
Fully Polynomial Time Approximation Schemes
for Sequential Decision Problems

by

Mohamed Mostagir

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Master of Science in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2005

() Massachusetts Institute of Technology 2005.

Author 1.......................
loan

All rights reserved.

;chool of Management
Aug 12, 2005

Certified by...... (i.... q. .qr r · --- ~-Orlin
James B. Orlin

E. Pennel Brooks Professor of Operations Research
Thesis Supervisor

Accepted by
1 John N. Tsitsiklis

Professor of Electrical Engineering and Computer Science
MASSACHUSETS INST E Co-Director, Operations Research Center

OF TECHNOLOGY

SEP 1 2005

LIBRARIES

)

Fully Polynomial Time Approximation Schemes for

Sequential Decision Problems

by

Mohamed Mostagir

Submitted to the Sloan School of Management
on Aug 12, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Operations Research

Abstract
This thesis is divided into two parts sharing the common theme of fully polynomial
time approximation schemes. In the first part, we introduce a generic approach for
devising fully polynomial time approximation schemes for a large class of problems
that we call list scheduling problems. Our approach is simple and unifying, and many
previous results in the literature follow as direct corollaries of our main theorem. In
the second part, we tackle a more difficult problem; the stochastic lot sizing problem,
and give the first fully polynomial time approximation scheme for it. Our approach
is based on simple techniques that could arguably have wider applications outside of
just designing fully polynomial time approximation schemes.

Thesis Supervisor: James B. Orlin
Title: E. Pennel Brooks Professor of Operations Research

3

4

Acknowledgments

I would like to thank my advisor, Jim Orlin, for his unique insights into the problems

we worked on, and for teaching me to make my proofs simpler and more concrete.

There is an Einstein quote which I believe summarizes Jim's approach to research,

"Everything should be made as simple as possible, but not simpler."

It was wonderful to be able to interact with David Simchi-Levi, a great teacher

and a great person. David has this very reassuring quality that makes you feel that

he is strongly rooting for you to succeed. Eventhough our meetings were few and far

between, he would remember exactly everything (down to the technical details) we

discussed in our last meeting, even if it was more than a month ago!

I have too many friends to thank. I would like to thank Amr for his friendship

during the year we overlapped at the ORC, Nelson for all the couch conversations,

and David for the music we played. I would like to thank Hamed for too many

funny moments in Tang and after, and for his help during times of difficulty. I would

like to thank his wife, Rosa, as well. I would like to thank Theo for innumerable

conversations about just everything, agreeing with me on every topic possible, and

for helping this thesis make the deadline (via moral support from Mexico). I would

like to thank Marwa for teaching me to get my priorities in order, albeit in a very

hard way.

Finally, I would like to thank my parents and my sister Mai for their unconditional

love and for always being with me in spirit.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Fully Polynomial Time Approximation Schemes for Sequential Op-

timization Problems 9

1.1 Introduction 9

1.2 Branch and Dominate for Combinatorial Optimization Problems . .. 12

1.3 Branch and 6-Dominate 18

1.4 Applications Of Main Theorem 24

1.4.1 Machine Scheduling Problems 24

1.4.2 Scheduling With Dependent Processing Times 26

1.4.3 Single Machine Problems 28

1.4.4 Maximization Problems and Polynomial Objective Functions . 29

1.5 Comparisons With Woeginger 31

1.6 Multi - Criteria problems 34

1.6.1 Minimizing Makespan and Sum of Cubed Completion Times on

Two Machines 36

1.6.2 Problems with 'Crashing' 36

1.7 Summary Of Results for Scheduling Problems 40

1.7.1 Problems With an FPTAS 41

1.8 Conclusions 43

2 Stochastic Lot Sizing 45

2.1 Introduction. 45

2.2 Models And Assumptions 47

2.3 Pseudo-Polynomial Time Algorithms 49
7

2.3.1 Linear plus fixed costs 51

2.4 Approximation Schemes 53

2.4.1 Approximating Yj(z) 57

2.4.2 Approximating gj(I) 59

2.4.3 Approximation guarantee and running time analysis 61

2.5 Conclusions and Future Work 63

8

Chapter 1

Fully Polynomial Time

Approximation Schemes for

Sequential Optimization Problems

1.1 Introduction

In this chapter, we combine several approaches for developing fully polynomial time

approximation schemes into a generic method. Our objective is to develop a simple

framework that unifies a large number of results in the area of fully polynomial time

approximation schemes. We then apply our framework to give single and multiple

criteria FPTASes for a wide range of machine scheduling problems that we refer to

as "list scheduling problems."

Assume that we have an NP-hard problem, [1] and an approximation algorithm

that always returns a near-optimal solution whose cost is at most a factor of a away

from the optimal cost, where a > 1 is some real number: In minimization problems

the near-optimal cost is at most a multiplicative factor of a above the optimum,

and in maximization problems it is at most a factor of a below the optimum. Such

an approximation algorithm is called an alpha-approximation algorithm. A family

of (1 + c)-approximation algorithms over all > 0 is called a fully polynomial time

9

approximation scheme or FPTAS, for short, if the time complexity is bounded by a

polynomial in the size of the input and in .
C

The first work done on fully polynomial time approximation schemes could be

tracked back to the mid-70s, starting with the classic work of Horowitz, Ibarra, Kim,

and Sahni [2],[3],[4] on scheduling and the knapsack problems. Those first FPTASes

in [2], [3], and [4] were based on dynamic programming formulations which can always

find an exact optimal solution, but in pseudo-polynomial time. Our approach, branch

and dominance, is similar in spirit to dynamic programming, especially in the way

we define and use states. The primary goal of our work was to simplify the research

done by Woeginger in [5]. Woeginger's work aims to construct a generic framework

around dynamic programming formulations and to identify a certain class of those

formulations that he called 'DP (short for dynamic programming)- Benevolent'. A

problem is DP - Benevolent if it has a dynamic programming formulation that satisfies

certain arithmetical and technical conditions. Woeginger then showed that it is easy

to find FPTASes for this class of problems. Even though our initial goal was to design

an easier approach to obtain FPTASes, our work expanded to obtain FPTASes for

multi-criteria problems as well, where one is interested in computing a tradeoff curve,

known as the Pareto curve [6], between the various criteria being optimizes. We

show how to extend our approach to give e-approximate Pareto curves. We also show

how to obtain FPTASes for a certain class of problems where the cardinality of the

decision set is exponential. These extensions were not considered by Woeginger.

In addition to giving a simpler approach to constructing FPTASes than that in [5],

our work was also motivated by its application to a wide class of machine scheduling

problems. Many scheduling problems fall into the framework we construct in this

chapter and hence we can derive FPTASes for them (For example, [7], [2], [3], [8].)

We consider a class of problems that we call 'list scheduling' problems, where the

input to the problem consists of a list of the jobs to be scheduled, and where the

jobs should be processed in the order in which they appear on the list. Many of the

results in the scheduling literature show that one can get an optimal solution to a

scheduling problem if one first arranges the jobs to be scheduled in a certain order

10

before processing them. Hence, an optimal solution to the list scheduling problem

automatically gives a solution to the general problem. Additional applications can be

found in very large scale neighborhood search [9], where a local search algorithm starts

with a feasible solution to an optimization problem and iteratively tries to improve

that solution by searching the 'neighborhood' of that solution. In very large scale

neighborhood search, the size of the neighborhood could be very large relative to the

input data, and it becomes impractical to search the whole neighborhood. Thus at

every solution, one should try and search the neighborhood efficiently by considering

only a subset of all the potential solutions in the neighborhood.

We consider combinatorial optimization problems min(c(x): x E P), where x is

a decision vector with n components. Our approach is based on "branch and domi-

nance." We start with an enumeration tree, where each node of the tree corresponds

to a partial solution y = Y, , Yk for some value of k. Each partial solution y is as-

sociated with a state vector (as in dynamic programming), called State(y). We also

assume that there is a dominance relation -< on states such that State(y) State(w)

implies the following: if w can be extended to a feasible (complete) solution w', then

y can be extended to a feasible complete solution y' with c(y') < c(w'). Branch

and dominate is the algorithm in which nodes of the enumeration tree are enumer-

ated in a breadth first search manner, and nodes that are dominated are eliminated

from the tree. We give conditions under which Branch and Dominate leads to a

pseudo-polynomial time algorithm.

For a given value of E we show how to approximate State(y) using geometric

rounding, resulting in S-State(y), where is a parameter that depends on and on

n. We then consider Branch and d-dominate, which is the same as Branch and

Dominate, except that we eliminate partial solutions y' from the tree whenever there

exists another partial solution y such that S-State(y) S-State(y'). We give sufficient

conditions under which Branch and -dominate is an FPTAS. Initially, we assume

that there is a single objective function, and we assume that there is an upper bound

on Yk that is polynomially bounded in n. Subsequently, we show how to relax these

assumptions. We develop FPTASes for combinatorial optimization problems with a

11

fixed number of criteria, and we permit decision variables to take on an exponentially

large number of different values.

The remainder of this chapter is organized as follows. In Section 1.2 we introduce

Branch and Dominate and give conditions under which it gives a pseudo-polynomial

time algorithm. Section 1.3 gives extra conditions under which Branch and Dominate

(now called Branch and d-Dominate) gives an FPTAS. Section 1.4 illustrates various

examples on how to apply the main result. Section 1.5 reviews the approach taken by

Woeginger and compares and contrasts our approach with of his. Section 1.6 extends

our work to problems where we are interested in the tradeoffs when optimizing more

than one criteria and where the possible decisions that we can take at any stage of the

problem is exponential. Section 1.7 give a summary of various scheduling problems

that fall into the branch and dominance framework and Section 1.8 concludes the

chapter.

1.2 Branch and Dominate for Combinatorial Op-

timization Problems

A combinatorial optimization problem II is a collection of instances (X, c), where

X is a collection of feasible solutions and c is an objective function which, for every

solution x E X, assigns a non-negative cost c(x). The goal is to find a solution x* with

c(x*) < c(x), Vx c X. A 0-1 combinatorial optimization problem is a combinatorial

optimization problem in which every feasible solution x E X is a vector of O's and

1's. In the following, we assume that the number of components of x is n. A

bounded combinatorial optimization problem is a combinatorial optimization problem

with an associated vector u of upper bounds. If x E X, then 0 < x < u, and x is

integer valued. In this chapter, we consider both bounded combinatorial optimization

problems and their special case, 0 - 1 combinatorial optimization problems.

A partial solution is a vector x' = x,...', x that specifies the first k components

of a solution x. Our algorithm will enumerate solutions by determining partial

12

solutions one component at a time. A partial solution with k components will be

called a solution at stage k. Suppose that x' is a partial solution at stage k, and

that y' Yk+l,,..., is a specification of values for components k + 1 to r. We let

X/+8/ y ',= xl...,, y+,, ... , y' be the concatenation of x' and y'. If r = n, and if

x' y' E X, then we refer to y' as a feasible completion of x'.

We assume that there is a function hk which can be used to test the feasibility of

a partial solution x' at stage k. If hk(x') = False, then no completion of x' is in X.

If hk(x') = True for 1 < k < n - 1, there may or may not be a feasible completion

of x'. In addition, h(x') = True if and only if x' X. In other words, hk gives

sufficient but not necessary conditions for a partial solution being infeasible, but it

gives necessary and sufficient conditions for a 0 - 1 vector of n components to be

feasible.

An enumeration tree for (X, c) consists of 2
n+ l - 1 nodes. The root node corre-

sponds to the null solution, and the root is said to be at stage 0. Each node at stage

k will correspond to a partial solution x' = 3x,..., ', where 0 < x' < ui for i = 1

to k and x' is integral. If k < n, x' will have ui + 1 children: Xl,..., x, x+ with

xk+' taking on integer values from 0 to ui. We refer to node x' as the parent node

of each of these ui + 1 children. The nodes at stage n have no children, and are the

leaves of the enumeration tree. If x' = x, ... ,x' is a partial solution at stage k, and

if y' = Y+1., ,y' is a partial assignment for variables k + 1 to n, we refer to y' as a

completion of x'. We let x' + y' = x3, ... , x', y denote the concatenation of

x' and y'.

In the enumeration tree, we permit the enumeration of infeasible solutions. In

the algorithm developed later in this section, we will eliminate any infeasible nodes.

Central to our approach is the concept of a state, which is used in the standard

way as in dynamic programming. Associated with each node x' of the enumeration

tree is a state vector State(x'). We assume that state vectors satisfy the following

conditions:

Condition 1. (State Vector Conditions.)

13

1. For every partial solution x', each component of State(x') is a non-negative

integral vector.

2. If x' and x" are two partial solutions at stage k for k = 1 to n, and if State(x') =

State(x"), then hk(x') = hk(");

3. If x' and x" are two partial solutions at stage k - 1 for 1 < k < n and if

State(x') = State(x"), then for 0 < Yk < uk and Yk integral, State(x' Yk) =

State(x" * Yk).

4. The first component of the state vector represents the objective function. So,

if x' is a feasible solutions at stage n, and if S = State(x'), then S1 = c(x').

Condition 2. (Computability Conditions.)

1. The state vector State(x') can be computed in polynomial time for every partial

solution x'.

2. The function hk(x') can be computed in polynomial time for each k = 1 to n,and

for every partial solution x' at stage k.

3. There is a guaranteed upper bound on the value that any component can take.

This upper bound is a polynomial in the input size of the problem and the largest

integer in the data.

Thus if two partial solutions have the same state, then one need not enumerate

children from both nodes in the enumeration tree. It suffices to enumerate children

from one of the nodes only.

Because stage-n solutions with the same state vector have the same cost, we use

the following convention. If S = State(x'),we let c(S) = c(x'). Although this is an

abuse of notation, it should be clear from context whether we are evaluating the cost

of a state vector at stage n or whether we are evaluate the cost of a feasible solution.

Let the set of all state vectors in stage k be denoted by Sk. Let 9Fk be a mapping

from the state vectors in Sk-1 to the state vectors in Sk defined as follows. Let x' be

14

a partial solution at stage k- 1, and let Yk e {0, 1, ... , k}. Then Xk (State(x'), k) =

State(x' Yk). From Condition 1 above, Tk is well defined, and by Condition 2, Fk

can be computed in polynomial time. Let ki denote the i-th component of OFk. For

example, if .Xk(S, yk) = S' = S, ..., S then ki(S, yk) = S.

In order to develop a concept of "domination", we will make additional assump-

tions on the state vectors.

Condition 3. For a given combinatorial optimization problem, all state vectors have

the same number a of components.

If for some i and for every k the domain for the i-th component of the state vector

is polynomially bounded in n, then we say that component i of the state vector is

polynomially bounded, or PB for short.

Definition 1. We say that a (non-polynomially bounded) component i has the weak

lower-is-better property if the following is true: For all state vectors S = S1,..., S0

and S' = S, ..., S' at stage k with Sj = S. for j i, and 0 < Si < Si',

1. if hk(S) = false, then hk(S') = false;

2. if k = n, then c(S) < c(S').

Definition 2. We say that a (non-polynomially bounded) component i has the weak

higher-is-better property if the following is true: For all state vectors S = S1,..., S0

and S' = S,..., S at stage k with Sj = S for j i, and O < Si < Si',

1. if hk(S) = true, then hk(S') = true;

2. if k = n, then c(S) > c(S').

Definition 3. A non polynomially bounded component i is called "monotone" if it

has the additional properties: For all state vectors S = S, ..., S, and S' = S, ..., S/

at stage k - 1 with Sj = Sj for j :- i and for all Yk, it follows that

15

1. If 0 < Si < S' and if component i has the weak lower-is-better property, then

kj(S, Yk) .Tkj(S', Yk) for every component j with the weak lower-is-better

property;

2. If 0 < Si < S' and if component i has the weak higher-is-better property, then

Fkj (S, Yk) > Fkj (S', Yk) for every component j with the weak higher-is-better

property;

3. Fkj (S, Yk) = Fkj (S', Yk) for each component j E PB;

A component is said to have the strong lower-is-better (resp., strong higher-is-

better) property if it has the weak lower-is better (resp., weak higher-is-better) prop-

erty and if it is also monotone.

Definition 4. We say that a component i of the state vector influences component j

if there are states S and S' at some non-final stage k - 1 such that S and S' differ

only in component i and such that Tkj (S, yk) # Fkj (S', yk).

The following algorithm, Branch and Dominate, relies on the following notion of

domination. Suppose that the state vectors for a 0-1 optimization problem satisfy

Conditions 1, 2, and 3.

Definition 5. We say that the state vector is strongly monotone if each component

either has the strong lower-is-better property, or the strong higher-is-better property,

or is polynomially bounded.

We observe that the polynomially bounded components of the stage vector are

permitted to influence all other components. A component with the strong lower-

is-better property is permitted to influence only other components with a lower-is-

better property. Similarly, a component with the strong higher-is-better property is

permitted to influence only other components with a higher-is-better property.

Definition 6. We say that strongly monotone state vector S = Si, ..., S, dominates

state vector S' = S, ..., S at stage k if the following is true:3L~L~t; t;L~I r -- 11)..) 1

16

1. Sj = Sj for each component j that is polynomially bounded;

2. Sj < Sj for each component j with the strong lower-is-better property; and

3. Sj > S for each component j with the strong higher-is-better property.

We next describe Branch and Dominate and give conditions on the state vectors

under which Branch and Dominate leads to a pseudo-polynomial time algorithm.

Branch and Dominate relies on implicit enumeration, where nodes of the enumeration

tree are created in a breadth first search manner, and in which nodes are fathomed

(eliminated) from the tree if they are dominated. We will refer to the enumeration

tree in which nodes are fathomed as the "partial enumeration tree."

Algorithm. Branch and Dominate

begin

x = 0;

initialize the partial enumeration tree T by making its root xo;

for k = 1 to n

begin

for each unfathomed node x' at stage k - 1, and for each child

y of x' for which hk(y) = True, make y the child of x' in T;

while there are two nodes x' and x" at stage k such that State(x')

dominates State(x"), then fathom node x";

end

let x* be a leaf node that minimizes {c(x): x is a leaf node};

end

The following Theorem is straightforward, but we include a short proof.

Theorem 1. Suppose that a combinatorial optimization problem has state vectors

satisfying Conditions 1,2, and 3. Suppose further that each component either is

17

polynomially bounded, has the strong lower-is-better property, or has the strong higher-

is-better property. Then Branch and Dominate determines an optimal solution in

pseudo-polynomial time.

Proof. The analysis of the running time is simple. From part 3 of Condition 2,

every component at each stage can take a value that is bounded by a polynomial

in the input. Let the size of the input be Ill, then every stage can have at most

P(IlI)o state vectors, and the number of children is at most P(III) . U. Since a is

a constant and we have n stages, the overall running time required to generate the

whole enumeration tree is polynomial in nP(II)'. This establishes that the running

time is pseudo-polynomial. Since only dominated partial solutions are fathomed, the

resulting solution to branch and dominate is optimal as well.

1.3 Branch and S-Dominate

An FPTAS is widely considered a very strong approximation result for an NP-hard

optimization problem under the assumption that P # NP. In the previous section,

we showed how Branch and Dominate gives a pseudo-polynomial time algorithm for

a combinatorial optimization problem under certain conditions. In this section, we

modify Branch and Dominate by approximating the state space, using techniques that

are very much like those introduced by Ibarra and Kim [3]. We call the resulting

algorithm Branch and -Dominate. We give additional conditions beyond those

mentioned in the previous section under which Branch and -Dominate leads to an

FPTAS.

For each c [0, 1], and for each component i, we say that two state vectors S and

S' are component i -close if (1 -)Si < Si < (1 +)Si and if Sj = S for every

other component j. If S and S' are component i -close with respect to all non-

polynomially bounded components i, and if Sj = S for every polynomially bounded

component j, we say that S and S' are -close.

18

Definition 7. The following three conditions are called the goodness conditions with

respect to component i of S.

a. Goodness condition 1. If S is a feasible state vector at any stage k, and if S' is

obtained from S by replacing component i with a different non-negative integer

value, then S' is also feasible state vector;

b. Goodness condition 2. If S is a feasible state vector for stage k - 1, then

Si _ Fki(S, Yk) for all feasible choices of decisions Yk; that is, the value of the

ith component is nondecreasing from stage to stage.

c. Goodness condition 3. There exists a parameter /i > 0 such that the following

is true. For all E [0, 1], if S and S' are 8-close state vectors with respect to

component i at stage k - 1 for some k < n, and if Xk is a feasible decision at

stage k, then Fk(S, Xk) and 'Fk(S', Xk) are /3iS-close.

Definition 8. We say a strongly monotone component i is directly bad if it violates

any of the three goodness conditions.

Definition 9. We say that a strongly monotone component i is indirectly bad if it is

not directly bad, but it influences a bad component.

Definition 10. We say that a strongly monotone component i is bad if it is either

directly or indirectly bad.

Note that a component i can be indirectly bad if it influences a component j

which in turn influences a directly bad component k. All three components would

be called bad.

The bad components are the ones where a small approximation in one stage can

lead either to a large relative error in subsequent stages or else can lead to a feasible

solution becoming infeasible. To avoid these difficulties, our algorithm will not

approximate any of the bad components.

Definition 11. We say that a strongly monotone component i is good if it is not

bad; that is, it satisfies the three goodness conditions and does not influence a bad

component.

19

Consider the following three examples.

Example 1. Minimize the sum of completion times on two machines subject to

exactly K jobs being assigned to machine 1. Here, the state vector for each stage k

has 4 components. The first component is the processing time on machine 1 of those

jobs from 1 to k that are scheduled on the first machine, and the second component

is the processing time on machine 2 of jobs 1 to k scheduled on that machine. The

third component is the number of jobs assigned to machine 1. This component is

polynomially bounded. The fourth component is the sum of the completion times

for the first k jobs. Component 3 is polynomially bounded. Components 1, 2 and 4

are strongly monotone and good, and they have the lower-is-better property.

Example 2. Find the shortest path from node 1 to every other node j with the

property that the cost of the path is at most B. The state vector for each stage

k has 3 components. Here, the first component in the state vector is the index of

the node on the walk of k arcs from node 1. The second component is the length

of the walk. The third component is the cost of the walk. The first component is

polynomially bounded. The second component is strongly monotone, has the lower-

is-better property, and is good. The third component is strongly monotone, has the

lower-is-better property, and is bad (because it fails part a of the definition due to

the constraint on the total cost).

Example 3. The knapsack problem. The state vector at stage k has two compo-

nents. The first component is the sum of the values of the items in the knapsack as

restricted to items 1 to k. The second component is the weight of the items in the

knapsack as restricted to items 1 to k. The first component is strongly monotone,

has the higher-is-better property, and is good. The second component is strongly

monotone, has the lower-is-better property, and is bad because it violates Condition

a of goodness.

Now that the concepts of good and bad monotone states have been formalized, we

can proceed to define d-domination and give the Branch and 6-Dominate algorithm.

Definition 12. (6-domination) Suppose that each component is either polynomially

20

bounded or strongly monotone. For a given parameter E [0, 1], we say that state

vector S d-dominates state vector S' if the following are true:

1. For all polynomially bounded components i, Si = S';

2. For all bad components i satisfying the lower-is-better property, Si < Si';

3. For all good components i satisfying the lower-is-better property, Si < (1 + d)S'

4. For all bad components i satisfying the higher-is-better property, Si > S';

5. For all good components i satisfying the higher-is-better property, Si > (1-d)S';

In order to carry out, Branch and d-Dominate, we replace domination of states by

domination of d-rounded state vector. Let S = S1, ..., S, be a state vector. Then,

the d-rounded state vector associated with S is S = S, ... , S , where{S6= | Si if i is a polynomially bounded component or a bad component

[logl+6(S i + 1)] if i is a good monotone component

The following lemma is an immediate consequence of the definition of the 6-

rounded state vector.

Lemma 2. Suppose that S, T, and W are state vectors at some stage, and let S6,

T6 , and W 6 be the corresponding d-rounded state vectors. If S dominates T6, then

S d-dominates T . Moreover, if S3 dominates T6, and if T 5 dominates W6, then S6

dominates W6.

Note that the converse of Lemma 2 is not true. If S d-dominates T, it is not

necessarily the case that S dominates T. Also note that it is possible that S

3-dominates T, and that T 6-dominates W, but that it is not the case that S 6-

dominates W. So 3-rounding introduces a transitivity into 3-domination that would

not be present without the rounding.

In the following algorithm, we let d-State(x) denote the d-rounded state vector of

State(x).

21

Algorithm. Branch and S-Dominate

begin

X0 = 0;

initialize the partial enumeration tree T by making its root xo;

for k = 1 to n

begin

for each unfathomed node x' at stage k - 1, and for each child

y of x' for which hk(y) = True, make y the child of x' in T;

while there are two nodes x' and x" at stage k such that

S-State(x') dominates S-State(x"), then fathom node x";

end

let x* be a leaf node that minimizes {c(x) : x is a leaf node};

end

Theorem 3. (Main Theorem) Suppose that rI is a combinatorial optimization prob-

lem in which the number of decisions at each stage is polynomially bounded in the

size of the input. Suppose that each solution has an associated state vector satisfying

Condition 1. Suppose also that there is at most one bad component, and let /max

= max{;3i : i is a good component}, where i is the parameter defined in Condition

3 of goodness. Then Branch and -dominate, with 6 = e/(2/m,,n), gives an FPTAS

for the Combinatorial Optimization Problem.

Proof. Let e be a positive real number less than 1, and let 6 = e/(2Pma,n). We

first show that the time taken by Branch and S-dominate is polynomial in the size P

of the input and in 1/c, or equivalently, that the time is polynomial in P and in 1/S.

We will next show that the number of nodes at Stage k is polynomially bounded in

the size of the input and in 1/S. For each polynomially bounded component i of the

state vector, let qi(P) be an upper bound on the number of values that component

i can take. If component i is monotone, then let 2
qi(P) be an upper bound on the

value that component i can take (such a polynomial exists by assumption.)

22

It follows then that the number of distinct d-rounded state vectors is O(ri=l qlg(P)

which is polynomial in P and in 1/a. So, at the end of stage k, the number of undom-

inated state vectors is at most the number of boxes, which is polynomial in P and in

1/S. Moreover, since each decision variable can take on only a polynomial number of

values, the number of state vectors created at stage k+1 is also polynomially bounded

in P and in 1/S. It is clear that all other operations are bounded by a polynomial in

P and in 1/5, and so the running time is established.

We next establish that the maximum relative error obtained by the Branch and

S-dominate is 1/e. Let x* = x, x*, ... , xa, be an optimal solution for the combina-

torial optimization problem. Let y, yl, y2, ... , yn, be a sequence of partial solutions

chosen as follows: y = 0; for each k = 1 to n, if yk-l $ x* is unfathomed at the

end of stage k, then yk = yk-l *X*; otherwise, yk is an unfathomed node at the

end of stage k such that 6-State(yk) dominates -State(y k - l $ X4). (The fact that

there is some unfathomed partial solution at the end of stage k such that 6-State(yk)

dominates -State(y k - l + x*) follows from the fact that yk-l + x* was fathomed, and

by the transitivity of the domination operation stated in Lemma 2.

Let Sk = State(yk) for k = 0 to n. Let Tk = State(yk - 1 * x). Let Wk =

State(xT,..., 4x). By Lemma 2, Sk a-dominates Tk for k = 1 to n. We now claim

inductively on k that the following is true:

1. If component i is a bad mononone component with the higher-is-better property,

then Sk > Wk;

2. If component i is a bad mononone component with the lower-is-better property,

then Si < Wk;

3. If component i is polynomially bounded, then Sk = iWk;

4. If component i is a good mononone component with the higher-is-better prop-

erty, then Sk > (1 - /3m,,,)kWk;

5. If component i is a good mononone component with the lower-is-better property,

then Sk < (1 + 3maxS)kWk;

23

It is clearly true for k = 0. Assume that the results are true for stage k-1. Then

it follows inductively that it is true at stage k from the third condition of goodness.

Assume without loss of generality that the objective function is the first component in

the state vector and has the lower-is-better property. This implies that at stage n, we

have Sl(y n) < (1 -+ /3max 2L n)lSl (X*) = (1 +)nS (*). We now use the inequality

(1 ±)n < (1 + 2x) for x c [0,1], and set x = 2 to conclude Sl(y n) < (1 + c)S1(X*),

which establishes the approximation guarantee and completes the proof.

This result is in the same spirit as that of Woeginger [5], but relies on simple

monotonicity rules rather than abstract notions of domination.. We will give a

detailed comparison with the approach found in Woeginger in section 1.5.

1.4 Applications Of Main Theorem

In this section, we give some results that follow from Theorem 3. Since our main area

of application is scheduling, we give a brief review of the terminology used.

1.4.1 Machine Scheduling Problems

Scheduling a set of jobs on a number of parallel machines to optimize some objective

function has been one of the central areas of research in the optimization community

for the past thirty years (see for instance [10], [11], and [12]). Throughout that course,

results that vary from being very positive (existence of an FPTAS) to negative results

showing bounds on the (in)approximability of various problems were developed. We

will concern ourselves here with what we call list scheduling problems. These are

scheduling problems that can be analyzed using the framework laid out in the previous

section, where the input is a list of n jobs and the jobs are processed sequentially. A

list schedule is a schedule in which the following is true: if jobs i and j are assigned

to the same machine, and if i < j in the input list, then job i precedes job j on

the machine. We will focus our attention on those list scheduling problems that

24

admit pseudo-polynomial time algorithms or admit an FPTAS. Interestingly, many

scheduling problems were shown to possess an optimal solution if the jobs are arranged

in a list according to some rule. Consequently, a pseudo-polynomial time algorithm

or an FPTAS to many list scheduling problems gives a corresponding solution to the

original problem where the jobs in the input are not provided in any particular order.

We will follow the standard practice in describing the scheduling problem with

the three fields al31-y. Here ac denotes the machine environment, /3 describes any

constraints specific to the problem, and describes the objective function. So

P2[ListCmax would mean that we are considering a list scheduling problem on 2

parallel machines, and we are interested in minimizing the maximum finishing time

(the makespan). We will start with a simple example.

Minimizing makespan on two identical parallel machines

In the scheduling problem P2JListJCmax, the input is a list of n jobs J1, ..., J, with

processing times Pl, ..., p in Z+. We would like to schedule the jobs on two identical

machines such that the makespan is minimized. The ordering in which the jobs are

processed in this problem is unimportant, and a list schedule gives an optimal solution

to the problem.

The state vector in any stage k is given by S = (S,S2, S3) = (, /1, M 2), where z

is the value of the objective function for the state vector, and Mi is the make span on

machine i. All components are good monotone, and have the lower-is-better property,

and there are no PB components. The mapping .Fk takes as input a state vector in

Sk-_1 and a feasible decision Yk. Here, Yk is simply which machine to schedule job k

on, and the cardinality of the decision set is clearly bounded by a polynomial in the

input size. Conditions 1, 2, and 3 are satisfied and Theorem 3 gives us the following

result, originally described in [4]

Corollary 1. Branch and d-Dominate gives an FPTAS for P21ListlCmax.

25

Scheduling To Minimize Weighted Completion Times

In the scheduling problem P21ListI WjCj, the input is a list of n jobs J1, ..., J

with processing times p1, ...,p, and weights wl, ...,wn, associated with each job, in

Z+. We would like to schedule the jobs on two identical machines such that the sum

of weighted completion times is minimized. The problem was shown to always have an

optimal solution if the jobs are renumbered according to pl/Wl < P 2 /W 2 < ... < Pn/Wn

and processed in a list, and hence an optimal solution to the list problem is an optimal

solution to the original problem.

The state vector in any stage k is given by S = (s,s 2, s3) = (z, M1 , M2), where

z is the value of the objective function for the state vector and Mi is the makespan

on machine i. Like the previous example, all components are good monotone, and

have the lower-is-better property, and there are no PB components. The decision k

is again which machine to schedule job k on. Conditions 1, 2, and 3 are satisfied and

we have the following result [4]

Corollary 2. Branch and 6-Dominate gives an FPTAS for P21List E WjCj.

1.4.2 Scheduling With Dependent Processing Times

We will consider here list scheduling problems with the property that the processing

times of the jobs vary according to certain factors. These factors can be the time

at which the job starts executing, the machine on which the job is scheduled, the

preceding jobs scheduled on the machine, etc. Branch and -Dominate gives an

FPTAS for many of these problems. We give some examples.

Total Weighted Completion Time With Preceding-Job Dependent Process-

ing Times

In the scheduling problem P21List, time - depl Z wjCj, we have as input a list of

n jobs J1, ..., J, with weights w1, ..., w E Z+. The processing time pj of job j on a

26

machine is a function pj: (j, y) -, Z+, where y is the last job on the current schedule

of the machine. We would like to minimize the total weighted completion time on

two identical parallel machines.

At each stage, we can only compare those states that have schedules ending in the

same jobs on the machines. The state vector is (sl, 2, 32, 84, s5) = (, M 1, A12 , 11, 12),

where z is the value of the objective function, Mi is the makespan on machine i, and

Ii is the last job scheduled on machine i. sl, 2, and s3 are all good monotone, while

s3 and s4 are PB. The decision yk places the job either on machine 1 or machine 2.

Conditions 1, 2, and 3 are fulfilled, and we have

Corollary 3. Branch and S-Dominate gives an FPTAS for P21List, time-depl Z wjC.

For a single machine, one can get strong approximation results for problems with

a similar flavor (see [13]).

Total Weighted Completion Time With Starting-Time Dependent Process-

ing Times

In the list scheduling problem P21List, time - depl E wjC3, we have as input a list of

n jobs J1, ..., Jn with weights wl, ..., wn E 2+. For every job j, there is an associated

positive integer cj, and the processing time pj is equal to cjtj, where tj is the time at

which job j starts execution on the machine. We again would like to minimize the

total weighted completion time on two identical parallel machines. A job interchange

argument shows that renumbering the jobs such that cl < c2 < ... < c, and processing

them in that order gives an optimal solution to the non-list version of the problem.

The state vector at stage k is given by (, 2, S3) = (z, M1, M2). All components

are good monotone having the lower-is-better property. The decision yk is which

machine to schedule job k on. Conditions 1, 2, and 3 are fulfilled, and Theorem 3

gives this result shown before in [14].

Corollary 4. Branch and d-Dominate gives an FPTAS for P2JList, pj = cjtj wj Cj

27

1.4.3 Single Machine Problems

We now discuss two list scheduling problems on one machine.

Scheduling With Rejection

In a scheduling with rejection problem, we are allowed to choose to not schedule

(reject) jobs at a certain penalty for each job rejected, and the goal is to minimize

some objective criterion, as well as the cumulative penalty for the rejected jobs. More

formally, we define the list scheduling problem lIList Es wjCj + sg qj, where we

have n jobs to schedule on one machine, with each job having a processing time pj,

weight wj, and rejection penalty qj, and we'd like to choose some subset S of the n

jobs to schedule on the machine such that the sum of weighted completion times of

the scheduled jobs and the cumulative penalty for the set of rejected jobs (denoted

by S) are minimized. This problem is sometimes also known as scheduling with

outsourcing, and the formulation given here is due to Sengupta et al. [15].

To put 1iList s wjCj + s .qj into our framework, we define the state vector in

state k to be (, s 2) = (z, M), where z is the objective function value at stage k and

M is the makespan of the machine. According to the decision Yk, the mapping Fk

schedules the job on the machine, or rejects it. Both components are good monotone

with the lower-is-better property, and conditions 1, 2, and 3 are fulfilled. This gives

another proof of the following result described in [15]

Corollary 5. Branch and 3-Dominate gives an FPTAS for 1 List Es wjCj + Zs qj.

Scheduling With Rejection Under Lateness and Outsourcing Constraints

In the scheduling problem 1List Zs wjTj + s qj, we have as input a list of n jobs,

each job in the list is has the following attributes [pj wj, dj, lj, qj], where pj is the

processing time of job j, wj is its weight, dj is its due date. The tardiness of job j

is defined as Tj = max{O, Cj - d, and is constrained to be at most Ij. We have

the option of 'rejecting', or not scheduling certain jobs at the expense of incurring a

28

penalty qj for rejecting job j. We constraint the number of jobs that we can reject

to be at most U. We'd like to choose, under the problem constraints, a subset S of

the jobs to schedule on the machine such that we minimize ES wjTj + ES qj, where

S n - S is the subset of jobs rejected.

Define the state vector for state k as S = (, 2 , S3) = (z, M, u), with z the value

of the objective function corresponding to that state vector, NM being the makespan

of the machine, and u the number of jobs rejected so far. Component 2 is a bad

monotone, since approximating it might violate the hard constraint imposed on the

tardiness. Component 3 is PB, with any values for s3 > U being infeasible. The

mapping Sk takes as input one of two decisions Yk, either schedule job k on the

machine, or reject it. Conditions 1, 2, and 3 are fulfilled, and we have a result that

was proved by Sengupta in [16]

Corollary 6. Branch and d-Dominate gives an FPTAS for IListl Es wjTj + s qj.

1.4.4 Maximization Problems and Polynomial Objective Func-

tions

So far, all the problems we have concerned ourselves with were minimization problems,

where all the monotone components also had the lower-is-better property. All our ob-

jective functions have been linear as well. We give here an example of a maximization

problem and a problem were the objective function is not linear, but polynomial.

The Knapsack Problem

In the knapsack problem ([17],[3],[18]) the input consists of n elements, with element

j being a pair of integers (vj, wj) in Z+, and an integer W in Z+ as well. vj is the

value of item j, while wj is its weight. We need to select a subset of the items such

that the total value is maximized while the total weight remains less that or equal

W.

29

To put Knapsack into our framework, we define the state vector in state k as

(S1,S2) = (v, w), where the first component is the total value of the items and the

second component is the total weight of the items in the knapsack at stage k. Here,

we would like to maximize s without violating the constraint on s2. Component sl

is good monotone, while s 2 violates the first condition of goodness and thus is bad

and cannot be approximated, as it may prevent us from including another item of an

arbitrarily high value in the knapsack. The mapping Fk can take one of two possible

decisions Yk as input: Either put the item in the knapsack or discard it. Conditions

1, 2, and 3 are fulfilled, and the following corollary follows from Theorem 3.

Corollary 7. Branch and b-Dominate gives an FPTAS for the knapsack problem.

Minimizing the Sum of Non Linear Functions of Completion Times on

Two Machines

In the problem P2jListJ FjEMl C2 + jeM2 C, we have as input a list of n jobs

J1, ... , Jn with processing times p, ..., p in Z+. We'd like to schedule the jobs on

two identical machines such that the aggregate of the sum of the squared completion

times of the jobs on machine 1 and the sum of the cubed completion times of the

jobs on machine 2 is minimized, subject to the constraints that both machines have

exactly n/2 jobs scheduled on each of them, and that at each stage k, the makespan

of the jobs scheduled on machine 1 is at most bk.

The state vector in stage k is S = (S1, 2, 3, S4) = (, M 1, M2 , U), where u is the

number of jobs scheduled on machine 1, and z is the value of the objective function

corresponding to that state vector. Components s, 2, and s3 are monotone, and

all have the lower-is-better property while s4 is PB. Furthermore, Component s2 has

a hard constraint placed on its value at each stage k, violating the first goodness

condition. The mapping .Fk takes any state in Sk-1 and the decision Yk, and outputs

two states in Sk, corresponding to placing the job either on machine 1 or on machine

2. Here, the objective function is a polynomial of degree 3, and we have 1 = / ma = 3

30

fulfilling goodness condition c for sl. Furthermore, Conditions 1, 2, and 3 are satisfied,

and we have by Theorem 3

Corollary 8. Branch and -Dominate gives an FPTAS for P21Listl ZjcM C +

_jEM2 C3.

It is interesting to note that so far, we have not encountered any problem where

the value of i was not equal to 1 if i y! 1. We have assumed that the first component

in a state vector is always the value of the objective function of the corresponding

solution, and so all components outside of the objective function have not had any

values for other than 1 in any of our examples. We will revisit this point in the

next section.

1.5 Comparisons With Woeginger

In this section, we compare and contrast Woeginger's results on dynamic program-

ming benevolence [5] with Branch and -Dominate. A quick review of Woeginger's

methods would help in identifying similarities and differences between the two ap-

proaches. Woeginger's work considers a generic optimization problem GENE, which

can be formulated as a simple dynamic program DP. If DP fulfills certain arithmetical

conditions, then GENE is called DP-Benevolent, and admits an FPTAS. DP relies

on the trimming the state space technique by merging states that are 'close' to each

other. This closeness is decided based on the concept of [D, A]-closeness between

states. For each problem GENE, there is a degree vector D = [dl,...,d,] C Na ,

that only depends on GENE and on the DP formulation, but not on any specific

instance of GENE. For a real number A > 1 and two state vectors S = (s, ..., s,),

and S'= (s ., ..,) E Na, we say that S is [D, A] to S' if for = 1, ...,, we have

A-dl . Sl < S < Adl S

Before proceeding to the benevolence conditions given by Woeginger, we need to

introduce two sets of functions F and X, and a function G. First note that the input

31

to GENE is given by n vectors X1, ...X E NO. The set F is a finite set of mappings

N' x N - N'. The set Nt is a finite set of mappings N a x N -- I. For every function

F E F, there is a corresponding mapping HF E H. The state space Sk is obtained

from Sk-l via Sk = F(Xk, S) : F E F, S E Skl, HF(Xk, S) < 0. The function

G : N - N is a non-negative function which gives the optimal objective value

OPT(I) to an instance I of GENE according to OPT(I) = min(G(S) : S E Sn).

The concept of dominance in DP is captured through two binary relations dom

and qua on N. The dominance relation dom is a partial order on N', while aqua is

a quasi-linear order on N. A relation on a set Z is a quasi-linear order if its reflexive

and transitive, and if any two elements of Z are comparable. A relation Aqua is any

extension of __dom, meaning that for two states S and S' E N0 , S __dom S' implies

S __qua S'. We are now ready to give the benevolence conditions for DP.

Condition 1. For any A > 1, for any F E F, for any X E N, and for any

S, S' E N0 , the following holds:

i) If S is [D, A]-close to S' and if S qua S', then (a) F(X, S) qua F(X, S') holds

and F(X, S) is [D, A]-close to F(X, S'), or (b) F(X, S) Cdom F(X, S') holds.

ii) If S _dom S', then F(X, S) ~dom F(X, S').

Condition 2. For any A > 1, for any H E , for any X E N, and for any

S, S' E N0 , the following holds:

i) If S is [D, A]-close to S' and ifS --qua S', then H(X, S') < H(X, S).

ii) If S %do, S', then H(X, S') < H(X, S).

Condition 3. The following are conditions on the function G.

i) There exists an integer g > 0 whose value depends only on G and D such that

for any A > 1 and for any S, S' E N, the following property holds: If S is

[D, A]-close to S' and if S Aqua S', then G(S') < A g . G(S).

32

ii) If S __dom S', then G(S') < G(S).

In addition to these conditions, a set of technical conditions regarding the size of

the input and the computation complexity of the functions involved is also required.

The following is the main result of Woeginger's paper, which states that a DP opti-

mization problem GENE is called DP-benevolent iff there exist a partial order dom,

a quasi-linear order qua, and a degree vector D such that its dynamic programming

formulation fulfills the above conditions

Theorem 4. If an optimization problem GENE is DP-benevolent, then it has an

FPTAS.

We now compare DP-benevolence to Branch and S-Dominate. The first obvious

difference between the two methods lies in how the state vectors are described. There

in no distinction between state components in Woeginger's framework, and the con-

cept of (good and bad) monotone or PB components is absent. This distinction is

the cornerstone that Branch and d-Dominate relies on to classify whether a problem

admits an FPTAS or not.

We noted earlier that both approaches make use of slightly altered versions of the

trimming the state space technique. While it can be argued that Woeginger's concepts

of [D, A]-closeness, and the binary relationships -dom and -qua are more general and

can offer more flexibility than the simpler concepts we employ here, we know of no

problems in the literature that can be captured using this added generality, while at

the same time being elusive to d-domination.

It is interesting to note that, out of the 11 problems considered by Woeginger in

[5], there is not a single one of them where the component d in the degree vector

takes a value that is more than 1, unless component 1 in the state vector happens to

be the objective function (i.e. all components of the state vector, with the possible

exception of the objective function, are always linear.) This is consistent with our

earlier observation in the previous section.

33

The problems in Woeginger are divided into two classes. The extremely benevolent

(ex-benevolent) DP problems, and the critical-condition benevolent (cc-benevolent)

DP problems. Ex-benevolent problems can be defined as those problems with H - 0

for all H e , and where __dom is the trivial relation on Ns , and _qua is the universal

relation on N. In the cc-benevolent problems, there is a coordinate in the state

vector that is referred to as the critical coordinate, and the relationship ,qua is the

quasi-linear order -<c on the states, where S -<,, S' if the critical coordinate of S'

is less than or equal to that of S. Woeginger gives various lemmas to determine if

the benevolence conditions, or variants of them, are satisfied for these two classes of

problems. We don't have to make these distinctions here, as our goodness conditions

capture both cases and all the problems are treated the same way under Theorem 3.

Two things included in this chapter that are not in Woeginger's work are the

inclusion of multi-criteria optimization and handling a subset of problems where the

cardinality of the decision set at each stage can be exponential. Woeginger's work

has been extended to multi-criteria by Angel, Bampis, and Kononov [19]. In what

follows, we show that the extension of the approach we presented so far to the case

of multiple criteria is natural and intuitive.

1.6 Multi - Criteria problems

In a multi-criteria optimization problem, solutions are evaluated with respect to more

than one cost criteria. Typically, a solution to such a problem is given by the Pareto

curve, which gives the trade-off between the various criteria being optimized. The

Paerto curve is basically the set of all undominated feasible objective vectors, and

can be defined more formally as follows. Given an instance I of a multi-criteria

optimization problem in k objective functions fi,i = 1, ..., k; the Pareto curve P(I)

is the set of all k-vectors of values such that for each vector v E P(I), (1) there is a

feasible solution x such that fi(x) = vi for all i, and (2) there is no feasible solution

x' such that fi(x') > vi for all i, with strict inequality for some i.

34

As expected, the Parteo curve is hard to compute, and we again have to set-

tle for approximate solutions. For an accuracy parameter > 0, we define an -

approximate Pareto curve, denoted P(I), as the set of solutions such that for some

solution x P((I), there is no other solution x' such that fi(x') > (1 + e)fi(x), for all

i. Papadimitriou and Yannakakis showed that an c-approximate Pareto curve always

exists [6], and that it contains a number of solutions that is polynomial in III and

1/c, but exponential in the number of objectives.

Branch and -Dominate extends naturally to handle multi-criteria optimization,

whereas the various objectives to be optimized are just written down in the state

vector as components that can be approximated. The definitions of bad and good

monotone components still apply, and help us in determining whether the c-approximate

Pareto curve for a multi-criteria LO problem can be efficiently computed via this

method. If the state vector component corresponding to one of the criteria is bad,

then this criteria is referred to as a bad criteria. We have the following theorem

Theorem 5. IF Branch and 6-Dominate gives an FPTAS for some single-criterion

combinatorial optimization problem, then it also gives an FPTAS for computing an

c-approximate Pareto curve for a multi-criteria version of that problem, provided that

at most only one criteria is bad.

Proof. Because the various citeria are simply represented as components in the state

vector, the proof proceeds exactly like the single criterion case, and the running time

is polynomial in the size of the problem and in 1/c. Since we are interested in more

than one objective, the running time will be exponential in the number of criteria,

as observed by Papadimitriou and Yannakakis. Consider the optimal Pareto curve

P(I) for the problem obtained by an optimal algorithm. At the end of stage n, and

for each state S E P(I), there exists a state S' returned by Branch and 6-Dominate,

with at least one of the objective criteria being at most (1 + c) or (1 -) away

from its optimal value in S. This is a straightforward consequence Theorem 3. A

maximal undominated subset of these state vectors forms the c-approximate Pareto

set, P(I). [

35

Let us illustrate this result with an example. Interestingly, the solution method

is exactly the same as the single criterion problems, showcasing the simplicity and

power of the approach.

1.6.1 Minimizing Makespan and Sum of Cubed Completion

Times on Two Machines

In the list scheduling problem P2IListlCma,,,,, C, we're given as input a list of n

jobs J1, ..., Jn with processing times pi, ..., p, E +, and we'd like to schedule them

on two identical machines such that the makespan and the sum of cubed completion

times are minimized. This is a bicriteria optimization problem, and the solution

we're looking for is an -approximate Pareto curve giving the trade-off between the

two objectives.

In stage k, we have S = (s1,s 2,s3:, 4) = (Cma, C3, M1,M2), and all the com-

ponents are good monotone. The decision yk at each stage is simply which machine

to place the current job on. Since Branch and 6-Dominate gives an FPTAS for the

single criterion version of this problem if we consider just one of the two objectives,

and since all components fulfill the goodness conditions with 3max = 3, Theorem 5

tells us that we can compute an c-approximate Pareto set, leading to the following

result, which also appears in [19]

Corollary 9. Branch and 6-Dominate gives an FPTASfor constructing an e-approximate

Pareto curve for the bicriteria list scheduling problem P2ListICmax, C] .

1.6.2 Problems with 'Crashing'

We consider now a special case of problems where the number of decisions we can

make per stage is exponential. On first glance, it seems hopeless to construct an

FPTAS for these problems using Branch and 6-Dominate. However, it turns out that

this is not an issue for the certain class of problems that we consider here, and an

FPTAS can indeed be constructed with little modification to Branch and 6-Dominate.

36

Let us first introduce the concept of 'crashing'; we are given an initial budget

endowment that we are allowed to use to decrease, or 'crash' some values in the

input data, probably leading to another decrease in the values of some monotone

components in the problem's state vector. An example would be decreasing the

processing time of a job on a machine in a scheduling problem or reducing the weight

of an item in a knapsack problem. One can think of crashing as using budget to

buy more resources so that a job executes faster (i.e. has shorter processing time.)

Now, besides the usual decisions we were making in the previous problems, like which

machine to schedule a job on, etc., we have another set of decisions to make, namely,

which jobs to crash, how much to crash a particular job, etc. It is clear that for

some values of the budget, the number of decisions that can be made per stage is

exponential, reflecting a trade-off between budget usage and processing time. We

examine this more formally in the next section.

List Scheduling with Crashing

We consider list scheduling problems with the property that the processing times of

jobs can be shortened by using up some budget of an initial budget endowment B.

The processing time of job j becomes a function pj (b), where b is the amount of budget

used to crash the job. We assume that for two values b and b', we have pj (b) > pj (b')

if b' > b. We need to modify Branch and S-Dominate in order to account for this

new situation. Again, we revisit the makespan minimization problem to illustrate

this modification in the context of an example.

Minimizing Makespan on 2 Machines with Budget Constraints

In the problem P21List, BCma,,,, we're given as input a list of n jobs J1, ..., Jn with

processing times Pi, .., Pn and an integer B in Z+. The processing times of the jobs

are their non-crashed values (i.e. pi(O)). We'd like to schedule the jobs, with crashing,

on two identical machines such that the completion time of the last job finishing is

minimized.

37

The state vector here comprises three components, S = (M1, M2, b), correspond-

ing to the makespans on the two machines and the budget used up by the solution

corresponding to that state vector. Note that b is constrained to take values that are

at most B. The decisions to be made at stage i now are: a) Which machine to place

job i on, and b) How much to crash job i. A problem arises now with the value of B,

which can be exponential in the problem size, and thus trying all possible values of b

for crashing a job is not an option. To get around this difficulty, the budget allocated

to job i is determined through a binary decision process as follows. If the budget can

take values in [1, u], with 1 = 0 and u = B initially, we evaluate the processing times

pi(b) when b = I and when b = u, for all state vectors. If pi(l) 6-dominates pi(u) for

a state, we assign the budget I and the processing time pi(l) to that state, and we

call this a closed interval. Otherwise, we branch again by having two new intervals,

[1, (12)] and [(1+u) + 1, u], and recursively repeat the process on each of the intervals.

We stop branching on an interval and close it whenever the condition is satisfied, and

we assign the lower budget value, together with the corresponding processing time of

the crashed job to the state.

This is the general method of budget allocation to any list scheduling problem

that involves crashing. The following is a general result that applies to all these types

of problems.

Lemma 6. The number of states resulting from the binary decision process on the

budget is polynomial in the input size of the problem and in 1/6.

Proof. Denote by P the largest processing time in the input data for an instance.

Suppose further that P is greater than B. Let us divide the interval [0, P] into

logl+(P) strips or boxes. Suppose we have decided to place the current job on

machine i and are considering how much to crash it by employing the procedure

described above. We notice that any open interval [bl,b2] is such that pi(b1) and

pi(b2) fall in different boxes, because otherwise the interval [bl, b2] will be closed as

Pi(bl) < (1 + 6)pi(b2). Consequently, there can be as many open intervals as there are

boxes, and that number is at most logl+6(P). This in turn is equal to ln(P/ ln(l+6)) <

38

F(1 + 1/d) ln(P)1 (from the Taylor series expansion of ln(1 +)). The right hand side

term in the last inequality is equal to (1 + 1/a) log(P)/ log 2] = O(½ log(P)).

On the other hand, suppose that B is bigger than P, and suppose that we keep

branching on one interval until two neighboring integers fall in their own boxes. This

would require that we do O(log(B)) branchings, which can potentially be bigger

than O(& log(P)). The running time is then given by O(max{logB, log(P)}) <

O(log max{ B, U }), proving the lemma. [

This result tells us that, even though we have an exponential number of decisions

at every stage, using the branching process reduces the number of decisions in every

stage to a polynomial in the input size and 1/c, and our main theorems still apply.

From the lemma, and from theorem 2, Branch and 6-Dominate will take time polyno-

mial in the size of the input and in 1/e to terminate. At stage n, we will have a subset

of nodes that represent the trade-off between the budget used and the corresponding

makespan.

Minimizing Total Weighted Completion Time on 2 Machines with Budget

Constraints

In the list scheduling problem P2IList, BI E wjCj, we have as input a list of n jobs

J1, ..., J with processing times pi, ..., pn and weights w1, ..., wn, in addition to a budget

B, all in Z+. We'd like to schedule the jobs on two identical machines such that

the total weighted completion time of the jobs is minimized subject to the budget

constraint.

The state vector here in stage k is (sl,s 2,s3, 4) = (z, Ml, M2,b), where z is the

value of the objective function, Mi is the makespan on machine i, and b is the budget

used so far. The decisions at each stage are which machine to place the job on and

how much to crash it. Components 1,2, and 3 are strongly monotone and good.

Component 4 is bad as we operate with a constrained budget B. Since we have just

39

shown that the cardinality of the decision set at every stage is still bounded by a

polynomial in the input size, then using Theorem 3 gives us the following result

Corollary 10. Branch and 6-Dominate gives an FPTAS for P21List, B IZ wjCj

Of course, this analysis will extend to any problem where we are allowed to use

the budget to manipulate the values in the input.

1.7 Summary Of Results for Scheduling Problems

We have presented existence conditions for FPTASes and pseudo-polynomial time

algorithms for single and multiple criteria list scheduling problems. In this section,

we tie the approach presented in this chapter to various results in the scheduling

literature.

Before proceeding, we note that any results that are applicable to uniform and

parallel machine environments also hold true for independent and parallel machine

environments as well, as per the following theorem. Note that independent machines

only differ from uniform machines in that the processing time of the same job can be

different from one machine to the next.

Theorem 7. Good and bad monotone components retain their status regardless of

the machine environment.

Proof. Consider a problem in a parallel/uniform machine environment and a state

vector Sk having at most one bad component. From our earlier results, this problem

possesses an FPTAS. Now, replace the machines in that environment with the same

number of non-identical, parallel machines. Let us examine the three conditions in

Definition 7. For the first condition, if component i in a state vector could be replaced

by another non-negative integer value and the resulting state vector is feasible, then

this implies that component i is not constrained, and this property holds whether

the machines are independent or uniform (as an example, if component i should not

40

exceed a value m, then it will be bad regardless of the machine environment.) Since

all the input to our problems (processing times, weights, etc.) is in Z+, the second

goodness property will hold as well for a component that was good in a uniform en-

vironment, as the value of si can only increase in an independent environment when

adding a new job to a machine if that was the case in a uniform environment as well

(otherwise the component would have been bad in the uniform environment; remem-

ber that the only thing that changes is the processing times of the jobs.) Finally,

note that the third goodness property depends on Fk and yk, and not on the machine.

One can say that 5k takes as input a processing time and the decision Yk. If condition

3 of goodness was satisfied for a certain component for a certain value of pj, then it

will still be satisfied for another value of pj, and hence the machine environment does

not affect this condition as well. The arguments from the non-uniform to uniform

environment are similar.

1.7.1 Problems With an FPTAS

We consider some problems that admit an FPTAS.

Problems On Two (or more) Machines

Consider scheduling problems of the form P21Listlminc(), where c() is an objective

function like min Ej (wjCj)q. Let us analyze the state vector for various constraints.

All these problems posses an FPTAS as per theorem 3.

* Consider an upper bound U(k)i on the number of jobs that can be processed on

machine i at stage k. the state vector Sk is (sl, S2, s3 , S4 , 85) = (Z, M1, M2, U1, U2),

with ui being the number of jobs processed on machine i.

* Consider a lower bound Li on the number of jobs that can be processed on ma-

chine i at stage k. the state vector Sk is (s 1, 2 , s 3 , 4 , 5) = (z, M1,M 2, ,u 2),

with ui being the number of jobs processed on machine i.

41

* Consider allowing rejection, with a bound O on the number of jobs that can be

rejected. the state vector Sk is (1,S2, S3, S4) = (z, MI, M2, O), with o being the

number of jobs rejected so far for this state vector.

* Consider an upper or lower bound constraint on a monotone component, like

Mi, the state vector will include a bad monotone component corresponding to

the constrained term.

We can also consider variations on the problem where the processing times of the

jobs vary according to some criterion. For example

* The processing time pj is a function of the job immediately preceding job j on

the machine. The state vector will be of the form Sk = (Sl, 2, S3, S4, 5)) =

(z, Ml, M2, ll12), where li, is the last job on machine i.

* The processing time pj is a smooth function of the time at which job j starts

executing. The state vector will be of the form Sk = (S1, S2, S3) = (, M1, M2).

Comments. There is still an FPTAS for all these problems for any fixed number m

of machines. Also, any combinations of these constraints will still give us a problem

with an FPTAS. There is also still an FPTAS regardless of the machine environment

as per Theorem 7.

Problems On a Single Machine

Consider scheduling problems of the form lListlc(.). Examples for c(.) can be

min j (wjCj) q, or wjUj, or wjTj. Let us analyze the state vector for vari-

ous monotone constraints. All these variants have an FPTAS as long as the number

of bad monotone components is at most one.

* Consider the problem where each job j has a strict due date dj. The state

vector is Sk = (sl, S2) = (z, M), component 1 is bad monotone.

42

* Consider the problem where each job j has a due date dj and a maximum

lateness Lj. The state vector is Sk = (Si,S2) = (z,M), component 1 is bad

monotone.

Comments. Combining any one of these constraints with any of the constraints

in the previous section still results in a FPTAS. There is no FPTAS if the numbers

of the machines is more than one. Other existing results in the literature that will fit

in our framework are [8], [7], and [13].

1.8 Conclusions

In this chapter, we have presented Branch and S-Dominate, a powerful framework for

quickly determining the existence or lack thereof for list optimization problems. We

have compared and contrasted our approach with that of Woeginger, and argued that

ours is simpler and easier to work with. We have also argued that while Woeginger's

approach seems to be more encompassing, we were not able to find evidence that

there is a wide variety of problems that benefit from the added complexity.

We showed how our approach can be used to give FPTASes for a wide range of list

scheduling problems. We extended the approach to handle multi-criteria optimization

and showed that in the context of branch and dominance, the extension is a natural

and intuitive one. We also presented a special class of problems where despite the

exponential cardinality of the decision set at each stage, we were able to still get an

FPTAS through our binary branching procedure presented in Section 1.6.2. In the

last section, we summarized some results for scheduling problems.

In the next chapter, we study the stochastic lot sizing problem and give an FPTAS

under certain assumptions. The problem is fairly more complicated than any of

the problems we considered here, and though a direct application of branch and

dominance or the concept of good and bad components does not apply, we still employ

some of the techniques we used in this chapter to derive our results.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

Chapter 2

Stochastic Lot Sizing

2.1 Introduction

Inventory management and lot sizing problems have always been the central area of

research in the supply chain and operations management literature. This problem

arises in a multitude of domains and has many practical applications (for exam-

ple, [20] and [21]). A significant portion of the research conducted in this area has

been dedicated to finding optimal control policies for problems with stochastic and

uncertain demands. Many of these policies turned out to have surprisingly simple

characterizations, like for instance the state-dependent base-stock policy [22], where

in each period there exists an optimal target base-stock level that is determined only

by the given conditional distribution at that period on future demands, but is in-

dependent of the inventory level at the beginning of the period. The optimal policy

aims to keep the inventory level at every period as close as possible to the target base-

stock level. That is, it orders up the target level whenever the inventory level at the

beginning of the period is below that level, and orders nothing otherwise. A slightly

more complicated class of policies is the class of state-dependent (s, S) policies [23],

where in each period there are lower and upper thresholds that are determined only

by the conditional future demand distribution in that period. The optimal policy

places an order in a period if the the inventory level at the beginning of the period

is below the lower threshold. This order is placed to bring the inventory up to the

45

upper threshold.

Perhaps a major part of the reason these policies turned out to be as simple is

that the dominant framework in which these problems were usually formulated was

mostly straightforward dynamic programming recursions. Unfortunately, on the flip

side, these policies also inherited the infamous 'curse of dimensionality' that plague

dynamic programming as well, making it almost impossible to find computationally

tractable algorithms for computing the optimal policies. Because of this intractability,

many researchers have attempted to construct computationally efficient heuristics for

these problems (see, for example [24]. But no attempts have been done to analyze the

worst-case performance ratio of these heuristics. Perhaps the most famous class of

these heuristics is what is known as myopic policies [25],[22], where in each period we

attempt to minimize the expected cost for that period, ignoring the effect on the cost

of future periods. While myopic policies are attractive because of their simplicity,

they can perform arbitrarily badly in some situations. Trying to approximate the

huge dynamic programs through a Markov chains approach was another approach

taken in [26].

Recently though, there has been a surge in interest in finding algorithms that,

while perhaps not optimal, are efficiently implementable and guarantee a performance

that is comparable to the optimal solution. Most notable here is the work of Levi, Pal,

Roundy, and Shmoys on approximation algorithms for stochastic inventory control

models [27]. In their work, they give a 3-approximation algorithm for the stochas-

tic lot-sizing problem. An a-approximation algorithm for a minimization problem

guarantees its output to be no more than a times the optimal solution, regardless

of the instance. According to the authors, this has been the first contribution in

the literature that moves from heuristics with no formal guarantees on the quality of

the solution into providing a computationally tractable procedure with a worst case

performance guarantee. In their approach, the authors stray from the conventional

dynamic programming paradigm and develop more complicated analytical techniques

to reach their results.

In this chapter, we strike a middle ground between the two approaches, in the sense

46

that we wish to find computationally efficient and provably good solutions, but we

do so in a dynamic programming framework. We investigate the stochastic lot-sizing

problem, and show that under some conditions, one can give a fully-polynomial time

approximation scheme (FPTAS) to obtain -approximate solutions. FPTASes are

considered by many to be the 'gold standard' in approximation algorithms, whereby

one is able to get as close as they wish to the optimal solution at the expense of

more running time. The running time is polynomial in the size of the problem and

also depends polynomially on the inverse of the accuracy parameter . We note

that, while our approximability results are stronger than those of Levi, Roundy, and

Shmoys, they are so because we employ a set of more restrictive assumptions.

The remainder of this chapter is structured as follows. Section 2.2 explains the

model we use and states our assumptions. Section 2.3 gives pseudo-polynomial time

algorithms for the problem. These algorithms are the main building blocks of FP-

TASes, and form the basis of obtaining our main result. Section 2.4 introduces a

couple of general techniques for computing approximate functions, which are later

used to derive the e-approximations. Section 2.5 concludes the chapter.

2.2 Models And Assumptions

This section introduces the basic notation, models, and assumptions used throughout

the rest of the chapter. Lot sizing and inventory management problems exhibit a

richness in the amount of interesting variations that stem from the central problem.

We have tried to make our general model as fairly encompassing as we could under

the restriction that we are interested in an FPTAS.

In the single-item stochastic lot-sizing problem, we have n planning periods. In

each period j, j = 1,..., n, there is a stochastic, integer-valued demand dj for a single

product, that comes from a known distribution Fj (.). Thus, the probability that the

demand in period j is equal to k is given by F3(k) - Fj(k - 1) and is denoted by

Pjk. We assume that the demand distribution functions are known for each period,

and that they are independent of each other; the actual demand value is revealed at

47

the end of the period. In each period j, we have the option to produce a quantity

Xj in order to fulfill current as well as future demand. If we decide to produce in a

particular period j, we incur a fixed cost Kj plus a variable cost cj(xj), where cj(.) is

a monotone non-decreasing function. Inventory can either be held from one period to

the next, or it can be disposed of. There is a holding cost hj (.) to hold inventory from

period j to period j + 1, where hj (.) is again a monotone non-decreasing function. We

will assume that cj(O) and hj(O) are equal to zero. Disposal of inventory can be done

at zero cost at any time, i.e. the salvage value at any period is zero. For simplicity,

and whenever no ambiguity can arise, we will drop the subscript j.

Demand can be fully or partially fulfilled. If we denote by Ij the inventory at the

end of period j and the beginning of period j + 1, then partial fulfillment of demand in

period j + 1 occurs when Ij + xj+l < dj+l, i.e. the sum of the amount of inventory at

the beginning of the period and the amount produced is less than the actual demand

for that period (demand for the period is revealed after production decisions are

made). Regarding partial demand fulfillment, we will consider two models. The first

assumes that any demand not fulfilled in a particular period j is immediately lost at

a cost. The cost is represented by a function qj (s) which is monotone non-decreasing

in the amount of lost demand s. Again, we assume that qj (0) = 0. The second model

does not allow demand to be lost, but rather, it is backlogged -again at a cost- and

fulfilled at a later period. Finally, we assume that all cost functions are bounded

above, and that if the argument to a function is not zero, then the value of that

function is bounded below by 1. The objective of the stochastic lot-sizing problem is

to minimize the overall cost.

Pseudo-polynomial time (PPT) algorithms are the basic building blocks for FP-

TASes. For lot-sizing problems, PPT algorithms are usually dynamic programs with

prohibitive running times. Understanding the structure and inner workings of these

dynamic programs is key to developing an FPTAS. For this reason, we discuss the

dynamic programming recursions for the our model in the next section. We do not

have to impose the free disposal assumption to obtain PPT algorithms, but we will

need it later for the approximation schemes. We also assume the existence of an

48

oracle that evaluates the functions h(.), q(.), and c(.) in 0(1) time for any particular

argument.

2.3 Pseudo-Polynomial Time Algorithms

We start by giving the notation used in the rest of this section. We denote by gj (I)

the optimum expected cost starting in period j with an inventory of I, so according

to our convention, I is just equal to Ij_1 for stage j, with Io being defined to be equal

to zero. Thus, our goal is to calculate the quantity g1(Io) = g1(O). For period j,

let u be the inventory level after demand has been observed in that period, and let

u+ and u- denote max{O, u} and max{O, -u}, respectively. Let rj(u) be defined as

min{rj(u- 1), qj(u-) +hj(u+) + gj+(u +)}. The term rj(u) captures all expected costs

in period j given that the inventory level is at u. The term rj(u- 1) is included in the

min expression because of our free disposal assumption: If rj(u) has more expected

cost than rj(u - 1), then we just dispose of one unit of inventory and assign the cost

of rj(u - 1) to rj(u).

Let us now consider the last period, and again utilize the free disposal assumption.

We can see that r(u) = min{r(u - 1), qn(u-)} because the term hn(u+) + g+l(u +)

is equal to zero. We can then write g(I) as the following program that minimizes

the objective function over all possible values for x, the quantity produced, for a

particular starting value for the inventory, I. The summation in the second term is

taken over all possible demand values for that period.

min c(x) + E Pnk x qn(sk)
k

st Sk = max(0, k-x-I) (2.1)

x E Z+

And in general, for period j, we write gj(I) as

49

min cj(xj) + E Pjkxrj(I + x-k)
k

x E Z+ (2.2)

For period j, let z denote the combined inventory resulting from the inventory on

hand at the beginning of the current period plus the amount produced in that period,

so that z = Ij_l + xj. We will denote the second term in the objective function in

(2.2) above by Yj(z), the expected cost after a production decision has been made in

period j, so that Yj(z) = k Pjk x rj(z - k). We let D* be equal to the sum of the

maximum demand values in all periods, and let dj be the number of possible different

demands in period j. We designate max{dj : j = 1,...,n} by d*. Therefore in (2.2)

above, x will be further restricted to take values between 0 and D*.

Proposition 1. The time needed to solve the single-item stochastic lot-sizing problem

to optimality is O(nD*2).

Proof. Consider period j. To evaluate gj(I) for a particular value of I and x (i.e. for

a fixed z), we need to consider all possible values for the demand k. As mentioned

earlier, the number of these different values is dj, and this can be at most d*. Thus

for a fixed z we need O(d*) steps to compute Yj(z). To compute Yj(z) for all values

of z requires O(d*D*) steps. For a fixed I, z varies only as a result of changing x,

and to compute gj(I) we take O(D*) steps, corresponding to the possible values x

can take. To compute gj(I) for all values of I < D* we therefore take O(D*2). This is

because the term D*2 dominates the d*D* term required to calculate Yj (z). Finally, to

calculate gj(I) for all I < D* and all j = 1, .., n we would require O(n(d*D* + D*2))

O(nD*2) steps.

Note that the situation when we replace lost sales with backlogging is mathe-

matically identical. The monotone nondecreasing cost function qj(sk) for lost sales

is replaced by another monotone nondecreasing cost function in the amount of un-

50

fulfilled demand Sk. Additionally, the starting inventory at every period could be

negative, indicating a backlogging situation. In this case the range for the value of

inventory at the beginning of a period is in [-D*, D*] and the running time remains

the same, up to a constant. Since the running time directly depends on d* and D*

and is polynomial in those quantities, this is indeed a PPT algorithm.

2.3.1 Linear plus fixed costs

We now turn our attention to give an algorithm for the special case when all cost

functions are linear and the production cost function for period j is given by

Cj() ={ Kj + 3jx, x =1,2,...,D*;

0, x= O.

where Kj is a fixed constant and j is a cost for producing one unit of inventory.

The algorithm relies on calculating gj(I) using a min-priority queue. This queue is

built using a heap data structure, which we will call Heap(l). Each node in Heap(I)

has a handle x (we will later refer to this node as node x) and a key that is equal

to cj(x) + Yj(I + x). The operation min(Heap(I)) simply returns the minimum key

value in Heap(I), which is also the same as gj(I) if the heap contains nodes for all

possible values of x. Returning the value of the minimum element in a heap is an

0(1)-time operation, and thus min(Heap(I)) takes constant time.

How much time does it take to build Heap(I) for some stage j, provided we have

calculated gj+l (.)? First, we again do the pre-processing step as we did in the previous

section, by calculating Yj(z) for all values of z in O(d*D*) time. To build Heap(O),

we take O(D*) time, because we have to start from scratch and create all the nodes in

the heap. We have at most D* nodes, one for each value of x, and so it takes O(D*)

steps to build Heap(O). One would expect however that gj(I) and gj(I + 1) have very

similar structures due to the assumptions on the cost functions. This is indeed the

case, and it is where we can exploit the linearity of the cost functions for computing

Heap(I + 1) from heap(I) in an efficient manner. Let key(x) denote the value of node

x in Heap(I + 1), and let oldkey(x) denote the key of node x in Heap(I). Consider

51

node x, where 1 < x < D*, then

key(x) = cj(x) + E(Yj(I + x + 1))

= j(x + 1)-6j + E(Yj(I + 1 + x))

= oldkey(x + 1) - 5j

Thus, with the exception of x = 0 and x = D*, any node x in Heap(I + 1) has a

key that is the same as the key of node x + 1 in Heap(I), minus 5j. Note that there

is no need to calculate the keys to those nodes in Heap(I + 1) corresponding to a

total inventory more than D*. For example, if we are calculating Heap(l), we do not

need to consider a value of D* as one of our nodes, since this will lead to an overall

inventory of D* + 1, which is more than the maximum possible demand in all periods.

Therefore, we need to only worry about node 0 in Heap(I + 1). This key is simply

the same as key(l) in Heap(l) minus Kj + j. Therefore, to create Heap(I + 1) from

Heap(I), we delete element 0 from the heap, increase all node indices by 1, subtract

c from all keys, and then reinsert the new element 0 with key calculated as above.

Both deleting and inserting an element from and into a heap can be performed in

O(log D*) time. Increasing the indices and subtracting can be performed implicitly

in 0(1) time. Thus, the total time to update the heap at each iteration is O(log D*).

Proposition 2. The time needed to solve the stochastic lot-sizing problem to opti-

mality when the holding and lost sales cost functions are linear and the production

cost function is linear plus a fixed constant is O(nD*(d* + log D*)).

Proof. We have shown that in stage j, the pre-processing step takes O(d*D*) steps.

Creating Heap(O) takes O(D*) steps, one for each value of x, and we do D* updates

to build the heaps for each value of I < D*. Updating the heap takes O(logD*)

steps, for a total time of O(D* log D*). Thus the total time needed to compute gj(I)

for all values of I is O(d*D* + D* log D*). Computing gj(I) for all I < D* and all

j =1, ..., n takes O(n(d* D* + D* log D*)). O[

52

Again, replacing lost-sales with a backlogging linear cost function results in a

mathematically identical situation where the inventory range is [-D*, D*]. Note that

the running time of the model presented in this section, which is perhaps the most

common model used throughout the literature, is computationally practical for a wide

range of demands.

2.4 Approximation Schemes

In the previous section, we noticed that the main difficulty in the general stochastic

lot sizing problem comes from the fact that the input can possibly contain very large

numbers. For example, to compute the quantity Y.(z) = Ek Pjk x rj(z - k) for

just one value of z in one period j would require considering all possible values for

the demand k in that period, of which there can be arbitrarily many. The direct

dependence of the running time on the quantities d* and D* is what gives rise to the

hardness of the problem.

A natural way to think about approximating such a problem is to consider only

a subset of the input values. If we can limit attention to a subset of the values that

is bounded in size by a polynomial in the size of the input, we would be able to

significantly enhance the performance of our algorithms. This speedup is gained at

the cost of sacrificing some accuracy in the final solution, since we are discarding

information by not looking at every value. We would like to bound the error result-

ing from using only a subset of the available information in such a way that we can

still get a provably good solution in the end. Since we are considering fully polyno-

mial time approximation schemes, 'provably good' here would require that we are at

most a factor of e away from the optimal solution, where is an accuracy parameter

that the algorithm takes as input. Furthermore, the running time of our algorithms

should depend polynomially on the size of the input and on 1/e. The core of our

approximation techniques is given in the following definitions and lemma.

Definition 13. (6-approximating set) Let > 0, and let f(.) be a non-negative,

monotonically non-decreasing function defined on integers 0 to U. Suppose further

53

that f(O) = 0 and f(x) is bounded below by U > 1 for any x f 0 and above by

f(U) = U. A 6-approximating set of f(.) is an ordered set S = {il..., i} of integers

fulfilling

1. S C {,1,...,U;

2. For each k = 1 to r - 1, if ik+1 > ik + 1, then f(ik+1) < (1 + 6)f(ik);

3. Let D be the domain of f(.), then for any element i E D, there is an element

j E S such that j > i and f(j) < (1 +)f(i).

Definition 14. (6-approximation) Consider a function f(.) defined on integers [0, 1, ..., U].

Suppose this function fulfills the conditions given in Definition 13 and let S be a 6-

approximating set for f (.). A function f (.) defined as follows is called a 6-approximation

of f(.). For any integerx E [O, U] and {ik, ik+1} E S, with ik < < ik+1

f(x) = { f(ik+l), X E [ik,ik+l], and ik+1 # ik + 1;

f(x), X = ik or ik+1 and ik+1 = ik + 1.

Note that f(x) is well defined from Condition 3 in Definition 13, as there is

guaranteed to be an interval in S into which any integer x E [0, U] falls. Let us put

this definition in a more pictorial setting. Let D be the domain of f(.), and let S

be a subset of D fulfilling the points in Definition 13. We can think of f(.) as a

step-approximation to f(.): All integers in [ik, ik+l] have the same value for f(.) for

ik+1 $ ik + 1. Thus, f(.) generally looks like f(.), but is more 'flattened'. We next

show how to compute S.

Lemma 8. (6-approximation Lemma) Let f(.) and 6 be as defined above. A 6-

approximating set of f(.) can be computed in O(1 log(max{U, U})) time.

Proof. We give a procedure that computes the desired 6-approximating set in the time

given in the lemma. Consider evaluating f(.) at points 0 and U, if f(U) < (1+6)f(0),

we add {0, U} to S and stop. We call [0, U] a closed interval. Note that at this point,

54

S = {0, U} fulfills all conditions in Definition 13. The first two conditions are easy

to check, the third condition follows because f(.) is non-decreasing, and hence if

f(U) < (1 + 6)f(0), then f(U) < (1 +)f(x) as well, for any integer x [O, U].

If the condition f(U) < (1 + 6)f(O) does not hold, then the interval [0, U] is still

'open', and we split it into two new intervals [0, vU] and [+ 1, U]. We recursively

repeat the procedure for each of the new intervals, stopping whenever the condition

is satisfied for an interval, closing that interval, and inserting its endpoints in their

proper position in S. If the condition is not satisfied then the interval is open and we

branch further. Since f(.) is bounded above by U, the maximum number of intervals

that can be created before the condition is satisfied is logl+,(max{U, U}). This can

be seen via a simple pigeonhole argument: One can divide the range [0, U] into at

most m = logl+,(U)] + 1 disjoint boxes such that if [a, b] are the end points of a

box, then they satisfy b = 1 + 6. Thus, the zeroth box contains just 0, the i th box

has its end points [(1 + 6)i-l, (1 + 6)i] for i = 1,.., m - 1. Since the value for f(.)

for every element in its domain [0, U] is in the range [0, U], then the functional value

for any integer in [0, U] will have to fall in one of the boxes. Consequently, any open

interval [xl, x2] will have the functional values corresponding to its end points lying

in two different boxes, because if they lie in the same box then that would imply that

f(X2) < (1 +) and [xI, 2] should be closed.

We consider two extreme cases that give rise to the terms in the max expression

in the running time given in the statement of the lemma.

Case 1: Suppose U is less than U. We can have at most as many open intervals

at any one point as there are boxes. This is because an open interval has its two end

points lying in different boxes (otherwise it would be closed), and all open intervals

are disjoint. In the worst case, the binary branching will continue without any interval

being closed until there are logl+6(U) intervals. Since this will be a complete binary

tree, the total number of intervals or nodes created in all tree levels above the last

one will be at most O(log1+6(U)) nodes, for an overall O(logl+6(U)) number of nodes

created. This in turn is equal to ln(U)/ ln(1 +)) < (1+ 1/6) ln(U)] (from the Taylor

series expansion of ln(1 +)). The right hand side term in the last inequality is equal

55

to [(1 + 1/6) log(U)/ log 21 = O(log(U)).

Case 2: Suppose U is greater than U and consider two adjacent values in the

domain of the function that have a very large difference in their functional value that

is not bounded by (1 + 6). This indicates that both elements should be in S. In this

case we will keep splitting the intervals so long as they contain those two values, until

we reach those two adjacent values and include them in S as intervals of length one.

To reach this point in our tree would take us O(log U) time. Thus the overall running

time would be

O(max{log U, log(U)}) < log max{U, U})

Definition 13 and Lemma 8 are also true if f(.) is monotone non-increasing instead

of monotone non-decreasing. The second and third conditions in the definition are

changed to

* For each k = 1 to r - 1, if ik+l > ik + 1, then f(ik) < (1 + 6)f(ik+l);

* Let D be the domain of f(.), then for any element i E D, there is an element

j E S such that j < i and f(j) < (1 + 6)f(i).

The branching procedure in the lemma is modified to account for this change in

the obvious way: An interval [a, b] is closed if f (a) < (1+6)f (b), otherwise we continue

branching on it. The following lemma is a simple, straightforward consequence of

Definitions 13 and 14 that we will later use in deriving our FPTAS.

Lemma 9. For any element x in the domain of f(.), we can find an element y E S

such that f(y) < (1 + 6)f(x).

Proof. The proof follows from the construction of S. Consider the case when f(.)

is monotone non-decreasing and recall that for any two consecutive elements ik and

ik+l, both in S, we have f(ik+1) < (1 +)f(ik). Therefore, for any x in the domain

of f, we can find the interval [ik, ik+l] into which it falls in S, and take y to be equal

56

to ik+l. If f(.) is monotone non-increasing then we choose y as ik and the lemma still

holds.]

Putting Definition 14 and Lemma 9 together, we arrive at the following simple

corollary

Corollary 11. Consider a function f(.) and its 5-approximation f(.). For any x in

the domain of f(.), we have f (x) < (1 + 6)f(x).

We now proceed to derive the FPTAS for the general single item stochastic lot

sizing problem using the definitions and lemmas we discussed here. We will show how

to approximate the various quantities introduced in the previous section, and how to

put the various approximations together to get our desired result.

2.4.1 Approximating Yj(z)

Recall from before that Yj(z) is the expected cost after a production decision has

been made in period j, such that the production plus the incoming inventory is z.

For fixed values of j and z, let us denote by rjz(k) the quantity rj(z - k). We can

then write Yj(z) as

Y(z)= Pjk x rjz(k)
k

To approximate Yj (z), we will approximate rjz(k) as well. The difficulty in calcu-

lating rjz(k) comes from having to consider all possible values for the demand k, so we

will try to consider only a subset of these values. Observe that in addition to gj+l(.),

the second component in the min expression for rjz(k) can be broken down into two

components; the holding cost hj(z-k) + and the lost sales cost qj (z- k)-. Notice that

for fixed j and z and depending on the value of k, exactly one of those components

will contribute a cost to rjz(k) while the other one will be 0. To approximate rjz(k)

we will approximate both of these functions.

Let us first consider the case when the demand falls in the interval [1, z]. Here,

rjz(k) will be equal to hj(z - k)+ + gj+l(z - k). Because we have assumed that we

57

can dispose of inventory for free, we would have rjz(k) be a monotone non-decreasing

function in k. This is because the quantity z - k decreases with increasing k and

the values of hj(z - k) and gj+l(Z - k) can only increase with decreasing z - k (if

hj(a) was greater than hj(3) for a > , we can dispose of a - items and have

hj(a) = hj(0); the same is true for gj+1(.)). We can thus use our S-approximation

Lemma to compute a 6-approximating set for rjz(k) in that range. We will denote

the resulting set by j l(z).

The case when the demand falls in the interval [z, Dj] is completely analogous. In

this interval, rjz(k) is equal to qj(k - z) + gj+i(O), which is again a non-decreasing

function in k. We compute a S-approximating set for rj,(k) in this interval and

denote it by VJ2(z). A S-approximating set for rjz(k) over all possible demand values

is now given by appending k2(z) to Tl(z). We denote the resulting S-approximating

set for rjz(k) by j(z).

For a fixed value of j and z, we Let Yj(z) be an approximation to Yj(z). One can

think of Yj(z) as calculating Y(z) over demand intervals instead of demand points.

Every interval has a probability equal to the sum of the probabilities of all the demand

points lying in it and each demand point is assigned a cost equal to the cost of the

most expensive demand point in the interval. We can calculate Yj(z) as follows

Yj(z) = > (Fj(ik+l) - Fj(ik)) . rjz(ik+l) (2.3)
ik Cj (Z)

We can now apply the same techniques in order to compute a 6 - approximating

set for Yj(z). We will denote the resulting set by Tj. We will make a slight abuse

of notation and let Y9j(z) be a S-approximation to YYj(z), instead of the more correct

Yj(z), to make it more easily readable.

To summarize; so far we have shown how to compute Yj (z), an approximation

to Yj(z) for fixed j and z. For a fixed value of j, We have also computed a 5-

approximating set for the function Yj(z) and denoted it by Tj. Finally, we denoted

the S-approximation for Yjz by Yj(z).

58

2.4.2 Approximating gj (I)

We now proceed to approximate the function gj(I). First, consider the production

cost function cj(.); we invoke Lemma 8 to compute a d-approximating set for it and

we denote the resulting set by j. Also, for a fixed value of I, we will denote Yj (I+ x)

by jI(x). We let j(I) be our approximation to gj(I), and we write gj(I) as

gj (I) = min cj(x) + YjI()

st. x E j, y,y' E Tj() (2.4)

y < x < y'

where y and y' are consecutive in Tj(I). One can see from the above that for fixed

j and I, j(I) is simply gj(I) computed for only certain values of x; namely, those

values that are in j. For every value x E Ij, there is a value I + x that falls in

some [y, y'] in Tj(I). Instead of calculating Yji(x), we calculate Yji(y) > Yji(x) as

y < x < y' (recall that j(.) is non-increasing.)

We can now compute a d-approximating set for gj(I) by Lemma 8, we denote this

set by Fj(I). Again, we abuse the notation and let 0j(I) be our d-approximation to

Let us now put these approximations together to derive a procedure that will

lead to our FPTAS. Starting from period n and working backwards, we can compute

the various d-approximating sets at every stage. We now show that this sequence of

approximations leads to an FPTAS. We start by proving a bound on the resulting

approximation.

Lemma 10. At stage j and for any value of I, we have j(I) < (1 + d)3(n-j+l)gj(I).

Proof. We prove the lemma by induction, starting with the base case for period n and

working backwards. To make the following discussion easy to follow, we will break it

down into a sequence of propositions.

59

Proposition 3. For any z, if we calculate Yn(z), then we have Yn(z) < (+6)Yn(z).

Proof. Consider the quantity rz(k) and recall that we calculated it over demand

intervals. Because r,,(k) is non-decreasing on k, any value for k that falls between ik

and ik+l in In(k) has a value for rz(.) that is at least equal to rnz(ik). Thus a lower

bound on the cost of rnz(.) for an entire demand interval [ik, ik+1] can be given by

LB = (Fn,(ik+l) - Fn(ik)) rnz(ik). From the construction of 1'n,(k), we know that ik

and i+l satisfy rnZ(ik+l) < (1 + 6) rnz(ik), and thus (Fn(ik+l) - Fn(ik)) 'rnz(ik+l) <

(1 + 6) LB, the claim follows by summing the inequality over all demand intervals

and noting that the resulting sum for LB is less than or equal to Y"(z).]

Proposition 4. For any arbitrary z, we have Yn(z) < (1 + 6)2Y(z).

Proof. Because Y,(z) is the -approximation to Yn(z), this proposition is a direct

consequence of Corollary 11 and Proposition 3.

Proposition 5. For any I, we have g(I) < (1 + 6)29g(I).

Proof. Let x* be the minimizer for gn(I) (and hence z* is equal to I + x*). Note that

gn(I) contains two terms c,(x) and Y,(z), and that by construction of I) we can find

an x' c JŽ, such that x' > x* and c,(x') < (1 + 6)cn(x*). By proposition 4, we have

Y(z*) < (1 + 6)2Yn(z*). Since z' = I + x' > I + x* = z* and 7Y~(z) is non-increasing,

we have <(') < Yn(z*) < (1 +)2Y,(z*). Going back to g(I) in (2.4), we have

gn(I) = c(zx') + lY(z') < (1 + 6)cn(X*) + (1 + 6)2Yn(z*) < (1 +)2g9(I), and the

proposition is proved. E

Proposition 6. For any arbitrary I, we have .g(I) < (1 + 6)3g(I).

Proof. Again, using Corollary 11, and Proposition 5, this result follows directly from

the fact that gn(I) is a 6-approximation of g(I). []

From the propositions above, the lemma holds true for the base case j = n. For

the inductive step, we assume that the lemma is true for stage j + 1, i.e. that for an

arbitrary I, we have Oj+l(I) < (1+-6)3(n-j)gj+l(I). Consider stage j and gj(I), we will

60

next derive the relationship between gj(I) and j(I). This derivation is essentially a

repetition of the proofs we did for the base case, with the added precaution that we

have the extra term gj+l(.) in the expression for rjz(k).

Let us pause for a moment to think about rjz((k), breaking it down into its con-

stituent parts, we can repeat the analysis we did earlier for r,,(k). Recall that

rjz(k) = min{rj((z - k) -), q((z - k)-) + hj((z - k)+) + gj+,((Z-)+)}. However,

because gj+l(.) is unavailable, we will use j+(.) instead. Let us denote by ijz(k) the

function that is the same as rj,(k) but that uses Oj+1(.) instead of gj+(.). From the

induction hypothesis, if we evaluate both rjz(k) and fj.(k) at the same value for k,

we will have jz(k) < (1 +)3(n-j)rjz(k).

As before, we can compute a d-approximating set for ijz(k) by Lemma 8 and we

denote it by Ij.

Proposition 7. For any z, we have Y.(z) < (1 +)3(n-j)+2 Y(z).

Proof. The proof is exactly the same as the proofs in Propositions 3 and 4: Let us

denote by Yj(z) the value we get when we replace rjs(k) by rjz(k) in (2.3). Because

we calculate Yj(z) over 'jI, we will have Yj (z) < (1 + 5)Yj(z). But Yj(z) itself is off

from Yj(z) by the factor (1 +)3(n-j) due to using rjz(k) in (2.3). Thus the overall

error is Yj(z) < (1 + 6)3(n-j)+lYj(z). Since }j(z) is the -approximation to Yj(z),

then by Corollary 11 we have j(z) < (1 + a)Yj(z) < (1 +)3 (n-)+ 2Yj(z).

Finally, by duplicating the proofs to Propositions 5 and 6 and noting that the rel-

ative error between gj (I) and j (I) is the same as the relative error between j (z) and

Yj(z), we have j(I) < (1 + a)3(n-j)+2gj(I). Given that .j(1) is the -approximation

to j(I) and by Corollary 11, we have j(I) < (1 +)Qj(I) < (1 +)3(n-j)+3gj(I),

which completes the proof.

2.4.3 Approximation guarantee and running time analysis

We are now in a position to prove the main result of the chapter.

61

Theorem 11. The outlined approximation procedure gives an FPTAS for the general

stochastic lot sizing problem when we set 6 = 6n'

Proof. We first prove that the resulting approximation is indeed a (1 + e) approxima-

tion. For stage 1, and by Lemma 10, we know that we have 1(0) < (1 + 6)3 ng1 (0).

Setting 6 to the value in the theorem, we get 1(0) < (1 +)3ng1(0). Using the

inequality (1 + x/n) n < I + 2x for 0 < x < 1, we get 91(0) < (1 + 2. e/2) gi(0), i.e.

l1(0) (1 +) OPT.

We use Lemma 8 to Show that the algorithm runs in time polynomial in the

input size and 1/c. Let B be an upper bound on the cost and recall we denoted the

maximum demand value by D*. In any period, we calculate the 6-approximating sets

Aj, Tj, Fj. The running time of any one of these operations is bounded above as

given by the lemma to be O(' log(B + D*)). To compute Fj for a fixed j we need

to scan through 0(½ log(B + D*)) values of I. For each of these values, we need to

compute Ij and Tj, which again takes 0(½ log(B + D*)). Thus for one period we

need time proportional to O(2 log2(B + D*)). Doing this for the n periods will lead

to an overall running time proportional to O(log2(B + D*). This is also the time

needed to compute gj for all I E Fj and for all j. Putting as as in the statement

of the lemma gives us a running time of O(n log2(B + D*)), which is polynomial

in 1/ as well as the size of the data in the problem. This finishes the proof of the

theorem. O

We have thus shown that under our assumptions, one can develop an FPTAS for

the stochastic lot sizing problem. This is indeed a very strong result given that until

very recently, heuristics with no provable guarantees were the only available results

for this extremely important problem. In the next section, we discuss the possible

extensions that we will add to our work

62

2.5 Conclusions and Future Work

We have mentioned that the lot sizing problem is very rich with variations that

stem from the main problem we investigated in our work. Some of these variations

which we are currently considering are the following. Developing an FPTAS for the

model we discussed in this chapter, but under capacity constraints. Another direction

is to include correlated demands but in a Markovian sense, where the distribution

of the demand in period j depends on the actual realized demand in period j -

1. If we assume we have constant lead times that are not equal to zero, then its

conceivable that we can still get an FPTAS but with running times that are -while

still polynomial- largely unattractive. It is not clear that incorporating stochastic

lead times can still get us an FPTAS.

In summary, we have used some of the ideas we introduced in chapter 1, along

with some other techniques to develop our FPTAS in this chapter. The difficulty of

the problem came from the many quantities that we need to approximate and keep

track of, while making sure that at any point our relative error is still within control

to obtain the c approximation. The technique introduced in the 5-approximation

Lemma would probably prove very useful for a larger multitude of problems (this

is the same technique we have used to be able to get an FPTAS in chapter 1 for

problems where the cardinality of our decision sets were exponential.) It would be

interesting to see other applications for this method.

63

THIS PAGE INTENTIONALLY LEFT BLANK

64

Bibliography

[1] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, San Francisco, 1979.

[2] Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for schedul-

ing nonidentical processors. J. ACM, 23(2):317-327, 1976.

[3] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knap-

sack and sum of subset problems. J. ACM, 22(4):463-468, 1975.

[4] Sartaj K. Sahni. Algorithms for scheduling independent tasks. J. A CM,

23(1):116-127, 1976.

[5] Gerhard J. Woeginger. When does a dynamic programming formulation guar-

antee the existence of an fptas? In SODA '99: Proceedings of the tenth annual

ACM-SIAM symposium on Discrete algorithms, pages 820-829, Philadelphia,

PA, USA, 1999. Society for Industrial and Applied Mathematics.

[6] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs

and optimal access of web sources. In FOCS '00: Proceedings of the 41st Annual

Symposium on Foundations of Computer Science, page 86, Washington, DC,

USA, 2000. IEEE Computer Society.

[7] G.V. Gens and E.V. Levner. Fast approximation algorithms for job sequencing

with deadlines. Discrete Applied Mathematics, 3:313-318.

[8] M.Y. Kovalyov and W. Kubiak. A fully polynomial time approximation scheme

for the weighted earliness-tardiness problem. Operations Research.

65

[9] Ravindra K. Ahuja, Ozlem Ergun, James B. Orlin, and Abraham P. Punnen.

A survey of very large-scale neighborhood search techniques. Discrete Applied

Mathematics, 123(1-3):75-102, 2002.

[10] A.H.G. Rinnooy Kan E.L. Lawler, J.K. Lenstra and D.B. Shmoys. Sequencing

and scheduling: Algorithms and complexity. In A.H.G. Rinnooy Kan S.C. Graves

and P.H. Zipkin, editors, Logistics of Production and Inventory, pages 445-522.

Handbooks in Operations Research and Management Science 4, North-Holland,

Amsterdam, 1993.

[11] J.K. Lenstra R.L. Graham, E.L. Lawler and A.H.G. Rinnooy Kan. Optimization

and approximation in deterministic sequencing and scheduling: a survey. Annals

of Discrete Mathematics, 5:287-326, 1979.

[12] A.H.G. Rinnooy Kan J.K. Lenstra and P. Brucker. Complexity of machine

scheduling problems. Annals of Discrete Mathematics, 1:343-362, 1977.

[13] P. Brucker and M.Y. Kovalyov. Single machine batch scheduling to minimize

the weighted number of late jobs. ZOR - Mathematical Methods of Operations

Research, 43:1-8, 1996.

[14] Zhi-Long Chen. Parallel machine scheduling with time dependent processing

times. Discrete Appl. Math., 70(1):81-93, 1996.

[15] Daniel W. Engels, David R. Karger, Stavros G. Kolliopoulos, Sudipta Sengupta,

R. N. Uma, and Joel Wein. Techniques for scheduling with rejection. In ESA

'98: Proceedings of the 6th Annual European Symposium on Algorithms, pages

490-501, London, UK, 1998. Springer-Verlag.

[16] Sudipta Sengupta. Algorithms and approximation schemes for minimum late-

ness/tardiness scheduling with rejection. In Algorithms and Data Structures,

8th International Workshop, WADS 2003, Ottawa, Ontario, Canada, July 30 -

August 1, 2003, Proceedings, pages 79-90. Springer, 2003.

66

[17] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the

knapsack problem. J. ACM, 21(2):277-292, 1974.

[18] E.L. Lawler. Fast approximation schemes for knapsack problems. Mathematics

of Operations Research, 4:339-356, 1979.

[19] Eric Angel, Evripidis Bampis, and Alexander Kononov. On the approximate

tradeoff for bicriteria batching and parallel machine scheduling problems. Theor.

Comput. Sci., 306(1-3):319-338, 2003.

[20] N. Erkip, W. H. Hausman, and S. Nahmias. Optimal centralized ordering poli-

cies in multi-echelon inventory systems with correlated demands. Manage. Sci.,

36(3):381-392, 1990.

[21] Hau L. Lee, Kut C. So, and Christopher S. Tang. The value of information

sharing in a two-level supply chain. Manage. Sci., 46(5):626-643, 2000.

[22] T Iida and P Zipkin. Approximate solutions of a dynamic forecast-inventory

model. Working Paper, 2003.

[23] P. Zipkin. Foundations of inventory management. McGraw-Hill, 2000.

[24] Lingxiu Dong and Hau L. Lee. Optimal policies and approximations for a se-

rial multiechelon inventory system with time-correlated demand. Oper. Res.,

51(6):969-980, 2003.

[25] A Veinot. Optimal policy for a multi-product, dynamic, nonstationary inventory

problem. Manage. Sci., 12:206-222, 1965.

[26] E. Chan. Markov chain models for multi-echelon supply chains. PhD thesis,

1999. School of ORIE, Cornell University.

[27] Retsef Levi Martin Pal, Robin Roundy and David Shmoys. Approximation al-

gorithms for stochastic inventory control models. IPCO, 2005.

67

