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Abstract
The final outcome of a nuclear Probabilistic Risk Assessment (PRA) is generally
inaccurate and imprecise. This is primarily because not all risk contributors are
addressed in the analysis, and there are state-of-knowledge uncertainties about input
parameters and how models should be constructed. In this thesis, we formulate two
measures, risk significance (RS) and risk change significance (RCS) to examine these
drawbacks and assess the adequacy of PRA results used for risk-informed decision
making.

The significance of an event within a PRA is defined as the impact of its exclusion
from the analysis on the final outcome of the PRA. When the baseline risk is the final
outcome of interest, we define the significance of an event as risk significance, mea-
sured in terms of the resulting percentage change in the baseline risk. When there is
a proposed change in plant design or activities and risk change is the final outcome of
interest, we define the significance of an event as risk change significance, measured
in terms of the resulting percentage change in risk change. These measures allow
us to rank initiating events and basic events in terms of relative importance to the
accuracy of the baseline risk and risk change. This thesis presents general approaches
to computing the RS and RCS of any event within the PRA. Our significance mea-
sures are compared to traditional importance measures such as Fussell-Vesley (FV),
Risk Achievement Worth (RAW), and Risk Reduction Worth (RRW) to gauge their
effectiveness.

We investigate the use of RS and RCS to identify events that are important to
meet the decision maker's desired degree of accuracy of the baseline risk and risk
change. We also examine the use of 95 th confidence level acceptance guideline for
assessing the adequacy of the uncertainty treatment of a PRA. By comparing PRA
results with the desired accuracy and precision level of risk and risk change, one can
assess whether PRA results are adequate enough to support risk-informed decisions.

Several examples are presented to illustrate the application and advantages of
using RS and RCS measures in risk-informed decision making. We apply our frame-
work to the analysis of the component cooling water (CCW) system in a pressurized
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water nuclear reactor. This analysis is based upon the fault tree for the CCW system
presented in the plant's PRA analysis. One result of our analysis is an estimate of
the importance of common cause failures of the CCW pumps to the accuracy of plant
core damage frequency (CDF) and change in CDF.

Thesis Supervisor: Michael W. Golay
Title: Professor of Nuclear Engineering
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Chapter 1

Overview and Background

1.1 Overview of This Thesis

The final outcome of a Probabilistic Risk Assessment (PRA) is often considered in-

accurate and imprecise to some degree. The primary reasons include: certain risk

contributors were not considered in the analysis, the analysts may be uncertain about

the values of certain input parameters and how the models embedded in the PRA

should be constructed.

In this thesis, we explore methods for assessing the adequacy of PRA results with

respect to PRA incompleteness and uncertainty treatment. In particular, we develop

measures of risk significance (RS) and risk change significance (RCS), which rank

events within a PRA in terms of their importance to the accuracy of the baseline

risk and risk change. We investigate the use of RS and RCS to categorize events as

either important or unimportant to achieving the desired accuracy level of risk and

risk change. We also investigate the use of 9 5 th confidence level acceptance guideline

for examining the adequacy of uncertainty treatment of a PRA.

This section is followed by a review of the problem of using incomplete and limited

scope PRAs for risk-informed decisions. We demonstrate that the adequacy of PRA

results required to support an application should be measured with respect to the

application supported and the role that PRA results play in the decision making

process. We then discuss how the framework developed in this thesis can be used to
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assess PRA adequacy.

In Chapter 2 we describe the approach for using PRA results in risk-informed

decisions. We first describe existing methods for quantifying logic models such as

fault trees and event trees. The methods discussed include qualitative methods for

determining minimal cut sets and quantitative methods for computing risk and risk

change using the minimal cut sets. We focus particularly on the rare event approxi-

mation because it gives fairly accurate results in most cases and it can be computed

in less computation time than other approximations. We then describe regulatory

guidance for use of PRA analysis in risk-informed activities. The guidance discussed

include the U.S. Nuclear Regulatory Commission (NRC) Safety Goal Statement for

the baseline risk and the NRC Regulatory Guide (RG) 1.174 on the proposed change

in plant design and activities. In the end, three alternative approaches for comparing

PRA results with the acceptance guidelines are presented. These approaches include

the point estimate value approach, the mean value approach, and the confidence level

approach.

In Chapter 3 we develop the concepts of RS and RCS. These measures assess the

importance of an event with respect to the impact of its omission from the analysis on

the final outcome of a PRA. When the baseline risk is the final outcome of interest,

we define the significance of an event as risk significance, measured in terms of the

resulting percentage change in the baseline risk. When there is a proposed change in

plant design or activities and risk change is the final outcome of interest, we define

the significance of an event as risk change significance, measured in terms of the

resulting percentage change in risk change. Next, we develop general approaches for

computing the numerical values of RS and RCS. These approaches are developed

for four groups of events in a logic model: initiating events, basic events whose first

operators are AND gates, basic events whose first operators are OR gates, and basic

events whose first operators are both AND gates and OR gates. Our significance

measures are compared to traditional importance measures such as Fussell-Vesley

(FV), Risk Achievement Worth (RAW), and Risk Reduction Worth (RRW) to gauge

their effectiveness.
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In Chapter 4 we describe three types of epistemic uncertainties in a modern PRA:

parameter uncertainty, model uncertainty, and incompleteness uncertainty. We dis-

cuss existing approaches for the treatment of each type of uncertainty. We demon-

strate that incompleteness uncertainty and model uncertainty can greatly impact

both the mean values of PRA results and our confidence in the accuracy of these val-

ues. Lack of treatment of these uncertainties is very likely to result in a technically

unacceptable PRA.

In Chapter 5 we investigate the use of RS and RCS to identify events that are

important to achieving the acceptable degree of accuracy of risk and risk change. We

also examine how the 95th percentile acceptance guideline can be used to assess the

adequacy of the uncertainty treatment of a PRA. The decision maker's desired degree

of accuracy and precision of risk and risk change is typically defined based upon the

social consequences of the activity subject to analysis and the role that PRA results

play in the decision making process.

Chapter 6 consists of a detailed case study of the component cooling water (CCW)

system of a pressurized water nuclear reactor. We first describe the system and the

various failure modes considered in our analysis. We then define a base case for

computing the RS and RCS for each event in the system. Next, we define a current

case where common cause failures of the CCW pumps are omitted from the risk

analysis. We then use the framework that we develop to examine the adequacy of

the results obtained from the current case PRA in support of a specific applications:

the proposed CCW pumps allowed outage time (AOT) extension from 25 hours to

100 hours. Our results suggest that although the FV and RAW importance measures

of the common cause failure of pumps 1-1 and 1-3, and the common cause failure of

pumps 1-2 and 1-3 during normal operation are relatively low, they are found to be

important to achieving the desired degree of accuracy of change in CDF. The PRA

model without addressing these two events underestimates the resulting change in

CDF by a great amount.

In Chapter 7 we summarize the major contributions of this thesis work and in-

dicate how the importance measures we have developed might be used in assessing
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the adequacy of PRA results for risk-informed activities. We see how the results ob-

tained using RS, RCS, and the 95th confidence level acceptance guideline can indicate

which events are important to the accuracy of risk and risk change, and whether the

desired accuracy and precision levels have been achieved. It can therefore be useful

to decision makers in gauging their confidence level in the risk insights derived from

PRA results.

1.2 The Problem of the Adequacy of PRA Results

In this thesis, we focus on the adequacy analysis of PRA results used for risk-informed

decisions. The quality of PRAs has been addressed by a number of regulatory and

industry organizations [35, 13, 17, 44]. Some have argued that a good PRA should be

a complete, full scope, three level PRA, while others have claimed that the quality of

a PRA should be measured with respect to the application and decision supported.

In this section, we show by way of an example that the adequacy of a PRA results

is important to risk-informed decision making process and should be measured with

respect to the application and decision supported. We then discuss several particular

decision contexts in which our proposed framework might be useful.

To begin, suppose we have a system consisting of four components. The system

configuration is shown in Figure 1-1. Assuming that all component failures probabil-

ities are known to the analyst and independent of each other. The failure probability

of each component is given as follows:

PI 1 x 10 - 3,

P2 = 1 x 10-3,

p3 = 6 x 10- 3 ,

P4 = 8 x 10- 3 . (1.1)

From Figure 1-1 we note that the system can fail if component 3 fails, component
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Figure 1-1: A sample system to illustrate the problem of PRA adequacy

4 fails, or components 1 and 2 fail simultaneously. The failure probability of the

system can thus be represented as

Qo = P(C1C2+C3 +C4)

= P(ClC2 ) + P(C3 ) + P(C4 )

- P(C1 C 2 C3) - P(CC2C 4 ) - P(C 3C4 )

+ P(C1 C2 C3C4 ). (1.2)

C(i) is the event that component i fails, and P(Ci) is the probability of the

occurrence of event i, or the probability that component i fails. By replacing P(Ci)

with qi and truncating the above equation at the linear terms we obtain

Qo qlq 2 + q3 + q4 = 1.4001 x 10- 2. (1.3)

Suppose we have two proposed cost-saving changes in the maintenance practice of

the components in the system. We would like to know the system failure probability

when either of the two proposed changes has been accepted individually. Suppose the

two proposed changes in the maintenance practice are:
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1. extend the inspection interval of component 2, which results in an increase in

the failure probability of component 2 by a factor of four

2. extend the inspection interval of component 3, which results in an increase the

failure probability of component 3 by a factor of two

From Equation 1.3, we obtain the system failure probability given that the first

proposed change has been accepted as

Q1 - qlq2 + q3 + q4 = 1.4004 x 10- 2. (1.4)

And similarly, the system failure probability given that the second proposed

change has been accepted would be

Q2 qlq 2 + q3 + q4 = 2.0001 x 10-2. (1.5)

These results indicate that the first proposed change would result in an increase

in the system failure probability by 0.021%, while the second proposed change would

result in an increase in the system probability by 42.85%.

Until now, we have assumed that all causes for the failure of the system have

been identified and accounted for in calculating the failure probability of the system.

However, certain causal failures may not have been addressed in the risk analysis. This

is typically unintentional and results when the existence of these causal failures is not

recognized by the analyst due to knowledge constraints, or when their contributions

to the system failure is known estimated to be negligible.

In our example, now we suppose the failure of component 1 was not taken into

consideration in estimating the failure probability of the system. Under this assump-

tion, the potential causes of system failure are: the failure of component 1, failure of

component 2, and failure of component 3. In such case, the system failure probability

before accepting any proposed changes can therefore be represented as



QO = P(C2+C3 +C4 )

P P(C2) + P(C3) + P(C4 )

- P(C2C3 ) - P(C2C4) - P(C3 C4)

+ P(C2 C3C4). (1.6)

Again, by replacing P(Ci) with q and truncating the above equation at the linear

terms we obtain

(Q - q2 +q 3 +q 4
= 1.5 x 10- 2. (1.7)

The system failure probability after accepting the first proposed change would be

QI - q + q3 +q4 = 1.8x 10- 2, (1.8)

and the system failure probability after accepting the second proposed change

would be

Q2 -- q+q + q4 = 2.1 X 10- 2 . (1.9)

These results indicate that, in the case where component 1 is not considered in

the model, the first proposed change would result in an increase in the system failure

probability by 20.0%, while the second proposed change would result in an increase

by 40.0%.

For comparison, the system failure probability for all the six cases is presented in

Figure 1-2, Figure 1-3, and Figure 1-4. From these figures we see that the exclusion

of component 1 from the analysis results in an overestimate of the baseline system
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failure probability by 7.14%, while the system failure probability after accepting the

first proposed change is overestimated by 28.54%, and after accepting the second

proposed change is overestimated by 4.99%. These numerical values indicate that

the simplified model which does not take component 1 into account provides a fairly

accurate estimate of the baseline system failure probability and the impact of the

second proposed change on the system failure probability. However, its estimate of the

impact of the first proposed change on the system failure probability is significantly

inaccurate.

Thus, for this particular performance measure, the model which omits the causal

failure of component 1 provides adequate information to decision makers who are

concerned with the system baseline failure probability and the impact on the system

failure probability of the second proposed change. But, it does not provide an accurate

risk assessment for decision makers who are interested in knowing the impact of the

first proposed change on system reliability.

From this example, we claim that the adequacy of a PRA's results are important

for decision makers to make well informed decisions, and that the quality of a PRA

should be measured based upon the application and decision supported. A PRA

provides adequate information for risk-informed activities in some cases. However,

as we have seen in the previous example, in other cases the information derived is

inadequate or inaccurate and the PRA model should be improved such that more

meaningful information will be obtained and provided to the decision makers for use

in risk-informed activities.
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1.3 Regulatory Approaches for Addressing PRA

Adequacy

Since PRAs can provide useful information to decision makers for managing plant

risk and making efficient uses of resources, many nuclear PRAs have been performed

throughout the world. In the United States, in order to encourages the use of PRA

analysis to improve safety decision makings, the NRC issued a Policy Statement [47]

in 1995 stating that

" ...The use of PRA technology should be increased in all regulatory mat-

ters to the extent supported by the state-of-the-art in PRA methods and

data and in a manner that complements the NRC's deterministic approach

and supports the NRC's traditional defense-in-depth philosophy...."

Since then, PRA results have been widely used to measure the risk significance

of systems, structures, components(SSCs), to identify the design and operational fea-

tures critical to risk, and to identify the events or scenarios leading to system failure.

The current activities which involve the use of PRA results in risk-informed regula-

tory activities are summarized in a Risk-Informed Regulation Plan issued by the U.S.

NRC in 2000 [45] and outlined in the SECY-00-0162 [44]. These activities include:

the reactor oversight process for inspection on those activities with the greatest poten-

tial impact on safety, operating events assessment for evaluating the risk significance

of operational events, license amendments for providing guidance on risk-informed

changes to a plant's licensing basis for inservice testing, inspection, graded qual-

ity assurance and technical specifications, risk-informed technical specifications for

developing improvements to the technical specifications, and maintenance rules for

monitoring the effectiveness of maintenance actions.

PRA, as a quantitative tool, has many strengths as well as weaknesses. There are

several limitations on the use of PRA techniques for risk modelling and analysis. First,

the true values of most model inputs are unknown. Ideally, probability distribution

models are well developed and assigned to the unknown input parameters to reflect
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the analyst's state of knowledge of the values of these input parameters. However,

due to the analyst's lack of knowledge of where the actual values lie, probability

distributions for some parameters can be defined with either overly wide confidence

intervals or extremely narrow confidence intervals. The problem of overconfidence

and lack of confidence in the values of certain model input parameters can lead to

inaccurate PRA results.

Secondly, the analyst's lack of knowledge of a system's practical application as

opposed to its theoretical operation can lead to modelling errors. PRAs, like other

models. use approximations to make the model manageable and use assumptions to

address the uncertainties associated with model structure and input data. When the

approximations and assumptions used in developing the PRAs are inappropriate, the

PRA results tend to be inaccurate.

Furthermore, most PRAs are incomplete with only a limited scope. Karl N.

Fleming [20, 4] pointed out that as many as 20% of events evaluated by the Ac-

cident Sequence Precursor (ASP) program including initiating events and accident

sequences are not modelled in existing PRAs. When certain significant component

failure modes, initiating events, or plant operating modes are not taken into account

in the PRA, both the expectations of PRA results and uncertainties about the ex-

pectations are likely to be underestimated.

The difficulty in quantifying common cause failures and human errors also con-

tributes to the limitation on the usefulness of PRA techniques. Since common cause

failure can cause the failures of several components or systems simultaneously and hu-

man action plays an important role in mitigating accidents, they tend to contribute

significantly to risk. The inadequate estimates of the common cause failures and

human errors can lead inaccurate and imprecise estimate of risk.

Acknowledging these limitations, many nuclear regulatory and industry organiza-

tions have established guidance for using PRA analysis in support of nuclear activi-

ties. This guidance includes: the American Society of Mechanical Engineers(ASME)

standard [35] for probabilistic risk assessment for nuclear power plant applications,

SECY-00-0162 [44] on PRA quality in risk-informed activities, NRC Regulatory Guide
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DG-1122 [17] on technical adequacy of PRA results for risk-informed activities, NRC

Regulatory Guide 1.174 [13] for the use of PRA in risk-informed decisions on changes

to the licensing basis, NRC Regulatory Guide 1.175 [14] on risk-informed in-service

testing, NRC Regulatory Guide 1.176 [15] on risk-informed graded quality assurance,

NRC Regulatory Guide 1.177 [16] on risk-informed technical specifications, and NRC

Regulatory Guide 1.178 [18] on risk-informed in-service inspection.

Among the above regulatory guidance and industry programs, the ASME PRA

standard identified nine elements which comprise an at-power, internal-events, Level

1 and limited Level 2 PRA. It sets forth the minimal scope and level of detail for

PRAs to meet this Standard by specifying a set of requirements for each of the nine

PRA elements. Like the ASME standard, SECY-00-0162 addresses the issue of PRA

quality by defining the desired scope and technical elements which comprise a PRA

model at a function level. The Draft Regulatory Guide DG-1122 defines a technical

acceptable PRA by setting forth a set of elements and corresponding characteristics

and attributes. We note that, these standards and guidance only define a functional

PRA, and they do not ensure confidence in the PRA results.

On the other hand, Regulatory Guide 1.174 states that "... The quality of a PRA

analysis used to support an application is measured in terms of its appropriateness

with respect to scope, level of detail, and technical acceptability. The scope, level

of detail, and technical acceptability of the PRA are to be commensurate with the

application for which it is intended and the role the PRA results play in the integrated

decision process...."

The guidance provided indicates that there is a diverse set of factors influencing

PRA quality. However, there appears to be many similarities in these factors. In par-

ticular, all guidance recognizes that scope, level of detail, and technical acceptability

are key factors in determining the overall adequacy of a PRA. However, they all focus

on defining the minimum requirements for a good PRA, and none of them provides

an approach for assessing the adequacy of PRA results for specific applications and

decisions supported other than in a general sense.

26



1.4 Applicability of Techniques for Assessing the

Adequacy of PRA Results

In some cases, decisions may focus on ways of improving the completeness of a PRA,

for example, by taking into account some of the omitted events in a PRA. Measures

of significance, developed in Chapter 3, rank the events in the PRA in terms of the

impact of their exclusion from the analysis on the risk level and risk change, and can

be a useful tool in this context.

In many other cases, risk-informed decisions focus simply on the acceptability of

the estimated risk level, the change in the risk, and perhaps, on the uncertainty about

the risk and risk change. In such cases, methods of adequacy analysis of PRA results

as those discussed in Chapter 5 can be a valuable tool for the decision making process.

In order to be confident in the final decisions on the acceptability of various

activities, decision makers may also attempt to reduce the uncertainty level about the

risk level and risk change, e.g. by gathering more information about the probability

of particular events in the PRA. In such cases, uncertainty importance measures

discussed in Chapter 4 can be used to identify which events in the PRA contribute

significantly to the overall uncertainty.

There are several limitations on the use of quantitative methods for evaluating

the quality of PRAs. This is primarily because results of the evaluation are only as

good as the estimates of the model inputs and how accurately the model's structure

approximates the actual system subject to analysis.

First of all, the values of certain model inputs may be incorrect because the over-

all methodology for treatment of common cause failures and human error is not yet

mature. Secondly, most PRAs lack of treatment of dependencies among components,

systems, and human actions. In other words, the estimates of the failure probabilities

of certain components, systems, and human actions are inadequate given knowledge

that other components or systems have failed, or that human errors have occurred.

In addition, the analyst's inadequate understanding of the occurrence of certain initi-

ating events or causes to the failure of certain components may result in formulating
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models that lead to an incorrect estimate of initiating event frequencies and compo-

nent failure probabilities.

Another limitation on the use of quantitative methods for evaluating the quality

of PRAs is that significant initiating events or component failure modes may be left

out of the analysis because their existence was not recognized by the analysts. In

such cases, both the PRA results and the evaluation of the adequacy of these results

would be incorrect.

Acknowledging these limitations, two important assumptions are made in order

to develop our framework for assessing the adequacy of PRA results for risk-informed

activities. These two assumptions are:

* Model uncertainty is well treated, and all models embedded in the PRA are

technically correct.

* The PRA are fairly complete, and all significant risk contributors are addressed

in the analysis.

Despite these limitations and assumptions, the techniques of significance anal-

ysis and adequacy analysis provided in this thesis can provide useful information

to decision makers who are concerned with making well-informed decisions on the

acceptability of various nuclear activities.
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Chapter 2

Existing Approach for Using PRA

in Risk-Informed Decisions

A comprehensive and systematic risk assessment for a nuclear power plant typically

consists of deterministic (engineering) analysis and probabilistic analysis. While the

deterministic approach provides the analyst with information on how core damage

may occur, a PRA estimates the probability of core damage by considering all poten-

tial causes. The use of the risk insights derived from PRA results to aid in decision

making processes is called risk-informed integrated decision making which is often

abbreviated to risk-informed decision making.

The Policy Statement issued by the NRC in 1995[47] states that "...the use of

PRA technology should be increased ...in a manner that complements the NRC's

deterministic approach and supports the NRC's traditional defense-in-depth philos-

ophy." A risk-informed integrated decision making process consists of five elements

as described in the RG 1.174[13]. These five elements are shown in the Figure 2-1.

Figure 2-2 shows the key elements of a risk-informed, plant-specific decisionmaking

process as described in the RG 1.174. From the statement and these figures we note

that information derived from the use of PRA methods is only one element of the

risk-informed decision making process, and it does not substitute for the results of a

traditional engineering evaluation in the decision making process.

The use of risk insights in a risk-informed decision making process typically in-

29



1.Change meets current
regulations unless it is explicitly
related to a requested exemption
or rule changes. ,

. Proposed increases in CDF or
risk are small and are consistent
with the Commission's Safety
Goal Policy Statement.

Figure 2-1: Principles of risk-informed integrated decisionmaking

Figure 2-2: Principal elements of risk-informed, plant-specific decisionmaking
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volves three aspects: the quantification of PRAs, the development of acceptance

guidelines, and the comparison of PRA results with acceptance guidelines.

In this chapter, we first describe existing methods for the evaluation of PRA

models in general. We then discuss existing regulatory acceptance guidelines for the

use of PRA results for risk-informed activities. We also present alternative approaches

for comparing PRA results with acceptance guidelines.

2.1 Evaluation of PRAs

The PRA results used to support risk-informed decision making for various nuclear

activities typically include: an evaluation of the core damage frequency (CDF) and

large early release frequency (LERF), an evaluation of the change in CDF and LERF,

an identification and understanding of major contributors to these risk metrics and

risk changes, and an understanding of the sources of uncertainty and their impact on

the results [44].

Evaluation of PRA models typically involve two different approaches: qualitative

evaluation and quantitative evaluation [30]. Qualitative evaluation of PRA models

generates minimal cut sets using Boolean algebra analysis for fault trees and event

trees. The minimal cut sets are then be used by quantitative methods to produce

PRA results and derive risk insights for risk-informed activities.

Several methods exist for both qualitative evaluation and quantitative evaluation

of PRA models. In this thesis, we use the rare event approximation as the quan-

titative method to evaluate PRAs. The primary advantage of using the rare event

approximation is that it is computationally efficient while providing fairly accurate

results.

2.1.1 Qualitative Evaluation of Fault Trees

The fundamental elements of a fault tree model are basic events and gates. Basic

events refer to component failure and human error which do not need further devel-

opment. AND and OR gates are two basic types of logic gates used in the fault tree
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model.

The AND gate in a fault tree represents the intersection of input basic events. The

gate output occurs only if all of the input events occur. For example, the boolean

expression of the output event C of an AND gate with two input events A and B can

be written as C = A n B or C = A B. This expression states that, in order for event

C to occur, both event A and B must occur. The OR gate, on the other hand, refers

to the union of input basic events. The output of an OR gate occurs if one or more

of the input events occur.

The top event of a fault tree represents the state of the system of interest, such as

the failure of a system to accomplish its function. A cut set of a fault tree is a set of

basic events whose simultaneous occurrence leads to the occurrence of the top event.

A minimal cut set of a fault tree model is the smallest set of basic events needed to

cause the top event to occur. For example, if a fault tree consists of top event C

with two basic input events A and B combined by an OR gate, the cut sets are A,

B, and AB. The minimal cut sets are A and B. In other words, the occurrence of

either event A, or event B, or the simultaneous occurrence of both event A and event

B may cause event C to occur. However, in order to cause event C to occur, the

occurrence of either event A or event B is sufficient. The simultaneous occurrence of

both event A and event B is not necessary to lead to the occurrence of event C.

In order to formulate the minimal cut sets of a fault tree model, we use various

rules from Boolean Algebra. The most commonly used rules include:

1 if event i is true

xi = (2.1)

10 if event i is false,

l+xi = 1,

Xi = 1-Xi,

X = Xi. (2.2)
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For the top event C as discussed above, its Boolean expression can thus be repre-

sented as:

XC = XA + XB (2.3)

For a fault tree with more than one gate, the output of one gate, gate i, is very

likely to be the input of another gate, gate j. In this case, the Boolean expression of

the output of gate i is then substituted into the Boolean expression of the input of

gate j, and so on. This method is the successive substitution method and is the most

widely used method in generating minimal cut sets for a fault tree model.

As an example, let's consider the fault tree shown in Figure 2-3. Each node in the

fault tree represents an event.

T2

T3

I

AA

T 4

C

T5 

1.BB

A C

B

D

Figure 2-3: An example fault tree to illustrate the formulation of minimal cut sets

Starting from the top of the fault tree, the Boolean expression of top event XT is

given as
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XT = XT XT 2. (2.4)

Where, XT can be written as

XT = XT + XC = XA XB + XC, (2.5)

and XT2 can be written as,

XT2 = XT + XD = XB XT5 + XD. (2.6)

Given

XT5 = XA + XC, (2.7)

we can substitute XT5 into XT2, and substitute XT1 and XT2 into Equation 2.4 to

obtain

XT = (XA XB + XC) (XB (XA + XC) + XD)

= (XA XB + XC) (XA .XB + XB. XC + XD)

XA XB (1 + XC + XD + XC) + XB XC + XC .XD

= XA XB + XB ·XC + XC · XD. (2.8)

The final Boolean expression obtained for top event T represents three minimal

cut sets with two basic events. The minimal cut sets are events A and B, B and C,

and C and D.

As can be seen from this example, it is difficult to determine the minimal cut

sets for a large fault tree by hand using the above approach. A number of com-

puter algorithms were developed to determine the minimal cut sets for the analysis

of fault tree models[40, 39, 49]. In this thesis, we use the SAPHIRE program devel-

oped at Idaho National Engineering and Environmental Laboratory (INEEL) which
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implements these algorithms to generate minimal cut sets.

2.1.2 Qualitative Evaluation of Event Trees

Unlike the fault tree, which starts with the top event and determines all of the possible

ways for this event to occur, the event tree begins with an initiating event and proceeds

with the state of each event heading (representing safety system or human action).

The occurrence of an event heading i represents the failure of the corresponding

system or human action, and the nonoccurrence of event i represents the success

of the corresponding system or human action. If the Boolean expression for the

occurrence of event heading i is denoted as Xi, the Boolean expression of the success

of the event heading i is Xi, or "1 - Xi". However, if an event heading has more

functioning states other than success and failure, it would not be possible to represent

the event heading using Boolean algebra. In this analysis, we assume that all event

headings in an event tree have only two functioning states.

An event tree exhaustively generates all possible combinations of success or failure

of all event headings. Any one of such combinations is called an event sequence.

Because an event heading either occurs or not occurs at a time, when success and

failure of all event headings are combined to generate event sequences, these event

sequences are mutually exclusive. The end state of some event sequences is success,

while the end states of other sequences is failure. In most cases, only event sequences

whose end states are system failure are of great interest to the analysts.

By analogy, the substitution method can also be applied to event trees to generate

minimal cut sets. In this case, the cut set of the event sequence with a failed ultimate

outcome is the intersection of the failed event headings along the sequence, no matter

whether the event heading fails at the beginning of the sequence or at a later time.

The overall failure, F, is the union of the cut sets of those event sequences whose

end state is failure. If an event heading has its own Boolean expression, its Boolean

expression can be substituted into the logic representation of the overall failure F.

The reduced Boolean expression of F can then be obtained through the use of Boolean

algebra rules.
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For example, let's consider the event tree given in Figure 2-4.

whose outcome is failure include event sequences 2, 4, 5, 6, and 7.

of these sequences are

The event sequences

The cut sets of each

Figure 2-4: An example event tree to illustrate the formulation of minimal cut sets

XF2 = X XE

XF4 = XI XB XE

XF5 = XI XB XD

XF6 = XI XB XC

XF7 = XI. XA. (2.9)

The Boolean expression of the overall failure F, as a union of the above cut sets,

is obtained and reduced through the use of Boolean algebra rules as
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F ::= XF2 + XF4 + XF5 + XF6 + XF7

:= XI XE+ XI XB ·X + X XXD + XI 'XB XC + XI XA

= XI XA + XI XB XC + XI XB XD - XI XE (1 + XB)

XI XA + XI XB XC + XI XB XD + XI XE (2.10)

The Boolean representation obtained above represents two minimal cut sets with

two events, and two minimal cut sets with three events. If event heading XA and XE

are represented by the following Boolean expressions

XA = Xa Xb+Xa Xc+ Xd

XE = Xa + XbXd+Xe,

(2.11)

then the reduction of the above Boolean expression proceeds as follows:

F = XIXA+ XI.XB'XC+XI'XB'XD+XI-XE

= XI · (Xa + Xd +Xe) + XI 'XB XC+ XI XB 'XD

= XI Xa + XIXd + XI Xe + XI'XB XC+ XI XB XD (2.12)

The ultimate minimal cut sets of the event tree are therefore

XiXa, XIXd, XiX, XIXBXC, XIXBXD.

A typical event tree may contain hundreds of event headings. If the number

of sequences leading to failure is large, the generation of minimal cut sets by hand

using the above procedure is infeasible, especially when event headings contain several

additional basic events. However, most PRA software tools are designed to perform
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this function, thus the formulation of minimal cut sets for fault trees and event trees

can be done easily accomplished.

2.1.3 Quantitative Evaluation of the Logic Models

In the previous section, we discussed how to generate minimal cut sets for fault trees

and event trees using the substitution method. In this section, we discuss several

methods for quantifying fault trees and event trees based upon the minimal cut sets

formulated.

Since the occurrence of a minimal cut set results in the occurrence of the top

event of a fault tree, or the failed end state of an event tree, the probability of the

occurrence of the top event or failed end state equals to the probability of the union

of all its minimal cut sets. For example, if R is the top event or the failed event state

of interest, and MCSi is the minimal cut set i (i = 1, 2, ..., n), the exact value of R

can therefore be obtained as:

R = p(Z MCSi). (2.13)
i

The above equation can be expanded as:

R = Ep(MCSi)
i

- p(MCS' MCSj)
i,j

+ E p(MCSi MCSj MCSk)
i,j,k

(2.14)

The above expression is an exact formulation of R as a function of the probability

of each minimal cut set and the probability of the products of the minimal cut sets.

When the minimal cut sets are not independent of each other, the evaluation of the

cross product terms are difficult. For example, if a basic event appears in several

minimal cut sets, then the occurrence of this basic event is likely to cause the simul-



taneous occurrence of all the minimal cut sets, but the likelihood of simultaneous

occurrence of the set of minimal cut sets is difficult to quantify. Thus, when cut sets

are dependent, the cross product terms are difficult to evaluate.

If we assume that all minimal cut sets are independent of each other, Equation 2.14

becomes

R = p(MCSi)

- E p(MCSi)p(MCSj)
i j>i

+ p(MCi)p(MCj))(MCS3)P(MCSk)
i j>i k>j

(2.15)

The above expression is an exact formulation of R as a function of the probability

of each minimal cut set. By considering that a minimal cut set often consists of

several basic events and/or initiating events, we thus have

p(MCS) = p(U BEi). (2.16)
m

BEy1 is basic event m in minimal cut set i. If several basic events in a minimal cut

set are not independent of each other because of common cause failure or functional

dependence, the evaluation of the minimal cut set probability is also a difficult task.

Dependencies among the probabilities of basic events can be treated either explic-

itly by reflecting them in the structure of the logic trees used to model the system

in question, or implicitly by reflecting them in probabilities of basic events and/or

initiating events. For example, the failure probability of a system consisting of com-

ponents A and component B in parallel is governed by Boolean expression as follows:

Q = p(AB), (2.17)

which can be expanded as:
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Q = p(A) p(BIA) = p(B) p(AIB).

In the above expression, Q is the failure probability of the system, p(A) is the

failure probability of component A, and p(B) is the failure probability of component

B. p(BIA),p(AIB) is the conditional failure probability of one component given

the other component has already failed. If components A and B are functionally or

spatially dependent upon each other, the likelihood that one component will fail given

that the other component has failed is likely to be higher than independent failure

probability. This conditional failure probability must be determined before the system

failure probability can be quantified. In the case where the failure probabilities of

components A and B are independent of each other, the above equation becomes

Q = p(A) p(B). (2.19)

Now by assuming that the dependence among basic events is modelled either

explicitly in the analysis, Equation 2.15 becomes

R = (H qI)
i m

- Ex(1:qm · qn)
i j>i m n

+ EE (Iqmq.n Iq)
i j>i k>j m n I

(2.20)

The above expression is an exact formulation of R with independent minimal cut

sets and independent basic event probabilities. The assumptions of independence

result in a much simpler quantitative evaluation of R than the general case shown in

Equation 2.14.

We note that, for a PRA model with n minimal cut sets, there are 2-1 cross
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product terms, such as (,, qm JIn qj), in the above equation. In order to facilitate the

quantitative evaluation of R, some assumptions need to be made. One simplification

is to assume that the cross product terms are typically small and can be neglected.

The summation of the probability of individual minimal cut sets is thus used as an

approximation of the true value of R. Mathematically, we have

R = p(MCSi)= (( qm). (2.21)
i i m

We note that, this approximation of R yields an upper bound on the true value

of R, therefore it is denoted as the upper bound approximation of R. Since the cross

product terms are truncated for their low probabilities of occurrence, this approxi-

mation is also called the rare event approximation.

By analogy, we can obtain the lower bound on the true value of R by keeping

the cross product terms containing two minimal cut sets, and neglecting the ones

containing three or more minimal cut sets as follows:

R = Zp(MCSi) - Z p(MCSi) p(MCSj)
i i j>i

(I q) )- ET ( q' I q) (2.22)
i m i j>i m n

In general, the lower bound approximation tends to be more accurate than the rare

event approximation. However, the rare event approximation is much simpler in the

physical form and easier to compute than the lower bound approximation. Further-

more, the rare event approximation gives fairly accurate results for most applications.

Therefore, the rare event approximation is used throughout this thesis.

Although initiating events or basic events may appear in many different minimal

cut sets, they generally appear at most once in each minimal cut set[51, 53]. The

rare event approximation can thus be generalized with respect to a specific initiating

event or basic event as:
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R = ai · qi + bi. (2.23)

Where qi is initiating event frequency or basic event probability. ai qi is the sum

of all the minimal cut sets that contain event i, and bi is sum of all other minimal

cut sets that do not contain event i.

The above expression is the most widely used formulation of R with respect to ba-

sic event probabilities. It is derived from the rare event approximation and under the

assumption of exclusive independence among basic event probabilities. By analogy,

the formulation of R with respect to any two events can be obtained as [51]:

R = aijqiqj aiqi + ajqj + bj. (2.24)

Where,

* aijqiqj represents all of the minimal cut sets which contain both events i and j

* aiqi represents all of the minimal cut sets which contain event i but not j

* ajqj represents all of the minimal cut sets which contain event j but not i, and

* bij represents all of the minimal cut sets which contain neither events j nor i

By analogy, we can obtain the formulation of R as a function of any three events

in the PRA, any four events in the PRA, and so on. However, when the number of

events involved increases, the formulation of R becomes rapidly more complex and is

of little use in practice.

2.2 Quantitative Evaluation of Risk Changes

In the previous section, we present two commonly used approximations for the risk

metric R. In this section, we discuss the quantitative evaluation of risk changes based

upon the rare event approximation and the assumption that all event probabilities

are mutually independent.
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By taking the derivative of Equation 2.14 with respect to qi and rearranging the

terms we obtain

OR ai qi qi (2.25)

R R qi

This expression is a general formulation of the resulting change in risk that could

result from an infinitesimal change in probability of event i. This relationship can

also apply to a finite change in the probability of event i. In this case, the resulting

change in the overall risk level is

AR ai qi Aq (2.26)
R R qi

This above equation indicates that the change in R is proportional to the change

in the event probability.

However, in most cases, a proposed change in the plant design or activities is

likely to affect a set of basic events. According to Equation 2.24, when both basic

events i and j are affected by an activity simultaneously, the resulting change in R is

governed by

AR,,j = aij(AqiAqj + qiAqj + qjAqi) + ajAq + ajAqj. (2.27)

By rearranging the terms in the above expression we can show that

ARi,j = (aijqj + ai)Aqi + (aijqi + aj)Aqj + aijAqiAqj

= ARi + AR, + aijAqiAqj. (2.28)

where AR is change in risk that could result from a Aqi change in the probability

of basic event i while all other event probabilities are fixed at their nominal values.

ARj is risk change due to a Aqj change in the probability of basic event j while keeping

all other event probabilities unchanged. By dividing both sides by the baseline risk,
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R, we have

ARij aiqi Aqi ajqj Aqj aijqiqj Aq, Aqj
- - (2.29)

R R qi R qj R qi qj

We note that the first two terms are percentage changes in risk that could result

from changes made to basic event i and j one at a time. The third term represents the

additional risk change due to simultaneous changes in both basic event probabilities.

If an activity under consideration affects more than two basic events, Equation 2.29

can be generalized as

AR aiqi Aqi
R R qi

E E aijqiqj Aqi Aq

i j>i R qi qj

+ aij...nqjqj q'q Aq Aqj q... (230)
qi qj j

Under some circumstances, e.g. the change in the probabilities of basic events

are small, the cross term is small enough to be dropped. In such cases, the above

equation reduces to

AR = aiq Aqj (2.31)
R E· R qi

Unfortunately, there will be situations where the cross terms are not negligible. In

these cases, knowing only the risk change of individual basic events from Equation 2.26

does not provide enough information to compute the risk change that could result

from changes in the probabilities of a group of basic events. To overcome this problem,

a so called risk/safety monitor program[26, 32, 23] has been developed. A risk monitor

is a software algorithm that can quickly reevaluate the PRA model when one or more

changes are made, especially during maintenance activities.
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In general, nuclear PRAs are complicated and it is impossible to analytically

derive the overall risk change for a group of events. Analytical calculation becomes

feasible only when the cross product terms are relatively small compared to first-order

terms such that they can be dropped. However, the development of fast algorithms

for evaluating the logic enables us to evaluate the impact of various activities on the

risk level very quickly, even when these activities impact many different components

and plant configuration. For example, risk monitoring program have been used in

a number of nuclear power plants throughout the world to evaluate the impact of

various maintenance activities on plant risk level quickly.

2.3 Regulatory Safety Goals and Acceptance Guide-

lines for Using PRA in Risk-Informed Deci-

sions

In order to assess the acceptability of nuclear power plant risk levels and various

nuclear activities, regulatory acceptance guidelines have been developed. In this

section, we first present the NRC Safety Goal. We then describe the NRC Acceptance

Guidelines for proposed changes to a plant's current licensing basis as defined in RG

1.174.

The objective of the USNRC Safety Goal Policy Statement [12] is "to establish

goals that broadly define an acceptable level of radiological risk." Two qualitative

safety goals, supported by two quantitative health objectives, in terms of public

prompt fatality and cancer fatality health risks were defined in the safety goal state-

ment. The qualitative safety goals clearly state the NRC's principle that nuclear risks

should not be a significant addition to other societal risks.

The NRC safety goal for prompt fatalities is that the risk to an average individual

in the vicinity of a nuclear power plant that might result from reactor accidents should

not exceed 0.1% of the sulm of prompt fatality risks resulting from other accidents to

which members of the U.S. population are generally exposed. Since the accident risk
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in the U.S. is about 5 x 10-4 per year[46], this translates to a prompt fatality goal of

5 x 10 - 7 per year.

The NRC safety goal for latent cancer fatalities is that the risk to the population

in the area near a nuclear power plant that might result from plant operation should

not exceed 0.1% of the sum of latent cancer fatality risks resulting from all other

causes. Since the cancer fatality risk in the U.S. is about 2 x 10 -
3 per year[46], this

translates to a cancer fatality risk goal of 2 x 10- 6 per year.

Due to the considerable amount of uncertainty associated with a level-3 PRA

for estimating offsite risks, many utilities chose not to perform a level-3 analysis.

In practice, to be consistent with industry practices, a subsidiary CDF objective of

1 x 0- 4 per reactor year and a subsidiary LERF objective of 1 x 10 - 5 per reactor year

are used as surrogates for the NRC quantitative health objectives[8]. By comparing

the plant CDF and LERF with the safety goals, one can determine the acceptability

of the societal risk that could result from plant operation.

In order to review proposed changes to the licensing basis, the NRC developed

quantitative risk acceptance guidelines for judging whether a proposed change is ac-

ceptable in terms of the resulting change in CDF or LERF. As presented in the NRC

Regulatory Guide 1.174, the acceptance guidelines for the CDF states that if the

proposed change clearly results in a decrease in the CDF or a smaller increase than

10- 6 per reactor year in the baseline CDF, the proposed change is generally consid-

ered acceptable regardless of the baseline CDF. If the proposed change results in an

increase in the CDF greater than l0 - 5 per reactor year, the proposed change would

normally not be acceptable. When an application results in an increase in the CDF

in the range of 10-6 per reactor year to 10 - 5 per reactor year, the acceptability of the

proposed change depends upon the baseline CDF. If the total CDF is shown to be less

than 10- 4 per reactor year, the proposed change is considered acceptable. Otherwise,

it is not acceptable. By multiplying the above threshold values by a factor of ten, we

obtain the corresponding acceptance guidelines for LERF.

The applications of the NRC CDF and LERF acceptance guidelines can be illus-

trated in a recent study at a U.S. nuclear power plant on extending the plant's (Type
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A ) integrated leak rate test (ILRT) interval from 10 to 15 years. The results of

this study indicate that the ILRT does not impact the plant CDF, but the resulting

change in the LERF is 1.14 x 10-8 per reactor year. Since the increase in CDF and

LERF are well below the NRC acceptance guidelines for CDF and LERF, extending

the ILRT test frequency from 10 to 15 years would not have a significant impact on

the plant risk level, and thus proposed test relaxation is acceptable.

2.4 Comparison of PRA Results with Acceptance

Guidelines

General approaches for quantifying PRAs and regulatory acceptance guidelines for

the use of PRA results in risk-informed decision making are described in the previous

two sections. In this section, we describe several approaches for comparing PRA

results with the acceptance guidelines as those discussed in SECY-97-211 [7].

The first approach is to compare the point estimated PRA risk and risk change

with the acceptance guidelines. This approach uses point values of the model inputs

to obtain point estimates of the risk and risk increments through the minimal cut

sets. The point values of input parameters are usually obtained directly from plant

historical operations, testing, expert judgment, and data from similar equipment or

human activities. These point values can be the mode, mean, median, and other

confidence level values of model inputs. The point estimate approach for quantifying

PRAs has the potential to provide the decision makers with very precise information

about the magnitude of risk and change in risk. However, the true values of many

model inputs may be unknown, and the use of point values for model inputs does not

take the state-of-knowledge uncertainty into account. This limitation would indicate

that point estimated risk and risk changes are likely to be inaccurate.

The second approach is the use of mean values of risk and risk change in compar-

ison with acceptance guidelines. In this approach, the expectations of risk and risk

changes are compared with the safety goal and acceptance guidelines to determine
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the acceptability of a risk level or activity. The state-of-knowledge uncertainties are

properly taken into account by assigning probability distributions to uncertain input

parameters and candidate models. The probability associated with a value represents

the analyst's confidence in the value being the correct value for the input param-

eter, and the probability associated with a model represent the analyst's belief in

the model being the correct model. These epistemic uncertainties are then propa-

gated through the minimal cut sets to obtain probability distributions for risk and

risk change. The mean values of risk and risk change are then obtained from the

corresponding probability distributions.

Compared to the point estimate approach, the use of the mean value approach

is more robust because the mean value contains information on the uncertainty as-

sociated with the results. However, this method is more computational expensive

than the point estimate approach. It is also difficult to apply in some cases because

of the lack of knowledge of the appropriate probability distribution forms for input

parameters and the appropriate value for each candidate model which represents the

analyst's belief in the model being the correct model.

An alternative for comparing PRA results with acceptance guidelines is by way

of estimating the degree of confidence that the acceptance guidelines have been met.

This is typically done by calculating the probabilities that the plant risk level is lower

than the safety goal and the increase in risk is lower than the acceptance guidelines.

In practice, 95% is used as the confidence level for acceptability. In other words, a

risk level is acceptable only if the degree of confidence that the safety goal has been

met is higher than 95%. In such cases, as SECY-97-221 pointed out, the confidence

level in the satisfaction of the safety goal and acceptance guidelines is sensitive to

the form of the tails of the distributions of risk and risk changes. If the tails are

abnormal, this approach would give a false sense of assurance.



2.5 Summary

In this chapter, we described methods for quantifying PRAs. We first describe ex-

isting methods for quantifying logic models such as fault trees and event trees. The

methods discussed include qualitative methods for determining minimal cut sets and

quantitative methods for computing risk and risk change using the minimal cut sets.

We focus particularly on the rare event approximation because it gives fairly accurate

results in most cases and it can be computed in less computation time than other

approximations.

We also discussed existing regulatory acceptance guidelines for the use of PRA

results in risk-informed decision making. The acceptance guidelines discussed include

the NRC safety goal for regulating the overall risk that could result from the operation

of a plant, and the NRC acceptance guideline as those presented in the RG 1.174

for the acceptability of proposed changes in plant design and activities. We then

presented and compared several methods for comparing PRA results with acceptance

guidelines. The use of point estimate values was found to be by far the simplest of the

methods discussed. However, this method would most likely lead to biased estimates

of the baseline risk and risk changes. The use of the mean values method was found to

be simple and is the most frequently used method which takes epistemic uncertainty

into account, while the confidence level approach provides decision makers with the

degree of confidence that the acceptance guidelines have been met.
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Chapter 3

New Measures of Risk Significance

and Risk Change Significance

In Chapter 2, we discussed methods for evaluating the overall risk, typically CDF

and LERF for nuclear power plants, from initiating event frequencies and basic event

probabilities. We also discussed a method for computing the change in risk result-

ing from changes in event probabilities under the rare event approximation and the

assumption of independence among event probabilities. Based on these discussions,

we now introduce new measures of risk significance and risk change significance for

initiating events and basic events in a logic model. These two significance measures

will be used to assess the adequacy of PRA results for risk-informed decision making.

The significance of an event within a PRA is defined as the impact of its exclusion

from the analysis on the final outcome of the PRA. When the baseline risk is the final

outcome of interest, we define the significance of an event as risk significance (RS),

measured in terms of the resulting percentage change in the baseline risk. When there

is a change in plant design or activities and risk change is the final PRA outcome

of interest, we define the significance of an event as risk change significance (RCS).

These two significance measures can therefore be useful in identifying basic events

and initiating events that are important to the accuracy of the baseline risk and risk

change.

This chapter begins with a general discussion of several importance measures
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which have been most commonly used in risk-informed activities. Next, we discuss

the limitations of these existing measures. We then develop the concepts of risk

significance and risk change significance for events in the PRA, and general approach

for calculating these two measures. These new measures are then compared with the

traditional importance measures by use of an example.

3.1 Existing Importance Measures

One of the many applications of a PRA's findings and results is to use importance

measures to identify events, minimal cut sets and accident sequences that contribute

significantly to risk. By focusing resources on the major risk contributors, nuclear

power plants can improve safety in an efficient way.

Most work on importance measures has focused on estimating the resulting change

in the risk level due to either an infinitely small change or an extreme change in the

event probability. Several such measures of importance which were suggested by

researchers and widely used are discussed below.

The Fussell-Vesely (FV) importance measure was first introduced by W.E. Vesely

and later applied by Fussell in 1975 [27, 43, 9, 48]. The FV importance of basic event

i is defined to be the fractional contribution to the baseline risk of all the minimal cut

sets containing the specified basic event. According to Equation 2.23, this importance

measure can be represented mathematically as follows:

FV(i) = E P(MCSj(BEi)) ai . q (3.1)
R ai -qi -bi'

The above expression can be rewritten as

FV(i) = 1- qb (3.2)
ai ·qi + bi

When ai ·q << bi, Equation 3.1 becomes

ai
FV(i) =- qi. (3.3)

bi
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We note that, for this case, FV importance is proportional to the probability of

basic event i. In other words, the FV importance increases as the event probability

goes up. The reverse would be true if the event probability decreases.

In general, FV of an event does not directly measure how much the event con-

tributes to risk, but measures the fractional risk that is relevant to the event. Thus,

events that participate in the same set of minimal cut sets but differ in the probabil-

ities of occurrence generally have the same FV importance.

FV importance of a structure, system, and component(SSC) can be defined in a

similar way. In this case, FV importance is useful in identifying risk significant SSCs

for risk-based inservice testing programs or special treatment programs. However,

since an SSC is typically not represented by a single basic event or initiating event

in the logic model, and FV importance is not additive at the basic event level, the

evaluation of the FV importance of individual SSC is likely to be difficult.

The Risk Achievement Worth(RAW) importance [27, 43, 9] for a basic event is a

measure of the extreme change in risk when the Boolean variable for the basic event

is set to true. RAW can be defined either as a ratio or as a difference. According to

Equation 2.23, as a ratio, this measure can be represented as:

RAW(i) = R(qi = 1) _ ai + bi (3.4)
R R

RAW estimates the conditional increase in risk given a basic event has occurred.

For example, the RAW value of a component in a system measures the maximal

increase in the system failure probability when the component fails. This measure is

therefore useful for identifying the failure of which components results in the greatest

degradation of system reliability.

We note that the RAW importance cannot be extended to initiating events. In

most cases, the frequency of occurrence of an initiating event is modelled by the use of

fault trees. When an initiating event is modelled only as a data variable, setting the

initiating event frequency to one does not guarantee the occurrence of the initiating

event.
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Vesley [50] pointed out that FV and RAW measure different attributes of an event

and therefore there is no direct correlation between these two measures. He stated

that FV measures the importance of an occurring event while RAW measures the

importance of an existing condition, e.g. conditional upon the occurrence of the

event.

The Risk Reduction Worth(RRW) importance [27, 43, 9] is defined in a similar way

to the RAW importance. This measure estimates conditional reduction in risk given a

basic event would never occur. Using this notation and by considering Equation 2.23,

RRW can be represented as a ratio as:

R ai
RRW(i) = R - 1+ - qi (3.5)

R(qi = 0) bi

By rearranging the terms in the above equation, we obtain

1
RRW(i) 1- FV (3.6)

This relationship shows that the RRW measure is equivalent to FV importance

but given in different physical forms. In practice, RRW can be useful in identifying

the optimal components for improving system reliability.

Lambert [27, 3] argues that basic event probabilities may differ by several orders

of magnitude, and for this reason the importance of basic events should be compared

on the basis of percentage rather than absolute change in probabilities in a sensitivity

analysis. According to this notation, the measure he proposed is governed by

Lambert(i) = R/R(3.7)
9qi/qi

This measure is defined as the ratio of percentage change in risk per unit percent-

age change in the basic event probability. Lambert pointed out that his measure is

the most appropriate measure to use in deciding how to reduce risk. For example,

by assuming that the cost of reducing the failure probability of any basic event only

depends on the size of reduction in percentage terms, then in order to achieve a re-

duction in system unavailability, the optimal basic event to select will be the one with
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the largest value of Lambert's importance measure.

By substituting Equation 2.23 into Equation 3.7, we obtain the Lambert impor-

tance for basic event i as

Lambert(i) = q -. qR = i -= FV(i). (3.8)
dq R R

This expression indicates the Lambert importance of a basic event is equivalent

to its FV importance and RRW importance but written in a different form.

Emannuele Borgonovo [5, 6] points out that traditional importance measures are

not defined for a group of basic events and do not directly relate to risk changes. To

overcome these drawbacks, he introduced another importance measure, the Differen-

tial Importance Measure (DIM). This measure is defined as the fractional contribution

to the overall risk change from a sufficiently small change in a specified model input

parameter. Mathematically, DIM can be represented as follows:

dRx~ _ . dxi
DIM(xi)= dR = (3.9)A

dR C3 oRj . dxj

Where,dxi is a sufficiently small change in the value of parameter xi, dRxi is the

resultant change in R due to the change in the value of parameter xi, and dR is the

overall change in R as a result of a small change in the value of each individual input

parameter of the PRA model.

DIM has two operational forms. For a uniform change in all parameter, dxi = ,

Equation 3.9 can be replaced as:

aR
DIM(xi)= dRxi =- xi (3.10)

dR Ej R

For a uniform percentage change in all parameters, dx, = , Equation 3.9 can beXi

replaced as:

aR

DIM(xi ) = dR ax, (3.11)
dR j c .xj

The DIM importance introduced by Borgonovo simplifies the computation of risk

54



changes and takes epistemic uncertainty into account, especially when a model input

parameter is shared by several basic events. DIM is also additive. DIM of multiple

basic events can be computed as the sum of the DIMs of individual basic events.

However, the computation of DIM is conditional on small variations in the values of

the parameters. In order not to apply partial derivative approach to the computation

of DIM, a suitably small change in parameters has to be defined. However, in practice,

no particular small change has been proven to be more adequate than others. In

reality, changes in the parameters might be relatively large so that DIM is no longer

applicable.

3.2 Limitations of Existing Importance Measures

There are a number of limitations of the existing importance measures that directly

arise from their definitions and computations. First of all, most of the measures

evaluate the importance of an event or parameter in terms of the resulting change in

the baseline risk that could result from an infinitesimally small change or an extreme

change in the event probability or parameter value. Therefore, they indicate the

degree of sensitivity of risk to event probability. These measures can provide useful

information for various tasks such as maintenance, testing, and plant modifications to

reduce plant risk level. However, none of the existing measures can be used directly

to measure the importance of an event with respect to the accuracy of PRA results.

In other words, none of these measures can be used directly to assess the impact of

the omission of an event from the logic model on the risk.

Secondly, the traditional measures are evaluated based upon the limited scope

PRA. When certain events are omitted from the analysis, the numerical values of PRA

results, including these traditional measures, can change significantly. Furthermore,

the PRA software tools are programmed to compute FV, RAW, and RRW from the

truncated model when truncation limit is used to speed up the quantification of the

PRA. As a result, these importance measures for some SSCs may be underestimated

or overestimated by a significant amount [4].
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In addition, most of the existing importance measures are defined with respect

to the baseline risk. However, when risk change is an important input to the risk-

informed decision making processes, events that are important to achieve an accurate

estimate of risk change should be identified and addressed explicitly in the PRAs,

even though they may not contribute significantly to the baseline risk.

These limitations suggest that it is necessary to introduce new measures of sig-

nificance which rank events in terms of their importance to the degree of accuracy of

PRA results, in particular the accuracy of risk and risk changes. The new measures

will be useful to decision makers who are concerned with achieving accurate estimates

of risk and risk change, and providing justification for events being screened out the

analysis.

3.3 A Proposed Measure of Risk Significance

3.3.1 Definition

Based upon the above discussion of importance measures, we define our proposed

measure of risk significance of an initiating event or a basic event in the PRA in

terms of the percentage change in the baseline risk due to the omission of the event

from the logic model. By letting R,i be the baseline risk after taking event i into

consideration, and R,l/o,i be the risk evaluated when event i is omitted from the

analysis, our proposed measure of risk significance of event i with respect to the

baseline risk can be written as:

RSi = -RPo,i- R,i (3.12)

This expression indicates that RS of an event measures the impact of the omission

of the event from the analysis on the accuracy of the baseline risk in terms of the

discrepancy between the the baseline risk obtained by considering event i in the

analysis and that obtained without considering event i in the analysis.

From the definitions of the existing importance measures, we note that most tra-
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ditional importance measures evaluate the resulting change in risk that could result

from a given change in event probability. They therefore indicate the degree of sen-

sitivity of the baseline risk to the event probability. On the contrary, our measure of

RS of an event measures the degree of sensitivity of the accuracy of the baseline risk

to the exclusion of the event from the analysis. Therefore, RS is useful to decision

makers who are concerned with improving the accuracy of the baseline risk, e.g. by

addressing events with a high RS measure in the PRA, while the traditional measures

are helpful to decision makers whose objective is to manage risk, if not reduce risk,

e.g. by reducing the failure probability of those SSCs with high RAW and RRW

importances.

From Equation 3.12 we note that the value of RSi depends upon which model

is used as the reference model when computing RS. If the complete model which

addresses all events that are identified by the analyst is used as the reference model,

R,,i in the above equation is the baseline risk of the complete model. In practice, the

baseline risk of the complete model is often referred to as the nominal baseline risk

and represented by Ro. By replacing ,,i with R0, Equation 3.12 becomes

RSi -Rw,i -Ro(313)
Ro

Under a different situation, if the current incomplete model, from which a set

of events are omitted, is used as the reference model, R,/o,i in Equation 3.12 is

the baseline risk of the current model. By denoting the baseline risk of the current

incomplete model as R, Equation 3.12 becomes

RSi = R -- R ,R (3.14)
R.,i

Clearly, these two situations are not equivalent and the estimates of RSi should

be different. The conditions under which one should use the complete model as

the reference model and under which one should use the incomplete model as the

reference model depend upon the model and the problem at hand. If the size of the

PRA is small and the complete model can be easily developed and quantified, both the
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complete model and the current incomplete model can be used as the reference model

to compute RS. If the size of the PRA is large and it is difficult to develop a complete

model by addressing all identified events, the current incomplete model should be used

as the reference model. In this chapter, we will restrict our attention(except where

otherwise specified) to the case where the complete model is used as the reference

model to compute RS. Discussion about the computation of RS in case where the

current incomplete model is used as the reference model is presented in Appendix A.

Finally, we define the RS for a set of events as follows. For any set of events, the

measure RS is defined to be the percentage baseline risk not considered which could

result from the exclusion of the set of events from the analysis. For event which is the

only event in the minimal cut set, the RS of any set of such events can be computed

by summing the RS of each event in the set:

RS = E RSi. (3.15)
iEs

In practice, a minimal cut set often consists of several events. The effect of the

exclusion of the set of events from the analysis on the baseline risk could not be

evaluated by use of the above equation.

Now we would like to compute the RS of any event in the PRA. We begin with

the simple system presented in Chapter 1. The fault tree of the system is shown in

Figure 3-1.

Now we suppose that the failure probability of component 1 is 6 x 10 - 3 instead of

1 x 10-3 . This would indicate that the failure probabilities of components 1 and 3 are

the same. In such case, by considering Equation 1.3, the system failure probability

becomes

Qo V qlq2 + q3 + q4 = 1.4006 x 10- 2. (3.16)

In the case where the contribution to the system failure probability of the failure

of component 1 is not taken into account, according to Equation 1.7, the system
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Figure 3-1: An example system to illustrate the impact of the exclusion of an event

failure probability is

Qw./o,l q2 + q3 + q4 = 1.5 x 10- 2 . (3.17)

Now suppose we remove component 3 from the analysis and recalculate the system

failure probability. The causes of the failure of the system are the joint failure of

components 1 and 2, and the failure of component 3. The system failure probability

is thus

Qw/o,3 - qlq2 + q4 = 8.006 x 10- 3. (3.18)

By comparing Q/o,1 with Qwl/o,3, we note, by not considering component 1 in

the analysis, the system failure probability is overestimated by roughly 1.0 x 10 - 3 .

By not considering component 3 in the analysis, the system failure probability is

underestimated by 6.0 x 10 - 3 . These results indicate the impact of the omission of

component 1 from the analysis on the system failure probability is quite different

from that of the omission of component 3 from the analysis, even though the failure
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probabilities of components 1 and 3 are the same. We therefore remark the impact

of the exclusion of an event from the analysis on the risk depends upon not only the

probability of the event, but also the location of the event in the logic model.

In order to compute the RS of any event in the PRA, we group the events in a

PRA into four types:

* initiating events

* basic events whose first operators are AND gates

* basic events whose first operators are OR gates

* basic events whose first operators are both AND gates and OR gates

The following four sections present the general approach for computing RS for

each of the four types of events, respectively.

3.3.2 Computation of RS for Initiating Events

When an initiating event is removed from the analysis, all the accident sequences

initiated by this event will also be removed. The effect of omitting an initiating event

from the analysis on risk is therefore equivalent to that of setting the event frequency

to zero. We thus have,

RSi R/oi - Ro R(qi = 0) -- R (3.19)
Ro Ro

It is worth noting that, when initiating event i is not considered in the analysis,

the probabilities of those events which are related to event i should be adjusted

correspondingly when calculating R(qi = 0) in the above equation.

To see this, let us consider the failure probability of a component in a nuclear

power plant. We assume that the conditional failure probability this component is

2.OE-01 given that an earthquake has occurred, and the failure probability of this

event due to all other causes is 6.OE-03. By assuming that the annual frequency of

occurrence of an earthquake at the plant site is 4.OE-02, the overall failure probability
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of this component is 1.4E-02. In the case where seismic events are not considered in

the analysis, the contribution of seismic events to the failure of the component should

not be considered either, and the failure probability of the component would be 6.0E-

03.

For the case where the frequency of occurrence of initiating event i is independent

of all other events, Equation 3.19 becomes

RS = R/ o, - Ro R( = R(q )- = O -1 = -FVi. (3.20)
Ro Ro RRWj

The above expression indicates that the RS of independent initiating event i is

equivalent to its RRW and FV measures of importance. Given that 0 < FV < 1, the

RS of this initiating event satisfies the inequality

-1 < RS < 0. (3.21)

This reflects the fact that the omission of initiating events from the analysis results

in an underestimate of the nominal risk. The lower bound,

RS = -1, (3.22)

is attained only when initiating event i is the only initiating event in the analysis.

The expression of RS as shown in Equation 3.20 as a function of the RRW and

FV of the events facilitates the computation of RS. The reason is that the RRW and

FV of an event can be calculated using existing PRA software, such as SAPHIRE

and RISKMAN program which was developed at PLG Inc.

3.3.3 Computation of RS for Basic Events at AND Gates

In this section, we investigate the impact of the omission basic event at AND gates

on the minimal cut sets and baseline risk. We begin with a simple system. The fault

tree model of the example system is shown in Figure 3-2.

The minimal cut sets of the fault tree are
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Figure 3-2: An example fault tree with the omitted basic event at AND gates

X1 X 2, X 3, X 4.

The probability of the top event, R, is therefore,

Ro = qlq2 + q3 + q4 - qlq2q3 - qlq2q4 - q3q4 + qlq2q3 q4 (3.23)

Ro denotes the nominal value of R. We now explore the resulting change in the

logic model structure and minimal cut sets due to the omission of event 1 from the

analysis. When event is taken out of the fault tree while all other events remain

unchanged, the logic model becomes the fault tree as shown in Figure 3-2.

2 3 44

Figure 3-3: The example fault tree when basic event 1 is omitted from the AND gate
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The minimal cut sets of the modified fault tree are

X2 , X3 , X4

The corresponding probability of the top event is therefore

Rw/o,1 = q2 + q3 ± q4 - q2q3 - q2q4 - q3q4 + q2q3q4. (3.24)

Rw/o,l is the value of R evaluated without considering event 1 in the analysis.

By comparing Equation 3.24 with Equation 3.23, we note that R/, 1 is equal to Ro

when the Boolean variable of event 1 is set to true, or unity. Mathematically, this

relationship can be represented by

Rw/o,1 = Ro(X1 = 1). (3.25)

Although the above expression is obtained from the case where event 1 only ap-

pears once at AND gate in the logic model, it also applies to the case where an event

appears at multiple AND gates in a more complicated fault tree model. Thus, when

such a basic event is not considered in the analysis, the minimal cut sets and top

event probability of the modified fault tree can be obtained by setting the Boolean

variable of the event to true, or unity.

The general formulation of RS of basic events at AND gates can thus be written

as:

RS = - ( )- Ro (3.26)
Ro Ro

In the case where the probability of event j is dependent on the analysis of event

i, when event i is not considered in the analysis, the probability of event j should be

adjusted correspondingly when calculating Rw/o,i. For basic event whose probability

is independent of the probabilities of other events, we have

R.oj -Ro _R(Xi = 1) - RoRS = %/oi- - o = RAW - 1. (3.27)
Ro Ro
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Given RAWi is greater than one, RS of basic events at AND gates then satisfies

the inequality

RSi > 0. (3.28)

This expression indicates that the omission of basic events at AND gates generally

results in an overestimate of the nominal baseline risk. This can be explained by

the fact that components at AND gates are in a parallel configuration, and they

provides functional redundancy or "defense in depth" to each other. When one of the

components in the parallel configuration is not taken into consideration, the degree

of functional redundancy decreases, and the system risk level increases.

The relationship between RS of basic events at AND gates and their RAW impor-

tance shown in Equation 3.27 enables the computation of the RS by use of standard

PRA software. Therefore, RS of basic events at AND gates can also be computed

with minimal cost.

3.3.4 Computation of RS for Basic Events at OR Gates

In the previous section we investigated the effect of the omission of basic events at

AND gates on minimal cut sets and risk. In this section, we explore the effects of the

omission of basic events at OR gates on the minimal cut sets and risk. We also begin

our investigation with a simple fault tree as shown in Figure 3-4.

The minimal cut sets of the example fault tree are

X 1X3 X 4, X 2X 3X 4.

The probability of the top event, R, is therefore

Ro = (q + q2 - ql -q2) q3 'q4- (3.29)

Ro is the nominal value of R. When event 1 is not considered in the logic model,

the logic model becomes the one shown in Figure 3-5.

The minimal cut set of the modified fault tree is
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Figure 3-4: An example fault tree with the omitted basic event at OR gates

2

Figure 3-5: The example fault

3 4

tree when basic event 1 is omitted from the OR gate
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X2 X3 X4.

The corresponding probability of the top event of the modified logic model is

therefore

Rwlo,l = q2 q3 q4- (3.30)

Rw/0,1 is the top event probability evaluated without addressing event 1 in the anal-

ysis. By comparing Equation 3.30 with Equation 3.29, we note that Rw/,1 equals to

Ro when the Boolean variable of basic event 1 is set to false, or zero. Mathematically,

we have

R/,l = Ro(X = 0). (3.31)

Although this finding is derived from a basic event which is input to one OR gate,

it also applies to basic event which is input to multiple OR gates. To generalize,

Equation 3.13 for basic events at OR gates becomes

RS = Rw/o,- Ro _ R(X = ) - Ro (3.32)
Ro R 0o

For events whose probability is independent of the probabilities of other events,

we have

RS = R/o,,i - Ro = R(Xi = 0) - Ro 1 -F. (3.33)
Ro Ro RRWi

This expression indicates, similar to the case where the omitted event is an initi-

ating event, the omission of basic events at OR gates results in an underestimate of

the nominal risk. The percentage change in risk due to the omission of such a basic

event also satisfies the inequality:

-1 < RS < 0. (3.34)

The lower bound,
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RSi = -1,

is attained only when basic event i is the only basic event in the minimal cut set of

the top event.

We note, as initiating events, the RS of independent basic events at OR gates can

be also computed by use of PRA software programmed to compute RRW and FV

importance measures.

3.3.5 Computation of RS for Basic Events at both AND

Gates and OR Gates

The above three sections investigated the effect on the minimal cut sets and risk of

the omission of initiating events, or basic events which only appear at AND gates or

OR gates. In this section, we investigate the effect on the minimal cut sets and risk

if the omitted basic event appears at both AND gates and OR gates.

We begin by considering the fault tree shown in Figure 3-6. The system repre-

sented by this fault tree includes only three minimal cut sets. One consisting of basic

events 1 and 3, one consisting of basic events 2 and 3, and one consisting of basic

events 1 and 5.

By using the rare event approximation, the top event probability of the fault tree

is

Ro = qlq3 + q 2q3 + qq5 . (3.36)

We now remove event 1 from the logic model. The reduced fault tree is shown in

Figure 3-7. The minimal cut sets of the modified model are

X2 X3 , X 5 -

The corresponding probability of the top event can therefore be written as
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Rwo, = q2q3 + q5 - q2 q3 q5 -

By comparing Equation 3.36 with Equation 3.37, we note that R 0l,, 1 is equal to

Ro when the Boolean variable of event 1 is set to unity for its appearance at the AND

gate, and to zero for its appearance at the OR gate. The RS of event 1 thus equals

to

R , R ,1 - Ro q5 - qlq3 - qlq5 - q2q3q5 (3.38)
RS 1 R (3.38)

Ro Ro

Since the FV of basic event 1 is governed by

FV1 = MCS(ql) = qlq3 + qlq5 (3.39)
Ro Ro 

and the RAW of basic event 1 is governed by

RAW = R(X 1 = 1) = q2 q3 + q3 +q5 (3.40)
Ro Ro

the RS of basic event 1 cannot be related to either its FV importance or its RAW

importance.

From our discussion above, we note that the overall effect of the exclusion of basic

events at both AND gates and OR gates from the analysis on the minimal cut sets

and risk can be obtained by setting the event's Boolean variable equal to true for

its appearances at AND gates and equal to false for its appearances at OR gates.

Mathematically, the formulation of R for basic events at both AND gates and OR

gates as can be written in terms of

RS, R i- Ro (3.41)
Ro

R(X = 1 for event i at AND gates, Xi = 0 for event i at OR gates) - Ro
Ro
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In this case, since RS of event i can not be related to either the FV importance or

the RAW importance of the event, the computation of the RS involves a reformulation

of the minimal cut sets, which is typically not straightforward. Thus, the computation

of the RS for events at appear both at AND gates and OR gates is far more complex

than that for initiating events or basic events which appear only at AND gates or OR

gates.

3.3.6 The Effect of Dependence on the Computation of RS

The existence of dependence among basic event probabilities implies that changes

made to one basic event probability will change the probabilities of the other re-

lated basic events as well. For example, for a system consisting of several identical

components from the same manufacturer, a single failure rate is usually applied to

all components. This type of dependence reflects the analyst's knowledge about the

failure probability of various components. Another situation in which dependence

might arise would be a set of components that are functionally dependent upon each

other. In this case, failure of one component would result in the failure of all other

components simultaneously.

The RRW yields a maximal decrease in risk when "the event is impossible or the

equipment is totally reliable." [9] The RAW yields a maximal increase in risk when

"the event has occurred or the equipment has failed." [9] These definitions indicate

that the dependencies among basic event probabilities and initiating event frequencies

should be taken into account in computing an event's RRW and RAW measures of

importance, especially for the case where the failure probabilities of come components

are perfectly correlated to each other. For example, if the probability of event i is

assumed to be perfectly correlated to the probability of event j, then the occurrence

of the failure of event i also implies the simultaneous failure of event j. The reverse

would be true for the impossibility assumption. Therefore, the RRWs and RAWs of

event i and j in the correlated case would differ from those in the independent case.

From the previous example of a component failure probability presented in the

beginning of this section, we note that the dependencies among event probabilities or
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frequencies also affect the computation of RS and RCS. The RS of event i is defined

as the percentage change in the nominal risk when event i is not considered in the

model. If event i is an input to AND gates, the effect of removing it from the analysis

on the minimal cut sets and risk is the same as setting the event Boolean variable to

true. If event i is an input to OR gates, omitting it from the analysis has the same

impact on risk as setting the event Boolean variable to false. Although setting the

Boolean variable of event i to true or false does not imply a guaranteed occurrence or

nonoccurrence of the event, the probabilities of those events which are related to the

analysis of event i should be adjusted correspondingly when event i is not considered

in the analysis.

In many circumstances, the adjustment made in the probabilities of related events

given event i has occurred or would never occur may be different from that given event

i is omitted from the analysis. The relationships between RS and RRW and RAW as

presented in Equation 3.42 are generally only valid for independent event probabilities

or the cases where same adjustments would be made in the probabilities of related

events in computing RAW, RRW, and RS.

RAWi - 1 for basic events at AND gates

RSi = (3.42)

RRW - 1 for basic events at OR gates.

The relationship between the RS and FV as shown in Equation 3.43 is also gen-

erally only valid for independent event probabilities.

RSi = Rw/o, - = -FVi. (3.43)
Ro

To illustrate the impact of dependence among event probabilities or frequencies on

the importance measures, let us consider a fault tree as shown in Figure 3-2. Suppose

the probability of components I and 3 is perfectly correlated. The minimal cut sets

of the system represented by the fault tree are:

X 1X 3, X1 X 4, X 2X 3, X 2X 4, X 5.
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System
Failure

X3 , X4 , X5 .

In the correlated case, when the failure probability of component 1 is set equal

to unity, w3-8: An example a guaranteed failure of the component. Based upon the perfect

correlation assumption, when the failure probability of component 1 is set to unity,

that of component 3 should be set to unity as well. When both components 1 and

3 fail, the system fails. This result indicates that the existence of perfect correlation

among failure probabilities of components 1 and 3 results in an increase in the RAWto unity, we 1sb a guaranteed failure of the component. Based upon the perfect

of comprrelationent 1 by a factor of q3qq where q is the failure probability of component

2.

Now let us explore the impact of such a perfect correlation on the RRW of event

1. By setting X1 = 0, the minimal cut sets in the independent case becomes

X2 X3, X 2 X4 , X5 .

After taking the perfect correlation between the failure probabilities of components

1 and 3 into account, the minimal cut sets reduce to
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X2X4, x 5.

By comparing the minimal cut sets in the independent case with those in the

correlated case, we note the RRW of component 1 increases by a factor of q2q + q2q4 +q5

from the independent case to the correlated case.

By letting Q0 be the nominal system failure probability, the FV of component 1

is governed by:

FV = qlq3 qlq4 (3.44)

Since the definition of FV does not involve the change in the event probability,

the above formulation of FV for component 1 applies to both the independent and

the correlated cases.

In order to illustrate the dependence among event probability on the value of RS,

we now remove component 1 from the logic model. The minimal cut sets of the new

logic model for the independent case are

X 2X 3, X2 X4, X5.

For the correlated case, when component 1 is excluded from the model and not

considered as a contributor to the system failure by the analyst, the contribution of

component 3 to the system failure remains be modelled explicitly in the analysis, and

the estimate of the failure probability of component 3 does not change either. For

this reason, the minim cut sets of the modified model in the correlated case are the

same as those in the independent case.

These results indicate, for basic event at AND gates, if the probability of this

event is correlated to the probabilities of other events in the logic model, the RS of

this event may be different from its RAW importance. This would also be true for

RCS and RRW of basic event at OR gates.
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3.4 A Proposed Measure of Risk Change Signifi-

cance

3.4.1 Definition

We have so far proposed a new measure of risk significance for identifying events that

are important to the accuracy of risk. In many instances, risk-informed decision mak-

ing processes also require an assessment of the resulting change in risk, such as change

in the CDF and LERF that could result from proposed changes in plant design and

operation or maintenance activities[13]. The comparison results of the baseline risk

and risk changes with regulatory acceptance guidelines, along with insights derived

from deterministic analyses, are then used to determine the acceptability of a risk

level or an activity.

Events that are important to estimating risk may not be important to assessing

risk change. The reverse may also be true. In order to achieve an accurate estimate

of risk change, all events impacted by the activity under consideration and reflecting

the cause-effect relationship should be addressed in the analysis, particularly the

ones that contribute significantly to the accuracy of risk changes. In this section, we

propose a new measure of risk change significance, RCS, which ranks events in terms

of their importance to the accuracy of risk change.

By analogy with our proposed new measure of risk significance, RS, the proposed

measure of risk change significance of an event is defined to be the resulting percentage

change in risk change that could result from the omission of the event. Mathemati-

cally, the risk change significance of event i with respect to the nominal baseline risk

and risk change can be represented as:

RCS AR/o,i- AR,i (3.45)

When the relative complete model which addresses all the events identified by

the analyst is used as the reference model for computing RCSi, the above equation

becomes
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RCS, - -R A/oi- ARo (3.46)
Ro

Where

* AR,,i is risk change estimated by considering event i in the analysis,

* AR0 is the nominal risk change,

R is the nominal risk, and

*· R,,/oi is risk change evaluated when event i is omitted from the analysis.

The above expression indicates that RCSi measures how much risk change is not

accounted for when event i is not considered in the logic model. This measure can

therefore be useful to decision makers who are concerned with the acceptability of

proposed changes in plant design and activities by use of information derived from

the size of risk change from a PRA.

Similar to the computation of RS, the computation of RCS of an event also de-

pends on the type of the event, in terms of initiating event or basic event. If the

event subject to analysis is a basic event, the computation of RCS for this event also

depends upon its location in the logic model. The section below discusses the compu-

tation of RCS for each of the four types of events which we defined in the beginning

of this chapter.

3.4.2 Computation of RCS

When event i is considered in the anlaysis, the general formulation of risk R with

respect to the probability of event i shown in Equation 2.23 is

Ro = ai q + bi. (3.47)

ai q, is minimal cut sets that contain event i, and bi is minimal cut sets that do

not contain event i. The risk change due to changes in plant design and activities

can thus be as represented by
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ARo = ai Aqi + Abi.

A ai Aqi is the resulting change in the minimal cut sets containing event i, and Abi

is the resulting change in the minimal cut sets that do not contain i. This expression

gives a general formulation of risk change in terms of the resulting change in the event

probability and the probabilities of the minimal cut sets.

The analysis presented in the previous sections indicate that the impact of the

omission of an event from the analysis on the minimal cut sets and risk is equivalent

to that of setting the event

* frequency to zero if the event is initiating event,

* Boolean variable to unity if the event is basic event at AND gates,

* Boolean variable to zero if the event is basic event at OR gates, and

* Boolean variable to unity for its appearances at AND gates and to zero for its

appearances at OR gates if the event is basic event at both AND gates and OR

gates.

These findings can also be used to compute RCS of any event in the PRA. For basic

event at AND gates, after the event is omitted from the logic model, Equation 3.47

becomes

Rw/oi = ai + bi. (3.49)

The resultant change in R due to the proposed change in plant design or opera-

tional practices can therefore be written as

AR/o,,i = a + Abi. (3.50)

Substituting the above equation into Equation 3.46 we obtain,

RCS- Aa- (1 - Aq) (3.51)
Ro
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In this notation, given that

o <qi < i1, (3.52)

we can show that

0 < 1 - Aqi < 1. (3.53)

Since

0 < Ro < 1, (3.54)

the sign of RCS in Equation 3.51 depends only upon the resulting change in ai. If a

proposed change in plant design or activities results in an increase in ai, the omission

of event i from the analysis will result in an overestimate of risk change. On the other

hand, if the proposed change results in a decrease in ai, the omission of event i from

the analysis will result in an underestimate of risk change. We note that the impact

of the omission of event at AND gates on the baseline risk is different from that on

risk change in that the omission always results in an overestimate of the baseline risk.

For the case where event i is a basic event at OR gates or an initiating event,

when event i is not considered in the model, Equation 3.47 becomes

R/o, = bi. (3.55)

The resultant change in R due to the proposed change in plant design or activities

with respect to q can thus be written in the form of

ARo,i = Abi. (3.56)

Substituting the above equation into Equation 3.46 we obtain

-RCS ai Aq (357)
Ro
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This expression indicates that, for the case where event i is a basic event at OR

gates or an initiating event, the impact of the omission of event i on risk change

depends only upon the resulting change in ai. But unlike the case where event i is a

basic event at AND gates, when a proposed change in plant design or activities results

in an increase in ai, omitting event i from the analysis leads to an underestimate of

risk change. If the proposed change results in a decrease in ai, the exclusion of event

i from the analysis results in an overestimate of risk change.

For basic events at both AND gates and OR gates, the general formulation of

RCS using Equation 3.47 does not exist. In general, the proposed measure of RCS

can not be related to the traditional measures of importance, such as FV, RRW, and

RAW directly, and the computation of RCS involves the reformulation of the minimal

cut sets when an event is omitted from the analysis. The minimal cut sets can be

obtained by setting the event

* Boolean variable to zero for basic events at OR gates or initiating events,

* Boolean variable to unity for basic events at AND gates, and

* Boolean variable to unity for its appearance at AND gates and to zero for its

appearance at OR gates for basic events at both AND gates and OR gates

After the minimal cut sets are obtained, risk change can be recalculated. This

risk change can then be used, along with the nominal risk change, to compute RCS

according to its definition as given in Equation 3.46.

Since the reformulation of the minimal cut sets is not straightforward, the compu-

tation of the RCS is likely to be complex, especially for systems with a large number

of components or minimal cut sets. However, the availability of fast running PRA

software [26, 32, 23] enables us to compute RCS for any event in the PRA quickly.
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3.5 Example - Computation of RS and RCS for

Components in a Simple System

In this section, we compare our proposed measure of risk significance and risk change

significance with several other importance measures widely used in practice using an

example. The differences are then illustrated by presenting the importance measures

of each component in the example system.

As shown in Equation 3.42 and Equation 3.43, our proposed measure of RS can

be related to the measures of FV, RRW, and RAW any event the probability of

which is independent of the probabilities of other events in the PRA model. More

specifically, if an event is at AND gates and the event probability is independent

of the probabilities of other events, the RS of this event is equivalent to its RAW

measure in terms of

RS = RAWi-1. (3.58)

If an event is basic event at OR gates or initiating event, and the event probability

is independent of the probabilities of other events, the RS of this event can be related

to its RRW and FV measures in terms of

1
RS, = W- -1 = -FVI. (3.59)

RRWi

The DIM measure proposed by Borgonovo is related to our proposed measure of

RCS in that it, too, measures the importance of an event with respect to risk change.

To illustrate the application of these measures to fault trees, we consider a system

consisting of six components. The fault tree of this system is presented in Figure 3-9.

The failure probabilities of all components are assumed to be lognormally dis-

tributed with means and standard deviations as given in Table 3.1. In this example,
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System
Failure 

1 6

2 3 4 5

Figure 3-9: An example fault tree to illustrate the computation of RS and RCS

the failure probability of components 3 and 5 are assumed to be perfectly correlated.

Aside from this dependence, all other component failure probabilities are assumed to

be independent of each other.

Other assumptions made include the hypothesis used for the computation of DIM

and the proposed change in the plant's operational practice. The basic event proba-

bilities in the system fault tree have the same dimensions, so both H1 (uniform change

in component failure probabilities) and H2 (uniform percentage change in component

failure probabilities) are applicable for the computation of DIM for all components

in this system. Since H1 is more computational efficient than H2, we chose to use Hi

in this case study.

The proposed change under consideration is to double the test interval of com-

ponent 2 and increase the inspection interval of component 4 by a factor of four. If

we assume that all other aspects of components 2 and 4 remain the same, the failure

probability of component 2 will double and the failure probability of component 4

will quadruple.

Uncertainty analysis is then performed using Monte Carlo sampling to propagate

the epistemic uncertainties associated with component failure probabilities through

the minimal cut sets. 10,000 iterations were used and the expected system failure

probability was found to increase from 4.509 x 10 -3 in independent case to 4.511 x 10 - 3

in the correlated case. Table 3.2 and Figure 3-11 summarize the expected importance
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'Table 3.1: Basic event data for the components in the example system

and relative ranking of each component in this system in the independent case. Ta-

ble 3.3 and Figure 3-10 summarize the expected importance and relative ranking of

each component in the correlated case where the dependence among the probabilities

of components 3 and 5 were implicitly taken into account. The RRWs and RAWs of

each component for both the independent and correlated cases are also presented in

Figure 3-12 and Figure 3-13, respectively.

According to these numerical results, we note that the FV, RRW, and RAW im-

portance of components 3 and 5 increases when correlation is taken into account.

Compared with the independent case where the RRW and RAW rankings of compo-

nents 3 and 5 are the same, component 5 is ranked one number lower than component

3 in the correlated case. Even though the expected FVs, DIMs, RSs, and RCSs in

the correlated case are slightly different from those in the independent case, the rela-

tive rankings of the components according to these measures remain the same in two

cases.

It can also be seen that although the importance rankings of the components using

FV, RRW, RAW, and DIM importance are slightly different, components 1 and 6 are

found to be the most important components in both the independent and correlated

cases. Using the RS and RCS significance measures, components 3 and 5 are found

to be the most significant events in achieving accurate estimates of the system failure

probability and the change in the system failure probability due to the proposed test
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Component Mean failure probability Standard deviation

1 1 x 10 - 3 5 x10-4

2 3 x 10-2 1.5 x 10- 2

3 1 x 10- 2 5 x10 - 3

4 2 x 10-3 1 X 10 -3

5 1 x 10- 2 5 x10 - 3

6 3 x 10- 3 1.5 x 10 - 3



Table 3.2: The expected importance measures for the components in the example
system, independent case
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Component FV FV RRW RRW RAW RAW

Ranking Ranking Ranking

1 2.34E-01 2 1.34E+00 2 2.47E+02 1

2 7.18E-02 3 1.08E+00 3 3.38E+00 6

3 7.18E-02 3 1.08E+00 3 8.14E+00 3

4 4.82E-02 4 1.05E+00 4 3.40E+00 5

5 4.82E-02 4 1.05E+00 4 5.82E+00 4

6 6.46E-01 1 3.27E+00 1 2.47E+02 2

Component DIM DIM RS RS RCS RCS

Ranking Ranking Ranking

1 4.83E-01 1 -2.34E-01 6 O.OOE+00 5

2 4.89E-03 4 2.38E+00 4 -7.01E-02 4

3 1.44E-02 2 7.14E+00 1 7.14E+00 2

4 4.86E-03 5 2.40E+00 3 -1.46E-01 3

5 9.63E-03 3 4.82E+00 2 1.46E+01 1

6 4.83E-01 1 -6.46E-01 5 O.OOE+00 5



Table 3.3: The expected importance measures for the components in the example
system, correlated case

Component FV FV RRW RRW RAW RAW

Ranking Ranking Ranking

1 2.35E-01 2 1.34E+00 2 2.50E+02 1

2 7.20E-02 3 1.08E+00 4 3.36E+00 5

3 7.20E-02 3 1.15E+00 3 1.32E+01 3

4 4.77E-02 4 1.05E+00 5 3.38E+00 4

5 4.77E-02 4 1.15E+00 3 1.32E+01 3

6 6.45E-01 1 3.30E+00 1 2.50E+02 2

Component DIM DIM RS RS RCS RCS

Ranking Ranking Ranking

1 4.83E-01 1 -2.35E-01 6 O.OOE+00 5

2 4.83E-03 4 2.36E+00 4 -7.16E-02 4

;3 1.45E-02 2 7.34E+00 1 7.33E+00 2

4 4.83E-03 4 2.38E+00 3 -1.43E-01 3

5 9.64E-03 3 4.87E+00 2 1.47E+01 1

6 4.83E-01 1 -6.45E-01 5 O.OOE+00 5
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Figure 3-10: The importance rankings of the components in the example system, the
independent case
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Figure 3-11.: The importance rankings of the components in the example system, the
correlated case
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interval extension in both the independent and correlated cases.

As the results indicate, our proposed measures of RS and RCS give very different

rankings of the components in the system when compared to traditional importance

measures. The reason that the DIM ranking is different from the RCS ranking is

because DIM is defined for very small changes in the event probabilities and computes

the contribution of the small change in an event probability to the overall change in

risk which could result from simultaneous changes in the probabilities of a set of

events. On the other hand, RCS measures the resulting change in risk change that

could result from the omission of the event from the analysis when all other events

remain unchanged in the model. Even though the RS ranking is the same as the

RAW ranking for components at the AND gate, and is the same as the FV ranking

for components at the OR gate, the overall RS ranking, which is a combination of

RAW ranking and FV ranking, does not agree with either the RAW ranking or FV

ranking in both the independent case and correlated case.

From these findings we remark the exclusion of events which are defined not impor-

tant to risk using FV and RAW measures might results in a significant overestimate

or underestimate of risk and risk change. For decision makers who are concerned with

obtaining more meaningful information from the PRA results for use in making risk

management decisions, it would be undoubtedly necessary to address the events with

high RS and RCS explicitly in the analysis.

3.6 Summary

In the first part of this chapter we presented and discussed several existing importance

measures: FV, RRW, RAW, Lambert and DIM. We then introduced the new measures

of risk significance and risk change significance. These measures are developed in

response to the need of assessing the adequacy of PRA results to support risk-informed

decisions. In fact, because RS and RCS are defined in terms of percentage change

in baseline risk and risk change when an event is omitted from the model, they are

very helpful to decision makers in identifying events that are important in achieving



accurate estimates of the baseline risk and risk change.

We also developed methods for computing the values of the proposed measures

in the case where the complete model is used as reference model. Since RS may be

directly related to FV, RRW, and RAW, one can compute RS with minimal effort by

using existing PRA software. On the contrary, the computation of RCS importance is

much more complicated because it involves a reformulation of minimal cut sets. This

is generally time consuming. However, for highly reliable systems, the probability that

a basic event participates in multiple minimal cut sets is very likely to be negligible.

In such cases, computation cost does not pose limitations to the application of RCS.

We then presented the various importance measures of each component in a simple

system to illustrate the computation of the proposed measures of RS and RCS, and

compared them with the traditional importance measures. The results from the case

study lead to some interesting insights into the behavior of our proposed measures of

RS and RC(S. In particular, we found that an event determined to be less important

using traditional importance measures might contribute significantly to the accuracy

of risk and risk change. The reverse may also be true for risk important events

identified using traditional importance measures. Thus, in order to obtain accurate

estimates of risk and risk change, it is necessary to consider the events with high RS

and RCS explicitly in the analysis even though the FV and RAW importance of these

events are low.



Chapter 4

Epistemic Uncertainty and

Treatment in the PRA

4.1 Introduction

In Chapter 3, we introduced the new measures of risk significance and risk change

significance. These measures are useful to the analysts in identifying events that are

important to achieving accurate estimates of the baseline risk and risk change. How-

ever, even a PRA that includes all initiating events and basic events is of little value if

it is based on deficient models and incorrect inputs. To develop the logic models, the

analysts make use of a variety of tools including both deterministic and probabilistic

models. The technical correctness of these models determines how confident we are

in the probabilities of basic events and frequencies of occurrence of initiating events

in the PRA, and how confident we are in final outcome of the PRA.

The PSA Applications Guide [19] and RG 1.174 [13] categorize the state-of-

knowledge uncertainties in a PRA into three types: parameter uncertainty, model

uncertainty, and incompleteness uncertainty. This categorization was proposed pri-

marily based upon the approaches used to characterize their impact on PRA results.

Parameter uncertainty is typically defined as state-of-knowledge uncertainties as-

sociated with the input parameters of a model. Model uncertainty arises primarily

due to the lack of knowledge of the physical situation under consideration. Incom-
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pleteness uncertainty arises either because of the incomplete identification all possible

component failure modes and initiating events, or because of the contributions of cer-

tain events to risk are extremely low [13, 37, 36, 38].

Parameter uncertainty and model uncertainty can be propagated through the

minimal cut sets to obtain the degree of epistemic uncertainties associated with PRA

results. The incompleteness uncertainty, on the other hand, is difficult to address

in the PRA, especially for the case where certain events are left out of the analysis

because they were not recognized by the analysts. All these three types of uncer-

tainty contribute to both the accuracy and precision level of PRA results. Therefore,

uncertainty analysis which can identify sources of uncertainty and assess their impact

on a PRA's results is considered an integral part of a PRA.

We begin by discussing the most frequently used approaches for the treatment of

parameter uncertainty in PRAs. Next, we describe existing methods for dealing with

model uncertainty. We then discuss the causes of PRA incompleteness.

4.2 Parameter Uncertainty

For nuclear PRAs, model input parameters include equipment failure rates, compo-

nent failure probabilities, initiating event frequencies, and human error probabilities.

The estimates of input parameters usually come from a power plant's historical opera-

tional data, measurement, tests, data from relevant activities, and expert judgement.

Due to the absence of sufficient relevant data, the true values of the majority of model

input parameters are unknown to the analysts and thus regarded as random variables.

State-of-knowledge uncertainty of model inputs is often taken into account in the

analysis by establishing probability distributions for uncertain parameters to repre-

sent the analyst's knowledge about the values of the parameters. These distributions

are then propagated through the analysis to obtain probability distributions for the

estimate of the final outcome of interest. This can be done in different ways. The two

most commonly used approaches are the Monte Carlo simulation and the analytical

moment approach.
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When Monte Carlo simulation is used to propagate uncertainty on input param-

eters, point values for input parameters are sampled from corresponding probability

distributions during each trial. These point values are then used to obtain point esti-

mates of the PRA's final outcome of interest. The Monte Carlo sampling is repeated

many times, and the point value of the outcome from each trial is then used to obtain

a probability distribution on the estimation of the outcome. The PRA outcome used

in risk-informed activities often includes the baseline risk of CDF and LERF, change

in CDF and LERF, and importance measures. However, most software packages

used to perform PRAs typically only provide uncertainty analysis for the baseline

risk. Uncertainty analysis for risk change and importance measures must be done by

the use of other tools which use Monte Carlo simulations to obtain the probability

distribution for a function y = f(x, x2, ....., n) given the probability distribution of

zi(i = 1,2, ....., n) [11].

The analytical moment propagation approach calculates the mean and variance

of the risk metrics of interest from the first and second moments of input parameters.

At the basic event and initiating event level, the risk metric, R, can be represented

as a linear function of any event probability as shown in Equation 3.47. However,

basic event probabilities or initiating event frequencies are often calculated from more

fundamental parameters based upon additional models [5, 6]. In such cases, R is

typically a polynomial function of the fundamental input parameter. By letting xl,

2, ...., and xn all be input parameters, R can thus be written as:

R = f(x,X 2.. ..... n)- (4.1)

According to Taylor's formula, R can be expanded about the mean values Ill, 2,

...... , and n as:

R = f(.1, 2 .....- Ln)
OR

+ Z0 (Xi - )
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1 &2 R

+ 2E a-(Xi - pi)(xj - pi)
2 2,3 a2 3sj

+ ....... (4.2)

By taking the expectations of both sides of the above equation, we can obtain the

second-order approximate mean of R as

1 ___ 2R
I'R v f(l.81,2, .... ,. An)+ - Cov(xi, x). (4.3)

Cov(xi, xj) is the covariance of xi and xj. In the above equation, the derivatives

are evaluated at the mean values ,/1, A12 ...... and p,. If we assume that the parameters

are uncorrelated with each other, the above equation becomes

IR f(/l, 2 . .....- ,n) +2 D2 Var(xi). (4.4)

Vari is the variance, or second moment, of xi. This expression indicates that

the analytical estimate of the mean value of R from the mean values and variances

of the input parameters is only feasible for the case where input parameters are

uncorrelated. For PRAs with correlated input parameters, the analytical moment

propagation approach would involve specifying covariance for each set of correlated

input parameters, which would be extremely difficult to do.

By truncating Equation 4.2 at the linear terms, we obtain the variance of R as

follows:

Var(R) 5Z R Cov(xi,xj). (4.5)

In the case where input parameters are independent of each other, the above

equation reduces to
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Var(R) RVar(xi). (4.6)

This expression is an approximate estimate of the variance of R with uncorrelated

input parameters. When the size of the PRA is large and input parameters are

correlated with each other, it is not possible to calculate the variance of R by use of

the analytical moment approach.

It is worth noting that, the analytical approach is preferred for smaller systems

with independent inputs because it tends to produces accurate estimates, while the

Monte Carlo approach is advantageous for larger systems with correlated parameters

because it tends to be fast and can easily take dependencies into account.

When uncertainty propagation is performed, input parameters can be ranked in

terms of their contributions to the overall uncertainty with regard to the mean values

of PRA outputs. Several uncertainty importance measures have been proposed in a

recent PRA study [31]. For example, R.L. Iman [24] suggested measuring the uncer-

tainty importance of an event in terms of the ratio of the uncertainty level by setting

the event uncertainty to zero for the nominal uncertainty level. Mathematically, the

uncertainty importance measure introduced by Iman can be represented as

EPR, = Varqi(E[Rlqi]) x 100%. (4.7)
V

Where V is the nominal uncertainty level, R is the risk metric of interest, and

Varqi is the uncertainty level about the expected R by ascertaining the probability

of event i, qi. This measure involves calculating V and Varq,, which difficult to do

analytically, especially for a large logic model. Thus V and Varq, are often calculated

using Monte Carlo simulation. However, the Monte Carlo simulated values of V and

Varqi are instable. In order to overcome this difficulty, Iman and S.C. Hora [25]

suggested another measure of importance as follows:

UIi = Varq E[log(Rjqi)] (4.8)
Var(logR)

Another uncertainty importance measure was suggested by Jae-Gyeum Cho and
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Bong-Jin Yum [10] in the form of

Uncertainty of lnR due to uncertainty of lnq
UIMB% = (4.9)total uncertainty of InR

The quantification of the contribution of each input parameter to the overall un-

certainty in R, and the identification of the parameters that influence the uncertainty

in R by the most may also be performed by using global sensitivity analysis (GSA)

techniques. Examples of this technique include the Morris screening method and

Variance based techniques (VBTs) [5, 33, 22].

These uncertainty importance measures and techniques are useful to decision mak-

ers who are concerned with reducing the overall uncertainty of PRA results in order

for the results to be meaningful.

The treatment of parameter uncertainty by establishing distributions for the val-

ues of uncertain parameters enables us to explicitly address the state-of-knowledge

uncertainty in a PRA. Ideally, the shape of the distribution chosen should accurately

describe the actual nature of our uncertainty about the parameter values. In practice,

lognormal distributions are the most frequently used distribution form in characteriz-

ing the :possible values of uncertain parameters. In some instances, other distribution

forms, in addition to the lognormal distribution, may also be chosen because they fit

equally well to the historical data. This difficulty in choosing an accurate distribution

form for the uncertain input parameter introduces additional model uncertainty.

4.3 Model Uncertainty and Technical Acceptabil-

ity

PRAs use logic models such as event trees and fault trees to identify events that could

lead to core damage, or radioactive releases. PRAs rely on submodels to calculate

the failure probabilities of components, the frequencies of occurrence of initiating

events, the probabilities of and human errors. These submodels reflect the analyst's

understanding about component failure mechanisms or physical phenomena. In many
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cases, the state-of-knowledge of these failure mechanisms and physical situations is

incomplete, and the models deviate from the reality. This introduces model uncer-

tainty.

The existence of model uncertainty and its impact on PRA results have been

recognized for a long time. RG 1.174 states that technical acceptability of a PRA

"can be understood as being determined by the adequacy of the actual modelling and

the reasonableness of the assumptions and approximations. " Many efforts have been

made in formalizing the concept of model uncertainty and in developing methods

for dealing with model uncertainty. A good deal of discussion on these topics was

performed at a workshop on advanced topics in reliability and risk analysis held

in 1993 at Annapolis [34]. Many methods for the treatment of model uncertainty

were presented and discussed at the workshop, including the alternative hypotheses

approach and the adjustment factor approach.

The alternative hypotheses approach introduced by G. Apostolakis [21, 54] as-

sumes that there is a set of mutually exclusive and collectively exhaustive model

candidates for the problem under study. Each model is assigned a weighting factor

by the experts. This weighting factor represents the experts' relative confidence in

the model being correct. For normalization purpose, all weighting factors sum up

equal to unity.

This approach treats model uncertainty as parameter uncertainty in that the

number associated with each model represent the degree of confidence in the model

being correct. Vicki Bier and Corwin Atwood [2, 1] pointed out that in most cases,

it is impossible to have a set of complete and mutually exclusive models, and that

P(Mi is usually not well defined either, especially when a new model is introduced.

Despite these limitations, this approach still provides useful insights in dealing

with model uncertainty and has been used in various contexts in the past. As an

example, Apostolakis considers [54] the treatment of uncertainty on the frequency of

occurrence of future earthquakes in the seismic risk analysis. In this case, a family of

hazard curves are first obtained based upon alternative hypotheses and assumptions.

Discrete distributions over the alternate hazard curves are then developed with the
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probability associated with each hazard curve representing the analyst's degree of

belief in that hazard curve as being the most appropriate. The family of hazard

curves are then probabilistically combined to obtain the hazard curve which will be

used for further analysis. Figure 4-1 illustrates the family of hazard curves and the

resulting mean hazard curve of a U.S. nuclear power plant.

.2 0.5 0.a 1 1.2 1.5

Spect1al Acoeleratlon

Weights

-0.342
-0.198

-0.217

-- 0.111

* 0.032

-- 0.023

2 2.5 3 4

Figure 4-1: The seismic hazard curves of a U.S. nuclear power plant

In this example, eight different hazard curves were obtained.

right side of the figure, the belief associated with each curve is:

As shown on the

0.342, 0.196, 0.217, 0.111, 0.036, 0.043, 0.032, 0.023,

respectively. The average of these eight curves was then obtained to represented the

analyst's best estimate of the frequency of occurrence of future earthquakes at this

particular site.

Given that, in most cases, only a single representative model is used to reflect

the real world, the adjustment-factor approach was developed to address model un-

certainty associated with this single best model. This approach was also suggested
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by Apostolakis [54]. In this approach, an adjustment factor is introduced to adjust

the results of the single best model. The adjustment factor can be either additive

or multiplicative. The estimated value for the unknown quantity can therefore be

written as:

y = y* + E, (4.10)

or

Y-y* x Em. (4.11)

Where y is true value of the unknown quantity, y* is the estimate of the unknown

quantity from the model, and Ea and Em are the adjustment factors for the model

prediction, which are generally unknown.

This approach also has wide applications. As an example, Apostolakis considers

the actual time to damage of an object in the fire risk assessment area,

Td = Td,drm ' E*. (4.12)

Where Td is the actual time to damage of an object, Td,drm is the time to damage

from a deterministic reference model, and E* is an adjustment factor which accounts

for the deterministic model's prediction error and is assumed to be lognormally dis-

tributed with a mean equal to y and variance equal to 2.

The drawback of this approach is the difficulty in determining the value of the

adjustment factor. As pointed out by Apostolakis [21], any information that can help

the analyst evaluate the adjustment factor can also be used to adjust the model itself.

To summarize, both of these two methods can be used to account for model

uncertainty. However, the use of the alternative hypotheses approach would involve

identifying a set of mutually exclusive alternative models and specifying beliefs in each

model to be correct. While it might be feasible to obtain a set of alternative models,

it is difficult to obtain a set of alternative models which are mutually exclusive. On

the other hand, the use of the adjustment factor approach would need the analyst to
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establish values for the adjustment factor, which is often difficult to do.

Acknowledging the difficulty in quantifying model uncertainty, the impact of

model uncertainty on the adequacy of PRA results is not analyzed in this thesis

work. All of the work presented in this thesis is based upon the assumption that

model uncertainty is well addressed in the PRA, and all models embedded in the

PRA are technically sound.

4.4 PRA Incompleteness

Ideally, analysts can identify a set of component/system failure modes which pro-

duce accurate estimates of the failure probabilities of components and systems when

modelled correctly, and the set of initiating events which produce all of the impor-

tant accident sequences when fully developed. However, there is no proof that all of

these obvious component failure modes and initiating events can be identified, and

therefore no proof that a PRA is complete.

PRA completeness has advanced over the time in the past 30 years. The Reactor

Safety Study was the first available PRA model for nuclear power plant. This model

is often considered incomplete because it only analyzes risks from internal events

and at-power operation. The treatment of external events such as fires and seismic

events was incorporated into PRAs between 1975 and 1992 when most U.S. reactors

performed a PRA. Thereafter, lower power PRA, shutdown PRA, and internal flood

event analysis were also introduced into PRAs.

Although PRAs today are considered more complete than their predecessors, the

tremendous complexity of a nuclear power plant suggests that there is no guarantee

that all major risk contributors have been identified and addressed in the analy-

sis. These risk contributors include initiating events and potential failure modes of

components, systems, and human actions required to perform mitigation functions

following an initiating event. The incomplete identification of those initiating events,

component failure modes, and human actions results in inaccurate PRA results.

To see the impact of the omission of certain initiating events on risk, the top 20

99



initiating events of a U.S. nuclear power plant, in terms of contribution to CDF, are

shown in Table 4.1. As can been seen from this table, the omission of any top six

initiating event results in an underestimate of CDF by more than 5%. In particular,

we note that the seismic events contribute to nearly 60% of the total CDF. This

indicates that the incomplete identification and treatment of certain initiating events

can greatly underestimate the overall plant risk level.

The possible operating modes of a nuclear power plant include full-power, lower-

power, hot standby, hot shutdown, cold shutdown, and refuelling. In most cases, only

the risk from full power operation is addressed in the PRA. This is primarily because

at-power risk is often considered the dominate contributor to the overall plant risk.

However, in many cases, risk from other operating modes is large such that they can

not be neglected. To see this, let us consider the contribution to the CDF of each

operating mode of a U.S. nuclear power plant as shown in Table 4.2. From this table

we see that shutdown risk contributes to 14% of the total CDF, while refueling risk

contributes to 20% of the total CDF. These numerical values indicate that in some

cases, operating modes other than at-power may contribute significantly to the overall

plant risk, and the omission of these operating modes from the analysis may provide

decision makers with incorrect information for risk-informed decision making.

A component is typically designed to perform many functions and thus can fail in

many different ways. When the failure probability of a component is estimated by use

of fault tree models, the top event is the failure of the component, and the basic events

are all possible causes of the component failure. In this case, the contribution of each

component failure mode to the overall risk level can be estimated using Equation 3.47,

with qi being the probability of the occurrence of failure mode i. However, as the

complexity of a component increases, it becomes more difficult for the analyst to

identity every possible failure mode. As a result, basic events which represent the

unrecognized component failure modes are not addressed in the analysis, and the

PRA model is thus incomplete.

This incompleteness has been recognized from the beginning of the development

of PRA methodology and is considered one of the major limitations on the usefulness
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Table 4.1: Contributions to the CDF of the
power plant

top 20 initiating events for a U.S. nuclear

Initiating Events Frequency Contribution

(per reactor year) (%)

Seismic level 5 2.94E-05 19.06%

Seismic level 4 1.24E-04 17.72%

CSR fire 1 - Loss of ASW/CCW 6.70E-03 10.37%

Seismic level 6 7.64E-06 9.88%

CSR fire 2 - PORV induced LOCA 6.70E-03 5.93%

Seismic level 3 1.56E-04 5.77%

Loss of buses HF HG 6.93E-05 4.95%

Loss of CCW due to flooding 1.40E-04 4.26%

Loss of offsite power 2.59E-02 3.37%

Loss of ASW initiator 1.04E-04 3.29%

Seismic level 1 1.72E-02 2.33%

Seismic level 2 8.69E-04 2.11%

Total loss of component cooling water 3.78E-05 1.15%

RCP seal catastrophic seal failure 2.45E-03 1.14%

Loss of both MD AFW pumps 4.36E-04 0.87%

Reactor trip 6.03E-01 0.79%

Control room fire at VB-4 4.90E-03 0.69%

Medium LOCA 4.00E-05 0.60%

Non-isolated SGTR For level 2 5.00E-03 0.60%

Turnine trip 4.49E-01 0.59%

Partial loss of main feedwater 3.60E-01 0.48%
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Table 4.2: Contributions to the CDF of each operating mode for a U.S. nuclear power
plant

of the PRA technique. After reviewing the Reactor Safety Study (WASH-1400), the

Risk Assessment Review Group led by Lewis [28] concluded that "It is conceptually

impossible to complete in a mathematical sense in the construction of event-trees and

fault trees; what matters is the approach to completeness and the ability to demon-

strate with reasonable assurance that only small contributors are omitted. This inher-

ent limitation means that any calculation using this methodology is always subject to

revision and to doubt as to its completeness." Until now, there has been no approach

available for ensuring the completeness of the PRA and for assessing the impact of

incompleteness on PRA results.

From the above discussion, we note certain initiating events or component failure

modes are omitted from the analysis because their existence was not recognized by the

analysts. More often, certain basic events and initiating events which have already

been identified by the analysts are omitted from the analysis for their low frequency of

occurrence or insignificant contributions to the overall risk. In such case, the omission

of an event from the analysis can be done in two different ways: not addressing the

event explicitly in the model as discussed in Chapter 3, and by us of truncation limits.

Truncation limits are introduced to reduce the quantification scope of the PRA

to those PRA elements which contribute significantly to the model results. The

existence of truncation limits imply that the contribution to overall risk from some
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Mode Description CDF Contribution

Mode 1 Full-power(> 70% power) 4.28E-5 63%

Mode 2 Lower-power(< 70% power) 0.15E-5 2%

Mode 3 Hot Standby 0.08E-5 1%

Mode 4 Hot Shutdown 0.05E-5 1%

Mode 5 Cold Shutdown 0.91E-5 13%

Mode 6 Refueling 1.38E-5 20%



PRA elements are relative small when compared to other elements. One such situation

would be a system consisting of several components in series, one of which is extremely

unreliable compared to all of the others according to tests and historical data. In this

case, the system failure frequency can be approximated by the failure frequency of the

unreliable component. The contribution to system failure from all other components

can be neglected or truncated during the quantification process.

Truncation limits can be applied at the minimal cut set level, system level, or

accident sequence level. At the minimal cut set level, only those minimal cut sets

whose probability of occurrence is above the cutoff frequency remains in the quantifi-

cation process. The minimal cut sets whose probabilities are below the cutoff value

will be excluded from the overall risk evaluation process. At the accident sequence

level, those sequences with frequencies of occurrence above the cutoff value remain

in the model quantification. The sequences whose frequencies drop below the cutoff

value before reaching a final end state will be excluded from the overall risk evalua-

tion. Given the fact that the number of sequences increases exponentially as sequence

frequency decreases, the truncation limit technique provides us with an efficient way

to speed up the quantification process with little cost to model accuracy.

ASME RA-S-2002 [35] states that the truncation limit should be set such that the

overall PRA results are not significantly changed and no important risk contributors

are eliminated. RG 1.174 suggests using truncation limits such that the retained PRA

elements capture at least 95% of CDF.

Given an acceptance guideline for truncation limits, the truncation limit can be

established in three different ways: the point estimate approach, the mean value ap-

proach, and the confidence level approach. In the case of the point estimate approach,

point values for input parameters are used to obtain a point estimate fractional trun-

cated risk. For the case of the mean value approach, the expected truncated risk

from Monte Carlo simulation is used in comparison with the acceptance guidelines

to determine the acceptability of a given truncation limit. In case of the confidence

level approach, the confidence that risk truncated has met the acceptance guideline is

calculated by use of Monte Carlo simulation. Appendix B demonstrates the selection
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of truncation limits using each of the three approaches by way of an example. Ap-

pendix C investigates the general relationship between the percentage truncated risk

using the point estimate approach and that obtained using Monte Carlo simulation.

To summarize our discussion, when the system subject to analysis using the PRA

technique is extremely complex, it is typically not possible for analysts to identify

and address every risk contributor. The omission of significant initiating events, plant

operating modes, component failure modes, and the use of inappropriate truncation

limit can significantly impact the correctness of a PRA's results. A PRA which

does not take into account all significant risk contributors is likely to systematically

underestimate both the mean values of the PRA's results and the corresponding

uncertainties. However, the impact of the incompleteness due to unrecognized risk

contributors on PRA results is impossible to quantify.

Given the difficulty in quantifying the impact of model uncertainty and incom-

pleteness uncertainty of PRA results, two important assumptions are made when

we develop the proposed framework for assessing the adequacy of PRA results for

risk-informed activities. First, we assume that all models embedded in the PRA are

technically correct. Second, we assume that all initiating events, component fail-

ure modes, and plant operating modes have been identified by the analysts. Some

events are omitted from the analysis only because they are estimated to be negligible

in terms of their low frequency of occurrence or insignificant contributions to risk.

These assumptions should be kept in mind when applying the framework we develop

in this thesis.

4.5 Summary

In this chapter, we have discussed the definitions and treatment of three types of epis-

temic uncertainties in PRAs. Parameter uncertainty is often addressed by assigning

probability distributions to the value of uncertain parameters to reflect the analyst's

state-of-knowledge about the values of the parameters. The problem with this treat-

ment is found to be the difficulty in selecting appropriate types of distribution form
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to be used in characterizing the values of certain input parameters.

Two methods for treating model uncertainty are discussed. The alternative hy-

potheses approach and the adjustment factor approach proposed by Apostolakis.

Although both approaches find their applications in the PRA, they are difficult to

apply in many instances because the alternative hypotheses approach requires a set of

mutually exclusive alternative models, while the adjustment factor of the adjustment

factor approach is often unknown.

Three sources of incompleteness uncertainty were discussed: events that were

not recognized by the analyst, events were not addressed explicitly in the model for

their low frequency of occurrence, and events were truncated from the quantification

process or their insignificant contributions to risk. Incompleteness uncertainty due

to the incomplete knowledge of existing risk contributors has been considered one

of the major limitations of the usefulness of PRA technique. Since this type of

incompleteness counts for the fractional risk that was not recognized by the analysts,

it's effect on the PRA model is typically difficult to evaluate.
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Chapter 5

Evaluation of the Adequacy of

PRA Results for Risk-informed

Decision Makings with Respect to

Incompleteness and Uncertainty

Treatment

Our discussion presented in Chapter 4 indicates that PRAs are incomplete to some

extent, and there is considerable uncertainty in determining the values of certain

input parameters and how some models embedded in a PRA should be constructed.

As a result, PRA results are very likely to be inaccurate and imprecise, and there are

no guarantees that the regulatory safety goals and acceptance guidelines have been

achieved.

In order to assess how confident we are in a PRA, and how adequate its results

are for risk-informed decision making, we must first have a method for estimating

its quality in terms of accuracy and precision. The degree of accuracy is difficult to

evaluate because the true values of PRA results are often unknown. However, the

degree of precision can be directly obtained from the probability distributions of PRA
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results.

The baseline risk, including CDF and LERF, and risk change, including change

in CDF and change in LERF, are often the PRA's primary outcome of interest when

used for risk-informed activities. In this Chapter, we develop an approach for assess-

ing the adequacy of the accuracy and precision of risk and risk change. We begin

with a general discussion of the framework we use in this thesis for evaluating the

quality of a PRA. Next, we investigate the use of RS and RCS for identifying events

that are important to achieving the desired accuracy of risk and risk change. Since

uncertainty about risk and risk change can be a significant factor in making decisions,

we investigate the use of the 95th confidence level acceptance guideline for examining

the adequacy of the uncertainty treatment of a PRA. Our framework is developed

keeping in mind that the adequacy of PRA results should be measured with respect

to the application supported and the role that the results play in the decision making

process. The last section presents the results of the application of our framework to

a simple system.

5.1 Introduction

It is common in statistics to break down model prediction error into components of

accuracy and precision [29]. Mathematically we have

E[(y - 0)2] = E[(y _ y)2] + ( - 0)2 (5.1)

= Var(y) + (y -_ )2.

Where y is the model prediction, ,y is the expected value of y, and 0 is the true

value of y. Var(y) is a measure of precision, and uy - 0 is a measure of accuracy. In

general, the quality of a model can be determined from the accuracy and precision

of its predictions. A model that produces more accurate and precise predictions

is desired. When both baseline risk and risk changes are inputs for risk-informed
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decision making, the quality of a PRA can be determined from the accuracy and

precision of the baseline risk and risk change.

In this model, both /uy and Var(y) can be obtained from uncertainty analysis.

However, if we want to quantify the accuracy of y in addition to the mean value

and precision of y, knowing only y and Var(y) is insufficient. For this reason, we

make some simplifying assumptions: all models embedded in the PRA are technically

correct; all initiating events and component failure modes have been identified by the

analysts; and incompleteness arises only when certain events are not considered in

the analysis for their low frequencies of occurrence or insignificant contributions to

risk. Under these assumptions, we propose to use the baseline risk and risk change of

the complete model, which addresses all events identified by the analyst, to represent

the true values of risk and risk change.

Our proposed framework for assessing PRA adequacy draws heavily from existing

approaches and standards on the use of PRA for risk-informed decisions and adds the

additional considerations of accuracy and precision to assess model quality.

5.2 The Accuracy of the Baseline Risk and Iden-

tification of Risk Significant Events

Given the assumption that a PRA is technically correct and all risk initiating events

and component failure modes have been identified by the analysts, addressing all

these events in the PRA is desired in order to obtain an accurate estimate of the

baseline risk. However, when the size of a PRA becomes large in terms of the number

of initiating events and basic events, addressing all initiating events, basic events,

and operating modes in the analysis becomes difficult and impractical. In addition,

many basic events, initiating events, and operating modes might not contribute sig-

nificantly to the baseline risk. In practice, these risk insignificant events may be not

considered in the PRA analysis in order to simplify the model structure and facilitate

the quantification process without sacrificing the accuracy of the baseline risk.

108



In order to examine whether the baseline risk of an incomplete PRA is adequate

enough to support a decision, we first need to determine whether the estimate of risk

meets the analyst's desired accuracy level for the specific decision supported. In this

thesis, we refer to the desired accuracy level as the adequacy guideline. If the baseline

risk accuracy does not meet the adequacy guideline, initiating events and basic events

that are important to achieving the desired accuracy level of the baseline risk need

to be identified and addressed in the analysis.

By letting Ro be the baseline risk of the complete model, or the nominal baseline

risk, and R be the baseline risk of the incomplete model, we propose to measure the

baseline risk accuracy of the incomplete model in terms of

1R - PR o (5.2)
/Ro

Where HRo is the expectation of Ro, and PR is the mean value of R. This expression

indicates that the degree of accuracy of baseline risk can be measured in terms of the

discrepancy between the expected nominal risk and the expected baseline risk of

the current incomplete model. The smaller the discrepancy, the more accurate the

baseline risk is. As discussed in Chapter 4, the expectations of the estimated risk and

nominal risk are often obtained from uncertainty analysis by the use of Monte Carlo

simulation.

By letting E, be the desired degree of accuracy of the baseline risk, the adequacy

of the baseline risk accuracy can therefore be measured by examining whether the

following inequality is satisfied:

R - Ro 0< (5.3)
/Ro

E, reflects the decision maker's tolerance for prediction error in the baseline risk.

This expression indicates that if the discrepancy between the estimated risk and the

nominal risk is lower than the acceptable amount of prediction error, the current

incomplete model provides an adequately accurate estimate of the baseline risk for

the application and decision supported.
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E, also reflects risk-aversion and is typically determined by the social impact of

system failure. In other words, E, of activities that result in severe consequences is

typically lower than es of activities that result in relatively moderate damages. For

example, suppose we have two PRA models. One estimates the probability of auto-

mobile accident during a drive, while the other evaluates the probability of airplane

crash during a flight. Since the social consequences of the airplane crash are far more

severe than those of an automobile accident, the estimate of airplane crash probability

is generally required to be more accurate than that of automobile accident.

The value of es also depends upon the application supported and the role that risk

insights play in that specific decision making process. In general, the more emphasis

that is placed upon risk insights and on PRA results in the decision making process,

the higher the degree of accuracy that a PRA must have [13]. In the previous airplane

crash example, we now suppose that the PRA that estimates the airplane crash

probability has two applications. In one application, the PRA result is used as the

basis for analyzing the cost effectiveness of an airplane's operation and maintenance

practices. In another application, the PRA result is used as an aid to the deterministic

engineering analysis of critical components to improve airplane safety. Given the

different roles that the PRA result plays in the decision making process, the value of

es defined for the first application should be much smaller than that defined for the

second application.

Once es is defined for the application and decision supported by the decision

maker, the adequacy of the baseline accuracy can then be assessed by use of Equation

5.3. If the baseline risk accuracy does not meet the adequacy guideline, the PRA

should be improved such that events which are important to achieving the desired

accuracy of the baseline risk are addressed explicitly in the analysis.

By letting Ro be equal to the nominal baseline risk and tR21o,i be equal to the base-

line risk evaluated when event i is omitted from the analysis, our proposed measure

of RS is defined as follows:

RS% = R.1j- Ro (5.4)
Ro
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RSi measures the impact of the exclusion of event i on the PRA in terms of the

resulting percentage change in the baseline risk.

In order to identify safety significant components for nuclear activities such as

a risk-informed inservice testing program, a threshold value of 0.005 was suggested

for FV at the component level, 0.05 for FV at the system level, and 2 for RAW

[19, 42, 41, 52]. Apostolakis and Borgonovo [6] suggested using relative threshold

values for FV, RAW, and DIM instead of universal threshold values. Once the FV

and RAW importance of an SSC have been calculated, the SSC can be defined as either

"High-Safety Significance" or "Low-Safety Significance" by comparing its importance

with corresponding threshold values.

Since we are concerned with whether the desired degree of accuracy of the baseline

risk has been met, we suggest using es as a threshold value for RS. The importance

of an event in meeting the adequacy guideline can then be determined by examining

whether the following inequality has been satisfied:

IRSil > sE,. (5.5)

This expression indicates that if the omission of event i alone results in an over-

estimate or underestimate of the baseline risk by more than Es, the event is generally

considered to be important to achieving the desired degree of accuracy of risk.

Equation 4.1 indicates that Rw/,,i and Ro in Equation 5.4 are typically polynomial

functions of model input parameters. Since most PRA input parameters are often

described as random variables, RSi is also a random variable. A point value of RSi

can then be obtained by using point estimated values of the input parameters. The

probability distribution of RS can also be obtained by propagating uncertainties on

model input parameters using Monte Carlo simulation. Similar to the case where the

baseline risk of a plant is compared with NRC Safety Goals for acceptability, and risk

changes are compared with NRC acceptance guidelines to determine the acceptability

of modifying an activity, the comparison of RSi with E, can also be performed in

three different ways: the point estimate approach, the mean value approach and the
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confidence level approach.

In the case of the point estimate approach, the point estimated value of the RS

measure is used in comparison with E,. The point estimate RS can be obtained by the

use of point estimated values of model inputs. This approach provides the decision

makers with very precise information about the absolute magnitude of the RS of any

event in the PRA.

The point estimate approach is simple to apply but does not take into account

information on the state-of-knowledge of the model inputs. In practice, sensitivity

analysis is often performed to test the robustness of the point estimate categorization

of risk significance or risk insignificance by changing the point estimate values of

one or more key model inputs or assumptions about which there is uncertainty. If

an event does not change categories, the analyst then obtains a confirmation of the

categorization of the event.

In the case of the mean value approach, the expected value of RS is used in com-

parison with s,. In order to obtain the expected value of RS, uncertain model inputs

and model structures are characterized by probability distributions. The probability

associated with a value represents the analyst's confidence in the value being the

correct value for the input parameter, and the probability associated with a can-

didate model represents the analyst's belief in the model being the correct model.

These epistemic uncertainties are then propagated through the logic model to obtain

probability distributions for the baseline risk and RS.

Compared to the point estimate approach, the use of mean values in the compari-

son analysis is more robust in that the epistemic uncertainty associated with uncertain

input parameters and submodels are addressed explicitly in the PRA analysis and re-

flected in the mean value. However, in some cases, this approach is considered difficult

to apply because, in some circumstances, several distribution forms can be fitted into

historical data equally well. It is therefore difficult for the analyst to determine which

probability distribution form represents his state-of-knowledge uncertainty about the

input parameter the best.

Because of a large amount of uncertainties about the mean value of RS, there is
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no guarantee that the threshold value has been met. This introduces the confidence

level approach. In this approach, an event is categorized as either important or

unimportant by estimating the degree of confidence that the threshold value has

been met. As with the mean value approach, to compute the confidence level, one

needs perform uncertainty analysis. The confidence level can then be obtained by

calculating the probability that the RS is lower than the threshold value. In practice,

the 95% confidence level is often used for acceptability.

5.3 The Accuracy of Risk Change and Identifica-

tion of Risk Change Significant Events

We have so far investigated the use of E, to assess the adequacy of the baseline risk

for specific applications and decisions supported. We also discussed the use of RS

to identify events that are important to achieving the desired accuracy of risk. By

analogy, we now develop an approach for examining the adequacy of risk change

accuracy. We begin by introducing the concept of risk change accuracy. We then

propose to use the measure of RCS to identify events that are important to achieving

the desired accuracy of risk change.

Proceeding by analogy with Equation 5.3, we define

E[AR] - E[Ro](56)
E[Ro]

as the accuracy of risk change of the incomplete model. Where, E[ARo] is the ex-

pected nominal risk change, E[Ro] is the expected nominal baseline risk, and E[AR]

is the expected risk change of the current incomplete model subject to analysis.

E[AR] -- E[ARo] is the discrepancy between the nominal value of risk change and

risk change estimated from the current incomplete model, and is a measure of the

degree of accuracy of risk change. E[ARo], E[AR], and E[Ro] are often obtained

from uncertainty analysis.

Once the accuracy of risk change is determined, the adequacy of risk change of the
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incomplete model can then be assessed by examining whether the following inequality

has been satisfied:

E [AR] - E[Ro] < El. (5.7)
E[Ro]

As with es, El reflects the decision maker's desired accuracy level of risk change.

el is also determined by the application supported, the role that PRA results play

in the decision-making process, and the consequences of the failure of the activity or

system subject to analysis.

The above expression indicates that if the risk change unaccounted for in the

incomplete model is lower than the acceptable discrepancy in risk change, the esti-

mated risk change is accurate such that information derived from it can be directly

used for risk-informed decisions. On the other hand, if the adequacy guideline, el,

is not met, events that are omitted from the analysis but important to risk change

accuracy should be identified and addressed explicitly in the analysis.

According to Equation 3.46, RCS of event i is defined as

RCS, = AR/o,i - ARo (5.8)
Ro

Where AR is the nominal value of risk change, Ro is the nominal baseline risk,

and ARwo,i is risk change evaluated without considering event i in the analysis.

RCS measures how much risk change is overestimated or underestimated if event i is

excluded from the PRA. It is obvious that events with high RCS are more important

to achieving high accuracy of risk change than events with low RCS.

In order to identify events that are important to achieving the desired degree of

accuracy of risk change, we propose to use the following inequality:

IRCSil > . (5.9)

Given that the value of El has been defined for the application and decision sup-

ported, an event can be categorized as either important or unimportant by examining

whether the above equation has been satisfied.
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Since AR, AR,/o,i, and Ro in Equation 5.8 are polynomial functions of input

parameters, RCS is also a function of input parameters. When all uncertain input

parameters are described as random variables, RCSi becomes a random variable itself.

As in the case where RS is compared with E, to identify events that are important to

achieving the desired degree of accuracy of the baseline risk, the comparison of RCS

with El can also be done in three different ways.

In the case of the point estimate approach, the point estimate RCS is compared

with the threshold value, e1. In the case of the mean value approach, the expected

RCSi from uncertainty analysis is used in comparison with el. In the case of the

confidence level approach, the degree of confidence that the threshold value, e1, has

been met is used to determine the importance of an event. The advantages and

drawbacks of each approach are discussed in detail in Chapter 2.

To summarize, the following steps are involved in examining the adequacy of the

accuracy of risk and risk change used to support risk-informed decisions:

1. Compute RS and RCS for each event in the PRA, and estimate the accuracy

level of the baseline risk and risk change.

2. Establish es and based on the application supported, the role PRA results

play in the decision making process, and the social consequences of the activity

under consideration.

3. Compare the accuracy of risk and risk change with E, and to determine

whether the estimates of risk and risk change are accurate such that the in-

formation derived from these values can be directly used in the risk-informed

decision making process.

4. Finally, if the desired degree of accuracy of risk and risk change is not met,

identify events that are important to achieving the adequacy guidelines by using

Equation 5.5 and Equation 5.9.
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5.4 Assessment of the Adequacy of Uncertainty

Treatment

In Chapter 4, we discussed sources of uncertainty, types of uncertainty in the PRA

and corresponding approaches for the treatment of each type of uncertainty. In this

section we first show that uncertainty about the baseline risk and risk change can

be an important factor to decision-making. We then investigate the use of the 95th

confidence level acceptance guideline for assessing the adequacy of the uncertainty

treatment of a PRA.

5.4.1 Important Factor to Decision Makings

To begin, we assume that two different probability distributions for the CDF of a

nuclear power plant were obtained from two independent PRAs. We also assume

that both probability distributions are lognormally distributed with mean values and

standard deviations are given as follows:

,u = 5 x 10 - 5 , (5.10)

al = 2 x 10
-5 ,

P2 = 5 x 10- 5 ,

a 2 = 6 x 10-5 .

The distributions corresponding to the above distribution characteristics are plot-

ted and shown in Figure 5-1.

For simplicity, we assume that core damage in successive years are mutually inde-

pendent. This would imply that if a plant experiences core damage in the first year,

it would still have the same probability of experiencing core damage in subsequent

years.

With that assumption, the expected core damage probability per two successive
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For a 95 th percentile

6.25E-5 1.25E-4

Distribution of CDF1 I
Mean = 5.00E-5

Std Dev = 2.00E-5

9 5 th percentile=8.73E-05

Distribution of CDF2
Mean = 5.00E-5
Std Dev = 6.00E-5
95 th percentile =1.53E-04

Figure 5-1: The probability distributions of the example plant CDF
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reactor years is equal to

E[XlX2] = E[x2] = Var(x) + E2[x]. (5.11)

Thus, by considering the probability distribution of plant CDF from the first PRA,

the expected core damage probability per two successive reactor years is equal to

E[lx2] = Var(x) + E2[x] = (5 x 10-5)2 + (2 x 10-5)2 = 2.9 x 10- 9. (5.12)

Substituting /12 and 2 into Equation 5.11 yields the expected core damage prob-

ability per two successive reactor years as follows:

E[xlx2] = Var(x) + E2[x] = (5 x 10-5)2 + (6 x 10-5)2 = 5.1 x 10- 9. (5.13)

We note that the expected core damage probability per two successive reactor

years obtained using the results of the second PRA model is greater than that obtained

using the results of the first PRA model by nearly a factor of two. For this particular

performance measure, the plant risk level obtained from the first PRA would be more

acceptable to the public than that obtained from the second PRA, even though the

mean values of annual CDFs from the two PRAs are the same, and the plant subject

to analysis is the same.

People are often more risk-averse towards activities that could potentially result

in severe consequences than towards activities that could result in moderate conse-

quences. For example, the public's acceptability of cars is very different from that of

commercial nuclear power plants. The primary reason is that the social consequences

of a car accident is much smaller than that of a nuclear accident. In general, activi-

ties which could potentially result in severe consequences need to be well understood

to be acceptable, while activities that could result in moderate consequences can be

accepted even with a sizable amount of uncertainty in the expected risks of these
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activities.

As can be seen from the above example, activities whose risk level is well under-

stood may be considered more acceptable than those whose risk is not well known.

Activities that result in the same amount of expected risk but different degrees of un-

certainty about the expected risk may differ greatly in their acceptability, depending

on which performance measure is of interest.

As Bier[3] pointed out, in many cases, the expected benefit to be gained from re-

ducing the degree of uncertainty about plant risks and risk changes may well outweigh

the relative cost of reducing that uncertainty. The value of postponing a final decision

until more information is available may well exceed the the expected benefit to be

gained by making an immediate decision based upon the existing state-of-knowledge

of plant risk and risk changes.

From our discussion above we note that the state-of-knowledge uncertainty about

the expected plant risk level can have great impact on the value to be gained from risk-

informed decisions. However, the existing NRC safety goal and acceptance guidelines

for the use of PRA in risk-informed decisions were defined in terms of mean values,

and uncertainty was not taken into account explicitly in formulating these regulations.

In such a circumstance, acceptance criteria for the degree of uncertainty about the

expected plant risk and risk changes can be of great value.

5.4.2 Investigation of the Use of the 95th confidence Level

Acceptance Guideline for Assessing the Adequacy of

Uncertainty Treatment

In the above section, we showed that uncertainty about risk and risk change can be

relevant to decision making and that the expected benefit of postponing a decision can

be desirable in most cases. In this section, we investigate the use of a high confidence

level acceptance guideline to evaluate the adequacy of the uncertainty treatment of a

PRA in risk management decisions.

It is common in statistics to use the standard deviation as a method of conveying
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the amount of uncertainty on mean values. The smaller the standard deviation,

the less the uncertainty. From the discussion presented in the previous section, we

note that the acceptability of the degree of uncertainty generally depends upon the

expected risk level of an activity under consideration. For this reason, the acceptable

uncertainty of the baseline risk has to be set individually for each nuclear power plant

based on its expected risk level, which is generally impractical from a regulatory point

of view.

Acknowledging these aspects, we suggest using the 95 th confidence level acceptance

guideline in addition to the existing regulatory acceptance guidelines, to assess the

adequacy of an uncertainty treatment of a PRA. Inherent in this concept is that

the closer a plant's expected risk level is to the existing safety goal, the better the

understanding of plant risk needs to be. In other words, if the expected risk level

of a plant is much lower than the existing safety goal, a relatively large amount of

uncertainty can be allowed such that the 95th confidence level risk is still lower than

the 95th confidence level acceptance guideline. On the contrary, if the expected risk

level of the plant is high and close to the current safety goal, in order to meet the

95th confidence level acceptance guideline, the amount of uncertainty about the mean

risk level must to low.

Once the 95th confidence level acceptance guideline or safety goal is defined, the

adequacy of the uncertainty treatment of a PRA can be assessed by comparing the

9 5 th confidence level risk against the 9 5 th percentile safety goal. If the 9 5 th confi-

dence level safety goal has been met, the current understanding about the plant risk

level is generally acceptable. Otherwise, more information needs to be gathered such

that the plant risk is better understood and greater confidence can be placed in the

understanding of risks that could potentially result from the operation of a plant.

To see this, let us consider the estimates of CDF for two nuclear power plants. We

assume that the probability distributions of these CDFs are lognormally distributed

with mean values, standard deviations, and the 9 5 th confidence level CDFs as given

in Table 5.1.

We also assume that the 95 th confidence level safety goal, as opposed to the
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Table 5.1: The distribution characteristics of the CDFs of two example plants

existing mean value safety goal, is 1.5 x 10 - 4 . From the numerical values presented

in Table 5.1, we note that the expected risk level of the first plant is lower than that

of the second plant. We also see that the 95th confidence level CDF of the first plant

has met the 95th confidence level safety goal, while the 95th confidence level CDF of

the second plant has exceeded the 95 th confidence level safety goal.

The adequacy of the uncertainty treatment of a PRA may also be determined

by comparing the current uncertainty about the expected risk, in terms of standard

deviation, against the acceptable degrees of uncertainty. This alternative is only pos-

sible when the probability distribution of the baseline risk approximates a standard

distribution form. In such a case, the acceptable degree of uncertainty can be calcu-

lated by the use of the expected risk level and setting the 95 th confidence level safety

goal to the 9 5 th confidence level of risk.

In practice, the lognormal distribution is the most frequently used distribution

form in actual PRA analysis. One reason for this is that it is thought to capture

many aspects of our uncertainty about component failure probabilities. The other

reason is that if the failure probability of all basic events in a minimal cut set is

lognormally distributed, the probability of the occurrence of the minimal cut set will

also be lognormally distributed. In the case where the overall risk is dominated by

a few minimal cut sets, the estimate of risk is also very likely to be lognormally

distributed.

For a lognormal distribution with a mean equal to /u, and standard deviation equal

to a, its 95 th confidence level value can be represented in term of p and a as:

X95 . C 2. (5.14)
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Mean St.D. 9 5th percentile Acceptable St.D.

CDF1 6.00E-05 4.00E-05 1.35E-04 4.85E-05

CDF2 8.00E-05 4.00E-05 1.56E-04 3.72E-05



This expression is an exact formulation of the 95th confidence level risk as a func-

tion of mean risk level, ,u, and standard deviation, a, of a lognormal distribution.

For a given 95th confidence level safety goal and the expected risk, [a, from uncer-

tainty analysis, this equation can then be used to obtain the acceptable degree of

uncertainty, a, about the expected risk level.

The acceptable degree of uncertainty about the expected CDF for each plant

in the above example was estimated and presented in Table 5.1. Figure 5-2 and

Figure 5-2 present the probability distributions of CDF from uncertainty analysis

and that obtained from the acceptable uncertainty level for each plant. We note that

the acceptable uncertainty about the expected CDF of the first plant is estimated to

be higher than that of the second plant. The reason is that the expected risk of the

first plant is lower than that of the second plant. Given the same 95th safety goal

for both plants, the understanding of the risk of the second plant must be better to

compensate for its higher expected risk level when compared with the first plant. By

comparing the actual uncertainty with the corresponding uncertainty, we note that

the current uncertainty in the expected CDF of the first plant has met its acceptable

uncertainty level, while the current uncertainty of the second plant has exceeded

the corresponding acceptable uncertainty level. Thus, more information about the

operation of the second plant should be gathered such that the potential risk of this

plant is well understood.

The decision to use the 95th confidence level safety goal rather than some other

confidence level safety goal as a basis to assess the adequacy of uncertainty treatment

of the PRA is not critical. In fact, the use of the 9 0 th or 9 9th confidence level safety goal

instead of the 95th confidence level safety goal is very likely to yield the same result

on the adequacy of uncertainty treatment of a PRA, especially for risk distributions

with narrow confidence intervals or long right tails.
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5.5 Example - Measures of Importance of the Com-

ponents in a Simple System

In this example, we illustrate the application of the proposed framework to a fault

tree of a simple system. The framework will be used to demonstrate whether the

results of the fault tree are adequate to support a specific risk-informed decision. The

complete fault tree of the system under consideration is presented in Figure 3-9. We

suppose that component 1 was not considered in the analysis. The incomplete fault

tree subject to analysis is shown in Figure 5-4.

We assume that the failure probabilities of all components are lognormally dis-

tributed with distribution parameters as given in Table 3.1, and that all component

failure probabilities are mutually independent. We also assume that the proposed

change under consideration is to double the inspection interval of component 2 and

increase the inspection interval of component 4 by a factor of four. Finally, we as-

sume that the desired accuracy of system failure probability, e, is 25%, and that the

desired accuracy of change in system failure probability that could result from the

inspection relaxation of components 2 and 4, eI, is 5%.

The fault tree presented in Figure 5-4 was analyzed to generate the minimal

cut sets for system failure. Then, the software program Crystal Ball, was used to

propagate the uncertainties on input parameters through the minimal cut sets and

perform all necessary calculations. For this example, a sample size of n = 10, 000 was

used in the Monte Carlo simulation.

By considering Equation 5.2, the expected system failure probability from un-

certainty analysis was found to be overestimated by 23.54% due to the omission of

component 1 from the analysis. However, this accuracy level still meets the desired

degree of accuracy. By using Equation 5.7 we note that omitting event 1 from the

analysis does not affect the estimate of change in system failure probability. These

results indicate that the fault tree presented in Figure 5-4 provides adequate infor-

mation tlo decision makers who are concerned with the acceptability of relaxing the

inspection of components 2 and 4.
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Figure 5-4: The fault tree of the example system without component 1

To verify our results, we also computed the point estimate values and the expected

values of RS for the components in the system in the independent case. These results

are presented in Figure 5-5. Figure 5-6 shows the point estimate RCS and the expected

RCS for each component in the system. The point estimated values and the expected

values of RS and RCS for the components in the system are also summarized in

Table 5.2. The point estimated values of RS and RCS were obtained using the

expected failure probability of each component, while the mean values of RS and

RCS were obtained from uncertainty analysis.

Table 5.2: RS and RCS measures for the components in the example system

According to the results presented in Figure 5-5, Figure 5-6, and Table 5.2, the

point estimated values of RS and RCS are slightly different from the corresponding
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Component Point estimated RS E[RS] Point estimated RCS E[RCS]

1 -2.22E-01 -2.34E-01 O.OOE+00 O.OOE+00

2 2.16E+00 2.38E+00 -6.67E-02 -7.01E-02

3 6.60E+00 7.14E+00 6.60E+00 7.14E+00

4 2.18E+00 2.40E+00 -1.33E-01 -1.46E-01

5 4.40E+00 4.82E+00 1.32E+01 1.46E+O1

6 -6.67E-01 -6.46E-01 O.OOE+00 O.OOE+00
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mean values, but the categorization of all components remain the same. In both

cases, component 1 is found to be unimportant to achieving an accurate estimate

of system failure probability. Components 1 and 6 are found to be irrelevant to the

estimate of change in system failure probability.

We now would like to categorize the components in the system using the confidence

level approach. The probabilities that the RS and RCS of each component are below

the corresponding threshold values, 25% for RS and 5% for RCS, were calculated and

presented in Table 5.3.

Table 5.3: The degree of confidence that the RS and RCS of the components in the
example system have met the threshold values

From these numerical values we note that if 95% is used for acceptability, then

component 1 is unimportant to achieving the desired accuracy of system failure prob-

ability, components 1 and 6 are irrelevant to the estimate of the change in system

failure probability, and component 2 is unimportant to achieving the desired accuracy

of change in system failure probability. These findings indicate that, in this example,

the categorization of the importance of each component using all three approaches

agree closely with each other.

The results from all three approaches indicate that component 1 is not important

to achieving the desired accuracy of system failure probability and is irrelevant to

the estirnate of change in system failure probability. This information is consistent

with our observations obtained earlier. The estimate of system failure probability
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Component p(IRSI > 25%) p(IRCSI > 5%)

1 38.64% 0.00%

2 100.00% 72.04%

3 100.00% 100.00%

4 100.00% 98.17%

5 100.00% 100.00%

6 100.00% 0.00%



and change in system failure probability of the fault tree model of the system shown

in Figure 5-7 has met the desired degree of accuracy. Information derived from

these results can thus be directly used to supported risk-informed decisions on the

inspection relaxation of components 2 and 4.

Finally, we would like to examine whether the uncertainty treatment of the current

fault tree is adequate. In order to perform this task, we assume that the acceptable

95th confidence level system failure probability for this system is 8 x 10 - 3 .

The probability distribution of system failure from uncertainty analysis is pre-

sented in Figure 5-7. We note that it approximates a lognormal distribution with

a mean of 3.478 x 10- 3, and a standard deviation of 1.505 x 10 - 3 . By setting

8 x 10
- 3 to be the 95th confidence level system failure probability, we obtain the

acceptable uncertainty level with respect to the expected system failure probabil-

ity as 2.406 x 10 - 3. The probability distribution corresponding to this acceptable

uncertainty level is shown in Figure 5-7.

The numerical values presented above indicate that the 95th confidence level sys-

tem failure probability has met the 95th confidence level acceptance guideline, and

that the current uncertainty about the mean system failure probability is lower than

the acceptable degree of uncertainty. We thus conclude that the fault tree presented

in Figure 5-7 provides fairly precise estimates of system failure probability and change

in system failure probability, and no more information needs to be gathered such that

risk insights derived from the estimated system failure probability and change in sys-

tem failure probability can be used to directly aid in the decision on the proposed

inspection relaxation of components 2 and 4.
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5.6 Summary

In this chapter, we investigated the use of RS, RCS, and the 95th percentile acceptance

guideline for assessing the adequacy of PRA results, in particular risk and risk change,

for risk-informed activities. Since the true values of a PRA's results are generally

unknown, we proposed using the baseline risk and risk change of the complete model

which explicitly addressed all events that were identified by the analysts as the true

values of the baseline risk and risk change. We proposed to estimate the accuracy of

the baseline risk and risk change of an incomplete model in terms of the discrepancy

to that of the complete model. These accuracy levels are then compared with the

desired accuracy of risk and risk change. The comparison results are used to examine

whether the estimate of risk and risk change of the current model are adequate such

that the information derived from these estimates can be used to directly aid in the

risk-information decision making process. For risk and risk change whose accuracy

levels do not meet the adequacy guidelines, we suggested using RS and RCS to identify

events that are important to achieving the desired accuracy levels.

Next, we investigated the use of the 95th acceptance guideline to assess the ade-

quacy of the uncertainty treatment of a PRA. Our results indicate that this approach

agrees closely with practice in that activities that could potentially result in severe

consequences, to be acceptable, need to be better understood than activities that

could result in moderate consequences.
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Chapter 6

A Case Study of the Reactor

Component Cooling Water System

6.1 Description of the System

The Component Cooling Water (CCW) system of a pressurized water nuclear reactor

is selected to illustrate the application of the framework developed in this thesis. The

CCW system is responsible for supplying cooling water to the residual heat removal

(RHR) system during plant cool-down, to vital components during normal operation.

In an accident, the CCW system also cools the reactor cooling pump thermal barriers

and bearings, seal water coolers for safety injection pumps, and containment fan

coolers. This is performed by a closed loop cooling system which transfers heat

from various plant components to the auxiliary saltwater system. This closed loop

design enables the CCW system to provide a boundary between systems exposed to

radioactive material and the environment.

A block diagram of the system is shown in Figure 6-1. The components of the

system include three CCW pumps in parallel which are responsible for providing

cooling water for the loop, two heat exchangers which transfer heat from components

to the auxiliary saltwater system, a surge tank and surge tank pressurization system

which prevent possible CCW flashing during a LOCA (large or medium) or steam

line break coincident with a loss of offsite power, two crosstie valves between the
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CCW headers A and B; and two crosstie valves at the suction of the CCW pumps to

provide flow to the piping system.

The system can cause core damage in two different ways. First, after an accident,

core damage can occur if the system fails to operate for 24 hours in response to

initiating events. Secondly, during normal operation, core damage can occur if the

system fails to supply cooling water to various vital components. In this chapter, we

analyze the loss of the CCW system and the subsequent inability to supply cooling

water to vital components during normal operation as an initiating event.

During normal operation, failure of the CCW pumps and their associated inlet

and discharge valves (included in blocks P1, P2 and P3) is the primary contributor to

the loss of the CCW system initiating event. Degradation in the performance of all

other components in the CCW system, including the valves and the heat exchangers,

do not significantly affect system performance.

In general, there are two scenarios that could result in the failure of the CCW

pumps. The first scenario occurs during normal system operation and involves the

failure of the two primary pumps followed by the failure of the third and standby

pump to start and run. The second scenario occurs during the weekly CCW pump

rotation. This involves the failure of the standby pump to start followed by the failure

of two operating pumps to run during the maintenance of the failed standby pump.

Additional failure modes relate to common cause failures among the pumps. Com-

mon cause failures can occur in two ways during normal operation. First, the two

running pumps may fail due to a common cause failure during normal operation.

Second, after one of the two running pumps fails to run during normal operation, the

other running pump and the standby pump may fail to run due to a common cause

failure during the maintenance of the previously failed pump. Common cause failure

may also occur during the weekly switch over. In this case, the standby pump fails

to start and the two running pumps fail to run due to a common cause failure during

the maintenance of the failed standby pump in the switch over period.

In order to illustrate the results of the thesis work, this system will be approached

in different ways. First, a base case will be defined and the measures of RS and RCS
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which we have developed in Chapter 3 will be computed for each of the basic events in

the CCW system's initiating event fault tree. Next, a current case scenario is defined,

and the adequacy of the results of the current case PRA analysis is examined using

the framework which we have developed in Chapter 5. In the end, the current case

will also be used to illustrate how to select an appropriate truncation limit for the

system.

6.2 Definition of a Base Case and Computation of

RS and RCS of the Events in the System

The aim of this section is to define a base case for our analysis of the CCW system

which can be used as the reference model for computing RS and RCS for the events

in the system fault tree, and for assessing the adequacy of the current baseline PRA

as defined in the next section. We begin by assuming that all basic events of the

CCW system have been identified and are addressed in the base case.

We then assume that the CCW system is in a normal operating mode at the time

of failure. Normal operation for the CCW system is two of three pumps running with

the third in standby and one of two heat exchangers is in service while the other

is in standby. Failure of any two pumps results in less flow to the system but does

not result in system failure. The system fails only when all three pumps fail. In the

maintenance period, both pumps that are not in maintenance are assumed to be in

operation. There is no preferred alignment of CCW pumps. Pumps are operated so

as to equalize the run time of each pump. For the purpose of this study, it is assumed

that pumps 1-1 and 1-2 are the running pumps, pump 1-3 is in standby, and pumps

are switched over once each week.

Next, we assume that the proposed change under consideration is to extend the

CCW pump's allowed outage time (AOT) from 25 hours to 100 hours. The risk

insights derived from the PRA results will be used as one input to decide whether

the proposed change is acceptable with respect to plant CDF and change in CDF.
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With the above assumptions in mind, the fault tree for the loss of the CCW system

initiating event for the base case scenario is developed and presented in Figure 6-8.

Embedded within the CCW system fault tree are independent failures and com-

mon cause failures of the CCW pumps and and their associated inlet and discharge

valves.

Table 6.1 presents the description and expected probabilities of the basic events

in the system. In this example, the probabilities of all basic events are estimated

from more fundamental parameters which are shown in Table 6.2. The simplified

PRA model for plant core damage is then developed and presented in Figure 6-3 by

treating the CCW system initiating event as a basic event. The basic events in this

simplified plant CDF fault tree are described in Table 6.3.

Referring to the basic events in Figure 6-2 by number, the minimal cut sets of the

CCW system are (1, 13), (2, 3, 8), (3, 8, 9), (3, 8, 12), (3, 19), (5, 7, 11), (11, 18),

(2, 4, 6), (2, 14), (4, 6, 9), (9, 14), (4, 6, 10), (17), (4, 17), (6, 15), (10, 14), (14, 15),

(14, 16), (15, 16).

Now we would like to compute the measures of RS and RCS of each basic event

in the initiating event fault tree for the CCW system using both the point estimate

approach and Monte Carlo simulation. For comparison purposes, the FV and RAW

importance of each basic event are also calculated.

Table 6.4 and Table 6.5 presents point estimated results for the five importance

measures for the base case defined in the previous section. The expectation of each

input parameter is used to obtained the point values shown in these two tables.

Probabilities of some basic events may be correlated if the same input parameter is

used to calculate probabilities of several different basic events.

From these numerical values we observe that RS rankings and RCS rankings do

not agree with FV rankings in most cases. To see this, let us consider basic event

17. The FV ranking of this basic events is 2, while it RS ranking is 7 and its RCS

ranking is 16. The order rankings of basic events 5 and 7 indicate that the opposite

may also be true.

The numerical values presented in Table 6.4 and Table 6.5 indicate that RS rank-
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Table 6.1: Basic events data

B.E. Description Probability

1 Either of two discharge check valves fails to reseat 3.26E-04

2 CCW pumps unavailability due to maintenance 1.46E-02

3 CCW failure during 1-year period exclusive of maintenance 1.03E-01

4 Failure of pump 1-1 1.72E-04

5 Pump 1-1 fails to run during switch over 1.72E-04

6 Failure of pump 1-2 1.77E-04

7 Pump 1-2 fails to run during switch over 1.77E-04

8 Failure of pump 1-2 during pump 1-1 maintenance period 1.77E-04

9 Failure ofpump to start 1.27E-03

10 Failure of pump 1-3 1.72E-04

11 Pump 1-3 fails to run during switch over 4.95E-02

12 Failure of pump 1-3 during pump 1-1 maintenance period 1.72E-04

13 Failure of Pump 1-1 (or 1-2) over a Period of 1 Year 1.04E-01

14 CCF of pumps 1-1 and 1-2 during normal operation 2.43E-05

15 CCF of pumps 1-1 and 1-3 during normal operation 2.43E-05

16 CCF of pumps 1-2 and 1-3 during normal operation 2.43E-05

17 CCF of pumps 1-1, 1-2, and 1-3 during normal operation 3.22E-06

18 CCF of pumps 1-1 and 1-2 to run during switch over 8.16E-08

19 CCF of pumps 1-2 and 1-3 to run during maintenance 8.16E-08
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Table 6.2: Model input parameter data

Table 6.3: Basic events in the simplified plant core damage fault tree

140

Parameter Description Mean value St.D.

xl 1 of 3 CCW pumps fails to run 6.83E-06 5.00E-6

x2 2 of 3 CCW pumps fail to run 3.26E-09 1.00E-8

x3 3 of 3 CCW pumps fail to run 4.33E-10 2.50E-9

x4 CCW pumps fail to run, hours 6.91E-06 5.00E-6

x5 1 of 3 CCW pumps fail to start 1.12E-03 7.00E-4

x6 1 of 6 check valves fails on demand 1.47E-04 5.50E-5

x7 Average availability of the plant 8.50E-01 O.OOE+00

x8 CCW pump maintenance duration, hours 2.50E+01 O.OOE+00

x9 CCW pump maintenance frequency, hours 1.94E-04 2.50E-5

x10 Check valve fail on demand 1.63E-04 5.00E-5

xl Check valve transfer closed or plug, hours 1.02E-08 7.50E-9

x12 Manual valve transfer open or closed, hours 1.67E-08 2.00E-8

Basic Event Description Mean St.D.

Conditional probability of core

CD-CCW-IE damage given the CCW system 1.70E-02 5.40E-03

initiating event has occurred

CD-O-IE core damage due to all other 5.43E-05 5.00E-05

initiating events



Table 6.4: Point estimated FV and RAW for the basic events in the base case PRA

Basic event FV FV RAW RAW

Ranking Ranking

1 6.16E-01 1 1.89E+03 2

2 1.11E-02 3 1.75E+00 10

3 5.29E-03 5 1.05E+00 15

4 8.47E-05 11 1.49E+00 11

5 2.67E-05 15 1.16E+00 14

6 8.47E-05 11 1.49E+00 11

7 2.67E-05 15 1.16E+00 14

8 5.09E-03 6 3.05E+01 6

9 9.68E-04 7 1.76E+00 9

10 7.62E-05 12 1.44E+00 12

11 1.OOE-04 9 1.OOE+00 16

12 5.54E-05 14 1.32E+00 13

13 6.16E-01 1 6.31E+00 7

14 7.09E-03 4 2.93E+02 5

15 9.76E-05 10 5.02E+00 8

16 9.76E-05 10 5.02E+00 8

17 5.87E-02 2 1.82E+04 1

18 7.35E-05 13 9.02E+02 4

19 1.52E-04 8 1.87E+03 3
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Table 6.5: Point estimated RS and RCS for the basic events in the base case PRA

Basic event RS RS RCS RCS

Ranking Ranking

1 1.89E+03 1 3.88E-13 14

2 -1.11E-02 9 -9.00E-02 6

3 4.63E-02 8 6.36E-01 4

4 4.92E-01 5 7.03E-01 3

5 1.55E-01 6 4.65E-01 5

6 4.92E-01 5 7.03E-01 3

7 1.55E-01 6 4.65E-01 5

8 2.95E+01 2 8.14E+01 1

9 -9.68E-04 12 -1.23E-03 9

10 -7.62E-05 14 -2.34E-04 12

11 1.92E-03 11 1.19E-02 8

12 -5.54E-05 16 -8.31E-04 10

13 5.31E+00 3 1.60E-15 15

14 -7.09E-03 10 -1.95E-02 7

15 4.02E+00 4 9.40E+00 2

16 4.02E+00 4 9.40E+00 2

17 -5.87E-02 7 1.23E-16 16

18 -7.35E-05 15 -2.20E-04 13

19 -1.52E-04 13 -4.57E-04 11
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CCW CD-CCW-IE

Figure 6-3: The simplified fault tree for plant core damage

ings and RCS rankings often do not agree with RAW rankings either. For example,

basic events 18, and 19 are ranked among the top four risk significant events accord-

ing to RAW importance, but they are ranked 15 and 13 using the RS measure, and

13 and 11 using the RCS measure.

In general, FV measures the fractional overall risk that is related to an event i.

RAW estimates the potential increase in risk given that the event has occurred. RS

and RCS evaluates the prediction error in the overall risk and risk change given that

that the event is not considered explicitly in the analysis. The definitions of FV and

RAW involve the assumption that event i has been modelled correctly in the analysis,

and they measure the sensitivity of risk to the probability of any event in the model.

RS and RCS, on the other hand, are concerned with the sensitivity of the accuracy

of risk and risk change to the omission of any event in the model. These observations

indicate that FV, RAW, RS, and RCS measure different attributes of an event, and

they can not be related directly to each other.

In order to account for state-of-knowledge uncertainties associated with the input

parameters in computing the measures of importance, we perform uncertainty analysis
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by use of Monte Carlo simulation. Since this can not be done by the use of existing

PRA software, Decisioneering Inc.'s Crystal Ball risk analysis software is used to

propagate the epistemic uncertainties through the minimal cut sets. Each uncertainty

analysis is run with 10,000 samples. The expected values were presented in Table 6.6

and Table 6.7.

The relative rankings in the point estimate case and the use of mean value case

are also compared in Figure 6-4, Figure 6-5, Figure 6-6, Figure 6-7.

As can be seen from Table 6.4 and Table 6.5, the relative FV ranking, RAW

ranking, RS ranking, and RCS ranking of basic event 12 by far change the most

when epistemic uncertainties are taken into account. Figure 6-4 shows that the FV

importance of basic event 12 (failure of pump 1-3 when pump 1-1 is in maintenance)

increases roughly by a factor of six. Its RAW rank order increases by two, RS rank

order increases by three, while its RCS rank order increases by one.

From the numerical results presented in Table 6.4 and Table 6.5 we can also

see that the point estimated and Monte Carlo simulated measures of importance

generally agree quite closely with each other. The point estimate approach preserves

the relative rankings of most basic events in the system. It therefore provides adequate

information on the relative importance of each event in the CCW fault tree model to

decision makers in most situations, and requires only a fraction of the computation

time involved in computing the expected values of the measures of importance.
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Table 6.6: The expectations of FV and RAW for the basic events in the base case
PRA

Basic FV FV RAW RAW

Event Ranking Ranking

1 1.08E+00 1 3.32E+03 3

2 2.43E-02 3 2.65E+00 10

3 1.46E-02 4 1.08E+00 15

4 1.61E-04 12 1.89E+00 12

5 7.40E-05 15 1.28E+00 14

6 1.61E-04 12 1.89E+00 12

7 7.40E-05 15 1.28E+00 14

8 1.40E-02 5 5.41E+01 6

9 2.13E-03 7 2.68E+00 9

10 1.36E-04 13 1.79E+00 13

11 2.04E-04 10 1.OOE+00 16

12 3.49E-04 8 1.89E+00 11

13 1.08E+00 1 1.06E+01 7

14 1.26E-02 6 5.25E+02 5

15 1.76E-04 11 8.23E+00 8

16 1.76E-04 11 8.23E+00 8

17 1.05E-01 2 3.27E+04 1

18 1.30E-04 14 1.64E+03 4

19 2.71E-04 9 3.36E+03 2
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Table 6.7: The expectations of RS and RCS for the basic events in the base case PRA

Basic RS RS RCS RCS

Event Ranking Ranking

1 3.32E+03 1 1.02E-15 14

2 -2.43E-02 9 -2.32E-01 6

3 7.87E-02 8 1.1OE+00 4

4 8.85E-01 5 1.29E+00 3

5 2.82E-01 6 8.50E-01 5

6 8.85E-01 5 1.29E+00 3

7 2.82E-01 6 8.50E-01 5

8 5.31E+01 2 1.49E+02 1

9 -2.13E-03 12 -3.41E-03 10

10 -1.36E-04 15 -4.65E-04 12

11 3.94E-03 11 2.93E-02 8

12 -3.49E-04 13 -5.12E-03 9

13 9.59E+00 3 -1.98E-17 15

14 -1.26E-02 10 -3.74E-02 7

15 7.23E+00 4 1.71E+01 2

16 7.23E+00 4 1.71E+01 2

17 -1.05E-01 7 4.77E-19 16

18 -1.30E-04 16 -4.10E-04 13

19 -2.71E-04 14 -8.59E-04 11
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6.3 Definition of a Current Case

Until now, we have assumed that all possible causes of the failure of the CCW have

been identified and addressed in the base case, including common cause failures of the

CCW pumps. As can be seen from Table 6.1, the common cause failures of the CCW

pumps can occur during either normal operation or the weekly switch over. During

normal system operation, dependent failure or common cause failure can occur in

three ways. First, pump 1-1 (or pump 1-2) fails independently, then pumps 1-2 (or

pump 1--1) and 1-3 fail to run due to common cause failure events during the period

when pump 1-1 is in maintenance. Second, any two pumps may fail due to common

cause events during normal system operation, then the third pump fails independently

during the maintenance period of the previously failed two pumps. Third, common

cause events may fail all three pumps together when pumps 1-1 and 1-2 are running

normally. During weekly switch over, the two running pumps may fail to run due to

common cause events following the failure of the standby pump to start.

However, from numerical values presented in Table 6.1, we note that the prob-

abilities of common cause failures among CCW pumps are at least two orders of

magnitude lower than the corresponding independent failure probabilities. In other

words, although the occurrence of common cause events can fail two or all three

pumps simultaneously, contributions to risk from these common cause failures may

be negligible.

Now we would like to define a current case which can be used to illustrate the

framework we develop in Chapter 5. We begin by assuming that all common cause

events, basic events numbered 14 to 19 in Table 6.1, are left out the logic model

because of their low frequency of occurrence. The fault tree of the current case is

shown in Figure 6-8.

Next, we assume that, in order to make well informed decisions on the CCW

pump AOT extension by use of information derived from the fault trees presented

in Figure 6-8 the decision makers chose 10% as the desired degree of accuracy of

plant CDF, and 0.15% as the desired accuracy level of the change in plant CDF. This
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indicates that the value of es is set to 10%, and El is set to 0.15%.

6.3.1 Adequacy of the Accuracy of Plant CDF and Change

in CDF

Now we would like to examine whether the plant CDF and change in CDF of the

current base PRA has met the desired accuracy levels. The probability distributions

of the resulting changes in plant CDF and change in CDF due to the omission of

common cause failure events are presented in Figure 6-9 and Figure 6-10. The point

estimate values, expectations, and degree of confidence that the desired degree of

accuracy of plant CDF and change in CDF have been met are presented in Table 6.8.

-2.332E-2 -1.749E-2 -1.165E-2 -5.831E-3 -2.803E-6

Figure 6-9: Plant CDF unaccounted for due to the omission of common cause events

Table 6.8: Plant CDF and change in
of common cause events

plant CDF unaccounted for due to the omission

The results presented in Table 6.8 indicate that the adequacy of the estimates
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Point Confidence Adequacy

Accuracy level estimate Expectation level guideline

Plant CDF -0.11% -0.19% 100.00% 10%

Change in plant CDF -0.15% -0.29% 26.20% 0.15%



-2.908E+1 -2.181E+1 -1 .454E+1 -7.272E+0 -2.089E-3

Figure 6-10: Change in plant CDF unaccounted for due to the omission of common
cause events

of plant CDF, change in plant CDF obtained from the point estimate approach, the

mean value approach, and the confidence level approach generally agree closely with

each other. For plant CDF, the comparison of all three approaches indicates that

the accuracy level of plant CDF meets the decision maker's expectation with a great

confidence. For the case of change in plant CDF that could result from the proposed

CCW pump AOT extension, the point estimate value just meets the adequacy guide-

line. The expected change in plant CDF unaccounted for from uncertainty analysis,

however, has exceeded the adequacy guideline by a factor of nearly two. The degree of

confidence that the change in CDF has met the adequacy guideline is also extremely

low.

To summarize, the plant CDF of the current base PRA is a fairly accurate estimate

of the nominal plant CDF. The change in plant CDF of the current base PRA,

however, does not meet the desired accuracy level. In order to support the decision

on the acceptability of the proposed CCW pump AOT extension by use of information

derived from the current PRA results, modifications need to made to the current base

PRA.
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6.3.2 Improvement of the Current Base PRA

Now we would like to identify events that are important to achieving accurate esti-

mates of risk and risk change. From the results presented in Table 6.5 and Table 6.7,

we note that, among all the common cause failure events omitted, the omission of

either basic event 15 or basic event 16 alone results in an overestimate of percentage

change in the CDF by roughly a factor of 17. This amount of prediction error has

far exceeded the adequacy guideline for change in plant CDF which is 0.15%. Given

the threshold values for RS and RCS, the degrees of confidence that the threshold

values for RS and RCS have been met were also computed for each basic event in the

system. These confidence levels are presented in Table 6.9. If a confidence level of

95% is used for acceptability, basic events 15 and 16 are found important to achieving

the desired degree of accuracy of change in CDF.

In order to improve the accuracy level of change in CDF, we now add events 15

and 16 back to the current base CCW system fault tree. The accuracy level of plant

CDF and change in CDF was recalculated and is presented in Table 6.10. As can be

seen from this table, the degree of accuracy of both plant CDF and change in CDF

has increased after taking basic events 15 and 16 into consideration. In particular,

both the point estimated value and the mean value of change in CDF have met the

adequacy guideline. The level of confidence that the adequacy guideline for change

in the CDF has been met also increases by 67%.

These results indicate that by addressing events that are important to achieving

the desired accuracy of plant CDF and change in CDF in the PRA model, the overall

accuracy of plant CDF and change in CDF increases significantly. The information

derived from the modified model can therefore be directly used by the decision mak-

ers who are concerned with making decision on the acceptability of the proposed

relaxation of the CCW pump AOT extension with a greater confidence.
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Table 6.9: The degree of confidence that RS
the threshold values

Table 6.10: Plant CDF and change in plant
of common cause events 14, 17, 18, 19

and RCS of each basic event has met

CDF unaccounted for due to the omission
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Basic event p(IRSI > 10%) p(IRCSI > 0.15%)

1 100.00% 100.00%

2 4.42% 5.83%

3 24.14% 100.00%

4 99.14% 100.00%

5 62.55% 100.00%

6 99.14% 100.00%

7 62.55% 100.00%

8 100.00% 100.00%

9 0.00% 0.24%

10 0.00% 0.00%

11 0.00% 1.96%

12 0.00% 0.27%

13 100.00% 100.00%

14 2.06% 2.81%

15 100.00% 100.00%

16 100.00% 100.00%

17 16.05% 4.71%

18 0.00% 0.00%

19 0.00% 0.00%

Point Confidence Adequacy

Accuracy level estimate Expectation level guideline

Plant CDF -0.10% -0.16% 100.00% 10%

Change in plant CDF -0.11% -0.14% 93.40% 0.15%



6.3.3 Adequacy of the Uncertainty Treatment

Until now-, only the degree of accuracy of the results obtained from current PRA

models were examined. Now we would like to examine the adequacy of the uncertainty

treatment of the current base PRA used to support risk-informed decisions. We begin

by assuming that the 95 th confidence level safety goal is set to 2 x 10 - 4 .

The probability distribution of plant CDF without considering the common cause

events is presented in Figure 6-11. The expected CDF, standard deviation, and the

95th confidence level CDF are also presented in Table 6.11. As can be seen from

this table, the 95th confidence level CDF is much lower than the 95th confidence level

safety goal. This indicates that, given the mean plant CDF has met the current mean

safety goal, the uncertainty treatment of current base PRA model is adequate such

that risk insights derived from this analysis can be directly used for risk-informed de-

cisions on acceptability of the proposed AOT extension without gathering additional

information.

Another approach for examining the adequacy of the degree of precision of PRA

results for supporting risk-informed decisions is to compare the current uncertainty

level about the expected risk with the acceptable uncertainty level. As shown in Fig-

ure 6-11, the plant CDF approximates a lognormal distribution with mean equal to

5.47E-05 and standard deviation equal to 5.08E-05. By setting the 95 th confidence

level safety goal as the 95 th confidence level CDF and keeping the mean CDF un-

changed, we obtain a new lognormal distribution. The standard deviation of this

distribution is found to be 1.12E-4. This indicates that the current degree of uncer-

tainty, in terms of standard deviation, about the expected plant CDF has met the

acceptable uncertainty level by a factor of two. Thus, the current PRA model pro-

duces an adequately precise estimate of the plant risk for supporting risk-informed

decisions. Thus no more information needs to be gathered for decision makers to

decide on the proposed CCW pump AOT extension.
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1 .Mean = 5.47E-5

..-. 95 h Percentile =

ercentile

1.5E-4

4

O.OOOE+O 5.000E-5

I Lognormal Distribution
Mean = 5.47E-5

Std Dev =5.08E-5

1.000E-4 1.500E-4

, Estimated CDF w/o CCFs
Mean = 5.47E-5

Std Dev =5.08E-5

Figure 6-11: Plant CDF without considering common cause events

Table 6.11: Uncertainty analysis results for plant CDF without considering common
cause events

Distribution parameter Mean 95th St.D. Distribution model

Current uncertainty level 5.47E-05 1.48E-04 5.08E-05 Lognormal

Acceptable uncertainty level 5.47E-05 2.00E-04 1.12E-04 Lognormal
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6.4 Selection of Truncation limit for the Base Case

So far, all results were obtained without using a truncation limit. Since the size of the

simplified loss of CCW system initiating event fault tree is small, the quantification

of the fault tree is fairly easy even without using a truncation limit. However, when

a PRA model consists of a fairly large number of basic events, the computation time

involved in quantifying the analysis is unmanageable. A truncation limit is therefore

required in most situations in order to reduce the amount of time needed to compute

the CDF and importance measures.

A truncation limit should be chosen such that it simplifies the quantification

process without sacrificing the quality of PRA results, in terms of both accuracy

and precision. The objective of this section is therefore to choose an appropriate

truncation limit for the current case plant core damage PRA model according to the

acceptance guideline provided in RG 1.174.

All input parameters are assumed to be lognormally distributed with distribution

parameters as summarized in Table 6.2. For comparison purposes, both point esti-

mate approach and Monte Carlo simulation are used to estimate the percentage CDF

being truncated for each candidate truncation level. The results obtained in both the

Monte Carlo simulation with 5, 000 trials and the point estimate approach cases are

presented in Figure 6-12. As can be seen from this figure, there is no general trend in

the relationship between the percentage CDF truncated using the point estimate ap-

proach and that using Monte Carlo simulation. For some truncation limits, the point

estimated percentage CDF being truncated is higher than the Monte Carlo simulated

results, while for other truncation limits, the Monte Carlo simulated percentage CDF

unaccounted for is higher than point estimated results.

The point estimate approach and Monte Carlo simulation generally agree quite

well with each other for a truncation limit lower than 1.00E-8. However, for a trun-

cation limit between 1.00E-8 and 5.00E-7, the point estimated percentage CDF being

cutoff is constant at 0.93%. In the case of Monte Carlo simulation, the percentage

CDF being cutoff, however, varies by a significant amount, from 0.97% to 59.00% in
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the same range.

Figure 6-13 presents the degree of confidence that the percentage CDF truncated

is less than 5%(the acceptance criterion for truncation limit suggested by the RG

1.174) as a function of the truncation limit for the Monte Carlo simulation case. We

note that the confidence level is constant at 100% for all truncation limits that are

lower than 6.00E-10. The degree of confidence falls slowly as truncation level increases

in the range of 5.00E-10 to 5.00E-8. As the truncation limit decreases further, the

confidence level drops quickly.

The most appropriate truncation limit for the current case was found to be 2.00E-

8. At this truncation level, the Monte Carlo estimated CDF being cutoff is 1.32%,

0.4% larger than in the case of the point estimate. The degree of confidence that the

percentage CDF truncated has met the acceptance criterion was found to be 95.35%.
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Figure 6-12: Percentage CDF truncated as a function of truncation limit for the base
case
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Figure 6-13: The degree of confidence that the truncated CDF has met the acceptance
criterion

162



6.5 Conclusion of the Case Study

Several conclusions can be drawn from this case study. First, the common cause

failures of pumps 1-1 and 1-3, and the common cause failure of pumps 1-2 and 1-3

during normal operation are found to be important to achieving the desired degree of

accuracy of change in CDF. The exclusion of these two common cause failures from

the analysis can significantly impact the accuracy of change in CDF. The current

base PRA model which did not take these two common cause events into consider-

ation results in an underestimate of change in CDF by nearly 0.30%. This level of

accuracy of change in CDF is far below the 0.15% adequacy guideline. After adding

these two events to the analysis, the expectation of the amount of change in CDF

underestimated decreases to 0.14%.

From the numerical values presented in Table 6.4 and Table 6.6, we note that the

RS importance of basic event 1 is at least two orders of magnitude greater than that

of all other basic events. Therefore, any model which does not take basic event 1

into account would have a significant impact on the accuracy of plant CDF, and is

generally unacceptable.

Epistemic uncertainties associated with input parameters tend to systematically

increase the values of various importance measures. However, the relative rank orders

of the events in the system obtained from the point estimate approach are generally

consistent with those obtained from Monte Carlo simulation.

For parameter distribution models presented in Table 6.2, the most appropriate

truncation limit for the current case PRA was found to be 2.00E-8. At this truncation

level or below, the Monte Carlo simulated percentage CDF being cutoff is lower than

5%, and the degree of confidence that the percentage CDF being cutoff is lower than

5% is likely to be above 95%.

These results highlight the major contribution of this thesis: the development of

the measures of risk significance and risk change significance which systematically

rank the events in a PRA in terms of the importance to the accuracy of PRA results;

the investigation of the use of RS and RCS for identifying events that are important
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to achieving the desired degree of accuracy of risk and risk change. Without the use of

RS and RCS, many, if not most risk analysts would probably have identified common

cause failures of pump 1-1 and 1-3, and common cause failure of pumps 1-2 and 1-3

during normal operation as unimportant for their low frequency of occurrence, low

FV and RAW rankings, and would have omitted them from the PRA. The analysis

presented in this chapter shows that this may not be true. The use of RS, RCS, and

the 95th confidence level acceptance guideline provide a feasible approach for assessing

the adequacy of PRA results in support of specific risk-informed decisions.
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Chapter 7

Conclusion

7.1 Contributions of This Work

The primary contributions of this work include:

1. The development of the RS and RCS measures which rank events in a PRA in

terms of their importance to the accuracy of risk and risk change.

2. The investigation of the use of RS and RCS to identify events that are impor-

ta:nt to achieving the desired accuracy of risk and risk change for risk-informed

activities.

3. The investigation of the use of the 95th confidence level acceptance guideline for

examining the adequacy of the uncertainty treatments of a PRA.

When an event is omitted from a PRA, the RS of that event is defined to be the

resulting percentage change in the baseline risk. This measure identifies which events

are important to achieving an accurate estimate of the baseline risk. By analogy,

when risk change is the final outcome of a PRA, we defined RCS of an event to be

the resulting percentage change in risk change due to the exclusion of the event from

the analysis. This measure tells us which events are important to achieve an accurate

estimate of risk change. RS and RCS are therefore useful to decision makers who are
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concerned with obtaining accurate and meaningful information and insights to assess

the acceptability of proposed changes in plant design or activities.

We show that if an event is an initiating event, the impact of its exclusion from

the analysis on the minimal cut sets is the same as setting the event frequency to

zero. If an event is a basic event whose first operator is AND gate, the effect of the

omission of the event from the analysis on the minimal cut sets is the same as setting

the event Boolean variable to true, or unity. If an event is a basic event whose first

operator is OR gate, the impact of its exclusion from the analysis on the minimal

cut sets is the same as setting the event Boolean variable to false, or zero. Based

upon these findings, we group events in the PRA into four types: initiating events,

basic events whose first operators are AND gates, basic events whose first operators

are OR gates, and basic events whose first operators are both AND gates and OR

gates. We also found that RS of the second type of event can be related to its RAW

importance, while the RS of the first and third types of events can be related to their

FV and RRW importances. The computation of RS for the last type of event and

the computation of RCS, however, involves a reformulation of the minimal cut sets,

which is typically not straightforward.

In addition to the development of the measures of RS and RCS as described

above, another contribution of this work involves the investigation of the use of RS

and RCS to identify events that are important to achieving the desired degree of

accuracy of the baseline risk and risk change assess. We consider three different

approaches for categorizing any event in the PRA. These approaches are the point

estimate approach, the mean value approach, and the confidence level approach. The

results of this investigation show that the degree of accuracy of risk and risk change is

very likely to meet the adequacy guidelines by addressing all important events which

are identified by use of RS and RCS explicitly in the analysis.

We also examine the use of 95th confidence level acceptance guideline to assess

the adequacy of uncertainty treatment of a PRA. Our analysis indicates that this

approach agrees closely with practice in that activities that could potentially result

in severe consequences need to be well understood to be acceptable, while activities
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that could result in moderate consequence can be accepted even with a sizable amount

of uncertainty in the results. The desired degree of accuracy of risk and risk change

and the 95th confidence level acceptance guideline are typically defined by the social

or economic consequences of the activity subject to analysis and the role that PRA

results play in the decision making process.

The results of our case study of the component cooling water (CCW) system in

a pressurized water nuclear reactor show that the rank orders of the events in the

PRA obtained using FV, RAW, RS, and RCS generally do not overlap. The omission

of an event with low FV and RAW may have extreme large effects (i.e. two orders

of magnitude or more) on the expected risk and risk change. In such cases, the

PRA which does not take these events into account can seriously underestimate or

overestimate the expected plant risk level. The results also show the values of RS

and RCS change significantly after epistemic uncertainty on input parameters were

taken into consideration.

7.2 Suggestions for Future Work

One area in which additional work might be desirable is the consideration of depen-

dencies among event probabilities in the computation of several importance measures,

including RRW, RAW, RS and RCS. In particular, it might be desirable to develop

an algorithm which explicitly accounts for the dependencies among the probabilities

of related events in the logic model. When an event is omitted from the analysis, or

the event status is set to guaranteed occurrence or guaranteed non-occurrence, the

probabilities of related events can then be adjusted automatically.

Another area in which more work remains to be done is the impact of unrecognized

events on PRA results, including both the accuracy and precision of the results. Spe-

cific topics might include: estimating the amount of risk and risk change unaccounted

for due to potentially unrecognized events, evaluating the change in the uncertainty

level of the baseline risk that could result from the omission of an event from the

analysis, evaluating the change in the uncertainty level of the risk change that could
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result from the exclusion of an event from the analysis, and investigating the impact

of unrecognized events on the uncertainty level of risk and risk change. The impact

of unrecognized events on PRA results are generally difficult to estimate, and any

contributions to this area would be helpful.

Both of the topics suggested above are essentially extensions of the work presented

in this thesis. While a thorough investigation of these topis may be quite challenging,

it could be carried out using many of the same approaches as those used in this thesis.

Finally, it would be highly desirable to develop a framework to numerically rank

the quality of a PRA. Currently, the quality or adequacy of PRAs are qualitatively

evaluated at a function level. On the other hand, this type of analysis could indicate

for what applications does the PRA provide adequate results, and how adequate are

these results for the specific applications supported. The rank order of a PRA could

also enable the comparison of the quality of multiple different PRAs.
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Appendix A

Computation of RS Using the

Current Incomplete Model as

Reference Model

In chapter 3, we developed a general approach for computing RS and RCS for any

event in a PRA in the case where the complete PRA which addresses all identified

events is used as the reference model. However, in many cases, a complete PRA is

not possible either because the number of events is too large to address in the model,

or because the contributions to risk of some events are negligible. In such cases, the

current incomplete model should be used as the reference model to compute the RS

and RCS.

When the current incomplete mode is used as the reference model for computing

RS, the formulation of RS, given in Equation 3.14, is

RS= R- ,i (A.1)
Rw,i

Where, R, is risk of the current incomplete model which does not consider event

i, and R,,i is risk evaluated when event i is added back to in the current model.

Equation 2.24 shows the general formulation of risk, R, in terms of probabilities

of any two basic events as:
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Rw,i = aijqiqj + aiqi + ajqj + bij. (A.2)

This first term in the above expression are the minimal cut sets that contain

both event i and event j. The second and third items are minimal cut sets that

contain only event i or event j. The last term represents minimal cut sets that do

not contain either basic event i or event j. From Equation A.2, we note that if the

numerical values of aij, ai, aaj, and bij can be obtained by the use of the information

derived from the current incomplete model, RSi can also be obtained directly by use

of Equation A.1.

For basic events at AND gates in the logic model, our analysis presented in Chapter

3 shows that, the risk estimated without considering event i in the analysis, R,/o,i or

R,, can be obtained by setting the Boolean variable of the event to true or unity as

follows:

R = aijqj + ai + ajqj + bij. (A.3)

Therefore, we can write the FV, RAW, and RRW importance of event j of the

current incomplete model as follows:

FV - aijqj + ajqj
R,

RAWj =aij ai + aj + bijRAW -

Rc

RRWj . (A.4)
ai + bij

Because RRWj and FVj are related to each other, only two out of the above

four equations are independent. However, there are four unknowns in Equation A.2:

aij, ai, aj, and bij, that need to be solved in order to solve for R,i. This indicates that

it is generally not possible to compute Rn,,i and RS directly by use of information

obtained from current model. However, for special cases, e.g. events i and j are

inputs to the same set of AND gates, it is possible to compute R,,i and RS by use
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of the analytical approach.

For basic events at OR gates, our analysis in Chapter 3 showed that the risk of the

model without considering the event, R,/oi, or R, can be obtained from Equation A.2

by setting the Boolean variable of the event to false as:

R = ajqj + bij. (A.5)

In this case, the FV, RAW, and RRW of event j of the incomplete model equate

to

ajqjFV =
RC '

RAWj = aj + bij
Re

RRWj = (A.6)

We note that parameters aj and bij in Equation A.2 can be directly solved from

the above four equations. Since aij and aj remains unknown, it is therefore generally

not possible to compute Rw,i and RSi directly by the use of information obtained

from the current model for basic events i at OR gates.

In the following two sections, we develop an analytical approach for computing

RS for two special cases: events i and j are inputs to the same set of AND gates, and

events i and j are inputs to the same set of OR gates.

A.1 Omitted Basic Events at AND Gates

For the case where events i and j appear at the same set of AND gates, Equation A.2

becomes

Rw,i = aijqiqj + bij. (A.7)

When event i is omitted from the analysis, we obtain the risk of the current
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incomplete model by setting the Boolean variable of event i to unity as

Rc = aij xj + bij. (A.8)

By considering Equation 3.1 and Equation A.8, the FV importance for basic event

j can be written as

FVj- ij x. (A.9)3 Rc

From Equation A.8 and Equation A.9, the values of aij and b can be solved as

aijR= (A.10)

bij = Rc (1 - FVj). (A.11)

By substituting Equation A.10 and Equation A.11 into Equation A.10, we thus

obtain Rw,i as

Rw,i = aij xi xj + b

= Rc [1 - FVj y(1 - xi)]. (A.12)

This expression indicates that Rv,i can be expressed as a function of Rc, xi, and

FVj. Since the values of these three parameters are available from the current model,

R/,i can therefore be directly computed by use of the information derived from the

current model.

Substituting Equation A.12 into Equation A.1 yields

RS, R= - R,i
~R&~ R,

Rc- R, [1 - FVj (1 - xi)]
R, [1- FVj (1 - xi)]
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1
I- ~ (- i . (A.13)1 - FV -(1 - xi)

This expression is the general formulation of RS in terms of Re, xi, and FVj for

the special case where basic events i and j appear at the same set of AND gates.

We now present illustrative results for the analytical approaches we developed

above. The fault tree model used in this example is shown in Figure A-1. Assuming

the current model does not address event 1 in the logic model, the minimal cut sets

of the current incomplete model are

X 2X 5 X6, X 3X4 X5 X6 .

We further assume the probabilities of all basic events are independent and log-

normally distributed with means is:

ql = 1.25 x 10 - 3,

q2 = 3.75 x 10- 2 ,

q3 = 1.25 x 10- 2,

q4 = 3.75 x 10- 2,

q5 = 1.25 x 10-2,

q6 = 3.75 x 10 - 3 . (A.14)

By considering the minimal cut sets of the current model, RC in Equation A.1 can

be obtained as:

Rc = q2 q5 q6 +- q3q4 q5 q6 - q2 q3q4 q5 q6 = 1.77 x 10- 6. (A.15)

FV of event 2 is therefore
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2 3 4

Figure A-i: An example fault tree to illustrate the computation of RS for basic events
at AND gates by use of the current incomplete model as reference model

q2q5 q6FV2 = 0.9876.
R,

(A.16)

We now reconsider basic event 1 in the analysis. By use of Equation A.12, the

point estimated RS of event 1 is equal to

RS 1
1

= --1
1- FVj · (1- qi)

1

1 - 0.9876. (1 - 3.75 x 10- 2)

= 7228.40%. (A.17)

This result indicates that the omission of basic event 1 results in an underestimate

of system failure probability by 7455.72%.

For comparison, we now compute RS1 by use of minimal cut sets. This approach

will be referred to as the minimal cut sets approach. After adding event I to the
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current model, the minimal cut sets of system failure becomes

X 1X2 X 5X 6, and X3X4 X5X6.

The corresponding system failure frequency would be given by

Rw,i = qlq 2q5 q6 + q3q4q5 q6 - qlq2 q3 q4 q5 q6 = 2.416 x 10- 8. (A.18)

By considering Equation A.1, the RS of event 1 would be as follows:

R, - Rw,i 1.77 x 10- 6 - 2.416 x 10-8 7226.2% (A.19)
RS = Rw-i - 1 10 7226.2% (A.19)

/,i 1.77 x 10-6

The small discrepancy between the value of RS1 obtained using the analytical

approach as shown in Equation A.13 and that obtained using the minimal cut sets

was found to be the rounding error in the minimal cut sets approach.

For all other cases where event j as described above does not exist, it would be

impossible to compute RS by the use of the analytical approach we developed. The

computation of RS would involve the reformulation of the minimal cut sets after the

omitted event is reconsidered in the analysis.

We note that the analytical approach we develop is likely to be simpler and more

accurate than the minimal cut sets approach. It will be preferred when event j as

described above exists. However, the minimal cut sets approach is more broadly

applicable. It can generally be used to compute RS of any basic event in the PRA,

in which case no analytical approach exists.

A.2 Omitted Basic Events at OR Gates

Equation 3.33 as given in Chapter 3 provides an analytical approach for computing

RS for events at OR gates in the case where the complete model, which addresses all

events identified by the analyst, is used as the reference model. We now develop an

analytical approach for computing RS for basic events at OR gates in the case where

the current incomplete model is used as the reference model.
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From our analysis presented at the beginning of this Appendix, we note that it is

generally not possible to compute RSi analytically by use of the current incomplete

model as reference model. In this section, we explore the computation of RS for

basic events at OR gates for the special case where events i and j are inputs to the

same set of OR gates. In this case, Equation A.2 can be written as follows:

Rw,i I - aij (1 - axi) (1 - axj). (A.20)

Where, aij are the minimal cut sets that do not contain events i or j. a are all

other events in the minimal cut sets which contain events i or j.

From our discussion in Chapter 3 we note that the effect of the omission of an

event at OR gates on risk and the minimal cut sets is the same as setting the event

Boolean variable to zero. The risk of the current incomplete model from which event

i is missing can therefore be written as:

Re = 1 - aij (1 - axj). (A.21)

By considering Equation 3.5 and Equation A.21, the RRW value of basic event j,

RRWj, of the current incomplete model is equal to

RRW-R
RRWj ( = O) 1- aj (A.22)

Since Re, RRWj are available from the current model, aij and a can be solved by

the use of Equation A.12 and Equation A.8 as follows:

aij = 1-RRW ' (A.23)
RRWj'

a RRWj-1 R (A.24)
RRWBy substituting Equation A.23 and Equation A.24 into Equation A.20, i can

By substituting Equation A.23 and Equation A.24 into Equation A.20, Rj,i can
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be obtained as:

R,i = 1-aij (1 -axi) (1 -axj)

= Rc. (1 -(R, - 1) (RRW - 1) Xi) (A.25)
RRWj - R, 

This expression indicates that R,,i is a function of R, RRWj, xi, and xj. Since

R, and RRWj are available from current models, and xi and xj are also known, RS

of event i can be computed from the information derived from the current model as:

RSi
Rw,i

R,---_~~ -~1
1

= 1. (A.26)1 - (Rc-1).(RRWj-1) - 1 (A.26)
RRWj-Rc xj

This expression is the formulation of RS for basic event i in the case where events

i and j appear at the same set of OR gates. For all other cases where no such an

event j exists, it would not be possible to analytically compute RS of basic event i at

OR gates by the use of information derived from the current model. In such cases,

the computation of RS would require a reformulation of minimal cut sets after the

event is reconsidered in the analysis.
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Appendix B

Selection of Truncation Limits

B.1 Point Estimate Approach for Selecting Trun-

cation Limits

In order to compute the point estimated nominal risk, point estimate values of the

input parameters must be first determined. Usually these point estimated input

parameters are the mean values of their corresponding probability distributions. Once

the probability of each minimal cut set is obtained, the value of risk can then be

obtained by summing up the probabilities of all minimal cut sets using the rare event

approximation.

For example, let us consider a fault tree as presented in Figure B-1.

The minimal cut sets of the fault tree are

X1 X3 , X2 X3 , X4 .

By using the rare event approximation, the system failure probability is governed

by

Q = X1 X3 + X2X3 + X4 . (B.1)

Let xi be the failure probability of component i, and suppose the mean failure

probability of each component is given as



System
Failure

0
4

© ©

1 2

Figure B-1: The fault tree for the example system to illustrate the selection of trun-
cation limit by use of point estimate approach

xl = 5 x 10 -3 ,

x2 = 2 x 10- 2,

X3 = 1 X 10 - 3 ,

X4 = X 10- 3 . (B.2)

The point estimated probability of occurrence of each minimal cut set is thus

= x1x3 = 5 x

= x2 x3 = 2 x

= XI = 10- 3.

10- 3 x 10- 3 = 5 x 10- 6,

10- 2 x 10-3 = 2 x 1 0 - 5 ,
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And the probability of the top event of the fault tree is

Q = p(MCSl) + p(MCS2) -p(MCS3)

= 5x1 2x 10-6 +2 x 10- 3

= 1.025 x 10- 3 . (B.3)

After a particular truncation limit is introduced at the minimal cut set level

into the quantification process, the point estimated probability of occurrence of each

minimal cut set is then compared with the truncation limit. If the probability of a

minimal cut set is below the truncation limit, the minimal cut set is excluded from

the model quantification by setting the probability of this minimal cut set to zero.

On the other hand, if its probability is above the truncation limit, no change will be

made to the minimal cut set. Then the risk level after the truncation, R', can be

computed from the modified probability of each minimal cut set. The percentage of

R being truncated at the given truncation limit can then be computed as RR'

In order to determine whether a chosen truncation limit is acceptable, the per-

centage risk being truncated must be compared with the acceptance criterion. If the

percentage risk being truncated is less than the acceptance criterion, the truncation

limit is acceptable. Otherwise, the truncation limit should be redefined such that the

acceptance criterion will be met.

Acceptance criterion for a truncation limit is often determined by the decision

supported. For decisions which depend heavily on PRA results, a relatively low

truncation limit should be employed in order to achieve high accuracy of risk and risk

change. 5% is often used for acceptability in practice.

As for the above example, if the truncation limit is set to 10-6, none of the

minimal cut set probabilities are below this cutoff value. The percentage system

failure probability being truncated is thus zero. In this case, a high accuracy of

the system failure probability has been achieved, but the computation of Q is not

simplified. If the truncation limit is set to 10- 5 , the first minimal cut set will be
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truncated from the quantification process while the probabilities of minimal cut sets

2 and 3 remain unchanged in the quantification process. In this case, the percentage

system probability truncated is given as:

R-R' 5 x -- - 0.488%. (B.4)
R 1.025 x 10- 3

If 5% is used as acceptance criterion for acceptability of a chosen truncation level,

the truncation level of 10- 5 is acceptable because the percentage of R being truncated

at this truncation level is less than 5%.

By increasing the truncation level to 10- 4 . Both minimal cut sets 1 and 2 will be

truncated from the quantification process. The resultant percentage system failure

probability being truncated is therefore

R -R" 5 x 10- 6 + 2 x 10- 5 2.439%. (B.5)

R 1.025 x 10-3 

This results indicates that the truncation level of 10 - 4 is also acceptable. Com-

pared to the truncation limits of 10-5 and 10- 6 , 10 - 4 is generally considered the most

appropriate truncation limit because it not only simplifies the computation process,

but it also achieves the desired degree of accuracy of system failure probability.

B.2 Monte Carlo Simulation for Selecting Trunca-

tion Limits

In order to generate a probability distribution for the percentage risk being truncated

at a given truncation level using Monte Carlo simulation, probability distributions for

all of the uncertain inputs of a PRA model must first be specified. During each trial,

a sample value of each uncertain input is generated from its probability distribution

model. These sample inputs are then used to compute a sample value of the proba-
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bility of each minimal cut set. If the sample value of a minimal cut set probability is

lower than the cutoff value, the minimal cut set probability is set to zero. Otherwise,

the minimal cut set probability remains unchanged. The modified sample value of

each minimal cut set is then used to compute the sample value of the percentage risk

retained (denoted as R'), while the original sample value of each minimal cut set is

used to compute the sample value of the nominal risk during each trial. A sample

value of percentage risk being truncated is then obtained from RR in each iteration.

After the sampling process is repeated many times, a histogram of the percentage

truncated risk is generated, from which the mean, variance, and confidence levels can

be obtained. According to elementary sampling theory, the variance of the model

outputs are proportional to n1 where n is the number of trials performed in the

simulation. Thus, the sampling process must be repeated until enough sample values

have been obtained to yield the desired degree of accuracy in the results.

In order to determine whether a given truncation limit is acceptable or not, the

expected truncated risk from Monte Carlo simulation is compared with the accep-

tance criterion. To see this, let us continue our discussion of the previous example

system. We assume that the failure probabilities of the components are lognormally

distributed, with means and standard deviations as given in Table B.1. For simplifi-

cation, the failure probability of each component is assumed to be independent of all

others.

Using the computation procedures described above, the histogram of the nominal

Table B.1: Means and standard deviations of the component failure probabilities in
the example system
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Component Mean Standard deviation

1 5.0E-03 3.0E-03

2 2.OE-02 1.OE-02

3 1.OE-03 6.OE-04

4 1.OE-03 8.OE-04



system failure probability was obtained and presented in Figure B-2. The histograms

of the percentage risk being cut off at each of the four chosen truncation levels were

also obtained and presented in Figure B-3, Figure B-4, Figure B-5, and Figure B-

6,respectively. Table B.2 summarizes the percentage truncated risk at each truncation

level obtained using both the point estimate approach and Monte Carlo simulation.

9.96E-5 8.80E-4 1.66E-3 2.44E-3 3.22E-3

Figure B-2: The failure probability
plying truncation limit

distribution for the example system without ap-

According to the results presented in Table B.2, at a truncation level of 1.OE-05,

2.OE-05, and .OE-04, the expected system failure probability being truncated ob-

tained from Monte Carlo simulation is higher than the point estimated results by

approximately a factor of two. At a truncation level of 5.OE-04, the Monte Carlo sim-

Table B.2: The expectation of the percentage truncated system failure probability at
each truncation level

Truncation level 1. OE-05 2.OE-05 1. OE-04 5.0E-04

Point estimate approach 0.488% 0.488% 2.439% 2.439%

Monte Carlo simulation 0.742% 1.595% 3.401% 29.251%

p(Q Q 5%) 100% 96.86% 78.36% 64.44%
_ 



0.000% 0.838% 1.675%

Figure B-3: The failure probability distribution for
level of 1.OE-05

2.513% 3.350%

the example system at truncation

0.000% 1.652% 3.303% 4.955% 6.607%

Figure B-4: The failure probability distribution for the example system at truncation
level of 2.OE-05
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0.000% 4.306% 8.545% 12.785% 17.042%

Figure 13-5: The failure probability distribution for the example system at truncation
level of 1.OE-04

0.237% 25.178% 50.118% 75.059% 100.000%

Figure B-6:: The failure probability distribution for the example system wat trunca-
tion level of 5.OE-04



ulated result is higher than the point estimated result by nearly a factor of 12. These

findings indicate that the truncated percentage system failure probability increases

after the epistemic uncertainty on input parameters are taken into account for all

four chosen truncation levels. The effects of parameter uncertainty on the truncated

system failure probability are relatively small (less than an order of magnitude) for

the first three truncation levels. Parameter uncertainty will have more of an effect

on the truncated system failure probability when the truncation limit is close to the

mean probability of MCS 3.

The degree of confidence that the acceptance criterion has been met for each trun-

cation level was also calculated and presented in Table B.2. If the 95% confidence

level is used for acceptability, the second truncation limit, 2.OE - 05, is the most

appropriate truncation limit for this example. However, the most appropriate trun-

cation limit is 1.OE04 by use of the mean value approach, and 5.OE - 04 using the

point estimate approach.

These results indicate that the most appropriate truncation limit chosen by use

of each of the three approaches might be different. Under which conditions should

one choose one truncation limit over another depends upon the problem subject to

analysis and the application supported. For decisions which do not rely heavily on

PRA results, the point estimate approach can be advantageous for its simplicity.

But for decisions in which insights derived from PRA results play significant role in

risk-informed decision making, the combination of the mean value approach and the

confidence level approach is preferred for its accuracy.
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Appendix C

Comparison of Results Obtained

Using the Point Estimate

Approach and Monte Carlo

Simulation

C.1 Models with Non-Overlap Minimal Cut Set

Probability Distributions

We begin our comparison with a simple logic model which consists of two minimal

cut sets. Let Q1 represent the probability of occurrence of the first minimal cut set,

and Q2 represent that of the second minimal cut set. We also assume Q1, and Q2

are lognormally distributed with parameters given in Table C.1. The corresponding

probability distributions of Q1 and Q2 are shown in Figure C-1.

The fractional risks truncated at each of the six chosen truncation levels obtained

using both the point estimate approach and Monte Carlo simulation are presented in

Table C.2. For comparison, these results are also graphed together in Figure C-2.

The results presented in Figure C-2 indicate that if the truncation limit is be-

yond the region of 2.05E-06 and 2.30E-06 or within the region between 1.97E-07 and
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Table C.1: Distribution parameters for the two example non-overlap minimal cut sets

O.OOE+O 6.25E-7 1.25E-6 1.88E-6 2.50E-6

Figure C-1: Probability distributions of the two non-overlap minimal cut sets

Table C.2: Expected fractional truncated risk for the system consisting of the two
example non-overlap minimal cut sets as a function of truncation limit

Truncation Limit Point Estimate Monte Carlo Simulation

5.OE-06 100.00% 100.00%

1.5E-06 100.00% 90.09%

5.OE-07 0.99% 1.08%

5.0E-08 0.99% 1.16%

1.5E-08 0.99% 0.85%

5.0E-09 0.00% 0.02%

Distribution Parameters Q1 Q2

Mean 1.0E-08 1.OE-06

Standard deviation 5.0E-09 5.0E-07

Lower bound 2.05E-09 1.97E-07

Upper bound 2.34E-08 2.30E-06
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Figure C-2: Expected fractional truncated risk as a function of truncation limit for
the system consisting of the two example non-overlap minimal cut sets
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2.34E-08, the percentage risks truncated that was obtained using the point estimate

approach are the same as those obtained using Monte Carlo simulation. If the trun-

cation limit is in the range of 1.00E-08 to 2.34E-08 or in the range of 1.00E-06 to

2.30E-06, the point estimated percentage truncated risk is higher than that obtained

from Monte Carlo simulation. However, if the truncation limit is within the region

of 2.05E-09 to 1.00E-08 or within the region of 1.97E-07 to 1.OOE-06, the point es-

timated percentage risk truncated is smaller than that obtained from Monte Carlo

simulation.

These observations indicate that, in the case where the probability distributions of

minimal cut sets don't overlap, the point estimated results generally do not agree with

the results obtained from Monte Carlo simulation. The point estimated percentage

truncated risk may be smaller than that obtained using Monte Carlo simulation. It

may also be larger than that obtained using Monte Carlo simulation, depending upon

the region within which the truncation level falls.

C.2 Models with Overlap Minimal Cut Set Prob-

ability Distributions

We now perform another example study by changing the distribution parameters of

the two minimal cut sets given in the previous example.

The new distribution parameters are given in Table C.3. The modified probability

distributions of Q1 and Q2 are shown in Figure C-3. Given that the upper bound of

Q1 is 2.34E-06 and the lower bound of Q1 is 2.20E-07, Figure C-3 shows an overlap

region between the two probability distributions.

The fractional truncated risk at each of the five truncation levels obtained using

the point estimate approach and using Monte Carlo simulation are presented in Ta-

ble C.4 and Figure C-4. The results indicate that if the truncation limit is beyond the

range of 1.56E-07 to 4.70E-06, the point estimated truncated risk is the same as that

obtained using Monte Carlo simulation. If the truncation limit is within the region of
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Table C.3: Distribution parameters for the two example overlap minimal cut sets

O.OOE+O 1.25E-6 2.50E-6 3.75E-6 5.00E-6

Figure C-3: Probability distributions for the two overlap minimal cut sets
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Distribution parameters Q1 Q2

Mean 1.OE-06 2.OE-06

Standard deviation 5.OE-07 1.OE-06

Lower bound 1.56E-07 2.20E-07

Upper bound 2.34E-06 4.70E-06



1.56E-07 to 2.OE-06, the point estimated fractional risk unaccounted is smaller than

that obtained from Monte Carlo simulation. However, for truncation limits in the

range of 2.OE-06 and 4.7E-06, the point estimated fractional risk truncated is greater

than that obtained using Monte Carlo simulation. These findings reveal that, for the

case where the probability distributions of the minimal cut sets overlap with each

other, the general relationship between the point estimated truncated risk and the

Monte Carlo simulated truncated risk does not exist.

Although these conclusions are drawn from an example consisting of only two

minimal cut sets, they are also applicable to the cases where the logic model consists

of the large number of minimal cut sets.

Table C.4: Expected fractional truncated risk the system consisting of the two exam-
ple overlap minimal cut sets
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Truncation Limit Point Estimate Monte Carlo Simulation

1.OE-05 100.00% 100.00%

3.0E-06 100.00% 92.17%

1.5E-06 33.33% 46.87%

5.0E-07 0.00% 0.82%

1.OE-07 0.00% 0.00%
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Figure C-4: Expected fractional truncated risk for the system consisting of the two
overlap minimal cut sets
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