be used to represent the majority of these contextual annotations. In

chapter 4, I will then show how to determine the cell type and disease studied by

experimenters as an application of this contextual modeling.

Chapter 5 will address how I can model catalogs of measured genes from the largest

public repository of expression measurement data. With context and catalog measured,

I will then show how to model the content in chapter 6. Specifically, I will show how I

have created an automated system to extract and determine the significant genes from

every possible comparison of groups of microarrays. I will then show how modeling the

content itself provides a valuable tool in studying the effect of experimental variables on

gene expression across dozens of experiments.
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To test the validity of the model build to represent the context, catalog, and content from

the largest public repository of expression measurement data, I will then show in

chapter 7 how I have used an automated method to find microarray data sets related to

a particular disease and perform an intersection of these data sets to successfully find

genes relevant in the disease process.

Finally in chapter 8, I address how the context / catalog / content model can address the

problem of integrating genetic and genomic data that study the same biological process.

I will demonstrate a system that contains a model knowledge base of how changes in

expression can lead to a particular disease, and a model knowledge base of how

quantitative trait loci and gene expression measurements can be related to each other. I

will then show how the system can be given input genetic data and queried for genes

that match the genetic data, have an ortholog in expression data related to the trait, and

can explain the trait through known biology pathways and pathophysiology.

The dissertation concludes with the known limitations of intersecting large-scale

molecular biological data in chapter 9, a summary and future directions in chapter 10,

and references.
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2. Previous work

This dissertation will explore how integrative biology can be used to explore diseases in

genomic medicine. Specifically, I will use this dissertation to model the context, catalog

and content of genomic data within the largest publicly available database, and will use

this model to address the specific question of how large-scale genetic and genomic data

studying the same biological process can be integrated in an automated manner to

validate each other. More importantly, the dissertation will show how together they can

lead to causal mechanistic explanations of disease, with the appropriate application of

prior biological knowledge.

Thus, the steps required to accomplish this include (1) integration across experimental

modalities, (2) representing and using biological pathway knowledge, (3) mapping

identifiers to genes. This chapter provides a review of previous work in each of these

steps.

Specifically, I will start with previous publications that demonstrate the advantages of

integrating data sets within a single measurement modality. I will review several

published examples of integration across two or more large-scale measurement or

experimental modalities. I will cover previous attempts to model to process of integration

itself.

I will then review previous attempts at qualitative and quantitative representations of

metabolic pathways, ending with tools that help in visualizing these pathways. The

chapter continues with coverage of biomedical taxonomies and ontologies, though the

review of this subject continues in chapters 3 and 5. After covering taxonomies and
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standardized formats for representing genomic data, I will describe my and others

previous work in mapping identifiers to genes.

Using these methods, we have previously built a system integrating gene expression

data across 11 multi-center programs in genomics, linking expression data to universal

gene identifiers regardless of platform and file format. I will describe this work in this

chapter.

I will end this chapter with a short discussion how the integration of modalities still

cannot fully explain a simple step of a metabolic pathway without biological knowledge.

Demonstrated benefits of integrating data sets

There have been several demonstrated benefits resulting from integrating data sets of a

single measurement modality. First, a second set of microarray data measured under

similar experimental conditions as the first can serve as validation of important findings.

For example, Michael Primig, et al., compared their results on yeast meiosis to earlier

published findings using Venn diagrams that showed their gene list was a superset of

previous lists. 74,75

Alternatively, a second data set may be directly joined with the first to increase the

number of samples available and improve the power and the ability to draw statistical

conclusions. Zambon, et al., compared their list of genes in human skeletal muscle

regulated in a diurnal manner with lists of circadian-regulated genes in mouse heart,

liver and suprachiasmatic nuclei made by others. 76,77 This resulted in a set of candidate

genes that were validated as circadian in mouse skeletal muscle. 14
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A second data set may be used to probe another aspect of a common process, or to

study aspects of a process that are unique to a single experimental context. For

example, David Fruman, et al., measured the gene expression response in B cells with

partial loss of function in phosphoinositide 3-kinase (P13K) and Bruton's tyrosine kinase

(Btk), and used the significant overlap in gene lists as evidence that P13K acts through

Btk. 78

A second data set may also be used to filter out biological noise, such as eliminating

genes known to be differentially expressed across the circadian cycle from genes

differentially expressed in samples acquired from organisms. Whitney, et al., showed

that many genes involved in proteins synthesis were regulated in a diurnal manner.

Future microarray studies on other processes reflected in whole blood could take

advantage of this result by filtering out this circadian cluster, thereby improving the

specificity of their results.

Examples of integrating experiments across multiple modalities

There are several published examples of nearly-comprehensive measurements under

many or nearly-comprehensive conditions. In a now classic study, Michael Eisen, et al.,

demonstrated hierarchical clustering of over 2,000 yeast gene transcripts measured

under eight time-series conditions. 80 In later work, Timothy Hughes and others

measured near-comprehensive gene expression differences in yeast under a variety of

conditions, including 200 gene deletion strains. 81 Even though both experiments

measured roughly the same number of transcripts per microarray, the later work differs

from the former work in an important way. Hughes's work measured gene expression in
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a set of systematically constructed contexts: that of serial gene deletion of over 4% of

the yeast genome. In contrast, Eisen's work measured gene expression response to an

arbitrary set of contexts.

There are fewer examples of the intersection of two nearly-comprehensive

measurements. Uwe Scherf, Douglas Ross, and others joined a data set of baseline

RNA expression levels from the NCI60, a set of 60 human cancer cell lines used by the

National Cancer Institute Developmental Therapeutics Program to screen anti-cancer

agents since 1989, 82 to a data set of drug susceptibility in the same cell lines. They

showed how clustering cell lines by genes can differ from clustering based on drug

susceptibility, and proposed mechanisms how expression differences of specific genes

can impact susceptibility to specific agents or classes of drugs. 48,83

We developed a method termed relevance networks and applied it to a similar

pharmacogenomic data set, generating hypotheses of putative functional relationships

between pairs of genes and pharmaceuticals. 49 We joined baseline RNA expression

levels of 6,701 genes measured from the NCI60 to a database of measures of cancer

susceptibility to 4,991 anti-cancer agents. We studied this data to understand how the

baseline RNA expression levels in the cell lines correlated with the inhibition of growth

of these same cell lines to thousands of anti-cancer agents.

The relevance networks formed from associations with correlation coefficient beyond

+0.80 are shown in Figure 7. At this threshold, only one network contains an association

between a gene expression and a measure of anti-cancer agent susceptibility. The

association suggests that increased expression of lymphocyte cytosolic protein-1

34



(LCP1) is associated with increased susceptibility to the anti-cancer agent NSC 624044,

a thiazolidine carboxylic acid derivative. Though a specific role for LCP1 in

tumorogenicity had been postulated 84 and though other thiazolidine carboxylic acid

derivatives are known to inhibit tumor cell growth, 85 there is no known relationship

between this specific anti-cancer agent and gene in the biomedical literature. This

relation remained significant after 100 permutations of the data. 49

Vamsi Mootha, et al., integrated four publicly available expression data sets with linkage

data and proteins identified from mitochondria to ascertain the gene and mutation

responsible for Leigh syndrome, French-Canadian type. 86 Monica Stoll, et al.,

integrated 125 phenotypes with linkage data from rats to determine candidate genes

potentially involved in cardiovascular function. 87 Boris Rolinski, et al., are using mass

spectrometry to determine differential levels of several amino acids and acylcarnitines in

randomly mutagenized mice (using ENU). 88 Petra Ross-Macdonald, et al., disrupted

nearly 2,000 genes in the yeast genome randomly inserting transposons and studied

their effects across a panel of twenty phenotypic tests. 89

In an integration study incorporating genetic and expression data, Eric Schadt and

others started with gene expression differences in liver between two inbred strains of

mice, then used the most significantly different genes as traits which were then mapped

as quantitative trait loci. They first highlighted genes with known polymorphisms that

affected their transcript levels, then showed loci associated with fat pad mass that would

otherwise have been insignificant had the expression data not been considered. 90,91
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Albertha Walhout, et al., combined three modalities of data measured in the C. elegans

germ-line: protein-protein interactions, phenotypes measured after RNAi against each

gene in the genome, and RNA expression measurements. In their study, they

determined that interacting proteins tend to be co-expressed and knocking out many of

the interacting partners often led to similar phenotypes. 25

Others have written about the potential of integrating the results of cross-modality

experiments. Marc Vidal has noted that integration of multiple functional maps can lead

to novel informatics algorithms, and he comprehensively covers many of the genome-

scale modalities available. 24,92 Vidal uses the analogy of binding maps into an atlas.

However, he does not consider near-comprehensive measurements and contexts

outside of the genome. To continue the analogy, how does one connect a subway map

with a street map? One can only perform this integration with the prior knowledge of the

location of each train station. I believe the potential is much greater than just integrating

gene-centric maps; there is a greater potential in linking modalities by phenotype, but

this requires a level of sophistication and biological knowledge beyond simple database

joins.

Again, these examples are given to illustrate that exploration into integration of multiple

near-comprehensive modalities has started, but has not yet been studied in any formal

way. None of the above referenced publications have comprehensively studied the

large class of important inferential processes that can be used in integrative biology, or

given any generalized systematic method for interpreting the results of integration. Yet

as shown above, integrome exploration appears to be the implicit goal of several

leading researchers. In this dissertation, I am proposing a framework for modeling
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nearly-comprehensive experiments and a first step towards the rational intersection of

these data sets.

Quantitative, qualitative and visual representations of biological pathways

Quantitative representations

Many simulation systems are available for quantitatively representing particular series of

biological reactions, including BioSpice 93, Cellerator 94, and Virtual Cell 95. E-Cell is a

platform allowing the creation of models consisting of variables, processes, and

systems. 96 E-cell can model discrete or continuous processes, and though it can use

ordinary differential equations to model changes in variables, any arbitrary process can

be written in the language Python and incorporated. E-Cell is being used to model

cellular components such as mitochondria, cells such as neurons, and diseases

including diabetes.

Schoeber, et al., used custom software in Matlab to model pathways from the epidermal

growth factor (EGF) receptor to gene expression. Using a system of ordinary differential

equations with 94 variables, they showed how c-fos expression matched predicted

levels as EGF concentrations were varied.

Qualitative representations

The BioCyc knowledge library contains the two literature-derived component libraries of

EcoCyc and MetaCyc, and currently contains 13 computationally-derived pathway

libraries, all in the domain of bacterial organisms and their metabolic, biosynthetic,

degradation, and energy metabolism pathways. EcoCyc was one of the first efforts to

integrate metabolic and genomic data and covers E. coli. 71 MetaCyc is a metabolic-
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pathway database that describes the action of over one thousand enzymes, with links to

various species implementing the pathways but without links to genes. 72 The underlying

representation for the BioCyc libraries is a Pathway/Genome Database (PDGB) in

which is described a bacterial genome, gene structure and sequence on its

chromosome(s) including transcription factors and binding sites, the protein coded for

each gene and the reaction in which the protein participates. Each reaction has

substrates, and collections of reactions are called pathways. Transcription factors are

given special object status; aside from this, reactions involving transcription or

translation are not covered. Though SRI is working on a HumanCyc, it is not yet clear

what biological scope will be covered by this new database, or whether it will expand

beyond those metabolic pathways common to all the currently maintained organisms.

Karp and Riley noted that the knowledge acquisition problem was one of the most

serious challenges they faced in the construction of EcoCyc. 97 The problem in

constructing a knowledge assembly for molecular biology is particularly difficult because

of the rich set of objects and classes needed to qualitatively describe even basic cellular

operations, and rapid access and resolution of these objects is difficult while curators

attempt to create factual assertions. Karp and others have attempted to address the

knowledge acquisition problem in three ways: (1) creating domain-specific graphical

tools for entry of biological information, (2) creating a domain-specific browsing tool for

editing of assertions, and (3) training curators and those who perform knowledge

entry. 97

KEGG, a database within GenomeNet, is similar in that it also contains information on

enzyme-substrate reactions, 98 initially derived from the Boehringer Mannheim and
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Roche Applied Science Biochemical Pathways wall chart. 99 Though KEGG contains

manually created figures representing pathways of reactions, its main representation for

genes, proteins, pathways, and transcripts is as nodes in a graph. Edges contain

relations between these objects of the same class (there are few, if any, edges between

different classes of objects).

Hofestcadt and Thelen described the use of Petrinets to represent metabolites and

enzymes, 100 building on the work of Reddy, et al. 101 They encountered difficulties in

representing gene regulatory processes, due to the lack of temporal representation.

The National Center for Genome Resources PathDB contains information about protein

complexes, metabolic, signaling, regulatory and other cellular pathways, phenotype

categories, kinetic parameters, protein-molecule and protein-protein interactions, and

genetic interactions, for the domain of Arabidopsis and yeast. The repository holds data

from 1,250 articles entered over 3 years in a graph-theoretic data structure. It is not

clear whether the system supports reasoning beyond user driven queries.

WIT is a hierarchical view of similar metabolic pathways connected to the sequenced

genomes of approximately 40 organisms. 102 The University of Minnesota

Biocatalysis/Biodegradation Database contains metabolic reactions in microbes

especially focused around the conversion and breakdown of environmental pollutants,

including metals, metalloids, and metal chelators. 103

All of these databases are biased towards pathways involving the processing of

classical biochemical substrates present across single-cellular and complex organisms.
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As an example, none of these databases models even the most superficial

understanding of the action of insulin on a target tissue.

There have been several applications developed that take advantage of established

taxonomies and metabolic knowledge bases. Badea demonstrated how inductive logic

programming could be applied to a microarray data set and prior information from

GeneOntology to learn functional differences between subtypes of adenocarcinoma. 104

Hanisch, et al., demonstrated an application showing correlation of gene measurement

corresponds to distance of the two genes in a metabolic knowledge base. 105

Zien, et al., suggested interpreting gene expression data in the context of graph-

theoretic pathway scores derived from a metabolic knowledge base. 106

Visual representations

A number of graphical visualizations of biochemical networks have been made, and a

number of software packages are currently available. Kohn created a diagrammatic

representation for the mammalian cell cycle and DNA repair pathways 107, serving as a

visual indicator of the molecular interactions in this domain, similar to the Boehringer

Mannheim Biochemical Pathways wall chart.

GenMAPP allows the graphical visualization of gene and proteins involved in a

biological process, and can color-code the genes based on experimentally derived

measurement data. 66 However, the underlying data structure stores only the

visualization information and does not contain a computable network. KnowledgeEditor

similarly uses biological pathway information and maps genomic measurements onto

these pathways. 108
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Krishnamurthy, et al., divide biological pathways into three categories: (1) metabolic and

biochemical, (2) transcription, regulation and protein synthesis, and (3) signal

transduction, and use a physical representation to divide these pathways into four

layers: (1) structures of molecules, (2) functional use of molecules in processes, (3)

pathways of processes, and (4) complex networks of related pathways. They provide a

query mechanism and graphical viewer for the networks, with content similar to above

mentioned metabolic pathways. 109

BioCarta provides additional variety of pathways with graphics available through the

Internet; this representation is also not computable. BioJake allows for the entering of

biological reaction information.110 The Alliance for Cellular Signaling has provided a

web-site that provides a protein-specific integration of sequence, domain, and molecular

data, and has provided graphical representations for a handful of signaling

pathways. 1 The Expasy server similarly provides a web-accessible index for the

Roche Applied Science Biochemical Pathways wall chart, but like these others, the only

representation is graphical. 112 GSCope uses a hyperbolic projection to view arbitrarily

defined networks. 113

It is important to note the limitations in these graphical methods. The graphical

representation of a biological process is not computable. Typically, the appropriate

graphical view is chosen for the results of a gene expression analysis based on the

number of genes in common between the graphics and the list of differentially

expressed genes (even if the graphics are representing proteins, not genes). A chain of

causal reasoning explaining how a pathway might explain a set of differentially

expressed genes is never produced.
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Summary of representation in biomedical systems

A range of abstraction has been used in modeling biomedical pathways and

systems. 114 At one end of this range are pure visualization methods that can depict

changes in component state, but cannot be used to computationally make predictions.

Moving from this extreme are the statistical systems, such as relevance networks and

Bayesian networks, that can model the co-occurrence or correlation of measurements

from a genome-scale catalog of components, but with little commitment, context or top-

down experimental design. At the other end of the range are systems of differential

equations that provide a high resolution predictive ability, but often at the expense of

comprehensiveness or generalizability.

For this dissertation, I am creating a knowledge base that is qualitative in nature, with

the ability to relate to every known gene and biomedical condition. I will not be able to

make detailed predictions as to the exact measurement levels of components, but

because of this, I will be able to incorporate physiological states simply by reference.

Biological taxonomies, ontologies, and formats

GeneOntology is a hierarchical taxonomy and vocabulary for the molecular functions,

biological processes, and cellular components in which proteins participate, and

includes associations to commonly used external identifiers for genes and proteins. 70

Other vocabularies used for gene and protein annotation include InterDom 15,

InterPro 116, and PRINTS 117 for protein domains, and LocusLink 29 and SOURCE 30 for

other types of annotations. Other gene identifiers include the stable NCBI LocusLink
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identifier 31 and the unstable NCBI UniGene identifier 118 .These and other taxonomies

are described in greater detail in chapters 3 and 5.

The Systems Biology Markup Language (SBML) is a free XML-based format allowing

the exchange of computational biological models. SBML can be used to store

quantitative mathematical models in an open format, but is too specified for qualitative

models. There are many other existing file and storage formats for genome-scale data.

These include Genome Annotation Markup Elements XML, Minimum Information about

a Microarray Experiment (MIAME) 32, the NCBI Haplotype Set XML, the PharmGKB

schema for genotypes 34, the SNPPR XML format for genotypes, the NCBI Seqset XML

format for GenBank data, the Distributed Sequence Annotation System XML scheme,

Tagged Image File Format for CCD camera images, DAT and PRE format files for

GENEHUNTER, netCDF and ANDI formats for mass spectrometry, and other CORBA

Life Science Research formats.

Mapping from identifiers to genes

A major problem in interpreting results from microarray analyses is one of

nomenclature. Each microarray output file lists a probe-set accession number, an

expression quantity, and degree of confidence of that measurement. A single

microarray may reference genes described in a variety of data-bases, including

expressed sequence tags, GenBank identifiers, and UniGene cluster identifiers. This is

currently a problem because different microarray model years from the same

manufacturer may use a different set of accession numbers.
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Before microarray manufacturers were pressured by the research community to make

translation tables available, we solved this problem by constructing a publicly-available

web-based integration tool called UNCHIP (www.unchip.org). UNCHIP finds the latest

information on all stored accession numbers through periodic downloads of and

integration with LocusLink, OMIM, UniGene, Golden Path, PROSITE, and

GeneOntology. The architecture of UNCHIP is shown in Figure 8. From any Affymetrix

probe-set accession, we can gather the latest information from these databases.

More importantly, we can start with an arbitrary hypothesis and work backwards to

query the microarray database. This differs from the web-based translation tables

(www.netaffx.com) provided by Affymetrix. 68 Several examples of queries are shown

here. First, we learned that a significant number of Affymetrix probe sets were linked to

more than one LocusLink gene. This was because the GenBank accession provided for

the Affymetrix identifiers indicated the probe set was likely designed against a region of

a chromosome, instead of an expressed product. Thus, without sequence level

information, it would be impossible to distinguish which gene in that region of DNA was

actually being measured. These types of probe sets can be found using UNCHIP by the

query shown in Figure 9.

If prior data implicating a particular chromosomal region is known, for example from a

genetic study, those probes measuring genes in that region can be specifically found

using a series of queries shown in Figure 10. Queries can also be written making use of

additional prior knowledge, such as GeneOntology classification or protein domain

structure.
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In summary, UNCHIP was our earliest example demonstrating that we could

dynamically map from microarray platform identifiers to global gene identifiers, and that

we could query these gene catalogs based on prior biological knowledge, including

chromosomal localization and base-pair position.

An integrated gene-centered store of genomic data

The Programs for Genomic Applications (PGA) is a research consortium of 11 multi-

center projects funded by the National Heart Lung and Blood Institute with the goal of

discovering genes and proteins associated with heart, lung, blood, and sleep health

disorders.

The PGA programs have already generated and publicly released vast amounts of pre-

publication microarray and sequencing data, including over 1,200 microarrays

(measured using Affymetrix oligonucleotide and spotted cDNA microarrays), over 500

genes sequenced for single nucleotide polymorphisms (SNPs), and 18 genes

sequenced for mutations. Though the raw data files are publicly available through the

Internet, this data has unfortunately remained inaccessible to the majority of

researchers unaccustomed to retrieval and advanced analysis of genomic data. Poor

secondary use of this data was reflected in low web-site "hit rates", few requests for

data, and few publications citing the primary data sources.

Our hypothesis was that making this data usable by the research community requires

more than making raw data files available on the Internet. To address this problem, we

created PGAGENE, a web-based gene-specific genomic data search engine.

PGAGENE consists of four components: (1) a set of cross-referencing tables between
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Affymetrix and LocusLink identifiers, (2) a gene information database holding

expression, mutation and polymorphism data, (3) the indexing agent which traverses a

list of web-sites and gathers information about the known genes, and (4) the web-site

allowing retrieval of all data using gene identifiers, symbols, names, or disease name.

PGAGENE uses LocusLink as its master list of genes. As the indexing agent traverses

through PGA web-sites, it encounters tab-delimited files that resemble gene expression

data and maps these using its cross-referencing tables. After traversal is complete,

PGAGENE rank normalizes all gene expression data by sorting expression values for

each array and representing each value by its position scaled to a number between 0

and 1, assuming a uniform distribution. 119

Using the data contained with PGAGENE, we demonstrated a cluster of diabetes-

related genes maintained across species which could not have been found without this

data integration. Specifically, we took the expression measurements of a subset of

genes measured at least once in the PGA in human, mouse and rat and hierarchically

clustered their measurements, as shown in Figure 11. We found that four genes, insulin

autoantigen 1 (ICA1), fatty acid binding protein 1 (FABP1), leptin receptor (LEPR), and

peroxisome proliferative activated receptor, gamma, coactivator 1 (PPARGC1) were

placed in the same cluster, indicating similarity in gene expression measurement. The

roles of all four of these genes continue to be studied as important players in type 1 and

type 2 diabetes mellitus, but the majority of samples in the PGA were measured to

study heart, lung, blood, and sleep disorders.
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In summary, this was our earliest example demonstrating that in the right context, gene

expression could be compared and integrated across species. More importantly, this

work showed that integration of gene expression data across experiments could yield

important findings for the study of a particular disease, even when the original

experiments did not address that disease.

Pathway analysis and network determination

The current movement in molecular biology has led to a revolution in the tools available

to deconstruct processes and study systems at a high resolution and level of

comprehensiveness. In systems biology, one hopes to be able to model all the

components in biology, ascertain networks and pathways linking these components,

perturb the systems in vitro and in silico, and update the networks with new

information. 120 Despite all the progress made in high throughput measurements in the

past five years, there are still major areas of knowledge integration across these

measurement modalities that are undeveloped. If our goal in functional genomics is to

be able to ascertain biological regulatory pathways from genome-scale data sets, then it

is crucial that our piecewise a priori knowledge be put together. To date, there have

been several efforts to try to reconstruct pathways from gene expression

measurements. 121,122 Given the success of recapitulating the first few steps of the

glycolytic pathway from substrate measurements, it would appear plausible to do

this. 123 However, without careful consideration of the pathways that one is trying to

reconstruct, there is significant risk for a methodological and metaphorical flaw in this

analysis.
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A simple example is given here, where pathways are nested within several molecular

and physiological levels, and the genes that are regulated in one pathway play a role in

another pathway. Consider the genes coding for lactic acid dehydrogenase. The gene

LDHA is expressed mostly in muscle and is located on chromosome 1 1 p15.4, while

LDHB is located on chromosome 12p12.2 and is expressed mostly in heart. LDHA is

known to have binding sites for HIF-1, and at least six other transcription factors. LDHB

is thought to have a binding site for SP1. There is likely to be post-transcriptional level

regulation of these two genes. Because of the differences in promoter regions, it is safe

to assume that both LDHA and LDHB participate in their own gene expression

regulatory networks.

LDHA and LDHB code for protein subunits. The final protein product contains four

subunits. Combinations of the two types of subunits as assembled into the five lactic

acid dehydrogenase isozymes, LDH-1 (four LDHB subunits) to LDH-5 (four LDHA

subunits). These five isozymes are found in a binomial distribution in mammals. 124

Additionally, the final protein itself is an enzyme assisting in the conversion of lactic acid

to pyruvate, called lactic acid dehydrogenase and defined by the Nomenclature

Committee of the International Union of Biochemistry and Molecular Biology as Enzyme

Commission (EC) 1.1.1.27. Lactic acid and pyruvate are substrates in the glycolytic

pathway of anaerobic energy production.

Thus, in this example, one finds at least four layered pathways, as shown in Figure 12.

The operators formed in the enzyme level pathway participates as one enzyme in a

major biochemical substrate pathway, that of glycolysis. That operator, however, is

assembled stochastically in the assembly pathway from subunit components. Finally,
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those subunits are produced within their own genetic regulatory pathways involving a

multitude of transcription factors.

Even with the improving measurements techniques from systems biology, the

complexity of this one step may still be missed. Measurements of the genome give us

nucleotide sequence and variants of this sequence. Measurements using microarrays

give us comprehensive RNA expression. In the future, measurement of the proteome

may give us comprehensive quantitative protein levels. Measurements using mass

spectrometry and yeast two-hybrid methods might give us the three protein-protein

interactions shown here. Measurements of metabolite levels might give us the relative

amounts of lactic acid and pyruvate.

Integration across these measurement modalities not only requires the ability to identify

and unify components spanning multiple levels, it also requires the ability to create

models that span these levels. For example, it is known that exogenously added

pyruvate in INS-1 cells (which model pancreatic beta cells) potentiates glucose-

stimulated insulin secretion, an effect that is abolished if LDH-A over-expressed. 125 A

model of this single effect necessarily spans at least six measurement modalities,

including expression and protein levels, metabolic substrates, signal transduction,

protein modifications, endocrinological and physiological systems, and must also take

into account the cellular, tissue and disease context, and the experimental design itself

of testing a system with glucose and gene over-expression.

Thus, in considering these layers of pathways, it becomes clear that it is not sufficient to

simply represent or visualize the glycolytic pathway in terms of measurements from
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individual genome-scale modalities. Instead, when interpreting genome-scale

measurements simultaneously, a knowledge-base that integrates across these

pathways is a necessity.

Summary of previous work

In this chapter, I reviewed previous publications that have demonstrated the advantages

of integrating data sets within and between measurement and experimental modalities. I

covered quantitative, qualitative, and visual representations of pathways and systems. I

reviewed several biological taxonomies and standardized formats and addressed the

problem of identifying genes from identifiers. I covered a previous example of

integrating genomic data, regardless of format and platform, into a single database and

web-site. I ended with a discussion of how integration of experimental modalities still

cannot fully explain a simple step of a metabolic pathway without additional biological

knowledge that spans these modalities.

The system I will be describing in this dissertation attempts to draw upon the

advantages of many previous successful systems. In chapter 5, I will describe how I

have built from the UNCHIP system to expand the ability to resolve genes from

identifiers. In chapter 6, the work on extracting and unifying gene expression data builds

upon the PGAGENE system. In chapter 8, I will explain how genetic and genomic data

can be used to causally explain a disease, using a model qualitative knowledge-base,

similar to those presented in this chapter.
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3. Modeling the context of genomic samples and experiments with
a structured vocabulary using automated methods

Motivation

A researcher studying any particular biological process with a genome-scale modality

would ideally want to be able to gather as many relevant data sets as possible.

Unfortunately, determining whether a data set is relevant is particularly challenging.

Even for data sets that are stored in standardized formats, such as microarray data, the

useful annotations of this data, such as the experimental context of an experiment, are

likely to be represented only by unstructured narrative text (hereafter designated free-

text). Furthermore, deciding whether a data set is relevant to ones study requires

biological knowledge and expertise.

Manually reading descriptions of data sets is not a scalable approach. At the time of this

writing, microarray data for nearly a thousand experiments are stored in international

repositories. Reanalysis and further discovery from collections of data is going to be

dependent on extracting the annotations from these data sets; a manual approach is not

scalable for the amount of data already present.

Automated techniques to ascertain biomedical assertions from free-text have been in

development. Krauthammer, et al., have been developing GeneWays, a system that

uses the GENIES natural language processing system to automatically collect

molecular interaction information from literature. 126 They studied the properties of this

information and found that waiting time of the adoption of unique findings follows an

exponential distribution. Others have described methods in which pathways and

biological relations can be ascertained from the published literature or from publication
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abstracts. 127-129 However, none of these have addressed the specific problem of

ascertaining information from the annotations of genome-scale experiments.

I have addressed this problem by creating an automated system called GENOTEXT

(GENOmics conTEXT) to extract the contextual identifiers and annotations of samples

from the largest publicly available gene expression repository. Moreover, I have been

able to model the majority of these contextual annotations using the largest available

biomedical vocabulary.

Introduction to the Gene Expression Omnibus

The Gene Expression Omnibus (GEO) is an international repository for gene expression

data, developed and maintained by the National Library of Medicine. 130 GEO consists

of a database-backed web-site (http://www.ncbi.nlm.nih.gov/geo) and a publicly-

available File Transfer Protocol (FTP) site where data can be downloaded.

The GEO data model consists of four data types. GEO platforms (abbreviated GPL)

represent a mapping between local gene identifiers and external identifiers, gene

names, symbols, and other descriptors. Each GPL also describes the manufacturer of

the method and the species for which the platform is used. Platforms can be defined as

providing absolute measurements from a single sample, or relative measurements

between two samples.

GEO samples (abbreviated GSM) relate expression measurements of multiple RNA

transcripts with local identifiers, and are themselves related to a single GPL. Each
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sample corresponds to one or two biological sources, depending on whether absolute or

relative expression measurements are represented.

Multiple samples may have been measured in a single experiment; each GEO series

(abbreviated GSE) relates to multiple GSM. A GSM may participate in more than one

GSE. GSM annotations include additional contextual information, such as author,

organism, submitter, and submitter contact information.

Finally, a subset of the GSE have previously been manually validated as containing

internally comparable data; these are represented as GEO data sets (abbreviated

GDS). Each GDS relates to a single GSE. Most GDS further define experimental

variables that were delineated in the original measurement design, such as "age" and

"time", and qualitatively define these variables for samples, such as "old" and "young".

In this way, a GDS may relate to GSM that are outside the designated GSE.

The relations between GSM, GSE, GDS and GPL are shown in Figure 13. At the time of

this writing, the GEO web-site contains 16,448 samples (GSM) contained in 900 series

(GSE) measured using 721 platforms (GPL). The GEO FTP site holds a subset of this:

8,519 GSM contained in 524 GSE measured using 195 GPL. The FTP site also defines

448 GDS, which relate to a total of 6,612 GSM.

Introduction to the Unified Medical Language System

The problem of finding biologically relevant data sets would be aided if the contexts and

phenotypes behind genome-scale experiments were labeled with terms from a

structured vocabulary, the same way that the genes, proteins, and other elements in
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these experiments are labeled using global identifiers, such as LocusLink and RefSeq.

The vocabulary that might best serve this role is the Unified Medical Language System.

The Unified Medical Language System (UMLS) is the largest unification of over 60

biomedical vocabularies containing approximately one million inter-related concepts. 131

UMLS was developed and is maintained by the National Library of Medicine.

UMLS would be ideal for representing contextual and experimental terms for five

reasons. First, UMLS concepts already include both genes and phenotypes. Second, it

is currently the only large system freely available to academic researchers (needing

only a signed license agreement). Third, UMLS covers concepts in both human and

model organisms, and scales from the molecular level, to the physiological, to the

pathological. The UMLS already includes GeneOntology and the NCBI taxonomy. 70,130

Fourth, UMLS already contains over 20 million relations between concepts, and these

could be readily taken advantage of for relating phenotype concepts. Fifth, and most

important, UMLS is meant to serve as a standard format for distributing terminologies.

Thus, providing UMLS labels or methods to unify existing nearly-comprehensive data

sets with UMLS will allow investigators to gain synergy with other projects involving

UMLS (for example, joining with hospital databases of patients).

The UMLS has three components. The Metathesaurus contains a catalog of unified

biomedical concepts, relations between concepts, and text strings mapped to each

concept. The Semantic Network contains a catalog of 135 higher level categories for all

concepts in the Metathesaurus, as well as relations between these categories. The
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SPECIALIST lexicon and other resources provide data and tools for processing the text

strings associated with UMLS concepts.

Though UMLS has largely been used for research and applications in medical

informatics, component vocabularies within UMLS have been extensively used in

molecular biology and genomics. The NCBI Taxonomy provides over 150,000 concepts

representing known species and their proper taxonomy. 130 GeneOntology provides

nearly 13,000 concepts representing the normal molecular function, biological process,

and cellular components for proteins in eukaryotic cells. 70 Incorporation of the

SNOMED International vocabulary version 3.5 provides over 113,000 terms, especially

covering pathological terms and concepts. The International Classification of Diseases

9th revision adds nearly 19,000 concepts related to human diseases. Addition of the

Online Mendelian Inheritance in Man and Digital Anatomist provides support for

concepts for genes identified to be related to human disease and human anatomical

structures, respectively. It is important to note that the latest versions of these

vocabularies are not necessarily in the most recent releases of UMLS.

An example of the basic relations in the Metathesaurus is shown in Figure 14. The

UMLS Metathesaurus relates the component vocabularies by creating concepts that

span the vocabularies. Each unique concept thus relates to one or more source

vocabularies. A concept may have multiple listed synonyms and terms; each term is

uniquely specified in the Metathesaurus.

Asserted structural or hierarchical relations between concepts are primarily stored in the

UMLS related concepts table (MRREL), while statistical relations between concepts
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appear in the UMLS co-occurrence table (MRCOC). These statistical relations

represents frequencies of both concepts appearing together in a source database;

pragmatically, the majority of concepts participating in these relations are MeSH

headings, and the relations represent the number of instances when both headings

appeared together in a MEDLINE record.

Introduction to MetaMap

MetaMap is a software program written and maintained by Alan Aronson at the National

Library of Medicine. 132 MetaMap takes formatted or free text and generates a list of

potentially matching concepts from the UMLS Metathesaurus. This is done in a chain of

five steps, including first parsing the text sentences and word phrases, generating

variants for words, finding candidate UMLS strings matching words and variants,

evaluating these candidates, then finally mapping the final candidates to the word

phrase.

Methods

Using the METAMORPHOSYS tool, I created a subset of the 2003AC release of UMLS,

dropping vocabularies I initially considered as less relevant. These are listed in Table 2.

Though we excluded the 1993 Online Mendelian Inheritance in Man (OMIM)

vocabulary, I did keep the 1998 OMIM vocabulary. All subsequent analysis was

performed using the remaining subset, which contains 878,496 concepts described by

1,724,070 text strings. These concepts are related in 22,524,248 defined relations and

13,864,516 statistical relations.
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MetaMap exists as a standalone program as well as a set of programming libraries. I

wrote software in PERL that extracted seven text items from data from the Gene

Expression Omnibus, listed in Table 3, and stored these within a relational database

implemented in MySQL. Using the MetaMap toolkit, I created software in Java that

processed each of these seven text items and stored in a relational database the UMLS

string unique identifier (SUI), the score of the match, and the phrase of original text in

which the string was found. As concept unique identifiers (CUI) were needed in

subsequent analyses, they were automatically determined using the SUI to CUI

relations in the UMLS concepts table (MRCON).

I defined gross mapping errors as those caused by the incorrect interpretation of

abbreviations leading to multiple strings, such that it was highly unlikely that there was

any proper reference for these mapped strings. I chose to eliminate strings instead of

concepts, since these could be globally eliminated. I wrote a program that took specified

SUI and text fragments (described as regular expressions) and eliminated these

mappings.

Results

Success of MetaMap in extracting UMLS concepts from GEO text strings

I manually evaluated whether the final-candidate concepts designated by MetaMap

were sufficient to represent the text items, or whether all candidate concepts would be

needed. I took the titles of the first six GEO data sets, shown in Table 4, and generated

the list of candidate and final-candidate concepts. There was no difference in the

mapped candidate and final-candidate concepts for one of the six titles; the differences
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for the other five titles are shown in Table 5. MetaMap disregarded as final-candidate

concepts important terms such as "Gene Expression Profiling", "malignant", and

"development". Based on this manual review and opting towards dealing with false

positives rather than missing true positives, I decided to store and consider all candidate

concepts as being mapped.

Taxonomy of mistakes in mapping

The errors made by MetaMap in determining concepts from the GEO annotations fall

into a taxonomy of at least eleven categories. There is a common theme behind all of

these errors. As more authors and journals call for microarray data to be made publicly

available, there is also an increasing level of detail being placed in the descriptions of

the followed experimental protocols with the goal of aiding others in reproducing the

findings. In general, as more text is entered having little to do with the experimental

design, or as more words are abbreviated, the potential for errors greatly rises during

automated text processing.

MetaMap mapping to unknown concepts

MetaMap created 21,867 mappings using 465 string unique identifiers that were not

present in our subset of UMLS. It is possible these identifiers are present in the other

vocabularies in UMLS that I excluded.

Missing concepts in UMLS

A significant number of important concepts related to investigations in molecular biology

are missing in UMLS. For example, phosphate-buffered saline (PBS) is commonly used

during protein isolation. As an investigational agent, PBS may be used to treat a control
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group. The abbreviation "PBS" maps to the concepts Lead (C0023175, the element),

Lead (a homeopathic remedy), and Peripheral Blood (C0229664), but there is no

available concept for phosphate-buffered saline.

Similarly, the abbreviation "TG" and term "transgenic" do not map to a UMLS concept,

and instead mistakenly map to 12 concepts (such as thyroglobulin and tumor growth).

The commonly used technique of Serial Analysis of Gene Expression, 133 abbreviated

SAGE, maps to a food item and to a homeopathic preparation. The technique of SAGE

does not exist as a concept in UMLS.

Samples from the Cancer Genome Anatomy Project (CGAP) are annotated as being

funded by the National Cancer Institute. However, the National Cancer Institute and

other institutes of National Institute of Health are not concepts in UMLS, though the NIH

itself is (C0027468).

Abbreviation errors

A number of abbreviations are used by investigators in writing the GEO annotations.

Currently, MetaMap has no way to avoid parsing and mapping these abbreviations to

UMLS concepts. Correcting many of these errors required a thorough reading of the

descriptions, and in some cases, finding and reading any associated MEDLINE

abstracts related to the data set in question.

A few examples are noted here. A previously manufactured microarray by Affymetrix to

study gene expression in the rat was called the Rat Genome U34 Set, and often
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abbreviated "RG U34". "RG" is mistakenly mapped to both retinal ganglion and radical

gastrectomy.

Many of the data sets in GEO are referenced in publications. A few of these

manuscripts were published in the journal BMC Bioinformatics, and this was noted in

the description annotations of the associated GEO data sets. Unfortunately, "BMC" was

mapped to bone marrow cells.

Other abbreviation errors were easier to find. State symbols and abbreviations for the

United States are not present in UMLS, but are frequently used in descriptions. The

symbol CA, for California, maps to six concepts, such as calcium, cancer, carcinoma,

cardiac arrest, and coronary artery. MO, for Missouri, maps to the element

Molybdenum.

The term "CGS," meaning the compound CGS-21680 hydrochloride, a selective agonist

for an adenosine receptor, maps to colloid goiter, while "DC", abbreviating dendritic

cells, maps to Dupuytren's contracture.

Missing synonym variants in UMLS

The majority of the source text used for concept matching by MetaMap comes from the

string (STR) field in the UMLS Concept Names table (MRCON). In the subset of UMLS

used for this study, there are 1,724,070 text strings for 878,496 concepts, suggesting

that many of the concepts are mapped to multiple text strings as synonyms. Practically,

however, the list of synonyms and variants is not complete. In our subset, only 386,297

concepts (44%) included more than one string per concept, and for these concepts, the

average number of synonyms was still only 3.2. Of note, I eliminated additional
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supported languages from our UMLS subset besides English, with the hope of

preventing mapping errors; this may have inadvertently contributed to errors, as shown

below.

Several of the samples and data sets included the term "Type 2 diabetes."

Unfortunately, this phrase maps to the concepts "type 2" (C0441730) and "diabetes"

(C0011847), because the closest synonym in my subset of UMLS is written as "type 2

diabetes mellitus." However, the term "type 2 diabetes" is listed in the International

Classification of Primary Care, Version 2-Plus, Australian Modification, and is an

acceptable term for this concept.

One missing synonym with significant implications is the term "wild type," used in over

400 GEO samples, series and data sets. The closest concept in UMLS is wild-type

genetics (C0678926), which enters UMLS through the Alcohol and Other Drug

Thesaurus and has no synonyms. Unfortunately, wild-type is not currently a MeSH

heading. Most of the annotations with the term "wild" were mapped to the concept Wild

(C0445392), which is a subtype of serotype typing.

The description for GEO sample 578 includes the text "granulocyte colony stimulating

factor mobilized peripheral blood CD34 cells". Though "peripheral blood" and "CD34"

mapped properly, the combination, which should have mapped to monocytes, did not.

Poor text formatting

The GEO file format is simply described as using the ASCII character set. Presumably

because the majority of investigators view these descriptions at the GEO web-site,

some investigators have formatted and submitted their descriptions using the Hypertext
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Markup Language (HTML). These tags are not properly filtered by MetaMap and create

a source of errors. For example, the HTML tag "<li>" is used to introduce a list-item in

HTML, but MetaMap mistakenly assigns the concept Lithium. Similarly, the HTML tag to

introduce bold text, "<b>", maps to the concepts Bath, Brothers, Bacillus and Behavior.

Mistaken identity from experimental description

A number of the GEO description annotations contain lengthy coverage of the

experimental design and protocols used in created the data. Unfortunately, MetaMap

finds acceptable concepts for biomedical terms used in protocols and company names,

yet these were not contributory to the accurate description of the samples. In some

cases, these were misleading when no additional accurate descriptions of the same

semantic type were present.

For example, GEO sample 12011 has in its description "...GenePix software analysis...

Axon Instruments..." which maps to Axon. This sample was obtained from a murine

microglial cell line called BV2, which is not represented in UMLS. Unfortunately, there is

no other mapped concept that would permit an understanding of the cellular and tissue

source for this sample; thus, the mapping to Axon is misleading. Similarly, "HP" is a

commonly used abbreviation for Hewlett-Packard, a manufacturer of microarray

scanners. "HP" maps to the concept Health Promotion (C0018738).

Occasionally, a product name led to an incorrect mapping. The Cyclone

phosphorimaging system, by PerkinElmer, maps to the natural phenomenon Cyclone

(C0337000).
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Sometimes, the location of the company making products used for the experiment leads

to mapping errors. Axon Instruments is located in Foster City, California. Ambion is

located in Austin, Texas. Both of these companies made products used in the creation

of GEO sample 12011, and thus the sample is incorrectly assigned the concepts

Fostering (C0242298), related to foster homes, and austin (C0605411), an organic

chemical. The worst example of this was for the city Saint Louis, where the abbreviation

"St" maps to 116 incorrect concepts, such as shock therapy, skin test, stroke, and sinus

tachycardia.

Salmon sperm DNA may be used to improve the signal in microarray studies by

reducing the background. Samples with "sperm" in their description were mapped to

Spermatozoa. Similarly, growth media is commonly used to maintain cell lines and

yeast and bacterial cultures. The term "medium" maps to the anatomic concept of

Tunica Media (C0162867). The abbreviation "TET" for tetracycline-regulatable alleles

incorrectly maps to Tetanus (C0039614). 134

Processing of RNA for hybridization with microarrays is commonly performed using

material provided in pre-packaged units commonly called "kits." Unfortunately, the term

"kit" itself maps to the KIT Oncogene (C0812225).

Occasionally, publications are cited in GEO descriptions, commonly by listing the last

name and first initials of an author. The description of GEO series 7 indicates the study

is described further in a publication by "Khodursky AB et al.(2000)", but "AB" was

mapped to Spontaneous abortion (C0000786).
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Unfortunate choice of experimental identifiers

I searched for concepts in the titles of GEO data sets, series, and samples.

Occasionally, investigators put complete words in these titles, which mapped correctly,

but abbreviations and identifiers referenced in associated publications were also often

used. For example, the title of GEO sample 6751 is "Ova A/J 3" which maps to Ovum.

The investigators used "Ova" to abbreviate "ovalbumen," mentioned in the description of

the parent GEO series. However, "ovalbumen" is not an acceptable spelling in our

subset of UMLS, compared to "ovalbumin", which does map to a concept that was not

applied to this sample.

Similarly, the title of GEO sample 6768 title is "DM(LL)" which maps to Diabetes

Mellitus. This sample is from a skin lesion from a patient with leprosy. GEO sample

4833 holds the title "KT1008c_DT/IN", where "DT" maps to Alcohol Withdrawal Delirium

or delirium tremens. In an extreme example, the abbreviation "SF", such as the title of

GEO sample 2138 "SF-295_CL12015_CNS", maps to many tissues and diseases,

including spinal fluid, spontaneous fracture, swine fever, scarlet fever, seminal fluid,

synovial fluid, seizure frequency, and more. The symbols "AB" and "MGM", used in

GEO sample titles, mapped to Abortion and Meningioma.

Mismatch of semantic-type

Occasionally, the same term can map to multiple concepts. This is handled in UMLS

through separate identifiers for each term for each term-concept relationship. Resolving

between concepts is non-trivial, but one is aided by the UMLS Semantic Network,

where each concept is mapped to 189 semantic types. The classic example of resolving

the word "cold" is aided by the knowledge that cold temperature (C0009264) has a
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semantic type of Natural Phenomenon of Process (T070), different than the common

cold (C0009443) and chronic obstructive airway disease (C0024117, occasionally

abbreviated COLD), which have a semantic type of Disease or Syndrome (T047).

One extreme example of a semantic mismatch concerned a phrase used in over five-

hundred sample descriptions. The phrase "spot quality assessment" mapped to the

disease Exanthema ("spots").

Unfortunately, proper word sense disambiguation for certain terms in molecular biology

may require a species-level understanding during parsing. For example, the title of GEO

sample 1740 is "Non-embryogenic callus of Medicago truncatula." This mapped to the

concept Bone Callus, yet Medicago truncatula is a species of green plant, which

obviously has no bones. Here "callus" was referring to a cluster of undifferentiated plant

cells. The proper concept does not appear to exist in UMLS.

Incorrect variant processing

MetaMap has the ability to take terms and create lexical variants, in order to more

accurately match to UMLS terms. Unfortunately, this can lead to incorrectly assigned

terms as well. One of the most frequently mapped concepts was Saw, meaning the

surgical instrument. MetaMap takes the word "see", used in over a thousand sample

descriptions, creates the lexical variant "saw", then maps that term to the surgical

instrument.

MetaMap also has the ability to map to and from abbreviations. The description for GEO

sample 51 contains the text "...Gene expression profile in developing mouse cerebellum
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at postnatal day 7." The term "postnatal day" internally maps to "PND", which then maps

to the UMLS concept of Paroxysmal Dyspnea.

Irrelevant text in GEO

Over seventy GEO samples included the entire MIAME check list in their descriptions,

beginning with "The MIAME Checklist Experiment Design: A. Type of experiment: for

example, is it a comparison of normal vs. diseased tissue..." The MIAME check list is a

suggested outline of critical points to cover in a description of a microarray experiment,

including experimental design, experimental factors, hybridization design, labeling

protocols, and more. 32 Because these investigators included the entire text of the

checklist itself, these sample descriptions are nearly 1,500 words long, and cannot be

parsed by MetaMap. This is an example of how including more text in a description can

lead to less specific information about the experiment actually being transferred to a

reader.

Spelling errors in GEO text

Certain terms in GEO annotations contained spelling errors. For example, the source of

GEO sample 4100 is listed as "murine subcontaneous adipose" instead of

"subcutaneous." The description for GEO sample 3258 noted specific "growth

condtions" instead of "conditions." Descriptions for five additional samples contained the

misspelled word "postive" instead of "positive."

Correcting mapping mistakes

I defined gross errors as those caused by the interpretation of abbreviations leading to

multiple strings that were likely to be incorrect in all references and could be globally
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eliminated. Though by no means complete, the majority of these were found using three

strategies. First, I manually studied the most commonly mapped concepts to determine

why they were mapped. For example, I discovered the concept Kidney to be mapped to

many samples; further analysis showed that MetaMap maps the single letter "K" to

concepts like kidney and potassium. This was eliminated, and the list was studied

again.

One of the worst mapping errors was found this way. I discovered a large number of

annotations mapping to the UMLS concepts of ETS transcription factor and Aluminum.

This led to the discovery that MetaMap was mapping to these concepts from the term

"et al." This term is used in the descriptions of over one thousand samples.

Second, I manually studied concepts used that are under semantic types not typically

associated with gene expression analysis. For example, I found multiple concepts with

the semantic type "Professional or Occupational Group" were assigned to GEO

annotations. Further analysis revealed MetaMap was incorrectly mapping occupational

terms such as "pilot", "principal", and "messenger" to terms such as "pilot studies",

"principal hypothesis" and "messenger RNA".

Third, GEO sample, series and data set titles were studied to ensure abbreviations were

not inadvertently leading to improperly chosen concepts. For example, I noted a large

number of references to folic acid. The mappings were made through the synonym

pteroylglutamic acid, which mapped to titles with the abbreviation "PGA". The National

Heart, Lung, and Blood Institute funded Programs in Genomic Applications, abbreviated

PGA, have contributed over 600 samples into GEO.
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I wrote a program that took these specified string unique identifiers (SUI) and text

fragments (described as regular expressions) and eliminated these mappings. This

approach was limited, however. Strings that were even rarely chosen correctly could not

be eliminated in this way; otherwise a crucially correct mapping for a description would

be lost. This program removed a total of 47,089 mappings involving 1,010 unique

strings (SUI).

Success of Mapping Concepts to Gene Expression Omnibus Annotations

After applying the automated concept assignment and after manual elimination of

incorrectly assigned concepts, both described above, a total of 286,398 string

assignments remained from the 7 types of annotations associated with the GEO

samples, series, and data sets. These strings map to 4,190 unique concepts.

Table 6 indicates the success of extracting any concepts from GEO text strings. The

GEO series description annotation was the most information-rich, in that it provided the

highest number of unique concepts. This was due to relative uniqueness of each series

description, compared to sample descriptions which were often repeated across all

samples within a series.

It is important to note that 8,454 out of 8,519 GEO samples (99.2%) were successfully

directly matched to at least one UMLS concept, through some combination of title,

description, source or keyword annotations. The 65 GEO samples with no directly

matching UMLS concept had no descriptions and no discernable words in their titles; all

were a variant of "Snn_EC_JYK" where nn indicates a number. These 65 samples

belonged to a single human series which had titles and descriptions that were
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successfully matched to GEO concepts. Thus, I interpret these results as meaning that

every GEO sample can be mapped either directly to UMLS concepts, or indirectly

through its parent GEO series.

In general, the number of unique concepts elicited from a text item correlates with the

length of the text item. This is shown in Table 7. In addition, the number of concepts

assigned to a sample based on its keywords correlates with number of keywords

provided.

The correlation between the number of unique concepts that map to an annotation and

the length of the annotation is shown from Figure 15 to Figure 24 for each of the seven

types of GEO annotations.

In general, the annotations on which MetaMap failed in parsing fell into two categories.

Many GSM titles were short and contained laboratory identifiers with few recognizable

words. In contrast to this, many GSM descriptions were so long that MetaMap could not

even determine an initial set of concepts. Both of these extremes prevented MetaMap

from mapping text to concepts.

Semantic Types of Mapped Concepts

Though there are 189 UMLS semantic types, our subset of the Metathesaurus includes

concepts from only 135 semantic types. The 4,190 unique concepts assigned to the

GEO annotations were drawn from 123 (91%) of these 135 semantic types, shown in

Table 8.
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I gave special consideration of those semantic types contributing relative few concepts,

such as Vertebrate (T010) and Reptile (T014). The majority of these semantic types

governed concepts that were assigned correctly. However, a few of these semantic

types represented concepts that were entirely incorrectly mapped. For example, every

concept in the semantic type Professional or Occupational Group (T097) was incorrectly

assigned.

The simplest, most direct method to correct this problem would be to eliminate all

concepts from rarely used semantic types. However, this method would occasionally

yield invalid results. For example, the semantic type Human (T016) contained only two

concepts: Human (C0020114) and Homo sapiens (C0086418), but these two concepts

were used 2,340 times in the GEO annotations. The semantic type Experimental Model

of Disease (T050) contributed only one concept, Disease Model (C0684309), which was

assigned once in only one GEO annotation, the title from GDS 22 "Parkinson's Disease

model". Despite the rare usage of this concept and semantic type, this assignment was

correct. Thus, one cannot use paucity of assigned concepts as a way to potentially

eliminate incorrectly assigned concepts (and types).

There was correlation between the number of concepts mapped and the number of

unique concepts used within each semantic type (correlation coefficient 0.77). In other

words, in general it was not the case that only a few concepts from each semantic type

were used repeatedly. Two exceptions are noted here. Only two concepts were mapped

from the semantic type Human, but these two were mapped in 1,780 GEO annotations.

At the other extreme, only five concepts were mapped from the semantic type

Nucleotide Sequence, but these five concepts were mapped a total of only five times.
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Of note, the semantic types Cell (T025) and Tissue (T024) together contributed less

than 3% of the unique concepts assigned from GEO annotations, while contributing 5%

of the total number of concept assignments. This could be interpreted as very few of the

words were spent in describing the source of the samples, and that there was relative

similarity of samples.

There were 13 semantic types that contributed no terms during the automated

assignment, shown in Table 9. The root semantic type, Entity (T071) is only associated

with 5 concepts, none of which were used during assignment. Subjectively, most of the

semantic types that are associated with significant numbers of concepts in UMLS, yet

were not used during the automated concept assignment, govern concepts that are not

currently or typically studied using gene expression microarrays (like language and drug

delivery devices).

Table 10 indicates the top 50 concepts mapped to GEO samples, series, and data sets.

I manually studied these concepts to ascertain exactly what concepts were mapped and

why.

Since this list was generated after gross error correction (described above), and since

manual error correction focused on the most frequently made errors, only a few

concepts on this list are unexpected. The concept Utilization (C0042153) was frequently

selected due to the significant use of the word "using". The concept Sampling - Surgical

action (C0441621) and Sampling (C0441621) were also frequently selected, due to

frequent use of the word "sample".
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The concept Expression (C0185117) maps repeatedly, but the mapped concept is a

subtype of surgical manipulation. Instead, the term "expression" as commonly used in

molecular biology should have mapped to Gene Expression (C0017262), but the single

word "expression" is not an accepted synonym for this important concept in UMLS. A

similar error was made in the selection of control (C0243148), meaning an attribute,

such as image control or volume control, instead of control groups (C0009932). Again,

no additional synonyms are present for C0243148 that would allow for this match with

just the word "control". Labeling (C1167624) above refers to the process of stigmatizing

an individual. The closest accurate concepts in UMLS would be Staining and Labeling

(C0886517) or Stable Isotope Labeling (C1257948); use of the concept biotinylation

(C0525026) would be appropriate for some microarray protocols.

The concept Robinson (C0443050) refers to a named strain of organism; a significant

number of sample descriptions referred to a publication by Wen-Tao Peng, Mark D.

Robinson, and others. 134. A number of samples used the word "sex", resulting in Coitus

(C0009253). The concepts Seen (C0205397) and Vision (C0042789) were chosen for

the frequently used word "saw".

The concept Strain typing (C0449945) indicates the use of "strain", in the context of a

particular strain of organism studied. Unfortunately, the concept Muscle Strain

(C0080194) was also selected because of its allowed synonym "strain".

The concept Wild (C0445392) was incorrectly selected for the multiple instances of

"wild-type" and "wild type". Though the concept Wild-type genetics (C0678926) does

exist in the Metathesaurus, there are no additional synonyms that would allow for
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matches to this concept; in other words, only exact matches with the string "wild-type

genetics" are likely to map to this concept.

The concepts day (C0439228) and hour (C0439227) were often chosen correctly, but

these concepts were also incorrectly chosen in response to many biomedical

abbreviations, such as "DS domain", "oligo d(T)", "Protein H", and "H. pylori". Similarly,

the concept Muscle (C0026845) was mapped properly in most instances, but was also

incorrectly assigned through its synonym "musculus" as used in the common term "Mus

musculus."

Discussion

In this chapter, I have demonstrated an automated system called GENOTEXT that can

successfully generate mappings to the Unified Medical Language System (UMLS) for

every microarray sample stored in the Gene Expression Omnibus. Every sample can be

directly or indirectly modeled using UMLS concepts. The results of this project suggest

that UMLS, even in its current state, is sufficient to represent a number of the concepts

held in the text-based annotations of genome-scale data. I showed that, with some

exceptions, a. longer annotation results in the mapping of more unique concepts.

However, I found eleven types of errors in creating these mappings. Most of these

errors came from deficiencies in the mapping software, vocabularies, and the written

text. Though I was successfully able to create a program to eliminate errors caused by

incorrect mapping of abbreviations, proper modeling of concepts from the most common

abbreviations used in molecular biology needs to be done in the future.
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This work immediately suggests ways that text-based annotations can be written to

facilitate automated extraction of concepts. Excess and superfluous text in annotations

can lead to a large number of falsely mapped concepts. Even simple spell checking can

help.

The highest-use semantic types in terms of concepts used are Amino Acid, Peptide, or

Protein, Pharmacologic Substance, Organic Chemical, Functional Concept, Body Part,

Organ, or Organ Component. This suggests that automated determination of specific

annotations of these types might be possible.

The failure to properly map particular terms suggests a number of vocabularies that, if

added to UMLS, could improve representation of these annotations. A listing of all

authors of articles indexed in MEDLINE, the largest cities in the world and the United

States, companies making products used in molecular biology research and their

product names, and the institutes of NIH could be easily generated from semi-

automated sources, such as almanacs, company catalogs, or web-sites. A vocabulary

of other terms used in experimentation in molecular biology, such as buffer

abbreviations, experimentation on animals, genetics and genomics, could be developed

manually.

Future work in mapping concepts from annotations is suggested. The mapping could

benefit from taking advantage of the proximity of terms within a sentence, which is

currently ignored. Another strategy to limit improper assignment of concepts would be to

eliminate mapped concepts that have never appeared in publication with relevant

anchor concepts, such as RNA or Gene Expression Profiling. However, though abstract
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co-occurrence data is provided in UMLS tables, these are restricted to concepts that are

also MeSH headings.

Additional mapping strategies could include counting the number of instances of a

concept within a GEO annotation and restricting to those mentioned the most, or using

concepts mentioned in as many different annotations as possible.

GEO series can be associated with a publication through its PUBMED identifier. The

abstract and MeSH headings for this publication might be a better source of annotations

for the GEO series, and this needs to be evaluated. However, only 279 GEO series

have a PUBMED identifier listed, out of 524. Most of these GEO series listing an

identifier are earlier sets. This might have to do with the submission of data sets before

a publication has been approved; authors might not be going back to update their

submissions once a PUBMED identifier is known.

Finally, success in mapping genomic samples to UMLS immediately suggests that the

genes implicated in these samples and experiments could be mapped to cells,

diseases, procedures, and patients whose data are increasingly being represented by

UMLS.
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4. Automated determination of disease and cell type studied in
microarray samples from a large public repository by parsing text
based annotations

Motivation

Technologies such as DNA sequencing and parallel expression measurements by

microarray have allowed for novel diagnostic tests to assist in diagnosing diseases that

are sometimes difficult to distinguish 5, to differentiate subgroups of disease that differ in

prognosis 6, and to determine populations of patients that may respond to novel

therapeutics. 7,8 With over 17,000 samples stored, and nearly 10,000 microarray

samples available for downloading from international repositories, such as the Gene

Expression Omnibus, 130 a researcher studying any disease or biological process using

a genome-scale modality would ideally want to be able to gather as many of these

relevant data sets as possible, to compare and contrast with her own data. Two

important ways in which molecular biologists deem a sample as relevant are by the cell

type and disease studied.

However, as the data in repositories continues to grow at an exponential rate, manual

reading of the descriptions of data sets will no longer be feasible. Reanalysis and further

discovery from collections of data is going to be dependent on extracting the

annotations from these data sets; a manual approach is not scalable for the amount of

data already present.

Automated determination of the cell type and disease studied by a gene expression

experiment is particularly challenging. Even for data sets that are stored in standardized

formats, such as microarray data, annotations of this data, including the experimental
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context of an experiment, are likely to be represented only by free-text. Furthermore,

deciding whether a data set is relevant to ones study currently requires biological

knowledge and expertise, especially when an exact match is not found.

There are several potential applications for the automated determination of the cell type

and disease studied by a gene expression experiment. One could arrange and compare

samples in known hierarchies of cell types, including those that reflect cellular

differentiation processes, like those manually found that explain the differentiation of

hematopoetic cells. 135 One could also find relevant samples across a variety of tissues

reflective of diseases being studied.

I have previously described an automated system called GENOTEXT that extracts

contextual identifiers and annotations from samples in the largest publicly available

gene expression repository, the Gene Expression Omnibus. 130 Using GENOTEXT, I

have been able to model the majority of these annotations using the largest biomedical

vocabulary, the Unified Medical Language System (UMLS). 131

An important example application of GENOTEXT is the identification of cell type and

disease. Here, I will show how the mapping between GEO samples, series, and data

sets and UMLS concepts can be used to automate the determination of cellular and

tissue type of GEO samples.

Methods

As described previously, I have successfully loaded data from the Gene Expression

Omnibus, including samples, series, and data sets. Through the GENOTEXT system,
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annotations of GEO data were successfully mapped to 4,190 unique concepts from the

Unified Medical Language System (UMLS).

The Unified Medical Language System is a unification of multiple biomedical

vocabularies. UMLS defines both inter-vocabulary and intra-vocabulary relations

between biomedical concepts. The inter-vocabulary relations primarily represent

synonymous concepts in multiple vocabularies, and are implicitly contained in the

concept structure, where a single concept may have multiple terms from source

vocabularies.

The intra-vocabulary concepts primarily represent relations between different concepts.

Structural or hierarchical relations are primarily stored in the UMLS related concepts

table (MRREL). These relations connect two UMLS concepts in a number of ways,

including broader-to-narrower, parent-to-child, allowed qualification, and sibling

relations. Statistical relations appear in the UMLS co-occurrence table (MRCOC). These

statistical relations represents frequencies of both concepts appearing together in a

source database; pragmatically, the majority of concepts participating in these relations

are MeSH headings, and the relations represent the number of instances when both

headings appeared together in a MEDLINE record.

Here, I created a software program in Java called CONTRAVERSE that implements a

minimum-spanning tree (breadth-first search) across both types of UMLS relations. As

applied here, to determine cell type and disease from annotations, I used the UMLS

related concepts table (MRREL) because of the increased clarity of semantics in its

relations.
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Traversal started with the concepts Cells (C0007634) and Cultured Cell Line

(C0682516) and was limited to relations leading to child concepts of semantic type Cell

(T025). Without the semantic type restriction, traversal otherwise quickly descends into

subcomponents of the cell, including DNA and its associated concepts, which were not

desired for this analysis. Traversal continued from concept to concept to GEO data set

to GEO series to GEO sample. A traversal path was ended when a GEO sample was

reached.

In addition, direct traversal from the ten specific concepts listed in Table 11 to GEO

samples was not permitted; these concepts participated in the hierarchy of concepts

under Cells and Cultured Cell Line, but were not specific enough to assign a cell type to

the sample. Without this restriction, due to the minimal-spanning tree approach used,

premature assignment of a GEO sample to one of these ten concepts prevented further

assignment to a more specific concept.

In a similar manner, I repeated this approach using a starting concept of Disease

(C0012634) and restricted traversal to concepts with semantic type Disease (T024).

The breadth-first search resulted in trees starting from the initial concept(s) as the root

and reaching the GEO samples as the leaves. Trees were formatted and printed using

the freely available yEd Java Graph Editor (yWorks GmbH, Tubingen, Germany).
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Results

Using CONTRAVERSE, I was able to predict a cell type in 3,381 out of 8,519 GEO

samples (40%). Only 27 were related to the concept Cultured Cell Line (C0682516); the

rest, shown in Figure 25, were related to the concept Cells (C0007634).

Of the unclassifiable 5,138 GEO samples, 1,981 (39%) were samples from plants or

single cellular organisms (including Arabidopsis thaliana and Saccharomyces

cerevisiae) and 273 (5%) were from non-mammalian multi-cellular organisms (such as

Drosophila melanogaster). Of the remaining 2,884 unclassified mammalian samples, an

additional 2,627 could be directly or indirectly mapped to a UMLS concept in the

semantic types Body System (T022), Body Part, Organ, or Organ Component (T023),

Tissue (T024), Body Substance (T031), Embryonic Structure (T018), or Neoplastic

Process (T191). Though these might specify information about where the sample was

obtained, these concepts are not at a cellular resolution, because UMLS is missing

crucial relations between tissue belonging to an organism and the cell types contained

within that tissue. For example, in UMLS, there is no asserted relationship between the

concepts vastus lateralis muscle (C0224444) and muscle cells (C0596981).

Finally, this left only 257 unclassified mammalian samples that were also not mapped to

any concepts in the six UMLS semantic types above. After manual review, I determined

the reasons why each of these samples was unclassifiable. Eighty-two samples,

including GEO samples 1130, 1678, 4424, 6684, and 6603, had no text in their

description annotation and nothing contributory in any of the other six types of

annotations.

80



I found 71 of these 257 unclassified samples belong to GEO series that contain

mappings to two MEDLINE abstracts. The first is a publication referring to the

concordance of expression levels between twins, for which 70 samples were placed in

GEO. 136 MetaMap parsing of this abstract did not find any usable term in the semantic

type Cells, or in any of the other six semantic types listed above. The term

"lymphoblastoid cells" is present in this abstract, but MetaMap does not match this

variant to the concept lymphoblastoid cell line (C0682526). The MeSH heading

"Lymphocytes/*metabolism" was assigned to this MEDLINE record, however. The

second abstract covers a single unmapped sample and does contain terms that map to

the concept Breast Cancer of type Neoplastic Process. 137

GEO sample 11963 and others reference a cell line "BV2" but does not otherwise

contain text stating what type of cell or cell line this is. Similarly, GEO sample 1718 has

the text "aCGH cell line", and GEO sample 1725 mentions "HMEC cell line" but UMLS

does not have a matching concept for any of these. GEO samples 69, 3340, and others,

only state "Individual LCL vs Pooled Control LCLs" in their descriptions. Similarly, GEO

sample 8635 and its series repeated refer to "DC's" without once mentioning what it

stands for.

GEO sample 1728, and others, refer to an experiment involving polio virus infection, but

do not state the cells type used. GEO sample 2144 has a description stating a similar

infection on HeLa cells, but this was missed by MetaMap and not mapped to the proper

concept. GEO sample 823 used "NIH3T3", which is not a listed synonym for "NIH 3T3,"

and GEO sample 4100 used "Murine subcontaneous adipose," while "adipose" is not a

sufficient synonym for adipose cell (C0206131).
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Errors in cell type determination

Obviously, mistaken mappings from text annotations to UMLS concepts will lead to

incorrect determination of cell type. In addition to this trivial source of errors, I found four

additional types of classification errors seen in several of the samples that were

considered classified. These were errors that persisted even after the removal of gross

MetaMap mapping errors that had resulted from the misinterpretation of abbreviations.

Though some of these errors occurred in GEO descriptions that are unnecessarily

complicated, or contain text requiring sophisticated understanding of pathophysiology,

there were several assumptions I made about GEO samples that were not always true,

and important to relay here.

GEO description states interpretation

The description of GEO series 343 notes "DNA microarray profiling identifies molecular

heterogeneity and suggests a role of B-cells in acute renal allograft rejection." Because

the conclusion of the experiment was stated in the methods, the samples in this series

were mistakenly mapped to the concept of B-Lymphocytes (C0004561).

Single cell type assumption was incorrect

GEO series 272 is described as "T and B lymphocyte development profiles." The search

strategy I used stopped after any appropriate concept was reached for a sample, and

did not continue to try to find additional related concepts. Thus, this series was

incorrectly marked only with B-Lymphocytes (C0004561).
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Experiment involved cells besides those used in the sample

The experimental protocol behind some samples involved cell types that were different

than the ones studied using microarrays. For example, GEO data set 434 is titled

"Embryonic stem cell cholesterol metabolism mutants", while one particular sample

within the data set is titled "mouse control, liver, RNA B6477A." This particular sample

maps to embryonic stem cell (C0596508); a more correct result would have been to

additionally map to liver cell (C0227525).

Reduced specificity in cell type determination

Another type of error was found in specificity. GEO sample 3977 has a description listed

as "CD4 lymphocytes..." yet UMLS does not have that phrase as a synonym for Helper-

Inducer T-Lymphocytes (C0018894). Instead, MetaMap maps the more general term

Lymphocytes (C0024264). Similarly, the description for GEO series 640 contains both

"mammalian spermatozoan" and "18 day old testis" and its description contains the term

"germ cells". This series was mapped to the more general concept Germ Cells

(C0017471) instead of the more specific concept Spermatozoa (C0037868). Because of

the breadth-first search algorithm used, the closest concept to the starting concepts will

preferentially be mapped and these are typically more general concepts.

Correct cell type classifications

Despite the errors noted above, many samples were correctly classified; a few

representative examples are noted in Table 12.
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Classifying GEO samples by disease

I repeated the traversal strategy in CONTRAVERSE starting with the concept Disease

(C0012634) restricting to child concepts of semantic type Disease or Syndrome. Using

this approach, I was able to predict a disease in 1,505 out of 8,519 GEO samples

(18%). I1 found five types of classification errors in determining the diseases related to

GEO samples.

Terms from experimental protocols that inadvertently map to diseases

Samples obtained from C. elegans that mentioned the term "worms," such as GSM 468,

are classified as Helminthiasis (C0018889). Similarly, samples with the term "cold" in

the description, such as "cells were scraped into 1 ml ice cold PBS," map to Common

Cold (C0009443). Samples describing a protocol involving the adenoviral transfection of

genes map to Adenovirus Infections (C0001486).

Additional abbreviations leading to mapping errors

While reviewing the disease classifications of GEO samples, I found additional

abbreviations that inadvertently mapped to terms suggestive of disease. The inclusion

of the abbreviation "SSPE," a buffer containing sodium chloride, sodium phosphate, and

anhydrous EDTA disodium dihydrate commonly used in molecular biology, causes one

sample to map to Subacute Sclerosing Panencephalitis (C0038522). The acronym

ORF, commonly used in genetics and genomics to mean open reading frame, is a

synonym for Contagious Ecthyma (C0013570).

Similarly, GSM 2116 has the title "CCRF-CEM_CL7003_LEUKEMIA," where "CEM"

maps to Contagious equine metritis (C0276037). GSM 12520 involved a cell line called
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"JP 253"; "JP" maps to Juvenile Periodontitis (C0031106). Fortunately, this type of error

occurred in very few samples, particularly due to the large number of mapping errors

previously eliminated.

This problem was not restricted to abbreviations and acronyms; I saw a similar problem

with mismatches of small words. Unexpectedly, portions of location names were

considered as abbreviations and inadvertently mapped to diseases. The "Le" from the

phrase "Le Genest-Saint-lsle France" in the description of GSM 2559 maps to Lupus

Erythematosus (C0409974). Similarly, the "St" from "St Quentin-Fallavier" and "St Louis"

maps to Esotropia (C0014877).

Finding a disease when none was studied

A number of samples in GEO represent data sets are provided as reference samples,

where a particular disease was not studied. For example, the title of GSE 513 is

"Cynomolgus monkey testicular cDNAs for discovery of novel human genes." Based on

the word "testicular", this sample maps to Testicular dysfunction (C0405581). While it

may be true that the list of genes found in this experiment may assist investigators in

studying many testicular diseases, including testicular dysfunction, this experiment was

not specifically studying testicular dysfunction. I discovered that our method has no way

to accurately report the lack of a studied disease.

Ambiguity in mapping terms to diseases

There are several terms used to describe diseases that are not unique for a single

disease. For example, the GEO data set GDS 485 has the title "Hypertension induced

by angiotensin." The term "hypertension" maps to two concepts in UMLS: Hypertension
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or Hypertensive vascular disease (C0020538), and Hypertension induced by pregnancy

(C0340274). MetaMap mapped all samples with the word "hypertension" to both

concepts; I cannot resolve this ambiguity without additional context and samples

representative of both concepts.

Reduced specificity in disease determination

Similar to the difficulties seen in cell type determination, I found errors in reduced

specificity for disease determination. The title of GDS 274 is "Hepatocellular carcinoma

metastasis", which maps to both Neoplasm Metastasis (C0027627) in addition to

Hepatocellular Carcinoma (C0019204). Due to the breadth-first search algorithm, this

data set was assigned Neoplasm Metastasis, even though a more specific concept was

available.

Correct disease classifications

Many samples were correctly classified by disease; a few representative examples are

noted in Table 13.

More importantly, since these diseases exist in a hierarchy, samples can be searched in

the context of that hierarchy. Using CONTRAVERSE to search for samples related to

the Peripheral Nervous System Diseases (C0031117) and its child concepts finds

samples from GEO series 465 (Expression profiling in the muscular dystrophies), GEO

data set 412 (Amyotrophic lateral sclerosis), and GEO data set 198 (Inflammatory

myopathy), as well as false positives. Performing a free-text search on the GEO web-

site for "peripheral nervous system diseases" results in no samples or data sets found.
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Discussion

I was successfully able to create an automated system, called CONTRAVERSE, that

can determine a relevant cell type for a large number of samples in GEO, and a relevant

disease for a smaller number of samples.

Use of these cell type assignments can take advantage of the hierarchy of cell types

within UMLS. For example, though there are 60 samples that map directly to the cell

type Lymphocytes (C0024264), there are an additional 36 samples that map to child

concepts of Lymphocytes, including T-Lymphocytes (C0039194), Null Lymphocytes

(C0024265), and Helper-Inducer T-Lymphocytes (C0018894), making a total of 96

samples. This is illustrated in Figure 26. An investigator searching for samples related to

lymphocytes can now take advantage of samples directly matching that concept and its

descendant concepts.

However, the network architecture for the concepts and relations within UMLS is not

truly hierarchical, but instead has a network topology. This is true even for subsets of

the network under the concept Cells. Figure 27 illustrates this problem. The concept

Neutrophils has two parents: Phagocytes and Granulocytes. Phagocytes has Cells has

a direct parent, and thus samples involving Neutrophils will be assigned using this

shortest-path, instead of the alternate path which would have provided greater

hierarchical detail.

A number of lessons were learned during this process. The shortest-path algorithm, as

used in CONTRAVERSE, attempts to assign a single concept to each sample. This is

obviously incorrect when a sample consists of multiple-cell types. In addition, the
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shortest-path to a sample may assign a relevant superficial concept, at the expense of a

more specific concept. Alternative search strategies should be tried in the future.

Some of the GEO series provide an identifier to a MEDLINE record. It is possible that

using the MeSH headings from these records, or applying MetaMap to the abstract text

may yield more accurate mappings to cell types and diseases, especially since the

MeSH headings are assigned by trained personnel at the National Library of Medicine.

However, these identifiers are only provided for 279 of the 524 GEO series (53%), and

will only provide data on the entire experiment, not on individual samples. In addition,

only 2,148 of the 238,072 concepts (0.9%) that are MeSH headings have a semantic

type of Cells or one of the other six types studied in this chapter. If one of these 2,148

concepts is not applied to the abstract, it will not help in cell-type determination.

However, MEDLINE abstracts may preferentially map to diseases. This could be used

to improve accuracy and could even be used to positively state when a GEO sample or

data set has nothing to do with a disease. The advantages and disadvantages of using

MEDLINE data versus GEO annotations clearly need to be studied.

This work immediately suggests ways that text-based annotations can be written to

facilitate automated extraction of cell type and disease. GEO titles should be written

with whole words and numbers, and should be carefully evaluated for inadvertent

abbreviations. GEO descriptions should be written without excess verbiage; the MIAME

checklist should be followed, but the text of the checklist should obviously not be

included. Descriptions should be written in plain text without the use of HTML.

Descriptions should ideally be written without using a specialist jargon, and without
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requiring users to read the original publication. The original tissue or cell type of cell

lines should obviously be included.

A number of terms were repeatedly missed during MetaMap processing suggesting

vocabularies that could be added to UMLS to improve processing. A listing of journal

titles and cell lines used in research could be easily generated from semi-automated

sources, such as almanacs, company catalogs, and web-sites including those

maintained by the American Type Catalog Collection and the Coriell Cell Repository.

In addition to improving the vocabularies in UMLS, additional links between anatomical

concepts and histological concepts are also suggested, such as providing relations

between all organs and anatomy structures and their component cell types.

Incorporating relations from vocabularies such as SNOMED may provide this in an

automated manner.

There are additional areas of analysis that are immediately suggested by this work.

Groups of samples for which cell type and disease annotations have been mapped can

be compared in an unsupervised manner to discover connections; two cell types or

diseases may resemble each other in terms of their gene expression profile. Samples

falling under a cell type branch may not exactly resemble each other; these differences

may even suggest previously unknown sub-types of cells.
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5. Extracting catalogs of measured genes from the largest public
repository of expression measurement data

Motivation

At the time of this writing, over 8,000 RNA expression measurement sets are publicly

available from the Gene Expression Omnibus (GEO), an international repository for

gene expression data developed and maintained by the National Library of Medicine. 130

GEO consists of a database-backed web-site (http://www.ncbi.nlm.nih.gov/geo) and a

publicly-available File Transfer Protocol (FTP) site where data can be downloaded.

GEO platforms (abbreviated GPL) represent a mapping between local gene identifiers

and external identifiers, gene names, symbols, and other descriptors. Each GPL also

describes the manufacturer of the method and the species for which the platform is

used. Platforms can be defined as providing absolute measurements from a single

sample or relative measurements between two samples.

GEO samples (abbreviated GSM) relate expression measurements of multiple RNA

transcripts with local gene identifiers, and are themselves related to a single GPL. Each

sample corresponds to one or two biological sources, depending on whether absolute or

relative expression measurements are represented.

Currently, GEO expression measurements are not mapped to fixed, universal

identifiers, such as LocusLink. 31 Our goal here was to create a single relational

database with as many GEO expression measurements mapped to LocusLink

identifiers as possible. There are numerous difficulties that make this a non-trivial

process. First, there is no specified standard as to which universal identifier must be

listed in a GPL; these include GenBank, LocusLink, or UniGene identifiers, or
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references to clones from over seventy catalogs. Second, the column structure for a

GPL is not specified, and the universal identifier could appear in any column. Third,

contrary information is often provided in a GPL; for example, if both a GenBank

accession and a UniGene accession are provided as the mapping for a local gene

identifier, the GenBank identifier may more closely represent the actual sequence used

on that platform, compared to the UniGene identifier, which may have already been

retired.

The value in providing a mapping from GEO expression measurements is manifold.

First, as of this writing, there are over 100 million expression measurements in GEO.

The properties of expression for each gene across this many measurement contexts

have yet to be studied. Similarly, characteristics of a nearly-comprehensive set of

expressed products can be studied globally. Second, mapping to LocusLink allows data

to be compared across paralogs and orthologs, using Homologene. Thus, gene

expression measured in similar contexts can be compared across species, and

similarities and differences in the contexts themselves can be studied.

Previous attempts at mapping local gene identifiers to global identifiers

Many database-backed web sites are now available to translate gene identifiers from

one type to another. Jennifer Tsai, and others, created a database-backed web site

called RESOURCERER that serves as a cross-reference database between 21

microarray platforms. 69 Pinglang Wang, and others, created ProbeMatchDB to translate

five types of clone and microarray identifiers. 138 Kimberly Bussey, and others, created

MatchMiner which provides a similar function. 139 We have constructed a publicly-
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available web-based integration tool called UNCHIP (www.unchip.org) that relates

Affymetrix identifiers to LocusLink. Though there are many other tools that provide

similar functionality to these four, none specifically address the translation of all the

various identifiers and platforms in the Gene Expression Omnibus to LocusLink.

Methods

Mapping GEO gene expression measurements to LocusLink was accomplished in three

steps, depicted in Figure 28. First, I mapped many commonly used identifiers to

LocusLink. Second, I loaded all GEO samples, containing expression data referenced

by a local gene identifier, GEO platforms, containing the mapping between the local

gene and external identifiers, and created relations between the two. Third, I created the

mapping between each GEO platform's external identifier and a commonly used

identifier. Each of these steps is described below.

Mapping from commonly used identifiers to LocusLink

Building from the previous UNCHIP program, I wrote a program in PERL to parse the

LocusLink, UniGene, HomoloGene and Affymetrix data files. The LocusLink data file

provided a catalog of and information for genes in a number of species, importantly

excluding Escherichia coli, and other bacteria, Arabidopsis thaliana, and other plants,

and Saccharomyces cerevisiae and other yeast. The LocusLink record for a gene

provided a relation to a UniGene cluster as well as a few GenBank identifiers. The

UniGene data files provided many mappings from GenBank and many clone identifiers

to UniGene clusters. The HomoloGene file represented orthologs and paralogs by

relating multiple LocusLink identifiers across species through a HomoloGene identifier.
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Finally, the Affymetrix data files provided mappings from Affymetrix identifiers and

GenBank.

From these files, I created a list of potential identifiers for clones from the UniGene files

for each species. I manually implemented an iterative strategy that clustered the clone

identifiers by the first 4 to 6 characters, and I determined the characteristics of the

largest groups. Representative examples of these were manually queried using the

Entrez web-site which resulted in the name of the grouping containing those identifiers.

I will use the term identifier-spaces to refer these groupings of identifiers. A regular

expression was created to describe the identifier-space, a name was given, and these

were removed from the list to be processed.

Loading and linking GEO samples and platforms

I loaded all publicly available GEO samples and platform data into a relational database.

The GEO platform data describes how GEO samples using that platform are organized.

Each GEO platform is stored as tab-delimited text with a single header line explaining

each of the columns. One of the column headers (not necessarily the first) is marked

"ID" and marks that column as holding local identifiers for that platform. Each row

subsequent to the header row represents a single gene being measured.

As shown in Figure 29, the GEO platform data was transformed into three tables: (1)

GPL Header holding the GEO platform identifier, a column number, and the text of one

column from the header row, (2) GPL ID holding the GEO platform identifier, the text of

one row in the "ID" column, and a newly generated number unique for that platform and

local gene identifier, and (3) GPL Data holding all data from each row and column.
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Expression data from GEO samples are stored in a tab-delimited text format, with the

column structure described by the associated GEO platform. Each row represents a

single gene expression measurement, and a single column in each row contains the

local gene identifier. I created a single table with holding all gene expression

measurements, along with the local gene identifier, GEO sample identifier, and platform

identifier.

Mapping from GEO platform external identifiers to commonly used identifiers

I manually inspected sample records measured under 195 GEO platforms to determine

which column in the platform might be a valid identifier from an established identifier-

space. I preferentially chose columns with identifiers that were fixed, stable, with little

commitment.

Finally, I performed a database join across six tables as shown in Figure 30 and

assessed the success in mapping gene expression data to LocusLink identifiers. For the

expression measurements I could map to LocusLink, I also mapped them to orthologs

and paralogs within and across species using HomoloGene relations.

Results

Mapping from commonly used identifiers to LocusLink

Using the manual iterative approach described above, I was able to map identifiers from

70 identifier-spaces with LocusLink, some of which are listed in Table 14.

I created over 28 million mappings between an identifier in one of these identifier-

spaces to a LocusLink gene. As an extreme example of this mapping, the gene gamma
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actin (LocuslD 71) is the most identified gene with 93,745 identifiers. However, the

genes human glyceraldehyde-3-phosphate dehydrogenase (LocuslD 2597) and human

eukaryotic translation elongation factor 1 alpha 1 (LocuslD 1915) are referenced in the

most identifier-spaces, having 31 types of identifiers. Other frequently referenced genes

are listed in Table 15.

A subset of the mappings for the gene N-acetyltransferase 2 (LocuslD 10) are shown in

Table 16. Some of these mappings are direct and trivial: the numeral "10" directly maps

to the gene with LocuslD 10. Several identifiers, such as "X14672" and "AAA59905" are

directly referenced in the LocusLink record for the gene, and thus map without

translation. Other identifiers require one or two levels of indirect reference. For example,

the GenBank GI identifier "10286060" refers to GenBank "AV684197", which itself refers

to UniGene cluster Hs.2, which refers to this gene. Mappings from clone identifiers are

also provided; IMAGE 1870937 maps to both GenBank A1262683 as well as BX095770,

but both of these are in the same UniGene cluster Hs. 2. Note that mappings for official

and commonly used symbols, as well as various common permutations of identifiers are

also provided.

Loading and linking GEO samples and platforms

The publicly available GEO data as of this writing included 8,519 samples measured

using 195 platforms. I was able to load these data into a relational database, resulting in

104,171,741 gene expression measurements related to 2,452,203 platform local gene

identifiers.
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Twenty-one GEO data sets had some formatting problem with GEO platform data. Two

examples are given here. GEO platform 561 has external identifiers provided for only

nine of 28,800 measurements. The submitters of these arrays have claimed that "clone

identification information was proprietary" and that they "only included the identifiers that

were going to be made public in an upcoming publication." GEO platform 248 has

header items transposed; column 1, currently labeled as "ID", was switched with column

3, currently labeled as "Column".

Mapping from GEO platform external identifiers to commonly used identifiers

I was able to manually create a mapping from the external identifiers specified in 163

GEO platforms to commonly used identifiers. For 99 of these GEO platforms, this

external identifier was found to be GenBank identifier; an additional 11 platforms

specified GenBank GI numbers. Three platforms contained identifiers that matched

UniGene and two platforms provided LocusLink identifiers.

Using these tables, I was able to create 985,670 relations between GEO platform local

gene identifiers and LocusLink identifiers. Specifically, this mapping related 922,382

GEO platform identifiers (37% of the total 2,452,203) and 61,648 (29% of the total

211,433). Of the 922,382 GEO platform identifiers, 878,349 (95.2%) refer uniquely to

one LocusLink identifier, while 44,033 (4.8%) refer to more than one gene. For example,

local gene identifier 33,377 from GEO platform 371 refers externally to GenBank

identifier M94081, but that identifier relates to 62 different LocusLink identifiers (all

different T-cell receptor genes). One could consider removing from analysis those

platform identifiers that relate to more than gene, unless data increasing the specificity
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is available; otherwise, follow up and validation of results involving these identifiers is

problematic.

Interestingly, of the 61,648 genes measured in LocusLink, 56,421 (92%) are measured

by more than one GEO platform, but 5,227 (8%) are measured by only a single GEO

platform. In other words, a finding based on one of these uniquely measured genes may

currently be impossible to validate on another platform. Of note, human gamma actin

has more probes in more platforms than any other gene (1,184). Other genes

represented with many probes on many platforms include human glyceraldehyde-3-

phosphate dehydrogenase (691), human beta actin (567), human eukaryotic translation

elongation factor 1 alpha 1 (466), and human ribosomal protein L3 (458).

Quantitatively, it was the case that the more identifiers that were available for a gene in

LocusLink, the greater the number of probes on GEO platforms; the correlation between

identifier count and probe count was 0.69, and between log identifier count and log

probe count was 0.84 (shown in Figure 31).

Discussion

With this work, I can now unify over 50 million expression measurements from the Gene

Expression Omnibus with LocusLink gene identifiers, and can now study the properties

inherent in gene selection for microarray catalogs.

Microarrays are one of the first nearly-comprehensive measurement systems commonly

available to molecular biologists. We commonly treat measurements from microarrays

as behaving in characteristic distributions, such as a normal or gamma distribution.
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However, this places critical assumptions on the underlying set of genes in each

measurement platform.

With this work, I am showing that genes are not measured equally within or across

expression measurement platforms. Contrary to this, the number of probes available to

measure a gene is a function of the number of identifiers available for it.

Most identifiers are either manually assigned during targeted sequencing efforts, or

arbitrarily assigned during high-throughput cDNA sequencing efforts. This may

introduce two independent biases. At one point, a gene may have been deemed as

interesting, leading to multiple sequencing efforts and having multiple identifiers

assigned. These genes may now be overrepresented on platforms. Alternatively, genes

that are highly expressed, and thus repeatedly found and re-identified during high-

throughput cDNA sequencing, may also be overrepresented on platforms.

Regardless of the cause, if the most familiar genes are the ones measured the most

often, this will introduce a subtle bias if microarrays are used in a "hypothesis free"

manner. If multiple independent probes are created for these genes, some of these

probes may work better than others, leaving the user to speculate as to the exact level

of expression of the gene. Additional effort may have gone into designing better probes

for these probes, resulting in more accurate measurements than for other genes. In

addition, multiple measurements for a single gene can change the overall distribution of

expression measurements on the array, and can alter the prior probabilities of particular

functional categories being implemented in an experiment.
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Future directions

I used a manual approach to create bridges between GEO expression measurements,

GEO platforms, commonly used gene identifiers, and LocusLink. In the future, this type

of mapping could be automated for new GEO platforms. Software could be written to

study and score each column in the GEO platform description based on the number of

matches to terms within a single identifier-space and species.

Though seven species are included in the mapping from GEO expression data to

LocusLink (Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus, Drosophila

melanogaster, and Gallus gallus), other important species are notably absent, including

Escherichia coli, and other bacteria, Arabidopsis thaliana, and other plants, and

Saccharomyces cerevisiae. Though these species have fixed global identifiers, they are

not presently incorporated into LocusLink. The National Center for Biotechnology

Information has indicated that LocusLink identifiers will be subsumed by NCBI Gene

identifiers in the near future. If these identifiers include these missing species, it will

open the data already available for these species for unification in a single identifier-

space.
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6. Automating the extraction and determination of significant
genes from GEO data sets

Introduction

The number of expression measurements already available studying particular

biological processes and diseases is surprising. At the time of this writing, 448 defined

data sets containing 6,612 parallel expression measurements are publicly available via

the Gene Expression Omnibus (GEO), an international repository for gene expression

data developed and maintained by the National Library of Medicine. 130

In chapter 3, I showed how we can model the annotations of GEO samples using the

Unified Medical Language System (UMLS). In chapter 5, I demonstrated how I can unify

over 50 million expression measurements from GEO with LocusLink gene identifiers.

My hypothesis here is that if significant genes can be found from all possible

comparisons of biologically interesting groups of samples, I could find a more significant

list of genes involved with experimental variables more successfully than possible from

any one data set.

Out of the 448 GEO data sets available, 409 (91%) define experimental variables that

were delineated in the original measurement design, and provide values for these

variables for each sample. As an example, GDS 200 is an experiment in which the

investigators measured gene expression as a function of two tissue types ("Cal

hippocampus" or "dentate gyrus hippocampus"), three treatments ("context and shock",

"control", or "shock only"), four time points (1, 2, 4, or 6 hours), and three strains

("C57BUL6J", "50% C57BL/6, 50% SJL Alzheimers", or "MK-801-injected C57BU6J").
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There are 72 possible combinations of these variables, yet only 64 microarray

measurements are provided in this data set, indicating that not every possible

combination of experimental parameters was tested.

There have been many published methods on determining genes most significantly

different between two groups of expression measurements. Our goal here was to

comprehensively apply a single commonly used method of significance determination

across all possible two group comparisons in all GEO data sets, in order to study the

characteristics of genes most often found to be different across the variety of

experimental contexts found in GEO.

Methods

GEO consists of a database-backed web-site (http://www.ncbi.nlm.nih.gov/geo) and a

publicly-available File Transfer Protocol (FTP) site where data can be downloaded.

GEO data sets (abbreviated GDS) represent collections of data that have been

manually validated as containing internally comparable data. Using methods previously

described in chapter 5, I placed all GEO gene expression measurements from GEO

samples assigned to GEO data sets into a single database, and mapped the GEO gene

identifiers for these measurements to LocusLink.

I created a software program in Java, called COMPRARE, that iterates over every GEO

data set and over each experimental variable. The iterated experimental variable is

considered the test-variable; the other available variables in the data set, if any, are

considered background-variables. COMPRARE iterates through all possible values for

all the background-variables, and within this iteration, it creates all possible pairings of
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values within the test-variable. Thus, in putting these values together, I had a pair of

states that differ in value at the test-variable, but are exactly similar for all the

background-variables. An example of a two group comparison is shown in Figure 32.

Expression samples are then found that match these states, and each gene is

compared across the two groups, using one or two tests. If more than two

measurements are available for a gene in both groups, an f-test is applied; if significant,

the gene is evaluated using a t-test with unequal variance, otherwise a t-test with equal

variance is used. If the p value for the comparison is under 0.01, the gene is recorded.

If one or more measurement is available for a gene, a mean expression value is

calculated for each group and a fold difference is calculated. If a gene shows a

difference greater than 2 fold, it is recorded.

Data measured using a platform indicated as dual channel (measuring relative

expression levels) are excluded from the fold difference calculation, due to the presence

of positive and negative values. Any gene with any negative measurements measured

on any platform is similarly excluded.

For experimental variables of interest, I looked at the genes implicated in all two-group

comparisons involving that variable, and sorted them by the number of positive

comparisons. I then joined multiple genes into ortholog/homolog families using the

HomoloGene relations, assigning each family the sum of the individual gene counts. 130
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Results

Using the nested iterative approach implemented in COMPRARE, as described above, I

performed 11,121 two group comparisons across all GEO data sets, evaluating a total

of 133,288,138 genes by t-test and/or fold difference. Roughly 13%, or 17,104,588, of

these tests resulted in a positive gene; 3,663,177 (2.7%) were positive by t-test and

13,441,411 (10.1%) were positive by fold-difference. These findings implicated 44,838

genes out of 52,189 (86%) across 7 species: Mus musculus, Rattus novegicus,

Drosophila melanogaster, Gallus gallus, Homo sapiens, Canis familiaris, and Bos

taurus. Out of the 17,104,588 genes implicated in a comparison, 1,989,685 of the genes

were implicated in both the t-test and fold-difference test. If the t-test and fold-difference

test were independent, I would have expected only 369,412 genes implicated in both.

The GEO data sets contain 21 named variables, of which two are catchall variables

called "unclassified" and "error". These are listed in Table 17, along with the number of

data sets using the variable and the number of values used. Variables and values in

GEO are specified as free text, and are apparently drawn from no established

vocabulary.

To take one of these variables as an example, the variable "gender" was used in four

GEO data sets. Four values have been specified for "gender": "female", "male", "male

and female", and "mix."

I studied the variable "age" and the genes implicated across the 401 two-group

comparisons in 24 GEO data sets. Each gene could be implicated in as many as 401

positive comparisons; however, because data sets involved multiple species,
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operationally, this maximum was much lower. I then joined orthologous and

homologous genes into homology families.

A total of 19,725 genes were implicated in one or more comparisons involving "age,"

and these belonged to 11,488 homology families. The distribution of the sum of the

count of positive comparisons for these families is shown in Figure 33.

The insulin and IGF-1 receptors have been previously implicated in aging in both mice

and worms, suggesting that caloric restriction may lead to longer life. 140 Matthias Bluher

showed in that mice genetically engineered to be missing the insulin receptor in fat

tissue had an average 18% longer life-span than controls. 141 Koutarou Kimura showed

that decreases in daf-2 signaling, the worm ortholog of the insulin/IGF-1 receptor,

increases life-span. 142

I found the insulin receptor family was highly implicated in two-group comparisons

involving "age." The human insulin receptor was positive in 3 comparisons, while the

mouse insulin and IGF-1 receptors were positive 133 and 102 comparisons,

respectively, The mouse insulin receptor-related receptor is also a member of this

homology family and was implicated in 39 comparisons. The mouse insulin and IGF-1

receptors were at the top 5.5%ile and 1.9%ile of the 19,725 gene list. In total, however,

this family was implicated in 277 comparisons, placing it at the 0.3%ile of the 11,488

homology families. Only 36 additional homology families were more highly implicated

than the insulin receptor family.
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Similarly, other known genes involved in lifespan, including the sirtuin family of genes,

were likely implicated in repeated experiments. 143 Human sirtl was implicated in 99

comparisons, placing it in the top 6.2%ile of the 19,725 gene list.

Discussion

Building on our previous work of loading all data sets from the Gene Expression

Omnibus, including gene expression measurements, experimental variables, and

values, I created an automated system called COMPRARE that can comprehensively

make every possible two-group comparison in each data set, and can record the genes

whose expression is significantly different in each comparison. I can then study the

experimental variables themselves, such as "age", and have found that important genes

are repeatedly implicated across multiple comparisons.

More genes were positive than I expected. Though our p-value threshold for the t-test

was set to 0.01, almost 3% of the genes tested were positive. The current

implementation of COMPRARE does not adjust for multiple-comparison testing, and this

may account for a greater number of positive genes than expected. 144 Over 10% of

genes tested had increased or decreased over 2 fold. In total, 17,104,588, or 13% of the

gene tests performed, were positive. Restricting to genes that pass both the fold-

difference test and t-test cuts the number of positives to 1,989,685, a 10 fold reduction.

The thresholds for the t-test and fold difference testing were set arbitrarily. Future

version of COMPRARE could recomputed significance in the context of permuted data,

and could then determine appropriate thresholds dynamically to meet an expected

false-discovery rate. 145 Additional methods to determine whether a gene is significantly
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different can be implemented as well, including those that consider each gene in the

context of other measurements in the same samples, like Bayesian approaches. 146

Analytic methods that take advantage of time series measurements could also be

used. 147,148

Future directions for this work include an in depth pursuit of the specific genes involved

in aging, as well as making a similar analysis of the other experimental variables,

especially time and developmental stage.

It is interesting that 86% of genes undergoing testing were positive. The remaining 14%

represent a set of genes that do not appear to change in expression values between

states. In some ways, this could be a novel definition for a "housekeeping" gene, or a

gene that is thought to be relatively constant in expression.

However, the qualitative nature of the variables and values will quickly become a

limitation. Future work needs to be done on unifying these variables and values with

concepts in the Unified Medical Language System.
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7. Automated search and integration of multiple genome-scale
measurements related to a disease

Introduction

Instead of focusing on the cell, or the genotype, or on any single measurement

modality, using integrative biology allows us to think holistically and horizontally. A

disease like diabetes mellitus can lead to myocardial infarction, nephropathy, and

neuropathy; to study diabetes mellitus in genomic medicine would require reasoning

from a disease to all its various complications to the genome and back. A researcher

studying any particular biological process with a genome-scale modality would ideally

want to be able to gather and reason over as many relevant data sets as possible.

In chapter 3, I showed how we can model the annotations of GEO samples using the

Unified Medical Language System (UMLS). In chapter 5, I demonstrated how I can unify

over 50 million expression measurements from GEO with LocusLink gene identifiers. In

chapter 6, I demonstrated how I can generate lists of significant different genes from all

possible comparisons in every GEO data set.

My hypothesis here is that by starting with a disease concept, I can now find biologically

relevant genomic data sets and determine genes that are significantly different across

several of these data sets. The hypothesis is that these genes are highly likely to be

involved in the normal physiology, and possibly the pathophysiology, of the disease

process.
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Methods

As described in chapter 5, I have loaded data from the Gene Expression Omnibus,

including samples, series, and data sets. Annotations of GEO data were successfully

mapped to 4,190 unique concepts from the Unified Medical Language System (UMLS)

using the automated system called GENOTEXT. I have also shown previously that a

cell type can be predicted for 39% of GEO samples.

Asserted structural or hierarchical relations between concepts are primarily stored in the

UMLS related concepts table (MRREL), while statistical relations between concepts

appear in the UMLS co-occurrence table (MRCOC). These statistical relations

represents frequencies of both concepts appearing together in a source database;

pragmatically, the majority of concepts participating in these relations are MeSH

headings, and the relations represent the number of instances when both headings

appeared together in a MEDLINE record. For example, whereas MRREL contains a

relation between adipogenesis and adipose cell, MRCOC contains a relation between

adipose cell and obesity.

As described in chapter 4, I created a software program called CONTRAVERSE that

implements a minimum-spanning tree (breadth-first search) using both types of relations

in UMLS. As applied here, to find samples whose annotations are related to a starting

concept, I used the UMLS co-occurrence table (MRCOC) because of the greater

number of relations available that span source vocabularies. However, the majority of

these relations connect two UMLS concepts that are also MeSH headings. Because of

this, concepts that are not also MeSH headings essentially have no relations specified
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in this table. I added an optional process to "boost" the number of starting concepts,

such that if the program noted that the starting concept(s) had no co-occurrence

relations available, it added additional related starting concepts. These related concepts

were determined using the UMLS related concepts table (MRREL) by traversing from

starting concepts through relations designated as source-asserted relatedness and

possibly synonymy. The "boosting" continued until at least one of the starting concepts

had a co-occurrence relation.

Breadth-first traversal was initiated with the starting set of concepts after the optional

"boosting" process and proceeded through the UMLS co-occurrence relations.

Traversals continued from concept to concept to GEO data set to GEO series to GEO

sample. A traversal path was ended when a GEO sample was reached. I considered

that if traversal reached a GEO sample, it had already effectively reached that sample's

parent GEO series and GEO data set. Traversal to concepts was not restricted by

semantic type. The only co-occurrence relations used were those marked as being from

the citations to the published literature and with a source from the recent MEDLINE

database.

To improve sensitivity and specificity, I designed and implement four optional filters that

could be applied during the traversal step from one concept to another. Instead of

traversing all UMLS co-occurrence relations, our first filter eliminated relations that were

relatively insignificant given the two concepts being related. This was determined by

counting the total number of MEDLINE records involving both concepts separately, then

calculated the fraction of these totals covered by the number of abstracts cited in the
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relation between the two concepts. The second optional strategy was to test this fraction

against a threshold for the source concept, the destination concept, both, or neither.

The third optional strategy was to ensure traversal always moved from a concept with

more references in MEDLINE records to a concept with fewer references; I eliminated

relations in which this was not the case. Our fourth strategy was to eliminate relations

between concepts and GEO samples, series and data sets that had a score below a

threshold. Scores for concepts mapped to GEO annotations are assigned by MetaMap,

and are designed to reflect the degree of certainty of the match.

I manually determined all available GEO data sets to determine which may have an

experimental design that was directly related to the study of diabetes mellitus. This list

was compared to a list of data sets returned after searching the GEO web-site for the

term "diabetes." The concatenation of both lists is shown in Table 18.

The GEO web site returns GDS365 from a search query of "diabetes" because some of

the samples are from diabetics after transplant. The web-site indicated GDS541 and

GDS217 as relevant because both reference GSM761, a sample of normal cerebellum

from a female who had diabetes mellitus. GDS167 was indicated as possible because

"diabetes" is mentioned in the submitter's institution annotation. These four data sets

were felt to be false-positives.

I evaluated both the co-occurrence filter and the score filter by changing the thresholds

and creating receiver-operating characteristic (ROC) curves for each filter and

threshold. Sensitivity and specificity was measured based on the ability of each strategy
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to find the true-positive list of data sets after starting from the concept Diabetes Mellitus

(C0011849).

The breadth-first search resulted in a tree starting from the initial concepts(s) as the root

and reaching the GEO samples as the leaves. Trees were output in GraphML, then

formatted and printed using the freely available yEd Java Graph Editor (yWorks GmbH,

Tubingen, Germany).

As described in chapter 6, I created the COMPRARE system to perform every possible

comparison between two named groups of samples across all GEO data sets,

evaluating 11,121 two group comparisons involving 133,288,138 gene expression

comparisons using t-test and/or fold difference. Using the results of the ROC curves, I

chose the optimal parameters for sensitivity and specificity, and then traversed from the

starting concept of Diabetes Mellitus (C0011849). At the depth determined to be the

optimal for sensitivity and specificity, I determined the list of GEO samples (and from

these, GEO data sets). I then kept only those GEO data sets containing at least one cell

type reference to Muscle (C0596981). Using the results of COMPRARE, I created a list

of those genes significantly different in any one of these GEO data sets, then folded this

list taking into account the multiple species that were studied using the NCBI

Homologene tables.

Results

In previous work, I demonstrated how microarray samples and data sets from the Gene

Expression Omnibus (GEO) could be stored in a single database, with local gene
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identifiers mapped to LocusLink identifiers, annotations mapped to UMLS concepts, and

all genes significant in any possible comparison of groups of samples listed.

Here, I have put all of this together. I first evaluated the sensitivity and specificity of

using a breadth-first search traversal across the UMLS co-occurrence relations, starting

from the UMLS concept of Diabetes Mellitus (C0011849) and reaching a true-positive

set of GEO data sets and samples studying Type 1 and Type 2 diabetes mellitus. I

determined initially that due to the large number of co-occurrence relations, I was able

to reach every GEO data set and sample from the concept Diabetes Mellitus in eight or

fewer steps. This is primarily due to the particular nature of the UMLS co-occurrence

relations. Though UMLS is the concatenation and unification of multiple vocabularies,

the network of concepts and co-occurrence relations follows that of a scale-free

network. A few UMLS concepts participate in a large number of relations, as shown in

Figure 34, and the involvement in relations drops exponentially.

As shown in Figure 35, the log of the count of UMLS co-occurrence relations for a

concept is inversely linearly proportional to the number of concepts with that count,

characteristic for a scale-free network. This implies the existence of a small fraction of

highly-connected hub concepts.

Other relevant scale-free networks include airline routes, social networks, power-grids,

the world wide web, the collaboration network of scientists, and some peer-to-peer file

sharing networks. Search algorithms can take advantage of scale-free networks.

Requests for music files in peer-to-peer networks typically move one computer to its

most highly connected neighbor. These requests then travel randomly in the central
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core of highly connected computers until the appropriate file is found. 149 Typically,

given the nature of the data, identical copies of the file are found in many locations in

the network.

However, our goal with CONTRAVERSE is not to find samples, but to order GEO

samples, series and data sets by equating distance from a concept as relevance to that

concept. In addition, since I am traversing the UMLS co-occurrence network looking for

related concepts without a specific correct answer in mind, our problem is not in

sensitivity (i.e. finding the concept I am looking for) but in specificity (i.e. eliminating

unrelated concepts). Knowing UMLS is scale free may allow us to take advantage of

highly connected or cited concepts, by quickly eliminating those concepts and samples

that are least relevant.

I implemented four strategies to improve the specificity in finding GEO samples and

data sets related to starting concepts, while maintaining sensitivity in finding a true-

positive list of related samples. The first strategy took advantage of the scores provided

for each relation in the UMLS co-occurrence network: each relation between two

concepts also contains the number of MEDLINE records in which both concepts are

covered. Our first strategy was to eliminate UMLS co-occurrence relations that were

relatively insignificant given the source and destination concepts being related. I

determined this by counting the total number of MEDLINE records involving both

concepts separately, then determined the fraction of each involving the two concepts

together. I tested whether this fraction was greater than a threshold fraction, in the

source, destination, or both concepts; these were varied for the second strategy. As

shown in Figure 36, as I decreased the threshold fraction determining relevance
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eliminating more relations, our ability to find the true-positive list of diabetes mellitus-

related samples and data sets improved. In addition, as shown in Figure 37, sensitivity

improved when only the source concept was tested.

Our third optional strategy was to compensate for the scale-free nature of the co-

occurrence network and ensure that traversals always moved towards a concept with

fewer references in MEDLINE records. As shown in Figure 38, sensitivity and specificity

worsened with this strategy.

I implemented a fourth strategy taking advantage of the assignment scores between

UMLS concepts and GEO samples. As MetaMap was used to determine UMLS

concepts from seven unstructured descriptive GEO annotations (sample title, sample

description, sample keywords, sample source, series title, series description, and data

set title), each mapped concept was assigned a score reflecting the degree of certainty

of the mapping. Our fourth strategy was to eliminate mappings with scores falling below

a threshold. As shown in Figure 39, as I increased the threshold score eliminating more

mappings, our sensitivity and specificity worsened.

Based on this, I determined that the optimal search strategy involved traversing the co-

occurrence relations while eliminating relations where the ratio of MEDLINE records

referenced in the relation fell below 1% of the total MEDLINE records referenced by the

destination concept, without otherwise taking into account the relative numbers of

referenced records by the source and destination concepts, and using all MetaMap

mappings between GEO and UMLS. I traversed the co-occurrence relations starting

from the concept Diabetes Mellitus (C0011849) using this optimized strategy, and

114



gathered all GEO samples at a depth of 3 or fewer relations away from Diabetes

Mellitus, resulting in 1,273 samples. I took the 117 parent GEO data sets for all of these

samples and kept only those that were mapped to a cell type of Muscle (C0596981),

leaving the 16 data sets listed in Table 19. I1 then gathered the list of genes already

determined to be differentially expressed in these data sets.

Several of these represent false positives. GDS11 contains a number of fibroblast

samples from a patient with multiple congenital malformations, including a heart

murmur. The concept Heart Murmurs (C0018808) was related to Dental Care for

Chronically III (C0206196), which was related to Diabetes Mellitus (C0011849). GDS182

was implicated because it contains expression measurements from mouse duodenum

(C0013303), which is related to the pancreas (C0030274), which in turn is related to

insulin (C0021641). GDS276 contains samples of rat leg muscles, related to leg

(C1140621), which is related to Amputation (C0002688).

A total of 12,876 genes were found to be differentially expressed in at least one of these

data sets, of which 996 genes were different in 4 or more data sets. These 12,876

genes came from experiments and studies from three species, with the majority of

implicated genes coming from studies involving mouse samples.

Implicated genes were then grouped by homology, where multiple ortholog and

paralogs for a gene were combined into a single homolog reference. A total of 7,348

homolog families were found, with only 277 families (3.8%) containing genes implicated

across 7 or more independent data sets. For example, SLC2A4 (glucose transporter 4,
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the insulin-responsive glucose transporter) was implicated in 4 rat (as LocuslD 25139)

and 2 mouse (as LocuslD 20528) independent diabetes-related data set.

Within this list of 277 gene families are multiple gene families known to play a role in

insulin signaling. Several of genes are known to play an important role in insulin

receptor signal transduction. Grb2 is a protein that acts as an adaptor protein, that binds

phosphorylated insulin-receptor substrate-1 (IRS-1) and SOS. 150 SLC2A4 is glucose

transporter 4, the insulin-stimulated glucose transporter in fat and muscle cells. 151,152

MAPK3 is the mitogen activated protein kinase 3, downstream of Ras and well known to

be phosphorylated in response to insulin-stimulation. 153,154

There are complex interactions between the leptin and insulin receptor signaling

pathways, and polymorphisms in the leptin receptor in humans have been shown to be

associated with insulin resistance. 155,156 A number of adipocyte related genes appeared

on our list, including UCP1, UCP3, adipsin and DLK1, also known as Pref-1. Adipsin is

secreted by fat cells and expression is impaired in genetic and acquired obesity. 157-159

Pref-1 is a known inhibitor of adipogenesis. 160

Finally, other genes known previously implicated with insulin resistance were also in this

list of 277 gene families, including RRAD, 161,162 1 1-beta hydroxysteroid dehydrogenase

1, 163,164 growth hormone receptor, 165 glycogen synthase 1 and 2 (muscle), glycerol-3-

phosphate dehydrogenase 2 (mitochondrial), the epidermal growth factor receptor

family, the STAT family of transcription factors, and the PPARA family of transcription

factors.
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Discussion

In this section, I describe how I have taken the largest set of publicly available gene

expression data, mapped the experimental context of the data to concepts from the

Unified Medical Language System, mapped the measured genes to NCBI LocusLink

and Homologene identifiers, and calculated the significantly differentially expressed

genes across all experiments. After testing and determining an optimal search strategy

to traverse the scale-free network of the UMLS concept co-occurrence relations, I

created a list of data sets computationally determined to be related to Diabetes Mellitus,

intersected the significantly different genes from all of these and determined the gene

families most involved in these data sets. The top 3.7% of these gene families appear to

be enriched with genes known to be involved in insulin signaling, adipogenesis, glucose

metabolism, and energy production.

A significant limitation of this work is the use of the HomoloGene table to specify

ortholog relations. Though these relations are thought to be accurate and specific, since

these homolog families include paralogs (homologous species within the same

species), they essentially become many-to-many relations of genes across species,

which may add non-specificity to matches and knowledge bases built using homology

families.

As with any data reduction technique, there is a potential danger in eliminating the

rarely cited relations between concepts, as this may eliminate potentially novel ways to

consider data sets related to concepts. Future work is called for in developing additional
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strategies with improved sensitivity and specificity, and to draw from algorithms being

developed for searching alternate scale-free networks.

This work demonstrates the importance of annotating genome-scale databases using a

structured vocabulary, and here I show that UMLS is sufficient for this purpose. The

system created here can link from a conceptual understanding of diseases, even from

the ICD-9 billing code level, down to the genetic, genomic, and molecular level. In a

sense, this is the first automated system built to study the new field of genomic

medicine.
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8. Automated reasoning to explain genetic data using genomic
data and integrative biology

Introduction

Drawing conclusions from the integration of microarray data sets is an important

inferential process that requires an understanding of the implications and semantics

behind set operations such as union, intersection, and difference, when applied to

expression data-a single measurement modality. In chapter 1, I addressed similar

inferential processes involved in the combination of large-scale measurements across

experimental modalities. The model I proposed for intersecting two nearly-

comprehensive experiments or data sets is to address three independent intersections:

that of context, catalog, and content. In chapter 3, I modeled the contextual annotations

from the Gene Expression Omnibus (GEO), the largest database of publicly available

gene expression data using the Unified Medical Language System. In chapter 5, I

unified the catalogs of genes measured in GEO with the global identifiers in LocusLink.

In chapter 6, I comprehensively compared all possible groups of samples from all GEO

data sets to determine a list of genes significantly different in any comparison, or the

content of this database. In chapter 7, I validated the context, catalog and content of this

model by searching for experiments related to diabetes mellitus. I found that genes

significantly different across more of the experiments found appeared to be more

involved in insulin signal transduction and diabetes mellitus.

In this chapter, I will specifically apply this model to the problem of unifying quantitative

trait loci (QTL) with gene expression data. A QTL is a region of a chromosome that is

statistically significantly associated with a particular trait. The region is typically
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delimited by genetic markers, such as a single nucleotide or variable length

polymorphism. A QTL signifies a difference in DNA around that area, such as a change

in the regulation of a gene's expression or function, but this difference might only

appear in a certain tissue and at a particular time or stage of development. In contrast to

this, expression data involves the amount of expression of a number of genes in a set of

samples. A graphical representation the two example types of data modeled is

illustrated in Figure 40.

Our goal here was to create an automated system that could integrate any available

and relevant genomic data and findings with modeled QTL so that the QTL could be

explained. In other words, I desired a causal chain of biologically plausible events

leading from the potential implications of having a polymorphism in a region of DNA to a

reason for the trait explained by the QTL.

Methods

As described in chapters 3, 5, and 6, I have successfully modeled the context, catalog

and content of a large amount of data from the Gene Expression Omnibus. Specifically,

using the GENOTEXT automated system, I took annotations describing GEO data and

successfully mapped these to 4,190 unique concepts from the Unified Medical

Language System (UMLS). In addition, I have successfully mapped 37% of the local

gene identifiers in GEO to LocusLink identifiers. Using the COMPRARE automated

system, I performed every possible comparison between two named groups of samples

across all GEO data sets, evaluating 11,121 two group comparisons involving

133,288,138 gene expression comparisons using t-test and/or fold difference. In this
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way, I have modeled the context, catalog, and content for many GEO samples and data

sets.

Here, I modeled quantitative trait loci in a similar manner. First, I took the 140

quantitative trait loci described in the NCBI rat genome project. To model the context, I

manually mapped the text description of each trait to the closest UMLS concept. The

exact base pair coordinates and chromosome for each QTL were provided in the rat

genome "seq_pheno.md" file, providing a model of the catalog of measurements. The

content was trivially modeled such that any gene with a transcriptional start site within

the QTL coordinates was considered positive.

At this point, I had modeled the context, catalog, and context of a large amount of

genomic data in the form of gene expression profiles, as well as example genetic data

in the form of quantitative trait loci. As stated above, my goal was to create an

automated system that could generate a causal chain of biologically plausible events

leading from the potential implications of having a polymorphism in a region of DNA to a

reason for the trait explained by the QTL. Thus, intersecting the genetic and genomic

data was going to require more than just mapping genes to a universal identifier, such

as LocusLink.

Two separate types of causal chains needed to be developed. The first causal chain is

cross-modality, and relates a QTL to significant microarray findings in general. A QTL

indicates some difference in that region of DNA is statistically associated with a trait.

There are many downstream biological implications for genes within a QTL, including

nothing, decreased expression levels, altered transcriptional regulation, or altered
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protein amount, structure or function. I modeled the first of these implications, in that a

gene physically residing within a QTL might be significantly differentially expressed in a

microarray study related to the trait.

A second type of causal chain needed to be developed; this was a gene-dependent

chain. Even if a gene was found to be within a QTL and significantly differentially

expressed in a microarray study related to the trait, the changes seen in the gene

across the two modalities still has to causally explain the trait.

Thus, I needed to implement knowledge for both the cross-modality and gene-specific

causal chains. Many approaches have been used in capturing biological knowledge,

ranging from first-order predicate models to probability based models. In building the

two limited knowledge bases here, I recognize that the relations I am modeling are

probabilistic in reality, and cannot be fully represented by first-order predicate

languages. The aim here was to see how far we can proceed with simplistic

assumptions and still learn from the process of integration. I recognize that this may be

a limiting oversimplification.

I needed to implement this knowledge base in a system allowing for the depth-first

traversal of assertions towards a goal. While this could have been implemented using

graph traversals across a semantic network, it was optimal to choose a system allowing

maximal flexibility in making assertions, minimal requirements in specifying the exact

goal-based traversal strategy, and allowing for backward "reasoning". Thus, I

implemented a biological reasoning system with the following five rules in PROLOG: 73
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1. A gene is in the location of a QTL if the transcriptional start site for the gene is

within the coordinates of the QTL, on the same chromosome, and refers to the

same species.

2. A gene is differentially expressed in a gene expression experiment if it is

implicated in any two-group comparison, involving any experimental variable and

background conditions.

3. A gene expression experiment is related to a trait if there is prior knowledge that

a concept annotating the context of the gene expression experiment is related to

a concept annotating the trait, within a set concept traversal distance.

4. Gene A can causally influence gene B if there is prior knowledge stating this.

5. Gene A is a homolog of gene B if they are in the same homologous cluster (data

derived from NCBI Homologene).

6. Finally, a quantitative trait locus could explain its trait if there was a gene A in the

location of the QTL and a gene B differentially expressed in a related gene

expression experiment, and if a homolog of gene A could causally influence a

homolog of gene B, and if there was a causal chain of reasoning back to the trait.

I also created a knowledge base with five assertions:

1. A decrease in the genes in homology group 2517 (which includes Ucp3) causes

a decrease in electron transport (UMLS concept C0013846).
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2. A decrease in electron transport causes an increase in fatty acids (UMLS

concept C0015684).

3. An increase in fatty acids causes insulin resistance (UMLS concept C0021655).

4. Insulin resistance causes diabetes mellitus (UMLS concept C0011849).

5. An abnormal glucose tolerance test (UMLS concept C1260441) is diagnostic of

diabetes mellitus (UMLS concept C0011849).

These rules and assertions were implemented in the Prolog language, given in

Appendix A. I tested these rules by using the backward-chaining rules to "explain" the

QTL Niddm40. 166

Additional knowledge was also required to perform this intersection. To be able to unify

between genome coordinates and genes, I mapped all genes referenced in LocusLink

to their current precise genome locations for human, mouse and rat, using the identical

base pair coordinate system.

Pragmatically, the easiest way to intersect the data across any set of modalities is to

convert each measurement into a binary value, namely significant or insignificant, then

perform the desired set operation. Instead of using raw expression measurements or

log-odds scores, this is what I did here.

Results

Starting with the quantitative trait locus between base pairs 139105187 and 167448551

on chromosome 1 in the rat, the system found 406 genes contained in that region. The
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trait for this locus was manually mapped to the UMLS concept abnormal glucose

tolerance test (C1260441). The system successfully related that concept to Diabetes

Mellitus (C0011849) and found 81 GEO data sets significantly related to Diabetes

Mellitus.

The system then found a causal chain leading from the decrease of a gene in the region

of the locus to diabetes mellitus, specifically UCP1 and UCP3. It recognized that a

decrease in UCP3 could lead to a decrease in electron transport, which could lead to a

build up of fatty acids and insulin resistance, causing diabetes mellitus.

Finally, UCP3 was chosen as a final candidate since expression of UCP3 was found to

be differentially expressed in several diabetes related GEO data sets.

Discussion

I have previously modeled the context, catalog and content of a large amount of data

from the Gene Expression Omnibus, modeling the context using concepts from the

Unified Medical Language System (UMLS), modeling the catalog by relating local gene

identifiers to LocusLink, and modeling the content by performing every possible

comparison between two named groups of samples across all GEO data sets. I have

previously shown how I can successfully traverse the UMLS concept network to find

data sets related to a biomedical concept.

Here, I developed a model framework that puts all this modeled expression data to

biologically explain how a quantitative trait locus can lead to its trait. To explain a

quantitative trait locus, the system was programmed to find genes based on location,
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chromosome and species. To find relevant gene expression data sets, the system was

given two knowledge bases. The first was high level assertions about the downstream

implications of traits, modeled using relations between UMLS concepts. The second

was a gene-based pathway, with relations between the states of genes to UMLS

concepts and diseases. The use of knowledge bases in molecular biology is not novel,

but our ability to create a knowledge base grounded with concepts of genes and other

biomedical concepts from two vocabularies (LocusLink and UMLS) may be. 71,72,98,102

Gene-specific knowledge bases are becoming available from more sources. Several

companies and research groups are generating assertions by automated parsing of

MEDLINE abstracts. 126,129 Others are using human readers to build knowledge bases

from manual reading of publications and curation.

However, cross-modality knowledge bases are not generally available. It is not clear

how the size of the ideal cross-modality knowledge base compares to the size of the

ideal gene-specific knowledge base. We can gain some insights using the UMLS as an

analogous system. There are over 20 million relations between the approximately

880,000 concepts in UMLS, but only 612 relations between the 189 semantic types of

concepts. Though this analogy is full of inaccuracies, the 250,000 genes in LocusLink

might participate in 5.6 million gene-specific relations, but the thirty experimental and

contextual modalities used in molecular biology may be related with as few as 100

assertions.

Additional work on expanding the cross-modality knowledge base is crucial.
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I represented the cross-modality and gene-specific assertions using the first-order

predicate language Prolog. In reality, the assertions I modeled are truly probabilistic,

and would be better represented in a probabilistic framework, like Bayesian Networks.

Future work should include re-implementing this system in such a probabilistic

framework.

A significant limitation of this work is the use of the HomoloGene table to specify

ortholog relations. Though these relations are though to be accurate and specific, since

these homolog families include paralogs (homologous species within the same

species), they essentially become many-to-many relations of genes across species,

which may add non-specificity to matches and knowledge bases built using homology

families.

LocusLink has long been acknowledged as an ideal way to identify genes, in that

unique fixed identifiers represent genes grounded by actual positions in a genome, and

because external relations to other sources are available, such as protein domains,

official symbols and names, and diseases. To date, no similar vocabulary has been

accepted to universally represent the experimental context of genome-scale data. This

work suggests that gene expression data, sequencing and quantitative trait data, and

other large-scale measurements in molecular biology can and should be annotated with

identifiers from a vocabulary such as UMLS. By linking with both LocusLink and UMLS,

this system demonstrates that high level computable pathways can be represented and

not only used to join two genome-scale modalities in molecular biology, but also to link

with the complexity of human diseases and our understanding of them.
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9. Limitations to intersection

In this dissertation, I have been using a structured exploration of integrative biology as a

biomedical derivative of Exploratory Data Analysis (EDA) proposed more than 25 years

ago by Tukey. 167 More than a set of techniques, the EDA approach suggested

techniques on how to find structure in and gain insight from data sets, and how to

develop simple models from that data. With this dissertation, I have developed the first

automated tools to assist in determining and exploring relationships between

experimental modalities in molecular biology. But just as improper use of EDA can lead

to false discoveries and missed relations between variables, so too are there caveats to

our use of integrative biology, and specifically the use of intersection.

There are significant potential limitations in using intersection across data sets. First, as

shown in Figure 41, one experiment may have examined a small portion of a large

biological process and another experiment may have examined a separate, non-

overlapping portion of the same process. Though several genes may be involved in the

same large process, the intersection will not retrieve them, possibly leading to false

negatives.

Second, if genes are implicated in a process in one data set but are not even measured

in another, these genes will not be present in the intersection and therefore some may

lead to false negatives. This is illustrated in Figure 42. This can happen commonly in

comparisons across species, where one species has fewer genes than another. Related

to this, intersection is crucially dependent on the definition of identity. For example, two

genes could be defined as identical across species based on sequence homology or
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pattern and timing of expression. Differing identity relationships will result in different

results after intersection.

Third, it is often the case that when intersecting two near-comprehensive data sets that

the list of genes implicated in either experiment is a function of input parameters (i.e.

thresholds of significance, or algorithm used to determine significance). As the input

parameters change, the lists available for intersection change, as does the result of the

intersection. This is illustrated in Figure 43. One may need to weaken thresholds of

significance to increase the number of overlapping elements.

Fourth, it is easiest to reason across genes and proteins when all of these elements

across the intersection can be represented using the same identification schema. An

ideal common identifier for measured elements is comprehensive and open. For

example, as shown in Figure 44, translating microarray identifiers into LocusLink

identifiers can be done for a number of species. However, if one wishes to compare

findings from S. cerevisiae with M. musculus, one needs to use an alternative identifier,

since genes from S. cerevisiae are not covered by LocusLink identifiers. Whereas

relating two open identifiers is still practicable, relating proprietary identifiers is obviously

not.

Fifth, and perhaps hardest to solve, the intersection of some near-comprehensive data

sets may not be possible without the application of a priori knowledge to transduce one

modality to another. An example is shown in Figure 45. On first pass, the intersection of

a near-comprehensive gene expression data set and a near-comprehensive

measurement of metabolites on the same samples would seem to be impossible.
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However, some of the genes code for proteins that act on the metabolites. With the right

knowledge, the intersection becomes possible; however, with differing knowledge, the

intersection will change.
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10. Summary and future directions

Summary

In chapter 3, I demonstrated an automated system called GENOTEXT, which has

successfully generated mappings to the Unified Medical Language System (UMLS) for

every microarray sample stored in the Gene Expression Omnibus. Every sample can be

directly or indirectly modeled using UMLS concepts. The results of this project suggest

that UMLS, even in its current state, is sufficient to represent a number of the concepts

held in the text-based annotations of genome-scale data. As an application of this, in

chapter 5, I described an automated system, called CONTRAVERSE, that can

determine a relevant cell type for a large number of samples in GEO, and a relevant

disease for a smaller number of samples.

In chapter 6, I showed how all data sets from the Gene Expression Omnibus, including

gene expression measurements, experimental variables, and values, can be loaded into

a single database. I created an automated system called COMPRARE that

comprehensively makes every possible two-group comparison in each data set, and

records the genes whose expression is significantly different in each comparison. I

showed how the experimental variables themselves, such as "age", can be studied, and

found important genes are repeatedly implicated across multiple comparisons.

With the experimental contexts, the catalogs of measured elements and the content of

data elements modeled from the Gene Expression Omnibus, I then showed in chapter 7

how data sets can be found and sorted based on relevance given a query concept, and

how genes known to be related to the concept can be found in the intersection. Finally,
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in chapter 8, I showed how a model knowledge base could be used to integrate

genomic data, in the form of gene expression profiles, with genetic data, in the form of

quantitative trait loci (QTL). The integrated data could then be used to explain the trait of

a quantitative trait locus.

What I accomplished that could not be done before

Several aspects of this work are novel. First, the creation of an automated system that

can represent the experimental context of genomic experiments using the Unified

Medical Language System is new. Though I have shown how errors in mapping to

concepts can occur, the results suggest that UMLS, even in its current state, is sufficient

to represent a number of the concepts held in the text-based annotations of genome-

scale data. Related to this, there was no previous automated method to determine cell

type and disease from the annotations of genome-scale experimental data before this

work. A user of this system can now find genomic data of a particular tissue type, and

can cluster samples based on established taxonomies of cell types and diseases.

The mapping of identifiers used in the Gene Expression Omnibus to global gene

identifiers, such as LocusLink, is novel. Currently, even the National Center for

Biotechnology Information does not offer this translation, and instead provides only a

free-text search for genes through the GEO web-site. This mapping allowed me to unify

over 50 million gene expression measurements with LocusLink. A user of this mapping

can now discover the expression pattern of individual genes over thousands of samples.

The creation of an automated system to comprehensively make every possible two-

group comparison in each experimental data set is novel. A user of this system can now

132



comprehensively determine under which experimental conditions a particular gene is

differentially expressed, resulting in hypotheses between the gene and these conditions.

The traversal of UMLS to find related concepts is not novel, but to use traversal to sort

genomic data sets based on relevance to a particular concept is new. A user of this

system can now start with a disease concept, even identified using an ICD-9 disease

code, and find genes differentially expressed in samples related to that disease.

Finally, the use of a knowledge-base to represent biomedical assertions is not new. I

implemented assertions allowing the joining of two measurement modalities (gene

expression profiling and quantitative trait loci) and a model set of assertions linking

genes to a disease. The building of a knowledge-base with the ability to reason on both

genes (specified by LocusLink and Homologene) and biomedical concepts (specified by

the Unified Medical Language System) is novel, and its use for the automated

explanation of a genetic finding is novel. A user can now query this system with

additional QTLs from another species and can find a causal chain of plausible

biomedical events leading to the trait being measured. With additional knowledge, this

system can expand beyond its model domain of diabetes mellitus.

Near-term questions that can now be addressed

There are several important questions that this system can be used to answer with

slight or no additions. First, what transcription factors are most often implicated in

experiments annotated with each UMLS concept? What receptors? Genes from these

two categories that are implicated repeatedly in experiments annotated with a UMLS

concept may be more amenable to biological testing and validation. Computationally, a
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Bayesian networks could be constructed to relate transcription factors and receptors

with genes that are consistently co-implicated with them. This kind of probabilistic co-

implication network linking genes, ortholog families, and concepts from experimental

context, could be mined to find strong, yet currently undiscovered, relations.

What are the characteristics of those genes that are consistently unimplicated across

multiple comparisons and experiments? Are these genes what are typically considered

as "housekeeping genes?" Do these genes have fewer predicted transcription factor

binding sites in their promoter regions, or fewer single nucleotide polymorphisms in their

promoter regions? The property of being invariant can and should be studied with this

system.

Over 140 GEO experiments have used time as an experimental variable. Currently, the

values for time used in these experiments are qualitative and represented by free-text. If

we manually translated these into standard quantitative units (e.g. seconds), we might

be able to take advantage of these multiple time-series experiments using signal

processing methods that need fixed-time intervals, or modeling these processes using

Markov chains or other probabilistic methods. 122,148,168,169 We might be able to find

novel and testable transcription factor-gene relations from this modeling.

Can we pull together diseases that are not otherwise thought of as being related, based

on genomics? Related to this, can we comprehensively assess the similarity of animal

models for human diseases, based on genomics? Similarity can be defined in at least

two ways: based on similar patterns of gene expression, or based on similar genes

being implicated in an experiment. Relating diseases for which little is currently known
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about etiology to animal or cellular models could be fruitful in the determination of

causal mechanisms, and could be a useful outcome of genomic medicine.

We are increasingly using the results of genomic data to help predict genes that may

have single nucleotide polymorphisms or mutations that are significantly associated with

a disease trait. Is this a valid assumption? How often is it the case that genes that are

differentially expressed are the ones that are actually involved in disease? Moreoever,

how often is it the case that genes are differentially expressed in the specific diseases

they are associated with through mutations or polymorphisms? By joining data in this

system to genes known to be associated with diseases, found in sources such as the

Online Mendelian Inheritance in Man, we can now answer these questions. 130

Trisomy 21 is caused by an extra chromosome, often as a result of nondisjunction in

parent gametes. What UMLS concepts (including cell and tissue types) are most

associated with experiments in which genes on chromosome 21 are differentially

expressed. Are these concepts related to the known clinical problems seen in trisomy

21 ? Can we make predictions about other genetic diseases in this way? Moreover, can

we operate in reverse: given the known clinical problems seen in a genetic disease,

could we find experiments with annotations related to these clinical problems, then find

genes differentially expressed across these experiments? Novel hypotheses regarding

gene mutations causative of genetic diseases could be established and tested.

Similarly, we could start with a gene and determine which tissue types are most likely to

be associated with experiments in which that gene is differentially expressed. We could

test whether we can predict the tissues with clinical problems for complex genetic
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diseases, such as the Hutchinson-Gilford Progeria Syndrome thought to be caused by a

mutation in Lamin A.

A tissue sample with a mixture of cell types is clearly not the same as a more

homogeneous type of tissue. This is especially true in the study of pathophysiological

and degenerative processes. For example, even a small sample from a plaque from a

brain with multiple sclerosis is considered very differently in the bioinformatics analysis,

because the entire sample depends on how many invading white blood cells are

present within the sample. Without knowing that many cell types are present within the

sample, this mix of cell types is otherwise thought of as increasing the noise in this

sample, and that noise needs to be measured and compensated for. We could now use

this system to find genes that uniquely define a tissue, as a potential marker. We could

then develop an application that uses these genes as components in a mixture model,

to computationally determine the cellular makeup of unknown samples.

Finally, we could study how gene expression relates to metabolic pathways. How are

programs, such as glycolysis or gluconeogenesis, activated? Is it the case that multiple

enzymes are upregulated when a pathway is activated, or just a few enzymes acting as

control points? The data in this system could be related to KEGG or other established

repositories of metabolic pathways to determine patterns of activation.

In addition to questions that can now be answered, several applications can now be

written to take advantage of this work. First, automated assignment of GeneOntology

categories to genes is sequence dependent; rules can be written to assign categories to

genes based on the presence of particular protein domains. 170 Using my system, we
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can propose a novel method for automated assignment of GeneOntology categories. If

a gene is repeatedly found to be differentially expressed in comparisons involving

experiments annotated with a concept mapping to a GeneOntology category, then we

could propose a gene to category relation.

The "genomic profile" of a hospital could now be studied. An application could be written

that takes the ICD-9 discharge diagnosis codes from a health care center and finds

genes significantly different in comparisons involving data sets related to those

diagnosis codes. Such a list of genes might be useful some day, if a health care center

wishes to develop local gene-expression tests to address diagnostic questions.

Currently, most statistical relations between concepts in UMLS are determined by co-

occurrence in MEDLINE records. However, this system could now be used to provide a

novel source of co-occurrence: if concepts share a significant number of genes (i.e.

concepts annotate experiments in which comparisons implicate a similar set of genes),

those concepts could now be related to each other.

There are several existing software applications that attempt to find categories of genes

that are statistically overrepresented given an input list of genes. 65,171,172 However, the

typical output from these programs is an ordered list of GeneOntology categories that

might best explain the gene list, not a testable hypothesis. We can use the set of

implicated genes from all possible comparisons of GEO data sets to perform a similar

function. An application could be designed to take an input list of genes and find the

comparison that best matches the input list. The advantage of such an application,

compared to previous work, is that the output is an actual description of an experiment
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and the specific experimental variables that led to the matching list of genes. These

experimental details could more directly lead to a testable hypothesis.

Interface needed for biologists

Raw database queries to implement and answer these questions will not be sufficient

for the majority of biologists and physician scientists. At least two database-backed

web-sites could be developed allowing these scientists to immediately use some of the

results of the work presented in this dissertation.

First, a web-site needs to be created that takes as input a text string, which gets

mapped to UMLS concepts. After the user has indicated which of these is appropriate,

the web-site would use the CONTRAVERSE system to find related GEO data sets.

These would be displayed as hyperlinks back to GEO. The user could then select one

or more of these data sets to then perform an intersection, resulting in genes

significantly different in all of these data sets. Subsequent web-pages would allow the

specific gene expression profile within an experiment to be automatically drawn as a

bar-graph.

A second web-site could be developed that takes a list of genes as input. This list would

represent those genes implicated in a user's experiment, determined using existing

bioinformatics techniques. After receiving the list, the web-site would search the

comprehensive group comparisons within the GEO data set generated by the

COMPRARE system, finding the comparison whose list of significant genes matches

the users list most closely (using a nearest-neighbor algorithm), taking into account

cross-species orthologs if needed. The output from the web-site would be a list of the
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matching genes as well as the specific experimental variables and values that resulted

in that list.

Integrating existing knowledge-bases and scalability to newer genomic

modalities

In chapter 8, I showed how a model knowledge base could be used to integrate

genomic data, in the form of gene expression profiles, with genetic data, in the form of

QTLs. Though a gene-specific knowledge-base had to be created allowing genes to be

related to diseases, the actual integration was only possible through the creation of a

cross-modality knowledge-base allowing automated reasoning over how a gene finding

in a genetic experiment can be resolved with a gene finding in a genomic experiment.

Several groups and companies are addressing the creation of gene-specific knowledge

bases which could be incorporated into this system. Proteome, now part of Incyte

Corporation, created a set of BioKnowledge Library Databases through manual

curation. The annotations of genes in the human, mouse and rat knowledge bases

include patterns of expression in tissue, cell, and tumors, known associated diseases,

and mutant phenotypes. For worm and yeast, even more annotations are available,

including known protein-protein interactions, complex formation, genetic interactions,

known inducers and repressors, protein modifications, as well as free-text statements

on function and activity. All of this data is otherwise not available through LocusLink.

Proteome data can be incorporated in two ways. First, it can be used as a gold-standard

for testing algorithms trying to predict gene-tissue relations. Second, relations on tissue

expression and disease associations can be represented in first-order predicate
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calculus and directly translated Prolog assertions, for use in integromic queries. With

improved text parsing technology, the free-text statements could be represented as

well. Proteome currently provides information over 734,000 annotations on over 70,000

genes in human, mouse, rat, yeast and worm.

Ingenuity Systems has created a similar knowledge base, but with many more

annotations for human, mouse and rat genes. Assertions for a gene include its protein

interactions, other genes that regulate and are regulated by this gene, its role in cellular

processes, organismal processes, and disease, and its functional roles. For example,

the gene coding for the human insulin receptor is annotated as phosphorylating 44

specific named proteins, activating 18 proteins, altering the expression level of 17

genes, and much more. Though Ingenuity provides much information that is not

otherwise available, they currently provide no method for automated reasoning across

this knowledge base. Ingenuity uses its own private ontology of over 280,000 concepts.

Globally relating all of these concepts to UMLS will be difficult; instead, unifying small

portions of the ontology relevant to the study of a disease (such as cellular processes

used to describe genes known to be involved in diabetes mellitus) might be quickly

fruitful.

Ariadne Genomics sells a knowledge base of biological pathways called ResNet.

Assertions in this knowledge base were derived from natural language processing

techniques applied to abstracts in MEDLINE. Their knowledge base contains over

200,000 assertions of gene regulation, interaction and modification, including over

16,000 assertions on gene expression. Modeled components include proteins,

enzymes, functional classes, complexes, cellular processes, small molecules, and
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treatments. Assertions of one component's action on another are drawn from a

taxonomy of at least 10 types of activities, from binding and regulation to enzymatic

activity. With a smaller taxonomy than that used by Ingenuity, it might be possible to

globally unify the Ariadne taxonomy with UMLS.

However, integrating across experimental and contextual modalities requires more than

just a gene-specific knowledge base. Additional work will need to be spent in modeling

the integration of additional modalities. The current cross-modality knowledge base has

just one way a gene can be in a quantitative trait locus and be differentially expressed. If

we now want to integrate proteomic measurements, we will have to model exactly how

protein levels relate to (impact or be impacted by) QTLs or gene expression levels.

Connecting n modalities could require as little as n-1 relations or as many as n2

relations. Ideally, additional modalities could initially be incorporated by directly linking

assertions about measurements in that modality to one or two existing modalities. For

example, changes in proteomic measurements can be immediately incorporated as

being causally downstream of expression measurements, as a rough approximation.

With additional effort, more relations can then be added; to continue the example,

changes in the proteomic measurements of transcription factors can be causally

downstream of expression measurements.

Though it may not change as frequently as gene-specific knowledge, cross-modality

knowledge is not static, as occasionally additional ways are found in how genes,

proteins, enzymes, and substrates can interact. Any such finding immediately implicates

how measurements of these elements can relate to each other.
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Immediate next steps

The list of genes differentially expressed in comparisons involving age needs to be

pursued. This list will be compared to other data sets derived from models of aging,

such as replicative senescence and Hutchinson-Gilford Progeria Syndrome, that are not

yet present in GEO. Computationally, we will test to determine whether genes in this list

are preferentially on the outer portions of chromosomes, near telomeres, which are

known to shorten during aging.

Existing pathways related to insulin signaling and glucose metabolism from public

sources will be incorporated so that additional QTLs can be explained. Additional cross-

modalitity knowledge will be added allowing incorporation of proteomic and

polymorphism data sets, especially in the domain of diabetes mellitus. By definition,

however, those QTLs that defy explanation might be the most interesting, as they

potentially reflect a novel causal pathway from a change in DNA to a trait.

Even if the integrome becomes fully explored, with models allowing integration between

all experimental modalities, the human intuition that goes into finding a novel causal

pathway will be difficult to model. However, just as automated DNA sequencers

provided access to information that now enables questions resulting in the blooming of

the field of genomics, so too do I believe that the integromic framework provides a new

platform on which future researchers can ask questions that we cannot even conceive

of today.
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Table 1: Over 30 nearly-comprehensive measurement or experimental modalities are
available for experiments in molecular biology. While analyzing data from a single
modality is becoming routine, analyzing data across multiple modalities or contexts
remains a challenge.

Nearly-comprehensive measured data specific to an experimental context
a) DNA sequencing: includes map of sequence tagged sites; over 600 bacterial, 600

eukaryotic, and 1500 virus species underway or completed.173

b) DNA genetic distance: Recombination maps have been published for human,
mouse, and other species. 174-176

c) DNA polymorphisms: microsatellite repeats '77, single nucleotide
polymorphisms 178,179 and haplotypes 80

d) RNA sequencing: Expressed sequence tags 181,182, cDNA sequencing 183,184
alternative splicing 185,186

e) RNA absolute expression: absolute expression measurements theoretically
comparable across genes 133,187; over 690 experiments with over 11,500 microarrays
publicly available 38, 30

f) RNA relative expression: relative expression measurements theoretically
comparable across genes 188

g) Protein identification: two-dimensional gel electrophoresis 89, tandem mass
spectrometry 190

h) Protein absolute quantitation: tagging each gene, then Western blotting 191 or
microarray 192,193

i) Protein relative quantitation: using isotope-coded affinity tags 194

j) Protein activity: change in state 195, or across activities to determine gene
function 1936

k) Protein relative activity: interaction with small molecules 197

I) Protein interactions with DNA: chromatin immunoprecipitation of labeled proteins
binding to promoter regions 98-202, binding to CpG microarrays 201,203

oligonucleotide microarrays 204, or tiling path microarrays 205
m) Protein interactions with proteins: Yeast two-hybrid 206-210 or mass spectrometry of

complexes 211,212

n) Protein interactions with small molecules: effect on protein interaction with small
molecules 213

o) Protein interactions with carbohydrates 214,215

p) Protein localization: genome wide HA-tagging 89 or GFP-tagged fusion proteins 216
q) Protein modification: tyrosine phosphorylation using Western blots 217 or mass

spectrometry 218

r) Metabolites: HPLC 219 or NMR 220
s) Multi-phenotype characterization: after effects of RNAi 221

Nearly-comprehensive computed data specific to an experimental context
a) DNA quantitative trait loci: genome regions statistically associated with quantitative

traits
b) DNA predicted transcription factor binding sites 223
c) RNA co-expression: determined using correlation coefficients 49,80

143



Nearly-comprehensive applied contexts
a) Gene disruption: targeted 224 or random insertional 89 or chemical 225

b) Gene double disruption: mutations with deletions 226

c) Gene activation: random 227

d) RNA transient knockdown using RNAi or siRNA 63,228,229

e) Multiple species 230

f) Tissue microarray 231-233
g) Presentations of a diagnosis 6,234-236

h) Sampling across microscopic field of view, or spatial position 237

i) Extracellular environment 38: in the presence of an array of carbohydrates 239, in the
presence of pharmacological agents 82,240, in the presence of multiple ligands 111

j) Sampling across time: lifespan 41, or circadian 242-245
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Table 2: Vocabularies excluded from our Metathesaurus subset.

Source vocabularies
Alternative Billing Concepts
Beth Israel Vocabulary, 1.0
Descritores em Ciencias da Saude (Portuguese translation of the Medical Subject
Headings), 2003
Descritores en Ciencias de la Salud (Spanish translation of the Medical Subject
Headings), 2003
Canonical Clinical Problem Statement System, 1999
Current Dental Terminology (CDT), 4
Medical Entities Dictionary, 2003
Physicians' Current Procedural Terminology, 2003
Physicians' Current Procedural Terminology, Spanish Translation, 2001
German translation of the Medical Subject Headings, 2003
German translation of ICD10, 1995
German translation of UMDNS, 1996
DSM-III-R, 1987
Nederlandse vertaling van Mesh (Dutch translation of MeSH), 2003
Finnish translations of the Medical Subject Headings, 2003
HCPCS Version of Current Dental Terminology (CDT), 4
HCPCS Version of Current Procedural Terminology (CPT), 2003
Home Health Care Classification, 2003
ICPC2E-ICD10 relationships from Dr. Henk Lamberts, 1998
ICD10, American English Equivalents, 1998
International Statistical Classification of Diseases and Related Health Problems,
Australian Modification, Americanized English Equivalents, 2000
International Statistical Classification of Diseases and Related Health Problems, 10th
Revision, Australian Modification, January 2000 Release
International Classification of Primary Care 2nd Edition, Electronic, 2E, 1998
International Classification of Primary Care, Version 2-Plus, 2000
ICPC, Basque Translation, 1993
ICPC, Danish Translation, 1993
ICPC, Dutch Translation, 1993
ICPC, Finnish Translation, 1993
ICPC, French Translation, 1993
ICPC, German Translation, 1993
ICPC, Hebrew Translation, 1993
ICPC, Hungarian Translation, 1993
ICPC, Italian Translation, 1993
ICPC, Norwegian Translation, 1993
International Classification of Primary Care, Version 2-Plus, Americanized English
Equivalents, 2000
ICPC, Portuguese Translation, 1993
ICPC, Spanish Translation, 1993

145



Source vocabularies
ICPC, Swedish Translation, 1993
Thesaurus Biomedical Francais/Anglais [French translation of MeSH, 2003
Italian translation of Medical Subject Headings, 2003
Online Congenital Multiple Anomaly/Mental Retardation Syndromes, 1999
Master Drug Data Base, 2003_03
Medical Dictionary for Regulatory Activities Terminology (MedDRA), 6.0
Medical Dictionary for Regulatory Activities Terminology (MedDRA), American English
Equivalents, 6.0
Medical Dictionary for Regulatory Activities Terminology (MedDRA), American English
Equivalents with expanded abbreviations, 6.0
Medical Dictionary for Regulatory Activities Terminology (MedDRA), with expanded
abbreviations, 6.0
Medical Dictionary for Regulatory Activities Terminology (MedDRA), 6.0, Portuguese
Edition
Medical Dictionary for Regulatory Activities Terminology (MedDRA), 6.0, Spanish
Edition revised
Online Mendelian Inheritance in Man, 1993
Multum MediSource Lexicon, 2003_03
Micromedex DRUGDEX, 2001-08
Metathesaurus CPT Hierarchical Terms, 2003
Classification of Nursing Diagnoses, 1999
First DataBank National Drug Data File, 2001-07
Nursing Interventions Classification, 1999
Nursing Outcomes Classification, 1997
Omaha System, 1994
Patient Care Data Set, 1997
Pharmacy Practice Activity Classification, 1998
Thesaurus of Psychological Index Terms, 2001
Russian Translation of MeSH, 2003
UltraSTAR, 1993
UMDNS: product category thesaurus, 2003
WHO Adverse Reaction Terminology, 1997
WHOART, French Translation, 1997
WHOART, German Translation, 1997
WHOART, Portuguese Translation, 1997
WHOART, Spanish Translation, 1997
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Table 3: Seven free-text annotations extracted from the Gene Expression Omnibus
containing contextual or experimental information regarding a sample

Annotation
GEO sample title
GEO sample description
GEO sample source
GEO sample keyword
GEO sample series
GEO series title
GEO series description
GEO data set title
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Table 4: Titles of six data sets used to determine whether final-candidate mappings
would be sufficient to represent the necessary concepts, or whether all mapped
concepts were needed.

GEO data set Title
1 Testis gene expression profile
2 Melanoma, cutaneous malignant, classification
3 Cerebellar development time course
4 Tissue-specific and development-regulated genes in maize
5 Diurnal and circadian-regulated genes (I)
6 Germline development and function
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Table 5: UMLS strings mapped to the titles listed in Table 4. Those strings that were
additionally deemed as final-candidates are listed in the fourth column. There was no
difference between candidates and final-candidates for GEO data set 5.

GEO data set String Candidate SUI Final Candidate SUI
1 Testis S1044598 S1044598
1 TESTIS S1790542 S1790542
1 Gene Expression Profiling S1684714
1 Gene Expression S0044005
1 Gene S0043986
1 Expression, NOS S0298422
2 Melanoma S0060982 S0060982
2 Cutaneous S0365139 S0365139
2 malignant S1556770
2 Malignant S1466658
2 Classification S0007165
2 classification S0007166
2 classification S1465738
3 Cerebellar S0362852 S0362852
3 Development S1802517
3 development S1802518
3 Time course S1046322
3 Time S0093786
3 Course S0849879
4 tissue S0290001 S0290001
4 Specific S0324791
4 Development S1802517 S1802517
4 development S1802518 S1802518
4 Regular S1467339 S1467339
4 regulatory S1423373 S1423373
4 Regulation S0081187 S0081187
4 Genes S0044269 S0044269
4 maize S2759961 S2759961
4 maize S2759962 S2759962
6 Germ Line S0044605 S0044605
6 Development S1802517
6 development S1802518
6 function S1086266 S1086266
6 Function S0889213 S0889213
6 FUNCTION S1466234 S1466234
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Table 6: Number of concepts mapped to each of the seven GEO free-text annotations.

Source of Number Number in Percent Count of Concepts
text item available which any successful unique per

concept was concepts successful
successfully assigned text item

found
GSM Title 8,519 5,401 63% 968 0.18
GSM 7,123 6,292 88% 2,630 0.42
Description
GSM Source 8,518 8,123 95% 1,282 0.16
GSM 2,337 2,203 94% 492 0.22
Keyword
GSE Title 524 450 86% 917 2.04
GSE 247 243 98% 2,376 9.78
Description
GDS Title 449 443 99% 832 1.88
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Table 7: Correlation between the number of unique concepts elicited and the length of
the annotation. The second column indicates the average and standard deviation of the
length of each annotation, with the description annotations being the longest. The third
column indicates the correlation between the length of each text item and the number of
unique concepts mapped to it.

Source of text Average length Correlation between length of
item (characters) successfully parsing text item and

number of unique concepts
GSM Title 22.5 ± 16.3 0.552
GSM Description 790.3 + 1745.0 0.969
GSM Source 25.7 ± 18.8 0.627
GSM Keyword 21.6 ± 24.7 0.793
GSE Title 35.0 ± 20.5 0.633
GSE Description 587.0 ± 773.4 0.971
GDS Title 37.9 + 11.7 0.488
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Table 8: The 4,190 unique concepts assigned to the GEO annotations were drawn from
these 123 UMLS semantic types. Column 3 indicates the number of concepts mapped
from each semantic type to any GEO annotation. Column 4 indicates the average
MetaMap score of the mapping. Column 5 indicates the number of GEO annotations
using a concept of each semantic type.

Number of GEO annotationsCount of unique Average score of
Type Name of semantic type conceptsused association using a concept of this

semantic type

16 Amino Acid, Peptide, or 320 623.11 5147
Protein

T121 Pharmacologic Substance 272 614.60 5968
T109 Organic Chemical 260 615.89 7234
T169 Functional Concept 209 632.53 15317

023 Body Part, Organ, or Organ 201 632.64 8145
Component

T12 3 Biologically Active 184 625.25 7764Substance
T080 Qualitative Concept 172 590.31 13320
T081 Quantitative Concept 168 600.33 13596
T082 Spatial Concept 157 619.10 6997
T047 Disease or Syndrome 148 653.53 2796

T061 Therapeutic or Preventive 134 630.34 4104
Procedure

T170 Intellectual Product 132 625.84 11906

T191 Neoplastic Process 116 644.37 3567
T079Temporal Concept 112 618.54 11872
T033 Finding 105 632.09 4205
T025 Cell 91 668.43 7763

T126 Enzyme 77 627.61 1538
T059Laboratory Procedure 77 640.08 3625
T073 Manufactured Object 75 614.25 4701
T129 Immunologic Factor 74 618.31 1760

T1 4 Nucleic Acid, Nucleoside, or 67 642.98
Nucleotide

T074 Medical Device 64 636.75 3335
T028 Gene or Genome 56 622.77 1684

T130 Indicator, Reagent, or 53 641.95 2460
Diagnostic Aid

T032 Organism Attribute 50 615.40 4098

T046 Pathologic Function 48 650.34 2357
T015 Mammal 46 642.71 6221

T118 Carbohydrate 46 620.63 828

T029 Body Location or Region 44 602.87 480

T1 96 Element, Ion, or Isotope 44 610.97 2239

Natural Phenomenon or 42 618.39
Process

T002 Plant 40 639.39 1078
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Count of unique Average score of Number of GEO annotations
ype Name of semantic type concepts used association using a concept of this

concepts used association semantic type
T040 Organism Function 40 627.07 2566
T042 Organ or Tissue Function 40 635.43 1588
T060 Diagnostic Procedure 39 631.85 4226
T041 Mental Process 38 632.36 2673
T168 Food 36 628.13 1400
T024 Tissue 36 652.24 2423
T184 Sign or Symptom 34 663.86 2144
T192 Receptor 34 607.50 578
T083 Geographic Area 34 640.42 2351
T034 Laboratory or Test Result 34 684.80 517
T125 Hormone 34 630.86 447

T119Lipid 33 646.51 619
T019 Congenital Abnormality 33 654.93 360

T122 or Dental 33 623.18 1277
Material

T197 Inorganic Chemical 32 624.60 1184
T044 Molecular Function 32 616.59 544
T009 Invertebrate 32 653.09 406

T062 Research Activity 32 637.86 2932
Hazardous or Poisonous 30 596.85

T131 30 596.85 931Substance
T026 Cell Component 28 558.24 439
T007 Bacterium 28 623.53 524

T037 Injury or Poisoning 26 661.66 1426
T045 Genetic Function 25 609.58 2147
T043Cell Function 25 609.90 752

T058 Health Care Activity 24 642.46 921
T039 Physiologic Function 24 652.13 970

091 iomedical Occupation or 24 657.02 667
Discipline

T078 Idea or Concept 24 632.83 3463
T054 Social Behavior 23 630.77 475

T031 Body Substance 22 644.48 738
T185 Classification 21 601.26 697
T110 Steroid 20 633.29 288
T057 Occupational Activity 20 593.60 528
T098 Population Group 19 585.50 1919
T055 Individual Behavior 19 663.25 1217

T01 8 Embryonic Structure 16 637.54 324

063 Molecular Biology Research 16 628.38 344
Technique

T067 Phenomenon or Process 16 642.12 853
T020 Acquired Abnormality 16 636.44 230
T092 Organization 15 622.34 835
T048 Mental or Behavioral 15 672.16 171
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Number of GEO annotations
Count of unique Average score of Number of GEO annotationsType Name of semantic type con ue asoe o using a concept of this
concepts used associationsemantic type

Dysfunction
T005 Virus 15 604.78 201
T167 Substance 14 596.22 926

T056 ailyor Recreational 13 597.84 448
Activity

T93 Health Care Related 13 603.26 315T093 13 603.26 315
Organization

T004 Fungus 12 590.47 489
T090 Occupation or Discipline 12 664.07 541

T12 4 Neuroreactive Substance or 12 613.56 289
Biogenic Amine

T099 Family Group 12 585.97 343
T100Age Group 11 621.21 443

T104 Viewed 10 640.39 398
Structurally

T022 Body System 9 611.33 811
T111 Eicosanoid 9 601.78 216
T195 Antibiotic 9 657.43 271

T049 Cell or Molecular 9 638.79 887
Dysfunction

T075 Research Device 8 654.49 492

T038 Biologic Function 8 673.48 326
T013 Fish 8 598.91 685

T120 Viewed 7 635.83 326
Functionally

T068 Human-caused 7 654.04 120Phenomenon or Process

1 15 rganophosphorus 6 627.62 59
Compound

T097 Professional or 6 562.78 31
Occupational Group

T030 Body Space or Junction 6 654.36 24
T127 Vitamin 6 640.64 142
T017 Anatomical Structure 6 617.21 239

T052 Activity 6 650.23 444
T201 Clinical Attribute 6 577.82 275
T012 Bird 5 666.14 38

T001 Organism 5 597.11 528

T086 Nucleotide Sequence 5 682.20 5
T103 Chemical 4 621.43 160

064 Governmental or 4 655.69 49
Regulatory Activity

T200 Clinical Drug 4 550.66 88
T089 Regulation or Law 3 557.82 71
T008 Animal 3 632.68 287

T1 90 Anatomical Abnormality 3 651.46 114
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Number of GEO annotations
Count of unique Average score of Number of GEO annotations

Type Name of semantic type concepts used association using a concept of this
semantic type

T065 Educational Activity 3 640.01 119

T102 Group Attribute 3 687.48 23

021 Fully Formed Anatomical 2 646.58 128
Structure

T096 Group 2 633.27 296
Environmental Effect of 2 645.27 64T069 2 645.27 64Humans

T066 Machine Activity 2 606.31 51
T01 6Human 2 552.14 1780
T101 Patient or Disabled Group 2 565.83 315
T053 Behavior 1 645.69 39

T050 Experimental Model of 1 691.00
Disease

T051 Event 1 678.50 2

T077 Conceptual Entity 1 517.00 17

T095 elf-help or Relief 1 616.43 24
Organization

T014 Reptile 1 687.41 34

T01OVertebrate 1 573.33 3
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Table 9: List of UMLS semantic types from which no concepts were mapped to GEO
annotations. Column 3 indicates the number of concepts within each semantic type that
exist in UMLS.

Type Name of semantic type Count of concepts in UMLS
T003 Alga 3301

T011 Amphibian 1550

T203 Drug Delivery Device 1455
T194 Archaeon 824
T171 Language 714
T006 Rickettsia or Chlamydia 502
T095 Self-help or Relief Organization 39
T072 Physical Object 37
T087 Amino Acid Sequence 28
T094 Professional Society 17

T085 Molecular Sequence 7
T071 Entity 5
T088 arbohydrate Sequence 4
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Table 10: The top 50 UMLS concepts mapped to GEO annotations. Column 3 indicates
the number of unique GEO annotations for which the concept was mapped.

Concept Concept Name Count
C0007634 Cells 3275
C0035668 RNA 2591
C0042153 Utilization 2383
C0025914 House mice 1738

0025929 Laboratory mice 1738
C0441621 Sampling - Surgical action 1657
C0870078 Sampling 1657
C0332307 With type 1559

C0439810 Total 1403
C0445392 Wild 1388
C0037585 Computer software 1307
C1167624 Labeling 1231
C0439227 Hour 1190
C0439228 Day 1171
C0205397 Seen 1126
C0042789 Vision 1124

C0205173 Duplicate 1002
C0333052 Version, NOS 986
C0439232 Minute of time 953
C0441633 Scanning 946
C0243148 control 918
C0086418 Homo sapiens 903

C0020114 Human 877

C0439242 mL 868

C0337051 Pool, NOS 849

C0080194 Muscle strain 848
C0040300 Tissues 825
C0020202 Hybridization, Genetic 802
C0449945 Strain typing 793
C0681814 experiment 793
C0017337 Genes 790

C0026809 Mus 786
C0596988 mutant 786
C0205307 Normal 743
C0205409 Isolated 733
C0001779 Age, NOS 731
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Concept Concept Name Count
C0026845 Muscle 728
C0596981 Muscle Cells 727
C0185117 Expression, NOS 722
C0024554 Male gender 717
C0683312 categories 678
C0040223 Time 629
C0002778 Analysis of substances 610
C0936012 Analysis 610
C0004561 B-Lymphocytes 601
C0443050 Robinson 598

0010453 Anthropological Culture 593
C0220814 Cultural 593
C0430400 Laboratory culture 593
C0009253 Coitus 587

158



Table 11: Mappings between
sets were ignored because of

these ten concepts and GEO samples, series, and data
the lack of specificity in these concepts.

CUI Concept
C0007600 Cell Line

C0007634 Cells
C0007635 Cells, Cultured
C0009013 Clone Cells
C0012634 Disease
C0021311 Infection
C0027651 Neoplasms
C0040300 Tissues
C0449475 Type of cell
C0682516 Cultured Cell Line
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Table 12: Examples of data in GEO with cell type successfully represented.

GEO Object Annotation Mapped to
GSM 4843 Source "K562 erythroleukemia cells" K562 Cells (C0600432)
GSM 3509 Source "Primary Acute Lymphoblastic Lymphoblast (C0229613)

Leukemia Cells"
GSM 8724 Source "HeLa CD4+ cells" Hela Cells (C0018873)
GSM 8893 Title "Cx43 KO cortical astrocytes 1" Astrocytes (C0004112)
GSM 8530 Description "Uninfected Vero cell culture Vero Cells (C0042542)

control"
GSM 8509 Keyword "neutrophil" Neutrophils (C0027950)
GSM 820 Source "NIH3T3 fibroblasts treated with Fibroblasts (C0016030)

E2F1 expressing adenovirus"
GSE 13 Title "Murine bone marrow B cell Bone Marrow Cells

precursors" (C0005955)
GSE 609 Title "SCID vs Normal Thymocyte Thymocyte (C0814999)

Comparisons"
GDS 45 Title "Cochlear hair cell line differentiation Hair Cells (C0018496)

time course (Mull K-A)"
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Table 13: Examples of data in GEO with disease successfully represented.

GEO Object Annotation Mapped to
GDS 157 Title "Type 2 diabetes and insulin resistance Insulin Resistance (C0021655)

(HuGeneFL)"
GDS 167 Title "Autoimmune disease mechanisms" Autoimmune Diseases

(C0004364)
GDS 22 Title "Parkinson's Disease model" Parkinson Disease (C0030567)
GDS 238 Title "Skin tumors and vitamin A supplements" Skin Neoplasms (C0037286)
GDS 252 Title "Lung hypertension recovery (U74Av2)" Pulmonary Hypertension

(C0020542)
GDS 26 Title "Copper regulon in S. Cerevisiae" Hypocupremia, NOS (C0268070)
GDS 274 Title "Hepatocellular carcinoma metastasis" Neoplasm Metastasis (C0027627)
GDS 351 Title "Pulmonary fibrosis model (129/SV, bleomycin Pulmonary Fibrosis (C0034069)

sensitive)"
GDS 386 Title "Arthritis synoviocyte response to TNF alpha" Arthritis (C0003864)
GDS 76 Title "Macrophages infected with Salmonella (SHZ)" Salmonella infections (C0036117)
GSE 415 Title "Mouse models of cardiac remodeling" Myocardial Infarction (C0027051)
GSE 443 Title "Leprosy lesion gene expression" Leprosy (C0023343)
GSE 445 Title "Alpha Thalassaemia Myelodysplasia Thalassemia (C0039730)

Syndrome (ATMDS)"
GSE 465 Title "Expression profiling in the muscular Muscular Dystrophies (C0026850)

dystrophies"
GSE 480 Title "Sleep apnea and glucose metabolism" Sleep apnea and glucose

metabolism (GSE480)
GSE 485 Title "Genetic basis of sensitivity to pulmonary Pulmonary Fibrosis (C0034069)

fibrosis"
GSE 493 Title "Gene expression profiling in DQA1 *0501 + Dermatomyositis (C0011633)

children with untreated dermatomyositis"
GSE 495 Title "Hyperoxic lung injury" Hyperoxia (C0242706)
GSE 505 Title "Serial analysis of gene expression in the Fuchs' Endothelial Dystrophy

corneal endothelium of Fuchs' dystrophy" (C0016781)
GSE 513 Title "Cynomolgus monkey testicular cDNAs for Testicular dysfunction (C0405581)

discovery of novel human genes"
GSE 609 Title "SCID vs Normal Thymocyte" Severe Combined

Immunodeficiency (C0085110)
GSE 620 Description "Most individuals with cystic fibrosis Cystic Fibrosis (C0010674)

(CF) carry..."
GSE 621 Title "Interstitial cystitis and antiproliferative factor Cystitis (C0010692)

treatment"
GSE 675 Title "Time course analysis of response to HCMV Cytomegalovirus Infections

infection" (C0010823)
GSE 768 Title "Neural stem and neuroblastoma cells" Neuroblastoma (C0027819)
GSE 77 Title "Exercised Induced Hypertrophy" Cardiomegaly (C0018800)
GSE 828 Title "Genes/pathways underlying lipoprotein Hyperlipidemia (C0020473)

homeostasis"
GSE 89 Title "Bladder tumour stage classification" Bladder Neoplasms (C0005695)
GSM 2135 'Title "GSM2135: RPMI- Leukemia (C0023418)

8226 _CL7010 LEUKEMIA"
GSM 2206 Description "A catalytic antioxidant ... attenuates Cerebrovascular accident

expression of inflammatory genes in stroke" (C0038454)
GSM 941 Title "Heat Shock 000 minutes" Shock (C0036974)
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Table 14: Representative examples of 70 identifier-spaces of gene identifiers and
regular expressions that accurately match these identifier-spaces.

Identifier-space Regular expression matching identifiers
RIKEN clone ^[0-9GIKLEFfBCAD][0-9CE][0-9BCD][0-9][0-9][0-9][0-9][A-Z][0-9][0-9]

A[0-9]{2}B[0-9]{6}[A-Z][O-9]{2}
^[0-9]{2}B[0-9]{5}[A-Z]{2}[0-9]{2}

University of Iowa clone ^ui-.*
Max Planck Institut fuer A[AB]9[A-Z][0-9]{2)[A-Z][0-9]{2}
Molekulare Genetik
clone
Columbia University AHy1 8-.*
clone Ab4HB3M.*

AN3H.*

Centre d'lmmunologie AMTA.[A-Z][0-9]{2}\.[0-9]{3
INSERM/CNRS
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Table 15: The most frequently identified genes in LocusLink. Column 3 indicates the
number of unique identifiers for each gene, across all identifier-spaces.

LocuslD Gene name Count of uniqueidentifiers
71 actin, gamma 1 93745

1915 eukaryotic translation elongation factor 1 alpha 1 93366
2597 glyceraldehyde-3-phosphate dehydrogenase 58313
13627 eukaryotic translation elongation factor 1 alpha 1 49901
60 actin, beta 40729

6187 ribosomal protein S2 37499
6122 ribosomal protein L3 34714
15135 hemoglobin Y, beta-like embryonic chain 32650
15129 hemoglobin, beta adult major chain 32650
15130 hemoglobin, beta adult minor chain 32630
18367 olfactory receptor 66 32620
2512 ferritin, light polypeptide 31911

6175 ribosomal protein, large, P0 31285

15481 heat shock protein 8 29751

1937 eukaryotic translation elongation factor 1 gamma 28936
11576 alpha fetoprotein 28711
11657 albumin 1 28701

280662 afamin 28682
2023 enolase 1, (alpha) 28473
2495 ferritin, heavy polypeptide 1 28359
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Table 16: Some of the identifiers for the gene N-acetyltransferase 2. The first column
indicates the actual text string serving as the identifier, while the second column
indicates the identifier-space in which each identifier was classified. To simplify retrieval,
this table was stored in a denormalized manner. Strings in the third column, when
present, indicate how the particular identifier was mapped to the particular LocusLink
gene. For example, the text "Hs.2<-BX095770" for the identifier "IMAGE:1870937"
indicates information was present allowing mapping of that identifier to "BX095770",
which maps to "Hs.2", which maps to this gene.

Identifier Identifier-Space Translate
A1262683 GenBank Hs.2

NM 000015 GenBank Hs.2
X14672 GenBank
Hs.2 UniGene
AAA59905 Protein
NP_000006 Protein
P11245 Protein

D90042_at Affymetrix hu6000_merged Hs.2<-D90042
38912 at Affymetrix u95_a Hs.2<-D90042
38912 at Affymetrix u95v2_a Hs.2<-D90042
206797 at Affymetrix u133_a Hs.2<-NM 000015
D90042 at Affymetrix hu6000_merged D90042
10 LocusLink

NAT2 LocusLink official symbols
NAT2 LocusLink all symbols
AAC2 LocusLink all symbols

IMAGE:1870937 IMAGE clone Hs.2<-AI262683
1870937 IMAGE clone Hs.2<-A1262683

IMAGp9981184581 IMAGE clone Hs.2<-BX095770
IMAGE:1870937 IMAGE clone Hs.2<-BX095770
UI-H-FG1-bgl-g-02-0-UI University of Iowa clone Hs.2<-BU624903

IMAGp9981184581_, Institute of Molecular Biology and Genetics Ukraine clone Hs.2<-BX095770
IMAGE:1 870937

10286060 GenBank GI Hs.2<-AV684197
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Table 17: Variables in use in GEO data sets. The second column indicates the number
of data sets in GEO using each variable. The third column indicates the number of
unique qualitative values given for each variable.

Variable Data sets using this variable Unique values
time 146 171

strain 73 157

treatment 66 122

disease 50 105

tissue 45 158
agent 42 79

age 24 37
cell type 23 50
cell line 14 72

development stage 14 47
infection 14 20

growth medium 10 22

dose 8 29

specimen 8 35
error 6 46

metabolism 5 2

gender 4 4
stress 3 8

emperature 3 8
unclassified 3 10
shock 2 3
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Table 18: GEO data sets manually determined to be directly related to the study of
diabetes mellitus, or result in a query on the GEO web-site with the term "diabetes."

GEO Description Results when Manually
Data queried in determined
Set GEO true

positive
GDS10 Analysis of the NOD model of type 1 diabetes X X
GDS157 Gene expression involved in susceptibility for X X

type 2 diabetes
GDS158 Gene expression involved in susceptibility for X X

type 2 diabetes
GDS160 Gene expression involved in susceptibility for X X

type 2 diabetes
GDS161 Gene expression involved in susceptibility for X X

type 2 diabetes
GDS162 Gene expression involved in susceptibility for X X

type 2 diabetes
GDS167 Autoimmune disease mechanisms X
GDS217 Cancer Genome Anatomy Project SAGE X

library collection
GDS256 Temporal analysis of skeletal muscle X

response to corticosteroid
methylprednisolone

GDS268 Identification of proteins involved in fatty acid X
oxidation in skeletal muscle of obese
individuals

GDS272 Hypoxia and glucose metabolism X
GDS279 Comparison of effects of low fat and high fat X

diets on liver gene expression in LDL
receptor deficient mice

GDS365 B-cells and acute renal allograft rejection X
GDS402 Type 2 diabetes and renal function X X
GDS541 CGAP libraries: brain X
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Table 19: Sixteen data sets that result after an optimized traversal starting at concept
Diabetes Mellitus (C0011849).

GEO data set Title
GDS11 DNA copy-number aberrations

GDS157 Type 2 diabetes and insulin resistance (HuGeneFL)
GDS158 Type 2 diabetes and insulin resistance (Hu35k-A)
GDS160 Type 2 diabetes and insulin resistance (Hu35k-B)
GDS161 Type 2 diabetes and insulin resistance (Hu35k-C)
GDS162 Type 2 diabetes and insulin resistance (Hu35k-D)
GDS182 Large-scale analysis of the mouse transcriptome
GDS233 Muscle regeneration (U74Av1)
GDS254 Muscle, normal extraocular, profile
GDS256 Pharmacogenomic effect of corticosteroid in skeletal muscle
GDS268 Obesity and fatty acid oxidation
GDS272 Hypoxia and glucose metabolism
GDS276 Muscle profiles
GDS278 Muscle response to acute resistance exercise
GDS2 Melanoma, cutaneous malignant, classification
GDS461 Aortic stiffness
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Figure 1: Nearly-comprehensive data sets and experiments can be modeled by
considering the experiment context, catalog of measurements, and measured content
separately. In the graphical representation of this model, a short broken arrow
represents a few contexts or measurements, while a solid arrow represents a nearly-
comprehensive set. (A) Eisen, et al., reported on multiple discrete biological processes
in yeast, including cell-cycle by oc-pherome, sporulation, and stress. 80 (B) Hughes, et
al., measured gene expression by microarray in yeast under a variety of conditions,
including 200 gene deletion strains. 81 Though the measurement axis is virtually the
same, the context axis is significantly different, in that the Hughes data set attempts a
systematic approach to the experimental conditions, which can become nearly-
comprehensive.

168

Legend

Data set External Experimental context or measurements
Knowledge

Context Few in number ... 

Several in number ... ·... 
e comTaxonomy

'c Content
(o Nearly-comprehensive in number -o

MMMM_

F



L
S. cerevisae

0 
) a)

a)

Relative
expression

levels

A....

H. sapiens
Normal and Taxonomy

diabetic muscle -

Process

M. musculus
Muscle cell line

overexpress PGC1 c

D e '~ Absolute
'expression

; ,J levels

LY

C Intersection

.,

1 N-

Figure 2: Performing inferential operations on combinations of nearly-comprehensive
data sets requires unifying the context, the measurements, and the data elements.
(A) Spellman, et al., reported on genes involved in the cell cycle in yeast after a-
pherome and elutriation. 246 An automated system attempting to intersect the
expression patterns in response to these factors would need to (1) recognize that a-
pherome addition and temperature shift in a cdcl5 mutant both synchronize cells into
the cell cycle, (2) trivially know how to match symbols for the genes measured, and (3)
trivially know that the relative expression measurements are directly comparable. (B)
Mootha, et al., reported on expression differences in genes involved in oxidative
phosphorylation between human diabetic and non-diabetic samples. 247 Hypothesizing
that many genes found were downstream of PGC1 a (PPARGC1A), they related the
expression patterns of these same genes in a publicly available panel of human
tissues 248 with mouse skeletal muscle cell lines over-expressing PGC1a. Here, proper
intersection could only occur with the knowledge that (1) mouse and human muscle are
equivalent for this experiment, (2) mouse genes downstream of PGC1 a might be
expected to be highly expressed in PGC1 a expressing human tissues if the hypothesis
is true, and (3) many mouse and human homologies can be compared, and (4) trivially
that absolute expression levels are comparable. (C) For both intersections, addition of
external prior knowledge is crucial.
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Figure 3: At least two data sets are available for basal gene expression measurements
from the NCI60 cancer cell lines. 49,83 Relating the two not only requires the trivial
matching of gene and cell line identifiers, but also dealing with the differences between
relative and absolute expression levels.
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Figure 4: Non-intersection relations between data sets can also occur without matching
both context and measurement. Nearly-comprehensive gene expression measurements
were made from the NCI60, and these were related to susceptibility measurements in
the NCI160 across a nearly-comprehensive set of anti-cancer agents. In this case, the
cell lines used as the context of the expression data are identical to the cell lines on
which measurements were made in the susceptibility data. The measurements of the
expression data set do not match the context of the susceptibility data set; thus it does
not make sense to directly intersect these two data sets. Instead, they can be joined
across the single common axis, and appropriate analytic tools, such as two-dimensional
hierarchical clustering or relevance networks may be used.
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Figure 5: Wnt6 is one of only 20 genes where expression levels correlate with
genotype, when ordered from best-differentiating (wildtype), to worst-differentiating
(IRS-1 knockout).
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Figure 6: We have differentiated model fibroblasts (panel A) into adipocytes (panel B).
Panel C shows insulin-stimulated 2-deoxyglucose uptake in these differentiated
adipocytes. Panel D shows Trim30 expression before and after adipogenesis, with
duplicate biological and triplicate technical replication.
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Figure 7: Relevance networks constructed from baseline gene expression in sixty
cancer cell lines joined with susceptibility of the same cell lines to anti-cancer agents.
The pairs of features (anti-cancer agents in shaded boxes, genes in white boxes) with
correlation coefficient beyond ±0.80 were drawn with line thickness proportional to
correlation coefficient. The inset shows the association between LCP1 expression
(J02923) and susceptibility to a thiazolidine carboxylic acid (P624044).
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management of microarray probe set annotations. Dashed lines are proposed cross-
species connections.
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Select b.link_symbol from chip_accession a, chip_accession_link b where b.parent_accession = a.id and
b.link_type = 1 and a.accession = '737_at' and a.array_type = 'u95_a' and b.version = 2;

+-------------+

I link_symbol I
+-------------+

I D87002 I
+-------------+

Select b.link_symbol from chip_accession a, chip_accession_link b where b.parent_accession = a.id and
b.link_type = 26 and a.accession = '737_at' and a.array_type = 'u95_a' and b.version = 2;

+-------------+

I link-symbol I
+ +

Hs.284380
Hs.296429

+ +-----------

Select distinct b.link_int, c.link_type, c.link_text, d.link_type, d.link_text from chip accession a,
chipaccessionlink b, chip accession_link c, chip_accession link d where b.parent_accession = a.id
and c.source_id = b.id and d.sourceid = b.id and b.link_type = 27 and c.linktype in (18,31,38) and
d.link_type in (17,37) and a.accession = '737_at' and a.array_type = 'u95_a' and b.version = 2;

+----------+----------- +_-----------_+____ ----___+___________+____-_________________________________+

I linkint linktype link text link_type link text
+----------+-----------+_-----------_+____ ----____+___________+_____-____________________________._+

25812 38 POM121L1 37 similar to rat integral membrane glycoprotein POM121
2678 31 D22S732 17 I gamma-glutamyltransferase 1

2678 31 D22S672 17 gamma-glutamyltransferase 1
2678 31 GTG 17 I gamma-glutamyltransferase 1

2678 31 GGT 17 I gamma-glutamyltransferase 1

2678 18 GGT1 17 I gamma-glutamyltransferase 1
+--------------.______+___________+___________+________---______________-+-…--+

6 rows in set (0.01 sec)

Figure 9: A query can be written in SQL to explain why probe set 737_at on the
Affymetrix U95A microarray refers to more than one LocusLink gene. The queries
indicated that GenBank D87002 cluster in both UniGene clusters Hs.284380 and
Hs.296429, which link to LocusLink genes 25812 (POM121L1) and 2678 (GTG).
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Select distinct a.link_text, b.link_int, c.link_text, d.accession, d.array_type

From chip_accessionlink a, chip_accession_link b, chip_accession_link c,
chipaccession d

Where

a.link_text = 'Homo sapiens' and a.linktype = 35 and

b.link_type in (15,27,23) and

c.link_text = '4' and c.linktype = 28 and

a.parent_accession = b.parent_accession and

a.parent_accession = c.parent_accession and

a.parent_accession = d.id;

+--------------…----------+-------------

linktext link int linktext accession I array_type I
+------------------------+-------------+

Homo sapiens 85462 4 44096_at u95 b
Homo sapiens 85438 4 76249_at u95 e
Homo sapiens | 85013 4 65166_at u95 c

Homo sapiens 84992 4 45734_at u95 b
Homo sapiens 84869 4 48697_at u95 b
Homo sapiens j 84803 4 52883_at u95_b
Homo sapiens 84740 4 66234_at u95 c

Figure 10: SQL query listing genes on human chromosome 4 that are measured across
microarray types.
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Figure 11: To demonstrate the cross-species, cross-platform, and cross-institution

abilities of PGAGENE, we constructed a dendrogram from the 893 genes having
HomoloGene information linking across Homo sapiens, Mus musculus, and Rattus

norvegicus, with at least one PGA-measured expression value from each species. The

columns represent 997 microarrays in one of two platforms (spotted cDNA and
Affymetrix GeneChip) from three PGAs (CardioGenomics, HopGenes, and TREX).

Expression values were normalized to rank ordered percentile and color-coded for a

measurement, or white for unmeasured data. The inset shows an interesting subset of

this dendrogram, where the four diabetes-related genes insulin autoantigen 1 (ICA1),
fatty acid binding protein 1 (FABP1), leptin receptor (LEPR), and peroxisome

proliferative activated receptor, gamma, coactivator 1 (PPARGC1) all appear in the

same sub-branch, indicating shared expression patterns across the three species.
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Figure 12: From Kohane, et al. 249 An example of why pathway discovery solely using
gene expression measurements is difficult, using the nested pathways involved in lactic
acid conversion to pyruvate. This is also an example of why it is not sufficient to simply
represent or visualize the glycolytic pathway in terms of measurements from individual
genome-scale modalities. Instead, when interpreting genome-scale measurements
simultaneously, a knowledge-base that integrates across these pathways will be
necessary.
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GEO Series (GSE)
Title
Description

GEO Data Set (GDS)
Title
Experimental variables
Experimental values
Subsets

Figure 13: Relation between GEO samples, series, data sets and platforms.
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CRISP
0600-1092

N11
N1.

MeSH Heading MeSH Heading
D017667 D000242
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T-1A013 F-65980
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I / I/

I1//~I I

ICD-9
250

Figure 14: An example illustrating concepts, terms and synonyms, relations to source
vocabularies, and relations between concepts including asserted relationships and
statistical relationships.
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Correlation between string length and number of concepts: 0.552
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Figure 15: Plot between the length of a GEO sample title and the number of unique
concepts mapped.
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Correlation between string length and number of concepts: 0.969
Ju

25

- 20
o
c-
00

o 15
Cn

o

E
' 10z

5

0 1000 2000 3000 4000 5000 6000 7000
Length of GSM description (characters)

Figure 16: Plot between the length of a GEO sample description and the number of
unique concepts mapped.
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Correlation between log1 0 string length and log1 0 number of concepts: 0.949
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Figure 17: Plot between the log of the length of a GEO sample description and the
number of unique concepts mapped.
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Correlation between string length and number of concepts: 0.627
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Figure 18: Plot between the length of a GEO sample source and the number of unique
concepts mapped.
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Figure 19: The keyword annotation is the only one in a GEO sample that may be
repeated. Plot between the number of GEO keyword annotations for a sample and the
number of unique concepts mapped.
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Correlation between log10 string length and log1 0 number of concepts: 0.925
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Figure 20: Plot between the log length of all the keyword annotations for a GEO sample
and the number of unique concepts mapped.
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Correlation between string length and number of concepts: 0.633
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Figure 21: Plot between the length of a GEO series title and the number of unique
concepts mapped.
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Correlation between string length and number of concepts: 0.971
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Figure 22: Plot between the length of a GEO series description and the number of
unique concepts mapped.
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Correlation between log10 string length and log1 0 number of concepts: 0.954
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Figure 23: Plot between the log length of a GEO series description and the number of
unique concepts mapped.
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Correlation between string length and number of concepts: 0.488
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Figure 24: Plot between the length of a GEO data set title and the number of unique
concepts mapped.
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Figure 25: Graphical representation of the breadth-first traversal starting at concept
Cells (C0007634) (the center point) and continuing until GEO samples are reached.
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Figure 26: Hierarchy of cell types under Blood Cells and their associated GEO
samples.
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Cells

F
Phagocytes

Neutrophils

Figure 27: Two paths exist from concept Neutrophils to concept Cells. Though the right
path adds additional specificity, the left path will be chosen during a breadth-first search
starting at Cells because it is shorter.
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102,719,572
relations

0
985,670

relations

Locuslink
28,084,727
relations

Figure 28: Mapping GEO expression measurements to LocusLink gene identifiers
required creating three sets of relations.

195

I ncnl

Identifier

GEO Platform

+

External |

Identifier

Identifiers
(80 name spaces)

1 A ffi ~~~~~~~~~~~~~~+r; L~~~~~~
nI iyeiitl Ix

0

Genbank

Unigene

GEO Sample

ILocal

Identifier

Clones

Expression
Measurement

~~ LII~~~~-l~~~il-~~~L-J~~

l

·

�

------- �------

91

I



GEO Platform Data

autoid col val

25091 0 100001 at

25091 1
25091 2 M18228
25092 0 100002_at
25092 1 4517
25092 2 X70393

25092 3 Itih3
25092 4 14
25092 5 16426

25092 6
250927 
25092 8 GO4867serineproteaseinhibitorinf
25092 9 IPR002035vonWillebrandfactortype
25093 0 100003 at
25093 1 4519
25093 2 D38216

25093 3 Ryrl
25093 4 7
25093 5 20190

25093 6 GO6937musclecontractionregulatio
25093 7 GO16021integralmembraneproteinin
25093 _
250939 IPR001682Calciumandsodiumchannel

Figure 29: Data from GEO platforms was extracted and separated into three tables:
identifiers (ID), header information (Header), and all data (Data).
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GEO Platform Raw Data File

ID UNIGENE GB ACC GENE SYM MAP LOC LOCUS LINK GO BIO PROCESS
10002at _1M17

100002 at 4517 X70393 Itih3 14 16426
100003 at 4519 D38216 Ryr7 20190 GO6937musclecontractionregulatio

_ T i

GEO Platform ID

autoid gpl| id
25091 81 100001 at

25092 81 100002 at
25093 81 100003_at
25094 81 100004 at

25095 81 100005 at
25096 81 100006 at

25097 81 100007 at
25098 81 100009 r at
25099 81 100010 at
25100 81 100011 at

GEO Platform Header

gp col header
81 0 ID
81 1 UNIGENE
81 2 GB ACC
81 3 GENE SYM
81 4 MAP_LOC
81 5 LOCUS LINK
81 6 GOBIO PROCESS
81 7 GO CELL COMPONENT
81 8 GOMOL FUNCTION
81 9 IPR DOMAIN
81 10 GENMAPP_PATHWAY
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Figure 30: Database join across six tables relating gene expression data from GEO to
LocusLink identifiers.
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(orrelation between the number ot dentitiers and
number of probes available for a gene in LocusLink (r = 0.85)

1 2
Log1 0 number of identifiers for a

3
given gene

4
in Locuslink

Figure 31: Plot between the log of the number of identifiers available for a gene in
LocusLink and the log of the number of probes on GEO platforms for that gene,
showing strong correlation.
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GDS 200 GDS 200

Figure 32: Example of two groups of samples being compared. The test-variable is
Treatment, where one group is assigned "Context and shock" while the other is
assigned "Shock only." Values for the three background variables, Tissue, Time, and
Strain, are set to equal values in the two groups.

199

Tiss .ue. Tisu
Cal

hippocampus

Tissue : -: -

Ca1l
hippocampus

Time I

2 hours 4 hours 6 hours

Strain
50% C57BL/

C57BU6J 6, 50% SJL
Alzheimers

Time

2hours I 4hours 6 hours

Strain

50% C57B
C57BUL6J 6, 50% SJL

AlzheimersI /'0% c,..'
I I I I

GDS 200 GDS 200



Few genes are highly involved in experimental comparisons involving age
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Figure 33: Over 11,000 homology families were implicated in one or more two-group
comparisons involving the variable "age." Very few families were implicated in over 100
comparisons.
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Concept-to-concept mappings in MRCOC follow a power-law distribution

0 0.5 1 1.5 2 2.5 3

Count of UMLS concepts x104

Figure 34: Plot of the count of relations in the UMLS co-occurrence table (MRCOC)
across the number of concepts with each count. Relatively few concepts have over ten-
thousand relations.
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MRCOC mappings follow a power-law distribution with a = 0.282
i i i i i i ! ,4.5

4

3.5

0 0.5 1 1.5 2 2.5 3

Logo count of UMLS concepts
3.5 4 4.5

Figure 35: Plot of the log of count of relations in the UMLS co-occurrence table
(MRCOC) across the log of the number of concepts with each count.
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Starting at C0011849 varying MRCOC filter
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

n0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate (1-specificity)

Figure 36: Receiver-operating characteristic curves indicating the effect on sensitivity
and specificity as more relations are excluded from the UMLS MRCOC co-occurrence
table. The most optimal curve was in the strategy excluding the least significant 1% of
the relations.
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Starting at C0011849 varying filter direction
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Figure 37: Receiver-operating characteristic curves indicating the effect on sensitivity
and specificity as co-occurrence significance is evaluated in the source, destination, or
both concepts during traversal. The most optimal curve was in the strategy evaluating
co-occurrence significant in the destination concept.
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Starting at C0011849 varying size filter
1
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Figure 38: Receiver-operating characteristic curves indicating the effect on sensitivity
and specificity when traversal is restricted to moving to concepts with fewer citations.
The most optimal curve was the strategy without this restriction.
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Starting at C0011849, traversing MRCOC (filter .1%), varying GEO association thresho!
I I I I

/
/

/
/

/
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/

- - GEO association 700
___ GEO association 600
...... GEO association 500
- No GEO association

lI

0.2 0.4
False positive rate

0.6
(1 -specificity)

0.8

Figure 39: Receiver-operating characteristic curves indicating the effect on sensitivity
and specificity when traversal to GEO samples, series and data sets is restricted to
relations with a MetaMap score meeting a threshold. The most optimal curve was the
strategy without this restriction.
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)

Figure 40: Genetic data and microarray data can be modeled in terms of their
experimental context, gene measurement catalog, and content of significant findings.
Without additional knowledge, automated intersection of these two modalities is not
possible.
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Figure 41: Two experiments may have examined small non-overlapping portions of a
large biological process. Though several genes and proteins may be involved in the
same large process, the intersection will not retrieve them.
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Figure 42: If genes are implicated in a process in one data set but are not even
measured in another, these genes will not be present in the intersection. Differing
equivalence relations between species will also alter intersection results.

209

Gene X

Gene Y
_

I 7 ?7

w e . a Y e _ _ ~^X __X _a______________141��
, ""I",

-- 1"W

X
4

---3
-�II� ll



Human Human

Figure 43: Intersection relations between two experiments depend on the parameters
and analytic method used in each experiment.
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Figure 44: Finding intersection relations between species is difficult when a common
identification scheme is not available.
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Figure 45: Intersection between some types of nearly-comprehensive data sets may
not be possible without the application of a priori knowledge to transduce one modality
to another.
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Appendix

Prolog program that implements the reasoning that provides a biological explanation of

the trait of a quantitative trait locus.

/* relating traits to diseases */

relation( concept(c1260441), rel("diagnoses"), concept(c0011849)) .

/* relating genes to causative pathways to diseases */

pathway(
pathway(
increase
pathway(
pathway(

decrease(hid(2517)), rel("causes"), decrease(concept(c0013846))
decrease(concept(c0013846)), rel("causes"),
(concept(c0015684)) ).
increase(concept(c0015684)), rel("causes"), concept(c0021655) )
concept(c0021655), rel("causes"), concept(c0011849) ).

qt:l( qtl_synb("Niddm40"), species(c0034693)
range(139105187,167448551) ).
qt:l( qtl_synb("Niddm23 "), species(c0034693)

range(203569474,203569596) ).
qt:l( qtl_synb("Niddm2"), sp
range(197218978,197219067)
qt:l( qtl_synmb("Niddm3"), sp
range(86331202,86331424) ).
qtl ( qtl_symb( "Niddm22" ), s
range(84600690,84600838) ).
qtl ( qtl_symnb("Niddml8"), s
range(32584631,32584754) ).
qtl( qtl_syn-b("Niddm28"), s
range(81225172,81225329) ).
qtl ( qtl_symnb ( "Niddm29" ), s
range(19510771,80047391) ).
qtl( qtl_symnb( "Niddm32 "), s
range(59107689,59107785) ).

ecies(c0034693),

ecies(c)034693)

pecies(c0034693)

pecies(c0034693)

pecies(c0034693)

pecies(c0034693)

pecies(c0034693),pecies (c0034693),

I concept(c1260441), chrom(l),

, concept(c1260441), chrom(l),

concept(c1260441), chrom(2),

concept(c1260441), chrom(10),

· concept(c1260441), chrom(11),

concept(c1260441), chrom(14),

, concept(c1260441), chrom(14),

, concept(c1260441), chrom(16),

, concept(c1260441), chrom(17),

related_concepts( C1,
related_concepts( C1,

C1, TRAIL ).
C3, TRAIL ) :-

( relation( C1, _, C2 ) ; relation( C2, _, C1 ) ),
legal( C2, TRAIL ),
related_concepts( C2, C3, [C21TRAIL] ).

biological_causal( H1, H1, TRAIL ).
biological_causal( H1, H3, TRAIL ) :-

pathway( H1, _, H2 ),
legal(H2, TRAIL),
biological_causal( H2, H3, [H21TRAIL] ), !.

legal( C,
legal( C,

[] ) :- ! .
[HIT] ) :- C \== H, legal(C,T).
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get_gene_symbol( LOCID, SYMBOL ) :-
gene(LOCID,SYMBOL, _,_,_).

range_within_range(range(SMLOW,SMHIGH),range(LGLOW, LGHIGH)) :- SMLOW >=
LGLOW,

SMLOW =< LGHIGH,

gene_in_qtl(LOCID, QSYMB) :- qtl(qtl_symb(QSYMB), QSPECIES, _, QCHROM,
QRANGE),

gene(LOCID,_,QSPECIES,QCHROM,GRANGE),
rangewithinrange(GRANGE,QRANGE).

explain_qtl_symbol (QSYMB, QTL_GENE,SIG_GENE) :- gene_in_qtl(QTL_GENE, QSYMB),
qtl(qtl_symb(QSYMB), _, QTRAIT, _, _),
gene_homology( H1, QTL_GENE ),
related_concepts( QTRAIT, CONCEPT2, TRAIL1 ),
expr_context( GDS, CONCEPT2, DEPTH ),
DEPTH =< 3,
biological_causal( decrease(H), CONCEPT2, TRAIL2 ),
expr_sig( GDS, SIG_GENE ),
gene_homology( H1, SIG_GENE ).
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