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Time Resolved Fluorescence of CdSe Nanocrystals using Single

Molecule Spectroscopy

by

Brent R. Fisher

A wide variety of spectroscopic studies of CdSe nanocrystals (NCs) are presented
in this thesis, all studying some aspect of the temporal evolution of NC fluorescence
tinder different conditions. In particular the methods of single molecule spectroscopy are
used in many experiments allowing the behavior of individual NCs to be resolved from
the blurring effect of averaging over the ensemble. Studies of the excited state lifetime of
band edge fluorescence from single NCs reveal multiexponential relaxation dynamics
that stem from fluctuations of non-radiative decay rates for the band edge exciton.
Analysis of these fluctuations allows us to extract single exponential dynamics by
sampling only "maximum-intensity" photons, and we find that this single exponential
decay is remarkably uniform across a wide variety of NC samples and sizes. We also
investigate luminescence from multiexciton (e.g. biexciton and triexciton) states of
nanocrystals at both the ensemble and single NC level. Energy splittings, size and
temperature dependencies, quantum yields and lifetimes of multiexciton states are
measured and discussed. We show for the first time direct resolution of biexciton
emission from single exciton emission using two different techniques, fluorescence line
narrowing and single NC spectroscopy. We also study the non-classical light emission
properties of single NCs and show how multiexciton emission leads to radiative quantum
cascades of single photons in the emission of a single NC. Time resolved studies of
fluorescence from NCs in solution environments conclude the thesis. The relationship
between lifetime and quantum yield for non-homogenous ensembles like NCs is studied
in chapter 8. We show that a sub-population of non-luminescent nanocrystals can reduce
the quantum yield of an ensemble of NCs even though the measured lifetime stays
constant. A study of NCs in solution fluorescence correlation spectroscopy (FCS) is
presented last. We find that FCS is a capable tool for distinguishing small differences in
hydrodynamic radius of NCs in solution. We also find that blinking of NCs may have a
significant impact on these FCS measurements. An appendix to this thesis presents a
general summary the lifetime of various samples CdSe and CdTe NCs.

Thesis Supervisor: Moungi Bawendi
Title: Professor of Chemistry
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Chapter 1: Optical Properties of CdSe
Nanocrystals

1. Motivation and Background
1.2 Introduction to Colloidal Semiconductor Nanocrystals
1.3 Basic Electronic Structure of Nanocrystals
1.4 Refinements of Electronic Structure: Band Edge Fine Structure
1.5 Optical Spectroscopy of CdSe Nanocrystals
1.6 Overview of Thesis
1.7 References

1.1 Motivation and Background

The past decade has seen a great proliferation of nanomaterials and

nanotechnology. An important driver of interest in these materials is the change in

physical and chemical properties that occurs when the physical size of these materials is

made very small. In many cases the change in properties is related to a greater surface to

volume ratio (e.g. nanostructured heterogeneous catalysts). Semiconductor nanocrystals

(NCs) on the other hand are interesting because the fundamental optical and electronic

properties of the semiconductor are altered from their bulk behavior through a quantum

mechanical effect, when the physical size of the NC is small enough . The origin of this

change, so-called quantum confinement, occurs when the dimension of the crystal

become so small that photoexcited carriers feel the boundaries. "Small" in this case is

defined with reference to the characteristic size of a bound electron-hole pair, or exciton,

in the semiconductor material. This value is called the Bohr radius of the exciton, aB, and

its value is 5.6nm for CdSe2 , the semiconductor of interest in this thesis.

The 1970s saw some of the first explicit studies of size dependent quantum effects

in semiconductors when improved epitaxial growth techniques allowed the fabrication of

thin films of semiconductor material sandwiched between insulating layers 4. Quantum
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wells, as they are called, confine photoexcited carriers in the direction normal to the plane

of the semiconductor thin film. The effect is to modify the density of states such that

there are fewer band edge states and the oscillator strength of optical absorption is shifted

to the blue. Figure 1.1 illustrates the transition from bulk to quantum well and ultimately

to three-dimensionally confined nanoscale materials along with the associated change in

basic electronic structure and density of states that accompanies the reduction of material

size.

Quantum Confinement

thin film (2D) wire, rod (ID)

· D.O.S_
* >~~
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Figure 1.1 As the motion of photo-excited, delocalized carriers is restricted in each dimension, the effects
of quantum confinement become more pronounced. On the left the unrestricted motion of carriers in bulk
is associated with the usual band structure with a density of states proportional to E /12 for each band. In thin
films (i.e. quantum wells), motion of the carriers is restricted to two dimensions leading to a constant
density of states for each band. In quantum wires the carriers are confined in all but one dimension and the
density of states begins to sharpen. NCs represent the ultimate limit of quantum confinement with carriers
restricted in all three dimensions and atomic like states.

bulk dot (OD)

D.O.S
0

0 RNC < R

z0
M
I-
C.)w
-j
w
0
0
a
wzw

L0

0

Egap

A S- % 
S 

F



15

It was realized in the 1980s that the same quantum effect could explain the

behavior of small crystallites embedded in glass matrices 5. Semiconductor-doped

glasses were known to have a variety of colors despite the fact that they contained the

same kind of semiconductor material. The different colors of various glasses were

attributed to the size of the semiconductor crystallites embedded in the glass. Quantum

confinement of carriers meant that the semiconductor crystallites would have different

band edge absorption energies, which would color the glasses differently. Glasses

containing very small semiconductor crystallites would appear blue because the

confinement of carriers in the crystallites was greatest and the band gap energy was

largest. Conversely, red colored glasses contained larger crystallites with weaker

quantum confinement.

Advances in chemistry and preparation methods since the initial studies of

semiconductor doped glasses allow us to now work with semiconductor NCs in a

colloidal suspension. The narrower size distributions of colloidal samples and their

availability in a solution form has enabled the development of many applications for

these NCs ranging from biological labeling to solid state devices like lasers and LEDs6- °.

The advent of higher quality samples has driven more incisive studies of the optical and

electronic properties of these nanocrystals as well. The last 10-15 years of spectroscopy

research on these materials in our group has provided sweeping advances in our

understanding of carrier behavior in these quantum-confined nanostructures. Early

optical studies determined the fundamental electronic structure of CdSe nanocrystals for

sizes ranging from a few nm to Os of nm' 1. 3. Subsequent studies revealed

perturbations on the basic electronic structure that lead to fine structure of atomic like
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states at the band edge14 - 6. More recently studies of single nanocrystals using

fluorescence microscopy techniques have revealed a new dimension of physical behavior

and a deeper understanding of the optical properties of CdSe nanocrystals 1'7

The central questions of this thesis revolve around temporal dynamics of

fluorescence from CdSe nanocrystals. Both ensemble and single nanocrystal microscopy

techniques are used, but the common thread of the studies is the temporal evolution of

fluorescence over a wide range of time scales (10-9s to 102s - I orders of magnitude!) to

learn a great deal about the nanocrystals' physical behavior. Before explaining these

experiments though, we begin with a review of CdSe nanocrystal spectroscopy and

electronic structure.

1.2 Introduction to Colloidal Nanocrystals

Colloidal semiconductor nanocrystals are fundamentally just a little (very little!)

chunk of semiconductor material suspended in a solid or liquid matrix or solution. The

material of primary interest in this thesis is CdSe, and the nanocrystal sizes range from a

few nm in diameter to over 10nm. The smallest nanocrystals contain only a few hundred

atoms, while the largest contain tens of thousands of atoms. In order to stabilize and

improve the optical behavior, CdSe nanocrystals are often epitaxially overcoated with a

higher bandgap material like ZnS or CdS. Whether the nanocrystal is overcoated or not,

all colloidal nanocrystals are surrounded by surface bound organic ligands. These

ligands serve to passivate the surface of the nanocrystal and make it soluble in a given

solvent. Typically long chain phosphines or phosphine oxides like trioctylphosphine

(TOP) and trioctylphosphine oxide (TOPO) are used to "cap" the nanocrystal, although
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long chain amines and ethers among others are often used as well. Figure 1.2 illustrates

the composition, size and shapes of colloidal nanocrystals with both cartoons and actual

transmission electron microscope (TEM) micrographs.

-100 H atoms

I -1~~~~~~~~~~~~-I .-: I' .,* , ".I

. ~ ~ ~ ~~~~ . a, ',+

I . I I

-r
,'

Figure 1.2 Cartoon and transmission Electron Micrographs (TEM) images of CdSe nanocrystals. The
cartoon shows the CdSe core, ZnS overcoating shell and long-chain organic capping ligands. In the lower
left a hith resolution TEM imaoe of CdSe shows the crystallinity of the samples with individual lattice
planes clearly present' 8. On the right three low resolution TEM images show the various shapes accessible
by wet chemical synthesis of nanocrystals: spheres, rods, and tetrapods' 9.

Many different sizes and shapes of nanocrystals can be synthesized using a variety of

materials, as illustrated by the sphericall 8 , rod-shaped 20 , and tetrapod' 9 shaped

nanocrystals shown in this figure. Our lab has developed synthetic methods for

producing rod-shaped nanocrystals as well as nanocrystals of various materials including

CdSe, InAs, Co, PbSe, CdS, InSb, and Fe20 3 among others. Spherical shaped CdSe

_ . . A>.

j
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nanocrystals, usually with a 2 to 5 monolayer ZnS overcoating, are the primary focus of

the optical studies in this thesis.

The general synthetic procedure for producing these CdSe nanocrystals is high

temperature pyrolysis of precursor compounds in a high boiling solvent that can also act

as a surface cap for the nanocrystal during its growth process. The first highly successful

example of this synthetic method used organometallic precursors (dimethyl cadmium and

trioctylphosphine selenide) that were injected into a solvent mixture of TOPO and TOP8.

Figure 1.3 The basic procedure and components used for wet chemical synthesis of a batch of CdSe
nanocrystals. A solvent with high boiling point is brought to high temperature under an inert atmosphere
before injecting a solution of organometallics or inorganic salt precursors, which precipitate and grow into
colloidal nanocrystals.
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More recently developed procedures deliver improved results using less toxic, reactive

precursors like cadmium hydroxide and different solvents like hexadecyl amine or dioctyl

ether 2 . An illustration of basics of this synthetic procedure are given in figure 1.3.

Epitaxial overcoating of colloidal nanocrystals follows a very similar synthetic

procedure, whereby inorganic precursors are slowly added, dropwise to nanocrystal cores

that are brought to a high temperature in a high-boiling solvent2 2' 23. Despite a small

lattice mismatch for ZnS growth on CdSe, up to 5 or 6 monolayers can be grown on the

CclSe nanocrystals which serves to passivate dangling bonds and surface traps on the

CdSe surface that would otherwise ruin its optical properties.

The ability to synthesize and manipulate colloidal NCs using wet chemical

techniques distinguishes them from their cousins, epitaxial quantum dots (QDs)

fabricated by Stranski-Krastanow growth. Quantum dots are made using high vacuum,

ultra clean deposition techniques whereby a sub-monolayer thick film of the desired

material is grown on a substrate with a significant lattice mismatch 24' 25. The lattice

mismatch strongly affects the wetting properties of the deposited material causing its

constituent atoms to "puddle" together like water on a newly waxed car. These oblate

shaped nanometer sized crystals are usually only a few nanometers thick, but may be up

to I 00nm in diameter, and their size distribution cannot be controlled as well as colloidal

nanocrystals. Also because they are significantly larger than colloidal nanocrystals, their

quantum confinement effects are usually less pronounced. One advantage of quantum

dots over nanocrystals, however, is that their surfaces are usually far better passivated

than colloidal nanocrystals leading to superior optical properties on a single nanocrystal

basis. The elimination of trap states with good surface passivation in quantum dots stems
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from their ultra clean growth conditions. Nanocrystals by comparison are synthesized in

very "dirty" wet chemical conditions with numerous contaminating species present. The

foregoing differences are important to keep in mind when comparing experimental results

of colloidal nanocrystals against quantum dots.

1.3 Basic Electronic Structure of Nanocrystals

One of the most fascinating results of quantum confinement on nanocrystals is its

effect on the optical absorption and fluorescence properties, i.e. the color, of CdSe

nanocrystals. Figure 1.4 shows the wide range of band-edge absorption and fluorescence

wavelengths that can be realized simply by changing the size of the CdSe nanocrystals.

tt
I:C

Z

IiOr
41
_E_
c:

400 500 600 700
WAVELIEN('H (nlm

C.B. Murray, PhD Thesis, M.I.T. (1995)

PL Spectra of Quantum Dots
CdSe and CdTe

Wavelength(nm)

Figure 1.4 Left: optical absorption spectra of nanocrystals of various sizes. Right: band-edge
photoluminescence spectra for a size series of CdSe nanocrystals's
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Figure 1.1 gave a fundamental summary of how quantum confinement ultimately leads to

the tunable absorption and fluorescence spectra shown in figure 1.4. The basis for these

size dependent changes in band gap energy is the simple particle in a sphere model o 5. 26

which gives the wave functions and energy levels of an empty sphere of radius, a, with

walls of infinite potential. Solutions of the Schrodinger equation for this problem are

given by Fltigge2 7. The wavefunction of a particle in a sphere with infinite potential walls

is proportional to the product of an fth order spherical Bessel function in the radial

direction and a spherical harmonic in the angular directions:

<P(r, , 0) = Ck (1.1)
r

where C is a normalization constant and k,,1 = a,, 1/a with a,,,l the nth root of the Bessel

function. The quantized energy states of a particle in an infinite spherical potential are

given by,

E ,22m 2 =- 7',(1.2)
2m 2ma -

which are formally the same as the kinetic energy of a free particle except with the

wavevector, k,, , quantized by the boundary conditions. Note that the energy is inversely

proportional to the square of the radius of the sphere (a), analogous to the well known L-2

energy dependence for a particle in a one-dimensional infinite well of width L.

Equations 1.1 and 1.2 are clean results for a particle in a sphere, but a nanocrystal

is not an empty sphere - it is filled with a lattice of atoms. We want to marry the

solutions for a particle in a sphere to the solutions for a delocalized carrier (i.e. electron) a

bulk crystal lattice. The Hamiltonian for an electron in an atomic lattice is just the
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particle's kinetic energy operator,-hl 2m/ , added to a periodic potential, U(r+R)=U(r),

where R is the lattice spacing of the crystal. U(r) represents a lattice of ions including the

nuclei plus the core(not valence) electrons, which are considered localized. The solution

to the Schr6dinger wave equation for this general Hamiltonian gives the wave functions

for delocalized valence electrons in the crystal lattice and is one of the fundamental

results of solid state physics, Bloch's theorem:

'1,Ilk (F) = U,lk (7) exp(ik · ) (1.3)

This result states that the wavefunction, 7, of an electron in a periodic potential can be

expressed as a plane wave envelope times a periodic function, U,k(r), the so-called Bloch

function. Simple proofs of this theorem are available in most solid state texts28. In the

tight binding approximation2 8, the functions tutk(r) are generated from linear

superpositions of the atomic orbitals containing the valence electrons.

u, () = C,,, i((r - r,) (1.4)

The summation is over all lattice points, i. By their definition the Bloch functions

automatically have the periodicity of the ionic lattice. Note that equation 1.4 makes an

approximation from the rigorous definition of Bloch functions by neglecting the k-

dependence of u,,(r). The vector of coefficients, C,,.i defines a particular wavefunction for

a state that is generated from atomic orbitals designated 'n'. If the energies of the

states V,.k are plotted against k, then states with common n group together to form a band

as shown in figure 1.5. This plot, called the band structure, shows the energy dispersion

(k-dependence) of electron states. Each band contains many states that exist only at

discrete values of k, separated by dk, where dk = 2;IL (L = length of the entire crystal).
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Each state is two-fold spin degenerate. The band structure of many band structures can be

extremely complicated, but we can simplify matters greatly by restricting our focus to the

point in k-space with the smallest energy difference between bands that are filled with

electrons (valence band) and bands that are not (conduction band).

a1

Figure 1.5 Left: band structure for bulk CdSe with a wurtzite crystal structure, calculated using the
empirical pseudopotenlial method 29. Right: simplified representation of the conduction and valence bands
at the band edge (r for CdSe, k=O). The filled circles represent states occupied by electrons and open
circles represent unoccupied electron states.

For many semiconductors, including CdSe, this is at k=O, the so-called F-point. Near this

point we can make the effective mass acpproximation for E,,(k) - we assume that the

bands' energy dispersion approximates a parabola. The energies of the conduction and

valence bands are, then approximated as,

- i

-

I
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h2k 2 h2k 2

E, (k) =2-m' + E , E (k) (1.5)
2m~tf. 2me

The degree of curvature in the parabolic approximation of the band structure is

represented by the effective mass, met,; which is defined as is the opposite of the second

derivative of E(k)) . Higher effective masses correspond to more

gradually changing, wide bands with high density of states (e.g. valence band), while

lower effective masses correspond to highly concave bands with lower density of states

(e.g. conduction band).

To a first approximation, the wavefunctions and energies of carrier states in

nanocrystals are obtained by imposing the boundary conditions of the nanocrystal and

hence the particle in a sphere solutions onto the bulk wavefunctions. In general when

boundaries are imposed on a bulk crystal, a super position of Bloch functions is used to

define the new functions. The Bloch functions can be excluded from the sum because of

weak k dependence,

'T n (r) = 1,,0 (r) exp(ik ·r) = ,, (r)f (r) (1.6)
k

f(r) is an envelope function for a single particle defining the extent of delocalization of

the wave function given the boundary conditions. Of course we have already calculated

the envelope functions, which fit the boundary conditions of the spherical nanocrystal -

they are the solutions of particle in a sphere. Substitution of the particle in a sphere

wavefunctions forf(r) is valid when the radius of the nanocrystal, a, is much greater than

the lattice constant, and is known as the envelopefiunction approximation 30

Optical spectroscopy uses the behavior of photoexcited electron-hole pairs

(excitons) to study the electronic structure of the nanocrystals. Since we have calculated
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the wave functions for individual carriers in a nanocrystal, we can now construct the

wavefunction of the total exciton. To first order we assume no interaction between the

electron and hole, so the exciton Hamiltonian is just the sum of the Hamiltonians of the

individual carriers, and the wave equation is completely separable. Therefore the wave

function of the exciton is just the product of the wave functions for the electron and the

hole,

cal (f., F ) = a (, )',, (Fr ) = ItT (, )tl1f1, (, ) (1.7)

The energy levels of the exciton are simply the sum of the energies for each confined

carrier,

h2a h--a2

E,,, (k) = E4 + + (1.8)
2m a 2in" a2 -

Note that the second two terms on the right hand side of equation 1.8 account for the

change in the b:andgap with nanocrystal radius, a.
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Figure 1.6 Illustration of the effect of confinement on electronic states at the conduction and valence band
edge. The labels of the quantum confines states are taken from the states of a particle in a sphere,
characterized by quantum numbers n (1, 2, 3 ... ) and I (S, P, D, F ... ). Photoexcited electrons occupy
quantum-confined states of the conduction band while the photoexcited holes occupy states of the valence
band. This is the reason for the labels 'e' and 'h' on the quantum confined states.

Transition probabilities and oscillator strengths depend on the dipole matrix element that

optically couples the exciton wave function with the ground state (no exciton), 10) . This

operator, - , can be approximated to act only on the Bloch functions, tl(r), so the

transition probabilities are proportional to the bra-ket of the envelope functions which are

orthonormal solutions of the particle in the sphere. Simple selection rules for the

envelope functions are the result (An=O, and AL=O) .

.
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1.4 Refinements of Electronic Structure: Band Edge Fine Structure

Significant refinements can and have been made to the wavefunctions and

energies for excitons given by equations 1.7 and 1.8. The results of these refinements

lead to some of the most interesting optical properties of the nanocrystals, beyond their

size dependent band gap. The most important refinements can be summarized as follows:

* Spin Orbit Coupling

* Crystal Field Splitting

· Valence band mixing

* Prolate shape of the nanocrystal

* Exchange coupling between photoexcited electron and hole

* Band-Band Mixing, Non-parabolicity of bands, Crystal Inversion Symmetry

Spin Orbit Coupling Using the zeroth order picture described in section 1.3 the

valence band of CdSe would be six-fold degenerate because its Bloch functions are

composed primarily of 4p atomic orbitals from selenium (three-fold degenerate), each of

which is two-told spin degenerate. When spin-orbit coupling is taken into account the

energy of an electron depends on the total angular momentum, J, where J = I + s. States

with J= 1/2 have higher energy. The result is a so-called split-off band in the valence band

corresponding to Bloch functions with J= 1/2, that is separated by about 420meV from

the valence band-edge 2

Crystal' Field Splitting The actual crystal structure of CdSe nanocrystals is

uniaxial wurtzite. The orientation of atomic orbitals relative to this preferred axis affects

the energy of the bands associated with these orbitals. The result is that the energy of the
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J=3/2 valence bands are split based on their z-projection of J (M): M = +1/2 is higher

energy than MJ = +3/2.

He 4

/ lit-Off Band
J= 1/2

Mj=12 ana MJ=+1/2

Figure 1.7 Refinement of the bulk band structure of CdSe at the band-edge when spin-orbit coupling and
crystal field splitting are accounted for. The spin orbit coupling splits the three valence bands based on the
quantum number J for the Bloch functions. The effect of the crystal field anisotropy in wurtzite CdSe splits
the bands based on their quantum number a/M, the z-projection of J.

The refined band structure, after both spin-orbit coupling and crystal field splitting are

accounted for, is shown in figure 1.7.

Valence Band Mixing If quantum confinement is applied to the band structure of

figure 1.7, each of the three subbands, A, B, and C will generate a ladder of hole states,

where the hole Bloch function angular momentum of the state is dictated by the subband

from which it originated. These ladders of states are not independent of one another.

Instead they are coupled together by valence band mixing - the quantum number of
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Bloch function angular momentum, J, is not conserved and instead, the good quantum

number is F, the sum of J (the total Bloch function angular momentum) and L (from the

envelope wavefunction).
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Figure 1.8 Graphical illustration of the meaning of various quantum numbers used to describe carrier states
and excitonic states of nanocrystals. This figure adapted from a previous work3.

This coupling explains avoided crossings observed in the size-dependence of energies in

these ladders of hole states13. A diagram that shows the relationship of the various

angular momentum quantum numbers to one another is shown in figure 1.8, which was

adapted from a previous work30.

Prolate Shape Although we have modeled the envelope wave functions using the

solutions for a particle in a sphere, the reality is of course different. Nanocrystals are

usually slightly prolate with an aspect ratio of about 1.1 . The long axis of the prolate

shape generally is parallel to the z-axis of the uniaxial crystal. The effect of the shape
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anisotropy has been calculated and causes the excitonic levels to split based on the

projection, N, of F on the z-axis31.

Exchange coupling Exchange coupling between two particles is highly dependent

on the overlap of their wavefunctions (i.e. their separation distance) 32. Because a

nanocrystal confines electron-hole pairs to a small volume, the exchange coupling energy

can split the excitonic levels. This was calculated for CdSe nanocrystals 33-35

When all of these refinements are included in the electronic structure of CdSe

nanocrystals the band-edge transition between IS electron and IS hole states is split into

a five-level fine structure. The energy levels are dependent on the z projection of the total

exciton angular momentum, N, which is the sum of the individual electron and hole total

angular momenta as shown in figure 1.8. Band edge fine structure states with I unit of

angular momentum are optically active producing circularly polarized radiative emission,

whereas the lowest state of the band edge is optically inactive because its total angular

momentum is +2.



Electron-Hole
State Basis

1Pe

g = 2x3 = 6

1Se

g=2

Exciton State
Basis

Crystal & Shape 
Anisotropy split
degeneracy based on
projection of hole
angular momentum

e-h Exchange Energy
splits states based on N,
the projection of the total
exciton angular
momentum

i. A

Mh = ±1/2

1 S3 /21 Se

g=8

g=4

g=2

g=2

1 S3/2

g=4

1 P3 /2

g = 4x3 = 12

10>

;tive

active

Figure 1.9 The origin of the manifold of line structure states at the band-edge of CdSe nanocrystals. On the
far left the ladder of quantum-confined states of an electron are shown. Changing basis to excitonic states
gives a two level system for a single exciton, but the first exciton state is eight-fold degenerate (g=8) since
it consisted of the four-fold degenerate 1 S3/2 and two-fold degenerate Se states. This eight-fold degeneracy
is broken first by crystal field and shape anisotropy and finally by the exchange interaction into a ladder of
five states designated by the only remaining good quantum number N (see figure 1.8 for description of

quantum number,;).

1.5 Optical Spectroscopy of CdSe Nanocrystals

Optical spectroscopy is the single most important experimental tool for

confirming the theoretical electronic structure described in the previous section.

Photoluminescence Excitation (PLE) and fluorescence line narrowing (FLN) techniques

were integral to the studies which elucidated the energy levels at the band edge,

particularly the fine structure of the S, S3/2 transition' 4. Both resonant and non-resonant

stokes shifts as well as a phonon progression in the FLN emission spectrum attest to the
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band edge fine-structure of CdSe nanocrystals. In the time domain, the lifetime of the

single exciton has been observed to be much longer 36 than the lifetime of a single exciton

in bulk CdSe which is between 200ps and -3ns depending on temperature and excitation

intensity- 37. A long lifetime runs counter to what one might expect based on the

enhanced e-h overlap and oscillator strength induced by quantum confinement, but the

long lifetime is nonetheless supported by the fact that the lowest state of the exciton fine

structure is optically inactive. This so-called dark exciton has been confirmed in

magnetic field dependent lifetime studies at low (cryogenic) temperatures 16 as well as

single nanocrystal studies3 .

One observation that is of specific relevance to this thesis is the multiexponential

character of the excited state lifetime of luminescence from ensembles 36. Relaxation that

follows a single path with a single rate exhibits a single exponential decay that is linear in

a log-linear plot. Excitons at the band-edge of a nanocrystal ought to relax by only a

single path, yet ensembles of nanocrystals rarely display single exponential decays.

Chapter 3 of this thesis addresses the question of why multiexponential decays are

observed in ensembles CdSe nanocrystals.

Another dynamical process observed in nanocrystals that is critical to experiments

in this thesis is Auger recombination39 4 , which is illustrated in Figure 1.10. Auger

relaxation pathways are very fast (10-lOOps 42, 43), and they involve the transfer of

relaxation energy from an exciton to another excited, delocalized carrier in the

nanocrystal. After accepting the energy, the carrier (electron or hole) is excited to high

energy in its band (conduction or valence) before ultrafast (- lps) intraband relaxation

brings it back to the band-edge4 4' 45
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Figure 1.10 The Auger recombination process involves the transfer of an exciton's energy of relaxation to
another delocalized carrier. Here the process illustrates energy transfer to an electron by the Auger process,
however a hole can also act as an acceptor. Constituent carriers of a neutral exciton can also accept energy
by the Auger mechanism. For this reason multiexciton as well as charged exciton states of NCs have
ultrashort lifetimes.

Auger relaxation is important because of the dominant role it plays in quenching

emission from excitons whenever other photo-excited carriers are present. These 'other

carriers" may b:e either lone electrons or holes in a charged NC or constituent carriers in

other excitons. One consequence of efficient Auger relaxation is that multiexciton

lifetimes are ultrafast compared to radiative relaxation, and multiexciton quantum yield is

negligible compared to a neutral single exciton state. Also the Auger mechanism renders

charged nanocrystals non-luminescent and is thought to be responsible for off states in

the fluorescence intermittency or blinking of single nanocrystals46.---------------- ---------- -· ·- C-- C--
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Blinking represents just one of many interesting phenomena 17 ' 47-53 that were

discovered when nanocrystal spectroscopy was finally brought to the single nanocrystal

level54. The primary motivation behind single nanocrystal spectroscopy is to see the

optical physics of nanocrystals without the blurring effects of non-uniformly sized

nanocrystals. For instance, the full-width at half-maximum of the band-edge emission

from an ensemble of nanocrystals is non-homogenously broadened by the size

distribution of the nanocrystals in the ensemble 55. By looking at single nanocrystals

much narrower lines can be obtained with very clear phonon progressions 56. Single

nanocrystal spectroscopy is the method of choice for a majority of the studies in this

thesis.

1.6 Overview of Thesis

Because of the heavy use of microscopy in this thesis to isolate fluorescence from

individual nanocrystals, we begin in Chapter 2 with a detailed description of the

microscopy methods used. In particular this thesis represents the first extensive use of

confocal microscopy in our lab so details on the development of this method are given. In

chapter 3 confocal microscopy combined with time-correlated single photon counting

(TCSPC) is used to study the excited state lifetime of nanocrystals at the single

nanocrystal level. In chapter 4 a study of multiexciton emission from ensembles of

nanocrystals is presented, and in chapter 5 this work is extended to single nanocrystals.

The focus of chapter 6 is the use of single photon correlation experiments on single

nanocrystals to study both single and multiexcitonic emission from single nanocrystals.

Radiative quantum cascades and various states of nonclassical light generation by single
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nanocrystals are observed with possible applications in fields like quantum

cryptography7 . The successful observation of multiexciton emission in chapters 4-6

motivated a fundamental study aimed at directly spectrally resolving biexciton emission

from single exciton emission. Such a measurement gives a direct measure of the

biexciton Coulombic binding energy, which has never before been directly obtained.

Chapters 8 and 9 returns to the realm of experiments on ensemble fluorescence. The

relationship between the fluorescence quantum yield and excited state of nanocrystals is

studied in Chapter 8. It is found that lifetime cannot be taken as a reliable indicator of

quantum yield in nanocrystals if the experimental time resolution is not sufficient to

capture the dynamics of all subpopulations of nanocrystals. Finally, in chapter 9 the

development and preliminary results of two-photon fluorescence correlation spectroscopy

(FCS) measurements on nanocrystals are reported. FCS is successfully used to

distinguish identical nanocrystals with different capping ligands in a solution

environment based on their different diffusion coefficients. Also, novel dynamics at short

times are revealed for FCS experiments on nanocrystals.
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2.1 Introduction

At the beginning of this thesis work the primary microscopy technique used in our

research group was wide-field fluorescence imaging of single nanocrystals using charge-

coupled devices (CCDs) for detections 2. Part of the challenge of this thesis was the

development and implementation of techniques that were new to our lab, particularly

confocal and two--photon microscopies. These techniques are gaining widespread use in

the field of single molecule spectroscopy and are the basis for a majority of the single

nanocrystal experiments presented in this thesis. This chapter will give a description of

the fundamental differences between wide field and confocal microscopy. It will also

describe in some detail the methods we developed to generate images of single

nanocrystals using confocal microscopy, and conversely, methods to isolate the emission

of a single NC when wide-field excitation is used. The chapter finishes with an

introduction to two-photon microscopy, which is fundamental to fluorescence correlation

spectroscopy (FCS) experiments in chapter 9.

2.2 Wide-Field versus Confocal Microscopy

We begin by discussing the similarities and differences between confocal and

wide-field fluorescence microscopy methods. In figure 2.1 the key elements of the two
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methods are illustrated in a simplified manner showing their basic optical paths,

illumination and collection. In the confocal geometry, the illumination optical path

images a point source of light onto the sample (object) plane. The distribution of

illumination intensity for this single point of light in the sample plane is described by the

point spread function (PSF) of the illumination optical path, IPSF (x,y,z). The collection

path of the confocal microscope collects light from a single point in the sample plane and
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Figure 2.1 Comparison of confocal and widefield microscopy. Confocal microscopy focuses a point source

of light to a single point in the sample which is itself detected by a point detector. Wide-field microscopy
by contrast illuminates a wide field of points on the sample and collects each point simultaneously with a
wide field detector. The difference in the point spread functions (PSFs) for the two methods is shown on
the right. Both are based on Airy functions, but the PSF for confocal microscopy is narrower because it is
the convolution of both the excitation and illumination PSFs.

sends it to a point detector. Conversely, one can say that the collection optics image the

point detector onto the sample plane with a PSF of detection efficiency, DpsF(x,y,z). One
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would like the illumination PSF and the detection PSF to overlap at the sample. The term

confocal microscopy itself refers to the fact that the foci of both optical paths overlap.

Wide field microscopy is completely analogous to confocal microscopy, except

that "point" is replaced by "wide-field." A wide field light source is imaged onto the

sample plane by the illumination optics, and the wide-field of fluorescence from the

sample is collected and sent to a wide-field detector such as a CCD. A wide-field CCD is

like a massively parallel version of the confocal microscope - each point in the

illumination plane corresponds to a point in the sample plane, which corresponds to a

point in the detector plane, and all are collected simultaneously by the wide field detector.

The efficiency of this parallel operation is the primary advantage of wide-field

microscopy. As we shall see, however, confocal microscopy has a number of different

advantages to boast.

2.3 General Description of the Fluorescence Microscopes

In figure 2.1 the illumination optical path is shown with completely separate

optics from the collection path. For the optical microscopes used in this thesis, however,

the diagrams in 2.1 are folded over onto themselves so that some optics (the objective in

particular) are shared by the illumination and collection optical paths. This general

optical layout is given by figure 2.2. A beam splitter that passes red wavelengths but

reflects blue wavelengths (e.g. dichroic or ND filter plus band pass or notch filters)

couples the excitation laser into the same path as the collected fluorescence, allowing the

same objective to be used for excitation and fluorescence collection. Of course, the



42

selection of beam splitter dictates whether the illumination path follows the right angle

reflection or vice versa.
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Figure 2.2 The basic layout of all microscopes used in this thesis. The same objective is used both to focus
the illumination and to collect fluorescence from the sample. A beamsplitter couples the illumination and
collection optical paths.

The objective is the most important individual optic in the microscope so

understanding it is essential. There are many defining parameters for microscope

objectives including magnification and numerical aperture (NA). Good descriptions of

these metrics as well as various corrections of objectives (e.g. spherical aberration,

chromatic, etc.) are available in literature3 . Because so-called "infinity corrected"

objectives are not well described in literature that we read and because the understanding

of them is critical to scanning confocal microscopes, we discuss them here. Figure 2.3
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shows the difference between traditional objectives that adhere to the DIN (Deutsche

Industrie Norm) and newer infinity corrected objectives.

b.f.l. Tube Length (160mm)
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Figure 2.3 The difference between infinity corrected objectives and conventional DIN finite objectives.
DIN objectives are standardized to form an image of the object in focus at 160mm behind its back focal
length. Intinity corrected objectives by contrast form the image at infinity - collimated light from the
sample emerges from the objective and a tube lens is necessary to form an image. Note that here the word
"objective" refers to the entire set of optical elements contained in the steel barrel and not just the first
hemispherical lens.

The DIN standardized the distance behind the objective at which the image would

be formed as 160mm plus the back focal length (b.f.l). Use of DIN finite objectives

therefore requires that the sample and the image plane be at well-defined positions in

order to achieve optimum performance. Because this requirement limits how many

optics can be added to the collection path, and because aberrations are introduced when

such optics are placed in a non-collimated beam path, infinity corrected objectives were
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introduced. For these objectives the image is formed at infinity, meaning that a tube lens

is required to form the image at the field stop. A user can either place a detector at the

image plane or use an eyepiece to look through the microscopy using his own eyes. The

collimated light emerging from the back of the infinity corrected objective allows optical

elements to be added without aberration and it confers more design flexibility in the

microscope. The difference between these objectives is simple but it was critical to the

understanding and design of microscopes in this thesis.

2.4 Wide-field Microscopy Techniques

In figure 2.4 the most basic setup for wide field spectroscopy is shown for use
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Figure 2.4 Wide field microscope setup used for CCD imaging of single nanocrystals in this thesis. Note
that a defocusing lens serves to cause a wide field of the sample to be illuminated when the sample is in the
focal plane of the objective. Also, since a wide field detector is used, a wide field of points in the sample
plane are collected and measured simultaneously to generate the image.
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with an infinity corrected objective. It adheres closely to the general design of figure 2.2

but a few details are critical. First, a defocusing lens is added to the illumination path so

that the excitation light entering the objective is not collimated and hence does not focus

to a diffraction-limited point at the sample. Instead, since the excitation is diverging as it

enters the objective it does not focus completely at the sample and illuminates a wide

region. For 100x magnification, high NA (>1) objectives and a spherical defocusing lens

of -100mnml focal length, the illuminated region of the sample plane is about 30 plm in

diameter.

The second detail to notice is the use of wide-field detection, which is collects

light from all of the illuminated points on the sample as discussed earlier. If the detector

is placed one focal length away from the tube lens, then it is assured to collect light from

the proper focal plane in front of the objective. (For clarity, the light path of just one of

the many points is drawn explicitly.) We note another advantage of infinity corrected

objectives here as well: since collimated light emerges from the back of the objective, the

distance from objective to tube lens does not greatly impact performance and the

objective itself may be moved to focus the sample. Only the relative distance between the

tube lens and the detector dictate the distance between the front of the objective and the

sample plane that is in focus.

In figure '2.5 we show how the use of apertures to perform transverse sectioning

of the image gives added flexibility to wide-field microscopy. On the left side of the

diagram is a simplified collection path showing fluorescence collected from three

different points on the sample. An aperture that is placed in the primary image plane

allows only specific points to pass on to another optical system and be detected. The
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secondary optical system on the right side takes the image at the aperture and projects it

to the detector on the right. If the optical element between the lenses is a plain, reflective

mirror, then the transversely sectioned image is detected (figure 2.5(c)).
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Figure 2.5 Illustration: diagram of transverse sectioning of images using wide-field microscopy. (a)
fluorescence image of single nanocrystals as seen without an aperture used (i.e. as the image appears
immediately before the aperture). (b) same as (a) except that a one-dimensional aperture is applied. The
image is transferred to the CCD detector using a mirror. (c) spectra of the single nanocrystals shown in (b)
obtained by reflecting the image of (b) off of a diffraction grating. (d) and (e) two-dimensional transverse
sectioning of a wide field image such that only the light from a single nanocrystal is collected. In image (d)
the nanocrystal is blinked "on" and in image (e) it is blinked "off."

If the a diffraction grating is used between the lenses of the secondary optical system then

a spectrum of the points of light that passed the aperture is generated on the detector. The

application of this scheme to single nanocrystal spectroscopy is illustrated by the images

at the bottom of the figure. On the left (figure 2.5(b)) is a wide field image of single
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nanocrystals generated by the collection optics and sent to the CCD detector with no

aperture at the image plane. The second image (figure 2.5(c)) shows the effect of

imposing a one-dimensional aperture (i.e. slit) at the primary image plane. Only a few

nanocrystals are visible along the vertical dimension. The third image shows the image

generated when the light from these nanocrystal point sources passes the diffraction

grating before detection on the CCD - the spectrum of each individual nanocrystal is

recorded. This technique was developed in our group for the purpose of measuring PL

spectra from single nanocrystals 2 and is used widely in this thesis.

For some applications like single photon counting, a point detector such as an

avalanche photodiode (APD) is required. In these cases we would like to know precisely

the location within the image where the detected light originates (e.g. from which single

nanocrystal). Transverse sectioning allowed us to do this even when wide-field

microscopy was used and light from a wide field with numerous nanocrystals was

collected by the objective. In this case a two-dimensional aperture (i.e. pinhole) was

placed in the primary image plane allowing only a single point of light to pass. To

illustrate this, a 2 dimensionally sectioned image was detected using a CCD and the

images are shown in the lower right of figure 2.5. In one image the dot has blinked "off'

and in the other the dot has blinked "on." To acquire these images the aperture was

positioned so that the fluorescence of a single nanocrystal could pass. This light could

then be sent to an APD for single photon counting.
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2.5 Confocal Microscopy Techniques

Although the use of pinholes for two-dimensional transverse sectioning of wide

field images of single nanocrystals was successful at selecting emission from only one

nanocrystal for detection on the APD, it was highly inefficient in practice. Use of a

pinhole required repositioning of it and the APD (in order to maintain alignment of the

collection path) for each nanocrystal of interest. A much better option is to use confocal

microscopy where only a single point of the sample is excited and light from the same

single point is collected.
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Figure 2.6 Illustration of basic confocal microscope design used in this thesis. Note that a point source of
light (pinhole) is focused to a point in the sample. Meanwhile the point detector is imaged by the collection
optics onto the same single point in the sample plane.
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The fundamental differences between confocal and wide field microscopies were

described in figure 2.1.

The basic setup of the confocal microscope used in our single photon counting

experiments, shown in figure 2.6, has two main differences from the wide-field setup that

was shown in figure 2.4. First, there is no defocusing lens in the illumination path, and a

collimated laser beam enters the infinity corrected objective so that the excitation light is

focused to a single point. Second, the light emitted from the single point on the sample is

focused to a single point detector rather than a wide-field CCD detector. Most

commercial confocal microscopes use a photomultiplier tube (PMT) for detection with a

pinhole in the image plane to define the single point of the image that is detected since a

PMT has a wide area of sensitivity. In our case we used an APD for detection of single

photons. The APD serves as a point detector with an area of sensitivity that is about

175wn in diameter.

We mentioned earlier (figure 2.1) that the transverse PSF of confocal microscopes

is significantly sharper than that for wide field microscopy. In the axial direction the PSF

of the confocal microscope enjoys an even greater advantage, leading to the ability to

perform depth sectioning with it. The basis for the depth sectioning ability of confocal

microscopes is shown in figure 2.7. Light that originates from the sample plane at the

front focal length of the objective is focused to a point in the image plan and can pass

through the pinhole efficiently. However, light that originates from different axial

positions (dashed lines) is not in focus at the pinhole and is not efficiently passed or

detected. Because only thin film samples are studied in this thesis, depth sectioning is

not required and our experiments do not specifically take advantage of this property. Still,
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depth sectioning illustrates one advantage of the much more focused PSF available from

confocal microscopy.

pinhole

Image Plane Object Plane

Figure 2.7 Origin of the depth sectioning capability of confocal microscopy. Only light originating from
the image plane is efficiently passed through the pinhole in the primary image plane.

The microscope setup as shown in figure 2.6 does not have imaging capabilities,

rather it is a sampling device, providing detection of light from a specific point in the

sample. In order to generate an image of the sample, the point of the specimen that is

sampled must be serially raster-scanned over the specimen using software to reconstruct

the image. The most straightforward way to achieve this is to raster-scan the sample in

the x-y plane relative to the focused point sampled by the confocal microscope. In this

thesis a piezo stage with 200um of x-y range and 5nm precision was used (Physik

Instruments). A Labview program was written to perform the scanning, whereby each

-,. --
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cycle of a nested for-loop (one loop each for x and y directions) measures the intensity of

light at a given point and then moves the sample to its next position.

The use of a piezo stage for sample scanning has the advantage of simplicity and

high precision, however it is slow, and it is limited to moving only very small samples

that can be carried by the small piezo stage. For low-temperature experiments where the

sample is contained inside of a large cryostat weighing several kilograms, scanning with

the piezo stage is impractical. In this case laser scanning is the method of choice.

Laser scanning uses movable mirrors to change the angle of the illumination path so that

the PSF is raster scanned across the sample, which is held stationary. Confocal laser

scanning microscopy (CLSM) can generate images much more quickly than sample

scanning 4 l. Using resonantly driven galvanometer controlled mirrors (galvo-mirrors),

images can be generated at TV rates (>20Hz). In our setup galvo-mirrors were used, but

the emission intensity of single nanocrystals limited the speed at which scanning was

practical - one must integrate on each pixel long enough that the signal significantly

outweighs shot noise. For a single nanocrystal the maximum count rate typically

achievable is about 200kcps meaning that a 0.5ms/pixel integration time still only gives

100 counts with S/N ratio of 10. At that scan rate a single frame still takes 50 seconds,

which does not capitalize on the scan speed capabilities of the galvo-mirrors. The ability

to scan the PSF of the confocal microscope focus on a stationary sample (in a cryostat),

not speed, is the motivation for using scanning mirrors

The main disadvantage of CLSM is that the microscope setup is more complex4.

Figure 2.8 illustrates the added complexity, showing how the system should be arranged

for two cases, one using an infinity-corrected objective and the other using a finite (DIN)
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objective. The first point to notice is the positioning of the scanning mirror: the scanning

mirror should be positioned so that its motion affects the illumination and the collection

paths in the same way - this is called "descanning" the collected light. If the scanning

mirror only altered the illumination path, then scanning would move the illumination PSF

but not the collection PSF and the system would not remain confocal. In practice this

means that the scanning mirrors should be between the beamsplitter and the objective as

shown in both setups of figure 2.8. The second important issue is telecentric corrections

of the optics in the system. A telecentric plane is a plane in the system where a change in
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Figure 2.8 Design of laser scanning mirrors for confocal microscopy using a finite objective (bottom) and
an infinity corrected objective (top).

angle of the optical path results in the lateral translation of the focus in the focal plane (on

the sample)4. This means that we would like the scanning mirrors to lie in a telecentric
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plane. Here the differences between infinity corrected and finite (DIN) objectives

become important.

For finite objectives the telecentric plane is physically within the housing of the

objective. Therefore a scan lens is used to create a conjugate telecentric plane, which is

an image of the primary telecentric plane (inside the objective). The scanning mirror is

placed in the conjugate telecentric plane. Proper positioning of the scan lens to generate

the conjugate telecentric plane is one focal length of the scan lens from the image plane

of the finite objective. This illustrates a different but equivalent description scanning:

collimated excitation light deflected by the scanning mirror is focused by the scan lens to

a displaced point in the primary image plane that is projected by the finite objective to a

displaced point in the focal plane on the sample. Recall that the light collected from this

displaced point follows the same optical path and is "descanned" by the scanning mirror

back onto the rest of the collection path, which remains stationary.

In the case of infinity corrected objectives, the image plane is at infinity, so

another tube lens plus a scan lens would be required to reproduce the setup shown for the

finite objective. In practice we found that by placing the scanning mirrors close enough

to the back entrance of the infinity corrected objective, we could approximate positioning

in the primary telecentric plane well enough to achieve good images. In general the

scanning mirrors were within 100mm of the back of the infinity objective. Although the

mirrors were not perfectly positioned in the primary telecentric plane, the small scan

angles used (covering only about 20 to 30pm of displacement in the sample) tolerated

this deficiency - proper positioning in the telecentric plane is much more critical for large

scan angles.
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The results of imaging a sample of single nanocrystals using CLSM and sample

scanning are shown in figure 2.9 along with a CCD image of single nanocrystals for

comparison. The great advantage of scanning with a confocal microscope, as mentioned

earlier, is the ability to easily focus the spectroscopy experiment inside a single

diffraction limited point of the sample (e.g. one single nanocrystal). After generating the

image we can direct the scanner to bring any single nanocrystal in the image into the

focus using the click of a mouse. This is the single NC spectroscopy technique used to

collect light for measurement of lifetimes, spectra, and single photon correlation of

emission of individual nanocrystals later in this thesis.

CCD confocal scanned

-7,m -7pm

Figure 2.9 Comparison of images of single nanocrystals obtained by widefield CCD detection and by
confocal scanning.
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2.6 Two-Photon microscopy

The last technique that was significantly developed in our lab for experiments in

this thesis is two-photon microscopy. Instead of relying on a single photon whose energy

is greater than the nanocrystal band gap for excitation of a single nanocrystal, two-photon

microscopy works by focusing laser light whose photon energy is less than the NC

bandgap to such high intensities that two photons are simultaneously absorbed by a NC.

Two photon absorbtion

, /
I_ f I

z

One photon absorbtion

_I 

z

Figure 2.10 One versus two photon excitation. In one-photon absorption processes, each photon incident
on the nanocrystall has enough energy to induce an excitation of the nanocrystal. Therefore as the laser
excitation beam passes through a solution of NCs it excites essentially every NC in its path and
fluorescence is observed all along the beam path. For two-photon excitation two photons must strike a NC
simultaneously to generate an excitation. Therefore excitation only occurs at the point of highest intensity,
and only a small volume of the sample fluoresces.

The two photons together deposit enough energy to excite the nanocrystal, although

either photon by itself would not provide enough energy. Extremely high photon fluxes~IC'~I ~I~I~II V ·LI~ll I·V\~IU ·VI IV··C I IIVD
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are required to achieve simultaneous absorption of two photons, so high NA microscope

objectives are used to focus ultra-high intensity femtosecond laser pulses into the sample,

usually at about 800nm. Despite the very high photon fluxes of femtosecond pulses, the

probability of exciting a nanocrystal is still miniscule - except at the very focal point of

the objective. Therein lies the power of two-photon microscopy: excitation of

nanocrystals occurs only at the focal point of the objective and nowhere else. On the

bottom of figure 2.10, a laser beam of high energy photons is focused through a solution

of fluorescent molecules, and although the intensity of the excitation is highest at the

focus, light is clearly absorbed at all focal depths. Two-photon excitation on the other

hand, which is shown on the top of figure 2.10, excites the sample only at the focus so

fluorescence only originates from a tiny point within the solution.

Two-photon excitation has proven particularly useful for deep tissue imaging in

biological microscopy6 8 . Since the excitation only occurs at the focal depth, background

noise is not generated by the intermediate tissue. Furthermore, the intermediate tissue is

not damaged. Two-photon microscopy has also proven very useful in fluorescence

correlation spectroscopy (FCS) , which is the topic of chapter 9. The basis of FCS is the

time-correlation of fluctuations in the intensity of fluorescence that originates from a very

small region of a solution sample. If the size of the volume from which the fluorescence

originates is small enough, the number of molecules residing (and fluorescing) in that

volume varies significantly with time, leading to fluorescence intensity fluctuations. One

can see that the use of two-photon excitation allows a very small focal volume to be

probed so that large fluctuations can be observed.
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2.7 Conclusions

In this chapter we have given an overview of the most important microscopy

techniques that were used in the work of this thesis. We discussed the fundamental

differences between confocal and wide-field microscopy before describing in some detail

the actual implementation of both techniques. We showed how wide field images can be

transversely sectioned to select specific parts of an image for spectroscopy or detection

by an APD. We also addressed the differences between finite and infinity corrected

objectives, and we discussed how laser scanning should be properly used in confocal

microscopes. Although these techniques were not originally developed by in our lab,

their use in this thesis represents their first implementation in our lab, so the details and

descriptions given here should aid future researchers in using these techniques.

2.8 References

K. Shimizu, in Chemistry (Massachusetts Institute of Technology, Cambridge,
2002), p. 128.

S. A. Empedocles, in Chemistry (Massachusetts Institute of Technology,
Cambridge, 1999), p. 204.

3 E. H. Keller, in Handbook of Biological Confocal Microscopy, edited by J. B.
Pawley (Plenum, New York, 1995), p. 11 1.
E. H. K. Stelzer, in Handbook of Biological Con focal Microscopy, edited by J. B.
Pawley (Plenum, New York, 1995), p. 139.
M5 . Mueller, J. Schmidt, S. L. Mironov, et al., Journal of Physics D: Applied
Physics 36, 1747 (2003).

6 C. Xu, W. Zipfel, J. B. Shear, et al., Proceedings of the National Academy of
Sciences 93, 10763 (1996).

7 D. R. Larson, W. R. Zipfel, R. M. Williams, et al., Science 300, 1434 (2003).
8 K. Berland, P. T. C. So, and E. Gratton, Biophysical Journal 68, 694 (1995).



58



59

Chapter 3: Single Nanocrystal Lifetimes
3.1 Introduction
3.2 Methods
3.3 Multiexponential and Fluctuating Lifetimes from Single Nanocrystals
3.4 Single Exponential Decays
3.5 Uniformity of Maximum-intensity PL Decay
3.6 Quantum Yield Fluctuations and Blinking in Single Nanocrystals
3.7 Size Dependence of Nanocrystal Lifetimes
3.8 Conclusions
3.9 References

3.1 Introduction

Interest in colloidal semiconductor nanocrystals (NCs) has largely centered on their

unique size dependent optical properties. Excitons in a NC are quantum confined in all three

dimensions, making optical properties like emission and absorption energies strongly size

dependent. These properties, when measured from an ensemble, can be masked by size

polydispersity and by fluctuating local environments. Fortunately, the advent of these

materials has closely followed the development of single chromophore optical microscopy

and spectroscopy. These techniques have allowed the study of many NC optical properties

without the blurring effects of size distribution. Moreover single molecule spectroscopy has

led to the discovery of new phenomena in colloidal NC optical properties, like blinking' -3

and spectral diffision, 4 that are not at all resolved on the ensemble level.

The excited state lifetime of colloidal NCs is one optical property that was not yet

well understood at the beginning of this thesis. Photoluminescence (PL) decay dynamics of

ensembles of colloidal NCs differ from those of traditional organic chromophores in two

important ways. First, very long (tens of nanoseconds at room temperature to microseconds

at low temperature) lifetimes are observed 5 in contrast to the much shorter decay time of bulk

CdSe (200ps to a few ns depending on temperature and excitation power)6' 7 and CdSe
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quantum dots (21 Ops)8. This long lifetime has been explained by the band edge fine structure

of CdSe nanocrystals whose lowest energy state (N=±2) is optically inactive 9, 0. Radiative

relaxation from this so-called dark exciton state to the ground state (no exciton) requires a

spin flip, making it very slow compared to bulk CdSe.

The second peculiarity observed in the lifetimes of ensembles of nanocrystals is the

multi-exponential dynamics of their PL decay. Standard fluorophores and organic dyes

almost invariably exhibit single exponential decay dynamics. Figure 3.1 shows the PL decay

for Rhodamine 640, a common organic dye molecule.

100
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10-3
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Figure 3.1 PL decay of solution of Rhodamine640 molecules in methanol at room temperature.

Ensembles of nanocrystals (e.g. solutions), on the other hand, are known to exhibit

multiexponential decays, which are not linear in a log-linear plot. Moreover the degree to

which the lifetime deviates from single exponential decay behavior can vary greatly from

sample to sample leading resulting in vastly different lifetime measurements for ensembles of



61

nanocrystals. The underlying physics of radiative emission is masked by these unpredictable,

multiexponential decay dynamics. Figure 3.2 illustrates the deviation of lifetime

measurements from two different ensembles of nanocrystals from single exponential

behavior.

1

a) F q
O > >n - c0.1
0 c CC-CZ
E:C z
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Figure 3.2 solutions of NCs at room temperature exhibit multiexponential PL decays

Three possible explanations for multi-exponential behavior in the NC ensemble PL

decay dynamics present themselves: (i) each member of the ensemble has its own unique

single-exponential (single rate) lifetime, and the distribution of rates within the ensemble

yields a multi-exponential decay; (ii) the PL decay is an inherently complex process for each

individual NC, so the decay dynamics of each individual NC are multiexponential; (iii) the

PL decay of each member is single exponential at any given moment, but it fluctuates in
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time, so that the (time averaged) PL decay of both an individual NC and the ensemble is

multi-exponential.

Time resolved single chromophore microscopy makes it possible to probe the nature

of this multiexponential behavior on a dot-by-dot basis. Recent Time Correlated Single

Photon Counting (TCSPC) experiments showed that the PL decay from single CdSe colloidal

NCs is in general multiexponential, and moreover that the PL decay varies during the course

of the TCSPC measurement'1. The phenomenon of PL decay fluctuations has also been

observed in single molecule studies of organic and biological molecules'2' 13, but the multi-

exponential behavior seen in these studies is caused by fluctuations between different

molecular conformational states, a parameter that is not present in the NC system. Instead

fluctuations in the local electrostatic environment surrounding the NC should play in

important role, as suggested in a study that correlated spectral diffusion with fluorescence

blinking events in single NCs 14 . These electrostatic fluctuations may also lead to

corresponding variations in the fluorescence quantum yield (QY) of each single NC. It was

suggested that the QY of an ensemble of NCs may represent an average over widely varying

QY values from individual NCs'5; time-dependent fluctuations would add a new dimension

to this complex QY behavior.

The experiments presented here demonstrate that PL decay fluctuations from single

colloidal CdSe NCs occur on timescales ranging at least up to many seconds. They confirm

that variation of the PL decay rate is correlated to variation of the time-averaged emission

intensity of the NC, i.e. blinking. We also find that discriminating which photons are

counted in TCSPC - for example by selecting only those photons emitted while the emission

intensity is above a given threshold - reveals single-exponential PL decays from single NCs.
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Wre propose that these single-exponential decays are a measurement of the radiative lifetime,

thus providing a quantitative measure of the single-exponential radiative lifetime of colloidal

CdSe NCs at room temperature.

3.2 Mlethods

Three different samples of ZnS overcoated (4-5 monolayers) CdSe colloidal NCs

were studied at room temperature. Each NC sample was synthesized independently using

established methods' 6 ' 7. Overcoating was carried out using the methods of Dabbousi Ix

The samples had mean core radii of 3.lnm, 3.3nm and 3.3nm respectively. The samples

were prepared for detection at the single molecule level by spin casting (5000rpm) a solution

(-50 nM) of NCs in PMMA/Toluene solution (200mg/20mL) onto a glass coverslip.

The experimental setup consisted of a homebuilt confocal scanning microscope with

either 532nm or 414nm pulsed laser excitation. The excitation laser light was focused

through a pinhole and recollimated before entering the microscope. A dichroic mirror was

used to couple the excitation light into the optical path, and galvanometer driven scanning

mirrors were used to generate scanned images of the single NCs. A 00x oil immersion

objective (Nikon) with 1.25 NA was used to both focus the collimated laser and to collect the

NC emission. Laser excitation at 532nm with a pulse width -lps (Coherent MIRA-OPO)

was provided by an intracavity frequency doubled optical parametric oscillator (OPO) that

was pumped by a Ti:Sapphire laser (MIRA) at 737nm. A pulse picker was used to lower the

OPO repetition rate to 4.75 MHz. Laser excitation at 414nm was provided by a GaN diode

pumped laser with repetition rate of 5 MHz and pulse width of 90ps (PDL800-LDH400,

Picoquant,GmBH). An avalanche photodiode (APD) (EG&G, SPCM-AQR14) was used for
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detection. Single photon counting was carried out using a time to digital converter integrated

into a PC computer card (Timeharp200, Picoquant, GmBH).

Time-tagged, time-resolved (TTTR) measurements using the Timeharp were

performed on each single nanocrystal for a period of 120 or 180 seconds. TTTR

measurements differ from traditional TCSPC in that both the start-stop time (time between

excitation pulse and single photon emission, rp) and the absolute arrival time (time since the

start of experiment, t) of each photon are measured. The resolution on r, was

approximately 700ps, and the resolution on t, was about 200ns. Single NC emission
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Figure 3.3 Application of Time-Tagged, Time Resolved Single Photon Counting. Both the time between
excitation pulse and single photon emission ("start-stop" time, r) and the absolute arrival time ( time stamp, t)
of each photon are measured. A histogram of the start-stop times gives the lifetime. The time stamps, on the
other hand, tell the absolute time that the photon was emitted during the experiment. By counting the number of
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intensity trajectories were generated by binning photons according to t, allowing z, to be

studied as a function of either t,, or average emission intensity. The use of TTTR

measurements for these experiments are illustrated in Figure 3.3. After generating PL decays,

the data were fit to decay functions in Matlab using the Nelder-Mead Simplex minimization

algorithm.

3.3 Multiexponential and fluctuating lifetimes from single nanocrystals

Two examples of typical TCSPC generated PL decays from single NCs are shown in

figure 3.4. These PL decays were obtained by conventional TCSPC and will be referred to as
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Figure 3.4 PL decays for two different single CdSe NCs (from sample 1) as measured by conventional TCSPC.
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"time-averaged" PL decays to distinguish them from "maximum-intensity" decays, which

use only some of the photons collected by TTTR measurements and are discussed later. The

multiexponential, time-averaged single NC PL decays in figure 3.4 rule out the first

suggested explanation for the multiexponential behavior of ensemble PL decay (that the

ensemble comprises a distribution of NCs whose decays are single exponential, but whose

rates differ from one another). Instead, each individual NC exhibits multiexponential

dynamics in TCSPC measurements. However, because TCSPC in figure 3.4 is time-

averaged over many seconds (120s), it fails to establish whether the decay is inherently

multiexponential or whether it results from time averaging of a fluctuating single exponential

decay.

Using the time-stamps obtained in the TTTR measurement, we were able to generate

PL decays corresponding to very short intervals of time (-1 sec) by histogramming the r

values corresponding to time stamps that fall within a small time interval. The result, shown

in figure 3.5, is a 3-dimensional plot of 1-second integrated PL decays over the course of a

120 second measurement. Cross-sections in the r-z plane give the standard TCSPC

generated PL decay corresponding to that value of T. A cursory look at figure 3.5 strongly

suggests that the PL decay fluctuates in time, and moreover, that the fluctuation may be

correlated to variations of the single NC emission intensity (blinking). Figure 3.6 confirms

this observation explicitly. The top of figure 3.6 shows the emission intensity trajectory for

the dot in figure 3.5, plotted using OOms bins. The bottom panel of figure 3.6 illustrates

how the lifetime varies with the emission intensity by plotting three different PL decays that

were generated by photons collected during short ( second) periods of low, medium and

high count rates. These three PL decays more closely approximate single exponentials
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indicating that the single dot multiexponential behavior observed in figure 3.4 is caused

primarily by

5.
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Figure 3.5 Three-dimensional count intensity versus stochastic photon arrival time (start-stop time, r in
nanoseconds) and collection time (T, in seconds) for a sin, :le nanocrystal. The intensity is plotted in
logarithmic scale.

fluctuation of the lifetime that is correlated to the emission intensity of the single NC.

Fluctuating lifetimes like this were observed in practically all TTTR experiments that we

performed on single NCs.

The longer lifetimes associated with higher emission intensities strongly suggest that

fluctuations in the non-radiative rate (k,,,.) dominate (see also chapter 8). If fluctuations of the

radiative rate (k,.) were dominant, a decreased lifetime would correspond to an increased
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quantum yield (QY) and increased PL intensity. Surface and other external trap states

provide a source of non-radiative relaxation pathways for single excitons in colloidal NCs5.

Figure 3.6 Top: emission intensity trajectory for the data in figure 3.5. Bottom: three different PL decays
result from photons collected during three different brief periods of low (light gray), medium (dark gray), and
high (black) emission intensities of the trajectory.

However, carrier trapping into NC surface states usually occurs on sub-nanosecond time

scales and strongly quenches any NC that has such traps. Thus any fluorescence that we

observe must originate from the population of NCs that do not have any strong traps on the

CdSe surface. The ZnS overcoating of our samples passivates these immediate ultrafast

surface traps on the core CdSe NC. For these reasons, the relaxation mechanism associated
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with the variable non-radiative rates we observe probably does not involve carrier traps on

the CdSe surface.

Trapping of carriers on the exterior of the ZnS overcoating is an equally unlikely

mechanism for the non-radiative pathway. Whereas ultrafast carrier trapping on bare CdSe

NCs still yields a neutral NC through deep-trap emission (recombination of surface trapped

carriers), any canrriers trapped outside of the ZnS shell of our NCs would be quasi-

permanently charged, leading to a charged NC. Charged NCs exhibit strong Auger

relaxation, which proceeds much faster than the nanosecond time-scale of the non-radiative

rates that we observe.

Instead we propose that the physical origin of the fluctuating non-radiative relaxation

pathways that we observe may reflect some kind of Coulombic coupling of the exciton to

energy acceptor species outside of the ZnS shell. The dynamic variation of the non-radiative

pathway indicates that these pathways likely involve the unstable environment of the NC.

Lone charges on the ZnS surface or in the organic matrix around the NC represent one

possible candidate for the fluctuating energy acceptor pathway involved in the dynamic non-

radiative rates. The existence and importance of such charges has been demonstrated in

earlier works' 14 19. 20

3.4 Single exponential decays from single nanocrystals

Another way to take advantage of the time-stamp information available from TTTR

measurements is shown in figure 3.7 where the collected photons were grouped based on the

emission intensity of the single NC for the time bin to which the photons belonged. For each

TTTR measurement, an intensity trajectory was generated by grouping photons by their

absolute arrival times (t,,) into 100 ms intervals or 'bins.' Intensity thresholds were set at
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10%, 60% and 90% of the difference between the maximum and minimum emission

intensities, tIresI = min + ('max - min) . All photons were then categorized according to the

emission intensity range of their time bin. Separate single photon counting PL decay

histograms were generated for each intensity range as shown in the bottom of figure 3.7. The

PL decays generated by photons from bins with emission intensity > 90% are referred to as

"maximum-intensity" PL decays, in contrast to the time-averaged PL decays shown in figure

3.4 which counted all of the photons. The results presented in figure 3.7 confirm the
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conclusions suggested by figure 3.6. Besides having longer time constants, the maximum-

intensity PL decays are also nearly single-exponential.

Fitting the maximum-intensity PL decays to a stretched exponential decay model,

Y(t) =C + exp- (t f") (3.1)

quantifies, through the parameter fi, how closely the maximum-intensity PL decay

approaches single-exponential kinetics. Pure single exponential behavior has ,8=1, whereas

smaller f/ values reflect a distribution of decay rates leading to greater multiexponential
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Figure 3.8 Distribution of stretched exponential (equation 1) ,8 parameters when fitting the maximum-intensity
PL decay (black) and to the time averaged PL decay (gray). The average pvalue for the maximum-intensity PL

decays was 0.90, whereas the average ,8for the corresponding time averaged PL decays was 0.75. Log-normal

fits to these two /'distributions are superimposed for comparison.

character. The results of fitting PL decays to stretched exponentials are shown in figure 3.8

where the distribution offivalues over 180 selected single NC measurements is displayed for
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the maximum-intensity PL decays (black) versus the time-averaged PL decays (gray). The

distributions shown here were fitted to a log-normal distribution.

The distribution of fvalues shown in figure 3.8 quantitatively demonstrates the

degree to which the maximum-intensity PL decay approaches single-exponential behavior, in

contrast to the time-averaged, standard TCSPC measurement generated from the same TTTR

measurements. Over 90% of the maximum-intensity PL decays have stretched exponential 3

parameters greater than 0.8 while more than 70% of the time-averaged PL decays have <

0.8.

The hypothesis that k,,r for the single NC is fluctuating between various values is

supported by the fact that whereas the maximum-intensity PL decay is nearly single

exponential, PL decays generated from a narrow range of medium intensity data over the

entire TTTR measurement are invariably multiexponential. On the other hand, if data from

the same medium intensity range but limited to a short time span (e.g. a few seconds) is used

to generate the PL decay, nearly single exponential character (with a shorter lifetime) can

again be recovered. An instance of this can be seen be comparing the medium intensity PL

decay of figure 3.7 (integrated over entire TTTR measurement) against the more single-

exponential medium intensity PL decays shown in figure 3.6 (data taken from only a few

seconds of the TTTR measurement).

The appearance of single-exponential character for maximum-intensity PL decays

reveals an intrinsic property of the NC core that is independent of its surface cap or local

environment - factors that can dominate many other single NC measurements. Single-

exponential kinetics result from a single rate constant, k = kr+k,,r, where kr is the rate of

radiative transition and k,r is the sum of all (varying) non-radiative rates. Given the
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fluctuating environment of the QY, it is unlikely that the same non-radiative pathway (i.e.

same k,,,) will be repeatedly visited by many different NCs during all periods of high

emission intensity during a collection period of two or three minutes. It is more probable that

the single-exponential decay measured from the maximum intensity photons is dominated by

k,, the radiative lifetime of the single NC. That is, k,,,,x k, (max = maximum-intensity) for a

single NC.

3.5 Uniformity of maximum-intensity PL decays

The hypothesis that the maximum-intensity PL decay measures the room temperature

radiative lifetime ( rr) for the NC is supported by the robustness of the measured lifetime

value when fit to a single exponential. Figure 3.9 shows the distribution of single

exponential fits to the maximum-intensity PL decays for the three different samples used.

The mean maximum-intensity lifetimes for samples , 2 and 3 were 26.5 ns, 24.6 ns, and

24.6 ns respectively. The inset to figure 3.9 shows the overall distribution of lifetimes for all

NCs considered. The mean maximum-intensity lifetime for these 122 NCs was 25.0 ns. The

1/e lifetime for time-averaged PL decays was much shorter and less consistent.
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Figure 3.9 Normalized distribution of single exponential lifetime (r) values from NCs with stretched

exponential ,>0.85 for each of the three samples along with fits to the normal distribution. The mean lifetimes
for samples I (gray), 2 (dark gray) and 3 (black) were 26.5 ns, 24.6 ns, and 24.6 ns respectively. Inset: the
normalized distribution for all of the NCs taken together along with a Gaussian fit. The overall mean lifetime is
25.0ns.

These data show that the value of the maximum-intensity lifetime is practically

uniform across all NCs, even those originating from different samples and syntheses.

Furthermore, the percent standard deviation of maximum-intensity lifetimes about the mean

is much less than the percent standard deviation of the corresponding 1/e times for time-

averaged PL decays taken from the same NCs.

The uniform results obtained for maximum intensity PL decays contrast starkly with

the wide variety of results obtained from time-averaged TCSCP measurement of single NC

lifetimes. Figure 3.10 shows two pair of PL decays. Each pair represents two successive
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measurements on the same NC. The left panel shows two successive maximum-intensity PL

decays, while the right panel shows the pair of time-averaged PL decays taken from the same

TTTR measurements.
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Figure 3.10 Two consecutive PL decay measurements from the same NC. Left: the time-averaged PL decays
for these same measurements. Right: the maximum-intensity PL decays for the two consecutive measurements
are shown.

By focusing only on photons emitted during time bins of maximum emission intensity

we obtained reproducible decay rates from a single NC, unlike the unstable results of time-

averaged PL decays. This is consistent with the idea that the maximum-intensity PL decay

represents purely radiative relaxation. We expect the radiative lifetime to remain essentially

0
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constant from measurement to measurement, whereas the time-averaged PL decay integrates

all of the varying, environmentally influenced non-radiative components of the lifetime,

making it less reproducible in sequential measurements. While the arguments above support

our speculation that it is the radiative lifetime that is being measured, a direct measurement

of the QY at the single NC level is required to absolutely confirm our hypothesis. Such a

measurement was recently reported22 and supports to our hypothesis that the on-state of a NC

emits fluorescence with a quantum yield of 100%.

3.6 Quantum yield fluctuations and blinking in single nanocrystals

The observed emission intensity dependence of single NC lifetimes coupled with the

hypothesis that the maximum-intensity lifetime approaches a constant value (k,n -l) with

single-exponential character leads to an important modification of our understanding of the

emission-intensity trajectories observed from single NCs: the intensity trajectory is

determined not by digital intermittency alone, but also by a fluctuating QY of the on-state.

At the beginning of this study the predominant hypothesis stated that fluorescence

intermittency or blinking completely determines all fluctuations in the intensity trajectory of

a single NC (discounting shot noise). Numerous studies' 3, 23. 24 have helped establish a

model mechanism for this blinking wherein a NC switches between on and off states via

charging events. Charging events turn the NC from on to off (off to on) by opening (closing)

highly efficient Auger non-radiative recombination channels. Because the Auger

recombination channel has a rate that is orders of magnitude faster than competing

processes25-27, digital behavior is predicted - either the dot is on with some constant intensity,
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or it is completely off23. Deviations from perfectly digital behavior have usually been

attributed to insufficient time resolution of the measurement.

Since the time scale of intermittency has been shown to span up to five decades in

time with event times extending down to I Oms or less24 , it is difficult to rule out insufficient

time resolution as a source of medium intensity data points in the intensity trajectory. We

explored the possibility that the intermediate PL decays observed for medium intensity

events could result from fast blinking, and that its PL decay would be given by a simple

superposition of long lifetime and short lifetime weighted by the amount of time the dot was

on and off during each bin. We found that the actual PL decay that was observed for medium

cn
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intensity events almost never matched the result of simply calculating the weighted average

of maximum-intensity and off-time PL decays. This result is illustrated in figure 3.11.

Moreover, since the maximum intensity lifetime tends to be constant and single

exponential, perfectly digital blinking of the NC should lead to a perfect equivalence between

the time-averaged PL decay and the maximum intensity PL decay (i.e. either the NC is "on"

with the maximum intensity PL decay lifetime or it is "off' and contributing no signal to the

lifetime). This is also not observed. Therefore we are convinced that, while fast blinking

probably still causes some artificially low intensity data points in the intensity trajectory,

fluctuations in the non-radiative relaxation rate dominate medium intensity fluctuations in a

single NC emission intensity trajectory.

Changes in knr imply that the "instantaneous QY" (i.e. the instantaneous probability

of radiative rather than non-radiative relaxation) is fluctuating as well. We can relate the

fluctuating PL decays to the fluctuating instantaneous QY though the integrated area beneath

the intensity normalized PL decay curve, AN. As discussed in chapter 8, AN is a

generalization of the single exponential decay constant, Z, for cases of multiexponential

decays: Q = k, · r - = = kr AN . This relationship is based on the definition of QY as

the number of photons emitted (ne) per number of photons absorbed (n,,), that is QY = ne/n,.

Since the number n, is directly proportional to the area beneath the normalized PL decay

curve, it follows that the QY is directly proportional to this PL decay area, assuming constant

n,, collection efficiency, etc.

Figure 3.12 plots the integrated area beneath the intensity normalized PL decay

curves for a single NC as a function of its emission intensity. The error bars display the

emission intensity range of the bins used. These ranges were defined for this figure by
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thresholds of 10, 40, 60, and 90 percent. The symbols (e) in the plot represent the average

intensity for that range. A linear relationship as in figure 3.12, explicitly showing the

correlation between emission intensity and instantaneous QY, is found for practically all of

the individual NCs observed. We conclude that the intensity trajectory observed for a single

NC is dictated not only by purely digital intermittency between charged and uncharged

states, but also by a fluctuating QY of the emitting state
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Figure 3.12 The average emission intensity for a particular intensity range of the trajectory is compared to the
area beneath the nomlalized PL decay curve that is generated by photons from bins w hose intensity falls in that
range. The error bars indicate the range of emission intensity values for the photons used to generate the PL
decay whose area is calculated. The linear relationship between emission intensity and PL decay area indicates
that the variations of emission intensity can be attributed to QY fluctuations.
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3.7 Size Dependence of Nanocrystal Lifetimes

The three samples covered in the preceding experiments were all of similar size (3.1-

3.3nm), but it is also of interest to understand how the lifetime of CdSe NCs may vary with

the size of the NCs. The dependence of lifetime on size is difficult to qualitatively predict

because various known size dependent effects can influence the lifetime in different ways.

For instance, as the size of the NC is reduced, the band-edge fine structure splitting energies

increase due to the exchange interaction so that the optically inactive N = 2 state is more

isolated from the optically active N = ±1 state. A longer lifetime should result from this. In

addition, as the NC size decreases, the overall oscillator strength of the NC decreases since

there are simply fewer atoms and hence a lower overall absorptive cross section. This could

also increase the lifetime. On the other hand, as the NC size is decreased, confinement

increases leading to greater overlap of the electron-hole pair, and more concentration of

oscillator strength in the band-edge transition. This would also lead to a shorter lifetime.

Clearly, without a quantitative approach, it is practically impossible to theoretically predict

with certainty the effect of size on lifetime. An experimental approach is of interest.

Having developed a method of stripping away the effects of fluctuations to reveal an

intrinsic lifetime (maximum intensity lifetime), we performed a study of the lifetimes of

NCs that were smaller than those in our previous studies in order to reveal any strong effects

of NC size on single NC lifetime at room temperature. The sample of small NCs were

prepared using the same methods as the previous larger samples' 7 and were overcoated 18

with ZnS, but had a core radius of 1.9nm corresponding to band edge absorption of 543nm.

We measured the maximum-intensity lifetime from approximately 30 NCs from this sample

and fit the lifetimes to a stretched exponential. As with the larger samples, the maximum-



81

intensity lifetimes approached single exponential behavior with beta parameters averaging

about 0.93. The distribution of measured lifetimes is given in figure 3.13 for these smaller

NCs.
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Figure 3.13 Distribution of lifetimes from measurements of single NCs with mean radius of I.9nm.

The average lifetime value measured from these small NCs was 27ns with a standard

deviation of about 3.6ns. These results are very similar to the results obtained for larger

NCs, indicating that the size dependence of lifetime at room temperature is practically

negligible within this range of sizes. Although our measurements were done at room

temperature, leading to an "effective lifetime" for the thermalized manifold of band-edge

states, the relative insensitivity of our lifetime measurements to NC size agrees with the

results of a low-temperature study (isolating the lowest band-edge fine structure states) of
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lifetimes of single CdSe NCs28. These results lead us to conclude that, while the lifetime of

CdSe NCs does differ significantly from the exciton lifetime of bulk CdSe, within the

quantum confinement regime, the lifetime of CdSe NCs is relatively size insensitive.

3.8 Conclusions

We have presented data that demonstrate the emission intensity dependence of PL

decay measurements from single colloidal NCs. We have seen that the maximum-intensity

PL decays approach single-exponential behavior, and their lifetimes are nearly constant from

NC to NC and even from sample to sample. These observations lead us to speculate on the

possibility that the maximum-intensity lifetime is actually the radiative lifetime.

Furthermore, these results highlight the important role that QY fluctuations play in

determining the emission intensity trajectory of single NCs.
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4.1 Introduction

Over the past decade, multiexciton states in semiconductor quantum dots (QDs)

have attracted the attention of many investigators. The discrete QD energy levels and the

three dimensional quantum confinement of multiple carriers have been exploited, in

epitaxially grown quantum dots, to produce strongly correlated photon pairs',

nonclassical optical field states' or to demonstrate the optical entanglement of excitons 3

in a NC.

As mentioned in chapter colloidal semiconductor nanocrystals (NCs) are related

to QDs but are distinct. Instead of vacuum deposition techniques, NCs are synthesized by

wet chemical methods in organic colloidal suspensions with good size and shape control.

NCs are typically smaller and more spherically symmetric than NCs, which can lead to

stronger carrier confinement. Unlike in epitaxial QDs, fast non-radiative processes

dominate multiexciton relaxation in strongly confined colloidal NCs. The Coulomb

mediated Auger rrmechanism4' has been proposed as the main non-radiative pathway for

multiple carrier relaxation. In particular, for CdSe NCs, high-resolution time resolved
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experiments show that multiexciton dynamics depend strongly on the NC radius 4. For

instance, reducing the radius of spherical CdSe NCs from 4.2 to 2.3 nm decreases the

biexciton Auger relaxation time by a factor of 8, from 360 ps to 42 ps.

Despite strong Auger relaxation in NCs, two recent reports have shown

multiexciton photoluminescence (PL) from ensembles of CdSe NCs using transient

detection techniques 6, 7. In the work of reference 7 an ultra-fast photoluminescence (PL)

upconversion technique was used to detect multiexcitonic emission in CdSe colloidal

NCs, and a charged biexciton model was introduced to explain the observed higher

energy multiexcitonic band at high excitation power. In this chapter and previous work6

we also detect such a multiexcitonic band from overcoated colloidal CdSe/ZnS core/shell

NCs. Measurement of the power dependence and energy splitting of the multiexcitonic

band strongly suggest that it originates from a 3 electron-hole (e-h) pair recombination.

In this chapter we present room temperature data from solution phase samples,

which allows us to extract fundamental properties of the multiexciton transitions

including radiative lifetimes, quantum yields, and energy splittings. In addition, we

present a study of multiexciton emission from one sample at cryogenic temperatures.

These low temperature data provide additional insight into the nature of the multiexciton

transition in CdSe nanocrystals.

4.2 Methods

We used high quantum yield (QY, 30%-80%) CdSe(CdZnS) core(shell) NCs of

various sizes (2.5nm - 5nm, core radius) obtained from Quantum Dot Corp. (QDC),

(Catalog No. 1002- l) or synthesized using methods developed in our laboratory 8 and
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surface passivated by an epitaxial ZnS shell using well-established overcoating

procedures 9 ta. Rod shaped, one-dimensional nanocrystals (nanorods) of aspect ratio 5:1

were synthesized in our lab using procedures adapted from a previously reported direct

one-pot synthesis with n-tetradecylphosphonic acid and cadmium oxide (99.99%).

These were overcoated using procedures analogous to those used for the spherical

nanocrystals9 , ).

For measurement of transient spectra of room temperature solutions of NC we

dispersed NCs into hexane at low concentration in a I mm path length quartz cuvette.

The NCs were excited by a frequency-doubled regeneratively amplified titanium-

sapphire laser, delivering 100 fs pulses at 400 nm with a repetition rate of I kHz. Within

our pump fluence, up to 10 e-h pairs could be generated in a NC on average. The mean

number of e-h pairs ( ) generated in a NC by a pulsed laser with repetition rate, f and

average power. P, is: s- = iUP . - - aP, where h, c, 2, c, and A are Planck's constant, the

speed of light, the excitation wavelength, the absorptive cross-section, and the cross-

sectional area of the excitation beam, respectively. The room temperature PL was

collected with a 5 cm focal length lens, dispersed with a 100 grooves/mm grating and

directly detected with a streak camera. The time resolution of the detection setup was 18

ps for the shortest experimental time range.

Measurements of transient spectra at liquid helium temperatures were carried out

on ensembles of NCs that were dispersed in a thin film polymer matrix by spin coating

onto a single crystal quartz substrate. The sample was cooled to liquid helium

temperatures (approximately 4.3 K) in a cold finger cryostat and was excited using the

frequency doubled, pulse-picked laser emission of a Ti:Sapphire oscillator (400nm,
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4.775kHz, 150fs). Although the pulses generated by this laser source would normally be

too weak to generate multiexcitons in the nanocrystals, use of a 0.7NA microscope

objective to focus the light to a very small (but probably not diffraction limited) point on

the sample inside the cryostat allowed us to achieve appreciable multiexciton emission

from the samples. For instance, the pulse fluence of just 300LW of 400nm light in this

experiment was -200 ,uJ/cm2 at the focus (-lmm radius spot size), generating on average

7 excitations per NC per pulse (assuming a 1.8x10'-4cm 2 cross section at 400nm).

Transient spectra of emission from the NC film were recorded on an ultrafast gated,

intensified CCD (LaVision, PicoStar).

4.3 Transient Spectra of CdSe Nanocrystals at Room Temperature

Figure 4.1(a) shows a three dimensional transient PL spectrum for a 2.3nm radius

CdSe NCs sample; 4 e-h pairs are injected into the NCs on average. The PL intensity is

coded in a white color, brighter area corresponding to higher PL intensity. Figure 4.1(b)

shows PL spectra, extracted from figure 4.1(a), 20ps (black circle) and 800ps (gray

circle) after excitation using a 40ps integration window. The transient PL spectra show

that, shortly after excitation, a second emission peak is present at higher energy than the

usual band edge emission peak. The multiexcitonic origin of the higher energy band is

confirmed by its observation only at high excitation intensity. The splitting, A, between

the two peaks is 0.25eV in figure 4.1(b). Figure 4.1(c) displays the band edge emission

spectrum for 2.3 nm radius NCs 20 ps (black circle) and 800 ps (gray circle) after

excitation. Since the band edge peak is a mixture of single exciton (X) and biexciton

(BX) emission (both S3/2-Se transitions), the observed 20meV positive energy shift
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with time is evidence for the negative binding energy of the BX as previously reported6 .

Transient spectra from larger (5. lnm radius) NCs at four separate delay values are shown

in Figure 4.1 (d).
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Figure 4.1 (a) 31[) transient PL spectrum recorded on a 1 . ns time window for a 2.3 nm radius NCs
sample; the PL inlensity is coded in white color; brighter area corresponds to higher PL intensity. (b)
transient PL spectra 20 ps (black) and 800 ps (gray) after excitation extracted from Fig. l(a). (c) 2.3 nm
radius NC band edge PL spectra 60 ps (black) and 800 ps (gray) after excitation, the blue shift is due to
negative biexciton binding energy. (d) Transient PL spectra of a solution of 5. nm NCs taken at various
delay ranges: -50---50ps (black open circles); 50-150 ps (gray open circles); 250-350 ps (black solid
circles); 3-4 ns (gray solid circles). Plots (a) through (c) were obtained from previous works.

Increasing the NC's radius from 2.3 nm to 5.1 nm decreases A by about a factor of

2, but increased the BX and multiexciton emission intensity. Figure 4.2(a) summarizes

the evolution of A as a function of the NC size. We note that our samples exhibited band

edge Stokes shifts of 10-25 meV, which is consistent with reported non-resonant Stokes
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shifts 12. Therefore the observed decrease of A with NC size is not caused by a

significant variation of the band edge Stokes shift.

4.4 Assignment of Biexciton and Triexciton

To determine the origin of the multiexcitonic band, the size evolution of A was

first compared with single exciton absorption spectra of CdSe NCs, reported earlier 3

Figure 4.2(b) compares A (squares) and the position of the 1P3/2- IPe transition (triangles)
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Figure 4.2 (a) A versus the NC radius; (b) a comparison between A (squares) and the IP3/2-1Pe energy
transition (solid circles) relative to the 1S3,2- 1Se band edge transition; the notation 1S3,2, 1P3,2, IS, and IPe
of Ref. 20 designates the first two hole and electron levels, respectively; measured lP3/2,-1P energy
position (open circles) for three NC samples at room temperature. These date are taken from earlier work 6

relative to the 1S3/2-lS, band edge transition. Since the PLE data in Ref. 14 were

obtained at low temperature (10 K), the energy of the first excited state of our NC
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samples is used, instead of the NC size, to get the relative energy of the 1 P3/2- I Pc

transition from Ref 14. By plotting the splitting against the 1 S3/2-1 Se energy, the

temperature dependence of the effective band gap 14, 15 is built in, and splittings at low

temperatures can be compared to splittings at room temperature. For instance, the

position of the i P3'/2-1 Pe transition was measured by performing room temperature linear

absorption measurements on three different NC samples (open diamonds in figure 4.2(b))

and obtained a good agreement between the low and room temperature data. Also, the

extracted 0.31 eV spacing for the 2.3 nm NCs sample (cf. figure 4.2(b)) is consistent with

the room temperature value I'. Within our size range, we obtain an approximately 50

meV energy difference between A and the relative position of the 1P3 2- 1 Pe transition.

The P3,2--lPe energy transition and A track each other closely as shown in figure

4.2(b). This correlation implies that the multiexcitonic band originates from a 3 e-h pair

state or triexciton: 2 electrons in the first ISe electronic state, 2 holes in the first 1S3/2

state, a third electron in the next I Pe envelope electronic state and a third hole in the 1 P3/2

envelope state. The 50 meV energy offset between A and the relative position of the

I P3,2- I Pe transition may result from the TX binding energy and a Stokes shift due to the

fine structure of the 1P3 2-1Pe NC transition, analogous to the non-resonant stokes shift of

the I S3 2- 1 S. transition.

Analysis of the power dependence of the transient emission bands lent strong

support to this hypothesis. Figure 2(c) presents the power dependence of the emission

from the X (squares), BX (triangles) and the multiexcitonic (circles) bands in the 2.3 nm

radius NC sample, normalized to their intensities at l mW excitation power. A Poisson

distribution p(n) = n-"e ' n! was assumed for the probability of generating a particular
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number, n, of e-h pairs by a single, sub-picosecond excitation pulse, where n = aP as

described above. Justification for the use of a Poisson distribution is given at the end of

this chapter (addendum, chapter 4). Since the BX is known to decay much more quickly

than a nanosecond, the band edge emission intensity at t >> I/F, (I/f - BX lifetime)

results only from X emission and should follow the Poisson probability of generating

more than zero excitons in a single pulse:

I,(P) = Cl(1- p(O)) = C,(1- eap) (4.1)

Fitting the power dependence of the X emission to this function gave c = 0.56 implying a
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Figure 4.3 Normalized power dependence of the single exciton (squares) biexciton (triangles) and the
multiexcitonic band (circles); the 3 different slopes show that the 3 bands originate from 3 different
emission processes. (inset) power dependence of multiexcitonic band (circles) and least square fit results
using equation (4.2) (crosses) and Eq. (4.3) (solid line), respectively. These data taken from the original
work6 .



93

cross-section of 6x 1 O- cm2 at 400nm for this sample of 2.3nm NCs, in agreement with

previous work 17

The method for extracting the BX emission from the band edge spectrum was

based on solutions of a set of linear differential equations governing decay out of the

multiexciton, BX and X states. The time evolution of X decay could then be subtracted

from the band-edge spectrum leaving purely BX emission, whose power dependence is

shown in figure 4.3(c) (triangles). Details of this procedure are described in the previous

work "

Extracting the power dependence of the multiexciton band, shown in figure 4.3

(circles), was straightforward, since it is spectrally resolved from the band edge. The

possibility that the multiexciton emission originates from a charged biexciton as reported

in one study 7 was considered. If this were the case, the power dependence should follow

the probability of generating one or more than one exciton in a given pulse,

1I(P) = C1(I - p(l) - p(O))= C2(1 -(I + aP)x e-" ) (4.2)

with C: as the only fitting parameter. This function was found to fit the power

dependence of the multiexciton emission poorly (crosses, inset of figure 4.3). However,

by assuming the mnultiexciton emission originates from a triexciton, according to our

hypothesis, the following power dependence is expected,

I (P) = C(l - p(2) - p(l) - p(O))= C3( ( +aP + (ap) ) x e p) (4.3),

which fits the data almost perfectly, as seen by the solid line of the inset of figure 4.3.

Our analysis of the power dependence and the correlation of A to the transition

leads us to conclude that the multiexciton band results from 3 e-h pair triexciton (TX)

recombination. Previously we found this result surprising since the TX's hole was
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assumed to relax completely to a band edge state whose envelope had S symmetry -

recombination of a S hole with a 1 P electron is forbidden. We therefore assumed that a

combination of thermal population of the I P hole states at room temperature and relaxed

selection rules allowed the TX recombination 6

In fact, whether the hole of the TX ends up in a 1 S or 1 P state after it has relaxed

to the band edge depends on how the crystal field splitting energy (l,q) compares to the

splitting between hole states of IS and P symmetry due to confinement (Ah-o,L-c,,1t). This

is illustrated in figure 4.4.
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Figure 4.4 Band edge hole states in CdSe nanocrystals There are three valence bands since they are made
up of three-fold degenerate 4p atomic orbitals of Selenium, whereas there is only one conduction band edge
because it is made up of 4s orbitals from cadmium. The three valence bands, A,B, and C, are designated by
their total angular momentum, J and its projection, Mj,: IJ,Mj>. Spin orbit coupling and crystal field
splitting breaks the degeneracy of these bands. Inset: the ordering of the lowest energy hole states in a
nanocrystal depends on whether the crystal field splitting or the hole confinement energy is dominant. Note
that each band (and hence each state) is two-fold spin degenerate.
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If the confinement of the hole causes the energy difference between the Sh and I Ph

states to be greater than the crystal field splitting (i.e. A<Alh,lecot), then the lowest

energy hole states will be first a two-fold spin degenerate 1 S state from the heavy hole

band followed by another 1S state from the light hole. On the other hand, if 4 ., > AzlI-

,,,,; then the second highest energy state would be the I P envelope state of the heavy hole

band. The bulk j(f value is approximately 25meV for CdSel". If the confinement energy

of the hole is larger than this, then our original assumption should hold and the lowest

energy state available to the TX's hole is a I S light hole state whose recombination with

its partner I P electron is forbidden. Assuming electron-hole Coulombic interactions do

not play a decisive role, this would mean that TX emission should be prohibited at low

temperatures. Preliminary results showing weakened TX emission from 2.3nm NC

samples at 77K supported this 6. However, for very large NCs z/,,,l_(e,,¢' could be smaller

than, or at least not much greater than the At. Hence, the lowest energy envelope state of

the TX's hole would have I P symmetry so recombination with the 1P electron would be

allowed. Indeed, in section 4.7 below we find that TX emission can still be seen from

very large NCs, even when cooled to liquid helium temperatures.

4.5 Multiexciton Lifetimes

To further characterize our transient PL data we determined the relaxation time

and estimated the quantum yield of each emission band. Figure 4.5 presents the dynamics

of the fast decay component, at high power, of the band edge emission peak for 2.3 nm

(diamonds), 3.4 nm (circles) and 5. lnm (stars) radius CdSe NCs. The single exciton
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lifetime for our solution samples ranged from about 14 to 25 ns, so we assign the fast

band edge dynamics, observed on a 1 ns timescale in Fig. 4.5(a), to BX relaxation. After

subtracting the "background" X intensity at long times (tl,,,e >> l/r), the measured BX

lifetimes, 1/F, are 50 ps (2.3 nm NC radius), 150 ps (3.4 nm radius NCs), and 790 ps

(5. lnm radius). Figure 4.6 summarizes these times along with previously reported values

showing that they are consistent with the linear dependence of the BX Auger decay on

volume4 . Figure 4.7 shows PL decays of the TX in 3.4 nm and 5.1 nm radius samples

with 50ps and 230ps relaxation times respectively. The 230ps decay constant was

obtained from the slow component of a double-exponential fit, where the fast component

likely arises from n-exciton (n>3) components.
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Figure 4.5 Biexciton PL decay curves for solutions of 2.3 nm (open circles), 3.4 nm (open diamonds), and
5. Ilnm (solid circles) radius NCs with lifetimes of 50ps, 150ps, and 790ps respectively.
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Figure 4.6 Log-Log plot of decay times of the BX emission measured in this work (circles) and in
reference 4 (triangles). The linear dependence on volume (r3) is evident.
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4.6 Quantum Yield of Multiexciton States

Figure 4.8 presents overlaid temporal profiles of both the TX and the band-edge

emission bands from the 5.1 nm NC sample, excited at both low and high excitation

intensity. The data taken at low power were rescaled such that the band-edge intensity at

4 ns matched for low and high power. By comparing the integrated area of the pure BX

decay component to the area of the complete, pure X decay (low-power), we can estimate

the QY of the BX (Q2) relative to that of the X (Ql) (see chapter 8 for detailed discussion

of this technique). To compare QY values we have to take into account the initial

excitation probability for one, two and three excitons ( p', n = 0,1,2,3... ), as well as the

luminescence bandwidth (A1) of each state over which the photons are distributed. A

simple equation relates these parameters through the total counts registered for X, BX

and TX emission:

ABX.TX ABX 7X BX,TX counlts Q2. 3 XP 2. 3

Ax SAx X colunts Q, xp 1

Solving for the relative QY of the BX we obtain, q2 = Q2/Q = 0.1 1. An analogous

calculation for the TX yields q. = QJQi = 0.05. Taken with the single exciton QY of

about 0.75 (measured by standard methods, described in chapter 8, using a SPEX

fluorometer) and the measured decay rates of the BX and TX, these relative QYs lead to

radiative decay times of 8.4 ns and 6.8 ns for the BX and TX respectively.
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Figure 4.8 PL decays extracted from band-edge and TX regions of transient spectra, 1.87eV-1.92eV and
2.02eV-2.09eV, respectively, at low (2 dJ/cm-) and high (240 ,tJ/cm) fluence using 5.1nm NCs. Data are
rescaled so that low and high intensity band-edge decays match at 4.2ns.

4.7 Multiexciton Emission from CdSe Nanocrystals at Low Temperature

At the end of section 4.4 we discussed the ambiguity surrounding the reason that

TX emission can even be observed at all. Two cases were mentioned. In the first case,

the crystal field splitting of the heavy and light holes is less than the confinement energy

for holes at the valence band edge meaning that the lowest state available to the TX's

hole should be an S state that is forbidden to recombine with the I P electron of the TX.

The second case is the reverse of the first which leads to allowed radiative recombination

of the TX. If the first case is true then either some kind of relaxation of the selection

rules or thermal population of excited hole states would be required in order to have TX
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emission. Precluding relaxation of the selection rules, low temperatures studies should

show no TX emission if the first case is true. In this section we show the contrary - TX

emission indeed can be observed at cryogenic temperatures (4.3K) from samples of very

large CdSe nanocrystals whose hole confinement energy is less than the crystal field

splitting energy. These studies provide further insight into the nature of the TX

transition.

In figure 4.9 we present a sequence of emission spectra from a film of large NCs

at 4.3 K that were taken using 200ps gates on using an ultrafast, gated CCD camera at

various post excitation delays. The first three or four transient spectra show a clear blue-

[nm] 560 580 6600 620 640 660 686

Figure 4.9 Sequential frames of nanocrystal PL spectra taken using an ultrafast gated CCD camera with
200ps gates. 400nm excitation laser pulses were focused onto the sample by a microscope objective and
excited the sample with an average power of 182 ptW (I 5t1.J/cm2). Each pulse generated about 4 excitons
per NC per pulse on average.
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shifted emission band from that likely originates from TX emission. By integrating the

spatial dimension of the spectra shown in figure 4.9 and then stacking the spectra at

progressively longer delay times along the y axis of a color-coded 3D plot, the temporal

evolution of the spectrum can be represented on a single plot. The data in such a plot are

analogous to streak camera data as in figure 4.1 (a). Two plots of this kind are shown in

figure 4.10. One was taken from an ensemble film at room temperature and the other at

4.3K.
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Figure 4.10 Top: Transient spectra of CdSe nanocrystal polymer films at room temperature and at liquid
helium temperatures (4.3K) with high intensity pulsed excitation (80/tW mean power; I l5uJ/cm 2 pulse
fluence). Bottom left. Comparison of multiexciton features in transient spectra at room temperature (gray)
and 4.3K (black). The dashed gray line is the actual intensity of room temperature transient spectrum,
whereas the solid gray line is the room temperature spectrum after rescaling for comparison. Bottom right:
plot of splitting of triexciton band energy splitting at various temperatures. The -20 meV difference in
splitting between room temperature and 4.3K can be accounted for by kT.
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Comparing the low temperature spectrum to the room temperature spectrum we note,

first, that the emission bands appear narrower at low temperature. The same

phenomenon is well known for the band edge emission of CdSe NCs, and it results from

a narrowing of the single NC line width to approximately I nm FWHM. Of course the

ensemble linewidths remains much broader than 1 nm because of the imperfect size

distribution of the sample.

Of greater interest is the energy splitting between the TX and the band edge.

Room temperature streak camera measurements of the same sample of NCs in hexane

solution showed A - 120meV as discussed earlier. The room temperature splitting in

figure 4.8 is similar, A = 11 lmeV. However, at 4.3K the splitting is reduced to only 91

meV.

One possible reason for the smaller splitting between the TX and the band edge

emission at low temperatures as well as the narrowing is the existence of a ladder of fine

structure states for the TX, analogous to those for the single exciton. At room

temperature the TX thermally populates a ladder of fine-structure states, but at low

temperatures it is frozen into the lowest energy TX fine structure state. Rigorous

calculation of these states is beyond the scope of this study, however, it is interesting to

speculate on whether the lowest of thesis is optically active. For this we needed to

compare the room temperature lifetime and quantum yield of the TX to values at low

temperature.

By integrating over a spectral range of data in 3D plots like figure 4.8 we obtain

the decay behavior of the luminescence in that given spectral range. Figure 4.11 shows

this decay behavior for the TX band as a function of temperature, where the decays have
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been rescaled so that their maximum intensity values are equivalent at t=0. Using the

same raw data we also generated the PL decay of band edge luminescence (BX+X) at the

same temperatures, which are shown in figure 4.11.
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Figure 4.11 Decay of TX emission from 5. Inm radius CdSe/ZnS nanocrystals at various temperatures.
These experiments were performed with 180 piW excitation power (I 15jJ/cm 2, lean radius spot size).

The decays shown in figures 4.1 1 and 4.12 were obtained from films of NCs that were

pumped with 180 W in a confocal geometry leading to an excitation pulse fluence of

I 15pJ/cm 2. This excitation fluence generates on average N excitons in a given NC per

pulse, so we know that we are in the multiexciton generation regime. This is confirmed

by power dependent studies at low temperature, shown below.
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Figure 4.12 Decay of BX emission from 5. lnm radius CdSe/ZnS nanocrystals at various temperatures.
These experiments were performed with 180 pW excitation power ( 15,tJ/cm2, lman radius spot size).

Variation of the temperature between room temperature and 4.3K appears to have

little influence on the decay rate of the TX or BX emission. The most likely reason for

this is that Auger recombination, known to play the most important role in multiexciton

relaxation at RT, still provides the most efficient relaxation pathway for multiexcitons at

low temperature. This is not surprising because one would not expect the Coulombic

coupling of carriers - the basis for Auger recombination - in a semiconductor to have a

strong temperature dependence, especially in confined systems like these nanocrystals.

This means that the dominant non-radiative rate for multiexciton relaxation is

approximately temperature independent. As a result, any change in quantum yield of a

multiexciton will reflect a change in the radiative decay rate of that multiexcitonic

transition. At low temperatures excitons occupy only the lowest levels of the fine
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structure. A change (or lack thereof) in the radiative decay rate gives us insight into

whether the lowest energy state of the TX fine structure is optically inactive (or active).

Previously, at room temperature, we judged the quantum yield of multiexciton

states by comparison to the emission intensity of the single exciton in the same

experiment. Since the QY of the single exciton is not constant as a function of

temperature 9, we did not reference the QY of the multiexciton emission to the single

exciton QY and cannot obtain absolute values for the multiexciton QY. However, the TX

emission intensity grew significantly as the temperature was reduced, indicating that the

TX quantum yield increased. These observations are shown in figure 4.13.
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Figure 4.13 Temperature dependence of TX emission intensity at constant pump intensity. Integrated TX
emission counts are normalized against the value at room temperature. The line is a linear fit to guide the
eye.
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If we ignore non-homogenous change of the quantum yield (described in chapter 8), then

the increased quantum yield of the TX must be associated with an increase of its radiative

rate, since the non-radiative rate was found to be temperature independent. This increase

of TX radiative rate strongly suggests that the lowest energy state of the TX fine structure

is optically active.

Lastly we studied the power dependence of the BX and TX emission at low

temperature. Figure 4.14 shows the evolution of the TX luminescence decay as the

average pump power is varied from lpW to 180/tW (0.6/J/cm 2 - 115 uJ/cm2 ). The
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Figure 4.14 Power dependence of the luminescence decay of TX emission from 5.1 nm radius CdSe/ZnS
NCs at 4.3 K as a function of excitation power. The top plot shows the results on a linear scale. The bottom
plot shows the data on a log-scale plot. Powers: #1 W, 21iW, 4,uW, 8W, 12,uW (pink line, black dot),
30,uW, 60pW, 80 1 W, 100luW, 120,uW, 140,uW, 160,uW(pink line, gray dot), 180upW(dark green line, gray
dot), 180aW(dark blue line, gray dot).
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integrated emission intensity of the TX and of the BX could be obtained from decays like

those in figure 4.14 by rescaling the curves so that their emission intensities match at long

times (3 ns in the case of the TX decay, 8 ns in the case of the BX decays). The intensity

of TX and BX emission as a function of pump power is summarized in figure 4.15.
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Figure 4.15 Power dependence of BX and TX emission from 5. 1 nm radius CdSe/ZnS nanocrystals at
4.3K. The power range covers average exciton generation values of n = 0 to -4 excitons per NC per pulse.

4.7 Conclusions

We have observed multiexciton photoluminescence from semiconductor NCs.

Our studies of the power dependence and energy splittings of transient

photoluminescence strongly imply that the high-energy multiexciton band results from

three e-h pair TX emission involving the I P electron state of the nanocrystal. Our battery

of experiments at room temperature allowed us to extract fundamental values like
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radiative lifetime and quantum yield of the multiexciton emission. Low temperature

experiments provided new insight into the nature of the states involved in these

transitions, suggesting that the TX emission occurs through an optically allowed

transition at the bottom of a ladder of fine structure energy levels comprising the I P3 /2-

1 Pe transition.

The results presented in this chapter are of fundamental scientific interest for the

understanding of nanocrystal electronic structure. They are also useful for applications

like studies of NC doped titania films with distributed feedback (DFB) gratings in our

group which revealed simultaneous ASE and lasing from both the BX and TX

transitions 20. Moreover, the relatively high QY and long lifetime of multiexciton

emission from large NCs found in these studies suggest the possibility of studying

multiexciton emission at the single NC level. We address this effort in the next chapter.

4.8: Addendum: Poisson Statistics for Probability of Multiexciton Generation

For pulsed experiments the power dependence of n-exciton state generation is

derived from the probability that a single excitation pulse generates the n excitons in a

single nanocrystal,. We justify the use of a Poisson distribution to estimate this

probability on the basis of the following arguments.

Our pump laser is tuned to a non-resonant transition in the nanocrystal (400nm -

-1 eV above the conduction band edge, depending on the NC sample), and the pump

pulse lasts for about 150fs to 200fs. Because of the very high density of states at this

non-resonant transition, and because the decay of hot-carriers to the band edge is known

to be very efficient (<lps) 2 1-23, it is reasonable to assume that each separate absorption
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event within the excitation pulse length occurs independently of one another - there

should be no bleaching of this transition, even within the pulse duration. If the various

absorption events by a single nanocrystal occur independently of one another, then the

total number of absorption events that occur during a given time period (e.g. length of the

pulse) is governed by the Poisson distribution 24 as described in the caption of figure 4.14

below. We note that these assumptions are invoked with extensive precedent in the

literature 4
,25

T = pulse length

J----^---\
A

k..

©,

II lIII I 

dt

time

We approximate the excitation pulse as a square function of width T. Within the pulse, the
single NC is excited at a constant average rate of ,, = I,,k , where uand 1,.,, are the cross-
section and peak laser intensity respectively. Therefore the average number of excitations
during the pulse is <1n> = 0,,*T. If we divide the pulse into a sufficient number (N) of time
bins of width, dr= T/N, then the stochastic probability that the an excitation event
(represented by "up arrows") occurs in an interval is p = <n>/N. The probability of finding
<n> independent excitation events in the N intervals follows the binomial distribution. The
Poisson distribution emerges from the binomial distribution in the limit that dIt - O. This
explanation is adapted from Saleh and Teich.
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5.1 Introduction

The results of the last chapter demonstrating multiexciton emission of significant

quantum yield (QY) from nanocrystals (NCs) suggest that single molecule spectroscopy

experiments on multiexciton emission might also be possible. In the field of epitaxially

grown Stranski-Krastanow quantum dots (QDs), spectroscopic studies of multiexciton

emission at the single QD level is already commonplace. Recent low temperature studies

of multiexciton-exciton splitting', multiexciton lifetimes2' 3 and fine structure4, coherent

control of multiexcitons' and non-classical light emission via multiexciton channels", 7 are

only a few examples. It is an ongoing challenge and of great interest to perform these

same kind of experiments on single nanocrvsttals.

In this chapter we investigate the multiexciton transitions of CdSe at the single

nanocrystal level. The primary challenge here is to distinguish the multiexciton emission

from the regular single exciton band (X) edge emission of a single NC. In chapter 4

relatively large QY and lifetimes values were measured for the biexciton (BX) and

triexciton (TX) in large (5.1nm) NCs, implying that multiexciton emission should be

detectable from single NCs. Here we succeed in temporally and spectrally resolve this

emission in single NC experiments. We observe a correlation of the multiexciton
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emission to the single NC fluorescence intermittency. We also arrive at quantum yield

values for the BX and TX by fitting our single NC lifetime data to the behavior of a

simple four level system (4LS). These values agreed with QY values of the BX and TX

obtained by ensemble measurement of the same samples as chapter 4.

5.2 Methods

For single NC experiments presented in this chapter, we selected the 5. lnm radius

nanocrystal sample from Quantum Dot Corporation (QDC, Cat. No.1002-1), that was

studied in chapter 4. We focused on this sample because it had a very high quantum

yield for both its single-exciton band-edge emission (-70%) and its BX and TX emission

(estimated to be about 7% and 3% respectively). We prepared single NC samples in a

manner very similar to chapter three. A very dilute solution of the NCs in a toluene plus

poly(methyl methacrylate) mixture was spin-coated onto a coverglass to produce a low-

density field of single NCs (<0.1 im-2) in a polymer matrix. Single NCs were excited

using one of two pulsed lasers: (a.) the 400nm pulsed output of a frequency-doubled

Ti:Sapphire oscillator (pulse<500fs, 4.715 MHz repetition rate); (b.) 414nm output of a

pulsed laser diode (Picoquant GmBH, rpulse<100ps, 5 MHz repetition rate). A high NA

objective (100x/1.4) was used for both excitation and collection of PL on a home built

piezo scanning confocal microscope. The high NA oil immersion objective allowed us to

achieve smaller spot sizes and hence even higher excitation fluences than were possible

for the intra-cryostat experiments in chapter 4. For instance, the 400nm excitation light

could be focused with the 1.4NA objective to a spot size of <200nm HWHM (radius). A

Timeharp200 (Picoquant GmBH) was used to measure lifetimes of single NCs by time
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correlated single photon counting (TCSPC). Transient spectra of single NCs were

obtained by sending the light collected from a single NC though a spectrograph

(Triax320, 300mm - 1, 550nm=blaze) whose output was detected using an ultra-fast, gated

charge-coupled device (CCD, LaVision GmBH). In each of these experiments the entire

luminescence spectrum was collected, and all measurements were at RT.

5.3 Multiexciton Emission in Single Nanocrystal Emission Spectra

Transient spectra at zero and 5 ns post-excitation delays from a single NC are

shown in figure 5.1. The zero-delay spectrum with a 1000ps gate integrates over the

lifetime of the TX, revealing the blue-shifted TX emission from the single NC, which is
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Figure 5.1 Transient spectra (1000ps gate) from a ingle NC (280Jd/cm 2) at ero (black) and 5ns (gray)
delay. The sample's ensemble transient spectrum (solid line) is superimposed (1000ps integrated, 10meV
shift for comparison).
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in qualitative agreement with the transient spectrum of the solution (black line). In

contrast, the single NC spectrum obtained after a 5 ns delay (gray line) shows no blue-

shifted TX band, because it has completely decayed. We note that the single NC

spectrum at 5 ns delay does not coincide with the main peak at zero delay because of

spectral diffusion, which is well documented in single NCs 8. 9. Spectra like figure 5.1

could be repeatably obtained from many different NCs as long as the NC did not blink off

or spectrally shift too much before sufficient averaging cold be completed (usually 10-30

seconds).

5.4 Multiexciton Emission in Single NC Lifetimes

BX and TX emission was evident in lifetime measurements of these single NCs as

well. Figure 5.2(a) shows the emission intensity of a single NC under progressively

higher intensity, pulsed excitation. The lifetime was measured for the duration of

excitation at each intensity. Selected lifetime curves (shown in figure 5.2(b)), obtained

during periods of high and low intensity excitation of the intensity trace, show a two

component decay when the excitation intensity is high and just a single component

exponential decay when the excitation intensity is low.

We observe from figure 5.2 that the fast component is a reversible effect of

increasing the excitation pulse energy - after raising the excitation power high enough to

induce the fast component, single component decays can be recovered by lowering the

power again. This is important to note because it indicates that the fast component is not
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Figure 5.2 Emission intensity and PL decay of a single nanocrystal at various excitation powers ranging
from 5nW to ImW (1.4 to 280 //cm-). (a.) intensity trajectory of the single nanocrystal as it is
illuminated at various intensities (b.) PL decays obtained by TCSCP corresponding to various excitation
intensities indicated in (a).

caused by some kind of irreversible photo-induced damage of the nanocrystal (e.g.

photochemical modification of the surface to introduce trap states that open a fast decay

pathway).

Having discounted the possibility that the fast component of the decay resulted

from nanocrystal damage, we did an experiment to show that the instrument limited fast

component of the decay truly originated from nanocrystal PL and not from scattered laser

excitation that may have reached the detector (which would also lead to a power-

dependent, fast decay component).
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Figure 5.3 PL decay trom a single nanocrystal under high excitation intensity compared to the decay of
scattered excitation light obtained using the same illumination intensity. The intensity of the fast decay
component is too large to be explained by the small number of counts obtained in the decay of scattered
excitation light.

In Figure 5.3 the decay of a single nanocrystal under 1825nW (-0.4 to 0.5 mJ/cm2, h >

10) pulsed excitation is compared to the TCSPC decay of only scattered excitation

obtained by illuminating a region of the sample completely devoid of NCs with 2000nW

of excitation intensity. It is clear that the number of counts obtained from the scatter of

excitation (at an even higher power) is of two orders of magnitude lower intensity than

the fast component intensity of the PL decay from the NC. This result provides strong

evidence that the two-component, power dependent decay that we have observed truly

originates from the PL of NCs.



117

To analyze the precise excitation intensity dependence of the PL decays recorded

from a single NC, we rescaled each decay to its intensity at t=O and superimposed the

decays in a single plot, shown in figure 5.4. Each decay curve was fit to a bi-exponential

function. It is clear from these decay curves that the slow component of all decays has

the same decay constant (I/F = 29ns +/- Ins). This decay rate matches the

measurements observed in chapter 3 and corresponds to band-edge emission from the

single exciton state of the NC. As the excitation intensity increases the fast decay

component becomes more prominent. The fast component was found to have an
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Figure 5.4 Excitation intensity dependence of PL decay from a single NC. Excitation intensity is denoted
by n, the average number of excitons generated in the NC per excitation pulse.
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instrument-limited decay constant (-lns). Since the detected luminescence in these

experiments was spectrally integrated, the fast component originates from both BX and

TX emission.

5.5 Quantum Yield of Multiexciton Emission from Power Dependence

The explicit intensity dependence of the fast decay component in figure 5.4 can be

expressed as the ratio of fast and slow weighting parameters obtained from bi-exponential

fits of numerous lifetime curves from the same NC. These data are plotted in figure 5.5.

To fit the data in figure 5.5 we assumed a 4LS as illustrated by the inset of figure 5.5.
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Figure 5.5 Relative strength of fast decay component as a function of n, the average number of excitons
generated in the NC per excitation pulse ( n - 1 exciton per NC per pulse). Inset: illustration of the 4LS

described by equation 5.1 that is used to model multiexciton emission after pulsed excitation.

The time evolution of the occupation probabilities (pi (t)) of a 4LS after pulsed
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dp3(t)

dt p(t) Fr p(t) - r2p(t)

__O = p2 (t)- F, pl(t)
(it

The initial conditions, p, are given by the Poisson distributed probability of exciting i =

0,1,2, or greater than 2 excitons, given an average number of excitons generated per

pulse, iT. which is equivalent to the number of excitation photons in a given laser pulse

multiplied by the cross-section of the NC) l. Solutions of equations 5.1 give the time

dependence of the total PL, which is the sum of three exponential decays.

PL(t) = F, Qii i (t)

+-Q'. . i -r:-r- r F, -F (r,- -r)(F-, -,) (5.2)

F, F, 1+ Q p " Q, F. p' ,- e,, P F, - FA F[ -IF (F, -F,)(r~ --F ),
- F F, P I'- r F,(F -. ~ )- ( I-F )e

Since the instrument response of our TCSPC measurements was slower than the first two

exponentials of equation 5.2, these fast terms are combined into a single response-limited

component. This yields a two-comnponent total PL decay: PL(t) = at,e ' a,,,,'

which leads to an expression for the intensity dependence of the data in figure 5.5,

l,,ti, q5,3p; + (qq2 - )p'(
-a,,, pi"p"p(5.3)

where qi = 17/F, and relative multiexciton quantum yields, are defined as in chapter 4:

q2=Q2/QI and q3=Q/Q,. We fixed the relaxation rates to values measured for this

sample in chapter 4 (}=1/29ns, -,=1/790ps, Fr = 1/230ps) and fit equation 3 to the
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experimental data of figure 5.5, varying only q2, q, and a scaling factor. The best-fit

result gives q2=0.14 and q=0.04, which is in good agreement with the values q2=0.11

and q=0.05 that were obtained in chapter 4 from streak camera decays of the same

sample of NCs. These values imply radiative lifetimes of 8.4ns and 6.8ns for the BX and

TX respectively.

5.6 Blinking and Multiexciton Emission in Single Nanocrystals

Fluorescence intermittency or blinking 2 5, is a ubiquitous phenomenon in single

NC fluorescence and was observed in all of our experiences in this chapter, despite the

large multiexciton QY and lifetimes and relatively slow Auger relaxation of this NC

sample. A typical example of the blinking behavior that we observed from our samples is

shown in figure 5.6 where the power dependence of the blinking is explicitly shown. This

shortening of on and off times at high power illumination is well known 15. However, we

know from the PL decays (figures 5.2 and 5.3) and spectra (figure 5.1) of these NCs that

the low-power blinking trajectory of figure 5.6 arises from pure exciton emission,

whereas the fast, high-power blinking arises from exciton plus multiexciton emission.

Combining these results, we can make the noteworthy observation that the rate of

blinking is clearly correlated to the generation of multiexcitons. This fits the idea that

blinking is in part driven by the generation of biexcitons, which recombine by an Auger

process leaving the NC in a charged state2 6
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Figure 5.6 Comparison of blinking associated with pure single-exciton emission versus multiexciton
emission.

Further experiments indicated that the multiexciton emission itself may exhibit

intermittency just like as the band edge single exciton emission. Since the TX is

spectrally resolved from the band edge emission, we used a narrow bandpass filter

(2.016eV-2.046eV) to selectively detect only TX emission (see figure 4. 1 (d) transient

triexciton band). A detailed analysis of the signal detected after transmission through this

bandpass filter showed that the signal was between 50% and 80% pure triexciton

emission from a single nanocrystal. The intensity trajectory of this nearly pure TX

emission, shown in figure 5.7, clearly exhibits blinking just as the band edge emission

blinks. Moreover, simultaneous acquisition of band-edge emission and triexciton

emission reveals that the blinking events are highly correlated - when the band edge

emission blinks off, so does the triexciton emission. A detailed analysis of these

observations is given in Appendix 2.

Blinking of triexciton emission is surprising because Auger relaxation, which is

supposed to be responsible for the off-state of charged NCs12 is known to be relatively

slow in this sample, as the BX and TX both have appreciative QYs. If we refuse to

abandon our current understanding of blinking - that the off state is non-emissive
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because of efficient Auger relaxation involving the free carrier of a charged NC - then

the blinking of the TX emission suggests that the Auger quenching of charged NCs is

much more efficient than Auger relaxation in neutral nanocrystals, which have an equal

number of excited electrons and holes (e.g. neutral BX and TX). Such a conclusion is

surprising and not easily explained.
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Figure 5.7 Fluorescence intermittency is observed from purely TX emission of a single NC by using a
narrow band-pass filter to allow only photons with energy between 2.015eV (615nm) and 2.045eV
(606nm) to reach the detector. The time resolution of this intensity trajectory is 25ms.

5.7 Conclusions

In this chapter we have presented measurements that explicitly show

photoluminescence from radiative relaxation of multiexciton states of single CdSe

nanocrystals. Transient spectra of single NC emission, obtained using a gated, intensified

CCD camera, revealed a blue-shifted emission band that matches the TX emission band

previously identified in ensemble transient spectra. A power dependent fast component



123

in the PL decay of single NCs was also observed and was found to originate from

multiexciton emission. Fitting the power dependence to a 4LS yielded quantum yield

values for the multiexciton that matched previous estimates well.

Whereas the spectroscopy of multiexciton states in single quantum dots is already

commonplace, there are no previous reports of multiexciton emission detected from

single nanocr"stals because of the dominant role that Auger relaxation plays in the

quenching of rmultiexciton states in small nanocrystals. The results presented in this

chapter are significant because they demonstrate the possibility of investigating

multiexcitonic states of nanocrystals at the single particle level when large enough

nanocrystals are used. This opens a new area n of spectroscopy for single nanocrystals, as

many of the multiexciton experiments that have been carried out on single quantum dots,

should also be possible with single nanocrystals. Our observation of blinking in the

multiexciton emission already shows one interesting result of spectroscopy of

multiexciton emission. Further work on multiexciton emission from single NCs might

now address some of the experiments already carried out on single quantllm dotsI -7 . One

such possibility is the potential use of multiexciton emission for non-classical photon pair

generation. This application is investigated in the next chapter.
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6.1 Introduction

Sources of non-classical light and ordered multiphoton emission offer a

fascinating example of the quantum nature of light and have received attention because of

their potential uses, among others, quantum cryptography 1 2. The first sources of non-

classical radiation were isolated atoms3 4, ions5, or molecules 6 . However single

semiconductor quantum dots (QDs) have recently proven capable of providing highly

efficient sources of sub-Poissonian or antibunched light7 8, triggered single photons9,

correlated photon pairs 0-", and even three stage radiative quantum cascades' 4. Single

QDs have even enabled the generation of entangled photon pairs' 5. The QDs used in

these previous experiments were fabricated using Stranski-Krastanow growth or similar

self-assembly methods in highly controlled vacuum conditions, and have typically been

InAs or InP QDsl4' 16

Semiconductor nanocrystals (NCs) may offer a convenient, inexpensive

alternative to QDs as a solid-state source of non-classical radiation. Because NCs are

smaller and more spherically symmetric with greater quantum confinement, they may

even offer advantages over QDs for certain applications. For instance, whereas QDs
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must be cooled to liquid helium temperatures to get atomic-like band-edge states, NCs

exhibit atomic-like band-edge states at room temperature. On the other hand, whereas

QDs have successfully been used to generate n-photon states with n>2, the dominance of

Auger relaxation for multiexciton states has precluded the use of NCs for this purpose.

Our observation of multiexciton emission from single NCs, discussed in the chapter 4,

opens the door to explore the potential of single NCs for non-classical light generation.

In this chapter we first present single photon correlation experiments showing

antibunching from single NCs. We then show photon correlation measurements of single

NC emission under pulsed excitation. We find that at high powers, multiexciton

emission can lead to photon pair or triplet emission via a radiative quantum cascade.

Finally we analyze the temporal characteristics of this emission and find the photons

emitted from the multiexciton states to be well ordered. These experiments were carried

out on many samples of NCs including rod-shaped nanocrystals.

6.2 Methods

We used high quantum yield (30%-80%) CdSe(CdZnS) core(shell) NCs of

various sizes (2.5nm - 5nm, core radius) synthesized in our laboratory or obtained from

Quantum Dot Corp. (QDC), (Cat. No.1002-l). Rod shaped, one-dimensional

nanocrystals (nanorods, NRs) of aspect ratio 5:1 were synthesized in our lab using

procedures adapted from a previously reported direct one-pot synthesis1 with n-

tetradecylphosphonic acid and cadmium oxide (99.99%). These were overcoated using

procedures analogous to those used for the spherical nanocrystals'8 . Experimental results

presented in this chapter were obtained primarily from the nearly spherical QDC sample

(radius 5.lnm, 655nm PL band, 75% quantum yield), although similar results were
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obtained from all large spherical samples (-5nm radius). The results of all the various

samples investigated, including smaller spherical NCs are tabulated in the addendum at

the end of the chapter (section 6.9).

Single NC samples were prepared as described in chapter 5 by spin coating a

dilute solution. of NCs with PMMA in toluene onto a coverglass to produce a low-density

field of single NCs in a thin polymer film. The single NCs were studied using a home

built microscope with confocal excitation and collection using a A.4NA oil immersion

objective as in chapter 5. To excite the single NCs we used either CW laser light from

the 514nm line of an Argon ion laser or pulsed laser light from the second harmonic

generation of a pulse-picked Ti-sapphire oscillator (4.775 MHz, 400nm, 150fs). PL from

Figure 6.1 Hanbury-Brown and Twiss setup with homebuilt confocal microscope for single photon
correlation measurements.
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single NCs was sent to a pair of single photon detectors arranged in the Hanbury-Brown

and Twiss (HBT) geometry as shown in figure 6.1 (50/50 non-polarizing beamsplitter).

A Timeharp200 (Picoquant GmBH) was used to perform correlated the detection events

from the APDs, which yielded h(r) the histogram of single-photon coincidence events.

All single NC measurements were at RT.

The cabling used in these experiments for correlation of single photon detection

events is shown explicitly in figure 6.1. TTL pulses corresponding to single photon

detection events were passed through the DEL 150 delay card for two reasons. First, the

TTL pulse generated by the APD was about +3V, whereas the sync input of the

timeharp200 requires a negative voltage TTL signal input. The DEL 150 is capable of

efficiently reversing the polarity of the trigger pulse. Second, the DEL 150 provides a

delay time for the signal. This allows us to set the propagation time from APD to

Timeharp such that it differs by about 300ns for the two APDs. This difference in

propagation (At,) time allows us to measure both negative and positive time differences

between detection events (r = t apd2 - tpdl), even though the Timeharp only measures

positive time differences between sync and start inputs (ttimeha,p = tsnc - t=ta.r). Therefore:

z = ttimeharp 
+ At2 l. By setting the cabling such that At2 1 < 0, we can measure r< 0.

6.3 Antibunching and Single Photon Emission from Single CdSe Nanocrystals

Our first experiments confirmed that NCs can indeed act as single quantum

emitters even at room temperature. Figure 6.2 presents room temperature HBT

measurements of a single NC that is excited by a low-intensity CW laser. Antibunching

of the single NC emission is observed as reported previously 9, 20. In the HBT

experiment, an individual photon cannot be divided by the beamsplitter and so it must go
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to one detector or another. When the photon is detected by the APD a trigger signal is

sent to the Timeharp which is used as a stopwatch to measure the time difference

between a single photon hitting APD #1 and another hitting APD #2 (or vice versa for r <

0). The histogram of these time values results in the curve given in figure 6.2.
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Figure 6.2 h(r) for a single NC under CW excitation (60 W/cm:). h(r =)/h() < 0.05; an exponential fit
with a time constant of 23 ns (gray) gives h(O)/h(c) = 0.025.

If it were the case that the timing between individual photons were Poisson

distributed (this would be true for coherent light from a well stabilized CW laser) then the

h() would be constant for all r. It would be equally likely to have two sequential

photons separated by any period of time (for r < /cps). However, the emission from a

single NC under low-intensity CW excitation is seen here to result in a curve that dips to

zero at r = 0. This antibunching results from light whose photon distribution is sub-

Poissonian (i.e. its Mandel Q factor is < 0)21, meaning that the photons are spaced out

from one another as illustrated in figure 6.3. A detailed description of h(r), which is
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proportional to the second order intensity correlation function, g(2)(), is available

elsewhere2.
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11 I I 11 11 11 I 1P 111 1 ill ii I I 11

Poissonian

1111 11 I1 I 11 III I Ii 1

Sub-Poissonian (antibunching)

Illtll II I lli I 1 I 1

time

Figure 6.3 Illustration of different photon distributions. Red arrows are examples of photons that are
missing in antibunched light, compared to the regular Poissonian distributed light.

Photon coincidence events are suppressed near r=0 in the emission of a single NC

(figure 6.2) because emission of a single photon projects the NC from the single exciton

state to the ground state. This means that the NC must wait to be re-excited before it can

emit a second photon to complete a coincidence event - it is impossible to recover two

photons simultaneously from a NC with a single exciton. This provides strong evidence

that that the photon sources probed were truly single NCs. Moreover, antibunching of the

photons shows that single NCs behave as single quantum emitters even at room

temperature.

When the HBT measurement is carried out over larger values of r, we found that

h(r) rolls over and begins to decrease again, as reported previously 9. This is shown in
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figure 6.4. The reason that h(t) decays at large ris simple to explain: h(r) does not

represent the probability that a photon is detected at time r after the first photon, rather,

h(r) represents the probability that the next photon is detected at time rafter the first

photon. Since at long times it becomes less and less likely that no other photon has been

detected in the meantime, h(r) decreases. The rate of decrease is proportional to the

emission intensity of the NC 19 ' 2.
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Figure 6.4 HBT measurement of a single NC oer long time range showing the decay of both
antibtunching at small rand the decay of h(r) at large I r. Antibunching at -O does not reach zero counts
because of insuficient time resolution at this broad time range.

In the introduction we discussed the interest in generating single photons on

demand and realizing the so-called photon gun. So far we have demonstrated that single

NCs with one exciton behave as single quantum emitters at room-temperature, however

their emission of single photons is unpredictable. One way to impose a trigger on the

emission time of the single photons from the NC is to trigger the excitation of the NC
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using a pulsed laser source. In figure 6.5 we show the results of HBT measurements of

single NC emission when it is pumped by a pulsed laser. We see that h(r) consists of a

series of peaks corresponding to high probability time differences between photon

emission. The absence of a peak at r = 0 indicates that there are never more than one

photon emitted from the single NC after excitation by a laser pulse. This result confirms

previous reports 3 .
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Figure 6.5 Single photon emission at room temperature from a single nanocrystal under pulsed excitation
(5 MHz repetition rate). The top and bottom figures show the same measurement taken on different
nanocrystals and using different time ranges: 550ns (top) and 2000ns (bottom). In both cases no
coincidence events are observed for z-0 because the single nanocrystal only emits a single photon per
excitation pulse.

We know from figure 6.5 that no more than one photon is emitted by the NC per

excitation pulse. To minimize the probability that zero photons are emitted after a given

excitation pulse we wish to maximize the probability that an exciton is generated in the
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NC. This is done by raising the excitation power. However, raising the power causes

there to be significant probability that multiexcitons will be generated as well. In the case

of small NCs the Auger rate efficiently quenches these multiexcitons so no more than one

photon can be emitted per excitation pulse. However, as was shown in the previous two

chapters, large NCs can have appreciable radiative quantum yield (QY) values for their

multiexciton states. This means that for large NCs, the excitation power should be kept

low enough to minimize multiexciton generation, in order to prevent emission of more

than one photon per NC.

6.4 Quantum Cascaded Emission from Multiexciton States

In the last- section we demonstrated and discussed the behavior of single NCs as

quantum emitters and their use in generating triggered single photons. For some

applications and fundamental interest it would also be desirable to generate multiple

photons for each excitation pulse impinging on a single NC 21. For smaller NCs Auger

recombination has efficiently quenched multiexcitonic states, preventing emission of

more than one photon from a single NC after an excitation pulse 23. However, our

demonstration of multiexciton emission from single NCs in chapter 5 implies that we

should be able to observe multiphoton emission in HBT measurements of large NCs.

In figure 6.6, using the sample of large NCs (5. 1 nm radius), we show that it is

indeed possible to generate triggered multiphoton emission from single NCs.
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Figure 6.6 (a)-(f) single photon correlation of emission from a single NC under increasing excitation
intensities. (g) Ratio of center to side peak area versus excitation intensity (solid circles) along with the
predicted ratio (dashed line) calculated using a simple 4LS. Illustration: Graphical description of the
radiative quantum cascade from multiexciton states that lead to multiphoton emission from a single NC.

At low excitation intensities (figure 6.6(a)), less than one exciton is generated in

the NC per pulse on average. Therefore the single photon correlation is missing the peak

at z=O just as in figure 6.5 - no more than one photon was emitted from the NC per

excitation pulse. As the excitation intensity is raised, however (figures 6.6(b)-6.6(f),

same NC), a symmetric center peak appears in h(r), indicating that multiple photons are

emitted from the single NC after excitation by a single laser pulse. Multiple photons

originate from emission out of the single exciton (X) plus the biexciton (BX) and/or

triexciton (TX) states of the single NC, which can be accessed only by using higher

intensity excitation pulses. The intensity dependence of the multiphoton emission was

TX
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.W ok 1 second photon
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quantified in figure 6.6(g) (dots) by the ratio of the areas of the center and side peaks in

h(r) from the same single NC, taken at various excitation intensities. The ratio of areas

was used as a normalization to account for differences in collection time, coincidence

rate, etc. that would affect raw peak areas integrated directly from the un-normalized

h(r).

We investigated the possibility that the center peak observed in figure 6.6

originated from the emission of multiple NCs lying next to one another in the focal

region of the microscope.
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Figure 6.7 Single photon correlation of the emission from the same NC, first under low intensity CW'
excitation(top), then under higher intensity pulsed excitation (bottom).

In order to verify that the supposed multiphoton emission originated from a single NC

(and not a pair of NCs) we performed HBT measurements using CW excitation followed

by pulsed excitation measurements as shown in figure 6.7. The clean antibunching
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observed in figure 6.7 assures us that a single NC is probed. Single photon correlation of

the emission from that same NC, this time under pulsed excitation, still results in a center

peak at r = 0, the signature of multiphoton emission.

6.6 Modeling Single Photon Correlation Measurements

Using solutions of the 4LS given in chapter 5 we modeled h(r) at different

excitation intensities in order to understand the results of figure 6.6. Temporal profiles,

Ri(t), of emission from each of the multiexciton states were calculated by multiplying the

solutions of equation 5.1 [ pi(t) ] by the corresponding radiative relaxation rates (ki=QiF).

The second order correlation function was then calculated for each type of photon

coincidence event (e.g. X&BX or X&X, etc.),

(2)(,r)- ~Rj)Rjt+'r))
(Ri (t))R (t + r)) (6.1)

where angled brackets indicate time averaging, and ij = (1,2,3) indicate (X, BX, TX).

Finally, the total correlation function measured, g(2;(r), was obtained by a weighted

average,

(Ri)(Rj' ,)()
total() = ,1=1(6.2)

(R, +R2 +R) 2

Equations 3 and 4, along with the previously determined decay and quantum yield

parameters for this sample (/F=29ns, 1/F12=790ps, l/3=230ps, q2=0. 1, q3=0.4),

allowed modeling of the excitation intensity dependence of the center v. side peak area

ratio in figure 6.6(g). The result (dashed line) is superimposed with good agreement on

the actual data.
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In figure 6.8 the predicted g(2 (r) is plotted for the same excitation intensities used

in the experiments of figure 6.6 (g('(r) is rescaled to match n(r) at each intensity). We

note that a blinking induced reduction of mean Q1, experimentally observed at high
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Figure 6.8 4LS model prediction for h(r) from a single NC at various excitation intensities.

excitation intensities, was taken into account in modeling the curves at high intensity*.

Given the simplicity of the model, the predicted plots for g(''(r) show a strong similarity

to those obtained experimentally.

The time-averaged emission intensity of the single exciton as measured in the intensity trajectory was
seen to decrease during actual experiments. At high excitation intensities the on-intensity of NC emission
no longer kept up with increases of excitation power, and the on-times decreased dramatically. To accomnt
for this, the parameter Q0 in the 4LS model - a time-averaged measure of single exciton emission -- was
lowered by -1/2.
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6.6 Ordered Emission of Photons via Radiative Quantum Cascades

In order to investigate the nature of the multiphoton emission observed in section

6.4, we carried out asymmetric HBT measurements. Figure 6.8 demonstrates that the

single NC generates single photons for the X, BX and TX with a definite order. A

narrow band pass filter (2.015-2.045 eV) in front of the start detector restricts TX

photons to the start detector only, while a long pass filter (1.97 eV cutoff) in front of the

stop detector restricts BX and X photons to the stop detector only. In this experimental

40
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10

0

-283 -212 -141 -71 0 71 141 212
r (ns)

NC emission

Figure 6.9 Top: Black: h(r) for asymmetric HBT experiment at high excitation fluence (120 tJ/cm2; n
-4.5 exciton per NC per pulse). Gray: h(r) at low excitation fluence (<20//J/cm 2) using same setup. Left

inset: close up of h(r). Right Inset: h(r) predicted by the 4LS model for a single NC under high intensity
excitation. Vertical cursors: laser rep. rate. Ordered multiphoton emission from a radiative quantum
cascade is indicated by the asymmetric center peak of h(r). Bottom: schematic of asymmetric HBT setup
used in this experiment.

configuration practically no coincidence events are observed at low intensity, because the

TX is not generated. At high excitation intensity, however, an asymmetric center peak is
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obtained. The asymmetry is observed because TX photons necessarily precede BX and X

photons - the photon emission is ordered. The asymmetric peak agrees with the simple

4LS model, as shown in the right inset of figure 6.9.

6.7 Photon Pair Generation Using Nanorods

Because of the known strong dependence of multiexciton lifetime (and QY) on

nanocrystal volume 24, it is expected that one-dimensional rod-shaped nanocrystals,

nanorods (NRs), of CdSe should show even stronger generation of multiphoton emission.
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Figure 6.10 h(r) for a single nanorod under pulsed excitation at various excitation intensities. The two
arms of the HBT setup are identical so the peaks are symmetric.

Indeed, longer Auger lifetimes have been reported for nanorods25. Figure 6.9 shows h(r)

measured from a single NR at three progressively higher excitation intensities using a

symmetric HBT setup. Even at excitation intensities that would be low for a spherical
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NC (figure 6.10(a)), a center peak is observed for two main reasons. First, the NR is

physically larger and has a correspondingly larger absorptive cross-section than the NC,

leading to more efficient multiexciton generation. Second, the larger volume of the NR

leads to a slower Auger recombination25 and consequently higher QY of multiexciton

fluorescence. At higher excitation intensities, shown in figures 6(b) and 6(c), the

multiphoton generation and emission dominates coincidence events, resulting in sharp

peaks at r=0. Since nanocrystals of all shapes, sizes and materials can be synthesized,

these data show that the non-classical light generation properties of the NC can be

tailored.

6.8 Conclusions

The observation of multiexciton emission leading to non-classical photon pair

generation by single spherical and rod-shaped NCs is an interesting development because

unavoidable Auger quenching has been thought to preclude these materials as a viable

source of n-photon states. These results show that the strength of Auger quenching,

tuned by the volume of the NC, can actually be used to tailor the NC for single photon or

photon pair production. Should single photons be desired, smaller NCs with efficient

Auger relaxation allow the NC to be pumped hard, guaranteeing generation of at least

one exciton per pump pulse. Any multiexcitons will be quenched leading to one and only

one photon emitted per trigger pulse23. If on the other hand, multiple photons per trigger

pulse are desired, a NC with larger volume can be chosen which will have a significant

QY for the multiexciton states leading to photon pair (or triplet, etc.) emission for each

pump pulse. We note that the development of rod-shaped NCs allows researchers to tune
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the Auger rate of' the NC by changing the volume, without varying the radius of the rod

and altering the band-edge energy of emission.

The rate of single photon or photon-pair generation is also of interest. If we are

interested in photon pairs consisting of a photon from the BX and a photon from the X

then the average rate (fpai,.) of pair generation, using a 10MHz pump laser, would be

approximately: t,i, ( ,v, = ./p ,,,pQQ:P"_ = 500kHz. This rate may be competitive with

pair generation rates of current methods such as parametric down-conversion, however,

at this time the extremely fast dephasing time 26-8 of excitons in NCs still precludes any

coherence or entanglement between the constituent photons of n-photon states generated

by the NCs.

The long-term photostability as well as the well-known blinking phenomenon of

NCs2 9-3 1 also remain barriers to the practical implementation of these materials for

generation of n-photon states. The samples investigated in this work still exhibited

blinking and often bleached after many minutes of high intensity excitation. Nonetheless,

given that we can now observe multiexciton emission from single NCs - a previously

disregarded possibility because of Auger quenching - we are optimistic that continued

development of these materials and studies of the blinking phenomenon can circumvent

this problem making NCs a practical, inexpensive source of n-photon states at room

temperature.

6.9 Addendum: Summary of Results for Various Single NC Samples

The data presented in this chapter represent primarily data collected from just a

few samples. However, numerous others were studied. NCs with large volumes generally

showed appreciable multiexciton emission, while smaller NCs exhibited very little. A

qualitative description of results across a spectrum of samples is given in the table below.
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MX evidence in HBT MX evidence in Ensemble
Sample r (nm) (emission, nm) experiment? Transient Spectrum

A 5.1 655 Yes, Strong Yes, Strong
B 2.6 605 very weak, rarely seen Weak

C 5 653 Yes, Strong Yes, Strong
D 3.4 630 NA moderate

E 2.8 610 very weak, seen only once weak
F 3.8 637 Strong moderately strong

G -8 670 NA weak

H 2.8 610 NA weak to moderate

Sample A is the sample whose data are presented in this chapter.
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Chapter 7: Resolution of Biexciton
Emission from CdSe Nanocrystals
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7.7 Conclusions
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7.1 Introduction

One of the most important overall results of this thesis is the observation of

multiexciton emission in various ensemble and single nanocrystal (NC) experiments.

Although experiments in previous chapters succeeded in spectrally resolving the

triexciton (TX) emission, biexciton (BX) emission overlapped the single exciton (X)

emission at the band edge and was not spectrally resolved. The reason is that both the

first and second excitons occupy the same electronic level in the nanocrystal (1SJ), save

for a slight perturbation of the BX energy, which originates from a Coulombic interaction

between the two excitons. This BX Coulomb energy is much less than the band-edge

emission bandwidth at room temperature, so the BX cannot be spectrally resolved from

the X easily.

Spectral resolution of the BX is an important goal in the study of CdSe

nanociystals because it would allow experiments to study the behavior of biexcitons

independently of single excitons. This has already been possible for a long time in

semiconductor quantum dots, which are related to nanocrystals. One study, for instance,

measured the relative intensity and lifetime for BX and X emission, simultaneously from
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a single CdSe quantum dot'. In this experiment a BX-X splitting of 18.5meV was

reported and the lifetimes of the two states were found to be very similar. In another

experiment spectral resolution of BX emission from a single quantum dot allowed the

study of the polarization of BX emission relative to that of the single exciton2. Indeed a

plethora of single quantum dot studies of multiexciton emission testify to the

understanding of nanocrystal physics that stands to be gained through spectrally resolving

the BX3-s. Besides interest in the fundamental spectroscopy of nanocrystals, direct study

of the BX is also of practical interest since the BX plays a critical role in applications and

phenomena of nanocrystals such as lasing and blinking. Nanocrystal-titania composite

lasers use stimulated emission of the BX for gain6 ' 7, and the on-off blinking phenomenon

of single nanocrystals is thought to be driven in part by generation of the BX stated -~f

Although we did not spectrally resolve the BX in our previous experiments, time

resolved studies of the band-edge luminescence decay from single nanocrystals and

solutions of nanocrystals allowed us to derive important parameters, including quantum

yield (QY) values. Motivated by higher than expected values of the BX quantum yield

(Q2) for very large nanocrystals (Q2/QI - q2 -0.1 for 5. lnm radius NCs, chapter 4,5), we

seek in this chapter to lay the foundation for fundamental studies of the BX by spectrally

resolving its emission. Our primary goals are, first, to investigate the possibility of

spectral resolution and second to achieve it. Subsequent studies may then exploit the

resolution of BX emission to understand physics such as BX polarization or the size

dependence of the Coulomb binding energy in nanocrystals.
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7.2 Detection of Biexciton Emission - Signal Intensity

Realizing that ultrafast, non-radiative Auger relaxation of multiexcitonic states in

nanocrystals can potentially disable our ability to detect multiexciton emission of

nanocrystals, we first investigated the expected emission intensity of the BX state of a

single nanocrystal. We modeled this assuming either pulsed or CW excitation. In the

case of pulsed excitation, the four level system (4LS) used in chapters 4, 5 and 6 is

appropriate. The experiments presented in this chapter used CW excitation so we present

a modification of the 4LS for CW excitation. Figure 7.1 illustrates the model of

dynamics between different multiexcitonic states for a NC under CW excitation.

P3 MX

P2 4V 3

pi +

0 4
PO I C

BX

X

0

Figure 7.1 Illustration of four level model used to calculate expected emission intensities for CW
experiments

New excitons are generated in the NC at a steady rate, , which is the product of P, the

excitation power and a, which was defined in chapter 4 as the ratio of the absorptive
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cross section (a) and the illumination spot size (A,c~,.s) divided by the energy per

excitation photon:

aXll =eationl (7.1)

hc Aius

Relaxation of multiexciton states is given by the lifetimes of the states, which were

measured for numerous samples of nanocrystals earlier. The kinetic equations describing

the model shown in figure 7.1 are:

dpo (t) Fp p (t) - PO (t)
dt,

d ( - po (t) + , P2 (t) - ( + F, )pl (t)

(7.2)dP2( =qp(t)+ F3p3 )- (b + )p2(t) (7.2)
dt

dt - p (t) - 3P3 (t)

where pi(t) denotes the probability of the nanocrystal having i excitons. We are

interested in the intensity of emission from the i-exciton state, which is given at time, t,

by the product of pi(t) and the radiative decay rate from that state. Since we are focusing

on CW experiments we can make the steady-state approximation when solving equations

7.2 - dpi(t)/dt = 0 for all i - so the solutions have no time dependence. This assumption

along with the restriction that probabilities sum to unity leads to the solutions:
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P I+ 0 + o-)Pc<= 1F ,F 3 F

Pi F F, +, rrr r,-1 

f -I (7.3)

The power dependence of these solutions is contained in the parameter 0. Using

reasonable parameters, we can calculate these probabilities as a function of average

excitation power at 51 4nm. This is shown in figure 7.2. In this modeling, we chose

parameters obtained from a sample of nanocrystals studied earlier that had strong

multiexciton emission (Quantum Dot Corp., 5. nm radius). The decay rates, FT. , F

were 1/29ns, 1/790ps, and 1/230ps respectively, and the cross section at 514nm was

calculated to be 4.5x0-' 5 cm2 using previously reported methods .
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Figure 7.2 Calculated occupation probabilities of the tfour different levels of the model system in the steady
state over a range of continuous illumination powers. A cross section of 4.5xlO1cm 2 at 514nm and spot
size of 1man radius is used for this calculation.

Figure 7.2 covers a range of excitation power that extends significantly higher than the

range typically used for confocal microscopy, yet generation of the BX state is still very

weak compared to the single exciton. However these powers are easily accessible to the

experiment so significant BX generation capacity is available. To calculate actual

emission intensities, we multiplied the results, pi, by the radiative emission rate, FlQi for

each state i. Q was assumed to be 0.75 as measured in chapter 4 for the 5. lnm

nanocrystal sample, and Q2 and Q. were obtained using the relative quantum yield

values, Q,2/Q q2 = 0.1 and Q.I/Q - qu. = 0.04 that were obtained for the same sample in

chapter 4. This calculation of BX and X emission intensities is shown in figure 7.3.
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Figure 7.3 Calculated intensity of BX and single exciton emission as a function of excitation power. These
emission intensities are based on the occupation probabilities shown in figure 7.2 with q: = 0.1 I and decay
times of 29ns and 790ps for the X and BX respectively. For a spot size of l/m radius the intensity of

200 1 W is 6300 /'crn2.

At low excitation powers single exciton emission varies linearly with power and BX

emission varies quadratically. However at higher intensity excitation, the single exciton

emission saturates and BX emission intensity varies linearly with power. A simpler

power dependence is obtained for the ratio of the emission intensities of the BX and

single exciton, which is shown in figure 7.4. The linear increase of x/Ix indicates that

at a sufficiently high power the BX emission should be strong compared to X emission,

but the slope of this line is proportional to q2. Therefore we chose a sample with very

high BX quantum yield for our experiments.

/-
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Figure 7.4 Ratio between BX and X occupation probabilities and emission intensities as a function of
excitation power for a lman spot size and 4.5x 10 - 5 cm 2 cross-section at 514nm.

7.3 Detection of Biexciton Emission: Spectral Resolution

In the last section a simple model helped us determine that the intensity of BX

emission ought to be large enough to be significant compared to single exciton emission

if the excitation intensity is high enough. The second fundamental requirement we must

meet is spectral resolution of the BX. We now address how large of a splitting should be

expected between the BX and the X.

When two excitons are present in a semiconductor a Coulomb force between them

causes the energy of the 2-exciton state (BX) to be relaxed slightly so that the energy

released by whichever exciton relaxes first is slightly red-shifted. In bulk CdSe this BX

binding energy - the Coulombic attraction between two excitons - is rather small:

..- ,U.4z) 

,

- I I I
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-1.2meV' 3. However, because of quantum confinement the distance between two

excitons in a NC is forced to be small, and the Coulombic interaction is consequently

larger. This means that the BX binding energy ought to be larger for nanocrystals.

Previous work on self assembled CdSe and CdS quantum dots indicates that this is the

case with 20-30meV splitting between the BX and X energies reported' 4- 7 . Theoretical

work also predicted enhanced BX binding energies for CdSe nanocrystals'8 .

Furthermore, in chapter 4 we presented transient spectra of solutions of nanocrystals that

showed multiexciton emission. In that case the band edge emission was observed to blue

shift slightly at between zero and one nanosecond. This shift was attributed to the decay

of the BX (whose emission should be red-shifted from the single exciton) during the first

nanosecond. For the 2.3nm nanocrystals shown in figure 4. I(c), the shift was

approximately 30meV, which is much larger than the bulk value. For the experiments we

propose in this chapter we want to use much larger nanocrystals because they have

slower Auger rates and higher multiexciton quantum yields. One previous work reported

the BX binding energy for a size series of smaller CdSe nanocrystals (up to 3.4nm)' 9

using indirect methods. These results, derived from the slight blue-shift during the first

1 0)ps of the band edge transient emission spectrum of ensembles, are shown in figure

7.5. By extending the trend they observed to 5.lnm - the size of NCs to be used in this

chapter - a BX binding energy of 10nm is obtained.
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Figure 7.5 Biexciton-Exciton splitting energies of CdSe NCs obtained by fluorescence up-conversion using
ensemble solution samples'9.

7.4 Methods

Since the binding energy of the BX is so much smaller than the bandwidth of

room temperature band-edge luminescence our experiments must narrow the non-

homogenous broadening of the nanocrystal luminescence. The two major sources of

nonhomogenous broadening of nanocrystal emission are high temperature (i.e. room

temperature) and polydispersity of sizes in the sample. Carrying out experiments at

liquid helium temperatures addresses temperature driven broadening. To narrow the

distribution of sizes interrogated in the experiments, two methods are used in this chapter:

fluorescence line narrowing (FLN) and single NC spectroscopy. FLN experiments use an

excitation wavelength that is nearly resonant with the emission so that only the largest

0

.\
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(i.e. lowest energy) nanocrystals of an ensemble are excited . In practice this means that

the excitation laser wavelength is tuned to the red edge of the full (non-resonantly

excited) band-edge PL spectrum. Using this technique on NCs, linewidths of just a few

meV, can be achieved. Single nanocrystal spectroscopy, obviously, is the ultimate limit

of narrowing the size distribution as only a single nanocrystal is interrogated. This

technique results in line widths that can be less than ImeV, but has the well known

drawback of spectral diffusion, whereby the emission spectrum of the nanocrystal

spontaneously shifts its emission energy up and down over the course time 2 2"

The sample of nanocrystals used in these experiments is the same high

multiexciton quantum yield sample used in previous chapters - 5. I nm radius CdSe/ZnS

core/shell nanocrystals obtained from Quantum Dot Corporation. Sample preparation for

single nanocrystal experiments was the same as in previous chapters (3,5,6) except for

two differences. First, in order to get the best thermal contact between the nanocrystals

and the substrate no polymer matrix was used for spin coating. Second, only single

crystal quartz substrates were used (-0.2mm thick) to insure that good thermal

conductivity between the nanocrystals and cold finger is maintained. Samples for FLN

were prepared on single crystal quartz substrates as well. However, these thin film

samples used a polymer matrix to obtain high spatial densities of nanocrystals without

bringing the individual nanocrystals into contact with one another (necessary to prevent

interdot FOrster energy transfer which occurs in close-packed films 23' 24). Poly-(lauryl

methacrylate) (PLMNA) was chosen for these films because it minimized phase

segregation between the nanocrystals and the polymer matrix, which was observed for

high densities of nanocrystals in PMMA.
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In figure 7.6 the basic setup of the confocal microscope, which is used for both

FLN and single nanocrystal experiments, is shown. Since the sample is contained inside

of a cryostat for low temperature experiments, galvo-mirrors are used to scan images of

the sample, and a lower NA (0.7) objective is used to accommodate the longer working

distance (same objective as low temperature experiments of chapter 4). The collected

light is split between the APD (for imaging the NCs) and the spectrograph/CCD (to

Beam
Expander

and
Collimation , Cold Finger

Figure 7.6 Confocal microscope setup used for FLN and single nanocrystal experiments in this chapter.

obtain the spectrum of light collected at a given point in the sample). Since non-resonant

excitation (Argon Ion Laser, 514nm CW) was used for single nanocrystal experiments, a

dichroic red-pass beamsplitter was used to couple the excitation and detection arms. In

FLN experiments, however, a polarizing beam splitter (PBS) was used for this purpose.

The PBS was advantageous for FLN because the reflected excitation is polarized and a
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majority of it is reflected out of the collection path, whereas fluorescence emission from

the nanocrystal ensembles is non-polarized and is evenly split by the PBS. This

maximized the fluorescence relative to reflected or scattered excitation light in the

collection arm of the microscope, which is necessary in FLN since spectral filters (e.g.

band-pass filters) generally cannot distinguish excitation light from fluorescence under

resonant excitation conditions.

It was mentioned earlier that one disadvantage of spectroscopy on single

nanocrystals is the phenomenon of spectral diffusion. Since spectral diffusion tends to

become more rapid at higher excitation intensities, we expected it would be difficult to

carry out a study of excitation intensity dependence of the spectrum. As the power is

increased spectral diffusion will usually cause it to quickly shift red and blue, potentially

within the CCD exposure that measures the spectrum. Therefore we constructed a simple

method of synchronizing CCD measurements of the emission spectrum with live

measurement of the excitation intensity. This allowed us to quickly vary the excitation

intensity over large ranges within a few seconds with the intensity corresponding to each

spectrum automatically recorded. The chance of obtaining an intensity dependence of the

spectrum, free of large spectral diffusion, is dramatically improved by this simple

technique, which is illustrated in figure 7.6.
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Figure 7.7 Live measurement of excitation power synchronized to collection of spectra on CCD.

7.5 Biexciton Emission in Single Nanocrystal Fluorescence

A typical image of single nanocrystal fluorescence using 514nm CW excitation is

shown in figure 7.7. To obtain good images here we used significantly higher excitation

power (>1 pLW) than was used for the room temperature (RT) experiments of chapters 5

and 6 (< I pW). Higher power was necessary for intra-cryostat imaging, first, because

some fraction of the light is reflected by the cryostat window, and second, because a

lower NA objective (and consequently larger spot size) was necessary in these

experiments to obtain a long enough working distance to work inside the cryostat - here

we used a 0.7NA objective, whereas RT experiments used a 1.4NA objective.
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Figure 7.8 Confclcal scanned fluorescence image of single nanocrystal at 4.3K. The dimensions of the
image are approximately 7m x 7Lm..

Focusing the microscope onto a single nanocrystal chosen from an image like 7.8 yielded

a typical single nanocrystal spectrum at low temperature, which is shown in figure 7.9.

This low temperature, spectrum of a single NC matches the results of previous work

well21 2 , showing a main emission peak with red shifted phonon replica of the first. The

main peak is referred to as the zero phonon line (ZPL) and the phonon replica is the one-

phonon line (OPL). Second and third phonon lines are visible as well. The spacing

between the ZPL and OPL peaks of the single NC spectrum is about 25meV which

matches the LO phonon frequency of 210cm -' reported previously for CdSe nanocrystals

of this size 20. This spacing confirms the identity of these peaks.
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Figure 7.9 Left: Spectrum of a single nanocrystal at low temperature with one and two phonon lines
(OPL, 2PL) visible in a progression to the red from the zero phonon line. The spacing of the phonon
progression is 25meV. Right: time trace of spectrum from a single nanocrystal over a period of 50 seconds.
Spectral diffusion causes the spectrum to shift red and blue.

A time trace of the emission spectrum of a single nanocrystal, shown on the right

side of figure 7.9 shows the degree to which spectral diffusion can dominate the spectrum

of a single nanocrystal. Although spectral diffusion is practically ubiquitous in

measurements of single NC spectra, nanocrystals can occasionally withstand high

intensity excitation for a brief period before making spectral diffusion shifts. By quickly

varying and measuring the excitation power for each spectrum acquired (as described in

the methods), we were able obtain power dependencies of single NC spectra that were

mostly free of spectral diffusion. One example is shown in figure 7.10

k
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Figure 7.10 Emission spectra at 4.3K from a single, 5. Inm radius CdSe/ZnS nanocrystal at various CW
excitation powers (-280 W/cm2 to -2900 W/cm 2).

In this figure, the ZPL and OPL are both present at low excitation power, but as the

power is increased a third peak emerges that is slightly red shifted from the ZPL. The

spacing between this peak and the ZPL is 1 1 meV, which is very close to the expectation

of 14meV for samples of this size, based on previous studies' 9.

The power dependence of the intensity of this new peak in the single NC

spectrum supports the notion that it originates from BX emission. We calculated the total

emission intensity (using the integrated area) of each of the three peaks in the single NC

spectra at each power. Because of blinking and other fluctuations, the intensity of the

, -
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Figure 7.11 Excitation power dependence of BX () and OPL (A) intensities relative to the ZPL intensity.
Solid lines indicate linear fits of the experimental data. Dotted lines represent the predicted power
dependence, based on calculations in section 7.2 using a 4.5x10'-cm 2 cross-section at 514nm and a spot
size of l im radius.

new peak and the OPL were referenced to the intensity of the ZPL by taking the ratio of

the two. The power dependence of the intensity of these peaks, relative to the ZPL peak

is shown in figure 7. 10, along with results of fitting to a linear power dependence (solid

lines).

As expected the ratio of OPL intensity to ZPL intensity shows no power

dependence, since both peaks arise from the same single exciton transition. The relative

intensity of the new peak compared to the ZPL clearly increases with excitation power,

and a fit to a linear polynomial gives a positive slope of 0.0012 [tWI- . Recall from

section 7.2 that a linear, positive slope is expected for the power dependence of the ratio

.

*
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of BX and single exciton emission intensity. Using the equation that describes this power

dependence,

'IX aQ2p (7.1)
I x F, Q,

we can back out the absorptive cross-section that corresponds to the measured slope in

figure 7. 11 (solid line; assume the same single exciton and multiexciton relaxation rates,

[F, and quantum yields, Qi, measured for this 5.1 nm sample in chapters 4 and 5). For an

excitation focus spot size of lum radius, the measured slope of 0.0012 PtW-' corresponds

to a cross section of 5x101 5 cm". This result is in almost perfect agreement with the cross

section for this sample derived using previously reported methods (4.5 x10-' cm at

514nm) . Conversely, the expected power dependence of the BX, calculated using a

cross section of 4.5 x10 -15 cm2, agrees with the data very well (dotted line in figure 7.11).

This agreement between model and data, along with the new peak's energy splitting from

the ZPL gives us confidence that the new peak arises from BX recombination.

7.6 Biexciton Emission in FLN Spectra

The results of the last section show that it is possible to spectrally resolve the BX

from the X in the steady state emission spectrum of a nanocrystal. The major drawback

of that experiment, however, is that the spectrum of most single nanocrystals is so

unstable under high excitation intensities that the BX can only be studied for a brief

period, sometimes only a few seconds. FLN experiments offer the possibility of

obtaining more stable spectra for two reasons. First, an ensemble of nanocrystals is

studied so that blinking and other single NC phenomena are minimized by ensemble

averaging. Second, only the subset of nanocrystals with the lo west energy band gaps are
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interrogated at any given moment. For instance, if a subset of nanocrystals have a spectral

shift to the blue, they will no longer be excited, and the emission spectrum will not

change.

Our first FLN results are shown in figure 7.12. These FLN spectra were obtained

at 4.3K from the sample of 5. lnm nanocrystals on the SPEX fluorometer using low

excitation intensity at various wavelengths ranging from 400nm (3.1eV) to 645nm

(1.925eV). The first spectrum at the bottom of 7.12(a) is the full emission spectrum

(non-resonant excitation). Progressively lower energy excitation is used in each

subsequent FLN spectrum above it. As the excitation energy is decreased features
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Figure 7.12 (a.) FLN spectra of nanocrystals at low temperature using SPEX fluorometer with excitation at
the following wavelengths, beginning with the bottom spectrum: 400nm, 610nm, 615nm, 620nm, 625nm,
627nm, 630nm, 635nm, 640nm, 645nm. (b.) Full luminescence spectra (using non-resonant excitation) of
the same sample at various temperatures. (c.) energy of the full luminescence versus temperature.
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become evident in the spectra. The main peak seen in most of these spectra is the OPL.

Further to the red is a weak shoulder that is the second LO phonon replica, denoted the

2PL. We know that the main peak is the OPL because it is located about 25meV from

both the 2PL and the excitation energy. 25meV is the LO phonon energy for these

nanocrystals'°, and their expected resonant stokes shift is -meV so the main peak cannot

be the ZPL. The ZPL remains unresolved from the excitation in these FLN spectra

because the overall spectral resolution of the experiment was only about I nm (-lOmeV).

The very small resonant stokes shift of these 5. lnm nanocrystals presented a

major obstacle for doing this FLN experiment using a confocal microscope where

scattered excitation light is efficiently captured by the objective and must be optically

discriminated from the fluorescence. The small stokes shift of <lmeV makes ordinary

methods of discriminating emission fluorescence from reflected excitation light (e.g.

bandpass filters and dichroic beam splitters) practically useless. Dark field microscopy

was considered for rejecting the reflected light, but we lacked a dark field objective of

sufficient NA for this experiment. Similarly, grazing angle excitation was tried, but

reflection and scattering of excitation off of the rough polymer film was found to be still

too great, so fluorescence emission was dominated by excitation light. The best method

found for this CW experiment was to use a holographic notch filter (NF) centered at

633nm. Fortuitously, excitation near 633nm (1.959 eV) is on the red edge of the non-

resonant band-edge emission spectrum, as shown in figure 7.11 (b). Furthermore, the

precise wavelength of the edge of the NF rejection band can be precisely tuned by

changing the angle between it and the light passing through it. With careful alignment we

were able to use excitation wavelengths up to 635nm (1.953 eV) to obtain low-
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temperature (4.3K) FLN spectra that resolved the ZPL in emission from the 5. lnm

sample of CdSe nanocrystals. Figure 7.12 shows an example of an FLN spectrum

obtained at 4.3K, using a confocal microscope setup and tuned notch filter for rejection of

the scattered excitation light from the dye laser. The sample was excited with low power

(1.71/W; 60 W/cm2) in this spectrum.

e)

a)
C
C

1.86 1.88 1.90 1.92 1.94 1.96 1.98

Energy (eV)

Figure 7.13 Low Power FLN spectrum of the ensemble NCs at 4.3K. The sharp peak at the highest energy
(on right) is the scatter of the illumination laser. The first peak to the red of this is the ZPL at 1.965eV
followed by the OPL and the 2PL at 1.94eV and 1.915eV respectively. The ZPL is artificially weak and
red-shifted because its blue edge in this spectrum is defined by the notch filter used in the experiment.

We note that the ZPL is only partially resolved in the FLN spectrum of 7.12. Its apparent

peak position is red-shifted from its actual position because its blue edge is defined by the

transmission spectrum of the NF. The OPL and 2PL are also both prominent in this

spectrum with a spacing of 25meV as expected.
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Raising the excitation power to >30pW (-1000W/cm 2) yielded the spectrum

shown in figure 7.13 where a new peak appears between the ZPL and the OPL. The

spectral shift between the ZPL and this new, power dependent peak was obtained by

measuring the spacing of the new peak and the OPL, and then subtracting it from the

known ZPL-OPL spacing of 25 meV. A spacing of about 12meV is observed, indicating

that the new peak probably originates from BX emission.
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Figure 7.14 Comparison of low (gray) and high (black) excitation intensity FLN spectra obtained from an
ensemble of 5. 1 nrn NCs at 4.3 K. The features of the low power spectrum are described in the caption to
figure 7.13. The high power spectrum exhibits new features, in particular a 12meV red-shifted peak
(relative to the ZPL), which we assign to BX emission.

Furthermore, a phonon progression is apparent with shoulders appearing on the OPI, and

2PL in the high power FLN spectrum. The phonon progression of single exciton emission

comes from the band edge fine structure of CdSe nanocrystals. An offset but replicated
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progression in the BX emission is an indication that the presence of multiple carriers does

not greatly perturb the energy levels of the band-edge fine structure.

7.7 Conclusions

In this chapter we have explored the possibility of directly resolving BX and

single exciton emission peaks from one another in the band edge emission of CdSe

nanocrystals. We first calculated the expected BX emission signal relative to that of the

single exciton and found it to be appreciable for nanocrystals with sufficiently high BX

quantum yield. Using a sample of large nanocrystals with high BX quantum yield we

performed two kinds of experiments, both at low temperature, to narrow the band edge

emission enough to resolve the expected energy splitting between the BX and X. Low

temperature emission spectra from a single nanocrystal showed a sharp new peak 1 lmeV

to the red of the ZPL when the power was increased. The power dependence of this new

peak agreed well with a simple model for the power dependence of BX emission. We

also showed that FLN techniques can also be used to resolve the BX emission. In these

experiments the ZPL, OPL and 2PL were resolved at low temperature by exciting the

sample with a dye laser on the red edge of the sample's full luminescence. The FLN

spectrum at high CW excitation intensity showed an excitation intensity dependent peak

that was red shifted 12meV from the ZPL and likely originates from BX emission.

The next step to take in these investigations is to develop more robust

measurement techniques. For instance, time-gated FLN spectra using a pulsed excitation

source would be a great step for two reasons. First, pulsed excitation should be much

more efficient at generating BXs in the nanocrystals. Second, time-gated spectra offer a
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better method of rejecting reflected excitation and may circumvent the need for a notch

filter. This would allow the experiment to be performed at any excitation energy (not just

those matching the notch filter) so that the size dependencies of BX emission can be

investigated. Improvements in single nanocrystal experiments would also be useful,

particularly, the ability to perform measurements quickly while a nanocrystal is stable at

a given energy. Single nanocrystal experiments would be well suited to investigate

polarization properties of the BX emission relative to the polarization of single exciton

emission as well.
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8.1 Introduction

Measurement of the quantum yield (QY) of photoluminescent compounds is an

essential tool for the optical characterization of both basic materials and their device

applications. Throughout this thesis we have used the fundamental relationship between

quantum yield (QY) and lifetime to draw conclusions about the QY of the

photoluminescence observed. Compared to conventional measurement techniques,

lifetime measurements are a very practical method for judging QY because they do not

require absolute measurements of light intensity and can be obtained from very weakly

emitting samples. However, conclusions from the results of these measurements must be

drawn carefully.

In this chapter we discuss this approach to characterizing changes in QY using

the lifetime, and show how it must be adapted for the multi-exponential PL decays

observed from nanocrystals. Furthermore, we demonstrate a clear limitation on the

reliability of using the lifetime to judge QY in nanocrystals. We find that the lifetime is

useful for judging so-called homogenous changes in lifetime, where all of the

nanocrystals of the ensemble behave similarly and exhibit approximately the same
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lifetime. However, the integrated area of the PL decay fails to account for inhomogenous

variation of the QY, whereby a sub-population of the nanocrystals are rendered

completely quenched by an ultrafast, unresolved non-radiative decay.

8.2 General Relationship Between Quantum Yield and Lifetime

The relationship between QY and lifetime is one of the most basic concepts in

fluorescence spectroscopy. Most standard approaches to the topic treat the luminescence

efficiency as a competition between the rates of radiative relaxation and all other (non-

radiative) decay paths. In this way the QY is given by,

QY = (8.1)
kr + k,.

where kr denotes the rate of radiative relaxation, and k,,r denotes the rate of non-radiative

relaxation. Since the lifetime of the excited state of a molecule is defined as the inverse of

the sum of all relaxation rates (i.e. the denominator of equation 1), we find that the QY is

linearly related to the lifetime of the excited state through the radiative decay rate,

QY = k,. (8.2)

so a longer lifetime corresponds to a higher QY, if the radiative decay rate remains

constant. Conversely, if a faster lifetime and higher QY are observed, then we know that

the radiative rate, k,, has increased.

A more physical approach to the definition of QY produces the same results.

Fundamentally the QY is defined as the probability that an excited molecule will emit a

photon. Statistically, this probability is approximated by the number of photons emitted
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by a molecule (or ensemble) divided by the number of excitation photons that are

absorbed,

N, lo

where Nf and N,, are the total number of photons emitted and absorbed in a given

experiment, It and i, are the average detected intensities of fluorescence and excitation

during a real experiment, and q and crare the detection efficiency and the absorptive

cross section respectively. The conventional measurement of QY' is based on equation

8.3, but in practice I, and rq are difficult to determine with sufficient accuracy. Therefore

one usually compares I/ of a the unknown to If of a standardized reference sample whose

QY is known.

l re 1fl(8.4)QY1111 = Q r,,t fr r, e,, etricl' (8.4)

where the ratio of cross-sections (,/1o,,, - easily measured accurately) accounts for any

difference absorption between reference and unknown, and the geometrical factor,

fe,,,,trictl., accounts for differences in refractive index of the solvents used for unknown

and reference samples, which can significantly alter the relative collection efficiency' .

If we consider that the total integrated area beneath the PL decay curve is

proportional to NJ, we can see that equation 8.3 leads to equation 8.1 for samples with

exponential PL decay dynamics. This is demonstrated by first writing the definition of the

absolute area, A, beneath the un-normalized PL decay, II(t), and equating it to the total

number of photons emitted times the collection efficiency,

A - I (t)dt = qN, = N = NQY (8.5)
0
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The last equality of 8.5 is derived by substitution of 8.3, and shows that A is proportional

to the QY. We note that the intensity at time zero, I(O) is equal to the radiative rate times

the population in the excited state at time zero, which is N,,.

I () = 7Na,kr (8.6)

Combining 8.5 and 8.6 reveals that AN, the area beneath a PL decay that is rescaled to

unity at time zero is directly equal to the QY divided by kr.

A QY
A, - =QY (8.7)

Ijf(0) k,.

If normalized PL usually decays exponentially, Ij(t)/If (O) = exVp(-t/r), the normalized

area is just equal to the time constant,

AN = Jexp(-t / r) = r (8.8)
0

Combining this result with 8.7 recovers the original description of the QY, which was

given in equation 8.1.

Although equation 8.1 is often presented as a definition of QY, the foregoing

simple derivation shows it is actually a special case of the fundamental definition,

equation 8.3, for the case of luminescent samples that exhibit single exponential decay

dynamics. This distinction is very important in the case of NCs because their PL decay is

in general multiexponential, as discussed in previous chapters and elsewhere 3' 4. As a

result, when using PL decays to monitor QY in samples of NCs we discard equation 8.2

and instead use,

QY = AN kr (8.9)
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Since we do not measure k, independently, we can use 8.9 only to monitor changes in

QY of samples. For instance the ratio of QY values before and after a chemical or

physical treatment of some kind is given simply by the ratio of the normalized areas.

QY Ah (8.10)

QY, As 0o

This equation is the basis for the analysis described in this chapter.

8.3 Methods

QYMelasrements: Absolute QY measurements of dilute solution samples were

carried out by the conventional dilute solution dye-referenced method2, using a SPEX

Fluorolog spectrophotometer to collect the steady state PL emission spectrum. After

correction for wavelength dependent spectrometer and PMT sensitivity, emission spectra

were integrated over visible wavelengths to determine the total steady state PL intensity.

To determine the QY of the unknown sample, its spectrally integrated steady state PL

intensity was compared to that from a reference dye solution, taking into account

differences in absorbance and solution refractive index 2 as in equation 8.4. Both

reference and unknown samples were excited at the same wavelength in order to avoid

wavelength dependent variations in the excitation intensity.

Lifetinme iMeasttreents: We used a hornebuilt, wide-field fluorescence

microscope coupled to a spectrometer and time-gated MCP intensified CCD camera

(LaVision GmBH, Imager QE) as discussed in Chapter 2 to measure fluorescence decay

from all samples. The excitation light was coupled into the microscope collection axis

using a dichroic filter. A 0.7 NA Nikon objective (finite) was used both to focus the laser

excitation and to collect the sample fluorescence. The laser excitation source was either a
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frequency doubled, pulse-picked Ti:Sapphire laser operated in picosecond mode (400nm,

4.75 MHz, 1.5 ps FWHM, Coherent MIRA900) or a diode laser (414nm 5 MHz, 90 ps

FWHM, PicoQuant GmBH, LDH400). The total instrument response time was limited to

200 ps by the CCD image intensifier microchannel plate. Room-temperature solution

samples were held in FUV cuvettes. Measurements of NC-titania films were carried out

in an evacuated cold finger cryostat at temperatures ranging from 77K to room

temperature. The sample film was held in a rigorously fixed geometry to eliminate any

variation of excitation intensity and collection efficiency from measurement to

measurement.

Samples: Fluorescent solution samples used for calibration of relative normalized

lifetime area versus relative QY were tri-octylphosphine oxide (TOPO) capped colloidal

CdSe/ZnS-core/shell nanocrystals (NC) dispersed in hexane to approximately 0.1 optical

density in a cm FUV cuvette. CdSe NCs overcoated with ZnS were synthesized

according the methods of Murray et al.>s 7 and had core radii of approximately 2.7nm

(sample 1, 605nm at the first absorption feature), or 2.3nm (sample 2, 570nm absorption

feature). Reference solutions for conventional QY measurements were Rhodamine 640

diluted in methanol with an optical density of 0.1 at the excitation wavelength

(QY=100%,8).

Comparison of relative QY to relative normalized lifetime area was carried out by

progressively quenching the luminescence of NC/hexane solutions with known NC

quenchers - either pyridine for sample I or p-thiocresol (p-TC) for sample 2 - and then

measuring the QY and normalized PL decay trace each time an aliquot of quencher was

added. QY and lifetime measurements for each sample were completed within minutes
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of one another to minimize any possible temporal variation of QY. The relative QY (AN)

of each sample is then expressed as a fraction of the QY (AN) obtained in the control

measurement that used no quencher.

NC-titania films used in the study of inhomogeneous versus homogenous

degradation of QY were fabricated according to published methods 9.

8.4 Quenching Experiments

We sought to validate equation 8.10 for use on nanocrystal samples by

performing quenching experiments on solutions of NCs. Figure 8.1 shows the typical

response of PL. decay curves for NC-hexane solutions to progressive addition of pyridine.
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Figure 8.1 Room temperature PL decay traces (normalized at t=O) for QD solution samples treated with
progressively greater amounts of pyridine. The normalized integrated area of the PL traces decreases with
continuing addition of pyridine. The decrease in area beneath the normalized PL decay curve mirrors the
sample's decrease in QY. Inset: log-scale plots of same PL decays.
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The lifetime curves are normalized against the maximum measured value of the curve,

I,,,. The longest lifetime curve is from the control sample of CdSe/ZnS NCs, which

containing no pyridine (2 mL NC-hexane, 0.1 optical density at first absorption feature).

The next three curves are from the same NC sample with 40, 60, and 80 pL of pyridine

added, respectively. Typically QY quenching covered a range of approximately QY=30-

35% in control samples, down to about QY=10%. No measurable change in the

absorption spectra of the sample was observed as pyridine was added.

Although previous studies1° -12 showed a faster non-radiative decay from pyridine,

those studies looked at bare NCs (not overcoated) that gave pyridine direct access to the

NC core, whereas our nanocrystals were overcoated with ZnS. Also, in our experiment

there was no complete cap exchange to pyridine; instead pyridine was added to diluted

growth solution that contained extra capping molecules (tri-octyl phosphine [TOP], and

trioctylphosphine oxide [TOPO]), which could compete with the pyridine for binding to

the nanocrystal surface.

Figure 8.2 shows the results of plotting relative QY measurements against the

corresponding relative normalized lifetime area measurements for many different

samples. A linear relationship is obtained between relative QY (Qi/Qo) and relative

normalized lifetime area (AN.i/A,.o), with a slope of 0.85. Error bars were derived from

two or three independent, sequential measurements of QY.
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Figure 8.2 Comparison o' the relative change in the normalized lifetime area versus the relative change in
QY for a number of pyridine quenched samples. A linear fit gives a slope of 0.85 and an intercept of 0. 13.

Although the slope is not perfectly unity, these results seem to support the use equation

8. 10 to monitor the QY of NCs. However, when we performed analogous experiments

on other nanocrystals using different quenching techniques, we found that 8. 10 did not

hold nearly as well. For instance in figure 8.3 we show the results of quenching with p-

TC instead of pyridine. Here the relationship between integrated area and QY is weak,

resulting in a slope of only 0.24 for a linear fit. Instead of a faster PL decay, the reduction

of QY in the presence of p-TC resulted in a weaker overall signal intensity in the PL

decay, while the decay rate
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Figure 8.3 Comparison of the relative change in A,v (') versus the relative change in QY for samples treated
with p-TC. A linear fit yields a slope of 0.24. The symbols (o) represent the relative change in absolute
peak (t=O) intensity, Imax, for the lifetime curves of the same samples. A fit to the open circles gives a
slope of 0.84 and intercept of 0.15.

remained approximately the same. Since the decay rate did not change very much, the

"shape" of the decay curve was constant and AN did not change much with QY. The

initial intensity, Il,,, however, did vary significantly with QY.

In other experiments, treatment of solution samples with other chemicals also

produced PL decays whose normalized areas did not reflect actual changes in QY. For

instance, when octylamine was added to samples of bare NCs in hexane solution, the QY

was observed to increase, while the lifetime sped up leading to a smaller area beneath the

normalized PL decay.
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Figure 8.4 Main:. Absolute PL decay of a solution of nanocrystals in hexane before (black, solid) and after
(gray. dashed) addition of octylamine. The optical setups of both measurements were nearly identical, so
the absolute intensities represent actual change in QY of the sample. Inset. the sample decays are shown,
after normalizing the peak intensity values to unity. The amine treated sample has a slightly faster lifetime.

8.5 Discussion

The foregoing results highlight two critical restrictions on using AN to judge

changes in QY. The first and simplest restriction to explain is that the radiative rate

should not change in order for the results to be accurate. If the radiative rate is different

between two samples, then k, does not cancel between equations 8.9 and 8.10, so

equation 8.10 is not valid on its own. This is can explain the simultaneous incretase in

QY and decrease in lifetime (and ANv) observed in figure 8.4. Clearly the use of ANv for

monitoring QY must be limited to variations in QY that result from change of the non-

radiative rate.
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The second critical requirement for using equation 8.10 to monitor QY is that all

temporal dynamics of the PL decay must be resolved by the experiment in order to

accurately calculate AN. The derivations discussed in section 8.2 assume that I(t) is

known with arbitrary precision, but in reality, we measure I (t) which is a convolution of

Ij(t) with the experimental instrument response function. Convolution does not affect the

value of the total absolute lifetime area, A, because integration over all time counts all

photons, regardless of the time delay at which each was detected. However, the finite

instrument response is critical to the absolute PL intensity peak value at time zero, Il,,x.

10 20 30 40 50

time (ns)

Figure 8.5 Illustration of the way that convolution of a slow instrument response can cause fast dynamics
of a PL decay to be lost. The important point is that, although the total integrated area of the boxes
approximates the actual integrated area quite accurately, the peak intensity measured by the experiment
with imperfect time resolution (boxes), is much lower different than the actual peak intensity (line).
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If the time resolution of the experiment is not sufficient to capture the dynamics, then I,,,/,

is measured completely inaccurately, as can be seen in figure 8.5.

Since AN depends on I,,,l(L for normalization, L,,, must be measured accurately to

get an accurate measure of AN. In the example of figure 8.5 poor time resolution would

cause the measured ,),1r to be too small, and AN would be overestimated. Accordingly,

accurate QY estimation by equation 8.10 demands that changes in QY arise exclusively

through processes whose rates can be resolved by the lifetime instrumentation. Any

contributions of non-radiative pathways to QY quenching that are faster than the

instrument response are lost through normalization.

This subtlety is the reason that the method worked in the pyridine quenching

experiment, but not for the p-TC quenching experiment. The effect of pyridine on the

excited state relaxation was resolved on a nanosecond time scale as shown in figure 8.1.

p-TC on the other hand introduces deep, static hole traps, which leave the NCs charged.

Band-edge exciton relaxation of charged NCs is thought to be dominated by non-

radiative Auger recombination processes that occur on timescales less than 100 ps and

are faster than our system's resolution '. 1. This violates the assumption that changes in

relaxation rates be resolved by the lifetime measurement, and thus make the method

insensitive to QY changes induced this way.

From another perspective, p-TC causes an inhomogeneous decrease in QY - at

any given time a subset of NCs in the ensemble are rendered completely non-luminescent

or "off' by the p-TC induced charging, while the remaining NCs in the ensemble are

unaffected (i.e. uncharged) by the p-TC. In terms of figure 8.5 the fast component of the

PL decay is corresponds to the population of "off' NCs, which have ultrafast non-
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radiative decays. The slow component comes from the remaining population of

uncharged nanocrystals, which exhibit PL decay rates of the native sample. Hence the

"shape" of the rescaled PL decay (and the ratio ANi/A N.O ) is mostly unaffected by

inhomogenous variation of the ensemble QY. This is why the slope () is so flat in figure

8.3. On the other hand, the measured value of I,,,,L was found to vary much more

accurately with the QY in 8.3 indicating that the important dynamics affecting QY all

occurred within the first time-resolved data point.

8.6 Temperature Dependent Quantum Yield of TiO2-Nanocrystal Composites Films

By making the distinction between inhomogenous and homogenous variation of

the QY we gain insight into some important processes that affect the QY of nanocrystals.
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Figure 8.6 The temperature dependence of the integrated area beneath normalized () versus absolute (o)
lifetime curves are shown. The normalized lifetime area is virtually independent of temperature. The
relative areas beneath absolute lifetime curves, on the other hand, show a clear temperature dependence
above a threshold temperature of- 130K as the QY decreased from its value at lower temperatures.
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The QY of nanocrystals is known to vary significantly with temperature 4 , but the exact

nature of this variation was not well understood. In figure 8.6 we plot ratios of the

normalized and absolute lifetime areas of NCs in a TiO: film relative to their values at

77K.

The absorptive cross-section for non-resonant excitation should not vary

significantly with temperature. Therefore, by carefully maintaining the same excitation

power, optical focus etc., the ratio of the absoltlte lifetime areas against a control

measurement is a good representation of the relative QY at a given temperature. We see

that althouh tho e absolute area ratio (i.e. QY ratio) decreases at higher temperatuires (as

expected'4), the ratio of the normalized areas does not change. This is a clear indication

that the variation of the QY with temperature is inhomogenous - the QY decreases as the

temperature increases because an increasing population of NCs are non-luminescent.

This suggests that the temperature dependence of the ensemble QY could be driven by

the blinking of individual nanocrystals which is known to be highly temperature

dependent'' 7 - at higher temperatures there is a higher probability that a given NC is

"off', so the population of "off' nanocrystals at a given time would be higher. Recent

results that suggest the room temperature QY of a single NC in the "on" state is unity '.8

If this is true then there is no other way that the QY of an ensemble of NCs could

increase as the temperature is lowered, other than for there to be a change in the

populations of "on" and "off' nanocrystals. Our observation of inhomogenous changes

in the QY of these nanocrystal-titania composites fits this hypothesis.
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8.7 Conclusions

The purpose of this chapter has been to discuss the method by which one can use

the PL decay of fluorescent solutions to monitor its QY and to show how it applies to the

case of fluorescent nanocrystals in solution. Because NCs in general do not exhibit

single exponential decays, we derived an equation (8.10), which can be used to monitor

changes in QY simply through changes in the integrated area of a PL decay that is

normalized to unity at time zero.

Our quenching experiments involving various chemicals demonstrated the

limitations of using this method, particularly for nanocrystals. First, the radiative decay

rate must be assumed to remain constant. Second, in order for the method to work

accurately, any change in QY must be caused by a change in the PL decay that can be

resolved in time by the instrumentation. The terms "homogenous" and "inhomogenous"

categorize variations of the QY that meet or do not meet this second requirement.

Homogenous variation of the QY means that all members of the ensemble exhibit the

same PL decay dynamics, whereas inhomogenous variation implies that two or more sub-

populations of NCs exhibit significantly different PL decay rates, with one sub-

population's decay being completely unresolved, causing equation 8.10 to fail. We took

advantage of this caveat to gain new insight into the nature of temperature dependent

changes in QY. Since changes in the AN did not account for actual temperature induced

variation of the QY, we concluded that the variations were inhomogenous and therefore

possibly related to blinking of single NCs.

By understanding clearly the conditions that cause 8.10 to fail, we know more

clearly when it is applicable and when it is not. We also have a method by which to gain
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insight into the nature of changes in QY. The relationship between QY and integrated

lifetime area is a useful technique for NCs, and it has been applied in a number of

analyses in this thesis.
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Chapter 9: Fluorescence Correlation
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9.1 Introduction

Previous chapters have focused nearly exclusively on using fluorescence

spectroscopy to understand the physics of excited electrons in the core of nanocrystals.

The experiments in this chapter, in contrast, aim to use the fluorescence from the

nanocrystals as a handle for understanding their chemical behavior in a solution

environment. Fluorescence correlation spectroscopy is a well-developed method for the

study of molecules in solution environments. FCS relies on the statistical analysis of

equilibrium fluctuations to measure kinetic properties of a chemical system. The

technique has been applied to the study of translational diffusion and rotational

diffusion-3, and chemical reactions 4 . Other applications of the technique have studied

photophysical dynamics including triplet state5' 6 kinetics or photobleaching kinetics7.

FCS has emerged as a truly powerful technique for the study of molecular dynamics and

interactions in solution. Despite this, only a few studies have used FCS to study colloidal

nanocrystals in solution 8
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Our primary motivation for developing FCS in this chapter is the study of

nanocrystal diffusion in a solution environment in order to determine their hydrodynamic

radius (RH). The hydrodynamic radius describes the effective size of the particle in

solution, reflecting both the physical dimension of a particle and its interaction with the

solvent molecules surrounding it. For instance, a strong interaction with the solvent can

lead to a tightly bound "first solvent shell" which increases the particle's effective size in

solution. For this reason mere TEM measurements are not sufficient to measure this

property.

Our interest in the hydrodynamic radius of nanocrystals was motivated by their

recent in vivo use for sentinel lymph node mapping (SLM). The goal of SLM is to locate

the nearest lymph node to a point of interest, usually a malignant tumor. Whether a

sentinel lymph node contains malignant cells is a strong indicator of whether the tumor

has metastasized. Nanocrystals are well suited to SLM because their size is small enough

for uptake into the lymph system, but large enough to become localized inside the lymph

node and hence to mark its location. A robust measurement of hydrodynamic radius is

necessary to achieve this. Other methods for determining diffusion coefficients and

particle size like diffractive light scattering (DLS) do not produce robust measurements at

the very small sizes of interest here (<20nm). Although DLS is highly similar to FCS, it

relies on elastically scattered light for its signal, the intensity of which scales as R 6 / 4 9,

'°. Therefore any dust particles or other agglomerates easily dominate the scattering of

small nanocrystals, making the technique highly sensitive to dust or agglomerated

particles. Because FCS does not suffer this shortcoming, we explored its use for the

analysis of our nanocrystals.
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The basic idea behind FCS measurements is illustrated in figure 9.1. Dashed lines

and an oval represent the beam-path of excitation light and the spatial extent of the

confocal point-spread function (PSF) respectively. This PSF is the product of the

functions that describe the spatial distribution of excitation probability and of detection

efficiency. Particles in solution randomly diffuse in and out of the PSF causing the

number of molecules detected, and hence the intensity of the fluorescence signal, to

fluctuate as a function of time. These fluctuations are illustrated using actual data at the

bottom of figure 9. 1.
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Figure 9. 1 Top: cartoon of the difftisional trajectories of three molecules into and out of the optical focal
volume (PSF, gray ellipsoid). Bottom: Intensity trajectory taken from an FCS experiment. The intensity
fluctuates with large amplitude as the number of fluorescent particles occupying the focal volume varies.

Shot noise cannot account for the fluctuations of this intensity trajectory. The standard

deviation of the fluctuations in 9. 1 is 2940 counts per second (cps), whereas shot noise

for this mean signal intensity would only be 120cps. Measurement of the autocorrelation

of the signal intensity reveals the relaxation dynamics of the fluctuations.
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These dynamics may arise not only from diffusion of the particles into and out of

the PSF, but also through other chemical fluctuations such as chemical reactions and

particle binding, or molecular rotation to name a few. The inventors of FCS, for instance,

used the technique to study the kinetics of a biologically relevant binding reaction

between a dye, eithidium bromide (EtBr) and DNA molecules 4. The quantum yield of

EtBr is known to increase 20x when intercalated inside DNA. Hence the fluctuation of

fluorescence intensity reflected the binding of EtBr in addition to the diffusion of

fluorescent particles in and out of the PSF. Unfortunately the technique used in these

early experiments required high concentrations of particles, had low sensitivity and were

cumbersome to implement. The basic problem of early experiments was that

experimentally measurable fluctuations occur only for very small sample volumes.

Although excitation lasers can be focused well in the radial dimension, it took the depth

sectioning ability (see chapter 2) of confocal microscopy to confine the PSF along the z-

axis enough to make FCS widely practical" 1. The development of two-photon

microscopy (2PM) has improved the technique further' 2. With 2PM a 3D confined

sample volume is achieved even without a pinhole in the collection path, since the

excitation PSF is naturally confined in all 3 dimensions. In the FCS experiments of this

chapter, two-photon excitation is the method of choice.

9.2 Theory of FCS

FCS uses the fluctuation of fluorescence intensity to represent fluctuations of an

open system near equilibrium. We are interested in the fluctuation of the concentration of

componentj at a point in space and time:
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SC. (r,t) = C(r,t)-(C 1 ) (9.1)

In its most general form, translational fluctuations of molecules as well as fluctuations

from chemical equilibrium are described by the general diffusion equation,

t C = D /V2 /(r,t) + L KkCk(r, (9.2)
c~t k=l

Here the D/ is the diffusion constant of speciesj and Kik are the chemical rate constants

from speciesj to species k. We connect the local concentration fluctuations to observable

fluorescence intensity fluctuations by assuming that the number of fluorescence photons

collected is proportional to both the intensity of the excitation light and the concentration

at each position, r. Therefore the number of photons emitted as a function of time, n(t), is

given by,

m

n(l) = At Jdr I(r) Qi C, (r,t) (9.3)
/=1

Where Qj is the product of the absorption cross-section and the fluorescence quantum

yield of componentj. The fluctuation in photon number in(t) can be obtained simply by

replacing C1(r,*t) with i~j(r,tt) in equation 9.3.

FCS experiments measure the autocorrelation of the intensity fluctuations, which

is the time average of the products of the intensity fluctuations:

(&(t + t')dn(t')) (n(t)n(O)) 
G(t) = (9.4)( i +t'))(&a(t')) (no(0))

The angled brackets indicate time averaging, and ergodicity is assumed to equate the two

expressions. Substitution of 3n(t) into 9.4 yields a complicated expression for G(t) which
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is a convolution of the correlation function of concentration fluctuations with the

excitation intensity profile I(r).

G(t) (At)2 IJd'id'i3'l(r )I(')Z Q 1 Qk (C (r,O)Cl (F, t)) (9.5)

Fluctuations in the concentration are given by the solutions of equation 9.2. These

solutions are obtained by Fourier transform of equation 1. Details of these solutions for

the general case of an arbitrary excitation profile and an arbitrary number of interacting

species can be found elsewhere3 ' 3. In this chapter we are interested in the specific case

of a single species component in the system - uniformly fluorescent nanocrystals in

solution. Therefore the second term on the right hand side of 9.2 is ignored and the

solutions, obtained by Fourier transform, have the well-known form,

6C(q, t) = C(q,O) exp(-Dq2 t) (9.6)

where q is the Fourier variable, and D is the diffusion coefficient of interest to us.

The form of the illumination profile is assumed in this work to be Gaussian in all three

directions, and radially symmetric about the z axis,

2(x 2 + ) 2Z2
I(r) = I, exp- 2(+ -)2 (9.7)

WXY Wz

The three dimensional Gaussian (3DG) assumption is actually a weak assumption for

many optical setups 12. However, it is the only way of obtaining a closed form solution for

G(t) to which experimental data can be fitted. As a result, except for a few notable

exceptions' 2, most implementations of FCS use the 3DG assumption. To obtain a closed

form for G(t) we take the Fourier transform of 9.7 and plug it along with C](q, t) back

into the Fourier transform of 9.5:
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G(t) = (2() - d3-Q2(C)exp -7(q +qT )-"q: -qDt(q; +q 9 +q)) (9.8)
g2 (C)

which simplifies to,

I t t
G(t) I + 1 + (9.9)

where ' is the focal volume (/ 3;wV,-wj -), rD -= wt,,4D and r'D = tw /4D. The right

hand side of equation 9.9 has a good physical description. Each direction of translational

diffusion contributes a factor of (1 + t / rt(k)) - 2 to G(t), where -t(k) approximates the

time necessary for the particle to traverse the focal volume in the direction k. Since the

3DG illumination profile assumes a PSF that is symmetric about the 7-axis, ED(x) = rD(O')

= r. These combine to make the first term, (1 + t /r,) , while diffusion in the z

direction contributes (1 + t/ zo) 1/ which has a different value, since the focal volume

is longer in the direction.

In addition to this interpretation of 9.8, one can see that the smaller the mean

number of particles occupying the probe volume, <n> = <C> V, the larger the amplitude,

G(O), of the correlation function. If the probe volume, ', is independently known, the

amplitude of G(t) provides a method of directly measuring the concentration of a

solution.

After obtaining the diffusion time constant zr) by fitting the G(t) decay, the

diffusion coefficient for the species can be obtained,

D - (9.9)
P 4ra
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The hydrodynamic radius can be calculated from D using the Stokes-Einstein equation as

well,

kT
R, = (9.10)

The parameter p in equation 9.9 accounts for the type of excitation used - one or two

photon. If two photon excitation is used the illumination profile must be squared to

account for the two photons used in every excitation event. The result is that p takes a

value of 2 whereas it has a value of unity for single photon excitation 2.

In order to extract D from equation 9.9 the focal volume parameter w is

required. Although one can theoretically calculate Wt and w: from the optical properties

of the microscope [26], we found it unreliable in practice. Moreover, we mentioned

earlier that the 3DG approximation is imperfect so these parameters only represent an

approximation of the actual illumination profile anyway. Therefore, FCS measurements

are usually calibrated against a set of samples with known RH and concentration to yield

effective values for the focal volume, V= Ve: and wx. The basis for calibration of RH is

given by combining equations 9.9 and 9.10,

RH = - p z (9.11)
6R 7 11V 4p

and the basis for calibration of concentration is derived from equation 9.8,

(C) = V 'G(O) ' (9.12)

It is worth briefly noting the potential use of FCS to measure the absolute

absorptive cross section for nanocrystalline materials. This value has been obtained for

CdSe using other methods'4 , but that experiment is tedious and impractical to perform on
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a large scale for many new nanocrystalline materials. It is possible, though, using FCS to

directly measure an unknown concentration of nanocrystals in a solution after calibrating

G(O) according to 9.12. The concentration, along with a UV/VIS absorption spectrum,

which gives the optical density at all wavelengths, allows the cross-section of an

individual nanocrystal to be calculated using Beers law.

9.3 Methods: Software Autocorrelation

Two options are available for the measurement of G(t). The first, most

experimentally straightforward option is to use a commercially available hardware

correlator that is capable of directly generating G(t) over many orders of magnitude of

time from either a digital or analog signal intensity input. In our experiments this was not

available so a second option was used, namely to simply acquire the fluorescence

intensity signal continuously using finely spaced time intervals. Using software G(t) can

then be numerically calculated from the recorded intensity trajectory, n(t). The equation

used to correlate the discretely sampled n(t) is obtained by first substituting n(t) = n(t) -

<n> into equation 9.4, and then writing out the time averaging explicitly:

G(t)= -1 = -I (9.13)
(n(t'+t))(n(t')) N -- 0i 

Nzfliu X Inl
i=, i=(

where t,. =j x ft and N is the total number of samples comprising the intensity trajectory.

Although the right hand side of equation 9.13 gives a simple prescription for the

calculation of G(t), the calculation is more challenging in practice. For instance, in our

case we acquired n(t) using the Timeharp200, which was capable of registering the
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absolute arrival time of every single photon with 1 OOns resolution. The photon detection

rate was kept well below 106 cps so single photons were not missed on account of the

detection speed. By reading out the absolute arrival time, t, of each photon, p, and

counting how many photons occur within a specified time interval (or 'bin'), At, the

trajectory of photon intensity, n(t) could be recovered. The example data shown in

Figure 9.1 were generated in this way using At = I second. The value of At can be set

arbitrarily small, but since the error on t, is 100ns it is useless to set At smaller than

100ns. Nonetheless, a very small lit is desirable, since it defines the smallest correlation

time, t, of the function G(t) that we aim to numerically calculate.

The reason that G(t) is not simple to calculate from n(t) in practice originates in

the sheer scale of the problem. We would like to set At to a value of about Iljs, while the

total length of n(t) is at least on the order of seconds, usually 10 to 100 seconds. This

results in about 107 time intervals (or data points) for a typical n(t). If one were to write a

simple numerical code to calculate the value of G(t) for all t between lls and s using

equation 9.13 as it is written (e.g. using two nested for loops, the outer one through allj,

the inner one over all i), the program would have to hold two arrays, one for G(t) and one

for n(t), each with 1 to 10 million elements. At least 32 bit (4 byte) precision would be

required for each element, so the array sizes would be on the order of 4xl 0 7 = 40 MB.

Although this is within the physical RAM capacity of modem computers, it requires

significant manipulation of memory resources and most simple C compilers tried by us

did not allow such large arrays. Furthermore, these memory considerations do not even

mention the problem that 107 X 106 iterations of the outer loop are necessary which also
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takes much longer than is desired - one would like to generate G(t) quickly (i.e. within a

few seconds) after each FCS collection run.

The solution to this problem lies in recognizing that in order to see dynamics over

so many orders of magnitude in time, we will always visualize the data on a logarithmic

plot. This means that at small t, the time interval should be short with a high sample rate,

whereas slower sample rates and larger time intervals can be used at large t. By using

logarithmically spaced t the number of data points in G(t) can be reduced from millions

to a couple hundred. Furthermore, by using an intelligent algorithm we can avoid having

I In(i) (>107 bins, 1us/bin)
etnetlt 391 1 1 1 1 t1 7 1 1 81 41 * 4

data from n( 

10 ' 9 (>-100 to 200 bins, logarithmically spaced)
- . 1 vL.J- I .. I . ,

i(Shift alues J 1 41l 81 l71 17 1 11 1 23 0 I"' * '_ a I _W _ _ ... .

InYW & add A'y * a 11
new Y(O) 8 6 

YYold

I olotoo o Io
-XUpdate

YYW;[: i\
Mdel) YYnew(i) += YzeroX Y(j)
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__ ) Similarly, Mdelnew(j) += Y(j) and Mdirnew(j) += Yzero
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Figure 9.2 Illustration of the software algorithm used to quickly calculate G(t) on a logarithmic time scale
without having to store n(i) in running memory. At each turn of the loop an intensity value is read in from
the file containing n(i) which is used to update Y(J) whose corresponding times are logarithmically spaced.
Then three other log-spaced data structures are updated based on the current Y(j). After repeating the loop
for every value read in from ni(i) the correlation function can be calculated simply according to equation
9.11.
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to store the entire n(t) data vector in running memory during the calculation. Instead, for

each value of n(t) that is read off, the couple hundred G(t) data points are updated and the

process is repeated without storing the entire n(t) trajectory in RAM at any time. This

approach mimics the algorithm used in a well-known correlator hardware design 5 and is

illustrated in figure 9.2.

The main data structures that are held in memory, Y, YY, Mdel and Mda,. are all

logarithmically spaced and sized in time, covering t =O to Tm". The spacing and size of

the time intervals are set by the logarithmic base and the parameter Npg - the number of

bins per group. For instance if the base is 2 and Npg is 4, then the values of t will be the

following multiples of the smallest time interval (At): 1, 2, 3, 4; 6, 8, 10, 12; 16, 20, 24,

28; 36, 44, 52, 60; 76, 92, 108, 124; ... Tml. Therefore, as shown in figure 9.2, Y)

essentially holds the most recent n(i), but with logarithmic spacing and binning. Each

element of YY() is updated at each turn of the loop by multiplying thej th element of Y by

its 0 th element and then adding the product to the previous YY(/) value. In this way a

running sum of the product of intensities separated by time t is kept. (Note that here t is

given by a logarithmic spacing, so t fjAt). An analogous procedure is executed for Mde

and Mdir, such that these vectors hold the running sums of the Y) and Y(O) respectively.

After reading in each individual data point from the entire linearly spaced n(t), and

updating Y, YY, Mdel and Mdir at each turn, G(t) can be calculated simply for each

(logarithmically spaced) tj.

YY(t/)
G(t/) = (9. 11)

i Me,(t i )Mi. (t /)

It is worth noting that because the size of each logarithmically spaced interval is not

uniform, updating Y is not as simple as incrementing the value of each interval. Instead,
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at the edge of each "group" of like-sized intervals, a queue is kept. This queue is used for

updating Y() when each new data point from n(i) is added. For example, assume for

example that Y(/) is logarithmically spaced using base=2 (this can be generalized simply

to higher base values), then the first interval in a group accounts for twice as much time

as that of the preceding interval, which belongs to the previous group. If the queue

adjoining these groups is empty (and all previous queues are filled), then the queue in

question is filled by the value in the last interval of the previous group. If, on the other

hand, the queue contains a value (and all previous queues are filled), then that queue's

loop 1 loop 2 loop3 loop 4 loop 5 loop 6 loop 7 loop 8 loop 9 loop 10 loop 11
Corr.TEme for bin (sec) Binsize (s) Y (initial) newY = 6 newY = 7 newY = 8 newY = 9 newY = 10 newY = 11 newY = 12 newY = 13 newY = 14 newY = 15

0 0.000001 0 6 7 8 9 10 11 12 13 14 15
0.000001 0.000001 1 0 6 7 8 9 10 11 12 13 14
0.000002 0.000001 2 1 0 6 7 8 9 10 11 12 13
0.000003 0.000001 3 2 1 0 6 7 8 9 10 11 12
0.000004 0.030001 4 3 2 1 0 6 7 8 9 10 11
0.000005 0.000001 5 4 3 2 1 0 6 7 8 9 10
0.000006 0.000001 6 5 4 3 2 1 0 6 7 8 9
0.000007 0.00001 {7 D> c< C52 C C § >> <6 8
0.000008 0.000002 8 8 13 13 9 9 5 5 1 1 13
0.00001 0.000002 9 9 8 8 13 13 9 9 5 5 1

0.000012 0.000002 10 10 9 9 8 8 13 13 9 9 5
0.000014 0.000002 11 (11) 10 (10., 9 (9 8 8 13 13 9
0.000016 0.000004 12 12 12 12 ' 21 21 21 21 - 17 17 17
0.00002 0.000004 13 13 13 13 12 12 12 12 21 21 21

0000024 0.000004 14 14 14 14 13 13 13 13 12 12 12
0.000028 0.0)0004 15 15 15 (D 14 14 14 (14) 13 13 13
3.000032 0.00(0008 16 16 16 16 16 16 16 16 8 29 29 29
0.00004 0.000008 17 17 17 17 17 17 17 17 16 16 16

0.000048 0.000008 18 18 18 18 18 18 18 18 17 17 17
0.000056 0.000008 19 19 19 19 19 19 19 19 18 18 18

Figure 9.3 Actual test data for the use of "queues" to accurately increment values in Y) each time a new
data point is read from n(i) and added to the beginning of Y(j). Each column shows Y(j) at a subsequent
loop iteration and each row corresponds to a different value ofj. The base of the logarithmic time spacing
is 2. The first interval group was arbitrarily chosen to have twice as many intervals as the rest of the groups.
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value is added to the value in the last interval of the previous group to make the value that

is shifted into the first interval of the next group. Finally if any previous queues are

empty, they must be filled first, before action occurs on the queue in question.

The effect of the foregoing is to keep track of all photons as they are re-binned

with logarithmic spacing in Y(), so that their complete contribution to the correlation is

accounted for. An example of the use of queues is shown in figure 9.3. In this example

each column represents Y at a subsequent iteration, while each row represents an interval,

j. The base used is 2 with Npg = 4. Note: the first group of intervals is chosen to have 2

x Npg intervals in our program, while all subsequent groups have Npg intervals.

9.4 Methods: Optical Setup and Hardware

The previous section described in detail the method used to quickly calculate G(t)

on a logarithmic scale using n(t) acquired using the Timeharp200 photon counting

hardware. Here we discuss how the fluorescence itself was collected. Two-photon

excitation was used to excite the NCs, and the optical setup for these experiments is

shown in figure 9.4. The setup is completely analogous to those used in previous

chapters with the exception that 150fs pulses of 800nm wavelength laser light

(Ti:Sapphire oscillator at 76 MHz) are used for excitation instead of the 400nm or 514nm

wavelength light used in other chapters. This means that the dichroic chosen for these

experiments reflects red wavelengths but passes shorter wavelengths (Chroma,

Q720DCSX). We used either a 1.25NA oil-immersion or a 1.2 NA water immersion

objective with infinity correction to focus the excitation into the sample and to collect the
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fluorescence. As discussed in chapter 2, the use of two-photon excitation limits the region

of excitation to a very small volume at the focus of the objective.

Femtosecond:
ELaser
=';Soceiit

Beam _
Expander

and o --Pinhole
Collimation

Collimated
Laser

2-photon
excitation
Focal Vol

Z
n I

0rume N
I

r11

Point Detector uue oa,,I
Lens Splitter

(blue pass)
Objective ( )

Hanging Drop
Slide containing
Solution Sample

Figure 9.4 Optical Setup Used for FCS measurements with two-photon excitation in a confocal geometry.
Collimated, pulsed laser light (gray) is focused by a high NA objective in the bulk solution creating only a
small volume of two-photon excitation (white). The fluorescence from this small volume is collected and
focused to a single point detector.

In theory the PSF of two-photon excitation with 800nm light is approximately an

ellipsoid with a transverse radius of 205nm and axial radius of 635nm[26]. Fluorescence

is not generated anywhere else in the solution, so no pinhole is required to tighten the

axial dimension of the collection PSF - the excitation PSF is already tight. This

advantage of 2PM for FCS experiments allows greater detection sensitivity without

compromising the small size of the focal volume. To be sure that the fluorescence that we

observed originated from two-photon excitation we measured the fluorescence intensity

l
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as a function of power. If the fluorescence intensity increased quadratically with power,

we could be sure that it was driven by two-photon excitation.

Only a single detector was used for acquisition of n(t). Other implementations of

FCS use a beam splitter to send the fluorescence to two different detectors and then

calculate G(t) by the cross-correlation of the intensity trajectories collected by the two

detectors 3. The reason for two detectors is that detectors have a dark period after

detection of a photon that usually lasts about 200ns, causing G(t) to be artificially strong

at these times. Since our experiments did not sample sub microsecond timescales a single

detector was sufficient.

All samples used in these experiments were in the solution phase and were

contained in a hanging drop slide, which was covered by a standard amorphous quartz

coverglass (No. 1.5). For calibration of the FCS experiment aqueous solutions of

fluorescent microspheres of known size were used. These were obtained from Duke

Scientific and had the following hydrodynamic radii: RH = 14nm, 22nm, 28.5nm, 35.5nm,

43.5nm. After calibrating the measurement numerous samples of nanocrystals in both

aqueous and organic (e.g. hexane or toluene) solution were investigated.

To study the effect of different water-solubilization techniques on the RH of the

nanocrystals in solution, we prepared two different aqueous samples from the same batch

of nanocrystals (core radius = 2.2nm, based on band-edge absorption of 570nm). Sample

A was water solubilized using an oligomeric phosphine cap 16, whereas sample B was

water solubilized using a phospholipid micelle technique8.

To study the effect of solvent viscosity on G(t) for nanocrystals, we added small,

measured amounts of glycerol to the aqueous solutions of nanocrystal. By varying the
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volume fraction of glycerol present in the aqueous solutions of nanocrystals the solvent

viscosity could be tuned over a large range.

9.5 Preliminary FCS Measurements

Before undertaking the studies of specific samples nanocrystals we performed

control experiments to investigate the behavior of FCS measurements when specific

parameters are varied, namely the axial focal depth, and the excitation power. We found

that the curve, G(t), varied widely for different depths of focus in the solution sample.

This is shown in figure 9.5 where G(t), obtained from aqueous solutions of fluorescent

microspheres (22nm = R) using the oil immersion objective, is shown at focal depths

ranging from about man to 100um.

% On AU.Ou
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0.20

- 0.15

0.10
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10-5 10- 4 10-3 10-2 10-1 10° 101

t (S)

Figure 9.5 FCS measurements on fluorescent polymer microspheres in aqueous solution using an oil

immersion objective. Each measurement was taken at a different focal depth over a range of 100pm. The
amplitude of the measurements was highly dependent on the focal position, but the time constant of the
decay remained constant.
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The dependence of G(O), as well as the mean fluorescence intensity, <I>, on focal depth

is shown explicitly in figure 9.6. The highest amplitude of G(O) is obtained near the

edge of the sample. As the focus is moved deeper into the solution, G(O) decreases

asymptotically toward zero. On the other hand, as the PSF is pulled back out of the

solution across the coverglass interface, G(O) drops quickly. Note that the peak of the

average intensity occurs at a deeper focus than the peak of G(O). The reason is likely that

at z=O, the PSF is approximately cut in half by the coverglass interface so the probe

volume is smaller and fewer nanocrystals on average occupy the focal volume - recall

that G(O) is inversely proportional to <n>.
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Figure 9.6 Summary of focal depth dependence of G(O)(o), average fluorescence intensity (<n>, o), and
the time constant of the decay of G(t) (). These data were obtained form two-photon FCS measurements
of aqueous microspheres using an oil immersion objective.

0
0 

* o
0 6
o
0 a 0 0O
0 00

0 0
0 a W I V0 I ff a ai a0

· ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

'"' ""



207

The average intensity, on the other hand, peaks when the full excitation PSF is within the

solution, and it decays thereafter as the focus is pushed deeper in the sample. Most

importantly for these measurements, however, the time constant of the decay remains the

same for all of these measurements (gray squares). The time-constants shown in this

graph are the 1,, values, where G(tJ) = ,G(O). The use of t, instead of fitted rD is

discussed in section 9.6. For now suffice it to say that t, - rD.

The reason for the strong variation of G(O) with focal depth is improper index

matching of the immersion oil (nil 1.51) with the sample solution (nf2o=1.32). This is

effect has been described previously in references on confocal microscopy"' described

and illustrated in figure 9.7. The simple diagram here allows us to geometrically derive a

relationship between the relative position of the objective to the sample, s and the actual

depth of focus, z:

tan sin NA))

' = tnin (9.1 1)

tan sin iy J

One can see that if n # n3 then incremental changes of focal depth, As, are magnified in

the objectives PSF. The end effect is that the PSF is elongated over its theoretical value

when nz and n1 , are mismatched, and moreover, the size of the PSF can vary as a function

of focal depth. This leads to variability in G(O) as the focal volume varies at different

focal depths.
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Figure 9.7 Illustration of the effect that mismatched of the refractive indices of the solution and the
objective immersion fluid. The PSF becomes elongated, and the shape of the PSF changes with different
focal depths. This effect causes the variation of G(O) with focal depth that is observed. These figures were
adapted from other work' 9 .

On the other hand, if n, were to match the index of the solution, n3, then the ratio of

tangent functions in equation 9. 11 cancels to unity, As = , and the variation of G(O)

with focal depth should be reduced. We observed this in side-by-side comparison of oil

(n- = 1.51) and water (n- = 1.32) immersion objectives on aqueous samples (n3 = 1.32).

Besides the strong dependence of G(t) on focal depth, we also found that it was

highly dependent on excitation power. In figure 9.8 a series of G(t) is presented that were

taken from the same sample at the same focal depth but using various excitation powers.

The value of G(O) at higher excitation powers was less than G(O) at lower powers. The

reason for the decrease of G(O) above a critical power level is the excitation saturation of

n 3 1

PSFs for n =. 51

tz

1.32 1.51

n3

I I
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nanocrystals that are in the center of the focal volume. This effect has been observed

previously for organic dye molecules under two photon excitation° and is illustrated in

the inset of figure 9.8. At very high powers the probability of exciting a nanocrystal in

the center of the focal volume approaches unity. This means that the fluorescence

emission intensity from the center of the focal volume cannot grow commensurately with

the edges as the power is raised further yet. The result is that the effective PSF starts to

look like a top-hat and its effective size (the full width at half maximum, FWHM) is

increased. The increased effective size of the PSF causes G(O) to decrease.

t 4 fItU. IU

0.08

0.06

(5 0.04

0.02

0.00

0 10 20 30 40

Laser Power (mW)

Figure 9.8 Power dependence of G(O) at a constant focal depth. As the excitation power is increased, G(O)
decreases on account of an artificially expanded excitation volume. Inset: profile of the excitation rate of a
chromophore as a function of position in solution. As power is increased the probability of excitation by a
given pulse approaches unity and the excitation rate saturates causing the flattening of top of the excitation
volume shown. This causes the effective volume to increase and G(O) to decrease as a result.
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The diffusion times measured in FCS can be affected by saturation of the nanocrystals as

well. Therefore, FCS measurements in this chapter are carried out using as low an

excitation power as possible.

The primary conclusions obtained in these experiments place guidelines on the

manner in which FCS experiments should be executed. First, we found a strong

sensitivity of G(O) to focal depth when index matched immersion fluid is not used. Since

exact focal depth cannot be easily reproduced from measurement to measurement, this

instability precludes the dependable use of G(O) as a parameter for robust measurement

of solution properties like concentration, unless an index matched immersion fluid is used

(e.g. a water immersion lens). Despite this instability, we did find the time constant (tl/ 2)

of the G(t) decay to be very robust, even for objectives that are not index matched. In

addition to these focusing issues, we also found, that the measurement of G(t) can be

easily ruined if the measurement is carried out with more than a few milliwatts of

excitation power. With these caveats in mind we were able confidently make FCS

measurements of CdSe nanocrystals in solution.

9.6 Measurement of RH of CdSe Nanocrystals in Aqueous Solutions

FCS measurements of fluorescent polymer microspheres in aqueous solution are

shown in figure 9.9. The hydrodynamic radii of the microsphere samples used in these

measurements were known so these results could be used for calibration. The inset of

figure 9.9 shows the linear relationship found between microsphere size and t2, where,

as earlier, G(t) = '/2G(O). We use t,o, to calibrate our measurements because fits to
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equation 9.8 were unsatisfactory and produced time constants that were not easily

reproduced in sequential measurements.

4 0"
I .C
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Figure 9.9 Normalized FCS curves for fluorescent polymer microspheres of five different sizes. Inset:
calibration of the t: against known particle size (RH) using the FCS curves shown in the main graph.

A simple polynomial fit to the RH calibration date, shown in the inset of figure 9.9

yielded RI, [um]= I18. 137 t,2[ms]. Using the known viscosity of water, 0.89cP, and

equations 9.8 and 9.9 we can back out the transverse dimension of the focal volume: w,-,

= 327nm. The value of w- was determined to be about 2pm by taking the first derivative

of the average fluorescence intensity versus focal depth as the PSF is crosses from the

sample holder into the solution, as in figure 9.6. From the values of w- and wr, we can

calculate the volume of the ellipsoid: 4 /3 w ,tv - 0.8fL. Although G(O) was found to be

a generally unreliable measurement, plotting G(O) for the microsphere measurements
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against the known concentrations, in this case, yielded a good linear relationship, shown

in figure 9.10. The slope of a linear fit to the G(O) versus concentration data was 0.6

indicating the effective focal volume was 0.6fL according to equation 9. 1. This result

matches reasonably well with the focal volume of 0.8fL that was derived using

independently measured wx. and w.
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Concentration (1/fL)
15

Figure 9.10 Calibration of G(O) from figure 9.9 against known concentration of polymer microspheres in
solution. A focal volume of about 0.6 fL was derived from this calibration.

We note that the self consistency of these parameters affirms our use of t 2 to

characterize the diffusion driven decay of G(t). Since w, is so much smaller than w: the

term ( + t /D) ' decays much more quickly than the term for ( + t /zD) . In this limit

the z-axis contribution can be neglected and G(t) G(O)(I + t /rD) '. In this

approximation t/2 = tD.
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To investigate the effects of different ligands on the hydrodynamic radius of

nanocrystals in aqueous solution we carried out numerous measurements of two different

sample solutions each containing nanocrystals from the same synthetic batch, but water

solubilized using different methods. Sample A was made water-soluble using

phospholipid micelles'8 , whereas sample B was made hydrophilic using oligomeric

phosphine ligands '. In figure 9.11 we show the overlaid results of numerous

measurements of sample A. One set of measurements employed an oil objective, while

4 " !
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Figure 9.11 FCS curves for nanocrystal sample A. Repeated measurements using a water immersion
objective are shown in gray, while measurements using an oil immersion objective are shown in black. The
difference in the decay times for measurements is accounted for by separate calibration of the oil and water
immersion lenses. After calibrating these decay times a hydrodynamic radius of 16nm is obtained for all of
the measurements except two (dotted black lines).
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another set employed a water immersion objective. Measurements with the lower NA

water immersion objective had a longer time constant than measurements with the oil

objective because of different sized PSFs, but for the most part repeated measurements

with the same objective were robust yielding the same time constants. Using separate

calibrations for FCS measurements employing water and oil immersion objectives we

derived the hydrodynamic radius for all measurements, which was uniformly 16nm for

measurements using either objective. These hydrodynamic radius results are summarized

in figure 9.13.

Figure 9.12 shows the results of repeated FCS measurements of sample B, which

was capped with the oligomeric phosphine ligand. Again numerous measurements

.4 i-rI
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Figure 9.12 Repeated FCS measurements of the nanocrystal sample B, using the oil immersion lens. The
decay times of these curves yields a hydrodynamic radius of 1 2nm.
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yielded the practically identical G(t) and the same time constant. These measurements

were taken at the same time that the measurements of sample A were taken (using the oil

immersion objective), so the same calibration was used. A hydrodynamic radius of 12nm

was obtained for sample B.

A summary comparison of these measurements is shown in figure 9.13, along

with overlaid plots of the G(t) for samples A and B in the inset, illustrating the slower

30
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Figure 9.13 Summary of RH obtained for all of the FCS measurements of nanocrystal sample A (triangles)
and sample B (circles) at various excitation powers. Two outliers occurred for sample A because of
agglomeration problems. Inset: overlaid plots of FCS measurements on samples A and B taken right after
one another with the :same calibration of the microscope. A slight difference in decay time of G(t) is

evident for the two samples of nanocrystals with different caps.
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diffusion of the nanocrystals capped with the phospholipid micelle. These results

demonstrate that different capping ligands can have a significant, measurable impact on

the hydrodynamic radius of nanocrystal cores.

9.6 FCS of Nanocrystals in High Viscosity Aqueous Solutions

In the course of the foregoing measurements we noticed that the G(t) of certain

samples of nanocrystals occasionally exhibited a fast decay component at times shorter

than the diffusion time. In order to investigate this inherent, non-diffusion driven decay,

we slowed the diffusion time of nanocrystals by putting them in aqueous solutions with

1.00
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Figure 9.14 FCS measurements of the same fluorescent polymer microspheres in two different solvents.
One solvent was pure water, the other was a mixture of glycerol in water (70% Glycerol v/v). The longer
time constant of the decay for the 70% glycerol sample comes from a slower diffusion constant that arises
from the higher viscosity of the solvent mixture.
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high viscosity. According to equation 9.10, increasing the viscosity causes the diffusion

constant to decrease, and the decrease in diffusion constant results in a longer diffusion

time, as seen in equation 9.9. Figure 9.14 shows the slowing of diffusion using

fluorescent polymer microspheres with RH = 22nm in solvents of different viscosity.

The two FCS curves in figure 9.14 were measured using the same excitation power

(ImW) and same microspheres. However, one sample was diluted in pure water,

whereas the other was diluted in a solvent mixture of 70% v/v glycerol in water. The

difference in time constants of the two curves G(t) in figure 9.14 provides a direct

measure of the difference in viscosity of the two solutions. The ratio of the time constants

for the two FCS curves in 9.14 is 25. Therefore the 70% Glycerol solution is a 25x more

viscous than pure water with a viscosity of about 22.3cP (water is 0.89cP).

Figure 9.15 compares the FCS curves for water-soluble nanocrystals dissolved in

water-glycerol mixtures of the same proportion as the previous plot (0%/ and 70% v/v

glycerol in water). The plot shows FCS curves measured using mW excitation power,

and the plot on the bottom corresponds to 3mW excitation power. To aid comparison, the

data from figure 9. 14 is included in figure 9.15 (gray curves). Besides the faster time

constants of the nanocrystals at each viscosity value (because the nanocrystals had

smaller RI, than the microspheres), the FCS curves of the nanocrystals show obviously

different dynamics at short timescales. This is especially clear for the higher viscosity

curves. Although the time constant for relaxation due to diffusion fluctuations is about

lOms, G(t) for the nanocrystals still shows a decay before this, in the time range of 10-

100ls. Furthermore, this fast FCS decay appears slightly different for the two different

excitation powers shown in figure 9.15.
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Figure 9.15 Effect of higher solvent viscosity on the FCS curve of nanocrystals for two different
excitation powers (ImW top, 3mW bottom). Solid curves denote pure water solvent and broken lines
denote 70% Glycerol v/v solvent. Black curves are for nanocrystals samples and gray curves are for
fluorescent polymer microspheres.

In order to see the fast decay over a longer time scale we increased the viscosity of the

glycerol water mixture further by raising the volume fraction to 90%. Overlaid FCS

curves for three different viscosities are shown in figure 9.16 at two different excitation

powers. The fast component of the decay of G(t) is evident in all curves, but it has a

slightly steeper slope at 3mW compared to lmW excitation power.
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Figure 9.16 FCS curves of nanocrystals in three different solvents with different viscosities at different
powers (top: lmNW, bottom: 3mW). The fast decay component changes slope at higher excitation power.
Wiggles in the data at about 10-' second are experimental artifacts that were obtained even in control nins
with high concentration with G(O) approaching zero.

The presence of a decay component in G(t) before the diffusion based decay

component means that the intensity signal of the group of nanocrystals in the focal

volume fluctuates within their residence time in the focal volume (i.e. before they diffuse

in and out of the fcal volume). Some mechanism for this fluctuation other than

diffusion must be present. To see more clearly the dependence of this fast fluctuation

mechanism on power we plot G(t) for the same sample of nanocrystals in the same

70%v/lv glycerol/water mixture for three different excitation powers in figure 9.17.
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Figure 9.17 Explicit power dependence of the fast component in G(t) for nanocrystals in a solvent of 70%
glycerol v/v.

From these data it is clear that the fast timescale fluctuation decays more quickly

when the excitation power is higher. This implies some kind of power dependence for

the mechanism behind this fluorescence intensity fluctuation.

One possibility is that the fast time scale fluctuations observed here are connected

to the well-known fluorescence intermittency phenomenon that is ubiquitous in single

nanocrystal experiments21'22. Nanocrystal blinking has been well studied and is known

to have a very strong dependence on the excitation intensity. In general, at higher

excitation intensities, nanocrystals appear to blink "faster." Quantitatively speaking the

cutoff of the power-law on-time probability distribution is shortened when the excitation

power is increased 3 24. However the time scale of this cutoff time is nowhere near the

n a 1 ml

nW

mW

Ci ' I
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time scales we are examining here - the cutoff time is generally on the order of seconds

to hundreds of seconds, depending on the excitation intensity24, whereas we are looking

at power dependent dynamics on the timescale of microseconds.

Nevertheless, even a simplistic consideration of the possible effect of blinking on

FCS measurements of nanocrystals offers possible insight into our FCS data. If each

individual nanocrystal that is probed by the FCS experiment is assumed to blink

according to the power law shown in previous studies, then a modification of equation

9.8 is required. Appendix 3 explains in detail our approach to building blinking into the

formalism of FCS. The end result is that the model function for the FCS correlation

should be multiplied by the correlation function of blinking of a single nanocrystal.

G(t) C Gi,i,,,s,,, (t) x ( + GBlisilk,, (t)) (9.12)

where Gji/i,,i,,(t) is just the single component diffusion-driven FCS correlation function

derived earlier (with no consideration of blinking), and,

_ (O)t3(t)) (b(O)b(t)) _ G () (b(0:): ¢(0b) 1 (9.13)
R'inii,1 (b(O'>)()(t)) (b(O))((t))

Previous work 2' has shown that Gbli,kin(t) is given by A(1-B'2"') when the probability

distributions of on and off times are given by power laws (the distributions are assumed

to have maximum and minimum times so that averages can be defined). Figure 9.18

shows the shape of G(t) on a plot with logarithmic time scale when this correlation

function of single nanocrystal blinking is factored in according to equation 9.12. Here we

chose a power law with exponent of m=l .6 and 1.8 in accordance with actual

observations of nanocrystal blinking24. These curves are qualitatively similar to the data

collected for nanocrystals in high viscosity solvents - the curve decays significantly for
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t< tdif#i,sion. This similarity suggesting that blinking could be an important driver of this

system's fluctuations. Further studies of nanocrystal use in FCS experiments should

address this intriguing question.
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Figure 9.18 Hypothetical effect of power-law governed blinking on the FCS curve of nanocrystals.
Correlation functions for power law blinking are plotted for two different decay parameters (black and gray
lines), and the product of these blinking correlation functions with the regular diffusion driven G(t) are
plotted correspondingly (black and gray crosses). The regular diffusion driven G(t) with no blinking
applied is also plotted (circles).

9.8 Conclusions

This chapter has discussed the theory and the implementation of fluorescence

correlation spectroscopy for the study of nanocrystals. We have described in detail the

methods we developed to carry out FCS measurements in our lab, namely two-photon
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microscopy and a novel software autocorrelation method. We have also shown the results

of preliminary FCS measurements on nanocrystals. After describing some important

caveats to the measurements, such as the importance of not saturating the nanocrystals as

well as the dependence of G(O) on focal depth, we measured the hydrodynamic radii of

two similar samples of nanocrystals. Although the only difference between the two

samples of nanocrystals was the ligand used to make them water soluble, FCS

measurements were able to distinguish their hydrodynamic radii - the oligomeric

phosphine ligated nanocrystals had RH =1 2nm, whereas the RI, of the phospholipid

micelle solubilized nanocrystals was about 16nm. Other techniques for measuring RH,

such as DLS, are generally less reliable in this small size regime. Although our primary

motivator for FCS experiments was the measurement of RH for nanocrystals in solution,

we discovered a second source of fluorescence intensity fluctuation in nanocrystals, at

faster timescales than their diffusion fluctuations. This unforeseen source of fluorescence

intensity fluctuations added new dynamics to FCS measurements on nanocrystals and we

hypothesize that the fluctuations may be related to the blinking of single nanocrystals.

Further study of this topic is warranted.
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Samples

A l.1 Introduction
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A 1.1 Introduction

The results presented in this section serve to provide a summary of the general

observations of lifetimes in a variety of samples studied over the course of research for

this thesis. In general all of the measurements were obtained either using the Lavision

gated intensified camera or by time correlated single photon counting carried out as

described in previous chapters. Any significant modification to these procedures is

described in the caption for each set of data along with the details of the sample that is

studied in each measurement.
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A1.2 Size dependence of CdSe Lifetimes
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Here we show PL decays with peak intensity normalized to unity from four different
solution (in hexane) samples of CdSe/ZnS nanocrystals of various sizes ranging from 1l.2
to 3.2nm (radius). The CdSe cores were prepared using the dimethyl cadmium synthesis

and were overcoated using diethyl zinc and (TMS) 2S . A monotonic trend of
decreasing l/e lifetime is evident going from samples of small to samples of large
nanocrystals. However, the difference is very small and could be attributed to small
differences in quantum yield or differences in the stretch parameter () of the decays,
among other possibilities. We conclude from data like these and the data of section 3.7
that the lifetime of CdSe nanocrystals is virtually independent of size.
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A 1.3 Shape dependence of CdSe Lifetimes - CdSe Nanorots
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The PL decays presented in this figure are from two different samples of CdSe nanorods
with the same radius, but different lengths (gray: 12±3nm, black:27±5nm). The
synthetic procedure used to prepare these samples was adapted from previous reports'
and these samples were overcoated with ZnS using established procedures 2. Compared
to one another and compared to spherical nanocrystals of similar radius the lifetimes that
we observe are very similar. Fitting of these PL decays to a stretched exponential decay
yielded mean lifetimes of 14.1 ns and 14.5ns for the long and short nanorods
respectively. The two samples had slightly different stretch parameters, which accounts
for the fact that the decays do not perfectly overlap one another. We conclude from these
observations that the lifetime of CdSe nanorods is approximately the same as for
nanocrystals and that the lifetime does not meaningfully vary as a function of rod length
within the range of 10 to 30 nm.
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A1.4 Lifetime of Type 2 Emission from CdTe/CdSe Nanocrystals
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These data compare the lifetime of the two emission bands of CdTe/CdSe core-shell
type-2 nanocrystals at room temperature (a), 77K (b) and 4.3K (c). Gray lines indicate
emission originating from recombination of the electron-hole pair inside the core (type 1)
while the black lines show the lifetime of emission originating from recombination of the
electron-hole pair at the interface between the core and the shell (type 2). We expect the
lifetime of the type 2 recombination to be very long because of poor overlap between
photoexcited electrons and holes in type 2 structures (the hole resides in the core while
the electron resides in the shell)4. The result is that the lifetime of type 2 recombination
is dramatically longer than the lifetime of type I (core CdTe band-edge) recombination at
room temperature and 77K. At liquid helium temperatures (4.3K) however, the lifetime
of type I emission is known to become very long because the lowest excited state of the
exciton within the core is an optically inactive "dark" exciton state 5 6. For this reason, at
low temperatures the rate of both type I and type 2 radiative recombination is small, as
seen in the low temperature PL decays.
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A1.5 Effect of Amines on CdSe NC Lifetime and Quantum Yield
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This figure demonstrates the effect on the PL decay of adding octylamine (5uL of 10%
v/v octylamine in hexane) to a sample of bare CdSe nanocrystals suspended in 2mL of
hexane. The nanocrystals were prepared using the dimethyl cadmium synthesis ' and
were capped only with trioctyl phosphine (TOP) and trioctylphosphine oxide (TOPO) in
the control sample. The main plot in the compares the absolute intensity of PL following
pulsed excitation for the native sample (black) and the sample with octylamine (gray).
The inset shows the same data with their peak intensities rescaled to unity. The
normalized lifetime is not much different with or without octylamine, however, from the
absolute PL decays we can see that addition of octylamine clearly increased the quantum
yield (since the integrated area of the absolute PL decay increased >2x). According to
the arguments of chapter 8 we conclude that the octylamine increases the quantum yield
"non-homogenously" by passivating ultrafast surface traps on the bare CdSe surface such
that a sub-population of the nanocrystals that was effectively non-luminescent in the
control sample becomes luminescent in the treated sample.
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Here we present the result of overcoating on the normalized lifetime for two different
batches of CdSe nanocrystal cores, one synthesized by the dimethyl cadmium prep using
no amines' (a) and the other synthesized with hexadecylamine present in the so-called
Cd(acac) synthesis 7 (b). Both were overcoated using the same method with diethyl zinc
and (TMS) 2S precursors and only TOP as a solvent. In the case of the dimethyl cadmium
synthesized cores overcoating lengthened the lifetime significantly. This is consistent
with the observed increase of quantum yield when the sample was overcoated. On the
other hand, overcoating had little effect on the lifetime of the CdSe nanocrystals prepared
using the Cd(acac) synthesis. This is consistent with general observations in our
laboratory. Overcoating is generally not found to improve the native quantum yield (as
measured in hexane suspension) of nanocrystals that were synthesized in the presence of
amines, although the overcoating does confer a measure of stability to these aminated
nanocrystals during further processing.
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A1.7 Lifetime of Closed-Packed Films of Bare CdSe Nanocrystals
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Here we show the lifetime of a close-packed thin film of bare CdSe nanocrystals (main
plot) along with the time-evolution of the energy of the peak of the emission after pulsed
excitation (inset). Clearly the lifetime is much shorter than the lifetime of nanocrystals
observed in hexane solution. Frster energy transfer between adjacent nanocrystals in a
close-packed film is responsible the reason for the shortened lifetime compared to
solution phase nanocrystals .90 FRET involved energy transfer from a higher energy
donor to a lower energy acceptor, so the excited state energy of smaller nanocrystals is
transferred to larger nanocrystals resulting in the red-shift of the fluorescence band shown
in the inset. Since energy is efficiently transferred among the nanocrystals in the film the
excitons generated in the ensemble by a pulse sample all of the nanocrystals within some
small range. Any nanocrystal that has a particularly fast lifetime (high non-radiative
decay rate) will dominate the dynamics - this is why the lifetime is so much faster in the
sample of close-packed nanocrystals. Inter-nanocrystal energy transfer allows excitons to
quickly find the nanocrystals with the fastest lifetime and these fast lifetimes dictate the
lifetime of the ensemble.
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A2.1 Introduction

In chapter 5 we reported the observation that triexciton emission from a single

nanocrystal appears to exhibit fluorescence intermittency identical in nature to the well-

known intermittency of band edge emission from single nanocrystals (e.g. figure 5.7).

We assigned the signal that we observed blinking in those experiments to triexciton

emission from a single nanocrystal based on two pieces of evidence. First, the detector

had a narrow band-pass filter that overlapped only with wavelengths in the triexciton

emission band for that sample of nanocrystals. Second, the blinking trace in figure 5.7

was obtained simultaneously with the collection of single photon correlation

measurements presented in chapter 6 (e.g. figure 6.9). Single photon correlation

measurements exhibiting asymmetric peaks like figure 6.9 are a clear signature of

triexciton emission.
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Despite these compelling observations we lacked two important pieces of

information, which we present in this appendix. First, it is important to know whether the

blinking of the triexciton happens simultaneous to band-edge (i.e. single exciton

emission) blinking. In other words are the blinking of the triexciton and band-edge

emission correlated? The second question addresses the matter of whether triexciton

emission really comprises the majority of the signal that we detect in blinking traces like

the one shown in figure 5.8.

The experiments presented in this appendix all use a Hanbury-Brown and Twiss

(HBT) setup as described in chapter 6 with one arm (channel 1) having a band-pass filter

tuned to select the triexciton and the other with a long pass filter tuned to transmit only

band-edge emission (channel 0). The same sample was used as in chapters 5 and 6 (Q-

Dot Corporation, 655nm emission) and the excitation source was the 414nm pulsed laser

diode from Picoquant (PDL,800 driver, LDH400 laser head).

A2.2 Verification of Hanbury-Brown and Twiss Setup by Imaging

We first present evidence that both detectors were aligned to the same nanocrystal

in the single photon cross-correlation measurements that we performed in this thesis.

This is demonstrated by comparing two images of the same sample of nanocrystals, with

one image obtained using one detector and the other image collected using the other

detector.
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Figure A2.1: Image scans done using each of the APDs in their optimized positions. The similar positions
of single nanocrystal locations indicates that the signal observed on each APD originates from the same
location in the sample.

With this evidence we were confident that focusing the confocal microscope onto a

particular single nanocrystal would direct its (and only its own) emission to each APD.

In figure A2.2 we show a confocal scanned image of single nanocrystals. The nanocrystal

that is investigated in all of the subsequent experiments is circled.
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Figure A2.2: Image scan used for subsequent data collection. The nanocrystal interrogated is indicated in
the circle

A2.3 Verification of triexciton in single nanocrystal emission

The first experiment we present is a repeat of the single photon cross-correlation

measurements done at the end of chapter 6, showing that triexciton emission is indeed

observed in the emission of this single nanocrystal. Using appropriately selected band

pass and long pass filters on either arm of the HBT setup we obtain an asymmetric center

peak. This is a tell tale sign of ordered emission of single photons after excitation by a

single laser pulse. Based on the spectral position of the filters used and the order of the

photon detection we can confidently conclude that the coincidence counts that contribute

to the asymmetric center peak always include the detection in channel 1 of a photon

emitted from the triexciton state, i.e. a triexciton photon from the single nanocrystal.

Note that the asymmetry of these peaks is reversed from the data presented in chapter 6

because we swapped which channels were used for triexciton and band-edge emission.
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Figure A2.3: Single photon correlation plot - a histogram of coincidence counts collected by APDs in the
HBT detection geometry. One arm of the setup (channel 0) had a long pass filter that passed photons with
wavelength >63()nm whereas the other arm of the setup (channel I ) had a narrow bandpass filter that
allowed only photons with wavelength between 606nm and 615nm to pass. For the sample under
investigation this hand pass overlaps with triexciton emission.

A2.4 Triexciton blinking of is correlated to band-edge emission blinking

At the same time that the single-photon cross-correlation measurement was

performed (figure A2.3), the signal intensity on channel 0 (band-edge) and channel I

(triexciton) were simultaneously recorded with 25ms time intervals. The results are

shown in the following three figures.
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Figure A2.4a Simultaneously recorded blinking of the band edge (black) and the triexciton (green)

channels. These data were taken during the recording of the correlation data in figure 3.
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Figure A2.4b Zoom in of figure A2.4a. On this timescale the correlation of triexciton (green) and band
edge (black) fluorescence is very clear - both signals blink on and off at the same time.
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Figure A2.4c Zoom in of figure A2.4b.

From the foregoing three figures it is clear that the intensity trajectories of

channel 0 and channel I are highly correlated, implying that the triexciton and band-edge

blinking are correlated. To express the correlation in a different way, the intensity of the

triexciton for each time interval was plotted against the intensity of the band-edge for

each corresponding time interval. In other words an ordered pair (band-edge intensity,

triexciton intensity) was plotted with a data point for every single time interval in the

intensity trajectories. This is plotted in figure A2.4d

And a He r 200
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Figure A2.4d. Correlation of the intensity of each data point in the blinking trace of the band edge channel
versus the triexciton channel. Each point on this scatter plot is and ordered pair: (channel 0 at time t,
channel 1 at time t).

The extremely strong correlation of channel 0 and channel I is a highly intriguing result

because it suggests that the same mechanism that turns a nanocrystal off and on can also

drive the intermittency of the triexciton emission. However, it also calls into question

whether channel I is really generated exclusively by triexciton emission - it is possible

that this result is trivial and can be accounted for by leakage of band-edge emission into

channel 1.

The asymmetric peak at zero -r in the single photon correlation (figure A2.3)

established for certain that channel I has some amount of triexciton emission photons in

it. If that were not the case then the center (t =0) peak could not be generated since there

would be no coincidence events corresponding to a single excitation pulse (the peak at

z=0 indicates detection of photon pairs emitted after a single excitation pulse). So the

question is not if channel I contains triexciton emission, but rather how much of channel

I is triexciton emission?
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There are three ways to establish the relative contribution of triexciton emission to

the signal in channel 1.

a. Calculate the overlap integral of the triexciton emission with the

bandpass filter used in channel 1. Compare this value to the

corresponding value obtained using the band-edge emission spectrum.

b. Calculate the expected count rate (e.g. on-time signal intensity) for

channel I relative to channel 0, assuming that its signal is composed of

only triexciton emission. Compare this expected ratio to the observed

value.

c. Measure the post-excitation lifetime of the signal on channel 1. If a

significant component of band edge emission is present then the lifetime

of the single exciton emission (which is much longer than multiexciton

emission, -20ns) should be present. If the lifetime is dominated by

multiexciton emission, i.e. triexciton emission, then it should be

effectively an instrument limited fast decay. (Our time-correlated single

photon counting setup has an instrument response on the order of only

-Ins).

d. Given the counting rates on channels 1 and 0 during the single photon

correlation experiment, it should be possible to determine the rate of

coincidence counts that contribute to the center peak, assuming a certain

percentage of the channel 0 counts are from triexciton emission.

Correspondingly, this "certain percentage" of the channel 0 emission

that is from triexciton emission should be able to be backed out, given
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the observed number of coincidence counts and the measured counting

rates on channels I and 0.

In the following experiments we apply methods a, b and c to show that for most cases the

majority of the signal detected by channel I from a single nanocrystal must originate

from triexciton emission.

A2.5 Use of a band-pass filter on channel 1 should result in 80% of its signal being
from triexciton

First we use the known emission spectrum of the triexciton and band edge

(obtained by streak camera, see figure 4. Id) along with the transmission spectrum of the

bandpass filter that was used to discriminate the light detected in channel I to calculate

the expected contribution of the triexciton to channel 1.
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Figure A2.5: Transient spectrum of nanocrystal ensemble emission (showing triexciton and band-edge
emission, black) along with a two-gaussian fit (red circles) of the spectral bands. Overlaid on the plot is the
transmission of the bandpass filter ("L") used in the experiment (blue).

The double gaussian fit to the triexciton and band-edge spectrum shown in figure A2.5

had the following parameters:
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x 0 (eV) cr (eV)

band edge (biexciton + exciton) 1.899 0.04075

triexciton band 2.049 0.07295

The band pass filter used had the following parameters

gl (eV) g2 (eV)

band pass filter 2.016 2.0462

To calculate the percent of triexciton (band-edge) signal transmitted through the bandpass

filter, the following equations were used.

Sr,,,lal (X., j/ exp- (A2. )

S ,,, (o, , ,gex(, g}= e(1 )-e(A2.2)

T[%] = pass I2 100 (A2.3)

For the triexciton, T was calculated to be 10.1% and for band edge emission T was

calculated to 0.12%. To get the actual relative contribution of triexciton emission, we

also have to account for the number of triexciton photons in the signal incident on the

filter. This is given by both the relative probability of generating triexcitons and the

relative quantum yield. Since our experiments are at very high excitation flux, we

assume that the probability of generating >3 excitons per laser pulse is about unity. From
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previous work [Fisher et al] we know for this sample that the quantum yields of the

exciton, biexciton and triexciton are approximately 70%, 7% and 3.5% respectively. This

means that 4.3% (=3.5/(70+7+3.5)) of incident photons are triexciton, while the

remaining 95.7 % are from the band edge. Combining this with T for the triexciton we

obtain the following results:

Channel 1 (triexciton contribution) = 4.3% incident x 10.1% transmission = 0.43473

Channel 1 (band edge contribution) = 95.7% incident x 0.12% transmission = 0.11472

By this calculation about 4x as many triexciton photons as band edge photons, or 80%

triexciton photons, are detected in channel 1.

A2.6 Expected relative count rates match observations for the two channels

We can also apply these results to justify the raw count rates observed on the two

different channels. Whereas only 0.12% of the band edge spectrum is transmitted through

to channel 1, a calculation using equations A2.1 - A2.3 for the long pass filter (1.984eV)

indicates that about 96% of the band edge emission should pass to channel 0.

This results in:

Channel 0 (band edge contribution) = 95.7% incident x 96.4% transmission = 92.255

Ratio of Count rates on each channel = Channel I (TX + band edge) / Channel 0

= (0.43473+0.11472) / 92.255

= 0.006
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What is actually observed? As seen in figures A2.4- A2.4c channel 0 is generally

between 200kcps and 300kcps, while channel 1 is generally around 1-3kcps. The ratio

ranges from 0.003 to 0.15 but is usually around 0.005 - a very good match with the

expected intensity based on the preceding arguments.

A2.7 Lifetime data for a single nanocrystal shows 50% of channel 1 is triexciton
Emission

The next data that we present in support of the hypothesis that channel 0 is

composed mostly of triexciton (or multiexciton) emission are lifetime measurements of

the signal in channel 0 of the HBT setup. Figure A2.6 shows that, consistent with the

triexciton hypothesis, the lifetime is composed mostly of a fast, instrument limited decay

component. This experiment was performed at 1000nW, which is well into the

mlltiexciton generation regime - the probability of generating greater than 3 excitons per

excitation pulse asymptotically approaches unity at this power.
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Figure A2.6: Lifetime of emission measured using time-correlated single photon counting of the TX
channel for the same nanocrystal as data shown in figures 2 through 4d. Actual data is in black and results
of a two-component exponential fit is shown in red. The weighting parameters of the components
(normalized to unity) are: 0.9471784=fast; 0.058216=slow.

For contrast we performed the same lifetime measurement of a single nanocrystal under

identical conditions using channel 0 which allows only band-edge emission. This is

shown in figure A2.6b.
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FigureA2.6b: Lifetime of emission measured using time-correlated single photon counting of the band-
edge channel (biexciton plus single exciton) of a single nanocrystal. Actual data is in black and results of a
two-component exponential fit is shown in red. The weighting parameters of the components (normalized
to unity) are: 0.767101 =fast: 0.232899=slow.

To derive a quantitative value for the percentage of signal that is attributable to triexciton

emission we begin with the definitions of the signals that are measured. In channel 0 we

expect zero contribution from the triexciton because the long pass filter cuts off the

already weak (due to low quantum yield) emission of the triexciton. Therefore the

lifetime will have the form,

y0(t) = o exp(-t / r2)+ o -exp(-t / r,) (A2.4)

where ho and ao are weighting factors for the biexciton and exciton components

respectively of the lifetime measured by channel 0. r and r, are the exciton and

biexciton lifetimes respectively. In channel 1 we have a narrow band pass filter that, in

principle, transmits only photons whose wavelength coincides with the triexciton band.

Because the quantum yield of the triexciton band is so very much smaller than that of the
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band edge emission, however, we will consider the contribution of all three types of

photons (triexciton, biexciton, and exciton) to the lifetime of this signal,

y, (t) = c, ·exp(-t / ;r) + b, exp(-t / r2)+ l 1 exp(-t / l, ) (A2.5)

Here c,, b/ and al are weighting factors for the triexciton, biexciton and exciton

components respectively of the lifetime measured by channel 1. Zr is the lifetime of the

triexciton. In these single nanocrystal time-correlated single photon counting experiments

(TCSPC) and are not limited by instrument response, which is approximately Ins. The

lifetime of the single exciton is on the order of 20ns.

The results of the lifetime fits allow us to calculate relative signal strengths of the

triexciton, biexciton and single exciton in either channel (i.e. relative number of photons

of a given type collected in a given channel. The expressions for these are, for channel 0,

no(X) = a(r (A2.6)
no (BX) = bo · r 2

and for channel I

n, (X) = r ' ,
n (BX) = · r2 (A2.7)

n (X) = c, r3

The value we are interested in is the ratio between the number of photons detected in

channel 1 that are from the triexciton band compared to the number that are from the

band edge,

R (X)- n (X) (A2.8)
n, (X) + n, (BX)

Unfortunately, since our instrument response time is not sufficient to resolve the

biexciton and triexciton components we cannot directly obtain b I and c I from our fits
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and simply calculate this value. Instead, our fits give us access to different but related

values. In channel 0, by assumption only exciton or biexciton photons are detected and

therefore the fast and slow components can be completely attributed to one or the other

type of emission:

i( X ) = ax,,,, .r,
(A2.9)

,( BX ) = at f,,.,) rlRF

In channel the fast component is assumed to be composed of both triexciton and

biexciton photons, while the slow component is only exciton photons. This gives us the

values:

II (X ) = IsWi,. I 
(A2.10)

n1 (BX + 7X ) = tlist1 ·*iR F

Note that in both equations we use the time constant of the instrument response, not the

actual lifetime of the triexciton and biexciton to calculate the number of photons

associated with these emission types. Using the results of the lifetime measurements on

channels 0 and I (figures 5 and 5b) we can obtain measured values for the quantities in

equations 6 and 7. To get to the desired quantity of equation 5 we define auxiliary

quantities, the ratio of fast component photons to slow component photons in channel 1:

(R(fs) f;A TIRF I (IBX + BX) n, (T X) + nl, (BX) (A.
R.n.l s .rl , tII (X) n, (X)

and the ratio of fast component photons to slow component photons in channel 0:

RO(fLast)- a'' rR - Ii°(BX) (A2.12)
(I.,. ' r,,,,,, n0(X)



252

Because the spectra of the biexciton and exciton emission are identical at room

temperature the ratio of the number of biexciton to exciton photons collected should be

the same for either channel, that is,

n1(BX) no(BX)Rn - (first) (A2.13)
n,(X) no(X)

This equality, along with some algebraic manipulation yields the desired result,

R,(TX) = (RI (fast)-R( (fast))x 1(A2.14)

From our data and fitting we have the following results:

a fast X TIRF a slow x Xsow R(fast) R(TX) TX [%]

channel 0 0.798 6.567 0.12 0 0

channel 1 1.005 0.869 1.16 0.924 48%

We find that about half of the photons (48%) detected by channel I are from triexciton

emission; there are 92 triexciton photons detected for every 100 band-edge photons

detected.

Although this is lower than ideal, these results apply to only this particular single

nanocrystal, which could be on the blue end of the size distribution meaning that the

spectral filter used would not as effectively have blocked band edge from channel 1.

Spectral analysis of the ensemble transient spectrum including previously measured

quantum yields and lifetimes (performed in the next section) indicates that 80% of

photons detected by channel I should originate from triexciton emission. A value of 80%

is larger than the 48% given by the lifetime analysis and represents the average that
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would be obtained if this single nanocrystal lifetime analysis were performed on a large

number of singe nanocrystals.

For the purpose of arguing that fluorescence intermittency is present in the

triexciton exciton emission of a single nanocrystal it would be ideal that 100% of the

emission observed in channel I be from the triexciton. Even though measurements on

this particular nanocrystal resulted in half of the channel I signal coming from band edge

emission, case for triexciton blinking is still very, very strong. If one were to cut the

signal on channel I in half the signal would still be very clear and it would still very

clearly follow the signal of channel 1.

Lastly, it is worth noting that about 10% of the band edge signal is from biexciton

emission in this experiment. This means would result in a breakdown of the channel 1

signal in the following way: 48% = triexciton; 5.2% = biexciton; 46.8%=exciton - 53%

of the signal is from multiexciton emission of some sort.

With two pieces of strong evidence that at least half and possibly up to 80% of the

channel I emission originates from triexciton emission of a single nanocrystal we present

more intensity trajectory data below. Using different time ranges, the signal intensity

traces of both channel 0 and channel I are shown in figure A2.7. These were collected

during the lifetime runs presented above. It is clear that the correlation of the two

channels is strong, just as seen in the previous experiment.
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Figure A2.7 Simultaneously recorded blinking traces of the triexciton and band-edge channels collected
during the lifetime measurements of figure A2.6.
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Figure A2.7b Zoom in of figure A2.7.
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Figure A2.7c. Correlation of the intensity of each data point in the blinking trace of the band-edge channel
verius the triexciton channel.

A2.8 Power dependence of triexciton and biexciton emission from a
single nanocrystal

The preceding arguments (sections A2.5-A2.7) convincingly show that the signal

on channel 1 not only contains some triexciton eission, but is actually composed mostly

of triexciton emission. We solidify this point and further explore the triexciton emission

by investigating the excitation power dependence of this triexciton emission.hv -- Ctoai n

correlation
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Figure A2.8 Intensity traces for channel 0 and channel 1 corresponding to the band edge emission and
triexciton emission of a single nanocrystal respectively. In these plots, the power is increased in intervals as
the time progresses. The beam is blocked while the power is changed which accounts for the gaps in the
data.
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The next two plots show every single data point intensity explicitly as a function of

power. The first plot corresponds to data from channel 0 (band-edge) and the second for

data corresponding to channel 1 (triexciton).
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Figure A2.10a Power dependence of intensity of channel 0. In this plot every single data point of the
intensity trajectory is plotted against the excitation power used. The density of data points at a given power
indicate how much time the signal was at that intensity for that excitation power. Digital blinking of the
emission is evident in the higher density of data points at the bottom and at the top of the columns of data
points for each power.
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Figure A2.10b Same as A2. I()a, but for the intensity of channel I (triexciton).

A2.9 Emission intensity of single nanocrystals in the "off" state

Our keen interest in the blinking of triexciton emission hinges on the following

paradox. Off states in the currently accepted mechanism for blinking are supposed to be

caused by highly efficient non-radiative Auger decay that occurs when the nanocrystal is

singly charged. The very same non-radiative Auger decay mechanism is also supposed to

be responsible for the low quantum yield of multiexciton states like the triexciton. Our

previous work and this work showed that this Auger decay can be minimized enough to

detect multiexciton emission by using very large nanocrystals. For instance, the fact that

we can detect triexciton emission from single nanocrystals indicates that the multiexciton

Auger decay rate is suppressed. If the current model of blinking is correct then the

suppressed Auger decay rate should mean that "off' states of the nanocrystal should be

"on." Certainly it is surprising that the triexciton emission can blink "off'" - why should
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an additional carrier (charge) have a significant influence on the Auger rate when the

triexciton already has 6 photoexcited carriers? We decided to investigate whether the

'suppressed Auger" of this sample is evident in the "off-state emission" of the band-edge

from the single nanocrystal (channel 0).

In the following we analyze the same data as the power dependence experiment

(figure A2.8), but looked closely at the signal's "off periods" during laser illumination

and compared to the dark count baseline (no laser illumination). In figure A2. 11 the non-

illumination periods all correspond to about 500cps for the dark count rate. On the other

hand, during illumination, the intensity when the dot is "off' is somewhat higher.

However, it is hard to rule out the possibility of laser scatter contribution to this small

intensity - especially given the power dependence of the observed "off intensity." Yet,

there were two independent bandpass filters in the beam path, which should have

effectively blocked all of the scattered 414nm excitation light as was observed in chapter

5 (figure 5.3) where the setup was less rigorous about rejection of excitation scatter.
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Figure A2.11 Blinking trace of single nanocrystal at various excitation powers. Note that between
different powers, while not illuminated, the dark-count background signal is uniformly -500cps. In
contrast, the intensity of the signal is higher while the dot is illuminated, but in the "off' state.

Based on these data (and assuming that the scattered excitation light is negligible)

we conclude that the "off' intensity of the band-edge emission, even for relatively low

powers is about 500cps (500cps = 1000cps observed - 500cps background). The "on"

intensity during this period of illumination was about 50000cps. Hence the "off' state

emission of the nanocrystal has a quantum yield of about 1% compared to that of the

"on" state.

This is a surprising result because it implies that the Auger rate of a singly

charged (i.e. one additional carrier) is significantly faster than the Auger rate of two-

(biexciton) and four- additional carrier (triexciton) states. The quantum yields of the

biexciton and triexciton relative to the single exciton are -10% and -4% for this sample

(see chapters 4-6). Nevertheless, a hypothetically more efficient Auger decay for charged

states compared to neutral states would be consistent with our observation of blinking by

the triexciton emission.

The last piece of data that we present is the "off' state emission intensity as

judged by eye at various excitation powers shown in figure A2. 12. If the "off' state

emission intensity actually is just the band-edge emission of a charged nanocrystal, then

its power dependence ought to be approximately the same as for the "on" state - the "off'

state quantum yield should be simply reduced by a factor of 100 as observed above. We

can see that the power dependence depicted in A2. 12 does indeed show some saturation,

but the data is far from robust, and it is not clear that the ratio between "on" and "off'

intensities remains the same at all powers. This implies the possibility that some of the
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measured "off' state intensity, especially at higher powers, could be an artifact (perhaps

laser scatter). More work is needed to truly understand the "off"-state intensity.
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Appendix 3: Effect of Fluorescence
Intermittency (Blinking) on FCS
Correlation Measurements

A3. I Introduction: FCS for fluctuations driven only by diffusion
A3.2 Relate G(t) to the autocorrelation of a solution containing a single

molecule
A3.3 Separate the contribution of blinking and diffusion
A3.4 Re-assemble the pieces
A3.5 References

A3.1 Introduction: FCS for fluctuations driven only by diffusion

The goal of this appendix is to show how blinking of individual nanocrystals can be
incorporated into the formalism that has been developed to model the correlation
functions measured in FCS experiments. Our reference point is the classic result that we
referenced in chapter 9 for the autocorrelation of fluorescence intensity in an FCS
measurement of a single component solution whose only dynamic fluctuation is driven by
diffusion'. In that work G(t) is calculated beginning with the definition of the correlation
function of the photon signal intensity (n(t)),

G(t) = (A3. 1)

where the deviations of the signal from equilibrium, gn(t), are defined as,

4i(t) = At fd I (?)Q 5C( t) (A3.2)

or

n(t) = At fd r ()QC(?,t) (A3.3)

for a single component and are driven by a generalized diffusion equation,

! =r)- D jV C; (r, t) + Z K ikCk (r, t) (A3.4)
O~t i ~ ~~~~ k=t

which simplifies to

& (rem t ) = DV C(r, t) (A3.5)
At
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for a single component.

If a gaussian point spread function (one radial gaussian and one longitudinal gaussian) is
assumed for the excitation intensity function, I(r), and diffusion (equation A3.5) is the
only source of signal intensity fluctuation, then the autocorrelation of n(t) is analytically
derived to be',

G(t) =- 1+- 1+- 2 (A3.6)

A3.2 Relate G(t) to the autocorrelation of a solution containing a single molecule

If blinking between the on and off states were governed by simple rate-constant kinetics
then equation A3.4 would be sufficient to describe fluctuations of the signal intensity
arising from switches between on and off states of individual nanocrystals. Unfortunately
the probability distributions of on- and off- times of single nanocrystals are not given by
simple exponentials. Instead, power laws govern these statistics, and we have to adopt a
different approach to analytically include the effect of non-exponential blinking dynamics
on G(t) for FCS experiments.

Since blinking is a single nanocrystal (molecule) phenomenon, we can no longer used the
bulk quantity of concentration to describe the system. Instead, we modify the definition
of the signal intensity as an ensemble sum of the signal intensities of each individual
molecule,

n(t) = n (t) (A3.7)

Writing the total signal intensity as the sum of many, independent single molecule signal
intensities we can express the total correlation function in terms of the correlation
function of individual nanocrystal signal intensities:
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G ( ((YO)4i_(r)) (n(O)n(t))
((o))(t)) (f(O))(n(t))

Zni (O) ni(t))

-1

(n,(o))(n, (t))
I, I

We assume that each molecule's signal is independent of one another, so that
<ni(t)nj((t')>= <n(t) ><nj(t')>, which leads to:

G(t)= i

y (, (O)XI j (t))

(A3.9a-9c)

Gi ()(, ())ni (t))

Hlo Af:,,,i i
where

G,(t) (i (O)nI, (t)) - (l (O))K(j (t)) (A3.9d)

We make a further assumption that the statistics governing the dynamics are identical and
that therefore teir time averaged values are identical, Gi(t) = G1(t), <n(t) >=<nj(t) > for

all i and all t. Therefore the sums become simple multiples of the total number of

molecules in the entire solution (i.e. in the vial), M,,t,C(t)= ( (A3.a)=M ,,,

- G, (t)
Mh Jr
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where

(n (0)&nI (t))
I ((GO (t)) (A3.0 I Ob)

Given the validity of our two assumptions (independent nanocrystal fluorescence
dynamics and identical time averaged values for all molecules) we obtain the simple
result that the autocorrelation of the total signal intensity (i.e. many molecules in the
solution) should be the same as the autocorrelation of a single nanocrystal (i.e. a solution
containing a single molecule only), but divided by the total number of molecules in the
solution.

We note that this result is general: the autocorrelation of a quantity, A, that is itself
defined as the sum of a series of independently varying quantities ac(t) is equal to the
autocorrelation of one of the ai(t) divided by the number of ai(t) in the series.

A3.3 Separate the contributions of blinking and diffusion

At this point we can separately account for the contributions of diffusion and blinking to
the dynamics of the fluorescence detected for a single nanocrystal in the solution. We
define the signal intensity of each individual molecule as the product of a random
variable bhi(t) that varies continuously between 0 and I depending on the nanocrystal's
blinking intensity, and another random variable xi(r, t) which varies continuously from 0
to Xt,,,n depending on the excitation intensity of the laser at its location in the solution. The
variation of xi(r,t) accounts for diffusion. We have then,

ni (t) = i (t)bi (t) (A3.11 )

and

I ,,,

n(t) = x i(t)b i (t) (A3.12)

Based on these, we also have the following:

Deviation of single nanocrystal fluorescence signal:

nj, (t) = n, (t)-(n, ) - n, (t) -n l (A3.13a)
Fluctuations driven purely by diffusion:
ax(t) = (t) - (x) - x(t) - (A3. 13b)

Fluctuation driven purely by blinking:

io(t) = b(t) - () =- b(t) - (A3.13c)
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Combining these equations we express the fluctuation of a single molecule's fluorescence
in terms of its blinking and diffusion driven components,

&~1 (t) = nt(t) - g~

= x(t)b(t)-.7b
,_(n:+~!r)~ + dh~~r)~xh _(A3.14)

= ( + dC(t))( + b(t))- (

= X.b((t) + b (t) + &cr(t)~b(t)

For notational convenience, we will define the following

(x(O))=x a7()= . etc.

To calculate the correlation function of the single molecule's fluorescence intensity, we
substitute result of equation A3.14 into the equation A3. 10b:

G, (t) = & ()&, (t))
(t, (0))Kn1 (t))

((5/* + bd& + &v bX(t)Cb(t) + b(t)&(t)+ &(t)(t)))

(x -h. x-(T(t) (t))

x(t)(ib(t)) hb(t)(9dvC(t)) (&'c(t)6h (t)) (A.5)
= -+ - - + (A3.15)

rt)bx(t).b bt) x.x(t).b b(t) x(t) b b (t)

*h ()((*C,(t )) brt )(i 9i i(t)) (ci;rg(t )h)h (t)

X X(t) b b(t) r* r.(t) b b(t) x- (t).b b(t)

± YvrbcS(t)K).r(t ()±b(t)cYibrb(t)) (d5Cv(t )i5b(t))h

± K-(t) b b(t) r (t) b b (t) ± (t) b b (t)

Time averages of products of uncorrelated variables can be separated into products of the
time averages of the individual variables (<&/i0>=<&i><6b> ). Since the time average
of these deviations are zero, such terms are also zero. In our case, we assume that only
like variables at different times are correlated (e.g. &v(t') and dv(t'+t)). As a result, only
the first three terms of the foregoing expression are non-zero. For instance, <cihv(t)>=
<&><cb(t)> =0 and <c5v&(t)cib(t)>= <cvcr&(t)><7-b(t)>=O. We then have,

((*,6-(t)) (c&c&x(t)) (c&rc&(t)) (ib(t))
G (t)= - + +

b b(t) x x(t) x X(t) b .b(t) (A3.16)

= G,,, (t) +t- G,, (t) + GI, (t)G,, (t)

Combining this with our earlier result, we have an expression for the total correlation
function, expressed in terms of the correlation functions of fluorescence dynamics of a
single nanocrystal that driven by exclusively by either diffusion or blinking.Z71 y C-- --- ----̀ ~ -~ - ------------ -- "'" b
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Gbb (t)+ G, (t) + Gbb (t)G, (t)
G(t) = (A3.17)

A3.4 Re-assemble the pieces

We now need to know, what is G,,(t). Analogous to equation A3.3 above, we can define
a quantity X(t) which is proportional to the total fluorescence detected from a the focal
volume of the FCS experiment, independent of blinking,

X(t) = At Idr () QO C(r, t) (A3.18)

where Qo, is the product of the absorptive cross-section of the nanocrystals and their
quantum yield for the on-state. By its definition, X(t) can fluctuate on account of
stochastic variations of concentration, but it assumes no blinking. Since it assumes no
blinking it is formally equivalent to n(t) as defined in equation A3.3 above and its
autocorrelation is identical to that given in equation A3.6:

GXo (t) = = l t ) 1 (A3.19)
(X(O))(X(t)) N = T 

We re-iterate that this result assumes a 3D Gaussian focal volume for the excitation
intensity profile (I(r)), and it does NOT include the phenomenon of blinking.

The question that remains is how equation A3.19 is related to the single molecule
quantity, G,,(t). To derive this we consider the meaning of C(r,t) at the microscopic level.
C(r,t) is not a continuous function, rather it is a field of delta functions corresponding to
positions of individual molecules in solution.

C(r,t)= ( - (t)) (A3.20)

From this perspective, we see that the value xi(t), that is, the contribution of an individual
molecule of the solution to the total fluorescence (based on whether it is in the focal
region or not), can be written analogously to equation A3.18, with a delta function
substituted for the bulk concentration,

xi(t) = At d3 rl()Qo,,(- (t)) (A3.21)

Note that this definition has xi(t) behave exactly as we defined it to behave in section
A3.2 - it varies continuously between 0 and x,,,nL=Inr*Qon. Comparing equations A3.18,
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A3.20 and A3.2 1 it is simple to see that X(t) is just the sum of all xi, that is, over all
molecules in the solution sample.

X(t) xi (t) (A3.22)
i

We assume that the values xi are all independent of one another in time (a reasonable
assumption) which allows us to conclude, analogous to equation A3. 10, that,

Grv (t) = IM t) (A3.23)
MI

When this result is plugged back into equation A3. 17 we are left with,

G(t) = Gx, (t) + G,,, (t)G,, (t) + ()
M ,, (A3.24)

GX (t)x (l+ Gil, (t))

Equation A3. 19 above gives the expression for the correlation function due to diffusion
of the nanocrystals (Gxx(t)), and we can obtain the correlation function due to a single
nanocrystal blinking (Gbb(t)) using the results of previous work 2

(K(O)&(t-)) (b(O)b(l)) -1

()- (b(o))(b(t)) (b(o))(b(t)) (A3.25)

:(A(l- Bt2 "'))-l

where in is the power law constant (m-1.5 for nanocrystals), and A and B are
normalization constants based on the minimum and maximum on and off times (t,,,i,, t,,,,
etc.)

The final result is simple. The correlation function of an FCS experiment on nanocrystals
should be modified to account for blinking by multiplying the diffusion based correlation
function with the correlation function of blinking by a single nanocrystal:

G(t)= 1+-- 1+- x A - Bt-m) (A3.26)
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