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by

LEONID KEYSER

Submitted to the MIT Sloan School of Management on May 8, 2005 in partial fulfillment
of the requirements for the degree of

MASTER OF BUSINESS ADMINISTRATION

ABSTRACT

The Capital Asset Pricing Model (CAPM), which relates the risk of an individual security
to its expected return, is frequently cited in investments textbooks and the academic
literature as a centerpiece of modem finance theory. The main prediction of the CAPM is
that investors are compensated in the form of expected return only for bearing systematic
or market risk, which is the portion of a security's risk that cannot be diversified away.
That investors demand reparation for and only for systematic risk is a consequence from
the pivotal assumption that all investors have identical information for the entire universe
of publicly traded securities. In actuality, professional active money managers rarely
invest in a portfolio broad enough to be considered the market portfolio. Instead, the
asset management industry has self-organized over time according to a top-down
investment process, where asset allocators provide capital to security selectors who
specialize in high-yield bonds, large-cap value stocks, and the like. Any losses in
diversification benefits resulting from this theoretically suboptimal two-phase investment
strategy are deemed an unavoidable cost of obtaining accurate forecasts through
specialization in security analysis and portfolio management. This research paper
extends the ideas of the CAPM to formulate an equilibrium security pricing model that
attempts to account for the top-down approach followed by investors in the real-world.

Thesis Advisor: Jonathan W. Lewellen
Jon D. Gruber Associate Professor of Finance
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1. Introduction

The Capital Asset Pricing Model (CAPM), which relates the risk of an individual

security to its expected return, is frequently cited in investments textbooks and the

academic literature as the centerpiece of modem finance theory. The widely known

CAPM equation

i = rf + AM( M - rf)

where

iM
E2

enables finance practitioners and researchers to estimate the fair expected return for any

security based on a handful of readily computable parameters. In the equation, Pi is the

expected return on security i, r is the risk-free interest rate, iM is the covariance of

the security with the market portfolio M, crM is the variance of the market portfolio, and

fM is the expected return on the market portfolio. Both the origin and the interpretation

of the CAPM are discussed in detail in Sections 2 and 3.

The main prediction of the CAPM is that investors are compensated in the form of

expected return only for bearing systematic or market risk, which is the portion of a

security's or portfolio's risk that cannot be diversified away. The systematic risk of

security i is measured by the parameter /,i and is called the security's beta. Thus, the

CAPM asserts that high-beta securities will on average outperform low-beta securities.

Why do investors demand reparation for and only for systematic risk? The main

conclusion of the CAPM derives not from some law of nature or rule enforced by

securities exchanges, but from the pivotal assumption that all investors have identical

information for the entire universe of publicly traded financial assets, which leads

naturally to the deduction that all investors hold the market portfolio.

When the objective is to optimize portfolio reward and risk, a security's value is

determined by (1) its expected return and (2) its diversification properties as reflected by

its average covariance with other securities in the investable universe. A security's
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covariance iM with the market portfolio is roughly equivalent to its average covariance

with all publicly traded securities. Hence, when the investable universe consists of all

publicly traded securities, as assumed by the CAPM, then cri or alternatively iM

drives the value of security i.

But what if investors do not optimize over the entire market? For example, what if

fixed-income investors optimize over the universe of fixed-income securities and equity

investors optimize over the universe of equity securities? In this case, fixed-income

investors would value securities based on their covariance with other fixed-income

securities, and similarly for equity investors. In general, the key point to recognize is that

investors will judge securities according to their market risk only when their investable

universe is the whole market. If investors' universes are smaller, more homogeneous

collections, then they will require compensation for exposures to risk factors other than

market or economy-wide risk.

In Section 3, we propose an equilibrium security pricing model based on the CAPM

which attempts to reflect the reality that investors usually optimize over universes

substantially smaller than the entire market due to specialization in security analysis and

portfolio management. Given this world of security selectors who optimize within

specialized asset classes and asset allocators who optimize across the asset classes, we

argue that flim is no longer the relevant risk measure for security i. Instead, the price of

security i in asset class g will be driven by the product figM MPiW , where Mg is the

value-weighted portfolio of all securities in asset class g.

If the proposed top-down CAPM is an improved representation of the true

investment process followed by market participants, then MMflPiM should hold-up

better to empirical scrutiny than Pim. In Section 4, we perform a simple empirical

analysis to investigate whether PiM has stronger explanatory power than iM for

average stock returns within a specialized universe g of equity securities.

The empirical study presented is primarily for illustrative purposes and cannot be

considered comprehensive. Nevertheless, the findings support neither the top-down

CAPM nor the CAPM. In the empirical analysis, we essentially rank stocks within a
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particular asset class according to their betas (either liM or fliM ) and compare the

average return on high-beta stocks to that of low-beta stocks. We find that in some asset

classes high-beta stocks outperform low-beta stocks, while in other asset classes the

opposite is true, although none of the performance figures are statistically significant.

This result is disappointing but may simply reflect the inadequacy of the econometric

methods used rather than the inadequacy of either model. In Section 5, we offer a range

of concluding remarks and suggest directions for future research with an emphasis on

empirical validation.

2. The Capital Asset Pricing Model

2.1 Mean-Variance Portfolio Analysis

Through his seminal journal article Portfolio Selection, Markowitz (1952) laid the

foundation for modem investment theory. Markowitz suggested that risk and reward

should be measured by the standard deviation of return o and the expected return ,

argued that rational investors prefer safety to uncertainty, explained the mechanics behind

the popular maxim "don't put all your eggs in one basket," and introduced the

mathematics of optimal portfolio construction using quadratic programming.

Many of the insights developed by Markowitz can be effectively captured in a

mean-standard deviation or u - or diagram, as shown in Figure 2.1. Assume an investor

with wealth W is considering the merits of N securities, where each security i = 1,..., N

has uncertain future rate of return ri. We denote (1) the expected value of r as i; (2)

the variance of as ii or ri2, with corresponding standard deviation r; (3) the

covariance of r with r,i as Cri; (4) the wealth invested in security i to form portfolio

P as W , where W =W; and (5) the fraction of security i in portfolio P as

wi = W, /W, where " Nwi = 1. Markowitz showed that the return on portfolio P is

given by
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N

rp wrI, (2.1)
i=1

the expected return on portfolio P is given by

N

eP = y wep,, (2.2)
i=1

and the variance of the return on portfolio P is given by

N N

p= 'ww, (2.3)
i=l j=l

with corresponding standard deviation ap. If we fix the values of /,, a', and ai,

substitute every possible weight vector w = (w, ..., WN) into (2.2) and (2.3), and plot

the resulting (p, p) pairs in the a -u plane, we generate the feasible region illustrated

in Figure 2.1.

The figure shows three portfolios, A, B, and C, lying on or within a bullet-shaped

curve. A is preferable to C because A =cc while A > C . Similarly, B is

preferable to C because cB < Cr while /B = AC. We cannot conclude unambiguously,

however, whether A is preferable to B, or vice versa. Appropriately, this notion of

comparing portfolios strictly according to their means and variances is termed mean-

variance (MV) portfolio analysis.

The highlighted upper boundary shown in Figure 2.1 is called the efficient frontier

because it contains portfolios, such as A and B, that represent the highest attainable u

for a given level of a and the lowest attainable cr for a given level of pu. Markowitz

proposed that each investor should choose an efficient portfolio according to his risk

tolerance by solving the optimization problem

12 1 NN
min 2 X=2 - wwjwcr'
Wi 2 i=1 j=

N

s.t. Pp =XWi =P (2.4)
i=1

N

EWi = 1,
i=1
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where u is an idiosyncratic reward target. Thus, solving (2.4) with u = UA leads to the

optimal efficient portfolio A, while solving (2.4) with t =PB, leads to the more

conservative optimal efficient portfolio B.

We have been and will continue to be rather casual in our notation for the

parameters pu, C2 , and ir that describe the joint probability distribution of the returns

ri. In most contexts, however, it would be more accurate and suggestive to denote the

means, variances, and covariances as ik, ,2 , and Sak, where the A character symbolizes

forecasting or estimation and the k subscript symbolizes investor k =1,..., K. This

notation emphasizes that different market participants face different portfolio selection

problems because they generally diverge in their abilities and mandates to analyze the

myriad publicly traded financial assets.

2.2 Separation Theorem

Tobin (1958) conceptually simplified and extended Markowitz's MV portfolio

analysis by noting that investors have access not only to risky securities such as stocks

and bonds, but also to (essentially) risk-free securities such as U.S. Treasury bills.

Specifically, suppose an individual invests a proportion a < 1 of his wealth W in the

risk-free security F with rate of return rf and the remaining fraction 1-a in some

portfolio P of the risky securities i =1,..., N with parameters pi, e2, and r . The

mean and variance of the total portfolio T are given by

IT =arf +(1-a) pp and (2.5)

= ar2 + (1 - a)2c2 + 2c(1-a)rFp = (1 - a)2 rp, (2.6)

where (2.6) follows from the fact that e2 =0 and FP=0. Also, from (2.6) we

immediately have

err = ( -a) rp (2.7)

Since T and ST are linear functions of a, the points representing portfolio T

trace-out a straight path in the or-,u plane as a varies from 1 to 0 and beyond, as
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illustrated by the dashed line in Figure 2.2. When a = 1, a = 0 and u = r ; and when

a = 0, cr = op and u = ,up. Of course, P signifies any possible risky portfolio, so the

open triangular region in the figure depicts the new feasible set.

Portfolios along the highlighted upper boundary of the feasible triangle, called the

capital allocation line (CAL), are clearly as good as or better than portfolios along the

efficient frontier. From the figure, the CAL is tangent to the efficient frontier at risky

portfolio Q, and therefore the super-efficient portfolios that lie on the CAL are weighted

combinations of Q and F. Thus, the Markowitz-Tobin (MT) portfolio selection

problem consists of two logically separate steps, which has spawned the term separation

theorem. First, the individual determines the weights WeQ that correspond to the risky

tangency portfolio Q. Second, the individual slides along the CAL to the desired level of

risk by apportioning a fraction a of his wealth W to the risk-free security F.

Referring again to Figure 2.2; the tangency portfolio Q is found by increasing the

slope of the CAL as much as possible while remaining within the bullet-shaped feasible

region. Mathematically, Q is determined by solving the optimization problem

max Sp- -rl
Wi P

N (2.8)
s.t. -w, =1,

i1

where pp is specified by (2.2) and au is specified by (2.3). Once the weights wiQ are

established, the individual can ascertain his total portfolio T by choosing a according to

his risk tolerance. For example, a might be determined by specifying some risk target

a, in which case a = 1- a/crQ by (2.7).

Interestingly, MT portfolio analysis suggests that a particular investment advisor

should recommend the same risky portfolio to each and every client he serves. This is

true because neither the risk-free return rf nor the advisor's forecasts for ul, ci2, and

Caj change from client to client, and therefore only the capital allocation a between the

risk-free security and the risky tangency portfolio should be tailored to personal

preferences.



11

2.3 Derivation

MT portfolio analysis is a prescriptive or normative economic theory for making

prudent investment decisions. In contrast, the CAPM, which was originally developed by

Sharpe (1964), is a positive economic theory that seeks to predict or explain why

investors are willing to pay higher prices for some securities relative to others. Put

differently, MT portfolio analysis attempts to answer the question, "How should an

individual divide his wealth among a given set of investment opportunities?", whereas

the CAPM attempts to answer the question, "How are security prices formed in capital

markets?"

Underlying the CAPM are two seemingly straightforward yet decidedly clever

assumptions. First, Sharpe supposed that all individuals do indeed invest according to

MT portfolio theory. In the CAPM world, all market participants are risk averse, do

judge portfolios strictly by their means and variances, do have unlimited access to risk-

free lending and borrowing, and do, in summary, exhibit all characteristics implied by

optimization problem (2.8), which builds on optimization problem (2.4). Second, Sharpe

supposed that all market participants have identical or homogeneous estimates of ui, Ci ,

and oi. for the entire universe of publicly traded financial assets.

Organizing the CAPM assumptions, as we have done above, according to (1) the

decision model and (2) the implementation model provides a convenient logical

framework for evaluating the CAPM predictions and formulating CAPM extensions. In

Section 2.4, we present an alternative CAPM derivation that closely follows and exploits

this inherent two-assumption structure. Here, we present a more traditional CAPM

derivation of the type found in most investments textbooks and the academic literature.

The typical CAPM exposition begins by listing the basic assumptions in no

particular order. First, all investors are Markowitz MV portfolio optimizers. Second, all

investors have the same forecasts for / i , /i2, and o . for all publicly traded securities.

Third, all investors have unrestricted access to the same risk-free interest rate rf. Lastly,

there are no taxes, transaction costs, or other market frictions.
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Taken together, these assumptions imply that all market participants will invest in

the same risky tangency portfolio Q with corresponding weights WiQ. The simple logic

behind this conclusion is as follows. The first, third, and fourth assumptions imply that

all investors will employ MT portfolio analysis and therefore optimization problem (2.8)

to select their risky portfolios. The second assumption implies that all investors will

utilize identical input lists when solving the optimization problem. Of course, if all

investors use the same decision model with the same parameter values, they must all

arrive at the same answer.

Upon further reflection, we reach the significantly stronger conclusion that the risky

portfolio Q held by all investors must be the market portfolio M defined as the value-

weighted portfolio of all publicly traded financial assets. To justify this important

deduction, we need to show that (1) the weight w mF of the risk-free security F in

portfolio M is zero and that (2) the weight wM of security i in portfolio M equals the

weight wiQ of security i in portfolio Q.

Recall that, according to MT portfolio analysis, each investor k will allocate some

proportion ak of his wealth Wk to the risk-free security F and the remaining fraction

I-ak to the risky portfolio Q, where ak > 0 corresponds to lending and ak < 0

corresponds to borrowing.

Over the whole economy, every dollar lent is also a dollar borrowed and

subsequently invested in portfolio Q. Consequently, the aggregate investment in

security F and the aggregate investment in portfolio Q are given by

K

ArkWk = 0 and (2.9)

>(1- ak)Wk =Wk-LakWk =Wk =W, (2.10)
k=l k= k=l k=l

where W denotes the wealth of the economy.

Further, the market value VF of security F equals the aggregate investment in

security F, which is zero by (2.9). To understand why, consider a simple economy with

three investors, A, B, and C. Suppose A lends $100 to B. If C forms portfolio F by
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purchasing both the $100 bond from A and the $100 obligation from B, then the market

value of F is clearly zero. Naturally, if VF = 0, then the weight wF of security F in

portfolio M is also zero.

Slightly less obviously, the market value Vi of security i is likewise equal to the

aggregate investment in security i. To illustrate the potential confusion, we consider

again a simple economy. Suppose stock X has two shares outstanding. If A buys the

first share for $1 and B subsequently buys the second share for $2, then the market value

of X is $4 even though the aggregate investment is only $3. In order to avoid this kind

of discrepancy, the CAPM assumes that all investors pay the same equilibrium price pi

for security i.

Having established that investment and value are equivalent, we can write the

market value Vi of risky security i as

K

V = (-ak)W Wk
k=l

K

= W ,e (C ak) 
k=l

= wiQ W (2.11)
N

= WiQ V
i=1

= WiQ V,

where the third equality follows from (2.10) and V = IN V is the value of the market

portfolio M. Since w, is defined as V/V, we conclude immediately from (2.11) that

WiM = WiQ

Figure 2.3 updates Figure 2.2 to incorporate the CAPM results that we have

developed thus far. The CAL is replaced by the capital market line (CML) to underscore

that M has been substituted for Q and that all market participants face the same

investment problem. Algebraically, the CML is given by

PM - r

=r +A roa. (2.12)
cAM
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While (2.12) relates the risk of an efficient portfolio to its expected return, the

widely known CAPM risk-expected return relationship, which we will now derive,

associates the risk of an individual security with its expected return. Suppose portfolio

Z is formed by allocating some weight 8 < 1 to the risky security i and the remaining

weight 1- 8 to the market portfolio M. Then,

H/z = 8/ i + (1 -8)M and (2.13)

a2 = 2.2 +(1 _)2 r + 2 (1 -8)i . (2.14)

Since o z is apparently a smooth, nonlinear function of 8, the points representing

portfolio Z trace-out a curvilinear path in the a-,u plane as 8 varies from 1 to 0 and

beyond, as illustrated in Figure 2.3. When 8 = 1, Z is equivalent to security i; when

8 = 0, Z is equivalent to portfolio M; and when 8 < 0, which corresponds to shorting

security i, Z lies on the portion of the curve to the right of M.

As indicated in the figure, the curve must be tangent to the CML as passes

through 0. Otherwise, the curve would break through the CML at the point M, which

contradicts the definition of the CML as the upper boundary of the feasible region.

Mathematically, the tangency condition between the curve and the CML is given by

d/z =M - rf (2.15)
dorz =o0 aM

To find the derivative in (2.15), we first calculate d/z /d8 and daz /dS. From (2.13)

we have

dpz
d--8 =/Hi -/M . (2.16)

From (2.14) we have

dar2 da
d8 d o

d dz 1 dcz
d8 2az d5

and therefore
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da-z =,o - C, 0- )+ i, 0-2a) (2.17)
d Cz

Combining (2.16) and (2.17) using the chain rule and evaluating at a = 0, we have

duZ dpuz/d (p__P__O-
dur d oz/d3 | aM (2.18)

dz ,=0 dr z / d=0 M - M

Finally, substituting (2.18) into (2.15) and solving for #u,, we have the CAPM risk-

expected return relationship

Hi r + (M -), (2.19)

where

I~iM im 2 (2.20)

A'M

Also, if R =r -rf is the excess return on a security or portfolio, then (2.19) can be

written in the often more convenient excess return form as

Ri = fai RM, (2.21)

where R =,u - rf is the expected excess return.

Equations (2.19) and (2.20) algebraically formalize the ultimate insight of the

CAPM: The expected return ui on any individual security i depends on the security's

covariance ori with the market portfolio M. The coefficient fiN, which is aptly called

the security's beta, is simply a normalized version of o . The notation for beta

originates from the least-squares linear regression model

Ri = cai + flm RM + i , (2.22)

where fli is given by (2.20), a = R-fRim R E(ej)= 6 =0, Var(e,)= ,

Cov(ei, Ejgi)=0, and Cov(,, R)=0. Based on (2.22), we can interpret Pfl as the

expected percentage return on security i owing to a 1 percent return on the market

portfolio M. Compared to other securities, when fli > 1, security i is aggressive;

when im = 1, security i is neutral; and when pi < 1, security i is defensive.
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The graph of equation (2.19) in the - u plane is called the security market line

(SML), which is illustrated in Figure 2.4. Note that p = M when ,8 = 1 because f =

a /r 2 = o-2 /2 = 1. More generally, /3PM for any portfolio P with weights w is

given by

PM/ = rPM = Wi iM = WifiM (2.23)
=1M O= M i=l

Additionally, using equation (2.23), the excess return form of the SML (2.21), and the

fact that

Rp = pP -rf
N

= witi -rf
i=1

N N

=' EWi, i, - W, irf
i=l i=l

N

= W (i -rf)
i=1

N

= wi Ri,
i=1

we have

N N

JPM RM E wIMRM = EWJR, =RpX
i=1 i=1

which demonstrates that the SML holds not only for all individual securities but also for

all portfolios.

2.4 Alternative Derivation

As mentioned previously, the CAPM is a positive economic theory that endeavors

to predict or explain how security prices are formed in financial markets. If we restrict

our attention to single-period or static representations of reality, the supply of each

security can reasonably be assumed fixed. Consequently, modeling the equilibrium price

p, is effectively synonymous with modeling the aggregate demand for security i. As
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such, the CAPM can be regarded as a theoretical approximation to the actual (unknown)

process that investors follow to determine their demand for different securities.

Specifically, the central CAPM assumption is that all investors utilize MT portfolio

analysis and therefore optimization problem (2.8) to select their risky portfolios. We

referred to this assumption in the prior section as the decision model because it specifies

the tradeoffs that market participants consider when deciding among different investment

opportunities.

More generally, suppose a particular investor k employs MT portfolio analysis to

allocate his wealth Wk across the set of risky securities Pk c T, where T includes all

publicly traded risky securities, I = N ( has N elements), and Ik I= Nk < N.

What can we conclude, at least qualitatively, about the investor's demand for each

security?

The contribution by investor k to the aggregate demand for security i depends on

the investor's wealth Wk, his risk aversion as reflected by the fraction crk invested in the

risk-free security, and his tangency portfolio weight wiQk, which he determines by

solving the optimization problem

WE Wik k - rf

max Spk = PA u f - i r 1 

Z E WviJkak 'jk (2.24)
iEk jETk2

s.t. k = 1.

Investor k will allocate zero dollars to security i when i Tk and will allocate

( 1 -ak )wWQk Wk dollars to security i when i ETk . The k subscript in (2.24) emphasizes

that the investable universe, means, variances, and covariances are specific to the

particular investor k and generalizes optimization problem (2.8).

The objective function Spk = (ik -rf )cpk indicates that WiQkn will depend on the

sensitivity of upk and 0
Pk (or equivalently Ck ) on security i . The marginal

.contribution to portfolio reward
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- i ik (2.25)
awik

and the marginal contribution to portfolio risk

- 2 wjk rk = 2opk (2.26)
OWik jE'k

suggest that security i will tend to be highly demanded when ik is large and when oiPk

is small or negative.

Conceptually, it is useful to interpret crP k as being roughly equivalent to the

average covariance

_ 1

yjk N= jk , ok. (2.27)

Thus, the contribution by investor k to the aggregate demand for security i essentially

depends upon (1) the investor's wealth Wk, (2) the investor's risk aversion as reflected.by

ak, (3) the security's mean Jtik, and (4) the security's average covariance i k . Security

i with ik < 0 could potentially be a valuable addition to portfolio Qk even if #ik < 0.

Although the dependency of wiQk on /ik is quite intuitive, the dependency of wQk on

5ck rather than cik is more profound. When the goal is to optimize portfolio reward and

risk, a security's diversification properties as reflected by -jk are more important than its

individual risk ik.

Our discussion thus far has focused on developing a qualitative understanding of

the factors considered by investor k in determining wiQk. Now, suppose we are given or

observe the investor's optimal weight vector wQk corresponding to his optimal risky

portfolio Qk . Knowing that wQk was found by solving optimization problem (2.24), can

we say something more precise about the manner in which ,ik was traded-off against

ij k to generate wQk ?

Let us. replicate the procedure that investor k would have used to calculate wQk. In

order to solve optimization problem (2.24), we construct the Langrangian
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/PPk -rf ( 
L= 2 WPk ik

'pk ie'k
- ),

where A is a Lagrange multiplier. The necessary conditions for a maximum are given by

a(lUPk - rf) Pk -rf)
awik 'wk

2
'Pk

- A = 0 for each i wTk and

0.
2, Zi

w ek Wik- 1 =

Since

(,Pk - rf )
= ik

aWik

and

=2o Pk - 2
awik

wjk aiJ = 2'iPk 
jeTk

the optimality condition for each security i becomes

To fix A, we multiply (2.28) by wik and add the resulting Nk equations, which yields the

single equation

~WkkWtk C~(Pk rf) A.
aPk Z£ Wik P& k - r Wik Pk = WPok .

ie'k 0 Pk iek

Since ivk ulik =p ppk and E iW wkPk = ok, we have

A = r.
'Pk

Finally, we substitute for A in (2.28) and solve for /ik to coax the optimality condition

for each security i into the more suggestive form

/ik = rf + Pk (Pk - rf) for each i k ,

where

CPk
P iPk = 2

rPk

a Wik

wPk

aWik

/Uik Pkk (-- Pk- rf- )-Apk = 0 for each i Tk .
rPk

(2.28)

(2.29)

(2.30)



20

Therefore, any optimal solution to (2.24) must satisfy the system (2.29) in addition to the

basic feasibility constraint 1k 
w k = 1. In particular, we know that wQk is an optimal

solution to (2.24) and hence we know that /lik =rf +iQk(Qk - r) where

fiQk = ariQk/crQk for each security i E Ok .

System (2.29) reveals precisely how investor k balances Uik against SJik to

determine wiQk and to influence security i's equilibrium price pi. Imagine investor k

found wQk through an (instantaneous) iterative procedure. The investor started with

some initial portfolio w(k), calculated the required means It0) and variances-covariances

E(°), and solved problem (2.24) to determine whether (o) needed adjustment. Note that

the parameters C1k and Ik depend on the prices p. For example,

A0k Olik - t(O) S(2.31)
P~ik - 0)

where qik is the expected payout from security i. The optimal portfolio w()* differed

from the initial portfolio w(0) and therefore investor k purchased and sold securities so

that his new portfolio wQ) matched w(°)*

Suppose w(Ok was greater than () for the particular security X. Purchasing
Xek VVLCJ ~jL~CIL~I CIIUI XQk

additional shares of security X placed upward pressure on the security's price p( )

resulting in the higher price p(l) and the lower expected return (). The portfolio w(l)

was optimal for the iteration 0 parameters () and 1(?) but was suboptimal for the

iteration 1 parameters F(t and (k). In other words, the very act of acquiring W(I~IUCIII I )CIUI~L~13 k k t' "^'~' ""'~"~ "" "`~Qk

altered the conditions under which the investor preferred w() to all other portfolios.

Using the new parameters IL(1) and (1), the investor was forced to re-optimize to

find the new best-portfolio w(Qk and to subsequently buy and sell securities so that his

new holdings w (2) matched w(' . Fortunately for investor k, the adjustment requiredin iteration 1 was smaller than the adjustment required in iteration 0 owing to a steadyk

in iteration 1 was smaller than the adjustment required in iteration 0 owing to a steady
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convergence toward equilibrium. In the case of security X, for example, the upward

price-pressure in iteration 0 reduced xk and therefore the security's attractiveness in

iteration 1. At some eventual iteration t, the optimal portfolio wok was equal to the

investor's holdings w or simply wQk and prices reached their equilibrium values p(t)Qk o k

or simply p. Optimality condition (2.29) is the investor's stopping rule or alternatively

the thrust behind the investor's contribution to aggregate demand.

When we expand our scope to include all K investors in the economy, the price

formation process is significantly more complex and quite difficult to imagine. Although

each investor k utilizes optimization problem (2.24) to determine Qk, the equilibrium

portfolios wQk and prices p are driven in an intricate manner by a multitude of choices

for Tk', Xk, and k. Consider the particular investors A and B and the specific

security X. In general, (1) security X may or may not belong to wA or T, (2) txA

may be greater or less than ,, and (3) cXA may be greater or less than cXB.

The second CAPM assumption, which vastly simplifies our analysis of aggregate

demand, is that each investor k solves optimization problem (2.24) using the same

k = P, Pk = a, and ]k = . We referred to this assumption in Section 2.3 as the

implementation model because it specifies how each investor actually implements the

decision model.

Conceptually, the CAPM implementation model creates an economy in which all

investors simply handover their capital to a single financial advisor who solves

optimization problem (2.24) using Tk = P, k = pa, and k = . Since the economy

effectively has only one investor, we can easily reverse-engineer our hypothetical

financial advisor's equilibrium optimal portfolio: It must be the observed market

portfolio M. Therefore, wM satisfies the optimality conditions

Hi = rf + pfi (M - rf) for each security i E W,

where

_iM =i
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2.5 Anomalies

The CAPM assumptions represent a sensible conjecture as to the actual process

followed by investors in determining their demand for different securities. Consider the

CAPM risk-expected return relationship in the instructive pricing form

i f +(2.32)

which is found by substituting (qi - p)/p for ui in the CAPM equation (2.19) and

solving for p,. Note that qi can be thought of as the net present value of all expected

payouts from security i at the end of the period (remember, the CAPM is a single-period

model). Equation (2.32) emphasizes the pros and cons that investors contemplate, as

hypothesized by the CAPM, when deciding the fair price for security i. Namely, a high

(low) expected payout qi is a positive (negative) attribute while a high (low) average

covariance li is a negative (positive) attribute.

In constructing an aggregate demand model for any consumer product or service,

observed prices will reflect the model's predictions only to the extent that the true cost-

benefit analysis undertaken by consumers is accurately captured. For example, suppose

an entrepreneur builds a model for predicting the price of autos depending on their age,

type (sports car, family sedan, utility truck, etc.), color, and horsepower. He finds a

classified ad in the local newspaper for a 10-year-old, red, 300-hp sports car. The asking

price is $30,000 but the model predicts a fair market price of $35,000. Consequently, he

buys the auto, places a new ad with a $35,000 asking price, and contentedly awaits the

projected $5,000 gain. Unfortunately, due to insufficient public interest, he is forced to

reduce the price and is ultimately pleased to recover the initial $30,000 investment with

$0 profit.

What happened to the entrepreneur's apparent bargain? While there are many

plausible explanations, one likely pitfall is that the model misstated or omitted the impact

of certain important factors. For instance, consumers' willingness to pay for autos is

almost unquestionably strongly related to gas mileage and safety features in addition to
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age, type, color, and horsepower. On the other hand, it might be the case that the

entrepreneur's model is fairly precise on average and that random noise was the primary

reason for the $5,000 discrepancy in this particular situation. Of course, if the model's

performance were observed over many predictions, we would be more confident in

conlcuding whether the entrepreneur was wrong or simply unlucky.

Similarly, while the CAPM is logical and elegant, it must be checked against

historical data to determine whether it provides an adequate description of the price

formation process in financial markets. The mountain of empirical studies that profess to

either support or refute the CAPM are far too numerous to describe in detail here.

Nonetheless, we briefly mention a handful of important analyses and summarize the

consensus findings. Fama and French (2004) provide a comprehensive and readable

account of empirical investigations related to the CAPM.

We must acknowledge, as many other researchers have, that empirical tests of the

CAPM are inherently fraught with conceptual difficulties. For one, the market portfolio

is a theoretical ideal that is problematical to construct or even define in practice. Also,

assuming we have a reasonable proxy for the market portfolio, the beta for each security

must still be estimated from the available data and is thus subject to measurement error.

Finally, the CAPM relates the expected return on security i to the expected return on the

market portfolio M; in reality, investors' ex ante expectations are unknown and we must

therefore be satisfied to utilize realized or average returns as a second-rate substitute.

In short, the academic empirical research has found either mixed or unflattering

evidence regarding the CAPM beta-expected return relationship. For example, an early

investigation by Fama and MacBeth (FM) (1973) examined monthly returns on U.S.

equity securities from 1935 to 1968. Suppose the return on stock i = 1, ..., N at month

t = T + 1,..., T is given by

rit= Pit + [it' (2.33)

where E,t is a zero-mean random variable. Consistent with the SML in excess return

form, Ri, = ri, - r can be written as

Ri = fit Rm + Sit. (2.34)
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The beta for stock i at month t is unknown but can be approximated by fitting the

estimated (time-series) regression function

Ritr = it + AtRMtr (2.35)

where , is an estimator for ,t, RM, is the excess return on a broad stock portfolio at

month t, and r =t-T,...,t-1. Then, at each month t the intercept and slope

coefficients Yot and Yjt that relate p, to R, can be approximated by fitting the estimated

(cross-sectional) regression function

Rit =- Yot + Ylt it, (2.36)

where Yot is an estimator for Y,t and ,t is an estimator for yt,. By inspection of

equation (2.34), if the CAPM is valid, then the average Pot should be close to zero:

T-T-I

Yot = I ot 0.
T-T-1 =l 

Also, the average ;,t should be close to the estimated market risk premium:

1 T-T-1 ^ 1 T
YY 1 m R -ZRmt

Ylt T-T-1 t T =

FM conclude that o', is greater than 0 and that is less than RM, which contradicts the

CAPM; average returns on low-beta stocks are too high and average returns on high-beta

stocks are too low.

More recently, Fama and French (FF) (1992) analyzed the purported relationship

between beta and expected returns from a slightly different yet extremely enlightening

perspective. Besides testing whether beta is positively related to average returns, Fama

and French assessed whether other commonly scrutinized financial metrics have

incremental explanatory power for average returns beyond beta. By adding factors to the

FM cross-sectional regression, FF conclude that market value of common equity (ME),

earnings-to-price (EP), debt-to-equity (DE), and book-to-market (BM) have significant

marginal relationships with average returns. The FF article synthesizes a swell of prior

empirical research that documents anomalies or deviations from the CAPM including

Basu (1977), Banz (1981), and Bhandari (1988).
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The earlier empirical CAPM investigations are philosophically different from the

more recent studies. The former attempt to test whether beta provides an adequate

description of cross-sectional variation in average returns while the latter attempt to

uncover other factors that possess additional or better explanatory capability. Either

approach can offer evidence to support or refute the CAPM since the SML specifies beta

as the only important determinant of expected returns.

To justify their findings, FF conclude that variables like ME and BE serve as

proxies for unknown risk factors considered by investors in determining their demand for

different securities. Other researchers including DeBondt and Thaler (1987), Lakonishok,

Shleifer, and Vishny (1994) and Haugen (1995) argue that pricing anomalies can be

explained by irrational investor behavior. For example, a relatively high BM is often

associated with companies that have recently displayed poor performance. Suppose

investors tend to overreact to unfavorable news events. Then high BM stocks are likely

to exhibit positive returns when the market corrects the temporary mispricing.

Regardless of the proper interpretation of the anomalies literature, the empirical

evidence clearly suggests that the CAPM does not fully depict investors' true demand

generation process. As such, the continued search for a better descriptor of security

prices is justified. In particular, as an alternative to the CAPM, FF (1993, 1996)

proposed the risk-expected return model

H = r + fl (AM - r + fl, SMB + fh HML , (2.37)

where SMB measures the risk premium on "small" versus "big" ME stocks and HML

measures the risk premium on "high" versus "low" BE stocks. As a practical tool for

calculating the fair expected return on security i, the FF three-factor model is probably,

superior to the CAPM since the variables ME and BE were specifically chosen due to

their observed incremental explanatory power. Nevertheless, the FF three-factor model is

intellectually dissatisfying compared to the CAPM. At the moment, it seems finance

practitioners must choose between a precise empirical plug and an erroneous theoretical

masterpiece.
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3. The Top-down Capital Asset Pricing Model

3.1 Generalization

The CAPM comprises two assumptions. The decision model stipulates that all

investors employ MT portfolio analysis and therefore optimization problem (2.24) to

select their risky portfolios. The implementation model stipulates that all investors have

identical estimates of the means, variances, and covariances for all publicly traded

financial securities.

Suppose we tweak the CAPM decision model. What are the consequences? As a

concrete example, say we use the same implementation model as the CAPM

(homogeneous expectations) but alter the decision model by assuming investors' only

goal is to minimize risk and that no risk-free security is available. In this case, instead of

optimization problem (2.24), each investor k will solve

1 2 1min - Pk = I I Wik Wijk
Wik 2 2 ik jjEk

s.t. Iwik = 1.

The minimum-variance portfolio Qk satisfies the optimality condition

riQk = CQk for each security i E Tk .

As argued in Sections 2.3 and 2.4 above, wQk must be equal to WM. Therefore, market

prices p will adjust so that in equilibrium

7iM = M for each security i E T.

Now, suppose we tweak the CAPM implementation model. What are the

consequences? As a concrete example, say we use the same decision model as the

CAPM (MT portfolio analysis) but alter the implementation model by assuming the

market for risky financial securities is segmented into two mutually exclusive and

exhaustive groups, equity and fixed income. More precisely,

'T = E u PF where E nr TF = 0

describes the set of securities and
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K = K rE KF where KE r KF = 0

describes the set of investors. Each market participant k that belongs to KE invests

strictly in securities i that belong to TE and each market participant k that belongs to

KF invests strictly in securities i that belong to F . Moreover, we assume the CAPM

homogenous expectations assumption holds locally for the equity segment and for the

fixed-income segment, meaning all investors in KE have identical estimates LE and SE

for the securities in WE and all investors in KF have identical estimates JLF and IF for

the securities in TF . Under these assumptions and invoking the arguments in Sections

2.3 and 2.4 above, equilibrium in the equity segment and in the fixed-income segment

will be attained separately according to the optimality conditions

pi = rf + AiE (UE - rf ) for each equity security i E TE

where E represents the value-weighted portfolio of all securities in PE and

pi = rf + I3iF (UF - rf ) for each fixed-income security i E WF

where F represents the value-weighted portfolio of all securities in TF .

These examples are meant to illustrate that the CAPM machinery developed in

Section 2 above can be used to generate theoretical equilibrium pricing models by

judiciously altering the CAPM assumptions. In Section 3.2 below, we utilize this

technique to propose a new capital asset pricing model that potentially provides

improvements in explanatory power versus the CAPM.

3.2 Proposed Model

Professional money managers rarely optimize over the entire universe of publicly

traded financial securities. For example, bond analysis is very different from stock

analysis and hence skilled investors typically specialize in one asset class or the other.

Moreover, within stocks, the analysis of startup firms, for example, is significantly

different from the analysis of mature firms and therefore specialized knowledge is

required for investing in small versus large stocks. A similar statement can be made for

junk versus government bonds, and the list of examples goes on and on.
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Owing to the growing complexity of financial markets and the rising demand for

professional financial services, the investment management industry has naturally

adopted a philosophy of asset allocation followed by security selection. Corporate

pension funds, university endowment funds, and other sophisticated institutional

investors act as asset allocators, either themselves or via consultants, by hiring security

selectors who are deemed particularly competent within a narrow band of financial

markets and instruments. Working rather separately, asset allocators and security

selectors combine in a top-down fashion to determine the aggregate demand for each

individual security.

The CAPM maintains that all investors have identical information about all

securities, but this idea is rather fanciful. An expert on tax-exempt municipal bonds has

nary the proficiency to advise his clients on technology and healthcare growth stocks. In

any case, we have just argued that, in the interest of organizational simplicity and

economies of scale, the asset management industry simply does not operate as such. Of

course, if we scrap the idea of homogenous expectations entirely, we might have little

structure remaining for building an insightful pricing model. Could there be a

compromise between a world of complete agreement and a world of complete

disagreement? Consider the following hypothetical financial system.

Suppose the economy includes A asset allocators, S security selectors, and N

securities. Further, suppose the market for risky financial assets is segmented into G

mutually exclusive and exhaustive groups or asset classes. More precisely,

G G G

T = g where Tg = 0, ITg =Ng, and Ng =N
g= g=1 g=1

describes the set of securities and

G G G

K =UKg where nKg = 0, KgI = Sg, and Sg 
g=1 g=1 g=1l

describes the set of security selectors. Each security selector k that belongs to Kg

invests strictly in securities i that belong to Tg . Also, each asset allocator a apportions

the wealth Wa across the S security selectors, where
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A

wO = W.
a=l

Subsequently, each security selector k apportions the wealth Wok = a= Wak across the

Ng securities in Tg, where k Kg and Wak is the wealth provided to security selector

k by asset allocator a.

In this economy, wealth funnels through to each security according to a two-stage,

town-down investment process. In the first stage, each asset allocator a determines his

optimal asset-class portfolio o,,a where 0(a has G elements. Then, asset allocator a

provides the wealth kEKg Wak to the Sg security selectors in each group g. In the

second stage, each security selector k determines his optimal security portfolio wk,

where wk has Ng elements if k E K g. Then, security selector k invests the wealth

Wik W.k in each security i E 'g .

Assume all asset allocators follow both the CAPM decision model and the CAPM

implementation model. However, instead of optimizing over an investable universe of

securities, asset allocators optimize over an investable universe of asset-class portfolios,

where each asset-class portfolio Mg is the value-weighted portfolio of all securities

i E Tg. Analogous to the story for individual securities, all asset allocators have identical

estimates for the expected returns uiM the variances M, , and the covariances aM Mh

for all groups g and h g. Invoking the arguments in Subsections 2.3 and 2.4,

equilibrium across the segments g = 1,...,G will be attained according to the optimality

condition

IMg = rf + MM (M - rf ) for each group g. (3.1)

Moreover, assume all security selectors follow both the CAPM decision model and

the CAPM implementation model. There is a conceptual discrepancy in making this

assumption because security selectors do not invest a portion of their capital in the risk-

free security and thus there is no reason to believe they would follow MT portfolio

analysis. Therefore, when we say that security selectors utilize optimization problem

(2.24) to select their risky portfolios, we interpret their behavior as an attempt to simply
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maximize the Sharpe ratio Sp = (p - r )/la of their portfolios. In fact, professional

money managers are often evaluated according to their ex post Sharpe ratios, so that Sp

represents a sensible objective function. Otherwise, the situation for security selectors is

a micro-level analogue of the macro-level CAPM theory for all investors. Invoking the

arguments in Subsections 2.3 and 2.4, equilibrium within each segment g will be

attained separately according to the optimality conditions

/i = rf + piMg (aM - rf ) for each security i E Tg and group g. (3.2)

Substituting for Mu, in (3.2) using (3.1), we have the top-down capital asset

pricing model

lI = rf + 8mg PfMgM (pM - rf) for each security i E Tg and group g. (3.3)

Equation (3.3) is similar to the CAPM equation except the coefficient im has been

replaced by the coefficient IiMM /MM Hence, in a world of top-down investment

management, the equilibrium price of security i is driven by a combination of its

covariance with its asset class portfolio and its asset class portfolio's covariance with the

market portfolio.

4. Empirical Analysis

4.1 Data and Methodology

Our main objective in this section is to further illustrate the top-down CAPM

through a simple empirical analysis of a particular formulation of the model. Rather than

comparing the explanatory power of the CAPM to that of the top-down CAPM over the

entire universe of publicly traded securities, we will focus strictly on U.S. stocks, as in

the vast majority of prior research. We assume the market for U.S. stocks is segmented

into four mutually exclusive and exhaustive groups or asset classes: Small-cap growth

(SG), small-cap value (SV), large-cap growth (LG), and large-cap value (LV). This

partitioning scheme was chosen to closely match the actual classification system used by

most mutual fund companies and other professional asset management concerns. If the
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top-down CAPM provides a reasonable description of reality and the suggested

segmentation scheme is accurate, then according to equation (3.2) we should expect the

high group beta (i.e., iM ) stocks to outperform the low group beta stocks within each

group.

The data employed in the this study were obtained from the merged

CRSP/Compustat database, range from December 29, 1989 to December 31, 2004, and

cover all NYSE, NASDAQ, and AMEX stocks. The specific data series utilized are (1)

monthly total stock return, (2) market value of common equity, (3) book value of

common equity, and (4) monthly U.S. Treasury bill return. Before conducting any

analysis, the dataset was filtered to remove records with missing entries. Further, all but

the top 2,500 stocks by market equity at each date were jettisoned from the analysis

universe.

At each month, each stock was categorized as SG, SV, LG, or LV, where S and L

refer to the stock's size (small-cap or large-cap) based on its market cap (ME) and G and

V refer to the stock's style (growth or value) based on its book-to-market ratio (BM).

The splits between S and L and G and V were determined by calculating the median

values for ME and BM. Stocks with below (above) median values for ME were

classified as S (L) and stocks with below (above) median values for BM were classified

as G (V). Together, the size and style classifications determine the stock's group.

In order to establish a control against which the explanatory power of the group

betas could be measured, it was necessary to define "the market portfolio" so that market

betas could be calculated. The market portfolio was defined simply as the value-

weighted portfolio of all stocks analyzed. Unfortunately, since even a well-diversified

portfolio of stocks falls substantially short of the entire market, this specification deviates

from the core idea this paper: If the investable universe is misspecified, then the resulting

betas are erroneous. Nevertheless, we define the market portfolio as such in the interest

of establishing some reasonable benchmark for comparison.

Once the stocks were categorized, five separate value-weighted return series, one

for each group portfolio and one for the market portfolio, were computed. The return

series were used to estimate group betas ,iM, and market betas liMt for each stock i and

at each date t according to the time-series regression equation (2.34). Between 24 and
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60 months of history were used to estimate the betas at each date, depending on data

availability. If a stock had less than 24 complete months of data at a given date, then no

beta was calculated.

The estimated group betas effectively provided a third factor, in addition to ME and

BM, for categorizing the stocks. The SG group, for example, was further split into two

subgroups, SGGBL (SG Group Beta Low) and SGGBH (SG Group Beta High) according

to below median SG group betas and above median SG group betas. Similarly, the

groups were split according to below median market betas and above median market

betas, where the median was, of course, calculated relative to the group even though

market betas span the entire universe of stocks. Thus, the SG group, for example, was

split into SGMBL (SG Market Beta Low) and SGMBH (SG Market Beta High).

In summary, by categorizing the stocks according to low or high values for size,

style, and group or market beta, the following subgroups were formed:

Both value-weighted and equal-weighted return series were computed for each subgroup

for the purposes of performance analysis. Subsection 4.2 describes the basic statistical

properties of the various subgroup portfolio returns.

Subgroup Name Description
SGGBL Small Growth Group Beta Low
SGGBH Small Growth Group Beta High
SVGBL Small Value Group Beta Low
SVGBH Small Value Group Beta High
LGGBL Large Growth Group Beta Low
LGGBH Large Growth Group Beta High
LVGBL Large Value Group Beta Low
LVGBH Large Value Group Beta High
SGMBL Small Growth Market Beta Low
SGMBH Small Growth Market Beta High
SVMBL Small Value Market Beta Low
SVMBH Small Value Market Beta High
LGMBL Large Growth Market Beta Low
LGMBH Large Growth Market Beta High
LVMBL Large Value Market Beta Low
LVMBH Large Value Market Beta High
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4.2 Results

Figure 4.1 provides summary statistics on the subgroup portfolio returns. The first

panel describes the portfolios based on group betas and the second panel describes the

portfolios based on market betas, where the portfolios are equal-weighted. For example,

the first entry in the first panel 1.52% gives the average monthly return over time for the

SGGBL equal-weighted portfolio. Similarly, the first entry in the second panel 1.49%

gives the average monthly return over time for the SGMBL equal-weighted portfolio.

The most glaring result from Figure 4.1 is that the two panels are practically

identical, which suggests that group betas are essentially indistinguishable from market

betas, at least in terms of rank order. This is probably a consequence from the rather

coarse segmentation scheme consisting of only four groups and from the naYve definition

of the market portfolio as comprising merely stocks. In addition, it seems that high beta

stocks outperform low beta stocks on average for the value category, but low beta stocks

outperform high beta stocks on average for the growth category.

Figure 4.2 provides a complementary perspective on the performance of the

subgroup portfolios. The figure shows eight separate charts, each representing the

growth in both the low and high beta subgroup portfolios for a given group, where

portfolios start from an arbitrary index value of 100. For example, the chart labeled "SG

Group Beta Portfolios" illustrates the growth over time of the SGGBL and SGGBH

subgroup portfolios, where the low beta portfolio is represented by a solid line and the

high beta portfolio is represented by a dashed line. Overall, SGGBL outperforms

SGGBH, which contradicts the top-down CAPM but confirms the summary statistics in

Figure 4.1. The side-by-side presentation of the group beta portfolios and the market beta

portfolios provides further evidence that group betas and market betas are enormously

similar.

Figure 4.3 provides summary statistics for the difference between the high beta

portfolio return and the low beta portfolio return within each group and for both group

betas and market betas. For example, the first entry in the table -0.36% indicates that the

average difference over time between the equal-weighted return on the SGGBH subgroup

portfolio and the equal-weighted return on the SGGBL subgroup portfolio is slightly less
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than 0, meaning high group beta SG stocks on average underperform low group beta SG

stocks, which refutes the top-down CAPM. As in previous figures, the statistics for

group beta portfolios are remarkably similar to the statistics for market beta portfolios.

The row labeled "% > 0", which shows the percentage of months where the high beta

portfolio outperformed the low beta portfolio, is particularly revealing. All of the

percentages hover around 50, although the percentage for both group beta LV and market

beta LV might be significantly higher.

The last row in the table of Figure 4.3 gives the t-statistic for the mean difference

return. If high beta stocks tend to outperform low beta stocks on average, then we would

expect the t-statistic for the mean difference return to be positive and statistically

significant. However, in direct contradiction to both the top-down CAPM and the CAPM,

none of the t-statistics surpass the critical value of 1.97 and half of them are actually

negative. Thus, the empirical analysis presented provides no evidence to support the top-

down CAPM or the CAPM.

5. Conclusions

The main prediction of the CAPM, that investors require compensation strictly for

bearing systematic risk, is a consequence from the impractical assumption that all

investors have identical information for all publicly traded financial assets. In this paper,

we have proposed a model called the top-down CAPM which seeks to strike a balance

between the tractability of homogenous expectations and the reality of specialized

security analysis and portfolio management.

In Subsections 2.1 and 2.2, we described Markowitz's NMV portfolio analysis and

Tobin's separation theorem as a prelude to the CAPM. The assumption that investors use

MT portfolio analysis to select their risky portfolios provides a sensible underlying

behavioral model for the CAPM.

In Subsection 2.3, we presented the traditional CAPM derivation provided in most

investments textbooks and the academic finance literature. Although the derivation was

accurate, the CAPM equation seemed to mystically pop out in the end like a rabbit from a

magicians hat. The origin and meaning of the CAPM equation were fuzzy since it was
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difficult to understand the exact role played by the decision model assumption versus the

implementation model assumption.

In Subsection 2.4, we presented an alternative CAPM derivation which clearly

demonstrated that the CAPM equation, in form, is simply an optimality condition

corresponding to optimization problem (2.24). When the homogenous expectations

assumption is added to the MT portfolio analysis assumption, the market portfolio

emerges within the CAPM equation, but the relationship holds more generally when

investors optimize over smaller investable universes.

In Subsection 2.5, we briefly described a handful of important empirical studies

related to the CAPM. The observation that investors seem to require compensation for

risk factors other than beta, such ME and BM, seems to indicate some serious chinks in

the CAPM armor. FF proposed a three-factor model as an alternative to the CAPM in

order to account for the observed pricing anomalies or deviations from the CAPM

predictions. Still, the FF three-factor model is intellectually frustrating because it is

grounded in empirical observation rather than theoretical judgment.

In Subsection 3.1, we illustrated how the ideas from Subsections 2.3 and 2.4 can be

applied to generate extensions to the CAPM. In particular, since the alterative CAPM

derivation separated the consequences of the MT portfolio analysis assumption from the

consequences of the homogeneous expectations assumption, we were able to borrow

from one assumption or the other (or both) to formulate extensions to the CAPM.

In Subsection 3.2, we developed the top-down CAPM using the general CAPM

machinery described in Subsection 3.1. Specifically, we assumed the aggregate demand

for each security is generated according to the sequential behavior of asset allocators and

security selectors, where the CAPM held, albeit with a slightly modified interpretation,

for each of the two investor types. The top-down CAPM formula shows that the relevant

measure of risk for security i is MMiMf rather than P .

In Section 4, we presented a basic empirical analysis comparing the explanatory

power of the top-down CAPM to that of the CAPM. We found that neither model

adequately described the variability in average stock returns within a given equity asset

class for the dataset examined.
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The empirical study described herein was far from comprehensive. Future research

related to the top-down CAPM can therefore be enhanced by improving the econometric

methods utilized. The following list provides several suggestions toward this end.

Augment the dataset. The dataset employed in this paper was rather minimal both

in terms of history and breadth at a point-in-time. This was done to avoid error-prone

older data and to reduce computational cost.

Utilize more sophisticated techniques for estimating beta coefficients. The naive

time-series regression procedure used to estimate the betas in this study could be replaced

with a potentially more accurate methodology based on structural regression using

fundamental factors. This enhancement would not only reduce measurement error, but

would also lessen the number of data point required and therefore allow for a greater

history and breadth of securities. -..

Experiment with the asset class definitions. There are several ways to potentially

improve the segmentation scheme. First, variables besides ME and BM, such as industry

sector, could be used to define the asset classes. Second, instead of using binary splits for

each variable, splits could be constructed according to, say, quintiles, which would create

greater distance between low and high categories and thus might allow for a clearer

assessment of explanatory power. Finally, groups could be defined in a nested manner by,

for example, grouping the stocks into quintiles according to BM and subsequently

grouping stocks into quintiles according to ME within each BM quintile.

Another potential area for future research is the analysis of not only betas of

securities relative to group portfolios, but also of betas of group portfolios relative to the

market portfolio. U.S. equity securities could be combined with a U.S. bond index and

other indexes representing international securities to form a semi-realistic market

portfolio for use in the investigation. Then a comparison of 63. relative to 8M MiMg

might provide some interesting insight into the loss of diversification benefits resulting

from the two-stage optimization process rather than the theoretically correct all-in-one

optimization.

As a final comment, it is possible that no single modification to the CAPM will

yield a substantial improvement in explanatory power. Future research might attempt to

combine several extensions into one "complete" model. For example, the top-down
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CAPM could be combined with the research of Black (1972) on restricted borrowing and

other known CAPM extensions to form a more comprehensive equilibrium capital asset

pricing model.

6. Figures

Figure 2.1. Mean-Variance Portfolio Analysis. The area on or within the bullet-shaped curve is
the feasible region. A, B, and C represent portfolios. A is preferable to C and B is
preferable to C. The highlighted upper portion of the curve is the efficient frontier.

I.

A

C

a
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Figure 2.2. Markowitz-Tobin Portfolio Analysis. P represents any feasible risky portfolio.
Portfolios formed by combining P with the risk-free security F lie along the dashed line.
The triangular area bounded by the solid lines is the feasible region. The highlighted
upper portion of the feasible triangle is the capital allocation line (CAL). Efficient
portfolios lie on the CAL. All efficient portfolios are combinations of the risk-free
security F and the risky tangency portfolio Q.

P
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Figure 2.3. The Capital Market Line (CML). Under the CAPM assumptions, all investors hold
the same risky tangency portfolio Q, which therefore must be the market portfolio M.
The CML relates the risk of an efficient portfolio to its expected return.
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Figure 2.4. The Security Market Line (SML). The SML is a graphical representation of the
CAPM equation. The CAPM predicts that all securities and portfolios lie on the CML.
High-beta securities have higher average returns than low-beta securities. The beta of
the market portfolio is 1.
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Figure 4.1. Summary Statistics for Equal-Weighted Subgroup Portfolio Returns. Since the two
tables are remarkably similar, it appears that group betas are practically identical, at least
in terms of rank order, to market betas. High-beta stocks seem to outperform low-beta
stocks for the value (V) category, but the opposite is true for the growth (G) category.

Group Beta Portfolios

SG SV LG LV

Low High Low High Low High Low High p
Mean 1.52% 1.16% 1.47% 1.63% 1.13% 1.04% 1.23% 1.63%
SD 4.17% 7.66% 3.67% 7.07% 3.56% 6.76% 3.59% 6.05%
Min -15.42% -24.34% -11.53% -21.98% -16.01% -20.41% -9.91% -19.85%
Q1 -0.92% -2.89% -0.43% -2.34% -0.90% -2.42% -0.93% -1.02%
Median 2.08% 1.84% 1.71% 1.88% 1.59% 1.85% 1.62% 2.13%
Q3 4.42% 6.24% 3.83% 4.72% 3.39% 5.97% 3.15% 4.47%
Max 9.67% 17.99% 8.36% 24.58% 9.23% 16.85% 11.10% 17.17%

% > 0 67.77% 60.33% 70.25% 63.64% 66.94% 61.16% 68.60% 62.81%

Market Beta Portfolios

SG SV LG LV

Low High Low High Low p High Low High 
Mean 1.49% 1.20% 1.47% 1.63% 1.16% 1.01% 1.33% 1.52%
SD 4.11% 7.68% 3.77% 7.10% 3.53% 6.75% 3.61% 6.26%
Min -15.62% -24.14% -13.70% -21.45% -15.59% -20.83% -10.11% -19.64%

Q1 -1.13% -3.75% -0.23% -2.57% -0.81% -2.35% -0.56% -2.01%
Median 1.88% 1.73% 1.92% 1.77% 1.63% 1.73% 1.55% 1.82%

Q3 4.39% 5.87% 3.61% 4.65% 3.34% 5.90% 3.26% 4.72%
Max 10.04% 18.55% 9.53% 25.12% 8.97% 16.89% 12.97% 17.73%

% > 0 68.60% 62.81% 72.73% 65.29% 67.77% 58.68% 72.73% 62.81%
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Figure 4.2. Performance of Equal-Weighted Subgroup Portfolios. Subgroup portfolios are
grown according to their equal-weighted returns beginning at an arbitrary index value of
100. The charts reaffirm the findings in the statistical summaries in Figure 4.1 and
further illustrate the behavior of the various subgroup portfolios.
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Figure 4.3. Summary Statistics for the Difference between High and Low Beta Subgroup
Portfolio Returns. The first row contains the average difference over time between the
return on the high beta subgroup portfolio and the return on the low beta subgroup
portfolio for the beta type and group indicated. The mean values are all close to zero,
which indicates that high beta stocks display about the same performance as low beta
stocks. The last row contains the t-statistic for the mean difference return, none of which
are statistically significant.

Group Beta Portfolios Market Beta Portfolios

SG SV LG LV SG SV LG LV

Mean -0.36% 0.15% -0.09% 0.40% -0.29% 0.17% -0.15% 0.20%
SD 5.09% 4.25% 4.93% 3.20% 5.03% 4.55% 4.83% 3.93%
Min -11.68% -11.85% -16.86% -9.95% -12.21% -12.54% -16.54% -11.28%
Q1 -3.44% -1.96% -2.69% -1.39% -3.35% -1.85% -2.46% -1.68%
Median -0.38% 0.00% 0.12% 0.47% -0.20% -0.02% 0.01% 0.32%
Q3 2.35% 2.03% 2.20% 2.01% 2.32% 2.04% 2.07% 1.99%
Max 13.49% 18.89% 16.79% 12.36% 14.60% 19.96% 16.67% 13.47%
%0>0 46.28% 50.41% 54.55% 58.68% 47.11% 49.59% 50.41% 56.20%

t-Stat -0.78 0.39 -0.20 1.38 -0.64 0.40 -0.35 0.55
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